A PRACTICAL APPROACH TO
MICROARRAY DATA ANALYSIS

A PRACTICAL APPROACH TO
MICROARRAY DATA ANALYSIS

edited by

Daniel P. Berrar
School of Biomedical Sciences
University of Ulster at Coleraine, Northern Ireland

Werner Dubitzky
Faculty of Life and Health Science
and Faculty of Informatics
University of Ulster at Coleraine, Northern Ireland

Martin Granzow
4T2consulting
Weingarten, Germany

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47815-3
Print ISBN: 1-4020-7260-0

©2003 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2003 Kluwer Academic Publishers
Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Contents

Acknowledgements Vii
Preface ix
1 Introduction to Microarray Data Analysis 1

Werner Dubitzky, Martin Granzow, C. Stephen Downes, Daniel Berrar

2 Data Pre-Processing Issues in Microarray Analysis 47
Nicholas A. Tinker, Laurian S. Robert, Gail Butler, Linda J. Harris

3 Missing Value Estimation 65
Olga G. Troyanskaya, David Botstein, Russ B. Altman

4 Normalization 76
Norman Morrison and David C. Hoyle

5 Singular Value Decomposition and Principal Component Analysis 91
Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha

6 Feature Selection in Microarray Analysis 110
Eric P. Xing
7 Introduction to Classification in Microarray Experiments 132

Sandrine Dudoit and Jane Fridlyand

8 Bayesian Network Classifiers for Gene Expression Analysis 150
Byoung-Tak Zhang and Kyu-Baek Hwang

vi Contents

9 Classifying Microarray Data Using Support Vector Machines 166
Sayan Mukherjee

10 Weighted Flexible Compound Covariate Method for Classifying
Microarray Data 186
Yu Shyr and KyungMann Kim

11 Classification of Expression Patterns Using Artificial
Neural Networks 201
Markus Ringnér, Patrik Edén, Peter Johansson

12 Gene Selection and Sample Classification Using a Genetic Algorithm
and k-Nearest Neighbor Method 216
Leping Li and Clarice R. Weinberg

13 Clustering Genomic Expression Data:
Design and Evaluation Principles 230
Francisco Azuaje and Nadia Bolshakova

14 Clustering or Automatic Class Discovery: Hierarchical Methods 246
Derek C. Stanford, Douglas B. Clarkson, Antje Hoering

15 Discovering Genomic Expression Patterns with Self-Organizing Neural
Networks 261
Francisco Azuaje

16 Clustering or Automatic Class Discovery:
non-hierarchical, non-SOM 274
Ka Yee Yeung

17 Correlation and Association Analysis 289
Simon M. Lin and Kimberly F. Johnson

18 Global Functional Profiling of Gene Expression Data 306
Sorin Draghici and Stephen A. Krawet?

19 Microarray Software Review 326
Yuk Fai Leung, Dennis Shun Chiu Lam, Chi Pui Pang

20 Microrray Analysis as a Process 345
Susan Jensen

Index 361

Acknowledgements

The editors would like to thank the contributing authors for their excellent
work. Furthermore, the editors would like to thank Joanne Tracy and Dianne
Wuori from Kluwer Academic Publishers for their help and support in
editing this volume.

Preface

In the past several years, DNA microarray technology has attracted
tremendous interest in both the scientific community and in industry. With
its ability to simultaneously measure the activity and interactions of
thousands of genes, this modem technology promises unprecedented new
insights into mechanisms of living systems. Currently, the primary
applications of microarrays include gene discovery, disease diagnosis and
prognosis, drug discovery (pharmacogenomics), and toxicological research
(toxicogenomics).

Typical scientific tasks addressed by microarray experiments include the
identification of coexpressed genes, discovery of sample or gene groups with
similar expression patterns, identification of genes whose expression patterns
are highly differentiating with respect to a set of discerned biological entities
(e.g., tumor types), and the study of gene activity patterns under various
stress conditions (e.g., chemical treatment). More recently, the discovery,
modeling, and simulation of regulatory gene networks, and the mapping of
expression data to metabolic pathways and chromosome locations have been
added to the list of scientific tasks that are being tackled by microarray
technology.

Each scientific task corresponds to one or more so-called data analysis
tasks. Different types of scientific questions require different sets of data
analytical techniques. Broadly speaking, there are two classes of elementary
data analysis tasks, predictive modeling and pattern-detection. Predictive
modeling tasks are concerned with learning a classification or estimation
function, whereas pattern-detection methods screen the available data for
interesting, previously unknown regularities or relationships.

A plethora of sophisticated methods and tools have been developed to
address these tasks. However, each of these methods is characterized by a set
of idiosyncratic requirements in terms of data pre-processing, parameter
configuration, and result evaluation and interpretation. To optimally design
and analyze microatray experiments, researchers and developers need a

X

sufficient overview of existing methodologies and tools and a basic
understanding of how to apply them.

We believe that one significant barrier to the widespread effective and
efficient use of microarray analysis methods and tools is a lack of a clear
understanding of how such techniques are used, what their merits and
limitations are, and what obstacles are involved in deploying them. Our goal
in developing this book was to address this issue, by providing what is
simultaneously a design blueprint, user guide, and research agenda for
current and future developments in the field.

As design blueprint, the book is intended for life scientists, statisticians,
computer experts, technology developers, managers, and other professionals
who will be tasked with developing, deploying, and using microarray
technology including the necessary computational infrastructure and
analytical tools.

As a user guide, the book seeks to address the requirement of scientists
and researchers to gain a basic understanding of microarray analysis
methodologies and tools. For these users, we seek to explain the key
concepts and assumptions of the various techniques, their conceptual and
computational merits and limitations, and give guidelines for choosing the
methods and tools most appropriate for the analytical task at hand. Our
emphasis iS not on a complete and intricate mathematical treatment of the
presented analysis methodologies. Instead, we aim at providing the users
with a clear understanding and practical know-how of the relevant methods
so that they are able to make informed and effective choices for data
preparation, parameter Setting, output post-processing, and result
interpretation and validation. For methodologies where free software exists
we will also provide practical tips for obtaining and using the tools.

As a research agenda, this volume is intended for students, teachers,
researchers, and research managers who want to understand the state of the
art of the presented methodologies and the areas in which gaps in our
knowledge demand further research and development. To this end, our aim
was to maintain the readability and accessibility of a textbook throughout the
chapters, rather than compiling a mere reference manual. Therefore,
considerable effort was made to ensure that the presented material, which
stresses the applied aspects of microarray analysis, is supplemented by rich
literature cross-references to more foundational work.

Clearly, we cannot expect to do justice to all three goals in a single book.
However, we do believe that we have succeeded in taking useful steps
toward each goal. In doing so, we hope to advance the understanding of both
the methodologies and tools needed to analyze microarray data, and the
implications for future developments of microarray technology and its
support technologies.

xi

The design and subsequent analytical examination of microarray
experiments rests on the scientific expertise of the experimenters, their
knowledge of the relevant microarray technology and experimental
protocols, and their understanding of analysis methods and tools. The
available machinery of microarray analysis methods ranges from classical
statistical approaches, to machine learning techniques and to methods from
artificial intelligence. Hence, the preparation of this book must draw upon
the experts from many diverse subfields in mathematics and computer
science. In developing this volume, we have assembled a distinguished set of
authors, each recognized as an authority in one or more of these fields. We
have asked these authors to present a selected set of state-of-the-art
methodologies and tools for analyzing microarrays from a highly practical,
user-oriented perspective, emphasizing the how-to aspects of the presented
techniques. To support the research agenda of this book, we have also asked
the authors to identify where future developments are likely to take place
and to provide a rich set of pointers to theoretical works underpinning the
presented methods. The result, we hope, is a book that will be valuable for a
long time, as summary of where we are, as a practical user guide for making
informed choices on actual microarray analysis projects, and as roadmap for
where we need to go in order to improve and further develop future
microarray analysis technology.

This book contains one introductory chapter and 19 technical chapters,
dealing with specific methods or class of methods. As illustrated in Table 1,
the technical chapters are roughly grouped into two broad categories, namely
datapreparation and exploratory data analysis respectively. Partitioning the
chapters into these areas largely mirrors the current state of the art in the
field. Different protocols, experimental conditions, analysis goals, data
complexity, and sources of Systematic variation in microarray experiments
normally require different ways for selecting and preparing the raw data
obtained from the detection devices. These methods range from missing
value imputation and normalization to feature subset selection and data
integration. Collectively, we refer to these methods as data preparation or
pre-processing techniques. Once the final format for the data is achieved,
data exploration or analysis can commence. This part of the data analysis
process is referred to as exploratory data analysis. Typical exploratory
analysis tasks include classification (or class prediction), clustering (or
automatic classification), correlation and association analysis, and others.

As much as possible, the chapters are presented in an order that reflects
the overall data analysis process. In Chapter 1, we provide an introduction to
microarray analysis with the aim of (a) providing an easy-to-understand
description of the entire process, and (b) establishing a common
terminology. First, we recapitulate the biological and technological
background of microarray hybridization experiments. This includes the main

xii

types of arrays that exist, aspects of their protocols, and what kind of
quantities they are measuring. Second, we categorize the classes of questions
life scientists hope to answer with microarray experiments, and what kind of
analytical tasks they imply. Third, we describe the entire process from the
inception of a scientific question or hypothesis, to the design and execution
of a microarray experiment, and finally to data preparation, analysis, and
interpretation. We then discuss some of the conceptual and practical
difficulties the experimenter faces when choosing and applying specific data
analysis techniques. The remaining chapters are intended to shed more
detailed light on these issues.

Table 1. Roadmap to the content of the book.

Part Topic Chapter#
Introduction: Overview of microarray analysis process 1
e Foundations, issues, and methods 2
2 Missing value imputation 3
né_ § Error handling and normalization 4
E_ Singular value decomposition, principal component analysis 5
Feature selection: established and recent techniques 6
Statistical foundations and methods 7
£ Bayesian networks 8
f= Support vector machines 9
S: Weighted flexible compound covariate method and decision 10
s trees
© Artificial neural networks 11
k-nearest neighbor and genetic algorithms 12
. @ Overview and review of some methods 13
% 2 Hierarchical clustering methods 14
5 5 Self-organizing maps 15
Other non-hierarchical methods 16
Other CoOrrelation and association analysis methods 17
Functional interpretation analytical results 18
Tools SYystematic review of free and commercial software 19
Managing microarray data analysis: workflow and process 20

Chapter 2 addresses the issue of data pre-processing in microarray
analysis in general. It is written for the newcomer to this field and explains
the basic concepts and provides a useful vocabulary. It discusses the
motivation for normalization, data centralization, data re-scaling, and
missing value imputation. This chapter represents an introduction to the
Chapters 2 to 5.

Chapter 3 presents three different methods for missing value imputation
in microarray data. This includes a k-nearest-neighbor approach, a method

xiii

based on singular value decomposition, and row averaging. Practical
guidelines are presented for using publicly available free software tools.

Chapter 4 discusses various sources of errors in microarray data, and then
proceeds with a detailed discourse on normalization. In contrast to
Chapter 2, the focuses is on mathematical considerations.

Chapter 5 is concerned with a major problem in microarray data
analysis — the so-called large-p-small-n problem also known as the curse of
dimensionality. This refers to the fact that for many microarray experiments
the number of variables (genes) exceeds the number of observations
(samples) by a factor of 10, 1000, or more. Feature selection and dimension
reduction methods refer to techniques designed to deal with this “curse”. The
chapter discusses the use — and misuse — of singular value decomposition
and principal component analysis.

Chapter 6 is a survey of several important feature selection techniques
used to ward off the curse of dimensionality. First, it presents classic filter
and wrapper approaches and some recent variants of explicit feature
selection. Second, it outlines several feature weighting techniques including
WINNOW and Bayesian feature selection. Third, towards the end, the
chapter describes some recent work on feature selection for clustering tasks,
a subject that has been largely neglected.

Chapter 7 discusses statistical issues arising in the classification of gene
expression data. This chapter introduces the statistical foundations of
classification. It provides an overview oftraditional classifiers, such as linear
discriminant analysis and nearest neighbor classifiers, in the context of
microarray analyses. The general issues of feature selection and classifier
performance assessment are discussed in detail.

Chapter 8 looks at Bayesian networks for the classification of microarray
data. It introduces the basic concept of this approach, and reports on a study
where the performance of Bayesian networks was compared with other state-
of-the-art classifiers.

Chapter 9 describes a classification method that has been gaining
increasing popularity in the microarray arena — support vector machines
(SVMy). It provides an informal theoretical motivation of SVMs, both from
a geometric and algorithmic perspective. Instead of focusing on
mathematical completeness, the intention of this chapter is to provide the
practitioner with some “rules of thumb” for using SVMs in the context of
microarray data. Finally, pointers to relevant, publicly available free
software resources are given.

Chapter 10 reports on a recent case study of gene expression analysis in
lung cancer. The authors describe the weighted flexible compound covariate
method for classifying the microarray data. They also demonstrate how this
relatively new method is related to decision trees.

Xiv

Chapter 11 deals with a widely used machine learning technique called
artificial neural networks (ANNs). The authors describe the application of
ANNs to micrarray classification task. They discuss how a principal
component analysis, cross-validation and random permutation tests can be
employed to improve and evaluate the predictive performance of ANNs. The
problem of extracting important genes from a constructed ANN is also
addressed.

Chapter 12 represents the last chapter on classification. It presents the k-
nearest-neighbor strategy and genetic algorithms for classifying microarray
data. It discusses the general motivation and the concepts of these methods,
and demonstrates their performance on microarray data sets. The authors
provide references to publicly available free software resources.

Chapter 13 provides an overview of the major types of clustering
problems and techniques for microarray data. It focuses on crucial design
and analytical aspects of the clustering process. The authors provide some
important criteria for selecting clustering methods. Furthermore, the chapter
describes a scheme for evaluating clustering results based on their relevance
and validity (both computational and biological).

Chapter 14 addresses hierarchical clustering methods in the context of
microarray data. The discussed methods include hierarchical clustering
methods, including adaptive single linkage clustering, a new method
designed to provide adaptive cluster detection while maintaining scalability.
Furthermore, the chapter provides examples using both simulated and real
data.

Chapter 15 presents self-organizing maps (SOMs) for clustering
microarray data. It discusses question such as: How do these models work?
Which are their advantages and limitations? Which are the alternatives? In
answering these questions, this chapter constitutes a rich source of practical
guidelines for using SOMs to analyze microarray data.

Chapter 16 examines a number of non-hierarchical clustering algorithms
for microarray analysis, namely cluster affinity search technique, the famous
k-means technique, partitioning around medoids, and model-based
clustering. The chapter puts emphasis on the practical aspects of these
algorithms, such as guidelines for parameter setting, the specific algorithmic
properties, and practical tips for implementation.

Chapter 17 addresses correlation and association analysis methods. It
addresses questions that should help the user to assess the limitations and
merits of these methods, such as; How to statistically measure the strength
between two variables and test their significance? What is correlation, what
is association? Which conclusions do correlation and association analysis
allow in the context of microarray data?

Chapter 18 discusses the global functional interpretation of gene
expression experiments. After a researcher has found differentially expressed

XV

genes using one of the above described methods, he must face the challenge
of translating his results into a better understanding of the underlying
biological phenomena. This chapter shows how this can be achieved.

Chapter 19 provides an overview of both publicly available, free software
and commercial software packages for analyzing microarray data. The aim
of this review is to provide an overview of various microarray software
categorized by their function and characteristics. This review should be a
great help for those who are currently consider obtaining such software.

Finally, Chapter 20 describes the microarray data analysis from process
perspective, highlighting practical issues such as project management and
workflow considerations.

The book is designed to be used by the practicing professional tasked
with the design and analysis of microarray experiments or as a text for a
senior undergraduate- or graduate level course in analytical genetics,
biology, bioinformatics, computational biology, statistics and data mining, or
applied computer science. In a quarter-length course, one lecture can be
spent on each chapter, and a project may be assigned based on one of the
topics or techniques discussed in a chapter. In a semester-length course,
some topics can be covered in greater depth, covering more of the formal
background of the discussed methods. FEach chapter includes
recommendations for further reading. Questions or comments about the book
should be directed to the editors by e-mail under dp.berrar@ulster.ac.uk,
w.dubitzky @ulister.ac.uk, or granzow @4T2consulting.de. For further details
on the editors, please refer to the following URL;

http://www.infj.ulst.ac.uk/~cbbg23/interests.html.

Daniel Berrar
Werner Dubitzky

Martin Granzow

Chapter 1

INTRODUCTION TO MICROARRAY DATA
ANALYSIS

Werner Dubitzkyl, Martin Granzow?, C. Stephen Downes', Daniel Berrar!

1University of Ulster, School of Biomedical Sciences, Cromore Rd., Coleraine BT52 ISA,
Northern Ireland,
e-mail: {w.dubitzky, cs downes, dp.berrar} @ulster.ac.uk

247200nsulting, Ringstrasse 61, D-76356 Weingarten, Germany,
e-mail: granzow @4T2consulting.de

1. INTRODUCTION

DNA microarray technology is attracting tremendous interest both among
the scientific community and in industry. With its ability to measure
simultaneously the activities and interactions of thousands of genes, this
modern technology promises new insights into the mechanisms of living
systems. Typical scientific questions addressed by microarray experiments
include the identification of coexpressed genes, either as genes expressed
throughout a sub-population or as genes always expressed together (sample
or gene groups), identification of genes whose expression patterns make it
possible to differentiate between biological entities that are otherwise
indistinguishable (e.g., tumour samples that are clinically grouped together
despite differences in molecular defects), and the study of gene activity
patterns under various stress conditions (e.g., chemical treatment).

Although microarrays have been applied in many biological studies, the
handling and analysis of the large volumes of data generated is not trivial.
Different types of scientific questions require different data analytical
techniques. Broadly speaking, there are two classes of elementary data
analysis tasks, predictive modeling and pattern-detection. Predictive
modeling tasks are concerned with learning a classification or estimation
function, whereas pattern-detection methods screen the available data for
interesting and previously unknown regularities or relationships. A wide

2 Chapter 1

range of sophisticated methods and tools have been developed to address
these tasks. To facilitate predictive modeling and pattern-detection and to
address data errors arising from the processes involved in microarray
hybridization experiments, a great portion of this discussion will focus on
data preparation and pre-processing.

Instead of looking at particular methods in detail, this article concentrates
on the overall microarray data analysis process, stretching from hypothesis
conception to array design to model construction and validation. The basic
aim is to describe the various steps of this process in an illustrative manner,
rather than analyzing each and every minute detail. This article is intended,

therefore, to appeal to a wide readership interested in microarray data
analysis.

2. BASIC BIOLOGY AND ARRAY PROTOCOL

2.1 Genes''R"us

Understanding and using microarray analysis techniques requires a basic
understanding of the fundamental mechanisms of gene expression itself.
This section reviews some of the most important aspects of the underlying
concepts. Readers familiar with the fundamentals of gene expression may
safely skip this section.

Describing gene expression starts necessarily with deoxyribonucleic acid
(DNA), the very stuff genes are made from, and ribonucleic acid (RNA).
Both DNA and RNA are polymers, that is, molecules that are constructed by
sequentially binding members of a small set of subunits called nucleotides
into a linear strand or sequence. Each nucleotide consists of a base, attached
to a sugar, which is attached to a phosphate group. The linear strand consists
of alternate sugars and phosphates, with the bases protruding from the
sugars. In DNA, the sugar is deoxyribose and the bases are named guanine,
adenine, thymine, and cytosine; in RNA the sugar is ribose and the bases are
guanine, adenine, uracil, and cytosine (Alberts et al., 1989). The sugar-
phosphate backbone can, for the purposes of informatics, be considered as
straight (though actually it has all sorts of twists, kinks and loops — higher-
order structures — that are of interest to those who care about such things).
The bases that protrude from the backbone are far more informative. They
can form pairs, via hydrogen bonds, with bases in other nucleic acid strands:
adenine binds to thymine (or uracil) and guanine to cytosine, by the
formation of two and three hydrogen bonds respectively. Such base pairing
allows DNA to be organized as a double-stranded polymer whose
characteristic three-dimensional helix structure has become famous. The two
DNA strands are complementary to each other, meaning that every guanine

1. Introduction to Microarray Data Analysis 3

in one strand corresponds to a cytosine in the other (complementary) strand.
The same mechanisms apply to the complementary DNA nucleotides
adenine and thymine.

It is this sequence of paired bases which allows DNA to encode
information, and to replicate it by using each strand as a template against
which to assemble a new complementary strand. As an encoding device,
DNA has an extraordinary storage density. One cubic micrometre of DNA
can encode around 150 Mbytes of information; this is about ten orders of
magnitude better than a CD-ROM optical memory, and twelve more than
most computer hard disks.

Within the DNA, genes are unique sequences of variable length. The
genes within a cell comprise the cell’s genome:. it contains the information
necessary for synthesizing (constructing) proteins, which do all that a cell
needs. The genome also contains the information that controls which
proteins are synthesized in a given cell under particular circumstances.

Implicit in the structure of a cell’s genome are mechanisms for self-
replication and for transforming gene information to proteins. The gene-to-
protein transformation constitutes the “central dogma of molecular biology”;
it is described by a two-step process:

Step 1: Transcription: Gene (DNA) makes RNA

Step 2: Translation: RNA makes protein } Expression

That is, the information represented by the DNA sequence of genes is
transferred into an intermediate molecular representation, an RNA sequence,
using part of a DNA strand as a template for assembling the RNA. The
information represented by the RNA is then used as a template for
constructing proteins, according to a code in which each amino acid is
represented by three bases in the RNA. The RNA occurring as intermediate
structure is referred to as messenger RNA (mRNA). The term transcription
is commonly used to describe Step 1 and the term translation for Step 2.
Collectively, the overall process consisting of transcription and translation is
known as gene expression. Notice, in most organisms only a small subset of
genomic DNA is capable of being transcribed to mRNA or expressed as
proteins. Some regions of the genome are devoted to control mechanisms,
and a substantial amount of the genomes of higher-level organisms appears
to serve no informational function at all. These DNA sections are also
known as junk DNA.

With enormous effort and expense, almost the whole human genome
(~2.8 x 10° basepairs) has been sequenced, junk and all; there are a few
refractory regions which will succumb soon. The human genome encodes at
least 40,000 genes.

4 Chapter 1

A natural error is to suppose that, once the genome is known, everything
important in human biology is understood. This is far from the truth. As an
analogy: suppose we have obtained a catalogue of all the 40,000-odd parts
and tools needed to make an automobile; do we then understand its design,
can we improve it? Not if the catalogue is like the human genome, with
entries mostly in random order, with no indication of which tool is needed
for fitting which part, or where the parts go, or which has to be connected to
what, or how many of each we need. And imagine that (as experience
teaches us is true for the genome) that many catalogue entries may be
ambiguous, so that the same part number can describe a range of more or
less related parts. Still worse; many parts, as specified in the catalogue, don’t
actually fit, and have to be machined down or have holes drilled through
them or small attachments stuck onto them before they can be used at all.
Add that some entries in the catalogue are for parts that aren’t used any
longer, or are unusable...

All that analogy is true for the proteins encoded by the genome. Proteins
are the ultimate product of the gene expression process. All the proteins
synthesized from a cell’s genome constitute its proteome. Chemically,
proteins are polymers that are formed from 20 different subunits called
amino acids. The linear chain of amino acids making up a protein, dictated
by the sequence of bases in the mRNA, is known as its primary structure or
sequence. Within its normal physiological environment, an amino acid
sequence assumes a three-dimensional conformation, which is the major
determinant of the protein’s biological function. For each amino acid
sequence, there is a stable three-dimensional structure sometimes referred to
as the protein’s native state; many proteins have a range of possible native
states, and can switch between them according to their interactions with
other molecules. The native state of a protein and the folding process
involved in reaching this state from its initial linear orientation are dictated
by the primary sequence of the protein. Despite the strong deterministic
correspondence between the primary sequence and the native state of a
protein, the processes involved in protein folding are highly complex and
difficult to capture and describe logically. Protein folding and structure
prediction have been the subjects of ongoing research for some time.

In many ways, proteins can be considered as the biochemical
“workhorses” of an organism. Proteins play a variety of roles in life
processes, ranging from structural (e.g., skin, cytoskeleton) to catalytic
(enzymes) proteins, to proteins involved in transport (e.g., haemoglobin),
and regulatory processes (e.g., hormones, receptor/signal transduction), and
to proteins controlling genetic transcription and the proteins of the immune
system. Given their importance in terms of biological function, it is no
surprise that many applications in biotechnology are directly related to the

1. Introduction to Microarray Data Analysis 5

understanding of protein structure and function. This is perhaps most
impressively demonstrated by modermn drug development. The principal
working mechanism of most known drugs is based on the idea of selectively
modifying (by interaction) the function of a protein to affect the symptoms
or underlying causes of a disease. Typical target proteins of most existing
drugs include receptors, enzymes, and hormones. Therefore, many experts
foresee proteomics, the study of structure and function of proteins, as the
next big step in biomolecular research.

In many biomolecular studies, the most important issue is to measure real
gene expression, that is the abundance of proteins. However, as we will see
in more detail below, DNA microarray experiments do measure the
abundance of mRNA, but not protein abundance. According to a simple,
traditional view of gene expression, there is a direct one-to-one mapping
from DNA to mRNA to protein. To put it another way, a specific gene (i.e.
genomic DNA sequence) will always produce one and the same amino acid
sequence of the corresponding protein, which will then fold to assume its
native state. Given this simplified scheme, measuring mRNA abundance
would provide us with highly accurate information on protein abundance, as
protein and mRNA abundance are proportional due to the direct mapping.
We would also know the primary structure of the proteins corresponding to
the measured mRNA, since the genetic code allows us to deduce the amino
acid sequence from a given DNA or RNA sequence. Unfortunately, gene
expression is in reality more complex.

The modemn view of gene expression paints a more intricate picture,
which suggests a highly dynamic gene expression scenario. There are
various ways in which proteins are formed and modified; and indeed, the
genome itselfis subject to alterations.

First, genomic DNA itself may undergo changes, as a result of the
replication machinery making mistakes, or attempting to copy damaged
DNA and getting it wrong. DNA bases can be changed; small or large
regions can be inserted or deleted or duplicated, pieces of one DNA
molecule can be joined onto pieces of another, RNA can be copied
backwards into DNA (reverse transcription), regions of junk DNA derived
from viruses canjump about the genome.

Second, the (forward) transcription process is more complicated. One
gene may be transcribed to give a range of possible products. When
composing the final mRNA sequence, the transcription process uses a
mechanism called splicing to cut out some regions (introns), so that only the
remaining segments (exons) survive to be translated to protein. This process
may yield alternative versions of mRNA sequences due to alternative
splicing. A region of mRNA that in one case is treated as intron/exon/intron
may in another be treated as one large intron; a gene coding for 3 possible

6 Chapter 1

introns, A, B and C can thus produce a mRNA with an ABC sequence, or
alternatively just AC. (With multiple introns, much greater permutations are
of course possible. The current record is held by a gene expressed in the
brain of the fruitfly Drosophila, which could in principle be alternatively
spliced in over 40,000 different ways)

Another source of variation comes from promoter choice. A promoter is
a specific location or site where the transcription of a gene from DNA to
mRNA begins. Genes may have multiple promoters, thus giving rise to
different transcript versions and hence different proteins even without
alternative splicing

It is also possible — some cases are known, and we do not know how
many there are — for an mRNA to be “edited” before it is translated. One
base in the mRNA can be replaced by another, altering one amino acid (or,
drastically, converting a signal for an amino acid into a signal to stop
translating early).

Furthermore, there is no necessary connection between the amount of an
mRNA present (in whatever spliced or edited form) and the amount of
protein translated from it. There is, in a general sort of way, a correlation
between mRNA abundance and the corresponding protein abundance, but
there is no doubt that rates oftranslation can be differentially controlled.

Lastly, there are post-translational modifications. These are structure-
modifying alterations occurring after the translation process. Proteins may be
split up into smaller fragments, or have their ends or internal regions
removed; amino acids may be altered by adding (temporarily or
permanently) other chemical groups to them, sometimes with drastic effects
on the protein’s catalytic or structural properties.

With all these caveats, we should stress that although DNA gene
microarrays are often thought of as instruments for measuring gene
expression, what they really measure is mRNA transcript abundances. They
do not always distinguish between different forms of processed mRNA, and
they can give no information about differential translation rates, nor about
post-translational modification. But they do give some valuable information,
quickly and fairly easily. One of the main reasons why researchers are
pursuing DNA microarray studies with such intensity, in the full knowledge
of their limitations, is the fact that protein expression and modification
studies are still very expensive, and often involve highly specialized and
delicate techniques, (e.g., 2D-gel electrophoresis, mass spectrometry). High-
throughput protein-detecting arrays or chips are beginning to emerge;
however, there are still a number of issues to be resolved before this
technology is mature. Critical issues involve efficient methods for large-
scale separation and purification of proteins, and the maintenance of the
active biological configuration of proteins while they are attached to the

1. Introduction to Microarray Data Analysis 7

surface of a chip. So at the present time, and for the immediately foresecable
future, DNA microarray technology constitutes a useful compromise for
carrying out explorative high-throughput experiments. Because of the
inherent limitations, one should exercise extreme caution when interpreting
the results of such microarray experiments, even if their analysis is perfect.

The biochemical details of gene expression are highly intricate. Many
good texts exist on this subject, for example, Schena et al., 1995; Raské and
Downes, 1995.

2.2 Brewing up the Hybridization Soup

To summarize the last section: a great deal of modern molecular biology
revolves around nucleotide polymers — DNA and RNA - and amino acid
polymers, proteins. DNA microarrays measure a cell’s transcript via the
abundance of mRNA molecules, but not protein concentrations. This section
will illustrate the biochemical principles involved in measuring transcripts
with microarrays.

A number of techniques have been developed for measuring gene
expression levels, including northern blots, differential display, and serial
analysis of gene expression. DNA and oligonucleotide microarrays are the
latest in this line of methods. They facilitate the study of expression levels in
parallel (Duggan et al., 1999). All these techniques exploit a potent feature
of the DNA duplex — the sequence complementarity of the two strands. This
feature makes hybridization possible. Hybridization is a chemical reaction in
which single-stranded DNA or RNA molecules combine to form double-
stranded complexes (see schematic illustration in Figure 1.1). The famous
DNA double helix is an example of such a molecular structure.

R

hybridize
—_—
Yo NV
single-stranded, complementary formation of double-helical
nucleotide sequences a and b DNA sequence

Figure 1.1. Hybridization of two single-stranded nucleic acid sequences to a double-stranded,
helical camplex.

The hybridization process is governed by the base-pairing rules: specific
bases in different strands form hydrogen bonds with each other. For DNA

8 Chapter 1

the matching pairs are adenine-thymine and cytosine-guanine. Hybridization
is a nonlinear reaction. Yield — the number or concentration of nucleic acid
elements binding with each other in the resulting double-stranded molecule
— depends critically on the concentration of the original single-stranded
polymers and on how well their sequences align or match. It is this yield that
is measured in a microarray experiment.

Before we proceed to an actual hypothetical microarray experiment, let
us look at color-coded genes (green and red ones) in competitive and
comparative hybridization. In order to selectively detect and measure the
amount of mRNA that is contained in an investigated sample, we must label
the mRNA with reporter molecules. The reporters currently used in
microarray experiments include fluorescent dyes (fluors), for example,
cyanine 3 (Cy3) and cyanine 5 (Cy5).

Tet us assume we have two samples of transcribed mRNA from two
different sources, sample 1 and sample 2. Both samples may consist of
multiple copies of many genes. We have also a probe, which is a specific
nucleic acid sequence, perhaps a gene, or a characteristic subsequence of a
gene, or a short, artificially composed nucleotide sequence. Like the two
samples, the probe will contain many copies of the sequence in question.
This is important because sufficient amounts are needed to get the
hybridization reaction going, and to be able to detect and measure the
various concentrations. What we want to find out is the relative abundance
of the mRNA complementary to the probe sequence within sample 1 and
sample 2. Sample 1, for example, may contain three times as many copies of
sequences complementary to the probe as sample 2, or they may not be
contained in either sample at all. To find out the exact answer, we proceed as
follows (see also Figure 1.2):

1. Prepare a mixture consisting of identical probe sequences. In this
scheme of things the probe is a kind of “sitting duck”, awaiting
hybridization.

Label sample 1 with green-dyed reporter.

Label sample 2 with red-dyed reporter.

4. Simultaneously give both sample mixtures the chance to
hybridize with the probe mixture. Here, sample 1 and sample 2
are said to compete with each other in an attempt to hybridize
with the probe.

5. Gently stir for five minutes.

@

6. Filter the mixture to retain only those probe sequences that have
hybridized, that is, formed a double-stranded polymer.

1. Introduction to Microarray Data Analysis 9

7. Measure the amount or intensity of green and red in the filtered
mixture, and compare the amounts to determine the relative
abundance of the probe sequence.

8. Jot down the result, add a little salt, and enjoy.

sample 1 RNA probe RNA sample 2 RNA
S AN AW
AN AN
Mabeled sample 1 labeled sample 2
A SR R

dye green my&

N 4
o~ - Va/
hybridized probe
idi TNV
ybridized pro Xn
VNN
OV < filter

TRV

Figure 1.2. Competitive/comparative hybridization.

2.3 What You Always Wanted to know About Gene X

This section briefly looks at a hypothetical DNA microarray experiment and
the various steps involved. However, for reasons of illustration this
experiment is dealing with a rudimentary array consisting of only four genes
rather than hundreds or thousands commonly used in such experiments.
Notice, that because of RNA’s inherent chemical instability, it is often useful
to work with a more stable complementary DNA (cDNA) made by reverse
transcription, rather than with mRNA, at intermediate steps. However,
before the array is made, the cDNA is denatured (broken up into its
individual strands) to allow the hybridization reaction.

Typical goals of DNA microarray experiments involve the comparison of
gene transcription (expression) in two or more kinds of cells (e.g., cardiac
muscle versus prostate epithelium), and in cells exposed to different
conditions, for example, physical (e.g., temperature, radiation), chemical
(e.g., environmental toxins), and biological conditions (e.g., normal versus
disease, changing nutrient availability, cell cycle variations, drug response).
Genetic diseases like cancer are characterized by genes being inappropriately
transcribed, or missing altogether. A cDNA microarray study can pinpoint
the transcription differences between normal and diseased, or it can reveal
different patterns of abnormal transcription to identify different disease
variations or stages.

10 Chapter 1

Let us imagine a study involving ten human patients with two different
forms of the same type of cancer; six patients suffer from form A and four
from form B. Further, let us assume that we want to investigate four different
genes, a, b, ¢, and d, and their roles in the disease. To help us answer this
question we set up a cDNA microarray experiment. Initially, we would hope
to find characteristic expression patterns, which would help us to formulate
more specific hypotheses. Clearly, in a more realistic scenario, we would
like to analyze many more genes at the same time. But for the sake of this
illustration, we are just looking at four genes. The following outlines the
various steps we need to take care of for this experiments (see also
Figure 1.3).

1. Probe preparation. Prepare one DNA microarray per patient,
using a standard DNA (possibly cDNA).

2. Target sample preparation. Obtain, purify, and dye target mRNA

samples.

3. Reference sample preparation. Obtain and prepare reference or
control mRNA and label it.

4, Competitive hybridization. Hybridize target and reference mRNA
with the cDNA on the array.

5. Wash up the dishes.

6. Detect red-green intensities. Scan the array to determine how
much target and reference mRNA is bound to each spot.

7. Determine andrecord relative mRNA abundances.

The probe preparation step involves the manufacturing of sufficient
amounts of cDNA sequences that are identical to the sequence of the studied
genes. In place of the full sequence, it is often more practical to use a
characteristic subset with 500 to 2,500 nucleotides in length. The cDNA
sequence mixtures representing the investigated genes are then affixed to the
array (a kind of glass slide). Normally, the mixtures are placed as round
spots on the array and arranged in a grid-like fashion, hence the name
microarray. At least for larger experiments, we would like to record
information about where on the array which gene is placed so that we can
later track the right data. In addition, we would record any information
relevant to the genes in question, for example, the precise nucleotide
sequence, known biological function, pointers to relevant literature, and so
on.

1. Introduction to Microarray Data Analysis 11

reference mRNA target mRNA
AAAA AANAN
prepare cDNA and \ dye green dye red / SCan array an

record red/green

spot &mry myy ,mvv intensities for each gene
\ hybridize / l

@ b@
@d@

prepared array array hefore hybnd.mmon hybndlzewd aray
(cDNA affixed) (denatured cDNA)
Legend:

333 green-dyed mRNA sequence AN mRNA or cDNA sequence
33"+ red-dyed mRNA sequence

Figure 1.3. A Simplified 4-Gene Microarray Experiment.

Target refers to the actual entities or samples we want to measure: in this
case, the transcribed mRNA from tissue or serum cells of our patients. First,
we must obtain the tissue or serum cells. Once the cells are at hand, mRNA
must be extracted from the cells, purified, dyed (i.e. labeled with reporter
molecules), and converted into a suitable chemical RNA form. In the
diagram of Figure 1.3 we label the target sample with “red” dye and the
reference with green “dye”. The colors red and green are arbitrary. It does
not necessarily imply that the actual reporter molecules are indeed red or
green. However, we use these colors here, since in the final digitized, false-
color graphics image, the color red is chosen to represent target mRNA
abundance and green for reference abundance.

The reference sample is used as a baseline relative to which we measure
the abundance of target mRNA. There are two common choices for
references samples: standard reference and control. Standard references
(also called universal references) are often derived from mRNA pools
unrelated to the target samples of the experiment. Standard references should
contain sufficient amounts of mRNA from the genes studied with the array.
So for our four-gene example, we could use a standard reference from which
we know that it contains “standard” mRNA of the four genes a, b, ¢, and d.
Control samples are also employed as references. In contrast to references,
controls are somehow related to the experiment at hand. For example, in a
normal-versus-disease study, the control may represent tissue from the
normals. Once sufficient amounts of reference mRNA is produced, it is
labeled with reporters. Clearly, the reporter molecules used here must be
such that we can later distinguish between reference from target mRNA. In
the four-gene example, we dye the reference sample green.

12 Chapter 1

Now we are ready for hybridization between the labeled target and reference
mixtures. We pour on the mixtures, and let them hybridize to the array.

Once the hybridization reaction is completed, we wash off any reference
and target material that has not managed to find a probe partner. This leaves
us with the array depicted in the right part of Figure 1.3. When you step back
far enough from the book, you will recognize that the spot labeled a is dark,
the one labeled ¢ is bright, whereas the two other spots (labeled » and d)
appear gray. Performing a suitable color conversion in your head, you will,
after a while, be able to see a red, a green, and two orange spots on our four-
gene array. Get the picture? Basically, what this tells us is that (a) gene a is
much more active (highly expressed) in the target than in the standard or
reference sample, as the red-dyed mRNA sequences have massively
outperformed the green-dyed sequences in hybridizing to probe sequences
representing gene a. By a similar argument, we can say (b) that gene ¢ ofthe
target sample is underexpressed when compared to the standard reference,
and (c) that both the expression of gene b and d seems balanced, that is, the
transcript mRNA abundance in the target is roughly the same as that in the
reference. Hence, we get orange.

In real microarray experiments, it is impractical, if not impossible, to
determine the relative mRNA abundances with the naked eye. To detect and
measure the relative abundances of reference and target material, we use a
device equipped with a laser and a microscope. The fluorescent reporter
molecules with which we have labeled the samples emit detectable light of a
particular wavelength when stimulated by a laser. The intensity of the
emitted light allows us to estimate quantitatively the relative abundances of
transcribed mRNA. After the scanning we are left with a high-resolution,
false-color digital image. Image analysis software takes over here to derive
the actual numerical estimates for the measured expression levels (Yang et
al., 2000). These numbers may represent absolute levels or ratios, reflecting
the target’s expression level against that of the reference.

As far as our four-gene experiment is concerned, we stick with ratio
measures. For example, for patient 1 of our study, we may have obtained the
following expression ratios: r(a) =500, r(b)= 098, r(c)= 033, and
r(d) = 0.89. In this scheme, a value close to 1.00 means balanced expression,
2.00 means the target mRNA abundance is two times as high as that in the
reference, and 0.50 means the reference abundance is twice as high as that of
the target.

To complete our four-gene, ten-patient experiment, we must repeat the
entire procedure ten times, and produce one array per patient. Once all arrays
are done, we derive, record, and integrate the expression profiles of all
patients in a single data matrix along with other information needed to
analyze the data. Table 1.1 illustrates such data in the context of the four-

1. Introduction to Microarray Data Analysis 13

gene example expression study. Notice, the data in Table 1.1 is not
normalized and no specific data transformations have been carried out.

Table 1.1. Numerical expression data matrix obtained from our hypothetical four-gene, ten-
patient, two-tumor microarray experiment.

Patlent# | 1 2 3 4 5 6 | 2 8 9 10
Tumor A A A A A A B B B B
r{a) 500 133 345 305 422 209033 065 022 0.12
r(b) 098 087 104 110 2?2 211(123 132 085 077
rc) 033 140 042 055 024 060|244 7 300 222
n(d) 0.89 090 1.00 092 066 105|132 101 097 087

Each numbered column in Table 1.1 holds the data related to a particular
patient: patient identifier, tumor type, and the measured expression levels of
the four studied genes. In a real experiment, the generated data matrix would
of course be more complex (many more genes and more patients) and
perhaps include also clinical data and information on the studied genes.
However, the data table as depicted illustrates how the data from multiple
arrays can be integrated along with other information so as to facilitate
further processing. Owing to the small scale (four genes, ten patients) of our
experiment and the deliberate choice of expression levels, we are able to
analyze the data qualitatively by visual inspection.

First, we observe that there are no recorded expression values (depicted
by question mark) for patient 5 and gene b, and for patient 8 and gene c.
There may be many reasons why these values are missing. Numerous
techniques exist to deal with missing values at the data analysis stage.

Second, for tumor A patients the expression levels of gene a seem to
have a tendency to be by a factor 2 or more higher than the base line level of
1.00. At the same time, for tumor B patients, a’s expression levels tend to be
a factor two or more lower than the reference level. This differential
expression pattern of gene a suggests that the gene may be involved in the
events deciding the destiny of the tumor cell in terms of developing into
either of the two forms. If this difference is statistically significant on a
particular confidence level remains to be seen.

Third, there seems to be also a differential expression pattern for gene c.
However, here we observe the tendency to underexpressed levels for tumor
A and overexpressed for tumor B.

Fourth, most expression values of gene b and d appear to be “hovering”
about the base line of 1.00, suggesting that the two genes are not
differentially expressed across the studied tumors.

Fifth, we observe that high expression levels of gene a are often matched by
a low level of gene ¢ for the same patient, and vice versa. This suggests that
the two genes are (negatively) co-regulated.

14 Chapter 1

We follow up on this example in subsequent sections. The reader may
look at Figure 1.8 for a visualization of some of the expression patterns
discussed above.

2.4 Into the Microarray Jungle

Different microarray technologies have been developed. These can be
divided into three categories: spotted cDNA microarrays, spotted
oligonucleotide microarrays, and Affymetrix chips. Spotted ¢cDNA and
oligonucleotide microarrays include both contact printing and the newer ink-
jet technology (a wonderful spin-off; originally invented to deal with the
delicate task of stamping dates on eggs without breaking the eggshells).
They may be spotted onto glass slides, in which case laser fluorescence may
be used to detect two-color hybridization from two samples at once. Or they
may be spotted, rather more cheaply, onto filters, in which case radiolabelled
material is used for hybridization, one sample at a time. Grandjeaud et al.
(1999) provide an impartial guide to the advantages and disadvantages of
either. One maker’s slide arrays are generally compatible with another
manufacturer’s laser fluorescence analysis system; similarly, filters can be
read by any scanner. There remain the very wonderful Affymetrix chips,
manufactured in a unique way, and only readable with a special Affymetrix
machine which cannot be used on any other maker’s arrays; these can be
regarded as a distinct subtype. Think of them as a sort of molecular
Microsoft.

24.1 In more Detail — “Complementary’ Sequences, Chip Spotting
and Chop Splitting

Spotted microarrays consist of a solid surface (e.g., a microscope glass slide)
onto which miniscule amounts (spots) of nucleotide sequences are placed in
a grid-like arrangement. Each spot represents a specific gene, an expressed
sequence tag (partial gene sequence providing a tag for a gene of which the
full sequence or function may not be known), a clone (population of
identical DNA sequences) derived from cDNA libraries (collections of DNA
sequences made from mRNA by reverse transcription), or an oligonucleotide
(short sequence specifically synthesized for experiment). The spots serve as
probes against which target and reference mRNA is hybridized.

With spotted arrays the probes are deposited on the array by an
automated process called contact spotting or printing (similar to ink-jet
printer technology). The spotting machinery prints nucleotide spots (with a
diameter of approximately 100pm) in close proximity on the array. In this
way, 10,000 to 30,000 probes can be arranged on a single array. However,
the number of probes does not necessarily match the number of genes. For

1. Introduction to Microarray Data Analysis 15

reasons of reproducibility, a gene may be represented by more than one
probes on the array.

Where does the probe DNA for the arrays come from? This is different
for spotted cDNA and spotted oligonucleotide arrays. The cDNA approach
relies on DNA from cDNA clones, which are often derived from DNA
collections or libraries that were created for other purposes. An example
collection is the LM.A.G.E Consortium library. The typical length of cDNA
probe sequence is in the range of 500 to 2,500 base pairs. In contrast to
cDNA technology, whose probe sequences are “pre-determined”,
oligonucleotide arrays facilitate the design of probe sequences. The
oligonucleotides represent short DNA probes synthesized on the basis of the
sequences of existing or hypothetical genes. Typically, oligonucleotide
probes are 50 to 70 bases in length. Oligonucleotide arrays allow more
flexibility in the design of a microarray.

GeneChips® from Affymetrix are an excellent example of the increased
flexibility that comes with oligonucleotide arrays. GeneChips use
oligonucleotides of 25 bases per probe. The diameter of each probe spot is
approximately 18pum, facilitating an impressive maximum of 500,000 probes
per array. Affymetrix makes use of multiple probes to represent a gene. The
most recent figure is 22 probes per gene, allowing for up to 23,000 genes per
chip. This approach has its unique way to represent the genes on a chip.
Each gene is characterized by a collection of probes called the probe set. In
this set, multiple probe pairs make up the gene (currently 11 probe pairs per
gene). Fach probe pair consists of one probe called perfect match and
another called mismatch. The former has a sequence identical to that in the
gene of interest, the latter differs from the perfect match probe by a single
base in the middle of the sequence. Multiple probe pairs are used to improve
the specificity of the measurement.

2.5 Sounding out Life with Microarrays

The kinds of questions you are asking from microarrays are likely to affect
array design and data analysis. Before we briefly discuss issues of array
design and data analysis, we turn our attention to the classes of scientific
questions that microarrays may help to answer. In trying to precisely
formulate and answer a question, the scientist becomes engaged in what we
call a scientific task or study. Each type of scientific task involves a set of
characteristic concepts, subtasks, and steps that need to be carried out to
accomplish the task. As we shall see later, one important subtask is the
analytical task.

16 Chapter 1

25.1 Differential Gene Expression Studies

Differential gene expression studies are searching for those genes that
exhibit different expression levels under different experimental conditions,
that is, in different tissue types, or in different developmental stages of the
organism. Typical studies of this kind include normal-versus-diseased state
investigations. The hypothetical four-gene experiment in Section 2.3 is an
illustration of a differential-expression study for two tissues (tumor types).
Essentially, differential expression studies look at a single gene profile.

252 Gene Co-regulation Studies

Gene co-regulation is somewhat similar to differential gene expression.
However, instead of analyzing the expression variation of a single gene
expression profile against the experimental conditions, it compares gene
profiles with each other. Here the objective is to identify genes whose
expression levels vary in a coordinated or correlated fashion across the
studied experimental conditions or samples. Two basic patterns of gene co-
regulation exist: positive and negative. There is a positive co-regulation
between two genes if the expression level of one gene increases as that of the
other increases. A negative co-regulation exists if the expression level of one
gene decreases as that of the other increases. For example, the genes a and ¢
in our four-gene example in Section 2.3 exhibit a negative co-regulation
pattern across the ten studied samples or patients. Basically, gene co-
regulation studies compare gene profiles of two or more genes.

2.5.3 Gene Function Identification Studies

Microarray experiments can help to reveal the function of novel genes. The
principal process involves the comparison of the novel gene’s expression
profile under various conditions with the corresponding profiles of genes
with known function. The functions of genes with highly similar expression
profiles serve as candidates for inferring the function of the new gene.

2.5.4 Time-Course Studies

Time-course studies require that transcript samples from the same source are
taken at different points in time and are then hybridized with the probes on
the array — one array per time point. The different snapshots can then be
used to reveal temporal changes in gene expression of the investigated
sample. This type of experiment could, for example, be used to study cell
cycle phenomena. Time-course expression experiments are also useful in
gene network identification studies (see below).

1. Introduction to Microarray Data Analysis 17

255 Dose-Response Studies

Dose-response experiments are designed to reveal changes in gene
expression patters as response to exposing a sample, tissue, or patient to
different dosages of a chemical compound, for example, a drug inhibiting
cell growth, Drug-dose response studies may also involve a time-course
study element.

25.6 Identification of Pathways and Gene Regulatory Networks

A pathway-identification study aims at revealing the routes and processes by
which genes and their products (i.e. proteins) function in cells, tissues, and
organisms. It involves the perturbation of a pathway and the monitoring of
changes in gene expression of the investigated genes as a response to this
intervention, Gene regulatory networks control gene expression. Identifying
these networks requires that one finds the genes that are turned on and off at
various time points after stimulation of a cell. These studies require time-
course data to be generated.

25.7 Predictive Toxicology Studies

This type of study relies on a reference database, which stores the results of a
large number of microarray screening experiments of organs and their
responses to toxic agents. These studies are particularly interesting for the
pharmaceutical industry, where the aim is to identify toxic effects of
unknown compounds as early as possible. When investigating a new
compound, its influence on the gene expression of key genes is compared
with the expression profiles of known toxins in the reference database.
Based on the degree of similarity of the compound’s effects to the known
profiles, an inference-by-analogy step is then employed to predict the
toxicity of the new compound. Basically, this approach compares array
profiles (see below). In addition, the identification of novel marker genes or
pathways involved in the toxic effect of a compound can be tackled by this
method.

25.8 Clinical Diagnosis

Gene expression experiments are also a powerful tool for clinical
diagnostics, as they can discover expression patterns that are characteristic
for a particular disease. Another analysis within the jurisdiction of this type
of study is concemed with inferring unknown subtypes of known diseases.
This is achieved by revealing characteristically different expression profiles
that correlate with clinically distinct subtypes of a disease. Here, the clinical
course of the disease is known to show differences in a small fraction of

18 Chapter 1

cases but conventional analysis of the disease could not reveal any distinct
subtypes. The hypothetical four-gene experiment in Section 2.3 is an
illustration ofthis kind of investigation,

2,59 Sequence-Variation Studies

Uncovering DNA sequence variations that correlate with phenotypic
changes, e.g., diseases, is the aim of this type of study. Common types of
sequence variations are single nucleotide polymorphism (SNP: pronounced
“snip”), insertions and deletions of a few nucleotides, and variation in the
repeat number of a motif. As a way of illustration, the two “complementary”
letter sequences in the heading of Section 2.4.1 demonstrate a kind of
“double single-letter polymorphism™. This example also illustrates how
drastic these minuscule changes in sequence may affect the function (here
the meaning of words) of a gene. Generally, a motif refers to any sequence
pattern that is predictive of a molecule’s function, structural feature, or
family membership. Motif-based analyses are often used to detect sequence
patterns (motifs) that correspond to structural and functional features of
proteins. The most common type of sequence variation in the human genome
are SNPs, which occur with a frequency of roughly 1 per 1,000 nucleotides.
In order to analyze SNP variation, at least three categories of microarray
experiment designs are meaningful: (a) arrays including all known SNPs of a
human genome sequence, (b) microarrays containing a sample of SNPs
located across the entire human genome, and (c) devices for re-sequencing a
sample of the human genomic sequence. However, for sequence analysis,
microarrays containing only oligonucleotides are used. Complex sequence
variations responsible for phenotypic changes could be uncovered by SNP
microarray studies. Such studies promise a deeper understanding of these
biological enigmas, which are hard to tackle by any other means so far.

2.6 A Pint of Genes and two Packets of Chips, Please

Array design is concerned with decisions on which genes or DNA sequences
to put on the chip and how to represent each gene (how many probes and
what kind of sequence(s) per probe).

For cDNA arrays, this exercise boils down to selecting a set of clones
from relevant DNA libraries. From the clones the actual probe sequences are
derived by appropriate laboratory procedures.

The oligonucleotide approach requires the definition of the probe sequences
that are to be synthesized. While providing more flexibility and promising
better results, this way of doing things is more complex. One of the
complexities involved in designing good probe sequences lies in the
variability of binding affinity of the underlying sequences. Binding affinity

1. Introduction to Microarray Data Analysis 19

of probes to their counterpart on the array is determined largely by the extent
to which target and probe sequence match, and by the adenine-thymine and
cytosine-guanine content of the match. Other factors like secondary structure
(the overall shapes of the molecules) are also involved in the process, but are
poorly understood. Therefore, variation in binding affinity can vary
considerably from one probe to another. In addition to this, the designer of
oligonucleotide probe sequences has to take into account factors that affect
the ability of a probe to accurately measure transcripts of a given gene.
These factors include alternative splicing, presence of repetitive sequences
that appear in otherwise unrelated genes, and the possibility of highly similar
sequences in multiple members of gene families. This implies that the
chosen sequences should be unique in the genome. Therefore, access to
databases containing the genomic sequences of organisms is important for
designing oligonucleotide arrays. To accomplish this task, appropriate
sequence analysis software and retrieval of information from databases with
gene and genomic sequence data is mandatory.

Using microarrays from an industrial source has some advantages over
producing your own, Industry standards ensure high quality of arrays,
making the experiments more reliable. However, for unsequenced organisms
no sequence is available from existing repositories. Thus, producing your
own microarray has the advantage of spotting the sequences you selected
from available sources in addition to using sequences not known by others.

3. BASIC CONCEPTS OF MICROARRAY DATA
ANALYSIS

Microarray data analysis is a truly complex process. Ideally, it starts long
before the actual numerical data matrix (similar to the one depicted in
Table 1.1) is at hand. Sound knowledge of the available data analysis
methods and tools could help the investigator in selecting a good problem
and in formulating clear and specific hypotheses. Of course, microarray
experiments are often used as high-throughput exploratory tools, and in this
case highly focused hypotheses are perhaps not desired, or possible.
Furthermore, a number of statistical issues that impact on data analysis creep
in at the experimental design stage. The investigator must decide (a) which
factors (independent variables) will be varied in the experiment, (b) which
factor combinations (experimental conditions) are to be tested, and (c) how
many experiment replicas should be done for each tested condition. The
specter of measurement variation looms large over microarray experiments,
not least because of considerable variation inherent in the biological
specimens themselves. Thus, microarrayers are becoming increasingly aware
of the need for replications (Lee et al., 2000). Replicas may, where possible,

20 Chapter 1
involve taking multiple samples from the investigated subject. The purpose
of this procedure is to increase precision of measurement estimates and to
provide a sound basis for error estimation models. There are yet more
statistical issues that deserve mentioning. However, the aim of this article is
to look at the big picture of microarray data analysis; therefore we will not
further elaborate on this topic. For a more in-depth discussion on this topic
see, for example, Branca and Goodman (2001), Kerr and Churchill (2001),
or Sabatti (2002).

Let us now step back — figuratively speaking, this time — and behold the
“big picture” of the microarray analysis process in Figure 1.4. This should
help us to regain orientation and to look ahead on things to come.

l start @
€ info 3 info F
—> scientific almg/tasks ——» design experiment design/make array <+—
- choose gcientific problem - select factors; define conditions - obtain/design probe
- ask scienlific question - decide on replications DNA sequences .
- formulate hypothesis - define decision criteria - arrange probes on aray E
- check literature - define analysis tasks/methods - obtain/track info on g 3
(text mining?) - consider statistical issues probe sequences &
revise) 5
) chip =
@ numerical raw
data process image +——o data 7} vbridize/scan spots ——

- collect/store numerical

- collect/store images
data sets - analyze spols
- integrate numerical data - derive numerical
from multiple arrays measurement estimates
- integrale any other info - normalize/standardize
- derive data matrix - track other info
@ lma"“* lrwujomcd . T feedback
malw: : results
—> n
- missing value handlmg - visualization

- normalization
- transformation
- vaniable/feature selection

- correlation analysis

- clagsification

- regression/approximation

- cluster analysis

- pathway/regulatory network
modeling/analysis

Jeedback

Sfeedback l l

- get condition/sample

- obtain/prepare target RNA

- obtain/prepare reference RNA
- run competitive hybridization
- produce digital image data

- track target/reference info

interpret and validate

- cross-validation

- slatistical tests

- visual inspection of results

- biological validation
* against existing knowledpe
* further experiments

new hypotheses,

new insights,

new knowledge

Figure 1. 4. Microarray data analysis process — the big picture.

Consider the microarray analysis process diagram in Figure 1.4. Step 1 to
Step 4 of the process are discussed in previous sections. Step 5 is mainly
concerned with the analysis of the digitized image arising out or Step 4. The
result of the image-processing step is a collection of numerical estimates
representing the measured expression levels. Many computational and
statistical issues need to be considered at the image processing and analysis
steps. For reasons of limited space, we will not further dwell on these.

1. Introduction to Microarray Data Analysis 21

Instead, we will focus our discussion on the integrated data matrix produced
in Step 6 and the subsequent analytical steps (Step 7 to Step 9).

4. DATA ANALYSIS = DATA + PROCESS

Microarray data analysis involves methodologies and techniques from life
science fields and biotechnology on one hand, and from computer science
and statistics on the other. With these broad disciplines comes a lot of heavy
baggage in the form of terminology. Not only does this terminology describe
a bewilderingly large number of complex concepts and mechanisms, it can
also be redundant, incomplete, inconsistent, and sometimes downright
incomprehensible. By the time you have figured out how exactly to approach
your microarray data analysis problem, the genes you want to study may
have drifted out of the gene pool into oblivion. As always, the basic
guideline to follow is to keep things simple and to stick to general principles.

41 DaDaData

The data synthesized by Step 6 of the overall microarray analysis process
(Figure 1.4) must somehow be structured, physically and logically. Here we
are concerned with the description of the general logical organization of
gene expression data and some of the underlying notions.

41.1 The Matrix

The term gene expression profile is commonly used to describe the
expression values for a single gene across many samples or experimental
conditions, and for many genes under a single condition or sample (Branca
and Goodman, 2001). Adopting the terminology of Branca and Goodman,
and Quackenbush (Branca and Goodman, 2001; Quackenbush, 2001), we
suggest the following terms to distinguish these types of gene expression
profiles (see Figure 1.5):

® One gene over multiple samples. A gene profile is a gene expression
profile that describes the expression values for a single gene across
many samples or conditions.

o Many genes over one sample. An array profile is a gene expression
profile that describes the expression values for many genes under a
single (condition or) sample. Wu calls this expression signature (Wu,
2002).

22 Chapter 1

Examining the co-regulation of genes, for example, requires the
comparison of gene profiles, whereas differential expression studies
typically compare array profiles.

s, 8, - 8 .- 8, 88, 8: -.- & 8w
' ~ s '
& r‘} : 5 -5 g :
ol arayprofie | E5
- p 3 A -ER
gene profile .E 1 e "? - d g
8 : S| g E
G 1 E 5 5 1
(E‘- "é 1 (A é 5 1
CN B I 1 s = !
T ‘
§ E : ! covariate information for genes |
8 3 : (1 S e !
: covariate in,fonnz.n_ion ! Legend: £.» 8:1»-- . : Set of studied genes
| for samples/conditions | Sis 815... :Sel of studied samples

Figure 1.5. Typical gene expression data matrix formats. The solid-line boxes contain the
actual numerical values representing the measured expression levels.

The diagram in Figure 1.5 depicts two commonly employed data formats

for the integrated gene-expression data matrix, generated by Step 6 of the
overall process. The matrix format shown in the left part of the diagram is
perhaps more widely recognized; however, many analytical tools and people
prefer to “think™ in the transposed format (right part of diagram). Indeed, as
scientists often ask questions that require the simultaneous comparison of
array profiles and gene profiles, the distinction between variables and
observations becomes blurred. Conceptually, this is a tricky business, since
such a simultaneous view imposes different sets of randomness assumptions
on the various dimensions. Many tools require the covariate information
(dashed-line boxes) to be present in the data matrix. Typical
sample/condition covariate information includes tissue and condition type
disease-versus-normal labels, and clinical information like survival times,
treatment response, tumor stage, and so on. For specific types of analyses it
may be necessary to focus on a small set of the available covariate
information. See Table 1.1 for an example.
To avoid confusion, this article will focus on the format where the horizontal
axis represents samples and conditions, and the vertical axis represents genes
(left part in Figure 1.5). Concentrating on the gene expression part only, this
format can be described by an N x M expression matrix E, as defined in
Equation 1.1.

1. Introduction to Microarray Data Analysis 23

Xy Xpp e Xy
Xop Xy v Xy (1.1)
E=(r)=| 2o :
Xm Xwy oo Xy

where x; denotes the expression level of sample;j for gene i, such that j =
1, ..M, and i = 1, ... N(Dudoit et al., 2000).

The expression matrix E is a convenient format to represent the
expression profiles of N genes over M samples. Whether column vectors or
row vectors in this matrix are interpreted as variables (or observations) is not
pre-determined by the matrix format. However, the matrix does nail down
the interpretation in terms of gene and array profile.

With Equation 1.1 we can define the i gene profile of expression matrix
E by the row vector, G;, and the jth array profile of E by the column vector,
A, as follows:

G = (xn, X2y ...» Xipa) (1.1a)

Aj= (s Xapp -0 Xny) (1.1b)

412 On Variables and other Things

To establish a common terminology, we will briefly review some important
aspects of variables.

Variables are used in statistics, machine learning, data mining, and other
fields to describe or represent observations, objects, records, data points,
samples, subjects, or entities. Sometimes variables are also referred to as
attributes, features, fields, dimensions, descriptors, measures, or properties.
Variables are often categorized with regard to their mathematical properties,
that is, in terms of the intrinsic organization or structure of the associated
values (or value range or scale). Generally speaking, there are continuous or
numeric variables and discrete or symbolic variables. Numeric variables are
coded as real and integral numbers and interpreted quantitatively. Symbolic
variables, on the other hand, use some alphanumeric coding scheme and
their interpretation emphasizes a qualitative view. To avoid confusion, this
article concentrates on the terms variable and observation.

Commonly, four types of variable fypes or scales are distinguished: (a)
nominal or categorical scale, (b) ordinal or rank scale, (c) interval scale, and
(d) real or ratio scale (also called true measures).

24 Chapter 1

Nominal variables tell us which of several unordered categories a thing
belongs to. For example, we can say a tumor is of type or category A, B, or
C. Such variables exhibit the lowest degree of organization, since the set of
values such a variable may assume possesses no systematic intrinsic
organization or order. The only relation between the values of nominal
variables is the identity relation. Because of the lack of an order relation, it is
not possible to tell if one attribute value is greater than another or that one
value is closer to a certain value than another. However, we can tell if two
values are equal or not equal. Given relevant background knowledge
(human-based or computerized), it is possible to define more complex
relations on nominal variables.

Ordinal variables or scales allow us to put things in order, because the set
of values associated with an ordinal variable exhibits an intrinsic
organization, which is defined by a fotal order relation. Therefore, we can
tell if one value is bigger or smaller than another, but we can normally not
quantify or measure the degree of difference or distance between two values.
For example, if the observations x, y, and z are ranked, 5, 6, and 7,
respectively, we can tell thatx <y <z, butnorif(z —y) < (y —x).

Interval-scaled variables exhibit an intrinsic organization, which not only
allows us to establish if a value is smaller or greater than another (total order
relation) but also to determine a meaningful difference or distance between
two values or to add and subtract values. This property of a meaningful
difference is particularly important for distance-based or similarity-based
approaches like clustering,

The values of real-scaled variables show a higher level of intrinsic
organization than ordinal-scaled and interval-scaled variables. Besides order
or rank information and the possibility to meaningfully add and subtract
values, real variables allow us also to multiply and divide, as they are
measured against a meaningful zero point. Typical examples for real
variables include weight, age, length, volumes, and so on. In microarray
experiments involving controls or references we can define a natural zero
point, against which overexpression and underexpression can be defined.
Therefore, it is perfectly legal to say that gene a is twice as highly expressed
as gene b.

Although not a completely new category, binary or dichotomous
variables could be considered as a special case. Binary variables can assume
two possible values. For microarrays, this could be two categories, one for
overexpression and one for underexpression, or one for overexpression and
one for the absence of overexpression (lumping together balanced and
underexpressed values). Often binary variables are coded with the numeric
values 1 and 0. The advantage of this coding scheme is that binary variables
can be treated as interval variables or attributes. However, treating binary

1. Introduction to Microarray Data Analysis 25

variables as if they were interval-scaled implies that they are assumed to be
symmetric (i.e. each value is equally important). If they are symmetric, then
the interchanging of the codes will still result in the same score, for example,
a degree of dissimilarity measured by the Fuclidean distance measure. If the
two entities, e.g., expression profiles, match on either code they are
perceived to have something in common, and in case of a mismatch they are
considered different (to the same extent independent on the coding).
However, this could be a problem if the two values are not equally
important. If one, for instance, uses the code 1 for overexpression and O for
the absence of overexpression, it may be safe to say that two expression
profiles have something in common if they match on a variable on code 1.
This is not so clear if they match on the same variable on code 0. In case of
asymmetric binary variables it is recommended to use non-invariant
coefficients, such as the Jaccard coefficient to calculate similarities or
dissimilarities (Kaufman and Rousseeuw, 1990).

4.2 Process

Once the raw digitized graphics images have been established by Step 1 to
Step 4 of the overall analysis process (Figure 1.4), a highly iterative inner
loop of processing kicks in. The analysis steps and information flow of this
process are depicted in Figure 1.6. What characterizes this process is its
computerized nature, meaning that most of the involved data and analytical
steps are realized on a computer. This makes it possible to explore and refine
the different processing alternatives until a satisfactory conclusion is
reached.

raw image . L
—-l 1. analyze image [¢ feedback
J ¥ 2. normalize
g ¥ 3. synthesize matrix
3 £ 8
SN 4. transform ® 3
£3 1|32
é g —»| 5. choose task(s) < % E 'g
53 3| e8
b - 6. choose method(s) =
om s s 7. construct/validate/ I
validation > apply models
sel
new | 8. interpret results
_ information |

26 Chapter 1

Figure 1.6, Microarray data analysis — the inner loop process (Step 5 to 9 of overall
microarray data analysis process).

4.2.1 Pre-Processing — on the Rawness of Raw Data

People involved in microarray analysis often speak of “raw” data. The
rawness characterizes the indigestible state of some data before a processing
step, normally one that reduces the data volume. However, depending on the
person you are dealing with, the precise meaning of “raw” may differ. For an
image analyst, raw data probably refers to the analog signal produced by a
laser scanner. A statistician might consider the digitized image or the
integrated numerical data matrix as raw data. For a biologist raw data might
be manifest in the descriptions of a discovered pattern or a constructed
model (e.g., cluster definitions or regression coefficients). In the jet-set-
paced world of a senior investigator, summary statistics and diagrams may
fall into to raw-data category. And finally, the editor-in-chief of a scientific
journal may refer to the initial submission of a paper reporting on the
findings of a microarray experiment as raw data.

Here, we use the term raw data to denote the collection of digitized
images — one image per hybridization experiment — arising out of Step 5 of
the overall analysis process (Figure 1.4). These data must be
computationally gathered, processed, and integrated with other relevant
information.

First, each probe spot on the images must be analyzed to establish
quantitative estimates of the red and green content. Here, normalization
methods may be applied to compensate for systematic measurement errors
due to equipment imperfection. This procedure summarizes the raw image
data and stores them in an intermediate, more compact representation where
each spot is described by a set of numeric values.

Second, if multiple spots on the image represent multiple expression
measurements for the same gene, these measurements must be combined to
obtain a single expression level estimate for the gene. This is where
normalization procedures come in, to address issues of measurement
variation due to instrumentation imperfection and biological variation. At
this point one may also decide to represent each measurement by a set of
absolute values, a red-green ratio, a fold change, or some other format.

Third, the sets of measurements from each hybridization experiment must
be integrated into a single data matrix, similar to the one presented in
Figure 1.5. To compensate for array-to-array measurement variation and to
facilitate comparison between different hybridization experiments, a
normalization procedure called standardization is employed at this point. An
example of the resulting integrated data matrix is depicted in Table 1.2,

1. Introduction to Microarray Data Analysis 27

Now the data is almost “well-done”, ready to be devoured by the
numerical analysis methods further down the processing stream. However, to
facilitate a more effective and efficient performance of the subsequent
processing steps of the inner loop (Figure 1.6), a further data manipulation
step called transformation may be necessary. The objective of data
transformation is to reduce the complexity of the data matrix and to
represent the information in a different, more useful format.

The first four steps of the inner loop shown in Figure 1.6 depict these
data manipulation operations — image analysis, normalization and
standardization, data matrix synthesis, and transformation. Collectively, we
refer to these as pre-processing. The following subsections discuss some of
the issues and concepts of pre-processing in more detail. However, for
predictive modeling, an important conceptual issue has to be considered. In
order to closely “simulate” a realistic prediction scenario, the first thing to do
after image analysis is to set aside randomly selected cases. These data are
called validation data or validation set, with which the final prediction model
is to be validated. Generally speaking, 10-20% of the whole data set is
sufficient as validation data. All pre-processing steps considered hereafter
have to be performed on the validation data separately, which would be the
case for new cases (application set) that have to be predicted in a real-life
prediction scenario.

4.2.1.1 Missing Values

There are many reasons why the measurement of a gene’s expression level
for an individual sample-gene combination may have failed. In this case, the
best that the data matrix can offer is to simply flag the failed measurement,
that is, to report a missing value. Table 1.1 and Table 12 illustrate missing
values in the context of our four-gene experiment. There are a number of
strategies for dealing with missing values. In a way, the missing value
handling approaches could be considered as a hybrid between normalization
and transformation (discussed below).

The first obvious, albeit drastic, choice for dealing with such errors is to
remove the affected expression profile (gene or array profile) from the data
matrix altogether. The drawback of this radical measure is that it also
removes other valuable data. In the worst case, this approach can lead to the
removal of N x M — min(N,M) valid expression values in the presence of
only min(N,M) missing values, leaving little left to be analyzed.

The second approach is to ignore the problem and leave the data matrix
as it is. Perhaps one wants to use a special code to indicate the missing value,
so that it cannot be confused with a valid measurement. There are many
analytical methods that can inherently deal with missing values. Decision
trees, for example, do have a “natural” mechanism for handling missing

28 Chapter 1

values by focusing on the existing measurements. Intuitively, this approach
could be likened to computing an arithmetic mean of N values, M of which
being flagged as missing. We compute the sum of the N—M valid values
and divide the sum by N—M. Clearly, the “ignore” approach works only if
the proportion of missing values is within acceptable limits.

A clever third way of correcting errors due to missing values is to
“replace” the offending missing item with a reasonable or plausible
substitute value. The methods for this kind of error correction are
collectively referred to as missing value imputation. A simplistic approach to
missing value imputation is to assign some average value in place of the
missing value. For example, one could replace the missing value of gene b
for patient 5 (Table 1.1) by the average of the expression levels of gene b
across condition tumor A of patient 5. Another straightforward approach is to
use the level representing balanced expression (red-green ratio equals 1.00)
in place ofthe missing values. This method is what we use to replace the two
missing values of our four-gene experiment. Notice that missing value
imputation may be carried out after some other transformations have been
completed.

4.2.1.2 Normalization and Standardization

Taken together, the technical gear, laboratory protocol, and human element
employed to measure transcript abundance can be viewed as a complex
scientific “instrument”. In such a system errors creep in from all directions at
the same time, and in all shapes and sizes. These errors are due to
imperfections in the instrument and the processes and materials involved in
using it. This abstract view of a gene expression instrument considers sample
selection, sample preparation, hybridization, and so on, as integral part of the
instrument. Given this view, we are able to distinguish measurement errors
due to instrumentation imperfection from measurement variations due to
biological variations within the studied specimens. Although measurement
variation due to biological fluctuations has implications for microarray
analysis, such variations are not measurement “errors” in the sense of a
deviation from a true expression level. They are simply a part of reality. If
nature has decided that the height of 12-year-olds varies in some fashion,
one cannot get rid of this variation by measuring height more precisely or by
somehow trying to correct it.

Ideally, a numerical value in the expression matrix reflects the true level
of transcript abundance (or some abundance ratio) in the measured gene-
sample combination. However, as our instrument is inherently imperfect, the
measured value, measurement, that we obtain from the instrument usually
deviates from the true expression level, truth, by some amount called error.

1. Introduction to Microarray Data Analysis 29

The relationship between the true and measured values and the error is
described by Equation 1.2,

measurement = truth + error (1.2)

Generally, a measurement error can be attributed to two distinct causes
or error components — bias and variance; the relationship between bias and
variance and error as described in Equation 1.3.

error = bias + variance (1.3)

In this error model, bias describes a systematic tendency of the
expression measurement instrument to detect either too low or too high
values. The amount of this consistent deviation is more or less constant. We
know, for example, that the emitted light intensities from the dyes Cy3 and
Cy5 are not the same for the same reporter molecule quantities. This
introduces a systematic measurement error that, if understood properly, can
be compensated for at a later stage, for example, at the image-processing
step.

The measurement error due to variance is often normally distributed,
meaning that wrong measurements in either direction are equally frequent,
and that small deviations are more frequent than large ones. Examples of this
kind of error include a whole range of lab processes and conditions and
manufacturing variations. A standard way of addressing this class of error is
experiment replication.

With these considerations and the concepts presented in Equation 1.2 and
1.3, we summarize our general measurement error model as follows:

measurement = truth + bias + variance (1.4

Notice, the variance term in Equation 1.3 refers to the variations affecting
our readout based on the fluctuations in the instrument (and the involved
processes). There is no need to incorporate variations occurring in the
underlying specimen into this error model, as the term truth reflects the real
quantity, no matter how much this quantity varies from sample to sample.
Clearly, as replication is often employed to address measurement variation,
the task of quantitatively disentangling the two elements of variation
(instrumentation imperfections and biological fluctuations) may be difficult.

Normalization and standardization are numerical methods designed to
deal with measurement errors (both bias and variance) and with
measurement variations due to biological variation. In contrast,
transformation refers to a class of numerical methods that aim to represent
the expression levels calculated by normalization and standardization, in a
format facilitating more effective and efficient analysis downstream.

30 Chapter 1

We differentiate between two broad classes of measurement variations
caused by instrumentation imperfection and biological variation: (a) those
that affect individual measurements, and (b) those that affect an entire array
or parts of an array.

There are numerous sources for measurement variation that affect single
measurements, including biological wvariation, probe imperfection, the
tendency of low expression levels to vary more than high levels, and so
forth. The principal approach to dealing with single-measurement variations
is replication. But beware! Instead of carving up the same mouse over and
over again, you should go all the way back when you replicate an
experiment. This may be time-consuming, expensive, and ethically
questionable. However, with multiple measurements it is possible to apply
statistical methods to estimate the true quantity more accurately and to judge
the error of this estimate. Simple t-statistics, for example, can be applied to
accomplish this task. With this approach one could, for example, state a
measured expression level as: “1.35 £ 0.03, confidence = 99%”. Besides
replication, improvement in experimental design is also an effective
approach to addressing the variability issues of single measurements.

Fach array or chip measures the gene expression levels of many genes for
a single sample (under a certain experimental condition). In a way, the
hybridization of a single microarray element could be considered as an
experiment in its own right. A typical microarray study carries out many
such experiments, several tens to several hundreds. Due to laboratory
problems, manufacturing imperfections, multiple investigators carrying out
the individual experiments, biological variation, and other sources, array-to-
array measurement variations are bound to creep in, more than one would
ideally like. For studies (like predictive toxicology) that require the
comparison of array profiles, this global measurement variation is a
problem. Clearly, replication of the entire array is an approach to consider
here. For instance, by hybridizing two arrays per sample, you could arrange
the probe spots differently, so as to compensate for certain structural biases.
In any case, even if you can afford to do multiple arrays per sample, you still
need to address the issue of inter-array variability. Numerical procedures
known as global normalization or standardization are designed to address
this problem. As these methods attempt to place each array on a comparable
scale, this process is also called scaling.

The simplest approach to scaling involves the multiplication of each
value on an array with an array-specific factor, m, such that the resulting
mean is the same for all arrays. Another procedure along these lines
multiplies each value on an array so that the mean for each array equals 0
and the standard deviation equals 1. More sophisticated approaches fit a
straight line to the data points of an array, and then use the line’s parameters

1. Introduction to Microarray Data Analysis 31

to transform the data points so that they spread about a “normal” line with a
slope of 45 degrees. This procedure is applied to all the arrays involved, so
that the 45-degree line is used as a common scale for all arrays. Other, yet
more sophisticated approaches exist. All these methods make certain
assumptions about the data. As the measurement of gene expression iS a
highly complex process, it is sometimes difficult to say if these assumptions
are justified or not (Branca and Goodman, 2001; Quackenbush, 2001; Wu,
2002).

The data matrix generated by our hypothetical four-gene experiment
(Table 1.1) contains the “semi-raw” measurements obtained from the image
analysis stage. This data has not been normalized. To illustrate
normalization, we will transform the data in a three-step process.

First, we replace the two missing values by 1s, indicating a balanced
expression.

Second, we log-transform each value using the base-2 logarithm. Strictly
speaking, this is a form of data transformation (as opposed to normalization).
The reason for performing this operation is the positive skewness of the ratio
data. This means that a large proportion of the measured values is confined
to the lower end of the observed scale. As we use a ratio representation,
values representing underexpression are all crammed into the interval
between 0 and 1, whereas values denoting overexpression are able to roam
free in the range of 1 to 6. This situation is shown in the left part of
Figure 17. There are statistical reasons, why a more evenly or normally
spread of the data are to be preferred by analytical methods. This desired
property is called normality and the underlying concept for describing it is
the normal distribution. The base-2 log-transformation re-distributes the
skewed data in the desired manner (right part of Figure 1.7). For more
realistic microarray data sets, the visual difference between shapes of the
skewed and log-transformed data is much more pronounced.

) [(r(xy))

(!
under over R under /(ogz[I(Xg‘)IL)(

045 o - [YH

o4 0.4

0.3 035

03 03

oz log-1, form 028

02 02
(313 X!

0.1 i

0.08 08

° L .

° 1 2 s 4 [(¥) 2 E] [1 2 s
— rlxy) —log;[r(xy)]

Figure 1.7. Log-transformation, Left: relative frequency, £, of all 40 expression levels shown
in Table 1.1 (missing values replaced by 1); 22 of 40 values are within the interval [0,1], and

32 Chapter 1

18 within (1,6]. Right: relative frequency of log-2-transformed values; 22 of 40 in [-3,0] and
18 in (0,3).

Third, we rescale the log-transformed data by applying a mean centering
method to each of the 10 array profiles (in this case, sample or patient data
sets). This method proceeds as follows. For each log-transformed array
profile, Aj= (xg, Xpjs Xcjs X4), we (a) Compute the mean, me(A;) and the
standard deviation, sd(A;), (b) Subtract the mean from each expression
value, xy. This centers the already more or less symmetrically distributed
values around 0. (¢) Standardize the zero-centered values in terms of
standard-deviation units relative to the mean by dividing each shifted value
by the standard deviation. So a new expression value, *x, is derived using:
*xy = (xy— me(A)) / sd(A)).

Applying this three-step procedure to the four-gene expression matrix
shown in Table 1.1, produces the normalized matrix depicted in Table 1.2.

Table 1.2. Numerical expression data matrix afler missing value imputation, log-
transformation, and standardization (mean-centering). Legend: me = mean of array profile,
sd = standard deviation,

Patient# 1 2 3 4 5 6 7 8 9 10

Tumor A A A A A A B B B B
*r(a) 1.3 076 131 137 130 0.79|-1.40 -1.35 -1.27 —1.38
*nb) |-0.10 -093 -0.07 -005 008 081 017 1.07-001 0.14
*e) |-107 096 -1.12 -1.02 -1.12 -1.26] 098 0./2 1.17 1.0]
*{d) |-0.18 —0.79 -0.12 -0.30 -0.26 -0.34] 025 0.16 0.11 0.24
me 000 000 000 000 000 000 000 000 000 000
sd 1.00 100 100 100 1.00 1.00] 1.00 100 1.00 1.00

After having performed the data transformation steps on our four-gene
experiment data, we are now ready to have a closer look at the data. Figure
1.8 visualizes the expression levels for the gene profiles of gene a and b. By
means ofthis visualization we can confirm our previous hunch that gene a is
presumed to be differentially expressed across the two experimental
conditions, whereas gene b is not.

1. Introduction to Microarray Data Analysis 33

“r(a) tumor Acases . tumor B cases ; 2)
3.0+ 3 >
2.0+
1.0 1

o4

-1.0

20

-3.0 4

5= 115

¥5-1.35

underexpressed overexpressed

: —p Patient#

rb)} : b)
3.0 - : i
2.0 -
1.0 '
0 gy seissr gy O Qs s ot
404 o "
2.0
3.0

underexpressed overexpressed

'. ———» Palicnt¥
1 2 3 4 5 6°7 8 9 10
Figure 1.8. Visualization of two gene profiles, gene a (top) and gene b (bottom), from our
four-gene experiment gfler normalization (i.e. the expression values are taken from
Table 1,2). Data points from left to right correspond to the patient numbers. Horizontal
dashed lines represent tumor-type-specific mean expression levels,

One way of approaching this decision more formally is to hypothesize
that the expression levels, Gg= (Xg1, Xgz, ..., Xgrs), Of a gene, g, observed
across two conditions, A and B, are in fact coming from the same population,
and that the observed differences and variations are indeed within the limits
of what we would expect in this case. Casting this into a testable hypothesis,
we assume two different, normally distributed, equal-variance populations,
one for condition A and one for B, with the corresponding population means
u4 and up respectively. In Figure 1.8 these populations are depicted by the
bell-shaped curves at the right-hand side of the diagram. Then, we formulate
the null hypothesis Hy: us = up, and proceed testing it with, for example, a
standard t-rest.

Carrying out the two-tailed t-test calculation for the two gene profiles of
gene a and b shown in Figure 1.8, yields the following results (confidence
level = 95%; o.= 0.05; ty, = 2.306):

34 Chapter 1

e Gene a: t=16.72 ¢ [-2.306,+2.306], therefore, we reject the null
hypothesis H, for gene a. In other words, the expression levels of
gene a for condition A and B are not likely to come from the same
population,

e Gene b: t = 1.125 € [-2.306,%2.306], therefore, we accept the null
hypothesis Hj, for gene b. That is, the expression levels measured for
gene b for tumor A and B are likely to have come from the same
population,

4.2.1.3 Transformation, Data Reduction, Data Enrichment

Once image analysis and normalization are performed, we are left with a
data matrix similar to the one shown in Table 1.2. Recall, in our specific case
we are dealing with ratio figures, reflecting the relative abundance of target
versus reference mRNA. Depending on what the subsequent analytical steps
are, we may still not be entirely happy with what we have.

First, we may want to bring in other covariate data that should be
analyzed together with the expression profiles. This is sometimes called data
enrichment. Typical covariate data added to gene expression profiles include
clinical and similar data (e.g., tumor type/stage, tissue type, survival times,
treatment response/dosage), information on the analyzed genes or gene
products (e.g., sequence information, gene function, protein localization,
protein interaction information), and results from other types of molecular
experiments (e.g., comparative genomic hybridization, SNPs). Data
enrichment methods will not be further pursued in this article.

Second, there may be a need to reduce the data of the given matrix (a) to
focus the analysis on a particular subset of the data, and (b) to improve
performance of subsequent analysis step. Four broad data reduction
strategies can be distinguished:

e Variable selection. The objective ofthis approach is to select a subset
of the available variables and subject only them to further analysis.

e Observation selection. Similar to variable selection, except that
observation are in play here. Clearly, the issue of whether gene
profiles or array profiles are considered as observations or variables
must be addressed.

e Variable combination. This approach seeks to combine existing
variables into a kind of “super” or composite variable. Subsequent
analysis proceeds with the composite variables and the variables used
to create the composite variables are excluded from further analysis.
In principle, this approach is also possible for observations.

1. Introduction to Microarray Data Analysis 35

o Value transformation. The aim is to transform actual (variable)
values into another format or representation. We have already met
different types of transformation methods used for normalization.
Another common value transformation strategy is to discretize
continuous or real-numbered values.

Variable or feature selection is an important issue in microarray analysis,
as the number of measured variables (i.e. genes) is usually much larger than
the number of observations (i.e. single hybridization experiments or
samples). Given N genes, there are 2" —1 distinct gene combinations or
unique subsets of genes (the minus 1 is accounted for by the empty ser).
Even a moderate number of genes will render any method attempting to
evaluate each possible subset impossible, at least until the long-awaited time
when we have quantum computers. If you have a modest number of 30 (yes:
only thirty) genes, and you let a conventional computer evaluate one subset
per second, chances are that you will not live to behold the final results.
Unless, that is, you do exceptionally successful work in the area of aging. So
plowing through all subsets is generally not a good idea.

Perhaps one of the best strategies to select good variables is by bringing
to bear relevant background knowledge or heuristics. For example, certain
families of genes may initially be chosen, rather than all genes measured by
the experiment. The next best thing you can do is to analyze the N variables
one by one and throw out those that fail to fulfill a predefined test or
criterion. The most obvious choice is to filter out genes whose gene profile
does not show much (differential) variation across the samples. Depending
on the pursued analytical task, this could be achieved by simple threshold-
based techniques, statistical tests, or other techniques such as
interdependence analyses, distance-based methods, information gain and
entropy-based approaches, or the general separability method (Grabczewski
& Duch, 1999). The problem with selection methods focusing on one feature
at atime is that (a) they may end up selecting highly redundant features, that
is, variables that are strongly correlated, and (b) they may filter out variables
that are meaningful only in conjunction with other features.

Multivariate feature selection methods attempt to take in more than one
variable at once. Computing a correlation matrix or covariance matrix is
often a good start towards detecting redundant and correlated variables.
These matrices are generated by computing a coefficient or score for each
variable-pair in the original data matrix. The elements in the covariance
matrix retain information concerning the scales in which the variables are
measured. Thus, variables that tend to have large values tend to have large
covariance scores. Elements of the correlation matrix are computed in a very
similar way, except that they are subject to a normalization step, which
forces the values to fall into the interval [- 1,4+ 1]; + 1 and — 1 indicating

36 Chapter 1

perfect positive and negative linear correlation, respectively, and O indicating
no linear correlation at all. All elements on the diagonal of the correlation
matrix reflect a perfect positive correlation of the corresponding variable
with itself. The values on the diagonal of the covariance matrix reflect the
actual sample variance of the corresponding single variable.

| *r(a@) *r(B) *r(c) *r(d) | *r(a) *r(b) *r(c) *r(d)
*r(a)| 1.00 *ri@)| 1.71 -025-1.14-0.32
*r(b)|-0.36 1.00 *r(b) 029 -0.13 0.10
*r(c) |-0.81 -023 1.00 *r(c) 115 0.12
*r(d)|-0.75 0.54 034 100 *r(d) 0.11

Figure 1.9. Correlation matrix (left) and covariance (right) for the 4 gene profiles of our four-
gene experiment, computed from normalized data shown in Table 1.2.

Figure 1.9 depicts the correlation and covariance matrices computed from
the four normalized gene profiles of our four-gene experiment. The
correlation matrix (left) reveals a relatively strong negative correlation
between the gene profiles of gene a and ¢ (-0.81), and a and d (-0.75),
respectively. Thus, as far as their variation patterns are concerned, the gene
profiles of gene a and ¢, and that of a and d are highly redundant. Therefore,
in order to reduce the burden on subsequent analytical steps, we could
consider to remove the expression profile of gene ¢ from the matrix, or,
alternatively, that of the genes ¢ and d. But hold on! Do not throw out the
baby with the bath water. Before you proceed with reducing the burden, you
should take note of the almost self-evident hypothesis emerging from the
results in the correlation matrix: The genes a and ¢, and a and d are co-
regulated.

Other multivariate feature selection strategies exist, including cluster
analysis techniques, neural networks, and multivariate decision trees. Also,
visualization techniques are powerful allies in the crusade against
superfluous variables. Michael Eisen’s gene expression map software is
perhaps one of the most impressive demonstrations how analysis and
visualization techniques can be combined to explore and select gene
expression profiles (Eisen et al., 1998; Brown and Botstein, 1999).

Merging variables into a composite variable or ‘“components” is an
alternative approach to reducing the dimensionality of microarray data. The
basic idea is to examine the original set of variables collectively, and to
combine and transform them into a new, smaller set of mutually largely
uncorrelated variables each of which retaining most of the original
information content. For example, if a set of gene or array profiles turns out
to be highly correlated, one could consider to drop some profiles or to

1. Introduction to Microarray Data Analysis 37

replace the correlated set by some average profile that conveys most of the
profiles’ information.

A feature-merging method commonly employed to reduce microarray
data is called principal component analysis (PCA). This technique discovers
variables that are correlated with one another, but are independent from
other subsets of variables. The correlated subsets are combined into factors
or components, which are thought to reflect the underlying process that led
to the correlations among variables. Generally, the major goals of PCA are
to summarize patterns of correlation, and to reduce the number of observed
variables, and to provide the basis for predictive models (Tabachnick and
Fidell, 1996). The mathematical operations involved in PCA are intricate.
Intuitively, one could imagine a principal component as a rotation of the
discerned data points so that the variance among the data points, when
viewed from a particular “perspective”, is maximized. Once the highest-
variance perspective (i.e. the first principal component) is found, other
components are determined in the similar fashion, with the additional
constraint that each new component is uncorrelated with the previous ones.

Microarrays measure expression levels on a continuous scale. However,
many analytical methods benefit from or require discrete-scaled input
variables. Examples include Bayesian networks and techniques and logic
methods such as association analysis, decision trees, and rule-based
approaches. Discretization methods are designed to perform the necessary
data transformation.

Let U be the discerned universe of expression levels. Further, let L denote
a predetermined set of labels describing discrete expression levels, such that
L={L,, L,, ..., L,}. A discretization method is defined as a function, f(x),
that assigns each x € U'to a single label in L as follows:

fx):U-»L

An obvious, albeit extremely simple, three-label discretization scheme
for ratio-based expression data would use the labels under for expression
ratios less than 1, balanced for 1, and over for values greater than 1. A more
sophisticated version would express discrete expression levels in terms of
standard deviations from the mean of either the array or gene profile. For
example, under to represent levels below 1 standard deviation from the
mean, over for levels above 1 standard deviation from the mean, and
balanced elsewhere. The second scheme is more flexible, as it reflects the
actual underlying distribution of expression levels and can be adapted to
represent more than three discrete expression levels. It would also benefit
from a global normalization in terms of units of standard deviations from the
mean. The expression map in Table 1.3 illustrates a three-way discretization
of the data from our four-gene experiment. The previously employed color

38 Chapter 1

mapping, f. {black, gray, white} — {red, orange, green}, such that
f(black) = red, flgray) = orange, f{white) = green, should enable you to trick
your visual perception into seeing the gene expression color map in the
accustomed fashion.

Table 1.3. Data matrix afier discretization of normalized matrix (Table 1.2) using decision
threshold of £0.75 standard deviations from mean (mean = 0). Legend: ovr = over-expression
(black), bal = balanced (gray), and udr = under-expression (white).

Patient# | 1 2 3 4 § 6 7 8 9 10
Tumor [A A A A A A B B B B
_*r(a) : il B v udr udr
) | Bl udr NGl B BN ZN PO ba
*ric) |udr QW udr wdr udr udr 0% Wi
) |HE owdr B OBH OB B B i

More advanced discretization strategies exist, one such strategy is the

previously mentioned general separability method (Grabczewski & Duch,
1999; Berrar et al., 2001).

42,2 Selection of Data Analysis Task

Once data pre-processing (Steps 1 to 4 in Figure 6) is done, we are ready for
numerical analysis. Ideally, when the microarray experiment is conceived,
hypotheses are formulated, and specific scientific tasks are defined, one
should also specify how the scientific tasks map onto specific (numerical)
analysis tasks. So task selection should have happened well before pre-
processing was started. However, pre-processing itself and the initial,
explorative application of some analytical methods may well have improved
our understanding of the data. This newly gained knowledge may alter the
course of action we take in terms of task and method selection.

The term data analysis task refers to a generic type of data analysis
process or approach for which many different specific methods exist.
Typically, a data analysis task is characterized by the type of information it
analyzes or by the information it extracts from a given data set. Data analysis
tasks can be grouped into two broad categories namely, Aypothesis testing
and knowledge discovery or hypothesis generation. Which of these two
approaches is appropriate depends on the nature of the scientific questions
and the characteristics of the available microarray data.

Hypothesis testing is a top-down process. It starts with preconceived notions,
ideas, and hypotheses about the studied processes and entities, and it then
seeks to verity or disprove these mental models via experiment and analysis.
In a microarray scenario, this entails the (a) conception, design, and
execution of suitable microarray hybridization experiments, (b) the design

1. Introduction to Microarray Data Analysis 39

and construction of an analytical computer model based on the generated
data, and (c) thorough evaluation of the model to confirm or reject the
hypothesis. A more theoretical and less data-driven variant of top-down
hypothesis testing attempts to formalize the mental models so that they can
be cast into executable analytical models (paper-based, computer-based, or
other). Both the natural processes as well as the executable models are then
probed with analogous input data (experimental conditions) and their
response data are compared. This approach is perhaps more in line with what
systems biologists have in mind. If realized on a computer, such executable
models are also known as computational theories. Numerical simulation
systems based on differential equations have been used extensively in
computational biology to embody computational theories. Recently, there
has been increased interest in symbolic simulation systems to embody
computational theories about biological processes (Karp, 2001). Symbolic
computation derives from work in the fields of artificial intelligence and
machine learning.

In knowledge discovery (hypothesis generation), no prior assumptions
about the data are made. The data are probed with the objective of revealing
previously unknown, non-trivial relationships or patterns in the data.
Knowledge discovery can be thought of as a bottom-up process, which starts
with the data and tries to let the data suggest new hypotheses. This type of
generic task reflects the exploratory, high-throughput character of many
microarray studies — throw thousands of genes onto the chip, plow up the
field of generated expression data, and sift through the unearthed debris in
the hope of finding nuggets of gold. Knowledge discovery comes in two
forms, directed and undirected knowledge discovery.

Directed knowledge discovery attempts to explain or categorize some
particular aspect of the underlying process or entity. For instance, the
analysis of gene expression profiles may lead to an explanation of two types
of tumors in terms of differences in the underlying gene profiles.

Undirected knowledge discovery, on the other hand, attempts to find
patterns or similarities among groups (e.g. gene or array expression profiles)
without the use of a particular target variable or a collection of predefined
classes.

Both hypothesis testing and knowledge discovery are high-level, generic
tasks. They are usually accomplished by decomposing them into a set of
more elementary numerical or analytical tasks. These elementary tasks can
be grouped into two categories — predictive and pattern-detection tasks.
Some of these tasks are shown in Table 1.4.

Table 1.4. Overview of some elementary analytical tasks important for microarray analysis.

40 Chapter 1

predictive tasks | pattern-detection tasks
classification clustering
regression or estimation correlation analysis
time-series prediction association analysis
deviation detection
visualization

The following discussion will focus on classification, clustering, and
association analysis.

4.2.2.1 Classification Task

Classification is also known as prediction, class prediction, discriminant
analysis, or supervised classification or learning. Generally, classification is
a process of learning-from-examples, in which the objective is to induce a
function, f, when provided with examples of the form (X,,AX,)). In this pair
the term X;=(x;, Xp, ..., %) denotes the observed variables of the "
example and AX)) € {1, 2, ..., O} denotes the class label associated with the
observed variables. For microarrays, the observed variables refer to gene
expression profiles, that is, gene or array profiles (see Equation 1.1a and
1.1b). Class labels correspond to array and gene profile covariant
information, that is, experimental conditions for array profiles and gene or
gene family descriptors for gene profiles (see Figure 1.5).

Classification task. A classifier or predictor for Q classes partitions the
underlying K-dimensional gene expression profile space into Q disjoint
subsets, {S1, 52, ..., Sp} =48, such that for an observation with expression
profile X, € §; € § the predicted class is ¢g. (adapted from Dudoit et al.,
2000)

Clearly, it is sometimes desirable to include covariate information to the
K expression profile dimensions.

Classification is probably the most popular elementary data analysis task.
The range of available classification methods is huge. Besides classical
statistical techniques, methods from data mining, machine learning, and
artificial intelligence are starting to enter the microarray field.

4.2,2,2 Clustering Task

Clustering is an analytical task which is also known as cluster analysis,
automatic class prediction or classification, data segmentation or grouping,
partitioning, or unsupervised classification or learning. Clustering techniques
are concerned with finding meaningful groups in data. Clustering seeks a
convenient and valid organization (and description) of data. In contrast to
classification, clustering is not concerned with establishing rules for
separating future data into predefined categories. Clustering can be thought
of as learning from observation, as opposed to learning from pre-classified

1. Introduction to Microarray Data Analysis 41

examples. A clustering algorithm is provided with some observations, and
the goal is to look for similarities in the observed data and group them such
that the patterns in one group are similar to one another and dissimilar from
the patterns in any other group. Thus, clustering techniques provide a useful
approach to exploring data in order to identify and understand relationships
that may exist in the data. A common type of relationship discovered by
cluster analysis is hierarchical topology. Clustering is a key component in
model fitting, hypothesis generation and testing, data exploration and data
reduction,

Clustering is a process or task that is concerned with assigning class
membership to observations such as gene expression profiles, but also with
the definition or description of the classes that are discovered. Because of
this added requirement and complexity, clustering is considered a higher-
level process than classification. In general, clustering methods attempt to
produce classes that maximize similarity within classes but minimize
similarity between classes. A typical clustering method is the k-means
algorithm. Current statistical and syntactic clustering methods have trouble
expressing structural information, while neural clustering approaches are
limited in representing semantic information.

Clustering task. Given a set, ¥ = {Xj, X, ..., Xp}, of expression profiles,
each profile, X; € ¥, described by K measured expression levels, that is X; =
(xn, X, ..., Xix), determine a classification (grouping, partitioning) that is
most likely to have generated the observed objects (adapted from Upal and
Neufeld, 1996).

Clearly, it is often desirable to include covariate information with the
gene or array profiles that are to be clustered.

Most early microarray analysis studies were concerned with the
clustering of gene expression data. Hierarchical and self-organizing map
clustering methods have been employed in many studies. The clustering tool
from Eisen and colleagues is perhaps one of the most widely used analysis
method in the microarray arena (Eisen et al., 1998).

4.2.2.3 Correlation and Association Analysis Tasks

Correlation analysis attempts to detect correlated variables, that is, variables
that change (across the underlying observations or samples) in a coordinated
manner. This type of analytical task is relevant to many scientific tasks,
including dosage-response co-regulation studies. We have already discussed
some methods that are designed to detect linearly correlated variables
(correlation matrix, principal component analysis).

Another similar analytical task is association analysis. This discovers the
co-occurrence of expression patterns over a set of observations. The patterns
are accompanied by two probabilistic measures — support and confidence.

42 Chapter 1

For example, given the discretized data of our four-gene experiment (Table
1.3), association analysis might have uncovered the following association
pattern

if*ra)=udr and *r(b)=bal and *r{(c)=ovr and *1(d)=bal
then Tumor=B
[support = 0.30, confidence = 1.00]

Support (sometimes referred to as coverage) is a measure that reflects the
probability of the entire pattern, that is, support = p(then M if), where then
refers to the then-part of the pattern and if to the if-part.

Referencing the discretized expression data depicted in Table 1.3 and the
association pattern shown above, we obtain the following probabilities:
support = p(*r(a) = udr, *1(b) = bal, *Hc) = ovr, *Wd) = bal,
Tumor =B) =3/10 = 0.30. The confidence (or accuracy) of the pattern is
determined by the probability of occurrence of the then-part under the
condition of occurrence of the if-part, thus:
confidence = p(then | if) = p(then N if) / p(if). For our example:
p(then N if) = 0.30 and p(if) = 0.30, so confidence = p(then | if) = 1.00.

Typically, one seeks to find association patterns that satisfy the constraint
that the support and confidence exceed some predefined threshold values
(for example, thresholds of 0.05 for support and 0.80 for confidence).
Association patterns summarize co-occurrence patterns in the data. As such
they are a useful technique to explore expression data.

4.2.3 Selection of a Specific Method

The armament of techniques we have at our disposal to implement the
necessary analytical tasks is enormous. It ranges from classical statistical
methods, to data mining, and to things like support vector machines,
relevance machines, and lattice machines. No consensus has yet emerged as
to which methods are the best for which tasks.

Once you have selected the specific analytical tasks required for solving
your microarray analysis problem, there are a few criteria you could usefully
apply to address your method-selection problem.

Visualization. For pre-processing and pattern discovery tasks, it is
probably a good idea to get hold of tools that are able to visualize the data
and intermediate analysis results in different formats. Good contenders are
tree-based clustering methods like Eisen’s tool. Visualization may also turn
out to be a good ally when it comes to classification. Some decision tree
tools provide excellent visualization of the induced trees.

Symbolic versus subsymbolic methods. For some problems, an artificial
neural network may be the best choice in terms of obtaining acceptable

1. Introduction to Microarray Data Analysis 43

results. However, due to their highly distributed encoding of learned patterns
as numeric weight matrices, it is difficult to understand the models involved.
Genetic-algorithm-inspired methods, support vector machines, lattice
machines, and other algorithms do not lend themselves to easy and intuitive
understanding. On the other hand, logic-based methods like decision trees
and association patterns, and regression techniques, produce easy-to-
understand models.

Computational complexity. Some methods make more demands on
computational resources (processor, memory, and disk space) than others.
Atrtificial neural networks, genetic algorithms, association algorithms, and
other methods may require a lot of resources under certain circumstances.
This situation is worsened when multiple analysis runs are needed, for
example, for cross-validation or for trying out different parameter settings to
explore the performance of a method.

Reproduceability. Some methods (e.g., some neural learning algorithms
or genetic algorithms) employ non-deterministic elements, as it might be for
selection initialization settings for some parameters. Because of this, the
results for two different runs on the same data with the same parameter
settings may not be identical.

4.24 Model Construction and Application

Once the pre-processing is done, and the analytical tasks and the methods of
choice have been established, it is time to actually put the methods to work
and let them analyze the data. Generally, we differentiate three different
phases (a) model construction and model verification, (b) model validation,
and (¢} model application.

Models are constructed from a set of training data specifically selected
for this purpose (this selection may involve a statistical sampling technique).
Initially parameterized models frequently fail to accurately fit test data or do
not meet other pre-defined criteria. To address this problem, some model
parameters are adjusted or the data is manipulated in some way. Then a new
model is constructed and its output is evaluated. This process is called model
verification.

Once one is satisfied with the model’s performance, the model is
validated. For classification models, this is achieved by applying the
classification model to independent validation data, that is, data that were
not used in the model construction and verification phase. Model validation
may also be performed by “manually” inspecting and evaluating the learned
parameters and properties. Ideally, an independent analyst is summoned to
carry out this evaluation.

For many scientific investigations, model construction, verification, and
validation are all that is required. However, there are situations where a

44 Chapter 1

validated model may be usefully applied to new data (called application
data) that has not been used for verification or validation purposes. This is
what we call model application. For example, a reliable classification model
may assist medical experts in diagnostic and prognostic tasks.

The literature uses different terms for the various data sets involved in
these processes. Especially with classification tasks in mind, we use the term
learning set to refer to the union of both training set and test set. Normally,
the training set is used to construct a model and the test set to verify it.
Depending on the strategy and method, training and test set may partially or
fully overlap. We use the term validation set to denote a data set that is a part
of the actual study but is not involved in model construction or verification.
Once a model has been built and tuned, the validation set is employed to
“simulate” application of the model to some independent data. Only if the
model passes this validation step it can be considered useful. The problem
with this is that if the validation does not produce the expected results, you
are not allowed to go back and modify the model and then validate it again
on the same validation set. If the validation fails, you should throw the
model out of the window.

The application set (or prediction set) is normally not used in the study.
It refers to data that may be available to you in the future, and for which no
classification exists. Applying your classification model to completely new
cases for which no classification exists is the real “acid test”, in particular if
real-world decisions are based on the model’s prediction. This is where real
prediction takes place, and you had better have evaluated and validated your
model thoroughly.

Developing and verifying a model based on a single learning set, and
only that, runs the risks that the model is too biased towards the data
distribution within the two underlying training and test sets. This is also
known as the overfitting problem. Using cross-validation is a more reliable
method, especially when the amount of the available data is limited. Given
that a validation data set has been set aside (see Step 12 in Figure 1.6),
cross-validation divides the available data set into nfolds or subsets. Based
on these n data sets, n different models are developed, each using n — 1 data
sets for model construction and verification, and the remaining data set for
quasi-validation. As the remaining data set does not participate in the
construction and verification process, the performance on this data set
provides an estimate for the subsequent real validation. The best-performing
model is then selected and validated using the validation set that was set
aside. This method is also referred to as leave-n-out cross-validation, as for
the development of each of the n models, n data patterns are “left out” for
quasi-validation. In the extreme situation, where # is equal to the number of

1. Introduction to Microarray Data Analysis 45

available data patterns (for learning and quasi-validation), one has leave-
one-out cross-validation.

4.2.5 Result Interpretation and Process Evaluation

The remaining steps of the inner loop (Step 8 and 9) are concerned with the
interpretation of the analytical results and constructed models, and the
revision of the entire inner loop.

The interpretation of microarray analysis results is relying upon the two
disciplines: computer science or statistics and biology, more specifically,
molecular biology. Statistics takes into account specific measures for cluster
validation, specificity, sensitivity, positive/negative predictive values, ROC-
analyses for clustering and classification tasks. The interpretation of the
analysis results from the point of view of molecular biology investigates the
functions of selected variables, possibly placing the genes found in a greater
frame, e.g., known pathways, enzymatic reactions, or even provide evidence
for a more systemic view on the organism under investigation.

4.2.6 Biological Validation

Microarrays measuring the expression of thousands of genes are applied as
screening methods. Thus, biological validation of microarray data analysis
results includes specific examination of identified genes by other highly
biotechnological techniques like the quantitative reverse transcriptase
polymerase chain reaction. In many studies, this additional yet important
aspect has been neglected, but the necessity for validating results by other
techniques has been recognized.

REFERENCES

Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. (1989). Molecular biology of
the cell. New York: Garland Publishing.

Berrar D., Dubitzky W., Granzow M., Eils R. (2001). Analysis of gene expression and drug
activity databy knowledge-based association mining. Proceedings of Critical Assessment
of Microarray Data Analysis (CAMDA 2001), pp. 23-28.

Branca M.A. and Goodman N. (2001). DNA microarray informatics: Key technological
trends and commercial opportunities. Cambridge Healthtech Institute, CHI Genomic
Reports.

Brown P.O. and Botstein D. (1999). Exploring the new world of the genome with DNA
microarrays. Nature Genet 21(1):33-37.

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster Analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863-14886.

Grabczewski K. and Duch W.A (1999). General purpose separability criterion for

classification systems. 4th Conference on Neural Networks and Their Applications,
Zakopane; pp. 203-208.

46 Chapter 1

Dudoit S., Fridland J., Speed T.P (2000). Comparison of discriminant methods for
classification of tumors using gene expression data. Technical Report No. 576, University
of California, Berkeley.

Duggan DJ., Bittner M., Chen Y., Meltzer P., Trent J.M. (1999). Expression profiling using
c¢DNA microarrays. Nature Genet 21(1):10-14,

Granjeaud S., Bertucci F., Jordan B.R. (1999). Expression profiling: DNA arrays in many
guises. BioEssays 21(9):781-790.

Karp P.D. (2001) Pathway Databases: A Case Study in Computational Symbolic Theories,
Science 293:2040-4.

Kaufman L., Rousseeuw P.J. (1990). Finding groups in data. An introduction to cluster
analysis. John Wiley & Sons, Inc.

Kerr M.K. and Churchill GA. (2001). Statistical design and the analysis of gene expression
microarray data. Genetic Research 77:123-128.

Lee M.L., Kuo F.C., Whitmore G.A., Sklar J. (2000). Tmportance of replication in microarray
gene expression studies: statistical methods and evidence from repetitive cDNA
hybridizations. Proc. Natl. Acad. Sci. USA 97(18):9834-9839.

Quackenbush J. (2001). Computational analysis of microarray data. Nature Genet 2:418-427.

Raské6 I. and Downes C.S. (1995). Genes in medicine. Chapman and Hall, London.

Sabatti C. (2002). Statistical Issues in Microarray Analysis. Current Genomics, to appear;
available at http://www.bentham.org/cg3-1/sabatti/sabatti-ms.htm.

Schena M., Shalon D., Davis RW., Brown P.O. (1995). Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 270:467-70.

Tabachnick B.G., Fidel L.S. (1996). Using Multivariate Statistics 3rd Edition. Harper Collins
College Publisher, pp. 635-708.

Upal M.A., Neufeld, E. (1996). Comparison of unsupervised classifiers. Proc. First
International Conference on Information, Statistics and Induction in Science, World
Scientific, Singapore, pp. 342-353.

Wu T.D. (2002). Large-scale analysis of gene expression profiles. Briefings in Bioinformatics
2(1):7-17.

Chapter 2

DATA PRE-PROCESSING ISSUES IN
MICROARRAY ANALYSIS

Nicholas A. Tinker, Laurian S. Robert, Gail Butler, Linda J. Harris.

ECORC, Agriculture and Agri-Food Canada, Bldg. 20, 960 Carling Ave., Ottawa, ON,
K1A 0C6, Canada

e-mail: {tinkerna,robertls,butlergm,harrislj} @agr.gc.ca

1. INTRODUCTION

Microarray experimentation is a young but rapidly maturing field, and the
potential complexities of microarray data are spawning a rich statistical
literature. Some of the concepts presented in this literature may be new and
unfamiliar to the molecular biologist, who typically gleans information in a
stepwise manner from many small, carefully controlled experiments.
Microarrays yield enormous quantities of data and can address many
simultaneous hypotheses, but results are variable and require careful
preparation and statistical analysis. Gathering, organizing, and preparing
data for statistical analysis is a large and important component of microarray
experimentation. These steps are referred to collectively as pre-processing.
This chapter is written for the newcomer to microarray technology. It is
intended as an introduction to some of the pre-processing steps that are
detailed in further chapters. Broadly defined, pre-processing includes the
planning and design of experiments', the acquisition and processing of
images, data transformation, data inspection, and data filtering. We cannot
possibly represent every variation in terminology and procedure that will be
encountered in other literature, but we have attempted to introduce a variety

! The design and construction of microarrays themselves, and the extensive laboratory
management that accompanies this task, are not discussed in this chapter. These steps vary
substantially with the type of microarray technology being used; those who intend to
prepare their own microarrays should consult literature on this subject (e.g., Allain et al.,
2001; Dolan et al., 2001; Rockett et al., 2001; http://www.microarrays.org).

48 Chapter 2

of terminology, and to explain the basis of some major procedural
differences. A flow diagram for the topics covered in this chapter is
presented in Figure 2.1. Because of the strong requirement for data
management at all stages of pre-processing, we begin with a general
discussion of this topic.

For each experiment: For each hybrdization:
[Design and print array Anmalyse lmage (4)]
Y \ 4
[Design blologlcal experiment (3) ::::g; Transform data (5)
A 4 A J
[Prepare samples, hybridize, scan ll Inspect data (6)
A
For each experiment [Fiter data (7)
or collection of A 4
hybridizations:

[Analyse, interpret

Figure 2.1. A diagram of preprocessing steps in microarray analysis. Numbers in parentheses
indicate sections where topics are discussed.

2. DATA MANAGEMENT

For most laboratories, microarray analysis will not be a one-time experience.
Even if an experiment addresses one specific question, it will likely be
followed by experiments to test additional factors. Properly done, a
microarray experiment has the potential to become part of a larger study.
This concept has inspired some authors to address the need for common data
descriptions, formats, and repositories (Becker, 2001; Fellenberg et al.,
2002; Kellam, 2001). Given the success and importance of large central
databases for DNA and protein, there are strong reasons to nudge microarray
data in the same direction. However, it is clear that microarray data is far
more complex than sequence data, and that it can be meaningless or
misleading unless: (1) the context of experimental conditions is fully
described, and (2) measurements are standardized such that comparisons are
valid. For this reason, standards such as the “Minimal Information About
Microarray Experiments (MIAME)” (Brazma et al, 2001) are being
developed. Meeting these standards is a responsibility that demands good
data management — even if reduced to a basic need to publish reproducible
results. At a minimum, forms that provide templates for the description of an
experiment and its components should be used. These forms can be based on
standards such as MIAME, with adaptations that are appropriate for unique
characteristics of the laboratory, the experimental organism, or the
methodology being employed. Separate forms can be made to describe

2. Data Pre-Processing Issues in Microarray Analysis 49

experiments, arrays, samples, and hybridization conditions. Completion of
these forms prior to conducting an experiment will aid in the planning of
experiments and in standardizing the relevant information.

Following image analysis, management of a much larger quantity of data
will be required. This will include raw images and large matrices of derived
image parameters. Different versions of these data will need to be managed
throughout the various pre-processing and filtering steps. Finally, a variety
of results from data analysis (often performed by numerous collaborators)
will need to be stored and accessed over time. There will inevitably be
requirements to re-do, re-analyze, or re-interpret some aspect of an
experiment. For many researchers, the electronic spreadsheet is the most
familiar data management tool and, undoubtedly, many good microarray
experiments have been managed entirely with spreadsheets. However, many
other experiments have likely succumbed to the errors and difficulties that
spreadsheets can cause, such as; forgetting which of many copies holds the
original data, mutations caused by accidental keystrokes, lack of security, a
propensity to sort separately two columns that belong together, and the
relative difficulty of joining information from two separate tables. All of
these issues can be solved by relational databases; hence some thought
should be given toward developing or adopting a relational database
management system that is appropriate to the skills and resources of the
laboratory, and compatible with required procedures for data pre-processing
and analysis.

Publicly available database systems have been described in the literature
(e.g., Comander et al,, 2001; Sherlock et al., 2001), and others are available
through acquisition of commercial database-enabled microarray software.
The user should consider the following when adopting data management
systems: 1) the need to design arrays and track the intermediate steps of
array construction; (2) ability to store experimental parameters and sample
preparation steps; (3) ability to store images, and to link individual spots to
stored data; (4) integration of procedures for data pre-processing; (5) options
for data filtering; (6) integration with data analysis software and other
databases; (7) cost, support, and ease of maintenance; (8) ability to support
multiple users; (9) ability to share and protect data across a local network or
the Internet.

3. EXPERIMENTAL DESIGN

Statisticians insist that experimental planning and design is the most critical
part of every scientific experiment. Experimental planning begins with
careful consideration of the biological questions to be answered, the
conditions or materials to be compared, the expected sources of variation,

50 Chapter 2

and the methodology to be used. It is important to establish the type and
amount of replication needed while allocating limited resources to an
appropriate balance between treatments and replication. Attention should be
given to randomization to minimize the effects of extraneous variation, so as
to avoid bias and possibly confounding comparisons of interest with other
factors such as changes in arrays or in sample labelling. Most statisticians
also insist that methods for data analysis should be planned in advance. This
serves to identify potential shortcomings of the design, but is also intended
to prevent the temptation to “torture” data into providing the desired
conclusions.

Given the above, it might seem that microarray experiments are some of
the worst experiments in existence. Experiments are often carried out
without specific hypotheses, thousands of hypotheses can be tested with little
regard to statistical error rate, planned treatments may be altered mid-
experiment, and new methods for analysis are encountered after experiments
are completed. Much may be forgiven due to the novelty of microarray
technology. It may even be argued that microarray experimentation need not
be hypothesis-driven (traditional scientific method has been challenged in
large sequencing projects, with great reward). Nevertheless, some attention
to basic principles of experimental design can only improve the chances of
success. The discussion below is intended to introduce some general
concepts of statistical design and their application to microarray
experimentation. A more extensive discussion of this topic is provided by
Nadon and Shoemaker (2002).

3.1 General Concepts of Statistical Design

Statistical analysis involves measuring the effect of rrearments (often
referred to somewhat synonymously as experimental conditions, factors,
varieties, or environments). We then wish to compare these effects, draw
conclusions, and guard these conclusions by a probability that they are
wrong. In doing so, we speak of type I error rate (the probability of saying
something is different when it is not), and power (the probability of
discovering a true difference). Power and type I error are opposing forces —
the experimenter must choose an acceptable type I error rate (e.g., 5%) with
the knowledge that larger type I error rates will give increased power. Errors
are estimated by measuring residual effects (the amount of variability that
cannot be accounted for by treatments or controlled experimental factors).
Estimation of error requires that a treatment be replicated, such that each
replicate is a randomly chosen independent experimental unit. Conclusions
will then be valid with regard to the population of similar experimental units.
For example, if two chemical treatments are applied to eight yeast cultures,

2. Data Pre-Processing Issues in Microarray Analysis 51

each culture must be treated equally except for the random assignment of a
chemical treatment. When treatments are not (or cannot be) assigned
randomly, results may be confounded, such that measurements might be
related in part to some factor other than the treatments under consideration.
Multiple observations made on material from the same experimental unit are
called sub-samples, and should not be confused with replications. For
example, if a tissue sample is pooled from five plants, then analyzed twice,
we have a single experimental unit with two sub-samples. The sub-samples
can tell us about the variability of measurements, but not about the
variability among plants.

3.2 Practical Application to Microarrays

The most unique aspect of a microarray experiment is that it provides
simultaneous information about transcript abundance for a large number of
genes based on measurements of hybridization between a complex ¢cDNA
sample and a large set of substances” on an array. Since many aspects of the
substances are variable (e.g., sequence length, concentration, and spot size),
it is necessary to account for this variability by using experimental design.
This accounting is often done by conducting every hybridization with two
samples simultaneously; one from the treatment of interest, and the other
from a common control. By expressing all measurements in relation to a
common control, some biases associated with the target substances can be
removed. Some alternative designs do not require a common control (e.g.,
Kerr and Churchill, 2001a,b) but these designs are not in common use, and
they may require additional statistical consultation during planning and
analysis (see Section 5.6). Even when hybridizations are conducted using a
common control sample, it is essential to perform replications in a manner
that avoids confounding errors. This should include reverse-labelling
(replicates performed by reversing the dyes assigned to the control and
treatment samples) and randomization over potential sources of bias such as
different printings of an array.

Caution should be exercised with regard to what is considered a
replicated observation. Multiple copies of a substance on the same array are
subjected to some of the same biases as all other spots on the array, so they
are considered as sub-samples rather than replicates. These sub-samples can
provide insurance against missing data, and will provide greater precision of
measurement when they are averaged. They can even remove some bias

2 Here, we will refer to the spots on an array as substances, reflecting the fact that they may
not all represent genes. However, terminology varies. Some authors refer to the spots on a
microarray as probes, and the labeled samples as targets. Others reverse this terminology.

52 Chapter 2

within an array (if their locations within an array are randomized), but they
cannot be used to estimate experimental error.

While the experimenter has limited control over some sources of bias
associated with the array, a higher degree of control may be achieved over
the labelled ¢cDNA samples. The treatments giving rise to these samples
should be replicated and randomized using basic concepts described in
Section 3.1. There may be pragmatic requirements to pool common elements
of an experiment (e.g., grouping similar treatments in space or time, or
pooling replicates for RNA isolation). These practices can confound
treatments with important sources of bias, and should be avoided if possible.
However, when compromise is necessary, the potential consequences should
be evaluated. It is helpful to list all perceived sources of error and to
speculate on which sources may have an impact on conclusions.

3.3 To Replicate or Explore?

The microarray experimenter is often pulled in two competing directions: to
perform highly replicated experiments that allow valid and robust statistical
conclusions, or to explore a large set of experimental conditions with the
hope of developing hypotheses about groups of related genes or hidden
mechanisms of gene expression. The experimenter must decide which of
these objectives is of higher value, and compromise as necessary. Specific
hypotheses (e.g., diseased vs. normal) lend themselves to the first approach
while others (e.g., onset of development) invite exploration. The strategy
chosen will influence the experimental design, data processing, and
statistical analysis. For example, a replicated experiment comparing two
conditions might allow more complex and efficient experimental designs,
giving better resolution of specific treatment effects and differences among
genes (e.g., Lee et al.,, 2000). Conversely, many methods of multivariate
analysis that are applied to experiments with many treatment levels (e.g.,
hierarchical clustering) may not utilize replicated observations, since
observations from identical conditions are averaged before analysis.
Nevertheless, it is important to remember that replicates still add precision,
remove bias, and allow the identification of aberrant observations. The
optimum number of replications is affected by many factors, including the
desired power for detecting differences. The optimum number of replications
can be estimated if assumptions are made (e.g., Wolfinger 2001);
alternatively, general recommendations can be followed (e.g., Tee et al.,
2000, suggest at least 3 replicates). Ifreplication is not present, extra effort is
required to avoid confounding, and results should be considered tentative
and subject to further validation.

2. Data Pre-Processing Issues in Microarray Analysis 53

4. IMAGE PROCESSING

For the pioneers of microarray analysis, image processing must have
presented major technical challenges. These challenges have been largely
supplanted by the development of algorithms and software, but it is worth
understanding some of the potential pitfalls in image processing in order to
select software, and to avoid introducing artefacts at this stage of analysis.

Image analysis begins with the scanning of hybridized arrays at a
wavelength suitable to each labelled sample. Some optimization may be
required at this stage to obtain images with approximately equal intensity
and good signal-to-noise ratio. For two-sample hybridizations, separate
images may be combined into a single false-colour image for further
analysis. A template (or overlay) that identifies the grid positions of the
microarray substances is then superimposed on the image. Typically,
positions of substances are identified by block, row, and column. Needless to
say, it is important to have an accurate template, and later, to check the
accuracy of the template through the use of control substances. Errors in the
spotting of microarrays can occur, but these will likely be gross errors (e.g.,
switching two entire sets of samples) that can be identified through changes
in the expected position of blanks or known controls.

Various algorithms are used to orient the template with an image. Those
who work with spotted microarrays will discover that the alignment and
geometry of these arrays is rarely perfect, so it is useful to have software that
allows interactive stretching of the template grid. If possible, it is useful to
incorporate “landing lights” (substances expected to show strong
hybridization) near the corners or edges of each block of spots. Otherwise, it
may be difficult to align a template with an image resulting from a weak
hybridization.

Once the template is approximately aligned, an algorithm will find and
delineate regions of pixels that represent the spotted substances. The edges
of those regions will be highlighted to allow manual inspection and editing.
There are a variety of methods for detecting spot edges and for
compensating for background (Dudoit et al., 2002; Kim et al., 2001; Tran et
al., 2002; Jain et al,, 2002; Bozinov and Rahnenfuhrer, 2002). Since different
methods may be optimized for different types of arrays, it is probably best to
test several methods with your “worst” images, prior to committing to one
particular method or software.

A number of problems or issues may be apparent upon inspecting an
image, and should be noted for consideration. One example is the presence
of “black holes”. These are spots that are actually darker (less fluorescent)
than the surrounding background, highlighting the possibility that spot
intensity and background noise are not necessarily additive. Image analysis
software may automatically subtract background from spot foreground. In

54 Chapter 2

some cases, this background subtraction will result in negative values for
spot intensity, such that these data points must be discarded. Options involve
setting the software parameters such that background is not subtracted or
adopting an alternate method for compensating for background (e.g., Tran et
al., 2002).

Most software will derive many variables from each spot on an image.
Many of these variables may have no particular use — they are just easy to
compute. The variables most commonly used include mean and median pixel
intensity, and the ratios of these values. Most authors chose to use median
pixel intensities rather than mean pixel intensities because medians are less
affected by outlying pixel values. Qutlying pixel values are often caused by
failure to delineate the exact edge of a spot, such that background pixels are
included.

Although it is advisable to return to the original image for validation
whenever possible, image analysis should be conducted as though it were the
last time that the image will be seen. Image analysis software is seldom
perfect, and artefacts will arise that require human judgement. Spots that are
suspect can be flagged so that they are excluded from further analyses. Some
software will concomitantly indicate the substance contained on each spot,
which will assist in the identification of potential problems (e.g., when
blanks or controls show inappropriate values). It is preferable that a single
person conducts all image analyses within a given experiment, since this
avoids the introduction of bias due to differences in human judgement.

The temptation to draw conclusions during image analysis should be
avoided. The colour coding used to identify spot intensity and intensity
ratios can be misleading, and it is susceptible to biases that need to be
removed by appropriate methods of transformation.

S. DATA TRANSFORMATION

Much of the confusion in microarray analysis arises from differences in
opinions regarding what must be done to prepare these data for analysis. We
have tried to reduce this confusion by describing a generalization of a
commonly used approach to transform data from arrays that contain paired

samples (Sections 5.1 to 5.6). Alternative approaches are discussed in
Section 5.6.

31 A Useful Vocabulary

The term normalization is generally used synonymously with the term
transformation, and a large body of literature has addressed this topic. It is
easier to understand the need for transformation if it is divided into logical

2. Data Pre-Processing Issues in Microarray Analysis 55

steps or components. Three important components are: transformation to
normality, centralization, and re-scaling. Transformation to normality refers
to the adjustment of data such that it approximates a normal distribution (a
prerequisite for many types of statistical analysis). The purpose of
centralization is to remove biases from the data. Re-scaling is a final step
that may be applied to ensure that data from different hybridizations have
equal variances. When considered as three independent steps, the
experimenter can apply judgment in selecting and applying (or not applying)
an appropriate method in each category. Some variations of this terminology
should be expected. In particular, the term scaling has been used by some to
refer to what we (and others) call centralization.

5.2 Transformation to Normality

There is general agreement that a log transformation of most microarray data
provides a good approximation of the normal distribution (e.g., Figure 2.2)
with minor exceptions (Hoyle et al.,, 2002). Different authors have
preference for different log bases (usually logy, log,, or log. [=In]).
Although all of these work equally well, the base that is used needs to be
explicitly recorded for future reference. The log transformation can be
applied to original observations (e.g., median pixel intensities) or to ratios —
remembering that log(x) — log(y) is equivalent to log(x/y). Some authors will
plot original values on log axes, while others prefer to work directly with
log-transformed variables. For simplicity, we now assume that the log
transformation is applied to all variables.

[}
o f o]
N | W S
2 [8
=] 7 i
Al g v
w ;2 C ool
S| &
L -
o 2;1“““{.',', o 2o
1 1 1] T 1 I T T 1
0 1000 2000 3000 4000 5000 4 6 8 10
T In(T)

Figure 2.2. Distributions of median values of pixel intensity (7) and their natural logarithms,
In(7), derived from the image analysis of 10,476 spots on a microarray. The microarray
contained 4,628 unique substances (maize [Zea mays] cDNA clones and controls) and was
hybridized with cDNA derived from two RNA samples labeled with different dyes. The
treatment sample (shown here as “T) was isolated from developing maize kernels that were
manually inoculated 48-hours previously with the pathogen Fusarium graminearum, and the
control sample (shown elsewhere as “C”") was isolated from mock-inoculated kernels at the
same developmental stage.

56 Chapter 2

In(T)

=
L
M-LOWESS
1

Figure 2.3. Median pixel intensities from paired treatment (7) and control (C) samples
hybridized to a 10,476-spot maize microarray (see Figure 2.2) presented as scatter plots of (i)
In(7) vs. In(C), (i) M = In(T/C) vs. A = In(T*C)/2, and (iii) an adjusted value of M vs. 4. The
adjustment in (iii) is made by subtracting a fitted local regression called LOWESS from M
shown in (ii).

53 Data Centralization

Most published references to normalization deal primarily with what we are
calling centralization: the removal of biases in the data. Centralization is
particularly important when using ratios to monitor changes in gene
expression. Bias arises from a number of sources, including variation within
and among arrays, differences in mRNA concentration or quality, unequal
dye incorporation, and wavelength-related differences in scanner strength.
Without correcting these biases, it may appear as though too many genes are
up- (or down-) regulated. This can be especially misleading when one is
inspecting the data using a colour scheme’, which is why it is necessary to
identify this problem using a graphical aid such as the M vs. A plot.

Most microarray software packages provide an option for global
centralization, and this should be considered as a bare minimum. For log
ratios (M), the expected mean of a data set is zero, so global centralization is

3 Most microarray software packages provide a feature whereby one variable (e.g., the ratio of
medians) is shown in spreadsheet format, with hybridizations in columns, and substances
in rows. Each cell is artificially coloured based on the value in the cell (e.g., such that red
indicates up-regulation and green indicates down-regulation).

2. Data Pre-Processing Issues in Microarray Analysis 57

performed by subtracting the overall mean from each data point. One
problem with this approach is that the true expected mean may differ from
zero due to an abundance of genes that are actually up- or down-regulated.
This is sometimes addressed by performing global centralization based on
the mean of some control substances, whose expression is not expected to
change. Technically, this amounts to subtracting the mean of the control
substances from each data point. Two types of control substances have been
considered: housekeeping genes, and alien sequences (or spiking controls).
Housekeeping genes are those required for basic cellular activity.
Unfortunately, the definition of a housekeeping gene is subjective, and the
assumption that its expression is not affected by the treatment is not certain.
A spiking control is a sequence that is not expected to be present in the
sample. It is applied to specific spots on the array, and it is introduced into
the sample in a known concentration. This allows for correction of bias
related to dyes or wavelengths, but it does not remove bias that may arise
due to the quality or concentration of mRNA samples. Furthermore, unless a
large number of controls are used, the mean of the controls may actually
give a poorer estimate than the mean of the entire data set. One possible
alternative is based on systematic identification of classes of genes that do
not change (Tseng et al, 2001). Another alternative, called self-
normalization, is based on the assumption that most bias that is related to
dye intensity can be removed by averaging the ratios from two reverse-
labelled hybridizations. Regardless of whether controls are used for
centralization, the inclusion of controls on an array should be considered
essential. They provide an important point of reference for use in future
comparisons, and they may help to identify unusual or erroneous results.
Global centralization cannot correct for biases that are present within
specific parts of the data. Two general categories of this are: bias that is due
to intensity (e.g., stronger bias at lower intensities) and bias that is spatial
(i.e. dependent on the position within the printed array). The former is
illustrated in Figure 2.3ii, where bias in measured expression (M) seems to
be related to intensity (A) as estimated by the fitted local regression
(LOWESS). The use of the LOWESS function to correct this bias has been
suggested (Yang et al., 2002), and the result of this correction is shown in
Figure 2.3iii. Bias may also relate to position on the microarray. This will
not be apparent unless observations from different parts of the array are
selectively plotted. When this type of bias is present, it may require
centralization that is weighted based on array coordinates or block position.
This should not be attempted unless this source ofbias is clearly identifiable.
Depending on how the arrays were printed, and on other factors that affect
the composition of the array (e.g., DNA concentration, source, or purity),
spatial bias may take many different forms. Furthermore, if spatial bias is

58 Chapter 2

manifested as changes in spot intensity, then the two types of bias may be

entirely related, and spatial bias would be corrected based on the LOWESS
function.

5.4 Data Re-scaling

Due to technical variability, hybridizations may show differences in the
range or variance of response variables. This phenomenon is not corrected
by centralization (e.g., after centralization, M values from one hybridization
may range from -2 to +2, whereas another may have values ranging from —3
to +3). Ideally, the variance from different hybridizations should be equal to
facilitate comparisons among substances. Furthermore, if replicated
treatments are to be averaged, re-scaling ensures that each replicate
contributes equal information.

A simple method of re-scaling involves dividing a variable by its
variance, thus giving the data a standard variance of unity. Algorithms for
multivariate analysis (e.g., hierarchical clustering) may provide an option to
perform this transformation automatically at the time of analysis.
Unfortunately (or fortunately, depending on your viewpoint), the variance
within a hybridization is a result of two components: substances and error,
and it is only the error variance that should be standardized. Variance due to
substances may differ due to treatment effects, which should not be altered.
Conceivably, a variance adjustment could be made by dividing a variable by
the variance of control substances, similar to the way in which control
samples can be used in centralization (see Section 5.4). However, this might
be subject to the same uncertainties about whether controls are appropriate.
Furthermore, estimates of variance can be unreliable unless they are based
on a large set of observations.

Re-scaling is potentially the least necessary component of normalization,
and many researchers may choose to avoid the possibility that re-scaling
may have unintentional consequences. Consideration can be given to testing
whether variances differ prior to re-scaling (Snedecor and Cochran, 1989).

5.5 Alternative Approaches

The use of paired samples with data transformation is probably the most
common approach to the preparation of microarray data at the time of
writing. Tt is based on the assumption that biases can be removed separately
from each hybridization prior to assembling data from multiple
hybridizations for analysis. Notable alternatives to this approach involve
removing bias from the data after it has been assembled for analysis by using
an analysis of variance (ANOVA). The ANOVA is a technique whereby the

2. Data Pre-Processing Issues in Microarray Analysis 59

total variability (variance) in an experiment is partitioned into components
that can be attributed to treatments and to other recognized sources of
variability (e.g., developmental stages, sample dyes, or different batches of
arrays). After attributing variance to these factors, residual variance (that
which remains) is considered to be a measurement of error that can be used
to formulate statistical tests of significance among treatment means. Good
discussions of this approach are provided by Kerr and Churchill (2001a,b)
and Wolfinger et al. (2001). The models that these authors describe would
provide more direct comparisons of expression levels among different
treatments and would eliminate the need for including a control sample with
every hybridization. This would also reduce the need for further data
transformation because biases would be removed by fitting their sources as
terms in an ANOVA.

In choosing an appropriate approach, a general recommendation is to
consider different options and to store data in such a way that options are not
excluded. We believe that the ANOVA-based approaches being developed
have distinct advantages, particularly for testing specific hypotheses in a
planned experiment. Conversely, the approach of normalizing each
hybridization may be more conducive to building databases for retrospective
exploration. While an ANOVA or mixed model can account for virtually any
source of bias, some may find the approach of normalizing each
hybridization to be more intuitive, and more readily adaptable to complex
sources of bias. In general, an ANOVA can be applied to an experiment that
is designed with paired samples, but normalized ratios cannot be constructed
without the presence of a common control. Most existing software and
databases are oriented toward the paired-sample approach, but data can
easily be exported for alternate analysis using statistical analysis packages.
In situations where different methods can be applied, it may be useful to
determine if different methods give similar results”.

6. DATA INSPECTION

Data inspection is an important step that should be applied at many stages of
microarray analysis, but especially during and after transformation. Several
tests can be applied to ensure that transformation has been successful, and
that additional steps are not required. These inspection steps are aided by
software that provides interactive sorting, highlighting groups of substances,
and plotting data points in a variety of configurations. As an alternative to
commercial software, which some people find inflexible or expensive,

4Generally, it will be possible to develop an ANOVA that will give similar results to methods
where bias is removed through normalization. One technical difference is that pre-
normalization fails to account for degrees of freedom that are lost through this process.

60 Chapter 2

various free alternatives are available (e.g., Liao et al., 2000; Breitkreutz et
al., 2001). A further alternative is the use of a graphical statistics
environment such as “R” (lhaka and Gentleman, 1996; http://www.r-
project.org), which allows infinite variation in methods for data analysis and
inspection. These solutions may require a greater amount of training or
practice.

One of the data inspection steps that should be considered is the use of an
Mvs. A plot (Figure 2.3) in which individual substances can be interactively
highlighted within the complete distribution. The basic M vs. A plot allows
one to visualize whether the entire distribution of “M” values are centred
with a mean of zero, and that the mean is not influenced by intensity (“A”).
By highlighting control substances, one can determine if centralization has
caused their mean to differ from zero. It will also be clear whether controls
represent a range of intensities, thus, whether they can be used to provide
intensity-dependent corrections. By highlighting blocks of data from various
spatial regions of an array, one can determine whether spatial-dependent
centralization is required. For spotted microarrays, it is useful to know the
method and sequence by which the array was printed, as this can have more
influence than mere proximity on the slide. Some software applications
provide direct interaction between graphing tools and individual spots on a
microarray image. For example, one could highlight all spots within a certain
region of a microarray to see their positions on the M vs. A plot.

Another step that is useful when multiple replicates have been performed
is the use of scatter plots and correlation analysis. A scatter plot of variables
(e.g., M or A) from one replicate vs. those from another is an informative
visual aid that can quickly show whether replications are consistent. This is
also an easy verification of whether the ratio of treatment to control has been
constructed in the same direction for both arrays (a negative correlation is a
good indication that one ratio is inverted). Direct interaction between the
scatter plot and the microarray image can be useful to determine whether
specific substances or specific parts of the array are contributing to greater or
lesser agreement between the arrays. The Pearson correlation coefficient (r)
between two hybridizations provides a simple quantification of this
agreement. This is also a useful statistic to gauge the success of different
transformation methods. The correlation coefficient is not affected by global
centralization or global re-scaling, but it might be useful to validate whether
improvements have been made based on local centralization or
transformation to normality. A matrix of correlation coefficients can be used
to compare more than two replicated arrays, and is useful to gauge the
results of different types of replication.

2. Data Pre-Processing Issues in Microarray Analysis 61

7. DATA FILTERING

Data filtering is a term that can take many different meanings. Indeed, like
data inspection, it is a concept that can be applied at any stage of pre-
processing. Our reason for discussing this topic at the end of this chapter is
that there is a general danger of “losing data” before one is certain that it is
not useful. Hence, while suspect observations are flagged during image
analysis, and annotations about the substances and experimental conditions
are stored, all (or most) data are kept intact within a primary database. Thus,
filtering can refer to any step that is required to prepare a generic data set for
a specific type of analysis.

The concept of filtering can be visualized as taking a large matrix of data
(possibly an entire database) and making a smaller matrix. The large matrix
contains hybridizations (usually arranged as columns) and substances
(usually arranged as rows), and possibly many different types of
observations from each hybridization (also arranged as columns). The
smaller, filtered matrix probably consists of only one type of observation
(e.g., M, a normalized log ratio of medians), a subset of substances, and a
subset of the hybridizations.

Filtering involves three general concepts: selection, averaging, and
estimation. Examples of each are given in the following paragraphs. It is
important to consider that filtering may be a recursive process, and that
different types of filtering are appropriate for different types of analysis.
Minimal filtering would be required to prepare data for a statistical analysis
designed to estimate error and determine significance thresholds. This might
be followed by more intense filtering designed to produce reduced data sets
that are appropriate for some of the more advanced functional or classifying
analyses discussed in later chapters.

Selection is functionally synonymous to elimination, and can be based on
substances, hybridizations, or individual observations. Selection of
hybridizations would involve choosing those that provide information on
specific conditions (e.g., those based on samples collected less than 50 hours
after exposure to a pathogen). One might also eliminate entire hybridizations
that failed to meet some aspect of quality control. Substances might be
selected on the basis of pre-defined subsets or prior annotations (e.g.,
selecting only the controls, or only those that are known to be transcription
factors). Substances can also be selected or eliminated based on observed
data. For example, one might eliminate all substances that did not show a
change in expression within any hybridization. This might be done based on
a rule of thumb (e.g., ratio must be greater than 2 or less than 0.5) or after
one had conducted an ANOVA on the complete data set to establish a
significance threshold. This type of filtering might be used to prepare data
for hierarchical clustering, where unchanging substances would be

62 Chapter 2

considered uninteresting. Finally the elimination of specific observations
based on some measurement of quality (such as those flagged at the image
analysis stage) would be considered.

Averaging is used to combine observations from replicated
hybridizations (columns) or replicated substances (rows). Some software
packages will automatically average all replicated substances, so this step
may not be required. Replicated hybridizations should only be averaged if
required by the analysis; otherwise, replications should be left un-averaged
so that they can be used in the estimation of error.

Estimation of missing values can be considered as a final filtering step
that may be required when individual observations have been eliminated,
and when empty cells remain after averaging. Depending on the extent of
missing values, one may consider another round of selection to remove those
rows or columns that contain large proportions of missing values. Or, one
may chose to replace missing values with “neutral” averages that are
constructed by averaging entire rows and/or columns. Some software
packages do this automatically, but this can lead to artificial results if
missing values are numerous. Appropriate methods for dealing with missing
values are discussed in the next chapter.

Since more than one type of filtering may be required for several types of
analysis, and since data analysis may be done at various stages of data
collection, it is useful to implement filtering as a set of “rules” that can be
saved, modified, and re-applied to the data as needed. Ease of data filtering
is one of the advantages of storing data in a relational database, where such
rules can be saved as “queries” or “stored procedures”. A further advantage
of using a database is that filtering may depend on several types of
information that may be stored in different tables (e.g., gene categories in
one table, experimental conditions in another). Most relational databases, or
microarray software packages that are associated with a database, will
provide some type of “query wizard” that can assist the user in defining a
query to filter the data. In the absence of a database, filtering will probably
be done in spreadsheets, using various manipulations such as copying
formulas, sorting, cutting, pasting, inserting, and deleting,.

8. CONCLUSIONS

Defined broadly, pre-processing involves many potential steps that are
essential for successful microarray experimentation. The need for some steps
(e.g., experimental design, image analysis) is unquestionable. Other steps are
less dogmatic. Data transformation, inspection, and filtering should occur
based on individual analytical goals and data management systems. These
steps may take on new meaning as different techniques for analysis become

2. Data Pre-Processing Issues in Microarray Analysis 63

widely accepted. A complete and perfect recipe for pre-processing and
analyzing microarray experiments does not exist. Therefore, each
experimenter must develop systems and procedures that are both appropriate
and correct. We hope that the concepts introduced in this chapter will help
the reader to better understand the detailed presentations found in later
chapters.

9. REFERENCES

Allain L.R., Askari M., Stokes D.L., Vo-Dinh T. (2001). Microarray sampling-platform
fabrication using bubble-jet technology for a biochip system. Fresenius J Anal Chem
371:146-50.

Becker K.G. (2001). The sharing of cDNA microarray data. Nat Rev Neurosci 2:438-40.

Bozinov D., Rahnenfuhrer J. (2002). Unsupervised technique for robust target separation and
analysis of DNA microarray spots through adaptive pixel clustering. Bioinformatics
18:747-56.

Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach I.,
Ansorge W., Ball CA., Causton H.C.,, Gaasterland T., Glenisson P., Holstege F.C., Kim
LF., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer
S., Stewart J., Taylor R., Vilo J., Vingron M. (2001). Minimum information about a
microarray experiment (MIAME)-toward standards for microarray data. Nat Genet
29:365-71.

Breitkreutz B.J. (2001). Jorgensen P., Breitkreutz A., Tyers M. AFM 4.0: a toolbox for DNA
microarray analysis. Genome Biol 2:Software0001.1-0001.3.

Comander J., Weber G.M., Gimbrone M.A. Jr, Garcia-Cardena G. (2001). Argus —a new

database system for Web-based analysis of multiple microarray data sets. Genome Res
11:1603-10.

Dolan P.L., Wu Y., Ista L.K., Metzenberg R.L., Nelson M. A, Lopez G.P. (2001). Robust and
efficient synthetic method for forming DNA microarrays. Nucleic Acids Res 29:E107-7.
Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2002). Statistical methods for identifying
genes with differential expression in replicated cDNA microarray experiments. Statistica
Sinica 12:111-139.

Fellenberg K., Hauser N.C., Brors B., Hoheisel 1.D., Vingron M. (2002). Microarray data
warehouse allowing for inclusion of experiment annotations in statistical analysis.
Bioinformatics 18:423-33.

Hoyle D.C., Rattray M., Jupp R., Brass A. (2002). Making sense of microarray data
distributions. Bioinformatics 18:576-84.

Thaka R., Gentleman R. (1996). R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5:299-314.

Jain AN., Tokuyasu T.A., Snijders AM., Segraves R., Albertson D.G., Pinkel D. (2002).
Fully automatic quantification of microarray image data. Genome Res 12:325-32.

Kellam P. (2001). Microarray gene expression database: progress towards an international
repository of gene expression data. Genome Biol 2:Reports 4011.

Kerr M.K,, Churchill G.A. (2001a). Statistical design and the analysis of gene expression
microarray data. Genet Res 77:123-8.

64 Chapter 2

Kerr MK., Churchill G.A. (2001b). Experimental design for gene expression microarrays.
Biostatistics 2:183-201.

Kim JH.,, Kim H.Y., Lee Y.S. (2001). A novel method using edge detection for signal
extraction from cDNA microarray image analysis Exp Mol Med 33:83-8.

Lee M.L., Kuo F.C., Whitmore G.A., Sklar J. (2000). Importance of replication in microarray
gene expression studies: statistical methods and evidence from repetitive cDNA
hybridizations. Proc Natl Acad Sci 97:9834-9.

Liao B., Hale W., Epstein C.B., Butow R.A., Garner H.R. (2000). MAD: a suite of tools for
microarray data management and processing. Bioinformatics 16:946-7.

Nadon R. (2002). Shoemaker J. Statistical issues with microarrays: processing and analysis.
Trends Genet 18:265-71.

Rockett J.C., Christopher Luft J., Brian Garges J., Krawetz S.A., Hughes M.R., Hee Kirn K.,
Oudes A.J., Dix D.J.(2001). Development of a 950-gene DNA array for examining gene
expression patterns in mouse testis. Genome Biol 2:Research0014.1-0014.9.

Sherlock G., Hernandez-Boussard T., Kasarskis A., Binkley G., Matese J.C., Dwight S.S.,
Kaloper M., Weng S., Jin H., Ball C.A., Eisen M.B., Spellman P.T., Brown P.O., Botstein
D., Cherry J.M. (2001). The Stanford Microarray Database. Nucleic Acids Res 29:152-5.

Snedecor G.W., Cochran W.G. (1989). Statistical Methods. 8th edition. Iowa State University
Press, Ames. 503 pp.

Tran P.H., Peiffer D.A., Shin Y., Meek L.M., Brody I.P., Cho K.W. (2002). Microarray
optimizations: increasing spot accuracy and automated identification of true microarray
signals. Nucleic Acids Res 30:e54.

Tseng G.C., Oh M.K,, Rohlin L., Liao J.C., Wong W.H. (2001). Issues in cDNA microarray
analysis: quality filtering, channel normalization, models of variations and assessment of
gene effects. Nucleic Acids Res 29:2549-57.

Wolfinger R.D., Gibson G., Wolfinger E.D., Bennett L., Hamadeh H., Bushel P., Afshari C,,
Paules R.S. (2001). Assessing gene significance from cDNA microarray expression data
via mixed models. J] Comput Biol 8:625-37.

Yang Y.H., Dudoit S., Luu P., Lin D.M,, Peng V., Ngai J., Speed T.P. (2002). Normalization
for cDNA microarray data: a robust composite method addressing single and multiple
slide systematic variation. Nucleic Acids Res 30:elS5.

Chapter 3

MISSING VALUE ESTIMATION'

Olga G. Troyanskaya, David Botstein, Russ B. Altman

Department of Genetics. Stanford University School of Medicine, Stanford, CA, 94305 USA,
e-mail: olgat@smi.stanford.edu, botstein@ genome.stanford.edu, russ.altman@stanford.edu

1. INTRODUCTION

Gene expression microarray data are usually in the form of large matrices of
expression levels of genes (rows) under different experimental conditions
(columns), frequently with some values missing. Missing values have a
variety of causes, including image corruption, insufficient resolution, or
simply dust or scratches on the slide. Missing data may also occur
systematically as a result of the robotic methods used to create the arrays.
Our informal analysis of the distribution of missing data in real data sets
shows a combination of all of these reasons, with none dominating.
Experimentalists usually manually flag such suspicious data points and
exclude them from subsequent analysis. However, many analysis methods,
such as principal components analysis or singular value decomposition,
require complete matrices to function (Alter et al., 2000, Raychaudhuri et al.,
2000).

Of course, one solution to missing data problem is to repeat the
experiment, but this strategy can be expensive. Such approach has been used
in the validation of microarray analysis algorithms (Butte et al., 2001).
Alternatively, as most often done in day-to-day practice, missing log,
transformed data are replaced by zeros or, less often, by an average
expression over the row, or “row average”. This approach is not optimal,
since these methods do not take into consideration the correlation structure
of the data. Many analysis techniques that require complete data matrices, as
well as other analysis methods such as hierarchical clustering, k-means

! Parts of the work presented in this chapter were originally published in Bioinformatics
(Troyanskaya et al., 2001).

66 Chapter 3

clustering, and self-organizing maps, may benefit from using more
accurately estimated missing values.

The missing value problem is well addressed in statistics in the contexts
of non-response issues in sample surveys and missing data in experiments
(Little and Rubin 1987). Common methods include iterative analysis of
variance methods, filling in least squares estimates (Yates 1933),
randomized inference methods, and likelihood-based approaches (Wilkinson
1958). An algorithm similar to nearest neighbors was used to deal with
missing values in CART-like algorithms (Loh and Vanichsetakul 1988). The
most commonly applied statistical techniques for dealing with missing data
are model-based approaches, and there is not a large published literature
concerning missing value estimation for microarray data.

To address the problem of missing value estimation in the context of
microarray data, we introduce KNNimpute, a missing value estimation
method we developed to minimize data modeling assumptions and take
advantage of the correlation structure of the gene expression data. The work
that introduced KNNimpute as well as another method SVDimpute
(Troyanskaya et al., 2001) was the first published comprehensive evaluation
of the issue of missing value estimation specifically as applied to microarray
data. Since then, a few other works have at least in part addressed this issue
(e.g., Bar-Joseph et al., 2002). Many statistical packages for microarray
analysis also have routines for missing value estimation. An important issue
in choosing the method to use for estimation is evaluation of the method's
performance on microarray data. In this context, issues such as data sets used
in evaluation (data type, data size, diversity of data sets, etc.) and quality of
the evaluation metric are important,

This chapter will focus on KNNimpute. We suggest specific guidelines
for the use of KNNimpute software and recommend specific parameter
choices. This chapter also presents results of comparative evaluation of
KNNimpute with a singular value decomposition (SVD) based method
(SVDimpute), the method of replacing missing values with zeros, and a row
average method.

2. ALGORITHMS

2.1 KNNimpute Algorithm

The KNN-based method takes advantage of the correlation structure in
microarray data by using genes with expression profiles similar to the gene
of interest to impute missing values. Let us consider gene i that has one
missing value in experiment j. Then this method would estimate the value
(i, j) with a weighted average of values in experiment j of K other genes that

3. Missing Value Estimation 67

have a value present in experiment i and expression most similar to j in all
experiments other than i. In the weighted average, the contribution of each
gene is weighted by similarity of its expression to that of gene A. The exact
neighborhood of K neighbors used for estimation in KNNimpute is
recalculated for each missing value for each gene to minimize error and
memory usage.

We examined a number of metrics for gene similarity (Pearson
correlation, Euclidean distance, variance minimization) and Euclidean
distance appeared to be a sufficiently accurate norm (data not shown). This
finding is somewhat surprising, given that the Euclidean distance measure is
often sensitive to outliers, which could be present in microarray data.
However, we found that log-transforming the data seems to sufficiently
reduce the effect of outliers on gene similarity determination.

2.2 SVDimpute Algorithm’

In this algorithm, we use singular value decomposition (3.1) to obtain a set
of mutually orthogonal expression patterns that can be linearly combined to
approximate the expression of all genes in the data set. Following previous
work (Alter et al., 2000), we refer to these patterns, which in this case are
identical to the principal components of the gene expression matrix, as
eigengenes (Alter et al., 2000, Anderson 1984, Golub and Van Loan 1996).
Amxn = Umxmzmxn annT (3'1)
The matrix V7 contains eigengenes, and their contribution to the
expression in the eigenspace is quantified by the corresponding eigenvalues
on the diagonal of matrix X. We can then identify the most significant
eigengenes by sorting the eigengenes based on their corresponding
eigenvalue. It has been shown by (Alter et al., 2000) that several significant
eigengenes are sufficient to describe most of the expression data, but the
exact number (k) of most significant eigengenes best for estimation needs to
be determined empirically by evaluating performance of SVDimpute
algorithm while varying k¥’. We can then estimate a missing valuej in gene i
by first regressing this gene against the k most significant eigengenes and
then use the coefficients of the regression to reconstruct j from a linear
combination of the & eigengenes. The jth value of gene i and the j"’ values of
the k eigengenes are not used in determining these regression coefficients.
SVD can only be performed on complete matrices; thus we originally
substitute row average for all missing values in matrix A, obtaining A'.

* For more on singular value decomposition, see Chapter 5.
® Details of these experiments are presented in (Troyanskaya et al., 2001)

68 Chapter 3

We then utilize an expectation maximization (EM) method to arrive at the
final estimate. In the EM process, each missing value in A'is estimated
using the above-described algorithm, and then the procedure is repeated on
the newly obtained matrix, until the total change (sum of differences
between individual values of A and A') in the matrix falls below the
empirically determined threshold of 0.01.

3. EVALUATION

3.1 Evaluation Method

Evaluation was performed on three microarray data sets (DeRisi et al., 1997;
Gasch et al., 2000; Spellman et al., 1998). Two of the data sets were time-
series data (DeRisi et al., 1997, Spellman et al., 1998), and one contained a
non-time series subset of experiments from Gasch et al. (2000). One of the
time-series data sets contained less apparent noise (Botstein, personal
communication) than the other. We further refer to those data sets by their
characteristics: time Series, noisy time series, and non-time series.

We removed any rows and columns containing missing expression values
from each of the data sets, yielding “complete” matrices. Then, between 1%
and 20% of the data were deleted at random to create test data sets, and each
method was used to recover the introduced missing values for each data set.
To assess the accuracy of estimation, the estimated values were compared to
those in the original data set using the root mean squared (RMS) difference
metric. This metric is consistent across data sets because the average data
value in data sets is the same after centering. This experimental design
allowed us to assess the accuracy of each method under different conditions
(type of data, fraction of data missing) and determine the optimal parameters
(number of nearest neighbors or eigengenes used for estimation) for
KNNimpute and SVDimpute.

3.2 Evaluation Results

3.2.1 KNNimpute

KNNimpute is very accurate, with the estimated values showing only 6-26%
average deviation from the true values, depending on the type of data and
fraction of values missing (Figure 3.1). In terms of errors for individual
values, approximately 88% of the data points are estimated with RMS error
under 0.25 with KNN-based estimation for a noisy time series data set with
10% entries missing (Figure 3.2). Under low apparent noise levels in time
series data, as many as 94% of the values are estimated within 0.25 of the

3. Missing Value Estimation 69

original value. Notably, this method is successful in accurate estimation of
missing values for genes that are expressed in small clusters (groups of co-
expressed genes), while other methods, such as row average and SVD, are
likely to be more inaccurate on such clusters because the clusters themselves
do not contribute significantly to the global parameters (such as top
eigenvalues) upon which these methods rely.

The algorithm is robust to increasing the percentage of values missing,
with a maximum of 10% decrease in accuracy with 20% of the data missing
(Figure 3.1). However, a smaller percentage of missing data does make
imputation more precise (Figure 3.1). We assessed the variance in RMS
error over repeated estimations for the same file with the same percent of
missing values removed. We performed 60 additional runs of missing value
removal and subsequent estimation using one of the time series data sets. At
5% values missing and K = 123, the average RMS error was 0.203, with
variance of 0.001. Thus, our results appear reproducible.

KNNimpute is relatively insensitive to the exact value of K within the
range of 10 to 20 neighbors (Figure 3.1). When a lower number of neighbors
is used for estimation, performance declines primarily due to overemphasis
of a few dominant expression patterns. When the same gene is present more
than once on the arrays, the method appropriately gives a very strong weight
to other clones for that gene in the estimation (assuming that the multiple
clones exhibit similar expression patterns). The deterioration in performance
at larger values of K (above 20) may be due to noise present in microarray
data outweighing the signal in a “neighborhood” that has become too large
and not sufficiently relevant to the estimation problem.

Thus, the optimal value for K likely depends on the average cluster size
for the given data set.

70 Chapter 3

0.22 ‘
—o— 1% entries
i missing
5 02 —8— 5% entries
= missing
@ 0184 .
172) —&— 10% cntries
E 0.18 missing
0.17 ! —N—ISA% gnlne.s
missing
e ' " —%—20% entries
% % O & P F g P missing

Number of genes used as
neighbors

Figure 3.1, Effect of number of nearest neighbors (K) parameter on KNN-based estimation
(on noisy time series data)., Different curves correspond to experiments performed for data
sets with different percent of entries missing.

16000 - ; S ——
14000

12000

10000

6000

4000

Count of errors in range

——t

(1] a.5 1 1.5
RMS error range

Figure 3.2, Distribution of individual errors for KNN-based estimation (on a noisy time-series
data set). The histogram displays individual errors from estimation with K=15 at 10% of data
missing. Most of the RMS errors are under 0.25,

Microarray data sets typically involve a large number of experiments, but
sometimes researchers need to analyzedata sets with small numbers of
arrays. KNNimpute is robust to the number of experiments in the data set

3. Missing Value Estimation 71

and can accurately estimate data for matrices with as low as six columns
(Figure 3.3). However, we do not recommend using this method on matrices
with less than four columns.

Figure 3.3. Effect of
reduction of number of
arrays in the data set on

Ml KNN- and SVD-based

0.35 . . .
o)) estimation (on a time
| series data set).
Estimation was

performed on matrices
with successively lower
number of columns, The
SVD algorithm could not
be applied to matrices
Number of arrays in data set with less than 8 columns
due to mathematical
constraints of the
algorithm.

RMS error

322 SVDimpute and Row Average

SVD-based estimation provides considerably higher accuracy than row
average on all data sets (Figure 3.4), but SVDimpute yields best results on
time-series data with a low noise level, most likely reflecting the signal-
processing nature of the SVD-based method'. In addition, the performance
of SVDimpute is very sensitive to the exact choice of parameters (number of
top eigengenes) used for estimation and deteriorates sharply as the parameter
is varied from the optimal value (which is unknown for a non-synthetic data
set)*.

Estimation by row (gene) average performs better than replacing missing
values with zeros, but yields drastically lower accuracy than either KNN- or
SVD- based estimation (Figure 3.4). As expected, the method performs most
poorly on non-time series data (RMS error of 40 and more), but error on
other data sets is also drastically higher than both of the other methods. This
is not surprising because row averaging assumes that the expression of a
gene in one of the experiments is similar to its expression in a different
experiment, which is often not true in microarray experiments. In contrast to
SVD and KNN, row average does not take advantage of the rich information
provided by the expression patterns of other genes (or even duplicate runs of
the same gene) in the data set. An in-depth study was not performed on
column average, but some experiments were performed with this method,
and it does not yield satisfactory performance (results not shown).

* Detailed results presented in (Troyanskaya et al., 2001)

72 Chapter 3

025] - o V) A e

0241 7 . " —Tr == row average
023 | Qumem . = o T

L —&—SVDimpute

E

(T

g =aofr=KNNimpute

== filled with
0'15 |] Zeros
1] 5 10 15 20

Percent of entries missing

Figure 3.4. Performance of KNN, SVD, and row average based estimations on a noisy time
series data set. The same data set with identical entries missing was used to assess the
accuracy of each method, and RMS error was plotted as a function of fraction of values
missing in the data. Most accurate parameter choices (as determined in the above-described
experiments) were used for both KNNimpute and SVDimpute.

4. PRACTICAL GUIDELINES FOR USE OF
KNNimpute SOFTWARE

4.1 Software Description

KNNimpute® software is a C++ program that can be used on any UNIX- or
LINUX-based platform. The program requires a C++ compiler (preferably
gcc), and can be used on a Windows platform with a UNIX emulator, for
example Cygwin®. Detailed instructions for installation and use of the
KNNimpute software are supplied with the download.

4.2 Recommendations for Software Use

KNNimpute software requires data input in a tab-delimited text file
formatted in preclustering data format (pcl), described at http:/genome-
www35.stanford.edu/MicroArray/help/formats,shtml#pcl. It is essential to
follow the format specifications exactly. To minimize the effect of outliers, it
is important to log-transform the data set prior to imputation (a different
transformation or other data processing steps may be equally appropriate).

’ KNNimpute can be downloaded at http://smi-web.stanford.edu/projects/helix/pubs/impute/
6 http://www.cygwin.com/

3. Missing Value Estimation 73

The only parameter the user can vary is K, the number of nearest neighbors
used in estimation. We recommend setting K in the range of 10-20, with
lower K preferable for very large data sets to minimize the amount of time
required for estimation. For smaller data size, any K between 10 and 20 is
appropriate. We do not recommend the use of KNNimpute with very small
(as compared to the number of genes in the genome) data sets, where the
method may not be able to identify groups of similarly expressed genes for
accurate estimation. However, small data sets that consist of tight clusters of
functionally similar genes may be appropriate for estimation. The method
should not be used on data sets containing fewer than four experiments.

While KNNimpute provides robust and accurate estimation of missing
expression values, the method requires a sufficient percent of data to be
present for each gene to identify similarly expressed genes for imputation.
Therefore, we recommend exclusion from the data set any genes or arrays
with a very large fraction of missing values (for example, genes or arrays
with more than 25% of values missing).

4.3 Performance of KNNimpute

For a data set with m genes and n experiments and number of nearest
neighbors set to &, the computational complexity of the KNNimpute method
is approximately O(m*n), assuming m 3> k and fewer than 20% of the values
missing. Thus, if the size of the dataset doubles in the number of genes, the
algorithm will take approximately four times as long to run, while the same
increase in the number of experiments would lead to doubling of the original
running time. The KNNimpute software (implemented in C++) takes 3.23
minutes on a Pentium I1T 500 MHz computer to estimate missing values for a
data set with 6,153 genes and 14 experiments, with 10% of the entries
missing. However, for very large data sets (more than 20,000 genes) the
program may need to run overnight or even longer, depending on the
performance characteristics of the specific computer system used.

S. CONCLUSIONS

KNNimpute is a fast, robust, and accurate method of estimating missing
values for microarray data. Both KNNimpute and SVDimpute methods far
surpass the currently accepted solutions (filling missing values with zeros or
row average) by taking advantage of the structure of microarray data to
estimate missing expression values.

We recommend KNNimpute over SVDimpute method for several
reasons. First, the KNNimpute method is more robust than SVD to the type
of data for which estimation is performed, performing better on non-time

74 Chapter 3

series or noisy data. Second, while both KNN and SVD methods are robust
to increasing the fraction of missing data, KNN-based imputation shows less
deterioration in performance with increasing percent of missing entries. And
third, KNNimpute is less sensitive to the exact parameters used (number of
nearest neighbors), whereas the SVD-based method shows sharp
deterioration in performance when a non-optimal fraction of missing values
is used. In addition, KNNimpute has the advantage of providing accurate
estimation for missing values in genes that belong to small tight expression
clusters. Such genes may not be similar to any of the eigengenes used for
regression in SVDimpute, and their missing values could thus be estimated
poorly by SVD-based estimation.

KNNimpute is a robust and sensitive approach to estimating missing data
for gene expression microarrays. However, scientists should exercise caution
when drawing critical biological conclusions from partially imputed data.
The goal of this and other estimation methods is to provide an accurate way
of estimating missing data points in order to minimize the bias introduced in
the performance of microarray analysis methods. Estimated data should be
flagged where possible, and their impact on the discovery of biological
results should be assessed in order to avoid drawing unwarranted
conclusions.

REFERENCES

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C,, Lossos LS., Rosenwald A., Boldrick J.C,
Sabet H., Tran T., Yu X., Powell J.I, Yang L., Marti G.E., Moore T., Hudson J., Jr., Lu L.
Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D.,
Armitage J.O., Warnke R., Staudt L.M. et al. (2000). Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature 403: 503-11.

Alter O.,, Brown P.O., Botstein D. (2000). Singular value decomposition for genome-wide
expression data processing and modeling. Proc Natl Acad Sci USA 97: 10101-6.

Anderson T.W. (1984). An introduction to multivariate statistical analysis. Wiley, New York.

Bar-Joseph Z., Gerber G., Gifford DK., Jaakkola T.S., Simon L (2002). A new approach to
analyzing gene expression time series data. Proceedings of the Sixth Annual International
Conference on Computational Biology (RECOMB), Washingon DC, USA, ACM Press.

Brown M.P., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., Ares M., Ir.,
Haussler D. (2000). Knowledge-based analysis of microarray gene expression data by
using support vector machines. Proc Natl Acad Sci USA 97: 262-7.

Butte AJ., Ye I. et al. (2001). “Determining Significant Fold Differences in Gene Expression
Analysis.” Pacific Symposium on Biocomputing 6: 6-17.

Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz 1. (1998)
The transcriptional program of sporulation in budding yeast. Science 282: 699-705.

DeRisi J.L., Iyer V.R., Brown P.O. (1997). Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science 278: 680-6.

3. Missing Value Estimation 75

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad of Sci USA 95: 14863-8.

Gasch, A. P.,, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D.
Botstein, and P. O. Brown. 2000. Genomic expression programs in the response of yeast
cells to environmental changes. Mol. Biol. Cell, in press.

Golub G.H., Van Loan CF. (1996). Matrix computations. Johns Hopkins University Press,
Baltimore.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286: 531-7.

Hastie T., Tibshirani R., Eisen M., Alizadeh A., Levy R., Staudt L., Chan W.C., Botstein D.,
Brown P. (2000). “Gene shaving” as a method for identifying distinct sets of genes with
similar expression patterns. Genome Biol 1: research0003.1-research0003.21.

Heyer L.J., Kruglyak S., Yooseph S. (1999). Exploring expression data: identification and
analysis of coexpressed genes. Genome Res 9: 1106-15.

Little R.J.A., Rubin D.B. (1987). Statistical analysis with missing data. Wiley, New York.

Loh W., Vanichsetakul N. (1988). Tree-Structured Classification via generalized discriminant
analysis. Journal of the American Statistical Association 83: 715-725.

Perou C.M., Sorlie T., Eisen M.B., van de Rijn M., Jeffrey S.S, Rees C.A., Pollack J.R., Ross
D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X.,
Lonning P.E., Borresen-Dale A.L., Brown P.O., Botstein D. (2000). Molecular portraits of
human breast tumours. Nature 406: 747-52.

Raychaudhuri S., Stuart J.M., Altman R.B. (2000). Principal components analysis to
summarize microarray experiments: application to sporulation time series, Pacific
Symposium on Biocomputing : 455-66.

Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B., Brown P.O.,
Botstein D., Futcher B. (1998). Comprehensive identification of cell cycle-regulated genes
of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of
the Cell 9: 327397.

Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E.S.,
Golub T.R. (1999). Interpreting patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:
2907-12.

Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D.,
Altman R.B. (2001), Missing Value Estimation methods for DNA microarrays.
Bioinformatics 17(6):520-5.

Wilkinson G.N. (1958). Estimation of missing values for the analysis of incomplete data.
Biometrics 14: 257-286.

Yates Y, (1933). The analysis of replicated experiments when the field results are incomplete.
Emp. J. Exp. Agric. 1: 129-142.

Chapter 4
NORMALIZATION

Concepts and Methods for Normalizing Microarray Data

Norman Morrison and David C. Hoyle.

University of Manchester, Department of Computer Science, Kilburn Building, Oxford Road,
Manchester M13 9PL. UK.
e-mail: morrison@cs.man.ac.uk , david.c.hoyle@man.ac.uk

1. INTRODUCTION

Microarray technology offers the ability to capture transcriptional
information for thousands of genes at once. Furthermore, for an increasing
number of organisms it is possible to monitor the activity of their entire
transcriptome.

Due to the natural biological variability and the numerous procedures
involved in a typical microarray experiment, microarray data is inherently
noisy and high dimensional. Therefore, it is desirable to carry out the
analysis of such data within a statistical framework. This chapter is
concerned with statistical techniques for normalization of microarray data —
techniques which aim to allow the user to extract as much of the biological
signal from a microarray experiment as possible. The normalized data often
acts as input into further stages of analysis — so as clean a signal as possible
is obviously desirable. Alternatively, the normalized data may be used for
comparison with normalized data from another microarray experiment — in
which case removal of signal from possibly confounding non-biological
sources is important.

Our treatment here will, given the limited space, not be exhaustive.
Rather, we attempt to give a feel for some of the current major themes within
normalization, to point the reader towards the relevant research literature and
guide them to the appropriate normalization algorithms.

4. Normalization 77

1.1 Why Normalization?

Microarray experiments are complicated tasks involving a number of stages,
most of which have the potential to introduce error. These errors can mask
the biological signal we are interested in studying. A component of this error
may be systematic, i.e. bias is present, and it is this component that we
attempt to remove in order to gain as much insight as possible into the
underlying biology in a microarray experiment. This can be achieved by
using a number of well-established statistical techniques and is the aim of
normalization.

Considering some of the stages of the experimental process a few
potential sources of systematic error include:

® Sample preparation — the processes of mRNA extraction, reverse
transcription, cDNA amplification and labeling efficiencies can all
dramatically affect the sample.

o Variability in hybridization — conditions such as temperature,
hybridization buffers, batch effects, uneven hybridization and DNA
quantity on the microarrays can all introduce systematic error.

® Spatial effects — pin geometry and print tip problems can play a
significant role in spotted microarrays.

® Scanner settings — parameters are subject to change from hybridization
to hybridization and can introduce bias.

s Experimenter Bias - hybridizations carried out by the same
experimenter often cluster together. Indeed experimenter bias has been
reported as one of the largest sources of systematic variation (Ball 2002).

Since systematic error can occur at numerous stages within the
experimental process it is important to define more precisely where in the
analysis process normalization lies, and what we consider the starting form
of the data to be.

1.2 What Normalization Is and What It Isn’t

The boundary between pre-processing and normalization of raw data is not
always clear-cut. Indeed, the definition of what is raw data can be quite
different between one practitioner and the next and is often a topic that
sparks heated debate. Some consider the only true source of raw data to be
the image file generated by the scanning software. To that end, there are an
increasing number of methods available for image processing and data
acquisition (Chen et al., 1997; Schadt et al., 2001; Yang et al., 2001a). These
methods can produce large tables of data per array, containing a number of
columns of information such as: Spot intensity, localized background

78 Chapter 4

intensities, standard deviations, error estimates, etc. For example the output
from GenePix scanning software (Axon Instruments Inc 2002) can contain
over 40 columns of data for a single array. Some regard the calculation of
these quantities as forming part of the normalization procedure. However,
for the purposes of this chapter we consider normalization to be the
treatment of data that has gone through some form of feature extraction
process from an array image in order to compute a background subtracted
intensity value for each feature. We will present an overview of
normalization methods that deal with the treatment of such ‘pre-processed’
data. Figure 4.1 shows a schematic representation of where we regard
‘normalization’ to fall within the microarray experiment process.

The aim of normalization is, as we have already said, to remove as much
of the systematic error as possible. It is not a panacea for poor data. Errors in
microarray data consist of both systematic errors, i.e. bias, and random errors
that are the result of uncontrollable variation. Although we can attempt to
account for the systematic error, no amount of post-processing of the data
will be able to remove random errors, which may be large as a result of poor
experimentation.

Sample Preparation

\ Scanning +

Hybridization = Image Normalization |-

/ Analysis

Array Fabrication

Data
Analysis

Figure 4.1. Typically, normalization takes place after image analysis and prior to further
manipulation of the data.

2. NORMALIZATION METHODS

In this section we will illustrate a selection of the more popular
normalization methods. We will discuss methods that can be applied to both
oligo- and spotted- array data. To that end we have chosen to use the human
acute leukemia Affymetrix data set of Golub et al. (1999), a spotted array
chosen from the S. cerevisiae data set of Gasch et al. (2000), and dye-swap
hybridization data from S. cerevisiae subjected to heat-shock that has been
supplied to us by Dr. Abdulla Bashein.

4. Normalization 79

Early approaches to normalization of microarray data have used House-
keeping genes (Heller et al., 1997), i.e. genes whose expression level are
expected to be approximately constant between different physiologies. This
approach follows that widely used in Northern blots (Goldsworthy et al.,
1993), where measurements are normalized to the level of genes such as
Actin or GAPDH. However, it is known that the expression level of so-
called house-keeping genes, such as Actin, can in fact vary significantly
between different physiologies (Delbruck and Ernst 1993; Goldsworthy et
al.,, 1993). Normalization using only one or two genes performs poorly and
using a larger set of genes for normalization is more appropriate. This
illustrates that the choice of normalization method is intricately linked to the
chosen set of genes used to perform the normalization. Whilst larger subsets
of genes can be chosen for normalization that perform better than the use of
a few house-keeping genes, e.g. rank invariant sets (Schadt et al., 2001),
spiked in controls (Hill et al., 2001), we will concentrate here on
normalization methods that use all or the vast majority of spot values to
perform the normalization.

Most practitioners work with log-transformed data (Kerr et al., 2000;
Quackenbush, 2001; Yang et al., 2002). One reason for this is that the spread
of values from up- and down-regulated genes is more symmetrical
(Quackenbush, 2001). We use natural logarithms although logarithms of any
base are proportional and any base will give identical results. Throughout
this section we will use x to denote the logarithm of un-normalized spot
intensities or ratios, and y to denote to the logarithm of normalized spot
intensities or ratios. For two-fluor spotted arrays we will also use R (red) and

G (green) to denote the background corrected spot intensities from the two
fluors.

2.1 Total Intensity Methods

The simplest normalization method corresponds to adding a constant to all
the x values, i.e. a simple linear transformation,

y=x+b (4.1)

Such a transformation is often termed a global normalization method
since it is applied globally, i.e. each x value is transformed in the same way,
independent of log intensity. The constant b allows us to adjust the mean, ¥,
of the normalized data. We choose to set the mean of the normalized data
from each chip to the same value. Commonly the constant b is set to —X , so
that y =0. The transformation in Equation 4.1 has a very intuitive origin.
When dealing with comparable samples of extracted mRNA adjusting the
mean of the log-transformed data allows us to correct for different image

80 Chapter 4

scanning settings and total amounts of hybridized mRNA, which have a
multiplicative effect on the spot intensity values and therefore an additive
effect on the log- transformed values (Chen et al., 1997).

Setting the mean of the normalized data to O is equivalent to centering the
distribution of the normalized data over 0. Therefore, we tend to call this
method mean centering. Sometimes the sample mean can provide an
inaccurate estimate of the true center of a distribution due to the presence of
large outliers in the sample data, In such cases a more robust estimate of the
true distribution center is required. Such an estimate is provided by the
median of the sample data (Huber, 1981). Thus a related normalization
method is that of median centering. Again the normalization transformation
takes the form of Equation 4.1 but with b = ~xsy, the median value of the un-
normalized data, i.e. the 50™ centile.

After normalizing several arrays by mean or median centering we may
wish to bring the normalized data sets into a common scale (Spread of
values) in order to prevent any single hybridization dominating when data
from several arrays are combined, e.g. when averaging log ratio values over
replicate hybridizations, or when performing clustering. Overall this two step
process corresponds to a linear-affine transformation,

y=ax+b (4.2)

Obviously, if a = 1 this corresponds to mean or median centering of the
data. If a # 1 this corresponds to changing the scale of the data. It is worth
noting that some practitioners believe this to be unprincipled in certain
biological contexts (Sherlock, 2001). The aim of the transformation in
Equation 4.2 is to bring the data from each chip into a common location and
scale. Again the parameter b is chosen so that the mean or median of the
normalized data is 0. The choice of scale is unimportant so long as we are
consistent and thus we choose a so that the normalized data has a variance of
1. The parameters a and b are easily estimated from the mean, X, and
standard deviation, o, , ofthe un-normalized data,

a=1/0,, b=-ax 4.3)

In practice we use a trimmed mean and standard deviation of the un-
normalized data, e.g., when calculating the trimmed mean and standard
deviation we ignore data that is greater than +3 standard deviations from the
mean of the un-normalized data in order to avoid bias introduced by outliers.

The normalization methods, represented by the transformation in
Equation 4.2, can be applied to both spotted and oligo-based data. They are —
due to their mathematical simplicity — extremely quick and easy to
implement. Speed and computational performance are not usually issues for

4. Normalization 81

the user with such normalization methods. They can even be easily included
in simple spreadsheet analysis of the microarray data. Most microarray

analysis software packages will offer some form of these simple
transformations.

2.2 Regression Methods

If the majority of genes are not considered to be differentially expressed
when comparing two microarray signals — either R and G intensity values
from a two-fluor spotted array, or intensity values from two separate oligo-
based hybridizations — then a scatter plot of one signal against the other is
expected to produce a cluster along a straight line. If systematic errors are
small, then we might expect the line to have slope 1 and intercept 0 since the
majority of genes are assumed to have similar expression levels in the two
signals. Regression based normalization methods then attempt to fit a curve
through the scatter plot and adjust the intensities. Regression normalization
techniques fall into two general categories 1) Linear fits, which then apply
the same global normalization transformation to all spots irrespective of their
log intensity value and hence are (log) intensity independent methods, 2)
Non-linear fits which are usually applied to a rotated form of the scatter plot
and are log intensity dependent, i.e. log spot intensities are adjusted
according to their value.

221 Intensity Independent Methods (Linear)

Here a straight line is fitted through the scatter plot of one signal, x, against
the other which is considered as a reference signal, x,.. This can be done for
both spotted and oligo-based data. The values x are adjusted so that a scatter
plot of normalized data y against X,y has the desired slope of 1 and zero
intercept. The transformation takes the same form as Equation 4.2 but with
the parameters a and b determined from standard linear regression formulae,
Ty s _ g%
¢ Cov(x,x,,_,f)’ b=x w (4.4)

Here Xand X,, denote means of the un-normalized and reference data
respectively. Gzref is the variance of x,;rand Cov(x, X,) its covariance with x.
The validity of such an approach can be checked simply by doing a scatter
plot of expression data x against the reference expression data Xy From the
data set of Golub et al, (1999) we have chosen, at random, two

82 Chapter 4

hybridizations and plotted in Figure 4.2a the log of the PM-MM' value from
one chip against the log of the PM-MM value from the other. Any negative
or missing values of PM-MM are set to a threshold value of 20. The
correlations between the log expression values is clear from Figure 4.2a, as
are the two lines at In(20) = 3.0, reflecting the effect of the thresholding.
Figure 4.2b shows a scatter plot of log(R) against log(G) for the yeast data
set of Gasch et al., (2000).

=y T T T T

2

Logl PM-MM) Chip

L R e e) b
. '

-y bomdma g oofn A !
Log(PM-MM | Chipl :

l:ngl Cy 1)

Figure 4.2, Figure a shows a scatter plot of Log PM-MM for 2 hybridizations from the data
set of Golub et al. (1999). The solid grey line shows the linear fit. Figure b shows a scatter
plot of Log Cy5 against Log Cy3. Here only positive values of intensity have been used.
Again the solid grey line shows the linear fit. In both cases the linear fits have non-zero
intercept and slope = 1.

Standard linear regression onto a reference chip is somewhat
unprincipled since this assumes that only one experiment i$ noisy (the
measurement) whilst the reference chip is not. In practice all experiments
will have comparable noise levels. The use of standard linear regression
therefore leads to an asymmetrical method in which the result of
normalization is not equivalent for different choices of reference chip. Given
the concerns with standard regression we have introduced a more principled
least squares method Rattray et al. (2001) which is one of a class of total
least squares methods (Golub and Van Loan, 1979), which are appropriate
for problems in which there is noise in all measurement variables. This
approach uses the data from multiple chips in a more robust fashion to
estimate the parameters a and b for each chip.

: Early datafrom Affymetrix systems provided two signal intensities, PerfectMatch (PM) and
Mismatch (MM) values, that quantify probes which are complimentary to the sequence of
interest and those that differ by a single homomeric base mismatch.

4. Normalization 83
2.2.2 Intensity Dependent Methods (Non-Linear)

2.2.2.1 Single Slide Normalization

The global linear normalization methods discussed above apply the same
transformation to the data, irrespective of the actual log intensity value. They
assume there are no effects that are dependent on the measured log intensity
or spatial location of the spot. For two-fluor spotted arrays the presence of
any intensity dependent patterns in the log-ratio data can quickly be
ascertained through the use of 'M-A' plots (Yang et al, 2002). An example
M-A plot is given below in Figure 4.3a for the yeast data set of Gasch et al.
(2000). For each spot M is the log-ratio value, i.e. M = log(R/G), and A is
the average log intensity value across the two channels, ie.
A =% (log(R) + log(G)). For a given A value, any value of M can be
obtained. If no systematic log intensity dependent error were present and the
majority of genes were not differentially expressed, then we would expect
equal scatter above and below the global (chip wide) average value of M.
We would expect an M-A plot qualitatively similar to that in Figure 4.3b.

’ (1) ‘ | I by j

Figure 4.3. M-A plots for a hybridization from the dataset of Gasch et al. (2000). Figure a
shows un-normalized data. Figure b shows Lowess (see below) normalized data.

For the yeast data set we can see from Figure 4.3a that this is clearly not
the case. The solid grey line shown in Figure 4.3a represents the behaviour
of a ‘local average’ of M. From the solid curve there is a systematic increase
in M with decreasing intensity. A global transformation of the data is
obviously not appropriate here — the linear transformations of the previous
section merely shift and re-scale all the M values so that the M-A plot is still
qualitatively the same as that in Figure 4.3a. How does one correct for such
systematic variation? After correction of the log-ratios we would obviously
like to see an M-A plot closer to that shown in Figure 4.3b. From Figure 4.3a
one can see that if one subtracts from each log-ratio value the corresponding
‘local average’ value represented by the solid grey line, then the scatter of
corrected log-ratios will be closer to that in Figure 4.3b Indeed that is
precisely how the corrected log-ratios in Figure 4.3b were obtained. The
question is, how does one determine the solid line representing the ‘local

84 Chapter 4

average’ of M? One of the most popular methods is Lowess (Locally
Weighted Regression) also referred to as Loess, which is a generic statistical
technique for smoothing of data (Cleveland and Devlin, 1988; Hastie et al.,
2001) and has been applied to microarray data by Dudoit et al. (2002) and
Yang et al. (2002). Typically, Lowess fits a separate straight line through the
data at every value of A. The slope, a(Ag), and intercept, K Ao), for a
particular value of interest, Ay say, are determined predominantly by those
data points with A values close to Ag. This is done using a window (or
kernel) function, K(A -~ Ae), whose width A4 is set so that only a fixed
percentage f of the total data points are used in determining the slope and
intercept at Ay, A popular choice of window function is the tri-cube function,

3 J
K(A—A0)=[1—}A;A°] |4~ 4,|< 2

(4.5)
K(A-4,)=0,|4-4)|> 2

which we have used for the yeast data set. Typically the span fis set
somewhere between 20% and 40% of the total data. The larger f, the more
data is used to determine the straight line passing through Ae. If fis set too
large, e.g., f close to 100%, the ‘local average’ produced by Lowess will be
something close to a single straight line through all the data and
consequently not follow the local variation or curvature of the M-A plot. If f
is too small Lowess will follow the local variation of the M-A plot too
closely and the ‘local average’ produced may be too wildly varying and
affected by outliers in the M-A plot. For the example in Figure 4.3a we have
used f= 30%. The °‘local average’ at A, is then simply the value on the
straight line at Ay, ie. a(Ap)Ag+ K Ag). For more specific details on the
application of Lowess we refer the reader to Yang et al. (2002).

Lowess smoothing of the M-A plot is a very general technique and one
can use the approach to correct for systematic variation introduced through
sources other than dye bias, for example bias due to the particular print-tip
with which the probe was printed onto the array, by making an M-A plot
using those spots that have been printed using that particular print-tip. Such
an approach has been investigated by Yang et al. (2002), to which we refer
the reader for further details. After Lowess smoothing of M-A plots from
several print-tips or several chips the user may still wish to bring the Lowess
corrected ratios from the different data sets into a common scale. This can be
done using the techniques outlined in the previous section, such as the total
least-squares normalization method, or using the median absolute deviation
(MAD) estimates of scale employed by Yang et al. (2002). For Lowess

4. Normalization 85

corrected ratios from different print-tips, but a single hybridization, this
would seem a very natural step.

When should one use Lowess smoothing of an M-A plot? Simply
plotting the M-A values will give a good indication of whether a log
intensity dependent correction of the ratio is required. This may be
impractical when normalizing many chips and the user may wish to
implement Lowess smoothing of M-A plots by default. The concern would
then be the computational cost in doing this. In theory a locally weighted
regression is performed at every value of A for which a corrected log-ratio is
required, i.e. for every spot on the array. In theory this makes normalization
using Lowess smoothing of an M-A plot considerably more computationally
intensive than say mean or median centering of the log-ratio values. In
practical terms, on modern desktop machines, there is not a dramatic
difference in performance when normalizing a single chip. Lowess
smoothing of the M-A plot shown in Figure 4.3a took 35 seconds on a
700MHZ Pentium III laptop using code written in Java. When performing
normalization of many chips and/or print-tips, or normalization across
multiple chips, speed maybe more of an issue. In such cases a locally
weighted regression need not be done for every spot. Instead the observed
range of A can be divided into a grid containing a finite number of points
and a locally weighted regression performed at each of these grid points.
Values of the smooth curve for values of A which do not lie at a grid point
can be calculated by simple interpolation. Smoothing of the M-A plot in
Figure 4.3a using a grid of 100 points took less than a second. If the same
grid is used when normalizing many arrays a significant proportion of the
calculation, the equivalent kernel, (Hastie et al., 2001) need only be done
once, greatly improving the overall computational cost.

2.2.2.2 Paired-Slide Normalization

If we expect a significant number of genes to be differentially expressed,
then correcting for dye-bias by smoothing of the M-A plot may not be
appropriate, since we may not expect symmetric scatter of M values. In these
circumstances elimination of dye-bias can be done with the use of paired
slides, ie. a dye-swap experiment in which two hybridizations are
performed, with the labelling of sample and reference mRNA populations in
one hybridization being the reverse of that in the other.

86 Chapter 4

>t

12M-M]

Figure 4,4. M-A plots for the yeast heat-shock dye-swap hybridizations. Figures a and b show
un-normalized data from the two dye-swap hybridizations. Figure ¢ shows the normalized
ratios. In each case the solid grey line represents the ‘local average’ behaviour. In both
Figures a and b the systematic bias can be seen to increase at low intensities, whilst in Figure
¢ no significant curvature of the M-A plot is apparent, indicating that the systematic bias has
been removed.

M(Ay) is the log-ratio value, at log intensity Ay, from one hybridization,
and M’(A’¢g) the log-ratio value, at A’g, from the reverse labelled
hybridization for the same probe. If the experiment were free from error,
then we would expect Ag= A’g and M’(A’p) = -M(Ao), due to the reverse
labelling. Therefore Y2 [M(Ag)~M’(A’g)] would provide us with a good
estimate of the true log-ratio at Ap. Unfortunately, as we have seen from the
previous M-A plots, bias will be present in the log ratios M(Ap) and M’(A’).
However, from the M-A plots we have seen the bias would appear to depend
only on log intensity A and therefore is approximately the same for A, and
A’g (recall Ag~ A’g), i.e. is irrespective of which way round we have labeled
the mRNA populations. When calculating Y2 [M(Ag) - M’(A’)] the
systematic intensity errors will approximately cancel out, even when we are
considering genes that are differentially expressed, and so Y2 [M(Aq)—
M’(A’p)] still represents a good estimate of the true log ratio at %2 [Ag + A’o]
(Yang et al., 2001b). This is easily demonstrated using the yeast heat-shock
dye-swap data. Figures 4.4a and 4.4b are M-A plots for the two individual
dye-swap hybridizations. Plotted in Figure 44¢ is ¥ [M(Ag)—M’(A%)]
against 2 [A¢ + A’o]. From Figure 4.4¢c we can see that any log intensity
dependent bias present in M(Aq) and M’(A’g) is absent from Y2 [M(Ay) —
M’(A%)].

4. Normalization 87

2.3 Ratio Statistics Based Normalization

Often the purpose of normalization is to allow the robust identification of
differentially expressed genes. We may approach this, say, by performing a
Lowess normalization of our two-fluor data and examining the resultant
normalized ratios to identify the largest fold changes. An alternative
approach is to ask if the observed fold change in gene k, estimated (for two-
fluor data) by the ratio Ti=Ry/Gy, is genuine or the result of random
fluctuations in the signal intensities Ry and Gy for an otherwise non-
differentially expressed gene. In other words perform a significance test
under a hypothesis that on average gene k is not differentially expressed
between two labelled populations of mRNA. To do this requires knowledge
of the statistical properties of the quantity T, which is a ratio of two
numbers — hence the name Ratio Statistics based normalization. This has
been done by Chen et al. (1997), who assume a constant coefficient of
variation’, c¢. Chen et al. (1997) provide a formula to calculate the critical
value of T, — the value above which the observed ratio Ty is considered to
genuinely represent differential expression — for a given level of confidence
(p-value). The formula is dependent upon the model parameters, e.g. ¢,
which are determined through an iterative process using the observed ratios
from a set of house-keeping genes. We refer the reader to Chen et al. (1997)
for more specific details.

Within the context of Ratio Statistics based normalization it is worth
mentioning the variance stabilization method of Huber et al. (2002). The
method is applied to un-logged spot intensities, I, from both oligo- and
spotted- arrays. Huber et al. (2002) consider a non-constant coefficient of
variation, from which they construct a transformation k() = arsinh(a + bl) so
that the difference, Ah, between two signals has a constant variance over the
whole intensity range — in contrast to log-ratio values even after Lowess
normalization. The parameters a and b are estimated through an iterative
Maximum Likelihood procedure, and so this method is more computationally
intensive compared to simpler normalization methods. However, Huber et al.
(2002) report that a statistical test, based on Ah, to identify differentially
expressed genes performs better than most other normalization methods,
including Lowess, The transformation h(7) also has the advantage that it can
be applied to negative values of I, as might arise after background
correction.

2 The ratio of the standard deviation to the mean for a random variable.

88 Chapter 4

24 Summary

The simple global linear transformations we started this section with can be
used to correct for systematic errors that affect all spot intensities equally,
e.g. differences in total mRNA between samples. However, the use of M-A
plots has revealed significant log intensity dependant biases and therefore
normalization using only a global transformation is likely to be inadequate.
The use of Lowess to correct log intensity dependent bias is fast becoming a
de facto standard for two-fluor spotted array data. We would recommend
that users of spotted arrays should implement Lowess or another statistical
smoothing technique. After correcting bias in several hybridizations these
can be brought into a common scale using the global linear transformations
discussed at the beginning of this section.

For non-spotted arrays, such as Affymetrix chips, correction of log
intensity dependant bias can in principle be done by multi-dimensional non-
linear regression or non-linear regression to a reference chip.

So far we have not touched on the issue of spatial normalization. We
have mentioned applying Lowess to spots just from the same print-tip, but
this does not address the issue of bias that is dependent upon the actual
physical location (planar coordinates) of the spot on the array. Such bias can
arise due to uneven hybridization conditions across the array or
contamination in a particular sector of the array. Plotting of log ratio values
(from two-fluor spotted array data) against the 2D planar coordinates of the
spots can reveal any biases. The local spatial behaviour of spot intensities, as
a function of the spot coordinates, can be modelled using locally weighted
regression in the 2D spot coordinates. Each regression calculation now
involves two input variables — the spot coordinates — as opposed to one — the
log intensity A — when performing standard Lowess normalization of an
array. Consequently the computational cost is much higher, although for
normalization of multiple arrays this can again be reduced if the regression
calculations are always performed at the same spot locations — as might be
appropriate when using arrays of similar design.

3. CONCLUSIONS

Normalization of microarray data is a complex issue and is unlikely to ever

be cut and dried. Common sense and the user’s biological knowledge of the

experiment can act as invaluable guides in the normalization process. As a

minimum working practice we would recommend the following:

— Always keep the raw data — normalization methods change. They can be
improved or new ones invented. New sources of systematic error may be
identified and algorithms constructed to eliminate them.

4. Normalization 89

— Maintain some sort of audit trail of what transformations (with what
particular parameter settings) have been applied to your data.

Finally, as well as the research literature, one of the best places to keep
abreast of developments in normalization techniques is by monitoring the
efforts of the MGED normalization working group (http://www.mged.org).

ACKNOWLEDGEMENTS

We would like to thank Dr Abdulla Bashein for supplying the S. cerevisiae
heat shock dye-swap data. We have also benefited from discussions with
Prof. A. Brass, Dr. M. Rattray and Dr. Y, Fang. This work has been
supported by the MRC (UK) and NERC (UK).

REFERENCES

Axon Instruments Inc. (2002). GenePix Software.

Available at http://www.axon.com/GN_Genomics.html#software.

Ball C.(2002). Systematic Bias in Microarray Data, presentation given at MGED IV, 13th-
16th Feb, Boston, USA. Available at http://www.dnachip.org/mged/normalization.html.
Chen Y., Dougherty ER., Bittner ML. (1997). Ratio-based decisions and the quantitative

analysis of cDNA microarray images. J. Biomed. Optics 2: 364-374.

Cleveland W.S., Devlin S.J. (1988). Locally weighted regression: an approach to regression
analysis by local fitting, J. Am. Stat. Assoc. 83: 596-610.

Delbruck S., Emnst J.F. (1993). Morphogenesis-independent regulation of actin transcript
levels in the pathogenic yeast Candida albicans. Mol Microbiol 10: 859-866.

Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2002). Statistical methods for identifying
genes with differential expression in replicated cDNA microarray experiments, Statistica
Sinica 12: 111-139. See also Technical Report #578.
Available at http://stat-www.berkeley.edu/users/sandrine/publications.html.

Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G.,. Botstein D,
Brown P.O. (2000). Genomic expression programs in the response of yeast cells to
environmental changes. Mol Biol Cell 11: 4241-4257.

Goldsworthy S.M., Goldsworthy T.L., Sprankle C.S., Butterworth B.E, (1993). Variation in
expression of genes used for normalization of Northern blots after induction of cell
proliferation. Cell Prolif 26: 511-518.

Golub G.H., Van Loan C. (1979). Total Least Squares. In Smoothing Techniques for Curve
Estimation, pp. 69-76. Springer-Verlag, Heidelberg.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing IR., Caligiuri M.A., Bloomfield C.D., Lander E.S, (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286: 531-537.

Hastie T., Tibishirani R., Friedman J. (2001). The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, New York.

90 Chapter 4

Heller R.A., Schena M., Chai A., Shalon D., Bedilion T., Gilmore J., Woolley D.E., Davis
R.W. (1997). Discovery and analysis of inflammatory disease-related genes using cDNA
microarrays. Proc Natl Acad Sci USA 94: 2150-2155.

Hill A.A., Brown E.L., Whitley M.Z., Tucker-Kellogg G., Hunter C.P., Slonim D.K. (2001).
Evaluation of normalization procedures for oligonucleotide array data based on spiked
cRNA controls. Genome Biol 2: RESEARCH0055.0051-0055.0013.

Huber P.J. (1981). Robust Statistics. Wiley, New York.

Huber W., Von Heydebreck A., Sultmann H., Poustka A., Vingron M. (2002). Variance
stabilization applied to microarray data calibration and to the quantification of differential
expression. Bioinformatics 1(1):1-9.

Kerr MK., Martin M., Churchill G.A. (2000). Analysis of variance for gene expression
microarray data. J Comput Biol 7: 819-837.

Quackenbush J. (2001). Computational analysis of microarray data. Nat Rev Genet 2: 418-
427.

Rattray, M., N. Morrison, D.C. Hoyle, and A. Brass. 2001. DNA microarray normalization,
PCA and a related latent variable model.: Technical Report. Available from
http://www.cs.man.ac.uk/~magnus/magnus.html.

Schadt E.E., Li C., Ellis B.,, Wong W.H. (2001). Feature Extraction and Normalization
Algorithms for High-Density Oligonucleotide Gene Expression Array Data. Journal of
Cellular Biochemistry 37: 120-125.

Sherlock, G. 2001. Analysis of large-scale gene expression data. Brief Bioinform 2: 350-362.

Yang Y.H., Buckley M.J., Speed T.P. (2001a). Analysis of cDNA microarray images. Brief
Bioinform 2: 341-349.

Yang Y .H., Dudoit S., Luu P., Lin D.M., Peng V., Ngai J., Speed T.P. (2002). Normalization
for cDNA microarray data: a robust composite method addressing single and multiple
slide systematic variation. Nucleic Acids Research 30: el5.

Yang Y.H., Dudoit S., Luu P., Speed T.P. (2001b). Normalization for cDNA microarray data.
In Microarrays: Optical technologies and informatics. (eds. Bittner M.L., Chen Y., Dorsel
AN, and Dougherty E.R.), pp. See also Technical Report available at
http://www.stat.berkeley.edu/users/terry/zarray/Html/papersindex.html. SPIE, Society for
Optical Engineering, San Jose, CA.

Chapter 5

SINGULAR VALUE DECOMPOSITION AND
PRINCIPAL COMPONENT ANALYSIS

Michael E. Walll’2, Andreas Rechtsteinerl’3, Luis M. Rocha!

! Computer and Computational Sciences Division, *Bioscience Division, Los Alamos National
Laboratory, Mail Stop B256, Los Alamos, New Mexico, 87545 USA,
e-mail: {mewall, rocha} @lanl.gov

3Systems Science Ph.D. Program, Portland State University, Post Office Box 751, Portland,
Oregon 97207 USA,

e-mail: andreas@sysc.pdx.edu

1. INTRODUCTION

One of the challenges of bioinformatics is to develop effective ways to
analyze global gene expression data. A rigorous approach to gene expression
analysis must involve an up-front characterization of the structure of the
data. Singular value decomposition (SVD) and principal component analysis
(PCA) can be valuable tools in obtaining such a characterization. SVD and
PCA are common techniques for analysis of multivariate data. A single
microarray' experiment can generate measurements for tens of thousands of
genes. Present experiments typically consist of less than ten assays, but can
consist of hundreds (Hughes et al, 2000). Gene expression data are currently
rather noisy, and SVD can detect and extract small signals from noisy data.
The goal of this chapter is to provide precise explanations of the use of
SVD and PCA for gene expression analysis, illustrating methods using
simple examples. We describe SVD methods for visualization of gene
expression data, representation of the data using a smaller number of
variables, and detection of patterns in noiSy gene expression data. In
addition, we describe the mathematical relation between SVD analysis and
Principal Component Analysis (PCA) when PCA is calculated using the

! For simplicity, we use the term microarray to refer to all varieties of global gene expression
technologies.

92 Chapter 5

covariance matrix, enabling our descriptions to apply equally well to either
method. Our aims are 1) to provide descriptions and examples of the
application of SVD methods and interpretation of their results; 2) to establish
a foundation for understanding previous applications of SVD to gene
expression analysis; and 3) to provide interpretations and references to
related work that may inspire new advances.

In Section 1, the SVD is defined, with associations to other methods
described. In Section 2, we discuss applications of SVD to gene expression
analysis, including specific methods for SVD-based visualization of gene
expression data, and use of SVD in detection of weak expression patterns.
Our discussion in Section 3 gives some general advice on the use of SVD
analysis on gene expression data, and includes references to specific
published SVD-based methods for gene expression analysis. Finally, in

Section 4, we provide information on some available resources and further
reading.

1.1 Mathematical definition of the SVD?

Let X denote an m x n matrix of real-valued data and rank’ r, where without
loss of generality m = n, and therefore » <n. In the case of microarray data,
x; is the expression level of the i gene in the j* assay. The elements of the
i row of X form the n-dimensional vector g, which we refer to as the
transcriptional response of the i* gene. Alternatively, the elements of the i
column of X form the m-dimensional vector a;, which we refer to as the
expression profile of the j‘h assay.
The equation for singular value decomposition of Xis the following:

X =Usy" (5.1)

where Uis an m x n matrix, § is an n x n diagonal matrix, and ¥ is also
an n x n matrix. The columns of U are called the left singular vectors, {u;},
and form an orthonormal basis for the assay expression profiles, so that
urw;=1 for i=j and urn; =0 otherwise. The rows of ¥ contain the
elements of the right singular vectors, {v,}, and form an orthonormal basis
for the gene transcriptional responses. The elements of § are only nonzero on
the diagonal, and are called the singular values. Thus, S = diag(si,...,Sn).
Furthermore, sy >0for 1 <k<r,ands;=0for(r+ 1)<k<n.

2 Complete understanding of the material in this chapter requires a basic understanding of
linear algebra. We find mathematical definitions to be the only antidote to the many
confusions that can arise in discussion of SVD and PCA.

3 The rank of a matrix is the number of linearly independent rows or columns.

5. Singular Value Decomposition and Principal Component Analysis 93

By convention, the ordering of the singular vectors is determined by high-to-
low sorting of singular values, with the highest singular value in the upper
left index of the S matrix. Note that for a square, symmetric matrix X,
singular value decomposition is equivalent to diagonalization, or solution of
the eigenvalue problem for X.

One important result of the SVD of X is that

i
X0 = wsv; (5.2)

k=1

is the closest rank-/ matrix to X. The term “closest” means that X
minimizes the sum of the squares of the difference of the elements of X and
X0, 2y -x(’),j|2. This result can be used in image processing for
compression and noise reduction, a very common application of SVD. By
setting the small singular values to zero, we can obtain matrix
approximations whose rank equals the number of remaining singular values.
Each term wsyvy” is called a principal image. Very good approximations can
often be obtained using only a small number of terms (Richards, 1993). SVD
is applied in similar ways to signal processing problems (Deprettere, 1988)
and information retrieval (Berry et al., 1995).

One way to calculate the SVD is to first calculate ¥ and § by
diagonalizing X"X = VS*V", and then to calculate U=XVS . The (r +1),....n
columns of V for which s,=0 are ignored in the matrix multiplications.
Choices for the remaining # - r singular vectors in Vor U may be calculated
using the Gram-Schmidt orthogonalization process or some other extension
method. In practice there are several methods for calculating the SVD that
are of higher accuracy and speed. Section 4 lists some references on the
mathematics and computation of SVD.

Relation to principal component analysis. There is a direct relation
between PCA and SVD in the case where principal components are
calculated from the covariance matrix*. Tf one conditions the data matrix X
by centering’ each column, then Xx=tgg" is proportional to the
covariance matrix of the variables of g, (ie. the covariance matrix of the
assays®). Diagonalization of X'x yields VT (see above), which also yields the
principal components of {g;}. So, the right singular vectors {vi} are the same
as the principal components of {g;}. The eigenvalues of X' X are equivalent
to s,%, which are proportional to the variances of the principal components.

4 C(x,y)=(N -~ 1)_1 Z;(x; =%)(y; = ¥) is the covariance between variables x and y, where N
is the # of observations, and i= I,...,N. Elements of the covariance matrix for a set of
variables {z®} are given by ¢, = C(z", z%).

A centered vector is one with zero mean value for the elements.

6 Note that (/YTX)U = 8,8

94 Chapter 5

The matrix US then contains the principal component scores, which are the
coordinates of the genes in the space of principal components.

If instead each row of X is centered, Xx'= Efa,a,-T is proportional to the
covariance matrix of the variables of a; (i.e. the covariance matrix of the
genes’). In this case, the left singular vectors {u;} are the same as the
principal components of {a;}. The 5% are again proportional to the variances
of the principal components. The matrix SV again contains the principal
component scores, which are the coordinates of the assays in the space of
principal components.

2. SVD ANALYSIS OF GENE EXPRESSION DATA

As we mention in the introduction, gene expression data are well suited to
analysis using SVD/PCA. In this section we provide examples of SVD-based
analysis methods as applied to gene expression analysis. Before illustrating
specific techniques, we will discuss ways of interpreting the SVD in the
context of gene expression data. This interpretation and the accompanying
nomenclature will serve as a foundation for understanding the methods
described later.

A natural question for a biologist to ask is: “What is the biological
significance of the SVD?” There is, of course, no general answer to this
question, as it depends on the specific application. We can, however,
consider classes of experiments and provide them as a guide for individual
cases. For this purpose we define two broad classes of applications under
which most studies will fall: systems biology applications, and diagnostic
applications (see below). In both cases, the n columns of the gene expression
data matrix X correspond to assays, and the m rows correspond to the genes.
The SVD of X produces two orthonormal bases, one defined by right
singular vectors and the other by left singular vectors. Referring to the
definitions in Section 1.1, the right singular vectors span the space of the
gene transcriptional responses {g;} and the left singular vectors span the
space of the assay expression profiles {a;}. We refer to the left singular
vectors {uz} as eigenassays and to the right singular vectors {v;} as
eigengenes’. We sometimes refer to an eigengene or eigenassay generically
as a singular vector, or, by analogy with PCA, as a component. Eigengenes,
eigenassays and other definitions and nomenclature in this section are
depicted in Figure 5.1.

7
Note that (XXT)U =g
This notation is similar to that used in (Alter et al., 2000), save that we use the term
eigenassay instead of eigenarray.

5. Singular Value Decomposition and Principal Component Analysis 95

In systems biology applications, we generally wish to understand relations
among genes. The signal of interest in this case is the gene transcriptional
response g,. By Equation 5.1, the SVD equation for g; is

g = Zuikskvk’ i: 1,...,m (53)
=1

which is a linear combination of the eigengenes {v}. The i row of U, g';
(see Figure 5.1), contains the coordinates of the it gene in the coordinate
system (basis) of the scaled eigengenes, sgvi. If r < n, the transcriptional
responses of the genes may be captured with fewer variables using g rather
than g;. This property of the SVD is sometimes referred to as dimensionality
reduction. In order to reconstruct the original data, however, we still need
access to the eigengenes, which are n-dimensional vectors. Note that due to
the presence of noise in the measurements, r = n in any real gene expression

analysis application, though the last singular values in S may be very close to
zero and thus irrelevant.

X=US"

Eigenasqq Singular Eigengene
u, - 5 alue - f | a:, i
L] §
g |
I.
m]
mxn mxn nxn "nxn

Figure 5.1. Graphical depiction of the SVD of a matrix X, annotated with notations adopted in
this chapter.

In diagnostic applications, we may wish to classify tissue samples from
individuals with and without a disease. Referring to the definitions in
Section 1.1, the signal of interest in this case is the assay expression profile
a,. By Equation 5.1, the SVD equation for a; is

a,= D Vs, Jil,n (54
=1

96 Chapter 5

which is a linear combination of the eigenassays {u;}. The j'h column of V7,
a'; (see Figure 5.1), contains the coordinates of the jth assay in the coordinate
system (basis) of the scaled eigenassays, sy By using the vector a', the
expression profiles of the assays may be captured by =n variables, which
is always fewer than the m variables in the vector a;. So, in contrast to gene
transcriptional responses, SVD can generally reduce the number of variables
used to represent the assay expression profiles. Similar to the case for genes,
however, in order to reconstruct the original data, we need access to the
eigenassays, which are m-dimensional vectors.

Indeed, analysis of the spectrum formed by the singular values s; can lead
to the determination that fewer than n components capture the essential
features in the data, a topic discussed below in Section 2.1.1. In the literature
the number of components that results from such an analysis is sometimes
associated with the number of underlying biological processes that give rise
to the patterns in the data. It is then of interest to ascribe biological meaning
to the significant eigenassays (in the case of diagnostic applications), or
eigengenes (in the case of systems biology applications). Even though each
component on its own may not necessarily be biologically meaningful, SVD
can aid in the search for biologically meaningful signals. This topic is
touched on in describing scatter plots in Section 2.1.2. Also in Section 2.1.2
we discuss the application of SVD to the problem of grouping genes by
transcriptional response, and grouping assays by expression profile. When
the data are noisy, it may not be possible to resolve gene groups, but it still
may be of interest to detect underlying gene expression patterns; this is a
case where the utility of the SVD distinguishes itself with respect to other
gene expression analysis methods (Section 2.2). Finally we discuss some
published examples of gene expression analysis using SVD, and a couple of
SVD-based gene grouping methods (Section 2.3).

2.1 Visualization of the SVD

Visualization is central to understanding the results of application of SVD to
gene expression data. For example, Figure 5.2 illustrates plots that are
derived from applying SVD to Cho et al.’s budding yeast cell-cycle data set
(Cho et al., 1998). In the experiment, roughly 6,200 yeast genes were
monitored for 17 time points taken at ten-minute intervals. To perform the
SVD, we have pre-processed the data by replacing each measurement with
its logarithm, and normalizing each gene’s transcriptional response to have
zero mean and unit standard deviation. In addition, a serial correlation test
(Kanji, 1993) was applied to filter out ~3,200 genes that showed primarily
random fluctuations. The plots reveal interesting patterns in the data that we
may wish to investigate further: a levelling off of the relative variance after

5. Singular Value Decomposition and Principal Component Analysis 97

the first five components (Figure 5.2a); a pattern in the first eigengene
primarily resembling a steady decrease, or decay (Figure 5.2b); and patterns
with cyclic structure in the second and third eigengenes (Figure 5.2¢,d).

a) b)
g —
8 © 3 /c/° N
N2 PR \o
o . -
E . DD i < \°\°‘°'°‘o
8 Oomeme | = : _To-g
= 50 100 150
component tme (min)
c) d)
= 1%] T =
S 1 \a . o0 Q\o\ 0'0\0_0\0
2 X-D-O/ < o -o‘o
[«]
N « \ °/°
p 02p-0° '
50 100 150 50 100 150
time (mén) fme (min)

Figure 5.2, Visualization of the SVD of cell cycle data. Plots of relative variance (a); and the
first (b), second (c) and third (d) eigengenes are shown. The methods of visualization
employed in each panel are described in Section 2.1. These data inspired our choice of the
sine and exponential patterns for the synthetic data of Section 2.1.

To aid our discussion of visualization, we use a synthetic time series data
set with 14 sequential expression level assays (columns of X) of 2,000 genes
(rows of X). Use of a synthetic data set enables us to provide simple
illustrations that can serve as a foundation for understanding the more
complex patterns that arise in real gene expression data. Genes in our data
set have one of three kinds of transcriptional response, inspired by
experimentally observed patterns in the Cho et al. cell-cycle data: 1) noise
(1,600 genes); 2) noisy sine pattern (200 genes); or 3) noisy exponential
pattern (200 genes). Noise for all three groups of genes was modelled by
sampling from a normal distribution with zero mean and standard deviation
0.5. The sine pattern has the functional form asin(272/140), and the
exponential pattern the form be™'%°, where a is sampled uniformly over the
interval [1.5,3], b is sampled uniformly over [4,8], ¢ is the time (in minutes)
associated with each assay, and time points are sampled every ten minutes
beginning at t = 0. Each gene’s transcriptional response was centered to have
a mean of zero. Figure 5.3 depicts genes of type 2) and 3).

98 Chapter 5

a) b)

- J
] A 3<
o 8~o o %
=0 v
%\a o U>(°\;< ™
ot A ¢ e

Vg

2
F4

-]
i

expression level
-1 0
expression level

-2 2

-2

o

o
QIO\
X

[1%-])
=
i I
o070 0 2

T T T T L3 T ==y T T
(1] - 40 80 u IW |20 Q 1] 40] L] 1 120

fime (min) time (min)

Figure 5.3. Gene transcriptional responses from the synthetic data set. Overlays of five noisy
sine wave genes (a) and five noisy exponential genes (b).

2.1.1 Visualization of the matrices S, VTand U

Singular value spectrum. The diagonal values of S (i.e. s;) make up the
singular value spectrum, which is easily visualized in a one-dimensional
plot. The height of any one singular value is indicative of its importance in
explaining the data. More specifically, the square of each singular value is
proportional to the variance explained by each singular vector. The relative
variances s;A(X;s?)"' are often plotted (Figure 5.4a; see also Figure 5.2).
Cattell has referred to these kinds of plots as scree plots (Cattell, 1966) and
proposed to use them as a graphical method to decide on the significant
components. If the original variables are linear combinations of a smaller
number of underlying variables, combined with some low-level noise, the
plot will tend to drop sharply for the singular values associated with the
underlying variables and then much more slowly for the remaining singular
values. Singular vectors (in our case eigenassays and eigengenes) whose
singular values plot to the right of such an “elbow” are ignored because they
are assumed to be mainly due to noise. For our synthetic data set, the
spectrum begins with a sharp decrease, and levels off after the second
component, which is indicative of the two underlying signals in the data
(Figure 5.4a).

5. Singular Value Decomposition and Principal Component Analysis 99

a) b)
8 - 2 | O/O-O—O\ ™~
-] Al (=]
: 3] N
23 34 \o\
o
° I 11 1 s R S ; °:ro—=0/_
1] 20 40 v} 80 100 |éU
compaonert ftme (min)
c) d)
-l'\ - ‘ _
-
: Y]
[-] (s} o]
p ‘
o \\ o"o’o‘o\c\ o 1 °/ \o/ il \o/\ /
-] O/ ? -
; \O"c/ D\D ©] \
T B = w e e om T ®m @ m @ o i
ime (min) time (min)

Figure 5.4. Visualization of the SVD of the synthetic data matrix. a) Singular value spectrum
in a relative variance plot. The first two singular values account for 64% of the variance. The
first (b), second (c), and third (d) eigengenes are plotted vs. time (assays) in the remaining
panels. The third eigengene lacks the obvious cyclic structure of the first and second.

Other heuristic approaches for deciding on the significant components
have been proposed. One approach is to ignore components beyond where
the cumulative relative variance or singular value becomes larger than a
certain threshold, usually defined upon the dimensionality of the data. For
our example data set, the first two singular vectors explain about 64% of the
total variance in the data (Figure 54a). Everitt and Dunn propose an
alternate approach based on comparing the relative variance of each
component to 0.7/n (Everitt and Dunn, 2001). For our example data set this
threshold is (0.7/14) = 0.05, which selects the first two singular vectors as
significant. Notice that if we re-construct the matrix Xby using only the first
two singular vectors, we would obtain X® (the best rank-2 approximation of
X), which would account for 64% of the variance in the data.

Eigengenes. When assays correspond to samplings of an ordinal or
continuous variable (e.g., time; radiation dose; toxin concentration), a plot of
the elements of the eigengenes {v,} may reveal recognizable patterns. In our
example, the first two eigengenes show an obvious cyclic structure
(Figure 5.4b,c; see also Figure 5.2). Neither eigengene is exactly like the
underlying sine or exponential pattern; each such pattern, however, is closely
approximated by a linear combination of the eigengenes. Sine wave and
exponential patterns cannot simultaneously be right singular vectors, as they

100 Chapter 5

are not orthogonal. This illustrates the point that, although the most
significant eigengenes may not be biologically meaningful in and of
themselves, they may be linearly combined to form biologically meaningful
signals.

When assays correspond to discrete experimental conditions (e.g.,
mutational varieties; tissue types; distinct individuals), visualization schemes
are similar to those described below for eigenassays. When the 7™ element of
eigengene k is of large-magnitude, the /" assay is understood to contribute
relatively strongly to the variance of eigenassay k, a property that may be
used for associating a group of assays.

Eigenassays. Alter et al. have visualized eigenassays {ux} resulting from
SVD analysis of cell-cycle data (Alter et al, 2000) by adapting a previously
developed color-coding scheme for visualization of gene expression data
matrices (Eisen et al., 1998). Individual elements of U are displayed as
rectangular pixels in an image, and color-coded using green for negative
values, and red for positive values, the intensity being correlated with the
magnitude. The rows of matrix U can be sorted using correlation to the
eigengenes. In Alter et al.’s study, this scheme sorted the genes by the phase
of their periodic pattern. The information communicated in such
visualization bears some similarity to visualization using scatter plots, with
the advantage that the table-like display enables gene labels to be displayed
along with the eigenassays, and the disadvantage that differences among the
genes can only be visualized in one dimension.

2.1.2 Scatter plots

Visualization of structure in high-dimensional data requires display of the
data in a one-, two-, or three-dimensional subspace. SVD identifies
subspaces that capture most of the variance in the data. Even though our
discussion here is about visualization in subspaces obtained by SVD, the
illustrated visualization techniques are general and can in most cases be
applied for visualization in other subspaces (see Section 4 for techniques that
use other criteria for subspace selection).

For gene expression analysis applications, we may want to classify
samples in a diagnostic study, or classify genes in a systems biology study.
Projection of data into SVD subspaces and visualization with scatter plots
can reveal structures in the data that may be used for classification. Here we
discuss the visualization of features that may help to distinguish gene groups
by transcriptional response. Analogous methods are used to distinguish
groups of assays by expression profile. We discuss two different sources of
gene “coordinates” for scatter plots: projections of the transcriptional
response onto eigengenes, and correlations of the transcriptional response
with eigengenes.

5. Singular Value Decomposition and Principal Component Analysis 101

Projection and correlation scatter plots. Projection scatter plot coordinates
g for transcriptional response g; projected on eigengene v, are calculated as
gir= &'vi. The SVD of X readily allows computation of these coordinates
using the equation XV = US, so that qi = (US)y. The projection of gene
transcriptional responses from our example data onto the first two
eigengenes reveals the a priori structure in the data (Figure 5.5a). The
groups of the 200 sine wave genes (bottom right cluster), and the 200
exponential decay genes (top right cluster) are clearly separated from each
other and from the 1,600 pure noise genes, which cluster about the origin.

Correlation scatter plots may be obtained by calculating the Pearson
correlation coefficient of each gene’s transcriptional response with the
eigengenes;

1 =08, 'avkl5gi|_l|5vkl"l (5.5

where ri denotes the correlation coefficient of the transcriptional
response g with eigengene vy; 8g; is the mean-centered g;, the elements of
which are {x; - <x;>;};, where <>; indicates an average over indexj, and 8v;
is the mean-centered v;, the elements of which are {vj-<v;>}i The
normalization leads to —1 <ry <I. Note that if each g; is pre-processed to
have zero mean and unit variance, it follows that the correlation scatter plot
is equivalent to the projection scatter plot (g =0dg; implies vi=dvy;
and 18g)|" = 84" = 1).

In the projection scatter plot, genes with a relatively high-magnitude
coordinate on the k-axis contribute relatively strongly to the variance of the
K eigengene in the data set. The farther a gene lies away from the origin, the
stronger the contribution of that gene is to the variance accounted for by the
subspace. In the correlation scatter plot, genes with a relatively high-
magnitude coordinate on the k-axis have transcriptional responses that are
relatively highly correlated with the k™ eigengene.

Due to the normalization in correlation scatter plots, genes with similar
patterns in their transcriptional responses, but with different amplitudes, can
appear to cluster more tightly in a correlation scatter plot than in a projection
scatter plot. Genes that correlate well with the eigengenes lie near the
perimeter, a property that can be used in algorithms that seek to identify
interesting genes. At the same time, low-amplitude noise genes can appear to
be magnified in a correlation scatter plot. For our example data, the sine
wave and exponential gene clusters are relatively tightened, the scatter of the
noise genes appears to be increased, and the separation between signal and
noise genes is decreased for the correlation vs. the projection scatter plot
(Figure 5.5).

102 Chapter 5

a) b)
e —————— —— P] NN BN N
-1
5
* o
o -
o £
: we | %
o 2 g o
4 B S S
% i
J
8 »
11 " 7]
s
T ——— T T Y T -1 T ¥
-8 o -] -10 D% 00 o8 i0
projection an 1 correlation with 1

Figure 5.5. SVD scatter plots. Genes from our synthetic example data set are displayed in a
projection scatter plot (a); and a correlation scatter plot (b). The bottom right cluster
cotresponds to sine wave genes, and the top right cluster corresponds to exponential decay
genes, The cluster of genes around the origin corresponds to the noise-only genes,

The projection scatter plot (Figure 5.5a) illustrates how SVD may be
used to aid in detection of biologically meaningful signals. In this case, the
position (g1, q2) of any cluster center’ may be used to construct the cluster’s
transcriptional response from the right singular vectors as g = gv; + qava. If
the first and second singular vectors are biologically meaningful in and of
themselves, the cluster centers will lie directly on the axes of the plot. For
our synthetic data, the first and second singular vectors are combined to
approximately generate the sine wave and exponential patterns. SVD and
related methods are particularly valuable analysis methods when the
distribution of genes is more complicated than the simple distributions in our
example data: for instance, SVD has been used to characterize ring-like
distributions of genes such as are observed in scatter plots of cell-cycle gene
expression data (Alter et al., 2000; Holter et al., 2000) (see Section 2.3).

Scatter plots of assays. Assays can be visualized in scatter plots using
methods analogous to those used for genes. Coordinates for projection
scatter plots are obtained by taking the dot products ayu; of expression
profiles on eigenassays, and coordinates for correlation scatter plots are
obtained by calculating the Pearson correlation coefficient da;8uylda,|"|ouy".
Such plots are useful for visualizing diagnostic data, e.g., distinguishing
groups of individuals according to expression profiles. Alter et al. used such

? A cluster center is the average position of the points in a cluster.

5. Singular Value Decomposition and Principal Component Analysis 103

a technique to visualize cell-cycle assays (Alter et al., 2000), and were able
to associate individual assays with different phases of the cell cycle.

2.2 Detection of weak expression patterns

As noise levels in the data increase, it is increasingly difficult to obtain
separation of gene groups in scatter plots. In such cases SVD may still be
able to detect weak patterns in the data that may be associated with
biological effects. In this respect SVD and related methods provide
information that is unique among commonly used analysis methods. To
demonstrate this type of analysis, we generated a data matrix using two
kinds of transcriptional response: 1,000 genes exhibiting a sine pattern,
sin(2nt/140), with added noise sampled from a normal distribution of zero
mean and standard deviation 1.5; and 1,000 genes with just noise sampled
from the same distribution. Upon application of SVD, we find that the first
eigengene shows a coherent sine pattern (Figure 5.6a). The second
eigengene is dominated by high-frequency components that can only come
from the noise (Figure 5.6b), and the singular value spectrum has an elbow
after the first singular value (Figure 5.6¢), suggesting (as we know a priori)
that there is only one interesting signal in the data. Even though the SVD
detected the cyclic pattern in the first eigengene (Figure 5.6a), the sine wave
and noise-only genes are not clearly separated in the SVD eigengene
projection scatter plot (Figure 5.6d).

2.3 Examples from the literature

Cell-cycle gene expression data display strikingly simple patterns when
analyzed using SVD. Two different SVD studies have found cyclic patterns
in cell-cycle data (Alter et al., 2000; Holter et al., 2000). In correlation
scatter plots, previously identified cell cycle genes tended to plot towards the
perimeter of a disc. Alter et al. used information in SVD correlation scatter
plots to obtain a result that 641 of the 784 cell-cycle genes identified in
(Spellman et al., 1998) are associated with the first two eigengenes. Holter et
al. displayed previously identified cell-cycle gene clusters in scatter plots,
revealing that cell-cycle genes were relatively uniformly distributed in a
ring-like feature around the perimeter, leading Holter et al. to suggest that
cell-cycle gene regulation may be a more continuous process than had been
implied by the previous application of clustering algorithms.

104 Chapter 5

a) b)

o4
J
'|
!
d
|
2

(-]
(-]
= °\ O/ o :;
~N | -
L Y o/ ?
- o/ 0, \
G St r——r—— T T &y T T T Y T p—
9 20 40 60 B0 100 120 0 X 4 e 80 100 (20
fime {min) tme (min)
o) d)
8 2]' w P b [
g E 5 ' .__. . °
; §.] il
2 ——
y 3 n A Py
= =) J ! § + tine & nolsa
g— = e = — — T T T — T
= -5 0 5 10 15
component projection on 1

Figure 5.6. SVD-based detection of weak signals. a) A plot of the first eigengene shows the
structure of the weak sine wave signal that contributes to the transcriptional response for half
of the genes. b) The second eigengene resembles noise. ¢) A relative variance plot for the first
six singular values shows an elbow after the first singular value. d) The signal and noise genes
are not separated in an scatter plot of 150 of the signal genes, and 150 of the noise-only genes.

Raychaudhuri et al.’s study of yeast sporulation time series data
(Raychaudhuri et al., 2000) is an early example of application of PCA to
microarray analysis. In this study, over 90% of the variance in the data was
explained by the first two components of the PCA. The first principal
component contained a strong steady-state signal. Projection scatter plots
were used in an attempt to visualize previously identified gene groups, and
to look for structures in the data that would indicate separation of genes into
groups. No clear structures were visible that indicated any separation of
genes in scatter plots. Holter et al.’s more recent SVD analysis of yeast
sporulation data (Holter et al., 2000) made use of a different pre-processing
scheme from that of Raychaudhuri et al. The crucial difference is that the
rows and columns of X in Holter et al.’s study were iteratively centered and
normalized. In Holter et al.’s analysis, the first two eigengenes were found to
account for over 60% of the variance for yeast sporulation data. The first two
eigengenes were significantly different from those of Raychaudhuri et al.,
with no steady-state signal, and, most notably, structure indicating separation

5. Singular Value Decomposition and Principal Component Analysis 105

of gene groups was visible in the data. Below we discuss the discrepancy
between these analyses of yeast sporulation data.

3. DISCUSSION

Selection of an appropriate pre-processing method for gene expression
analysis is critical. By inspecting the SVD, one can evaluate different pre-
processing choices by gaining insight into, e.g., separability in scatter plots.
The utility of SVD itself, however, depends on the choice of pre-processing,
as the apparent discrepancy between the sporulation analyses described in
Section 2.3 illustrates. While structure was revealed in yeast sporulation data
using the SVD on centered, normalized data (Holter et al, 2000), structure
was not visible using SVD on the original data (Raychaudhuri et al., 2000),
where the first component accounted for the steady-state gene expression
levels. The decision of how to pre-process the data should always be made
based on the statistics of the data, what questions are being asked, and what
analysis methods are being used. As an example, performing a centering of
gene transcriptional responses for time series data is often sensible because
we are typically more interested in how a gene’s transcriptional response
varies over time than we are in its steady-state expression level.

An important capability distinguishing SVD and related methods from
other analysis methods is the ability to detect weak signals in the data. Even
when the structure of the data does not allow clustering, it may be possible to
detect biologically meaningful patterns in the data. In Section 2.2 we have
given an example of this phenomenon using synthetic data. As a practical
example, it may be possible to detect whether the expression profile of a
tissue culture changes with radiation dose, even when it is not possible to
detect which specific genes change expression in response to radiation dose.

SVD allows us to obtain the true dimensionality of our data, which is the
rank r of matrix X. As the number of genes m is generally (at least presently)
greater than the number of assays n, the matrix V' generally yields a
representation of the assay expression profiles using a reduced number of
variables. When r < n, the matrix U yields a representation of the gene
transcriptional responses using a reduced number of variables. Although this
property of the SVD is commonly referred to as dimensionality reduction,
we note that any reconstruction of the original data requires generation of an
m x n matrix, and thus requires a mapping that involves all of the original
dimensions. Given the noise present in real data, in practice the rank of
matrix X will always be n, leading to no dimensionality reduction for the
gene transcriptional responses. It may be possible to detect the “true” rank r
by ignoring selected components, thereby reducing the number of variables
required to represent the gene transcriptional responses. As discussed above,

106 Chapter 5

existing SVD-based methods for pre-processing based on this kind of feature
selection must be used with caution.

Current thoughts about use of SVD/PCA for gene expression analysis
often include application of SVD as pre-processing for clustering. Yeung
and Ruzzo have characterized the effectiveness of gene clustering both with
and without pre-processing using PCA (Yeung and Ruzzo, 2001). The pre-
processing consisted of using PCA to select only the highest-variance
principal components, thereby choosing a reduced number of variables for
each gene’s transcriptional response. The reduced variable sets were used as
inputs to clustering algorithms. Better performance was observed without
pre-processing for the tested algorithms and the data used, and the authors
generally recommend against using PCA as a pre-processing step for
clustering. The sole focus on gene clustering, however, in addition to the
narrow scope of the tested algorithms and data, limit the implications of the
results of this study. For example, when grouping assays is of interest, using
{Sa;} instead of {a;} (see Section2; Figure 5.1) enables use of a
significantly reduced number of variables (r vs. m) that account for all of the
structure in the distribution of assays. Use of the reduced variable set for
clustering must therefore result in not only decreased compute time, but also
clusters of equal or higher quality. Thus the results in (Yeung and Ruzzo,
2001) for gene clustering do not apply to assay clustering.

In Section 2.3 we discuss how, rather than separating into well-defined
groups, cell-cycle genes tend to be more continuously distributed in SVD
projections. For instance, when plotting the correlations of genes with the
first two right singular vectors, cell-cycle genes appear to be relatively
uniformly distributed about a ring. This structure suggests that, rather than
using a classification method that groups genes according to their co-
location in the neighborhood of a point (e.g., k-means clustering), one should
choose a classification method appropriate for dealing with ring-like
distributions. Previous cell-cycle analyses therefore illustrate the fact that
one important use of SVD is to aid in selection of appropriate classification
methods by investigation of the dimensionality of the data.

In this chapter we have concentrated on conveying a general
understanding of the application of SVD analysis to gene expression data.
Here we briefly mention several specific SVD-based methods that have been
published for use in gene expression analysis. For gene grouping, the gene
shaving algorithm (Hastie et al., 2000) and SVDMAN (Wall et al., 2001) are
available. An important feature to note about both gene shaving and
SVDMAN is that each gene may be a member of more than one group. For
evaluation of data, SVDMAN uses SVD-based interpolation of deleted data
to detect sampling problems when the assays correspond to a sampling of an
ordinal or continuous variable (e.g., time series data). A program called

5. Singular Value Decomposition and Principal Component Analysis 107

SVDimpute (Troyanskaya et al., 2001) implements an SVD-based algorithm
for imputing missing values in gene expression data. Holter et al. have
developed an SVD-based method for analysis of time series expression data
(Holter et al., 2001). The algorithm estimates a time translation matrix that
describes evolution of the expression data in a linear model. Yeung et al.
have also made use of SVD in a method for reverse engineering linearly
coupled models of gene networks (Yeung et al., 2002).

It is important to note that application of SVD and PCA to gene
expression analysis is relatively recent, and that methods are currently
evolving. Presently, gene expression analysis in general tends to consist of
iterative applications of interactively performed analysis methods. The
detailed path of any given analysis depends on what specific scientific
questions are being addressed. As new inventions emerge, and further
techniques and insights are obtained from other disciplines, we mark
progress towards the goal of an integrated, theoretically sound approach to
gene expression analysis.

4. FURTHER READING AND RESOURCES

The book (Jolliffe, 1986) is a fairly comprehensive reference on PCA (a new
edition is meant to appear in summer of 2002); it gives interpretations of
PCA and provides many example applications, with connections to and
distinctions from other techniques such as correspondence analysis and
factor analysis. For more details on the mathematics and computation of
SVD, good references are (Golub and Van Loan, 1996), (Strang, 1998),
(Berry, 1992), and (Jessup and Sorensen, 1994). SVDPACKC has been
developed to compute the SVD algorithm (Berry et al., 1993). SVD is used
in the solution of unconstrained linear least squares problems, matrix rank
estimation, and canonical correlation analysis (Berry, 1992).

Applications of PCA and/or SVD to gene expression data have been
published in (Alter et al., 2000; Hastie et al., 2000; Holter et al., 2000; Holter
et al., 2001; Raychaudhuri et al., 2000; Troyanskaya et al., 2001; Wall et al.,
2001; Yeung and Ruzzo, 2001; Yeung et al., 2002). SVDMAN is free
software available at http://home.lanl.gov/svdman. Knudsen illustrates some
of the uses of PCA for visualization of gene expression data (Knudsen,
2002).

Everitt, Landau and Leese (Everitt et al., 2001) present PCA as a special
case of Projection Pursuit (Friedman and Tukey, 1974), which in general
attempts to find an “interesting projection” for the data. A related method is
Independent Component Analysis (ICA) (Hyvérinen, 1999), which attempts
to find a linear transformation (non-linear generalizations are possible) of the
data so that the derived components are as statistically independent from

108 Chapter 5

each other as possible. Hyvirinen discusses ICA and how it relates to PCA
and Projection Pursuit (Hyvirinen, 1999). Liebermeister has applied ICA to
gene expression data (Liebermeister, 2002).

Other related techniques are Multidimensional Scaling (Borg and
Groenen, 1997) and Self-Organizing Maps (SOM) (Kohonen, 2001), both of
which use non-linear mappings of the data to find lower-dimensional
representations. SOM’s have been applied to gene expression data in
(Tamayo et al., 1999). There are also non-linear generalizations of PCA
(Jolliffe, 1986; Scholkopf et al., 1996).

ACKNOWLEDGMENTS

We gratefully acknowledge Raphael Gottardo and Kevin Vixie for critically
reading the manuscript. The writing of this chapter was performed within the
auspices of the Department of Energy (DOE) under contract to the
University of California, and was supported by Laboratory-Directed
Research and Development at Los Alamos National Laboratory,

REFERENCES

Alter O., Brown P.O., Botstein D. (2000). Singular value decomposition for genome-wide
expression data processing and modeling. Proc Natl Acad Sci 97:10101-06.

Berry M.W. (1992). Large-scale sparse singular value computations. International Journal of
Supercomputer Applications 6:13-49.

Berry MW, Do T., Obrien G.W., Krishna V., Varadhan S. (1993). SVDPACKC: Version 1.0
User's Guide, Knoxville: University of Tennessee.

Berry M.W., Dumais S.T., Obrien G.W. (1995). Using linear algebra for intelligent
information-retrieval. Siam Review 37:573-95,

Borg I, Groenen P. (1997). Modern Multidimensional Scaling: Theory and Applications.
New York: Springer Verlag.

Cattell R.B. (1966). The scree test for the number of factors. Multivariate Behavioral
Research 1:245-76.

Cho R.J., Campbell M.J., Winzeler E.A., Steinmetz L., Conway A., Wodicka L. et al. (1998).
A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65-73.

Deprettere F. (1988). SVD and Signal Processing: Algorithms, Analysis and Applications.
Amsterdam: Elsevier Science Publishers.

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci 95:14863-68.

Everitt B.S., Dunn G. (2001). Applied Multivariate Data Analysis. London: Arnold.
Everitt S.E., Landau S., Leese M. (2001). Cluster Analysis. London: Arnold.

Friedman J.H., Tukey J.W. (1974). A projection pursuit algorithm for exploratory data
analysis, IEEE Transactions on Computers 23:881-89.

Golub G., Van Loan C. (1996). Matrix Computations. Baltimore: Johns Hopkins Univ Press.

5. Singular Value Decomposition and Principal Component Analysis 109

Hastie T., Tibshirani R., Eisen M.B., Alizadeh A., Levy R., Staudt L. et al. (2000). “Gene
shaving” as a method for identifying distinct sets of genes with similar expression patterns.
Genome Biol 1:research0003.1-03.21.

Holter N.S., Mitra M., Maritan A., Cieplak M., Banavar J.R., Fedoroff N.V. (2000).
Fundamental patterns underlying gene expression profiles: simplicity from complexity.
Proc Natl Acad Sci 97:8409-14.

Holter N.S., Maritan A., Cieplak M., Fedoroff N.V., Banavar J.R. (2001). Dynamic modeling
of gene expression data. Proc Natl Acad Sci 98:1693-98.

Hughes T.R., Marton M.J., Jones AR., Roberts C.J., Stoughton R., Armour C.D. et al. (2000).
Functional discovery via a compendium of expression profiles. Cell 102:109-26.

Hyvarinen (1999). A. Survey on Independent Component Analysis. Neural Computing
Surveys 2:94-128.

Jessup ER., Sorensen D.C. (1994). A parallel algorithm for computing the singular-value
decomposition of a matrix. Siam Journal on Matrix Analysis and Applications 15:530-48.

Jolliffe LT. (1986). Principal Component Analysis. New York: Springer.

Kanji G.K. (1993). 100 Statistical Tests. New Delhi: Sage.

Knudsen S. (2002). A Biologist's Guide to Analysis of DNA Microarray Data. New York:
John Wiley & Sons.

Kohonen T. (2001). Self-Organizing Maps. Berlin: Springer-Verlag.

Liebermeister W. (2002). Linear modes of gene expression determined by independent
component analysis. Bioinformatics 18:51-60.

Raychaudhuri S., Stuart J.M., Altman R.B. (2000). Principal components analysis to
summarize microarray experiments: application to sporulation time series. Pac Symp
Biocomput 2000:455-66.

Richards J.A. (1993). Remote Sensing Digital Image Analysis. New York: Springer-Verlag.

Scholkopf B., Smola A.J., Muller K.-R. (1996). “Nonlinear component analysis as a kernel
eigenvalue problem” Technical Report. Tuebingen: Max-Planck-Institut fur biologische
Kybernetik.

Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B. et al. (1998).
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol Biol Cell 9:3273-97.

Strang G. (1998). Introduction to Linear Algebra. Wellesley, MA: Wellesley Cambridge
Press.

Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E. et al. (1999).
Interpreting patterns of gene expression with self-organizing maps: methods and
application to hematopoietic differentiation. Proc Natl Acad Sci 96:2907-12.

Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R. et al. (2001).
Missing value estimation methods for DNA microarrays. Bioinformatics 17:520-25.

Wall ME., Dyck P.A., Brettin TS. (2001). SVDMAN - singular value decomposition
analysis of microarray data. Bioinformatics 17:566-68.

Yeung K.Y., Ruzzo W.L. (2001). Principal component analysis for clustering gene expression
data. Bioinformatics 17:763-74.

Yeung M.K., Tegner J., Collins J.J. (2002). Reverse engineering gene networks using singular
value decomposition and robust regression. Proc Natl Acad Sci 99:6163-68.

Chapter 6

FEATURE SELECTION IN MICROARRAY
ANALYSIS

Eric P. Xing

Computer Science Division, University of California, Berkeley, USA
e-mail: epxing@cs.berkeley.edu

1. INTRODUCTION

Microarray technology makes it possible to put the probes for the genes of
an entire genome onto a chip, such that each data point provided by an
experimenter lies in the high-dimensional space defined by the size of the
genome under investigation. However, the sample size in these experiments
is often severely limited. For example, in the popular leukemia microarray
data set,' there are only 72 observations of the expression levels of each of
7,130 genes. This problem exemplifies a situation that will be increasingly
common in the analysis of microarray data using machine learning
techniques such as classification or clustering.

In high-dimensional problems such as these, feature selection methods
are essential if the investigator is to make sense of his/her data, particularly
if the goal of the study is to identify genes whose expression patterns have
meaningful biological relationships to the classification or clustering
problem. For example, for a microarray classification problem, it is of great
clinical and mechanistic interest to identify those genes that directly
contribute to the phenotype or symptom that we are trying to predict.
Computational constraints can also impose important limitations. Many
induction methods® suffer from the curse of dimensionality, that is, the time

! We use the leukemia microarray profile from the Whitehead Institute (Golub et al., 1999) as
our running example in this chapter.

2 Induction (or inductive inference, inductive learning) refers to the following learning task:
given a collection of examples(x,f(x)), find a function % that approximates f. The function
h is called a hypothesis.

6. Feature Selection in Microarray Analysis 111

required for an algorithm grows dramatically, sometimes exponentially with
the number of features involved, rendering the algorithm intractable in
extremely high-dimensional problems we are facing with microarray data.
Furthermore, a large number of features inevitably lead to a complex
hypothesis and a large number of parameters for model induction or density
estimation, which can result in serious overfitting over small data sets and
thus a poor bound on generalization error.(Indeed we may never be able to
obtain a “sufficiently large” data set. For example, theoretical and
experimental results suggest that the number of training examples needed for
a classifier to reach a given accuracy, or sample complexity, grows
exponentially with the number of irrelevant features.)

The goal of feature selection is to select relevant features and eliminate
irrelevant ones. This can be achieved by either explicitly looking for a good
subset of features, or by assigning all features appropriate weights. Explicit
feature selection is generally most natural when the result is intended to be
understood by humans or fed into different induction algorithms. Feature
weighting, on the other hand, is more directly motivated by pure modeling or
performance concerns. The weighting process is usually an integral part of
the induction algorithm and the weights often come out as a byproduct of the
learned hypothesis.

In this chapter, we survey several important feature selection techniques
developed in the classic supervised learning paradigm. We will first
introduce the classic filter and wrapper approaches and some recent variants
for explicit feature selection. Then we discuss several feature weighting
techniques including WINNOW and Bayesian feature selection. We also
include a brief section describing recent works on feature selection in the
unsupervised learning paradigm, which will be useful for clustering analysis
in the high-dimensional gene space.

Before proceeding, we should clarify the scope of this survey. There has
been substantial work on feature selection in machine learning, pattern
recognition and statistics. Due to space limit and the practical nature of this
book, we refrain from detailed formal discussions and focus more on
algorithmic solutions for practical problems from a machine learning
perspective. Readers can follow the references of this chapter for more
theoretical details and examples of the techniques introduced in this chapter.

2. EXPLICIT FEATURE SELECTION

In explicit feature selection, we look for the subset of features that leads to
optimal performance in our learning task, such as classifying biological
samples according to their mRNA expression profiles.

112 Chapter 6

Explicit feature selection can be formulated as a heuristic search problem,
with each state in the search space specifying a specific subset of features
(Blum and Langley, 1997). Any feature selection algorithm needs to deal
with the following four issues which determine the nature of the heuristic
search process: 1) How to start the search. One can either begin with an
empty set and successively add features (forward selection) or start with all
features and successively discard them (backward elimination) or other
variations in between. 2) How to explore the search space. Popular strategies
include a hill-climbing type of greedy scheme or a more exhaustive best-first
search. 3) How to evaluate a feature subset. A common metric involves the
degree of consistency of a feature with the target concept (e.g., sample
labels) in the training data; more sophisticated criteria concern how selected
features interact with specific induction algorithms. 4) When to stop the
search. Depending on which search and evaluation scheme is used, one can
use thresholding or a significance test, or simply stop when performance
stops improving. It should be clear that all the above design decisions must
be made for a feature selection procedure, which leaves practitioners
substantial freedom in designing their algorithms.

2.1 The Filter Methods

The filter model relies on general characteristics of the training data to select
a feature subset, doing so without reference to the learning algorithm. Filter
strategies range from sequentially evaluating each feature based on simple
statistics from the empirical distribution of the training data to using an
embedded learning algorithm (independent of the induction algorithm that
uses its output) to produce a feature subset.

2.1.1 Discretization and Discriminability Assessment of Features

The measurements we obtained from microarrays are continuous values. In
many situations in functional annotation (e.g., constructing regulatory
networks) or data analysis (e.g. the information-theoretic-based filter
technique we will discuss later), however, it is convenient to assume discrete
values, One way to achieve this is to deduce the functional states of the
genes based on their observed measurements.

A widely adopted empirical assumption about the activity of genes, and
hence their expression, is that they generally assume distinct functional
states such as “on” or “off”. (We assume binary states for simplicity but
generalization to more states is straightforward.) The combination of such
binary patterns from multiple genes determines the sample phenotype. For
concreteness, consider a particular gene i (feature F;). Suppose that the
expression levels of F; in those samples where F,is in the “on” state can be

6. Feature Selection in Microarray Analysis 113

modeled by a probability distribution, such as a Gaussian distribution
N(x| ty, 01) where 2 and o are the mean and standard deviation. Similarly,
another Gaussian distribution N(x | f&,) can be assumed to model the
expression levels of F;in those samples where F; is in the “off” state. Given
the above assumptions, the marginal probability of any given expression
level x; of gene i can be modeled by a weighted sum of the two Gaussian
probability functions corresponding to the two functional states of this gene
(where the weights 752 correspond to the prior probabilities of gene i being
in the on/off states):

P(x)=mN(x; | py,0) +7,N(x, | 14y, 0,) 6.1)

Such a model is called a univariate mixture model with two components
(which includes the degenerate case of a single component when either of
the weights is zero). The histogram in Figure 6.1a gives the empirical
marginal of gene 109, which clearly demonstrates the case of a two-
component mixture distribution of the expression levels of this gene in the
72 leukemia samples (which indicates this gene can be either 'on' or 'off’ in
these samples), whereas Figure 6.1b is an example of a nearly uni-
component distribution (which indicates that gene 1902 remains in the same
functional state in all the 72 samples).

gene 109 gene 1802

— e ——

-1 -0.5 (1] 0.5 1 -1 -0.5 0 05 i

Figure 6.1, The histograms and estimated density functions of the expression profiles of two
representative genes. The x-axes represent the normalized expression level.

For feature selection, if the underlying binary state of the gene does not
vary between the two classes, then the gene is not discriminative for the
classification problem and should be discarded. This suggests a heuristic
procedure in which we measure the separability of the mixture components
as an assay of the discriminability of the feature.

Given N microarray experiments for which gene i is measured in each
experiment, the complete likelihood of all observations X; = {xij..., x5} and
their corresponding state indicator Z; = {zy..., Zm) is:

114 Chapter 6

Vo 2 27
2100 =TT 1([iezesof- 5241 o

n=l k=0

Random variable z,; € {0, 1} indicates the underlying state of gene i in
sample n (we omit sample index n in the subscript in the later presentation
for simplicity) and is usually latent. We can fit the model parameters using
the EM algorithm (Dempster et al., 1977). The solid curves in Figure 6.1(a)
depict the density functions of the two Gaussian components fitted on the
observed expression levels of gene 109. The curve in Figure 6.1(b) is the
density of the single-component Gaussian distribution fitted on gene 1902.
Note that each feature F; is fitted independently based on its measurements
in all N microarray experiments.

Suppose we define a decision d(F;) on feature F; to be O if the posterior
probability of {z; =0} is greater than 0.5 under the mixture model, and let
d(F)) equal 1 otherwise. We can define a mixture-overlap probability:

E=P(z,=0)P(d(F)=1|z,=0)+P(z, =1)P(d(F)=0| z, =1). (6.3)

If the mixture model were a true representation of the probability of gene
expression, then £ would represent the Bayes error of classification under
this model (which equals to the area indicated by the arrow in Figure 6.1 (a).
We can use this probability as a heuristic surrogate for the discriminating
potential of the gene.

The mixture model can be used as a quantizer, allowing us to discretize
the measurements for a given feature. We can simply replace the continuous
measurement f; with the associated binary value d(f)).

212 Correlation-based Feature Ranking

The information gain is commonly used as a surrogate for approximating a
conditional distribution in the classification setting (Cover and Thomas,
1991). Let the class labels induce a reference partition S§j,..., S¢ (e.g.
different types of cancers). Let the probability of this partition be the
empirical proportions: P(T) = |T]/|S| for any subset T. Suppose a test on
feature F; induces a partition of the training set into Ej,..., Ex. Let
P(S.|E,)=P(S,NE,)/P(E,). We define the information gain due to F,
with respect to the reference partition as:

K
lg =H(P(S,),... P(S;)) —z P(E)H(P(S,|E,),...P(S. | E,)) 6.4)
k=1

6. Feature Selection in Microarray Analysis 115

where H is the entropy function.” To calculate the information gain, we need
to quantize the values of the features. This is achieved to the mixture model
quantization discussed earlier. Back to the leukemia example: quantization
of all the 72 measurement of gene 109 results in 36 samples in the “on” state
(of which 20 are of type I leukemia and 16 type II) and 36 samples in the
“oft” state (27 type I and 9 type II). According to Equation 64, the
information gain induced by gene 109 with respect to the original sample
partition (47 type I and 25 type II) is:

I, (Fop) = H (&, 3) — (H (33,39 + 3 H (5,3)) = 0.0304.

The information gain reveals the degree of relevance of a feature to the
reference partition. The greater the information gain, the more relevant the
feature is to the reference partition.

2.1.3 Markov Blanket Filtering

If we have a large number of similar or redundant genes in a data set, all of
them will score similarly in information gain.* This will cause undesirable
dominance of the resulting classifier by a few gene families whose members
have coherent expression patterns, or even by a group of replicates of genes.
This will seriously compromise the predictive power of the classifier. To
alleviate this problem, we turn to Markov blanket filtering, a technique due
to Koller and Sahami (1996), which can screen out redundant features.

Let G be a subset of the overall feature set F. Let fg denote the projection
of f onto the variables in G. Markov blanket filtering aims to minimize the
discrepancy between the conditional distributions P(C|F=f) and
P(C| G =f5), as measured by a conditional entropy:

Ag =2 PE)D(P(C|F=£)||P(C|G = f,)) (6.5)
f

where

D(P|| @)= P(x)log(P(x)/Q(x))

is the Kullback-Leibler divergence. The goal is to find a small set G for
which Ag is small.

3 For discrete cases, the entropy of distribution {Py,..., P.} is givenby H = z;]—P, log P, .

* Such situations could either arise from true functional redundancy, or result from artifacts of
the microarray (e.g., the probe of a particular gene is accidentally spotted & times and
appears as k “similar genes” to a user who is unaware of the erroneous manufacturing
process).

116 Chapter 6

Intuitively, if a feature F; is conditionally independent of the class label
given some small subset of other features, then we should be able to omit F;
without compromising the accuracy of class prediction. Koller and Sahami
formalize this idea using the notion of a Markov blanket.

Definition 6.1: Markov blanket

For a feature set G and class label C, the set M;c G (F;g¢ M) is a
Markov blanket of F; (F; € G) if: given M;, F; is conditionally independent
of G~-M,;—{F;} and C.

Biologically speaking, one can view the Markov blanket M; of gene i as a
subset of genes that exhibit similar expression patterns as gene i in all the
samples under investigation. Such a subset could correspond to genes of
isozymes, coregulated genes, or even (erroneous) experimental/manufactural
replicates of probes of the same gene in an array.

Theoretically, it can be shown that once we find a Markov blanket of
feature F; in a feature set G, we can safely remove F; from G without
increasing the divergence from the desired distribution (Xing et al., 2001).
Furthermore, in a sequential filtering process in which unnecessary features
are removed one by one, a feature tagged as unnecessary based on the
existence of a Markov blanket M, remains unnecessary in later stages when
more features have been removed (Koller and Sahami, 1996).

In most cases, however, few if any features will have a Markov blanket
of limited size. Hence, we must instead look for features that have an
“approximate Markov blanket”. For this purpose we define

A(FIM)= Y} PM = fy,F, = f)
hahi (6.6)
D(P(C|M = fy, F, =)| P(C|M = f,))

If M is a Markov blanket for Fj, then A(F;|M)=0 (following the
definition of Markov blanket), which means all information carried by F;
about the sample is also carried by feature subset M. Since an exact zero is
unlikely to occur, we relax the condition and seek a setM such that
A(F;|M) is small. It can be proved that those features that form an
approximate Markov blanket of feature F; are most likely to be more
strongly correlated to F;, We can construct a candidate Markov blanket of F;
by collecting the k features that have the highest correlations (defined by the
Pearson correlations between the originalfeature vectors that are not
discretized) with F;, where k is a small integer. This suggests an easy
heuristic way to search for features with approximate Markov blankets
(Koller and Sahami, 1996):

6. Feature Selection in Microarray Analysis 117

Initialize
- G=F
Iterate
- Por each feature F,e G, let M; be the set of k features
F;je G - [F;} for which the correlations between F; and F; are the
highest.
- Compute A(F,; | M) for each i.
- Choose the i that minimizes A(F; | M,), and define G =G - {F}}.

Figure 6.3. The Markov blanket filtering algorithm.

This heuristic method requires computation of quantities of the form
P(C|M =1y, F;=1) and P(C | M = fy), which can be easily computed using
the discretization technique described in Section 2.1. When working on a
small data set, one should keep the Markov blankets small to avoid
fragmenting the data.” The fact that in a real biological regulatory network
the fan-in and fan-out will generally be small provides some justification for
enforcing small Markov blankets.

Figure 6.2(a) shows the mixture overlap probability € for the genes in the
leukemia data set in ascending order. It can be seen that only a small
percentage of the genes have an overlap probability significantly smaller
than €<« 0.5, where 0.5 would constitute a random guessing under a
Gaussian model if the underlying mixture components were construed as
class labels. Figure 6.2(b) shows the information gain due to each individual
gene with respect to the leukemia cancer labels. Indeed, only a very small
fraction of the genes induce a significant information gain. One can rank all
genes in the order of increasing information gain and select genes
conservatively via a statistical significance test (Ben-Dor et al., 2000).

3 This refers to the situation in which, given small number of samples, one has to estimate, for
example, P(C | M = fy,) for many different possible configurations of f. When M is large,
each [y configuration is seen only in a very small number of samples, making estimation
of the conditional probabilities based on empirical frequency very inaccurate.

118 Chapter 6

Figure 6.2(c) depicts the result of the Markov blanket filtering for the
leukemia data set.

(a)

(M

"% w0 w0 2w 2w a0 a0 40

removal order Index
Figure 6.2. Feature selection using filter methods. (a) Genes ranked by mixture-overlap
probability £ Only 2-state genes (i.e. those whose distributions of expressions in all samples
have two mixture components corresponding to the “on” and “off” states) are displayed. (b)
Genes ranked by their information gains I, with respect to the reference partition induced by
the sample labels. (c) The A(F;| M) of the last 360 genes removed during MB filter. (The x-
axis indexes the inverse removal order of the genes. {x = 1} refers to the gene that is removed
last.)

214 Decision Tree Filtering

A decision tree is itself an induction algorithm and learns a decision rule (a
Boolean function) mapping relevant attributes to the target concept (see also
Chapter 10, Section 4). Since a decision tree typically contains only a subset
of the features, those included in the final tree can be viewed as a relevant
feature subset and fed into another classification algorithm of choice. Thus,
we can use the decision-tree algorithm as an embedded selection scheme
under the filter model.® This approach has worked well for some data sets,
but does not have a guarantee of performance gain on an arbitrary classifier

®If at each tree-growing step, we choose to incorporate the feature whose information gain
with respect to the target concept is the highest among all features not yet in the tree, then
decision tree filtering is in a sense similar to information gain ranking mentioned
previously. However, general decision tree learning algorithm can also use other criteria to
choose qualified features (e.g., classification performance of the intermediate tree resulted
from addition of one more feature), and usually a learned tree needs to be pruned and
cross-validated. These differences distinguish decision tree filtering from information gain
ranking.

6. Feature Selection in Microarray Analysis 119

since features that are good for a decision tree are not necessarily useful in
other models. Essentially, a decision tree is itself a classifier (or an
hypothesis), the features admitted to the leamed tree inevitably bears
inductive bias.” For high-dimensional microarray data, current methods of
building decision trees may also suffer from data fragmentation and lack of
sufficient samples. These shortcomings will result in a feature subset of
possibly insufficient size. Nevertheless, if users have a strong prior belief
that only a small number of genes are involved in a biological process of
his/her interest, decision tree filtering could be a highly efficient way to pick
them out.

2.2 The Wrapper Methods

The wrapper model makes use of the algorithm that will be used to build the
final classifier to select a feature subset. Thus, given a classifier C, and given
a set of features F, a wrapper method searches in the space of subsets of F,
using cross-validation to compare the performance of the trained classifier C
on each tested subset, While the wrapper model tends to be more
computationally expensive, it also tends to find feature sets better suited to
the inductive biases of the learning algorithm and tends to give superior
performance.

A key issue of the wrapper methods is how to search the space of subsets
of features. Note that when performing the search, enumeration over all 2"
possible feature sets is usually intractable for the high-dimensional problems
in microarray analysis. There is no known algorithm for otherwise
performing this optimization tractably. Indeed, the feature selection problem
in general is NP-hard®, but much work over recent years has developed a
large number of heuristics for performing this search efficiently. A thorough
review on search heuristics can be found in (Russel and Norvig, 1995).

It is convenient to view the search process as building up a search tree
that is superimposed over the state space (which, in our case, means each
node in the tree corresponds to a particular feature subset, and adjacent
nodes correspond to two feature subsets that differ by one feature). The root
of this tree is the initial feature set which could be full, empty, or randomly
chosen. At each search step, the search algorithm chooses one leaf node in
the tree to expand by applying an operator (i.e. adding, removing, or

7 Any preference for one hypothesis over another, beyond mere consistency with the
examples, is called an inductive bias. For example, over many possible decision trees that
are consistent with all training examples, the learning algorithm may prefer the smallest
one, but the features included in such a tree may be insufficient for obtaining a good
classifier of another type, e.g., support vector machines.

Y NP stands for nondeterministic polynomial(time). In short, the NP-hard problems are a class
of problems for which no polynomial-time solution is known.

120 Chapter 6

replacing one of the features) to the feature subset corresponding to the node
to produce a child. The first two search strategies described in the following
can be best understood in this way.

22.1 Hill-Climbing Search

Hill-climbing search is one of the simplest search techniques also known as
greedy search or steepest ascent. In fact, to perform this search one does not
even need to maintain a search tree because all the algorithm does is to make
the locally best changes to the feature subset. Essentially, it expands the
current node and moves to the child with the highest accuracy based on
cross-validation, terminating when no child improves over the current node.
An important drawback of hill-climbing search is that it tends to suffer from
the presence of local maxima, plateaux and ridges of the value surface of the
evaluation function. Simulated annealing (occasionally picking a random
expansion) provides a way to escape possible sub-optimality.

2.2.2 Best-First Search

Best-first search is a more robust search strategy than the hill-climbing
search. Basically, it chooses to expand the best-valued leaf that has been
generated so far in the search tree (for this purpose we need to maintain a
record of the search tree to provide us the tree frontier). To explore the state
space more thoroughly, we do not stop immediately when node values stop
increasing, but keep on expanding the tree until no improvement (within &€
error) is found over the last k expansions.

2.2.3 Probabilistic Search

For large search problems, it is desirable to concentrate the search in the
regions of the search space that has appeared promising in the past yet still
allow sufficient chance of exploration (in contrast to the greedy methods). A
possible way to do so is to sample from a distribution of only the front-
runners of the previously seen feature combinations. Define a random
variable z € {0, 1}": a string of n bits that indicates whether each of the n
features is relevant. We can hypothesize a parametric probabilistic model,
for example, a dependence tree or even a more elaborated Bayesian network,
for random variable z and learn its distribution via an incremental procedure.
A dependence tree model is of the following form:

p(2)= p(z)[| p(zi| 2) 6.7)

i#r
where 2, is the root node and 7; indexes the parent of node i. This tree
should be distinguished from the search tree we mentioned earlier where a
node represents a feature subset and the size of the tree grows during search

6. Feature Selection in Microarray Analysis 121

up to 2". In a dependence tree each node corresponds to an indicator random
variable concerning the inclusion or exclusion of a particular feature, and the
size of the tree is fixed. Any particular composition of feature subset we may
select is a sample from the distribution determined by this tree. Given a
collection of previously tested feature subsets, we can use the Chow-Liu
algorithm (Chow and Liu, 1968) to find the optimal tree model that fits the
data (in the sense of maximizing the likelihood of the tested instances).’
Then given the tree model, we can apply a depth first tree-traversal'® that
allows candidate feature subsets to be sampled from a concentrated subspace
that is more likely to contain good solutions than mere random search.
Figure 64 gives the pseudo-code of dependence-tree search. A detailed
example of this algorithm can be found in (Baluja and Davies, 1997).

Initialize
- Generate N random bit-strings as candidate feature subsets
Iterate

- Evaluate each of the N candidate feature subsets by training the
classifier on each feature subset and cross-validating.

- Collect the aV top-performing feature subsets (bit-strings), use
them to update (with decay factor /) all pairwise mutual
information between each pair of bits in the bit-string.

- Generate a maximum spanning tree for the bit-strings using
Kruskal's algorithm .

- Generate N bit-strings based on joint probabilily encoded by the
dependence tree (using depth first traversal).

if performance converges, end iteration

Figure 6.4, The dependence-tree search algorithm.

2.3 The ORDERED-FS Algorithm

For microarray data which have thousands of features, filter methods have
the key advantage of significantly smaller computational complexity than
wrapper methods. Therefore, these methods have been widely applied in the
analysis of microarray data (Golub et al., 1999; Chow et al., 2002; Dudoit et
al., 2000). But since a wrapper method searches for feature combinations
that minimize classification error of a specific classifier, it can perform

> We skip the details of the Chow-Liu algorithm due to the space limit. Essentially, it
constructs a maximum spanning tree from a complete graph of the feature nodes whose
edges are weighted by the mutual information of the random variables connected by the
edge.

0 A strategy of touching every node in a tree by always visiting the child-node of the current
node before going back to its parent-node and visit a sibling-node.

12 Chapter 6

better than filter algorithms although at the cost of orders of magnitude of
more computation time.

An additional problem with wrapper methods is that the repeated use of
cross-validation on a single data set can potentially cause severe overfitting
for problems with a few samples but very large hypothesis spaces, which is
not uncommon for microarray data. While theoretical results show that
exponentially many data points are needed to provide guarantees of choosing
good feature subsets under the classic wrapper setting (Ng, 1998), Ng has
recently described a generic feature selection methodology, referred to as
ORDERED-FS, which leads to more optimistic conclusions (Ng, 1998). In
this approach, cross-validation is used only to compare between feature
subsets of different cardinality. Ng proves that this approach yields a
generalization error that is upper-bounded by the logarithm of the number of
irrelevant features.

Filter (D = {Xyxu, C))
- Quantize each feature via mixture modeling (MM).
- Rank all features via information gain (1G) filter.
- Pick ! features with highest IG, determine a removal order via
Markov blanket (MB) filter.
Return an order mof the ! features.

Wrapper (D, H, 7)
Fork =1tol
- Train hypothesis h, € H using the best & features.
- Leave-one-out cross-validation on A, compute &.
End
k= arg ming ¢ ¢
Return h,. (optimal hypothesis), K (optimal cardinality)

Figure 6.5. The ORDERED-FS algorithm,

Figure 6.5 presents an algorithmic instantiation of the ORDERED-FS
approach in which filtering methods are used to choose best subsets for a
given cardinality. We can use simple filter methods described earlier to carry
out the major pruning of the hypothesis space, and use cross-validation for
final comparisons to determine the optimal cardinality. This is in essence a
hybrid of a filter and a wrapper method.

In Figure 6.6, we show training set and test set errors observed for the
leukemia data when applying the ORDERED-FS algorithm'' Three different

" The 72 leukemia samples are split into two sets, with 38 (typel / typell =27 /11) serving as
a training set and the remaining 34 (20 /14) as a test set.

6. Feature Selection in Microarray Analysis 123

classifiers: a Gaussian quadratic classifier, a logistic linear classifier and a
nearest neighbor classifier, are used (Xing et al., 2001). For all classifiers,
after an initial coevolving trend of the training and testing curves for low-
dimensional feature spaces, the classifiers quickly overfit the training data.
For the logistic classifier and k-NN, the test error tops out at approximately
20 percent when the entire feature set of 7,130 genes is used. The Gaussian
classifier overfits less severely in the full feature space. For all three
classifiers, the best performance is achieved only in a significantly lower
dimensional feature space.

NN ey = Gaxssian penersive moded 3 logivlic iegrasaion
os s
waning emor WG e [T
it — SN 04 2L L8 — 1
a3 cy a3
t £ 1
inz) L) e sl I“l w—
F;) ‘ T AT, n F!
01 k A \A Xy o1 Iﬂ J s o}l rd_ "k,_I_J
VL L’I" l.\
] " [} [
© @™ & oo 8 100 0 22 4 @ 4@ 10 O 22 4 & &
rumber ol fenkusse ruerter ol Pashosse sumber o) Puaicras

(a) (b) (c)

Figure 6.6. Classification in a sequence of different feature spaces with increasing
dimensionality due to inclusion of gradually less qualified features. (a) Classification using k-
NN classifier; (b) A quadratic Bayesian classifier given by a Gaussian generative model; (c)
A linear classifier obtained from logistic regression, All three classifiers use the same 2-100
genes selected by the three stages of feature filtering.

Figure 6.6 shows that by an optimal choice of the number of features, it is
possible to achieve error rates of 2.9%, 0%, and 0% for the Gaussian
classifier, the logistic regression classifier, and k-NN, respectively. (Note
that due to inductive bias, different types of classifiers admit different
optimal feature subsets.) Of course, in actual diagnostic practice we do not
have the test set available, so these numbers are optimistic. To choose the
number of features in an automatic way, we make use of leave-one-out
cross-validation on the training data.

The results of leave-one-out cross-validation are shown in Figure 6.7.
Note that we have several minima for each of the cross-validation curves.
Breaking ties by choosing the minima having the smallest cardinality, and
running the resulting classifier on the test set, we obtain error rates of 8.8%,
0%, and 5.9% for the Gaussian classifier, the logistic regression classifier,
and k-NN, respectively. The size of the optimal feature subsets determined
hereby for the three classifiers are 6, 8 and 32, respectively.

124 Chapter 6

Woisic repressan

[cmveiion arer]

N e e—

nurfer ol fesluten

(a)

Figure 6.7. Plots of leave-one-out cross-validation error for the three classifiers,

3. FEATURE WEIGHTING

Essentially, feature selection methods search in the combinatorial space of
feature subsets, and pick an optimal subset of relevant' features as input to a
learning algorithm. In contrast, feature weighting applies a weighting
function to features, in effect assigning them a degree of perceived relevance
and thereby performing feature selection implicitly during learning. In the
following, we describe both a classic feature weighting scheme called
WINNOW and a more general-purpose Bayesian learning technique that
integrates feature weighting into the learning. For concreteness, we consider
the generalized linear model (GLIM) for classification, where the input
x € X (i.e. the measurement on the microarray) enters into the model via a
linear combination &= g x and the predictor, for example, the conditional
distribution p(y | x) of the corresponding label y € {0, 1} is characterized by
an exponential family distribution with conditional mean A£), where f is
known as a response function. Many popular classifiers belong to this
family, for example, the logistic regression classifier;

1

-07x

+é

P(y=1|x,0)= (6.8)

31 The WINNOW Algorithm

The WINNOW algorithm is originally designed for learning Boolean
monomials, or more generally, also k&-DNF12 formulas and r-of-k threshold
functions”, from noiseless data (Littlestone, 1988). Under these settings it
enjoys worst-case loss logarithmic in the number of irrelevant features (i.e.

12 A boolean formula is in k-disjunctive normal form (k-DNF) if it is expressed as a OR of
clauses, each of which is the AND of £ literals.

3 For a chosen set of k (k< n)$ variables and a given number r (1 £ r £k}, an r-of-k threshold
function is true if and only if at least r of the k relevant variables are true. The learning
problem arises when both r and are unknown.

6. Feature Selection in Microarray Analysis 125

the error rate is a function of the logarithm of the number of irrelevant
features). For more realistic learning tasks encountered in microarray
analysis, such as building a classifier from training set {(x', y"),..., (**, Y},
we can use the following multiplicative update rule for the weight of feature
j: if the classifier misclassifies an input training vector x' with true label y',
then we update each component j of the weight vector w as:
w, < w,exp(nx;y') 6.9)
where 7 is a learning rate parameter, and the initial weight vector is set to
w;=w;0>0. Where does w appear in the classifier? Back to the GLIM
model, this simply means a slight change of the linear term & in the response
function: E= @ (w e x), where w ¢ x means element-wise product of vectors
w and x.
There are a number of variants of the WINNOW algorithm, such as
normalized WINNOW, balanced WINNOW and large margin WINNOW,
See (Zhang, 2000) and reference therein for more details.

3.2 Bayesian Feature Selection

Bayesian methods for feature selection have a natural appeal, because they
model uncertainties present in the feature selection problems, and allow prior
knowledge to be incorporated. In Bayesian feature selection, each feature is
associated with a selection probability, and the feature selection process
translates into estimating the posterior distribution over the feature-indicator
variables. Irrelevant features quickly receive low albeit non-zero probability
of being selected (Jebara and Jaakkola, 2000). This type of feature selection
(which is carried out jointly with inductive learning) is most beneficial when
the number of training examples is relatively small compared to their
dimensionality.

Again, consider the classification of cancerous and non-cancerous
samples measured on microarrays spanning n genes.

126 Chapter 6

Following the representation introduced in Section 2.2, we can index each of
the possible 2" subsets of features by a random variable z, then the linear
combination term £ in the response function A£) essentially becomes

¢= Z 6,z,x,
=

(which obviates the effect of z; as relevance indicator). Since the
appropriate value of z is unknown, we can model the uncertainty underlying
feature selection by a mixing prior:

P©,0=PO] [P 6.10)
=1

where Py is a (conjugate) prior for the model parameters &, and
P(z)=p/'(1~p)"", (6.11)

where p; controls the overall prior probability of including feature i.
For a training set D = {X, Y}, the marginal posterior distribution P(z | D)
contains the information for feature selection, and the Bayesian optimal
classifier is obtained by calculating;

P(y=11xD)=Y [p(y=11x6)P(6,2] D)d6 (6.12)

For high dimensional problems and complex models we may encounter
in microarray analysis, exact probabilistic computation of the posterior
distribution P(z, 8| X, Y) as well as evaluation of the decision rule is
intractable. Therefore, we need to use approximation techniques. George and
McCulloch presented a detailed study of Markov Chain Monte Carlo
methods such as Gibbs sampler or Metropolis-Hasting algorithm to explore
the posterior distribution (George and McCulloch, 1997). Jebara and
Jaakkola, on the other hand, took a Maximum Entropy Discrimination
approach and derived a closed-form solution of the posterior distribution
P(z, 8| X, Y) for some model families such as logistic regression and support
vector machines (Jebara and Jaakola, 2000).

Recently, Ng and Jordan presented a Voting Gibbs classifier that solves
the Bayesian feature selection problem in a surprisingly simple way (Ng and
Jordan, 2001). Rather than taking Equation 6.11, they use a prior P(8),
assuming that the subset of relevant features is picked randomly according to
the following procedure: first, sample the number r of relevant features
uniformly from {0, 1...., n}; then a bit-string z in which r features are

6. Feature Selection in Microarray Analysis 127

relevant is chosen randomly from one of the ['r'] possible configurations. The

prior P(6) is constrained such that only the feature corresponding to an “on”
bit in z has a non-zero prior. Thus, we have a parameter prior conditioned on
z, Pe(8| z). Then we proceed to the usual Gibbs Voting classifier procedure
where we sample N replicates of parameters 8 from the posterior distribution
p(8| D), followed by N samples of y each from a particular p(y = 1 | x, 6).
Finally, we vote for the result. A notable merit of this algorithm is its high
tolerance to the presence of large number of irrelevant features. Ng and
Jordan proved that their algorithm has sample complexity that is logarithmic
in the number of irrelevant features.

4. FEATURE SELECTION FOR CLUSTERING

Clustering is another important type of analysis for microarray data. In
contrast to classification, in this paradigm (known as unsupervised learning)
a labeled training set is unavailable, and users are supposed to discover
“meaningful” patterns (i.e. the existence of homogeneous groups that may
correspond to particular macroscopic phenotypes such as clinical syndromes
or cancer types) based on intrinsic properties of the data. Since microarrays
usually measure thousands of genes for each sample, clustering a few
hundred samples in such a high dimensional space may fail to yield a
statistically significant pattern.

Eigenvector-based dimensionality reduction techniques such as
Multidimensional Scaling (MDS) (Cox and Cox, 1994) and Principal
Component Analysis (PCA) (Jolliffe, 1989; see Chapter 5 of the present
book) handle this problem by trying to map the data onto a lower-
dimensional space spanned by a small number of “virtual” features (e.g., the
principal eigenvectors of the sample covariance matrix in case of PCA).
However, microarray measurement is usually a highly noisy data source.
Results from matrix stability theory suggest that even small perturbation
may cause the eigenvector methods to pick a different set of eigenvectors
(Ng et al., 2001). Moreover, in methods like PCA, the principal eigenvectors
represent those directions in the original feature space along which data has
the greatest variance, the presence of a few highly variable but not
informative “noisy” genes tends to mislead the algorithm to a wrong set of
discriminative eigenfeatures. Finally, identifiability remains an outstanding
issue. In many situations we would like to explicitly recover genes that
significantly contribute to the sample partition of interest. Eigenvector
methods do not offer a convenient way to do so. (Each eigenvector from
PCA is a linear combination of all the original features, eigenvectors from

128 Chapter 6

the Gram matrix in MDS even lack an explicit connection to the original
features.)

Feature selection under the clustering paradigm is substantially more
difficult than that for classification. The main difficulty lies in the absence of
reference information for evaluating the relevance of features. Before
concluding this chapter, we briefly introduce some of the recent attempts on
this problem.

4.1 Category Utility

In the absence of class labels, one possible measure combining feature
quality with the clustering performance is the average accuracy of predicting
the value of each of the features in the data. The category utility metric is
such a measure (Fisher, 1987). For a partition produced during clustering,
the category utility is calculated as;

1 Ja) 1.J0)

U—-—[ZP(C)ZZP(F % 1C) =YY P(F =x,)"] (6.13)

=l j=1 i=1 j=1

where P(F;=x;|Cy) is the probability of feature F; taking value x;
conditional on class membership C;, and P(F;=x;) is the marginal
probability of feature F, taking value x; in the data set. Replacing the
innermost summations with integration, category utility can be readily
computed in the continuous domain for some distribution models (i.e. the
mixture of two Gaussians we assumed in Section 2.1).

Devaney and Ram proposed a wrapper-like feature selection strategy
using category utility as an evaluation function (Devaney and Ram, 1997).
Essentially, any clustering algorithm can be used to evaluate the candidate
feature subsets produced by a search heuristic based on this metric. The
search terminates when category utility stops improving.

4.2 Entropy-Based Feature Ranking

Dash and Liu made an interesting empirical assumption on the relationship
between the entropy and data distribution: two points belonging to the same
cluster or in two different clusters will contribute less to the total entropy
than if they were uniformly separated. They further reasoned that the former
situation is more likely to happen if the similarity between the two points is
either very high or low (rather than intermediate) (Dash and Liu, 2000).
Then given distance measure (e.g., Euclidean distance or Pearson correlation
computed using the selected features) D;; between point i and j, we can
compute the entropy of a data set as:

6. Feature Selection in Microarray Analysis 129

E= _Z Z (S;,;log$, ; + (1§, Hlog1-S§, ;)) (6.14)

i2j f

where S;; = exp(—aD,;), and «¢is a scaling constant.

Based on this measure, one can rank features sequentially by discarding, one
at a time, the feature whose removal results in minimum £ (computed based
on the remaining features). The optimal cardinality of the feature subset can
be determined by an independent clustering algorithm (similar to the
ORDERED-FS approach). However, the entropy assumption underlying this
measure is only plausible when clusters are well separated and symmetric in
shape. Under less ideal conditions, the performance is likely to break down.

43 The CLICK Algorithm

Xing and Karp proposed a strategy for feature selection in clustering that
goes beyond the purely unsupervised feature evaluation techniques such as
the entropy-based ranking or mixture-overlapping probability ranking (Xing
and Karp, 2001). In their CLICK algorithm, they bootstrap an iterative
feature selection and clustering process by using the most discriminative
subset of features identified by the unsupervised mixture modeling to
generate an initial partition of the samples. This partition is then used as an
approximate reference for supervised feature selection based on information
gain ranking and Markov blanket filtering, and then the algorithm alternates
between computing a new reference partition given the currently selected
features, and selecting a new set of features based on the current reference
partition. It is hoped that at each iteration one can expect to obtain an
approximate partition that is close to the target one, and thus allows the
selection of an approximately good feature subset, which will hopefully
draw the partition even closer to the target partition in the next iteration.

S. CONCLUSION

At a conceptual level, one can divide the task of concept learning into the
subtask of selecting a proper subset of features to use in describing the
concept, and learning a hypothesis based on these features. This directly
leads to a modular design of the learning algorithm which allows flexible
combinations of explicit feature selection methods with model induction
algorithms and sometimes leads to powerful variants. Many recent works,
however, tend to take a more general view of feature selection as part of
model selection and therefore integrate feature selection more closely into
the learning algorithms (i.e. the Bayesian feature selection methods). Feature
selection for clustering is a largely untouched problem, and there has been

130 Chapter 6

little theoretical characterization of the heuristic approaches we described in
the chapter. In summary, although no universal strategy can be prescribed,
for high-dimensional problems frequently encountered in microarray
analysis, feature selection offers a promising suite of techniques to improve
interpretability, performance and computation efficiency in learning.

ACKNOWLEDGMENTS

I thank Professor Richard Karp and Dr. Wei Wu for helpful comments on
the manuscript.

REFERENCES

Baluja S. and Davies S. (1997). Using Optimal Dependency-Trees for Combinatorial
Optimization: Learning the Structure of the Search Space, Proceedings of the Fourteenth
International Conference on Machine Learning.

Ben-Dor A., Friedman N. and Yakhini Z. (2000). Scoring genes for relevance, Agilent
Technologies Technical Report AGL.-2000-19.

Blum A. and Langley P. (1997). Selection of Relevant Features and Examples in Machine
Learning, Artificial Intelligence 97:245-271.

Chow M.L and Liu C. (1968). Approximating discrete probability distribution with
dependency tree, IEEE Transactions on Information Theory 14:462-367.

Chow M.L., Moler EJ., Mian LS. (2002). Identification of marker genes in transcription
profiling data using a mixture of feature relevance experts, Physiological Genomics (in
press).

Cover T. and Thomas J. (1991). Elements of Information Theory, Wiley, New York.

Cox T. and Cox M. (1994). Multidimensional Scaling, Chapman & Hall, London.

Dash M. and Liu H. (2000). Feature Selection for Clustering, PAKDD, 110-121.

Dempster A.P., Laird N.M., Revow M.(1977). Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, B39(1):1-38.

Devaney M. and Ram A. (1997) Efficient feature selection in conceptual clustering,
Proceedings of the Fourteenth International Conference on Machine Learning, Morgan
Kaufmann, San Francisco, CA, 92-97.

Dudoit S., Fridlyand J., Speed T. (2000). Comparison of discrimination methods for the
classification of tumors using gene expression data, Technical report 576, Department of
Statistics, UC Berkeley.

Fisher D. H. (1987). Knowledge Acquisition via Incremental Conceptual Clustering, Machine
Learning 2:139-172.

George E.I. and McCulloch R.E. (1997). Approaches for Bayesian variable selection,
Statistica Sinica 7:339-373.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M., Downing J.R, Caligiuri M.A., Bloomfield CD., Lander ES. (1999). Molecular
Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring, Science 286:531-537.

6. Feature Selection in Microarray Analysis 131

Jebara T. and Jaakola T. (2000). Feature selection and dualities in maximum entropy
discrimination, Proceedings of the Sixteenth Annual Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufman.

Jolliffe LT. (1989). Principal Component Analysis, Springer-Verlag, New York.

Koller D. and Sahami M. (1996), Toward optimal feature selection, Proceedings of the
Thirteenth International Conference on Machine Learning, ICML96, 284-292,

Littlestone N. (1988). Learning quickly when irrelevant attribute abound: A new linear-
threshold algorithm, Machine Learning 2:285-318.

Ng AY. (1988). On feature selection: Learning with exponentially many irrelevant features as
training examples, Proceedings of the Fifteenth International Conference on Machine
Learning.

Ng AY, and Jordan M. (2001). Convergence rates of the voting Gibbs classifier, with

application to Bayesian feature selection, Proceedings of the Eighteenth International
Conference on Machine Learning.

Ng AY., Zheng AX., Jordan M. (2001). Link analysis, eigenvectors, and stability,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence.

Russell S. and Norvig P. (1995). Artificial Intelligence, A Modern Approach, Prentice Hall,
New Jersey,

Xing E.P, Jordan M., Karp R.M. (2001). Feature selection for high-dimensional genomic
microarray data, Proceedings of the Eighteenth International Conference on Machine
Learning.

Xing EP. and Karp R.M. (2001). Cliff: Clustering of high-dimensional microarray data via
iterative feature filtering using normalized cuts, Bioinformatics 1(1):1-9.

Zhang T. (2000). Large margin winnow methods for text categorization, KDD 2000
Workshop on Text Mining, 81-87.

Chapter 7

INTRODUCTION TO CLASSIFICATION IN
MICROARRAY EXPERIMENTS

Sandrine Dudoit' and Jane Fridlyand®

! Assistant Professor, Division of Biostatistics, School of Public Health, University of California,
Berkeley, 140 Earl Warren Hall, # 7360, Berkeley, CA 94720-7360,
e-mail: sandrine @ stat.berkeley.edu.

Zpostdoctoral Scientist, Jain Lab, Comprehensive Cancer Center, University of California, San
Francisco, 2340 Sutter St., #N412, San Francisco, CA 94143-0128,
e-mail: janef@cc.ucsf.edu.

1. INTRODUCTION

1.1 Motivation: Tumor Classification Using Gene
Expression Data

An important problem in microarray experiments is the classification of
biological samples using gene expression data. To date, this problem has
received the most attention in the context of cancer research; we thus begin
this chapter with a review of tumor classification using microarray gene
expression data. A reliable and precise classification of tumors is essential
for successful diagnosis and treatment of cancer. Current methods for
classifying human malignancies rely on a variety of clinical, morphological,
and molecular variables. In spite of recent progress, there are still
uncertainties in diagnosis. Also, it is likely that the existing classes are
heterogeneous and comprise diseases that are molecularly distinct and follow
different clinical courses. c¢DNA microarrays and high-density
oligonucleotide chips are novel biotechnologies which are being used
increasingly in cancer research (Alizadeh et al., 2000; Alon et al., 1999;
Bittner et al., 2000; Chen et al., 2002; Golub et al., 1999; Perou et al., 1999;
Pollack et al., 1999; Pomeroy et al., 2002; Ross et al., 2000; Sgrlie et al.,
2001). By allowing the monitoring of expression levels in cells for thousands

7. Introduction to Classification in Microarray Experiments 133

of genes simultaneously, microarray experiments may lead to a more
complete understanding of the molecular variations among tumors and hence
to a finer and more reliable classification.

Recent publications on cancer classification using gene expression data
have mainly focused on the cluster analysis of both tumor samples and
genes, and include applications of hierarchical clustering (Alizadeh et al.,
2000; Alon et al., 1999; Bittner et al., 2000; Chen et al., 2002; Perou et al.,
1999; Pollack et al., 1999; Pomeroy et al., 2002; Ross et al., 2000; Sgrlie et
al., 2001) and partitioning methods such as self-organizing maps (Golub et
al,, 1999; Pomeroy et al., 2002). Alizadeh et al. used ¢cDNA microarray
analysis of lymphoma mRNA samples to identify two previously
unrecognized and molecularly distinct subclasses of diffuse large B-cell
lymphomas corresponding to different stages of B-cell differentiation
(Alizadeh et al., 2000). One type expressed genes characteristic of germinal
center B-cells (germinal center B-like DLBCL class) and the second type
expressed genes normally induced during in vitro activation of peripheral
blood B-cells (activated B-like DLBCL class). They also demonstrated that
patients with the two subclasses of tumors had different clinical prognoses.
Average linkage hierarchical clustering was used to identify the two tumor
subclasses as well as to group genes with similar expression patterns across
the different samples. Ross et al. used cDNA microarrays to study gene
expression in the 60 cell lines from the National Cancer Institute’s anti-
cancer drug screen (NCI 60) (Ross et al., 2000). Hierarchical clustering of
the cell lines based on gene expression data revealed a correspondence
between gene expression and tissue of origin of the tumors. Hierarchical
clustering was also used to group genes with similar expression patterns
across the cell lines. Using acute leukemias as a test case, Golub et al. looked
into both the cluster analysis and the discriminant analysis of tumors using
gene expression data (Golub et al., 1999). For cluster analysis, or class
discovery, self-organizing maps (SOMs) were applied to the gene expression
data and the tumor groups revealed by this method were compared to known
classes. For class prediction, Golub et al. proposed a weighted gene-voting
scheme that turns out to be a variant of a special case of linear discriminant
analysis, which is also known as naive Bayes’ classification. More recently,
Pomeroy et al. used Affymetrix oligonucleotide chips to study gene
expression in embryonal tumors of the central nervous system (CNS)
(Pomeroy et al., 2002). A range of unsupervised and supervised learning
methods were applied to investigate whether gene expression data could be
used to distinguish among new and existing CNS tumor classes and for
patient prognosis. The recent studies just cited are instances of a growing
body of research, in which gene expression profiling is used to, distinguish
among known tumor classes, predict clinical outcomes such as survival and

134 Chapter 7

response to treatment, and identify previously unrecognized and clinically
significant subclasses of tumors.

Microarray experiments in cancer research are not limited to monitoring
transcript or mRNA levels. Other widely-used applications of the microarray
technology are comparative genomic hybridization (CGH) (Jain et al., 2001)
and methylation studies (Costello et al., 2000). CGH experiments measure
DNA copy number across the genome, whereas methylation studies
determine the methylation status of genes of interest. Similar classification
questions arise in these other types of microarray experiments. In addition,
cancer research is only one of the many areas of application of the
microarray technology. In immunology, microarrays have recently been used
to study the gene expression host response to infection by bacterial
pathogens (Boldrick et al., 2002). Clinical implications include improved
diagnosis of bacterial infections by gene expression profiling.

The above examples illustrate that class prediction is an important
question in microarray experiments, for purposes of classifying biological
samples and predicting clinical or other outcomes using gene expression
data. A closely related issue is that of feature or variable selection, i.e. the
identification of genes that characterize different tumor classes or have good
predictive power for an outcome of interest.

1.2 QOutline

The present chapter discusses statistical issues arising in the classification of
biological samples using gene expression data from DNA microarray
experiments. Section 2 gives further background on classification of
microarray experiments and introduces the statistical foundations of
classification. Section 3 provides an overview of traditional classifiers, such
as linear discriminant analysis and nearest neighbor classifiers. The general
issues of feature selection and classifier performance assessment are
discussed in Sections 4 and 5, respectively.

The reader is referred to the texts of (Hastie et al., 2001; Mardia et al.,
1979; McLachlan, 1992; Ripley, 1996) for general discussions of
classification. Recent work on statistical aspects of classification in the
context of microarray experiments includes: (Chow et al., 2001; Dettling and
Buelmann, 2002; Golub et al., 1999; Pomeroy et al., 2002; Tibshirani et al.,
2002; West et al., 2001). These articles have mostly focused on existing
methods or variants thereof, and, in many cases, comparison studies have
been limited and not always properly calibrated. Studies performed to date
suggest that simple methods, such as nearest neighbor or naive Bayes
classification, perform as well as more complex approaches, such as
aggregated classification trees or Support Vector Machines (SVMs) (Dudoit

7. Introduction to Classification in Microarray Experiments 135

et al.,, 2002; Dudoit and Fridlyand, 2002). Basic classifiers considered in
these references are discussed in Section 3 of the present chapter, while
SVMs and trees are discussed in Chapters 9 and 10, respectively. Feature
selection is discussed in greater detail in Chapter 6.

2. STATISTICAL FOUNDATIONS OF
CLASSIFICATION

2.1 Background on Classification

2.1.1 Unsupervised vs. Supervised Learning

In many situations, one is concerned with assigning objects to classes on the
basis of measurements made on these objects. There are two main aspects to
such problems: discrimination and clustering, or supervised and
unsupervised leaming. In unsupervised learning (also known as cluster
analysis, class discovery, and unsupervised pattern recognition), the classes
are unknown a priori and need to be discovered from the data. This involves
estimating the number of classes (or clusters) and assigning objects to these
classes (see Chapters 13 — 16). In contrast, in supervised learning (also
known as classification, discriminant analysis, class prediction, and
supervised pattern recognition), the classes are predefined and the task is to
understand the basis for the classification from a set of labeled objects
(learning set). This information is then exploited to build a classifier that will
be used to predict the class of future unlabeled observations. In many
situations, the two problems are related, as the classes which are discovered
from unsupervised learning are often used later on in a supervised learning
setting. Here, we focus on supervised learning, and use the simpler term
classification.

2.1.2 Classification

Classification is a prediction or learning problem, in which the variable to be
predicted assumes one of K unordered values, {ci, ¢,...,cx}, arbitrarily
relabeled as {1, 2,...,K} or {0,1,...,.K-1}, and sometimes {-1,1} in binary
classification. The K values correspond to K predefined classes, e.g., tumor
class or bacteria type. Associated with each object is a response or
dependent variable (class label), Ye {1,2,..,K} and a set of G
measurements which form the feature vector or vector of predictor
variables, X = (Xj,...,Xg). The feature vectorX belongs to a feature space X,
e.g., the real numbers R°. The task is to classify an object into one of the K
classes on the basis of an observed measurement X = x, i.e. predict Y from
X.

136 Chapter 7

A classifier or predictor for K classes is a mapping C from X into
{1,2,...,K}, C: X = {},2,...,K}, where C(x) denotes the predicted class for
a feature vector x. That is, a classifier C corresponds to a partition of the
feature space X into K disjoint and exhaustive subsets, 41, ..., 4k, such that a
sample with feature vector X = (xy,..., xg) € 4; has predicted class P =k
(modifications can be made to allow doubt or outlier classes (Ripley, 1996)).

Classifiers are built from past experience, ie. from observations which
are known to belong to certain classes. Such observations comprise the
learning set (LS), £= {(X1, ¥1),+..,(Xn» ¥u}}. A classifier built from a learning
set £is denoted by C(~; £). When the learning set is viewed as a collection
of random variables, the resulting classifier is also a random variable.
Intuitively, for a fixed value ofthe feature vector x, as the learning set varies,
so will the predicted class C(x; £). Tt is thus meaningful to consider
distributional properties (e.g., bias and variance) of classifiers when
assessing or comparing the performance of different classifiers (Friedman,
1996; Breiman, 1998).

2.1.3 Classification in Microarray Experiments

In the case of gene expression data from cancer DNA microarray
experiments, features correspond to the expression measures of different
genes and classes correspond to different types of tumors (e.g., nodal
positive vs. negative breast tumors, or tumors with good vs. bad prognosis).
There are three main types of statistical problems associated with tumor
classification: (i) the identification of new tumor classes using gene
expression profiles — unsupervised learning; (ii) the classification of
malignancies into known classes — supervised learning; and (iii) the
identification of marker genes that characterize the different tumor classes —
feature selection. The present chapter focuses primarily on (ii) and briefly
addresses the related issue of feature selection.

For our purpose, gene expression data on G genes for # tumor mRNA
samples may be summarized by a G x»n matrix X = (xn), where xgi denotes
the expression measure of gene (variable) g in mRNA sample (observation)
i. The expression levels might be either absolute (e.g., Affymetrix
oligonucleotide arrays) or relative to the expression levels of a suitably
defined common reference sample (e.g., 2-color cDNA microarrays). When
the mRNA samples belong to known classes (e.g., ALL and AML tumors),
the data for each observation consist of a gene expression profile
X; = (X1,..., Xgi) and a class label yy, i.e. of predictor variables X; and response
y:. For K tumor classes, the class labels yi are defined to be integers ranging
from 1 to K, and n; denotes the number of learning set observations
belonging to class k. Note that the expression measures xg are in general
highly processed data: the raw data in a microarray experiment consist of

7. Introduction to Classification in Microarray Experiments 137

image files, and important pre-processing steps include image analysis of
these scanned images and normalization. Data from these new types of
experiments present a so-called large p, small n-problem, that is, a very large
number of variables (genes) relative to the number of observations (tumor
samples). The publicly available datasets typically contain expression data
on 5,000 — 10,000 genes for less than 100 tumor samples. Both numbers are
expected to grow, the number of genes reaching on the order of 30,000, an
estimate for the total number of genes in the human genome.

There are many different approaches for building a classifier for tumor
samples using gene expression data. Basic methods such as naive Bayes and
nearest neighbor classification have been found to perform very well and are
described in Section 3. The important and closely related issue of gene
selection is briefly discussed in Section 4. Different classifiers will clearly
have varying performance, i.e. different classification error rates. In the
context of tumor class prediction, errors could correspond to misdiagnosis
and assignment to improper treatment protocol. Thus, an essential task is to
assess the accuracy of the classifier. Performance assessment is discussed in
Section 5.

2.2 Classification and Statistical Decision Theory

Classification can be viewed as a statistical decision theory problem. For
each object, an observed feature vector x is examined to decide which of a
fixed set of classes that object belongs to. Assume observations are
independently and identically distributed (i.i.d) from an unknown
multivariate distribution. The class & prior, or proportion of objects of class &
in the population of interest, is denoted as m = p(¥ = k). Objects in class &
have feature vectors with class conditional density pi(X) = p(x | Y = k).

It will be useful to introduce the notion of a loss function. The loss
function L(k, [) simply elaborates the loss incurred if a class A case is
erroneously classified as belonging to class . The risk function for a
classifier C is the expected loss when using it to classify, that is,

R(C)= E[L(Y,CO)] =2 [L(k,CONp, ()7, , 7.1

For an observation with feature vector X and true class Y, the predicted
class is C(X) and the corresponding loss is L(Y, C(X)). The expected loss can
be thought of as a weighted average of the loss function, where weights are
given by the joint density of random variables X and Y. Thus, the risk is
given by the double integral of the loss function times the joint density of X
and Y. Since Y is a discrete random variable, taking on the values 1 ,..., K,
the integral is replaced by a sum Zkﬂ over the possible values of Y.

138 Chapter 7

Furthermore, for Y = k£, we may express the joint density of X and Y as
piX)m. Typically L(k, k), and in many cases the loss is symmetric with
L(h,1)= 1, h#] — making an error of one type is equivalent to making an
error of a different type. Then, the risk is simply the misclassification rate
(also often called generalization error),
pCX) 2N =3, [P07,
However, for some important examples such as medical diagnosis, the
loss function is not symmetric. Note that here the classifier is viewed as
fixed, that is, probabilities are conditional on the learning set .£.

221 The Bayes Rule

In the wunlikely situation that the class conditional densities
px)=p(x | Y=k) and class priors 7 are known, Bayes’ Theorem may be
used to express the posterior probability p(k | x) of class £ given feature
vector x as

p(k|X)= ”kpk(x)

K 7.2
Z 1=t ”I p] (x) ()

The Bayes rule predicts the class of an observation x by that with highest
posterior probability

C,(x) =argmax, p(k | x) (7.3)

The posterior class probabilities reflect the confidence in predictions for
individual observations, the closer they are to one, the greater the
confidence. The Bayes rule minimizes the total risk or misclassification rate
under a symmetric loss function — Bayes risk. Note that the Bayes risk gives
an upper bound on the performance of classifiers in the more realistic setting
where the distributions of X and Y are unknown. For a general loss function,
the classification rule which minimizes the total risk is

C, (0= argmin, 3" L(hD)p(h) (14)
h=\

In the special case when L(h,/)=L,I(h#I[), that is, the loss incurred
from misclassifying a class % observation is the same irrespective of the
predicated class /, the Bayes rule is

Cy(x) =argmax, L, p(k|x) (7.5)

7. Introduction to Classification in Microarray Experiments 139

Suitable adjustments can be made to accommodate the doubt and outlier
classes (Ripley, 1996).

Many classifiers can be viewed as versions of this general rule, with
particular parametric or non-parametric estimates of p(k | x). There are two
general paradigms for estimating the class posterior probabilities p(k | x): the
density estimation and the direct function estimation paradigms (Friedman,
1996). In the density estimation approach, class conditional densities
pi(x) =p(x | Y="£K) (and priors m) are estimated separately for each class and
Bayes” Theorem is applied to obtain estimates of p(k | x). Classification
procedures employing density estimation include: Gaussian maximum
likelihood discriminant rules, ak.a. discriminant analysis (chapter 3 in
(Ripley, 1996), and Section 3.1 below); learning vector quantization
(section 6.3 in (Ripley, 1996)); Bayesian belief networks (Chapter 8 in the
present book and chapter 8 in (Ripley, 1996)). Another example is given by
naive Bayes methods which approximate class conditional densities py(x) by
the product of their marginal densities on each feature variable. In the direct
function estimation approach, class conditional probabilities p(k | x) are
estimated directly based on function estimation methodology such as
regression. This paradigm is used by popular classification procedures such
as: logistic regression (chapter 3 in (Ripley, 1996); neural networks (chapter

in (Ripley, 1996), and Chapter 11 in the present book); classification trees
(Chapter 10 in the present book and (Breiman et al., 1984)); projection
pursuit (section 6.1 in (Ripley, 1996)); and nearest neighbor classifiers
(section 6.2 in (Ripley, 1996), Chapter 12 in the present book, and
Section 3.2 below).

2.2.2 Maximum Likelihood Discrininant Rules

The frequentist analogue of the Bayes rule is the maximum likelihood
discriminant rule. For known class conditional densities p/(x) =p(x | Y =k),
the maximum likelihood (ML) discriminant rule predicts the class of an
observation x by that which gives the largest likelihood to x:
C(x) = argmax,px(X). In the case of equal class priors 7, this amounts to
maximizing the posterior class probabilities p(k | x), i.e. the Bayes rule.
Otherwise, the ML rule is not optimal, in the sense that it does not minimize
the Bayes risk.

3. BASIC CLASSIFIERS

3.1 Linear and Quadratic Discriminant Analysis

Linear and quadratic (in the features x) discriminant rules are classical and
widely used classification tools. They arise as Bayes rules or maximum

140 Chapter 7

likelihood discriminant rules when features have Gaussian distributions
within each class. For multivariate normal class densities, ie. for
X|y=k~N(u,Z,) (here, 1, and X, denote respectively the expected
value and the G x G covariance matrix of the feature vector in class k), the
Bayes rule is

C(x) = argmin, {(x - 1,)Z;' (x - 1)’ + log | Z, | ~2log, }. (7.6)

In general, this is a quadratic discriminant rule — Quadratic Discriminant
Analysis — QDA. The main quantity in the discriminant rule is
(x=,)Z,' (x-4,) , the squared Mahalanobis distance from the observation
x to the class £ mean vector x,. Interesting special cases are described
below for homogeneous priors, i.e. for m constant in .

Linear Discriminant Analysis (LDA). When the class densities have the
same covariance matrix, Z, =X, the discriminant rule is based on the square
of the Mahalanobis distance and is linear in x and given by

C(x) = argmin, (X — g,)27 (x - 44,)" .

Diagonal Quadratic Discriminant Analysis (DQDA). When the class
densities have diagonal covariance matrices, A, =diag(c},,...0), the
discriminant rule is given by additive quadratic contributions from each
gene, that is,

C(x) = argmmkz [MHogakg]

Diagonal Linear Discriminant Analysis (DLDA). When the class
densities have the same diagonal covariance matrix A =diag(c?},...,0%), the
discriminant rule is linear and given by

C(x) =argmin kz E;"“—

Note that DLDA and DQDA correspond to naive Bayes rules for
Gaussian class conditional densities. As with any classifier explicitly
estimating the Bayes rule, class posterior probabilities may be used to assess
the confidence in the predictions for individual observations. For the sample
Bayes or ML discriminant rules, the population mean vectors and covariance
matrices are estimated from a learning set L, by the sample mean vectors
and covariance matrices, respectively: 4,=%; and X, =8, . For the
constant covariance matrix case, the pooled estimate of the common
covariance matrix is used:

7. Introduction to Classification in Microarray Experiments 141

£=8=Y (n, -1)S/(n-K).

The weighted gene voting scheme of (Golub et al., 1999) turns out to be a
variant of sample DLDA for K = 2 classes, with the variance oﬁ replaced by
a sum of standard deviations o, + o, , thus resulting in the wrong units for
the discriminant rule (Dudoit et al., 2002; Dudoit and Fridlyand, 2002).

The above simple classifiers may be modified easily to allow unequal
class priors; estimates of the priors may be obtained from the sample class
proportions 7, =n,/n. Biased sampling of the classes (e.g., oversampling of
a class that is rare in the population) and differential misclassification costs
(e.g., higher cost for misclassifying a diseased person as healthy than for the
reverse error) can be handled similarly by imposing different weights or cut-
offs on the posterior class probabilities. These and other extensions to linear
discriminant analysis are summarized in (Dudoit and Fridlyand, 2002).

3.2 Nearest Neighbor Classifiers

Nearest neighbor methods are based on a distance function for pairs of
samples, such as the Euclidean distance or one minus the correlation of their
gene expression profiles. The basic k-nearest neighbor (k-NN) rule proceeds
as follows to classify a new observation on the basis of the learning set: (i)
find the & closest samples in the learning set, and (ii) predict the class by
majority vote, i.e. choose the class that is most common among those k
neighbors. Nearest neighbor classifiers were initially proposed by Fix and
Hodges (1951) as consistent non-parametric estimates of maximum
likelihood discriminant rules.

Number of neighbors k. Although classifiers with £ = 1 are often quite
successful, the number of neighbors k& can have a large impact on the
performance of the classifier and should be chosen carefully. A common
approach for selecting the number of neighbors is leave-one-out cross-
validation. Each sample in the learning set is treated in turn as if its class
were unknown: its distance to all of the other learning set samples (except
itself) is computed and it is classified by the nearest neighbor rule. The
classification for each learning set observation is then compared to the truth
to produce the cross-validation error rate. This is done for a number of &’s
(e.g., ke {1,3,5,7}) and the k for which the cross-validation error rate is
smallest is retained.

The nearest neighbor rule can be refined and extended to deal with
unequal class priors, differential misclassification costs, and feature
selection. Many of these refinements involve some form of weighted voting
for the neighbors, where weights reflect priors and costs. Feature selection
may be performed so that the relevance of each variable is estimated locally

142 Chapter 7

for each new case (Friedman, 1994). The reader is referred to section 6.2 in
(Ripley, 1996), sections 13.3 — 13.5 in (Hastie et al., 2001), and (Dudoit and
Fridlyand, 2002) for a more detailed discussion of the nearest neighbor rule
and its extensions.

4. FEATURE SELECTION

Feature selection is one of the most important issues in classification; it is
particularly relevant in the context of microarray datasets with thousands of
features, most of which are likely to be uninformative. Some classifiers like
classification trees (Breiman et al., 1984) perform automatic feature
selection and are relatively insensitive to the variable selection scheme. In
contrast, standard LDA and nearest neighbor classifiers do not perform
feature selection; all variables, whether relevant or not, are used in building
the classifier. For many classifiers, it is thus important to perform some type
of feature selection; otherwise performance could degrade substantially with
a large number of irrelevant features. Feature selection may be performed
explicitly, prior to building the classifier, or implicitly, as an inherent part of
the classifier building procedure, for example using modified distance
functions. In the machine learning literature, these two approaches are
referred to as filter and wrapper methods, respectively (see Chapter 6 for
greater detail).

Filter methods. The simplest approaches are one-gene-at-a-time

approaches, in which genes are ranked based on the value of univariate test
statistics such as: ¢- or F-statistics (Dudoit et al., 2002); ad hoc signal-to-
noise statistics (Golub et al., 1999; Pomeroy et al., 2002); non-parametric
Wilcoxon statistics (Dettling and Buelmann, 2002); p-values. Possible meta-
parameters for feature selection include the number of genes G or a p-value
cut-off. A formal choice of these parameters may be achieved by cross-
validation or bootstrapping. More refined feature selection procedures
consider the joint distribution of the gene expression measures, and include
forward variable selection (Bg and Jonassen, 2002) and selection based on
prediction accuracy (Breiman, 1999).
Wrapper methods. Feature selection may also be performed implicitly by
the classification rule itself. In this case, different approaches to feature
selection will be used by different classifiers. In classification trees (e.g.,
CART (Breiman et al., 1984)), features are selected at each step based on
reduction in impurity and the number of features used (or size of the tree) is
determined by pruning the tree using cross-validation. Thus, feature
selection is an inherent part of tree building and pruning deals with the issue
of overfitting. Suitable modifications of the distance function in nearest
neighbor classification allow automatic feature selection.

7. Introduction to Classification in Microarray Experiments 143

The importance of taking feature selection into account when assessing the
performance of the classifier cannot be stressed enough (see West et al.,
2001, and Section 5 below). Feature selection is an aspect of building the
predictor, whether done explicitly or implicitly. Thus, when using for
example cross-validation to estimate generalization error, feature selection
should not be done on the entire learning set, but separately for each cross-
validation training sample used to build the classifier. Leaving out feature
selection from cross-validation or other resampling-based performance
assessment methods results in overly optimistic error rates.

S. PERFORMANCE ASSESSMENT

Different classifiers clearly have different accuracies, ie. different
misclassification rates. In certain medical applications, errors in
classification could have serious consequences. For example, when using
gene expression data to classify tumor samples, errors could correspond to
misdiagnosis and assignment to improper treatment protocol. It is thus
essential to obtain reliable estimates of the classification error p(C(X)) = Y)
or of other measures of performance. Different approaches are reviewed
next. For a more detailed discussion of performance assessment and of the
bias and variance properties of classifiers, the reader is referred to
section 2.7 in (Ripley, 1996), (Friedman, 1996), (Breiman, 1998), and
chapter 7 in (Hastie et al., 2001).

51 Resubstitution Estimation

In this naive approach, known as resubstitution error rate estimation or
training error rate estimation, the same dataset is used to build the classifier
and assess its performance. That is, the classifier is trained using the entire
learning set.£ and an estimate of the classification error rate is obtained by
running the same learning set £ through the classifier and recording the
number of observations with discordant predicted and actual class labels.
Although this is a simple approach, the resubstitution error rate can be
severely biased downward. Consider the trivial and extreme case when the
feature space is partitioned into n sets, each containing a learning set
observation. In this extreme overfitting situation, the resubstitution error rate
is zero. However, such a classifier is unlikely to generalize well, that is, the
classification error rate (as estimated from a test set) is likely to be high. In
general, as the complexity of the classifier increases (i.e. the number of
training cycles or epochs increases), the training set error decreases. In
contrast, the true generalization error initially decreases but subsequently
increases due to overfitting.

144 Chapter 7

5.2 Test Set Estimation

Suppose that a test set of labeled observations sampled independently from
the same population as the learning set is available. In such a case, an
unbiased estimate of the classification error rate may be obtained by running
the test set observations through the classifier built from the learning set and
recording the proportion of test cases with discordant predicted and actual
class labels.

In the absence of a genuine test set, cases in the learning set £ may be
divided into two sets, a training set £y and a validation set L. The classifier
is built using £, and the error rate is computed for .£. It is important to
ensure that observations in £ and .£; can be viewed as i.i.d. samples from
the population of interest. This can be achieved in practice by randomly
dividing the original learning set into two subsets. In addition, to reduce
variability in the estimated error rates, this procedure may be repeated a
number of times (e.g., 50) and error rates averaged (Breiman, 1998). A
general limitation of this approach is that it reduces effective sample size for
training purposes. This is an issue for microarray datasets, which have a
limited number of observations. There are no widely accepted guidelines for
choosing the relative size of these artificial training and validation sets. A
possible choice is to leave out a randomly selected 10% of the observations
to use as a validation set. However, for comparing the error rates of different
classifiers, validation sets containing only 10% of the data are often not
sufficiently large to provide adequate discrimination. Increasing validation
set size to one third of the data provides better discrimination in the
microarray context,

5.3 Cross-Validation Estimation

In V-fold cross-validation (CV), cases in the learning set £ are randomly
divided into V sets L, v=1,..., V of as nearly equal size as possible.
Classifiers are built on training sets £— L, error rates are computed for the
validation sets £,, and averaged over v. There is a bias-variancetrade-offin
the selection of V: small V’s typically give a larger bias, but a smaller
variance and mean squared error.

A commonly used form of CV is leave-one-out cross-validation
(LOOCY), where V= n. LOOCYV often results in low bias but high variance
estimates of classification error. However, for stable (low variance)
classifiers such as &-NN, LOOCYV provides good estimates of generalization
error rates. For large learning sets, LOOCV carries a high computational
burden, as it requires n applications of the training procedure.

7. Introduction to Classification in Microarray Experiments 145

54 General Issues in Performance Assessment

The use of cross-validation (or any other estimation method) is intended to
provide accurate estimates of classification error rates. It is important to note
that these estimates relate only to the experiment that was (cross-) validated.
There is a common practice in microarray classification of doing feature
selection using all of the learning set and then using cross-validation only on
the classifier-building portion of the process. In that case, inference can only
be applied to the latter portion of the process. However, in most cases, the
important features are unknown and the intended inference includes feature
selection. Then, CV estimates as above tend to suffer from a downward bias
and inference is not warranted. Features should be selected only on the basis
of the samples in the training sets £— L, for CV estimation. This applies to
other error rate estimation methods (e.g., test set error and out-of-bag
estimation), and also to other aspects of the classifier training process, such
as variable standardization and parameter selection. Examples of classifier
parameters that should be included in cross-validation are: the number of
predictor variables, the number of neighbors k& for k-nearest neighbor
classifiers, and the choice of kernel for SVMs. The issue of “honest” cross-
validation analysis is discussed in (West et al., 2001).

The approaches described above can also be extended to reflect
differential misclassification costs; in such situations, performance is
assessed based on the general definition of risk in Equation 7.1. In the case
of unequal representation of the classes, some form of stratified sampling
may be needed to ensure balance across important classes in all subsamples.
In addition, for complex experimental designs, such as factorial or time-
course designs, the resampling mechanisms used for computational inference
should reflect the design of the experiment.

Finally, note that in machine learning, a frequently employed alternative
to simple accuracy-based measures is the /ift. The lift of a given class k is
computed from a test set as the proportion of correct class k predictions
divided by the proportion of class & test cases, i.e.

test cases correctly predicted in class k

test cases predicted in class £
test cases actually belonging to class &
test cases

lift, = (7.1

In general, the greater the lift, the better the classifier.

146 Chapter 7

6. DISCUSSION

Classification iS an important question in microarray experiments, for
purposes of classifying biological samples and predicting clinical or other
outcomes using gene expression data. In this chapter, we have discussed the
statistical foundations of classification and described two basic classification
approaches, nearest neighbor and linear discriminant analysis (including the
special case of DLDA, also known as naive Bayes classification). We have
addressed the important issues of feature selection and honest classifier
performance assessment, which takes into account gene screening and other
training decisions in error rate estimation procedures such as cross-
validation.

The reader is referred to (Dudoit et al., 2002) and (Dudoit and Fridlyand,
2002) for a more detailed discussion and comparison of classification
methods for microarray data. The classifiers examined in these two studies
include linear and quadratic discriminant analysis, nearest neighbor
classifiers, classification trees, and SMVs. Resampling methods such as
bagging and boosting were also considered, including random forests and
LogitBoost for tree stumps. Simple methods such as nearest neighbors and
naive Bayes classification were found to perform remarkably well compared
to more complex approaches, such as aggregated classification trees or
SVMs. Dudoit and Fridlyand (2002) also discussed the general questions of
feature selection, standardization, distance function, loss function, biased
sampling of classes, and binary vs. polychotomous classification. Decisions
concerning all these issues can have a large impact on the performance of the
classifier; they should be made in conjunction with the choice of classifier
and included in the assessment of classifier performance.

Although classification is by no means a new subject in the statistical
literature, the large and complex multivariate datasets generated by
microarray experiments raise new methodological and computational
challenges. These include building accurate classifiers in a “large p, small »”
situation and obtaining honest estimates of classifier performance. In
particular, better predictions may be obtained by inclusion of other predictor
variables such as age or sex. In addition to accuracy, a desirable property of
a classifier is its ability to yield insight into the predictive structure of the
data, that is, identify individual genes and sets of interacting genes that are
related to class distinction. Further investigation of the resulting genes may
improve our understanding of the biological mechanisms underlying class
distinction and eventually lead to marker genes to be used in a clinical
setting for predicting outcomes such as survival and response to treatment.

7. Introduction to Classification in Microarray Experiments 147

ACKNOWLEDGMENTS

We are most grateful to Leo Breiman for many insightful conversations on
classification. We would also like to thank Robert Gentleman for valuable
discussions on classification in microarray experiments while designing a
short course on this topic. Finally, we have appreciated the editors’ careful
reading of the chapter and very helpful suggestions.

REFERENCES

Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald A., Boldrick J. C.,
Sabet H., Tran T., Yu X,, Powell J. I, Yang L., Marti G. E., Moore T., JrJ. H,, Lu L.,
Lewis D. B., Tibshirani R., Sherlock G., Chan W. C., Greiner T. C., Weisenburger D. D.,
Armitage J. O., Warnke R., Levy R., Wilson W., Grever M. R., Byrd J. C., Botstein D.,
Brown P. O., and Staudt L. M. (2000). Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature, 403:503-511.

Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D., and Levine A. J. (1999).
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 96:6745-6750.

Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R.,
Yakhini Z., Ben-Dor A., Sampas N., Dougherty E.,Wang E.Marincola F., Gooden C,
Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K.,
Beaudry C., Berens M., Alberts D., Sondak V., Hayward N., and Trent J. (2000).

Molecular classification of cutaneous malignant melanoma by gene expression profiling.
Nature, 406:536-540.

Bg T. H. and Jonassen 1. (2002). New feature subset selection procedures for classification of
expression profiles. Genome Biology, 3(4): 1-11.

Boldrick J. C., Alizadeh A. A., Diehn M., Dudoit S, Liu C. L., Belcher C. E., Botstein D.,
Staudt L. M., Brown P. O, and Relman D. A. (2002). Stereotyped and specific gene
expression programs in human innate immue responses to bacteria. Proc. Natl. Acad. Sci,
99(2):972-977.

Breiman L. (1998). Arcing classifiers. Annals of Statistics, 26:801-824.

Breiman L. (1999). Random forests - random features. Technical Report 567, Department of
Statistics, U.C. Berkeley.

Breiman L., Friedman, J.H. Olshen, R., and Stone C.J. (1984). Classification and regression
trees. The Wadsworth statistics/probability series. Wadsworth International Group.

Chen X., Cheung S.T., So S., Fan S.T., Barry C., Higgins J., Lai K.-M,, Ji J., Dudoit S., Ng L.
0. L., van de Rijn M., Botstein D., and Brown P.O. (2002). Gene expression patterns in
human liver cancers. Molecular Biology of the Cell, 13(6):1929-1939.

Chow M.L., Moler EJ., and Mian LS. (2001). Identifying marker genes in transcription
profiling data using a mixture of feature relevance experts. Physiological Genomics, 5:99-
111.

Costello J. F., Fruehwald M.C., Smiraglia D.J., Rush, L. J., Robertson G.P., Gao X., Wright
F.A., Feramisco J.D., Peltomki P., Lang J.C., Schuller D.E., Yu L., Bloomfeld C.D.,
Caligiuri M.A., Yates A., Nishikawa R., Huang H.J.S., Petrelli N.J., Zhang X., O’Dorisio

148 Chapter 7

MS., Held W.A., Cavenee W.K., and Plass C. (2000). Aberrant CpG-island methylation
has non-random and tumour-typespecific patterns. Nature Genetics, 24:132-138.

Dettling M. and Buelmann P. (2002). How to use boosting for tumor classification with gene
expression data. Available at http:/stat.ethz.ch/~dettling/boosting.

Dudoit S. and Fridlyand J. (2002). Classification in microarray experiments. In Speed, T. P.,
editor, Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC.
(To appear).

Dudoit S., Fridlyand J., and Speed T P. (2002). Comparison of discrimination methods for the
classification of tumors using gene expression data. Journal of the American Statistical
Association, 97(457):77-87.

Fix E. and Hodges J. (1951). Discriminatory analysis, nonparametric discrimination:
consistency properties. Technical report, Randolph Field, Texas: USAF School of
Aviation Medicine.

Friedman J.H, (1994). Flexible metric nearest neighbor classification. Technical report,
Department of Statistics, Stanford University.

Friedman J.H. (1996). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Technical
report, Department of Statistics, Stanford University.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lander E.S. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science, 286:531-537.

Hastie T., Tibshirani R., and Friedman J.H. (2001). The Elements of Statistical Learning :
Data Mining, Inference, and Prediction. Springer Verlag.

Jain AN., Chin K., Bgrresen-Dale A., Erikstein B.K., Eynstein L.P., Kaaresen R., and Gray
JW. (2001). Quantitative analysis of chromosomal CGH in human breast tumors
associates copy number abnormalities with p53 status and patient survival. Proc. Natl.
Acad, Sci., 98:7952-7957,

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate Analysis. Academic Press, Inc.,
San Diego.

MclLachlan GJ. (1992). Discriminant analysis and statistical pattern recognition. Wiley, New
York.

Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB. Ross D.T,
Pergamenschikov A., Williams C.F., Zhu S$.X., Lee J.C.F., Lashkari D., Shalon D., Brown,
P.O., and Botstein D. (1999). Distinctive gene expression patterns in human mammary
epithelial cells and breast cancers. Proc. Natl. Acad. Sci., 96:9212-9217.

Pollack J.R., Perou CM., Alizadeh A.A., Eisen M.B., Pergamenschikov A., Williams C.F.,
Jeftrey S.S., Botstein D., and Brown P.O. (1999). Genome-wide analysis of DNA copy-
number changes using cDNA microarrays. Nature Genetics, 23:41-46.

Pomeroy S.L., Tamayo P., Gaasenbeek M., Sturla ..M., Angelo M., McLaughlin M.E., Kim
J.Y., Goumnerova L.C., Black P.M,, Lau C,, Allen J.C., Zagzag D., Olson J., Curran T.,
Wetmore C., Biegel J.A., Poggio T., Mukherjee S., Rifkin R., Califano A., Stolovitzky G.,
Louis DN., Mesirov J.P., Lander ES, and Golub T.R. (2002). Prediction of central
nervous system embryonal tumour outcome based on gene expression. Nature,
415(24):436-442. (and supplementary information).

7. Introduction to Classification in Microarray Experiments 149

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press,
Cambridge, New York. Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M, Spellman, P.,
Iyer, V., leffrey, S. S., de Rijn, M. V., Waltham, M., Pergamenschikov, A., Lee, J. C. F,,
Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D., and Brown, P. O.
(2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature
Genetics, 24:227-234,

Serlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsenb, H., Hastie,T., Eisen,M.
B., van deRijn,M., Jeffrey, S. S.,Thorsen, T., Quist, H., Matese, J. C., Brown, P. O.,
Botstein, D., Lgnningg, P. E., and Bgrresen-Dale, A. L. (2001). Gene expression patterns
of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl.
Acad. Sci., 98(19): 10869-10874.

Tibshirani R., Hastie T., and G. Chu B.N. (2002). Diagnosis of multiple cancer types by
shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99:6567-6572.
West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H., Marks J.R.,

and Nevins J.R. (2001). Predicting the clinical status of human breast cancer using gene
expression profiles. Proc. Natl. Acad. Sci., 98:11462-11467.

Chapter 8

BAYESIAN NETWORK CLASSIFIERS FOR
GENE EXPRESSION ANALYSIS

Byoung-Tak Zhang and Kyu-Baek Hwang

Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National
University, Seoul 151-742, Korea
e-mail: {btzhang, kbhwang] @bi.snu.ac.kr

1. INTRODUCTION

The recent advent of DNA chip technologies has made it possible to measure
the expression level of thousands of genes in the cell population. The parallel
view on gene expression profiles offers a novel opportunity to broaden the
knowledge about various life phenomena. For example, the microarray
samples from normal and cancer tissues are accumulated for the study of
differentially expressed genes in the malignant cell (Golub et al., 1999; Alon
et al., 1999; Slonim et al., 2000; Khan et al., 2001). The eventual knowledge
acquired by such a study could aid in discriminating between carcinoma
cells and normal ones based on the gene expression pattern. One of the main
objectives of machine learning is to build a discriminative (classification)
model from data, automatically.

There exist various kinds of machine learning models deployed for the
classification task i.e. k-nearest neighbor (kNN) models (Li et al., 2002),
decision trees (Dubitzky et al., 2002), artificial neural networks (Khan et al.,
2001; Dubitzky et al., 2002), and Bayesian networks (Hwang et al., 2002).
These models differ mostly in their way of representing the learned
knowledge. The kNN methods just lay aside learning examples in computer
memory. When a new example without class label is encountered, a set of k
similar examples are retrieved from memory and used for classification.
Decision trees represent the learned knowledge in the form of a set of ‘if-
then’ rules. Neural networks learn the functional relationships between the
class variable and input attributes. Bayesian networks represent the joint
probability distribution over the variables of interest. The kNN model is the

8. Bayesian Network Classifiers for Gene Expression Analysis 151

simplest among the above classification models. The Bayesian network
might be the most complicated and flexible one. In general, the more
complicated model requires the more elaborate and complex learning
techniques. Nonetheless, each of the above classification models could
achieve the classification performance comparable to each other, regardless
of its representation power. Then, what is the reason for using more complex
models? The answer might be that they enable the acquisition of more
flexible and comprehensive knowledge. And the Bayesian network is
probably the most suitable model for such purposes. Thus, it has been
employed for the sample classification (Hwang et al., 2002) as well as for
the genetic network analysis (Friedman et al., 2000; Hartemink et al., 2001)
with microarray data.

This chapter deals with the Bayesian network for the classification of
microarray data and is organized as follows. In Section 2, we give a simple
explanation of the Bayesian network model. Methods of data preprocessing
and learning Bayesian networks from data are provided in Section 3. In
Section 4, the advantages of the Bayesian networks as well as the difficulties
in applying them to the classification task are described. Some techniques
for improving the classification performance of the Bayesian network are
also presented. In Section 5, we compare the classification accuracy of the
Bayesian network with other state-of-the-art techniques on two microarray
data sets. The use of Bayesian networks for knowledge discovery is also
illustrated. Finally, we give some concluding remarks in Section 6.

2. BAYESIAN NETWORKS

The Bayesian network (Heckerman, 1999; Jensen, 2001) is a kind of
probabilistic graphical model, which represents the joint probability
distribution over a set of variables of interest.' In the framework of
probabilistic graphical models, the conditional independence is exploited for
the efficient representation of the joint probability distribution. For three sets
of variables X, Y, and Z.> X is conditionally independent from Y given the
value of Z, if P(x |y, z) = P(x | z) for all x, y, and z whenever P(y, z) > 0.
The Bayesian network structure encodes various conditional independencies
among the variables. Formally, a Bayesian network assumes a directed-

! When applying Bayesian networks to microarray data analysis, each gene or the
experimental condition is regarded as a variable. The value of the gene variable
corresponds to its expression level. The experimental conditions include the characteristics
of tissues, cell cycles, and others.

2 Following the standard notation, we represent a random variable as a capital letter (e.g., X, ¥,
and Z) and a set of variables as a boldface capital letter (e.g., X, Y, and Z). The
corresponding lowercase letters denote the instantiation ofthe variable (e.g., x,y, and z) or
all the members ofthe set of variables (e.g., X, ¥, and z), respectively.

152 Chapter 8

acyclic graph (DAG) structure where a node corresponds to a variable® and
an edge denotes the direct probabilistic dependency between two connected
nodes. The DAG structure asserts that each node is independent from all of
its non-descendants conditioned on its parent nodes. By these assertions, the
Bayesian network over a set of Nvariables, X = {Xi, X3, ..., Av}, represents
the joint probability distribution as

PX)=[T,P(X, | Pa(x,), (8.1)

where Pa(X)) denotes the set of parents of X;. P(X;| Pa(X)))is called the
local probability distribution of X, The local probability distribution
describes the conditional probability distribution of each node given the
values of its parents. The appropriate local probability distribution model is
chosen according to the variable type. When all the variables are discrete,
the multinomial model is used. When all the variables are continuous, the
linear Gaussian model® can be used.”

Figure 8.1 is an example Bayesian network for cancer classification.

Figure 8.1. A Bayesian network consisting of eight gene nodes (‘Gene 4’ to ‘Gene H') and
‘Class’ node. The ‘Class’ node represents the type of cancer, The Bayesian network structure
encodes various conditional independencies among ‘Class’ variable and eight gene variables.
Each node has its local probability distribution although omitted in this figure. This Bayesian
network represents the joint probability distribution over nine variables

This Bayesian network represents the joint probability distribution over eight
gene variables and ‘Class’ variable. Unlike other machine learning models

? Because each node in the Bayesian network is one-to-one correspondent to a variable,
‘node’ and °‘variable’ denote the same object in this paper. We use both terms
interchangeably according to the context.

* In the linear Gaussian model, a variable is normally distributed around a mean that depends
linearly on the values of its parent nodes. The variance is independent of the parent nodes.

The hybrid case, in which the discrete variables and the continuous variables are mixed,
could also exist. Such a case is not dealt with in this paper.

8. Bayesian Network Classifiers for Gene Expression Analysis 153

for classification, the Bayesian network does not discriminate between the
class variable and the input attributes. The class variable is simply regarded
as one of the data attributes. When classifying a sample without class label
using Bayesian networks in Figure 8.1, we calculate the conditional

probability of ‘Class’ variable given the values of eight gene variables as
follows:

P(Class | Gene A,Gene B,Gene C,Gene D,Gene E,Gene F,Gene G,Gene H)
P(Class,Gene A,Gene B,Gene C,Gene D,Gene E,Gene F,Gene G,Gene H) (8_2)
Z P(Class,Gene A,Gene B,Gene C,Gene D,Gene E,Gene F,Gene G,Gene H)

Class

where the summation is taken over all the possible states of ‘Class’
variable. Among the possible cancer class labels, the one with the highest
conditional probability value might be selected as an answer.® The joint
probability in the numerator and denominator of Equation (2) can be
decomposed into a product of the local probability of each node based on the
DAG structure in Figure 8.1.” In addition to the classification, the Bayesian
network represents the probabilistic relationships among variables in a
comprehensible DAG format. For example, the Bayesian network in Figure
8.1 asserts that the expression of ‘Gene D’ might affect the expression of
both ‘Gene G’ and ‘Gene H’ (‘Gene D’ is the common parent of ‘Gene G’
and ‘Gene H').2

3. APPLYING BAYESIAN NETWORKS TO THE
CLASSIFICATION OF MICROARRAY DATA

Figure 8.2 shows the overall procedure of applying Bayesian networks to the
classification of microarray data. First, an appropriate number of genes are
selected and the expression level of each gene is transformed into the
discrete value’. After the discretization and selection process, a Bayesian
network is learned from the reduced microarray data set which has only the
selected genes and the ‘Class’ variable as its attributes. Finally, the learned

®1n the case ofa tie, the answer can be selected randomly or just ‘unclassified’.

7 The local probability distribution of each node is estimated from the data in the procedure of
Bayesian network learning.

¢ An edge in the Bayesian network just means the probabilistic dependency between two
connected nodes. In Figure 8.1, ‘Gene D’ depends on ‘Gene G’ and vice versa. The
probabilistic dependency does not always denote the causal relationship but the possibility
of its existence.

°The discretization of gene expression level is related to the choice of the local probability
distribution model for each gene node. It is not compulsory in microarray data analysis
with Bayesian networks.

154 Chapter 8

Bayesian network is used for the classification of microarray samples and for
the knowledge discovery.

Gene Expression Discretization I]::\} @)
Data and Selection ! S @
S - Sdected genes and

‘Class’ variable

Bayesian Network (/
Learning f"_/

Figure 8.2. The overall procedure of building Bayesian network classifiers from microarray
data, The learned Bayesian network classifier can also be used for the knowledge discovery.

3.1 Discretization and Selection

Discretization means to categorize the gene expression levels into several
regions, e.g., ‘over-expressed’ and ‘under-expressed’. The discretization of
gene expression levels before learning Bayesian networks has its own
benefits and drawbacks. The multinomial model for discrete variables could
represent more diverse and complex relationships than the linear Gaussian
model for continuous variables because the latter could only represent the
linear relationships among variables. Nevertheless, the discretization step
must incur some information loss. There are various methods for
discretization (Dougherty et al., 1995) and one simple method is to divide
the expression level of a gene based on its mean value across the
experiments. The selection step is necessary because there exist a large
amount of genes that are not related to the sample classification. Generally,
considering all of these genes increases the dimensionality of the problem,
presents computational difficulties, and introduces unnecessary noise. So, it
is often helpful to select more relevant or predictive genes for the
classification task. For the selection of genes, mutual information (Cover and
Thomas, 1991), P-metric (Slonim et al., 2000), or other statistical methods
can be used. The mutual information between two random variables X and Y,
I(X;Y), measures the amount of information that X contains about Y and is
calculated as

8. Bayesian Network Classifiers for Gene Expression Analysis 155

Yy = PX,Y)
I(X,Y)-;P(X,Y)logwy—). (8.3)

Here, P(-) denotes the empirical probability estimated from the data. The
summation is taken over all the possible X and Y values.'” In order to select
the genes much related to the class variable, the mutual information between
the class variable and each gene is calculated. And all genes are ranked
according to the corresponding mutual information value. Then, we can
select appropriate numbers of genes from this gene list. Other measures are
also applied in a similar way.

3.2 Learning Bayesian Networks from Data

The Bayesian network learning procedure consists of two parts. The first is
to learn the DAG structure of Bayesian network as outlined in Section 2. The
other is to learn the parameters for each local probability distribution under
the fixed structure. Parameter learning is to estimate the most likely
parameter values based on the training data. As an example, consider the
Bayesian network structure in Figure 8.1. We assume that each variable is
binary. The value of ‘Class’ variable is either ‘class 0 (0) or ‘class 1 (1)’.
Each gene node has the value of either ‘under-expressed (0)’ or ‘over-
expressed (1)’. Then, the local probability distribution of ‘Gene G’ could be
represented as depicted in Table 8.1.

Table 8.1. The local probability distribution of ‘Gene G’ node in Figure 8.1, ‘Class’ and
‘Gene D’ are the parents of ‘Gene G°. The parameter 6, denotes the conditional probability,
P(Gene G=0| Class =0, Gene D= 0). Note that P(Gene G=1|Class =0, Gene D=0) is
1-6.

(Class, Gene D)

Gene G ©,0) ©, 1)))

0 6,) 6 2

The local probability distribution model of ‘Gene G* has four parameters
(6, 6, 85, 6;). These parameters could be simply estimated from the data.
For example, the maximum-likelihood value of 8 is calculated as follows:

_ #ofcases where Class = 0, GeneD = 0,and GeneG = 0 (8.4)

é # of cases where Class = 0 and GeneD = 0

10Equation 83 is for the case of discrete variables. If X and Y are continuous variables, then
the summation in this equation can be replaced by the integral.

156 Chapter 8

When the data is not complete (some cases have missing values), the
expectation-maximization (EM) algorithm 1 (Dempster et al, 1977) is
generally used for the maximum-likelihood estimation of the parameter
values (Heckerman, 1999).

Structure learning corresponds to searching for the plausible network
structure based on the training data. The fitness of the network structure is
measured by some scoring metrics. Two popular such metrics are the
minimum description length (MDL) score and the Bayesian Dirichlet (BD)
score (Heckerman et al., 1995; Friedman and Goldszmidt, 1999). The MDL
score and the logarithm of the BD score assume the similar form and
asymptotically have the same value with opposite sign. They can be
decomposed into two terms i.e. the penalizing term about the complexities of
the network structure and the log likelihood term. The scoring metric for the
Bayesian network structure G with N variables and the training data D
consisting of M cases {Xi, Xz, ..., Xy} can be expressed as:

Score(G; D) = penalizing term +log likelihood
= penalizing term+ ZZI log B;(x,) (8.5)
= penalizing term + ZZI ZZI log P(X; =x,|Pas(X,)=pa,),

where Pg(x) is the joint probability of x; represented by the Bayesian
network G. The value of X; is given by x; and pa, is the configuration of
Pas(X;) at x,. However, the number of possible structures of Bayesian
networks consisting of N variables is super-exponential in N. And it is
known to be an NP-hard problem'* to find the best structure (Chickering,
1996). Hence, several search heuristics, such as greedy hill-climbing, are
used to find good structures in a general way. The greedy search algorithm
for learning the Bayesian network structure proceeds as follows.

Generate the initial Bayesian network structure Ga.
¢ Form=1,2,3, .. until convergence.

* Among all the possible local changes (insertion of an edge,
reversal of an edge, and deletion of an edge) in G,,-,, the one
that leads to the largest improvement in the score is
performed. The resulting graph is G.

"' The EM algorithm proceeds as follows. First, all the parameter values are assigned
randomly. Then, the following two steps are iterated until convergence. The expectation
step is to estimate the necessary sufficient statistics based on the present parameter values
and given incomplete data. The maximization step is to calculate the maximum-likelihood
parameter values based on the sufficient statistics estimated in the expectation step.

12The complex class of decision problems which are intrinsically harder than those that can
be solved by a non-deterministic Turing machine in polynomial time.

8. Bayesian Network Classifiers for Gene Expression Analysis 157

The algorithm stops when the score of G-y is equal to the score of G,,. The
greedy search algorithm does not guarantee to find the best solution because
it will get stuck at the local maximum. Nevertheless, this algorithm has
shown acceptable performance in many applications. In some situations, the
greedy search algorithm with random restarts is used for escaping from the
local maxima. In this algorithm, when a local maximum is found, the

network structure is randomly perturbed and the greedy search procedure is
applied again.

4. PROS AND CONS OF THE BAYESIAN NETWORK
CLASSIFIER

4.1 The Advantages of the Bayesian Network Classifier

Most advantages of the Bayesian network classifier come from its
representation power. Other predictive classification models are basically
focusing on learning only the relationships between the class label and input
attributes. In contrast, Bayesian networks represent the joint probability
distribution over the class label and input attributes. One advantage of the
Bayesian network classifier is that it can predict the class label when only
partial information about the input attributes is available. For example,
consider again the Bayesian network in Figure 8.1. Assume that we are
given a sample consisting of only the values of ‘Gene A’ and ‘Gene F’.
Then, this sample could also be classified by calculating the conditional
probability, P(Class | Gene A, Gene F) = P(Class, Gene A, Gene F) | P(Gene
A, Gene F) from the Bayesian network. Of course, the calculation of this
conditional probability is not straightforward because it requires the
summation over all the possible configurations for unknown variables. If all
the variables are binary, we should enumerate 2’ (=128) possible
configurations for the summation. ® Calculation of the conditional
probabilities in the Bayesian network is often called probabilistic inference.
Although the probabilistic inference of arbitrary conditional probabilities
from arbitrary Bayesian networks is known to be NP-hard (Cooper, 1990),
there exist several algorithms applicable to the special type of network
structures (Pearl, 1988; Spirtes et al., 2000; Jensen, 2001). One example is
Pearl’s message passing scheme (Pearl, 1988).

Another advantage of the Bayesian network classifier is that it can be
used as a hypothesis generator about the domain. The Bayesian network
structure learned from microarray data represents various probabilistic
relationships among gene expressions and the class label in a

5 When the number of unknown variables or the range of possible values of the discrete
variable is large, this problem becomes serious.

158 Chapter 8

comprehensible graph format. Such relationships might be used as a
hypothesis and be verified by further biological experiments. Of course,
other predictive models such as decision trees could represent the
relationships between the class label and input attributes in the form of
comprehensible ‘if-then’ rules. However, the representation power of the
Bayesian network is superior to that of other predictive models.

4.2 Difficulties in Using Bayesian Networks for
Classification

Although the Bayesian network has some advantages, it requires special
tuning techniques to achieve the good classification accuracy of other
predictive models in practice. In principle, this comes from the fact that
Bayesian networks try to represent the joint probability distribution. When
calculating the conditional probability of the class variable in the Bayesian
network, only the Markov blanket (Pearl, 1988; also refer to Chapter 6 of
this volume) of the class variable affects the results. For a set of N — 1 input
attributes, A = {4,, 43, ..., An.1} and the class variable C, the Markov blanket
of C, MB(C), is the subset of A which satisfies the following equation.

P(C|A)=P(C{MB(C)) (8.6)

In other words, C is conditionally independent of A — MB(C) given the
values of all the members of MB(C).14 Given a Bayesian network structure,
determination of the Markov blanket of a node is straightforward. By the
conditional independencies asserted by the network structure, the Markov
blanket of a variable C consists of all the parents of C, all the children of C,
and all the spouses of C. In Figure 8.1, the Markov blanket of ‘Class’ node
consists of six gene nodes i.e. ‘Gene A’, ‘Gene B’, ‘Gene C’, ‘Gene D’,
‘Gene F’, and ‘Gene G’°, Because only the members of the Markov blanket
of the class variable participate in the classification process ', the
construction of the accurate Markov blanket structure around the class
variable is most important for the classification performance. However, the
nature of the scoring metrics used in general Bayesian network learning is
not favorable to this point. Consider learning the Bayesian network
consisting of one class variable C and N-1 input variables,

{Ay, Az, ..., An-1}. Then, the log likelihood term in Equation 8.5 can be
decomposed into two components as

¥ Several Markov blankets could exist for a variable. The minimal Markov blanket is also
called Markov boundary (Pearl, 1988). In our paper, Markov blanket always denotes the
Markov boundary.

1 This situation occurs when all the input attribute values are given in the sample.

8. Bayesian Network Classifiers for Gene Expression Analysis 159

log likelihood = " 108 P,(C = ¢, | A =y, Ay = Gy Ay, = By &7
+ Y 10g P4 = a0 Ay = 8y Ay, = By,

where ¢;is the value of C and ayis the value of 4, (1 <i<N—1)in the {®
training example. Because only the first term of Equation 8.7 is related with
the classification accuracy, maximizing the second term might mislead the
search for the Bayesian network structure as a good classifier. In the greedy
search procedure, the essential variable for the classification might be
eliminated from the Markov blanket of the class variable. More details on
this issue could be found in (Friedman et al., 1997). In the next subsection,
some methods for improving classification accuracy of the Bayesian
networks are briefly presented.

4.3 Improving the Classification Accuracy of the Bayesian
Network

There are various criteria for the classification accuracy including the total
rate of correctly classified samples, the sensitivity and specificity, and the
receiver operating characteristic (ROC) curve. In this chapter, we rely on

the simple and intuitive measure, the total rate of correctly classified cases in
the test data set.

One simple solution for the problem discussed in Section 4.2 is to fix the
structure as appropriate for the classification task. The naive Bayes classifier
(Mitchell, 1997) is a typical example, where all the input variables are the
children of the class variable and are conditionally independent from each
other given the class label. The classification performance of the naive
Bayes classifier is reported to be comparable to other state-of-the-art
classification techniques in many cases. However, the strong restriction on
the network structure hides one advantage of the Bayesian network, that is to
say, the ability of exploratory data analysis. Friedman et al. (1997) suggested
the tree-augmented naive Bayes classifier (TAN) model. The TAN model
assumes a little more flexible structure than the naive Bayes classifier. Here,
the correlations between input variables can be represented in Ssome
restricted forms. This approach outperforms the naive Bayes classifier in
some cases. Bang and Gillies (2002) deployed the hidden nodes for
capturing the correlations among the input attributes. This approach has also
shown the better classification accuracy although the experiments were
confined to only one classification problem. Zhang et al. (2002) proposed to
use the ensemble of heterogeneous Bayesian networks in order to improve
the classification accuracy. This approach is based on the concept of
committee machines (Haykin, 1999) and showed the improved performance

160 Chapter 8

applied to the classification of microarray data. In the next section, the
experimental results of the ensemble of Bayesian network classifiers (Zhang
et al., 2002) on two microarray data sets are presented.

5. EXPERIMENTS: CANCER CLASSIFICATION
5.1 The Microarray Data Sets

We demonstrate the classification performance of the ensemble of Bayesian
networks (Zhang et al.,, 2002) on two microarray data sets. These two
microarray data sets are as follows.

Leukemia data: This data set is the collection presented by Golub et al.
(1999).'® The data set contains 72 acute leukemia samples which consist of
25 samples of acute myeloid leukemia (AML) and 47 samples of acute
lymphoblastic leukemia (ALL). 38 leukemia samples (11 AML and 27 ALL)
were derived from bone marrow taken before treatment and are used as a
training set in (Golub et al, 1999; Slonim et al., 2000). Additional 34
samples (14 AML and 20 ALL) were obtained as a test set among which 25
samples were derived from bone marrow and 9 were from peripheral blood.
Each sample consists of 7,129 gene expression measurements obtained by a
high-density oligonucleotide array. The classification task is to discriminate
between AML and ALL.

Colon cancer data: This data set was presented by Alon et al. (1999)
and contains 62 colon tissue samples. 40 tumor samples were collected from
patients and paired 22 normal tissues were obtained from some of the
patients.'” More than 6,500 human gene expressions were analyzed with an
Affymetrix oligonucleotide array. Among them, 2,000 genes with highest
minimal intensity across the samples were chosen (Alon et al, 1999).
Finally, each sample is represented by expression levels of 2,000 genes. The
classification task is to discriminate between normal tissue and cancer tissue.

5.2 Experimental Settings

The P-metric (Slonim et al., 2000) was used to select 50 genes from each
data set. Each gene expression level was discretized into two values, ‘over-
expressed’ and ‘under-expressed’ based on its mean value across the training
examples. As the scoring metric for the Bayesian network learning, BD
score (Heckerman et al., 1995) with the following penalizing term was used:

16 The leukemia data set is available at http://www.genome.wi.mit.edu/MPR.
The colon cancer data set is available at http://microarray.princeton.edu/oncology/affydata.

8. Bayesian Network Classifiers for Gene Expression Analysis 161

Y N
W {[log}v S l]] + 2 PaCK) 11, I logM}. (8.9)

Here, N (= 51) is the number of nodes in the Bayesian network, M is the
sample size, |+| denotes the size of a set of nodes, and ||:|| denotes the number
of possible configurations of a node or a set of nodes. And the ensemble
machines consisting of 5,7, 10, 15, and 20 Bayesian networks were
constructed from two cancer data sets, respectively (Zhang et al., 2002).

5.3 Experimental Results

Due to the small number of data samples in two microarray data sets used,
we applied the leave-one-out cross validation (1.LOOCV) (Mitchell, 1997) to
assess the classification performance. In the case of the leukemia data, the
ensemble of seven Bayesian networks achieved the best classification
accuracy (97.22%) among five ensemble machines. In the case of the colon
cancer data, the ensemble machine of five Bayesian networks showed the
best accuracy (85.48%) among five ensemble machines (Zhang et al., 2002).

For comparative studies, we also show the classification accuracy of
other classification techniques, including weighted voting'® (Golub et al.,
1999; Slonim et al., 2000), C4.5 decision trees, naive Bayes classifiers,
multilayer perceptrons (MLPSs), and support vector machines (SVMs) (Ben-
Dor et al., 2000; Chapter 9 of this volume). For the weighted voting scheme,
the original value of gene expression level was used. The decision trees were
applied to the discretized data sets. The naive Bayes classifiers, the MLPs,
and the SVMs were run on both the discretized and original data sets.
Table 8.2 summarizes the best classification accuracy of each method on two
cancer data sets. Among all of these approaches, the SVM achieved the best
classification accuracy. However, the SVM used the original gene
expression values. When using discretized gene expression levels, the
ensemble of Bayesian networks also shows the best performance like the
SVM (in the case of leukemia data) or the MLP as well as the naive Bayes
classifier (in the case of colon cancer data).

%10 this approach, the classification of a new sample is based on the “weighted voting” of a
set of informative genes. Each gene votes for the class depending on the distance between
its expression level in the new sample and the mean expression level in each class. For
more details, refer to (Golub et al., 1999; Slonim et al., 2000).

162 Chapter 8

Table 8.1. Comparison of the classification accuracy of the ensemble of Bayesian networks
and other state-of-the-art classification techniques on two microarray data sets.

. . Classification accuracy (LOOCYV)

Classifiers Data attributes Leukemia data Colon cancer data
Weighted voting Real 95.83% 87.10%
Decision trees (C4.5) Binary 95.83% 83.87%
. e Binary 95.83% 85.48%
Naive Bayes classifiers Real 97.22% 85.48%
. Binary 95.83% 85.48%
Multilayer perceptrons Real 97.22% 88.71%
. Binary 97.22% 83.87%
Support vector machines Real 98.61% 88.71%
Ensemble of Bayesian networks Binary 97.22% 85.48%

Figure 8.3 shows the part around the class variable of a member Bayesian
network which belongs to the ensemble machine learned from the leukemia
data and the colon cancer data.

(a) (b}

Figure 8.3. Parts of the member Bayesian network of the ensemble machines, learned from
leukemia data (a) and colon cancer data (b). ‘Cancer’ node denotes the class variable. Gene
nodes are represented by the respective GenBank accession number.

These graph structures generate the hypotheses on the relationships
among the cancer class and gene expression profiles. These hypotheses
could further guide biological experiments for the verifications. We illustrate
some of them. In Figure 8.3(a), M96326, M31523, and X17042 are closely
related through M84526 and ‘Cancer’ node. The E2A locus (M31523) is a
frequent target of chromosomal translocations in B-cell ALL (Khalidi et al.,
1999). E2A encodes two products, E12 and E47, that are part of the basic
helix-loop-helix (bHLH) family of transcription factors. The disruption of
E2A allele contributes to leukemogenesis (Herblot et al., 2002).
Accidentally, azurocidin (M96326), adipsin (M84526), and E2A (M31523)
are located in the same chromosomal region of 19pl3.3 that is known to be

8. Bayesian Network Classifiers for Gene Expression Analysis 163

the site of recurrent abnormalities in ALL and AML. Among these proteins,
special attention should be made to azurocidin, also known as heparin-
binding protein (HBP) or CAP37, that has antibacterial properties and
chemotactic activity toward monocytes (Ostergaard and Flodgaard, 1992).
Azurocidin released from human neutrophils binds to endothelial cell-
surface proteoglycans. A significant fraction of proteoglycan-bound
azurocidin is taken up by the cells. And the intemalized azurocidin markedly
reduces growth factor deprivation-induced caspase-3 activation and protects
endothelial cells from apoptosis (Olofsson et al., 1999). This kind of reaction
might affect the behavior of leukemia in the context of cell proliferation. It
might be investigated whether adipsin (M84526) plays any role in the
interaction between azurocidin (M96326) and hematopoetic proteoglycan
core protein (X17042).

6. CONCLUDING REMARKS

We presented the Bayesian network method for the classification of
microarray data. The Bayesian network is a probabilistic graphical model
which represents the joint probability distribution over a set of variables. In
the microarray data analysis, the variables denote the gene expression levels
or the experimental conditions such as the characteristics of tissues and cell
cycles. The Bayesian network consisting of the gene variables and the class
variable can be leamed from the microarray data set and used for the
classification of new samples. For classification in the Bayesian network, the
conditional probability of the class variable given the values of input
attributes, is calculated from the joint probability representation. One of the
most interesting points of the Bayesian network as a classifier compared to
other predictive classification models is that it does not discriminate between
the class label and the input attributes but tries to show the probabilistic
dependency among arbitrary attributes. This enables the Bayesian network to
represent correlations among input attributes as well as between the class
variable and the input variables. Due to these features, the Bayesian network
learned from microarray data could aid in broadening the knowledge about
the domain by representing these relations in a comprehensible graph format.
However, this flexibility of the Bayesian network makes it harder to learn
the model with high classification accuracy as other classification models.
This problem could be partially resolved by other techniques such as the
ensemble of Bayesian networks. In our experiments on the gene expression
analysis of leukemias and colon cancers, we showed that the ensemble of
Bayesian classifiers could achieve the competitive classification accuracy
compared to the other state-of-the-art techniques. We also demonstrated that

164 Chapter 8

the analysis of the learned Bayesian network could generate some interesting
hypotheses which could guide further biological experiments.

ACKNOWLEDGMENTS

This work was supported by the BK-21 Program from Korean Ministry of
Education and Human Resources Development, by the IMT-2000 Program
and the NRL Program from Korean Ministry of Science and Technology.

REFERENCES

Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., Levine A.J. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96(12):6745-50

Bang J.-W., Gillies D. Using Bayesian networks with hidden nodes to recognize neural cell
morphology (2002). Proc of the Seventh Pacific Rim International Conference on
Artificial Intelligence; 2002 August 18 - 22; Tokyo. Heidelberg: Springer-Verlag (to
appear).

Ben-Dor A., Bruhn L., Friedman N., Nachman 1., Schummer M., Yakhini Z. (2000). Tissue
classification with gene expression profiles. J Comput Biol 7(3/4):559-84

Chickering DM. (1996). “Learning Bayesian Networks is NP-Complete.” In Learning from
Data: Artificial Intelligence and Statistics 'V, Doug Fisher, Hans-J. Lenz, eds. New York,
NY: Springer-Verlag.

Cooper G.F. (1990). The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence 42(2-3):393-405

Cover TM., Thomas J.A. (1991). Elements of Information Theory. NY: John Wiley & Sons.

Dempster A.P., Laird N.M., Rubin D.B. (1977). Maximum likelihood from incomplete data
via the EM algorithm (with discussion). J R Stat Soc Ser B 39(1): 1-38

Dougherty J., Kohavi R., Sahami M. (1995). Supervised and unsupervised discretization of
continuous features. Proc of the Twelfth International Conference on Machine Learning;
1995 July 9 - 12; Tahoe City. San Francisco: Morgan Kaufmann Publishers.

Dubitzky W., Granzow M., Berrar D. (2002). “Comparing Symbolic and Subsymbolic
Machine Learning Approaches to Classification of Cancer and Gene Identification.” In
Methods of Microarray Data Analysis, Simon M. Lin, Kimberly F. Johnson, eds. Norwell,
MA: Kluwer Academic Publishers.

Friedman N., Geiger D., Goldszmidt M. (1997). Bayesian network classifiers. Machine
Learning 29(2/3):131-63.

Friedman N., Goldszmidt M. (1999.) “Learning Bayesian Networks with Local Structure.” In
Learning in Graphical Models, Michael 1. Jordan, ed. Cambridge, MA: MIT Press, 1999.

Friedman N., Linial M., Nachman I., Pe’er D (2000). Using Bayesian networks to analyze
expression data. J Comput Biol 7(3/4).601-20.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular

classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286(5439).531-7.

8. Bayesian Network Classifiers for Gene Expression Analysis 165

Hartemink AJ., Gifford DK,, Jaakkola T.S., Young R.A. (2001). Combining location and
expression data for principled discovery of genetic regulatory network models. Proc.
Seventh Pacific Symposium on Biocomputing; 2002 January 3 - 7; Lihue. Singapore:
World Scientific Publishing.

Haykin S. (1999). Neural Networks — A Comprehensive Foundation, 2™ edition. NJ: Prentice-
Hall.

Heckerman D., Geiger D., Chickering D.M. (1995). Learning Bayesian networks: the
combination of knowledge and statistical data. Machine Learning 20(3):197-243

Heckerman D. (1999). “A Tutorial on Learning with Bayesian Networks.” In Learning in
Graphical Models, Michael 1. Jordan, ed. Cambridge, MA: MIT Press.

Herblot S., Apian P.D., Hoang T. (2002). Gradient of E2A activity in B-cell development.
Mol Cell Biol 22:886-900

Hwang K.-B., Cho D.-Y., Park S.-W., Kim S.-D., Zhang B.-T. (2002). “Applying Machine
Learning Techniques to Analysis of Gene Expression Data: Cancer Diagnosis.” In
Methods of Microarray Data Analysis, Simon M. Lin, Kimberly F. Johnson, eds. Norwell,
MA: Kluwer Academic Publishers.

Jensen E.V. Bayesian Networks and Decision Graphs. NY: Springer-Verlag, 2001.

Khalidi H.S., O’Donnell M.R., Slovak M.L., Arber D.A. (1999). Adult precursor-B acute
lymphoblastic leukemia with translocations involving chromosome band 19pl3 is
associated with poor prognosis. Cancer Genet Cytogenet 109(1).58-65.

Khan J., Wei JS.,, Ringnér M., Saal I.H., Ladanyi M., Westermann F., Berthold F., Schwab
M., Antonescu C.R., Peterson C., Meltzer P.S. (2001). Classification and diagnostic
prediction of cancers using gene expression profiling and artificial neural networks. Nat
Med 7(6):673-9.

Li L., Pederson 1..G., Darden T.A., Weinberg C.R. (2002). “Computational Analysis of
Leukemia Microarray Expression Data Using the GA/KNN Method.” In Methods of
Microarray Data Analysis, Lin SM.,, Johnson K.F., eds., Norwell, MA, Kluwer Academic
Publishers.

Mitchell TM. (1997). Machine Learning. NY: McGraw-Hill Companies.
Olofsson A.M., Vestberg M., Herwald H., Rygaard J., David G., Arfors K.-E., Linde V.,
Flodgaard H., Dedio J., Muller-Esterl W., Lundgren-Akerlund E. (1999). Heparin-binding

protein targeted to mitochondrial compartments protects endothelial cells from apoptosis. J
Clin Invest 104(7):885-94

Ostergaard E., Flodgaard H. (1992). A neutrophil-derived proteolytic inactive elastase
homologue (hHBP) mediates reversible contraction of fibroblasts and endothelial cell
monolayers and stimulates monocyte survival and thrombospondin secretion. J Leukoc
Biol 51(4):316-23

Pearl J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. CA: Morgan Kaufmann Publishers.

Slonim DK., Tamayo P., Mesirov J.P., Golub T.R., Lander E.S. (2000). Class prediction and
discovery using gene expression data. Proc. of the Fourth Annual International Conference
on Computational Molecular Biology; 2000 April 8 - 11; Tokyo. New York: ACM Press.

Spirtes P., Glymour C., Schemes R. (2000). Causation, Prediction, and Search, 2™ edition.
MA: MIT Press.

Zhang B.-T., Hwang K.-B., Chang J.-H,, Augh SJ. Ensemble of Bayesian networks for gene
expression-based classification of cancers. Artif Intell Med (submitted) 2002.

Chapter 9

CLASSIFYING MICROARRAY DATA USING
SUPPORT VECTOR MACHINES

Sayan Mukherjee

PostDoctoral Fellow: MIT/Whitehead Institute for Genome Research and Center for
Biological and Computational Learning at MIT,

e-mail: sayan @mit.edu

1. INTRODUCTION

Over the last few years the routine use of DNA microarrays has made
possible the creation of large data sets of molecular information
characterizing complex biological systems. Molecular classification
approaches based on machine leamning algorithms applied to DNA
microarray data have been shown to have statistical and clinical relevance
for a variety of tumor types: Leukemia (Golub et al., 1999), Lymphoma
(Shipp et al., 2001), Brain cancer (Pomeroy et al, 2002), Lung cancer
(Bhattacharjee et al., 2001) and the classification of multiple primary tumors
(Ramaswamy et al., 2001).

One particular machine learning algorithm, Support Vector Machines
(SVMs), has shown promise in a variety of biological classification tasks,
including gene expression microarrays (Brown et al.,, 2000, Mukherjee et al.,
1999). SVMs are powerful classification systems based on regularization
techniques with excellent performance in many practical classification
problems (Vapnik, 1998, Evgeniou et al., 2000).

This chapter serves as an introduction to the use of SVMs in analyzing
DNA microarray data. An informal theoretical motivation of SVMs both
from a geometric and algorithmic perspective, followed by an application to
leukemia classification, is described in Section 2. The problem of gene
selection is described in Section 3. Section 4 states some results on a variety
of cancer morphology and treatment outcome problems. Multiclass
classification is described in Section 5. Section 6 lists software sources and

9. Classifying Microarray Data Using Support Vector Machines 167

rules of thumb that a user may find helpful. The chapter concludes with a
brief discussion of SVMs with respect to some other algorithms.

2. SUPPORT VECTOR MACHINES

In binary microarray classification problems, we are given ! experiments
{1, ¥1)y..., (X, ¥} This is called the rraining set, where X; is a vector
corresponding to the expression measurements of the i™ experiment or
sample (this vector has n components, each component is the expression
measurement for a gene or EST) and y; is a binary class label, which will be
+ 1. We want to estimate a multivariate function from the training set that
will accurately label a new sample, that iS f{Xuew) = Ynew. This problem of
learning a classification boundary given positive and negative examples is a
particular case of the problem of approximating a multivariate function from
sparse data. The problem of approximating a function from sparse data is i//-
posed. Regularization is a classical approach to making the problem well-
posed (Tikhonov and Arsenin, 1977).

A problem is well-posed if it has a solution, the solution is unique, and
the solution is stable with respect to perturbations of the data (small
perturbations of the data result in small perturbations of the solution). This
last property is very important in the domain of analyzing microarray data
where the number of variables, genes and ESTs measured, is much larger
than the number of samples. In statistics when the number of variables is
much larger that the number of samples one is said to be facing the curse of
dimensionality and the function estimated may very accurately fit the
samples in the training set but be very inaccurate in assigning the label of a
new sample, this is referred to as over-fitting. The imposition of stability on
the solution mitigates the above problem by making sure that the function is
smooth so new samples similar to those in the training set will be labeled
similarly, this is often referred to as the blessing of smoothness.

2.1 Mathematical Background of SVMs

We start with a geometric intuition of SVMs and then give a more general
mathematical formulation.

2.1.1 A Geometrical Interpretation

A geometric interpretation of the SVM illustrates how this idea of
smoothness or stability gives rise to a geometric quantity called the margin
which is a measure of how well separated the two classes can be. We start by
assuming that the classification function is linear

168 Chapter 9

f(x)=w-x=iw,x, 9.1

where x; and w, are the i™ elements of the vectors x and w, respectively.
The operation w-x is called a dot product. The label of a new point Xpe is
the sign of the above function, Yue, =sign [fxsew)]. The classification

boundary, all values ofx for whichf(x)= 0, is a hyperplane' defined by its
normal vector w (see Figure 9.1).

o

o® 1, :o
/“.%’.—-—/

A, A A

A" A

Figure 9.1. The hyperplane separating two classes. The circles and the triangles designate the
members of the two classes. The normal vector to the hyperplane is the vector w,

Assume we have points from two classes that can be separated by a
hyperplane and x is the closest data point to the hyperplane, define X to be
the closest point on the hyperplane to x. This is the closest point to x that
satisfies w'x=0 (see Figure 9.2). We then have the following two
equations:

w-x=k for some k, and
wx=0,

Subtracting these two equations, we obtain w* (x — xg) = £.

Dividing by the norm of w (the norm of w is the length of the vector w), we
obtain:®

w _k
[R

'A hyperplane is the extension of the two or three dimensional concepts of lines and planes
to higher dimensions. Note, that in an n-dimensional space, a hyperplane is an n — 1
dimensional object in the same way that a plane is a two dimensional object in a three
dimensional space. This is why the normal or perpendicular to the hyperplane is always a
Vector.

% The notation “|a|" refers to the absolute value of the variable a. The notation “| @[refers
the length of the vector a.

9. Classifying Microarray Data Using Support Vector Machines 169

where uwu=,’ ;':]w,z . Noting that w/|w|| is a unit vector (a vector of

length 1), and the vector x ~ xp is parallel to w, we conclude that
d

'"_';'ﬂ .

[=]l =

Figure 9.2. The black line is the hyperplane separating the triangles from the circles defined
by its normal vector w. The circle on the dashed line is the point x closest to the hyperplane,
and x, the closest point to x on the hyperplane,

Our objective is to maximize the distance between the hyperplane and the
closest point, with the constraint that the points from the two classes fall on

opposite sides of the hyperplane. The following optimization problem
satisfies the objective:

max min%{ﬂ subject to y;(w ' x) > 0 for all x; (9.2)
W X w

Note that y(w'x)=|k when the point x is the circle closest to the
hyperplane in Figure 9.2.

For technical reasons, the optimization problem stated above is not easy
to solve. One difficulty is that if we find a solution w, then ¢w for any
positive constant ¢ is also a solution. This is because we have not fixed a
scale or unit to the problem. So without any loss of generality, we will
require that for the point x; closest to the hyperplane k= 1. This fixes a scale
and unit to the problem and results in a guarantee that y,(w'x;) 2 1 for all x;.
All other points are measured with respect to the closest point, which is
distance 1 from the optimal hyperplane. Therefore, we may equivalently
solve the problem

170 Chapter 9

max minM subject t0 y(wx)) 2 1 (9.3)

R
An equivalent, but simpler problem (Vapnik, 1998) is

mwin%”w”2 subjectto y(wx) > 1 (9.4)

Note that so far, we have considered only hyperplanes that pass through
the origin. In many applications, this restriction is unnecessary, and the
standard separable (i.e. the hyperplane can separate the two classes) SVM
problem is written as

113131%||w||2 subjectto y(w'x;+b)>1 9.5)

where b is a free threshold parameter that translates the optimal
hyperplane relative to the origin. The distance from the hyperplane to the
closest points of the two classes is called the margin and is 1/|jw|/*. SVMs
find the hyperplane that maximize the margin. Figure 9.3 illustrates the
advantage of a large margin.

N
s by
A AL
B A b
(]
]
]
B0
|III
B,
(b)

Figure 9.3.(a) The maximum margin hyperplane separating two classes. The solid black line
is the hyperplane (wx +b=0). The two dashed lines are those for the points in the two
classes closest to the hyperplane (wx+b=1%1). A new point, the blank rectangle, is
classified correctly in (a). Note, the larger the margin the greater the deviation allowed or
margin for error. (b) A non-maximum margin hyperplane separating the two classes. Note,
that the same new point is now classified incorrectly. There is less margin for error,

In practice, data sets are often not linearly separable. To deal with this
situation, we add slack variables that allow us to violate our original distance
constraints. The problem becomes now:

9. Classifying Microarray Data Using Support Vector Machines 171

min Hw[" +C3 & subjectto ywx,+b)=1-& 9.6)
W0, 1 .

where & 2 0for all i. This new formulation trades off the two goals of
finding a hyperplane with large margin (minimizing |jw||), and finding a
hyperplane that separates the data well (minimizing the &). The parameter C
controls this trade-off. This formulation is called the soft margin SVM. The
parameter C controls this trade-off. It is no longer simple to interpret the
final solution of the SVM problem geometrically. Figure 94 illustrates the
soft margin SVM,

(b)

Figure 9.4.(a) The data points are not linearly separable. The solid black line is the SVM
solution. The white triangle and the white rectangle are misclassified, The slack variables
designate the distance of these points from the dashed lines for the corresponding classes. (b)
The classes are separable. The dotted line is the solution when the tradeoff parameter C is
very large (e.g., infinite), and this gives us the maximum margin classifier for the separable
case. If the tradeoff parameter is small, then one allows errors (given by the two slack
variables), but one gets a much larger margin,

SVMs can also be used to construct nonlinear separating surfaces. The
basic idea here is to nonlinearly map the data to a feature space of high or
possibly infinite dimensions, x = @x). We then apply the linear SVM
algorithm in this feature space. A linear separating hyperplane in the feature
space corresponds to a nonlinear surface in the original space. We can now
rewrite Equation 9.6 using the data points mapped into the feature space, and
we obtain Equation 9.7.

minw|’ + €24 ©.7)

172 Chapter 9

&2 0 for all i, where the vector w has the same dimensionality as the feature
space and can be thought of as the normal of a hyperplane in the feature
space. The solution to the above optimization problem has the form

f(x)=w-¢(x)+b=Iz:;c,¢(x,)-¢(x)+b ©.8)

since the normal to the hyperplane can be written as a linear combination
of the training points in the feature space,

w= Zci¢(xl) :
i=|

For both the optimization problem (Equation 9.7) and the solution
(Equation 9.8), the dot product of two points in the feature spaces needs to
be computed. This dot product can be computed without explicitly mapping
the points into feature space by a kernel function, which can be defined as
the dot product for two points in the feature space:

K(x,x,)=¢(x) ¢(x,) 9.9)

So our solution to the optimization problem has now the form:
i
f(x)=D e K(x,x)+b (9.10)
i=1

Most of the coefficients ¢; will be zero; only the coefficients of the points
closest to the maximum margin hyperplane in the feature space will have
nonzero coefficients. These points are called the support vectors. Figure 9.5
illustrates a nonlinear decision boundary and the idea of support vectors.

A A

Figure 9.5 The curve is the nonlinear decision boundary given by the SVM. The white
triangles and the white rectangles are the support vectors, Only these points contribute in
defining the nonlinear decision boundary,

9. Classifying Microarray Data Using Support Vector Machines 173

The following example illustrates the connection between the mapping into a
feature space and the kemel function. Assume that we measure the
expression levels of two genes, TrkC and SonicHedghog (SH), For each
sample, we have the expression vector X = (Xsy, Xnic). We use the following
mapping #x):

. 2 2
g:x—> {xSH ’xTrkC’\/ExSHxTrkC’xSH »Xmuc ,1}

If we have two samples x and z, then we obtain:

2
K(x,2)=¢(x) ¢(z)=(x-2+1)
P)
=Xgy Ty + Xpacnac + 2Xsy X s Tmc +
XsuZsy + Xpacioac +1

which is called a second order polynomial kernel. Note, that this kernel
uses information about both expression levels of individual genes and also
expression levels of pairs of genes. This can be interpreted as a model that
incorporates co-regulation information. Assume that we measure the
expression levels of 7,000 genes. The feature space that the second order
polynomial would map into would have approximately 50 million elements,
so it is advantageous that one does not have to explicitly construct this map.

The following two kemnels, the polynomial and Gaussian kernel, are
commonly used:

K(x, 7) = (x-z + 1)” and K(x, z) = exp(}x ~2|| / 26?).

2.1.2 A Theoretical Motivation for SVMs and Regularization

SVMs can also be formulated as an algorithm that finds a function f that
minimizes the following functional® (note that this functional is basically
Equation 9.7, rewritten in a more general way):

mm -Z(- f(x)++—é—||f||; (9.11)

where the first term, the hinge lossfunction, is used to measure the error
between our estimate f{x;) and y;, and (@)+ = min(a, O) The expression ||/ ||
is a measure of smoothness, and the margin is 1/ ||f]l . » The variable / is the
number of training examples, and 1 / C is the regularization parameter that
trades off between smoothness and errors. The first term ensures that the
estimated function has a small error on the training samples and the second
term ensures that this function is also smooth. This functional is a particular

A functional is a function that maps other functions to real numbers.

174 Chapter 9

instance of the Tikhonov regularization principle (Tikhonov and Arsenin,
1977).

Given a data set §= {(x1, }1),.... (x, ¥)}, the SVM algorithm takes this
training set and finds a function fs. The error of this function on the training
set is called the empirical error, and we can measure it using Equation 9.12:

Tows [f5] =

-~

i(l -2 S (%)), (9.12)

However, what we really care about is how accurate we will be given a
new data sample, which iS (1 — Yrew f(Xpew))+ In general, we want to weight
this error by the probability of drawing the sample (Xuew, Ynew), and average
this over all possible data samples. This weighted measure is called the
expected or generalization error.

L, 1 fs]= [(1= 21 ()), p(,y)dxdy 9.13)

where p(x,y) is the distribution which the data is drawn from.
For algorithms that implement Tikhonov regularization, one can say with
high probability (Bousquet and Elisseeff, 2002, Mukherjee et al., 2002):

]ﬂmp [fJ] -]exp [f5|

<®(l,

) 9.14)

where the function ® decreases as ||f|] decreases (or margin increases) and
! increases. This tells us that if our error rate on the training set is low and
the margin is large, then the error rate on average for a new sample will also
be low. This is a theoretical motivation for using regularization algorithms
such as SVMs. Note, that for the number of samples typically seen in
microarray expression problems, plugging in values of [and fs into @ will
not yield numbers small enough to serve as practical error bars.

2.2 An Application of SVMs

One of the first cancer classification studies was discriminating acute
myeloid leukemia (AML) from acute lymphoblastic leukemia (ALL) (Golub
et al., 1999). In this problem, a total of 38 training samples belong to the two
classes, 27 ALL cases vs. 11 AML cases. The accuracy of the trained
classifier was assessed using 35 test samples. The expression levels of 7,129
genes and ESTs were given for each sample. A linear SVM trained on this
data accurately classified 34 of 35 test samples (see Figure 9.6.)

9. Classifying Microarray Data Using Support Vector Machines 175

QALL
HAML
B AALL efor

sample number

Figure 9.6 The signed distance, f{x), from the optimal separating hyperplane for the test
samples. The diamonds are the correctly labeled ALL samples. The squares indicate the
correctly labeled AML samples. The triangle marks the misclassified ALL case (see arrow).

From Figure 9.6 an intuitive argument can be formulated: the larger the
absolute value of the signed distance, [f{x)|, the more confident we can be in
the classification. There exist approaches to convert the real-valued fix) into
confidence values p(y = £1 | x) (Mukherjee et al., 1999, Platt, 1999). Thus,
we can classify samples that have a confidence value larger than a particular
threshold, whereas the classification of samples with confidence values
below this threshold will be rejected. We applied this methodology in
(Mukherjee et al., 1999) to the above problem, with a positive threshold of
[fAx)] = 0.1 and anegative threshold of [f{x)| =-0.2.

A simple rule of thumb value to use as threshold is |f{x)| = 1. Function
values greater than this threshold are considered high confidence. This value
is in general too large to use for rejections.

Polynomial or Gaussian kernels did not increase the accuracy of the
classifier (Mukherjee et al., 1999). However, when “important” genes were
removed, the polynomial classifier did improve performance. This suggests
that correlation information between genes can be helpful. Therefore, we
removed 10 to 1,000 of the most “informative” genes from the test and
training sets according to the signal-to-noise (S2N) criterion (see
Section 3.1). We then applied linear and polynomial SVMs on this data set
and reported the error rates (Mukherjee et al., 1999). Although the
differences are not statistically significant, it is suggestive that until the
removal of 300 genes, the polynomial kernel improves the performance,
which suggests that modeling correlations between genes helps in the
classification task.

176 Chapter 9

3. GENE SELECTION

It is important to know which genes are most relevant to the binary
classification task and select these genes for a variety of reasons: removing
noisy or irrelevant genes might improve the performance of the classifier, a
candidate list of important genes can be used to further understand the
biology of the disease and design further experiments, and a clinical device
recording on the order of tens of genes is much more economical and
practical than one requiring thousands of genes.

The gene selection problem is an example of what is called feature
selection in machine learing (see Chapter 6 of this volume). In the context
of classification, feature selection methods fall into two categories filter
methods and wrapper methods. Filter methods select features according to
criteria that are independent of those criteria that the classifier optimizes. On
the other hand, wrapper methods use the same or similar criteria as the
classifier. We will discuss two feature selection approaches: signal-to-noise
(S2N, also known as P-metric) (Golub et al., 1999, Slonim et al., 2000;), and
recursive feature elimination (RFE) (Guyon et al., 2002). The first approach
is a filter method, and the second approach is a wrapper method.

3.1 Signal-to-Noise (S2N)

For each gene j, we compute the following statistic;

S(J')="——“—#+(J.) #"(J.), (9.15)
o, (1)+a-(j)

where 2.(j) and u-(j) are the means of the classes +1 and 1 for the j*
gene. Similarly, o.(f) and o-(j) are the standard deviations for the two
classes for the ;™ gene. Genes that give the most positive values are most
correlated with class +1, and genes that give the most negative values are
most correlated with class —1. One selects the most positive m/2 genes and
the most negative m/2 genes, and then uses this reduced dataset for
classification. The question of estimating # is addressed in Section 3.3,

3.2 Recursive Feature Elimination (RFE)

The method recursively removes features based upon the absolute magnitude
of the hyperplane elements. We first outline the approach for linear SVMs.
Given microarray data with n genes per sample, the SVM outputs the normal
to the hyperplane, w, which is a vector with »n components, each
corresponding to the expression of a particular gene. Loosely speaking,
assuming that the expression values of each gene have similar ranges, the

9. Classifying Microarray Data Using Support Vector Machines 177

absolute magnitude of each element in w determines its importance in
classifying a sample, since the following equation holds;

f(x)=w-x+b=iw,x,.+b
i=l

The idea behind RFE is to eliminate elements of w that have small
magnitude, since they do not contribute much in the classification function.
The SVM is trained with all genes; then we compute the following statistic
for each gene:

SG) = wjl (9.16)

Where w;the value of the j™element of w. We then sort S from largest to
smallest value and we remove the genes corresponding to the indices that
fall in the bottom 10% of the sorted list S. The SVM is retrained on this
smaller gene expression set, and the procedure is repeated until a desired
number of genes, m, is obtained. When a nonlinear SVM is used, the idea is
to remove those features that affect the margin the least, since maximizing
the margin is the objective of the SVM (Papageorgiou et al., 1998). The
nonlinear SVM has a solution of the following form;

]
f(x)=2_;c,K(x,x,-)+b (9.17)

Let M denote the margin. Then we obtain Equation 9.18:

1 !
2= 2 e Kix,x) (9.18)

pr=l

So for each gene j, we compute to which extent the margin changes using
the following statistic:

S() = -a—“—a@} 9.19)
Xy

where x; is the j™ element of a vector of expression values x. We then sort S
from the largest to the smallest value, and we remove the genes
corresponding to the indices that fall in the bottom 10% of the sorted list S.
The SVM is retrained and the procedure is repeated just as in the linear case.

178 Chapter 9

3.3 How Many Genes To Use?

A basic question that arises for all feature selection algorithms is how many
genes the classifier should use. One approach to answer this question is
using hypothesis and permutation testing (Golub et al., 1999). The null
hypothesis is that the S2N or RFE statistic for each gene computed on the
training set comes from the same distribution as that for a random data set.
A random data set is the training set with its labels randomly permuted.

In detail, the permutation test procedure for the S2N or RFE statistic is as

follows:

(1) Generate the statistic for all genes using the actual class label and
sort the genes accordingly.

(2) Generate 100 or more random permutations of the class labels. For
each case of randomized class labels, generate the statistics for all
genes and sort the genes accordingly.

(3) Build a histogram from the randomly permuted statistics using
various numbers of genes. We call this number k. For each value of
k, determine different percentiles (1%, 5%, 50% etc.) of the
corresponding histogram.

(4) Compare the actual signal-to-noise scores with the different
significance levels obtained for the histograms of permuted class
labels for each value of k (see Figure 9.7 for an illustration).

5% mean 95%
kA) ’

A

Number of significant genes

Value of statistic (S2N or RFE)

Figure 9.7. The solid curve is the S2N or RFE statistic rank ordered computed on the training
set. The three dashed lines are the 5™, 50", and 95" percentiles of the same rank ordered
statistic as computed from the random data. The number of statistical genes is designated as
the value of k, where the solid curve crosses the 5™ percentile curve,

4. ERROR RATES FOR MORPHOLOGY AND
TREATMENT OUTCOME PREDICTION

We examined the error rate for SVMs and two other algorithms, Weighted
Voting Average (WVA), and k-nearest neighbors (kNN) on seven binary

9. Classifying Microarray Data Using Support Vector Machines 179

cancer classification problems. The problems are as follows: discriminating
acute myeloid leukemia (AML) from acute lymphoblastic leukemia (ALL),
and discriminating B-cells from T-cells for acute lymphoblastic leukemia
(Golub et al., 1999), discriminating follicular (FSC) lymphoma from diffuse
large cell lymphoma (DLCL) and discriminating high risk from low risk
lymphoma patients (Shipp et al., 2001), discriminating glioblastomas (GL)
from meduloblastomas (MD), and discriminating high risk from low risk
patients with medulloblastoma (Pomeroy et al.,, 2002). See Table 9.1 for
number of samples in each class for the data sets.

Error rates for all data sets except for AML vs. ALL were measured
using leave-one-out cross validation*. For AML vs. ALL, the test/train split
described in (Golub et al., 1999) was used. S2N was used for feature
selection for WVA and kNN algorithms. The SVM used the radius-margin
ratio as a gene selection methodology. The errors for both outcome
prediction problems were much larger than those for the morphology
prediction problems. The errors are reported in Table 9.2.

The number of genes used in each classification task for each algorithm
was determined using cross-validation. In general, SVMs required more
genes in the classification tasks.

Table 9.1. The number of samples in the various data sets.

Data set # of Samples Class -1 Class +1
AML vs. ALL (train) 38 27 ALL 11 AML
AML vs. ALL (tesf) 35 21 ALL 14 AML
B-cell vs. T-cell 23 15 B-cell 8 Tcell
FSCvs. DLCL 17 19 FSC 58 DLCL
GL vs. MD 41 14 GL 27MD
Lymphoma outcome 58 20 Lowrisk 38 High risk
Medullo outcome 50 38 Lowrisk 12 High risk

4 See Chapter 7 of this volume for more details on leave-one-out cross-validation.

180 Chapter 9

Table 9.2, Absolute number of errors for the various data sets.

) Errors
Data set Method Total Class 1 Cluss -\ ¥ of genes used

WVA 2 1 1 50

AML vs. ALL ANN 3 1 2 10
SVM 0 0 0 40

WVA 0 0 0 9

B-cell vy, T-cell ANN 0 0 0 10
SVM 0 0 0 10

Wva 6 1 S 30
FSCvs. DLCL ANN 3 1 2 200
SVM 4 2 2 250

WVA | 1 0 3

GL vs. MD NN 0 0 0 L
SvM ! 1 0 100

WVA 15 s 10 12

Lymphomu outcome KNN 15 8 7 15
SVM 13 3 10 100

WVA 13 6 7 6

Medullo outcome NN 10 6 4 5
SVM 7 6 1 50

S. MULTICLASS CLASSIFICATION

Ramaswamy et al. investigated whether the diagnosis of multiple adult
malignancies could be achieved purely by molecular classification, using
DNA microarray gene expression profiles (Ramaswamy et al., 2001). In
total, 218 tumor samples, spanning 14 common tumor types, and 90 normal
tissue samples were subjected to oligonucleotide microarray gene expression
analysis. These tumor types/localizations are: breast (BR), prostate (PR),
lung (LU), colorectal (CO), lymphoma (L), bladder (BL), melanoma (ME),
uterus (UT), leukemia (LE), renal (RE), pancreas (PA), ovary (OV),
mesothelioma (MS), and central nervous system (CNS). The expression
levels of 16,063 genes and ESTs were used to train and evaluate the
accuracy of a multiclass classifier based on the SVM algorithm. The overall
classification accuracy was 78%, far exceeding the accuracy of random

classification (9%). Table 9.3 shows the number of training and test samples
per tumor class.

Table 9.3. The number of samples in the training set (train) and the test set (test).

l BR PR LU CO L BL ME UT LE RE PA OV MS CNS
train | 8 8 8 g8 16 8 8 8 24 8 8 B 8 16
test | 3 2 3 S 6 3 2z 2 6 3 3 3 3 4

9. Classifying Microarray Data Using Support Vector Machines 181

Multiple class prediction is intrinsically more difficult than binary prediction
because the classification algorithm has to learn to construct a greater
number of separation boundaries or relations. In binary classification, an
algorithm can “carve out” the appropriate decision boundary for only one of
the classes; the other class is simply the complement. In multiclass
classification problems, each class has to be defined explicitly. A multiclass
problem can be decomposed into a set of binary problems, and then
combined to make a final multiclass prediction.

The basic idea behind combining binary classifiers is to decompose the
multiclass problem into a set of easier and more accessible binary problems.
The main advantage in this divide-and-conquer strategy is that any binary
classification algorithm can be used. Besides choosing a decomposition
scheme and a classifier for the binary decompositions, one also needs to
devise a strategy for combining the binary classifiers and providing a final
prediction. The problem of combining binary classifiers has been studied in
the computer science literature (Hastie and Tibshirani, 1998, Allwein et al.,
2000, Guruswami and Sahai, 1999) from a theoretical and empirical
perspective. However, the literature is inconclusive, and the best method for
combining binary classifiers for any particular problem is open.

Standard modern approaches for combining binary classifiers can be
stated in terms of what is called output coding (Dietterich and Bakiri, 1991).
The basic idea behind output coding is the following: given k classifiers
trained on various partitions of the classes, a new example is mapped into an
output vector. Each element in the output vector is the output from one of the
k classifiers, and a codebook is then used to map from this vector to the class
label (see Figure 9.7). For example, given three classes, the first classifier
may be trained to discriminate classes 1 and 2 from 3, the second classifier is
trained to discriminate classes 2 and 3 from 1, and the third classifier is
trained to discriminate classes 1 and 3 from 2.

Two common examples of output coding are the one-versus-all (OVA)
and all-pairs (AP) approaches. In the OVA approach, given & classes, &
independent classifiers are constructed where the i classifier is trained to
separate samples belonging to class i from all others. The codebook is a
diagonal matrix, and the final prediction is based on the classifier that
produces the strongest confidence:

class =arg max fi (9.20°
where f;is the signed confidence measure of the i™ classifier (see Figure 9.8).
In the all-pairs approach, Y2 k(k —1) classifiers are constructed, with each

classifier trained to discriminate between a class pair i and j. This can be

3 The procedure arg maxf{x) simply selects the value or argument of x that maximizes f{x).

182 Chapter 9
thought of as a & x & matrix, where the §™ entry corresponds to a classifier
that discriminates between classes i and j. The codebook, in this case, is used
to simply sum the entries of each row and select the row for which this sum

is maximal:
k
class = arg max 21
Tg max {;fu] 9.21)
where fj is the signed confidence measure for the i classifier.
Classifier
aA)) @) W
Al + 0 0 0
g ¢ o +1 0 0
< ®| 0 0 +l 0
L) 0 0] #1
Al 020 001 020 A _
. ©|0s5 o6 03 o010 & 2
§ Ofol0 o010 0% 020 O g
Ofo3% o010 o040 o030 W £
©| 060 670 010 010 ¢
(a) (b)

Figure 9.8, OVA classification. (a) Four binary classifiers are trained. The curves designate
the non-linear decision boundaries. The first classifier discriminates between the A-class and
all other classes; the second classifier discriminates between the ®-class and all other classes;
the third classifier discriminates between the @®-class and all other classes, and the fourth
classifier discriminates between the Ml-class and afl other classes, The following five cases are
the test cases: A, O, O, [, and ©. (b) The codebook for OVA classification is represented
in the upper part of the table, The numbers in the table are the ideal outputs of the classifiers
for the cases of the four classes. For example, the classifier C(4), which has learnt to
discriminate A-cases fiom all other cases, ideally outputs +1 for A-cases and O otherwise.
The lower part of the table shows the outputs of the classifiers for the test cases. The classifier
that outputs the highest number determines the class. For example, C(@®) yields 0.90 for the
case O; consequently, O is classified as member of class @.

Intuitively, there is a tradeoff between the OVA and AP approaches. The
discrimination surfaces that need to be learned in the all-pairs approach are,
in general, more natural and, theoretically, should be more accurate.
However, with fewer training examples, the empirical surface constructed
may be less precise. The actual performance of each of these schemes, or
others such as random codebooks, in combination with different
classification algorithms is problem dependent. The OVA approach gave the
best results on this dataset, and these results are reported in Table 9.4. The
train/test split in the table is the same as that in (Ramaswamy et al., 2001).
The error rate on the training set was measured using leave-one-out cross
validation. A sample classification was considered high confidence if
max f; 2 1, and low confidence otherwise.

9. Classifying Microarray Data Using Support Vector Machines 183

Table 9.4. Error rates for the multiclass data set.

Confidence
High Low

Data Validation Samples Total Fraction Accuracy Fraction Accuracy
set Method accuracy

Train cross- 144 78% 80% 90% 20% 28%

validation
Test train/test 54 78% 78% 83% 22% 58%
6. SOFTWARE SOURCES AND RULES OF THUMB

The SVM experiments described in this chapter were performed using a
modified version of the SvmFu package, which can be downloaded from
http://www.ai.mit.edu/projects/cbcl/). Another available SVM package is
SVMTorch (http://www.idiap.ch/learning/SVMTorch.html). SvmFu has
some advantages in that it has both multiclass and leave-one-out cross-
validation built in. SVMTorch is the only software of the above that does
SVM regression as well as classification.
The following are some rules of thumb when using SVMs:

(D

2

€)

“

©)

Normalizing your data: in general it is a good idea to rescale your
data such that all kernel values fall between —100 and 100; a simple
way to do this is by normalizing all entries of the microarray such
that they fall between —10(n)”* and +10(n)”*, where n is the number
of expression values per sample;

Choosing the regularization parameter C. given the above
normalization, the regularization parameter usually does not have
much effect, so set it somewhere between 1-100;

Choosing the kernel: for microarray applications, a linear kernel is
usually sufficient; you can use polynomial kernels if you want to
examine correlations between genes, but it will in general not greatly
improve the performance; if the linear kernel does not give good
performance, it is worth trying the Gaussian kernel;

Choosing the variance of the Gaussian kernel: set 6 such that the
average distance between two training points

K(x1, x2) = exp(|lx; - xa* / 26%) = 1/,

where / is the number of samples.

Multiclass problems: for a multiclass problem, use the OVA and AP
decompositions; in general, more complicated coding systems do not
help. When there are very few (5-10) training samples per class,
OVA will in general give the best results.

184 Chapter 9

7. DISCUSSION

The theoretical advantage of SVMs is that the idea of margin or stability
mitigates the problem of overfitting the training data. This is crucial in the
DNA microarray domain, which is characterized by thousands of
genes/variables and very few samples. Unlike most other algorithms (for
example, ANN or WVA), the SVM performs very well even without feature
selection, using all 7,000-16,000 expression values. The multiclass example
illustrates that the SVM is especially helpful when there are very few
training samples. Other algorithms such as kNN or WV A are made stable by
removing the noisy genes and reducing the number of features to 10-100.
One can loosely conclude that the curse of dimensionality is overcome in
SVMs using the blessing of smoothness, and simply by reducing the
dimensionality in the other algorithms. A practical result of this is that for
some classification problems, the SVM will tend to use more genes to make
a classification that kNN or WVA.

ACKNOWLEDGEMENTS

I would like to acknowledge my colleagues at Cancer Genomics Group at
the Whitehead/MIT Center for Genome Research and at the Center for
Biological and Computational Learning at MIT. The author is supported by
the Office of Science (BER), US Department of Energy, Grant No. DE-
FGO02-01ER63185.

REFERENCES

Allwein E.L., Schapire R.E., Singer Y, (2000). Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research 1:113-141.

Bhattacharjee A., Richards W.G, Staunton J., Li C., Monti S., Vasa P., Ladd C., Beheshti J.,
Bueno R., Gillette M., Loda M., Weber G., Mark EF., Lander E.S., Wong W., Johnson
B.E., Golub T.R., Sugarbaker D.J., Meyerson M. (2001). Classification of human lung
carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
Proc. Natl. Acad. Sci. USA 98:13790-13795.

Bousquet O. and Elisseeff A. (2002). Stability and Generalization. Journal of Machine
Learning Research 2, 499-526.

Brown M.P.S., Grundy W.N., Lin D., Cristianini N., Sugnet C., Furey T.S., Ares M., Jr.,
Haussler D. (2000). Knowledge-based analysis of microarray gene expression data using
support vector machines. Proc. Natl. Acad. Sci. USA 97(1):262-267.

Dietterich T.G. and Bakiri G. (1991). Error-correcting output codes: A general method for
improving multiclass inductive learning programs. Proc. of the Ninth National Conference
on Artificial Intelligence, AAAI Press, 572-577.

Evgeniou T., Pontil M., Poggio T. (2000). Regularization networks and support vector
machines. Advances in Computational Mathematics 13:1-50.

9. Classifying Microarray Data Using Support Vector Machines 185

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286(5439):531-7.

Guruswami V. and Sahai A. 1999. Multiclass learning, boosting and error-correcting codes.

Proc. of the Twelfth Annual Conference on Computational Learning Theory, ACM Press,
145-155.

Guyon 1., Weston J., Barnhill S., Vapnik V. (2002). Gene selection for cancer classification
using support vector machines. Machine Learning 46:389-422.

Hastie T.J. and Tibshirani R.J. (1998). Classification by pairwise coupling. In Jordan M.L,
Kearnsa M.J., Solla S.A., eds., Advances in Neural Information Processing Systems,
volume 10, MIT Press.

Mukherjee S., Rifkin R., Poggio T. (2002). Regression and Classification with Regularization.
Proc. of Nonlinear Estimation and Classification, MSRI, Berkeley, Springer-Verlag.

Mukherjee S., Tamayo P., Slonim D., Verri A., Golub T., Mesirov J.P., Poggio T. (2000).
Support vector machine classification of microarray data. Technical Report, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology.

Papageorgiou C., Evgeniou T., Poggio T. (1998). A trainable pedestrian detection system.
Intelligent Vehicles, pp. 241-246,

Platt J.C. 1999. Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood methods. Advances in Large Margin Classifiers, MIT Press.

Pomeroy S.L., Tamayo P., Gaasenbeek M., Sturla L.M., Angelo M., McLaughlin M.E., Kim
1.Y., Goumnerova L..C., Black P.M,, Lau C., Allen J.C., Zagzag D., Olson J., Curran T.,
Wetmore C., Biegel J.A., Poggio T., Mukherjee S., Rifkin R., Califano A., Stolovitzky G.,
Louis DN., Mesirov J.P,, Lander E.S., and Golub T.R. (2002). Prediction of central
nervous system embryonal tumour outcome based on gene expression. Nature,
415(24):436-442. (and supplementary information).

Ramaswamy S., Tamayo P., Rifkin R., Mukherjee S., Yeang C.H., Angelo M. Ladd C., Reich
M., Latulippe E., Mesirov J.P., Poggio T., Gerald W., Loda M., Lander E.S., Golub. TR.:
Multiclass cancer diagnosis using tumor gene expression signatures, Proc. Natl. Acad. Sci.
USA. 98(26):15149-15154.

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M,
Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov I,
Neuberg DS, Lander ES, Aster JC, Golub TR. (2002). Diffuse large B-cell lymphoma
outcome prediction by gene expression profiling and supervised machine learning, Nat
Med8(1):68-74.

Slonim D., Tamayo P., Mesirov J., Golub T., Lander E. (2000), Class prediction and
discovery using gene expression data. In Proc. of the 4th Annual International Conference
on Computational Molecular Biology (RECOMB), Universal Academy Press, pp. 263-
272, Tokyo, Japan.

Tikhonov AN. and Arsenin V.Y. (1977). Solutions of Ill-posed Problems. W.H. Winston,
Washington D.C.

Vapnik V.N. (1998). Statistical Learning Theory. John Wiley & Sons, New York.

Chapter 10

WEIGHTED FLEXIBLE COMPOUND
COVARIATE METHOD FOR CLASSIFYING
MICROARRAY DATA

A Case Study of Gene Expression Level of Lung Cancer

Yu Shyr1 and KyungMann Kim?

Division of Biostatistics, Department of Preventive Medicine, Vanderbilt University, 571
Preston Building, Nashville, TN 37232-6848, USA,

e-mail: yu.shyr@vanderbilt.edu

2Depaerenz of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600
Highland Ave, Box 4675, Madison, WI 53792, USA,
e-mail: kmkin @biostat.wisc.edu

1. INTRODUCTION

Just as in any biomedical investigations, the foundation of the microarray
data analysis is based on the primary objective(s) of the experiment. In
general, there are three objectives in the microarray experiments: class
discovery (non-supervised method), class comparison (supervised method)
and class prediction (supervised method). The investigator may be interested
in one or more of these three objectives, but the statistical considerations for
design and experiment and statistical data analysis should correspond to the
objective(s) of the study. For example, the hierarchical clustering techniques
may be useful in class discovery but may not be appropriate in class
comparison. The objective for class discovery can be “Are there more than
three histological groups, i.e. large cell, adenocarcinoma and squamous cell,
in non-small cell lung cancer?” The objective for class comparison can be
“Is there a set of genes that are differentially expressed between patients
responding and non-responding to a therapy?” The objective for class
prediction can be “Is there a set of genes that can predict the clinical

10. Weighted Flexible Compound Covariate Method for Classifying 187
Microarray Data

features?” In this chapter, we will discuss the class comparison and
prediction methods with an example from Vanderbilt lung cancer SPORE.

Lung cancer causes deaths of more men and women in the United States
than the next four most common types of cancer combined. The five-year
survival rate of all lung cancer is only 14 percent (Landis et al., 1999).
Recent advances in microarray technology enabled us to get detailed
simultaneous expression profiles of thousands of genes expressed in a tissue.
In order to better understand the biological diversity in human lung cancer,
we have begun to use this technology to determine the RNA profiles of the
genes expressed in freshly resected human lung cancers and to correlate
these with clinical and histological parameters.

In an investigation at Vanderbilt-Tngram Cancer Center, total RNAs were
extracted from 26 tumors (24 lung tumors, 1 breast and 1 sarcoma) and 3
normal tissues. As a control RNA, six RNAs were pooled from different
lung cancer cell lines representing the common histological types of lung
cancer. To obtain clean RNA, two step extraction using Trizol (GibcoBRL)
followed by RNeasy kit (Qiagen) was used. The 5,088 c¢cDNAs were
prepared from sequence-verified clones of Research Genetics to represent
4,749 unique genes; 2,162 were expressed sequence tags (ESTs) and 2,587
were non-ESTs. The cDNAs were amplified by polymerase chain reaction
(PCR) and spotted onto poly-L-lysine coated glass slides using a Stanford-
type microarrayer robot at the Vanderbilt Microarray Shared Resource.

Labeled cDNAs were made from total RNAs through an oligo-dT primed
reverse transcriptase reaction in the presence of Cy3 or Cy5 dCTP. Cy3- and
Cy5-labeled ¢cDNAs were mixed and applied onto Sk human cDNA arrays
on glass slides. After overnight hybridization and post-hybridization
washing, the images on the glass slides were captured using a dual-laser
confocal microscopy scanner. Using the analysis software package (GenePix
Pro3), output was expressed as the ratio of intensity for the probe tumor
RNA compared to the control RNA for each cDNA spot on the slide. For
each sample, two reciprocal hybridizations were performed on different
arrays (switching the dyes) to account for dye bias.

The primary statistical challenges of analysis of RNA expression patterns
are to identify a set of genes that are differentially expressed between
different classes and to develop predictive models of the statistical
relationships between multivariate RNA expression data and the clinical
features. In this chapter, the mutual-information scoring (Info Score),
weighted gene analysis (WGA), significance analysis of microarrays
(SAM), and permutation t-fest or F-test have been reviewed for identifying
the genes that are differentially expressed between different classes. One of
the challenges for these analyses is the genes identified by different methods

188 Chapter 10

may not be the same. The class prediction model may be used to examine the
significances of the genes. Hedenfalk et al. (2001) successfully applied the ¢-
test based compound covariate method to class prediction analysis for
BRCAl+ vs. BRCAl1-. We reviewed a recently proposed weighted flexible
compound covariate method (WFCCM) based on Info Score, WGA, SAM,
and permutation test. We also reviewed the basic concepts of the
classification tree methods. We conclude with suggestions for general ideas
of analyzing RNA expression data.

2. CLASS COMPARISON - VARIABLE SELECTION

Most classification and pattern recognition methodologies are limited by the
number of independent variables that can be assessed simultaneously. Thus,
a useful subset of independent variables must be selected. This is referred to
as the feature or variable subset selection problem. The mutual-information
scoring (Info Score), weighted gene analysis (WGA), significance analysis
of microarrays (SAM), and a permutation #-test or F-test were successfully
applied in several RNA expression profile data for determining the genes
that are differentially expressed between classes (Hedenfalk et al., 2001;
Tusher et al., 2001). These methods can provide the significance, the score
or the rank of the genes of the multi-dimensional data, and the subset
selection can be based on the resulting significance, the score or the rank.

2.1 Information-Theoretic Score

The Info Score is an information-theoretic score, which was introduced by
Ben-Dor, Friedman and Yakhini (2000). It uses a ranking-based scoring
system and combinatorial permutation of sample labels to produce a rigorous
statistical benchmarking of the overabundance of genes whose differential
expression pattern correlates with sample type, e.g., tumor (+) vs. normal
(-). Let N denote the number of tissues, consisting of p tissues from class P,
e.g., tumor tissues, with g, expression level for gene (j), and g tissues from
Class Q, e.g., normal tissues, with g, expression level. We define the rank
vector v; of g; to be a vector of {+, —} with a N x [dimension, where g, is a
N x I vector of expression level and N=p + q.

+ ifg, e P
- ifg,eQ (10.1)

vj=

For example, if the expression levels for gene j are
{1,2,3,5,6,7, 11, 14} in class P and {4, 8,9, 10, 12, 13, 15} in class Q,
then vy = {+, +,+, - +,+,+,—, -, —, +,—, -, +, ~}. Note that the rank vector
v, captures the essence of the differential expression profile of g; If g; is

10. Weighted Flexible Compound Covariate Method for Classifying 189
Microarray Data

underexpressed in class P, then the positive entries of v; are concentrated in
the left hand side of the vector, and the negative entries are concentrated at
the right hand side.

The Tnfo score ofa rank vector ¥ is defined as
Info(v,) = min, , _, {(|x|/|v]) Ent(x) + |3}/ M) Ent(y)} (10.2)
where Ent(s) s the entropy of e defined by
Ent(e) = H(¢) = —¢log,(¢) ~(1-¢)log,(1-9) (10.3)

and ¢ denotes the fraction of positive entries in ®. An entropy can be
viewed as measurement of the degree of disorder or uncertainty in a system.
Using the same example above, the best partition with respect to the Info
Score for gene j is

Info(vj)=%H(g]+—1§5H[-§—]=0.71 (10.4)

The range of the Info Score is between 0 and 1, and the smaller Info
Scores indicate the stronger evidence of the different expression profiles of
two classes.

In summary, the Info Score uses a rank-based scoring system and
combinatorial permutation of sample labels to produce a rigorous statistical
benchmarking of the overabundance of genes whose differential expression
pattern correlates with sample type. Genes may be ranked on the basis of
Info Score.

2.2 Weighted Gene Analysis

Weighted Gene Analysis (WGA) is described by Bittner and Chen (2001). It
can be defined as follows; For a given two-class setting, a discriminative
weight (score) for each gene j can be evaluated by

Wy =dy [(fidyp+ fid o+) (10.5)

where dp is the center-to-center Euclidean distance between the two
classes (P and Q), du, is the average Euclidean distance among all sample
pairs within class g, g= P, Q. L is the number of sample pairs in class P, and
M is the number of sample pairs in class @, e.g., tumor and normal,
fi=L/(L+M)and f=M/(L+M). ais a small constant, e.g., 0.01, to
prevent zero denominator case.

190 Chapter 10

The range of the wy is between 0 and oo, and the bigger w; scores indicate the
stronger evidence of the different expression profiles oftwo classes.

2.3 Significance Analysis of Microarrays

Significance Analysis of Microarrays (SAM) (Tusher et al.,, 2001) is a
statistical technique for finding significant genes in a set of microarray
experiments. It is a method for identifying genes on a microarray with
statistically significant changes in expression, developed in the context of an
actual biological experiment. SAM assigns a score to each gene on the basis
of change in gene expression relative to the standard deviation of repeated
measurements to estimate the percentage of gene identified by chance, the
false positive rate (FPR). It is based on the analysis of random fluctuations in
the data. In general, the signal-to-noise ratio is decreased with decreasing
gene expression. The “relative difference” d(j) in gene expression is:

(10.6)

where ¥,(j)and X,(j) are defined as the average levels of expression
for gene j in class P and Q, respectively.

s(N=a(T 5D -FDF + X 5D -FHOF) (10D

where X, and I, are summation of the expression measurements in class
P and Q, respectively, a=(1/m+1/n)(m+n-2), and m and n are the
numbers of measurements in class P and Q, respectively.

The distribution of d(j) should be independent of the level of gene
expression. At low expression levels, variance in d(j) can be high because of
small values of s(j). To ensure that the variance of d(j) is independent of
gene expression, SAM adds a small positive constant 5y to the denominator.

The coefficient of variation (CV) of d(j) can be computed as a function of
s(j) in moving windows across the data. The value of 5o can be chosen to
minimize the coefficient of variation. The bigger |d(j)| scores indicate the
stronger evidence of the different expression profiles of two classes.

2.4 Permutation £-Test

Permutation t-test (Radmacher and Simon, 2001) is a strategy for
establishing differences in gene expression pattern between classes. In
permutation 7-test, the standard ¢ statistic is computed on the log-expression
ratios of each gene in order to analyze the variation between classes, e.g.,
tumor vs. normal. Then, labels (i.e. tumor and normal) are randomly

10. Weighted Flexible Compound Covariate Method for Classifying 191
Microarray Data

permuted among the specimens and the ¢ statistic for each gene (j) in the
permuted data set is computed. This process was repeated 10,000 or more
times (Hedenfalk et al., 2001). Finally, a critical value of the ¢ statistic, e.g.,
999, is determined for each gene based on the empirical distribution of ¢
from permuted data sets for the gene (j). If the ¢ statistic for a gene (j) in the
original labeling of specimens is larger than its critical value, the gene is
deemed differentially expressed between the two groups and is considered as
the significant difference.

2.5 Inconsistence of the Variable Selection

We have reviewed four methods for the variable selection process in class
comparison. There are several other existing methods that can do similar job
(see Chapter 6 for more feature selections), e.g., REML-based mixed model
(Wolfinger et al., 2001), Threshold Number of Misclassification Score
(TNoM) (Ben-Dor et al., 2000). There are also more new methods coming
out for the class comparison purpose of the microarray data, for example, the
P-value for Identifying Differentially Expressed genes (PIDEX) method (Ge
et al., unpublished manuscript). This method combines the fold change,
change in the absolute intensity measurements and data reproducibility.
PIDEX produces p-values for identifying differentially expressed genes. The
genes may be ranked on the basis of p-value. More new methods will be
developed as the microarray researches advance.

Each of these methods can generate a list of genes based on their
significances or scores. The question is “Do the results from these methods
agree with each other?”” The answer is “No!” Based on the nature of the
development of each method, the results form each method will not agree
with each other totally. Figure 10.1 shows the results from the Vanderbilt
lung cancer SPORE study based on four methods — permutation ¢-test, SAM,
WGA, and Info Score. The investigators would like to generate a set of
genes that performed differently between non-small cell lung cancer tumors
and normal tissues. We picked top 30 genes that performed most differently
between these two classes from each of these four statistical methods. There
are 49 “winner” genes based on the union of all four methods. Only 13 genes
or 26.5% of genes were selected as “winners” by all four methods. The
results of the selection were influenced by sample size, variation of the data,
percent of missing data, as well as the outliers/fextreme values of the data
within each class, In practice, it is not a bad idea to use more than one
method to generate the gene list. The investigators may focus on the genes
selected by all methods first.

192 Chapter 10

o — —

- SR "
gz SN SAM >3b\u“\
: 8 /s N\ s \
{ o8 1 \\ o5 !
f AO f A0 1 A1)
PARETIA ,
K o3 /| &\ /

2 .
,'/ o2 \A0/ e\ /
] A2 S Af d
tv--> - 1)]/

o7 i

N, /
o nfo Score< 25\ AR //
4:.25 <lnfo Score <5\ WGA 2956

Figure 10.1, Variable selection results of Vanderbilt lung cancer SPORE study.

3. CLASS PREDICTION

Class prediction methods can be used to examine the goodness of the set of
genes identified in the class comparison step. There are two types of the
class prediction methods: (1) based on the “training” data set and (2) based
on the *“test” data set. It is highly recommended that the class prediction
models be applied to these two types of the data sets for the microarray data
analysis because of the class prediction model may easily over-fit the
“training” data set. In addition, the sample size of the blinded/test data set
probably should be comparable to the sample size of the training data set if
the sample size of the training data set is very small. On the other hands, if
the sample size of the training data set is large, i.e. several hundred samples,
atraining set; test set ratio of k£ ; 1, where £ > 1, may be appropriate.

3.1 Compound Covariate Method (CCM)

Hedenfalk et al. (2001) successfully applied the compound covariate method
(CCM) (Tukey, 1993) to class prediction analysis for BRCA1+ vs. BRCAT1-.
This predictor is built in two steps. First, a standard two-sample #-test is
performed to identify genes with significant differences (at level @,
Hedenfalk et al. picked & = 0.0001) in log-expression ratios between the two
tissue classes. Second, the log-expression ratios of differentially expressed
genes are combined into a single compound covariate for each tissue sample;
the compound covariate is used as the basis for class prediction. The
compound covariate for tissue sample i is defined as

G= 1% (10.8)

10. Weighted Flexible Compound Covariate Method for Classifying 193
Microarray Data

where { is the r-statistic for the two-group comparison of classes with respect
to gene j, xy is the log-ratio measured in tissue sample i for genej and the
sum is over all differentially expressed genes.

The CCM reduces the data dimension from N x.J to N x1, where N is
the total number of the samples, J is total number of study genes. We can
view CCM as the “overall score” of each tissue sample, which combines
information of all important genes from one statistical method.

3.2 Weighted Flexible Compound Covariate Method

The weighted flexible compound covariate method (WFCCM) (Shyr, 2002)
is an extension of the compound covariate method, which allows considering
more than one statistical analysis methods in the compound covariate.
Before we apply the WFCCM, it is important to make sure that the “sign” of
each statistical method is consistent. For example, the sign of the r-statistic
and SAM are always consistent, but WGA scores are always positive since
its scoring system is based upon Euclidean distance. Therefore, multiplying
a (-1) to the WGA scores for all the genes that have negative scores in SAM
or t-statistic is the first step for applying the WFCCM. The second step is to
select the “winners” with all statistical methods. We may arbitrarily pick
genes from each statistical method, e.g., top 1% or top 100 genes, or we may
use some significant information to select genes from the statistical methods,
e.g., p-value < 0.0001 for r-statistic, p-value < 0.01 for REMIL-based mixed
effect models, or SAM > 3.5.
The WFCCM for tissue sample i is defined as

WFCCM(i)=Z[Z(sz;.ka)][W,.]xy (10.9)
J Lok

where x;is the log-ratio measured in tissue sample i for gene j. STy is the
standardized statistic/score of gene j, e.g., standardized SAM score, for
statistical analysis method k. W; is the weight of method &, which can be
determined as

W, = (1- CCM misclassification rate,) (10.10)

where “CCM misclassification rate,” stands for the misclassification rate
of the compound covariate method for statistical analysis method k. W; is the
weight of gene j, which can be determined as

W,=2Vu/K (10.11)

194 Chapter 10

where ¥ =1, if the gene j is selected as the “winner” in method k; ¥ =0, if
the gene j is not selected as the “winner” in method . If genej is selected by
all methods then W, = 1.

The Wyand W;can be determined by other methods, too. For example,
we may assign W,=1 for all K methods used in variable selection stage if
we believe they perform equally well. We may also modify #; as

W, =[(X, X, /K)(1- Info Score,) | (10.12)

In this case, if genej is selected by all methods and the Info Score;=0,
then W, = 1.

The WFCCM also reduces the data dimension from N xP to Nx1, We
can certainly view WFCCM as the “overall score” of each tissue sample,
which combines all information of all important genes from several
statistical methods.

3.3 Leave-One-Out Cross-Validated Class Prediction
Model

The misclassification rate can be assessed using leave-one-out cross-
validated (LOOCYV) class prediction method. Cross-validation is a method
for estimating generalization error based on resampling. LOOCV is one
specific type of cross-validation. The LOOCYV is processed in four steps in
the Vanderbilt lung cancer SPORE study. First, apply the WFCCM to
calculate the single compound covariate for each tissue sample based on the
significant genes. Second, one tissue sample is selected and removed from
the dataset, and the distance between two tissue classes for the remaining
tissue samples is calculated. Third, the removed tissue sample is classified
based on the closeness of the distance of two tissue classes, e.g., k-nearest
neighbor approach, which k=2, or using the midpoint of the means of the
WFCCM for the two classes as the threshold. Fourth, repeat step 2 and 3 for
each tissue sample. To determine whether the accuracy for predicting
membership of tissue samples into the given classes (as measured by the
number of correct classifications) is better than the accuracy that may be
attained for predicting membership into random grouping of the tissue
samples, we may create 2,000-5,000 random data sets by permuting class
labels among the tissue samples. Cross-validated class prediction is
performed on the resulting data sets and the percentage of permutations that
results in as few or fewer misclassifications as for the original labeling of
samples can be reported. If less than 5% of the permutations result in as few
or fewer misclassifications, the accuracy of the prediction of the given
classes is considered significant. Therefore, this rate may be considered as
the “p-value” for the class prediction model. We recently have succeeded in

10. Weighted Flexible Compound Covariate Method for Classifying 195
Microarray Data

applying the WFCCM class prediction analysis method to the preliminary
data generated by the Vanderbilt lung cancer SPORE study.

The perfect WFCCM class-prediction models based on 54, 62, 77 and 27
differentially expressed genes were found to classify tumor tissue samples
vs. normal tissue samples, primary lung cancer tissue samples vs. non-
primary lung cancer tissue samples, non-small cell lung cancer (NCLS)
tissue samples vs. normal tissue samples as well as adenocarcinoma tissue
samples vs. squamous cell carcinoma tissue samples. Table 10.1 shows the
results from the Vanderbilt lung cancer study. WGA, SAM, Info-Score, and
permutation -test were applied in the analysis. The cut-off points were 3.0,
3.7 and p < 0.0001 for WGA, SAM, and Permutation #-test respectively. We
selected W, =1 for all methods, and W; = [(Z, X / k) (1 - Info Score))].

Table 10.1. WECCM class prediction model in training data set.

¥ of diff. dof Prob. of random
Classification (sample size} expressed misclassified permutations with
genes samples misclassifications
All samples
Normal lung (3) vs, Tumor (26) 54 0 < 0.001
Normal lung'and metastatic lung 62 0 <0.0001
tumor(5) vs. Primary lung tumor (24)
Normal lung (3) vs. NSCLC (23) 77 0 < 0.001
Non-small cell lung cancer
Adeno (8) vs. Non-adeno (15) 6 1 (Non-adeno) <0,001
Squamous (8) vs. Non-squamous (15) 10 1 (Squamous) < 0,001
Large (7) vs. Non-large (16) 2 1 (Large) =0.001
Adeno (8) vs. Squamous (8) 27 0 < (.0001

We also applied the WFCCM to a set of blinded/test samples. Table 10.2
shows the results of the analyses. In general, the model performed
reasonably well (the average correct prediction rate in the blinded/test data
set was 93%) except for predicting large cell vs. non-large cell tissues.
Because there were only two genes reached the selection criteria in WFCCM
for comparing large cell tissues with non-large cell tissues, this result was
not a surprise.

196 Chapter 10

Table 10.2. WECCM class prediction model in test data set

Classification (sample size) ¥ of diff. # of Percent of correct
expressed misclassified prediction rate
genes samples

All samples
Normal lung (0) vs. Tumor (13) 54 0 100%
Normal lung and metastatic lung

J 62 1 (Metastatic) 92%

tumor(4) vs. Primary lung tumor (9)
Normal lung (0) vs. NSCLC (9) 77 0 100%

Non-smail cell lung cancer

Adeno (4) vs. Non-adeno (5) 6 0 100%%
Squamous (4) vs. Non-squamous (5) 10 1 (Squamous) 89%
Large (1) vs. Non-large (8) 2 3 (non-large) 67%
Adeno (4) vs, Squamous (4) 27 0 100%

Figure 102 shows the results from the agglomerative hierarchical
clustering algorithm for clustering adenocarcinoma and squamous cell
carcinomas. The average linkage algorithm was applied to calculate the
distance between the clusters. All the adenocarcinoma tissues -clustered
together, so did squamous cell tissues. The results looked very promising but
we might only use these results to reconfirm the genes performed differently
between two classes. Having a perfect or near perfect cluster result was
expected if we applied the cluster analysis after we selected the genes that
performed differently using any of the supervised methods. It is important to
know that we could not apply these results in any class discovery
conclusion!

muun
-3
nllliil

27998

| nnu
.
“I1I‘1‘l

ﬂ . Razees |

Figure 10.2. Results of the agglomerative hierarchical clustering algorithm.

10. Weighted Flexible Compound Covariate Method for Classifying
Microarray Data

197

4. CLASSIFICATION TREE METHODS

We have reviewed several class comparison methods and class prediction
methods separately in this chapter. In this section, we would like to discuss
some basic concepts of the classification tree methods since constructing
classification trees may be seen as a type of variable selection while at the
same time a predictive model is developed. Figure 10.3 shows the diagram
illustrating a (simplified) decision tree for lung cancer risk evaluation.
Classification trees are the structures that rigorously define and link choices
and possible outcomes (Reggia, 1985).

high (3) (50%%)
fow (3) (50%)
total (6) (100%)

Smaoking ..‘/

high (3) (75%)
fow (1) (25%)
total (4) (67%)

. % \T;__ e

ront node
{all cages)

Smoking = no

intermediale
node(s)

leaf high (2) (100%) high (1) (50%) high (0 (07%)
teis) fow (0) (0%) low (1) (50%) fow (2) (100%)
total (2) (33%) total (2) (33%) 1otal {2) (33%)

Rule I; if smoking = ves and Age > 60, then lung cancer risk = high.
Rule 2: if smoking = no, then lung cancer risk = low.

Figure 10.3. Decision tree analysis of lung cancer risk (simplified example).

The ideal situation for using classification tree methods is when there is a
partition of the space A that will correctly classify all observations, and the
task is to find a tree to describe it succinctly. In some cases the distributions
of the classes over A overlap, so there is no partition that completely
describes the classes. Then, for each cell of the partition, there will be a
probability distribution over the classes, and the Bayes decision rule will
choose the class with highest probability. The training set idea described
above can also apply to classification tree methods. The misclassification
rate can be calculated by the proportion of the training set that is
misclassified, and the generalization ability is estimated. With “noisy” data,
such as microarray data, it iS quite possible to construct a tree which fits the
training set well, but which has adapted too well to features of that particular

198 Chapter 10

subset of A, In other words, it can be too elaborate and over-fit the training
data set. Overfitting is always a problem in any classifier.

Ji and Kim (unpublished manuscript) successfully applied the
classification tree methods to classify toxic chemicals based on gene
expression levels. The approach chooses the predictive genes as well as
determines the classification rule. Three classification tree methods
investigated are described below.

CART (Breiman et al., 1984) which stands for “Classification and
Regression Trees” is biased when there are categorical predictors and when
there are many missing values. With gene expression data, neither is the
case, so CART gives a good fit. However, since it uses exhaustive search for
variable selection, it often causes model overfitting. The CART algorithm is
likely to give high accuracy in classification, but the genes selected may not
be the most predictive ones.

QUEST (Loh and Shih, 1997) which stands for “Quick, Unbiased,
Efficient Statistical Trees” is a program for tree-structured classification.
The main strengths of QUEST are unbiased variable selection and fast
computational speed. Also it is sensitive in identifying predictive genes since
it uses statistical tests instead of exhaustive search. A common criticism of
classification trees is that the construction of a classification tree can be
extremely time-consuming. In addition, QUEST has options to perform
CART-style exhaustive search and cost-complexity cross-validation pruning.

CRUISE (Kim and Loh, 2001), which stands for “Classification Rule
with Unbiased Interaction Selection and Estimation”, consists of several
algorithms for the construction of classification trees. It provides the features
of unbiased variable selection via bootstrap calibration, multi-way splits for
more than two classes, missing value treatment by global imputation or by
node-wise imputation, and choice of tree pruning by cross-validation or by a
test sample. CRUISE differs from QUEST and CART in that it allows
multiway splits, which is natural when there are multiple classes.

Different classification tree methods may identify different sets of genes
that have the same or similar misclassification rates. The concept of the
WFCCM may be applied in this situation for combining all the possible
“winners” genes from different classification tree methods.

5. CONCLUSION

The statistical class comparison and class prediction analyses for the
microarray data may focus on the following steps: (1) Selecting the
important gene patterns that perform differently among the study groups, (2)
Using the class prediction model based upon the Weighted Flexible
Compound Covariate Method (WFCCM), classification tree methods, or

10. Weighted Flexible Compound Covariate Method for Classifying 199
Microarray Data

other methods to verify if the genes selected in step one have the statistical
significant prediction power on the training samples, (3) Applying the
prediction model generated from step two to a set of test samples for
examining the prediction power on the test samples, and (4) Employing the
agglomerative hierarchical clustering algorithm to investigate the pattern
among the significant discriminator genes as well as the biologic status.

The selection of important gene patterns may be based on different
methods, such as Significance Analysis of Microarrays (SAM), Weighted
Gene Analysis (WGA), and the permutation ¢-test. The cutoff points may be
determined based on the significance as well as the prediction power of each
method. The genes will be on the final list if they are selected by at least one
of the methods.

The weighted flexible compound covariate method may be employed for
the class-prediction model based on the selected genes. This method was
designed to combine the most significant genes associated with the biologic
status from each analysis method. The WFCCM is an extension of the
compound covariate method, which allows considering more than one
statistical analysis method into the compound covariate. The class prediction
model can be applied to determine whether the patterns of gene expression
could be used to classify tissue samples into two or more classes according
to the chosen parameter, e.g., normal tissue vs. tumor tissue. We reviewed
the leave-one-out cross-validated class prediction method based on the
WFCCM to estimate the misclassification rate. The random permutation
method may be applied to determine whether the accuracy of prediction is
significant.

Applying the results of WFCCM from the training data set to the test
samples is highly recommended. The test sample can be classified based on
the closeness of the distance of two tissue classes, which is determined using
the WECCM in the training data set.

The classification tree methods have the features of variable selection and
class prediction. Applying the concept of WFCCM for combining different
“winners’ genes from different tree classification methods may be necessary.

ACKNOWLEDGEMENTS

This work was supported in part by Lung Cancer SPORE (Special Program
of Research Excellence) (P50 CA90949) and Cancer Center Support Grant
(CCSG) (P30 CA68485) for Shyr and by CCSG (P30 CA14520) for Kim.
The authors thank Dr. David Carbone, PI of Vanderbilt Lung Cancer
SPORE, for permission to use the study data for the illustration. The authors
also thank Dr. Noboru Yamagata for his valuable suggestions.

200 Chapter 10

REFERENCES

Ben-Dor A., Friedman N., Yakhini Z. (2000). Scoring genes for relevance. Tech Report AGL-
2000-13, Agilent Labs, Agilent Technologies.

Bittner M., Chen Y. (2001). Statistical methods; Identification of differentially expressed
genes by weighted gene analysis.
Available at http://www.nejm.org/general/content/supplemental/hedenfalk/index.html.

Breiman L., Friedman J.H., Olshen R.A., Stone C.J. (1984), Classification and Regression
Trees. Wadsworth.

Ge N., Huang F., Shaw P., Wu C.FJ. PIDEX: A statistical approach for screening
differentially expressed genes using microarray analysis (unpublished manuscript).

Hedenfalk 1., Duggan D., Chen Y., Radmacher M., Bittner M., Simon R., Meltzer P.,
Gusterson B., Esteller M., Kallioniemi O.P., Wilfond B., Borg A., Trent J. (2001). Gene-
expression profiles in hereditary breast cancer. N Engl] Med 344(8): 539-548.

Ji Y., Kim K. Identification of gene sets from ¢cDNA microarrays using classification trees
(unpublished manuscript).

Kim H., Loh W.-Y. (2001). Classification trees with unbiased multiway splits. J. American
Statistical Association 96:589-604.

Landis S.H., Murray T., Bolden S., Wingo P.A. (1999). Cancer Statistics, 1999. CA Cancer J
Clin 49(1):8-31.

Loh W.-Y., and Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica
Sinica 7:815-840.

Radmacher M.D., Simon R. Statistical methods: Generating gene lists with permutation F and
t Tests.
Available at http://www.nejm.org/general/content/supplemental/hedenfalk/index.html.

Reggia J.A., Tuhrim S. (1985). An overview of methods for computer assisted medical

decision making, in Computer-Assisted Medical Decision Making, Vol. 1, J.A. Reggia &
S.Tuhrim, eds. Springer-Verlag, New York.

Shyr Y. (2002). Analysis and interpretation of array data in human lung cancer using
statistical class-prediction model. AACR meeting April, 2002; San Francisco, CA:
Program/Proceeding Supplement, 41-42.

Tukey J.W. (1993). Tightening the clinical trial. Control Clin Trials 14(4): 266-285.

Tusher V.G., Tibshirani R., Chu G. (2001). Significance analysis of microarays applied to the
ionizing radiation response, Proc Natl Acad Sci USA 98(9): 5116-5121.

Wolfinger R.D., Gibson G., Wolfinger E.D. (2001). Assessing gene significance from cDNA
microarray expression data via mixed models. J Comput Biol 8(6). 625-37.

Chapter 11

CLASSIFICATION OF EXPRESSION PATTERNS
USING ARTIFICIAL NEURAL NETWORKS

Markus Ringnérl’z, Patrik Edénz, Peter Johansson®

! Cancer Genetics Branch, National Human Research Institute, National Institutes of Health,
Bethesda, Maryland 20892, USA

2 Complex Systems Division, Department of Theoretical Physics, Lund University, Lund, Sweden,
e-mail: {markus,patrik,peterjg} @thep.lu.se

1. INTRODUCTION

Artificial neural networks in the form of feed-forward networks (ANNS)
have emerged as a practical technology for classification with applications in
many fields. ANNs have in particular been used in applications for many
biological systems (see (Almeida, 2002) for a review). For a general
introduction to ANNs and their applications we refer the reader to the book
by Bishop (Bishop, 1995). In this chapter we will show how ANNs can be
used for classification of microarray experiments. To this aim, we will go
through in detail a classification procedure shown to give good results and
use the publicly available data set of small round blue-cell tumors (SRBCTS)
(Khan et al, 2001) as an example'. The ANNs described in this chapter
perform supervised learning, which means that the ANNs are calibrated to
classify samples using a training set for which the desired target value of
each sample is known and specified. The aim of this learning procedure is to
find a mapping from input patterns to targets, in this case a mapping from
gene expression patterns to classes or continuous values associated with
samples. Unsupervised learning is another form of learning that does not
require the specification of target data. In unsupervised learning the goal
may instead be to discover clusters or other structures in the data.
Unsupervised methods have been used extensively to analyze array data and

! The data is available at http://www.nhgri.nih.gov/DIR/Microarray/Supplement/.

202 Chapter 11

are described in other chapters. The main reasons for choosing a supervised
method are to obtain a classifier or predictor, and to extract the genes
important for the classification. Here we will exemplify this by describing an
ANN based classification of expression profiles of SRBCT samples into four
distinct diagnostic categories: neuroblastoma (NB), rhabdomyosarcoma
(RMS), Burkitt’s lymphoma (BL) and Ewing’s sarcoma (EWS). This data
set consists of 63 training samples each belonging to one of the four
categories and 25 test samples. There are many other supervised methods
(discussed in other chapters) that have been used to classify array data,
spanning from simple linear single gene discriminators to machine learning
approaches similar to ANNSs, in particular support vector machines (SVMs).
A major advantage of using a machine learning approach such as ANNSs is
that one gains flexibility. Using an ANN framework, it is for example
straightforward to modify the number of classes, or to construct both linear
and non-linear classifiers. Sometimes this flexibility is gained at the expense
of an intuitive understanding of how and why classification of a particular
problem gives good results. We hope this chapter will provide the reader
with an understanding of ANNSs, such that some transparency is regained and
the reader will feel confident in using a machine learning approach to
analyze array data.

We begin with a discussion on how to reduce high-dimensional array data
to make the search for good ANNs more effcient. This is followed by section
3 on ANNS. Section 3 is split into 5 subsections as follows. We describe how
to design an ANN for classification, how to train the ANN to give small
classification errors, how a cross-validation scheme can be used to obtain
classifiers with good predictive ability, how random permutation tests can be
used to assess the significance of classification results, and finally how one
can extract genes important for the classification from ANNs. This chapter
ends with a short section on implementation followed by a summary.

2. DIMENSIONAL REDUCTION

For each sample in a typical study, the expression levels of several thousand
genes are measured. Thus, each sample can be considered a point in “gene-
space”, where the dimensionality is very high. The number of considered
samples, N, is usually of the order of 100, which is much smaller than the
number of genes. As discussed below, an ANN using more inputs than
available samples tend to become a poor predictor, and in microarray
analyses it is therefore important to reduce the dimensionality before starting
to train the ANN. Dimensional reduction and input selection in connection
with supervised learning have attracted a lot of interest (Nguyen and Rocke,
2002).

11. Classification of Expression Patterns Using Artificial Neural 203
Networks

The simplest way to reduce dimensionality is to select a few genes, expected
to be relevant, and ignore the others. However, if the selection procedure
involves tools less flexible than ANNs, the full potential of the ANN
approach is lost. It is therefore preferable to combine the genes into a smaller
set of components, and then chose among these for the ANN inputs.

For classification, we only need the relative positions of the samples in
gene-space. This makes it possible to significantly reduce the dimensionality
of microarray data without any loss of information relevant for classification.
Consider the simple case of only two samples. We can then define one
component as a linear combination of genes, corresponding to the line in
gene-space going through the two sample points. This single component then
fully specifies the distance in gene-space between the two samples. In the
case of three samples, we can define as components two different linear
combinations of genes, which together define a plane in gene-space which is
going through the three data points. These two components then fully
specify the relative location of the samples. This generalizes to N samples,
whose relative locations in gene-space can be fully specified in an N - 1
dimensional subspace. Thus, with N samples, all information relevant for
classification can be contained in N - 1 components, which is significantly
less than the number of genes.

Reducing a large set of components (in our case, the genes) into a smaller
set, where each new component is a linear combination of the original ones,
is called a linear projection. In connection with ANNS, principal component
analysis, PCA, is a suitable form of linear projection. PCA is described in
detail in Chapter 5. In brief, it ranks the components according to the amount
of variance along them, and maximizes the variance in the first components.
Thus, the first component is along the direction which maximizes the
variance of data points. The second component is chosen to maximize the
variance, subject to the condition of orthogonality to the first component.
Each new component must be orthogonal to all previous ones, and is
pointing in the direction of maximal variance, subject to these constraints.

As an example, Figure 11.1 shows how much of the variance of the
SRBCT gene expression data matrix is included in the different principal
components. Using the 10 first principal components will in this case include
more than 60% of the variance.

In our example, we used mean centered values for the PCA and did not
perform any rescaling. In principle, however, any rescaling approach is
possible, since the selection of principal components as ANN inputs can be
done in a supervised manner.

204

Chapter 11

~
=]

5 8

Percent of variance
e
[=]

8

Figure 11.1. The percent of
variance in the SRBCT gene
expression data matrix (all 88
samples) contained by each
principal component (bars). The
cumulative contained variance is
also shown (solid line)., The 10
first principal components
contain more than 60% of the
variance in the data matrix for
this example.

10 U906 % e 0 80w
Principal component

Our preference for PCA is based on the following arguments:

1.

To allow for a biological interpretation of the ANN results, it is
important that the connection between genes and ANN inputs can be
easily reconstructed. Linear projections, e.g., PCA, fulfills this
demand, in contrast to e.g., multi-dimensional scaling (Khan et al.,
1998).

ANN analyses should involve cross-validation, described in
Section 3.3. This implies that the ANN is trained several times, on
different subsets of data, giving different parameter settings. An
unsupervised dimensional reduction, e.g,. PCA, can use all available
samples without introducing any bias. The result of this reduction
can then be reused for every new training set. In contrast, a
supervised reduction scheme can only rely on training samples to
avoid bias, and must be redone as the training set changes.

In general, the N - 1 components containing all information are still
too many for good ANN analyses. The ranking of principal
components according to the variance gives information about inputs
for which the separation of data points is robust against random
fluctuations. Thus, PCA gives a hint on how to reduce the
dimensionality further, without losing essential information.

The ANN inputs may need to be carefully selected, using a
supervised evaluation of the components. The more correlated
different input candidates are, the more difficult it is to select an
optimal set. As principal components have no linear correlations, the
PCA facilitates an efficient supervised selection of ANN inputs.

11. Classification of Expression Patterns Using Artificial Neural 205
Networks

Component 3

10 0
-10 .
Compmnt 1 20 .30 _40/ 40

Figure 11.2. Projection of the 63 SRBCT training samples onto the 3 first principal
components, The samples belong to four diagnostic categories, NB (circles), RMS (filled
circles), BL (pluses) and EWS (diamonds). There is a tendency of separation between the
categories. Of note, the first principal component essentially separates tumor samples (on the
right) from cell lines (on the left).

In Figure 112, the 63 SRBCT training samples, projected onto the first
three principal components, are shown. Along component one there is a clear
separation, poorly related to the four classes. This separation distinguishes
tissue samples from cell-lines. This illustrates that the major principal
components do not need to be the most relevant for the classification of
interest. Thus, it can be useful to select ANN inputs using a supervised
method. In doing so, we are helped by point 4 above. Since a central idea in
the ANN approach is not to presume linear solutions, it is reasonable to use
ANNSs also for supervised input ranking.

A simple method is to train a network using quite many inputs (maybe
even all). This network will most likely be heavily overfitted and is of little
interest for blind testing, but can be used to investigate how the network
performance on the training set is affected as one input is excluded. Doing so
for each input gives information for input selection. In the SRBCT example,
there was no need to do a supervised input selection, as the classification
was successful using the 10 first principal components.

206 Chapter 11
3 CLASSIFICATION USING ANNS
3.1 ANN Architecture

The simplest ANN-model is called aperceptron. It consists of an input layer
and a single output (Figure 11.3). Associated with each input is a weight that
decides how important that input is for the output. An input pattern can be
fed into the perceptron and the responding output can be computed. The
perceptron is trained by minimizing the error of this output. The perceptron
is a linear classifier since the weights define a hyperplane that divides the
input space into two parts.

output oulput

weights hidden

inputs inputs

Figure 11.3. In a linear perceptron (left), the input data is fed into the input layer and
triggers a response in the output layer. The weights are tuned such that the output ideally
should correspond to the target value. In a multi-layer perceptron (right), a hidden layer is
added in between the input and output layers.

In our example, we have four classes and a single perceptron does not
suffice. Instead we use a system of four parallel perceptrons. Each
perceptron is trained to separate one class from the rest, and as a
classification the class with the largest output is chosen. It is recommended
to first try a linear network. However, for more complicated problems a
linear hyperplane is not good enough as a separator. Instead it is
advantageous to have a nonlinear surface separating the classes. This can be
achieved by using a multi-layer perceptron, in which several perceptrons are
connected in a series (Figure 11.3).

Besides having an input and output layer, one also has one (or several)
hidden layer(s) in between. The nodes in the hidden layer are computed from
the inputs

h, =f[2wﬂ(l)x,.], (11.1)
I

where x;denotes the " input and w'? denotes the weights between the
input and hidden layers.

11. Classification of Expression Patterns Using Artificial Neural 207
Networks

The hidden nodes are used as input for the output (v) in the same manner

y=g[2wj‘2’hj]=g(zwj‘2’f [Zwﬂ(”x;]] (11.2)
J J i

where w® denotes the weights between the hidden and output layers,

1
g(x)=—— (11.3)
I+e
is the logistic sigmoid activation function, and
f(x)=tanh(x) = = (11.4)
e +e

is the “tanh” activation function. A way to view this is that the input
space is mapped into a hidden space, where a linear separation is done as for
the linear perceptron. This mapping is not fixed, but is also included in the
training. This means that the number of parameters, i.e. the number of
weights, is much larger. When not having a lot of training samples this might
cause overfitting. How many parameters one should use varies from problem
to problem, but one should avoid using more than the number of training
samples. The ANN is probabilistic in the sense that the output may easily be
interpreted as a probability. In other words, we are modelling the probability
that, given a certain information (the inputs), a sample belongs to a certain
class (Hampshire and Pearlmutter, 1990).

3.2 Training the ANN

Training, or calibrating, the network means finding the weights that give us
the smallest possible classification error. There are several ways of
measuring the error. A frequently used measure and the one we used in our
example is the mean squared error (MSE)

1 N
E=—N—22(yk, ~1,), (11.5)

ko

where N is the number of training samples and yy and #, are the output
and target for sample & and output node /, respectively. Since the outputs in
classification are restricted (see Equations 112 and 11.3), the MSE is
relatively insensitive to outliers, which typically results in a robust training

208 Chapter 11

and a good performance on a validation set. Additionally, the MSE is
computationally inexpensive to use in the training.

There is a countless number of training algorithms. In each algorithm
there are a few training parameters that must be tuned by the user in order to
get good and efficient training. Here, we will briefly describe the parameters
in the gradient descent algorithm used in our example.

Given a number of input patterns and corresponding targets, the
classification error can be computed. The error will depend on the weights
and in the training we are looking for its minimum. The idea of the gradient
descent can be illustrated by a man wandering around in the Alps, looking
for the lowest situated valley. In every step he walks in the steepest direction
and hopefully he will end up in the lowest valley. Below, we describe four
parameters: epochs, step size, momentum coefficient and weight decay, and
how they can be tuned.

The number of steps, epochs, is set by the user. It can be tuned using a
plot of how the classification error change during the calibration (see
Figure 11.4).

Figure 11.4 The MSE
is plotted as a function
of the number of

i : training epochs. Using
e T o too many epochs
i U gs T (solid) or a too small
~—__ slep size (dashed) is
time-consuming, Using
too few epochs (dash-
dotted) or a too large
step size (dotted), the
minimum is not

reached.

MSE

epochs

Using too few epochs, the minimum is not reached, yielding a training
plot in which the error is not flattening out but still decreasing in the end.

Using too many epochs is time consuming, since the network does not
change once a minimum is reached.

The step size is normally proportional to the steepness, and the
proportionality constant is given by the user. How large the step size should
be depends on the typical scale of the error landscape. A too large step size
results in a coarse-grained algorithm that never finds a minimum. A
fluctuating classification error indicates a too large step size. Using a too
small step is time consuming.

11. Classification of Expression Patterns Using Artificial Neural 209
Networks

An illustration of how weights are updated, depending on step size, is shown
in Figure 11.5. The corresponding development of the MSE is illustrated in
Figure 114.

The gradient descent method can be improved by adding a momentum
term. Each new step is then a sum of the step according to the pure gradient
descent plus a contribution from the previous step. In general, this gives a
faster learning and reduces the risk of getting stuck in a local minimum.
How much of the last step that is taken into account is often defined by the
user in a momentum coefficient, between 0 and 1, where 0 corresponds to
pure gradient descent. Having a momentum coefficient of 1 should be
avoided since each step then depends on all previous positions. The gradient
descent method with momentum is illustrated in Figure 11.5.

weight 2

weight 2
L

waight 1 weight 1

Figure 11.5. In the gradient descent (GD) algorithm the weights of an ANN are tuned to
minimize the classification error. An ANN can during training be viewed as moving
around in an error landscape defined by its weights. This is illustrated in two dimensions
with an ANN that starts out in point A and has the lowest classification error in point B
(left). With a suitable choice of the step size parameter, the minimum is reached (solid). It
is time-consuming to reach the minimum with a small step size (dashed), whereas with a
too large step size the algorithm fails to find the minimum (dotted). In GD with momentum
(right), each new step (dashed step) is the sum of the step according to pure GD (step 2)

plus a contribution from the previous step (step 1). In the figure a momentum coefficient of
1/3 was used.

The predictive ability of the network can be improved by adding a term
that punishes large weights to the error measure. This so-called weight decay
yields a smoother decision surface and helps avoiding over-fitting. However,
too large weight decay results in too simple networks. Therefore, it is
important to tune the size of this term in a cross-validation scheme.

210 Chapter 11

3.3 Cross-Validation and Tuning of ANNs

In the case of array data, where the number of samples typically is much
smaller than the number of measured genes, there is a large risk of
overfitting. That is, among the many genes, we may always find those that
perfectly classify the samples, but have poor predictive ability on additional
samples. Here, we describe how a supervised learning process can be
carefully monitored using a cross-validation scheme to avoid overfitting, Of
note, overfitting is not specific to ANN classifiers but is a potential problem
with all supervised methods.

To obtain a classifier with good predictive power, it is often fruitful to
take the variability of the training samples into account. One appealing way
to do this is to construct a set of classifiers, each trained on a different subset
of samples, and use them in a committee such that predictions for test
samples are given by the average output of the classifiers. Thus, another
advantage with using a cross-validation scheme is that it results in a set of
ANNSs that can be used as a committee for predictions on independent test
samples in a robust way. In a cross-validation scheme there is a competition
between having large training sets, needed for constructing good committee
members, and obtaining different training sets, to increase the spread of
predictions of the committee members. The latter results in a decrease in the
committee error (Krogh and Vedelsby, 1995).

In general, 3-fold cross-validation is appropriate and it is the choice in
the SRBCT example. In 3-fold cross-validation, the samples are randomly
split into three groups. Two groups are used to train an ANN, and the third
group is used for validation. This is repeated three times using each of the
three groups for validation such that every sample is in a validation set once.
To obtain a large committee, the random separation into a training and a
validation set can be redone many times so that a set of ANNs are calibrated.
The calibration of each ANN is then monitored by plotting both the
classification error of the training samples and the validation samples as a
function of training epochs (see Figure 11.6). A decrease in the training and
the validation error with increasing epochs demonstrates the ability of the
ANN to classify the experiments.

There are no general values for the learning parameters of ANNS, instead
they can be optimized by trial and error using a cross-validation scheme.
Overfitting results in an increase of the error for the validation samples at the
point where the models begin to learn features in the training set that are not
present in the validation set. In our example, there was no sign of overfitting
(Figure 11.6).

11. Classification of Expression Patterns Using Artificial Neural 211
Networks

0.45 - Figure 116 The mean
S 04 | squared error is plotted
g | during the training iterations
D pisl (epochs). A pair of lines,
g black (training) and gray
03 .
S (validation) represents one
3 025 madel (each corresponding to
- a random partitioning of the
% 02 data into a training and
® validation set). Reproduced
= 0I5 with permission (Khan et al,,
- o o 2001). ©2001, Nature
10 20 30 40 S0 60 70 80 90 Publishing Group.
Epochs

Overfitting can for example be avoided by early stopping, which means
that one sets the maximal number of training iterations to be less than where
overfitting begins or by tuning the weight decay. In addition, by monitoring
the cross-validation performance one can also optimize the architecture of
the ANN, for example the number of inputs to use. When tuning ANNs in
this way, it is important to choose a cross-validation scheme that does not
give a too small number of samples left in each validation set.

Even though cross-validation can be used to assess the quality of
supervised classifiers, it is always important to evaluate the prediction
performance using an independent test set that has not been used when the
inputs or the parameters of the classifier were optimized. The importance of
independent test sets should be appreciated for all supervised methods.

3.4 Random Permutation Tests

It is often stated that “black boxes” such as ANNs can learn to classify
anything. Though this is not the case, it is instructive to evaluate if the
classification results are significant. This can be accomplished using random
permutation tests (Pesarin, 2001). In microarray analysis, random
permutation tests have mostly been used to investigate the significance of
genes with expression patterns that discriminate between disease categories
of interest (Golub et al., 1999, Bittner et al, 2000). In our example, we
randomly permute the target values for the samples and ANNSs are trained to
classify these randomly labeled samples. This random permutation of target
values is performed many times to generate a distribution of the number of
correctly classified samples that could be expected under the hypothesis of

212 Chapter 11

random gene expression. This distribution is shown for the 63 SRBCT
samples using 3-fold cross-validation to classify the samples in Figure 11.7.

I " - " ' " ™ Figure 11.7. Validation
results for randomly
= 1 permuted sample labels
(target values) using a
committee of ANNs
s {1 from a 3-fold cross-
I validation scheme. The
number of correctly
classified samples is
histogrammed for the
) ' | random permutations.
Typically 20 samples
. are correctly classified
for a random
permutation, whereas all
; 63 samples are correct
- - e - o - ~ ., for the diagnostic
Number of correct classifications lc'ate)gories (vertical
ine).

Fraction of permutations {%)

A ————

The classification of the diagnostic categories of interest resulted in all 63
samples being correctly classified in the validation, whereas a random
classification typically resulted in only 20 correctly classified samples. This
illustrates the significance of the classification results for the diagnostic
categories of the SRBCT samples.

3.5 Finding the Important Genes

A common way to estimate the importance of an input to an ANN is to
exclude it and see how much the mean squared error increases. This is a
possible way to rank principal components, but the approach is ill suited for
gene ranking. The large number of genes, many of which are correlated,
implies that any individual gene can be omitted without any noticeable
change of the ANN performance.

Instead, we may rank genes according to how much the ANN output is
affected by a variation in the expression level of a gene, keeping all other
gene expression levels and all ANN weights fixed. Since the ANN output is
a continuous function of the inputs (cf. Section 3.1), this measure of the
gene’s importance is simply the partial derivative of the output, with respect
to the gene input. To get the derivative, it is important that the dimensional
reduction is mathematically simple, so the gene’s influence on the ANN
inputs can be easily calculated.

For well classified samples, the output is insensitive to all its inputs, as it
stays close to O or 1 also for significant changes in the output function

11. Classification of Expression Patterns Using Artificial Neural 213
Networks

argument. Not to reduce the influence of well classified samples on the gene
ranking, one may instead consider as sensitivity measure the derivative, with
respect to the gene input, of the output function argument.

There are problems where neither single input exclusion, nor sensitivity
measures as above, identifies the importance of an input (Sarle, 1998).
Therefore, the gene list obtained with the sensitivity measure should be
checked for consistency, by redoing the analysis using only a few top-ranked
genes. If the performance is equally good as before or better, the sensitivity
measure has identified important genes. If the performance is worse, the
sensitivity measure may be misleading, but it could also be that too few top
genes are Selected, giving too little information to the ANN.

In Figure 118, the ANN performance of the SRBCT classification, as a
function of included top genes, is shown. The good result when selecting the
top 96 genes shows that these genes indeed are relevant for the problem. One
can also see that selecting only the six top genes excludes too much
information. The performance measure in this example is the average
number of validation sample misclassifications of an ANN. One can also
consider less restrictive measures, like the number of misclassifications by
the combined ANN committee. If so, it may be that less than 96 top genes
can be selected without any noticeable reduction in the performance. When
more than 96 genes were selected the average performance of the committee
members went down. This increase in the number of misclassifications is
likely due to overfitting introduced by noise from genes with lower rank.
However, the combined ANN committee still classified all the samples
correctly when more than 96 genes were used.

Once genes are ranked, it is possible to further study gene expression
differences between classes. For example, one can check how many top
genes can be removed without significantly reducing the performance.

14

Figure 11.8. The number of
l misclassified samples for

-

each ANN model is
| averaged over all models
] and plotted against

>

increasing number of used
genes. As can be seen, using
F | the 96 highest ranked genes
results in having cross-
i | validation models that all on
average give ZEro

2 | Al_‘ misclassifications for this
| . example. Reproduced with
’ 1] A permission (Khan et al,

B 100 1o 2001). © 2001, Nature
Number of genes Publishing Group.

Number of misclassified samples

214 Chapter 11

Alternatively, several analyses can be made, where the same number of
genes have been selected, but from different regions of the ranked gene-list.
This approach was used when classifying breast cancers according to
estrogen receptor status (Gruvberger et al., 2001). Given the gene-list, 100
genes were selected according to rank in the ranges 1 to 100, 51 to 150, 101
to 200, etc. For each selection of 100 genes, the analysis was redone, and the
ANN classification was shown to remain good using genes in the range 301
to 400, giving the conclusion that the gene expression patterns associated
with estrogen receptor status are remarkably distinct.

4. IMPLEMENTATION

The principal component analysis can be formulated in terms of a singular
value decomposition (see Chapter 5 of this volume) of the expression data
matrix. It is straightforward to implement the complete analysis procedure
outlined in this chapter in MATLAB with the Neural Network application
toolbox, both available from The MathWorks (Natick, Massachusetts).

5. SUMMARY

We have presented an ANN-based method for classification of gene
expression data. This method was successfully applied to the example of
classifying SRBCTs into distinct diagnostic categories. The key components
of this classification procedure are PCA for dimensional reduction and cross-
validation to optimize the training of the classifiers. In addition, we
described a way to rank the genes according to their importance for the
classification. Random permutation tests were introduced to assess the
significance of the classification results. There are other ANN methods that
have been used to classify gene expression data (Selaru et al., 2002).

ACKNOWLEDGMENTS

The authors want to thank C. Peterson, P.S. Meltzer, J. Khan and S.
Gruvberger for their encouragement and support. MR and PE were
supported by postdoctoral fellowships from the Swedish Research Council.

REFERENCES
Almeida J.S. (2002). Predictive non-linear modeling of complex data by artificial neural
networks. Curr Opin Biotechnol 13:72-6.

Bishop C.M. (1995). Neural networks for pattern recognition. Oxford: Oxford University
Press.

11. Classification of Expression Patterns Using Artificial Neural 215
Networks

Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R.,
Yakhini Z., Ben-Dor A., Sampas N., Dougherty E., Wang E., Marincola F., Gooden C.,
Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K.,
Beaudry C., Berens M., Alberts D., Sondak V., Hayward N., Trent J. (2000). Molecular
classification of cutaneous malignant melanoma by gene expression profiling. Nature
406:536-40.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander ES. (1999). Molecular
classification of cancer: Class discovery and class prediction by gene expression
monitoring. Science 286:531-7.

Gruvberger S., Ringnér M., Chen Y., Panavally S., Saal L..H., Borg A., Fernoe M., Peterson
C., Meltzer P.S. (2001). Estrogen receptor status in breast cancer is associated with
remarkably distinct gene expression patterns. Cancer Res 61:5979-84.

Hampshire J.B., Pearlmutter B. (1990). Equivalence proofs for multi-layer perceptron
classifiers and the Bayesian discriminant function. Proceedings of the 1990 connectionist
models summer school. San Mateo, CA: Morgan Kaufman.

Khan J., Simon R., Bittner M., Chen Y., Leighton S.B., Pohida T., Smith P.D., Jiang Y.,
Gooden G.C., Trent .M., Meltzer P.S. (1998). Gene expression profiling of alveolar
rhabdomyosarcoma with ¢cDNA microarrays. Cancer Res 58:5009-13.

Khan J., Wei J.S., Ringn'er M., Saal 1..H., L.adanyi M., Westermann E., Berthold F., Schwab
M., Atonescu C.R., Peterson C., Meltzer P.S. (2001). Classification and diagnostic
prediction of cancers using gene expression profiling and artificial neural networks. Nat
Med 7:673-79.

Krogh A., Vedelsby J. (1995). Neural network ensembles, cross validation and active

learning. Advances in Neural Information Processing Systems, Volume 7. Cambridge,
MA: MIT Press.

Nguyen D.V., Rocke DM. (2002). Tumor classification by partial least squares using
microarray gene expression data. Bioinformatics; 18:39-50.

Pesarin F. (2001). Multivariate Permutation Tests: With Applications in Biostatistics.
Hoboken, NJ: John Wiley & Sons.

Sarle W.S. (1998). How to measure the importance of inputs? Technical Report, SAS Institute
Inc, Gary, NC, USA. Available at ftp://ftp.sas.com/pub/neural/FAQ.html.

Selaru FM,, Xu Y., Yin J,, Zou T., Liu T.C, Mori Y., Abraham J.M., Sato F., Wang S.,
Twigg C., Olaru A., Shustova V., Leytin A., Hytiroglou P., Shibata D., Harpaz N., Meltzer

SJ. (2002). Artificial neural networks distinguish among subtypes of neoplastic colorectal
lesions. Gastroenterology 122:606-13.

Chapter 12

GENE SELECTION AND SAMPLE
CLASSIFICATION USING A GENETIC
ALGORITHM AND K-NEAREST NEIGHBOR
METHOD

Leping Li and Clarice R. Weinberg

Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle
Park, NC 27709, USA,

e-mail: {1i3,weinberg} @niehs.nih.gov

1. INTRODUCTION

Advances in microarray technology have made it possible to study the global
gene expression patterns of tens of thousands of genes in parallel (Brown
and Botstein, 1999; Lipshutz et al, 1999). Such large scale expression
profiling has been used to compare gene expressions in normal and
transformed human cells in several rumors (Alon et al., 1999; Gloub et al.,
1999; Alizadeh et al., 2000; Perou et al., 2000; Bhattacharjee et al., 2001;
Ramaswamy et al., 2001; van’t Veer et al.,, 2002) and cells under different
conditions or environments (Qoi et al., 2001; Raghuraman et al., 2001;
Wiyrick and Young, 2002). The goals of these experiments are to identify
differentially expressed genes, gene-gene interaction networks, and/or
expression patterns that may be used to predict class membership for
unknown samples. Among these applications, class prediction has recently
received a great deal of attention. Supervised class prediction first identifies
a set of discriminative genes that differentiate different categories of
samples, e.g., tumor versus normal, or chemically exposed versus
unexposed, using a learning set with known classification. The selected set
of discriminative genes is subsequently used to predict the category of
unknown samples. This method promises both refined diagnosis of disease
subtypes, including markers for prognosis and better targeted treatment, and

12. Gene Selection and Sample Classification Using a Genetic 217
Algorithm and k-Nearest Neighbor Method

improved understanding of disease and toxicity processes at the cellular
level.

1.1 Classification and Gene Selection Methods

Pattern recognition methods can be divided into two categories: supervised
and unsupervised. A supervised method is a technique that one uses to
develop a predictor or classification rule using a learning set of samples with
known classification. The predictive strategy is subsequently validated by
using it to classify unknown samples. Methods in this category include
neighborhood analysis (Golub et al., 1999), support vector machines (SVM)
(Ben-Dor et al., 2000; Furey et al., 2000; Ramaswamy et al., 2001), .-
nearest neighbors (KNN) (Li et al., 2001a & 2001b), recursive partitioning
(Zhang et al., 2001), Tukey’s compound covariate (Hedenfalk et al., 2001),
linear discriminant analysis (LDA) (Dudoit et al., 2002; Li and Xiong,
2002), and nearest shrunken centroids (Tibshirani et al., 2002).
Unsupervised pattern recognition largely refers to clustering analysis for
which class information is not known or not required. Unsupervised methods
include hierarchical clustering (Eisen et al., 1998), k-means clustering
(Tavazoie et al., 1999), and the self-organizing map (Toronen et al., 1999).
Reviews of the classification methods can be found in Brazma and Vilo
(2000), Dudoit et al. (2002) and Chapter 7 in this volume.

Usually, a small number of variables (genes) are used in the final
classification. Reducing the number of variables is called feature reduction
in pattern recognition (e.g., see Chapter 6). Feature reduction in microarray
data is necessary, since not all genes are relevant to sample distinction. For
certain methods such as DA, feature reduction is a must. For other methods
such as SVMs, ill-posed data (where the number of genes exceeds the
number of samples) are more manageable (e.g., see Chapter 9).

The most commonly used methods for selecting discriminative genes are
the standard two-sample r-test or its variants (Golub et al, 1999; Hedenfalk et
al., 2001; Long et al., 2001; Tusher et al., 2001). Since typical microarray
data consist of thousands of genes, a large number of #tests are involved.
Clearly, multiple testing is an issue as the number of chance findings, “false
positives”, can exceed the number of true positives. A common correction to
individual p values is the Bonferroni correction. For a two-sided #-test, an
adjusted significance level is a’ = a/n, where n is the number of genes, and
o is the unadjusted significance level. When the sample size is small, as the
case for most microarray data, the variances may be poorly estimated. One
way to address this problem is to “increase” the sample size by using genes
with similar expression profiles in variance estimation (Baldi and long 2001;

218 Chapter 12

Tusher et al., 2001). Furthermore, f-test depends on strong parametric
assumptions that may be violated and are difficult to verify with small
sample size. To avoid the need for parametric assumptions, one may use
permutation techniques (Dudoit et al., 2000; Tusher et al., 2001; Pan et al,
2002). Other methods for selecting differentially expressed genes include
Wilcoxon rank sum test (Virtaneva et al., 2001). A comparative review of
some of these methods can be found in (Pan, 2002).

Besides the r-test and its variants, one can use a classification method to
select discriminative genes. For example, Li and Xiong (2002) used LDA in
a stepwise fashion, sequentially building a subset of discriminative genes
starting from a single gene. In SVM, Ramaswamy et al. (2001) started with
all genes to construct a support vector and then recursively eliminated genes
that provided negligible contribution to class separation (the smallest
elements in a support vector w; see Chapter 9 of this volume). The GA/KNN
approach (Li et al., 2001a & 2001b) utilizes KNN as the discriminating
method for gene selection.

1.2 Why the k-Nearest Neighbors Method?

Many supervised classification methods perform well when applied to gene
expression data (see, e.g., Dudoit et al., 2002). We chose KNN as the gene
selection and classification method for the following reasons.

KNN is one of the simplest non-parametric pattern recognition methods.
It has been shown to perform as well as or better than more complex
methods in many applications (see, e.g., Vandeginste et al., 1998; Dudoit et
al., 2002). Being a non-parametric method, it is free from statistical
assumptions such as normality of the distribution of the genes. This feature
is important, since the distributions of gene expression levels or ratios are
not well characterized and the distributional shapes may vary with the
quality of either arrays themselves or the sample preparation.

Like many other supervised methods, KNN is inherently multivariate,
taking account of dependence in expression levels. It is known that the
expression levels of some genes may be regulated coordinately and that the
changes in expression of those genes may well be correlated. Genes that are
jointly discriminative, but not individually discriminative, may be co-
selected by KNN.

Perhaps most importantly, KNN defines the class boundaries implicitly
rather than explicitly, accommodating or even identifying distinct subtypes
within a class. This property is particularly desirable for studies of cancer
where clinical groupings may represent collections of related but
biologically distinct tumors. Heterogeneity within a single tumor type has
been shown in many tumors including leukemia (Golub et al., 1999),

12. Gene Selection and Sample Classification Using a Genetic 219
Algorithm and k-Nearest Neighbor Method

lymphoma (Alizadeh et al., 2000), and breast cancer (Perou et al., 2000).
When applied to a leukemia data set, the GA/KNN method selected a subset
of genes that not only discriminated between acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) but also unmasked clinically
meaningful subtypes within ALL (T-cell ALL versus B-cell ALL) — even
though gene selection only used the ALL-AML dichotomy (Li et al., 2001a).

Finally, the resulting classification of KNN is qualitative and requires
none of the hard-to-verify assumptions about the within-class variances or
shift alternatives that are used in many other statistical methods. Typical
microarray data contain many fewer samples than genes, and the variance-
covariance matrix becomes singular (linear dependences exist between the
rows/columns of the variance-covariance matrix), restricting attention to
certain linear combinations of genes with non-zero eigenvalues. Moreover,
methods that require variance-covariance estimation suffer in the face of
outlying observations, disparate covariance structures, or heterogeneity
within classes.

1.3 Why a Genetic Algorithm?

In KNN classification, samples are compared in multi-dimensional space.
However, considering all possible subsets of genes from a large gene pool is
not feasible. For instance, the number of ways to select 30 from 3,000 is
approximately 6.7-10"', Thus, an efficient sampling tool is needed. A natural
choice would be a genetic algorithm (GA). A GA is a stochastic
optimization method. First described by John Holland in the 70’s (Holland,
1975), GAs mimic Darwinian natural selection (hence ‘“genetic”) in that
selections and mutations are carried out to improve the “fitness” of the
successive generations (Holland, 1975; Goldberg, 1989). Tt starts with a
population of chromosomes (mathematical entities). Usuvally, the
chromosomes are represented by a set of strings, either binary or non-binary,
constituting the building blocks of the candidate solutions. The better the
fitness of a chromosome, the larger its chance of being passed to the next
generation. Mutation and crossover are carried out to introduce new
chromosomes into the population (e.g., see Judson et al., 1997). Through
evolution, a solution may evolve. After it was introduced, GA has been used
in many optimization problems ranging from protein folding (Pedersen and
Moult, 1996) to sequence alignment (Notredame et al., 1997). For reviews,
see Forrest (1997) and Judson (1997). Although, it has been demonstrated
that GAs are effective in searching high-dimensional space, they do not
guarantee convergence to a global minimum, given the stochastic nature of

220 Chapter 12

the algorithm. Consequently, many independent runs of GAs are needed to
ensure the convergence.

2. THE GA/KNN METHOD

2.1 Overall Methodology

The GA/KNN (Li et al., 2001a & 2001b) is a multivariate classification
method that selects many subsets of genes that discriminate between
different classes of samples using a learning set. It combines a search tool,
GA, and a non-parametric classification method, KNN. Simply speaking, we
employ the GA to choose a relatively small subset of genes for testing, with
KNN as the evaluation tool. Details of the GA and KNN are given below.
For high dimensional microarray data with a paucity of samples, there
may be many subsets of genes that can discriminate between different
classes. Different genes with similar patterns of expression may be selected
in different, but equally discriminative, subsets. Consequently, it is important
to examine as many subsets of discriminative genes as possible. When a
large number of such subsets has been obtained, the frequency with which
genes are selected can be examined. The selection frequency should
correlate with the relative predictive importance of genes for sample
classification: the most frequently selected genes should be most
discriminative whereas the least frequently selected genes should be less

informative. The most frequently selected genes may be subsequently used
to classify unknown samples in a test set.

2.2 KNN
Suppose that the number of genes under study is N and that g « N is the
number of genes in a much smaller subset. Let

G = (Zims Bams++ s Gims+++» gm), Where gy is the expression value (typically
log transformed) of thei'hgene in the m™ sample; m = 1,..., M. In the KNN
method (e.g., Massart et al., 1988), one computes the distance between each
sample, represented by its vector G, and each of the other samples (see,
e.g., Table 12.1). For instance, one may employ the Euclidean distance.
When values are missing, methods for missing value imputation can be
found in Chapter 3. A sample is classified according to the class membership
of its k nearest neighbors, as determined by the Euclidean distance in g-
dimensional space. Small values of 3 or 5 for &£ have been alleged to provide
good classification. In a classic KNN classification, an unknown sample is
classified in the group to which the majority of the £ objects belong. One
may also apply a more stringent criterion to require all k£ nearest neighbors to

12. Gene Selection and Sample Classification Using a Genetic 221
Algorithm and k-Nearest Neighbor Method

agree in which case a sample would be considered unclassifiable if the k
nearest neighbors do not all belong to the same class.

Figure 12.1 displays an example. The unknown, designated by X, is
classified with the triangles, because its 3 nearest neighbors are all triangles.

Table 12.1. An example of two genes (g1 and g2) and 10 samples (S1-510).

Sample | SI S2 S3 S4 S5 S6 ST S8 S9 SIO
Class A A A A A O O O O O
gl g1 82 83 Zi4 Lis s L7 Big 819 Lo
g2 21 222 823 f24 25 B26 27 Bas B9 £210

Note that the data are well clustered, because each observation has a class
that agrees with the class of its 3 nearest neighbors.

A Figure 12.1. KNN classification,

g2 For clarity, only two dimensions
A are shown (g =2), that is, each

A sample is represented by a

A A vector of two genes (g1 and g2).

X FAN Triangles and circles represent

two distinct classes. A 3-NN
classification would assign the
unknown sample X to the class
of triangle.

2.3 A Genetic Algorithm

2.3.1 Chromosomes

In GAs, each “chromosome” (a mathematical entity, not the biological
chromosome) consists of g distinct genes randomly selected from the gene
“pool” (all genes studied in the experiment). Thus, a chromosome can be
viewed as a string containing g gene index labels. An example is shown in
Figure 12.2. In the example, genes 1, 12, 23, 33, and so on, are selected. The
set of ¢ genes in the chromosome constitutes a candidate solution to the gene
selection problem, as the goal of each run of the GA is to identify a set of ¢
discriminative genes. Typically, g = 20, 30 or 40 should work well for most
microarray data sets. A set of such “chromosomes” (e.g., 100) constitutes a
population or niche. We work with 10 such niches in parallel.

222 Chapter 12

1 1223|3354 78|90 eee

Figure 12.2. An example of a chromosome in GA.

2.3.2 Fitness

The fitness of each chromosome is subsequently evaluated by its ability to
correctly classify samples using KNN. For each chromosome (a set of g
selected genes), we compute the pair-wise Euclidean distances between the
samples in the g-dimensional space. The class membership of a sample is
then declared by its k-nearest neighbors. If the actual class membership of
the sample matches its KNN-declared class, a score of one is assigned to that
sample; otherwise, a score of zero is assigned. Summing these scores across
all samples provides a fitness measure for the chromosome. A perfect score
would correspond to the number of samples in the training set.

2.3.3 Selection and Mutation

Once the fitness score of each chromosome in a niche is determined, the
fittest chromosomes, one from each niche, are combined and used to replace
the corresponding number of the least fit chromosomes (the lowest scoring
chromosomes) in each niche. This enrichment strategy allows the single best
chromosome found in each niche to be shared with all the other niches. For a
typical run with 10 niches, each of which consists of 100 chromosomes, the
10 least fit chromosomes in each niche are replaced by the 10 best
chromosomes, one from each niche.

Next, the chromosomes in each niche are ranked, with the best
chromosome assigned a rank of 1. The single best chromosome in a niche is
passed deterministically to the next generation for that niche without
subsequent mutation. This guarantees that the best chromosome at each
generation is preserved. The remaining chromosomes in the niche are chosen
by sampling all chromosomes including the best chromosome in the niche
with probability proportional to the chromosome’s fitness. This is the so-
called “roulette-wheel selection” in which the high scoring chromosomes are
given high probability of being selected whereas the low scoring
chromosomes are given low, but non-zero, probability of being passed to the
next generation. Including less fit chromosomes may prevent the search from
being trapped at a local minimum. Chromosomes selected based on this
sampling strategy are next subject to mutation.

Once a chromosome is selected for mutation, between 1 and 5 of its
genes are randomly selected for mutation. The number of mutations (from 1
to 5) is assigned randomly, with probabilities, 0.53125, 0.25, 0.125, 0.0625,
and 0.03125 (1/2r, where r is 1 to 5; 0.03125 is added to the probability

12. Gene Selection and Sample Classification Using a Genetic 223
Algorithm and k-Nearest Neighbor Method

r=1, so that the total probability is equal to 1.0), respectively. In this way, a
single replacement is given the highest probability while simultaneous
multiple replacements have lower probability. This strategy prevents the
search from behaving as a random walk as it would if many new genes were
introduced at each generation. Once the number of genes to be replaced in
the chromosome has been determined, these replacement genes are randomly
selected and replaced randomly from the genes not already in the
chromosome. An example of a single point mutation is shown in
Figure 12.3.

Figure 12.3. A single point

1112]123|133|54]78190 mutation. For simplicity, only
7 genes are shown. Upon a
l single point mutation, gene 33

is replaced by gene 40.

2.3.4 Termination Criterion

Niches are allowed to evolve by repeating the above steps until at least one
of the chromosomes achieves a targeted fitness criterion. A targeted fitness
criterion is considered to be reached when most of the samples (e.g., 90% of
them) have been correctly classified. Because we do not require perfect
classification, gene selection may be less sensitive to outliers or occasional
misclassified samples in the data. A less stringent criterion iS also
computationally faster.

Intuitively, the more distinct classes, the more difficult it will be to find a
subset of discriminative genes. For toxicogenomics data or tumor data,
multiple classes are not uncommon. For those datasets, the above 90%
requirement may be too stringent. For instance, Ramaswamy et al. (2001)
did gene expression profiling on 218 tumor samples, covering 14 tumor
types, and 90 normal tissue samples using oligonucleotide arrays. When we
applied the GA/KNN method to the training set (144 samples and 14
classes), requiring 90% of the 144 samples to be correctly classified was not
possible. For such circumstances, one should start with a test run to see how
the fitness score evolves from generation to generation. One might choose a
fitness score based on what can be achieved in 20 to 40 generations as the
targeted fitness value, to balance the computation speed and discrimination
power. It should be pointed out that gene selection is relatively insensitive to
this choice of the targeted fitness criterion. The other cases where a less
stringent criterion may be needed are time-course and dose-response
microarray data, where there are again multiple, potentially similar classes.

224 Chapter 12

We refer to a chromosome that achieves this targeted fitness score as a near-
optimal chromosome. When a near-optimal chromosome evolves in any
niche, that chromosome is retrieved and added to a list; then the entire niche
is re-initialized. Because typical microarray data consist of a large number of
genes and a small number of samples, for a given data set there may exist
many different subsets of genes (near-optimal chromosomes) that can
discriminate the classes of samples very well. Hence, the GA/KNN
procedure must be repeated through many evolutionary runs, until many
such near-optimal chromosomes (e.g., 10,000) are obtained. Once a large
number of near-optimal chromosomes have been obtained, genes can be
ranked according to how often they were selected into these near-optimal
chromosomes. The most frequently selected genes should be more relevant
to sample distinction whereas the least frequently selected genes should be
less informative.

It may not be practically possible or necessary to obtain a very large
number of near-optimal chromosomes. However, one should check to see if
one has sampled enough of the GA solution space for results to stabilize. To
do that, one may divide the near-optimal solutions into two groups of equal
size and compare their frequency distributions and ranks for the top genes. A
tight diagonal line indicates that the ranks for the top genes are nearly
reproducible, suggesting that enough near-optimal solutions have been
obtained to achieve stability (Figure 12.4).

Figure 12.4. An example of plot of
the log,o-transformed ranks of the
100 top-ranked genes from two
independent runs of the GA/KNN
procedure, The genes were ranked
according to frequency of
1 o — occurrence in the 500,000 near-
o« " optimal chromosomes, with the
. J most frequent gene assigned rank
05 - . 1 (0 after transformation). Similar
i J i result was obtained using fewer
I | near-optimal chromosomes (e.g.,
0 : e ' 10,000).

2 T " T ﬁ T l T

log10 (rank)

log10 (rank)

2.4 Statistical Analysis of the Near-Optimal Chromosomes

The next step is to develop a predictive algorithm to apply to the test set, by
selecting a certain number of top-ranked genes and using those genes, with
the KNN method, on the test set samples. A simple way to choose the
number of discriminative genes is to take the top 50. Although fewer genes

12. Gene Selection and Sample Classification Using a Genetic 225
Algorithm and k-Nearest Neighbor Method

(e.g., 10) may be preferred in classification, for microarray data, a few more
genes might be useful. More genes might provide more insight for the
underlying biology. With more genes, the classification should be less
sensitive to the quality of data, since the current microarray technology is not
fully quantitative. Alternatively, one may choose the number of top-ranked
genes that give optimal classification for the training set (Li et al., 2001b). It
may also be helpful to plot the Z score of the top-ranked genes (Figure 12.5).
Let Z=(S; - E(S))) / o, where S§; is the number of times gene i was selected,
E(S), is the expected number of times for gene i being selected, & is the
square root of the variance. Let A = number of near-optimal chromosomes
obtained (not necessarily distinct), and P;=gq /number of genes on the
microarray, the probability of gene i being selected (if random). Then,

ES)=P;xA4A,ando=/Pi-(1- P))- A.

A sharp decrease in Z score may suggest that only a few of the top-
ranked genes should be chosen as the discriminative genes.

300 T 1 T T T | ° Figure 12.5. A plot of Z scores for
100 top-ranked genes for the
N breast cancer data set (Hedenfalk
et al, 2001). The Z scores
decrease quickly for the first 5 to
10 genes. The decrease is much
slower after 30 genes, In this case,
it seems reasonable to choose 20
100 - to 30 top-ranked genes as the most
discriminative genes,

3]
=1
=
T
l

Z BCcOTEC

0 PR T SRR IR W R |

0 20 40 60 80 100
top—ranked genes

2.5 Comparison between Near-Optimal Chromosomes
and the Top-Ranked Genes

As pointed out earlier, for high-dimensional microarray data with a paucity
of samples, many subsets of genes that can discriminate between different
classes of samples may exist. Different genes with similar patterns of
expression may be selected in different, but equally discriminative subsets,
especially when a qualitative classification method, such as KNN, is used.
The overlap between ¢ top-ranked genes and each of the near-optimal
chromosomes (g genes in length) can be low. For instance, for the breast

226 Chapter 12

cancer data set (Hedenfalk et al., 2001), we obtained 500,000 near-optimal
chromosomes that can distinguish between BRCAI and BRCA2 tumors.
Among the 500,000 near-optimal chromosomes, only 13% of them had 6 or
more genes listed among the 30 top-ranked genes. Moreover, classifications
in a leave-one-out cross-validation procedure (e.g., Chapter 7) using the
individual near-optimal chromosomes revealed bad performance (data not
shown). On the other hand, empirically, we found that substantially larger
separation between BRCAI and BRCA2 samples was achieved with the 30
top-ranked genes than with any individual near-optimal chromosome (data
not shown). These results suggest that the top-ranked genes do much better
than any of the individual near-optimal chromosomes for sample
classification.

Although ranking the genes by selecting those individual genes that occur
most frequently in near-optimal chromosomes may seem to sacrifice
correlation structure, this selection process appears to retain aspects of
multivariate structure important for class discrimination. Heuristically, when
a subset of genes can discriminate among classes jointly, but not singly, that
subset of genes should tend to appear together in near-optimal chromosomes
and, consequently, each gene in the jointly discriminative subset may tend to
have high frequency of occurrence.

2.6 Computation Cost

The GA/KNN method is computationally intensive, as it searches for many
near-optimal solutions (chromosomes). For a typical run, as many as 10,000
near-optimal solutions may be needed. For a small data set with 10 samples
in each of two categories, obtaining that many near-optimal solutions can be
achieved in a few hours or less. However, for a large data set with multiple
classes (e.g., the MIT’s 14 categories tumor data set) (Ramaswamy et al.,
2001), it may take a few days to complete the GA/KNN on a Linux machine
with reasonable speed.

2.7 Availability

The GA/KNN method will be available on the Web site:

http://dir.niehs.nih.gov/microarray/datamining/ for downloading in
September 2002.

3. CONCLUDING REMARKS

In summary, the GA/KNN method is non-parametric, multivariate, and able
to accommodate (and potentially detect) the presence of heterogeneous

12. Gene Selection and Sample Classification Using a Genetic 227
Algorithm and k-Nearest Neighbor Method

subtypes within classes. As the quantitative aspects of the microarray
technology improve and computational methods that mine the resulting large
data sets are developed further, the technology will have a great impact on
biology, toxicology, and medicine.

ACKNOWLEDGEMENTS

We thank David Umbach and Shyamal Peddada for insightful discussions
and careful reading of the manuscript. LL also thanks ILee Pedersen and
Thomas Darden for advice and support.

REFERENCES

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C,, Lossos LS., Rosenwald A., Boldrick J.C.,
Sabet H., Tran T., Yu X., Powell J.I., Yang L., Marti G.E., Moore T., Hudson J., Jr, Lu L.,
Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D.,
Armitage J.0., Warnke R., Staudt ..M. et al (2000). Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature 403:503-11.

Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., Levine A.J. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-50.

Baldi P., Long A.D. (2001). A Bayesian framework for the analysis of microarray expression
data: regularized ¢ -test and statistical inferences of gene changes. Bioinformatics 17:509-
19.

Ben-Dor A., Bruhn L., Friedman N., Nachman 1., Schummer M., Yakhini Z. (2000). Tissue
classification with gene expression profiles. J Comput Biol 2000; 7:559-83,

Bhattacharjee A., Richards W.G., Staunton J., Li C., Monti S., Vasa P., Ladd C., Beheshti J.,
Bueno R., Gillette M., Loda M., Weber G., Mark E.J., Lander E.S., Wong W., Johnson
B.E., Golub T.R., Sugarbaker D.J., Meyerson M. (2001). Classification of human lung
carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
Proc Natl Acad Sci USA 98:13790-5.

Brazma A., Vilo J. (2000). Gene expression data analysis. FEBS Lett 480:17-24.

Brown P.O., Botstein D. (1999). Exploring the new world of the genome with DNA
microarrays. Nat Genet 21(1 Suppl):33-7.

Dudoit S., Yang Y.H., Callow M.J., Speed T. (2000). Statistical methods for identifying
differentially expressed genes in replicated cDNA microarray experiments. Technical

Report, Number 578, Department of Statistics, University of California, Berkeley,
California.

Dudoit S., Fridlyand J., Speed T.P. (2002). Comparison of discrimination methods for the
classification of tumors using gene expression data. J Am Stat Assoc 97:77-87.

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-8.

Forrest S. (1993). Genetic algorithms: principles of natural selection applied to computation.
Science 261:872-8.

228 Chapter 12

Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. (2000).
Support vector machine classification and validation of cancer tissue samples using
microarray expression data. Bioinformatics 16:906-14.

Goldberg D.E. (1989) Genetic algorithms in search, optimization, and machine learning.
Massachusetts: Addison-Wesley, 1989,

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286:531-7.

Hedenfalk 1., Duggan D., Chen Y., Radmacher M., Bittner M., Simon R., Meltzer P.,
Gusterson B., Esteller M., Kallioniemi O.P., Wilfond B., Borg A., Trent J. (2001). Gene-
expression profiles in hereditary breast cancer. N Engl J Med 344:539-48.

Holland J.H. (1975). Adaptation in Natural and Artificial Systems., Ann Arbor: University of
Michigan Press.

Judson R. (1997). Genetic algorthms and their use in chemistry. In Reviews in computational
chemistry, Kenny B. Lipowitz and Donald B. Boyd, eds. New York: VCH publishers, Vol.
10.

Li L., Darden T.A., Weinberg C.R., Levine A.J., Pedersen L..G. (2001). Gene assessment and
sample classification for gene expression data using a genetic algorithm/k-nearest
neighbor method. Comb Chem High Throughput Screen 4:727-39.

Li L., Weinberg CR., Darden T.A., Pedersen L.G. (2001). Gene selection for sample
classification based on gene expression data: study of sensitivity to choice of parameters of
the GA/KNN method. Bioinformatics 17:1131-42,

Li W., Xiong M. (2002). Tclass: tumor classification system based on gene expression profile.
Bioinformatics 18:325-326.

Lipshutz R.J., Fodor S.P., Gingeras T.R., Lockhart D.J. (1999). High density synthetic
oligonucleotide arrays. Nat Genet 21(1 Suppl):20-4.

Long A.D., Mangalam H.J., Chan B.Y., Tolleri L., Hatfield G.W., Baldi P. (2001). Improved
statistical inference from DNA microarray data using analysis of variance and a Bayesian
statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol
Chem 276:19937-44.

Massart, D.L., Vandeginste B.G.M., Deming S.N., Michotte Y., Kaufman, L. (1988).
Chemometrics: a textbook (Data Handling in Science and Technology, vol 2), Elsevier
Science B.V: New York.

Notredame C., O'Brien E.A., Higgins D.G. (1997). RAGA: RNA sequence alignment by
genetic algorithm. Nucleic Acids Res 25:4570-80.

Ooi S1L., Shoemaker D.D., Boeke I.D. (2001). A DNA microarray-based genetic screen for
nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294:2552-6.
Pan W. (2002). A comparative review of statistical methods for discovering differentially
expressed genes in replicated microarray experiments. Bioinformatics 2002; 18:546-54.
Pedersen J.T., Moult J. (1996). Genetic algorithms for protein structure prediction. Curr Opin

Struct Biol 6:227-31.
Perou CM,, Sgrlie T, Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross
D.T., Johnsen H., Aksien L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X,,

Lonning P.E., Borresen-Dale A.L., Brown P.O., Botstein D. (2000). Molecular portraits of
human breast tumours. Nature 406; 747-52.

12. Gene Selection and Sample Classification Using a Genetic 229
Algorithm and k-Nearest Neighbor Method

Raghuraman M.K., Winzeler E.A., Collingwood D., Hunt S., Wodicka L., Conway A,
Lockhart D.J., Davis R.W., Brewer B.J., Fangman W.L.. (2001). Replication dynamics of
the yeast genome. Science 294:115-21.

Ramaswamy S., Tamayo P., Rifkin R., Mukherjee S., Yeang C.H., Angelo M., Ladd C.,
Reich M., Latulippe E., Mesirov J.P., Poggio T., Gerald W., L.oda M., Lander E.S., Golub

T.R. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc
Natl Acad Sci USA 98:15149-54.

Tavazoie S., Hughes I.D., Campbell M.J.,, Cho R.J., Church G.M. (1999). Systematic
determination of genetic network architecture. Nat Genet 22:281-5.

Tibshirani R., Hastie T., Narasimhan B., Chu G. (2002). Diagnosis of multiple cancer types
by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567-72.

Toronen P., Kolehmainen M., Wong G., Castren E. (1999). Analysis of gene expression data
using self-organizing maps. FEBS Lett 451:142-6.

Tusher V.G., Tibshirani R., Chu G. (2001). Significance analysis of microarrays applied to
the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-21.

Vandeginste B.GM., Massart D.L., Buydens L.M.C., De Jong S. Lewi P.J., Smeyers-
Verbeke J. (1998). Handbook of Chemometrics and Qualimetrics. Vol 20B. The
Netherlands: Elsevier Science.

van 't Veer L.J., Dai H., van de Vijver M.J,, He Y.D., Hart A.A., Mao M., Peterse H.L.., van
der Kooy K., Marton M.J., Witteveen A.T., Schreiber G.J., Kerkhoven RM., Roberts C.,
Linsley P.S., Bernards R., Friend S.H. (2002). Gene expression profiling predicts clinical
outcome of breast cancer. Nature 415:530-6.

Virtaneva K., Wright F.A., Tanner S.M., Yuan B., Lemon W.J., Caligiuri M.A., Bloomfield
CD., de La Chapelle A., Krahe R. (2001). Expression profiling reveals fundamental
biological differences in acute myeloid leukemia with isolated trisomy 8 and normal
cytogenetics, Proc Natl Acad Sci USA 98:1124-9.

Wyrick J.J., Young R.A. (2002). Deciphering gene expression regulatory networks. Curr Opin
Genet Dev 12:130-6.

Zhang H., Yu C.Y. Singer B., Xiong M. (2001). Recursive partitioning for tumor
classification with gene expression microarray data. Proc Natl Acad Sci USA 98:6730-5.

Chapter 13

CLUSTERING GENOMIC EXPRESSION DATA:
DESIGN AND EVALUATION PRINCIPLES

Francisco Azuaje and Nadia Bolshakova

University of Dublin, Trinity College, Department of Computer Science, Dublin 2, Ireland,
e-mail: {Francisco.Azuaje, Nadia.Bolshakova} @cs.tcd.ie

1. INTRODUCTION: CLUSTERING AND GENOMIC
EXPRESSION ANALYSIS

The analysis of expression data is based on the idea that genes that are
involved in a particular pathway, or respond to a common environmental
stimulus, should be co-regulated and therefore should exhibit similar
patterns of expression. Thus, a fundamental task is to identify groups of
genes or samples showing similar expression patterns.

Clustering may be defined as a process that aims to find partitions or
groups of similar objects. It can be seen as an unsupervised recognition
procedure whose products are known as clusters. In a genomic expression
application, a cluster may consist of a number of samples (or genes) whose
expression patterns are more similar than those belonging to other clusters.
Figure 13.1 depicts a situation, in which two types of genes, each one
associated with a different biological function, are clustered based on their
expression profiles. The clusters are represented by circles, and the genes
that are linked to each cluster are depicted randomly within the
correspondent circle.

13. Clustering Genomic Expression Data: Design and Evaluation 231
Principles

OO®
@O0®
GO0

@ Genes related to function X
2 Genes related to function ¥

Figure 13.1. Clustering of genes according to their expression patterns.

Clustering has become a fundamental approach to analyzing genomic
expression data. It can support the identification of existing underlying
relationships among a set of variables such as biological conditions or
perturbations. Clustering may represent a basic tool not only for the
classification of known categories, but also (and perhaps most importantly)
for the discovery of relevant classes. The description and interpretation of its
outcomes may also allow the detection of associations between samples or
variables, the generation of rules for decision-making support and the
evaluation of experimental models. In the expression domain it has provided
the basis for novel clinical diagnostic and prognostic studies (Bittner et al.,
2000), and other applications using different model organisms (Ideker et al.,
2001).

Several clustering methods have been proposed for expression analysis,
and many other options will surely be applied in the future. Moreover, post-
genome scientists deal with highly complex and diverse biological problem
domains. Therefore, it would not be reasonable to expect the existence of
universal clustering solutions. This chapter provides an overview of the
major types of clustering problems and techniques for genomic expression
data. It focuses on crucial design and analytical aspects of the clustering
process. We hope that this chapter will guide our readers to address
questions such as: Which clustering strategy should I use? How many
clusters should it find? Is this a good partition? Is there a better partition?

Section 2 introduces important concepts for the effective application of
clustering techniques. It overviews some of the major types of clustering
algorithms for genomic expression data: their advantages, limitations and
applications. It provides the reader with some important criteria for the
selection of clustering methods. Section 3 approaches the systematic
evaluation of clustering results based on their relevance and validity (both
computational and biological). Two evaluation models will be presented:

232 Chapter 13

Cluster validity strategies based on the Dunn’s index, and the silhouette
method. As a way of illustration these methods are implemented using two
expression data sets, which were obtained from different clinical diagnostic
studies. The results demonstrate that such validity frameworks may represent
a useful tool to support biomedical knowledge discovery. Section 4
concludes with a discussion of the results, future work and
recommendations.

2. DESIGN PRINCIPLES FOR CLUSTERING
STUDIES

Typical clustering algorithms are based on the optimisation of a partition
quality measure. Generally these measures are related to the following
factors: a) the heterogeneity of the clusters, also known as the cluster
cohesion or compactness; and b) their separation from the rest of the data,
also known as cluster isolation. Thus, a basic clustering approach may aim to
search for a partition that a) minimize intra-cluster distances, and b)
maximize inter-cluster distances.

There are several types of metrics to assess the distance or similarity,
between samples and between clusters (Everitt, 1993). A clustering
algorithm commonly requires the data to be described by a matrix of values,
xy (i=1,...,m) (= 1,..., n), where xy refers to the value of the j‘h feature
associated with the ith sample. In an expression data application x; may
represent, for instance, the expression value of gene i during a perturbation j.

Other techniques require a matrix of pairwise values, py (i,j = 1,..., m),
where pyrepresents the similarity (or dissimilarity) value between the " and
f" objects to be clustered. In an expression data application py may represent,
for instance, the similarity or dissimilarity between the M and j™ genes under
a biological condition.

Some basic measures for heterogeneity or compactness assessment are
the sum of squares, L; measures, intra-cluster diameter metrics and the sum
of distances (Everitt, 1993). Isolation may be measured by, for example,
calculating the minimum distance between clusters, or the sum of
dissimilarities between samples in a particular cluster and samples belonging
to other clusters. The reader is referred to (Hansen and Jaumard, 1997) for a
more detailed description on heterogeneity and isolation measures for
clustering processes.

The second part of this section will introduce relevant clustering systems
for expression data applications. This overview addresses three major types
of clustering systems: a) hierarchical clustering, b) techniques based on
iterative relocation, and c¢) adaptive solutions and other advances.

13. Clustering Genomic Expression Data: Design and Evaluation 233
Principles

2.1 Key Clustering Approaches For Expression Data

2.1.1 Hierarchical Clustering

Hierarchical clustering is perhaps the best-known clustering method for
expression data analyses. Chapter 14 discusses its implementation and
applications in more detail. The main objective of this technique is to
produce a tree like structure in which the nodes represent subsets of an
expression data set. Thus, expression samples are joined to form groups,
which are further joined until a single hierarchical tree (also known as
dendrogram) is produced. There are different versions of hierarchical
clustering, which depend, for example, on the metric used to assess the
separation between clusters.

Several studies on the molecular classification of cancers and biological
modelling have been based on this type of algorithms. Pioneering studies
include an investigation by Eisen et al. (1998), which found that hierarchical
clustering might be used to group genes of known similar function in
Saccharomyces cerevisiae. Dhanasekaran et al. (2001) illustrates how
dendrograms can reveal the variation in gene expression pattern between
distinct pools of normal prostate samples. Perou et al. (2000) measured the
variation in the expression of 1,753 genes in 84 experimental breast cancer
samples “before and after” chemotherapy. This study shows how these
patterns provide a distinctive molecular portrait of each tumour. Moreover,
the tumours could be classified into subtypes based on the differences of
their gene expression patterns.

2.1.2 Models based on Iterative Relocation

This type of clustering algorithms involves a number of “learning” steps to
search for an optimal partition of samples. Such processes may require: a)
the specification of an initial partition of objects into a number of classes; b)
the specification of a number of clustering parameters to implement the
search process and assess the adequacy of its outcomes; c¢) a set of
procedures to transform the structure or composition of a partition; and d) a
repetitive sequence of such transformation procedures.

Some techniques included in this category are the k-means or c-means
algorithms, and the Kohonen Self-organizing Map (SOM). The k-means
method categorizes samples into a fixed number (k) of clusters, but it
requires a priori knowledge on the number of clusters representing the
expression data under study. SOMs have been applied to analyze expression
profiles in several biomedical and systems biology studies (Quackenbush,
2001). This is a clustering approach based on hypothetical neural structures

234 Chapter 13

called feature maps, which are adapted by the effect of the input expression
samples to be classified. Thus, users may use SOMs to find and visualize
clusters of similar expression patterns. The SOM-based model was one of
the first machine learning techniques used to illustrate the molecular
classification of cancer. Golub and colleagues (1999) reported a model to
discover the distinction between acute myeloid leukemia and acute
lymphoblastic leukemia. To illustrate the value of SOMs Tamayo and
coworkers applied it to hematopoietic differentiation data (Tamayo et al.,
1999). In this research SOMs organized samples into biologically relevant
clusters that suggest, for example, genes involved in differentiation therapy
used in the treatment of leukemia. Ideker and colleagues (2001) used SOMs
to support an integrated approach to building and refining a cellular pathway
model. Based on this method they identified a number of mRNAs
responding to key perturbations of the yeast galactose-utilization pathway.
Chapter 15 illustrates the application of SOMs in expression data.

2.1.3 Adaptive Systems And Other Advances

Some of these clustering solutions, unlike the methods introduced in
Section 2.1.2, may not require the specification of an initial partition or
knowledge on the underlying class structure. That is the case of some
adaptations of the original SOM, such as Growing Cell Structures (GCS),
which has been applied for the discovery of relevant expression patterns in
biomedical studies (Azuaje, 2001a). Chapter 15 introduces the design and
application of GCS-based clustering models.

Recent advances for expression data analysis include Biclustering, which
consists of a one-step process to find direct correlations between a subset of
features (genes or perturbations) and a subset of samples (genes or tissues)
(Cheng and Church, 2000). From a biological perspective this is a useful
approach because it allows the simultaneous clustering of genes and
conditions, as well as the representation of multiple-cluster membership.

Other contributions have demonstrated how a supervised neural network
can be used to perform automatic clustering or discovery of classes. A model
based on a supervised neural network called Simplified Fuzzy ARTMAP
(Kasuba, 1993) has been used to recognize relevant expression patterns for
the classification of lymphomas (Azuaje, 2001b). From a user’s point of
view this type of models also offers a number of computational advantages.
For example, the user only needs to specify a single clustering parameter,
and the clustering process can be executed with a single processing iteration.

13. Clustering Genomic Expression Data: Design and Evaluation 235
Principles

2.2 Basic Criteria For The Selection Of Clustering
Techniques

Even when one would not expect the development of universal clustering
solutions for genomic expression data, it is important to understand
fundamental factors that may influence the choice and performance of the
most appropriate technique. This section provides readers with basic criteria
to select clustering techniques. These guidelines address questions such as:
Which clustering algorithm should T use? Should I apply an alternative
solution? How can results be improved by using different methods? This
discussion does not intend to offer a formal framework for the selection of
clustering algorithms, but to highlight important dimensions that may have
to be taken into account for improving the quality of clustering-based
studies.

Choosing “the best” algorithm for a particular problem may represent a
challenging task. There are multiple clustering techniques that can be used to
analyze expression data. Advantages and limitations may depend on factors
such as the statistical nature of the data, pre-processing procedures, number
of features etc. Moreover, it iS not uncommon to observe inconsistent results
when different clustering methods are tested on a particular data set. In order
to make an appropriate choice is important to have a good understanding of:

(1) the problem domain under study, and
(2) the clustering options available.

Knowledge on the underlying biological problem may allow a scientist to
choose a tool that satisfies certain requirements, such as the capacity to
detect overlapping classes. Knowledge on the mathematical properties or
processing dynamics of a clustering technique may significantly support the
selection process. How does this algorithm represent similarity (or
dissimilarity)?, how much relevance does it assign to cluster heterogeneity?,
how does it implement the process of measuring cluster isolation?. Answers
to these questions may indicate crucial directions for the selection of an
adequate clustering algorithm.

Empirical studies have defined several mathematical criteria of
acceptability (Fisher and Van Ness, 1971). For example, there may be
clustering algorithms that are capable of guaranteeing the generation of
partitions whose cluster structures do not intersect. Such algorithms may be
called convex admissible. There are algorithms capable of generating
partition results that are insensitive to the duplication of data samples. These
techniques may be called point proportion admissible. Other clustering
algorithms may be known as monotone admissible or noise-tolerant if their

236 Chapter 13

clustering outcomes are not affected by monotone transformations on the
data. Tt has been demonstrated, for instance, that both single-linkage and
complete-linkage hierarchical clustering should be characterized as non-
convex admissible, point proportion admissible and monotone admissible.
The reader is referred to Fisher and Van Ness (1971) for a review on these
and other mathematical criteria of acceptability.

Several algorithms indirectly assume that the cluster structure of the data
under consideration exhibits particular characteristics. For instance, the k-
means algorithm assumes that the shape of the clusters is spherical; and
single-linkage hierarchical clustering assumes that the clusters are well
separated. Unfortunately, this type of knowledge may not always be
available in an expression data study. In this situation a solution may be to
test a number of techniques on related data sets, which have previously been
classified (a reference data set). Thus, a user may choose a clustering method
if it produced consistent categorization results in relation to such reference
data set.

Specific user requirements may also influence a selection decision. For
example, a scientist may be interested in observing direct relationships
between classes and subclasses in a data partition. In this case, a hierarchical
clustering approach may represent a basic solution. But in some studies
hierarchical clustering results could be difficult to visualize because of the
number of samples and features involved. Thus, for instance, a SOM may be
considered to guide an exploratory analysis of the data.

In general, the application of two or more clustering techniques may
provide the basis for the synthesis of accurate and reliable results. A scientist
may be more confident about the clustering experiments if very similar
results are obtained by using different techniques. This approach may also
include the implementation of voting strategies, consensus classifications,
clustering fusion techniques and statistical measures of consistency (Everitt,
1993).

3. CLUSTER VALIDITY AND EVALUATION
FRAMEWORKS FOR EXPRESSION DATA

Several clustering techniques have been applied to the analysis of expression
data, but fewer approaches to the evaluation and validation of clustering
results have been studied.

Once a clustering algorithm has been selected and applied, scientists may
deal with questions such as: Which is the best data partition?, which clusters
should we consider for further analysis? What is the right number of
clusters?

13. Clustering Genomic Expression Data: Design and Evaluation 237
Principles

Answering those questions may represent a complex and time-consuming
task, However, it has been shown that a robust strategy may consist of
estimating the correct number of clusters based on validity indices (Azuaje,
2002a).

Such indices evaluate a measure, Q(U), of quality of a partition, U, into ¢
clusters. Thus, the main goal is to identify the partition of ¢ clusters for
which Q(U) is optimal.

Two such cluster validity approaches are introduced and tested on
expression data sets: The Dunn’s based indices (Bezdek and Pal, 1998) and
the silhouette method (Rousseeuw, 1987).

3.1 Assessing Cluster Quality With Dunn’s Validity
Indices

This index aims at identifying sets of clusters that are compact and well
separated. For any partition U X: Xj U ... X; U ... X, where X] represents
the i cluster of such partition, the Dunn’s validation index, V, is defined as;

|| (XL X))
V) = mindmind > K X0 (13.1)
isise | I<jse rlrsllflsx{A(X)

&X, X;) defines the distance between clusters X; and X; (intercluster
distance); A(Xg)represents the intracluster distance of cluster Xj;and c is the
number of clusters of partition U. The main goal of this measure is to
maximize intercluster distances whilst minimizing intracluster distances.
Thus, large values of V correspond to good clusters. Therefore, the number
of clusters that maximises V is taken as the optimal number of clusters, ¢
(Bezdek and Pal, 1998).

In this study, eighteen validity indices based on Equation 13.1 were
compared. These indices consist of different combinations of intercluster and
intracluster distance techniques. Six intercluster distances, &, 1 <i < 6; and 3
intracluster distances A;, 1 <j <3 were implemented. Thus, for example,
Vi3, represents a validity index based on an intercluster distance,d, and an
intracluster distance A;. The mathematical definitions of these intercluster
and intracluster distances are described in Tables 13.1 and 13.2, respectively.

238 Chapter 13

Table 13.1. Intercluster distances used to implement the Dunn's index. S and T are clusters
from partition U; d(x, y) defines the distance between any two samples, x and y, belonging to
S and T respectively; |.S| and | T} provide the number of samples included in clusters S and T,
respectively.

S8,(S.T)y=d(vs,vt)

: 1
D‘I(S,)= min{d(x, }’)} L ?.Zv

xe§ yeT

0,(8,T) = max{d(x, ,_v)} 0,(S,T)=

el vel

[Zd(x ”)+Zd(" vs))

TR yel

5,J(S,T)=max{5(.5' T),58(T, S‘)} *

8,(S,T)= Zd(m v) 5(_S.T)zmax1 d(t \,)f
S
yel

a(T,8)= mjax{mln d(r ¥) ,}

Table 13.2. Intracluster distances used to implement the Dunn’s index. S is a cluster from
partition U; d(x, y) defines the distance between any two samples, x and y, belonging to S; |.S|
represents the number of samples included in cluster S.

A,(S) = max{d(x,y)}

A, (S)= d(x,y) > d(x,v)
NE GS|);‘s A(S)=2 2=

I

As a way of illustration, this validation process is tested on expression
data from a study on the molecular classification of lymphomas. Clustering
is performed using the SOM algorithm. The expression levels from a number
of genes with suspected roles in processes relevant in diffuse large B-cell
lymphoma (DLBCL) were used as the features for the automatic clustering
of a number of B-cell samples. The data consisted of 63 cases (45 DLBCL
and 18 normal) described by the expression levels of 23 genes. These data
were obtained from an investigation published by Alizadeh and colleagues

13. Clustering Genomic Expression Data: Design and Evaluation 239
Principles

(2000), who identified subgroups of DLBCL based on the analysis of the
patterns generated by a specialized cDNA microarray technique. A key goal
of this study was to distinguish two categories of DLBCL: Germinal Centre
B-like DLBCL (GC B-like DLBCL) (22 samples) and Activated B-like
DLBCL (23 samples) (Alizadehn et al, 2000). The full data and
experimental methods are available on the Web site of Alizadeh et al.
(http:/Mlmpp.nih.gov/lymphoma).

Table 13.3 shows the values of the 18 validity indices and the average
index at each number of clusters, ¢, for ¢ =2 to ¢=6. The shaded entries
correspond to the highest values of the indices, and d(x, y) was calculated
using the Euclidean distance. Fifteen of the indices indicated the correct
value ¢ = 2 while the remaining favourc¢ = 5.

An examination of these partitions confirms that the case ¢ = 2 represents
the most appropriate prediction from a biomedical point of view. This
partition accurately allows the identification of the two DLBCL subtypes:
GC B-like and activated B-like. Table 134 describes the clusters obtained
using the optimal value ¢ = 2. Cluster 1 may be referred to as the cluster
representing activated B-like DLBCL, while Cluster 2 recognizes the
subclass GC B-like DLBCL.

A more robust way to predict the optimal value for ¢ may consist of: a)
implementing a voting procedure, or b) calculating the average index value
for each cluster configuration. Table 13.3 indicates that based on such
criteria the best partition consist of two clusters.

Table 13.3. Predicting the correct number of clusters: Validity indices for expression clusters
originating from B-cells, The entries represent the Dunn’s values using 3 types of intracluster
measures and 6 types of intercluster measures, Bold-faced entries represent the optimal
number of clusters, ¢, predicted by each index.

Validity index c=2 c=13 c=4 c=5 c=0
Va 0.29 029 0.29 0.31 0.26
| 1.46 0.98 0.77 0.86 0.69
Fy 0.72 0.60 0.53 0.54 0.50
Va 0.50 0.37 0.30 0.30 027
Fs 0.62 0.50 0.45 0.44 0.41
Vs 0.83 0.71 0.58 0.62 0.52
12 0.51 0.51 0.51 0.52 0.45
Vi 2.57 1.76 1.36 1.47 1.20
Fi 1.27 1.08 0.94 0.93 087
Vo 0.88 0.66 0.54 0.51 0.47
¥ 1.09 0.9 0.79 0.76 0.1

240 Chapter 13

Va 1.47 1.27 1.02 1.05 0.91
Viy 0.37 0.37 0.37 0.38 0.34
Vi 1.86 1.28 0.99 1.08 0.90
Fu 0.92 0.79 0.69 0.68 0.65
Va 0.64 0.48 0.39 037 0.35
Fsy 0.79 0.66 0.58 0.56 0.54
Vea 1.06 0.93 0.75 0.77 0.68
Average 0.99 0.79 0.66 0.68 0.60

Table 13.4. A relevant partition for a study on lymphoma data.

Cluster Description .
I 23 samples belonging to subtype Activated B-like
(Activated B-like DLBCL,
DLBCL) 1 sample belonging to subtype GC B-like DLBCL
9 Normal samples
2 21 samples belonging to subtype GC B-like
(GC B-like DLBCL) | DLBCL
9 Normal samples

Table 13.5. Validity indices for expression clusters originating from a study on DLBCL. The
entries represent the average Dunn’s values based on the distances shown in Tables 13.1 and
13.2, and using three measures for d(x,). Bold-faced entries represent the optimal number of
clusters, ¢, predicted by each method. E.dist.. Euclidean distance; M.dist.: Manhattan
distance; C.dist.: Chebychev distance.

Indexbasedonl c=2 c=13 c=4¢ c=3 c=0
E.dist. 0.99 0.79 0.66 0.68 0.60
M.dist. 1.57 1.21 1.02 1.04 0.92
C.dist. 0.97 0.79 0.70 0.69 0.63

The results shown in Table 13.3 were obtained when d(x, y) was
calculated using the well-known Euclidean distance (Tables 13.1 and 13.2).
However there are several ways to define d(x, y) such as the Manhattan and
Chebychev metrics (Everitt, 1993). Therefore, an important problem is to
know how the choice of d(x, y) may influence the prediction process.
Table 13.5 summarizes the effects of three measures, d(x, y), on the
calculation of the Dunn’s cluster validity indices. This analysis suggests that
the estimation of the optimal partition is not sensitive to the type of metric,
d(x, y), implemented.

13. Clustering Genomic Expression Data: Design and Evaluation 241
Principles

3.2 Assessing Cluster Validity With Silhouettes

For a given cluster, X;(j = 1,..., ¢), this method assigns to each sample of X;a
quality measure, s(i) (i=1,...,m), known as the silhouette width. The
silhouette width is a confidence indicator on the membership of the ith
sample in cluster X;.

The silhouette width for the i sample in cluster X;is defined as:

, b(i)—a(i
s(y=—20 e __ (13.2)
max {a(i),b(?)}
where a(i) is the average distance between the ith sample and all of
samples included in X, ‘max’is the maximum operator, and b(i) is
implemented as:

b@) = min (4, X,) (133)

where d(i, X;) is the average distance between the ith sample and all of
the samples clustered in X,; and ‘min’ represents the minimum value of d(i,
Xo) (k= 1,..., ¢c; k#)). It is easily seen from Equation 13.2 that -1 <s()) < 1.

When a s(i) is close to 1, one may infer that the ith sample has been
“well-clustered”, i.e. it was assigned to an appropriate cluster. When a s(i) is
close to zero, it suggests that the i sample could also be assigned to the
nearest neighbouring cluster, i.e. such a sample lies equally far away from
both clusters, If s(i) is close to —1, one may argue that such a sample has
been “misclassified”.

Thus, for a given cluster, X; (f=1,..., ¢), it is possible to calculate a
cluster silhouette S;, which characterizes the heterogeneity and isolation
properties of such a cluster:

1 m
=—] 13.4
S, m,;s(’) (13.4)

It has been shown that for any partition U &> X: Xj U .. X;U ... X, a
global silhouette value, GS,, can be used as an effective validity index for U
(Rousseeuw, 1987).

1 [4
GS =- E S,
" ¢ 1 (13.5)

242 Chapter 13

Furthermore, it has been demonstrated that Equation 13.5 can be applied to
estimate the most appropriate number of clusters for {. In this case the
partition with the maximum S, is taken as the optimal partition.

By way of example, this technique is tested on expression data originating
from a study on the molecular classification of leukemias (Golub et al.,
1999). Clustering is again performed using SOM. The analyzed data
consisted of 38 bone marrow samples: 27 acute lymphoblastic leukemia
(ALL) and 11 acute myeloid leukemia (AML), whose original descriptions
and experimental protocols can be found on the MIT Whitehead Institute
Web site (http://www.genome.wi.mit.edu/MPR).

Table 13.6. Silhouette values for expression clusters originating from leukemia samples. The
entries represent the global silhouette values, GS,, for each partition, and the silhouette values,
S, for each cluster defining a partition. Bold-faced entries highlight the optimal number of
clusters, ¢, predicted by this method.

c GS. Y $ A A S S
2 0.43 0.17 0.57 - - - -

3 0.14 0.11 0.35 0.11 - - -
4 0.25 0.15 0.31 0.31 0.26 - -

5 019 0.07 0.45 0.23 023 0.21 -
6 0.23 0.28 0.23 028 042 0.14 0.14

Table 13.6 shows the global silhouette values, GS,, for each partition,
and the silhouette values, S, at each number of clusters, ¢, for c=2 to ¢ = 6.
The shaded entries correspond to the optimal values for this validation
method. It predicts ¢ =2 as the best clustering configuration. Table 13.7
describes the clusters obtained using ¢ = 2, which adequately distinguish
ALL from AML samples.

Table 13.7. An optimal partition of leukemia samples which distinguishes ALL from AML
samples.

Cluster | Description
1 11 AML samples
(AML class) 2 ALL samples
2 25 ALL samples
(ALL class)

Table 13.6 suggests that the partition consisting of 4 clusters may also be
considered as a useful partition, because it generates the second highest GSu.
An examination of such a partition confirms that it represents relevant
information relating to the detection of the ALL subclasses, B-cell and T-

13. Clustering Genomic Expression Data: Design and Evaluation

Principles

cell, as demonstrated by Golub and colleagues (1999). The composition of

this alternative partition is described in Table 13.8.

Table 13.8. Predicting appropriate partitions in a leukemia study: distinction of subtypes of

ALL samples.
Cluster Description
1
(AAML CIaSS) 10 AML Samples
2 2 B-ALL samples
(Unlabeled class) | 1 T-ALL samples
1 AML sample
3 7 T-ALL samples
(T-ALL subclass) | 2 B-ALL samples
4 15 B-ALL samples
(B-ALL subclass)

The results shown in Table 13.6 were obtained using the well-known
Euclidean distance. Alternative measures include, for example, the
Manhattan and the Chebychev metrics. Table 139 summarizes the effects of
three distance measures on the calculation of the highest global silhouette
values, GSy. These results indicate that the estimation of the optimal partition
is not sensitive to the type of distance metric chosen to implement
Equation 13.2.

Table 13.9. Prediction of the optimal partition based on silhouettes and different distance
metrics for leukaemia data. The entries represent the global sithouette values, GS,, for each
partition, Bold-faced entries highlight the optimal number of clusters, ¢, predicted by each
method. E.dist.. Euclidean distance; M.dist.: Manhattan distance; C.dist.: Chebychev distance.

GS, based on I c=2 ¢=3 c¢c=4 =5 =6
E.dist. 0.43 0.14 0.25 0.19 0.23
M.dist. 0.43 0.14 0.25 0.19 0.23
C.dist. 0.43 0.14 0.25 0.19 0.23

4. CONCLUSIONS

This chapter has introduced key aspects of clustering systems for genomic
expression data. An overview of the major types of clustering approaches,
problems and design criteria was presented. It addressed the evaluation of
clustering results and the prediction of optimal partitions. This problem,
which has not traditionally received adequate attention from the expression

244 Chapter 13

research community, is crucial for the implementation of advanced
clustering-based studies. A cluster evaluation framework may have a major
impact on the generation of relevant and valid results. This paper shows how
it may also support or guide biomedical knowledge discovery tasks. The
clustering and validation techniques presented in this chapter may be applied
to expression data of higher sample and feature set dimensionality.

A general approach to developing clustering applications may consist of
the comparison, synthesis and validation of results obtained from different
algorithms. For instance, in the case of hierarchical clustering there are tools
that can support the combination of results into consensus trees (Bremer,
1990). However, additional methods will be required to automatically
compare different partitions based on validation indices and/or graphical
representations.

Other problems that deserve further research are the development of
clustering techniques based on the direct correlation between subsets of
samples and features, multiple-membership clustering, and context-oriented
visual tools for clustering support (Azuaje, 2002b). Furthermore, there is the
need to improve, adapt and expand the use of statistical techniques to assess
uncertainty and significance in genomic expression experiments.

ACKNOWLEDGEMENTS

This contribution was partly supported by the Enterprise Ireland Research
Innovation Fund 2001.

REFERENCES

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C,, Lossos LS., Rosenwald A., Boldrick J.C.,
Sabet H., Tran T., Yu X., Powell J.I, Yang L., Marti G.E., Moore T., Hudson J., Lu L.,
Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D.,
Armitage J.O., Warnke R., Levy R., Wilson W., Grever M.R,, Bird J.C., Botstein D.,
Brown P.O., Staudt M. (2000). Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature 403:503-511.

Azuaje F. (2001a). An unsupervised neural network approach to discovering gene expression
patterns in B-cell lymphoma. Online Journal of Bioinformatics 1:2341.

Azuaje F. (2001b). A computational neural approach to support the discovery of gene
function and classes of cancer. IEEE Transactions on Biomedical Engineering 48:332-339.

Azuaje F. (2002a) A cluster validity framework for genome expression data. Bioinformatics
18:319-320.

Azuaje F. (2002b). In silico approaches to microarray-based disease classification and gene
function discovery. Annals of Medicine 34.

Bezdek J.C., Pal N.R. (1998). Some new indexes of cluster validity. IEEE Transactions on
Systems, Man and Cybernetics, Part B 28:301-315.

13. Clustering Genomic Expression Data: Design and Evaluation 245
Principles

Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R.,
Yakhini Z., Ben-Dor A., Sampas N., Dougherty E., Wang E., Marincola F., Gooden C.,
Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K.,
Beaudry C., Berens M., Alberts D., Sondak V., Hayward N., Trent J. (2000). Molecular

classification of cutaneous malignant melanoma by gene expression profiling. Nature
406:536-540.

Bremer K. (1990). Combinable component consensus. Cladistics 6:69-372.

Cheng Y., Church GM. (2000). Biclustering of expresssion data. Proceedings of ISMB 8th
International Conference on Intelligent Systems for Molecular Biology; 2000 August 19 -
23; LaJolla. California.

Dhanasekaran S.M., Barrete T., Ghosh ., Shah R., Varambally S., Kurachi K., Pienta K.,
Rubin M., Chinnaiyan A. (2001), Delineation of prognostic biomarkers in prostate cancer.
Nature 412:822-826.

Eisen M.B., Spellman P., Brown PO, Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863-14868.

Everitt B. (1993) Cluster Analysis. London: Edward Arnold.
Fisher L., Van Ness J.W. (1971). Admissible clustering procedures. Biometrika 58:91-104.

Golub T.R,, Slonim D.K., Tamayo P., Huard C., Gassenbeck M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield CD., Lander ES. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286:531-537.

Hansen P., Jaumard B. (1997). Cluster analysis and mathematical programming,
Mathematical Programming 79:191-215.

Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R.,
Goodlett D.R., Aebersol R., Hood L. (2001). Integrated genomic and proteomic analyses
ofa systematically perturbated metabolic network. Science 292:929-933.

Kasuba T. (1993). Simplified fuzzy ARTMAP. Al Expert 8:19-25.

Perou C M., Sorlie T., Eisen M.B., Van de Rijn M., Jeffrey S.S., Rees C.A., Pollack JR.,
Ross D.T., Johnsen H., Aksien L..A., Fluge O., Pergamenschikov A., Williams C., Zhu
S.X., Lonning PE., Borresen-Dale A.L., Brown P.O., Botstein D. (2000). Molecular
portraits of human breast tumours. Nature 406:747-752.

Quackenbush J. (2001). Computational analysis of microarray data. Nature Reviews Genetics
2:418-427,

Rousseeuw P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20:53-65.

Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander ES.,
Golub R. (1999). Interpreting patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA
96:2907-291.

Chapter 14

CLUSTERING OR AUTOMATIC CLASS
DISCOVERY: HIERARCHICAL METHODS

Derek C. Stanford, Douglas B. Clarkson, Antje Hoering

Insightful Corporation, 1700 Westlake Avenue North, Seattle, WA, 98109, USA
e-mail: {Stanford, clarkson, hoering}@insightful.com

1. INTRODUCTION

Given a set of data, a hierarchical clustering algorithm attempts to find
naturally occurring groups or clusters in the data. It is an exploratory
technique that can give valuable insight into underlying relationships not
otherwise easily displayed or found in multidimensional data, Microarray
data sets present several challenges for hierarchical clustering: the need to
scale the algorithms to a very large number of genes, selection of an
appropriate clustering criterion, the choice of an appropriate distance
measure (a metric), the need for methods which deal with missing values,
screening out unimportant genes, and selection of the number of clusters, to
name a few. This chapter discusses standard methods for hierarchical
agglomerative clustering, including single linkage, average linkage,
complete linkage, and model-based clustering; it also presents adaptive
single linkage clustering, which is a new clustering method designed to meet
the challenges of microarray data.

There are two general forms of hierarchical clustering. In the
agglomerative method (bottom-up approach), each data point initially forms
a cluster, and the two “closest” clusters are merged in each step. The
“closest” clusters are defined by a clustering criterion (see Section 3). The
divisive method (top-down approach) starts with one large cluster that
contains all data points and splits off a cluster at each step. This chapter
concentrates on the agglomerative method, the most commonly used method
in practice.

Applications of hierarchical clustering in microarray data are diverse. One
application is to group together genes with similar regulation. The

14. Clustering or Automatic Class Discovery: Hierarchical Methods 247

underlying idea is that genes with similar expression levels might code for
the same protein or proteins that exhibit similar functions on a molecular
level. This clustering information helps researchers to better understand
biological processes. For example, suppose that a time series of microarrays
is observed and the main interest is to find clusters of genes forming genetic
networks or regulatory circuits. The number of networks is not usually
known and may be quite large; hierarchical clustering is particularly useful
here because it allows for any number of gene clusters. Applications in this
area range from searching for genetic networks in the yeast cell cycle, to the
development of the central nervous system in the rat, or neurogenesis in the
Drosophila (Erb et al., 1999).

Among other uses, hierarchical clustering of microarray data has been
used to find cancer diagnostics (Ramaswamy et al.,, 2001), to investigate
cancer tumorigenesis mechanisms (Welcsh et al., 2002), and to identify
cancer subtypes (Golub et al., 1999). In the case of B-cell lymphoma, for
example, hierarchical cluster analysis has been used to discover a new
subtype which laboratory work was unable to detect (Alizadeh et al., 2000).

In addition to identifying groups of related genes, hierarchical clustering
methods also offer tools to screen out uninteresting genes (see Section 3.3
for discussion and Section 4.2 for an example). Removal of uninteresting
genes is especially important in microarray data, where a very large number
of genes may be observed.

Section 2 discusses underlying issues and challenging aspects of the
hierarchical clustering of microarray data such as scalability, metrics, and
missing data. Section 3 presents several hierarchical clustering methods,
including adaptive single linkage clustering, which is a new method
designed to provide adaptive cluster detection while maintaining scalability.
Section 4 provides examples using both simulated and real data. A brief
discussion, including mention of existing hierarchical clustering software, is
given in Section 5.

2. SCALABILITY, METRICS, AND MISSING DATA

Scalability issues must be addressed both for a large number of data points
(N) and for a large number of dimensions (P). Microarray data sets routinely
make use of thousands of genes analyzed across hundreds or thousands of
samples. Nonparametric hierarchical clustering methods usually make use of
a distance (or similarity) matrix, which contains all inter-point distances for
the data. With N data points, the distance matrix has M entries. When N is
large (e.g., N > 10,000) the size of the distance matrix becomes prohibitive
in terms of both memory usage and speed; a nonparametric algorithm can
fail ifit requires an explicit computation of the distance matrix, as is the case

248 Chapter 14

with most standard hierarchical clustering software. Model-based clustering
methods use a probability density function to model the location, size, and
shape of each cluster. A potentially serious problem with model-based
clustering, especially in gene expression data, is that the number of
parameters can be quite large unless extensive constraints are placed on the
model density. For example, a multivariate normal (or Gaussian) density is
often used to model each cluster; with no constraints, this requires P
parameters for the mean vector for each cluster and P(P+ 1)/2 parameters
for the covariance matrix for each cluster. Estimation of this many
parameters is impractical when P is large (e.g., P > 50),

The choice of a metric appropriate for use on a particular microarray data
set is inherently problem specific, depending on both the goals of the
analysis and the properties of the data. The metric chosen can have a
significant impact on both clustering results and computational speed.
Hierarchical clustering software usually provides a selection of metrics, and
may also allow users to define their own metrics. Aside from choosing a
metric based on obvious data characteristics (e.g., discrete or continuous),
researchers must consider their own perceptions of what it means to say that
two observations are similar.

The use of different metrics can lead to quite different clustering results,
as the following simple example illustrates. Suppose we have four genes
(numbered from one to four) and two experiments. In the first experiment,
only the first two genes are expressed, while in the second experiment only
the even numbered genes are expressed. Then a metric giving positive
weight to only the first experiment results in two clusters (genes 1 and 2, and
genes 3 and 4), while a metric giving positive weight to the second
experiment results in two very different clusters (genes 2 and 4 and genes 1
and 3). The metric must also account for scale — if the expression levels in
experiment 1 have larger magnitude than in experiment 2, then a simple
Euclidean metric will yield the experiment 1 clustering results.

Popular metrics for clustering microarray data are Euclidean distance and
metrics based upon correlation measures. One correlation-based metric is
computed as one minus the correlation coefficient. This metric yields a
distance measure between zero and 2, with a correlation of one yielding a
distance of zero, and a correlation of minus one yielding the largest possible
distance of two. A variation of this is the use of one minus the absolute
correlation. In this case, a correlation of either one or minus one yields a
distance of zero, while a correlation of zero yields the largest possible
distance of one. This allows clustering of genes responding to a stimulus in
the same or opposite ways. For binary (0 or 1) or categorical data, metrics
based upon probabilities are common, e.g., the probability, over all
experiments, that both genes are expressed above some threshold.

14. Clustering or Automatic Class Discovery: Hierarchical Methods 249

In addition to the metric, one must also consider the genes and experiments
used in the analysis. Inclusion of variables that do not differentiate (ie.,
which are purely noise) can lead to poor clustering results. Removal of these
prior to clustering can significantly improve clustering performance.

A significant difficulty with microarray data sets is the high rate of
missing values. This reduces accuracy, and it also creates problems for
computational efficiency. This problem is sometimes resolved by simply
deleting the rows and columns with missing data. This cannot only yield
biased estimates, it can also eliminate nearly all of the data. A common
alternative is to define a metric that accepts missing values, usually by
averaging or up-weighting of the observed data. For example, missing values
can be handled by the pairwise exclusion of missing observations in distance
calculations or, when mean values are required, by using all available data.
Weighting schemes that account for the missing dimensions may also be
desirable. Results obtained from metrics defined in this way can be
misleading since there is no guarantee that the observed data behaves in the
same manner as the missing data — it is easy to find simple examples
showing that the metric chosen for dealing with missing data can have a
large impact on the estimated distance. Often, imputation of missing data
(see Chapter 3) is more appropriate. Imputation methodology, and missing
data in general, is an open research topic with no easy solution, especially
when the location of the missing data may be causally related to the
unknown clusters.

3. HIERARCHICAL CLUSTERING METHODS

The basic algorithm in hierarchical agglomerative clustering is to begin with
each data point as a separate cluster and then iteratively merge the two
“closest” clusters until only a single cluster remains. Here “close” is defined
by the clustering criterion, which defines how to determine the distance
between two clusters. In nonparametric clustering, this criterion consists of
two parts; the distance measure or metric, which specifies how to compute
the distance between two points; and the linkage, which specifies how to
combine these distances to obtain the between-cluster distance. In model-
based clustering, the clustering criterion is based on the likelihood of the data
given the model (see Section 3.1).

With N data points, this approach of iteratively merging the two closest
clusters provides a nested sequence of clustering results, with one result for
each number of clusters from Nto 1. Hierarchical clustering does not seek to
globally optimize a criterion; instead, it proceeds in a stepwise fashion in
which a merge performed at one step cannot be undone at a later step.

250 Chapter 14

The clustering results are typically displayed in a dendrogram showing the
cluster structure; for example, see Figure 14.1. Clusters or nodes forming
lower on the dendrogram are closer together, while upper nodes represent
merges of clusters that are farther apart. Since each data point begins as a
single cluster, the leaves (terminal nodes at the bottom of the dendrogram)
each represent one data point, while interior nodes represent clusters of more
than one data point. The top node of the dendrogram denotes the entire data
set as a single cluster. The y-axis is usually the merge height, the distance
between two clusters when they are merged. Some methods do not have an
explicit height associated with each merge; for example, model-based
clustering chooses each merge by seeking to maximize a clustering criterion
based on the likelihood. In these cases, a dendrogram can still be
constructed, but the y-axis may represent the value of a clustering criterion
or simply the order of clustering. The x-axis is arbitrary; the sequence of data
points along the x-axis is generally chosen to avoid crossing lines in the
display ofthe dendrogram.

3.1 Clustering Criteria and Linkage

Three common nonparametric approaches to hierarchical clustering are
single linkage, complete linkage, and average linkage; a comprehensive
review is given by (Gordon, 1999). In single linkage clustering, the distance
between any two clusters of points is defined as the smallest distance
between any point in the first cluster and any point in the second cluster. The
single linkage approach is related to the minimum spanning tree (MST) of
the data set (Gower and Ross, 1969). This leads to a significant advantage of
single linkage clustering: efficient algorithms can be used to obtain the
single linkage clustering result without allocating the order N* memory units
usually required by other nonparametric hierarchical clustering algorithms.

Complete linkage defines the inter-cluster distance as the largest distance
between any point in the first cluster and any point in the second cluster.
Average linkage is often perceived as a compromise between single and
complete linkage because it uses the average of all pair-wise distances
between points in the first cluster and points in the second cluster. This is
also called group average linkage (Sokal and Michener, 1958). Weighted
average linkage (Sokal and Sneath, 1963) is defined in terms of its updating
method: when a new cluster is created by merging two smaller clusters, the
distance from the new cluster to any other cluster is computed as the average
of the distances of the two smaller clusters. Thus, the two smaller clusters
receive equal weight in the distance calculation, as opposed to average
linkage, which accords equal weight to each data point.

14. Clustering or Automatic Class Discovery: Hierarchical Methods 251

Ward's method (Ward, 1963) examines the sum of squared distances from
each point to the centroid or mean of its cluster, and merges the two clusters
yielding the smallest increase in this sum of squares criterion. This is
equivalent to modeling the clusters as multivariate normal densities with
different means and a single hyper-spherical covariance matrix.

Ward’s method is a special case of model-based clustering (Banfield and
Raftery, 1993). Model-based clustering is based on an assumption of a
within-cluster probability density as a model for the data. If the model
chosen is incorrect or inappropriate, erroneous results will be obtained.
Though models can be based on any density, the most common choice is the
multivariate normal; this density is parametrized by a mean vector and a
covariance matrix for each cluster. The mean vector determines the location
of the cluster, while the covariance matrix specifies its shape and size. At
each step, two clusters are chosen for a merge by maximizing the likelihood
of the data given the model. The likelihood is the value of the probability
density model evaluated using the observed data (Arnold, 1990). The
likelihoods of all data points are combined into an overall likelihood; various
approaches exist for this, such as a mixture likelihood or a classification
likelihood. (Stanford, 1999) gives two theorems linking optimal choice of
the form of the overall likelihood to the goals of the clustering procedure.

When choosing a hierarchical clustering method, some consideration
should be given to the type of clusters expected. Complete linkage
algorithms tend to yield compact clusters similar to the multivariate normal
point clouds modeled in Ward’s method, while single linkage clusters can be
“stringy” or elongated, adapting well to any pattern of closely spaced points.
In model-based clustering, the chosen density will have a strong impact on
the resulting cluster shapes. For example, if the covariance matrix is
constrained to be the same for all clusters, then clusters with the same size
and shape will most likely be observed. If the covariance matrices are
constrained to be multiples of the identity matrix, then hyper-spherical
clusters (as in Ward’s method) will be found.

3.2 Choosing the Final Clusters

The traditional approach for determining the final set of clusters is to specify
the number of clusters desired and then cut the dendrogram at the height,
which yields this number. This procedure only works well if the merges near
the top of the dendrogram have large children, ie. when the final
agglomeration steps involve large subsets of the data. Single linkage
clustering only exhibits this structure if the clusters are all well separated;
otherwise, they tend to show a chaining effect, in which many of the upper
dendrogram nodes are merely merges of distant points with a main group.

252 Chapter 14

For example, if the data consist of two large clusters near each other and a
single distant data point, then the two cluster result from single linkage
clustering will give the single distant point as one cluster and everything else
as the other cluster. Dendrograms based on other criteria, such as average
and complete linkage, are not as prone to the chaining effect, but they also
generally have nodes with large children near the top even when only one
cluster is present in the data. For model-based clustering, the number of
clusters can be assessed by examining the likelihood, though this requires
severe assumptions about the data.

The chaining effect in a single linkage dendrogram contains important
information; it indicates that the clusters are not well separated. Adaptive
single linkage clustering utilizes the information in the single linkage
dendrogram, but it uses a better method for determining the final clusters.

3.3 Adaptive Single Linkage Clustering

Adaptive single linkage (ASL) clustering (McKinney, 1995) begins with a
single linkage dendrogram but extracts clusters in a bottom-up rather than a
top-down manner. Generally, desirable clusters represent modal regions,
regions of the data with higher point densities than the surrounding regions.
To find these modal regions, each node is analyzed to determine its runt
value (Hartigan and Mohanty, 1992), where the runt value of a node is
defined as the size of its smaller child. Large runt values provide evidence
against unimodality because they indicate the merge of two large subgroups.
Clusters are found by selecting nodes with runt values larger than a specified
threshold. The threshold provides a lower bound on the cluster size, and also
determines the number of clusters found. For microarray analysis, small
threshold values (e.g., 5) can be used to identify small, highly similar
clusters; this might be suited to finding potential regulatory pathways for
further analysis. Larger threshold values (e.g., 30) are more appropriate for
finding larger groups of genes, such as groups involved in large-scale
cellular activities or responses to experimental conditions.

Adaptive single linkage clustering presents at least two advantages over
traditional methods. First, as noted above, fast and memory-efficient
algorithms exist for computing the single linkage dendrogram — all that is
required is that the data fit into memory. Second, because nodes with size
less than the threshold can be regarded as “noise” or “fluff”’, the method can
be used to automatically eliminate a large number of genes (or experiments)
from further consideration. This use as a screening tool is illustrated in the
example in Section 4.2. Further details on the algorithms underlying
adaptive single linkage clustering can be found in (Glenny et al., 1995).

14. Clustering or Automatic Class Discovery: Hierarchical Methods 253

4. EXAMPLES

We provide two examples of cluster analysis. The first is a small simulation
comparing average linkage with adaptive single linkage. The second uses a
real microarray data set to demonstrate several analyses.

4.1 Simulated Data

We begin by presenting a simulation that demonstrates the utility of adaptive
single linkage clustering; this example uses two-dimensional data to allow
visual inspection of the clustering results. Our data consist of two spherical
Gaussian clusters located at [-1,-1] and [1,1] with 100 points each, and 100
points of Poisson background noise over the rectangle from [-5,-5] to [5,5].
We use a Euclidean metric and compare results from adaptive single linkage
clustering and average linkage clustering. We examine a range of average
linkage results with up to 7 clusters, as well as the adaptive single linkage
result with 2 clusters (the unclassified noise points in adaptive single linkage
might be considered to be a third cluster).

The average linkage dendrogram (Figure 14.1) shows a confusing
amount of structure; the dendrogram suggests that it might be reasonable to
have several clusters. We must drill down to 7 clusters (Figure 14.2) before
the large central group finally splits into a reasonable approximation of the
original two Gaussian clusters.

In contrast, the adaptive single linkage approach detects clusters through
an analysis of the cluster merges rather than cutting the dendrogram from the
top. The dendrogram (Figure 14.3) shows two main clusters surrounded by
many outlying points. These two clusters provide a close approximation of
the true location of the two underlying Gaussian clusters (Figure 14.4). This
example illustrates several points: different clustering methods can lead to
very different results, the method for choosing the clusters has a significant
impact on the interpretation of results and the ease of cluster detection, and
adaptive single linkage clustering can provide reasonable results even for
touching clusters with background noise (regarded as a difficult case for
traditional single linkage).

254 Chapter 14

o

Figure 14.1. Average linkage dendrogram for the simulated data set, with labels indicating the
seven cluster result.

=
v
3 ; ¥ v
M > " W 4 -
x"x:x % .‘t vV
x * iyt
- RS L A S < o7
x* X %\mo’h 3 y
o ® o, o ® .0’4" 1
= X x 30.003:&:9 o %
F 3 A
W‘°.°0+ +
°
o o o ::n Wo . * 5
¢ LA aa® %
% 2
A
T 4 » ‘; -‘ aﬂi a
H a
<
T T L] T L L] L
8 -4 ¥ Q 2 % [

Figure 14.2. Average linkage clustering result for the simulated data set, with plot symbols
indicating the seven cluster result.

14. Clustering or Automatic Class Discovery.: Hierarchical Methods 255

Mherge Heigpt

Figure 14.3. Adaptive single linkage (ASL) dendrogram for the simulated data set, with
labels indicating the two cluster result.

[x . a
= s * a °
ad a a » &
8 g I ad
2 » L T %
e - a a PLE ST & A
a %ﬁ
ad &= Fy ”'& a

o~ o A o a
f Aloo‘ ° a a
a aa & a
as . £
14 a . @ kY "\
¢ & & AR
w]
L T T T T T il
:.] -1 2] 2 4 L]

Figure 14.4. Adaptive single linkage (ASL) clustering result for the simulated data set, with
plot symbols indicating the two cluster

4.2 Lymphoma Data

We analyzed a lymphoma data set from (Alizadeh et al., 2000) to illustrate
the results of adaptive single linkage clustering on real microarray data. This
data set consists of 4,026 genes across 96 tissue samples, and we used a
correlation metric with pairwise exclusion of missing observations. We

256 Chapter 14

performed clustering first on the genes and then on the tissues; we also show
an example using an imputation method for the missing values.

A full single linkage dendrogram for the gene clustering is shown in
Figure 14.5. Tt is difficult to make out structure in this plot because of the
large size of the data set; other clustering methods lead to similarly dense
dendrograms. Adaptive single linkage clustering allows us to focus only on
the points in locally high-density regions of the data. Clusters with runt
statistics of size 10 or larger are shown in Figure 14.6; this application of
adaptive single linkage clustering screens out 87% of the data points and
leaves 26 clusters for further consideration.

We clustered the tissue samples using adaptive single linkage clustering
and compared our results to the known tissue classes. The known tissue
classes are shown by numbered labels on the single linkage dendrogram in
Figure 14.7. These can be compared to the same dendrogram in Figure 14.8,
which shows the clustering obtained with a runt threshold of 4. Adaptive
single linkage clustering automatically finds clusters corresponding to all of
the known tissue types except for the two-point clusters (labeled as 4 and 6
on Figure 14.7). It also suggests that there may be evidence of two
subgroups within class 1 of Figure 14.7.

Figure 149 displays the known tissue classes on a single linkage
dendrogram computed following imputation for all 19,667 missing values in
the data. The imputation process was based on a Gaussian model (Schafer,
1997), using software provided in S-PL.US (Schimert et al., 2001). Markov
chain Monte Carlo was used to compute Bayesian estimates of the unknown
random variables, including the imputed missing values. See Chapter 3 for
alternative imputation methods. Figure 14.9 is extremely similar to the result
in Figure 14.7. Note that the ordering of the data on the x-axis is arbitrary;
the ordering is chosen for simplicity of display. Switching the two children
of a node from right to left has no impact on the structure of the dendrogram.
For example, a large part of group 1 is displayed on the left side in
Figure 14.7, while it is on the right side in Figure 14.9. This results from one
dendrogram node for which the two sub-trees have been flipped; there are
several other such switches apparent between these two figures. In the actual
clustering result, there are only a few small changes, such as the two points
in group 6, which appear to blend into group 1 more in Figure 14.9, We must
keep in mind that our missing data methods, whether implicit in the metric
or explicit via imputation, can have an impact on our analysis results when
there are many missing values.

14. Clustering or Automatic Class Discovery: Hierarchical Methods 257

06

04

Merge Height

Figure 14.5. Single linkage dendrogram of the lymphoma data set.

Merge Height

00

Figure 14.6. Adaptive single linkage dendrogram of the lymphoma data set showing clusters
of size ten or larger.

258 Chapter 14

B?

(o1}

Morgo Hasght
o3 04

02

Figure 14.7. Adaptive single linkage dendrogram of the lymphoma data set with known tissue
classes labeled.

Marpe Herpf
04

Figure 14.8. Adaptive single linkage dendrogram of lymphoma data with clusters of size four
or larger labeled (unclassified points are unlabeled).

14. Clustering or Automatic Class Discovery: Hierarchical Methods 259

07

Merge Height
95
1

03

0.1

Figure 14.9. Adaptive single linkage dendrogram of the lymphoma data following imputation
for missing values, with known tissue classes labeled.

S. DISCUSSION AND SOFTWARE

Hierarchical clustering is an effective exploratory tool for the analysis of
microarray data sets or other high throughput screening data; the resulting
dendrogram simultaneously presents 1 to N clusters, yielding insight into
relationships not otherwise easily found in multidimensional data. Model-
based methods offer good cluster detection and a statistical model which can
help in determining the number of clusters, but they require modeling
assumptions which can be severe. Nonparametric methods avoid modeling
assumptions and adapt to any cluster shape, which allows their use when
density assumptions are not appropriate or not verifiable. Only a few
methods, such as adaptive single linkage, can be scaled to handle the large
data sizes which are becoming common in microarray data sets.

There are many software packages, both commercial and free, that
perform hierarchical clustering. The most widely used statistical packages,
such as S-PLUS, SAS, and SPSS, provide general hierarchical clustering
tools that can be used to display and manipulate dendrograms. The adaptive
single linkage clustering software used here is new; a preliminary version,
suitable for use in S-PLUS, can be obtained by contacting the authors. See
Chapter 19 for a survey of microarray analysis tools.

REFERENCES

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos 1.S., Rosenwald A., Boldrick J.C.,
Sabet H., Tran T., Yu X., Powell J.I, Yang L., Marti G.E., Moore T., Hudson I., Lu L,
Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenberger D.B.,

260 Chapter 14

Armitage J.O., Warnke R., Levy R., Wilson W., Grever M.R., Byrd J.C., Botstein D.,
Brown P.O., Staudt L.M. (2000). Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature 403:503-11.

Arnold SF. (1990). Mathematical Statistics. Englewood Cliffs: Prentice-Hall.

Banfield J.D., Raftery AE. (1993). Model-Based Gaussian and Non-Gaussian Clustering.
Biometrics 49:803-21.

Erb RS, Michael G.S. (1998). Cluster Analysis of Large Scale Gene Expression Data.
Computing Science and Statistics 30:303-8.

Glenny R.W., Polissar N.I.., McKinney S., Robertson H.T. (1995). Temporal heterogeneity of
regional pulmonary perfusion is spatially clustered. J Appl Physiol 79(3):986-1001.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular
Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring. Science 286:531-7.

Gordon A.D. (1999). Classification, 2nd Ed. New York: Chapman & Hall.

Gower J.C., Ross GIS. (1969). Minimum Spanning Trees and Single Linkage Cluster
Analysis. Applied Statistics 18(1):54-64.

Hartigan J.A., Mohanty S. (1992). The Runt Test for Multimodality. Journal of Classification
9:63-70.

McKinney S. (1995). Autopaint: A Toolkit for Visualizing Data in Four or More Dimensions.
PhD Thesis, University of Washington Biostatistics Department.

Prim R. (1957). Shortest Connection Networks and Some Generalizations. Bell Systems
Technical Journal 1389-1401.

Ramaswamy S, Tamayo P., Rifkin R., Mukherjee S., Yeang C.H., Angelo M., Ladd C,
Reich M., Latulippe E., Mesirov I.P., Poggio T., Gerald W., Loda M., Lander E.S., Golub

T.R. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc.
Nat. Acad. Sc. USA 98(26):15149-54.

Sokal R.R., Michener CD. (1958). A Statistical Method for Evaluating Systematic
Relationships. University of Kansas Science Bulletin 38:1409-38.
Schafer I.1.. (1997). Analysis of Incomplete Multivariate Data, 1.ondon:Chapman & Hall,

Schimert J., Schafer J.L., Hesterberg T., Fraley C., Clarkson D.B. (2001), Analyzing Data
with Missing Values in S-PLUS, Seattle:Insightful.

Sokal R.R., Sneath P.HA. (1963). Principles of Numerical Taxonomy, San
Francisco:Freeman.

Stanford D.C. (1999). Fast Automatic Unsupervised Image Segmentation and Curve

Detection in Spatial Point Patterns. PhD Thesis, University of Washington Statistics
Department.

Ward J. (1963). Hierarchical groupings to optimize an objective function. Journal of the
American Statistical Association 58:234-44.

Welcsh P.L., Lee MK., Gonzalez-Hernandez R.M., Black D.J., Mahadevappa M., Swisher
EM., Warrington J.A., King M.C. (2002). BRCAIl transcriptionally regulates genes
involved in breast tumorigenesis. Proc. Nat. Acad. Sc. USA 99(11):7560-5.

Zahn CT. (1971), Graph-Theoretical Methods for Detecting and Describing Gestalt
Structures. IEEE Transactions on Computers C-20:68-86.

Chapter 15

DISCOVERING GENOMIC EXPRESSION
PATTERNS WITH SELF-ORGANIZING
NEURAL NETWORKS

Francisco Azuaje

University of Dublin, Trinity College, Department of Computer Science, Dublin 2, Ireland,
e-mail: Francisco.Azuaje@cs.ted.ie

1. INTRODUCTION

Self-organizing neural networks represent a family of useful clustering-
based classification methods in several application domains. One such
technique is the Kohonen Self-Organizing Feature Map (SOM) (Kohonen,
2001), which has become one of the most successful approaches to analysing
genomic expression data. This model is relatively easy to implement and
evaluate, computationally inexpensive and scalable. In addition, it exhibits
significant advantages in comparison to other options. For instance, unlike
hierarchical clustering it facilitates an automatic detection and inspection of
clusters. Unlike Bayesian-based clustering it does not require prior
hypotheses or knowledge about the data under consideration. Compared to
the k-means clustering algorithm, the SOM exemplifies a robust and
structured classification process.

Self-organizing neural networks are based on the principle of
transforming a set of p-variate observations into a spatial representation of
smaller dimensionality, which may allow a more effective visualization of
correlations in the original data. Murtagh and Herndndez-Pajares (1995),
among many others, have discussed the connections between SOMs and
alternative data analysis techniques. Before its introduction to the area of
functional genomics, SOMs had been extensively applied in different
biomedical decision support tasks, including coronary heart risk assessment
(Azuaje et al., 1998), electrocardiogram-based diagnostic studies

262 Chapter 15

(Papadimitriou et al., 2001) and tissue characterization in cancer studies
(Schmitz et al., 1999).

Scientists may use SOMs to detect clusters of similar expression patterns.
The SOM-based model was one of the first machine learning techniques
implemented for the molecular classification of cancer. Golub and
colleagues (1999) reported a model to discover the distinction between acute
myeloid leukemia and acute lymphoblastic leukemia. The application of
SOMs was part of a systematic expression monitoring method based on
DNA microarrays. They were able to illustrate not only a classification
process to distinguish known categories of leukemia samples, but also a
class discovery process to identify unknown relevant subtypes. The authors
suggested that it would be possible to achieve a sub-classification of higher
resolution with a larger sample collection. Moreover, this classification
technique may provide the basis for the prediction of clinical outcomes, such
as drug response or survival. This research is a good example of how a
SOM-based classifier together with other statistical tools may support a
complex knowledge discovery function.

Another relevant study consisted of the application of SOMs to organize
thousands of genes into biologically relevant clusters using hematopoietic
differentiation data (Tamayo et al., 1999). This classification system
indicated, for example, genes involved in differentiation therapy used in the
treatment of leukemia. It discussed some of the key attributes that make the
SOM an adequate clustering technique for expression data. It shows how
SOMs can primarily be used to perform exploratory data analysis and
facilitate visualisation-based interpretations. The authors developed
Genecluster, which is a computer package to perform SOM-based
classification of genomic expression data. It has assisted, for instance, the
generation of interpretations relating to the yeast cell cycle, macrophage
differentiation in HL-60 cells and hematopoietic differentiation across
different cell lines (Tamayo et al., 1999).

Ideker and colleagues (2001) also used SOMs in an integrated approach
to refining a cellular pathway model. Based on this method they identified a
number of mRNAs responding to key perturbations of the yeast galactose-
utilization pathway.

The remainder of this chapter addresses two important questions on self-
organizing neural networks applications for expression data: a) How do
these systems work? and b) How can we use them to support genomic
expression research? It focuses on the application of SOMs in different
expression data analysis problems. Advantages and limitations will be
discussed. Moreover, an alternative solution based on the principle of
adaptive self-organization will be introduced. This chapter will end with an
overview of current challenges and opportunities.

15. Discovering Genomic Expression Patterns With Self-Organizing 263
Neural Networks

2. SOMS AND MICROARRAY DATA ANALYSIS

The SOM is based on hypothetical neural structures called feature maps,
which are configured and adapted by the effect of sensory signals or data
observations (Kohonen, 2001). Their processing components, known as
neurones, prototypes or cells, are spatially correlated after completing a
learning or training process, such that those prototypes at nearby points on
the resulting structure are more similar than those widely separated. Each
prototype is associated with a weight vector m;. Thus, SOMs can be used to
perform clustering functions (Murtagh and Hemdandez-Pajares, 1995).
Figure 15.1 shows a typical SOM.

Prolutype; or cells

!

/

©
©
©,

m, m; Weight vecing represeniling prefotypes

OO
0J0)0

Figure 15.1, A typical SOM.

2.1 The SOM Clustering Algorithm

The SOM learning algorithm transforms any p-dimensional space into an
ordered two-dimensional coordinate system. Also one may say that the SOM
algorithm implements a “nonlinear projection” of the probability density
function, p(x), of the input data vector x onto a two-dimensional space
(Kohonen, 2001).

Given a number of samples, N, each one represented by a number of
features, p, a Kohonen map (Kohonen, 2001) consists of a grid of &
prototypes, #t; € R’ (vector defined by p elements) (Figure 15.1). The main
goal is then to define associations between each sample or observation and
the prototypes represented on the map. The number of prototypes, &, and
other learning parameters need to be defined by the user. Before starting the
learning process the prototypes m; are randomly initialized. Each of the k
prototypes, m,, may also be encoded with respect to an integer coordinate
pair 7, € Q1 @ Q. Where Q1= {1,...,q1}, 02={1,..., 42} and k=g, x g5.
Figure 15.2 illustrates a SOM consisting of 9 prototypes, which are used to

264 Chapter 15

categorise a number of samples. The SOM learning process is summarised
as follows.

@ Genes related to function X
(3 Geaves related to function ¥

Figure 15.2. A SOM network before (panel A) and after (panel B) performing a learning
process, based on a hypothetical data set of expression profiles linked to two classes of genes.
The right panel indicates that the algorithm has successfully separated the classes under
consideration,

Each observation, x;, is processed one at a time. The first step in each
learning cycle is to find the closest prototype m; to x; using, for example, the
Euclidean distance in R?. Then for all neighbours m, of m;, the idea is to
make m; closer to Xx;, based on the following formula;

My ey =M+ @ X (X, — my), where my € N, (15.1)

where My e, represents the new value for my, cis called the learning rate,
and Njrepresents the neighbourhood of m, which always includes m;.

The main purpose of Equation 15.1 is not only to move the SOM
prototypes closer to the data, but also to develop a smooth spatial
relationship between the prototypes. This process is summarized in
Figure 15.3.

Measure distance between x;
and map prototypes m;

v

Update m; and all of its neighbours [Find the closest prototype, m;, to x;

Obtain observation x;

Figure 15.3. The SOM learning algorithm: a single learning cycle,

The neighbours of m; are defined to be all my, such that the distance
between r; and r¢is small. Commonly this is calculated using the Euclidean
distance, and small is defined by a threshold value, Th. The selection of the
size of N, is crucial to achieve a proper clustering process. For example, if
the neighbourhood is too small at the beginning of the learning process, the

15. Discovering Genomic Expression Patterns With Self-Organizing 265
Neural Networks

SOM will not be ordered globally. Thus, one can initiate it with a fairly wide
N, and let its size (threshold 7h) decrease linearly during the learning
process.

The performance of the SOM learning algorithm strongly depends on the
selection of the learning rate, &. Typically ¢ is linearly decreased from 1 to O
over a few thousand learning cycles. For more information on the design
principles of the SOM, the reader is referred to (Kohonen, 2001).

A SOM can also be seen as a constrained version of the k-means
clustering algorithm. If we define 7h small enough such that each
neigbourhood contains only one prototype, then the spatial interrelation
between the prototypes is not achieved. In that case it iS possible to
demonstrate that the SOM algorithm is a version of the k-means clustering
method, which stabilizes at one of the local minima found by the k-means
(Hasti et al., 2001).

Figure 15.2 illustrates a hypothetical situation, in which two types of
genes, each one associated with a different biological function, are clustered
based on their expression profiles. Panel A of Figure 152 shows a SOM at
the very beginning of the learning process, while panel B portrays the
clusters formed after completing a learning process. The prototypes are
represented by circles, and the genes that are linked to each prototype are
depicted randomly within the correspondent circle. One may, for example,
run the algorithm during 2,600 learning cycles through this data set of 26
genes (100 cycles for each gene), and let Tk and & decrease linearly over the
2,600 iterations. This example depicts a case in which a SOM network has
successfully detected a class structure in a data set, which may allow one to
differentiate its samples in terms of their patterns of functional similarity.

Once a SOM has been properly trained, one can use it to classify an
unknown observation, which can also be referred to as a testing sample. In
this situation the prediction process consists of identifying the closest SOM
prototype to the sample under consideration, and use that prototype as its
class or cluster predictor.

The following sub-section illustrates the application of the SOM to a
genomic expression classification problem.

2.2 Tllustrating Its Application

By way of example, this technique is first tested on expression data from a
study on the molecular classification of leukemias. The data analysed
consisted of 38 bone marrow samples: 27 acute lymphoblastic leukemia
(ALL) and 11 acute myeloid leukemia (AML) samples. Each sample is
described by the expression levels of 50 genes with suspected roles in this
disease. These data were obtained from a study published by Golub and co-

266 Chapter 15

workers (1999). The original data descriptions and experimental protocols
can be found at the MIT Whitehead Institute Web site
(http://www.genome.wi.mit.edu/MPR).

The data were normalised such that the mean and variance of the genes
are set to 0 and 1 respectively, which is the traditional pre-processing
method used in expression analysis. The SOM networks were trained with
3800 learning cycles. The initial value of the learning parameter o was equal
to 0.1 in all of the clustering experiments. Both values for ¢ and Th were
linearly decreased during the learning processes.

Figure 154 displays the clustering results based on a SOM network,
which is defined by two prototypes: A and B. All of the AML samples were
grouped by prototype A. The samples belonging to the class ALL were
assigned to prototype B, except two of them that were located in the first
prototype. This configuration indicates that the cluster defined by the
prototype A is representative of the class AML, and the cluster defined by
the prototype B is associated with the class ALL. Therefore, one may argue
that this learning process was able to distinguish between the classes ALL
and AML based on the expression values of 50 genes (Golub et al. 1999).

Figure 154. Expression data
clustering using the SOM: two
clusters of AML and ALL samples.

AML ALL

This type of clustering technique may also be used to predict the
existence of subclasses or discover unknown categories. Figure 15.5 displays

the clustering results based on 4 prototypes, which were used to categorise
the same leukemia data set.

Figure 15.5. Expression data
clustering using the SOM: Four
clusters of AML and ALL samples.
- S oL Clusters C and D are associated
N @ 5 = with two subtypes of ALL samples.

AML T-ALL B-ALL

These results again suggest that it is possible to distinguish AML from
ALL samples. AML samples are encoded by prototype A, except one that
was included in cluster B. Clusters B, C and D include the samples

15. Discovering Genomic Expression Patterns With Self-Organizing 267
Neural Networks

belonging to the ALL class. A previous systematic study of these data
demonstrated that the ALL samples may indeed be classified into two
subtypes: T-ALL and B-ALL (Golub et al., 1999). The SOM clustering
results depicted in Figure 15.5 offers a useful insight into the existence of
those subclasses. Based on the composition of the clusters obtained in
Figure 15.5, one may point out, for example, that cluster C can be labelled as
the T-ALL cluster, while cluster D identifies the samples belonging to B-
ALL.

A second example deals with the molecular classification of diffuse large
B-cell lymphoma (DLBCL) samples. The data consisted of 63 cases (45
DLBCL and 18 normal) described by the expression levels of 23 genes with
suspected roles in processes relevant to DLBCL (Alizadeh et al., 2000).
These data were obtained from a study published by Alizadeh and colleagues
(2000), who identified subgroups of DLBCL based on the systematic
analysis of the patterns generated by a specialized cDNA microarray
technique. The full data and experimental methods are available on the Web
site of their research group (http:/llmpp.nih.gov/lymphoma).

In this case, a SOM network was trained with 12,600 learning cycles, and
the other learning parameters were defined as above. The data were
normalised such that the mean and variance of the genes are set to 0 and 1
respectively. Figure 15.6 shows the clustering results based on two
prototypes A and B.

Activated B-like OC Belike Naormal
DLAC] DLBCL

Figure 15.6. Expression data clustering using the SOM: Distinguishing subtypes of DLBCL.

Because both clusters A and B include Normal samples, this clustering
configuration does not clearly distinguish Normal from DLBCL samples.
The reader is referred to (Alizadeh et al., 2000) for a discussion on the
relationships between the Normal and DLBCL samples in terms of their
expression patterns, which are indicative of different stages of B-cell
differentiation. Nevertheless, these clustering results represent relevant
information to recognise the two subtypes of DLBCL reported by Alizadeh
et al. (2000): Activated B-like DLBCL and germinal centre B-like

268 Chapter 15

DLBCL (GC B-like DLBCL). In this case, cluster A can be labelled as the
cluster representing Activated B-like DLBCL samples, and cluster B may be
used to identify GC B-like DLBCL.

This section has dealt with the implementation and application of SOM
networks for the analysis of expression data. The following section
introduces some modifications to the original SOM, which may be useful to
facilitate a knowledge discovery task based on this type of data.

3. SELF-ADAPTIVE AND INCREMENTAL
LEARNING NEURAL NETWORKS FOR
MICROARRAY DATA ANALYSIS

A number of research efforts have addressed some of the pattern processing
and visualisation limitations exhibited by the original SOM. It has been
shown how these limitations have negatively influenced several data mining,
visualisation and cluster analysis applications (Alahakoon et al., 2000). A
SOM system requires the user to predetermine the network structure and the
number of prototypes. This trial-and-error task may represent a time-
consuming and complex problem. Another important limitation is the lack of
tools for the automatic detection of cluster boundaries. Different approaches
have been proposed to improve the original SOM algorithm. Investigations
have suggested the application of self-adaptive and incremental learning
neural networks (SANN), instead of static topology networks in order to
improve several data classification applications (Nour and Madey, 1996),
(Fritzke, 1994).

Some of these approaches aim to determine the prototype composition,
shape and size of the self-organizing structure during the learning process.
These learning techniques are well adapted to application domains, such as
expression analysis, which are characterised by incomplete data and
knowledge.

Recent advances include a neural network model known as Double Self-
Organizing Map (Su and Chang, 2001), which has been suggested for data
projection and reduction applications. The Fast Self-Organizing Feature
Map algorithm (Su and Chang, 2000) aims to automatically reduce the
number of learning cycles needed to achieve a proper clustering process.
Other authors have proposed to combine the SOM approach and advanced
supervised learning techniques. One example is the Supervised Network Self-
Organizing Map (sNet-SOM) (Papadimitriou et al., 2001). In this case a
variant of SOM provides a global approximation of a data partition, while a
supervised learning algorithm is used to refine clustering results in areas
categorised as ambiguous or more critical for discovery purposes. Other
models designed to implement automatic map generation and cluster

15. Discovering Genomic Expression Patterns With Self-Organizing 269
Neural Networks

boundary detection include the Growing Cell Structure Network (GCS)
(Fritzke, 1994), the Incremental Grid Growing Neural Network (IGG)
(Blackmore, 1995) and the Growing Self-Organizing Map (GSOM)
(Alahakoon et al., 2000). The following subsection illustrates the application
of one of these techniques to the problem of recognising relevant genomic
expression patterns.

3.1 A GCS-Based Approach To Clustering Expression
Data

GCS is an adapted version of the SOM, which has been applied to improve a
number of pattern recognition and decision support systems (Azuaje et al.,
1999), (Azuaje et al., 2000). One type of GCS can be described as a two-
dimensional space, where its prototypes are inter-connected and organised in
the form of triangles. An initial topology for the GCS is organised as one
two-dimensional triangle (Figure 15.7.a). The connections between cells
reflect their separation distance on the prototype space. Like in the original
SOM, each cell is represented by a weight vector m;, which is of the same
dimension as the input data. At the beginning of the learning process the
weight vectors are assigned random values. The learning process comprises
the processing of input vectors and the adaptation of weight vectors, m,. But
unlike the SOM there is no need to define prototype neighbourhoods.
Moreover, the learning rate, &, is substituted by two constant values, €, and
&s, which represent the learning rates for the closest prototype to a sample
(winning cell) and its neighbours respectively. The value of these learning
rates ranges between 0 and 1.

c
>

(a) (b

Figure 15.7. Growing Cell Structures. (a) An initial topology of GCS. (b) A GCS topology
after a number of learning cycles.

GCS also performs an adaptation of the overall structure by inserting new
cells into those regions that represent large portions of the input data
(Fritzke, 1994). Also, in some cases, when one is interested in more
accuracy or when the probability density of the input space consists of
several separate regions, a better modelling can be obtained by removing

270 Chapter 15

those cells that do not contribute to the input data classification. This
adaptation process is performed after a number of learning cycles.
Figure 15.7b depicts a typical GCS after performing a number of learning
cycles. The reader is referred to (Fritzke, 1994) for a complete description of
this algorithm. Section 4 discusses some of the advantages and limitations of
this type of models.

In order to exemplify some of the differences between the SOM and the
GCS clustering models the hypothetical classification problem described in
Section 2.1 is retaken. Panel A of Figure 15.8 depicts the results that one
may have obtained using a standard SOM, whose shape and size were
defined by the user. Panel B of the same figure portrays the type of results
that one may expect from a GCS clustering model. In this situation the
insertion and deletion of cells allowed the categorisation of the two types of
genes into two separated regions of cells. Thus, one major advantage is the
automatic detection of cluster boundaries. Moreover, the distance between
cells may be used as a measure of similarity between groups of genes.

Figure 13.8. Comparing
SOM-based (panel A) and
GCS-based (panel B)

OO0

clustering, using the
| ' hypothetical classification
. { example introduced in
Section 2.1

@ Genes related to function X
O Genes related to function ¥

Macre-cluster B

Figure 15.9. Expression
data clustering using GCS:
Distinguishing subtypes of
DLBCL

Activeled B-like GC B-like Normal
DLBCL DLBCL

Figure 15.9 shows the clusters obtained using a GCS and the DLBCL
expression data presented in Section 2.2. The GCS network was trained with

15. Discovering Genomic Expression Patterns With Self-Organizing 271
Neural Networks

2500 input presentation epochs (2,500 x 63 learning cycles), inserting a new
cell every 500 epochs and deleting irrelevant cells every 1,000 epochs. The
learning parameters, &, and €,, were equal to 0.095 and 0.010 respectively.
For a complete description of this and other experiments the reader is
referred to (Azuaje, 2001).

The resulting GCS consists of 6 cells or clusters containing the normal
and DLBCL samples. The cell connections shown in Figure 159 do not
reflect the weight vector distances. It shows that each cell corresponds to a
representative cluster of the normal and DLBCL classes. For instance, cells 4
and 6 categorise only normal and DLBCL samples respectively. The
majority of the samples recognised by Cells 1 and 5 belong to the class
DLBCL. Cell 3 recognizes samples belonging only to the category DLBCL.
Cells 1 and 3 comprise all of the GC B-like DLBCL subjects. Cells 2, 5 and
6 represent the clusters encoding the Activated B-like DLBCL subjects.
Thus, this GCS network consists of two regions or macro-clusters, A and B,
which identify the GC B-like and the Activated B-like DLBCL subjects
respectively. Unlike the results obtained from the SOM-based clustering, the
GCS was also able to separate normal from DLCBL samples (Cell 4).
Further descriptions and experimental procedures can be implemented to
validate the statistical (Azuaje, 2001) and biomedical significance of these
results.

4. DISCUSSION

This chapter has introduced the application of self-organizing neural
networks for the analysis of genomic expression data. Several studies have
suggested the SOM model as a basic approach to expression clustering
(Section 2). Some of its advantages were illustrated and alternative solutions
based on advanced principles of network self-organization were overviewed.
It has been indicated that the application of SANN (Section 3) may support a
deeper comprehension of a pattern discovery problem. This chapter has
illustrated how a SANN model called GCS may be implemented to specify
interesting molecular patterns or confirm known functional categories.
SANN systems, such as GCS, offer several advantages in relation to the
SOM and other expression data classification techniques. In contrast to the
SOM, SANN structures are determined automatically from the expression
data. Most of these models do not require the definition of time-dependence
of decay schedule parameters. SANN’s ability to insert and delete cells
allows a more accurate estimation of probability densities of the input data.
Its capacity to interrupt a learning process or to continue a previously
interrupted one, permits the implementation of incremental clustering
systems. SANN have demonstrated its strength to process both small and

272 Chapter 15

high dimensionality data in several application domains (Alahakoon et al.,
2000), (Azuaje et al., 2000), (Papadimitriou et al., 2001). Some SANN may
be implemented in either unsupervised or supervised learning modes
(Fritzke, 1994), (Papadimitriou et al, 2001). However, there are important
limitations that need to be addressed. For example, in the GCS model there
is not a standard way to define a priori the number of learning cycles and the
exact number of cells required to properly develop a network. Some models,
such the GSOM (Alahakoon et al, 2000), partially address this problem by
introducing spread factors to measure and control the expansion of a
network. In a number of applications it has been shown that techniques, like
GCS and IGG, may be more susceptible to variations in the initial parameter
settings than the SOM clustering model (Blackmore, 1995), (Kohle and
Merkl, 1996).

There are additional problems that merit further research in order to
contribute to the advance of clustering-based genomic expression studies.
Among them: The implementation of hierarchical clustering using SANN,
faster clustering algorithms, specialised techniques for the processing of
time-dependent or statistically-dependent data, and methods to automatically
measure the contribution of a variable to the clustering results.

It is crucial to develop frameworks to assist scientists during the design
and evaluation of clustering applications. Some of such guidelines and
methods were examined in Chapter 13. Evaluation techniques may support
not only the validation of clusters obtained from SOM, SANN or any other
procedures, but also they may enable an effective and inexpensive
mechanism for the automatic description ofrelevant clusters.

REFERENCES

Alahakoon D., Halgamuge S.K., Srinivasan B. (2000). Dynamic self-organizing maps with
controlled growth for knowledge discovery. IEEE Transactions on Neural Networks 11:
601-614.

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos LS., Rosenwald A., Boldrick J.C.,,
Sabet H., Tran T., Yu X., Powell J.I,, Yang L., Marti G.E., Moore T., Hudson J., Lu L.,
Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D.,
Armitage J.O., Warnke R., Levy R., Wilson W., Grever M.R., Bird J.C., Botstein D.,
Brown P.O., Staudt M. (2000). Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature 403:503-511.

Azuaje E., Dubitzky W., Lopes P., Black N., Adamson K., Wu X., White J. (1998). Discovery
of incomplete knowledge in electrocardiographic data. Proceedings of the Third
International Conference on Neural Networks and Expert Systems in Medicine and
Healthcare; 1998 September 2-4; Pisa. World Scientific: Singapore.

Azuaje F., Dubitzky W., Black N., Adamson K. (1999). Improving clinical decision support
through case-based fusion. IEEE Transactions on Biomedical Engineering; 46: 1181-1185.

15. Discovering Genomic Expression Patterns With Self-Organizing 273
Neural Networks

Azuaje F., Dubitzky W., Black N., Adamson K. (2000). Discovering relevance knowledge in
data: a growing cell structure approach, IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics 30: 448-460.

Azuaje F. (2001). An unsupervised neural network approach to discovering gene expression
patterns in B-cell lymphoma. Online Journal of Bioinformatics 1: 23-41.

Blackmore J. (1995). Visualizing high-dimensional structure with the incremental grid
growing neural network. MLS. thesis, University of Texas at Austin.

Fritzke B. (1994), Growing cell structure--a self-organizing network for unsupervised and
supervised learning. Neural Networks 7: 1441-1460.

Golub T.R., Slonim D K., Tamayo P., Huard C., Gassenbeck M., Mesirov I.P., Coller H., L.oh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286:531-537.

Hasti T. Tibshirani R., Friedman J. (2001). The Elements of Statistical Learning. NY:
Springer.
Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R.,

Goodlett D.R., Aebersol R., Hood L. (2001). Integrated genomic and proteomic analyses
of a systematically perturbated metabolic network. Science 292:929-933.

Kohle M., Merkl D. (1996). Visualizing similarities in high dimensional input spaces with a
growing and spliting neural network. Proceedings of the International Conference of
Artificial Neural Networks (ICANN’96), pp. 581-586.

Kohonen T., (2001). Self-Organizing Maps. Berlin: Springer.

Murtagh F., Hernandez-Pajares M. (1995). The Kohonen self-organizing map method: an
assessment. Journal of Classification 12:165-190.

Nour M.A., Madey G.R. (1996). Heuristic and optimization approaches to extending the

Kohonen self organizing algorithm. European Journal of Operational research 93: 428-
448.

Papadimitriou S., Mavroudi S., Vladutu L., Bezerianos A. (2001). Ischemia detection with a

self-organizing map supplemented by supervised learning. IEEE Transactions on Neural
Networks 12: 503-515.

Schmitz G., Ermert H., Senge T. (1999), Tissue-characterization of the prostate using radio
frequency ultrasonic signals. IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control 46: 126-138.

Su M.C, Chang H.T. (2000). Fast self-organizing feature map algorithm. IEEE Transactions
on Neural Networks 11: 721-733.

Su M.C, Chang HT. (2001). A new model of self-organizing neural networks and its
application in data projection. IEEE Transactions on Neural Networks 12:153-158.

Tamayo P., Slonim D., Mesirov J., Zhu Q. Kitareewan S. Dmitrovsky E., Lander ES.,
Golub R. (1999). Intepretating patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA
96:2907-2912.

Chapter 16

CLUSTERING OR AUTOMATIC CLASS
DISCOVERY: NON-HIERARCHICAL, NON-SOM

Clustering Algorithms and Assessment of Clustering Results

Ka Yee Yeung

Department of Microbiology, University of Washington, Seattle, WA 98195, USA,
e-mail: kayee @cs.washington.edu

1. INTRODUCTION

DNA microarrays offer a global view on the levels of activity of many genes
simultaneously. In a typical gene expression data set, the number of genes is
usually such larger than the number of experiments. Even a simple organism
like yeast has approximately six thousand genes. It is estimated that humans
have approximately thirty thousand to forty thousand genes (Lander et al.,
2001).

The goal of cluster analysis is to assign objects to clusters such that
objects in the same cluster are more similar to each other while objects in
different clusters are as dissimilar as possible. Clustering is a very well-
studied problem, and there are many algorithms for cluster analysis in the
literature. Please refer to (Anderberg, 1973), (Jain and Dubes, 1988),
(Kaufman and Rousseeuw, 1990), (Hartigan, 1975) and (Everitt, 1993) for a
review of the clustering literature. Because of the large number of genes and
the complexity of biological networks, clustering is a useful exploratory
technique for analysis of gene expression data.

In this chapter, we will examine a few clustering algorithms that have
been applied to gene expression data, including Cluster Affinity Search
Technique (CAST) (Ben-Dor and Yakhini, 1999), (Ben-Dor et al., 1999), &-
means (MacQueen, 1965), (Tavazoie et al., 1999), Partitioning Around
Medoids (PAM) (Kaufman and Rousseeuw, 1990), and model-based
clustering (Fraley and Raftery, 1998), (Yeung et al., 2001a).

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 275
SOM

(a) Experiments (b)

1 e P
1 Genes

Genes

Genes

n

|

D(i.e): expression level of gene Sim(i,/): similarity or dissimilarity
i under experiment e of gene i and gene /

Figure 16.1. (a) A data matrix. (b) A similarity matrix.

2. BACKGROUND AND NOTATIONS

A data set containing objects to be clustered is usually represented in one of
two formats: the data matrix or the similarity (or dissimilarity) matrix. In a
data matrix, the rows usually represent objects, and the columns usually
represent features or attributes of the objects. Suppose there are n objects
and p attributes. We assume the rows represent genes and the columns
represent experiments, such that entry (i, ¢) in the data matrix D represents
the expression level of gene i under experiment e, where 1<i<n and
1<e<p (see Figure 16.1a). The M row in the daa matrix D (where
1<i<n), D, represents the expression vector of gene i across all p
experiments. In clustering genes, the objects to be clustered are the genes.
The similarity (or dissimilarity) matrix contains the pairwise similarity (or
dissimilarity) of genes. Specifically, entry (i, j) in the similarity (or
dissimilarity) matrix Sim represents the similarity (or dissimilarity) of gene i
and gene j, where 1<i{ j<n (see Figure 16.1b). The similarity (or
dissimilarity) of gene i and gene j can be computed using the expression
vectors of gene i and gene j from the data matrix. Hence, the similarity (or
dissimilarity) matrix Sim can be computed from the data matrix D. For the
rest of the chapter, the objects to be clustered are the genes in a given gene
expression data set unless otherwise stated.

276 Chapter 16
3. SIMILARITY METRICS

The measure used to compute similarity or dissimilarity between a pair of
objects is called a similarity metric. Many different similarity metrics have
been used in clustering gene expression data, among which the two most
popular similarity metrics are correlation coefficient and Euclidean distance.
Correlation coefficient is a similarity measure (a high correlation coefficient
implies high similarity) while Euclidean distance is a dissimilarity measure
(ahigh Euclidean distance implies low similarity).

The correlation coefficient between a pair of genes i andj (1 <i,j < n)is
defined as

i (D(i,e)"lll,)(D(j,e)—ﬂj)
pom (1D, 111D, 11y (16.1)

where u, = ZZ:] D(i,e)/p is the average expression level of gene i over

all p experiments, and || D, ||= \/Zf=;(D(i’e)“ u4)* is the norm of the

expression vector D; with the mean subtracted. Correlation coefficients range
from -1 to 1. Two genes with correlation coefficient equal to 1 are perfectly
correlated, i.e. their expression levels change in the same direction across the
experiments. On the other hand, a correlation coefficient of -1 means that
two genes are anti-correlated, i.e. their expression levels change in opposite
directions. Geometrically, correlation coefficients capture the patterns of
expression levels of two genes. For example, two genes with different
average expression levels but with expression levels peaking at the same
experiments have a high correlation coefficient.

The Euclidean distance between a pair of genes i and j (1 €4, j<n) is
defined as

Ji‘ (D(G,e) - D(j,)" (162)

e=|

A high Euclidean distance between a pair of genes indicates low
similarity between the genes. Unlike correlation coefficients, Euclidean
distances measure both the direction and amplitude difference in expression
levels. For example, two genes peaking at the same experiments but with
different average expression levels may lead to a large Euclidean distance,
especially if the difference in average expression levels is high.

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 277
SOM

4. CLUSTERING ALGORITHMS

There is a rich literature in clustering algorithms, and there are many
different classifications of clustering algorithms. One classification is model-
based versus heuristic-based clustering algorithms. The objects to be
clustered are assumed to be generated from an underlying probability
framework in the model-based clustering approach. In the heuristic-based
approach, an underlying probability framework is not assumed. The inputs to
a heuristic-based clustering algorithm usually include the similarity matrix
and the number of clusters. CAST and PAM are examples of the heuristic-
based approach. The k-means algorithm was originally proposed as a
heuristic-based clustering algorithm. However, it was shown to be closely
related to the model-based approach (Celeux and Govaert, 1992).

41 CAST

The Cluster Affinity Search Technique (CAST)} (Ben-Dor and Yakhini,
1999), (Ben-Dor et al., 1999) is a graph-theoretic algorithm developed to
cluster gene expression data. In graph-theoretic clustering algorithms, the
objects to be clustered (genes in this case) are represented as nodes, and
pairwise similarities of genes are represented as weighted edges in a graph.
The inputs to CAST include the similarity matrix Sim, and a threshold
parameter ¢t (which is a real number between 0 and 1), which indirectly
controls the number of clusters.

4.1.1 Algorithm QOutline

CAST is an iterative algorithm in which clusters are constructed one at a
time. The current cluster under construction is called C,,. The affinity of a
gene g, a(g), is defined as the sum of similarity values between g and all the
genes in Copen, i.e. a(g) =er ¢ Sim(g,x). A gene g is said to have high
affinityif a(g) 2¢|C,y,, | Otherwise, g is said to have low affinity. Note that
the affinity of a gene depends on the genes that are already in Cope,. When a
new cluster Copes, i8 started, the initial affinity is zero because Copen iS empty.
A gene not yet assigned to any clusters and having the maximum average
similarity to all unassigned genes is chosen to be the first gene in Cypes. The
algorithm alternates between adding high affinity genes to Copen, and
removing low affinity genes from Copen. Copen is closed when no more genes
can be added to or removed from it. Once a cluster is closed, a new Cepen 18
formed. The algorithm iterates until all the genes have been assigned to
clusters and the current C,pe, is closed. After the CAST algorithm converges
(assuming it does), there is an additional iterative step, in which all clusters
are considered at the same time, and genes are moved to the cluster with the

278 Chapter 16

highest average similarity. For details of CAST, please refer to (Ben-Dor and
Yakhini, 1999).

4.1.2 Algorithm Properties

Correlation coefficient is usually used as the similarity metric for CAST.
From our experience, the iterative step in CAST may not converge if
Euclidean distance is used as the similarity metric.

In contrast to the hierarchical clustering approach in which objects are
successively merged into clusters, objects can be added to or removed from
the current open cluster through the iterative steps. CAST tends to produce
relatively high quality clusters, compared to the hierarchical approach
(Yeung et al., 2001b).

4,2 K-means

K-means is another popular clustering algorithm in gene expression analysis.
For example, Tavazoie et al. (1999) applied k-means to cluster the yeast cell
cycle data (Cho et al., 1998).

421 Algorithm QOutline

K-means (MacQueen, 1965) is a classic iterative clustering algorithm, in
which the number of clusters, &, together with the similarity matrix are
inputs to the algorithm. In the k-means clustering algorithm, clusters are
represented by centroids, which are cluster centers. The goal of k&-means is to
minimize the sum of distances from each object to its corresponding
centroid. In each iteration, each gene is assigned to the centroid (and hence
cluster) with the minimum distance (or equivalently maximum similarity).
After the gene re-assignment, new centroids of the k clusters are computed.
The steps of assigning genes to centroids and computing new centroids are
repeated until no genes are moved between clusters (and centroids are not

changed). K-means was shown to converge for any metric (Selim and Ismail,
1984).

4.2.2 Effect of Initialization

Initialization plays an important role in the k-means algorithm. In the
random initialization approach, the k initial centroids consist of k randomly
chosen genes. An alternative approach is to use clusters from another
clustering algorithm as initial clusters, for example, from hierarchical
average-link. The advantage of the second approach is that the algorithm
becomes deterministic (the algorithm always yields the same clusters).
(Yeung et al,, 2001b) showed that the iterative k-means step after the
hierarchical step tends to improve cluster quality.

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 279
SoM

4,23 Algorithm Properties

Clusters obtained from the k-means algorithm tend to be equal-sized and
spherical in shape. This is because the k-means algorithm is closely related
to the equal volume spherical model in the model-based clustering approach
(Celeux and Govaert, 1992).

424 Implementation

K-means is implemented in many statistical software packages, including the
commercial software Splus (Everitt, 1994), and the GNU free software R
(Thaka and Gentleman, 1996). It is also available from other clustering
packages tailored toward gene expression analysis, such as XCLUSTER
from Gavin Sherlock, which is available at http://genome-
www.stanford.edu/~sherlock/cluster.html.

43 PAM

Partitioning around Medoids (PAM) (Kaufman and Rousseeuw, 1990)
searches for a representative object for each cluster from the data set. These
representative objects are called medoids. The clusters are obtained by
assigning each data point to the nearest medoid. The objective is to minimize
the total dissimilarity of objects to their nearest medoid. This is very similar
to the objective of k-means, in which the total dissimilarity of objects to their
centroids is minimized. However, unlike centroids, medoids do not represent
the mean vector of data points in clusters.

43.1 Algorithm Outline

The inputs to PAM include the similarity or dissimilarity matrix and the
number of clusters & The algorithm of PAM consists of two stages. In the
first BUILD stage, an initial clustering is obtained by successive selection of
representative objects until £ objects are found. In the second SWAP stage,
all pairs of objects (i, k), for which object i is in the current set of medoids
and object & is not, are considered. The effect on the object function is
studied if object # is chosen as a medoid instead of object i.

4.3.2 Algorithm Properties

PAM can be considered as a robust version of k-means since medoids are
less affected by outliers. Similar to k-means, PAM also tends to produce
spherical clusters (Kaufman and Rousseeuw, 1990).

280 Chapter 16

433 Implementation
PAM is implemented in statistical packages such as Splus and R.

S. ASSESSMENT OF CLUSTER QUALITY

We have discussed three different heuristic-based clustering algorithms to
analyze gene expression data. Different clustering algorithms can potentially
generate different clusters on the same data set. However, no clustering
method has emerged as the method of choice in the gene expression
community. A biologist with a gene expression data set is faced with the
problem of choosing an appropriate clustering algorithm for his or her data
set. Hence, assessing and comparing the quality of clustering results is
crucial.

Jain and Dubes (1988) classified cluster validation procedures into two
main categories; external and internal criterion analysis. External criterion
analysis validates a clustering result by comparing to a given “gold
standard”, which is another partition of the objects. Internal criterion
analysis uses information from within the given data set to represent the
goodness of fit between the input data set and the clustering results.

5.1 External Validation

In external validation, a clustering result with a high degree of agreement
to the “gold standard” i$ considered to contain high quality clusters. The
gold standard must be obtained by an independent process based on
information other than the given data. This approach has the strong benefit
of providing an independent, hopefully unbiased assessment of cluster
quality. On the other hand, external criterion analysis has the strong
disadvantage that an external gold standard is rarely available.

Both clustering results and the external criteria can be considered as
partitions of objects into groups. There are many statistical measures that
assess the agreement between two partitions, for example, the adjusted Rand
index (Hubert and Arabie, 1985). The adjusted Rand index is used to assess
cluster quality in (Yeung and Ruzzo, 2001) and (Yeung et al., 2001a).

5.2 Internal Validation

Internal criterion analysis does not require any independent external criteria.
Instead, it assesses the goodness of fit between the input data set and the
clustering results. We will briefly describe three internal validation
approaches.

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 281
SOM

5.2.1 Homogeneity and Separation

Since objects in the same cluster are expected to be more similar to each
other than objects in different groups and objects in different clusters are
expected to be dissimilar, komogeneity of objects in the same cluster and
separation between different clusters are intuitive measures of cluster quality
(Shamir and Sharan, 2001). Homogeneity is defined as the average similarity
between objects and their cluster centers, while separation is defined as the
weighted average similarity between cluster centers, A high homogeneity
indicates that objects in clusters are similar to each other. A low separation
means that different clusters are not well-separated.

522 Silhouette

Silhouettes can be used to evaluate the quality of a clustering result.
Silhouettes are defined for each object (gene in our context) and are based on
the ratio between the distances of an object to its own cluster and to its
neighbor cluster (Rousseeuw, 1987). A high silhouette value indicates that
an object lies well within its assigned cluster, while a low silhouette value
means that the object should be assigned to another cluster. Silhouettes can
also be used to visually display clustering results. The objects in each cluster
can be displayed in decreasing order of the silhouette values such that a
cluster with many objects with high silhouette values is a pronounced
cluster. Silhouettes are implemented in Splus and R. In order to summarize
the silhouette values in a data set with k clusters, the average silhouette
width, is defined to be the average silhouette value over all the objects in the
data. The average silhouette width can be used as an internal validation
measure to compare the quality of clustering results.

5.23 Figure of Merit

Yeung et al. (2001b) proposed the figure of merit (FOM) approach to
compare the quality of clustering results. The idea is to apply a clustering
algorithm to all but one experiment in a given data set, and use the left-out
experiment to assess the predictive power of the clustering algorithm.

Intuitively, a clustering result has possible biological significance if
genes in the same cluster tend to have similar expression levels in additional
experiments that were not used to form the clusters. We estimate this
predictive power by removing one experiment from the data set, clustering
genes based on the remaining data, and then measuring the within-cluster
similarity of expression values in the left-out experiment. The figure of merit
is a scalar quantity, which is an estimate of the predictive power of a
clustering algorithm.

282 Chapter 16

6. MODEL-BASED APPROACH

Clustering algorithms based on probability models offer a principled
alternative to heuristic algorithms. The issues of selecting a “good”
clustering method and determining the “correct” number of clusters are
reduced to model selection problems in the probability framework. This
provides a great advantage over heuristic clustering algorithms, for which
there is no rigorous method to determine the number of clusters or the best
clustering method. (Yeung et al., 2001a) applied the model-based approach
to various gene expression and synthetic data, and showed that the model-
based approach tends to produce higher cluster quality than the heuristic-
based algorithms.

6.1 The Model-based Framework

In model-based clustering, the data is assumed to be generated from a finite
mixture of underlying probability distributions.' In other words, we assume
the data consists of different groups (or components), and each group (or
component) is generated from a known probability distribution. Based on
this assumption, the goal of model-based clustering algorithms is to recover
clusters that correspond to the components in the data.

There are many possible probability distributions underlying each group
(or component). In this chapter, we assume a Gaussian mixture model in
which each component is generated by the multivariate normal distribution
(also known as the multivariate Gaussian distribution).> Gaussian mixture
models have been shown to be a powerful tool for clustering in many
applications, for example, (Banfield and Raftery, 1993), (Celeux and
Govaert, 1993), (McLachlan and Basford, 1988), (Maclachlan and Peel,
2000).

The multivariate normal distribution is parameterized by the mean vector
4 and covariance matrix X. When the objects to be clustered are the genes,
the mean vector is of dimension p (which is the number of experiments).
The mean vector of a component is equal to the average expression level of
all the genes in that component. Hence, the mean vector represents the
location where the component is centered at. The covariance matrix X is ap
by p matrix such that Z(i,) represents the covariance of experiment i and

LA probability distribution is a mathematical function which describes the probability of
possible events.

2 A multivariate normal distribution is a generalization of the normal distribution to more than
one variable.

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 283
SoM

experiment j. The diagonal entries in the covariance matrix are the variances
of the p experiments.’

Let G be the number of components in the data. In the Gaussian mixture
assumption, each component k& (where k=1,...,G) is generated by the
multivariate normal distribution with parameters 4, (mean vector) and X,
(covariance matrix). The number of components, G, is assumed to be
known. The goal is to estimate the parameters g4 and 3 from the data (where
k=1,...,G), and find clusters corresponding to these parameter estimates.

In order to make estimation of the parameters easier, (Banfield and
Raftery, 1993) proposed a general framework to decompose the covariance
matrix

%, =A4D,A.D], (16.3)

where Dy is an orthogonal matrix, 4, is a diagonal matrix, and A is a
scalar. The matrix Dy determines the orientation of the component, Ay
determines its shape, and A, determines its volume. Hence, the covariance
matrix X controls the shape, volume and orientation of each component.

Allowing some but not all of the parameters in Equation 163 to vary
results in a set of models within this general framework. In particular,
constraining D,4,D; to be the identity matrix I corresponds to Gaussian
mixtures in which each component is spherical.

(a) (b)

Figure 16.2. Fictitious examples illustrating (a) the unequal volume spherical model in which
clusters are spherical but may have different volumes, and (b) the unconstrained model in
which clusters may have different volume, orientation, and shape.

For example, the equal volume spherical model, which is parameterized
by X, =AI, represents the most constrained model under this framework,

3 The variance of an experiment is the average of the squared deviation of the experiment
from its mean, while the covariance of two experiments measures their tendency to vary
together.

284 Chapter 16

with the smallest number of parameters.* The classical k-means clustering
algorithm has been shown to be closely related to this model (Celeux and
Govaert, 1992). However, there are circumstances in which this model may
not be appropriate. For example, if some groups of genes are much more
tightly co-regulated than others, a model in which the spherical components
are allowed to have different volumes may be more appropriate. The unequal
volume spherical model (see Figure 16.2a), X, =A,1, allows the spherical
components to have different volumes by allowing a different A4 for each
component k. We have also observed considerable correlation between
experiments in time-series experiments, coupled with unequal variances. An
elliptical model may better fit the data in these cases, for example, the
unconstrained model (see Figure 16.2b) allows all of Dy, Ax and A to vary
between components. The unconstrained model has the advantage that it is
the most general model, but has the disadvantage that the maximum number
of parameters need to be estimated, requiring relatively more data points in
each component. There is a range of elliptical models with other constraints,
and hence requiring fewer parameters.

6.2 Algorithm Outline

Assuming the number of clusters, G, is fixed, the model parameters are
estimated by the expectation maximization (EM) algorithm. In the EM
algorithm, the expectation (E) steps and maximization (M) steps alternate. In
the E-step, the probability of each observation belonging to each cluster is
estimated conditionally on the current parameter estimates. In the M-step,
the model parameters are estimated given the current group membership
probabilities. When the EM algorithm converges, each observation is
assigned to the group with the maximum conditional probability. The EM
algorithm can be initialized with model-based hierarchical clustering
(Dasgupta and Raftery, 1998), (Fraley and Raftery, 1998), in which a
maximum-likelihood pair of clusters is chosen for merging in each step.

6.3 Model Selection

Each combination of a different specification of the covariance matrices and
a different number of clusters corresponds to a separate probability model.
Hence, the probabilistic framework of model-based clustering allows the
issues of choosing the best clustering algorithm and the correct number of
clusters to be reduced simultaneously to a model selection problem. This is
important because there is a trade-off between probability model, and
number of clusters. For example, if one uses a complex model, a small

4 Only the parameter 4 needs to be estimated to specify the covariance matrix for the equal
model spherical model.

16. Clustering or Automatic Class Discovery. non-hierarchical, non- 285
SoM

number of clusters may suffice, whereas if one uses a simple model, one
may need a larger number of clusters to fit the data adequately.

Let D be the observed data, and M, be a model with parameter &,. The
Bayesian Information Criterion (BIC) (Schwarz, 1978) is an approximation
to the probability that data D is observed given that the underlying model is
Mk H P(D | M)'

2log p(D| M,) ~2l0g p(D|8,,M,) -V, log(n) = BIC, (16.4)

__where v, i8 the number of parameters to be estimated in model M; ,and
8, is the maximum likelihood estimate for parameter &,.. Intuitively, the
first term in Equation 164, which is the maximized mixture likelihood for
the model, rewards a model that fits the data well, and the second term
discourages overfitting by penalizing models with more free parameters. A
large BIC score indicates strong evidence for the corresponding model.
Hence, the BIC score can be used to compare different models.

64 Implementation

Typically, different models of the model-based clustering algorithm are
applied to a data set over a range of numbers of clusters. The BIC scores for
the clustering results are computed for each of the models. The model and
the number of clusters with the maximum BIC score are usually chosen for
the data. These model-based clustering and model selection algorithms
(including various spherical and elliptical models) are implemented in
MCLUST (Fraley and Raftery, 1998). MCLUST is written in Fortran with
interfaces to Splus and R. It is publicly available at
http://www.stat.washington.edu/fraley/mclust.

7. A CASE STUDY

We applied some of the methods described in this chapter to the yeast
cell cycle data (Cho et al., 1998), which showed the fluctuation of expression
levels of approximately 6,000 genes over two cell cycles (17 time points).
We used a subset of this data, which consists of 384 genes whose expression
levels peak at different time points corresponding to the five phases of cell
cycle (Cho et al., 1998). We expect clustering results to approximate this
five-class partition. Hence, the five phases of cell cycle form the external
criterion of this data set.

Before any clustering algorithm is applied, the data is pre-processed by
standardization, i.e. the expression vectors are standardized to have mean 0
and standard deviation 1 (by subtracting the mean of each row in the data,

286 Chapter 16

and then dividing by the standard deviation of the row). Data pre-processing
techniques are discussed in detail in Chapter 2.

We applied CAST, PAM, hierarchical average-link and the model-based
approach to the standardized yeast cell cycle data to obtain 2 to 16 clusters.
The clustering results are evaluated by comparing to the external criterion of
the 5 phases of cell cycle, and the adjusted Rand indices are computed. The
results are illustrated in Figure 16.3. A high-adjusted Rand index means high
agreement to the S-phase external criterion. The results from three different
models from the model-based approach are shown in Figure 16.3: the equal
volume spherical model (denoted by EI), the unequal volume spherical
model (denoted by VI), and the unconstrained model (denoted by VVV).
The equal volume spherical model (EI) and CAST achieved the highest
adjusted Rand indices at 5 clusters. Figure 16.4 shows a silhouette plot of the
5 clusters produced using PAM.

085 —— et

050 AKQRLBOOOORY

045 | R Q’(' \\ L
E 040 *- / e
@ i Vi
%“5 | —A- VW
F030 ‘ ~—%—CAST
(0,25 | —&— PAM

- € - average-link

Y R —

0 2 4 6 8 10 12 14 16
number of clusters

Figure 16.3. Adjusted Rand indices for the standardized yeast cell cycle data.

16. Clustering or Automatic Class Discovery: non-hierarchical, non- 287
SOM

Average siihouette width: 0.21

00 0.2 0.4 06 0.8 10
Stlhouette width

Figure 16.4. A silhouette plot of § clusters from PAM on the cell cycle data.

Three of the five clusters show higher silhouette values than the other
two, and hence, they are relatively more pronounced clusters. In each cluster,
there are a few genes with very low silhouette values, and they represent
outliers in the clusters.

REFERENCES

Anderberg, M.R. (1973). Cluster analysis for applications. Academic Press.

Baneld, J.D, and Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian clustering.
Biometrics, 49:803-821.

Ben-Dor, A., Shamir, R., and Yakhini, Z. (1999). Clustering gene expression pattems. Journal
of Computational Biology, 6:281-297.

Ben-Dor, A, and Yakhini, Z. (1999). Clustering gene expression pattems. In RECOMB99:
Proceedings of the Third Annual International Conference on Computational Molecular
Biology, pages 33-42, Lyon, France.

Celeux, G. and Govaert, G. (1992). A classification EM algorithm for clustering and two
stochastic versions. Computational Statistics and Data Analysis, 14:315-332.

Celeux, G. and Govaert, G. (1993). Comparison of the mixture and the classification
maximum likelihood in cluster analysis. Joumal of Statistical Computation and
Simulation, 47:127-146.

Cho, RJ., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A. Wodicka, L.,
Wolfsberg, T.G., Gabrielian, A. E., Landsman, D. Lockhart, D. J, and Davis, R. W.
(1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell,
2:65-73.

Dasgupta, A. and Raftery, A.E. (1998). Detecting features in spatial point processes with
clutter via model-based clustering. Journal of the American Statistical Association,
93:294-302.

288 Chapter 16

Everitt, B. (1994). A handbook of statistical analyses using S-plus. Chap man and Hall,
London.

Everitt, B.S. (1993). Clustering Analysis. John Wiley and Sons.

Fraley, C. and Raftery, A.E. (1998). How many clusters? Which clustering method? -
Answers via model-based cluster analysis. The Computer Journal, 41:578-588.

Hartigan, J.A. (1975). Clustering Algorithms. John Wiley and Sons.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193-218.

Thaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Joumal of
Computational and Graphical Statistics, 5(3):299-314.

Jain, A K. and Dubes, R.C. (1988). Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs, NJ.

Kaufman, L. and Rousseeuw, P.J. (1990), Finding Groups in Data: An Introduction to
Cluster Analysts. John Wiley & Sons, New York.

Lander, ES. et al. (2001). Initial sequencing and analysis of the human genome. Nature,
409(6822):860-921, Intemational Human Genome Sequencing Consortium.

MacQueen, J. (1965). Some methods for classification and analysis of multivariate
observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 281-297. McLachlan, G. J. and Basford, K. E. (1988). Mixture
models: inference and applications to clustering. Marcel Dekker New York.

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. New York: Wiley.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53-65.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461-464.

Selim, S.Z. and Ismail, M.A. (1984). K-means type algorithms: a generalized convergence

theorem and characterization of local optimality. IEEE Transactions on Pattem Analysis
and Machine Intelligence, PAMI-6(1):81-86.

Shamir, R. and Sharan, R. (2001). Algorithmic approaches to clustering gene expression data.
In Current Topics in Computational Biology. MIT Press.

Tavazoie, S., Huges, J.D., Campbell, M.J., Cho, R.J., and Church, GM. (1999). Systematic
determination of genetic network architecture. Nature Genetics, 22:281-285.

Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., and Ruzzo, W.L. (2001a). Model-based
clustering and data transformations for gene expression data. Bioinformatics, 17:977-987.

Yeung, K.Y., Haynor, D.R., and Ruzzo, W.L.. (2001b). Validating clustering for gene
expression data. Bioinformatics, 17(4):309-318.

Yeung, K.Y. and Ruzzo, W.L. (2001). Principal component analysis for clustering gene
expression data. Bioinformatics, 17:763-774.

Chapter 17

CORRELATION AND ASSOCIATION ANALYSIS

Simon M. Lin and Kimberly F. Johnson

Duke Bioinformatics Shared Resource, Box 3958, Duke University Medical Center, Durham,
NC 27710,USA,

email: {1in00025, Johns001 } @mc.duke.edu

1. INTRODUCTION

Establishing an association between variables is always of interest in the life
sciences. For example, is increased blood pressure associated with the
expression level of the angiotensin gene? Does the PKA gene down-regulate
the Raf1 gene?

To answer these questions, we usually have a collection of objects
(samples) and the measurements on two or more attributes (variables) of
each object. Table 17.1 illustrates a collection of n pairs of observations (x;,

Yi).
Table 17.1. Input data format for studying the relationship between two variables.

Objects Variable X Variable Y
Obje(" | X i
Object 2 X3 »2
Object i X ¥y
Object n X, Va

In this chapter, we first define types of variables, the nature of which
determines the appropriate type of analysis. Next we discuss how to
statistically measure the strength between two variables and test their
significance. Then we introduce machine learning algorithms to find

290 Chapter 17

association rules. Finally, after discussing the association vs. causality
inference, we conclude with a discussion of microarray applications.

2. TYPES OF VARIABLES

Different statistical procedures are developed for different types of variables.
Here we define three types of variables. Nominal variables are orderless
non-numerical categories, such as sex and marital status. Ordinal variables
are ordered categories; sometimes they are also called rank variables.
Different from nominal and ordinal variables, metric variables have
numerical values that can be mathematically added or multiplied. Examples
of different types of variables are in Table 17.2.

Table 17.2. Examples of different types of variables,

Tvpe of Variable l Examples
Nominal smoking history (yes / no), eye color (green / black / brown)
Ordinal aggressiveness of the tumor (4 / 4+ / 4=+),
birth weight (low { medium / high)
Metric blood pressure, gene expression intensity

Sometimes it is convenient to convert the metric variables into ordinal
variables. For example, rather than using the exact expression values of each
gene, we discretize them into high, medium, and low values (Berrar et al.,
2002). Although this conversion will lose some information from the
original data, it makes the computation efficient and tractable, (Chang et al.,
2002) or allows the use of algorithms for ordinal data (see Section 3.4;
Chang et al., 2002).

3. MEASUREMENT AND TEST OF CORRELATION

In many situations it is often of interest to measure the degree of association
between two attributes (variables) when we have a collection of objects
(samples). Sample correlation coefficients provide such a numerical
measurement. For example, Pearson’s product-moment correlation
coefficient ranges from -1 to +1. The magnitude of this correlation
coefficient indicates the strength of the linear relationship, while its sign
indicates the direction. More specifically, —1 indicates perfect negative linear
correlation; 0 indicates no correlation; and +1 indicates perfect positive
linear correlation. According to the type of the variables, there are different
formulas for calculating correlation coefficients. In the following sections,
we will first discuss the most basic Pearson’s product moment correlation

17. Correlation and Association Analysis 291

coefficient for a metric variable; then, rank-based correlation coefficients
including Spearman’s rho and Kendall’s tau; and finally, Pearson’s
contingency coefficient for nominal variables. Conceptually, there is a
difference between the sample statistics vs. the true population parameters
(Sheskin, 2000); for example, the sample correlation coefficient r vs. the
population correlation coefficient p. In the following discussion we focus on
the summary statistics of the samples.

3.1 Pearson’s Product-Moment Correlation Coefficient

For metric variables, the Pearson’s product-moment correlation coefficient
(or Pearson’s rho) is calculated according to the following formula;

>0 -F)01 - 7)
i=l
\/'_Z'(x, - |2 0i- 77

where X and Vare the average of variable x and y, respectively. This
formula measures the strength of a linear relationship between variable x
and y. Since #p is the most commonly used correlation coefficient, most of
the time it is referred to simply as r.

r,=

(17.1)

3.2 Spearman’s Rank-Order Correlation Coefficient

For ordinal variables, Spearman’s rank-order correlation coefficient (or,
Spearman’s rho), is given by

= 1-63 172

where # is the total number of objects, and &, is the difference between
the variable pair of rankings associated with the ith object. Actually, r; is
simplified from Pearson’s product-moment correlation coefficient r, when
the variable values are substituted with ranks.

Spearman’s tho measures the degree of monotonic relationship between
two variables. A relationship between two variables x and y is monotonic if,
as x increases, y increases (monotonic increasing) or as x decreases, y
decreases (monotonic decreasing).

292 Chapter 17

3.3 Kendall’s Tau

As an alternative to Spearman’s tho, Kendall’s tau measures the proportional
concordant pairs minus the proportional discordant pairs in samples, A pair
of observations (x;, x;) and (¥, y) is called concordant when the product
(= x)(i—y) is positive; and called discordant when the product is
negative. Kendall’s tau is defined as

n,—n,

T =—
n(n-1)/2

(17.3)

where #, is the number of concordant pairs of ranks, #, is the number of
discordant pairs of ranks, and n(n — 1)/2 is the total number of possible pairs
of ranks.

34 Comparison of Different Correlation Coefficients

Before we discuss the correlation coefficient for nominal variables, we first
compare different correlation coefficients for ordinal and metric variables,
since metric variables have the option of either using Pearson’s product-
moment correlation, or being converted to rank order first, and then treated
as ordinal variables.

Pearson’s tho measures the strength of a linear relationship (Figure 17.1a
and Figure 17.1b), whereas Spearman’s rho and Kendall’s tau measure any
monotonic relationship between two variables (Figure 17.1a,b,¢ and
Table 17.2). If the relationship between the two variables is non-monotonic,
all three correlation coefficients fail to detect the existence of a relationship
(Figure 17.1e).

Both Spearman’s rho and Kendell’s tau are rank-based non-parametric
measures of association between variable X and Y. Although they use
different logic for computing the correlation coefficient, they seldom lead to
markedly different conclusions (Siegel & Castellan, 1988).

The rank-based correlation coefficients are more robust against outliers.
In Figure 17.1f, the data set is the same as in Figure 17.1d, except three
outliers. As shown in Table 17.3, Spearman’s rho and Kendall’s tau are more
robust against these outliers, whereas Pearson’s rho is not.

17. Correlation and Association Analysis 293

a W@d‘qo *'1

@

(c)

(f

Figure 17.1. Relationships between two variables, (a) positive linear correlation; (b) negative
linear correlation; (c) and (€) are non-linear relationships; (d) no relationship; and (f) is the
same data set as (d) but with three outliers and a different scaling,

Table 17.3. Correlation coefficients in Figure 17.1.

Dataset Pearson’s rho Spearman’s rho Kendall's tau
Figure 17.1(a) 0.98 0.98 0.87
Figure 17.1(b) -0.98 -0.98 -0.87
Figure 17.1(c) 0.50 0.99 0.98
Figure 17.1(d) -0.02 -0.03 -0.02
Figure 17.1(e) -0.06 -0.02 -0.02

Figure 17.1(f) 0.68 0.00 0.00

3.5 Pearson’s Contingency Coefficient

Pearson’s contingency coefficient (¢) is a measurement of association for
nominal data when they are laid out in a contingency table format. ¢ is

defined as:
X (17.4)

204 Chapter 17

where #* is the computed chi-square value (Sheskin, 2000) that measures
how far the observed frequencies deviate from the expected frequencies, and
n is the total number of observations in the contingency table. The range of ¢
is from 0 to 1, where zero indicates no association.

3.6 Statistical Tests of Correlation

After assessing the strength of association in the observations, we would like
to know whether the association in the observed samples can be generalized
to the population. For example, the relationship between blood pressures and
angiotensin gene expression levels in the 10 mice we studied may be
interesting, but are they representative of the entire mouse population?
Sometimes we rephrase this question by asking whether the results from the
observations could have occurred by chance alone, or whether some
systematic effect produced the results.

Different statistical test procedures are designed for answering this question.
Details of the test procedures of Pearson’s product-moment correlation
coefficient, Spearman’s rho, Kendall’s tau, and chi-square test can be found
in (Sheskin, 2000). They are easily accessible from any statistical package
such as S-Plus (Seattle, WA), SAS (Cary, NC), SPSS (Chicago, IL.) or R
(Thaka & Gentleman, 1996).

4. MINING ASSOCIATION RULES

In the previous section, we discussed how to statistically measure and test
the association between two variables. That approach is only applicable
when we know which two variables are of interest. In other words, we must
have a hypothesis before hand. That scenario is not always true for
microarray and other genomic studies, where we have a huge data set but
little prior knowledge of the relationship among the variables. Thus, the
methodologies from Knowledge Discovery in Databases (KDD), or data
mining, should also be discussed here. Instead of testing a specific
hypothesis of association, association rules mining algorithms discover the
intrinsic regularities in the data set.

The goal of association rules mining is to extract understandable rules
(association patterns) from a given data set. A classic example of association
rules discovery is market basket analysis. It determines which items go
together in a shopping cart at a supermarket. If we define a transaction as a
set of items purchased in a visit to a supermarket, association rules discovery
can find out which products tend to sell well together. Marketing analysts
can use these association rules to rearrange the store shelves or to design

17. Correlation and Association Analysis 295

attractive package sales, which makes market basket analysis a major
success in business applications.

4.1 Association Rules

Definition 17.1. Association Rules

Let I = {i, iy,..., in} be a set of m items. Let D be a data set of n business
“transactions” as defined above T = {ty, fy,..., &y}, where each *“transaction”
consists of a set of items such that ¢ ¢l Note, that the items in each
transaction are expressed as yes (present) or no (absent); the quantity of
items bought is not considered. The rule describing an association between
the presence of certain items is called an association rule. The general form
of an association rule is A — B, indicating “if A, then B”, where A I, B I,
and AN B = {}. A and B are item sets that can be either single items or a
combination of multiple items. A is called the rule body (also called an if-
clause) and B is the rule head (also called a then-clause). The breakdown of
transactions according to whether A and B are true are given in Table 17.4.

Table 17.4. The contingency table of transactions according to 4 and B.

Number of transactions ‘ A is present i A is absent

B is present d e
B is absent f g

The total number of transactions isn=d+f+e+ g

Definition 17.2. Support

For the association rule A — B, the support (also called coverage) is the
percentage of transactions that contain all the items in A and B. It is the joint
probability of finding all items in A and B in the same transaction.

Support = 1 .100% = number of transactions involving all items in A and B 100% (17‘ 5)
n total number of transactions

Definition 17.3. Confidence

For the association rule 4 —» B, the confidence (also called accuracy) is the
number of transactions where B occurs along with A as a percentage of all
transactions where A occurs, with or without B. It is the conditional
probability within the same transaction of finding items in B, given the fact
that the items were found in A.

Confidence = - d ; 100% = number of transactions involving all items in B and A 100% (17.6)
+

number of transactions involving all items in A

296 Chapter 17

To better understand the association rules and their measure of confidence
and support, let us consider a simple supermarket data set.

[transaction i1 = milk i, = snack = bread i 4= magazine s = butter |
4 Yes No Yes No Yes
e No Yes No Yes No
D= 1y No Yes Yes Yes No
iy Yes No No No Yes
lg: Yes No Yes No Yes
L lg: Yes No Yes No Yes |

An association rule can be presented as
{butter, milk} — {bread} (confidence: 75%, support: 50%),
where the rule body A = {butter, milk} and the rule head B = {bread}.
The contingency table for the rule body and the rule head in this example is

given shown in Table 17.5.

Table 17.5. Contingency table for the supermarket data set.

Number of transactions I A = {butter, milk} is present l A = {butter, milk} is absent

B = {bread) is present d=3 e=1
B = {bread\ is absent =1 g =1

The total number of transactions is n = 6.

This rule means that a person who buys both butter and milk is also very
likely to buy bread. As we can see from this example, support and
confidence further characterize the importance of the rule in the data set.

The support of the rule is the percentage of transactions where the
customers buy all three items: butter, milk and bread.

#4516}
#1005,)

support =

3
-100% = g -100% = 50%
(# indicates the number of elements in the set; {} indicates the set.)

A higher percentage of the support will ensure the rule applies to a
significant fraction of the records in the data set. In other words, support
indicates the relative frequency with which both the rule body and the rule
head occur in the data set.

17. Correlation and Association Analysis 297

However, support alone is not enough to measure the usefulness of the rule.
It may be the case that a considerable group of customers buy all three items,
but there is also a significant amount of people who buy butter and milk but
not bread. Thus, we need an additional measure of confidence in the rule.

In our example, the confidence is the percentage of transactions for
which bread holds, within the group of records for which butter and milk
hold. The confidence indicates to what extent the rule predicts correctly.

AUy
Hetyatgate)

3
confidence = +100% = Z -100% =75%

Both support and confidence are represented by a number from 0% to
100%. A user-defined threshold (for example, 10% for support, and 70% for
confidence) is used as a cutoff point for the mining algorithm to extract the
rules from the data set (see the next section).

4.2 Machine Learning Algorithms for Mining Association
Rules

Association rules can be discovered by the Apriori algorithm (Agrawal et al.,
1996) that involves two main steps. The first step is to find item sets whose
support exceeds a given minimum threshold, and these item sets are called
frequent item sets. The second step is to generate the rules with the
minimum confidence threshold. Mining association rules in large data sets
can be both CPU and memory-demanding (Agrawal & Shafer, 1996). For a
data set with many items, checking all the potential combinations for the
items in step one is computationally expensive, since the search space can be
very large (Hipp et al., 2000). There have been many attempts to efficiently
search the solution space by either breadth-first or depth-first algorithms.
Besides the commonly used Apriori algorithm, there are improvements such
as parallel algorithms (Agrawal and Shafer, 1996), Direct Hashing and
Pruning (DHP) (Park et al., 1997), Dynamic Itemset Counting (DIC) (Brin et
al., 1997), FP-growth (Han et al., 2000), and Eclat (Zaki et al., 1997). For a
review of different association rules mining algorithms, see Zaki (2000) and
Hipp et al. (2000) For a discussion on generalizing association rules to
handle interval data, see Han & Kamber (2001). Finding association rules is
a data mining procedure, but not in the framework of statistical testing of
associations. Silverstein et al. (1998) discussed how to utilize the chi-square
test for independency in association rules mining. Association rules mining
have been implemented in many data mining packages such as Clementine
(SPSS, Chicago, IL), PolyAnalyst (Megaputer, Bloomington, IN), and
Intelligent Miner (IBM, Armonk, NY).

298 Chapter 17

5. CAUSATION AND ASSOCIATION

It is always tempting to jump to cause-and-effect relationships when
observing an association.

In a properly designed experimental study, we should often be able to
infer causal relationships. For example, if we manipulate the expression of
gene A in animals, and then measure their blood pressure, we might be able
to establish that a high level of gene A increases blood pressure. In an
observational study, on the other hand, we have no control over the values of
the variables in the study. Instead we are only able to observe the two
variables as they occur in a natural environment. For example, we randomly
pick several mice from the population and measure their expression levels
for gene A and blood pressure. In this case, we are not able to infer the
causal relationship. It could be that gene A increases blood pressure, or the
increased level of gene A is not the cause but the consequence of increased
blood pressure.

Generally, observation of association from a stochastic process does not
warrant causal relationships among the variables. In such cases, the
hypothesis on causation may not be derived from the data itself. Thus, once
we find the associated items, we must further analyze them to determine
what exactly causes their nonrandom associations.

The explanations of association are illustrated in Figure 17.2.

Ao B A« B Figure 17.2. Mechanistic explanations
of the association between 4 and B
(2) ® could be (a) 4 causes B; (b) B causes 4;

(c) there is a common cause C for both
A and B; or, (d) there is a complex
causality relationship among 4, B, C,
and D.

C

A

A B
() (@)

w € U

For further discussion of computational methodologies to discover causal
relationships, the reader should refer to Glymour & Cooper (1999), and
Chapter 8 of this book.

6. APPLICATIONS IN MICROARRAY STUDIES

A number of supervised and unsupervised machine learning methodologies
have been applied to microarray studies. Correlation coefficients have been

17. Correlation and Association Analysis 299

the building blocks for many of these studies, including algorithms from
simple clustering to the real challenge of inferring the topology of a genetic
regulation networks.

6.1 Using Correlation Coefficients for Clustering

Clustering has been a commonly used exploratory tool for microarray data
analysis. It allows us to recognize co-expression patterns in the data set. The
goal of clustering is to put similar objects in the same group, and at the same
time, separate dissimilar objects. Correlation coefficients have been used in
many clustering algorithms as a similarity measure. For example, in the
Eisen’s Cluster program (Eisen et al., 1998), Pearson’s rho, Spearman’s rho,
and Kendall’s tau are available for hierarchical clustering.

6.2 Associating Profiles, or Associating Genes with Drug
Responses

Hughes et al. (2000) utilized Pearson’s product moment correlation
coefficient (r) to conclude that deletion mutant of CUPS and VMAS, both of
which encode components of the vacuolar H+-ATPase complex, shared very
similar microarray profiles with an » = 0.88; as a contrast, when the CUP5
mutant is compared with an unrelated mutant of MRT4, the correlation
coefficient is r = 0.09.

Correlation studies have been used as a major strategy to mine the NCI-
60 anticancer drug screening databases (Scherf et al., 2000). Readers can use
the online tools at http:/discover.nci.nih.gov/arraytools/ to correlate gene
expression with anticancer drug activities.

In Figure 17.3, we demonstrate that the anticancer activity of the drug L-
asparaginase is negatively correlated with the asparagine synthetase gene. It
corresponds with our pharmacological knowledge that L-asparaginase is an
enzyme that destroys asparagines that are required by the malignant growth
of tumor cells, whereas asparagine synthetase produced more asparagines in
the cell.

300 Chapter 17

=

[VT T T s g e

Correlation Page

L LRI T TS 2

Gezeareted Tha Jul 11 12:106:08 EBT 1003

P LIPSt ey S
wedian 10%119.0 i "L-isparuginase”

General correlation| veeer se oeiis - w©

bigdetm 3102104 Ls ~ASME"espategine syntheisse”
Afier the CelChar program by Kunt W Kolf . or ae celis « 80

Thesn wnaly ' vimnalmation lesls wa boy For all eells
tontising Please gmugil ys if youo emcoun :
fearmres. We will try 1o by rusponsiva, | Z2TTI8Eian = <0.33 m

Confidanoe incarval (PS\, Dased on Yishec's g-toensfacm) < [-0.533, -2.0
Entey pare dusa vectors fom sae or two dats

Pplmd.lphhd Bostswsg and Faher z-ocors| Pepowns ot sossl csnge [-1,1] = 23.1h.

Boscatrap INterval (9%\, pmceemtile metlod) = [-0.4977, -0.1)
First variable Boatstrap P-walem = §/2000
" Numtar s£ oRils ssed = 0
Valie |1087232 | Dng NSC
M. V198754 - thea H'SC[pt-couc For iLewkemia Call Typs

nd vartal torrelstion = -0.918 m
Copgidepce intErwal (B34, Based an Fishey's p-trenofovsy = [=0.993, -0, %%
Valee 510276 | (Ceen Olone 0 a § -
E M1240 2 -~ thas NEC B weenns of tessl cange [-t,)) 4308,
Bewtatzep imtstval (UEN; pessestile oethod) = [-0.099, -0.44]
| BunmaQeary | Bectstrap Povalse = S8/ 1000

Musber of oulle wed = §

Figure 17.3. Correlation between L-asparaginase (drug NSC ID: 109229.2) and asparagine
synthetase (gene clone ID: 510206). The negative correlation is more evident for leukemia
cell lines.

6.3 Inferring Genetic Networks

The problem of inferring a genetic network can be formulated as following:
given a data set of n genes which are the nodes in the network, and an n by m
data matrix where each row is a gene (a total of n genes) and each column is
a microarray experiment (a total of m experiments), find the network
regulatory relationships among the genes using efficient inference
procedures; ie., finding the connecting topology of the nodes. This problem
is also called reverse-engineering of the genetic network.

Inferring the genetic network from experimental data is a very difficult
task. One simplification is to assume that, if there is an association between
the two genes, then it is more likely that the two genes are connected in the
genetic network. This way, the edges that connect the nodes (ie. the
regulations between the genes) could be inferred.

Lindlof and Olsson (2002) have used the correlation coefficient to build
up the genetic network in yeast. Waddell and Kishino (2000) have explored
the possibility of constructing the genetic network using partial correlation
coefficients. All of these studies are preliminary, and they have not yet met
the expectation of experimental biologists.

17. Correlation and Association Analysis 301

6.4 Mining Association Rules from Genomic Data

As opposed to using the network metaphor, the genetic regulatory machinery
can also be expressed as a set of rules. For example, we can express the
knowledge of genes A, B and C in the following form:

{gene A, gene B} — {gene C}

to indicate if gene A and gene B are turned on, then gene C is also turned
on.

Thus, reverse engineering the genetic network can also be formulated as
deducing rule sets from data sets, where the association rules mining
algorithms are applicable.

To apply association rules mining algorithms to microarray data sets, we
can treat each microarray experiment as a transaction and each gene as an
item. However, there are problems associated with this approach. First, the
expression data have to be discretized since many mining algorithms can
only efficiently interpret discretized variables. Secondly, unlike market
basket analysis, for microarray data the number of items (genes) is much
larger than the number of transactions (microarray experiments). This
implies a huge search space when the mining algorithm tries to enumerate
the possible combinations in the item sets. For example, even only selecting
4 genes as a set from a data set containing 10,000 genes, results in
4.16 x 10" choices. Even with efficient pruning strategies, this algorithm
still requires an immense amount of CPU time and memory. Thus, it is a
novel computational challenge to apply association mining in microarray
data.

Berrar et al. (2002) discussed a strategy for discretizing the expression
values by a separability score method; as well as a strategy for feature
selection to reduce the search space for the Apriori algorithm. An application
to the NCI-60 anticancer drug screening data set was demonstrated.

Table 17.6. An example data set of 5 cell lines, 2 cancer classes, 3 genes, and 3 drugs.

Genes Drugs
Cell line #| Class | Gene X Gene Y Gene Z | Drug A Drug B Drug C
1 CNS H H H H H H
2 CNS H H H H H H
3 BR L M L L L M
4 BR H H H H H H
5 BR L L L L M L

(From Berrar et al., 2002, H, M, and L indicate high, medium and low in value, respectively.
CNS:. central nervous system; BR: breast)

302 Chapter 17

As illustrated in Table 17.6, after discretizing the numerical data into high
(H), medium (M) and low (L) values, a rule can be derived to indicate the
intrinsic regularities in this data set:

if Gene X = H and Gene Y = H and Gene_Z = H
and Drug A = H and Drug B = H and Drug C = H
then Class = CNS.

(coverage: 3/5 (60%); accuracy: 2/3 (67%))

Chen et al. (2001) applied the Apriori mining algorithm to find the
association between transcription factors and their target genes. With an ad
hoc pruning strategy before and after running the Apriori algorithm, false-
positive results are reduced.

Aussem and Petit (2002) applied function dependency inference, which is
closely related to the idea of association rules mining, to a reduced data set
of Saccharomyces cerevisiae cell cycle data. They were able to successfully
recover some of the known rules.

Berrar et al. (2001) described a case study where the general purpose
Apriori algorithm failed due to the complexity of the microarray data. A new
algorithm called the maximum association algorithm, tailored to the needs of
microarray data, was presented. Its aim is to find all sets of associations that
apply to 100% of the cases in a genetic risk group. By using this new
algorithm, Berrar et al. found that stathmin is 100% over-expressed in the
del (17p) subgroup of B-cell chronic lymphocytic leukemia, a subgroup with
a lower survival rate. Stathmin is a signaling molecule that relays and
integrates cellular messages of growth and proliferation. It was previously
found up-regulated and associated with many high-grade leukemias (Roos et
al., 1993). This rule is also of therapeutics interest, since antisense RNA
inhibition of stathmin can reverse the malignant phenotype of leukemic cells
(Jeha et al., 1996).

Association rules mining is often used as an exploratory method when
one does not know what specific patterns to look for in a large data set. The
discovered rules always deserve further analysis or experimental tests. With
the increased ability to extract rules from large data sets, efficient and user-
friendly post-processing of the rules are necessary, since many of the
discovered rules are either trivial or irrelevant (Klemettinen et al., 1994).

6.5 Assessing the Reliability and Validity of High-
Throughput Microarray Results

Correlation analysis can be used to asses the reliability and validity of
microarray measurements. By reliability we mean reproducibility. If two

17. Correlation and Association Analysis 303

microarray measurements conducted from the same sample on two occasions
are not correlated, then an error in the measurement system is indicated.
Taniguchi et al. (2001) reported that replicated DNA microarray
measurements had a Pearson correlation coefficient between 0.984 and
0.995.

In addition to determining the reliability of microarray measurements,
correlation analysis can be used to assess the validity of the measurements.
By validity, we mean the extent to which our microarray measurements
agree with another “standard” methodology. RT-PCR and Northern blots are
often considered as the conventional standards for mRNA determination. For
example, Zhou et al. (2002) utilized a Pearson correlation coefficient to
indicate their microarray results as consistent with Northern blots with an
average r = 0.86.

It is important to note that a set of measurements can be reliable without
being valid. Microarray measurements could be highly reproducible, with a
high test-retest correlation, but the measurements could turn out to be
systematically biased. For example, Taniguchi et al. (2001) suggested that

the sensitivity of the DNA microarrays was slightly inferior to that of
Northern blot analyses.

6.6 Conclusions

Correlation coefficients provide a numerical measurement of the association
between two variables. They can be used to determine the similarly between
two objects when they are merged into a cluster; to assess the association
between two gene expression profiles; to establish a connection between two
genes in a genetic network; or to asses the agreement between two
experimental methodologies.

Mining association rules for microarray data are a novel research
challenge. In terms of feasibility, they might require a considerable amount
of CPU time and computer memory. In reality, they potentially generate too
many trivial or irrelevant rules for biological usefulness. In addition, some
established algorithms for market basket analysis do not satisfy the challenge
of microarray data (Berrar et al.,, 2001). However, as an exploratory data
analysis tool, the association rules mining technique provides new insights
into finding the regularities in large data sets. We expect much more
research in this area.

304 Chapter 17

ACKNOWLEDGEMENTS

The authors thank Jennifer Shoemaker and Patrick McConnell for valuable
discussions.

REFERENCES

Agrawal R., Mannila H., Srikant R., Toivonen H., and Verkamo. 1. C. (1996). Fast discovery
of association rules. In "Advances in knowledge discovery and data mining" (U. M.
Fayyad, Ed.), pp. 307-328, AAAI Press : MIT Press, Menlo Park, CA.

Agrawal R., and Shafer J. C. (1996). Parallel mining of association rules. IEEE Transactions
on Knowledge and Data Engineering 8: 962-969.

Aussem A., and Petit J.-M. (2002). Epsilon-functional dependency inference: application to
DNA microarray expression data. In Proceedings of BDA'02 (French Database
Conference), Evry, France.

Berrar D., Dubitzky W., Granzow M., and Eils R. (2002). Analysis of Gene Expression and
Drug Activity Data by Knowledge-based Association Mining. In Proceedings of CAMDA
02, Durham, NC, http://www.camda.duke.edu/CAMDAO1/papers.asp.

Berrar D., Granzow M., Dubitzky W., Stilgenbauer S., Wilgenbus, K. D. H., Lichter P., and
R. E. (2001). New Insights in Clinical Impact of Molecular Genetic Data by Knowledge-

driven Data Mining. In Proc. 2nd Intl Conference on Systems Biology, pp. 275-281,
Omnipress.

Brin S., Motwani R., Ullman J. D., and Tsur S. (1997). Dynamic itemset counting and
implication rules for market basket data. In "IGMOD Record (ACM Special Interest
Group on Management of Data).

Chang J.-H., Hwang K.-B., and Zhang B.-T. (2002). Analysis of Gene Expression Profiles
and Drug Activity Patterns by Clustering and Bayesian Network Learning. In Methods of
microarray data analysis I (S. M. Lin, and K. F. Johnson, Eds.), Kluwer Academic
Publishers.

Chen R., Jiang Q., Yuan H., and Gruenwald L. (2001). Mining association rules in analysis of
transcription factors essential to gene expressions. In Proceedings of CBGIST 2001,
Durham, NC.

Eisen M. B., Spellman P. T., Brown P. O., and Botstein D. (1998). Cluster analysis and
display of genome-wide expression patterns, Proc Natl Acad Sci USA 95:14863-8.

Glymour C. N., and Cooper G. F. (1999). Computation, causation, and discovery. MIT Press,
Cambridge, Mass.

Han J., and Kamber M. (2001). Data mining: concepts and techniques. Morgan Kaufmann
Publishers, San Francisco.

Han I, Pei J., and Yin Y., (2000). Mining frequent patterns without candidate generation. In
ACM SIGMOD Intl. Conference on Management of Data, ACM Press.

Hipp J., Guntzer U., and Nakaeizadeh G. (2000). Algorithms for Association Rule Mining - A

General Survey and Comparison. In Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Hughes T. R., Marton M.], Jones A. R., Roberts C. J., Stoughton R., Armour C. D., Bennett

H. A., Coffey E., Dai H., He Y. D., Kidd M. J., King A. M., Meyer M. R., Slade D., Lum
P. Y., Stepaniants S. B., Shoemaker D. D., Gachotte D., Chakraburtty K., Simon J., Bard

17. Correlation and Association Analysis 305

M., and Friend S. H. (2000). Functional discovery via a compendium of expression
profiles. Cell 102: 109-26.

Thaka R., and Gentleman R. (1996). R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5:299-314.

Jeha S., Luo X. N., Beran M., Kantarjian H., and Atweh G. F. (1996). Antisense RNA
inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of
leukemic cells. Cancer Res 56:1445-50.

Klemettinen M., Mannila H., Ronkainen P., Toivonen H., and Verkamo A. L (1994). Finding
interesting rules from large sets of discovered association rules. In Third International
Conference on Information and Knowledge Management (CIKM' 94), pp. 401-407, ACM
Press.

Lindlof A., and Olsson B. (2002). Could correlation-based methods be used to derive genetic
association networks? In Proceedings of the 6th Joint Conference on Information Sciences,
pp- 1237-1242, Association for Intelligent Machinery, RTP, NC.

Park J. S., Chen M. S., and Yu P. S. (1997). Using a hash-based method with transaction
trimming for mining association rules. IEEE Transactions on Knowledge and Data
Engineering 9:813-825.

Roos G., Brattsand G., Landberg G., Marklund U., and Gullberg M. (1993). Expression of
oncoprotein 18 in human leukemias and lymphomas. Leukemia 7:1538-46.

ScherfU., Ross D. T., Waltham M., Smith L. H., Lee J. K., Tanabe L., Kohn K. W., Reinhold
W. C, Myers T. G., Andrews D. T., Scudiero D. A., Eisen M. B., Sausville E. A.,
Pommier Y., Botstein D., Brown P. O., and Weinstein J. N. (2000), A gene expression
database for the molecular pharmacology of cancer. Nat Genet 24:236-44.

Sheskin D. (2000). Handbook of parametric and nonparametric statistical procedures.
Chapman & Hall/CRC, Boca Raton.

Siegel S., and Castellan N. J. (1988). Nonparametric statistics for the behavioral sciences,
McGraw-Hill, New York.

Silverstein C., Brin S., and Motwani R. (1998). Beyond market baskets: Generalizing
association rules to dependence rules. Data Mining and Knowledge Discovery 2:39-68.
Taniguchi M., Miura K., Iwao H., and Yamanaka S. (2001). Quantitative assessment of DNA

microarrays — comparison with Northern blot analyses. Genomics 71:34-9.

Waddell P.], and Kishino H. (2000). Cluster inference methods and graphical models

evaluated on NCI60 microarray gene expression data. Genome Inform Ser Workshop
Genome Inform 11:12940.

Zaki M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12:372-390.

Zaki M. J., Parthasarathy S., Ogihara M., and Li W. (1997). New algorithms for fast
discovery of association rules. In Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining (KDD-97).

Zhou Y., Gwadry F. G., Reinhold W. C., Miller L. D., Smith L. H., Scherf U., Liu E. T.,
Kohn K. W., Pommier Y., and Weinstein J. N. (2002). Transcriptional regulation of

mitotic genes by camptothecin-induced DNA damage: microarray analysis of dose- and
time-dependent effects. Cancer Res 62:1688-95.

Chapter 18

GLOBAL FUNCTIONAL PROFILING OF GENE
EXPRESSION DATA

Sorin Draghici1 and Stephen A. Krawetz”

1Dept. of Computer Science, Karmanos Cancer Institute and the Institute for Scientific
Computing, Wayne State University, 431 State Hall, Detroit, MI, 48202
e-mail: sod@cs.wayne.edu

2Dept. of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, and the
Institute for Scientific Computing, Wayne State University
e-mail: steve @compbio.med.wayne.edu

1. CHALLENGES IN TODAY’S BIOLOGICAL
RESEARCH

Molecular biology and genetics are currently at the center of an
informational revolution. The data gathering capabilities have greatly
surpassed the data analysis techniques. If we were to imagine the Holy Grail
of life sciences, we might envision a technology that would allow us to fully
understand the data at the speed at which it is collected. Sequencing,
localization of new genes, functional assignment, pathway elucidation, and
understanding the regulatory mechanisms of the cell and organism should be
seamless. Ideally, we would like knowledge manipulation to become
tomorrow the way goods manufacturing is today: high automatization
producing more goods, of higher quality and in a more cost effective manner
than manual production. In a sense, knowledge manipulation is now
reaching the pre-industrial age. Our farms of sequencing machines and
legions of robotic arrayers can now produce massive amounts of data but
using it to manufacture highly processed pieces of knowledge still requires
skilled masters painstakingly forging through small pieces of raw data one at
a time. The ultimate goal is to automate this knowledge discovery process.

Data collection is easy, data interpretation is difficult. Typical examples
of high-throughput techniques able to produce data at a phenomenal rate

18. Global Functional Profiling of Gene Expression Data 307

include shotgun sequencing (Bankier, 2001; Venter et al., 2001) and gene
expression microarrays (Lockhart et al., 1996; Schena et al., 1995; Shalon et
al., 1996). Researchers in structural genomics have at their disposal
sequencing machines able to determine the sequence of approximately 100
samples every 3 hours (see for instance the ABI 3700 DNA analyzer from
Applied Biosystems). The machines can be set up to work in a continuous
flow which means data can be produced at a theoretical rate of approx. 800
sequences per day per machine. Considering a typical length of a sequence
segment of about 500 base pairs, it follows that one machine alone can
sequence approximately 400,000 nucleotides per day. This enormous
throughput enabled impressive accomplishments such as the sequencing of
the human genome (Lander et al., 2001; Venter et al., 2001). Recent
estimates indicate there are 306 prokaryotic and 195 eukaryotic genome
projects currently being undertaken in addition to 93 published complete
genomes (Bernal et al., 2001). Currently, our understanding of the role
played by various genes seems to be lagging far behind their sequencing.
The yeast is an illustrative example. Although the 6,600 genes of its genome
have been known since 1997, only approximately 40% of them have known
or inferred functions.

A second widely used high-throughput genomic technique is the DNA
microarray technology (Fisen et al., 1998; Golub et al., 1999; Lockhart et al.,
1996; Schena et al.,, 1995). In its most general form, the DNA array is a
substrate (nylon membrane, glass or plastic) on which DNA is deposited in
localized regions arranged in a regular, grid-like pattern. The DNA array is
subsequently probed with complementary DNA (cDNA) obtained by reverse
transcriptase reaction from the mRNA extracted from a tissue sample. This
DNA is fluorescently labeled with a dye and a subsequent illumination with
an appropriate source of light will provide an image of the array.
(Alternative detection techniques include using radioactive labels.) After an
image processing step is completed, the result is a large number of
expression values. Typically, one DNA chip will provide expression values
for thousands of genes. For instance, the recently released Affymetrix chip
HGU133A contains 22,283 genes. A typical experiment will involve several
chips and generate hundreds of thousands of numerical values in a few days.

The continuous use of such high-throughput data collection techniques
over the years has produced a large amount of heterogeneous data. Many
types of genetic data (sequence, protein, EST, etc.) are stored in many
different databases. The existing data is neither perfect nor complete, but
reliable information can be extracted from it. The first challenge faced by
today’s researchers is to develop effective ways of analyzing the huge amount
of data that has been and will continue to be collected (Fisenberg et al.,
2000; Lockhart et al., 2000; Vukmirovic et al., 2000). In other words, there

308 Chapter 18

is a need for global, high-throughput data analysis techniques able to keep
pace with the available high throughput data collection techniques.

The second challenge focuses on the type of discoveries we should be
seeking. The current frontiers of knowledge span two orthogonal directions.
Vertically, there are different levels of abstractions such as genes, pathways
and organisms. Horizontally, at each level of abstraction there are known,
hypothesized and unknown entities. For instance, at the gene level, there are
genes with a known function, genes with an inferred function, genes with an
unknown function and completely unknown genes. In any given pathway,
there are known interactions, inferred interactions and completely unknown
interactions. However, the vertical connections between the levels are, in
many cases, limited to the membership relationships of genes associated to
knownpathways.

Most available techniques focus on the horizontal direction, trying to
expand the knowledge frontier from known entities to unknown entities or
trying to individuate the specific entities involved in a given condition. For
instance, there are very many approaches to identifying the genes that are
differentially expressed in a specific condition. Such techniques include
fold-change (DeRisi, 1997; ter Linde et al, 1999; Wellmann et al., 2000),
unusual ratio (Tao et al, 1999; Schena et al., 1995; Schena et al., 1996),
ANOVA (Aharoni et al., 1975; Brazma et al., 2000; Draghici et al., 2001;
Draghici et al., 2002; Kerr et al., 2000; Kerr and Churchill, 2001a; Kerr and
Churchill, 2001b), model based maximum likelihood (Chen et al., 1997; Lee
et al, 2000; Sapir et al., 2000), hierarchical models (Newton et al., 2001),
univariate statistical tests (Audic and Claverie, 1997; Claverie et al., 1999;
Dudoit et al., 2000), clustering (Aach et al., 2000; Ewing et al., 1999; Heyer
et al., 1999; Proteome, 2002; Tsoka et al., 2000; van Helden et al., 2000; Zhu
and Zhang, 2000), principal component analysis (Eisen et al., 1998;
Hilsenbeck et al, 1999; Raychaudhuri et al, 2000), singular value
decomposition (Alter et al, 2000), independent component analysis
(Liebermeister, 2001), and gene shaving (Hastie et al., 2000). However, the
task of establishing vertical relationships, such as translating sets of
differentially regulated genes into an understanding of the complex
interactions that take place at pathway level, is much more difficult.
Although such techniques have started to appear (e.g., inferring gene
networks (DeRisi et al., 1997; D haeseleer et al., 2000; Roberts et al., 2000;
Wu et al., 2002), function prediction (Fleischmann et al, 1999; Gavin et al.,
2002; Kretschmann et al., 2001; Wu et al, 2002), etc.), this approach is
substantially more difficult. Thus, the second challenge is to establish
advanced methods and techniques able to make such vertical inferences or at
least to propose such potential inferences for human validation. In other

18. Global Functional Profiling of Gene Expression Data 309

words, the challenge is to extract system level information from component
level data (Ideker et al., 2001).

2, FUNCTIONAL INTERPRETATION OF HIGH-
THROUGHPUT GENE EXPRESSION
EXPERIMENTS

Microarrays enable the simultaneous interrogation of thousands of genes.
Using such tools, researchers often aim at constructing gene expression
profiles that characterize various pathological conditions such as cancer
(Golub et al., 1999; Perou et al., 2000; van’t Veer et al., 2002). Various
technologies, such as cDNA and oligonucleotide arrays, are now available
together with a plethora of methods for analyzing the expression data
produced by the chips. Independent of the platform and the analysis methods
used, the result of a microarray experiment is, in most cases, a list of genes
found to be differentially expressed between two or more conditions under
study. The challenge faced by the researcher is to translate this list of
differentially regulated genes into a better understanding of the underlying
biological phenomena. The translation from a list of differentially expressed
genes to a functional profile able to offer insight into the cellular
mechanisms is a very tedious task if performed manually. Typically, one
would take each accession number corresponding to a regulated gene, search
various public databases and compile a list with, for instance, the biological
processes that the gene is involved in. This task can be performed
repeatedly, for each gene, in order to construct a master list of all biological
processes in which at least one gene was involved. Further processing of this
list can provide a list of those biological processes that are common between
several of the regulated genes. It is expected that those biological processes
that occur more frequently in this list would be more relevant to the
condition studied. The same type of analysis could be carried out for other
functional categories such as biochemical function, cellular role, etc.

3. FUNCTIONAL PROFILING WITH ONTO-
EXPRESS

Onto-Express (OE) is a tool designed to facilitate this process. This is
accomplished by mining known data and compiling a functional profile of
the experiment under study. OE constructs a functional profile for each of
the Gene Ontology (GO) categories (Ashburner et al., 2000): cellular
component, biological process and molecular function as well as
biochemical function and cellular role, as defined by Proteome (Proteome,
2002). The precise definitions for these categories and the other terms used

310 Chapter I8

in OF’s output can be found in GO (Ashburner et al., 2000). As biological
processes can be regulated within a local chromosomal region (e.g.
imprinting), an additional profile is constructed for the chromosome
location. OE uses a database with a proprietary schema implemented and
maintained in our laboratory (Draghici and Khatri, 2002). We use data from
GenBank, UniGene, LocusLink, PubMed, and Proteome.

The current version of Onto-Express is implemented as a typical 3-tier
architecture. The back-end is a relational DB implemented in Oracle 9i and
running on a SunFire V880, 4CPUs, 8 GB RAM, 200GB accessing a 500
GB RAID array and tape jukebox backup. The application performing the
data mining and statistical analysis is written in Java and runs on a separate
server (Dell PowerEdge). The front end is a Java applet served by a
Tomcat/Apache web server running on a Sun Fire V100 web server
appliance.

OF’s input is a list of genes found to be regulated in a specific condition.
Such a list may be constructed using any technology: microarrays, SAGE,
Westerns blots (e.g., high throughput PowerBlots (Biosciences, 2002)),
Northerns blots, etc. This is why the utility of this application goes well
beyond the needs of microarray users. At present, our database includes the
human and mouse genomes.

The input of Onto-Express is a list of genes specified by either accession
number, Affymetrix probe IDs or UniGene cluster IDs. At present, the Onto-
Express database contains human and mouse data. More organisms will be
added, as more annotation data becomes available. A particular functional
category can be assigned to a gene based on specific experimental evidence
or by theoretical inference (e.g., similarity with a protein having a known
function). Onto-Express explicitly shows how many genes in a category are
supported by experimental evidence (labelled with “experimented”) and how
many are predicted (“predicted”). Those genes for which it is not known
whether they were assigned to the given functional category based on a
prediction or experimental evidence are reported as “non-recorded”. The
results are provided in graphical form and emailed to the user on request. By
default, the functional categories are sorted in decreasing order of number of
genes as shown in Figure 18.1. The functional categories can also be sorted
by confidence (see details about the computation of the p-valuesbelow) with
the exception of the results for chromosomes where the chromosomes are
always displayed in their order. There is one graph for each of the
biochemical function, biological process, cellular role, cellular component
and molecular function categories. A specific graph can be requested by
choosing the desired category from the pull-down menu and subsequently
clicking the “Draw graph” button. Clicking on a category displays a hyper-
linked list of the genes in that category. The list contains the UniGene cluster

18. Global Functional Profiling of Gene Expression Data 311

IDs uniquely identifying the genes. Clicking on a specific gene provides
more information about that gene.

The following example will illustrate OE’s functionality. Let us consider
an array containing 1,000 genes used to investigate the effect of a substance
X. Using classical statistical and data analysis methods we decide that 100 of
these genes are differentially regulated by substance X. Let us assume that
the 100 differentially regulated genes are involved in the following
biological processes: 80 of the 100 genes are involved in positive control of
cell proliferation, 40 in oncogenesis, 30 in mitosis and 20 in glucose
transport. These results are tremendously useful since they save the
researcher the inordinate amount of effort required to go through each of the
100 genes, compile lists with all the biological processes and then cross-
compare those biological processes to determine how many genes are in
each process (Khatri et al., 2002). In comparison, a manual extraction of this

information would literally take several weeks and would be less reliable and
less rigorous.

Be (2 v Tpoiem Ina b q
At [e rcten 2 g o L ke b e B
- ST T T e
[e—— A | [R—— Gallular Compenang
- s 1 il Te i L 4
- e T DTl 1] o Pl o8 T 1 Tty -

o pasna ey g P

ez

m—— R R S
- Rt

L R P e L e] |

b — ——— — Pt tmam Pmaar e ke Man ke €
A v mtn s " —

- T TN ¢ -

e e
p— 3
saem R e atis S Paste) sttt 8 S dnds |

. B Semmnt |

p— i Pt (e imel gt b Sapme b “ b h h D
y — — -

= e

ae

P T L L L

ey

e - e gty g Patitnsd Covied (0 8 Laow) Acrm e Mesmber
rmm B oo, st Semtea) Rl T
e r— W potasomms. P, Eopomanrt . Sen] i 33

S o Helpmr e

1 e et gt e s Ponin et Beyed oy (U B
1
1 == B L e N
1
Ll
'

T T —————— T ST
—— e P gy Lepine et Ban Sniednd MY !, ALm

re (1 ' " LY

—————— - . . Ay =

i P [—————. | Cpiin T 0 Nz aon

Arulien rany i SAgETRE - e AR s PRt Ry i del. M A

'_’I '- o L Bee Bacnnne=] P Rt wuslrts gruluin PG
(L] - .

—
&] | Pan vt et 3 e
Shdh Rt SO neiom rimve ¢ P e Poma e et W00 Sacain Homaotone. 3 ' 140

Figure 18.1, The main features of the Onto-Express output. The functional categories can be
sorted by number of genes (shown) or by p-values (with the exception of the results for
chromosomes where the chromosome are displayed in their order). Requesting a specific

graph is done by choosing the desired category from the pull-down menu and subsequently
clicking on “Draw graph”.

The large number of genes involved in cell proliferation, oncogenesis and
mitosis in the functional profile above, might suggest substance X affects a

312 Chapter 18

cancer pathway. However, a reasonable question is: what would happen if all
genes on the array were involved in cell proliferation?

Would the presence of cell proliferation at the top of the list be
significant? Clearly, the answer is no. If most or all genes on the array are
involved in a certain process, then the fact that that particular process
appears at the top is not significant. To correct this, the current version of the
software allows the user to specify the array type used in the microarray
experiment. Based on the genes present on this array, OE calculates the
expected number of occurrences of a certain category.

Now, the data mining results are as in Table 18.1 and the interpretation of
the functional profile appears to be completely different.

Table 18.1, Statistical significance. The number of genes involved in a given biological
process can be misleading on its own. In this example, positive control of cell proliferation
may appear to be the most important biological process affected since 80 of the 100
differentially regulated genes are involved in it. However, this process loses its significance
when placed in the context that 800 of the 1,000 genes on the chip are involved in positive
control of cell proliferation.

genes
biological process found expected
positive control of cell proliferation 80 80 not significant
oncogenesis 40 40 not significant
mitosis 30 10 significant
glucose transport 20 5 highly significant

There are indeed 80 cell proliferation genes but in spite of this being the
largest number, we actually expected 80 such genes so this is not significant.
The same holds true for oncogenesis. The mitosis starts to be interesting
because we expected 10 genes and we observed 30, which is 3 times more
than expected. However, the most interesting is the glucose transport. We
expected only 5 genes and we observed 20, i.e. 4 times more than expected.
The emerging picture changes radically: instead of generating the hypothesis
that substance X is a potential carcinogen, we may consider the hypothesis
that X is correlated with diabetes.

The problem is that an event such as observing 30 genes when we expect
10 can still occur just by chance. The next section explains how the
significance of these categories is calculated based on their frequency of
occurrence in the initial set of genes M, the total number of genes N, the
frequency of occurrence in the list of differentially regulated genes x and the
number of such differentially regulated genes K. The statistical confidence
thus calculated, will allow us to distinguish between significant events and
possibly random events.

18. Global Functional Profiling of Gene Expression Data 313

3.1 Statistical Approaches

Several different statistical approaches can be used to calculate a p-value for
each functional category F. Let us consider there are N genes on the chip
used. Any given gene is either in category F or not. In other words, the N
genes are of two categories: F and non-F (NF). This is similar to having an
urn filled with N balls of two colors such as red (F) and green (not in F). M
of these balls are red and N - M are green. The researcher uses their choice of
data analysis methods to select which genes are regulated in their
experiments. Let us assume that they picked a subset of K genes. We find
that x of these K genes are red and we want to determine the probability of
this happening by chance.

So, our problem is; given N balls (genes) of which M are red and N- M
are green, we pick randomly K balls and we ask what is the probability of
having picked exactly x red balls. This is sampling without replacement
because once we pick a gene from the chip, we cannot pick it again.

The probability that a category occurs exactly x times just by chance in
the list of differentially regulated genes is appropriately modeled by a
hypergeometric distribution with parameters (N, M, K) (Casella, 2002):

x K-x

1))
P(X =x|N,M,K)=~2>—= (18.1)
N
"
Based on this, the probability of having x or fewer genes in F can be

calculated by summing the probabilities of picking 1 or 2 or ... orx- 1 orx
genes of category F (Tavazoie et al., 1999):

o (1))

p,=P(X =D)+P(X=2)+..+ P(X =x)= Y LA~ (18.2)
m N
= [

This corresponds to a one-sided test in which small p-values correspond
to under-represented categories. The p-value for over-represented categories
can be calculated as p, = 1 - p, when p, > 0.5.

The hypergeometric distribution is difficult to calculate when the number
of genes is large (e.g., arrays such as Affymetrix HGU133A contain 22,283
genes). However, when N is large, the hypergeometric distribution tends to
the binomial distribution (Casella, 2002). A similar approach was used by

Cho et al. to discern whether hierarchical clusters were enriched in specific
functional categories (Cho et al., 2001).

314 Chapter 18

If a binomial distribution is used, the probability of having x genes in F in a
set of K randomly picked genes is given by the classical formula of the
binomial probability in which the probability of extracting a gene from F is
estimated by the ratio of genes in F present on the chip M/N and the
corresponding p-value can be respectively calculated as:

P(X = x| K,M/IN) =(1§ J(%M1 -%J B (18.3)

s (K M:1 MO
=5 W-5) o

The main difference between the binomial and hypergeometric
distributions is that the binomial models a sampling with replacement. Thus,
selecting a gene involved in F should not influence the probability of
selecting another gene involved in F. However, in our experiments, we do
sampling without replacement since when a gene is picked, we cannot pick it
again and the set of unpicked genes in F is reduced by one, thus changing
the probability of future picks from F. Because of this, the two distributions
behave a bit differently. For example, one cannot use the hypergeometric to
calculate the probability of having x > M genes since this would be
equivalent to picking more F genes than there are on the microarray.
However, the expression of the binomial probability density function will
still provide a meaningful probability since in sampling with replacement
one gene can be picked more than once and it is possible to pick more F
genes than present on the microarray. However, the expression of the
binomial probability density function will still provide a meaningful
probability since in sampling with replacement one gene can be picked more
than once and it is possible to pick more F genes than present on the
microarray. Unfortunately, the computation of the hypergeometric
distribution is not feasible for lists longer than K > 150 genes. However, for
such large values, the hypergeometric distribution tends to behave like a
binomial. In consequence, the binomial formula in Equation 18.3 can be
used to compute the p-values.

Alternative approaches include a Chi-square test for equality of
proportions (Fisher and van Belle, 1993) and Fisher’s exact test (Man et al.,
2000). For the purpose of applying these tests, the data can be organized as
shown in Table 18.2. The dot notation for an index is used to represent the
summation on that index.

and

18. Global Functional Profiling of Gene Expression Data 315

In this notation, the number of genes on the microarray is N=N,, the
number of genes in functional category F is M = n,;, the number of genes
selected as differentially regulated is K= N, and the number of differentially
regulated genes in F is x = njp. Using this notation, the Chi-square test
involves calculating the value of the y* statistics as follows:

2
2 N..(‘"n"zz — gy "dz“)

X = N N,N N, (18.5)

where —";— in the numerator is a continuity correction term that can be
omitted for large samples (Glover and Mitchell, 2002). The value thus
calculated can be compared with critical values obtained from a
distribution with df = (2 — 1)(2 — 1) = 1 degree of freedom.

However, the 2 test for equality of proportion cannot be used for small
samples. The rule of thumb is that all expected frequencies:
E,=(N,-N,)/N_ should be greater than or equal to 5 for the test to
provide valid conclusions. If this is not the case, Fisher’s exact test can be
used instead (Fisher and van Belle, 1993; Kennedy et al., 1981). Fisher’s
exact test considers the row and column totals Ny, N>, N, N, fixed and uses
the hypergeometric distribution to calculate the probability of observing each
individual table combination as follows:

_ NIN,I-NJYNY!
Ntnln,tnglong,!

(18.6)

Table 18.2. The significance of a particular functional category F can be calculated using a
2x2 contingency table and a Chi-square or Fisher’s exact test for equality of proportions. The
N genes on a chip can be divided into genes that are involved in the functional category of
interest F (ny, =M) and genes that are not involved in F (ny). The K genes found to be
differentially regulated can also be divided into genes involved (1, =x) and not involved
(nn) inF,

Genes on chip Diff. regulated genes

2

having function F n ma N, =3 om,
=

not having F Ay An Ny =D m,
I

N = Zn" ¥,= Zn,, N = ;""
#u]

Using this formula, one can calculate a table containing all the possible
combinations of »nyjnana .

316 Chapter 18

The p-value corresponding to a particular occurrence is calculated as the sum
of all probabilities in this table lower than the observed probability
corresponding to the observed combination (Man et al., 2000).

Finally, Audic and Claverie (1997) have used a Poisson distribution and a
Bayesian approach to calculate the probability of observing a given number
of tags in SAGE data. As noted by Man et al. (2000), this approach can be
used directly to calculate the probability of observing ma genes of a certain
functional category F in the selected subset given that there are 71 such
genes on the microarray:

P(n,, |nn)=(ivi] ' (”u +n12)! (18.7)

N) Ny iy +l
1) mbml (144

t

The p-values are calculated as a cumulative probability density function
(cdf) as follows (Audic and Claverie, 1997; Man et al., 2000):

p=min {“2 Pk m), 3 PGk | n”)} (18.8)

Extensive simulations performed by Man et al. compared the Chi-square
test for equality of proportions with Fisher’s exact test and Audic and
Claverie’s test and showed that the Chi-square test has the best power and
robustness (Man et al., 2000).

Onto-Express provides implementations of the 4 test, Fisher’s exact test
as well as the binomial test. Fisher’s exact test is required when the sample
size is small and the chi-square test cannot be used. For a typical microarray
experimentwith N =10,000 genes on the chip and K =100=1%N selected
genes, the binomial approximates very well the hypergeometric and is used
instead. For small, custom microarrays (fewer than 200 genes), the f is
used. The program calculates automatically the expected values and uses
Fisher’s exact test when Zz becomes unreliable (expected values less than 5).
Thus, the choice between the three different models is automatic, requiring
no statistical knowledgefrom the end-user.

We did not implement Audic and Claverie’s test because: i) it has been
shown that ;(2 is at least as good (Man et al., 2000), and ii) while very
appropriate for the original problem involving ESTs, the use of a Poisson
distribution may be questionable for our problem.

The exact biological meaning of the calculated p-values depends on the
list of genes submitted as input. For example, if the list contains genes that
are upregulated and mitosis appears more often than expected,

18. Global Functional Profiling of Gene Expression Data 317

the conclusion may be that the condition under study stimulates mitosis (or
more generally, cell proliferation) in a statistically significant way. If the list
contains genes that are downregulated and mitosis appears more often than
expected (exactly as before), then the conclusion may be that the condition
significantly inhibits mitosis.

4. DISCUSSION

Onto-Express has been applied to a number of publicly available data sets.
For example, a microarray strategy was recently used by van ‘t Veer et al. to
identify 70 genes that can be used as a predictor of clinical out- come for
breast cancer (van’t Veer et al., 2002). A subsequent analysis revealed that
several key mechanisms such as cell cycle, cell invasion, metastasis,
angiogenesis and signal transduction genes were significantly upregulated in
cases of breast cancer with poor prognosis. However, as shown below, a
comprehensive global analysis of the functional role associated with the
differentially regulated genes has revealed novel biological mechanisms
involved in breast cancer. Using the global strategy provided by Onto-
Express the 231 genes significantly correlated with breast cancer prognosis
were categorized into 102 different biological processes. Seventy-two of
these groups had significant p-values (p < 0:05). Ofthese 72 groups, only 17
are represented by two or more members of the same biological pathway.
These encompass most of the processes postulated to be indicative of poor
prognosis including cell cycle, cell invasion, metastasis, and signal
transduction (van’t Veer et al., 2002). Interestingly, angiogenesis, cell cycle
control, cell proliferation, and oncogenesis, are not significantly represented
(p > 0:05) but a host of novel pathways were identified. These included
protein phosphorylation, a common cellular response to growth factor
stimulation and anti-apoptosis (apoptosis = programmed cell death). Both
are believed to be intimately linked, acting to preserve homeostasis and
developmental morphogenesis. Clearly, these processes can impact cancer.
This data is used as a sample data set at: http://vortex.cs.wayne.edu. We
invite the readers to login and use Onto-Express to analyze the data
themselves in the light of the information provided in (van’t Veer et al.,
2002).

4.1 Utility, Need, and Impact

A tool such as Onto-Express can be used in two different ways. Many
microarray users embark upon ‘“hypotheses generating experiments” in
which the goal is to find subsets of genes differentially regulated in a given
condition. In this context, Onto-Express can be used to analyze and interpret
the results of the experiment in a rigorous statistical manner (see section 3).

318 Chapter 18

However, another major application is in experiment design. An alternative
to the “hypotheses generating experiments” is the ‘“hypothesis driven
experiments” in which one first constructs a hypothesis about the
phenomenon under study and then performs directed experiments to test the
hypothesis. Currently, no two chips offer exactly the same set of genes.
There is a natural tendency to select the chip with the most genes but this
may not necessarily be the best choice and certainly, not the most cost
effective. When a hypothesis of a certain mechanism does exist, we argue
that one should use the chip(s) that best represent the corresponding
pathways. Onto-Express can suggest the best chip or set of chips to be used
to test a given hypothesis. This can be accomplished by analyzing the list of
genes on all existing arrays and providing information about the pathways
and biological mechanisms covered by the genes on each chip. If chip A
contains 10,000 genes but only 80 are related to a given pathway and chip B
contains only 400 genes but 200 of them are related to the pathway of
interest, the experiment may provide more information if performed with
chip B instead of A. This can also translate into significant cost savings.

An early version of Onto-Express was first made available in February
2002 (Khatri et al., 2002). In the period February-June, our user base grew to
590 valid registered users from 47 countries. The web traffic analysis shows
a daily average of 74.28 page views by 18.28 unique visitors (including the
weekend). Onto-Express has also been mentioned in several news articles
(Janssen, 2002; Tracy, 2002; Uehling, 2002). Version 1 of Onto-Express is
available free of charge at: http://vortex.cs.wayne.edu. This version
constructs functional profiles for the cellular role, cellular component,
biological process and molecular function as well as biochemical function
and chromosome location. Version 2 of Onto-Express adds the computation
of the statistical significance of the results.

4.2 Other Related Work and Resources

A tremendous amount of genetic data is available on-line from several public
databases (DBs). NCBI provides sequence, protein, structure and genome
DBs, as well a taxonomy and a literature DB. Of particular interest are
UniGene (non-redundant set of gene-oriented clusters) and LocusLink
(genetic loci). SWISS-PROT is a curated protein sequence DB that provides
high-level annotation and a minimal level of redundancy (Bairoch and
Apweiler, 2000). Kyoto Encyclopedia of Genes and Genomes (KEGG)
contains a gene catalogue (annotated sequences), a pathway DB containing a
graphical representation of cellular processes and a LIGAND DB (Kanehisa
and Goto, 2000; Kanehisa et al., 2000; Ogata et al., 1999).

18. Global Functional Profiling of Gene Expression Data 319

GenMAPP is an application that allows the user to create and store pathways
in a graphic format, includes a multiple species gene database and allows a
mapping of a user’s expression data on existing pathways (Dahlquist et al.,
2002). Other related databases and on-line tools include; PathDB (metabolic
networks) (Waugh et al., 2000), GeneX (NCGR) (source independent
microarray data DB; Mangalam et al., 2001), Arrayexpress (EBIL, 2001a),
SAGEmap (Lash et al., 2000), u#Array (EBI, 2001a), ArrayDB (NHGRI,
2001), ExpressDB (Aach et al., 2000), and Stanford Microarray Database
(Sherlock et al., 2001; Stanford, 2001). Two meta-sites containing
information about various genomic and microarray on-line DBs are (Shi,
2001) and (CNRS, 2001).

Data format standardization is necessary in order to automate data
processing (Brazma, 2001). The Microarray Gene Expression Data Group
(MGED) is working to standardize the Minimum Information About a
Microarray Experiment (MIAME), the format (MAGE) and ontologies and
normalization procedures related to microarray data (Brazma et al., 2001;
EBI, 2001b). Of particular interest is the Gene Ontology (GO) effort which
aims to produce a dynamic, controlled vocabulary that can be applied to all
organisms even as knowledge of gene and protein roles in cells is
accumulating and changing (Ashburner et al., 2000; Ashburner et al., 2001).
Expression profiles of genes across tissues can be obtained with tissue
microarrays (Kononen et al., 1998; Bubendorfet al., 1999a; Bubendorf et al.,
1999b; Schraml et al., 1999;Sallinen et al., 2000; Moch et al., 2001; Nocito
et al., 2001a; Nocito et al., 2001b; mousses et al., 2002). Other techniques
allowing a high-throughput screening includes the Serial Analysis of Gene
Expression (SAGE) (Velculescu et al., 1995) and PowerBlots (Biosciences,
2002). Although such techniques have very high throughput when compared
with techniques such as Northern blots or RT-PCR, they still require a
considerable amount of laboratory effort. Data mining of the human dbEST
has been used previously to determine tissue gene expression profiles
(Bortoluzzi et al., 2000; Hishiki et al., 2000; Hwang et al., 2000; Sese et al.,
2001; Vasmatzis et al., 1995).

S. CONCLUSION

In contrast to the approach of looking for key genes of known specific
pathways or mechanisms, global functional profiling is a high-throughput
approach that can reveal the biological mechanisms involved in a given
condition. Onto-Express is a tool that translates the gene expression profiles
showing how various genes are changed in specific conditions into
functional profiles showing how various functional categories (e.g., cellular
functions) are changed in the given conditions. Such profiles are constructed

320 Chapter 18

based on public data and Gene Ontology categories and terms. Furthermore,
Onto-Express provides information about the statistical significance of each
of the pathways and categories used in the profiles allowing the user to
distinguish between cellular mechanisms significantly affected and those
that could be involved by chance alone.

REFERENCES

Aach J., Rindone W., and Church G.M. Systematic management and analysis of yeast gene
expression data (2000). Genome Research, 10:431-445.

Aharoni A., Keizer L..C.P., Bouwneester H.J., Sun Z., et al.(1975), Identification of the SAAT
gene involved in strawberry flavor biogenesis by use of DNA microarrays. The Plant Cell,
12:647-661.

Alter O., Brown P., and Botstein D. (2000), Singular value decomposition for genome-wide
expression data processing and modeling, Proc. Natl. Acad. Sci., 97(18):10101-10106.

Ashburner M., Ball C.A., Blake J.A., Botstein D. et al. (2001). Creating the gene ontology
resource: Design and implementation. Genome Research, 11(8):1425-1433,

Ashburner M., Ball C.A., Blake J.A., Botstein D. et al. (2000). Gene ontology: tool for the
unification of biology. Nature Genetics, 25:25-29.

Audic S. and Claverie J.-M. (1997). The significance of digital gene expression profiles.
Genome Research, 10(7):986-995.

Audic S. and Claverie J.-M. (1998). Vizualizing the competitive recognition of TATA-boxes
in vertebrate promoters. Trends in Genetics, 14:10-11.

Bairoch A. and Apweiler R. (2000). The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucleic Acids Research, 28(1):45-48.

Bankier A. (2001). Shotgun DNA sequencing. Methods in Molecular Biololgy, 167:89-100.

Bernal A., Ear U., and Kyrpides N. (2001). Genomes online database (GOLD): a monitor of
genome projects world-wide. Nucleic Acids Research, 29(1):126-127.

Biosciences B. (2002), PowerBlot Western Array Screening Service. Technical report, BD
Biosciences. Available at http://www.bdbiosciences.com.

Bortoluzzi S., d’Alessi G., Romualdi C., and Daneli G. (2000). The human adult skeletal
muscle transcriptional profile reconstructed by a novel computational approach. Genome
Research, 10(3):344-349.

Brazma A. and Vilo J. (2000). Gene expression data analysis. Federation of European
Biochemical Societies Letters, 480(23893):17-24.

Brazma A, (2001). On the importance of standardisation in life sciences. Bioinformatics,
17(2):113-114.

Brazma A., Hingamp P., Quackenbush J., Sherlock G. et al. (2001). Minimum information
about a microarray experiment (MIAME) — toward standards for microarray data. Nature
Genetics, 29(4):365-371.

Bubendorf L., Kononen J., Koivisto P., Schraml P. et al. (1999). Survey of gene
amplifications during prostate cancer progression by high-throughout fluorescence in situ
hybridization on tissue microarrays. Cancer Research, 59(4):803-806.

Bubendorf L., Kolmer M., Kononen J., Koivisto P, et al. (1999). Hormone therapy failure in

human prostate cancer: analysis by complementary DNA and tissue microarrays. Journal
of the National Cancer Institute, 91(20):1758-1764.

18. Global Functional Profiling of Gene Expression Data 321

Casella G. (2002). Statistical inference. Duxbury.

Chen Y., Dougherty E.R., and Bittner M.L. (1997). Ratio-based decisions and the quantitative
analysis of cDNA microarray images. Journal of Biomedical Optics, 2(4):364-374.

Cho R., Huang M., Campbell M., Dong H. et al. (2001), Transcriptional regulation and
function during the human cell cycle. Nature Genetics, 27:48-54.

Claverie J.-M. (1999). Computational methods for the identification of differential and
coordinated gene expression. Human Molecular Genetics, 8(10):1821-1832,

CNRS (2001). Microarray databases. Technical report, Centre National de la Recherche
Scietifique. Available at http://www.biologie.ens.fr/en/genetiqu/puces/bddeng.html.

Dahlquist K., Salomonis N., Vranizan K., Lawlor S., and Conklin B. (2002). GenMAPP, a
new tool for viewing and analyzing microarray data on biological pathways. Nature
Genetics, 31(1):19-20.

DeRisi J.L., Iyer V.R., and Brown P.O. (1997). Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science, 278:680-686, 1997.

DeRisi J.L., Penland L., Brown P.O., Bittner M.L. et al. (1996). Use of a cDNA microarray to
analyse gene expression patterns in human cancer. Nature Genetics, 14(4):457-460.

D’haeseleer P., Liang S., and Somogyi R. (2000). Genetic network inference: From co-
expression clustering to reverse engineering. Bioinformatics, 16(8).707-726.

Draghici S. and Khatri P., (2002). Onto-Express web site. Technical report, Wayne State
University. Available at http://vortex.cs.wayne.edu.

Draghici S. (2002). Statistical intelligence: effective analysis of high-density microarray data.
Drug Discovery Today, 7(11):S55-S63.

Draghici S., Kuklin A., Hoff B., and Shams S. (2001). Experimental design, analysis of
variance and slide quality assessment in gene expression arrays. Current Opinion in Drug
Discovery and Development, 4(3):332-337.

Dudoit S., Yang Y.H., Callow M., and Speed T. (2000). Statistical models for identifying
differentially expressed genes in replicated cDNA microarray experiments. Technical
Report 578, University of California, Berkeley.

EBI (2001a). ArrayExpress. Technical report, European Bioinformatics Institute. Available at
http://www.ebi.ac.uk/arrayexpress/index.html.

EBI (2001b). Microarray gene expression database group. Technical report, European
Bioinformatics Institute. Available at http://www.mged.org/.

Eisen M., Spellman P., Brown P., and Botstein D., (1998). Cluster analysis and display of
genome-wide expression patterns. In Proc. of the Nat. Acad. of Sci., 95:14863-14868.

Eisenberg D., Marcotte E.M., Xenarios 1., and Yeates T.O. (2000). Protein function in the
post-genomic era. Nature, 405:823-826.

Ewing R.M., Kahla AB., Poirot O., Lopez F., Audic S., and Claverie J.-M. (1999). Large-
scale statistical analyses of rice ESTs reveal correlated patterns of gene expression.
Genome Research, 9:950-959.

Fisher L.D. and van Belle G. (1993). Biostatistics: a methodology for health sciences. John
Wiley and Sons, New York.

Fleischmann W., Moller S., Gateau A., and Apweiler R. (1999). A novel method for
automatic functional annotation of proteins. Bioinformatics, 15(3):228-233.

Gavin A., Bosche M., Grandi K.R.P. et al. (2002). Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature, 415(6868):141-147.

Glover T. and Mitchell K. (2002). An introduction to biostatistics. McGraw-Hill, New York.

322 Chapter 18

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lander E.S. (1999) Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science, 286(5439):531-537.

Hastie T., Tibshirani R., Eisen M.B., Alizadeh A., Levy R., Staudt L., Chan W., Botstein D.,
and Brown P. (2000). “Gene shaving” as a method for indentifying distinct sets of genes
with similar expression patterns. Genome Biology, 1(2):1-21.

Heyer L, Kruglyak S., and Yooseph S. (1999). Exploring expression data: Identification and
analysis of coexpressed genes. Genome Research, 9:1106-1115.

Hill A.A., Hunter C.P., Tsung B.T., Tucker-Kellogg G., and Brown E.L. (2000). Genomic
analysis of gene expression in C. elegans. Science, 290:809-812.

Hilsenbeck S., Friedrichs W., Schiff R., O’Connell P., Hansen R., Osborne C., and Fuqua
S.W. (1999). Statistical analysis of array expression data as applied to the problem of
Tamoxifen resistance. Journal of the National Cancer Institute, 91(5):453-459.

Hishiki T., Kawamoto S., Morishita S., and BodyMap O.K. (2000). A human and mouse gene
expression database. Nucleic Acids Research, 28(1): 136-138.

Hwang D., Dempsy A., Lee C.-Y., and Liew C.-C. (2000). Identifcation of differentially
expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics,
66(1):1-14.

Ideker T., Galitski T., and Hood L. (2001). A new approach to decoding life: systems biology.
Annual Review Of Genomics And Human Genetics, (2):343-372.

Janssen D. (2002). The information behind the informatics. Genomics and Proteomics.
Available at http://www.genpromag.com/feats/0205gen23.asp.

Kanehisa M. and Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research, 28(1):27-30.

Kanehisa M., Goto, S., Kawashima S., and Nakaya A. (2002). The KEGG databases at
GenomeNet. Nucleic Acids Research, 30(1):42-46.

Kennedy J.W., Kaiser G.W., Fisher L.D., Fritz J.K., Myers W., Mudd J., and Ryan T. (1981).
Clinical and angiographic predictors of operative mortality from the collaborative study in
coronary artery surgery (CASS). Circulation, 63(4):793-802.

Kerr MK. and Churchill G.A. (200la). Experimental design for gene expression analysis.
Biostatistics, (2): 183-201.

Available at http://www.jax.org/research/churchill/pubs/index.html.

Kerr M.K. and Churchill G.A. (2001b). Statistical design and the analysis of gene expression.
Genetical Research, 77:123-128.

Available at http://www jax.org/research/churchill/pubs/index.html.

Kerr MK., Martin M., and Churchill GA., (2000). Analysis of variance for gene expression
microarray data. Journal of Computational Biology, 7:819-837.

Khatri P., Draghici S., Ostermeier C., and Krawetz S. (2002). Profiling gene expression
utilizing Onto-Express. Genomics, 79(2):266-270.

Kononen J., Bubendorf L., Kallioniemi A., Barlund M. et al. (1998). Tissue microarrays for
high-throughput molecular profiling of tumor specimens. Nature Medicine, 4(7):844-847.
Kretschmann E., Fleischmann W. (2001). Automatic rule generation for protein annotation
with the C4.5 data mining algorithm applied on SWISS-PROT. Bioinformatics,

17(10):920-926.

Lander E., Linton L. et al. (2001). Initial sequences and analysis of the human genome.
Nature, 409(6822):860-921.

18. Global Functional Profiling of Gene Expression Data 323

Lash A.E., Tolstoshev C.M., Wagner L., Shuler G.D., Strausberg R.L., Riggins GJ., and
Altschul S.F. (2000). SAGEmap: A public gene expression resource. Genome Research,
10:1051-1060.

Lee M.-L.T., Kuo FC.,, Whitmore G.A., and Sklar J. (2000). Importance of replication in
microarray gene expression studies: Statistical methods and evidence from repetitive
cDNA hybridizations. Proc. Natl. Acad. Sci., 97(18):9834-9839.

Liebermeister W. (2001). Independent component analysis of gene expression data. In Proc.
of German Conference on Bioinformatics GCB’01,

Available at http://www.bioinfo.de/isb/gcb01/poster/.

Lockhart DJ. and Winzeler E.A. (2000). Genomics, gene expression and DNA arrays.
Nature, 405:827-836.

Lockhart D.J., Dong H., Byrne M., Folletie M., Gallo M.V., Chee M.S., Mittmann M., Want
C., Kobayashi M., Horton H., and Brown E.L. (1996). DNA expression monitoring by
hybridization of high density oligonucleotide arrays. Nature Biotechnology, 14:1675-1680.

Magrane M. and Apweiler R. (2002). Organisation and standardisation of information in
SWISS-PROT and TrEMBL. Data Science Journal, 1(1):13-18.

Man M.Z.,, Wang Z., and Wang Y. (2000). POWER SAGE: comparing statistical tests for
SAGE experiments. Bioinformatics, 16(11):953-959.

Mangalam H., Stewart J., Zhou J., Schlauch K., Waugh M., Chen G., Farmer A.D., Colello
G., and Weller J.W. (2001). GeneX: An open source gene expression database and
integrated tool set. IBM Systems Journal, 40(2):552-569.

Available at http://www.ncgr.org/genex/.

Moch H., Kononen T., Kallioniemi O., and Sauter G. (2001). Tissue microarrays: what will
they bring to molecular and anatomic pathology? Advances in Anatomical Pathology,
8(1):14-20.

Mousses S., Bubendorf L., Wagner U., Hostetter G., Kononen J., Cornelison R., Goldberger
N., Elkahloun A., Willi N., Koivisto P., Ferhle W., Rafield M., Sauter G., and Kallioniemi
O. (2002). Clinical validation of candidate genes associated with prostate cancer
progression in the cwr22 model system using tissue microarrays. Cancer Research,
62(5): 1256-1260.

Newton M., Kendziorski C., Richmond C., Blattner F.R., and Tsui K. (2001). On differential
variability of expression ratios: Improving statistical inference about gene expression
changes from microarray data. Journal of Computational Biology, 8:37-52.

NHGRI (2001). ArrayDB. Technical report, National Human Genome Research Institute.
Available at http://genome.nhgri.nih.gov/arraydb/schema.html.

Nocito A., Bubendorf L., Tinner E.M., Suess K. et al. (2001a). Microarrays of bladder cancer
tissue are highly representative of proliferation index and histological grade. Pathology,
194(3):349-357.

Nocito A., Kononen J., Kallioniemi O., and Sauter G. (2001b). Tissue microarrays (tmas) for
high-throughput molecular pathology research. International Journal of Cancer, 94(1):1-5.

Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., and Kanehisa M. (1999). KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Research, 27(1):29-34.

Perou C. M., Sgrlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R,,
Ross D.T., Johnsen H., Akslen L.A., Fluge ., Pergamenschikov A., Williams C., Zhu
S.X., Lgnning P.E., Bgrresen-Dale A.-L., Brown P.O., and Botstein D. (2000). Molecular
portraits of human breast tumours. Nature, 406:747-752.

324 Chapter 18

Pietu G., Mariage-Samson R., Fayein N.-A., Matingou C., Eveno E. et al. (1999). The
genexpress IMAGE knowledge base of the human brain transcriptome: A prototype
integrated resource for functional and computational genomics. Genome Research, 9:195-
209.

Proteome (2002). Proteome BioKnowledge Library. Technical report, Incyte Genomics.
Available at http://www.incyte.com/sequence/proteome.

Raychaudhuri S., Stuart J.M., and Altman R. (2000). Principal components analysis to
summarize microarray experiments: Application to sporulation time series. In Proceedings
of the Pacific Symposium on Biocomputing, volume 5, pages 452-463.

Roberts C.J., Nelson B., Marton M.J., Stoughton R., Meyer M.R., Bennett H.A., He Y.D., Dia
H., Walker W.L., Hughes T.R., Tyers M., Boone C., and Friend S.H. (2000). Signaling
and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression
profiles. Science, 287:873-880.

Sallinen S., Sallinen P., Haapasalo H., Helin H., Helen P., Schraml P., Kallioniemi O., and
Kononen J. (2000), Identification of differentially expressed genes in human gliomas by
DNA microarray and tissue chip techniques. Cancer Research, 60(23):6617-6622.

Sapir M. and Churchill G.A. (2000). Estimating the posterior probability of differential gene
expression from microarray data. Technical Report, Jackson ILabs, Bar Harbor, ME.
Available at http://www jax.org/research/churchill/pubs/.

Schena M. (2000). Microarray Biochip Technology. Eaton Publishing.

Schena M., Shalon D., Davis R., and Brown P. (1995). Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270:467-470.

Schena M., Shalon D., Heller R., Chai A., Brown P., and Davis R., (1996) Parallel human
genome analysis: microarray-based expression monitoring of 1000 genes. Proc. National
Academy of Science USA, 93:10614-10519.

Schram]l P., Kononen J., Bubendorf 1., Moch H., Bissig H., Nocito A., Mihatsch M.,
Kallioniemi O., and Sauter G., (1999). Tissue microarrays for gene amplification surveys
in many different tumor types. Clinical Cancer Research, 5(8):1966-1975.

Sese J., Nikaidou H., Kawamoto S., Minesaki Y., Morishita S., and Okubo K. (2001).
BodyMap incorporated PCR-based expression proling data and a gene ranking system.
Nucleic Acids Research, 29(1):156-158.

Shalon D., Smith S.J., and Brown P.O. (1996). A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Genome
Research, 6:639-645.

Sherlock G., Hernandez-Boussard T., Kasarskis A., Binkley G. et al. (2001). The Stanford
Microarray Database, Nucleic Acid Research, 29(1):152-155.

Shi L. (2001). DNA microarray — monitoring the genome on a chip. Technical report.
Available at http://www.gene-chips.com/.

Stanford (2001). SMD - Stanford Microarray Database. Technical report, Stanford University.
Available at http://genome-www4.Stanford. EDU/MicroArray/SMD/.

Stokes M.E., Davis C.S., and Koch G.G. Categorical Data Analysis Using the SAS System.
SAS Institute, Carry, NC.

Sudarsanam P., Iyer V.R., Brown P.O., and Winston F. (2000). Whole-genome expression
analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci.,
97(7):3364-33609.

Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E.S., and
Golub T.R. (1999). Interpreting patterns of gene expression with self-organizing maps:

18. Global Functional Profiling of Gene Expression Data 325

Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci, 96:2907-
2912.

Tao H., Bausch C., Richmond C., Blattner F.R., and Conway T. (1999). Functional genomics:
Expression analysis of Escherichia coli growing on minimal and rich media. Journal of
Bacteriology, 181(20):6425-6440.

Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., and Church GM. (1999). Systematic
determination of genetic network architecture. Nature Genetics, 22:281-285.

ter Linde J.J. M., Liang H., Davis R.W., Steensma H.Y., Dijken J.P. V., and Pronk J.T.
(1999). Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures
of Saccharomyces cerevisiae. Journal of Bacteriology, 181(24):7409-7413.

Tracy S. (2002). Onto-Express —a tool for high-throughput functional analysis. Scientific
Computing and Instrumentation, in press.

Tsoka S. and Ouzounis C.A, (2000). Recent developments and future directions in
computational genomics. Federation of European Biochemical Societies Letters,
(23897):1-7.

Uehling M. (2002). Open Channel Software Revamps Onto-Express, Technical report, BioIT
World. Available at http:/www.bio-itworld.com/products/050702_onto-express.html.

van Helden J., Rios AF., and Collado-Vides J. (2000). Discovering regulatory elements in
non-coding sequences by analysis of spaced dyads. Nucleic Acids Research, 28(8):1808-
1818.

van’t Veer L.J., Dai H., van de Vijver M.J,, He Y.D. et al. (2002). Gene expression profiling
predicts clinical outcome of breast cancer. Nature, 415:530-536.

Vasmatzis G., Essand M., Brinkmann U., Lee B., and Pastan I, (1995). Discovery of three
genes specifically expressed in human prostate by expressed sequence tag database
analysis. Proc. of the National Academy of Science USA, 95(1):300-304.

Velculescu V., Zhang L., Vogelstein B., and Kinzler K. (1995). Serial analysis of gene
expression. Science, 270(5235):484-487.

Venter J.C., Adams M.D. et al. (2001). The sequence of the human genome. Science,
291(5507):1304-1351.

Vukmirovic O.G. and Tilghman S.M. (2000). Exploring genome space. Nature, 405:820-822.

Waugh M.E., Bulmore D.L., Farmer A.D., Steadman P.A, et al. (2000). PathDB: A metabolic
database with sophisticated search and visualization tools. In Proc. of Plant and Animal
Genome VIII Conference, San Diego, CA, January 9-12.

Wellmann A., Thieblemont C., Pittaluga S., Sakai A. et al. (2000). Detection of differentially
expressed genes in lymphomas using cDNA arrays: identification of clustering as a new
diagnostic marker for anaplastic large-cell lymphomas, Blood, 96(2):398-404.

White K.P., Rifkin S.A., Hurban P., and Hogness D.S. (1999). Microarray analysis of
Drosophila development during metamorphosis. Science, 286:2179-2184.

Wu L., Hughes T., Davierwala A., Robinson M., Stoughton R., and Altschuler S. (2002).
Large-scale prediction of saccharomyces cerevisiae gene function using overlapping
transcriptional clusters. Nature Genetics, 31(3):255-265.

Zhu J. and Zhang M. (2000). Cluster, function and promoter: Analysis of yeast expression
array. In Pacific Symposium on Biocomputing, pages 476-487.

Chapter 19

MICROARRAY SOFTWARE REVIEW

Yuk Fai Teung '™, Dennis Shun Chiu Lam’, Chi Pui Pang’

1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong,
e-mail:{yfleung,dennislam,cppang } @cuhk.edu.hk

2 .
Genomicshome.com,
e-mail: yfleung @ genomicshome.com

1. INTRODUCTION

Microarray analysis is a burgeoning field in recent years. From the statistical
inference of differential gene expression to expression profiling and
clustering (Chapters 13-16), classification by various supervised and
unsupervised algorithms (Chapters 7-12), and pathway reconstruction,
microarray data analysis can provide a rich source of information that no one
could imagine before. In the meantime, the great demand on data analysis
capability has created an unprecedented challenge for life scientists to grasp
the never-ending data analysis developments in time. The aim of this review
is to provide an overview of various microarray software categorized by
their purposes and characteristics, and aid the selection of suitable software.
Readers are referred to a more comprehensive online version of the list'
which contains further details on the particular software system
requirements, features, prices, related publications and other useful
information. This online software list is an ongoing project of a functional
genomics Web site’.

! http://ihome.cuhk.edu.hk/~b400559/arraysoft.html
2 yfleung’s functional genomics home:
http://ihome.cuhk.edu.hk/~b400559 or http://genomicshome.com (permanent domain)

19. Microarray Software Review 327

2. PRIMER/PROBE DESIGN SOFTWARE

The focus on microarray data analysis has been the later stages in Data
Mining. However, we should not neglect the early stage and should
remember that probe and experimental design affect the quality of late stage
analysis. Depending on the scale and throughput of the experiment, clones
can be spotted from a normalized library without prior sequencing,
sequence-verified cDNA clones such as expressed sequence tags (ESTS),
specific parts of genes, or even specific oligonucleotides. A list of software
for probe and the corresponding primer design is shown in Table 19.1.

Table 19,1, Examples of probe/primer design software,

Software URL

Array designer http://www.premierbiosoft.com/dnamicroarray/dnamicroarray.html

GAP (Genome- http://promoter.ics.uci.edu/Primers/

wide Automated

Primer finder

SErvers)

OligoArmay http://berry engin.umich.edu/oligoarray/

Primer3 http:/fwww-
genome.wi.mit.edu/genome_software/other/primer3.html

ProbeWiz Server http://www.cbs.dtu.dk/services/DN Aarray/probewiz.html

There are a number of considerations when using EST clones (Tomiuk
and Hofman, 2001). For example, rigorous informatic analysis is necessary
to eliminate their redundancies, given the fact that nonidentical clones might
actually correspond to the same gene, and some clones that correspond to
different genes might be accidentally assigned to the same gene by chimeric
EST clones generated during cDNA library construction or because of the
existence of physiologically overlapping transcribed regions. There are also
situations such as alternative splicing®, alternative polyadenylation® and
alternative promoter usage’ that can produce variants of a single gene. These
confounding factors should also be considered during probe selection. In
these situations the same cDNA probe would probably bind many variants of
the same gene and give a mixed signal. At the same time the human genome
contains many gene families with only subtle sequence differences. They are
quite difficult to be differentiated by cDNA probes. Therefore many

3 Alternative splicing refers to a gene regulatory mechanism in which more than one mRNA
product being produced due to distinct exon splicing events of a common mRNA.

4 Alternative polyadenylation refers to a gene regulatory mechanism in which more than one
mRNA product being produced due to different polyadenylation signals are used in the
untranslated 3” end of a gene.

Alternative promoter usage refers to a gene regulatory mechanism in which more than one
mRNA product being produced due to different promoters are used in the 5’ end of a gene.

328 Chapter 19

researchers are seriously investigating on the use of oligonucleotides that can
be specifically designed to hybridize to a single variant.

In our opinion, this pre-experimental informatic endeavor is very
important. When we performed a microarray experiment on our in vitro
glaucoma model, using a commercial cDNA microarray as our platform, the
problems of clone redundancy and inaccuracy were only apparent at the later
stage in analysis (Leung et al., 2002). For example, two clones with exactly
the same sequence annotation in the curated database were included in the
array due to earlier different annotations in other databases. A hybrid clone
only produced in cancerous translocation was also found to be differentially
expressed. However this translocation is not very likely to happen in
glaucoma and created a difficulty in addressing the differential expression to
the particular gene domain in the hybrid clone. We believe these problems
could have been eliminated by proper probe selection and array design, in
particular using oligonucleotide arrays.

3. IMAGE ANALYSIS SOFTWARE

There are three fundamental processes of image analysis: gridding®,
segmentati0n7 and information extraction® (Yang et al., 2001), which are the
standard functions in commonly used image analysis sofiware (Table 19.2).

Table 19.2. Examples of image analysis software.

Software URL
AIDA Armay Metrix http:/fwww . raytest.de/products/soflware/aida/array/array. himl
ArrayPro http://www.mediacy.com/amraypro.htm
AmayVision http://www.imagingresearch.com/products/ ARV .asp
Dapple http://www.cs.wustl.edu/~jbuhler/research/dapple/
F-scan http://abs.cit.nih. gov/fscan!
GencePix Pro hitpz//www.axon.com/GN_GenePixSoftware. himl
ImaGene http:/www biodiscovery.com/imagene.asp
[conoclust http://www_clondiag.com/products/sw/iconoclust/
Iplab http:/fwww scanalytics.comv/product/hts/microarray.html
Lucidea Automated http://www]1.amershambiasciences.com/aptrix/upp01077.nsf/Co
Spotfinder ntent/Products?OpenDocument&parentid =460766& moduleid=1
65065

6 Gridding is a process to locate each spot on the slide.

Segmentation is a process to differentiate the pixels within a spot-containing region into
foreground (true signal) and background,

Information extraction includes two parts, the spot intensity extraction and background
intensity extraction. Spot intensity extraction refers to the calculation of fluorescence
signal from the foreground from segmentation process, while background intensity
extraction utilizes different algorithms to estimate the background signal due to the non-
specific hybridization on the glass.

19. Microarray Software Review 329

Software URL
Phoretix Array http://www.phoretix.com/products/array_products.htm
P-scan http://abs.cit.nih.gov/pscan/index.htnl
QuantArray http://www.packardbioscience.com/products/products.asp?conte
nt_item_id=521
ScanAlyze http://rana.lbl.gov/EisenSoftware.htm
Spot http://www.cmis.csiro.au/iap/spot.htm
TIGR Spotfinder http://www tigr.org/software/
UCSF Spot http://jainlab.ucsf.edu/Projects.html

Gridding appears not to be a difficult problem for most of the image
analysis software, though some manual adjustments are often necessary. The
greatest challenges are performing the segmentation and background
estimation efficiently, because the sizes and shapes of the spots can vary
considerably. There are several segmentation algorithms including fixed
circle, adaptive circle, adaptive shape and histogram, whereas algorithms for
background estimation include constant background, local background and
morphological opening. Every method has its strengths and weaknesses.
Unfortunately no single one is perfect in all situations. UCSF Spot adopts a
quite different experimental segmentation approach, which applies DNA
counterstain DAPI on the array (Jain et al., 2002). Only the positions with
DNA would be stained. The resulting counterstain image assists the
segmentation process, which apparently resolves the limitations of the
algorithmic approach.

Certain commercial software packages have measures to evaluate the
quality of the spots in the images. For instance in one software package there
are a number of parameters including diameter, spot area, footprint,
circularity, signal/noise and spot, background and replicate uniformity for
judging whether a spot is of sufficiently good quality to be included in later
stage analysis. However, these quality measures usually idealize the spots
being analyzed, i.e. consistent spot size, circularity, and signal intensity. This
can be quite deviated from reality. Thus, some spots whose signal is good
enough for data analysis might be rejected because they do not fulfill the
defined criteria. Therefore, many researchers are still inclined to inspect the
spots by naked eye instead of relying on these automated algorithms even
though hours are needed for checking arrays with tens of thousands of spots.
Unfortunately different researchers might have different standards on
judging the borderline cases and their intuitive standards can change from
time to time. As a result, manual inspection is not sufficiently objective to
maintain the quality consistency among experiments and across laboratories.
There is an urgent need for a rigorous definition of a good-quality spot. We
believe a combination of DNA counterstain method as mentioned before and
the existing quality measures can be a plausible solution. The counterstain
provides information about the actual spot morphology and DNA

330 Chapter 19

distribution in the spot, which can be a better basis for applying quality
measures to evaluate the spots.

4. DATA MINING SOFTWARE

It is always perplexing to select a Data Mining software because so many
similar software packages are available in the field. Many scientists are very
concerned whether the software they choose is really suitable for their
experimental design and able to keep up with the fast changing analysis
field. At the same time, there is the cost consideration. Some commercially
available Data Mining software carry a high price tag that makes it a big
commitment to use them. Perhaps this anxiety stems from the fact that the
majority of scientists who wish to perform microarray experiments are
relatively unfamiliar with the basis of large-scale Data Mining. We wish the
earlier chapters on Data Mining fundamentals have resolved this anxiety.
There are also a few microarray data analysis review papers (Brazma and
Vilo, 2000; Quackenbush, 2001; Wu, 2001; Sherlock, 2001; Nadon and
Shoemaker, 2002) and books (Jagota, 2001; Knudsen, 2002), which are
extremely helpful for learning data analysis. Here we will complement with
an overview of the advantages and limitations of various sub-categories of
Data Mining software.

In general, a Data Mining software performs data preprocessing
(Chapters 2-3) and normalization (Chapter 4), dimensionality reduction
(Chapters 5-6), statistical inference of differential expression, clustering
(Chapters 13-16), and classification (Chapters 7-12), and visualization of the
analysis results. It can be available as a Web tool, as a standalone solution or
as a client-server application. There are roughly 4 types of Data Mining
software depending on comprehensiveness: Turnkey system, comprehensive
software, specific analysis software and extension/accessory software. Two
other related but unique statistic and pathway reconstruction software will
be further discussed in Sections 5 and 6.

41 Turnkey System

A Turnkey system is defined as a computer system that is customized for a
particular application. The term derives from the idea that the end user only
needs to turn a key and the system is ready for immediate operation. A
microarray turnkey Data Mining system includes everything like operating
system, server software, database, client software, statistics software and
even hardware customized for the whole Data Mining process. Some of the
microarray turnkey Data Mining systems are listed in Table 19.3. While
some of them (e.g., Genetraffic) are built on open source Software like

19. Microarray Software Review 331

Linux, R statistical language, PostgreSQL, and Apache Web server, some
(e.g., Rosetta Resolver) are using proprietary server and database systems
like SunOS and Oracle, respectively.

Table 19.3. Examples of turnkey Data Mining system.

Software URL
amaySCOUT http://www.lionbioscience com/solutions/armayscout
BASE (BioArray Software http://base.thep. lu.se/
Environment)

Expressionist hitp:/twww, genedata.com/products/expressionist!
Genedirector http://www.biodiscovery.com/genedirector.asp
Genetraffic http://www.iobion.com/products/products.html

Rosetta Resolver http:/fwww.rosettabio.com/products/resolver/default.htm
Silicon Genetics Enterprise http:/fwww silicongenetics.com/cgi/SiG.cgi/Products/Sol
Solution utions/index.smf?UID=14602

A Turnkey system aims at providing all components fine-tuned for
microarray data analysis and supports the developing standard and language
like Minimum Information About a Microarray Experiment (MIAME)
(Brazma et al., 2001) and MicroArray and Gene Expression Markup
Language (MAGE-ML)’, respectively. The client-server setup supports
multiple users which is especially beneficial for sharing data within a large
research group like in pharmaceutical companies. It also allows a better
control of data security by restricting different access privileges for different
user groups. However this type of software is not quite suitable for small
laboratories with limited budget, partly because such commercial systems
can be quite expensive. Although the cost can be much lower for those using
open source software, turnkey system in general requires dedicated
supporting staff for routine maintenance. This makes the installation and
operation of such a system in small laboratories a substantial task,
particularly in those that are inexperienced in related computer science.

4.2 Comprehensive Software

A comprehensive software incorporates many different analyses at different
stages of microarray analysis like data preprocessing, dimensionality
reduction, normalization, clustering and visualization in a single package
(Table 19.4). This type of software does not have any accompanied database
although they are usually equipped with an interface for Open DaraBase
Connectivity (ODBC), a standard for accessing different database systems.
This interface enables the users to archive their data in commonly used
databases.

9http://www.mged.org/WOrkgroups/MAGE/mage-ml.html

332

Chapter 19

Table 19.4. Examples of comprehensive Data Mining software

Software URL
Acuity http:/fwww.axon.com/GN_Acuity.html
AMIADA (Analyzing http:/#web.hku. hk/-xxia/software/amiada.html
MicroAmay DAta)
ArmayStat http://www.imagingresearch.com/products/AST.asp
BRB ArmayTools http:/linus.nci.nih.gov/BRB- ArrayTools.html
Cluster

DNA-arrays analysis tools
DNA-Chip Analyzer (dChip)
Expression Profiler
GeneLinker Gold

GeneMaths
GeneSight
GeneSpring

Genesis

J-Express

MAExplorer

Partek software suites
TIGR ArrayViewer

TIGR Multiple Expeniment
Viewer (TMEYV)

Xcluster

Xpression NTI

htip://rana.lbl.gov/EisenSoftware.him
http://bioinfo.cnio.es/dnarray/analysis/
hitp://www.dchip.org/

http://ep.chi.ac.uk/
http://microarray.genelinker.com/products. himl#Gene
LinkerGold
http:/iwww.applied-maths.com/ge/ge.htm
http://www.biodiscovery com/genesight asp
hitp:/fwww.sigenetics.com/Products/GeneSpring/inde
x.html
http://genome.tugraz.at/Software/GenesisCenter.html
http:/www.molmine.comfindex_a.html

http:/fwww lech.nciferf. goviMAExplorer/
http:/fererw.partek.com/html/products/products.html
http://www.tigr.org/software/

http://www tigr.org/software/

http:#/genome-

www stanford.cdu/~sherlock/cluster. html
httpz//www.informaxinc.com/solutions/xpression/inde
x.html

The advantage of using this type of software is their comprehensiveness.

Most of the current data analysis tools are available within a single package.
The researchers can handle various analyses with ease once they have
learned the basic operations. Therefore, the total learning curve can be
shorter. There are often some brilliant analytical ideas incorporated in the
software that can streamline the data analysis process. For example, in
GeneSight the graphical set builder allows interactive data analysis by
dragging different analysis modules, like log-transformation and
normalization, into the workspace. This eliminates the possibility of missing
or repeating data processing steps during multi-step data analysis from raw
data to final output. In GeneSpring there are automated gene annotation and
ontology construction tools that mine the public databases for the possible
gene functions on behalf of the users. This can considerably save time when
compared to mining the databases manually.

However, there are several potential limitations for using this type of
software. Firstly, there might be data compatibility problems or conversion
inconvenience. Unless the software contains filters for accepting raw data

19. Microarray Software Review 333

from different vendors, the users might have to re-organize the raw or
preprocessed data according to the specific format themselves. Besides, the
software may not be flexible enough to the latest analysis development,
especially when the field is still evolving rapidly. Sometimes the users might
have to wait for the next software update before the desired analytical
method is being incorporated, and this can take quite long. As a result,
certain comprehensive software (e.g., GeneSpring, J-express & MAExplorer)
start to include the plugin functionality that allows users to create custom
analysis functions promptly. The cost for using the commercially available
software can be quite high for some laboratories with tight budgets. At the
same time users might have to create their data archival system if the
software does not have a “sister” database software. Another potential
problem of this type of comprehensive software packages is their capability
of performing various data analyses with ease. The inexperienced user might
overlook certain statistical limitations of data analyses and generate
inaccurate results, which they might still regard as valid. This can only be
solved by a better knowledge on the statistical fundamentals of various
analyses. Some ofthese limitations are also true for the turnkey system.

4.3 Specific Analysis Software

Specific analysis software is defined as a software which performs only
one analysis or a few specific analyses (Table 19.5). The distinction between
comprehensive and specific analysis software is not clear-cut, but in general
a specific analysis software is more specialized in a particularly confined
analytical problem, while a comprehensive software aims at providing an all-
in-one package for the general user. For example, PAM performs sample
classification from gene expression data, CTWC performs clustering based
on a specific algorithm and GeneGluster performs normalization and
filtering, as well as clustering using Self-Organizing Map (SOM). Specific
analysis software is usually accompanied with a journal article that details
the statistical and mathematical background of the method. This greatly
helps understanding the basis of the analysis. Cutting-edge data analysis
tools are often released as specific software by their authors at personal
websites. If the specific analysis is embraced by the general public, it will
most probably be incorporated into other comprehensive software packages
at a later stage. Since this type of software is quite specialized, substantial
preprocessing and re-organization of the data might be necessary before
input into the software.

334 Chapter 19

Table 19.5. Examples of specific analysis Data Mining software.

Saftware URL —
ANOVA programs for http:ifwww jax.orgiresearch/churchill/software/anova/i
microarray data ndex.html
Cleaver http://classify.stanford.edu/
CIT (Cluster Identification http://www vai.org/var/bioinformatics. htm
Tool)
CTWC (Coupled Two-Way http:/fctwe, weizmann.ac.ilf
Clustering)
Cyber T http:/{genomics.biochem. uci.edu/genex/cybert/
GeneCluster http:ifwww-
genome, wi.mit.cdw/cancer/software/software. html
GeneViz http:fwww.contentsofl.de/geneviz.htm
INCLUSive http:/Awww.esat kuleuven.ac. be/~dna/Biol/Software. ht
ml
MicroHelper http:/fwww.changbioscience.com/microhelperinfo. himl

PAM (Prediction Analysis for hitp://www-stat.stanford. edu/~tibs/PAM/
Microarmays)
R cluster http://genomics.biochem.uci.edw/cgi-
bin/genex/rcluster/index.cgi

SAM (Significance Analysis of | hitp://www-stat.stanford edw/~tibs/S AM/index.html
Microarrays)
SNOMAD (Standardization and | http://pevsnerlab.kennedykrieger.org/snomadinput.html
NOmmalization of MicroArray
Data)

VERA & SAM htip://www.systemsbiology.org/VERAandSAM/

44 Extensions of Existing Data Mining Software

As mentioned in Section 4.2, some comprehensive software packages
promptly incorporate the latest analysis developments by plugin modules.
For example, ArrayMiner is a new clustering tool using proprietary
clustering algorithms and is available as a standalone tool or plugin of
GeneSpring, a comprehensive software. Besides, there are a few tools that
extend the power of an analysis by providing intuitive visualization
functionalities. For example, TreeView, Slcview and Freeview are the

dendrogram and clusterogram viewers for the famous classical clustering
software — Cluster (Eisen et al. 1998).

Table 19.6. Examples of extension/accessoary Data Mining software,

Software | URL
ArrayMiner http:/fwww.optimaldesign.com/AmayMiner/ArmayMiner.htm
Freeview & FreeOView | http://magix.fri.uni-lj.si/freeview’
Sleview http://slcview sourceforge net/

TreeView hitp://rana.lbl.gov/EisenSoftware.htm

19. Microarray Software Review 335

5. STATISTICS SOFTWARE AND TECHNICAL
PROGRAMMING LANGUAGES

No matter how advanced or complicated is the analysis, it must be based on
valid statistical fundamentals which should be easily handled by statistics
software or technical programming languages that can perform statistical
analysis. Actually, numerous microarray publications report on the use of
such software to perform data analyses like clustering and statistical
inference of differential expression. Table 19.7 shows some commonly used
statistical software and technical programming languages. A common
feature of these software packages is their flexibility that every step of the
analysis can be fine-tuned by appropriate programming. As commonly-used
statistical analyses are their standard components, analyses with different
perspectives can be easily carried out. Most of them are command-line
driven and can extend their functionality by programming new tools as
extensions. This allows the incorporation of new analyses promptly.

However, the command-line driven nature of this type of software comes
with a price, which is the impossibility of learning this type of software
intuitively. In the meantime, users are required to have a thorough
understanding of the structure of their data, and the statistical background
and limitations of a particular analysis. Furthermore, they need to learn the
technical programming language per se in order to perform even an
operation, not to mention conducting the whole analysis correctly. Therefore
the novice will need to spend extra efforts to get used to that analysis
environment. We believe this is actually an advantage in disguise. The
difficulties that the novice encounters during the leaming stage can actually
help to build up his/her foundations on proper analysis and in turn generate
analysis results of better quality.

Table 19.7. Examples of statistics software and technical programming languages

Software URL
Excel http://www.microsoft.com/office/excel/default. hitm
MATLAB http:/fwww, mathworks.com/products/matlab/
Octave http://www.octave.org/
SAS http://www.sas.com/productsfindex.html
SPSS http://www.spss.com/spss10/
S-PLUS http:/~www. insightful.com/products/default.asp
Statistica http://www stalsoftinc, com/toc. html
R hitp://www.R-project.org/

5.1 R Packages for Microarray Analysis

R is a language and environment for statistical computing and graphics. It
has immense potential for microarray data analysis. It is an open source

336

Chapter 19

software available under GNU' General Public Licence (GPL)“. It is very
similar to the § system and is highly compatible with S-Plus. R provides a
wide variety of statistical tools, which can be very useful for microarray data
analysis (Table 19.8). It is also highly extensible and allows users to add
additional functionalities by defining new functions. There are numerous
dedicated efforts to write R extensions, called “packages”, for microarray
analysis nowadays and some of these packages are listed in Table 19.9.

Table 19.8. General R packages useful for microarray analysis

R packages URL
cclust (Convex http://cran.r-project.org/src/contrib/PACK AGES . html#icclust
Clustering Methods and
Clustering Indexes)
Cluster http/feran.r-project.org/src/contrib/PACK AGES . html#cluster
Mclust hittp:{/cran.r-project.org/sre/contritYPACK AGES. himl#mclust
multiv (Multivariate hitp:/feran.r-project.org/sre/contrib/PACK AGES. html#multiv
Data Analysis Routines)

Table 19.9. Examples of R packages dedicated to microarray analysis

R packages URL
affy (Methods for Affymetrix http://biosun01.biostat.jhsph.edu/-ririzarr/Raffy/
Oligonucleotide Arrays)
Bioconductor hitp:/Awww bioconductor.org/
CyberT http://genomics.biochem.uci.edu/genex/cybert/
GeneSOM http://lib.stat. cmu.eduw/R/CRAN/sre/contribdPACK A

Mixture modelling

PAM (Prediction Analysis for
Microarrays)
permax

OOMAL (Object-Oriented
Microarray Analysis Library) *
SMA (Statisics for Microarray
Analysis)
SMA extension (com.braju.sma)
YASMA (Yet Anather Statistical
Microarray Analysis)

"Requires S-plus

GES.html#GeneSOM
http://www.sph.umich.edu/~ghoshd/COMPBIO/mixt
ure 1/index_html

http://wrww-
stat.stanford.edu/ % 7Etibs/PAM/Rdist/index. himl
http:/icran.r-

project.org/src/contrib/PACKAGES html#permax
hutp://www3.mdanderson.org/depts/cancergenomics/
oomal.html
http://www.stat.berkeley.edu/users/terry/zarray/Soft
ware/smacode. html
htp://wew . braju.com/R/com.braju.sma/
http:/fwww.cryst.bbk.ac.uk/~wemisch/yasma.html

For example, the SMA package provides a cutting-edge data intensity and
spatial dependent normalization method called print-tip grouped LOWESS,

Y6NU project: http://www.gnu.org

1 GPL: http://www.R-project.org/COPYING

19. Microarray Software Review 337

as well as an empirical Bayes method for replicated microarray data analysis
(Yang et al., 2002; Lonnstedt et al, 2002). Bioconductor is an ambitious
project which aims at providing a bioinformatics infrastructure to assist the
development of tools for analyzing genomics data, with primary emphasis on
microarray analysis. Most of the software produced by Bioconductor project
will be in the form of R packages. Apparently R environment can provide a
common platform to link together different groups with common interest in
microarray data analysis. Users can have unlimited capability and flexibility
to embrace new analyses under such an open source standardized
environment (Stewart et al., 2001). We have witnessed the success of open
source software like Linux in computing science and The European
Molecular Biology Open Software Suite (EMBOSS) for molecular biology,
and foresee a similar development in the microarray analysis field.
Therefore, we recommend to everyone who is serious in microarray data
analysis to start learning a high-level statistical language like R, to be
prepared for the future challenges in this fast evolving data analysis era. We
also recommend a few books (Selvin, 1998; Venables and Ripley, 1999;
Krause and Olson, 2000) that we have found very helpful in learning R/S-
Plus for statistical analysis.

6. PATHWAY RECONSTRUCTION SOFTWARE

A gene never acts alone in a biological system. Functional mapping by data
analysis permits a better understanding of the underlying biological networks
and correlation between genotype and phenotype (Horvath and Baur, 2000;
Leung and Pang, 2002; Leung 2002). Currently, targeted mutation (Roberts
et al., 2000; Hughes et al., 2000) or time series/cell cycle expression
profiling experiments (Tavazoie et al., 1999) are the most feasible methods
of network reconstruction. These experiments share the common goal of
identifying cause-consequence relationships. The targeted mutation
experiment, in particular, can provide direct evidence about which genes are
controlled by other genes. For example, Tavazoie et al. (1999) performed
clustering in their cell cycle expression dataset and identified upstream DNA
sequence elements specific to each cluster by AlignACE (Roth et al., 1998).
This might provide clues to uncover the putative cis-regulatory elements that
co-regulate the genes within that cluster. There is also an increasing interest
in investigating various reverse engineering approaches like Boolean
network (D'haeseleer et al., 2000), Bayesian network (Chapter 8) or Singular
Value Decomposition (Chapter 5) to identify the gene network architecture
from gene activity profiles. A more thorough review on various developing
network reconstruction techniques were detailed by de Jong (2002). A list of
useful software for achieving this purpose is shown in Table 19.10. Some of

338 Chapter 19

them like AlignACE, MEME, Sequence Logos and GeneSpring are helpful
for finding upstream consensus elements, while GenMAPP, Rosetta Resolver
and Pathway Processor are capable of visualizing the reconstructed
pathways.

Table 19.10. Examples of pathway reconstruction software.

Software URL

AlignACE http://atlas med harvard.edu/

GenMAPP (Gene MicroAmay Pathway http://www,genmapp.org

Profiler)

GeneSpring http:/Awww.sigenetics.com/Products/GeneS
pring/index.html

MEME (Multiple Expectation- http://meme.sdsc.edu‘meme/website/

maximization for Motif Elicitation)

PathFinder hitp://bibiserv.techfak,uni-
bitlefeld.de/pathfinder/

Pathway Processor htip:ffegr-harvard edw/cavalien/pp.htmi

PubGene http:/fwww _pubgene.org/

Sequence Logos http://www.bio.cam.ac.uk/seqlogo/

Rosetta Resolver http://www rosettabio.com/products/resolve
r/default.htm

There are two challenges for pathway reconstruction in the future. Firstly,
more sophisticated statistical tests are essential to address the likelihoods of
the inferred pathways. Recently, Grosu et al. (2002) developed a pathway
construction software called Pathway Processor that not only can visualize
expression data on metabolic pathways, but also evaluate which metabolic
pathways are most affected by transcriptional changes in whole-genome
expression experiments. Using Fisher’s exact test, biochemical pathways are
scored according to the probability that as many or more genes in a pathway
would be significantly altered in a given experiment than by chance alone.

The second challenge is in fact a grand challenge for biologists in the
post-genomic era. The focus on pathway reconstruction has been mostly
qualitative and trying to obtain the most probable global interaction network
from the data. However, we should not neglect that a gene interaction
network, as well as the biological system, is actually a dynamic system that
is controlled by numerous parameters, which in turn affect the ultimate
response to a particular situation. For example, proteins might be regulated
by various post-translational modifications and have different sub-cellular
localization, substrates and intermediates might have different initial
concentrations, enzymes might have different rate constants, reactions being
catalyzed might have different equilibium constants and protein-protein
interactions between the pathway members might have different
affinity/dissociation constants. Merely identifying a qualitative topological

19. Microarray Software Review 339

pathway network without addressing its dynamical behavior is inadequate to
provide a thorough understanding of the complex nature of the biological
system being studied.

Unfortunately, it is not a trivial task to obtain all these information,
especially on a genomic scale. This is because many of the genes that are
supposed to be involved in a functional pathway have yet to be identified
from the finished genome sequences. Their basic functions have yet to be
characterized, not to mention all those kinetic parameters. An integration of
microarray analysis with other genomics approaches like proteomics
(Hebestreit, 2001) and metabolomics (Fiehn, 2002; Phelps et al., 2002) is
critical to obtain the essential information to reveal the complete picture of
the system. When there is enough information, a relatively complex
quantitative pathway model can be constructed which aids the understanding
of complex dynamical behavior of biological pathways and systems (Leung
et al., 2001). For instance, Schoeberl et al. (2002) constructed a model based
on ordinary differential equations to describe the dynamics of the epidermal
growth factor (EGF) signal transduction pathway in which the changes in
concentration over time of 94 compounds after EGF stimulation were
calculated. The model provides insight into EGF signal transduction and is
useful for generating new experimental hypotheses.

7. DATABASE AND LABORATORY INFORMATION
MANAGEMENT SYSTEM (LIMS) SOFTWARE &
PUBLIC MICROARRAY DATABASES

Database and Laboratory Information Management System (LIMS) software
has a unique position in microarray software. There are different data being
generated at various stages of a microarray experiment, for example, clone
and plate identities, microarray configurations, arraying conditions, raw
signal intensities and analyzed data. Although LIMS tends to concentrate on
the earlier stage of array manufacturing information management while
database focuses more on the later stage - archival of analyzed data -, they
share the common function to record and organize a large collection of data
for rapid search and retrieval. The comparison among different sets of
experiments is the basis of microarray analysis and faithful archival of
information from various stages is critical for making this comparison
meaningful and efficient.

Table 19.11 lists some of the common microarray database/l.IMS
software packages available nowadays. Most of them are based on relational
database architecture that is either proprietary (Genedirector), using open
source database like PostgreSQL (Genetraffic) or interfacing with
commercially available databases like Oracle (SMD). A detailed comparison

340 Chapter 19

of microarray database software has been detailed elsewhere (Gardiner-
Garden and Littlejohn, 2001). The future microarray database/LLIMS
development and even the experimental design should consider following a
common standard like MIAME so that researchers can compare the results
from different sources readily.

Table 19.11. Examples of database/LIMS software

Software URL

Acuity hitp:/iwww.axon.com/GN_Acuity.html

AMAD http:/fwww.microamrays.org/software. html

ARGUS http:/ivessels.bwh. Harvard.edu/software/argus/default.ht
m

AmayDB http://genome.nhgri.nih.gov/amaydb/

AmayInformatics http:/'www.packardbioscience.com/products/819.asp

BASE (BioArray Software hitp://base.thep.lu.se/

Environment)

CloneTracker http:/fwww biodiscovery.com/clonetracker.asp

Genedirector http://www biodiscovery.conv/genedirector.asp

GeNet hutp://www. silicongenetics.comfcgi/SiG.cgi/Products/Ge
Net/index.smf?7UID=14602

Genetraffic http:/fwww.iobion.com/

GeneX http://genex.ncgr.org/

maxd (Manchester http:/www bioinf.man.ac.uk/microarray/maxd/

ArmayExpress Database)

NOMAD hitp://ucsf-nomad.sourceforge.net/

Partisan ArrayLIMS http:/fwww.clondiag.com/products/sw/partisan/

Phoretix Array Professional http://www.phoretix.com/products/amray_professional.ht
m

Stanford Microarray Database | hitp://genome-

(SMD) package www$ stanford.eduMicroAmay/SMD/download/

A closely related species of database software is public microarray
database, a public repository of microarray data (Table 19.12). Having
public databases are essential for the research community because they can
provide raw data to validate published array results and aid the development
of new data analysis tools. They also permit further understanding of your
own data by comparing with the data from other groups or even meta-
mining’’. We believe the future public microarray databases should segregate
into different specialties. There should be a generic database to allow
everyone to deposit his data, a species-specific database that concentrates on
particular species (e.g., yeast, Arabidopsis and Drosophila), and a disease
specific database (e.g, cancer and cardiovascular). Such differentiation
would greatly help the advance of research in different fields. However there

12
Meta-mining refers to higher order data mining from the results of previous data mining
results.

19. Microarray Software Review 341

are many concems raised on the effective ways for data dissemination,
quality of the deposited data and protection of intellectual property (IP)
rights for submitting data to public databases (Miles, 2001; Becker, 2001,
Geschwind, 2001). These concerns have exemplified the urgent need to
develop a practical microarray standard for the sake of data comparison and
thoroughly discuss the IP issues among the research communities.

Table 19.12. Examples of public microarray databases

Database URL
AmayExpress http://www.ebi.ac.uk/arrayexpress/
ChipDB hitp://staffa.wi.mit.edw/chipdb/public/
ExpressDB http://twad. med harvard.edu/ExpressDB/

Gene Expression Ommnibus (GEO)
GeneX

Human Gene Expression Index (HuGE
Index)

READ (RIKEN cDNA Expression Array
Databasc)

RNA Abundance Database

Saccharomyees Genome Database (SGD):

Expression Connection
Standford Microarray Database

Yale Microarray Database
yeast Microarray Global Viewer (YMGV)

htip:/fwew.nebi.nlm.nih.gov/geo/
http:#/genomics.biochem.uci.edu/genex/
http://www.hugeindex.org/

http://read.gsc.riken.go.jp/

http:/fwww.cbil.upenn.edw’RAD?2/
http:{/genonve-www4 Stanford EDU/cgi-
bin/SGD/expression/expressionConnection
.pl

http:/{genome-

www stanford.edu/microarray
http.//info.med.yate.eduw/microarray/
http://www . transcriptome.ens. fr/ymgv/

8. ANNOTATION SOFTWARE

Annotation software annotates the genes on the array by cross-referencing to
public databases (Table 19.13). This type of software as well as a lot of
turnkey systems and comprehensive software provide different levels of
annotation functions. Gene Ontology (GO) database' is perhaps the most
important database that every annotation software should refer to. GO
provides a dynamic and well-controlled vocabulary for the description of the
molecular functions, biological processes and cellular components of gene
products that can be applied to all organisms even when the knowledge of
gene and protein functions in cells is accumulating and changing. This is
very useful for comprehending the functions of differentially regulated genes
and pathways in which the clusters of genes are being co-regulated.

13 http://www.geneontology .org

342 Chapter 19

Table 19.13. Examples of annotation software.

Software | URL
DRAGON (Database Referencing of Array | http://207.123.190.10/dragon. him
Genes ONline)

Resourcerer hittp:/pga.tigr.org/igr-scripts/magic/rl.pl

9. CONCLUSION

Information is the king and knowledge is the queen in this post-genomics
era. He who can mine the useful information from the messy raw data and
turn it into knowledge is God. The software that helps the mining process is
Michael the Archangel who leads the victorious battle against the complex
biological problems. If you want to win the battle, start working with your
angel now!

ACKNOWLEDGEMENTS

We would like to thank Dr. Duccio Cavalieri from Bauer Center of
Genomics Research, Harvard University, for his insightful discussion on
Pathway Processor, and Ms. Alice Y.M. Lee for her assistance in
proofreading this manuscript.

REFERENCES

Becker KG. (2001). The sharing of cDNA microarray data. Nat Rev Neurosci. 2:438-440.
Brazma A,, Vilo J. (2000) Gene expression data analysis. FEBS Lett. 480:17-24.

Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J.,
Ansorge W., Ball C.A., Causton H.C., Gaasterland T., Glenisson P., Holstege F.C., Kim
LE., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer
S., Stewart J., Taylor R., Vilo J., Vingron M. (2001) Minimum information about a
microarray experiment (MIAME)-toward standards for microarray data. Nat Genet.
29:365-371.

D'haeseleer P., Liang S., Somogyi R. (2000). Genetic network inference: from co-expression
clustering to reverse engineering. Bioinformatics. 16:707-726.

de Jong H. (2002). Modeling and simulation of genetic regulatory systems: a literature
review. J Comput Biol. 9:67-103.

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci USA. 95:14863-14868.

Fiehn 0. (2002). Metabolomics--the link between genotypes and phenotypes. Mol Biol.
48:155-171.

Gardiner-Garden M., Littlejohn T.G. (2001), A comparison of microarray databases. Brief
Bioinform. 2:143-158.

Geschwind D.H. (2001). Sharing gene expression data: an array of options. Nat Rev Neurosci.
2:435-438.

19. Microarray Software Review 343

Grosu P., Townsend J.P., Hartl DI., Cavalieri D. (2002). Pathway Processor: a tool for

integrating whole-genome expression results into metabolic networks. Genome Res.
12:1121-1126.

Hebestreit H.F. (2001). Proteomics: an holistic analysis of nature's proteins. Curr Opin
Pharmacol. 2001; 1:513-520.

Horvath S., Baur M.P. (2000). Future directions of research in statistical genetics. Stat Med.
19:3337-3343.

Hughes T.R., Marton M.J., Jones A.R., Roberts C.J., Stoughton R., Armour C.D., Bennett
H.A., Coffey E., Dai H., He Y.D., Kidd M.J,, King A.M., Meyer M.R., Slade D., Lum
P.Y., Stepaniants S.B., Shoemaker D.D., Gachotte D., Chakraburtty K., Simon J., Bard M.,

Friend S.H. (2000). Functional discovery via a compendium of expression profiles. Cell.
102:109-26.

Jain AN., Tokuyasu T.A., Snijders A.M., Segraves R., Albertson D.G., Pinkel D. (2002).
Fully automatic quantification of microarray image data. Genome Res. 12:325-332.

Jagota A. (2001). Microarray Data Analysis and Visualization. Bioinformatics by the Bay
Press.

Knuden S. (2002). A Biologist’s Guide to Analysis of DNA Microarray Data. New York: John
Wiley & Sons, 2002,

Krause A., Olson M. (2000). The Basics of S and S-Plus. New York: Springer Verlag.

Leung YF., Lam D.S.C, Pang CP. (2001). In silico biology: observation, modehng,
hypothesis and verification. Trends Genet. 17:622-623.

Leung Y.F. (2002). Microarray data analysis for dummies... and experts too? Trends Biochem
Sci. in press.

Leung Y.F., Pang CP. (2002). Eye on bioinformatics — dissecting complex disease trait in
silico. Applied Bioinform., in press.
Leung Y.F., Tam P.OS., Lee W.S., Yam GHF.,, Chua JKH, Lam D.S.C., Pang CP.

(2002). The dual role of dexamethasone on anti-inflammation and outflow resistance in
human trabecular meshwork. Submitted.

Lonnstedt I,, Speed T.P. (2002). Replicated Microarray Data. Stat Sinica 12:31-46.

Miles MLF. (2001). Microarrays: lost in a storm of data? Nat Rev Neurosci. 2:441-443.

Nadon R., Shoemaker J. (2002). Statistical issues with microarrays: processing and analysis.
Trends Genet. 18:265-271.

Phelps T.J., Palumbo A.V., Beliaev A.S. (2002). Metabolomics and microarrays for improved
understanding of phenotypic characteristics controlled by both genomics and
environmental constraints. Curr Opin Biotechnol. 13:20-24.

Quackenbush J. (2001). Computational genetics computational analysis of microarray data.
Nat Rev Genet. 2:418-427.

Roberts C.J., Nelson B., Marton M.J., Stoughton R., Meyer M.R., Bennett H.A., He Y.D., Dai
H., Walker W.L., Hughes T.R., Tyers M., Boone C., Friend S.H. (2000). Signahng and
circuitry of multiple MAPK pathways revealed by a matrix of global gene expression
profiles. Science 287:873-880.

Roth FP., Hughes ID., Estep P.W., Church GM. (1998). Finding DNA regulatory motifs

within unaligned noncoding sequences clustered by whole-genome mRNA quantitation.
Nat Biotechnol. 16:939-945.

344 Chapter 19

Schoeberl B., Eichler-Jonsson C., Gilles E.D., Muller G. (2002). Computational modeling of
the dynamics of the MAP kinase cascade activated by surface and internalized EGF
receptors. Nat Biotechnol. 20:370-375.

Selvin S. (1998). Modern Applied Biostatistical Methods: Using S-Plus. New York: Oxford
University Press.

Sherlock G. (2001). Analysis of large-scale gene expression data. Brief Bioinform. 2:350-362.

Stewart J.E., Mangalam H., Zhou J. (2001). Open Source Software meets gene expression.
Brief Bioinform. 2:319-328.

Tavazoie S., Hughes J.D., Campbell M.J.,, Cho R.J., Church G.M. (1999). Systematic
determination of genetic network architecture. Nat Genet. 22:281-285.

Tomiuk S., Hofmann K. (2001). Microarray probe selection strategies. Brief Bioinform.
2:329-340.

Venables WN, Ripley BD. (1999). Modern Applied Statistics With S-Plus. New York:
Springer Verlag.

Wu TD. (2001). Analysing gene expression data from DNA microarrays to identify candidate
genes. J Pathol 195:53-65.

Yang Y.H., Buckley M.J,, Speed T.P. (2001). Analysis of cDNA microarray images. Brief
Bioinform 2:341-349.

Yang Y.H., Dudoit S., Luu P., Lin D.M., Peng V., Ngai J., Speed T.P. (2002). Normalization
for cDNA microarray data: a robust composite method addressing single and multiple
slide systematic variation. Nucleic Acids Res. 30:E15.

Chapter 20

MICROARRAY ANALYSIS AS A PROCESS

Susan Jensen

SPSS (UK) Ltd,St. Andrew’s House, West Street, Woking GU21 6EB, UK,
e-mail: sjensen@spss.com

1. INTRODUCTION

Throughout this book, various pieces of the microarray data analysis puzzle
are presented. Bringing the pieces together in such a way that the overall
picture can be seen, interpreted and replicated is important, particularly
where auditability of the process is important. In addition to auditability,
results of the analysis are more likely to be satisfactory if there is a method
to the apparent madness of the analysis. The term *“Data Mining” is generally
used for pattern discovery in large data sets, and Data Mining methodologies
have sprung up as formalised versions of common sense that can be applied
when approaching a large or complex analytical project.

Microarray data presents a particular brand of difficulty when
manipulating and modelling the data as a result of the typical data structures
therein. In most industries, the data can be extremely “long” but fairly “slim”
— millions of rows but perhaps tens or a few hundreds of columns. In most
cases (with the usual number of exceptions), raw microarray data has tens of
rows, where rows represent experiments, but thousands to tens of thousands
of columns, each column representing a gene in the experiments.

In spite of the structural difference, the underlying approach to analysis
of microarray retains similarities to the process of analysis of most datasets.
This chapter sets out an illustrative example of a microarray Data Mining
process, using examples and stepping through one of the methodologies.

2. DATA MINING METHODOLOGIES

As academic and industrial analysts began working with large data sets,
different groups have created their own templates for the exploration and

346 Chapter 20

modelling process. A template ensures that the results of the experience can
be replicated, as well as providing a framework for an analyst just beginning
to approach a domain or a data set. It leaves an audit trail that may prevent
repetition of fruitless quests, or allows new technology to intelligently
explore results that were left as dead ends.

Published Data Mining methodologies have been produced by academic
departments, software vendors and by independent special interest groups.
There is general agreement on the basic steps comprising such a
methodology, beginning with an understanding of the problem to be
addressed, through to deploying the results and refining the question for the
next round of analysis. Some methodologies concentrate solely on the work
with the data, while others reinforce the importance of the context in which
the project is undertaken, particularly in assessing modelling results.

Transparency of the Data Mining process is important for subsequent
auditing and replication of the results, particularly in applications that face
regulatory bodies. A very successful combination in Data Mining is a self-
documenting analytical tool along with an established Data Mining
methodology or process. There are several Data Mining tools (reviewed in
Chapter 19) that implement a ‘“visual programming” concept, where the
steps taken in each phase of a methodology are documented and annotated
by the creator, in the course of the project development. Examples of “‘visual
programming” will be presented in later sections in this chapter. Importantly,
though, any given methodology will generally be supported by whatever tool
or set of tools is used for analysis, as the methodology is more a function of
the user than the software.

An EU-funded project resulted in the Cross-Industry Standard Process
for Data Mining (CRISP-DM; see http://www.crisp-dm.org). A consortium
of some 200 representatives from industry, academia and software vendors
set out to develop a common framework based upon the occasionally painful
experiences that they had in early Data Mining activities. The idea was to
improve both their own project management and to assist others tackling
what could be an intimidating task, and the CRISP-DM document was
published by the consortium in 1999,

Web searches and anecdotal information indicate that CRISP-DM is
currently the single most widely-referenced Data Mining methodology,
probably because the documentation is detailed, complete and is public
access. CRISP-DM is visible as a project-management framework for
consulting firms, and is actively supported by various Data Mining software
vendors, such as NCR Teradata and SPSS, who were among the consortium
participants. An example of extensions to CRISP-DM is in RAMSYS,
(Moyle and Jorge, 1999), a methodology to improve remote collaboration

20. Microarray Analysis as a Process 347

on Data Mining projects. RAMSYS was (and continues to be) developed by
members of SolEUNet (Solomon European Virtual Enterprise).

Because of this visibility, I will use CRISP-DM as the framework for an
example of working through the analysis or mining of microarray data in the
subsequent section.

3. APPLICATION TO MICROARRAY ANALYSIS

Whatever the origin of data, Data Mining tasks have unsurprising
similarities, beginning with “what am I trying to do here?’ and ending with
“what have I done and what can I do with it?” In the following sections I
will lay out the more formal version of those questions in a microarray data
analysis project, in CRISP-DM steps (Figure 20.1). At the beginning of each
section will be a general flow diagram outlining the sub-steps within each of
the steps, to give a gentle introduction to that part of the process, to be
fleshed out by application to microarray data.

For a detailed, step-by-step, industry-neutral guide on steps and tips in
using CRISP-DM, the booklet can be downloaded from the Web site.

The approach of a Data Mining process will be familiar, roughly
following the structure of a scientific paper. The process begins with the
introduction of objectives and goals, to the methods and materials of data
cleaning, preparation and modelling, to evaluation of results, concluding
with discussion and deployment — where the results lead, what benefit
gained, next steps to take.

Figure 20.1. CRISP-DM Data Mining process flow, emphasising the feedbacks and iterative
nature. From the CRISP-DM Web site (http://www.crisp-dm.org).

348 Chapter 20

3.1 Business Understanding

Determine Business Objectives

Assess Situation 4—\

Determine Data Mining Goals

/

Produce Project Plan

Figure 20.2. Steps within the CRISP-DM stage of Business Understanding; arrows indicate
usual direction of work flow,

Analysis of microarray data is generally done with a specific objective or
goal in mind, whether mapping active regions of a genome, classification of
tissue types by response to a drug treatment, looking for gene expression
patterns that might provide early indicators of a disease, and so on. This
differs from a more classic Data Mining problem where someone is faced
with a database and must think of appropriate, testable questions to ask of
the data, in order to structure the information gained.

Because of the (likely) existing purpose in microarray data collection, the
objectives (both the “business objective” and “Data Mining goal”;
Figure 20.2.) of the analysis would likely already be determined. The fate of
output of the project will obviously impact the goal: is it for scientific
publication, is it part of an early drug discovery project where the results are
to be fed to the cheminformatics department, or is it testing internal
processes or equipment?

The public access leukemia gene expression data set described by Golub
et al., (1999) can be used as a classification example throughout this process.
The simplified and illustrative Data Mining process diagrams in this chapter
were produced using the Clementine® Data Mining workbench.

Golub et al.,, (1999) describe one of the first attempts to classify cancer
and tumour classes based solely on gene expression data, which is the clear
business objective. The Data Mining goal was more specific: to use an initial
collection of samples belonging to known classes to create a class predictor
that could classify new, unknown samples (Golub et al,, 1999, pS31). The
next level of detail, algorithm selection and evaluation, is addressed in the
modelling phase of the process (below), after developing an understanding
of the data involved.

20. Microarray Analysis as a Process 349

Within the business understanding phase, once the business objectives and
Data Mining goal are stated, the next step would be to inventory the
resources. How much time might be required, and will the people doing the
analysis be available to complete the project? If not, are there others that
could step in? What computing resources will be required, appropriate
hardware and software for completing the analysis to satisfy the objective?

An idea of how long the analysis will take, including all the data
manipulation required, is probably an unknown until you have been through
it once. During that time, the analyst(s) may be interrupted to attend
conferences, or follow up on other projects. Has time or contingency plans
been built in to deal with the interruption?

If CRISP-DM were being used to help maintain an audit trail of the
analysis, a project plan would be produced at this stage, with the inventory
ofresources, duration, inputs, outputs and dependencies ofthe project.

3.2 Data Understanding

Collect initial data

Describe data /
N

Explore data

N\

Verify data quality

Figure 20.3. Steps within the CRISP-DM stage of Data Understanding; arrows indicate usual
direction of work flow

Data from microarray readers can be stored in text format, databases or
Excel® spreadsheets, and may resemble that depicted in Table 20.1. The
collation of data from several experiments may be done manually or via
database appending processes. If the analysis involves combining several
formats, such as expression data with clinical data, then at this stage the
formats would be checked and any potential problems documented. For
example, if the clinical data were originally collected for a different purpose,
unique identifiers for individuals may not match between the files, and have
to be reconciled in order to merge the data later.

350 Chapter 20

Table 20.1. Example of microarray data (Golub et al., 1999), experiments in columns, genes
in rows; calls removed, and 6 of 33 experiments are visible here.

— p——

— [owekmeiiienn!. % | 3.0 3 | 4 | 0§ . p !

T BB S al (mdegeneys tonkal) AFFX-B0B5 ot BT N ST N
INFFY-BicEW_ (srdogenoss conimd)] | s a9 Ab A I

WFFx o8 3 at (andoqenoss ranirn) AT B8] al -4 4 -» wy T b
JX-A0C-5 a1 (endegensus conbsl) |WFFRBRC-5 a1 & L | | 1 1 n
| [WPBeC-) sl (mdsgencus cosbiel) AFFX-BuC-0 0t | -198 BT 376 s -0 bl
 [arxmeDe-5_u (naspamus conmel NFX BnDn-S_ut | 8 4t B 585 ™ 544
AFFx-BieDn-3_al (mndsgancus conkl) AFFY-B0n-3_al | 199 -3 _n 158/ [£7|
o PUPXC-S o fendogannes carem AFFX-Crand 4 ATH 1_1!1 67| m 173 vl
PFFXCreke) @ fendogmnows weniu) MFFX-Coacd ol } e Ly o, (| L o
FPIGoR 5 ol (mdognons coni) _ EPHig 201 i e o} Rk el 181 18%
1 JNFKBoBM_standojarow cori} NFFXBIBY 8 41 19 W m w s
Fl AT Bl _st jencogenous conal) AP BIoR-3 R | an 1 18 En -Aan 63l

3 ATFXCBIOC-A_s) (medogmmous tonbel) [8FFX8eC.8 st [3 m 92 5T 490 B8 [

The audit trail would, in this section, document any problems encountered
when locating, storing or accessing the data, for future reference, particularly
if data quality becomes a question when results are returned from the
analysis.

It is during this data understanding phase that the analyst would begin
exploring the data, graphically analysing attributes, looking for possible
relationships between variables, and checking the distribution of classes that
might be predicted (c.f. Figure 20.3., depicted in Figure 20.4.). As with most
data analyses, if there is an interesting pattern that comes out immediately, it
is probably data contamination.

b-{(/ 4»-%5

Cli ical‘ Quality disease class Micrirray\statlstlcs

A BEEE
@ survival >\</ Table

RBC by symptom Quality

Figure 20.4. Simplified example of process of examining and getting acquainted with data

during the data understanding phase of a project. RBC indicates red blood cell count in the
clinical data,

Time spent on examination of the data at this phase will pay off, as that is
when data import or export errors are detected, and coding or naming
problems are found and corrected (and documented). By the end of this
phase, the analyst should have confidence in the quality and integrity of the

data, and have a good understanding of the structure relative to the desired
goal of the analysis.

20. Microarray Analysis as a Process 351

3.3 Data Preparation

Select data
/ \
Clean data Construct data
h:ate data
kat data

Figure 20.5. Steps within the CRISP-DM stage of Data Preparation; arrows indicate usual
direction of work flow,

The objective of this step, as indicated in Figure 20.5,, is to get all of the
data ready to do the modelling. The data understanding and data preparation
phases of any project usually represent about 80% of the work and about
90% of the tedium and frustration in dealing with data from any industry.
Since techniques on data cleaning and imputation appropriate to the
microarray analysis field are still evolving, much time may be spent in
preparation in order to test, for example, the effects of different types of data
normalisation or missing value imputation. There are several chapters in this
book that detail various aspects of preparing microarray data for analysis, so
I will speak in more general terms of selection, cleaning, and enriching the
data.

Transposing the data, so that the experiments/subjects are in rows and
genes in columns, may sound trivial but is one of the early and major hurdles
for large data sets. Some steps in cleaning the data are easiest with genes as
rows, others easiest with genes as columns. It is relatively simple to do the
transposition in Excel provided that the end result will have only 255 genes
or columns, which is unlikely with modern microarray data sets, which can
hold up to 30,000 genes. Otherwise, it can be easily accomplished in a
couple of steps in some Data Mining software, or through construction and
implementation of repeated Perl scripts.

The preparation process generally begins with selection of the data to be
used from the set collated. If Affymetrix chips are used, then removal of the
calls and control fields is necessary for a clean analysis set. Expression
levels may have registered at very low and very high levels, and the
extremes are generally not meaningful, so deciding on upper and lower

352 Chapter 20

thresholds, and setting the outlier values to those thresholds will remove
unnecessary noise. For example, it may be decided that values less than 20
and greater than 1,600 are not biologically meaningful; rather than simply
exclude those values, the values less than 20 are replaced with 20, and those
greater than 1,600 are replaced with the upper threshold of 1,600. Then the
next step of finding and removing the invariant genes (i.e. those genes that
are not differentially expressed) from the data will help to reduce the data set
to a more meaningful set of genes (c.f. Figure 20.6.).

Decisions about standardising, centralising and/or normalising of the
expression data, and imputation of missing values are discussed in previous
chapters. If there are choices to be made among these data manipulation
stages, it may be that several of the options will be implemented to test the
results. The result may be that where there was one raw data file, there is
now a developing library of several files with different permutations of the
manipulation: e.g. data with overall-mean missing value imputation, data
with group-mean imputation, data with k-nearest neighbour imputation, each
of the imputed data sets with mean-centering, each of the imputed data sets
with 0-1 centring, and so on.

@& =@ =& — A
Clinical mm incomplete Aggregale eyl‘ \surv‘walbydlsaase

@@ @ A\ -

Microarray drop calls/controls threshold impute RBC by diseasse

Figure 20.6. Simplified example of data preparation. This step involves cleaning, selecting,
aggregating, dealing with missing values, and a lot of time and energy on the part of the
analyst.

Documentation of the library resulting from these decisions is a good
idea, for the sanity of the analyst and to ensure that all the sets are treated
similarly when the modelling phase is reached, as well as for assistance
when dealing with queries about the results. Further manipulation, such as
creation of new variables, tags indicating tissue class, categorisation of a
target field into an active/inactive dichotomy or discretization of numeric
fields, should also be documented for future reference and reproducibility.

If the microarray data are to be used in conjunction with clinical data,
then the clinical data will be cleaned during this phase as well, so that the
resulting formats will be compatible or at least comprehensible. Decisions

20. Microarray Analysis as a Process 353
may have to be made on whether to aggregate, for example, lab exam results

of the subjects by averaging, summing or taking the variance of the data for
merging with the single line of gene expression data for each patient.

3.4 Modelling

Select modelling technique(s)

Generate test design

Build model \

Assess model

Figure 20.7. Steps within the CRISP-DM stage of Modelling; arrows indicate usual
direction of work flow.

As mentioned in the last section, a single raw data file may, after the data
preparation phase, have turned into a series of data sets that describe a
matrix of normalisation and missing value replacement techniques, each of
which to be analysed similarly for results comparison. It is often a good idea
to be reminded of the goal of the project at this point to keep the analyses
focused as you decide which modelling technique or techniques will be
applied before embarking on the appropriate steps shown in Figure 20.7. For
a given project, the list of algorithms should be narrowed to those
appropriate and possible given the time, software and money allotted to the
project.

There is an evolving variety of ways to reduce, classify, segment,
discriminate, and cluster microarray data, as covered in Chapters 5 through
18 of this book. By the time you finish your project, more techniques, and
tests on existing techniques, will have been published or presented at
conferences. Because of these changes, it is very important to keep in mind
(and preferably on paper) the assumptions, expected types of outcomes and
limitations of each technique chosen to be used in the analysis, as well as
how the outcome of each technique to be used relates to the Data Mining
goal.

Documentation of why a particular modelling technique is used is also
advisable because behaviours of techniques only become apparent after
considerable use in different environments. As such, recommendations of
when it is appropriate to use a given technique will likely change over time,

354 Chapter 20

and it is useful to have a reference. For example, if a project decided that
boosting (where the case weights in a data set are adjusted by the modelling
algorithm to accentuate the hard-to-classify cases, which should improve the
modelling of those cases) was ideal in a S-class classification problem, and a
year later a paper is published that points out shortcomings in such a use of
boosting, then the project will have on record that it used the best
information available at the time. The record should also make it more
straightforward to repeat the analysis with a change in the boosting effect.

Going back to the example using the Golub et al. (1999) data set, the data
will be thresholded, invariant genes removed, data normalised and clean at
this point, and so modelling can begin. In an ideal world, the data could be
run and the model(s) and results admired immediately, but in reality, once
modelling begins, more data manipulation usually becomes necessary. It
may be that the thresholding levels were too lax; for example instead of a
lower limit of 20 and an upper of 1,600, 40 and 1,500 would be more
appropriate. Again, keep track of the changes made and run the models
again.

® . — @& —@
clean file select train \ build rule induction

selecttest ‘ build neural network

— Q&

§rule induction resul.; neural net resuits analysis

Figure 20.8. Simplified example of building and comparing modelling techniques on a single
data set. Automation can be used to set up and run a series of data sets through the same
analysis, reducing human error and tedium. Rule induction and neural networks (ANNSs) are
two commonly-used Data Mining algorithms.

When results come back, interpretability of the results is very algorithm-
and software-dependent — some output is aesthetically pleasing, some takes a
bit more effort. Examples of output represented in Figure 20.8. are presented
in Figure 20.9. Rule Induction (Decision Tree) will present the gene(s) most
significantly contributing to the discrimination between the classes (in this
case two classes) and a Neural Network will present a list of relative
importance to the discrimination. At this point, algorithms may be discarded
or modified because they are not producing the detail of output that is
required to address the business objective. If the analyst prefers the Decision
Tree output format and interpretability, but the Decision Tree insists that just

20. Microarray Analysis as a Process 355

one gene is doing all the discrimination, then perhaps a bagging approach to
the decision tree would be more appropriate than relying on a single tree:
bagging consists of select a series of subsets of genes to run against the class,

and combine the resulting trees for an overall predictor (c.f. Chawla et al.,
2001).

@ D Anatyuis
Evimaded scowrncy 1000

$C-Class Inpul Layer 50 srens
Hiddan Layer 1 neuning
Wede D Outped Layer | newrone
Ciggory X o @ CIRuiba mwodtarcs of inpuss
o] e i DA3FS0_M_ £ 111
i 1185 2 D43948_wt Q0S4
Tat 10038 DI4658_a1 2093
D32050_at . 0092
D38540_m 0081
DMST4_sl 0027
DI4EG4_ W NIRADEZZ gene DOOTEd_st.. D083
DI e 0083
OS0Re_e . 0062
<= |, Y50 » 1 158 AQ003894. 0 0@y
|] A0S0A48 00N
LT Wave T D13627_ai 0078
Cateqoey X a Cutegery ¥ n C47043 _al 0068
»: s 1| |w2 10000 10 D21262_wl_ 0.087
1 w4y 1 000 @ OIest_al. (088
Tol 7368 18| | Tew 2632 49 DI1852_st_ 008
D105 at 0058
015913 008
——SSR M ODSY
a. b.

Figure 20.9. Examples of mode! output: a) rule induction (decision tree) classification, and b)
neural network (ANN) classification,

Nor is it necessary to just use one modelling technique in isolation; if two
techniques are good classifiers but pick up different idiosyncrasies of the
data, use the results of both to predict new cases. For example, accept the
prediction of a particular class only in those cases where both modelling
techniques agree, or accept the prediction of a class where at least one
modelling technique accurately classifies (Figure 20.10.). The analyst can be
creative with the use and combination of modelling techniques when
searching for novel patterns.

356 Chapter 20

o y —=) — B

rule induction resul.. neural netresu nn AND ti predict Table

&y — (B
nn OR vl predict Table

Figure 20.10. Simplified example of post-model processing to select and examine results of
models, including a portion of Figure 20.8. and continuing the stream. The “nn” indicates
neural networks (ANNs) and “ri” indicates rule induction. Stream illustrates the selection of
cases where both algorithms agree on a classification or prediction, in the AND select node;
and where either one classifies a case into a particular group in the OR select node.

Once the modelling techniques have been decided, a test design should
accompany the selections, which describes the process by which the models
will be tested for generalisability beyond the model-building data set and for
success of the modelling exercise. Perhaps the most important aspect of the
test design is deciding how the data are to be split into train and test samples,
or use of cross-validation. In non-microarray data sets with many cases
(more cases than variables) a train:test ratio can comfortably be up to 80:20.
In microarray data a classification problem might be trying to discriminate
among 4 classes spread across 40 cases. If 80% of the data are used to build
the model, only 2 cases of each class will be left for testing the model’s
generalisability. If it fails, it will be difficult to see where and why it failed,
and how to improve the model. Whatever the ratio chosen, training and
testing data are also often selected at random from the raw data set. In such
small data sets, if 80% of the data are randomly selected as training, it is
possible that only half of the classes would show up in the testing data set at
all. Because of these dangers, cross-validation is rapidly picking up in
popularity, and most modelling software supports cross-validation. Golub et
al. (1999) describe the use of both types of validation in the classification
analysis.

What will be the success criteria, or what sort of error rates will be used
to determine the quality of model result? Answers will vary with data and
modelling technique chosen. In a supervised modelling task, will
classification rate be sufficient or will there be more weight put on the
control of false positives? Using unsupervised techniques for -class
discovery, it may be more difficult to put a success or failure label on the
results; looking for clusters of similarly expressing genes may be a good

20. Microarray Analysis as a Process 357

start, but will that give you the answer that will fulfil project objectives —
will the cheminformatics department be able to work with the cluster results
or do they want further labelling of the clusters? Do the survival
probabilities of the clusters make sense? Clustering techniques most often
require human intervention, and an analysis of whether or not the clusters
make sense will determine success. Again, as part of the documentation
process, this subjective stage and possible ranges of results should be noted
so that if an aberrant result comes up it can be rectified quickly and
productivity is not lost.

If there are more than a few data sets to be analysed, generate a tick-list
where completion of modelling steps for each data set can be noted, with
space to document where the results can then be found. Having made it this
far through the process, it is a good idea to ward against project collapse
should the analyst be offered a better job elsewhere, hit the lecture circuit or
decide not to return from a conference.

Algorithms, whether statistical or machine learning, generally have many
parameters to tweak, and unless the analyst is trying to replicate a particular
protocol, the parameters should be sensibly tweaked to see what happens.
Some of the results will be rubbish, some will be useful, but all should be
assessed as to whether or not they make sense. Iterate model building and
assessment, throwing away models that are not useful or sensible, but keep
track of what has been tried or it will inevitably be scrolled through again.

When the tick-list of models has been run through, there may be a series
of models to rank if only the most successful of them are to be kept for use
on future projects. This is where the previously-determined success criteria
are used to greatest value, as it is easy to start hedging about the definition of
success if the pet algorithm or freeware did not make into the top 5 hitlist.
Having success criteria in place will also be a signal of when the parameter
tweaking can be stopped and the process evaluated. Many projects simply
stop when time or money runs out, while the actual analytical objectives had
been long-satisfied and time has been lost in the drug discovery or
publication process.

358 Chapter 20

3.5 Evaluation of Project Results

Evaluate results

Review process

Determine next steps

Figure 20.11. Steps within the CRISP-DM stage of Evaluation; arrows indicate usual
direction of work flow,

In the modelling phase, the individual models’ results are assessed for
error and sensibility, and in this evaluation phase, the whole process is
similarly assessed as outlined in Figure 20.11. Was there a bottleneck in the
project — was it a problem with computers, people, data access? How can
that be removed or decreased? How did the modelling perform relative to the
Data Mining goal? Was a single model found that had the best classification
rate? Or will a combination of models be used as the classification
algorithm, with some pre- and post-model processing? What about the
business objective? If the Data Mining goal has been achieved, then
classification of new cases based on expression levels should be a trivial
leap, as the data manipulation and cleaning required of the new cases, as
well as the modelling techniques to be used, will be documented and
possibly even automated by this point.

Did the project uncover results not directly related to the project
objective that perhaps should redefine the objective or even define the next
project? Results are a combination of models and findings, and peripheral
findings can lead to both unexpected profits and attractive dead ducks. As

such, it may be prudent to keep track of them, but perhaps save the pursuit of
them for the next project.

20. Microarray Analysis as a Process 359

3.6 Deployment

Plan deployment

Plan monitoring and maintenance

Produce final report

Review project

Figure 20,12, Steps within the CRISP-DM stage of Deployment; arrows indicate usual
direction of work flow.

Deployment is a very broad term. Essentially “doing something with the
results”, it can cover anything from writing a one-off report to describe the
analytical process, the writing of a thesis or publication, to informing an
ongoing laboratory protocol, to the building of knowledge that will help take
the field forward. Figure 20.12 shows the general steps that are taken when
approaching the deployment phase of a project.

If the results or process are to be part of a laboratory protocol, once the
desirable report (visualisation, modelling protocol or text/Powerpoint®
output) is established, will it be a regular report? If so, the final process that
was established through the above steps can be automated for re-use with
similar data sets. The complexities of the data storage, cleaning and
manipulation, model creation and comparison, and output-report production
could be built into the automation to run with a minimum of human
intervention, to save human patience for interpretation of the results. A
production and maintenance schedule could be built to support the ongoing
exertions, possibly with modelling-accuracy thresholds put in place to check
the ongoing stability and validity of the model. In a production mode, alerts
could be set up to warn when the models are no longer adequate for the data
and should be replaced.

From the deployment phase of the Data Mining process, a summary of
findings and how they relate to the original objectives — essentially a
discussion section — would be a sensible addition to audit documentation. If
you are the analyst that is offered a better job, it would be much nicer of you
to leave a trail that your replacement could pick up on, and you would hope
for the same from your new position.

360 Chapter 20

The stream-programming concept of Data Mining shows its strengths at the
evaluation and deployment stages, in a production environment as well as in
cases of one-off analysis projects. The steps are self-documenting and visual,
and the models quickly rebuilt using the same pre- and post-modelling
processing steps as well as the same model parameters, as found with the
traditional code programming. Visual programming permits a new analyst to
pick up or repair an existing project with relatively small loss of
productivity.

4. EPILOGUE

An analyst in the field of microarray data will be suffering the Red Queen
syndrome for many years to come, as new algorithms and data
manipulations are evolved, tested and discarded. If chips become less
expensive, as usually happens with technology, then in the near future more
experiments on a given project may be run and larger data sets generated,
leading to yet another set of algorithms being appropriate for the
peculiarities of microarray data. As such, establishing a framework for Data
Mining that includes flexible boundaries and change, planning for the next
steps to include testing of new algorithms or to tighten or loosen model
success criteria, will prevent getting caught in the tulgey wood.

REFERENCES

Chawla N., Moore T., Bowyer K., Hall L., Springer C., Kegelmeyer P. (2001). Investigation
of bagging-like effects and decision trees versus neural nets in protein secondary structure
prediction. Workshop on Data Mining in Bioinformatics, KDD.

CRISP-DM: Cross-Industry Standard Process for Data Mining. Available at http:/www.crisp-
dm.org.

Golub T.R., Slonim D K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh
M., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander ES. (1999). Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286(5439):531-537.

(Data set available at: http://www-genome.wi.mit.edu/mpr/data_set_ ALL._AML.html)

Moyle S., Jorge A. (2001) RAMSYS-A methodology for supporting rapid remote
collaborative data mining projects. In Christophe Giraud-Carrier, Nada Lavrac, Steve
Moyle, and Branko Kavsek, editors, Integrating Aspects of Data Mining, Decision Support

and Meta-Learning: Internal SolEuNet Session, pp. 20-31. ECML/PKDD'01 workshop
notes.

Index

A

accuracy, 42, 68, 69,71, 72, 295, 302

activation function, 207

adaptive single linkage clustering, 246

adjusted Rand index, 280, 286

affinity, 277

Affymetrix, 78, 82, 83, 160, 307, 310,
313

alien sequences, 57

all-pairs, 181, 182

alternative polyadenylation, 327

alternative promoter usage, 327

alternative splicing, 327

analysis of variance, 59

ANN. See artificial neural network

annotationsoftware, 341

ANOVA. See analysis of variance

AP. See all-pairs

application data, 44

application set, 27, 44

Apriori algorithm, 297, 301, 302

array profile, 22, 23, 28, 32

artificial neural network, 201, 215

association, 37, 40, 42, 43, 45, 289, 290,
292-298, 300-304

association rules, 294, 297, 303

Audic and Claverie's test, 316

audit trail, 89, 346, 349, 350

auditability, 345

average linkage clustering, 246,250, 253

average linkage hierarchical clustering,
133

B

backward elimination, 112

bagging, 355

Bayes classifier, 159, 161

Bayes decision rule, 197

Bayes rule, 138, 139, 140

Bayesian belief networks. See Bayesian
network

Bayesian feature selection, 111, 125, 129

Bayesian information criterion, 285

Bayesian network, 120, 150, 151, 153,
154, 156-163

Bayesian optimal classifier, 126

best-firstsearch, 112

bias, 50-52, 54, 57, 59, 77, 78, 80, 84- 86,
88, 136, 143-145, 148

bias-variance trade-off, 144

BIC. See Bayesian information criterion

biclustering, 234

binomial distribution, 313, 314

bioinformatics, 91

black holes, 53

blessing of smoothness, 167, 184

Bonferroni correction, 217

boosting, 146, 148

bottom-up, 246, 252

calibration, 208, 210

CART. See Classification And
Regression Tree

CAST. See cluster affinity search
technique

category utility, 128

362

CCM. See compound covariate method
cDNA, 9, 10, 14, 15, 18, 46, 51, 52, 56,
132, 133, 136, 148, 187, 200, 267

cell-cycle data, 96, 97, 100, 103

centralization, 55, 56, 57, 58, 60, 61

chaining effect, 251, 252

Chebychev metric, 240, 243

cheminformatics, 348, 357

chi-square, 294, 297

chi-square test, 314-316

chromosome, 219, 221, 222, 223, 224,
225,226

classification, 100, 106, 110, 113, 114,
118, 119, 122, 124,125,127, 128,
132, 133-139, 141, 142, 143-148, 150
154, 157-163, 166-168, 174-177, 179-
185, 201-203, 205-215

Classification And Regression Tree, 66,
142 198

Classification Rule with Unbiased
Interaction Selection and Estimation,
198.

classification task, 40

classification tree. See decision tree

classifier, 134-138, 140-146, 202, 206,
210, 211

CLICK algorithm, 129

cluster, 133, 135, 230-243, 274, 277-282,
284, 287

cluster affinity search technique, 274, 277

clustering, 103, 105, 106, 110, 111, 127-
129, 186, 196, 199, 230, 231, 233,
235, 238, 242, 274, 282

clustering task, 41

codebook, 181, 182

coefficient of variation, 87

committee, 159, 210, 212, 213

compactness, 232

complete linkage clustering, 246, 250,
252

compound covariate method, 186, 188,
192, 193, 199

Index

comprehensive software, 330, 331, 333,
334, 341

confidence, 13, 30, 34, 42, 175, 181, 182,
295-297

consensus trees, 244

contingency table, 293-296

continuous, 99, 103, 106, 112, 114, 128

control, 11

convex admissible, 235

correlation, 36, 41, 96, 100-103, 107,
290-294, 299, 300, 303

correlation coefficient, 276, 278

covariance, 81, 127, 140, 219, 248, 251

coverage, 42, 295, 302

cross-validation, 43, 44, 119, 120, 122-
124, 141-146, 202, 204, 209-214

curse of dimensionality, 110, 167, 184

Cy3, 8,29

Cy5, 8,29

D

DAG. See directed-acyclic graph

data filtering, 47, 49, 61, 62

data inspection, 47, 60, 61

Data inspection, 60

data mining, 294, 297

data transformation, 47, 59

decision rule, 118, 126

decision surface, 209

decision tree, 118, 150, 158, 161, 354,
355

dendrogram, 250-259

dependence tree, 120, 121

DHP. See Direct Hashing and Pruning

diagonal linear discriminant analysis, 140

diagonal quadratic discriminant analysis,
140

DIC. See Dynamic Itemset Counting

differential display, 7

dimensional reduction, 202

dimensionality reduction, 95, 105, 330,
331

Index

Direct Hashing and Pruning, 297

directed-acyclic graph, 152

discretization, 117, 154

discriminant analysis, 133, 134, 135, 139,
141, 146

dissimilarity, 275, 276, 279

DLDA. See diagonal linear discriminant
analysis

DNA, 48, 58

double self-organizing map, 268

DQDA. See diagonal quadratic
discriminant analysis

Dunn's index, 232, 238

dyes, 8, 29, 51, 56, 57, 59

dye-swap, 78, 85, 86, 89

Dynamic Itemset Counting, 297

E

early stopping, 211

eigenarray, 94

eigenassays, 94, 96, 98, 100, 102

eigengenes, 67, 68, 71, 74, 94, 95-101,
103, 104

eigenvalues, 67, 69

eigenvector, 127

elbow, 98, 103, 104

EM. See expectation maximization

empirical error, 174

entropy, 115, 128, 129, 189

epochs, 208, 210, 211, 271

ESTs. See expressed sequence tags

EBuclidean distance, 67, 141, 189, 193,
220, 248, 264, 276, 278

exons, 5

expectation maximization, 68, 156, 284

experimental study, 298

experimenter bias, 77

explicit feature selection, 111

expressed sequence tags, 327

expression profile, 16, 21, 22, 28, 36, 40,
92, 95, 96, 100, 105

extension/accessory software, 330

(%)
N
w

external criterion analysis, 280

F

false positive, 217

false positive rate, 190

fast self-organizing feature map, 268

feature reduction, 217

feature selection, 110, 111, 113, 119, 122,
124-126, 128, 129, 134, 136, 141-143,
145,146

feature weighting, 111

feed-forward network, 201

figure of merit, 281

filter, 111, 112, 118, 122, 123, 142, 176

filtering, 49, 61, 62, 63

Fisher's exact test, 314-316, 338

fitness, 219, 222-224

fluorescent, 53

FOM. See figure of merit

forward selection, 112

FP-growth, 297

FPR. See false positive rate

G

GA. See genetic algorithm

Gaussian distribution, 112, 114

Gaussian kernel, 173, 183

Gaussian maximum likelihood
discriminant rule, 139

Gaussian mixture model, 282

Gaussian quadratic classifier, 123

GCS. See growing cell structures

gene profile, 16, 21,23, 35, 37,40

generalization error, 138, 143, 144, 174

generalized linear model, 124

genetic algorithm, 219

genetic risk group, 302

Gibbs sampler, 126

GLIM. See generalized linear model

global normalization, 81

gradient descent algorithm, 208

Gram-Schmidt orthogonalization, 93

364

group average linkage clustering, 250
growing cell structure, 234, 269

growing self-organizing map, 269
GSOM. See growing self-organizing map

H

heterogeneity, 232,235, 241

heuristic-based clustering, 277, 280

hidden layer, 206

hierarchical agglomerative clustering,
246, 249

hierarchical clustering, 52, 58, 62, 65,
133, 217, 232, 233, 236, 244, 246,
247, 250, 251, 259, 278, 284

hill-climbing, 112, 120, 156

hinge loss function, 173

homogeneity, 281

housekeeping genes, 57, 79

hybridization, 2, 7-10, 12, 14, 26-28, 30,
34, 35, 39, 49, 51, 53, 58, 59, 61, 62,
77, 78, 80, 83, 85, 86, 838

hypergeometric distribution, 313-315

hyperplane, 168-170, 171, 172, 175, 176

I

IGG. See incremental grid growing neural
network

ill-posed problem, 167

image analysis, 49, 54, 56, 61-63

image analysis software, 328, 329

image processing, 53, 77

incremental grid growing neural network,
269

induction, 110-112, 118, 129

inductive bias, 119, 123

Info Score. See mutual information
scoring

information gain, 114, 115, 117, 118,
122,129

input layer, 206

intensity dependent methods, 83

intensity independent methods, 81

Index

internal criterion analysis, 280
Internet, 49

intra-cluster diameter metrics, 232
introns, 5

isolation, 232

K

Kendall's tau, 291, 292, 293, 294, 299

kernel function, 172, 173

k-means, 65,217, 233, 236, 261, 265,
274, 277-279, 284

k-nearest neighbor, 179, 1M, 217, 222

KNN. See k-nearest neighbor

KNNimpute, 66-70, 72-74

Kohonen map. See self-organizing map

Kohonen Self-Organizing Feature Map.
See self-organizing map

Kullback-Leibler divergence, 115

L

L, measures, 232

Laboratory Information Management
System, 339

landing lights, 53

large p, small n-problem, 137

lattice machine, 42, 43

LDA. See linear discriminant analysis

learning, 110-112, 118, 119, 124, 125,
129, 201, 202, 209, 210, 215

learning cycle, 264

learning rate, 264, 265, 269

learning set, 44, 135, 136, 138, 140, 141,
143-145, 216, 217, 220

learning vector quantization, 139

least squares estimates, 66

leave-one-out cross validation, 161

leave-one-out cross-validation, 45, 123,
124, 141, 144, 194

leukemia, 110, 113, 115, 117, 118, 123,
160-163, 166, 174, 179, 180, 218, 234,
242, 243, 262, 265, 266

lift, 145

Index

likelihood, 66, 113, 121, 155, 156, 158,
249,250-252, 284, 285

linear discriminant analysis, 140, 217

locally weighted regression, 56, 57, 84

log bases, 55

logistic linear classifier, 123

logistic regression, 139

logistic regression classifier, 123, 124

LOOCV. See leave-one-out cross-
validation

loss function, 137, 138, 146

Lowess. See locally weighted regression

Lowess smoothing, 84, 85

M

M vs. A plot, 57,60

M-A plot, 83, 84, 85, 86

machine learning, 110, 111, 202, 234,
289, 299, 357

macro-cluster, 271

Mahalanobis distance, 140

Manhattan metric, 240, 243

margin, 167, 170, 171-174, 177, 179, 184

market basket analysis, 294, 301, 303

Markov blanket, 115-118, 122, 129, 158,
159

Markov Chain Monte Carlo, 126

matrix stability theory, 127

maximum association algorithm, 302

Maximum Entropy Discrimination, 126

MDL. See minimum description length

mean squared error, 207, 211, 212

medoids, 279

membership, 234, 241, 244

metric variables, 290, 291, 292

Metropolis-Hasting algorithm, 126

MIAME, 48, 63

Microarray, 47, 48

Microarray Gene Expression Data Group,
319

microarray software, 326, 339

microarrayers, 20

365

minimum description length, 156

Minimum Information About a
Microarray Experiment, 319, 331

misclassification rate, 138

missing value, 13, 28, 31, 32, 65

mixture model, 114, 115

MLP. See multilayer perceptron

model application, 43, 44

model construction, 2, 43, 44

model validation, 43

model verification, 43

model-based clustering, 246, 248, 249,
250-252, 274, 277,279, 282,284, 285

momentum coefficient, 208, 209

monotone admissible, 235

mRNA 56,57, 111, 133, 134, 136

MSE. See mean-squared error

multiclass, 180, 181, 183, 184

Multidimensional Scaling, 108, 127, 130

multilayer perceptron, 161, 206

multivariate analysis, 52, 58

mutual information, 154, 155

mutual-information scoring, 187, 188

N

naive Bayes method, 139

nearest neighbor, 66, 123, 134, 137, 139,
141, 142, 145, 146, 148

nearest neighbors, 68, 70, 73, 74

nearest shrunken centroids, 217

near-optimal, 224, 225, 226

near-optimal chromosome, 224, 226

neural networks. See artificial neural
networks.

neurone, 263

niche, 221, 222, 224

noise, 97

noise-tolerant, 235

noisy data, 74

nominal variables, 290

normality, 55, 61

normalization, 54, 56-59, 76-89

366

northern blots, 7
NP-hard, 156, 157

o

observational study, 298

oligonucleotide chips, 132, 133

one-versus-all, 181

ORDERED-FS, 122, 123, 129

ordinal, 99, 106

ordinal variables, 290

orthogonality, 203

output layer, 206, 207

OVA. See one-versus-all

over-expressed, 154, 155, 160

overfitting, 44, 198, 207, 210, 211, 213,
285

P

paired-slide normalization, 85

PAM. See partitioning around medoids

partial derivative,212

partitioning around medoids, 274

pathway, 308, 317-320

pathway reconstruction software, 330,
338

pattern recognition, 111, 217

pattern-detection, 1, 40

PCA. See principal component analysis

Pearson correlation, 67, 128

Pearson’s contingency coefficient, 291,
293

Pearson's product-moment correlation
coefficient, 290, 291, 294

Pearson’s tho. See Pearson’s product-
moment correlation coefficient

perceptron, 206, 207, 215

permutation test, 178

P-metric, 154, 160, 176

point proportion admissible, 235

Poisson distribution, 316

polymerase chain reaction, 45

population, 50, 219, 221

Index

Power, 50

prediction set. See application set

predictive modeling, 1, 27

predictor. See classifier. See classifier.
See classifier. See classifier. See
classifier. See classifier

pre-processing, 47, 49, 61, 63, 77

principal component analysis, 65, 91, 93,
127, 203, 214

probe, 8-10, 12, 15, 18 19, 26, 30, 31

projection, 101-103, 107

projection pursuit, 139

protein, 48

prototype, 263- 269

Q

QDA. See quadratic discriminant analysis

quadratic discriminant analysis, 139, 140

QUEST. See Quick, Unbiased, Efficient
Statistical Tree

Quick, Unbiased, Efficient Statistical
Tree, 198

R

Rand index. See adjusted Rand index
random error, 78

random permutation tests, 202, 211
randomization, 50, 51

randomized inference method, 66
ratio statistics, 87

receiver operating characteristic, 159
recursive feature elimination, 176
recursive partitioning, 217
reference, 10-14, 17, 34

reference chip, 82, 88

regression methods, 81
regularization, 166, 173, 174, 183
regulatory networks, 112, 299
relevance machine, 42

reporter molecules, 8, 11, 12
re-scaling, 55, 58, 61

residual effects, 50

Index

response function, 124-126

reverse-engineering of the genetic
networks, 300

reverse-labelling, 51

REE. See recursive feature elimination

RMS. See root mean squared

RNA, 52, 56

ROC. See receiver operating
characteristic

root mean squared, 68

roulette-wheel selection, 222

rule induction, 354

S

S2N. See signal-to-noise

SAM. See significance analysis of
microarrays

Sample preparation, 77

SANN. See self-adaptive and incremental
learning neural network

scalability, 247

scanner settings, 77

scatter plots, 100, 102

scoring metric, 156, 160

scree plots, 98

search tree, 119-121

second order polynomial kernel, 173

self-adaptive and incremental learning
neural network, 268

self-organizing map, 66, 108, 217, 233,
333

self-organizing neural network, 261

sensitivity, 159

separability score method, 301

separation, 281

sequence data, 48

serial analysis of gene expression, 7

signal-to-noise, 175, 176, 178

signature, 22

significance analysis of microarrays, 187,
188

significance threshold, 62

silhouette, 232, 237, 241-243, 281

similarity, 275-279, 281

simplified fuzzy ARTMAP, 234

single linkage clustering, 246, 247, 250,
251-259

single slide normalization, 83

singular value, 92, 93, 95, 96, 98, 99, 104

singular value decomposition, 65-67, 91,
214

singular value spectrum, 98, 99

smoothness, 167, 173

soft margin, 171

SOM. See self-organizing map

spatial effects, 77

Spearman’s rho, 291-294, 299

specific analysis software, 330, 333

specificity, 159

spherical model, 279, 283, 284, 286

spiking controls, 57

splicing, 5, 6, 19

standardization, 145, 146

statistical design, 50

statistical software, 335

statistics, 111, 112

step size, 208, 209

subsymbolic, 43

sum of squares, 232

supervised learning, 111, 133, 135, 136,
217,218

supervised network self- organizing map,
268

support, 42, 295, 296, 297

support vector, 172, 217, 218

support vector machine, 42, 43, 119, 126,
134, 161, 166, 167, 185, 202, 217

SVD. See singular value decomposition

SVDimpute, 66, 67, 68, 71, 72, 73

SVDPACKC, 107

SWISS-PROT, 318, 320, 322

symbolic, 23, 39, 43, 46

systematic error. See bias

systems biology, 94-96, 100, 233

368

T

TAN, See tree-augmented naive Bayes
classifier

target, 5, 10-12, 14, 19, 34, 39

terminology, 47, 51, 55

test data, 43

test set, 44, 143-145, 211

Tikhonov regularization principle, 174

time series, 97, 104-106

top-down, 246, 252

top-ranked genes, 224-226

total intensity methods, 79

total least squares, 82

total risk, 138

toxicogenomics, 223

training, 111, 112, 114, 119, 121, 123,
125-127, 155, 156, 159, 160

training data, 43

training set, 44

transcriptional response, 92, 95-97, 100,
101-106

transformation, 54, 55, 58-61, 63

tree-augmented naive Bayes classifier,
159

t-test, 187, 188, 190-192, 195, 199

Tukey’s compound covariate, 217

Turnkey system, 330, 331

two-sample r-test, 217

type L error, 50

uncertainty, 244

under-expressed, 154, 155, 160

univariate mixture model, 113

unsupervised learning, 111, 127, 135,
136, 217

validation, 52, 54
validation data, 27, 43, 44

Index

validation set, 27, 44, 45, 144, 208, 210,
211

variance, 136, 141, 143, 144, 148

variation, 47, 49, 56, 60

Voting Gibbs classifier, 126

w

Ward’s method, 251

weight decay, 208, 209, 211

weight vector, 125

weighted flexible compound covariate
method, 188, 193

weighted gene analysis, 187, 188, 200

weighted voting average, 179

well-posed problem, 167

WECCM. See weighted flexible
compound covariate method

WGA. See weighted gene analysis

Wilcoxon, 218

WINNOW, 111, 124, 125

work flow, 348, 349, 351, 353, 358, 359

wrapper, 111, 119, 122, 123, 128, 142,
176

Y

yeast, 50, 96, 104, 105, 262, 274, 278,
285, 286

