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Preface

This book is motivated to a large extent by our dissatisfaction with current practices
in behavioral measurement. Most of the basic data consists of dichotomous
responses, and much of the rest is made of responses on short scales. Neither type
of data furnishes information that can inherently be considered more than ordinal.
The dominant contemporary treatment of this data is to derive from it scores on
inferval-scale latent variables through the application of one or another*model”
that is presumed to explain the data. We feel that, in the majority of instances, the
application of these models is inappropriate: The models either do not fit the data,
or are even inherently self-contradictory.

Application of these models then can lead to unwarranted inferences by users
concerning the status of the derived variables, although in many instances little
use is ever made of their presumed interval-scale properties. These methods are
also difficuit to apply, particularly in small-sample contexts such as classroom or
research measurement unless additional assumptions that are even more unrealistic
are made.

What we 1y to do in this book is to provide alternatives Lo these methods,
alternatives that stay much closer to the original data. Thus, our approach can be
looked on as a turn to simple empiricism in psychological measurement. However,
our empiricism is based on ordinal rather than interval scale concepts, and so we
feel it is more realistic than current approaches or older ones such as classical test
theory. Behavioral data is intherently noisy, so we emphasize providing summary
scores and also information on the relative amount of noise there is in the data,
rather than imposing a parametric model on it.

The largest segment of the book is devoted to methods for analyzing test
responses, but we also provide extensive discussions of ordinal approaches to
analyzing data that are judgments of stimuli.

Methods for treating psychological data in ways consistent with its ordinal
nature have received much less attention than model-fitting approaches have. One
of our hopes in publishing this book, which presents much of the material that is
currently available in widely scattered sources, is to stimulate additional
developments of this nature. Some new developments of this nature are also
included.

The book reflects important facets of our long-term research interests. ClLiff
published a number of papers on these topics over the years, and the publication
of his book on ordinal statistics, Ordinal Methods for Behavioral Data Analysis
{1996), reinforced the idea of a need to increase the availability of ordinal
measurement metheds. The interest of Keats in applying an ordinal approach to

ix



b PREFACE

test theory dates to the 1950s and he has extended these developments in subsequent
decades, including his (1972) Introduction to Quantitative Psychology. Another
area that uses ordering is the unfolding technique, in which Keats was a pioneer.
Ordinal test theory and the unfolding methods are applicable Lo cross-cultural
studies, a neglected focus in measurement, and this is another important topic
here.

A wide spectrum of persons who are concerned with psychological measurement
should find this book relevant. It should find a place in courses on psychological
measurement from upper undergraduate fevel to graduate seminars, because it
takes measurement in a different but important direction. We have made a
considerable effort to keep the mathematics to a minimuimn, and what remains is al
a low technical level. Inevitably in a quantitative field there are a number of
formulas, but our intent was to make them useful and show their interrelationships
in a simple, informal manner. Professionals whose research involves measurement
will find that the book provides useful and simple methods as well as stimulating
thought about measurement's real issues.

The book is very much a collaborative effort, but primary responsibility for its
content was divided between authors on the basis of interests and previous rescarch.
Kealts was the main author of chapters 1, 3, 4, 5, 9, 10, and Appendix A; Cliff was
primarily responsible for the remaining chapters, 2, 6, 7, and 8. However, the
book is the outcome of much exchanging of drafts, comments, and suggestions,
so it is overall a mutual creation,

We wish to thank a number of people for contribiting to the development of
the ideas. Over the years, many of Cliff's students have participated in the
developments and discussions included here. Among them most recently are
Drs. John Caruso of the University of Montana, Lei Chang of Hongkong University,
Du Feng of Texas Tech University, Jeffrey Long of the University of Minnesota;
earlier students were Drs. Linda M. Collins, Robert F. Cudeck, Rex M. Green,
Jerard F. Kehoe, Douglas J. McCormick, Thomas J. Reynolds, and Judith M.
Zatkin. Drs. Don Munro and Mark Chorlton, as well as Scott Brown, of the
University of Newcastle, who worked on the writing and testing of the computer
program used and listed in Appendix A and used it in the analysis of data reported
in chapter 10, are also thanked for their help. However, the responsibility for the
final result, including any errors, omissions, and misinterpretations, rests with us.

Qur wives, Rosemary Cliff and Daphne Keats have been highly supportive of
this effort, as well as helpful in many ways, and we are very grateful to them.

Norman CUff
John A. Keats



Chapter 1

The Purpose of Psychological
Assessment

The aim of this book is to provide the reader with a background of ordinal
theory which can be used to assess psychological tests and psychological
and psychophysical scales and to assist with the interpretation of data ob-
tained by means of these instruments and methods. The need for such a
book at this time arises in part from the fact that university courses in psy-
chology and education often contain very little such background and the-
ory relating to tesis and scales, Recently, however, there has been a resur-
gence of interestin testing and a concern that people using tests should be
adequately trained to do so. This concern has been expressed by the Inter-
national Test Commission (1998, 2000). There is a felt need for more
courses and relevant books in this ficld of ordinal measurement in the be-
havioral sciences.

Current books on this topic often perpetuate ideas that led to the rejec-
tion: of the classical test theosies (CTT) of the 1950s, which came to para-
doxical conclusions. Other current books are pitched at such a high mathe-
matical level as to be inaccessible to most behavioral scientists. It is not
unreasonable to argue that the field has been overintellectualized in that
many of the representations are based on matrix algebra, latent trait the-
ory, and maximum likelihood methods which are not needed to assess psy-
chological and educational tests and to develop their applications. More-
over, they tend to lend an aura of exactitude to score numbers that do not
justify such confidence. We consider this issue again in the next chapter.



2 CHAFTER 1
NEW MYTHS AND OLD RULES

Some texts written by proponents of item response theory (IRT) contain
corpparisons of that theory with CTT. As an example we can consider
Embretsen’s chapter 1 (Embretson, 1999) in Embretsen and Hershberger
{1999). Although it is not our view that CTT is without flaws, our methods
do overlap with it to a certain extent, so it will be useful to go over
Embretson’s (1999) “rules.” In her presentation, “Old Rules,” which pur-
portedly characterize CTT, and “New Rules,” which purportedly character-
ize IRT, are compared. We believe that these “rules” erroneously character-
ize CTT, IRT, or both, leaving the reader with an inappropriate idea of the
state of knowledge in the area.

“Old Rule 1. The standard error of measurement applies to all scores in
a particular population” (Embretson, 1999, p. 11). Embretson character-
ized this as descriptive of CTT. However, it was long known among experts
in CTT that this was not the case (Keats, 1957; Keats & Lord, 1962).
Methods for estimating individual standard errors were beyond the capabil-
ities of routine computing application at that time and the methods were
never implemented when computing facilities improved. It is true that the
“constant standard error” myth was perpetuated in many measurement
texts (e.g., McDonald, 1999, pp. 68 and 130) and in the manuals of some
test publishers.

The old rule is contrasted with: “New Rule 1. The standard error of
measurement differs between persons with different response patterns but
generalizes across populations” (Embretsen, 1999, p. 11). However, the
sense in which IRT provides a quantity that corresponds to the “standard er-
ror of measurement” of CTT is not clear; what is apparently intended in
this “New Rule” is some sort of average discrepancy between estimated true
score and actual true score, rather than a specific quantity like CTT's stan-
dard error of estimate. Although this “Rule” is true in IRT under ideal con-
ditions, it holds with several caveats. One is that the error of measurement
depends on the model fitted. The assertion “generalizes across popula-
tions” will often be false because the relations among items will differ in dif-
ferent populations. This is 2 particufarly sensitive issue when the popula-
tions are from different cultures, including different ethnic groups.
Empirical investigations of issues like this are extremely rare in IRT in com-
parison to the confidence with which the conclusions are stated. In a more
technical vein, IRT does not usually provide a literal “standard error of
measurement” in the same sense one would normally expect, accuracy of
measurement heing defined in other ways.

The mischaracterization continues. “Old Rule 2. Longer tests are more
reliable than shorter tests. New Rule 2. Shorter tests can be more reliable
than longer tests” (Embretsen, 1999, p. 12). Although a specific form of the
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“Old Rule” (the Spearman-Brown formula} was part of CTT, it was to be
applied under very specific circumstances. An accurate statement of the
Old Rule would have included the provise “other things being equal.” The
methods of item analysis under CTT, and even informal versions of it,
could well lead to an improvement of reliability with a shorter test, so New
Rule 2 is not new. However, the usual fact is that if items are constructed
reasonably carefully, Old Rule 2 applies as a general finding under IRT as
well as CTT. Incidentally, one weakness of IRT is that there is no provision
for estimating the increase in acewracy of measurcement from adding more
than one item.

There is a third dubious comparison. “0ld Rule 3. Comparing test scores
across multiple forms depends on test parallelism or equating. New Rule 3.
Comparing test scores is optimal when test difficulty levels vary between
persons” (Embretsen, 1999, p. 13). This is one case where the Old Rule is
an accurate description of CTT. The New Rule 3 is an accurate description
of IRT, provided it is modified 1o include the requirement that the items at
different difficulty levels have more-orless equal discriminating power.
Embretsen’s arguments in favor of this New Rule neglect to consider the
ntecessity of extensively pretesting items to determine their difficulty and
discriminating power before they can be used in actual measurement, It is
very possible that “savings™ to the examinee under IRT in terms of number
of items 1aken are largely ilusory if the number of testings required to esti-
mate itemn parameters are included. Tt is also true that estimates of accuracy
of measurement with computer adaptive testing have rarely been tested in a
manner that satisfies ordinary tenets of the scientific method, which would
require comparison of truly independent measurements.

“Old Rule 4. Unbiased estimates of item properties depend on representa-
tive samples from the rarget population” (Embretson, 1999, p. 13}. This is
true of CTT. However, “New Rule 4. Unbiased estimates of item properues
may be obtained from unrepresentative samples” (Embretson, 1999, p. 13) is
uue of IRT, but in 2 more limited sense than might be inferred from the
statement and discussion. For “New Rule 4” to apply, two things must be true:
The IRT model must fit the data and the same mode! must fit two or more
sets of data. Where the former is not the case, such as when the items are
multidimensional, it is very doubtful that unbiased and comparable estimates
of itern parameters would be obtained. When the latter is not true, as when
there are cultural differences between the groups, including ethnic, gender,
age, or educational differences, the statement will not necessarily apply.

Iz this section, the problems of dealing with various aspects of testing have
been noted. These problems would have justified the production of a hook
concerned with them. In addition to the book by Embretson and Hersch-
berger (1999} dealing with rules of measurement there is a book by McDon-
ald (1999) on Test Theory, which is commented on in a later chapter.
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Whereas the applications of tests and scales are once again being widely
understood, the relationships between these theories and those of psycho-
physical scaling are not being so widely appreciated. Initially psychophysi-
cal scaling was developed to explore possible relationships between physi-
cal measurement and the perceived psychological intensity of stimuli
measured on a physical dimension (i.e., between the perceived weight of an
object and its actual physical weight as measured by a balance). It was
hoped to define a psychophysical function relating the physical measure to
the psychological intensity. This endeavor was more closely linked to purely
experimental psychology than to a concern to tackle psychological prob-
lerns using quantitative methods.

The currently dominant test theories, loosely grouped under the label of
itern response theory or IRT, depend on untestable assumptions as shown
later, and in the absence of testable assumptions rely on goodness of fit to
darta for their justification. This reliance is not scientifically justifiable be-
cause many different theoretical formulations can account for the same set
of data.

THIS BOOK’S MOTIVATION

The theoretical background and its application presented in this book do
not suffer from these defects. The theoretical background presented de-
pends on testable assumptions at each stage and includes optimal ways of
estimating the underlying order of persons heing assessed by the instru-
ments. The theory requires only elementary algebra with few extensions 10
understand it. Furthermore, the ordinal theory applies to data from items
that order the subjects into any number of ordered categories. A particu-
larly impertant application of the theory is to assess the suitability of tests or
other instruments for each of two or more different cultures.

Another reason for producing this book lies in the fact that the most sci-
enlifically defensible theory of measurement in the behavioral sciences, the
Luce and Tukey (1964) conjoint measurement theory, has not received the
attention in the literature that it deserves (see Cliff, 1991). The reasons for
the neglect of this theory by experimental psychologists and by those con-
cerned with individual differences in behavior are obscure, The theory it-
self is based, in testing applications, on consistent conjoint ordering of both
persons and stimuli or items, and so is linked with ordinal measurement.
Interval scaling requires a further axiom, the cancellation axiom, as noted
by Harrington (1985). However, this axiom has seldom been examined em-
pirically, and is sometimes overlooked by writers who assume that the con-
joint ordering of persons and iterns is sufficient 10 define interval scales.
Jensen (1980) is one such person (see Harrington, 1985). Although Mc-
Donald {1999) discussed interval scaling, he does not refer to conjoint
measurement and the cancellation axiom in relation to test theory.
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A further point we should make here is that the ordinal methods we de-
scribe in later chapters can be applied in small samples such as with class-
room tests or research instruments whereas IRT cannot, except in a very
limited form. Also, Many CTT and OTT [ormulas apply to total scores on
heterogencous (muliifactor) tests, whereas IRT can be applied there in
only a limited way. These points are discussed in more detail later.

SOME HISTORICAL BACKGROUND OF TESTING

The method of presentation in the balance of this chapler is to some extent
historical because this approach shows the stages at which certain impor-
tant ideas were first put forward and the reasons why some of these ideas
were later rejected while others persisted despite theoretical and practical
objections. The history cited is selective and readers interested in this as-
peet should consult Thorndike and Lohman's (1990) A Century of Ability
Testing for further details.

Social Changes and Their Effects on Test Development

One purpose of this chapter is to link the development of tests to certain so-
cial changes that took place since the 1850s. The early reasons for develop-
ing tests are presented with a description of how these reasons led to cer-
tain types of tests and methods for their construction. Many of these
reasons were based on the need to solve certain social problems, a need
which sull exists today. However, the way in which testing contributes to the
solution of these problems has changed considerably over the years, and, of
course, research results have changed the perception of these problems
and their treatment.

Over the early period of test development, the discipline of experimen-
tal psychology itself was being established by Wundt (1902) following the
work of Weber and Fechner (sce Fechner, trans. 1965) among others.
Within 20 years workers from this laboratory, such as J. McK_ Cattell {1890)
were studying individual differences in response times and sensitivity to var-
ious kinds of physical stimulation. In the other direction, Binet also pub-
lished on psychophysical methods applied to weight perception in addition
to his ploneering work on psychological testing (Binet & Simon, 1916).

Mental Age and I}

Another purpose of the chapter is to acquaint the reader with the various
types of tests and scales that have been developed and marketed over the
years. In a course based on this book, copies of seme of these tests should
be available to siudents.
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The assessment of people on a variety of variables has a long history but
it increased dramatically in the 20th century. The main reason for this in-
crease lies in the aggregation of large numbers of people into larger towns
and cities from smaller villages and rural centers, which was brought about
by the industrial revolution. During this tirme there was also a rapid increase
in population.

This aggregation in western countries drew attention to the need for in-
stitutions 1o supervise children and to take care of the mentally retarded
and the mentally ill. The aggregation of children into large population
units also led to exploitation of child labor and to the development of de-
linquent gangs so well described by Dickens in his Olfver Twist and else-
where. In the mid-19th century, the arguments for establishing compulsory
schooling were based in part on these two social problems of child labor ex-
ploitation and child delinquency, as is shown by the Hansard reports of the
House of Commons debates at the time, The role of schools as child-
minding centers justified their establishment; their role as educational
agencies came fater. Problems associated with the developmentally delayed
and the physically and mentally handicapped, which could be handled at
the village level, were also greatly accentuated by urbanization.

In recent decades, the developing countries of Africa, Asia, and else-
where have experienced urbanization, which has led to the same sorts of
problems of child delinquency and exploitation as well as the caring for the
developmentally delayed and the physically handicapped such as the blind
and deaf. Although some of these countries are developing universal edu-
cation, they have not yet managed Lo provide services needed by handi-
capped children. The assessment of children before the introduction of
compulsory education was restricted to private schools usually conducted
by religious bodies, With compulsory education came the assessment of al-
most all children on the subjects taught in schoals. One need for assess-
ment arose with the recognition of the fact that not all children of the age
of admission to schooling could benefit from the type of education pro-
vided. The test to identify such children was developed in France by Binet
and Simon (1916) in the carly 20th cenwury. This was one of the first psy-
chological tests based on empirical data and statistical analysis.

Binet developed the concept of mental age, which was fater extended to
the ratio IQ by Stern (1914). The test was administered on an individual ba-
sis and the chiidren had to respond to the questions in their own words and
actions.

A creative answer test of this kind requires the tester to be very familiar
with answers to be judged as correct. This test became widely used in trans-
lation in United States, England, and Australia and led to the development
of a large number of intelligence tests for children including the maze test
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for children and adults constructed in Australia by Porteus (1915). The task
was to identify children who could and could not benefit from the type of
education provided.

While these tests were being developed, a quite different type of test was
being used to assess performance in skills such as reading and arithmetic.
Although some of these tests were also creative answer tests, others were
multiple choice with the subject having to choose from a number of alter-
natives, only one of which was correct. The need for such tests seems to
have heen first appreciated by Kirkpatrick (1900} who wrote:

It is desirable to have tests of such a nature that they can be taken by children
as well as adults, that they shall be such that all persons tested will have aboul
equal opportunity for the exercise of the abiliry tested, and that in the interest
of economy of time, the tests so far as possible shall be so planned that they
can be given 1o a whole class or school at vnce, instead of to each individual
separately. {pp. 279-280)

Kelly {1903) elaborated on this proposal by calling for “norms in terms
of which a child can readily be classed for pedagogical purposes” (p. 371).
Later, Kelly {1914) suggested the use of standard scores, which were calcu-
lated as the difference between a score and the mean score for the appro-
priate standardization group divided by the standard deviation of scores for
that group. To avoid decimals and negative numbers the standard scores
were multiplied by 10 or 15, and were increased by 50 or 100 to produce
positive numbers. This method is in very wide use today but has problems.
For example, the number obtained does not give a precise indication of the
position a person would have relative to the standardization group. Scores
from tests can be skewed in either direction and display other forms of non-
normality.

Figure 1.1 presents examples of test score distributions for the same test
at different ages smoothed by the hypogeometric distribution (Keats,
1964). These examplcs show the extent of this skewness. To overcome this
problem the nomms were sometimes supplemented by percentile ranks
(i.e., the percentage of the standardizalion group gaining a particular score
or less). Otis (1917) suggested that standard scores could have percentile
ranks built into them by means of the normal distribution with a mean of
100 and a standard deviation of 15.

Such scores were sometimes called 1Qs. The parameters 15 and 100
arose from the fact that the Binet IQ tended to have these parameters at
various age levels, and this choice would make the two IQs more compara-
ble. This comparability led to confusion. The Otis approach is the one used
today as the basis of the deviation IQ used in such tests as the Wechsler
Adult Intelligence Scale (WAIS; Wechsler, 1987).
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Derived in this way, the I() is essentially an ordinal measure. However,
there are problers with this approach when vsed to combine subtests to
form a total IQ in the way used by Wechsler (1939). These problems are dis-
cussed in chapter 3 and a more cfficient method for combining scores from
subtests is given (see pp. 62-63, 71-72).

As noted by a number of writers, the extremely commoen use of the nor-
mal curve was based on a mutual misunderstanding between rescarchers
and mathematical statisticians. The researchers believed that statisticians
had groved thar ali distributions of measures of natural phenomena must
conform to the normal curve. On the other hand, the statisticians believed
that empirical scientists had found that the distributions of most if not all
measures of natural phenomena did in fact conform to the normal distribu-
tion. Actually, there is no mathematical proof or empirical evidence in sup-
port of normal distribution, but the effects of this absence of proof are
noted in later chapters. The statisticians were doubtless also influenced by
the fact that the normal distribution has some very satisfying statisiical
properties.

Educational Testing

Tests are extensively used by teachers today to monitor the progress of their
students and, in particular, to detect those who are having difficulties in
some subject areas and so need remedial instruction. In some cases the re-
sults of these tests may indicate the need for further testing. For example,
children who are poor readers may be given special tests to determine
whether or not they are dyslexic or whether or not they are able to think op-
crationally at a particular level according to Piaget’s tasks (Piaget, 1947,
Keats, 1985). These formal assessments of school performance may be
made rclative to the particular class or school or relative to a representative
sample from a population.

On a larger scale, tests such as the Scholastic Aptitude Tests {SAT) are
also used to select students who are more likely to succeed in college or uni-
versity. Although scores that order performance in a particular subject are
readily obtained, the problem of combining these across subjects when not
all students attempt all subjects has not been solved in a satisfactory way. An-
ather problem with these selection tests arises from the need to create a
new test yearly aned rmake scores on each new version equivalent.

Thus, the field of educational testing was developed to help solve practi-
cal problems. Is this child likely to benefit from the type of education uni-
versally provided? Or, more recently, what type of education will be most
appraopriate [or this child? Is this child doing much better or worse in one
subject than she or he is doing in another? Is it necessary to provide some
remedial teaching for this child in a particular subject? Should this student
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be admitted to this type of secondary school rather than some other type?
Should this student be admitted to a particular university faculty? The solu-
tions to these problems would require ordering rather than measuring pro-
cedures.

Military and Industrial Testing

Although it seems reasonable Lo use written tests to select for higher educa-
tion, it seermns less obvious that they will be useful for selecting applicants for
training in the skilled trades. The fact that they can be effectve for this
broader purpose was shown in their use for sclecting personnel for various
aspects of military training during World War 1. This practice was opposed
in France by psychiatrists despite Binet’s advice and the army testing activity
in Germany and the United States. Thus the need for tests became more ev-
ident because ol large-scale warfare and its need for assessment of adults.

In World War II a situation arose in Australia rather similar to that in
France in World War 1. The Army Medical Corps in Australia successfully
ohjected to the rejection of volunteers on the hasis of psychological tests af-
ter the Medical Corps had proncunced them to be fit for service. However,
the Psychology Corps had the responsibility for allocating recruits for vari-
ous types of training. It therefore allocated all recruits shown by the tests to
be mentally unfit for service to the Medical Corps. It did not take long for
the Medical Corps to remove its objection to the rejection of volunteers on
the hasis of psychological tests (D). W. McElwain, persomal communication,
1962}.

Psychological tests would not have been used so widely if they had nort
been shown to be valid in a varicty of situations, The military situation is
one that enables checks to be carried out on the situational validity and eco-
nomic advantages of testing. The United States Army Air Force admitted
1,000 recruits lor training without applying the standards it usually used for
admission, which were based on group testing. The results after training
showed clearly the economic advantages of testing. Many validity studies
have confirmed this finding in other areas. Although the economic advan-
tages of testing are important, the human benefit of preventing the need-
less training and subsequent disappointment of those who are shown to be
unsuited for the type of occupation being considered is also as great or
£ven greater.

That the success of psychological tests in practice had led to a certain
complacency was noted by Tomkins (1952) and confirmed by Buros
(1977). Tomkins observed that because tests had been so successful, psy-
chologists had stopped doing research that might improve them. Buros
(1977) reported that “except for the tremendous advances in electronic
scoring, analysis and reporting of iest results, we don’t have much to show
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for fifty years of work [from 1927 to 1977]” (p. 10). This statement is a little
extreme when it is appreciated that the Likert (1932) method of construct-
ing attitude scales by using three or more ordered categories (polytomous
items) was first suggested in 1932. It is shown in the following chapters that
there were improvements that could have been made, but for various rea-
sons, including perhaps that suggested by Tomkins, they were not.

In the field of vocational guidance, selection, and promotion, psycholog-
ical tests have become widely used. The need for validating special tests for
particular vocations became apparent. These were not only cognitive tests
but tests of vocational interest and preference and other personality tests.
This field is growing rapidly these days. The adaptation of such tests for use
in developing countries is a matter for concern and is discussed later.

Identifying Abnormality

Apart from the problems that arose from aggregating children into larger
population groups in the 19th century, there were also problems with re-
gard to the mentally retarded referred to earlier and the mentally ill. In
the smaller villages it was quite possible to look after the small number of
people of these types by community support. However, when they were ag-
gregated into the larger towns and cities it was not possible to provide the
individual attention required to keep such people safe and well in the com-
munity. Large institutes sometimes called asylums were established to pro-
vide them minimal food and protection. The question of classifying such
people into groups had 1o be solved.

With the crude classification used in the 19th century all who, for what-
ever reason, did not learn to speak were placed in the category labeled
“idiots” or even “gibbering idiots”. Such people were treated in a most in-
humane manner, with a minimum of attention to proper feeding and
cleanliness. The category called idiots included those who were profound-
ly deaf but at that time there was no means of testing to identify them or to
assess their ability if they were deaf. There was a great deal of unfortunate
suffering. Gthers in the asylums would have been psychotic and others
again would have been profoundly mentally retarded, but there were no
bases for separating these groups. Thus, there was a great need for both
psychophysical and psychological tests to help diagnose people from
these groups.

The category above the idiots was referred to as the “imbeciles.” These
people were able to speak and understand speech but did not seem to be
ablc to learn to read. They were put into separate institutions and given
simple manual work to do in retumn for food, clothing, and accommoda-
tion. Again there was a problem of diagnosis and a need for special waining
and education. The categories of idiots, imbeciles, and normals correspond in
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some respects to Piaget's (1947) sensorimotor, semiotic functions, and op-
erational thinking.

Today psychological tests are used to assist in the diagnosis of all such
groups and te monitor the effects of various kinds of treatment on them.
With today’s diagnostic assessment techniques and medical treatments
many who formerly would have been kept in institutions and away from the
community are now being treated within the community with much greater
effectiveness and humanity, as well as with greater economy. In some ways
this is a return to the pre-Industrial Revolution days when people with intel-
lectual and behavioral problems were cared for in small communities.

The difference lies in the greater knowledge of diagnosis and treatment
of behavicral problems available. Psychological testing has contributed
greatly to developing these Lools. Some of the clinical psychological tests
used with special groups are personality tests, which have a similar rationale
to that of the cognitive tests. Their administration may appear to be rela-
tively simple but their interpretation is usuaily complex and requires spe-
cial training and experience. Prgjective tests such as the Rorschach Test
and the Thematic Apperception Test are quite different and do not fall
within the scope of the theory presented here.

Decision Methods

In a large numnber of situations in which psychological tests are used, be
they educational, vocational, or clinical, the final evaluation is in terms of
the assignment of individuals to one of a set of ordered categories. For cx-
ample, children below a certain single or composite score will receive dif-
ferent schooling from those above that score; adults above a certain score
will be admitted to some kind of technical or university education, those be-
low that score will not. There is a cut-off score for making such important
decisions.

If there is a single score shown to be valid for making this kind of deci-
sion in a particular situation, then the evaluation is clear. However, it must
be appreciated that such a cut-off score does have a [uzzy edge because no
psychological test is entirely free from assessment error. Decisions about
persons whose scores are close to the cut-off score must be considered care-
fully in terms ol both test characteristics and social and other factors, which
may have affected their responding one way or the other. The possible
. longterm effects of a particular decision have o0 be taken inwo account

Another type of situation arises when it is desired to establish cut-off
scores based on two or more test results. The practice over many decades
has been to use one of two approaches, although the rationale for these is
not commonly specified. One approach is to add the scores to obtain a
composite score, which can then be used to establish a single cut-off score.
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The component parts of the composite can be equally weighted, or some
paris may be regarded as more inportant and so given a greater weight.

A second approach involves establishing a cut-off score for each of the
tests separately and requiring a person to satisfy all of these before continu-
ing to a further stage (e.g., admission to a certain type of training). This is
referred to as the multiple cut-off procedure. Another example is the uni-
versity entrance requirement applying in many Australian states, which in-
cluded passes at a certain level in English and Latin as well as passes in a
specified number of other subjects. As pointed out by Lord (1962}, there is
no complete justification for either approach. When the test scores are al-
most perfectly correlated, both single and multiple cut-offs will produce es-
sentially the same results; when there is zero correlation between the
scores, multiple cut-off points must be used to produce the best allocadon.

Definition of Cut-Off Lines. However, most sets of scores from psychologi-
cal tests fall between these two extremes, they are significantly positively cor-
related, but almost never coming close to being perfectly correlated. In the
same article, Lord showed how for two tests a hyperbola could be defined to
establish a boundary that would produce the best allocation for tests with a
given level of correlation. Figure 1.2 presents a two-variable case with an opti-
mum curved cut-off line for positive correlations between the variables.
Again, it must be emphasized that all such cut-off lines have furzy edges and
people with scores close to them should receive careful consideration.

W

FIG. 1.2, Simpie (straight} and optimum (curved} cutoff lines for selec-
ot
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Although there was a great impetus to the development of psychological
tests arising from the socioeconomic effects of industrialization and from
the needs of the armed forces during war time, the reasons for using psy-
chological testing have persisted and increased in number. Their use has
grown with increased prosperity in the developed countries. Furthermore,
amuch wider range of tests to cover different circumstances has been devel-
oped (e.g., tests to detect neurological damage). One outcome of this in-
crease in testing was the formation of the International Test Commission
(ITC) in Montreal, in 1978,

TESTING IN DEVELOPING COUNTRIES

In most developing countries there has been a great increase in urbaniza-
tion in recenl years, and this, in turn, has led to the kinds of problems of ag-
gregation and of acquiring new skills that occurred previously elsewhere
during the Industrial Revolution. The recognition of these problems has
led to greater interest in psychological and educational testing in those
countries. The task of translating and adapting existing tests from devel-
oped countries for use in developing countries noted on page 61, raises
further problems, which are part of the peneral problem of cross-cultural
assessment. The alternative solution of constructing tests within the devel-
oping countries needs to be considered. These problems will be discussed
in chapter 5 in terms of recently formulated International Test Commission
(ITC) guidelines for adapting tests for different cultures and the ordinal
test theory (OTT) developed in chapters 4 to 6. Chapter 2 describes the var-
ious types of psychological tests and assessments used in research and prac-
tice. The types of assessments will be classified in texms of the types of re-
sponses required within each content area.

THE EVOLUTION OF PHYSICAL
AND PSYCHOLOGICAL MFASUREMENT THEORY

During World War I a professor of physics, Professor Campbell, became
aware that although physics was sometimes referred to as the science of
measurement there was no undergraduate text setting out the theory of
measurement from the physical scientists’ point of view. In 1917 he pub-
lished a book called Physics: The Elements (see Campbell, 1957) and this text
was widely used in the physical sciences when teaching the theory of meas-
urement, The simplest form of this theory assumed it was possible to carry
out two distinct kinds of operations. The first of these was an ordering oper-
ation, which enabled the scientist to compare two objects with regard to an
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attribute and decide which of the two had more of that attribute. This oper-
ation had to he transitive so that if for three objects A was greater than B
and B greater than C, then A was greater than C. If these conditions were
satisfied, then the objects could be arranged on an ordinal scale. The sec-
ond condition was that sets of objects could be combined with respect to
the attribute in such a way that the combinations could also be compared
and ordered. This pair of requirements has been refined and elaborated
over the years in psychology, as noted briefly before, and we refer in later
chapters to those developments and discuss their relevance to testing and
other aspects of psychological measurement.

THE DEVELOPMENT OF TEST THEQORY
AND PRACTICE

Up until the 1960s test theory and practice were working closely together.
For example, the concepts of test reliability and validity and the effects of
shortening or lengthening tests among others were rooted in test theory.
The dominant test theory was based on the theory of measurement error
used in the physical sciences, which treated any quantitative empirical
measure as consisting of the true measure plus or minus an error term. This
definition was taken up in psychology and came to be referred to as “weak
true score theory” (Gulliksen, 1950). However, physical measurement as-
sumed operations and conditions that could not be applied in psychology
and certain inconsistencies and paradoxes became evident in the 1960s. In
the early 1960s a “strong true score theory” was proposed by Keats and Lord
(1962) and developed by Keats (1964) and Lord (1965). Although these
theories corrected one or more of the errors of simple true score theory
they are oo complicated and computationally too difficult for applied use.
Computers were not widely available, At the same time, Rasch (1960) and
Luce and Tukey (1964) were developing conjoint measurement, which de-
scribed practical operations and set down conditions for measurement in
psychology in general and psychological testing in particular. By means of
some highly dubious assumptions the Rasch formulation was generalized to
what is now called Item Response Theory (Lord & Novick, 1968}, The vari-
ous versions of this “theory” are subject to many of these assumptions.
The axioms of conjoint measurement draw attention to the difference
between simple ordering of persons and conjoint ordering, which involves
the ordering of both persons and items or stimuli. Conjoint ordering must
be examined to test for the homogeneity of the items. ftems measuring a
single dimension, should be ordered in the same way by both high and low
scorers. Conjoint ordering is an important consideration in studies of dif-
ferences in performance in different cultures; see chapters § and 10.



16 CHAPTER !

Although tests of cognitive performance are the ones most commmonly
used, other tests or scales directed toward the measurement of attitudes
and preferences or values have also been developed and their use is increas-
ing. This work was given great impetus from the article by Likert (1932)
who argued that the procedures used in the cognitive area at that time
could be used to prepare attitude scales of various kinds. The scales usually
consisted of multiplechoice items involving a common set of ordered cate-
gories, such as strongly agree, agree, neither agree nor disagree, disagree,
and strongly disagree, These categories were scored in terms of arbitrary in-
wegers such as +2, +1, 0, -1, and -2 or a variation of this.

Other types of response alternatives were also used to indicate the fre-
quency with which a person behaved in a certain way. For example, never,
seldom, sometimes, often, and very often could be used to obtain a report
of a person’s attending church or drinking alcohol. These self-report items
required studies to discover the extent to which they were valid indicators
of people's actual behavior on the one hand or simply an expression of a
person’s desire to present himself or herself in a socially desirable way. In a
surprising number of studies, such self-reporting has been found to he ac-
ceptably accurate,

MATHEMATICAL MODELS IN TESTING

Necessity of Such Models

As most of us go through the educational system we are repeatedly tested,
usually with paper and pencil tests although sometimes now they are ad-
ministered via computer. Many of these tests are constructed by our own
teachers, but many others are developed by central educational agencies or
by commercial companies. When we take tests, numbers are assigned to our
performance. Where do these numbers come from? What justification do
they have? Are they numbers that have the same propesties as other num-
bers such as the amount of money in our pocket or purse, or the tempera-
fure on a thermometer, or the distance from the earth to the sun? In this
section we briefly review the history of numerical practices in the assign-
ment of test numbers and indicate why we, the authors, are dissatisfied with
most of what is currently done.

A fundamental idea in assigning numbers meaningfully is that in order
for numbers, such as test scores, to be assigned to events such as actual test
responses, there must be a quantitative model or a minitheory that con-
nects them. The model can be simple or complex, empirically testable or
untestable, but it must be there.
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Simple Measurement Theory

Through the 1960s, much of testing was based on what we have referred to
earlier as “Classical Test Theory,” and here will call “simple measurement
theory.” It skips over testing as a physical process and just concerns itself
with the numbers that result, calling them scoxes. On a multi-sitem test
where answers were scored right or wrong, the score would be the number
of iterns correctly answered or some adjustinent of that score such as a “cor-
rection for guessing” thatsubtracts a fraction of the wrong answers from the
rights. In other situations it could be the numerical transtation of the letter
grade assigned by a teacher or a grade to an essay. Simple measirement
theory then makes some assumptions about those numbers and sets out to
examine the properties of the scores in various ways.

It is not our purpose to denigrate this approach. It has been highly use-
ful and the scientific quality of many areas of behavioral science would be
improved if it were more widely applied in a sophisticated way. However, it
has a number of deficiencies. For one thing, it rests on assumptions that are
olten untestable and often falsified when they can be tested. It also assumes
properties for the score numbers that they clearly do not justify.

Thus, we feel strongly that it is preferable to base test practice on some
alternative. We summarize some simple measurement theory below. True
score plus error theory, as developed by such early psychologists as Spearman
(1904} and others through abuut 1950 when the definitive book by Gullik-
sen (1950) appeared, assumed that a score, wherever it came from, con-
sisted of two parts, a “true score” that was determined by the actual trait that
the test measured (which might not be the same as what it was intended to
measure; that did not matter at this stage) plus an ervor score that was like
the random error that occurs in any physical measurement. This was ex-
pressed in a formula for x the score of some person i on a measure:

%=+ e (1L.D

The utility of this formulation lies in some assumptions that were then
made. One assumption was that true score and error had a correlation of
zero, 7, = 0. Another set of assumptions was that if there was another score
variable y, that was “parallel” to the first in the sense that it measured the
same underlying variable, and only that variable, and had the same mean
and variance, then (a) the true scores on the two variables would be per-
fectly correlated; (b) the ervor scores on the two components would corre-
late zero; and {(c) the error score on one of the variables would correlate
zero with the true score underlying the other.

This simple system has a number of useful implications that we might re-
ter to later. Its drawbacks are numerous, however. The first is that it leads us
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to treat the test numbers as if they had all the same properties as hard num-
bers that come from physical measurement. A second is a litdde more techni-
cal; this is that it is required to assume that the magnitude of the error
scores is the same for all levels of true score whereas it seems clear empiri-
cally that this is not the case (see Keats, 1957). A third drawback is that the
statistical assumptions that are required to make full use of it can rarely be
satisfied. For these and other reasons people interested in a statistical the-
oty to underlie test practice turned to other ideas, mostly in the 1960s.

Axiomatic Measurement Theory

A theoretical development that is important to the basis of mental measure-
ments was the development of highly formal mathematical systems that de-
scribed the conditions that were necessary if a set of measurements were to
provide a scale or scales having certain properiies. We do not go into them
in any detail here—a bit more will be included in a later chapter—but some
specifics are relevant here because of what they say about certain aspects of
the statistical theories that are the basis of most modern tests.

The part of axiomatic measurement theory that we describe is called
“comjoint measurement theory.” It was developed by Luce and Tukey
{1964) and extended by various other researchers, and we provide a some-
what simplified version of it that is made specific to the testing context. The
theory describes the conditions that are necessary if a set of observations
can provide interval scales. (“Interval scale” means that score differences in
different parts of the continuum that are equal have the same meaning, We
consider this in more detail in the next chapter.) The theory shows thatin
order for this to happen, we need two sets, such as a set of persons and a set
of test items, and a variable that is observed on each combination of a per-
son and an item (hence the term conjoind), such as the probability that the
person gets the item correct.

The theorems proved in conjoint measurement theory {CMT) say that
for interval scales to exist, presumably here of person ability and item diffi-
culty, some conditions have to be satisfied. The one that is relevant to us in-
volves consistency of order. This is that for every person, the items increase
in difficulty in the same way. That is, for every pair of persons A and B, there
is a perfect rank order correlation between their probabilities of respond-
ing correctly across items; if Item X is easier than {tem Y for A, [tem X is also
the easier one for B.

The same must be true for items. If A has a better chance of passing Item
X than B does, then A has also a better chance of passing Item Y than B
does. It may seem like common sense that this would be true, but generally
there are exceptions to this regularity, and in fact the major current statisti-
cal theory of test response (IRT} assumes that such exceptions do occur.
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It should be noted that even though consistency of ordering is a neces-
sary condition for interval scaling it is not sufficient. This is an aspect of
conjoint measurement theory that is often ignored (see Harrington, 1985).
However, the addidonal condition referred to as cancellation has no rele-
vance to ordinal test theory and so need not be dealt with here, This is an
advantage that ordinal test theory has over itermn response theory treated
next. Readers interested should refer to Harrington (1985). However, to
our knowledge, there has been no empirical check on the cancellation con-
dition on any set of data.

Kem Response Theory

Most modern treatments of the statistical basis for mental tests concentrate
on whal is called item response theory (IRT). We do not do that in this
book because we feel that there are obvious flaws in IRT. An important flaw
is that the usual versions of IRT conflict with the consistency of ordering as-
pect of conjoint measurement theory (CMT), that was described earlier;
therefore, it cannot provide the interval scales of ability and itern difficulty
that it purports to.

There are 2 number of variations on item response theories, in general
they are based on the following idea. This is that there is an underlying or
latent scale of an ability or personality trait and that the probability of re-
sponding positively to the item (i.e., getting it correct or agreeing with it)
varies in a simple way across the latent scale. For an ability item, the proba-
bility will increase as we go from persons of low ability to those of high. Vari-
ous mathematical functions have been proposed for what this smooth curve
should be, and some years ago it was suggested that the “logistic™ function
would be a good choice. Here is its formula, Formula 1.1:

e(x. -a)

= =Exp (% — @) (1.2)
In the formula, g, is the probability that Person 1 answers item j correctly,
and it states that this probability depends on the easiness of the item, a, and
the ability of the person, ¥, and the constant e is the base of naperian logs,
2.71828. .. and we can also write Exp(x) instead of e~

The nature of the formula is illustrated in Fig. 1.3 where g, is plotted
against x for several values of g, and we can see that the probability starts
near zero when the ability is low, increases slowly at first, then more rapidly
near the point where g,and x, are nearly equal, and then more slowly again,
approaching 1.0 as the difference between the ability and easiness parame-
ters becomes more positive, The different curves in the figure correspond
to items having different g, values, but notice that they all have the same
shape, differing only in where they are located.
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FIG. 1.3, Logistic or Rasch-model item response curves. The probability of
correct response (yaxis) as a funclion of ability (x axis) for three items rang-
ing in difficulty from easy {lefimost) w hard.

This is an elegant theory, and it is often called the Rasch Model after the
Danish statistician who was instrumental in its development (Rasch, 1960).
Note that the curves do not ¢ross, and this means that the joint set of items
and persons would notviolate the independence axiom of CMT, so interval
scales of each are possible. However, the trouble with this model is that it
seldom fits the data except in cases of very similar items applied to 2 homo-
geneous population. In more typical cases it appears that, while the curves
have the same general form, some increase more sharply than others.
Those increasing sharply are said to be more “discriminating,” because they
differentiate better between persons low and high on the underlying trait.
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Figure 1.4 illustrates this principle, and it is easily incorporated into the
model of Formula 1.1 by introducing an item parameter, b,, that multiplies
the exponent to produce the following formula:

s = Exp (bla. — 3} (1.3)

However, we can see that in Fig. 1.4 curves that have different discrimina-
tion parameters will cross, This means that, for two items of equal easiness,
a person of low ability will have a better chance of getting the less discrimi-
nating item correct, whereas a person of high ability will have a better
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FIG. 1.4. Logistic IRT curves illustrating differendat item discnmination.
The two curves that rise steeply have higher discrimination values, 6}, than
the other two, causing curves 1o cross.
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chance on the more discriminating item. Thus the items cannot be ordered
in such a way that the probuability of getting them correct increases in the
same order for all persons. This is a violation of the independence princi-
ple that must be satisfied if we are to achieve interval scales for items and
persons. To us, this clearly means that scores derived via IRT models do not
have interval-scale status any rmore than simple raw scores do.

Before leaving, for the time being, the topic of IRT models, we should
point out that the model in the last formula is not the one generally applied
to data from tests of the familiar multiple choice format. The reason is that
for those items the probability of getling the item correct is not zero even
for persons of very low ability because they, along with others, can guess
among the alternatives and sometimes they will guess correctly. At first
thought it might seem that the formula could be adjusted by introducing a
constant of 1/kwhere kis the number of alternatives. This sometimes works
bui more often does not because the incorrect alternatives, called
“distractors” in the testing terminology, are not equally attractive to those
that do not know the correct answer. In taking multiple-choice tests we have
all had the experience of being able to eliminate one or more alternatives
as being highly unlikely to be correct. On the other hand, some writers of
test items are clever at using sly distractors that look good to those who do
not know the correct answer, so they tend to choose that one rather than
guessing at random. For these reasons, and probably others that we do not
understand, items tend to differ in their probability of correct guessing.
This means that a third parameter, g, the guessing parameter, must be in-
roduced into the formula:

by = Exp(bla — 3l) + ¢ (1.4)

However, this formula assumes that the guessing parameter is constant
across ability, which Keats and Munro (1992) have shown to be untrue.

ORDINAL CONCEPTS AS A BASIS FOR MEASUREMENT

We base this book on the belief that is more scientifically and practically le-
gitimate to base almost all psychological measurement on concepts resting
on order than it is Lo assume that scores and other measures have the status
of equal-interval scales. This is for several reasons. One is that, as outlined
earlier, it is misleading to assume that the relative sizes of score differences
have anything like the properties of relative sizes of physical differences. A
second reason is that it turns out in practice that order is often the main in-
formation that is of interest. The fact that Jane scored five points higher
than Fred whereas Fred scored only one point higher than Deborah is less
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important than that Jane scored higher than Fred who scored higher than
Deborah. Most standardized tests report “percentile scores,” that is, the per-
centage of examinees scoring below an individual, This is usually a more
meaningful piece of informanon than that a given score was 540 on a scale
from 200 to 800. The latter information requires a good bit of additional in-
formation in order to be interpreted correctly, and is open to substantial
misinterpretation. Thus we believe that treating tests as providing ordinal
information is more legitimate than doing otherwise, but it also provides
the information that is of greatest use.

Sume of the scales prepared to study attitudes, preferences, and so forth,
Tequire the subject Lo give ordinal responses such as to rank occupations or
activities in the order of their preference. Typical of such scales are the
Rokeach Scale of Values and the Rothwell-Miller Interest Inventory. The
existence of such scales as these emphasizes the main point to be developed
in this book, namely that all measures obtained of attitudes, values, etc. are
ordinal in nature and should be treated in ordinal statistical terms. An ordi-
nal test theory should be able to deal with cognitive ability tests with two or
more ordered categories as well as attitude scales and personality tests with
two or more ordered categories and it is the main aim of this book to pre-
sert such a theory.

ANTITEST ARGUMENTS

Before we leave the question of the importance of psychological and educa-
tional testing, it must be noted that there are scholars and practitioners
who raise arguments against the use of tests. The antitest movement claims
that it is the absolute quality of the person's performance that is the impor-
tant consideration rather than the comparison of a person’s performance
with that of a group of persons. However, it is difficult to assess the quality
of a performance without relating it to chat of persons of a relevant category
{e.g., the same gender, age, and culture).

Furthermore, qualitative evaluation by different assessors can lead to in-
consistencies. The process by which current ways of selecting apprentices
for training in industries in the Newcastle area of Australia were developed
provides a case study of these problems of gualitative evaluation and how
psychological tests can be used for ameliorating these problems without re-
moving the role of qualitative evaluation. The process involved the order-
ing of the applicants by means of tests but leaving the final selection to the
industries using interviews (Phster, 1985).

Other opponents of testing raise questions of cultural or ethnic bias. If
one minority group obtains a lower average score than the majofity group, it
is argued that the test is biased against the minority group. For this purpose
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minority groups may be defined in terms of sacial class, culture, age, or even
gender. In some cases, care is taken that the items included do not show dif-
ferences between the sexes. Mean differences, however, may be a sign that
what is a good scale for one group is not a good scale for another. Thus Black
versus White differences in the United States may be due to a possibility that
the test constructed for White subjects is not a proper scale for Blacks or it is
not measuring the same dimension as the scale for Whites. A method of
studying these alternatives is described in the chapters that [ollow.

Apart from the unfairness claitned if tests show bias, the effect is in-
creased if people become labeled in terms of their performance on a partic-
ular occasion. This may be prevented by ensuring confidentiality of records
and placing the control of the information strictly in the hands of the per-
son tested. Much of the antitest attitude arises from the activities of the test-
ers themselves rather than the tests. Some users stress the genetic compo-
nent of a person’s performance and seem to exaggerate it role. This
strengthens the noton, for example, that a person’s IQ) is a constant for his
or her life, which in turn leads to labeling. When this is generalized to raciai
differences in I} being genetic as was suggested by Jensen (1980), the im-
plications become very serious and have led to violent reactions. The
antitest movement increased as a result of this tension,

However, at the present time there is a decrease in the antitest move-
ment as people realize thar many of the objections arise from poor test
practice and can be removed by proper choice of tests and adequate train-
ing of testers. The Internatonal Test Commission is attempting to establish
international standards for test users and the qualifications they should
have if they are to have access to certain categories of psychological tests.

SUMMARY

In this chapter an attempt has been made to indicate the need for and pur-
pose of this book and a general indication of its content. The need for a
mathematical model or minitheory was stressed and possible examples
given. Examples of the kinds of tests to be covered by the theory presented
in later chapters are also given. The reader should become familiar with
such tests by consulting Buros (1995 or later) and books such as Shaw and
Wright {1967) and some specialized books published more recently. Al-
though the presentation is partly historical it is not intended to be a full his-
tory of psychological testing and interested readers should consult such ref-
erences as Thorndike and Lohman (1990).

In the next chapter the question is raised as to what makes a variable a
scale and what kinds of scale can be distinguished at a theoretical level are
discussed. The relevance of these considerations to the theory of psycholog-
ical tests and scales in particular is noted.



Chapter 2

What Makes a Variable a Scale?

SCALES AND VARIABLES

The main aim of this book is to suggest how best to translate simple data
such as judgments of stimuli or responses to test items into meaningful
scores for things or people. Much of it concerns how to evaluate the consis-
tency of such responses in order to reach at least a tentative conclusion con-
cerning {a) How internally consistent the respanses are, including whether
any measurement is taking place at all, or (b) one method or system of
mcasurement is better than another.

Before going into details on any of those topics, we need to set the stage
by considering in a rather general way the nature of scientific variables and
what makes one variable better for scientific purposes than another. Be-
cause not all things that are called variables have any scientific status, we will
typically use the term scale here to refer to a variable that has a reasonable
degree of scientific status.

We have frequently argued that many, perhaps most, variables used in be-
havioral research and its applications have only ordinal scale justification
{CIiff, 1991, 1992, 1993, 1996). It can be argued even further that they often
do noi justify even that status because the characteristics necessary to define
an order have not been demonstrated for them. One purpose of this book is
to atlempt to explicate what the characleristics are that data should display if
an ordinal variable is to be defined on the basis of them. Then it attempits to
pull 1ogether, and in some cases extend, the methods for deriving ordinal
scales from data, including evaluating the consistency of the data and, conse-
quently, the accuracy that may be assumed for the resulting scales.

25
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As a preliminary to that discussion, the present chapter attempts {o es-
tablish the nature of scientific scales, including what is, and should be,
meant by operational definitions. Then, in the context of a satisfactory
specification of what operational definitions are, it goes on to define what is
best meant by measurement in the behavioral sciences.

THE NATURE OF SCIENTIFIC SCALES

As stated earlier, the term seale is used here Lo represent a variable that is
well-defined scientifically. That means that it is valid for scientific purposes.
Not every set of distinctions that can be made between entities or abstrac-
tions is a scale in this sense, so it is desirable to lay some groundwork in the
form of a philosophy of science. Actually, this might better be called a strat-
egy of science, because it tries to describe how to define scales that will work
in a science and its applications.

We begin by examining the various meanings of “operationism,” be-
cause that is what behavioral scientists generally think of as the basis for sci-
entific scales. It is argued that much of what has been termed operationism
is either internally flawed or inconsistent with the actual practice of success-
ful science. Then, a refined and realistic version of operationism is formu-
lated that is based on what actually goes on in an effective scientific ficld.

Operationism

What makes something a scale in a science? What is such a scale when it
achieves that status? These are questions that have been pondered over and
over by philosophers and by scientists. The answers to these questions have
heen of particular concern in behavioral science because of the frequent
accusation by others, or suspicion on our own part, that we have no scales in
the sense that that term is understood in other sciences. Trying to propose
answers that are consistent with procedures that are effective in other sci-
ences has occupied behavioral scientists from Bergman and Spence (1944)
o Stevens (1951) to Krantz, Luce, Suppes, and Tversky (1971) to Michell
{1996} and beyond.

An attempt at defining scientific scales that has been important in the
history of psychology was operationism. Its psychological manifestation
{e.g., Bergman & Spence, 1944) was adopted {some would say howdler
ized} from British philosophers (as represented by Smith, 1950). This origi-
nal British version was an inclusive one: A scientific variable was the set of
all the operations that were used to define it. Thus, "length” would be all
the ways of measuring length from putting rods end to end to measuring
the time that a laser beam takes to be reflected back from a mirror.
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Bergman and Spence, on the other hand, promoied the idea of an
equivalence between the conceptual variable and a single operation to de-
fine it. Theirs was an exclusionary definition. For them, the variable “drive”
was equivalent to the number of hours of food deprivation, and they meant
the equivalence in a very strong sense. One could speak of hours of depriva-
tion when referring Lo drive, just as one could speak of drive when referring
10 hours of deprivation. Stll a third kind of operationism is represented by
the oft-quoted statement by Boring (1945} “Intelligence is what the tests
test.” This will be seen to be quite different from the other two althoughiitis
often cited as if it were equivalent to Bergman and Spence’s. We think that
nong of these three will stand up as a description of how any specific scien-
tific scale is defined (specified or described might be better terms) by good
scientists in their work.

The Importance of Operational Definitions

Let us first consider why the use of operational definitions, free of any
philosophical trappings, is important in science. Operational definitions—
one could perhaps better substitute a term like empirical specifications or pro-
cedural descriptions—constitute the fundamenial way in which scientists
communicate about their research. In describing our research for techni-
cally competent peers, we use on the one hand abstract theoretical terms,
whether they be distance, weak nuclear force, DNA transcription, fluid in-
telligence, or social class, to let others know what the research is about at
the level of ideas. But then, on the other hand, we have to let them know
specifically how the research was carried out in the real world in terms of
concrete, palpable objects, no matter how esoteric those might be.

This concreteness serves several functions. First, it helps the peer in a
general cognitive way to orient our research into her' own understanding,
no matter what language or background she might have. Second, because
science is a social process, operating by means of a consensus among peers
rather than by authoritative dominance, it tells her how to repeat the re-
search if doubt arises in her mind or if she is so intrigued that she wants to
see for herself. Third, it provides a basis for the evaluative process that is so
important to the cumulative nature of science. How good are the opera-
tions used here as definitions of these variables? Are they known to be
unconfounded? How accurate have they been previously shown to be? Are
they the latest and best or obsolete versions? Answers to these questions are
important to how much value the viewer of the research will place on it

!Rather than repeatedly using the stylistically awkward dual gender pronouns—her/his,
Iim/her, and the like—we use only asingle gender in a given contex, switching genders from
context to context in wiat & intended to be a balanced way.
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Finally, in what is perhaps a summary of these other reasons, empirically de-
scribed procedures serve 1o ensure that research is tied to the real world of
everyday existence, avoiding the tempiation to waft it into the realm of pure
abstraction. For all these reasons, operational definitions, or empirical de-
scriptions, of variables are central to the scientific enterprise.

Defects in Definitions

The Bergman and Spence (1944} definition is clearly defective in the con-
text of a science that is to be practiced effectively. In any particular in-
slance, the definition is not inclusive enough. If Drive is equivalent 10 hours
of deprivation in the rat, then any scientific relations obtained using this
definition of Drive apply only in that context. If one wants to know what re-
lations would obtain with Drive operationally defined instead as proximity
of a male rat to a female in estrus, one cannot assume thar this operational
definition is equivalent to the first, but instead has to start from scratch in
clucidating its relations, because this, being a different set of operations,
must not be Drive but something else, Drivey, perhaps, and so on for all al-
ternative operations. We end up with a different Drive, for every set of oper-
ations, each potentially with its own properties.

But surely Bergman and Spence (1944) did not mean that the interpre-
tation of the constructs they operationally defined should be confined to a
narrow definition like “hours of food deprivadon in the rat.” They in-
tended, as applications of Spence’s work bear out, that what was learned
empirically about “hours of deprivation” would apply to everything else that
was like it in providing motivation for behavior, including abstract human
necds. But that was not what they said. They said, “hours of deprivation
equals Drive,” and were using “equals” in its symmetric sense.

If these authors intended to imply that Drive, was the same as Drive, then
this was not made clear, and this interpretation will have its own problems.
Literal, perhaps overliteral, interpretation of their position led investiga-
tors (o the belief that one could, in the manner of the Lewis Carrcll’s
Humpty Dumpty, define a variable however one wanted. Drive was what-
ever the investigator operationally defined it, with consequent weakening
of this potentially powerful concept. The Bergman and Spence interpreta-
tion may have helped lead Stevens (1951) to feel that his infamous defini-
tion of measurement as the assignment of numbers according to rule, any
rule, was consistent with this kind of narrow operationism.

What is missing from Bergman and Spence’s kind of operationism is any
concern for how we know what is Drive and what it is not. To a working sci-
entist, a reasonable description of Drive is that it is a variable that enters
into certain kinds of relationships with certain other variables. Included in
the definition is a specification of what the rclationships are, preferably in a
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mathematical formula, and what the other variables are. The theoretical
variable Drive can have varicus real-world counterparts that are empirically
describable, and they all enter into identical, or at least highly similar, em-
pwical relationships with certain other empirical variables. This is what
characterizes well-defined scientific scales such as length. Some candidate
counterparts of Drive may turn out not to have the right relationships.
These are then discarded as not being exarnples of Drive. Variables that are
examples of Drive are vaniables that are shown to have specific relations
with other variables.

It is important, as Smith {1950} implied, that there be numerous differ-
cnt operational definitions of a variable, all of which enter into the same re-
lations with the other variables. If a theoretical variable had only a single
crapirical counterpart, it would be of little interest or utility. This is an as-
pect of what has been called in psychology the convergent validation of a
variable. Scales are never measured in the abstract. They are measured in
the context of their relations with other scales. Two sets of observables are
alternative operational definitions of the same scale if they enter into the
same relations with other scales, not just because someone says they are the
same. J.earning o recognize a scale in its various forms can be not only use-
tul and interesting but painful and humbling to the scientist or practitio-
ner. However, the more variables that can be found that behave in the way
that is expected of definitions of a construct, the more powerful the con-
struct is, but also the more confidence we have in the individual opera-
tional definitions.

[t is also important to show that some empirical definition of a scale is
distinct from other scales, in fact, that it is as pure as possible, uncon-
founded by the influence of others. Scientsts abandon, quickly or slowly,
empirical definitions of theoretical scales that turn out to be confounded
with other variables. The demonstration that a new scale or phencmenon
exists must take place in such a way as to show that it is not some old scale in
a new guise. This is discriminant validation of the scale. Ideally, the social
process of science operates in such a way as to ensure the effectiveness of
the differentiating of scales from each other.

Michell (1990) correctly pointed out that some operational definitions
are more equal than others. That is, some operationa! definitions are
“better” than others. In mature sciences, this seems to mean that they enter
into relations in a closer or a more reliable way. There is even a constant
search for measurement methods that are better in this sense.

Moreover, an operational definition can be better than another in one
coiitext, but worse in another. Temperature is an cbvious example. There
are different operational definitions of temperature for different ranges of
temperature. One works well, that is, enters into the expected relations
with other scales, over a range, but then breaks down, that is, no longer en-
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ters into relations in the expected way, over others. Similarly, one cannot
use the millimeter marks on a meter stick to measure distance in either the
micron or the light-year range. Alternative operational definitions of ascale
should be available for different contexts, but there should be equating
procedures that connect the various definitdons.

So a scale is defined operationally not as a single kind of operation 4 la
Bergman and Spence (1944) but in terms of a, preferably large, collection
of alternative sets of operations, as Smith (1950) suggested. These can be
cquated to each other, either directly or in terms of having equivalent rela-
tions with other variables. However, even Smith’s definition is not suffi-
cient, as Michell (1990) pointed out. First, it does not recognize that some
operational definitions are better, to a scientist, than others. Furthermore,
it limits the definition of a scale to those operational definitions that are
currently in use. One of the thrills of science is demonstrating a new opera-
tional definition for a scale. The fun, and payoff in other ways to the scien-
tist, is in going outside the current definition of things and finding some-
thing that unexpectedly does behave like the scale, to the delight,
amazement, envy, or chagrin of peers. So a scientific scale should include in
its definition potential as well as current operational definitions.

Generality of Scales

But surely, a scientific scale extends even beyond ils operational defini-
tions. The engineer calculates the forces on an airframe without measuring
them! Are they not there until measured?? It would be an extreme view to
say they are not there, at least not until the wings fall off. In the same sense,
the principles that relate mass and velocity to momentum and energy are
felt to apply to the 150-pound football player who is running north at 20
miles an hour and the 300-pound player runming south at 15 miles an hour
just as they do to balls rolling down slopes. Mass and velocity determine
force and energy in the collision between the two players, just as the rele-
vant equations describe, even though the players are not measured. One
prediction from the equations, and everyday assumptions about human na-
ture, is that the smaller player is less likely to seck out a repetiton of such
collisions than the larger, other things being equal. Football players are
subject to these scales and the relations there are between them, even when
they are not operationalized. Force is there, even when it is not being meas-
urcd; it existed before it was operationalized, and will exist when opera-
tionalism is forgotien. That may be a view that is abhoryent to some philoso-
phies, but it is the ongeoing prermise that forms the basis of science. If there

*This view may not be an appropriate representation of variables in quanturn mechanics. It
would rake someone more expert than we are in that field to judge.
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were not a widespread belief that scientific scales exist outside their opera-
tionat definitions, no one would pay scientists to do science! In this view, a
scientific scale has an existence beyond its operational definitions.

How, then, is a scientific scale identified? We both measure it through the
relations it enters into and, in a seeming paradox, identify its nature, and
even verify its existence, through the relations, The paradox is avoided in
practice because as scientists we somehow guess that there is a scale and
guess at how it can be defined and guess at the relations it will enter into,
When we guess right, it all works out, at least roughly. We then become con-
vinced that there is a scale and that we can empirically define it. In the ideal
case, we then set about refining the procedures used to define it and the rela-
tions it enters into. (This latter process is one that is neglected to a lamenta-
ble degree in what otherwise tries and aspires to be behavioral science.) We
find alternate manifestations of it, and more relations that it is in. And s0 on.
Sometimes, more often than not, the process fails at some point. if the fail-
ures are repeated, we lose interest in the scale, and go on to something else,
if for no other reason than that the research support will run out.

Boring's Definition

After this discussion it may be clear that Boring's {1945) reference to what
tests measure reflects quite a ditferent view of operational definition than
the narrow kind represented by Bergman and Spence (1944}, or even
Smith (1950). Bergman and Spence’s kind of view has its own defects and
has had its own insidious effects. It seems to be saying one or both of two
things. One is that any score that comes out of any procedure that purports
to measure intelligence is a vatue of the scale, intelligence. If so, this would
be Humpty Dumptyism. Even assuming that such issues as finding methods
for equating scores from different tests can be solved in a scientifically
meaningful way, such a definition is seen to be unsatisfactory to the process
of science, much less to engineeringlike applications of such scores. Al-
though it does seem to be true that anyone can pubtish a “test” and say that
it measures intelligence, it does not seem to be true that one can willy-nilly
call something an intelligence score and expect that it will be accepted in
that role by other scientists. Some intelligence tests measure intelligence,
and some don't, it seems, and rightfully so.

But there are many different measures of intelligence that are accepted
by at least some others. How do we know they are all measuring the same
thing? Data relevant to this question occur in hundreds, probably thou-
sands of studies, and the answer, of course, is that it seems they must not be.
The criterion that would need to be satisfied, that was identified earlier, is
that they should have the same relations to other scales, and demonstrably
they do not. Moreover, the diversity cannot be explained by appropriate-
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ness criteria such as the ones we use in measuring temperature. They sys-
tematically do not agree with each other, much less have the same relations.
So, if intelligence is what the tests tes, it is too diverse to be called a scien-
tific scale,

There are two fixups to this result that have heen adopted. One is to re-
fine kinds of intelligence that are ever more narrow, into Intelligence,, In-
telligence;, and so on. Intelligence; is what a certain subset of tests test; In-
telligence, is what a second set tests, and g0 on. The narrow versions behave
fairly consistently in their relations, so we may accept them as scientific
scales, provided we do not insist these relations be very close. Having differ-
ent Intelligences may be a satisfactory device, but not if one places much
store on the generality of scientific scales. Thus we see that “intelligence is
what the tests test” is not a satisfactory definition because it seems that this is
many different things thal have different relations with each other and with
other variables, whereas a scientific scale is an entity that has a unitary set of
relationships in the sense that scientists find useful.

Commonality

The alternative o diversifying the meaning of Intelligence in the face of
multiple partially but imperfectly agreeing empirical definitions of it is to
say that “intelligence is what is in common among all these tests.” Many of
our good friends seem satisfied with this kind of definition, but it is unac-
ceptable to us as the definition of a scientific scale because this Intelligence
has no empirical counterpart. It cannot be felt, seen, tasted, heard,
counted, or bitten. To argue that scales in, say, physics are defined with a
similar degree of abstractness is to confuse a complex observational process
in which the ultimate outcome—a computer-enhanced, infrared photo-
graph of a distant galaxy, say—is technologically distant from the source
with a process that is not there. To argue, alternatively, that some statistical
operation on numbers that stand for observables is a form of operational
definition is to mistake a symbalic operation, the one on the numbers, for
an empirical one. So “Intelligence is what is common among these intelli-
gence tests” does not define Intelligence as a scientific scale either.
Intelligence is being used here as an exemplar of a number of scales that
have been attempted (o be defined in this fashion. There are numerous
other variables, often with even poorer definition than Intelligence, whose
definitions have been accepted by parts of the behavioral science commu-
nity in a similar fashion. A more fruitful approach to the phenomenon of
numerous moderately consistent but not commensurable definitions of a
scale might be a program that attempted to find out in a more proactive
way what it was that did lead to moderate agreement, and what the empiri-
cally meaningful aspects were that led to the divergence. Looking at test
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names and correlation coefficients, or even reading test itemns, does not
represent a high level of proactivity.

RELEVANCE TO SCALES AND MEASUREMENT
METHODS

Part of the reason for this rather long preamble is o provide a background
for discussing what measurement is and how it takes place, including why
some measurements are felt to be of one kind oy level and some of another,
and why some are better than others. It should be clear by now that scien-
tific measurement must take place in a scientific context. Scales do not exist
in isolation. They arc defined in terms of, and on the basis of, the rclations
they have with each other.

Science is conservative. It prefers cautious noncommittal o free-wheel-
ing error, which is not to say it abhors free-wheeling. This bias says we
should not treat our variables as if they have properties they do not have.
We can hypothesize such properties, but then we had better go and show
that they are present. We do not suggest to engineers and other consurners
of scicnce that they treat the variables that way either, This is just as true in
the case of tests that inappropriately consign children to institutions as it is
of rockets that unexpectedly explode on launch pads.

Measurement is the assignment of numbers to observations in a scientifi-
cally valid way. “Scientifically valid” means in a way that is consistent with
the description of scientific scales that has been sketched earlier. That is, re-
lations are shown, or could be shown, to other scales. The relations are
known to be of a particular kind rather than some other, and the conserva-
tism of science implies that we not read more into the measurements than
is there. This is because we may then infer incorrect predictions from the
measurements.

Accuracy of measurement is at least as important as the “level” of meas-
urement. The nominakscale measurement that accurately allocates an indi-
vidual 1o the human species is more impaortant than the less accurate ordi-
nal-scale obscrvation that onc person is faster at processing a certain kind
of information than another person, particularly when only a human can
process that information at all.

Scientifically valid scales, then, are defined when empirically definable
variables cnter into predictable rclalions with other scales. The more nu-
merous the relations are, and the more different empirical delinitions
there are that behave in these predictable ways, the more confidence we
have in the scale. The scale exists not only when it is being scientifically ob-
served but also in everyday nonscientific contexts; otherwise, what is the rel-
evance of the scale? Also important is the degree to which the empirical re-



34 CHAPTER 2

lations are close and exact rather than errordilled. Another point is that the
scale is presumed to exist not only when it is being scientifically observed
but also in everyday nonscientific contexts; otherwise, what is the relevance
of the scale? It is also important not to impute characteristics for the scale
that have not been scientifically dermonstrated; included here is the neces-
sity of not giving unproven quantitative properties to the scale. Measure-
ment, then, is the assignment of numbers to observations in a scientifically
valid way.

GENERAL PRINCIPLES OF SCIENTIFIC
MEASUREMENT

Why Ordinal Measurement?

A number of arguments can be made supporting the contention that the
great majority of behavioral data can only be considered to have ordinal
status (Cliff, 1993, 1996). Basically, the arguments center around the idea
that a scale should display certain regularities in its effects and relations if
interval-level status is to be justified for it, and it is very rare for our scales to
display those regularities. Furthermore, a given form of the scale often has
no betrer justification than alternative, monotonically transformed versions
of it. A second aspect of the argument is that the observed variables are of-
ten surrogates for latent ones, and it seems unlikely that there is a linear re-
lation between the observed variable and the latent one. Although it is true
that statistical conclusions can be made from data analyses of these scales
according to the principles of statistical description and inference, in spite
of the scales’ amorphousness, the point is that these conclusions about the
variables in their current form may not be invariant under transformation.
Furthermore, the inferences and conclusions that investigators make, or
want to make, are themselves often ordinal. We have therefore argued
(e.g., Cliff, 1993, 1996) for ordinal statistical treatment of data because the
conclusions from such treatment will be insensitive to the particular form
of the scale that is analyzed.

Defining Scales

The status of a variable as a scale rests on the consistency of its relations with
other scales, When a variable is a composite of several observations (Many
variables, such as test iterns, in bchavioral science are of that kind. ), the rc-
lations among those individual observations are of particular importance as
groundwork to the definition of the scale. The measurement status of a
scale has two aspects. One is defined by the theoretical use of the scale. This
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refers to the relations that it has with other theoretical scales in models that
it is part of. If it has relations that require ratio—scale properties it must be a
ralio scale; if they require continuity, it must be continuous; and so on. The
second aspect has to do with the empirical counterparts of the theoretical
scales. What properties do they display empiricalh? Do the empirical scales
display the properties in their empirical rclations with other scales that
their theoretical counterparts are supposed to have, at least to a reasonable
approximation? The difference between emphasizing the latter aspect over
the former does much to explain the discrepancy between the pessimistic
conclusions of Cliff (1992) and the more optimistic ones of Narens and
Luce-(1993) with respect to the contributions of abstract measurement the-
ory to behavioral science.

Empirical Definition of Scales

We would like to define the field of behavioral measurement, or psycho-
metrics, as the development and study of methods for fitting models to be-
havioral data and evaluating the appropriateness of the models for the
data. This statement can be said to be a summary of the role this field has al-
ways had, but it is worth being explicit about it here. The estimated values
of theoretical variables that are thus derived are assumed to be scales. (We
feel, by the way, that the recent emphasis in psychometrics has been too
heavily toward the fitting process, to the neglect of the evaluation of appro-
priateness, except on narrow and nearly irrelevant statistical grounds.
There is much too litde concern with improving the quality of the data.)
However, we feel thatit is premature to call such a variable derived through
a fitting process a scale: The variable needs to exhibit close and regular rela-
tons with other, external variables before it can advance to the status of a
scale. This is not to denigrate such variables, because, after all, they may
summarize a good deal of data, bul rather to emphasize that they need to
be validated hefore they can be presumed to have the status of true scien-
tific scales.

Most of this book is concerned with developing these variables that have
not yet achieved the status of scales but that have been psychometrically de-
rived to summarize data. To distinguish them from variables that actually
have the characteristics we have described as necessary for achieving the
lofty status of scales, we refer to them as assumed scales,

A hehaviorally defined assumed scale, then, is a variable that is derived to
sumimarize a number of cbservations. It is derived by fitting a model to the
data, and the model must fit to a satisfactory degree, otherwise, there is no
grounds for even an assumed scale. The fitting can sometimes be done for-
mally and explicitly by a mathematical process that oplimizes the fit of a
model o the data by finding the numerical values of parameters in the
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model thay fit the data best (in one or more of several quantitative or quali-
tative senses). The parameter estimates then become the assumed scale or
scales. Examples in behavioral science of assumed scales include variables
derived via item response theory (IRT) models for responses on objective
tests, There, the scale that is of primary intercst is a trait scale for the indi-
viduals, but the items alsc are scaled on one or more variables. The trait
scores are derived because they are presumed to have some external utilicy
for predicting or explaining behavior in another context such as perform-
ance in school. However, by the criteria presented here, these are at best as-
sumed scales.

Another instance comes from multidimensional scaling (MDS) in which
measures of psychological simikarity between a number of stimuli or concepts
are fitted to a model that treats the (dis)sirnilarities as interpoint distances.
This results in values for the stimuli on one or more assumed scales, These
arc uscd then to explain the degree of similarity. There is in such cases an in-
timate and direct connection between the models and the variables or scales
that are derived from them. There is also, in such cases, an overall measure
of how well the model fits the whole collection of data, albeit such mcasures
of fit are often hard to interpret. Sometimes, of course, such measures tell us
that the model cannot be the explanation of the data because the departures
of the data from the medel are too large, even with optirnum fits for the pa-
rameters. The measurement status of scales derived from models that do not
fit is an unresolved, and for the most part ignored, issue.

Sometimes these assumed scales derived via MDS are used o characterize
the stimuli for other, external purposes (Cliff, 1972; Cliff & Young, 1968
Green & Carmone, 1972). If the relations that are then shown turn out to be
close enough, the variables might be allowed to advance from the status of as-
sumed scales 1o that of scales. There are hints in the references cited that this
might have been possible, but the follow-up research to demonstrate exter-
nal validity for the assumed scales was not extensive enough, or the relations
that were shown were not close enough, to justify that status.

The process of “measurement” is often much more informal in behay-
ioral science than the one described earlier of fitting a model to a rather ex-
tensive set of data. A common example is attitude measurement. If an ati-
tude “scale” is composed of several items judged to reflect a certain attitude
dimension, the respondent’s answers to the items are typically added up to
torm a score on the attitude, jusi as if that process were the same as the case
where the innkeeper adds up the cost of the drinks scrved to come 1o a total
score that he is owed. Where is the model here? What is the fitting process?
There are a number of models for the process of answering attitude items.
In some of them, it does murn out that the sum of item scores is a reasonable
estimate of a score on the underlying atiitude, provided, of course, that the
maodel fits. In others, it is not. In still others, while the total score is an index
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of the underlying scale, it is a nonlinear one. How appropriate any of the
models might be, how well any of them fits, and how closc the measured -
titude score is likely to be 1o the “true” attitude, are all questions that some-
times can be, and even have been, answered in a given application.

Justification for Variables

However, in all likelihood, many of the variables that are statistically ana-
lyzed in behavioral science have a psychemetric basis that is at best infor-
mal, although some of them do have a formal basis, and moere could have.
By the term psychometric basis we mean, at a minimum, an evaluation of the
reliability and construct validity, more generally, the generalizability (Cron-
bach, Gleser, Nanda, & Rajaratnam, 1973) of the scores that are used. A fur-
ther level of psychometric definition would be provided when the score is
derived from ebservations through the fitting of a quantitative model to the
data. In that case, the score is an estimate of a scale that is part of the model,
bui so far it is only an assumed scale. If it is further found that the maodet fits
the data adequately, then we are on the way to a scale. In order to be fully
validatcd as such, it should be shown to enter into close and consistent rela-
tions with still other variables. It is this process of observationto-score-to-
model-fitling-to-scale, not just the recording of numbers arbicarily as-
signed to observations, that represents the modern view of what constitutes
psychological measurement (Cliff, 1992; Guttman, 1971; Michell, 1990).

If many or even most behavioral scales provide only ordinal information,
it would seem desirable to have methods for deriving scales ordinaily, but
the amount of specifically ordinal psychometric machinery that exists is
rather small, both at the generalizability level or the modekitting one,
compared to whal exists for fitting rmore parametric models to ordinal data.
Nevertheless, there is some machinery, and the main purpose of this book
is to present what we feel is the soundest portion of it and to expand on that
portion as much as possible.

The view presented earlier was that scientific scales are defined through
operations in the real world that result in variables that have consistent, and
close, refations with each other. Psychometric procedures, however, almost
universally operate internally to a particular set of data. This is true whether
scales are being defined through a modelfitting process or more infor-
mally. The rationale for operating within a set of data has to be that
through such a process we hope to identify what we have called assumed
scales, variables that behave consistently enough that we can hope that they
are scientific scales. Once a variable has achieved assumed-scale staius, the
further, and equally important, step is to show that this variable enters into
relations with other variables that are close enough and frequent enough to
Justify calling the assumed scale a scale.
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A FUNDAMENTAL TYPOLOGY OF DATA

Data Are Binary

At the most basic level, data are binary. We may go on i convert them (o
numerical scores, but at the mest primitive level, they are binary. Several
dccades ago the late Clyde Coombs proposed a system for the fundamental
classification of the types of binary data that can exist (Coombs, 1951,
1964). This system proved 1o be remarkably satisfactory to those concerned
with basic issues in behavioral measurement. It starts with the observation
that data represent relations and that they are binary relations. Much be-
havioral data is binary: Test items are correct or incorrect; questionnaires
are answered “yes” or “no” or agree—disagree; commercial product A is pre-
ferred or not to product B; stimulug X is similar or not to stimulusY; artifact
P is found or not in grave Q. All these refations are binary.

Even data that seems to be directly quantified can fit the system as a se-
ries of dichotomous data. For example, a student’s written responsc 1o an
itern on a classroon test may be graded on a 5-point scale, but the grade can
be considered as a series of pAasses versus failures, so that a grade at level
four out of five can be thought of dichotomously as passing the first four
levels and dichotomously failing the fifth. Other quantified dawa can be
treated similarly to create multiple dichotomies although the process can
scem cumbersotne for data that presents itself as guasi~contineous numbers
such as response times or electrodermal measurements. Nevertheless, at a
fundamental level, these variables, like morc obvious ones, are binary.

Coombs’ System

A major aspect of Coombs’ (1951, 1964} system was his suggestion that all
types of data could be classified according to three dichotomies. Data rep-
resent relations, and the first dichotomy has to do with the nature of the re-
lation represented by a datum. It can represent either a deminance refation
or a proximity relationt. Dominance relations are observed when twe stimuli
are compared with respect to some attribute, and one is judged 1o be
harder, more desirable, or brighter than the other. Similarly, a dominance
relation is observed when one team or chess player defeats another. On the
other hand, data represeni proximity relations when owo stimuli or con-
cepis are judged similar or retated (1) as opposed to dissimilar or unrelated
{0), or two students are seen to be friends (1) versus not fiends {0). Thus,
one of Coombs’ three major distinctions is between data that represent
domninance relations versus data that represent proximity relations.

The distinction between dominance and proximity relations is illus-
trated in the two upper matrices in Table 2.1. The left matrix shows a domi-
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Pacterns That Define Types of Relations

Proxmity

Dimnnance

Tuwe-Set Relutions

Domenance
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nance relation among members of aset A={a, b, ... g} Thesetcould be a
set of lights of different strengths and the relation might be that the col-
umn stimulus is “brighter than” (1) the row stimulus with 0 meaning “not
brighter than.” Alternatively, the set could be graduate schools to possibly
attend with 1 representing “has 2 better reputation than.”

The right matrix represents a proximity relation. Here, 1 means “close
1o0,” “strnilar to,” “aboui the same as,” or similar relations, and 0 means the
opposite. Both matrices represent ideal, perfectly consistent cases. The key
characteristic of 2 matrix of relations representing dominance is the obser-
vation of a triangle of 1sin the upper right of the matrix with a triangle of 0s
in the lower lefi {the clements have to be in the right order).® An element
dominates all those below it in the order and is dominated by all those
above it, In contrast, 2 unidimensional proximity refation shows a diagonal
stripe of 1s with 0s in both the upper left and lower right sections, again
when the elements are in the right order. An element here is similar to it-
self and to those that are next to it in the order.

The examples in the preceding paragraphs represent relations between
members of the same set, but Coombs’ second disdnction was whether the
relation was between members of the same set or two different sets.
(Coombs’ ideas all rest on the assumption that there exist well-defined sets.
Defining those sets is often a major part of the scientific enterprise,} So, we
can have dominance or proximity relations and the relation can be be-
tween members of the same set or two different sets. The most common ex-
ample of a dominance relation between members of different sets is the di-
chotlomous test ttem. If a person passes an item {gets it correct), then the
person “dominated” the item, whereas if he failed it, the item dominated
the person. Much of this book is devoted to analyzing this kind of data to
yicld assumed scales. On the other hand, questionnaires that are presented
in an agree-disagree format are often better interpreted as providing prox-
imity relations because probably the respondent compares the question-
naire itemn to his self~concept or his internalized opinion, and agrees or dis-
agrees on the basis of the similarity (closeness) of the item 10 the
respondent’s self-concept or opinion.

The lower part of Table 2.1 iltustrates two-set dominance (left) and prox-
imity (right) relations between members of aset A = [a, b, ..., g} that de-
fines the columns and aset S=[s, t, . . ., z} that defines the rows. As in the
one-set case, a dorminance relarion is characterized by an upper right trian-
gle of 1s and a lower left block of 0s. The proximity relation shows a diago-
nal stripe of 1s separmating upper right and lowcer left triangles of 0s. The

#The positions of the triangles of 1s and 0s could be reversed, depending on how the rela-
tion is defined.
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dominance relation shows that each row element is dominated by all col-
umn elements up to a peint, and then it dominates all the rest. For exam-
ple, a person fails all the hardest items on a test, but then passes all the rest.
In the proximity relation, each row element has a band of column elements
that are close to it. The fact that the seis are different means that the border
between the two kinds of symbols could show as farther up or down or to
the right or left, depending on the pature of the data.

It should be emphasized that deciding whether a relation is of the domi-
nance as opposed to the proximity type is not a subjective decision on the
part of the investigator. Rather, the distinction should be based on how the
data behave. A collection of data relations that represent dominances will
show one kind of consistency, whereas they will show quite different consis-
tencices if they represent proximities. A large part of the remainder of this
book is devoted to evaluating consistencies in collections of data relations.

So data relations can represent cither dominance or proximity, and
they can be between members of the same set or different sets. Coombs re-
alized {1951, 1964) that a third distinction was necessary in order to ac-
commodate as broad a spectrum of data as he wanted to do. The third di-
chotomy splits data where the relation is between a pair of set-elements
from data where il is between a pair of pairs of elements. All of our exam-
ples so far have been instances where there is only one pair, and the pair
of pairs circumstance is indeed less frequently encountered, There are,
however, examples. In a psychophysical experiment, a subject might be
presented with two pairs of musical tones and asked whether the first pair
is more different {1) than the second, or not {0). A little consideration
will suggest thai the data are likely to behave as a dominance relation, but
the relation is between pairs of pairs of tones; also, the pairs of pairs are all
from the same set.

According to Coombs’ scheme, then, there are eight possible types of
data depending on whether the binary relation represents a dominance re-
lation or one of proximity, whether the relation is between members of the
same sct or different sets, and whether the relation is one between pairs or
pairs of pairs. We deal with these concepts in more detail later.

MENTAL TESTS AND DATA RELATTONS

A substantial part of this book is devoted to the treatment of mental test
data, The basic relation in such data is at the item level, and aside from
classtoom tests constructed by individual teachers, the great majority of
test responses are scored dichotomously: correct or incorrect in the case
of ability or achievement tests; gave or did not give the keyed response in
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the casc of a personality inventory. We argue strongly for multilevel rc-
sponses, but the fact remains that the majority of items are scored dichot-
omously. These item scores are then summed to provide a total score on
the test or personality scale. In the next set of chapters we consider how te
evaluate collections of test responses in order to decide whether they may
legitimately provide a summed score that may legitimately be called at
least an assumed scale.



Chapter 3

Types of Assessment

A CLASSIFICATION OF TEST ITEMS

At the end of chapter 2, it was noted that “Psychometric procedures, how-
ever, almost universally operate internally to a particular set of data. The ra-
tionale for operating within a set of data has to be that through such a proc-
ess we hope to identify what we have called assumed scales, variables that
behave consistently enough that we can hope that they are scientific scales.”

In this chapter a number of different procedures that have been used for
making assessments are described. No attempt is made to make this list ex-
haustive but examples of various types of tests in common use are given and
classified. The various types of assessment are classified first in terms of
whether the items or tasks require the examinee to provide the answer,
called “free response” or “creative answer” tasks, or whether they require a
choice between two or more alternatives—the multiple-choice items.

The second basis of classification is whether or not the score on the re-
sponse to each item is evaluated or scored dichotormously with two ordered
categories. Examples of dichotomous tasks would be those evaluated as
right-wrong, pass—fail. Other dichotomies include yes—no, agree—disagree,
or giving the keyed as opposed to the unkeyed response, or vice versa, 1o an
item of a personality scale such as introversion or manic depression. For
scoring purposes, the dichctomous categories are then converted toa 1, 0
scale.

Alternatively, the response or its evaluation may be polytomous with
three or more ordered categories. Written responses on a test can be rated
as Fail, Poor, Satisfactory, or Excellent, or just rated numerically, such as 0,

43
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1, 2, or 3. Some free-response items on an intelligence test are scored in this
way, and for summary purposes the verbal categories are generally con-
verted to numbers as well. On personality tests or attitude scales the respon-
dent could be asked 1o indicate his or her extent of agreement with a state-
ment by choosing among the ordered categories “Strongly Disagree,
Disagree, Neutral, Agree, Strongly Agree.” Again the responses on each
itemn would be converted to simple numbers, ¢ to 4, or 1 to b, to provide to-
1al scores.

This double classification by response type and nwmber of evaluation
categories provides four types of assessment:

free answer and dichotomous scoring
free answer and polytomous scoring
multiple choice and dichotomous scoring

o N=

multiple choice and polytomous scoring.

A fifth type of assessment is one in which the person is asked to rank
stinuli in order of preference as in some ordinal values scales such as the
“Rothwell-Miller Interest Inventory Blank™ {1988), the Rokeach "Value
Survey” (1973), and the Allport, Vernon, and Lindzey {1951) “Study of
Values.” All five types of scale are discussed in various sections of this chap-
ter and the following chapters.

Of the other ordinal methods, The Rokeach Value Survey involves the
simple ranking of two scts of 18 values and the data can not be analyzed for
consistency in the way of the Rothwell-Miller. In the Allport et al. Study of
Values {1951) such ordinal statistics can be applied as shown by Keats
(1972) but because the scale is not used 10 any great extent these days this
method is not repeated here,

The four basic types of items are detailed later in this chapter after we de-
scribe the concept of “standard scores,” which are so widely used in stan-
dardized tests.

STANDARD SCORES

Statistical Definition

On formally published or administered tests such as those the reader has
encountered al numercus points in her or his academic career, the total of
raw scores is converted to one or both of two types of numerical scales. One
type is the “standard score.” This has several numerical forms, but all are
based on the same idea. The mean score of the distribution of raw scores
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for a group is assigned a convenient numerical value, such as m= 10.0, and
the standard deviatton {SD} of the distribution is also assigned a simple
number such as s= 3.0. Then a standard score is assigned to each raw score
in terms of its position relative to the mean in standard deviation units.

Then, using z to stand for standard score and x for raw score, the follow-
ing formula {3.1} would be used:

2= 10+ 3.0(x — m)/s (3.1)

A raw score that was one standard deviation above the mean would then re-
ceive a standard score of 13,0. Usually, only whole numbers would be used
for the standard scores, so the z values would need to be rounded to the
nearest integer.

Variations

The standard score scale on other tests may use different scaling factors.
Perhaps the one most frequently encountered sets the mean to 500 instead
of 10 and the standard deviation to 100 instead of 3.

This is the scale used by the Educational Testing Service for tests such as
the “College Boards” and the Graduate Record Examination. Other tests
might use a mean of 50 and a 8D of 10. In most instances a score reported as
an “IQ}" is a standard score having a mean of 100 and a 8D of 15.0. These
other standard scores are computed by substituting the desired mean and
SD for the 10 and 3.0, respectively in formula (3.1). Whatever the scale
used, the score is meant to reflect position retative to the mean in standard
deviation units, so the raw score that was one standard deviation above the
mean would be 600 on the 500, 100 scale, 60 on the 50, 10 scale, and 115 on
most IQ) scales,

A misapprehension that is surprisingly widespread among otherwise so-
phisticated individuals is that standard scores are normally distributed.
They are not. Their distribution is exactly the same as that of the raw scores
from which they are derived. Kelley (1947) summarized evidence that he
claimed supported the normal distribution conclusion assumption. Wech-
sler (1939) began developing a series of tests using this assumption, which
is questioned below. In practice raw score distributions are at best roughly
normal, and often radically nonnormal as shown by Miccieri {1989).

Standardization Groups

In many testing situations, the standard scores that are reported to individ-
uals and institutions are not standardized with respect to the group of
examinees who 100k the test at the same time and/or place as the individ
ual. Instead these reported scores often reflect the examinee’s place with
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respect to a “standardization group.” This is a large group of individuals,
typically 1,000 or more, on whom the test’s scores have been standardized,
so the score reported for an individual represents position within this
group. In welldesigned tests, this group has been selected to be representa-
tive of the population for which the iest is intended.

FREE-ANSWER WITH DICHOTOMOUS SCORING
ASSESSMENTS

This is the type of procedure we have all encountered, beginning in ele-
meittary school. It is also widely used in individually administered intelli-
gence measures. In the original Binet test {(Binet & Simon, 1916), for exam-
ple, the child is presented with a task such as copying a square or giving the
meaning of a word and the response is scored as 0 or 1. The tester must
have a clear basis for making the scoring decision and in a formalized test
examples of scoring particular responses that could be given must be avail-
able. The most objective type of scoring such items is obtained when the
person is asked to respond with a number as in standard types of mental
arithmetic items.

One objection to the use of some items of this free-response kind is that
the scoring can be somewhat subjective and that this possibility may intro-
duce a further source of error into the score obtained. For this reason, mul-
tiplechoice items are sometimes referred to as “objective test items” be-
cause the scoring of the response is not subjective and can be done by
computers, However, it should be borne in mind that it is only the scoring
of the response that is objective and that there is plenty of room for subjec-
tivity in the selection of the particular items and the alternatives between
which the person must choose as well as the definition of which is the cor-
rect answer. It is really only a question of the stage at which the subjectivity
is introduced. In tests that are, or could be, analyzed according to classical
test theoyy (CT}), including ordinary classroom tests, a total score on a set of
items is computed as simply the sum of the item scores. This is called a “raw
score” in the literature on tests. For some purposes that are important, par-
ticularly in chapters 4 and 5, the item scores are converted to tied-ranks
scores before being summed.

FREE RESPONSE WITH POLYTOMOUS ITEMS

Binet Tests

In the original Binet-Simon test most of the items were creative answer with
dichotomous scoring. However, since that time, there has been a tendency
for intelligence tests such as those in the Wechsler scales to become poly
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tornous. Thus a vocabulary itern “What is an apple?” might get the response
“Something you eat” or, alternatively, the response could be “A piece of
fruit.” Clearly the second response, “A piece of fruit,” is more precise than
the first so could be given a higher score, say 2, whereas the response
“Something you eat” could be given a score of 1 and an incorrect response a
scote of 0. The item can become trichotomous with three ordered catego-
ries. An objection to this type of polytomous scoring is that conservative
scorers tend to use the score of 1 more often than more precise scorers.

Binet’s items were derived from experts who had had lots of experience
with children. They were asked to provide examples of tasks on which suc-
cess or failure, in their opinion, showed which children were more or less
intellipent on the task. The fact that they were able to do this and provide
items which formed a scale indicates that the experts understood what was
asked of them. However, there was no psychological theory by which the
items were chosen. They were in fact chosen on the basis of the extent to
which they discriminated between children of different age levels,

Piagetian Tests

In more recent time Piaget (1947}, who worked in the Binet—Simon labora-
tory for some years, developed a theory of operational thinking, and this
theory enables the construction of sets of items examining, for example,
the operation of conserving judgment of number, weight, and volume
when no relevant change was made to the stimuli. For example, if two rows
have the same number of beads equally spaced, as below,

0 0 0 0 0
0 0 a o 0

most children, if not all, will say that there is the same number in each row.
However, if the beads in one row were spread farther apart in front of the
child, as below,

0 0 0 0] 0]
0 0 0 0 0

but none added or removed, the preoperational child {usually under age
6) will say there are more beads in the longer row simply because it is longer
and ignore the fact that the beads are farther apart.

In administering these Piagetian tasks it is important to ask the child why
he or she gave the particular response whether it was correct or not. Some
children give an incorrect response with an irrelevant reason. Other chil-
dren give the correct response without having a satisfactory reason for do-
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ing so. Others again give a correct interpretation of the situation following
the giving of the correct response. Whatever the subject’s response, he or
she is then asked why they thought that it was correct, and the item is not
positively scored unless this explanation meets the criteria for the level of
thinking being tested.

Some psychologists have tried to convert these tasks into free response
or multiple-choice items without seeking an explanation for the response
given. Tests based on such items have not proved to be satisfactory {see
Verweij, 1994). The results of studying Piagetian items requiring the opera-
tion of transitivity were given by Verweij (1994). These results show clearly
the need to take into account the explanation given by the child for her or
his responses to transitivity items. The transitivity concept is illustrated by
the principle that if A is taller than B and B is taller than C, then A must be
taller than C, and we make considerable use of it in this book, particularly
in chapter 7. One Piagetian example uses a simple beam balance for weigh-
ing things. The child is shown that when identically sized weights A and B
are placed on opposite sides of the balance, A is heavier. When B and C are
on opposite sides, B is heavier. The child is asked, “Which is heavier, A or
C?” For credit, the child must not only say “A.” but must give the correct rea-
son, one showing that she or he understands the implication. This result
generalizes to other concrete operational items.

The Porteus Maze Tests

Porteus (1915) provided another early example of dichotomous scoring in
intelligenice measures. He did pioneering work on the assessment of men-
tal ability. Using a maze test with items similar to the familiar puzzles, he de-
veloped a series of mazes spanning a wide range of ages and difficulty. He
used these with children who had problems with their school work. If a
child made an error on a particular maze he or she was stopped and given a
further trial on the same maze. A further error produced a zero score for an
easy maze but a further trial or two were allowed on more difficult mazes.

The maze test had advantages over more oral tests when used with deaf
children arid with those from minority groups who had language problems.
He gave very explicit scoring instructions and later showed differences be-
tween Australians with an Aboriginal as opposed to an English background,
and between pre- and postlobectomy/lobotomy operations.

However, Porteus did not check the maze test for its applicability for Ab-
original Australians in the way suggested in chapter 10. He also did not em-
phasize the fact that although there was a difference in the means of 10s in
Aboriginal and non-Aboriginal groups, his results showed that there were
thousands of Aborigines who were more intelligent than most non-
Aborigines. He later worked in Hawaii where he was associated with the
Leiter Performance Tests, which were age scales of the Binet type.
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CREATIVE RESPONSES

In educational programs, the setring of creative response tasks is very com-
mon and has been for centuries, For example, a person may be asked to
write an essay on a particular topic or write a report on a project she or he
has undertaken. The responses are sometimes scored dichotomously as
simply pass/fail but more frequently are given a verbal grade such as
Credit/Pass/Fail or a numerical score of in integer, for example, as a mark
from 0-10 (i.e. polytomously) or given letter grades A to F, Such tasks may
be set in any of the subjects and the person’s result recorded as number of
subjects passed.

However, with polytomous tasks in an educational setting, the justifica-
tion for combining the scores in different subjects into an overall result or
average is more compiex and is open to considerable debate. These matters
are discussed in chapter 4.

In clinical psychology, many creative answer tests have been proposed.
Some of these are the projective tests, which are beyond the scope of this
book. Others such as the Picture Frustration Study (PFS; Rosenzweig, 1960)
yequire a creative response stich as a verbal response to a threatening situa-
tion, which is then coded (e.g., punitive or impunitive). Such summary
scores can be analyzed by item response methods. However, there is much
more to be inferred from the verbal responses than the number of punitive
responses evaluated against the norms from particular groups, but this
topic is beyond the scope of this book.

In the case of organizational and vocational psychology, creative answer
items are not often used because of tire restraints, Where they are used it is
often for selection for a very senior position and dichotomous scoring may
not be appropriate. Frederiksen’s (1966) In-Basket Test is an example of
such a test in which the creative responses to the various items are usually
scored polytomously. Vocational preference is assessed using a ranking task
such as the Rothwell-Miller Inierest Blank (1988).

In the industrial setting, people are sometimes assessed by performance
on the job. For example, on an assembly line the time a person takes to per-
form his or her part of the process can be important when this leads to a de-
crease in the rate of production. These “time and motion” studies as they
were called were pioneered in the United States by a psychologist, Elton
Mayo. These studies can also provide criteria against which tests may be
evaluated.

Creative Items Polytomously Scored

As noted earlier many educational tests involve creative answer tasks such as
writing essays or reporting on projects. These are usually scored on a nu-
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merical scale ranging, for example, from 0 to 10 or 20 or a letter scale, such
as A to F, with or without pluses or minuses,

When large numbers of candidates are attempting the test more than
one marker or grader is used. Empirical studies have shown that markers or
graders differ surprisingly in the marks they will allocate and some have
concluded that a person'’s final grade may depend as much on the grader as
it does on the person’s ability in the subject. For this reason multiple-choice
iterns were introduced on a large scale in the 1930s to replace the creative
answer or essay-type questons, but these items have their own problems.

Essay or project examinations have been included here because, in re-
cent times, creative answer tasks have again been used to assess students in
schools. The SAT (Scholastic Aptitude Test) that is widely used for univer-
sity admissions includes a written essay and is an example of polytomous
grading applied to formalized testing. The terms alternative or performance
and authentic assessment have been used to refer to such examinations and
the reasons for reintroducing them are pedagogical. It is argued that
schooling should be more than the learning of a large number of isolated
facts, and using these to answer multiplechoice questions should include
the learning of ways to carry out projects and report the results.

Another method of obtaining assessment material is by requiring the stu-
dent o build up a portfolic of the results of his or her activities in a given
area over a certain period of time. This method is sometimes used in
schools and is called “authentic testing,” because it is based on tasks that
have intrinsic meaning to the student. These portfolios can then be as-
sessed by the ordering method described in chapter 5. Despite consider-
able discussion of performance assessment the problems that led to its
abandonment such as reliability, generality, and rater effects are not being
examined.

In addition 1o scoring the degree of correctness of a response, another
way to change a creative answer dichotomous cognitive item inte a
polytomous one with three or more ordered categories is to take into ac-
count the speed of response as well as its correctness. Thus, an incorrect re-
sponse scores 0 and a correct response 1 plus a bonus of 1 or 2 or more if
the correct response is given quickly enough. 1t has been noted in reviews
of the WISC IIT test that there has been an increased tendency to take speed
of response into account. This trend has been criticized by those who con-
sider that speed of response is not an important factor in assessing intelli-
gence (Carroll, 1994).

In chapter 5, a methed is described for using ordinal test theory o de-
velop ways of dealing with the ordered categories that are often obtained in
this type of assessment. Thus, ordinal test theory can be applied to any of
the assessiment methods being used in educational systems.
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Grader Effects

There are a number of ways the differcnces between graders of creative re-
sponses manifest themselves. Rating methods have been studied for many
years in the laboratory (see Woodworth, 1938), where it has been shown
that raters of the intensity of stimuli differ in the range of responses they
use, some preferring a wide range of values others a much narrower range.
Furthermore, some raters use predominantly the high end of the scale
whereas others prefer to use the low end.

Converting cach grader’s scores to standard scores with a set mean and
standard deviation would overcome these biases to some extent provided
that the essays are allocated to graders in an at least approximately random
fushion. This method was suggested by experimentalists in 1938 at the time
when reliability of grading essays was being questioned but was ignored as a
partial remedy for the problems of grading.

The ordinal test theory (OTT) that we describe later is a different and
more justifiable approach to this problem of grader variation, again pro-
vided there is approximately random allocation of essays. This approach is
described in the next three chapters.

The approach of using expert judges to allocate points to creative per-
formance is one that is used in many events at Olympic games and similar
sporting situations where diving and skating and other performances are
rated. A similar situation exists in musical competitions. However, in these
cases each performance is rated by a number of expert judges and so indi-
vidual bias is reduced. On the other hand, as the object is to rank the per-
formances to discover which is the best, an ordinal approach is likely to be
more valid and reliable.

In assessing performance on the job, employers are likely to use ratings
by supervisors to decide whether a person should be promoted, given a
raise in salary, or even dismissed. Again the problem of individual bias can
arise and an unfair result might be obtained. Thus in organizational and vo-
cational settings creative tasks or work performance may be evaluated on
polytomous scales. Personal ratings may also be used in assessing the behav-
ior of disturbed people in a clinical environment. In all these contexts
probiems of differential bias on the part of different raters should be con-
sidered and eliminated as much as possible.

Whether or not the creative answer items are scored dichotomously or
polytomously using three or more ordered categories there is an arbitrari-
ness in assigning numbers to these categories. Thus, if a response is judged
to be correct and speed of response is not to be taken into account, the re-
sponse is usually given a score of one irrespective of the difficulty of the
item. To some it seems anomalous that a correct response to a difficult item
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is given the same numerical score as a correct response to an easy item, that
is, they both receive a score of one. This problem has probably encouraged
the increasing use of bonus points based on speed of response.

However, the perceived need to allow for the difficulty of the item really
only draws attention to the arbitrariness of the zero—one scoring system.
The question that should be asked is whether this arbitrary system extracts
the most information that can be obtained from the data. This question is
considered quite generally in chapter 4 and elsewhere.

MULTIPLE-CHOICE ITEMS DICHOTOMOUSLY
SCORED

Multiple-choice items are the most commonly used items in cognitive tests
and are used in educational, vocational, and clinical psychology, and in ed-
ucation generally. One reason for their common use has been mentioned,
that is, that they can be objectively scored clerically or by electronic com-
puters. Another reason for using these items is that they can be adminis-
tered in a relatively short period of time so that a wide range of topics can
be covered in a session.

One of the problems with these items is that if only four or five alterna-
tives are presented, there is a reasonable probability that a person can give
the correct response to a cognitive test item by a more or less random
choice among the aliernatives.

A practice aimed at discouraging guessing is to tell the subjects before-
hand that they will be penalized for giving wrong answers. One formula for
penalizing wrong answers is to use “formula scoring,” which assumes that
all alternatives are equally likely to be chosen and subtracts the number of
wrong answers divided by one less than the number of alternatives. How-
ever, if a subject is able to eliminate one or more of the aliernatives as is
common among able persons, this formula will undercorrect.

The assumption underlying formula scoring was questioned by Brown-
less and Keats (1958) and Keats and Munro (1992} who carried out studies
of guessing using the test-retest procedure where ¢xaminees take the same
test twice, so scores can be correlated. To avoid the effects of contamina-
tion, the scores at one administration were compared with tendency to
guess at the other. These workers found that the extent of guessing was neg-
atively correlated with number correct and that the probability of a correct
response by guessing was positively correlated with number correct.

These facts are also significant in the evaluation of the “three parame-
ter model” of item response theory discussed in earlier chapters, as well as
later ones, as this theory assumes that the probability of a correct response
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by guessing is not related to the ability of the person, which may well not
be true,

Another possible way of reducing the effect of guessing on the number
correct score is to have a large number of alternatives that might applytoa
small set of items in the way used by Mallenkopf (1850). Alternatively, it has
been suggested that respondents should be encouraged to guess on the
grounds that if all respondents attempt all items, then formula scoring will
be perfectly linearly correlated with number correct score. However, this
practice seems to be encouraging the habiz of guessing when the correct re-
sponse is not known. The number correct score is hardly to be considered
as the major criterion, Moreover, there will still be variability in the extent
to which examinees follow this instruction.

MULTIPLE-CHOICE TESTS WITH POLYTOMOUS
SCORING

The most common occurrence of these items is in attitude scales and other
selfreport scales. The respondent is given a series of ordered categories to
select from for each item. One of the most commonly used series is
“strongly agree, agree, neither agree nor disagree, disagree, strongly dis-
agrec,” with the subject having to choose one of these for each of a set of
statements. The scores for the categories are usually arbitrary integers such
as 2, 1,0, -1, -2 or their reverse in the case where agreeing with the state-
ment indicates a lower amount of the attitude being measured.

With these items, as with dichotomous scoring of 0 or 1, the question of
the justification of the use of one set of arbitrary integers rather than an-
other arises. Likert (1932) attempted to justify the arbitrary integer method
in terms of its simplicity and ease of implementation. He also showed that it
gave a result that was highly correlated with that obtained by normalizing
the distribution on each item and claimed that this validated the method.

Torgerson {1958) referred to this method of quantification using integers
as measurement by definition rather than by using a fundamental process.
He noted that attempts to become more theoretical lead to item response
models, which are more concerned with the characteristics of items than
those of subjects tested. This observation is even more true today.

I'olytomous items are not treated at great length in standard books on
testing. Those that advocate the use of arbitrary integral scoring tend to fol-
low the procedures set out for dichotomous items. Books using item re-
sponse theory, IRT, have problems with polytomous scoring because the for-
mulations of these theories for polytomous items tend to involve untestable
assurmptions or require such complex computations as to be impractical.
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Our conclusion is that there is no satisfactory method for scoring
polytomous items other than the tied-ranks or other ordinal methods of
scoring described in chapters 4 10 6.

TYPES OF ITEM FRESENTATION

Types of presentation may be broadly classified as individual or group test-
ing. Individual testing is usually carried out by a single tester presenting
items in oral, graphic, or writlen form to the suhject and recording the re-
sponse or scoring it on a dichotomous or polytomous basis. Examples of in-
dividually administered tests are: WAIS, WISC, Binet, Piagetian, British
Abilities Scales, and so on, as well as various clinical tests.

The tester may be required to probe the subject’s responses by asking,
“Can you tell me more abowt it?” and recording any additional responses or
maodifying the oniginal scoring. Another type of probe is that used with the
items developed by Piaget (1947) where the tester is required to ask the
subject to explain why he or she gave the original response. Although there
has been some controversy about using this probe on the grounds that it
might introeduce subjectivity to the testing, we noted earlier that it has re-
cently been shown (Verweij, 1994), that the omission of this step does not
produce a consistent ordinal scaling, whereas including it does.

Ordinal Values Scales

The 1988 revision of the Rothwell-Miller “Interest Blank” is composed of
nine sets of 12 occupations, one from each of 12 categories of occupations.
The respendent is required to rank each of the occupations in a set of 12 in
terms of his or her interest in the occupation. In Keats' (1972) Introduction
te Quantitative Psychology, he referred to this procedure as “quantification by
ordering.” The method is a precursor to the test theory based on ranks that
is 4 major focus of this bouok, particularly in chapters 4 and 5.

In the Rothwell-Miller method it is assumed that the subject is ranking
the 12 calegories of occupations nine times. For this assumption to hold
there should be some internal consistency in the rankings of each individ-
ual subject. The method used by Kendall (1975, pp. 96-98) to test whether
or not a set of rankings has soine consistency is noted here and taken up in
chapters 4 and 5 on ordinal test theory.

To obtain an overall ranking of the 12 categories by a particular respon-
dent, the rankings of the relevant occupations are summed and the order
ol the totals for each category determines its ranking from most to least in-
teresting to the subject.
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The average of the rankings from 1 te 12 is 6% = %(1 + 12) and as there
are 9 rankings, the average of the totals is 9 x 644 = 58%. If the rankings are
completely inconsistent, each total occupation’s ranking should be close to
58% and there should be no clear ordering. On the other hand, for perfect
consistency, the totals should be multiples of 9. Nine from a particular cate-
gory ranked I gives a tolal of 9, 9 ranked 2 = 18 and so on, up to 9 ranked 12
= 108. It would be expected that the summed rankings of a particular sub-
ject should be somewhere between these two extremes.

To evaluate a particular set of 12 totals of rankings, subtract 58% from
cach of the 12 totals and square the difference. Sumn the 12 squared differ-
ences to form a total sum of squares, 8. To determine whether or not these
totals of rankings could have arisen by quite arbitrary allocation of rankings
one can use ¥* with 12 — 1 = 1] degrees of freedom equals 5/117. For the
purpose of interpreting the responses from a particular subject, if the
value is less than 2,303, the responses should be considered worthless be-
cause the subject has shown no significant consistency in ranking the cate-
gories. In practice this is a very rare occurrence and a subject giving such re-
sponses should be examined further.

In testing practice it is common to use coefficient alpha (o} 1o assess the
degree of internal consistency of a test administered to a group of subjects.
o is discussed in some detail in later chapters, but for present purposes we
merely need to note that it ranges from 0 (completely random) to 1.0
(completely consistent}. In the case of the Interest Inventory, it may be
shown that (see chap. 4), for an individual subject,

o = 9(§ - 1287)/8S

If this value is 2 .8 one can be confident in making further interpretation of
the responses.

Methods of Test Administration

In group testing, the tester may have a large group of subjects to test and
the tests are presented in printed form. The subject must read the items
and record his or her answer on the test itself or on a separate answer sheet.
In the latter case the subject must be careful to record the response to an
itemn in the numbered space provided for that item if the items are multiple
choice rather than creative answer. However, using separate answer sheets
assists with machine marking and saves a great deal of paper and printing.
Although most testing has been group testing, there is a growing ten-
dency these days to administer tests using computers. The subjects must be
given thorough instructions and practice so that they know what is ex-
pected of them even though they are not very familiar with computers.
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One advantage of this method is that the performance can be scored by
the computer as the testing is proceeding and the final score available im-
mediately the subject has finished the test. There is an implication that the
test is multiplechoice with problems of guessing associated with it.

One advantage computer administration has in common with some
other methods of administration is that the test can be adapted to the abil-
ity of the subject. The computer can select items that are suitable to the
ability of the subject so that the subjects are not given a lot of itemns that are
cither too easy or too difficult for the particular subject. This idea was first
developed by Binet (Binet & Simon, 1916) but at that time it could only be
used in individual testing with the tester scoring the items as the test pro-
cecded. This practice was dependent on the concept of mental age to pro-
duce a single scale.

As has been shown by Plister (1995), it is possible to develop equipment
for group testing using one computer recording and scoring responses
from up to 60 subjects. The subjects record their responses using a light
pen and the alternatives are coded using a bar-code system. This praciice
saves considerable capital equipment and stationery and again the scores
are available within minutes of the completion of the testing.

Although it would be possible to program this equipment to handle
adaptive testing, it has not been done so far. However, computerized adap-
tive testing has been used widely in Educational Testing Service tests.

SUMMARY

In this chapter, four basic types of items or tasks have been described and
considered in terms of the way they are scored. The conditions under
which these items may be presented have been described. Reference has
also been made to a fifth type of test in which subjects are asked to rank the
elements in an item such as types of occupations. Various problems have
been raised about the usual methods of scoring items. There is clearly a
need for general justification of scoring items of all types. It is claimed here
that ordinal test theory (OTT) and its use of tied-rank scores provides such
a justificadon. Ordinal test theoryis an attempt to establish a theoretical ba-
sis, which is more concerned with the characteristics of persons rather than
iLems.

In chapter 4, two general methods of obtaining scores from each item
are described in the case of dichotomous items. One, called tied-ranks scor-
ing, is presented and its applications to different types of items described.
Its relationship to more conventional ways of scoring items and tests will be
derived in the case of dichotomous items.



Chapier 4

Item Scores and Their Addition
to Obtain Total Test Scores
in the Case of Dichotomous Items

ORDINAL MEASUREMENT

Data Are Ordinal

The present authors presume that the objective of psychological measure-
ment is the development of meaningful scientific scales. However, in most
instances, behavioral science data are a considerable distance from provid-
ing such scales. Much behavioral data are binary, and we will follow the
path of noting ways of examining the consistency of such data and deriving
scores 10 summarize it provided that it displays a satisfactory degree of con-
sistenicy. Such scores are referred to as “assumed scales” or just “scores.”
These scores are assumed to be ordinal variables, not some higher level
such as interval or ratio scales or quasi-continuous variables. If our ideal of
the scientific process holds, assumed scales are then to be used in further
studies and the relationships they enter into are determined. These may be
such as to allow the elevation of the score 1o interval status and scientific
scales. This process is largely beyond the scope of this book.

We realize that this cautious approach runs counter to the prevailing
practices both in psychometrics, where mathematical models are fitted to
binary data and the resulting nummbers are believed to have interval proper-
ties, and in other areas of behavioral research, where ilem scores are simply
added up and then considered to be interval-scale variables. We believe that
there is no consistent or compelling evidence that variables of either ype
deserve that status; they fail to demonstrate the regularities necessary for it.

57
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Further, even for the data they summarize, a myriad of alternative, non-
linearly related versions would do as well. Furthermore, in the case of
psychometric models, they can almost always be shown not to fit the data to
which theyare applied (exceptions being mostly cases of small sample size},
so what is the status of a variable derived using a nonfitting model?

This view may be dismissed as the curmudgeenly reaction of two elderly
academicians whom the field has passed by, but we feel that a thoughtful
ohserver will conclude that if the field has passed us by, it has done so going
ir1 the wrong direction, So our approach is to develop machinery for ordi-
nal measurement. If that can be accomplished, then perhaps meaningful
models can be developed that go beyond ordinality. In the meantime, we
provide methods for summarizing data without providing bases for reading
more into them than they deserve. We believe that restricling the assumed
scales that are derived from simpler behavioral data to ordinal status is re-
quired by principles that are basic te science. In particular, one principle is
that a variable should not he assumed to have properties that it has not
been shown to have or even been shown not to have. One may hypothesize
that it has such properties, but the scientist does so only to serve as the lbasis
for research designed to demonstrate them. For the very great majority of
variables derived from behavioral data, it has not been shown that the inter-
vals have any meaning. Insofar as some of the variables do display a modest
level of utility as scientific scales, that is, they relate to other variables, these
rclations are entirely attributable to their ordinal properties. The intervals
do not display any utility or validity except for artificial reasons.

Ranks From Item Scores

Having obtained responses to items of the various kinds described in the
previous chapter, one then has the task of identifying scores for these re-
sponses. These scores must be such that there is a logical procedure by
which they can be added to obtlain a meaningful total score on the test or
scale. The possible responses are assumed to define an ordinal scale in the
sense that a particular response is taken to indicate more (or less) of an
ability or attribute relative to those people who respond in a lower (or
higher) category. The order on one item must be correlated with an overall
order as shown by a rank order correlation of the kind defined by Kendall
(1975).

In some types of selfreport items this assumption may not be justified.
For example, in an anxiety scale with a dichotomous item such as “T am
sometimes anxious,” the response “no” may be given by a person who never
feels anxious as well as a person who feels anxious all of the time. Thus the
responses “yes” and “no” do not order the subjects on an anxiety dimen-
sion. Such items are referred to as nonmonotic and should be avoided alto-
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gether in tests of the kind considered here, If the ordinal scores on items
are io be combined in some fashion to form a total score, one aim should
be to ensure that the order on this total score is a best estitnate, in some
sense, of the order of the persons on a variable underlying the responses 10
the items.

TIED-RANKS SCORES

A method of achieving this aim with dichotomous items is described and
discussed in this chapter. This method uses the concept of tied-ranks
scores, which is a fundamental concept in one ordinal theory discussed in
this chapter and chapter 5 particularly.

The most common method of giving scores 1o item responses s to allo-
cale successive integers 1o the ordered responses (i.e., the numbers 0 or 1
for dichotomous items). In the case of trichotomous items or higher order
polytomous items the scores 0, 1, 2, etc. or -2, -1, 0, 1, 2, etc. are used. The
arbitrariness of this method was noted by Likert {1932) in an article intro-
ducing his method of measuring attitudes using polytomous items scored
with successive integers. He tried to justify this method of scoring on the
grounds of convenience and it must be remembered that computers did
not exist at the time he was writing.

Torgerson (1958) referred to this method of arbitrary integral scoring as
measurement by fiat. He also noted that people who tried to improve on
this method of scoring usually ended up being more interested in the items
than in the people being tested. The developments of Itern Response The-
ory since the 1970s confirm this observation.

In the same article, Likert {1932) presented a study reporting a high cor-
relation between total scores oblained by adding these arbitrary integers
and those obtained by transforming the integers into standardized normal
deviates (via percentiles) and adding these deviates. The method for doing
this transformation is described here. However, it should be stressed (hat
there is no logical justification for preferring the normal deviates to the in-
tegers on which they are based.

Likert’s use of the normal deviates method was based on the misconcep-
tion that this improved their measurement properties, but the method is
described here both for historical reasons and so that it can be compared
with a method having theoretical justification. The misconception held by
1ikert and many others in 1932 is still held by some psychologists today and,
indeed, methods in common use such as the Wechsler Tests are based on
this misconception. As noted in the previous chapter, this misconception
may be attributable to the mutual misunderstanding between mathemati-
cal statisticians and empirical scientists concerning the status of the normal
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distribution noted earlier. Because empirical scientists believed that statisti-
cians had proved mathematically that most variables must be normally dis-
tributed, they concluded that those that were not should be transformed so
that they were. Thus, there has been a great tendency for psychologists to
transform the scores to produce something closer to a2 normal distribution.
This tendency has persisted to the present Gime, as shown, for example, in
the latest editions of the Stanford-Binet test.

The method advocated by Likert (1932) of adding the integral scores al-
located to the various response categories is commented on by de Gruijter
and van der Kamp (1984) in the following terms: “The simplest way to pro-
vide a score or scale value for a person, is by simply adding item scores. This
procedure is known as measurement by fiar. There exist only pragmatic rea-
sons for this kind of measurement. For example, the resulting scale could
be a useful scale for prediction purposes” (p. 8).

It is shown next that for dichotomously scored items there is a theoreti-
cal justification for simply adding item scores of zero and one. However, for
more than two alternatives, the best method of scoring is in terms of “tied-
ranks” scores (see chap. 5, p. 72).

EVALUATING ITEMS, TESTS AND SCALES

These evaluations are formulated to apply to all forms which order subjects
into any number of ordered categories. Essentially they include: internal
consistency, reliability, and validity.

Internal Consistency

This property refers to the extent to which items agree with each other in
their ordering of the subjects. An item that has a very low average rank or-
der correlatiun, rho, with the other items should be dropped from the test
or scale. Originally the index used 1o measure this was the Ruder-Richard-
son formula 20 (KR20; Kuder & Richardson, 1937), which could only be ap-
piied to dichotomous items. It estimates the correlation between the total
score on a test and the total score on a test having similar statistical proper-
ties. It was generalized by Cronbach {1951) to all polytomous items with a
coefficient o using item statistics. Guilford (1954) showed that the calcula-
tion of o could be simplified by using an analysis of variance of items by per-
sons. Using this method, the variance of persons’ scores and the persons by
items interaction lead to coefficient o, This concept has been greatly ex-
panded to include more complex contexts into a field called “generaliz-
ability,” beginning with the work of Cronbach, Gleser, Nanda, and Rajarat-
nam (1975).
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In the testing context, where the variances of the items are usually
known, the most useful formula for @ is probably

o =m(l - Zs#/s8)/(m - 1). {4.1)

In (4.1) mis the number of iterns in the test, .sf 15 the variance of item j, and
5,2 is the variance of total scores on the test. Examples of its calculation are
given in Appendix A, which also includes a computer program for the cal-
culation.

A coefficient mathematically related to & is Kendall's {1975) coefficient
of concordance, W, which also measures agreement in the ranking of per-
sons by items, We have:

W=[m—- (m—- D] (4.2)

with m items. Coefficient W has the advantages that it has a test of signifi-
cance associated with ¥? and it is also related to the average of the Spear-
man p rank-order correlation coefficient of each item with every other
item. The average p coefficient may be more easily understood than either
o or W

Rearranging the formula above relating Wto o, one obtains a formula
for a:

o= [m/{m— DIl ~1/mW)], {4.3)

which indicates that if MW« 1, then & < 0, that is, that ¢ ¢can be negative. It
is difficult to interpret what a negative value for a coefficient of consistency
could mean substantively, but in this context it would show that the average
covariance between items was negative, a highly undesirable situation if one
is looking for internal consistency.

Whereas the agreement between items in ordering people is an impor-
tant means of evaluating a test, the agreement between people in ordering
items is also of considerable significance. This significance was first noted
by Guutman (1947); it was also noted by Coombs (1964). They both argued
that highly significant agreement implied the existence of a psychological
dimension common to the items. As noted by Keats {(1993) cultures can
only be compared if the psychological dimension defined by items in one
culture agrees with that defined in another.

Reliability

Reliability is a measure of the extent to which one measurement agrees with
another designed 1o measure the same thing. Its value may be obtained by
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repeated testing after a period of time, the examinees not knowing they will
be tested twice. The disadvantage of this method is that the subject might
have learned how to do some of the items and we get practice effects.
Brownless and Keats (1958) and Keats and Munro (1992) showed how this
repeat reliability data can be analyzed. An advantage of the retest approach
to reliability is that it indicates how large the validity, as measured below, of
the test can be. Parallel forms of a test, matched on item characteristics, can
also be administered with 2 small time gap to estimate parallel forms reli-
ability by correlation.

Validity

Validity may be defined in terms of the agreement with an ideal measure-
ment. This may be estimated in terms of the correlation of scores on a finite
test with those that would be obtained from a universe of items of which the
test items are a defined sample. Convergent, discriminative, or construct va-
lidity may be estimated using factor analytic approaches not treated here.
Predictive validity is the most practical measure and should be examined in
practical situations in which tests are used. For example, if SAT scores are
intended to indicate or predict how well a student is likely to perform in
college, predictive validity would be represented by the correlation be-
tween SAT scores and college grade point average. The problem with this
method is often in defining an appropriate and reliable criterion measure.

COMBINING ITEM SCORES FOR DICHOTOMOUS
ITEMS

Tied-Ranks Scores

This section deals with dichotomous items, those that have two categories,
and are usually scored as 0 or 1. Most cognitive tests are in this category as
are some attitude scales and personality tests. The section uses the results
reported by Keats (1995). Consider an item on which 11 of 100 subjects
gave a negative or incorrect response scoring 0 and 89 subjects gave a posi-
tive or correct response scoring 1. The 11 subjects showed less of the attri-
bute or ability being tested by the item than the 89 subjects. However, as itis
not pussible to distinguish between the 11 subjects on this item., they should
each be given an average ranking or tied-ranks score of 4(1 + 11) = &.
Those who gave the positive or correct response would be ranked trom 12
to 100 but, because it is not possible to discriminate between these subjeces
on the item, they should be given a tied-ranks score of (12 + 100) = 56.
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Nete that this is 50 more than the score for those giving an incorrect or neg-
ative response.

Now consider another iterm on which 91 subjects gave the incorrect re-
sponse while only 9 gave the correct response. The tied-rank score for an in-
correct response would be ¥2(1 + 91) = 46 and that for a correct response
would be Y.{1 + 91 + 100) = 96. Again the difference is 50 or half the num-
ber of subjects.

Three points can be made from these results:

1. The tied-ranks score for a correct response on the more difficult item
(i.e., 96), is much greater than that for a correct response on the eas-
ier item ({i.c., 56).

2. The tied-ranks score for an incorrect response on the easier item (i.e.,
6}, is much lower than that for an incorrect response to the more dif-
ficult iter (i.e., 46). This is reasonable because people who get the
more difficult tem: wrong will include some more able people than
those who get the easier item wrong,.

3. In both cases the difference between the tied ranks scores for correct
and incorrect responses is 50 = ¥n where nis the number of subjects.

Thus the total tied-ranks score across x items for any person will equal
Y%enX+ Kwhere Xis the number of correct responses given by the particular
person and Xis a constant, which is the same for all persons and equals the
total tied-ranks score of a person whose responses were all incorrect. Thus,
the total ied-ranks scores are perfectly linearly correlated with the number
correct scores or the total integral scores, This relationship holds for all sets
of dichotomous items.

The result obtained from relating tied-ranks scores to the number of cor-
rect responses is illustrated in Table 4.1 using 100 subjects and dichoto-
meous items.

TABLE 4.1
Relating Tied-Rank Scores to Number Correct Scores for
100 Subjects Auempting Three Dichotomous Items

Wrong Rught
Scores 0 1 Total Diff.
Irem 1 Frequency 11 89 160
Tied-Ranks Scores 6 56 50
Irem 2 Frequency 49 51 160
Tied-Ranks Scores 25 75 50
Item 3 Frequency B9 1 160
Tied-Ranks Scares 45 95 50

Total Tied-Ranks Scores 76 226 300 150
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TABLE 4.2
Patterns of Scores on the 'Three Items of Table 4.1
Total Score Seore Paltern Tota! Tied-Ranks Scoves
3. 1+1+1=3 Tied-Ranks Total = 226
3, 1+1+0=2 Tied-Ranks Total = 56 + 75 + 45 = 176
1+0+1=2 Tied-Ranks Total = 56 + 25 + 95 = 176
0+14+1=2 Tied-Ranks Total = 6 + 75 + 95 = 176
i 1+40+0=1 Tied-Ranks Tatal = 56 + 25 + 45 = 126
t+l+0=1 Tied-Ranks Total = 6 + 75 + 45 = 126
G0+0+1=1 Tied-Ranks Total = 6 + 25 + 95 = 126
a 0+0+0=0 Tied-Ranks Total + 6 + 25 + 45 = 76

With 0 or 1 scoring it is the number correct that determines the score be-
cause each one correct adds one to the score. Tied-rank scores give differ-
ent scores for different items correct. Could this lead to different total tied-
ranks scores with the same number correct? This is shown in Table 4.2.

Thus in all cases total ied-ranks scores = 50X + 76 for all values of X and
for all ways this value may be obtained. It is clear that this perfect relation-
ship between total raw score and total tied-ranks score would hold for all
items with two ordered categories (i.e., dichotomous items). This is an im-
portant justification for the use of 0,1 scoring of dichotomous items. The
scoring of polytomous items by the 0,1,2 etc. method can not be justified in
this way as is noted in the next chapter,

Measures of Internal Consistency

Because of the perfect linear relationship between the number of correct
or positive responses and the total tied-ranks scores, the coefficient of inter-
nal consistency most commonly used, &, will be the same whether calcu-
lated from the number of correct responses or from the total ted-ranks
scores, as noted before. The simplest form of this coefficient was presented
by Kuder and Richardson (1937) and the general form by Cronbach
(1951). Most current books on tests ignore the relationship between the
zero-one scores and the tiedranks scores and present the tabulations of
item data in zero and one form. This also ignores the relationship between
a and the concordance coefficient W (Kendall, 1975) and the significance
test for both of these,

It alsc follows that the best estimate of the order of difficulty of the items
will be obtained from the order of the number of correct responses to the
item. This possibility is explored later in this chapter. A coefficient & or co-
efficient W for items can also be calculated to indicate the extent to which
the persons ordered the difficulty or popularity of the items consistently, as
shown later.
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An example is now given of calculating both ot and W from the same data
and showing how they are numerically related (see Table 4.3). The calcula-
tions for this Table 4.3 fellow Guilford (1954, p. 381) and the formula for o
given earlier (4.1). In this example & = 12/11(1 — 2.03/9.45) = .B57. A point
not covered in most texts is the relationship between Kendall's concor-
dance coeflicient, W, and o and the use of a chi squared test of significance
of reliability and internal consistency (see Eeats, 1972, pp. 60-63).

Table 4.4 converts the data from Table 4.3 from dichotomous scores of {
or 1 to rankings of the 10 subjects in terms of total-tied ranks.

W can be computed most simply here by making use of its analysis-of-
variance relationship; it is the ratio of the sum of squares for persons (S$,)
to the sum-ofsquares total (8§):

W= 55,/SS. (4.4)

In the tied-ranks context, S, is Z{R,— R}*/m, where R, is the sum of Person
i5 tied-ranks scores across the m items, and R. is the average of these sums.
88,is ZX(r,— r. .}, where 7, is Person is tied-ranks score on Item jand r. . . is
the average item tied-ranks score. In the example of Table 4.4, §8,is {{43.5
- 66)2 + (5%.5— 66) + ... + (93.5 — 66)?] /12, or 196.875. Also, reading the
elements of the table across rows, 88, is [(5.5 - 6.6)2+ (1 —~6.6)2+. .. + (10—
6.6)?), or 507.5. Thus,

W= 196.875/507.5 = .388.
Since Chi* = Wm{n — 1) in this situation,
Chi? = 388 x 12 x 9 = 41.904

with 9 degrees of freedom, which is highly significant according to the Ta-
ble in the Appendix.
The coefficient o may be found from (4.3):

o= 12(1 - 1/12W) /(12 — 1) = 857

which equals the value obtained by scoring 0 and 1 and applying the stan-
dard formula for a.

The advantage of using the ordinal approach is that it not only gives a
proper meaning to internal consistency but alsc a test of significance for
the measure of that property.
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TABLE 4.4
Tied-Ranks Scores for Persons

Kems
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Internal Consistency of Persons’ Ordering of Items

During the development of test theory, some workers have stressed the
need for subjects to order items in the same way. Guttman (1947) made this
point very strongly in his definition of the scales that bear his name.
Guttman scales require perfect consistency in ordering subjecis by items as
well as in ordering scale items by subjects. In practice perfect ordering of
persons and dichotomous itemns is not possible and there has been argu-
ment from Gutunan (1947), Loevinger (1948), and Green (1956) about
how to measure degree of scalability. The measure suggested by Gutiman
(1947) was criticized by Green (1956) who proposed an alternative meas-
ure. Cliff (1983) reviewed these and a number of other suggestions, sug-
gesting o as a plausible choice. A high degree of scalability of iterns from
one of these measures was taken to be evidence for the psychological exis-
tence of a scale defined in terms of the iterms.

The probabilistic model of cognitive tests proposed by Rasch {1960} was
much more likely to attain the criterion of producing the same order of diffi-
culty of itemns for the low scorers as for the high scorers. This requirement is
the basis for defining a difficulty dimension for items but has been criticized
by Lord and Novick (1968) because it implies the rejection of items with too
high discriminating power as well as those with too low. The Rasch Model sat-
isfies the ordinal conditions laid down by Luce and Tukey (1964) for con-
joint measurement. The conjoint ordering conditions imply consistent or-
dering of subjects by items and consistent ordering of items by subjects.

However, Item Response Theory {IRT) has attempted to allow for the
differential ordering of itemns by groups of subjects of different ability by in-
troducing a parameter which is defined as a measure of different discrimi-
nating power {Lord & Novick, 1968). The extent to which items vary on this
parameter will lead to differential ordering of items by subjects of different
abilities and so violate one condition of conjoint ordering.

We now present in Table 4.5 an example of the calculations of the extent
to which subjects agree on the ordering of the difficulty of the items. The
scores for each item in Table 4.5 are the number of the 10 subjects giving
the correct response to the item. If g, equals the proportion of the 12 items
answered correctly by Person i, and g, = 1 - g, then Ig,4, is the sum of the
variances for the persons.

By analogy with formula (4.1}, the consistency of item ordering by per-
sons, o, can be calculated as

oy = n{l - Z5%/58)/(n— 1},
where s? is the person variance, p¢,, and s,f is the variance of the rights

scares for the items, such as those given at the bottom of Table 4.3, repro-
duced as the first line of Table 4.5. In the present data,
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TABLE 4.5
Reanalysis of Data ¥rom Table 4.4
I 2 3 4 5 & 7 & ? I 11 iz Suen
R scores 10 9 9 7 6 6 5 4 3 3 2 1 65
100 81 81 49 36 36 25 16 9 Q9 4 1 447
Variance of Tiem Scores, 52, = (447 - 652/12)/12 = 7.8L.
Persony 1 2 3 4 5 &6 7 & 9 10 Sum
2/12  4/12  4/12  B/12  5/12  6/12 7A12  9/k2 11712 18/12
14 .22 .22 .24 24 25 24 19 08 .00 1.82

o = 10(1 - 1.82/7.91) /9 = 855,
and the corresponding W is
W= 434,

From this value Chi squared = 11 x 10 x .434 = 47.74 with 11 degrees of free-
dom, which is highly statistically significant. Thus the ordering of items by
persons is highly consistent to the same extent as the ordering of persons by
itemns. In Chapter 6 we see that the person and item @'s are connected
through the relative size of 5.2 and 53’

SUMMARY

This chapter began by emphasizing the need to have an ordinal approach
to test theory. According to this theory each item must have a high ordinal
correlation, Spearman’s p, or Kendall's T both corrected for ties, with the
total of the item scores.

Consistent with this requirement, itemns should show high internal con-
sistency in their ordering of people (i.e., should order the people in ap-
proximately the same way as measured by Kendall’s W, which is mathemati-
cally related to the more commonly used & and which can be tested for
statistical significance). These wo related requirements give one grounds
for believing there may be an underlying dimension defined by the items.

As noted by Guttrnan (1947), Rasch (1960), and Luce and Tukey (1964),
each group of persons with the same item score should order the items the
same way as far as difficulty or popularity is concerned. This may be tested
by calculating concordance W for person groups ordering the items. This
condition is needed for defining an underlying psychological dimension
for the items. Item Response Theories with 2 or 3 parameters claim to have
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obwiated this requirement by defining a parameter of item discriminating
power. What they have in fact done is to try to improve the goodness of fit of
their theory to data that does not meet conditions for interval scaling. This
chapter has shown that with dichotomous items, 0 or 1 scores can be used
to produce ordinal scores across persons and items. However, in the case of
more than two ordered categories of items it becomes clear that scores of
0,1,2. .. do not produce ordinal scores in the same way in most cases.

This fact leads to a situation in which items do not readily convert from
integral scores to tied-ranks scores. In the literature many attempts have
been made to convert from arbitrary integral scores to interval scores. In-
deed, Andrich (1978) has shown that a2 Rasch assumption will validate the
use of arbitrary integral scores as it does with dichotomous iterns but this as-
sumption does not stand up to appropriate tests. Other writers in this field
require strong essential rather than linear independence to obtain general-
ization to polytomous items and also that the form of the response charac-
teristic curves is known, which can never be true. The next chapter deals
with the general application of tied-ranks scoring o polytomous items and
its general application in empirical studies.



Chapter 5

Item Scores and Their Addition
to Obtain Total Test Scores
in the Case of Polytomous Items

SCORING POLYTOMOUS ITEMS

In chapter 4 we presented a method of dealing with dichotomous items
which is simplified by the fact that tied-ranks scores with these items are
perfectly linearly correlated with the 1 or 0 scores usually used with these
items, The use of measures of consistency, Wand o, to determine whether
items are ordering people consistently was shown to determine the extent
to which these items are ordering persons on the same dimension. It was
also noted that these same measures could be used to determine whether
persons were reacting to a single dimension of items by consistently order-
ing them. In praclice, the consistency of ordering persons may be high but
that of ordering items may be low or vice versa. If both are very high the
condition known as conjoint ordering is satisfied and this is a necessary but
not sufficient condition to form an interval scale. For sufficiency, a condi-
tion known as cancellation is required as shown by Luce and Tukey (1964)
and mentioned in chapter 2. This condition is almost never tested in appli-
cations of ltem Response Theory, hence the development of Ordinal Test
Theory is necessary.

If there are three or more ordered categories of response the number of
possible different score patterns for each total ordered category can be very
large indeed. It is most common to use successive integerssuch as 1, 2, 3, 4,
or 5 to stand for the responses to any of five categories, and the total score
to be the sum of these item scores. The restriction on the choice of category
scores is simply related to order but the size of the interval between item
and person as based on their respective tied-ranks scores is quite arbitrary,

71
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provided that the order of the categories is preserved. For example, scores
of 1,2, 5 11, and 15 that have intervals of 1, 3, 6, and 4 could also be used if
the responses are only ordinal. Under these circumstances the problem of
combining category scores for different item responses by the same person
becomes very much greater than was the case with dichotomies as shown in
chapter 4.

In the case of dichotomous items, it was shown in chapter 4, Tables 4.4
and 4.5, that the sum of integral 0, 1 scores was perfectly linearly correlated
with that of tied-rank scores. However, in the polytomous items in the ex-
ample in Appendix A this turns out not to be true, since converting integra.l
scores to tied-ranks is a nonlinear transformation. Thus, in this example,
the order obtained from the totals of the tied-ranks scores, which give the
best estimate of the ordering in the population in a sense related to least
squares, is different from that order obtained from the totals of the integral
SCOTES.

Exarnple

The method vsed hy Likert (1932), as quoted by Cliff (1596, pp. 48-49) to
justify the use of arbitrary integral scores by comparing these with normal
deviate scores for each item is best understood by reference to Table 5.1 in
order to show the procedure for a particular item. In the Table the ordered
categories are indicated by the letters A (the lowest) 1o E (the highest), which
might correspond to a range from strongly disagree to strongly agree and be
scored -2, ~1, 0, +1, 42, respectively on an arbitrary integral scale. For a
given sample of 200 subjects the frequencies with which these categories
are chosen might be 10, 25, 45, 70, and 50 respectively, as shown in the
third row of Table 5.1. In the fourth row the cumulative frequencies are
shown, ranging from 10 to 200,

TABLE 5.1
Method of Calculating Normal Deviates

A B c D E
Iutegral scores -2 ~1 0 H +2
Frequency 10 25 45 0 50
Cumnulative frequency J11] 35 80 150 200
Tied-ranks scores 55 23 58 1155 175.5
Tied-percentile ranks scores 2.75 115 29 57.75 87.75
Normal deviates -1.92 -1.2 -53 195 1.16
A=0,ag=1
Wechsler unils 4.24 74 B.35 10585 15.48

A=10,0=35
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The fifth row, labeled tied-ranks scores, refers to the fact that 10 subjects
are tied on the item in the lowest category, A, and should be given the aver-
age rank for that category, that is, the average of the lowest (1), and highest
(10) ranks that are in that category, which here is 5%. Using cumnulative fre-
quencies, the 25 subjects in category B would be given a tied rank of 23, the
average of 11 and 35, and so on. A general formula for proceeding from cu-
mulative frequencies [CF] to tied-ranks is:

tied-ranks = '/é(CF(J_” + CFI) +1 {b.1)

where j designates a particular category.

These tied-ranks scores may be converted to tied cumulative percentiles
by dividing by 200/100 = 2 because there are just 200 subjects in this exam-
ple. The tied percentiles my be converted to normal curve deviates using
standard tables (see, e.g., Kendall, 1975, p. 174). These deviates may be
converted to scores with 2 mean of 10 and a standard deviation of 10 as is
currently done in the Wechsler scales {Wechsler, 1939, 1997). This
Likert-Wechsler procedure, which dates from the 1930s, has no scientific
justification but is widely practiced by psychologists and other test users.

Comparing the tied-percentile scores with the arbitrary integral scores
shows that the latter have equal differences of 1 between categories whereas
the former have differences of 8.75, 17.5, 28.75, and 30, a large range of dif-
ferences.

Comparison of the integral scores with the Wechsler scores for the same
categories shows that whereas the difference between scores for successive
categories is unity for the integral scores the values are 3.16, .95, 2,235, and
2.895 using the Wechsler scale scores. Although these differences are by no
means trivial they would tend to average out over 20 or more items and so it
was possible for Likert to obtain a high correlation hetween the totals from
integral item scores and those obtained through normal deviates.

Advantages of Tied-Ranks

The step made by Likert from the tied-percentile ranks to the normal devi-
ates is quite arbitrary because this step could equally well be made to an-
other theoretical distribution with as much justification. The procedure is
also an attempt to go from an ordinal ranking to an interval scale without
meeting the conditions of conjoint measurement as discussed in chapter 2.
The problem considered here is how to proceed from a ranking on one
item to a combination of the rankings from a number of different items.
Such a step could be justified if there were sufficient agreement in the
ordering of the subjects by the iters to support an assumption that there is
a basic ordering of the subjects related to the ordering of the subjects on
each of the different items. Kendall {1975) showed that summing the dif-
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ferent orderings of persons produced totals, the order of which gave the
best estimate of the basic order in two senses related to least squares as
noted on page 72 and shown below.

First, Kendall (1975) showed that the average Spearman’s p (rho) corre-
lation between the order obtained from the totals and the order obtained
on each of the itemns was as great as or greater than the average p obtained
from any other ordering. However, this demonstration took no account of
ties, which would be frequent in the testing and scaling situation and so the
conclusion may not hold exactly in all cases. Second, he showed that the es-
timate of the ordering obtained from che totals of the ranks differs less
from a ranking obtained if the items were perfectly correlated than any
other estimate of the basic order in a least squares sense. The demonstra-
tion holds whether ties are present or not.

McDonald (1985, pp. 90-91) referred to “optimal scaling” of items with
more than two categories. This term relates to the procedures proposed for
the estimation of weights for integral category scores, which will maximize
the average relationship between total score and item scores. In each case
the procedure used is aimed at maximizing the ratio of total score variance
to the sum of the item score variances. This would have the effect of maxi-
mizing the coefficient of internal consistency o defined by Cronbach
{1951). As Kendall (1975) has shown, the use of 1otal ied-rank scores does
this for ranks. Also, as CIiff (1996, p. 49) noted, this implies that the totals
are in the best agreement with what are called the dominances between
persons on the individual items. It will be recalled from chapter 3, that the
dominances are scores for pairs that are equal to 1, 0, or -1, depending on
whether the first score is greater, equal to, or less than the second.

The original work on which these maximizing procedures were based
was that of Hotelling (1933} and Kendall’s findings were first published in
the 1940s. However, until now, nobody has pointed out that using tied-
ranks scores achieves the same result as using principal components analy-
sis to estimate optimal category scores.

ILis clear that the order obtained from the totals of the tied-ranks scores
across items is a better estitnate of the basic arder than that obtained by
adding integer scores, normal deviates, or any other transformation of the
tied-ranks scores for each item provided that tied-rank scores for each item
are positively correlated with the order from total tied-ranks scores. Thus,
one would expect that the ¢ from tied-rank scores would usually be equal to
or greater than that obtained from integral scores. This result was obtained
in a study reported by Keats (1995} and is presented here in Fig. 5.1.

It may seem odd that, if & is a measure of the internal consistency of the
items in ordering the subjects who attempted the scale, that this index can
have two different values depending on which method of scoring is used.
In the method of calculating o proposed by Cronbach, the subjects x
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Scala ftams Cases
1 12 >3000
2 10 »3000
3 10 >3000
4 10 >3000
5 11 522
B 10 522

F1G. 5.1. Alphavalues for item scores (¢) and fied-rank scores (1,). (Sce at-
tached Fig. 5.1.)

iterns analysis of variance is carried out and the between subjects sum of
squares (SS,) and total surn of squares {$5), and ¢ is calculated from for-
mula (4.4):

o = S§/SS.

These variance values can be calculated using the totals of the integral
scores for each subject, as is the usual procedure.

However there is no scientific basis for summing these arbitrary integral
values whereas the surnming of the tied-ranks scores is justified by the fact
that these totals provide the best estimate of the order of the subjects on the
variable being considered as shown by Kendall (1975). Thus, the analysis of
variance should be carried out on the total tied-ranks scores.
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Since 1970, others have tried to scale items with three or more ordered
categories using extensions of Rasch’s item response theory. Andrich
(1978), following Rasch’s approach, showed that if one made the assump-
tion that categories were equally discriminating, then the summing of inte-
gral scores could be justified. However, this assumption is untestable from
itemn response data. Lee, Poon, and Benter (1990) developed a very com-
plex model for polytomous items. Although this model led to an increased
communality for the items and so was in keeping with the demands of opti-
mal scaling, it cannot be applicd without days of computing and is thus not
very practical.

With dichotomous items it was found in the previous chapter that the or-
der obtained from total tied-ranks scores was the same as that obtained by
summing 0, 1 scares, whereas in general this will not be true for items with
more than two ordered categories. If all the categories have the same fre-
gquency of response for all items, then tied-ranks scores will produce the
same order as that obtained from integral category scores using successive
integers. This result is important in considering performance assessment as
shown next.

TYPES OF POLYTOMOUS ITEMS

WAIS Items

Although atiitude scales and personality tests are the forms of assessment
that mest commonly use more than two ordered categories, some cognitive
tests also use such Items. In the case of the Wechsler Adult Intelligence
Scale (1997) and the Wechsler Intelligence Scale for Children (1997) for
example, among others, there are hierarchical sets of item scores, subtest
scores, and total verbal and performance scores as well as full-scale scores.
These tests are worth considering in some detail as the current Wechsler
tests are the most commonly used tests of general cognitive ability used to-
day even though they are still based on the unjustified assumptions of
Likert and Wechsler in the 1930s.

Most items in these Wechsler tests are scored 0, 1, or2 orevenn 0, 1, 2, 8,
or 4. In the case of some verbal subtests such as Vocabulary and Compre-
kension these categories are defined in terms of the correciness and pre-
ciseness of the response. For example, if the question is “What is an apple?”,
the response “Something you eat.” is not as precise as “A piece of fruit you
can eat.” The second of these two responses receives a score of 2 because it
is more precise than the first, which scores 1. In the case of some perform-
ance items, higher scores are given for faster responses, so again scores of 0,
1, 2, 3, etc. may be awarded.
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These item scores are summed to form a subtest score according to the
criteria describe earlier, but this score is not as good an estimate of the un-
derlying order of the subjects on the ability tested by the subtest as would be
obtained by converting the item scores to ted-rank scores and adding
these. The total tied-ranks scores for the subtests yield the best estimate of
the order of the subjects on the subtest. The frequency distribution on
these totals for the standardization group can be converted to tied-ranks
scores for the Comprehension subtest using the formula (5.1} given earlier.

Combining Scores

According to the WAIS norms (Wechsler, 1997) a total scale score of 60 on
the verbal subtests corresponds to a Verbal [} of 101. This total scale score
of 60 could be obtained by obtaining a scale score of 10 on each of the six
verbal subtests and this would correspond to a total of 300 = 6 x 50 on the
percentiles using Table 5.3. These percentiles are derived from the normal
distribution of the I(s. However a tota! scale score of 60 could also be ob-
tained by scoring 8 + 8 + 8 + 8 + 9 = 41 on five of the subtests and 19 on the
sixth. The person might have been a number wizard who scored well above
average on the arithmetic test but below average on the others. The total
percentile score for this person would be 236,9. This score is the same as
that of a person who had scale scores of 9 on five subtests and 10 on the
sixth with a total of 55 and an [Q) of 95 as opposed 1o 101,

A third way that a total scale score of 60 with IQ) = 101 can be obtained, is:
12+ 12+ 12 + 11 + 11 + 2. The person giving this pattern has scored above
average on five subtests but has a very Jow score on the sixth, the total per-
centile score for this person is 351.4 which would be close to that obtained
by a person with a scoring pattern of 10 +10 + 11 + 11 + 11 + 11 = 64 corrc-
sponding to an IQ) of 105.

TABLE 5.2
Percentiles Corresponding to Various Scale Scores
Scale Score Percentile Scale Score Percentils
19 999 9 37.0
18 99.6 8 25.0
17 99.3 7 16.0
16 97.7 5 8.0
15 95.0 5 5.0
14 91.0 4 2.3
13 B4.0 3 7
12 75.0 2 4
1] H3.0 1 1

10 500
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TABLE 5.3
Scale Scores and Percentiles for Five Persons on Each Subtest
Scale Scoves for Persons Percentiles for Persons

Subiest A R C D E A B C D I
1 9 8 10 12 ¢ 37 25 50 15 50
2 -] B 10 12 10 57 25 50 75 50
3 ] 8 10 12 1L 37 25 50 75 63
1 9 8 10 11 il 37 37 50 63 63
5 49 9 10 11 11 37 57 50 63 63
1] 10 19 i} 2 il B 99.9 50 04 63
‘Fotal 55 60 60 60 64 235 236.9 300 3514 352
19] 9% 101 101 101 [[1:5)

It is to be noted that the I{} values are bunched in the middle at a value
of 101 whereas the total percentiles for these persons are spread from 236.9
to 351.4 showing greater discrimination using the percentile method
These values correspond approximately to persons with IQs ranging from
95 to 105 so large differences can be obscured by the standard 1Q) method.

Although an IQ) based on an uneven pattern might be investigated by a
psychologist, the Verbal TQ) would be that shown and could affect future
treatment of the person tested. If Total IQ had been considered the range
would have been even greater than that found with only the Verbal IQ.

Scoring Performance Tasks

This type of assessment is also known as “alternative” or “authentic” assess-
mernt and is now being increasingly recomumended in schools to replace
muttiple-choice testing. The tasks to be assessed might be essays on a partic-
ular topic or a choice of topics, reports on projects carried out by the stu-
dent, a porifolic prepared by the student on the basis of experience in a
particular field during a semester, or other work submitted. However there
has been little discussion in the literature of how the reponrts, essays, and so
forth are 10 be scored. To make the discussion concrete let us consider a
school in which there are two classes at the same grade level. Students in
both of these classes are given the same assessment tasks from the list given
earlier (i.e., reports, essays, etc.).

‘When these assignments have been handed in, there will be a need to as-
sess thermn in terms of ordered categories. To remove some of the effects of
individual bias, all the essays could be marked by one teacher and the port-
folios by the other. The number of score categories is assumed to be seven
for both tasks, seven often being a comfortable number of categories for
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raters to work with, Integers 1 through 7 are assigned according to increas-
ing merit of the responses.

Too few categories would mean that the teachers would simply not dis-
tinguish among the levels of passing or among the levels of failing. Using
oo many categories could require such fine distinctions that the task would
seem too difficult for the teacher. What is important is the way the submis-
sions are distributed among the ordered categories. As Woodworth (1938)
noted, people who are set rating tasks of this kind differ in the way they use
the categories. Some, easy markers, will use the categories 5, 6, and 7 exten-
sively and ignore categories 1 and 2. Hard markers would have a reverse
pattern. Other markers will restrict their marks to the central values, 3, 4,
and b and hardly ever use 1 and 7; others, again, will use the full range of
marks fairly evenly.

Because of the various personal biases and their influence on individual
marks, it has been suggested that markers should be required to distribute
their marks according to a specific distribution. The normal distribution
was the most commonly specified one for the reasans given earlier. How-
ever, markers found it difficult to “mark on the curve” as it was called. They
tended to drift from this curve to one closer to their particular biases.

The main aim of improving the efficiency of scoring is to try to persuade
the markers to use all of the categories. The method closest to perfection is
for markers to allocate the same number of tasks to each category but raters
find this difficult to achieve. A fluctuation of less than the square root of the
equal number would be acceptable in practice. In addition, it should be
noted that assigning tied-ranks scores, whatever the distribution among the
categories, eliminates the major sources of rater effects.

If there are two or more creative tasks contributing to the assessment, it
might be informative to consider each pupil’s overall performance. Tied-
ranks test theory shows that by adding the tied-ranks scores a good estimate
of the basic order of ability can be obtained from the order of these sums.

The raters might afterwards wish to determine a qualitative award of, say,
Fail, Pass, Credit, Distinction, or High Distinction corresponding to various
ordinal positions. This could be done by first defining what an ideal prod-
uct would contain and then comparing this with the products in category 7
to determine which of these come close enough to this ideal to warrant the
award of High Distinction. It is not necessary to award all products in cate-
gory 7 a High Distincrion bun if this is not done then none in category 6
should be given the top award. The best estimate of the underlying order
should not be disturbed. In the same way, Distinctions should be awarded
and so on until the minimum passable product should be defined and enly
those below this should be failed.

It should be clear that alternative assessinent could be and is often vsed at
all educational levels from primary school to university. The method is sub-
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ject to the same problems of scoring as beset the essay type examinations of
the 1930s, which were abandoned in favor of multiple-choice tests. Subjectiv-
ity in marking essays can be reduced considerably by using the reswrictions on
markers that ordinal test theory prescribes, that is, that the number of cases
in each scoring category should be about the same. If this ordinal approach
is not used, the methed can only be partly justified because the scores are
subjective. Some justification can still be found for ted ranks because ted-
ranks scores equate means and tend 1o equalize vaniances.

POLYTOMOUS ITEMS SCORED ACROSS PERSONS

In the case of polytomous items with more than two ordered categories it is
possible to calculate total fied-ranks scores for each item in a way analogous
to that used for subjects. For a case in which four ordered categories are la-
beled “strongly disagree, disagree, agree, strongly agree,” these scores or
der the items with regard to the group's overall agreement with them. This
interpretation is only justified if there is significant concordance between
members of the group in their ordering of itemns with respect to agreement
as measured by Kendall’'s W or by o If there is no such concordance, then
one wonders whether or not a scale based on these items exists. In the case
of perfect concordance in the ordering of items the scale is referred to as a
Guttman scale (Guttman, 1947) after the writer who advocated this type of
scale, and the method referred to as scalogram analysis.

It is worth noting that the method of dealing with tests and similar assess-
ments is to decide on the scores for persons with a given response pattern
and then perhaps consider the ordering of items. In the case of scalogram
analysis the order is the opposite: The order of the items in difficulty or
popularity is decided first and then the order of the persons. This leads to
difficulty in the case of people whose response pattern does not fit perfectly
into that order of the items yielding the best scale of iterns according 1o the
scalogram analysis.

The problem is best understood from the account given by Torgerson
(1958, pp. 319-336) and developed by Cliff (1983). In the case of dichoto-
mous itemns the display of item by subjects has either 1 or 0 in each cell.
However, with polytomous items it is preferable to display each item sepa-
rately in order to see the consistency of response patterns. If perfect scal-
ing is possible, then, when respondents are ordered in terms of total
score, the response patterns to a particular item should follow that illus-
truted in Table 5.4. In the table, an x indicates the category chosen by a
subject, 2nd subjects have been ordered in terms of total score. The high-
est level of response to the item is chosen by those with the highest total
scores; those choosing the next category of response are those with the
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TABLE 5.4
Scalogram Display for Caiegories for a Particular Ttem
ftem
a & € d
L. X
2. X
Subjects in 3. %x
order of 4. x
total 5. X
6. X
7. x
8. X
9. x
10. X
1L X
12. 3

next highest scores, and so on. The pattern represents an idealization,
and would not be expected in actuality; instead, there would be some de-
gree of scatter in the table.

SUMMARY

This chapter has dealt with polytomous items with more than twe ordered
categories for which scores of 1,2, 3,4, 5. . . _ are customarily but arbitrarily
used. However category scores can be arbitrarily spaced provided that the
order is preserved. These scores can be transformed to tied-ranks scores
and a total tied-ranks score calculated for each person and compared with
the total of the arbitrary integral scores. In general, the orders of the per-
sons on the total ded-ranks scores will be different from that obtained from
the usual arbitrary integral scores.

The method of calculating ted-ranks scores is demonstrated in Table
5.1, which compares normal deviate scores used in Wechsler’s scales and
percentile scores with tied-ranks scores. The order of the persons on the to-
tal tied-ranks scores will rarely be the same as that obtained by other meth-
ods of scoring but has been shown to be the best method of estimating the
order on the basic variable as shown by Kendall (1975). Total tied-ranks
scores are equivalent to scores obtained from “optimal scaling methods”
since they produce maximum internal consistency.

Scores on polytomous iterns with more than two ordered categories
subscale scores in the Wechsler scales could be transformed to provide tied-
ranks scores and their totals, but they are not. Because they are not so trans-
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formed the final IQ) scores may be biased as shown in the data presented in
Table 5.4. Allocating scores to essays or project reports is usually done with-
out using ranking methods and this leads to lower reliability because of in-
dividual biases in the raters. The method of using ordinal theory in this situ-
ation is described in this chapter as is the conversion of total tied-ranks
scores to grades.

As was described in chapter 4, for dichotomous items it is possible to cal-
culate total tied-ranks scores for items with more than two ordered catego-
ries. If there is perfect agreement among subjects on the order of items and
perfect agreement among items on the order of subjects, one would have #
perfect scale in the sense defined by Guttman.

In chapter 6, the topic of dominance theory is introduced and devel-
oped in the way originated by CLff (1877, 1979} extended in several ways.



Chapter 6

Dominance Analysis of Tests

DOMINANCE RELATIONS

We have seen in the preceding two chapters how assigning tied-ranks scores
10 test responses can serve as a basis for arriving at meaningful test scores
and for evaluating the quality of items and tests. In this chapter we present a
different ordinal perspective on test responses and see how it too can be
used to form a rationale for test scoring and evaluation.

The methods are based on the idea that a response to a test item pro-
vides a dominance relation between the person and the item, and through
these relations, ordering relations between persons and between items can
be inferred. That is, we think of the item as rather like a hurdle. If the per-
son passes the item, he or she dominates the item. If the person fails the
item, the item dominates the person; the hurdle was woo high.

From these item~person relations we can infer item—item and per-
son-petson relations. If a person passes an item that a second person has
failed, this may be taken as a dominance relation of the first person over the
second. Similarly, if a person fails one item and passes a second, this can be
viewed as a dominance relation of the second item over the first. Domi-
nance relations are the hasis of the measure of ordinal correlation called
Kendall's tau (CHff, 1996; Kendall, 1975), and tau will later be seen to be an
important statistic about a test or a test item.

The dorminance reasoning leads to a measore of the amount of informa-
tion provided by an item. Suppose in a group of n persons », have passed
Item j, and = — n, have failed. On this item, the n, who passed have domi-
nated the n — 1, who failed, so the item has provided n, times (n— n) per-
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son-dominance relations. Thus, itemns passed by just half the persons pro-
vide the most information, but we see shortly that there can be reasons for
wanting sorne variability in the proportion of persons passing an item.

There is a parallelism between how items and persons are reated here,
Therefore, if Person ¢ has passed x, out of the m items on a test and failed
the rest, that person provides x, times {m — x) #em-dominance relations.

Thesc idcas provide a simple interpretation of the difference in score
of two persons on a test composed of dichotomous items. If Person ¢ has
a test score x, and Person £ has a score of x, the difference, x, — x,, is the
difference in the number of items passed by i but failed by A, minus the
number where the reverse happened, & passed but i failed. We introduce
some basic ideas while assuming dichotomous items, but in many cases
they extend to polytomous ones.

PSEUDO-ORDERS FROM RANDOMNESS

Having been tested all our educational lives, we may take it for granted that
one person having a higher score than another person implies that the first
person has more knowledge or ability than the second. Persons using this
book are likely to have had a history of scoring higher than others, so this
may reinforce the comforting idea of tests ordering persons. There is also
the parallel idea that some items are more difficult than others in that fewer
people get them correct. But it is desirable to adopt a “show-me” attitude to-
ward these beliefs that test responses order persons on their ability and
items on their difficulty.

Suppose there was a compuierized test that purported to measure some
personality trait by presenting a set of items to which the examinee an-
swered “agree” or “disagree.” However, instead of scoring the responses ac-
cording to some a priori rationale, the computer uses a random number
procedure to, in effect, toss a coin to determine whether the response gets a
score of 1 or 0 on the item, item scores being summed to give a trait score,
The examinees will differ in their total scores, and the “items” will appear to
differ in their difficulty or popularity. However, it is easily seen that the
whole process is meaningless. It can be made even more persuasive by as-
signing different “difficulties” to the items simply by assigning different
probabilities of getting a positive score to different items, perhaps by assign-
ing a threshold to each item, different thresholds to different items. If the
random number corresponding to a response is above the threshold, it re-
ceives a score of 1; if below, a score of ). Now the items really will have dif-
ferent “popularities,” but the persons’ scores are still meaningless. Many
purported personality scales that ene finds in magazines have little more
meaning than this.
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How do we know that a given set of test items provides an order in any
meaningful sense? We have seen some methods 1o evaluale tests in the pre-
vious chapters, but in the present one we are first taking a closer look at
what lies behind those methods and then will see some ways in which those
ideas can be used to evaluate tests.

HOW DICHOTOMOUS ITEMS DEFINE AN ORDER

Basic Response Patterns

To demonstrate that test responses define an order, we first need to con-
sider two dichotomous (right-wrong or yes-no) items and two persons.
The following two response patterns where 1 indicates the positve re-
sponse and O the negative, provide the critical information:

Ttem Itemn
Person a b € d
x 1 1 )] 1
¥ 0 1 | 0

In hoth patterns we see that there is an itemn that that x gets correct but y
gets incorrect, Item a in the first case and 4 in the second. This is highly
suggestive that x can do things that y cannot. Similarly, it appears that ais
harder than & and c is harder than d because d is passed by x when ¢ is
failed, and b is passed by y when a is failed. Thus, when two items are
paired with two persons, these patterns indicate order relations between
both items and persons.

However, by themselves the pairs of iterns and pairs of persons only pro-
vide suggestive information, but suppose we have a number of itemns, and
there is never one that y gets correct but x does not. Now our inference that
x vanks ahead of yis strengthened. If we consider items across a number of
persons, and find that there is no person who passes @ but fails b, this is simi-
larly information that e is harder than &

What sort of data weakens our impression of order? Negative informa-
tion about the presence of an order comes from looking at combinations of
items and persons and finding a different result. Suppose we found a pat-
tern for two items and two persons like the one below:

[

T

/
¢
! 0 1
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That is, there is an item that 2 gets right and w gets wrong, but also an item
with the reverse, wis correct and v is not. There is no consistent ordering
information about either the items or the persons here. In fact, the per-
son dominance relations on the two items confradict each other; the item-
dominance relations provided by the two persons likewise contradict each
other.

Now imagine that we have responses from a number of persons on a
number of itermns, and after we order the persons from highest to lowest
score and the items from most often wrong to most often right, the pattern
in Table 6.1 emerges. This table is similar to the one presented in Table 6.1
as an example of Coombs’ {1964} two-set dominance relation, All the 1s are
in a rough triangle on the upper right, with all the 0s on the lower left. In
any row, as soon as there is a 1, afl other entries will be a 1; in any column, as
spon as there is a 0, all entries below it will be 0. Thus, for any pair of per-
sons we never get information from one item that is contradictory with in-
formation from another, and similarly for items across persons. On the
cther hand, there are a number of instances that are like one or the other
of the two dominance-defining patterns described earlier, so it seems rea-
sonable o conclude that items and persons are ordered. In a sense, the
iterns and persons order each other. It is the pattern in the table that pro-
vides a highly logical definition of the way in which responses to items can
provide ordering information for persons and items. Insofar as the results
on a test look like this, the results can be considered an ordering process.

TABLE 6.1
Perfectly Consistent Tess Item Responses: A Guitman Scale
Ttems
Persons I 2 3 ¢ 5 [ 7 8 9
1 1 1 1 i 1 1 1 1 1
2 0 ! 1 1 1 1 1 1 1
3 0 I 1 1 1 1 1 1 i
4 0 0 1 1 [ 1 1 1 1
4] 0 0 1 1 i i 1 1 1
& 0 0 L i 1 i 1 1 1
7 o 0 0 1 H 1 1 1 1
8 o 0 0 0 i 1 i 1 1
4 0 0 0 1] 0 1 1 ] 1
16 Q 0 0 G Q 1 1 1 L
11 0 0 0 0 0 G 1 1 1
12 [} 0 0 G 0 0 1 1 1
13 0 1] 0 0 0 0 0 1 [
14 0 0 0 { a Q 0 0 1
15 0 0 0 0 0 0 0 D 1
16 0 0 o 0 a L] 0 0 0
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However, there are two other important patterns we need to consider:

{
u

O =iy
od

]
0 1
0

In the one on the left, items g and h are providing the same information
ahout Persons (and #=: i can do something that u cannot. Similarly, in the
right-hand pattern both persons are providing information that jis harder
than k. (We assume that some of the other items and persons are showing
the two kinds of ordering patterns illustrated first so as to verify that 7 co-
mes before u and jis harder than £) Thus, the pattern involving gand A
shows both items reinforcing the order of Person ¢ over %, and that involw
ing jand % is reinforcing the order of Item j over & Note that in a pair of
items with a pair of persons (abbreviated below to “pair-pairs”), person-
reinforcing patterns and item-reinforcing patterns cannot occur in the
same two-by-two section. The responses in Tahle 6.1 show numerous in-
stances of these reinforcing {or redundant) patierns.

There are two other kinds of patterns, but they provide no information.
These are the pair-pairs where both persons get both items correct or both
persons get both incorrect. Obviously, no ordering information is provided
by such pair-pairs.!

Guttman Scales

Because the importance of the pattern in Table 6.1 was first emphasized by
Guttman {1947), data that exhibit that pattern are called Guttman scales. A
year or two later, and apparently independently, Loevinger (1948) also pro-
posed il as an ideal matrix of test responses.

In the best of psychomeiric worlds, actual, empirical matrices of test
iterns would look like the table; there would be plenty of the reinforcing
and ordering patterns and none of the contradictory ones. In the real
world, this is not what happens. There are always some of the contradictory

!1f we consider all the possible response patserns in a pair-pair, there are 16 because each
of the four entries could be a 1 or a 0, and 2* = 16. We have only listed six different types, but
some of them can eccur in more than one way depending on where the 1sand 0s fall. The firse
two can cach occur in four ways because the ¢ in the first one could fali in any of the four posi-
tions, and the same is true of the 1 in the second. The contradicting pattern can occur in two
ways, depending on whether the Is fall in the upper right and lower left positions or in the up-
per left and lower right. The wo reinforcing patterns can each also cceur in two ways; the two
I's could fall in the first or second row in the person-dominance reinforcing pattern; the 1s can
likewise fall in the first or second column of the iterm-dominance reinforcing one. Then there
are the all Is and all Os pamrerns. Thus, thereare 8+ 2+ 2+ 2+ 1 + | = 16 possible patterns.
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anes, However, it often appears that the Guttman scale ideal is an approxi-
mation to reality.

In our example where the computer scored items randornly, the pattern
would be very different from Table 6.1. Also, it would turm out that if we
looked at all the pairs of items in combination with afl the pairs of persons,
there would be just about as many contradictory pairs of pairs as there are
reinforcing ones, whether we counted pairs that reinforce the person order
or the item order. (There might be small deviadions from equality due to
the randomness of the process.) In the second example, where the com-
puter introduced what are in effect real variations in item difficulty, it
would turn out that the number of contradictory pair-pairs was about the
same as the number of reinforcing person pair-pairs. However, there would
be more pairs where item differences were reinforced than there were con-
wadicting ones. This reflects the fact that there are real, even if arbitrary,
differences among the probabilities that the items will receive a positive re-
SPOHSC.

1t is important to realize that there is a symmetry to how items and per-
sons are viewed here. The items are providing information on how persons
are ordered, and at the same time the persons are providing information
on how items are ordered. Similarly, if the responses in a pair-pair combina-
tien display contradictory information about person ordering, they also dis-
play it about item ordering. If we were analyzing the responses of persons to
2 test, no one, including the computer that would examine the pair-pairs,
needs o know which direction is iterns and which persons until the final
sicp of showing some kind of summary.

The one place where the information about items and persons is not
symmetric is in the pair-pairs that show reinforcement of relations. There, a
pair-pair shows reinforcing information about person relations or about
item relations, but never both, as can be seen from the earlier examples.

It seems infuitively obvious that the Guttman pattern provides an order
for both items and persons, but this can also be shown to be true in a very
strict, abstract mathematical sense, as proven by Ducamp and Falmagne
(1968). Interestingly, the ideas can be extended to threeway tables of re-
sponses (Collins & CIiff, 1985). For example, suppose one were to measure a
group of children on a given set of intelligence items at several specific ages,
Ideally, the triangular form would be shown in the person-by-item table at
cach age. If intelligence represents an ideal developmental process, the tri-
angle of 1s would be small at the earliest age and grow larger (more items
passed by each child and cach jtern being passed by more children) at each
subsequent age. Another level of idealization is reached if the triangular
form is seen for each item, looking at an age-by-person table. Finally, the pat-
tern should also be seen if one Jooks at an item-by-time table for each child.
Thus, the idealized pattern idea generalizes to three-way tables of responses.
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“Unique” Relations in Pair-Pairs

We saw earlier that the relations that actnally provide information that or-
der persons and ftems were instances where in a pair-pair there was an item
that one person got correct and the other not, but the reverse did not hap-
pen in that pair-pair, That is, one of the two following patterns occurred:

1 1 ¢ 1
or
0 1 0 o

in these patterns, there is a person dominance relation on one item but not
the other, and an itemn dominance relation on one person but not the
other. There are a number of variations on these patterns: four versions of
the one on the left, depending on where the 0 falls, and four of that on the
right, depending on where the 1 falls,

If we were to consider a particular pair of items, and examined the re-
sponses of all the person pairs, we will presumably find a certain number of
person pairs that show one of these two patterns or a variation on them. In-
deed, we need to find some because it is these that are the basis of the or-
der. ClHff (1977, 1979) called these relations that occur on one item, 61 in
one person, but not the other, “unique” relations.

DATA BASIC TO ASSESSING CONSISTENCY

Two-by-Two Tables

Assuming that every person takes every item, it is natural to assign an order
for the persons in terms of the number of items each gets correct and one
for itcms in terms of how many persons get the item wrong. We would like
o know how close a given matrix of test responses comes to the ideal of a
Guttman scale. If it is fairly close, then we have confidence that score differ-
ences arc probably real; if not, then they may well be misleading in terms of
measuring some character of the persons.

Examining each pair of items in combination with each pair of persons
would be quite tedious when there are more than a few of each since for m
iterns and # persons there are m(m - 1)n(n - 1) /4 pair-pairs, A test with 50
items administered to a thousand persons would have well over a half-
billion pair-pairs. Fortunately, the information about how many pair-pairs
there are of each kind can be obtained from summary data that is routinely
available.
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TABLE 6.2
Crosstabulation of Responses to Two liems
Observed Frequencies Ideai Frequencies
ftrm 2 Ttem 2
ftem 1 Right Weong Total fiem 1 Right Wrong Tobal
Right 90 40 150 Right 100 30 130
Wrong 10 60 70 Wrong 0 70 70
Total 100 100 200 Total 100 100 200

The relevant information can be obtained from the scores of the persons
and from 2 x 2 cross-tabulation tables that many statistical packages pro-
vide. Consider Table 6.2 that tabulates the response patterns of 200 persons
to Items 1 and 2. The left panel of the table shows that 200 persons took the
two items. Of these, 130 got Item 1 correct (so 70 got it wrong); on Item 2,
100 were correct and 100 were incorrect. There were 90 who were correct
on both and 60 who were wrong on both; 40 got Item 1 right and Item 2
wrong whereas 10 did the reverse.

Now we consider what this means in terms of the pair-pairs involving
these two iterns and all 200 x 199/2 = 19,900 pairs of persons. There must
have been a total of 130 x 70 = 9,100 instances in which one person was cor-
rect on Item 1 and the other incorrect, leading to what we will call per-
son—person dominance relations on the item. In the other 10,800 per-
son—person comparisons, either both persons were right or both wrong, so
there is no dominance information.

There were 90 instances of a person being right on both items and 60 per-
sons who were wrong on both items. This means that of the 9,100, there must
have been 90 x 60 = 5,400 times in which the pair-pairs were of the reinforc-
ing type where one person was correct on both items and the other was in-
correct; using 7, to stand here for the number of reinforcing relations on
items jand k, ny = 5,400. On the other hand, there were also 40 x 10 = 400
pairs of the contradictory wrong-right versus right-wrong type. That is, the
dominance relations for 400 pairs were oppaosite on the two items. Letting ¢,
stand for the number of contradictory person relations, ¢ = 400. The re-
mainder of the ordered pair-pairs on Item 1, 9,100 — 5,400 — 400 = 3,300,
must have been of one of the two ordering types (unique relations) that were
described first, those involving three Us and one 1 or three 1s and one 0.

Similarly, on Item 2, there were ny(n — n,) = 100 x 100 = 10,000 per-
son—person dominances. Of the 10,000, there arc the same 5,400 that are of
the reinforcing type and the same 400 of the contradictory. The only differ-
ence from Item 1 is that there were more of the unigue type of pair-pairs,
10,000 — 5,400 — 400 =4,200 instead of the 3,300 that there were on Item 1.
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From the results displayed in Table 6.2 it appears that the two items are
closely related because there are many more reinforcing than contradictory
relations, 5,400 versus 400. If we want to compare this 1o the best we could
possibly do, we can converl these numbers into some sort of a proportion,
comparing the obtained r, and £, to a definition of the best we could possi-
bly do. The most obvious step is to converl the difference to what is known
as a tau-a correlation:

b= (1 — )/ n{n —1). (6.1

This means that #;; = .125 in the example, and the covariance between the
items will be the same.

Comparing to Ideal Pattetns

This is a rather low value, and the main reason is that there are many ties
when variables are dichotomous. It seems like a good idea to keep the dif-
ference as a basic quantity, but 1o adjust the denominator to make it pro-
vide a more realistic expectation. There are a lot of ways to do that, but two
are the most obvious. Ideally, all the dominance relations on one item
would be reinforced by the other, and there would be no contradictory re-
lations. Therefore, one way to evaluate how we are doing is to compare the
difference 7, — ¢ to the total numbers of dominance relations on each of
the two items. Since the items differ in difficulty, we get different ratios for
the two items: (5,400 — 400)/1%0 x 70 = .55 for Item 1 and (5,400 —
400) /100 x 100 = 50 for Item 2,

On reflection, we may feel that even this ratio is a bit stringent because
not all the relations can be reinforced when the items differ in difficulty or
popularity. The best we can expect to do, given the difference in difficulty,
is shown in the right-hand panel of Table 6.2. There are no individuals who
get [lem 2 correct but Item 1 wrong, but there are, and have to be, some
who do the reverse because the items differ in difficulry. The best that can
be expected, then, given the different ivem difficulties, is that n, get both
correct and n - m get both incorrect, where ny is the mere difficult item.
Thus, if we want to compare our result to the best we could have done,
given both of these item difficuities, we divide n; — g5 by ng{n ~ »); in this
case that is (5,400 -~ 400) /100 x 70 = .71. This figure tells us how close we
are to the ideal value of 1.00, considering the given item difficulties.

In a given pair of items, the number of relations that are unique to one
but not the other can be calculated from the 2 x 2 cross-tabulation of re-
sponses. If the cells of the cross-tabulation table are denoted a, b, ¢, and 4,
then the total number of person pairs where there is a relation on Item 1,
whose responses define the rows of the table, but who answer the same on
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Item 2, is ac+ bd. This is the number of relations unique to Itern 1. Similarly,
the number of those unique to Item 2 is ab + cd. In Table 6.2, these numbers
would be 90 x 10 + 40 x 60 = 3,300 for Itemn 1, and 90 x 40 + 10 x 60 = 4,200
for Ttem 2. In the ideal pattern on the right-hand side of the table, they
would be 2,100 for Item 1 and 3,000 for Item 2.

The total number of dominance relations on an item is the sum of the
rcinforcing, conuradictory, and unique relations on it. Therefore, the num-
ber that are unique can also be calculated by suburacting the reinforcing
and contradictory from the total. Furthermore, we see from the diagrams
that in every pair-pair where there is a unique person relation there isalso a
unique item relation. This fact is used shortly o help us calculate the num-
ber of reinforcing item relations on a whole test.

Sums of Types of Relations

As already seern, we can count the number of total, reinforcing, and contra-
dictory person-dominance relations from the cross-tabulations between
items and can convert them to ratios that tell us how close the relations be-
tween items are, These tabulations can be cartied out for each pair of items,
and the number of reinforcing and contradictory pairs can be summed
across all the tables. We would like there 10 be a lot more reinforcing pairs
than contradictory ones. The number of each can be incorporated into one
of several coefficients of overall consistency for the test. We describe some
of thern next, and it happens that some of these are ones that we have al-
ready encountered in the previous two chapters.

Before mming to them, we need to consider a couple of other things
that can be calculated from the summary statistics. The first is the total
number of person relations that are Furnished by the whole set of m items,
We saw earlier that each item provides »(n — n) person relations, so the
whole test of # items provides a total of Z,n (7~ n). Similarly, the n persons
provide Lx{m ~ x) item dominance relations.

it would be desirable to compare the total number of reinforcing item-
ordering relations to the number of contradicting ones, as we would do for
the person-ordering relations. Looking at 2 x 2 tables for all n(n—1)/2 pos-
sible pairs of persons might well be a substantal task if there are a large
number of persons, but fortunately this is not necessary. If we look at the ex-
amples of pair-pairs that furnish ordering information, or unigue relations,
itis clear that the patterns that furnish unique relations on persons also fur-
nish unique information about items; wherever there s a person relation
unigue to one item, there is also an item relation unique to one person. We
saw earlier that the number of unique person relations can be calculated
from the 2 x 2 tables, These can be sumned across all the tables to get a to-
1al, just as we can for the reinforcing and contradictory relations.
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We let 7, stand for the total number of pair-pairs where there is a rein-
forcing person relation, ¢, stand for the number where there are contradic-
tory person relations, and , stand for the total number of unique or order-
ing pair-pairs. Any person dominance in a pair-pair must be of one of the
three types, so

2Znin - n)=nt ot (6.2)

Similarly, the total number of item domimances can be distributed among
reinforcing, contradictory, and person relations:

lel(m - xa) =0+ 6+ b (6'3)

The reinforcing and contradictory person relations can be calculated from
the 2 » 2 tables, as we noted before. These can be summed across all the ta-
bles to give 7, and ¢,. The total number of person relations is Zn{(n— =). So,
if we want, u, can be calculated by subtraction.

We also noted that wherever there is a contradictory person relation
there is also a contradiciory item relation, so ¢, = ¢. Similarly, wherever
there is a unique person relation there is a unique item relation, so , = u,
Thercfore, if we subtract {6.2) from (6.3), cancel out the equal terms, and

rearrange, we can find #, without deing anything complicated:

5= Zx(m— x) ~ Ly (n— n) + 71, (6.4)

This formula allows us to calculate the number of reinforcing item relations
simply from the person total scores and the £ x 2 tables between items. We
can use the three equations to calculate indices of person- and ilemn-
ordering consistency.

Relations and Statistics

The two main indices of ordinal correlation are Spearman's rho, which we
have extensively encountered in the previous two chapters, and Kendall's
tau. The latter measure is discussed extensively by Kendall (1975) and by
Cliff (1996), and we present the basic concepts concerning it here. It con-
siders each pair of persons, say ¢ and A, on two variables, say x and j, and
notes the dominance relation between the two persons on each variable.
The number of times the two persons are in the same order on both vari-
ables is counted, and the number of times they are in the opposite order is
also counted. Then



94 CHAPTER &

_ #[{x, > x,)and(y, >y,)] - #[(x, > x,)and y, <y,)]
= Vn{n—1)

t , (6.5)

where “#” stands for "the number of pairs in which.” That is, tau is the pro-
portion of pairs that are in the same order on both variables minus the pro-
portion in which they are oppositely ordered on the two. In a population,
these quantities are expresscd as probabilities:

Ty = Pri{x > %) and (5. > )] ~ Pri(x > =) and (< w)]. (6.6)

For many purposes, it is useful to express {in terms of dominance variables,
d,. and d,, which are each 1, ~1, or {4, depending on whether the scores of ¢
are greater, less, or equal to those of % on the respective variables. In that
case,

= El)ﬁdzkx dl)g

- ©
Various “corrections” to tau can be made Lo take account of the presence of
ties on the variables; however, for our purposes it is sitnplest to avoid these
correctons. The uncorrected form is called “tau-a,” but we refer to it here
as “ran.”

When items are dichotomous, the inter<item covariances as well as the
tau and Spearman rho statistics depend on the number of reinforcing and
contradictory relations involving the two items. Specifically, the tau be-
tween j and k is

b= 2(m— cn)/nln - 1). (6.8)
The covariance s, has the same formula as fywhen the items are scored 1-0:
sp = 2(r— ga)/n(n - 1). (6.9)

The formula for rho-a, Ty is slightly different because of the different con-
stants involved:

Tgr = 3t ~ o}/ nln + 1). (6.10)

It is therefore casy to convert any onc of these statistics into the other, and
the conversion is the same for any pair of items. Thus, the different statistics
are providing the same information. In the example, #; = 2 % 5,000/200 x
199 = .25, and the covariance s, is the same. The rank-order correlation is
rus = 3 x 5,000/200 x 201 = .37.
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MEASURES OF TEST CONSISTENCY

The quantities discussed carlier, along with some other basic statistical
data, allow us to measure the overall consistency of a test. This is typically
expressed as a number between 0 and 1.0, the latter representing perfect
consistency and the former no consistency at all. Usually a negative value
for a consistency index would be interpreted as a chance deviation from
zero or possibly some misapplication of the data

There are several types or levels of consistency we examine. One is the
average degree to which items agree with each other. A second is the aver-
age degree to which a particular item agrees with other items or, defined
somewhat differently, with the order on the whole test. A third level is the
extent to which the overall orders derived from two presumably parallel
tests agree with each other. The parallel tests may be real or potential.
Finally, we can estimate the degree to which information derived from the
current test would agrec with an ideal order. The “idcal order” will usually
be defined here as the order defined by a real or potential universe of test
iterns from which the current test is a sample, an idea that will be discussed
further.

Average Interitem Taus

The tau-a between two items depends on the number of reinforcing and
contradictory person relations on the two items, as expressed in formula
(6.5). It is possible and often useful to cxamine the whole matrix of
interitern taus, and to calculate the average from that matrix; this is the
main alternative in the case of polytomous items. However, with dichoto-
mous data, the average tau can be compuled more simply by taking advan-
tage of the equality of interitem tau-a and the corresponding covariance
that is true in dichotomous iterns.

Recall that the variance of the ordinary total score on a tesl, 52, is the
sum of the item variances, 57, and covariances, Sl

SC=Y TS Y s, (6.11)
i

Jxh

Since, in dichotomous data s, = La» this means that

PIPNFELERS IEAS
!

sk
j:1a]

Ave(n) = (.sf —-2:;}2)/m(m— 1). {6.12)
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Formula (6.12) will, of course, also give the average interitern covariance.
By comparing the formulas for tau-a and rho-a for dichotomous items (6.8)
and (6.10), it can be seen that

e = 3(n— 1)6/2(n + 1). (6.13)
The same relation will hold for their averages:
Ave(rg) = 3(n — 1}Ave(L)/2(n + 1). (6.14)

Data from five dichotomous items is shown in Table 6.3. First, cross-
tabulaiions of the responses 1o cach pair of items are shown, the “cross-
tabulations” of an item with itself shawing the number passing and failing
the item. The numbers of reinforcing and contradictory person relations
on each pair of iteins are shown next, and these are converted to tau-a’s
(6.5) in the next section. These may seemn rather low, but they are actually
somewhat higher than is typical of dichotomous items. Their average is
-106. The average 7, is sommewhat higher; by (6.11) it is .158,

The item variances and the variance of the total score are also given in
the table. These allow us to use {6.9) to calculate the average tau without us-
ing the taus themselves:

106 = (3.244 — 1.126) /5 x 4.

Adjustments to the Averages

The average interitem 1au is typically fairly low, as was true in the example.
In pan, this is because the information provided by an individual item is
rather weak, so two items cannot agree very strongly. As we saw in Table 6.2,
another reason is that there are inherent limitations on the value that tau
can take between items. The first limitation is that we are using tau-a here,
and between dichotomous items at least half the relations are necessarily
tied, so {; can never be greater than .5 and that value can only be attained
when exactly half the examinees pass both items. The maximum atfainable
value will decrease as the proportion passing an item deviates from .5.

One adjustment to Ave{Z,} that suggests itself then is to compare r— c10
the total number of dominance relations that could have been included in
it. Recall that there are a total of #Zn, — In? dominance relations provided
by the items; however, in arriving at r— ¢ the dominances on an item are
considered in relation to each of the m - 1 other items, so the total that
needs to be considered here is (m~ 1) (nLzn — In?). This provides the basis
for a new index:



TABLE 6.3

Crosstabulations of Scores of Five Iremns

Item
1 2 3 4 b
Tiem P F P F P F P F P F
1 Pass 60 0 35 25 40 20 45 15 50 10
Fail 0 140 40 105 55 85 75 65 100 40
2 Pass 75 0 50 25 55 200 65 10
Fail 0 125 45 80 65 60 85 45
3 Pass 95 0 70 25 80 15
Fail Q 185 50 55 70 35
4 Pass 120 0 100 20
Fail 1} B0 50 30
5 150 0
0 a0
Dermnances
on lem 8,400 9,375 9,975 9,6k 7,500
s 210 236 251 241 188
Relatwm Types
ftem
ftem 2 3 4 5
! ™ 3,500 8,400 2,925 2,000
gy 1,000 1,100 1,125 1,000
2 2, 4,000 2,500 2,600
oy, 1,125 1,300 850
3 73 3,850 2,800
o, 1,250 1,050
4 73 3,000
‘q 1,000
fn = 55
ftem
ftem 2 3 4 5
! 126 118 090 050
2 J44 .101 088
k] 181 088
4 101
5t =38.244
{Continued)

97
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TABLE 6.3
(Continued)
Number Pussing
Item
1 2 3 4 5
n, 60 5 95 120 150
En? = 00
Easiness order 5 4 3 2 1
k= (r— /[ (m— 1)(ndn, — Zn?)]. (6.15)

k; compares r— ¢ to one definition of its maximum. In the data of Table 6.5,
summing the 7, gives 62,750 {remembering to use both halves of the data),
and ¢ is 20,400, giving

236 = (62,750 - 20,400) /4 x {200 = 500 - 55,150).

This is more than twice the average tau-a, but still represents a fairly small
proportion of the total number of dominances.

However, we saw that even the denominator of (6.12) represents an un-
realistic standard when the items differ in difficulty. Even if ¢ were zero, r
could not reach this maximum. We saw that the maximum value for n that
could occur in Table 6.2 was ny(n — n,) where » was the itern with the
higher frequency of correct answers. ‘

This kind of limitation occurs for all pairs of items. It could be computed
for each pair and added across pairs in order to arrive al the maximumn for r
~ ¢, but this is not necessary when all persons take all items. Some algebra
leads to the conclusion that this more realistic maximum for r— ¢is 20X (j~
1)n,— (£n)? + Znl. This leads to our final index of average inter-item con-
sistency:

ks = (r— 6)/[205,(j — 1}, — (Zm)? + Zyn2l. (6.16)

An important consideration in (6.13) is that j refers to the item-easiness or-
der of the items, j= 1 meaning the easiest item, and so on, It should also be
realized that r— ¢can be compuled from the total score and item variances,
as in (6.9)

In the example of Table 6.3, we calculate the denominator terms as fol-
lows. Using the last two lines of the table, 2n(E(j~1) 5, =2 x 200 x (4% 60 +
3x75+2x95+1x 120+ 0x150) = 310,000; (En)? = 500° = 250,000; and
In? = 55,150. Inserting these numbers as the terms in the denominator of
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{6.13) gives 115,150, and r— ¢is 42,350, so k;, = .368. This is higher even than
ky. It may still not seem very impressive, but jt actually represents quite a re-
spectable, even high, value for the interitem consistency of dichotornous
test itemns.

Three different indices of average interitem consistency have been pre-
sented here, partly to illustrate the reasoning that goes into such an index.
In applications, it seemns that the first and third are the most useful. Ave (4,
directly reports the average tau (and/or covariance) between items,
whereas k; compares this average to a realistic definition of the maximum it
could be, given the distribution of itemn difficulties.

Evaluating Items

The development of an effective test progresses in stages. First, the concept
of what the test will try to measure is formulated, whether by individual ef-
fort or group discussion, or a combination of both. Next, the items are writ-
ten; ideally, they are critiqued by knowledgeable reviewers in terms of their
apparent relevance to the measurement goal, and suitability for the in-
tended examinee population, and they are revised, if necessary, and somce
may be discarded. In large-scale testing organizations, this may even be true
of the majority of the original pool.

Once sufficient items are available for one or more forms of the test, they
are pretested on a group that is considered fairly representative of the tar-
gel population, This provides statistical information on the behavior of the
items that can be used to select them 1o a further degree. The information
takes a number of forms, but we concentrate on a few.

The first data to examine are the proportion passing each item. Items
passed or endorsed by only a small percentage or by almost all of the
examineces provide little information, so they are usually discarded. The
cutoffs o use are somewhat arbitrary, but only a small fraction—5% to
10%—of a test’s items should be passed by morc than 95% of the exam-
inees. With multiple-<choice items, those with percentages passing that are
below or near the chance level should usually be discarded, although there
can be exceptions.

With multilevel items, the process becomes a bit more complex. Perhaps
a useful rule is to discard, or at least examine closely, any items on which
90% of the examinees are tied.

The other property to examine is the consistency of each item. This is re-
flectedh by the average tau (or covariance or rank-correlation) of an item
with the other items. This average can be heavily influenced by the number
of ties on the item, particularly with dichotomous ones. In order 1o lessen
this influence, the averages can be divided by the number of untied pairs
on that item. Remember that with dichotomous items this is n(n — n).
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Items with particularly low averages should generally be discarded. To aid
in the decision on which items to discard, the complete matrix of interitemn
taus should also be examined to identify those that have any negative rela-
tions with other items or more than a small number of nearzero ones. This
information, along with additional statistical indices described shortly, will
often lead Lo a set of items that is more reliable than the full set, contrary to
the assertion of Embretson {1999, p. 12).

There is a second index that should reflect the items’ consistencics. This
reflects the relation between the order on an item and the order on the to-
tal score on the rest of the items. With modern computing equipment,
these taus can be computed directly. One simply calculates m new total
scores that are defined by eliminating each item in tum and computing the
total score on the remaining m — 1. Then the taus between cach item and
the total score on its complementary set show the relation of each item with
the remainder, This procedure is preferable to computing the taus between
items and the original total because the latier includes the item being ex-
amined, so the correlation would be inflated. As was suggested with the aw
erage-tau procedure just outlined, these item-total taus can be divided by
the proportion of pairs not tied on the item in order to get a clearer indica-
tion of the degrec to which the dominances on the items agree with those
from the total scores on the item pool.

Subscores

It is always true thai the score that was designed o be unidimensional actu-
ally involves several, perhaps many, traits. However, the item selection pro-
cedures described earlier are based on the expectation that a substantial
majority of iterns are primarily measuring what was intended. If the original
concept was sound, and the items were carefully constructed, then this will
usually be true. In that case the interitemn coefficients should not vary very
much, except as a function of item difficulty. Dichotomous items tend 1o
correlate more highly with other items that are of similar difficulty. A useful
procedure is, for each item, to plot its taus with other items as a function of
their difficulty. The resulting plot should be curvilinear, having a maximum
at difficulties similar to the given item and decreasing from that as an item’s
difficulty differs from its own in either direction. Examination of such plots
may suggest that the relations between items are not homogeneous because
some coefficients fall well below the curve. Inspection of the matrix of
interitem coefficients may also suggest such a conclusion,

In that case, some procedure can be employed to ry to separate items
into subsets that are more homogenous with the intention of deriving
subscores on each set. Some form of exploratory factor analysis can be used
to help in identifying subsets of items that are more homogeneous. Alierna-
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tively, a cluster analysis procedure could be employed. The subscores sug-
gested by either procedure may end up being fairly highly correlated, but
the idea is that taus within clusters should generally be higher than those
between different clusters. Subscores can then be obtained on each cluster.
When the subscores are fairly highly correlated, then they can be combined
back into a total score. For example, if a test that is designed to measure ver-
bal ability includes some items in a format that requires the examinee to
provide or choose a synonym, others use an opposites form, and still others
arc analogics, the results of the analysis might divide the items into those
three subsets. A score can be gotten on each, but a total score on all could
still be used. Similarly, in a knowledge test, perhaps there would turn out to
be subject matter clusters. Of course, the items may not divide so neatly in
terms of format or content; more imagination might be needed to form
meaningtul subscores.

ORDINAL VALIDITY AND RELIABILITY

A Universe of Items

As has been discussed earlier in this book, the concepis that are the founda-
tion of psychological measurement are those of validity and reliability. Va-
lidity has several senses. Sometimes a test is used for a practical purpose of
predicting how individuals will perform in some other context. Predicting
how students will do at the next level of schooling is the most common ex-
ample, but there are many other examples—from predicting how candi-
dates for pilot training will perform in that training to selecting police.
Such tests should have been shown to have practical validity in the sense of
making predictions of performance that are accurate to at least some de-
gree. Such validity has traditionally been called predictive validity.

I research applications the werm validilty more often is taken to mean
the extent to which a test measures “what it 1s supposed 10 measure.” How-
ever, the evidence for such validity is often indirect. It rests on the degree to
which test items that are intended to measure the same thing agree with
each other, called convergent validation, while not correlating highly with
tests or items intended to measure something different, called discriminant
validation. When the evidence of this kind is faverable, construct validity has
been shown, and the numerical expression of the validity of a specific test is
usually its correlation with the construct.

Inastnuch as the construet is an abstraction, correlations with it can
never be observed directly. They are estimated from other observed corre-
lations. Both classical test theory (CTT) and item response theories (IRT)
are based on equations involving a latent trait that is imperfectly reflected
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in the observed scores. In one form or ancther, the latent trait is whatever is
shared in common among the items, whatever it is that, taken as a whole,
they are the best measure of. CTT, and for the most part IRT, assume that
the itemns are hotnogeneous in the sense that there is only one latent trait
that they share in common.

In CTT, the discrepancy between observed score and latent trait score is
called an error of measurement, and the standard deviation of those errors
is the “standard error of measurement.” In IRT the inaccuracy of measure-
ment is expressed in somewhat different terms, but the idea is similar; a
test’s validity is the extent to which the observed item responses reflect the
examinee’s standing on the latent trait.

One of our goals in this book has been to provide a test theory that
avoids the idea of a Iatent trait; there is almost always too much room for
various interpretations of what the trait means. However, in most applica-
tions, some general meaning has to be attached to the test's scores. What is
it that the test score measures or the test order reflects if it is not a latent
trzit? In interpreting test scores, we use here instead a concept that we
think is simpler and more direct, and that avoids the necessity of assuming
homogeneity for the test.

This concept is that a test is a sample of items from a real or potential
universe of items. So the idea is that the test is a sample in the statistical
sense, and the universe is the corresponding population. A verbal ability
test is a sample of items from a universe of items that could have been on
such a test. Test validity is the degree to which conclusions based on item
scores or orders can be generalized to the universe. Different forms of the
test are different samples from the universe. The test can be heterogeneous
in terms of item form or content, as long as it is assumed that the universe is
heterogeneous in a parallel way, although it is generally best if this is only
mildly true so that average item intercorrelations remain fairly high.

This interpretation means that the basic ideas of statistical inference can
be applied interpreting test scores, orders on tests, and score differences.

Validity of Score Differences

Suppose there are v, items where individual i ranks ahead of individual 4
on a test having m itermns; in the terminology of this chapter, i dominated &
v, Limes. Similarly, & dominated i 1y, times. These frequencies can be trans-
formed to proportions by dividing by m: p, = v,/m and g, = v,/ m. The pro-
portions estimate their counterparts in the universe:

E(pa) = pu; (6.17)

E(pu) = pu- (6.18)
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p.» then, represents the probability that an item drawn at random from the
universe will be one on which i dominates %, and correspondingly for p,/. A
basic validity question is therefore, if p, > f,, how confident can we be that
the same thing is true in the universe, g > f,?

It turns out that this question can be answered in a straightforward statis-
tical way. Let d, represent the difference g, — p,,. I samples (tests) of m
items are repeatedly taken from the universe, the variance of d,; across the
tests will be (Cliff & Keats, 2000)

0,,“2 = [po + s — (P — pu' Y21/ (6.19)
The sample estimate of Gdf (that is, from the test) is similar:
sd“E = [plh + Ph: - (Plh - pAI)E]/(m' 1) (6-20)

This means that the “signilicance” of d,, in the sense of it representing a
corresponding direction of difference in the universe of items, can be
tested by a #ratio:

t= dd,/sd“ (521)

with m — 1 df. That is, if the #-ratio exceeds the two-tailed significance level
in the table, we can reject the hypothesis that g, — f,.” = 0 at that level. Alter-
natively, we can use the tabled ¢-ratio to construct a 1 - d confidence inter-
val for the universe difference. The formulation is in terms of dominance
relations on items, not just comrect versus incorrect, so it applies to
pelytemous items as well as dichotomous ones, but in the dichotomous case
the interpretation of the quantities is somewhat simplified: 4, represents
the proportionate difference in total scores: d, = (&, ~ %) /m. The p,s are
then the proportions of items on which i was correct and k not, and p,,
means the proportion of times the reverse happened for that pair.

The formula for the variance of the difference implies a certain degree
of complexity for the question toncerning which score differences might
be significant. Not only dees the significance of the difference between in-
dividuals vary depending on its size, p,— py,, but also on g, + p,;. This means
that the difference required for significance is smallest when one propor-
tion is zero, the fratio then reducing to

t= palm— 1) /{1 = ps). (6.22)

This also means that the overall validity of dominance differences on a test
is greatest when its score patiern has the Guttman form.
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Significant Score Differences

The cutofts required for significant differences in tests of a given length can
be calculated directly by using formula (6.16) in conjunction with the ta-
bled t-values with (m — 1) df and the chosen significance level. Table 6.4
provides illustrations for tests of 10, 20, and 40 items and twotailed signifi-
cance levels of .05 and .20. The .05 level may be considered conservative,
given that we are making decisions about individual pairs of persons,
whereas the .20 is fairly liberal.

The upper section of the table shows, for example, that when there are
1o items where k dominates i, two items where i dominates % is sufficient to
reject p,y = py, at the .20 level; however, six where i dominates /s are required
to reach the same conclusion if there are 2 where 2 dominates ¢ The num-
bers rise to four versus zero and nine versus two when the .05 level is re-
quired. To illustrate use of the table, suppose there are five itcms where
Person A is correct and B is not, and one item where B is correct and A not,
leading to a difference of four. Because there is one item on which the
lower scoring person dominates, the second column of the table applies.
We sce that the difference of four is significant at the .20 level (upper sec-
tion), but not the .05 (lower section). Note that in this case the results hold
for 10, 20, or 40 itemns in the test. Dashes are entered in the table 10 denote
instances where the sum of the two numbers exceeds the number of items
in the test, so the corresponding dominances are impossible.

Several things can be noted in the table. First, the differences in
dominances that imply significance can be rather small, but the required
difference increases as the smaller frequency increases. Also, there is virtu-
ally no effect of the number of items in the test; the conclusion is almost
completely determined by the two frequencies. Although it seems there
should be a small testsize effect, implied by the factor m— 1 in the formula
(6.20), it tenids 1o be counterbalanced by the effect of the degrees of free-
dom on the critical value of & It should also be noted that while the fre-
quencies toward the right-hand ends of the rows correspond e numbers
that are possible with the assumed number of items, they often correspond
to situations that imply a preponderance of contradictory relations as com-
pared to replicated ones. For example, in a test of 10 items, if there are six
items where i dominates £ and two where the reverse happens, this implies
12 contraclictory relations. There are only two items left to go in the other
two cells of the 2 = 2 table for this pair of persons. This implies that there is
atmost 1 x 1 =1 replicated relation, so the net number of replicated rela-
tions is substantially negative, meaning there is a substantial degree of in-
consistency. Thus, only the first half or so of the entries in each line will usu-
ally represent what will happen with any reasonable test.
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Extension to Ranks and Numerical Scores

We can apply the idea of universe scores to situations where numerical or
tiedranks scores are derived from polytomous items. Let 7, be the score of
Person zon [tem §; this can be either a tied-ranks score as discussed in chap-
ter & or a numerical or category score. Averaging 7, across items gives 7,, and
the average score of Person kis similarly »,. Define g, as the difference be-
tween the two:

b= % — The {6.2%)

This is simply the difference in total tied ranks or total itemn scores divided
by the number of items. There is a corresponding difference in the mean
scores of i and b in the universe, and we let Y, stand for it, and g 1s its unbi-
ased estimate:

E(qlh) = Wlhv (624)

The sampling variance of g, across forms of the test that are sampled from
the universe, like that of any other mean, depends on the variance of the
variable, which here is the score difference on an item, and the sample size,
which here is the number of ttems, m. The relevant variance here is thus

s = [Zy(n, — m)? — mgu?l/ (m — 1). (6.25)

Then, as with any other mean, the estimated sampling variance of g, is
54/ m.

Therefore the significance of a mean difference g, for a given pair of
persons can be tested as

F= mq.n"’/ Sad, {(6.26)

with 1 and m — 1 degrees of freedom, and a confidence interval for the dif-
ference can correspondingly be constructed as

& x tn/ﬂsdn/ . (6. 27)

As an example, suppose that a polytomous test has been taken by 200
persons, and Persons A and B have the following tied-ranks scores:

ftem I 2 3 4 3 & 7 & 9 it 7,

LY

Person A 140 125 90 120 85 130 125 100 110 95 1120
Person B 120 8 wo 110 126 85 70 8¢ 120 100 99.5
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We see that A's average ted rank is 112.0 while B's is 99.5, giving g,5= 12.5.
The sum across items of the squared rank-differences, E(r,,— rn,}s is B,625,
so according to (6.21), 5,7 = (8,625 — 10 x 12.5%) /9 = 784.7, The Fratio
{6.26} is 10 x 12.52/784.7 = 1.99, which would be significant at the .20 level,
but not any more extreme one. The #; for 9 dfis 2.26, and the square root
of 784.7 is 28.01, so the .95 c.i. for the difference, using (6.27}, would be
12,65 + 2.26 x 28.01/3.162 or about —7.5 10 32.5.

As an example of inference about a score difference based on numerical
scores, assume that the 10 test responses used earlier in the tied-ranks ex-
ample were actually based on a 0 to 4 scale, the [ree-answer test responses
being graded, say, from unsatisfactory (0) to excellent (4). The responses were
as follows:

ftem 1 2 2 4 3 [/ 7 & 9 16 r

Person A 4 4 2 4 2 4 4 3 3 2 3.2
Person B 3 2 3 3 4 2 I 2 4 3 2.7

Here, gus= 3.2 - 2.7 = .50, and s, = 2.72, giving F= .92, which is not signifi-
cant at any level. The 95 ci. is .50 + 1.18, or —.68 to 1.68.

ITEM-UNIVERSE AND SCORE-UNIVERSE RELATIONS

Often one would like to make an evaluation of an item in terms of its est-
mated ordinal relation with the universe. That is, what is £, the tau between
l[tem j and the order on the umverse of items? This means we are looking
for the relation between dominances on Item j and the direction of domi-
nance in the universe; Person i dominates £ in the universe if p,’ > p,/. This
simply means that an item drawn at random is more likely to be one where @
is correct and f not, than one where his correct and i not. (In the case of
polytomous items, the probabilities refer to one person giving a higher
ranking answer than the other.)

Cliff and Donoghue (1992) provided some formulas that allow us to esti-
mate 4. They noted that Cliff’s (1995) ordinal regression theory implies
that the tau between item and universe can be estimated from two quanti-
ties: the average tau of Item § with other items and the average tau among
the other iterns. The formulas we use are

t, =% t,/(m=~ 1), (6.28)

h#;

and



108 CHAPTER &

tiy =2 2, bue /(m—1)(m—2). (6.29)

htma#* g
The elements excluded from the sums in the latter formula are the diago-
nal # terms and the taus that are included in § The §, can be treated as nor-
mally distributed quantities that have mean zero and standard deviation
equal to [£,(¢ ; — £%]* Then the tau between Item j and the universe can
be estitnated as

b= H2N{L /T4t p - £H ¥ - 1, (6.30)

where i is the proportion of pairs not tied on Item j and N is the propor-
tion of the normal curve falling below the ratio in the smaller braces. The
cstimate seems always to be quite good, and improves as the number of
items increases.

This approach can then be used to estimate the tau between the overall
order on the test and the universe order. As before, the order on the test is
determined so that i ranks ahead of % if p,, > f,. With dichotomous items,
this simply means x, > x;,, as we know from the previous section. The tau be-
tween test and universe is the measure of agreement between the orders de-
fined by dominances from the g, f,, pairs and that defined by the corre-
sponding ./, p.". Then we calculate the average of the ¢, estimated by
(6.30):

a=Xt,/m, (6.31)
and the average interitem tau:

b= 22 t, /m =1, (6.32)

L1
and the square root of the difference:

c= {a— " (6.33)

The tau between test and universe can be estimated from the normal curve
function N defined from a and ¢, that is, the proportion below a/c:

ty=2MNa/e) - 1. (6.54)

Table 6.5 provides an example of using these formulas 1o obtain an esti-
mate of the validity of dominance relations on a test. The responses on this
personality scale are on a 6-point scale reflecting degree of agreement with
the item. The diagonal entries, in parentheses, give the proportions not
tied on the item. The lower rows of the table give the quantities that lead to
estimating the tau between total dominances on the test and the universe
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TABLE 6.5
Tau-a Values among Six Items
ftem

Nem I 2 B 4 5 6

1 {.795) 238 114 188 255 .136
2 (A415) 155 198 249 165
3 (.329) 224 .161 172
4 (415} 199 200
5 {501) 189
6 {.292)
! .186 20 165 202 211 172
f, 191 184 202 .183 179 210
st.dev, 404 244 .202 245 260 230
z 460 824 816 831 £l11 748
N(z) 677 .795 793 797 it 773
2fiz)-1 554 590 b6 B4 5B2 546
¢ .281 245 194 247 .292 160

a = 2365 b = 7895; ¢ = .2167, a/c = 1.091; N(a/c) = .862; L= 724,

order. Recall that with multilevel items the order on the test is in terms of
the number of items where Person i dominated 4, compared to the reverse.
The first lower row gives the £, each item’s average tau with the other five
iterns (6.2B). The is followed by the ¢ (;, which are the averages of the taus
not involving ltem 7 (6.29). The row labeled “st. dev.” is the denominator of
{(6.30), that is, [£,(t , — £,%)]*. This is followed by the z-ratio, which is 4 di-
vided by “st. dev.” Then comes the normalcurve proportion N that falls be-
low this zvalue, followed by 2N — 1 and this quantity is multiplied by L,
which finally gives the estimated taus of each itemn with the universe.

Then, the quantities 4, b, and cof (6.31), (6.32), and (6.33) are shown at
the bottom of the table, followed by the normal curve proportion that cor-
responds 1o a/¢. Since this is .862, application of formula {6.34) shows that
the estimated tau with the universe order is .724.

Coefficient o in Dominance Analysis

One of the desirable aspects of a statistical test theory is being able o esti-
mate the parallel form reliability of scores or orders on the basis of internal
consistency information from the items. Whereas this is possible for numer-
ical scores and, in a sense, for tied-ranks scores, this cannot be done directly
for analyses based on dominances. That is, there is not a way of directly esti-
mating the tau between the order on a current test with the order on a hy-
pothetical parallel test from the taus among the items.



110 CHAPTER 6

However, the coefficient ¢ for a test, whether based on numerical scores
or tied ranks, provides information about the overall order on the test in
several ways that can be used to estimate the tau between that order and the
order on a parallel test. First, consider the numerator and the denominator
of the Fratio in (6.23). If the squared differences in the numerator are av-
eraged across all pairs of persons yielding a mean for it, which we call @,
and the variances in the denominator are also averaged for the denomina-
tor, which we call S, then

a=1-8/0. (6.35)

Thus, o reflects the averages of these quantities that go into Fratios for
puirs of persons.

Correspondingly, o can be used to estimate the average Foratio because
(6.31) can be reavranged so that

0/5=1/(1 - a) (6.36)

That is, the average F-ratio for differences between scores can be estimated
from o. However, this may not be a very accurate estimate of the average F-
ratio because a ratio of averages is not the same as the average ratio. The
distribution of ratios is likely to be quite skewed, and in that case the ratio of
averages is usually rather biased with respect to the average ratio. Neverthe-
less, {6.32) can be used to get a general idea of the typical significance of
interindividual differences on a test.

Arcsine Transformations of o

There is an additional way in which the tau beiween the observed order and
a hypothetical parallel form can be estimated. In the case of a bivariate nor-
mal population, there is a well-established relation between Pearson corre-
lation {p) and tau. This is (Kendall, 1975, p. 126) that

T = (2/7)sin~{p), (6.37)
In the formula, p is a population Pearson correlation expressed in radians.
The inverse sine transformation is available on any pocket scientific calcula-
tor. Since ot is the presumed Pearson correlation between the current test
and the hypothetical parallel form, it seems that

T, = (2/7) sin' () (6.38)

can be used as an estimate of the tau between the test and 2 parallel form.
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It is true that this relation assumes bivariate normality, and one of our
goals in this book is to avoid such assumptions. However, assuming normal-
ity may not be as stringent an assumption in this application as it sometimes
is if we realize that we are applying this to pairwise difference scores. Differ-
ences scores are much more normally distributed than the original scores
on which they are based, For one thing, the distribution is necessarily sym-
metric. For another, the kurtosis of the distribution is substantially re-
duced, relative to that of the original distsibution.

We can investigate the process with the six personality items of Table 6.5,
The raw score o for these items is .812, implying a dominance-order tau of
.603 by formula (6.34). Although it might be prudent to use caution in ap-
plying this formula, it may be [airly realistic. The estimated tau between or-
der on the test and that in the universe was earlier estimated to be .724. Ac-
cording to CTT, the correlation between observed score and universe score
is the square root of the reliability, whose estimate here is . We find .812% =
901, and putting this in the inverse sine transformation (6.33) gives .714.
This is negligibly different from the .724 we found the other way. Thus, in
this instance, the two modes of estimation seem quite consistent.

SUMMARY

A good deal of ground has been covered in this chapter. We began with an
argument of how it is that dichotomous items can define an order. It
turned out that what was necessary was the consistent display of one of two
types of relations between a pair of items and a pair of persons. Such an ar-
rangement provides ordering information about both items and persons.
On the other hand, a pair-pair can display a set of relations that is contradic-
tory, weakening the idea that there is an order. The idea of order is reinforced
by the presence of a third arrangement of relations. When responses to
iterns are purely random, then there are an equal number of instances of
reinforcing (r) and contradictory (c) relations.

The number of each can be computed from the ordinary two-way tables
between all the pairs of items, and the total number of relations can be de-
rived from the item variances. The number of person and itemn relations
that are contradictory are necessarily equal, but the number that are rein-
forcing are usually different. However, the two are connected through the
sum of the item variances and the variance of the persons’ total scores. The
interitem taus, covariances, and rhos are simple functions of the difference
T~ fe

There are a variety of indices of the consistency of the set of items that
make up a test. Among them are the average interitern tau, covariance, or
rho. However, because these are heavily constrained in the case of dichoto-
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mous items by the itemn variances and by differences in item difficulties, ad-

justments to these averages were suggested. Where interitem relations are
variable, it may be true that a test’s items should be clustered into subsets
that yield subscores,

An important indication of a test’s utility is its order’s agreement with
that on a parallel test. Also useful is an estimate of the degree to which it
agrees with the order on whatever it 15 that the test as a whole is measuring.
Here, we consider the test’s items to be a sample from a universe of poten-
tial irems, and it is the overall order on the whole universe that we wish the
test to reflect as closely as possible. It turns out to be fairly sirople to assess
the degree to which the relative position of two individuals on the test is in
agreement with their relative position on the universe. This idea can be ex-
tended to rank differences or score differences, In addition, it is possible to
estimate the overall ta: between a test and the universe. Estimating the
agreement between the present test and a hypothetical parallel test can
only be done more indirectly.



Chapter 7

Approaches to Ordering
Things and Stimuli

ONE-SET DOMINANCE

The reader will recall that in chapter 2 we outlined the system developed
by Coombs (1951, 1964) that categorized different kinds of data accord-
ing to three criteria. One criterion was whether the relation underlying
the data represented a dominance relation, epitomized by the mathemati-
cal relation “greater than” or the relation was one based on proximily, or
closeness. The second was whether the relation was between members of
the same set or different sets. The third, to which we pay little attention in
this book, depended on whether the relation as between members of pairs
of elements, or between pairs of pairs of elements. So far, in chapters 4, 5,
and 6, we have been concerned with data representing two-set relations,
typically persons or examinees, compared to items. In this chapier, we are
concerned with cases where the fundamental data represent ordering re-
lations between members of the same set. This has many applications in
applied and basic experimental psychology, but also in other social and
behavioral sciences.

This chapter also provides the reader with a detailed example of how
ascale (a) can be defined according to a set of logical rules or axioms, (b)
how the validity of these axioms can be examined in data, and (c) how
the order that agrees best with the data can be found. Thus, we provide
some additional conceptual guidelines to understanding what justifics
“measurement.”

113
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Sets and Relations

If we are trying to find out whether some physical or psychological things
have an order, and, if so, what that order is, we start with the set of things
and some empirical operation that compares members of the set. If we have
a collection of rocks (the set) and want to order them in weight, a physical
property, the operation might be putting one rock on each side of an old-
fashioned balance, and seeing which side went down. Note that we are us-
ing the balance in a purely qualitative way, comparing one rock to another,
rather than comparing each rock against members of a set of standard
weights. If we wanted to order them in heaviness—a psychological prop-
erty—we could give pairs of rocks 1o a person and ask which member of the
pair was heavier, In that case, secing which was chosen as heavier, along,
with various procedural details, is the operation.

We can get an order cither way. Our society has an intellectual bias that
says the order given by the balance is the “real” order, but this is just a bias.
The heaviness order can be just as real as the weight order; which order is
preferred just depends on what our purpose is. The question that concerns
us now is: What is it about the owtcome of our operations that will tell us {a)
whether we have an order at all, and (b) what the order is.

The prototype for a one-set dominance order is the set of ordinary num-
bers and the relation >, It is worthwhile in this context to try to shed a lot of
semantic baggage associated with the word numbers and what we know
about the sign > and only pay attention to basic principles. The numbers
are just members of a set; > is just a sign we use o designate a relation bhe-
tween the members of the set. We are trying to define what it is that is so
special about this set and this sign that enables us to end up with something
we call an order for the set.

Characterizing Oneset Dominance

The key properties that produce an order based on a dominance relation
can be identified. The first one is that in any pair of numbers g,b, either 2>
bor b> g, unless b= ain the sense that the two are identical. There is more
to the relation > than this because with numbers the structure is more com-
plete_ It is not as if every tfime we compare an 2 to a b the outcome could ar-
bitrarily be either a> bor &> g; after a4 few comparisons we will be able to pre-
dict the outcome of a comparison most of the time from the outcome of
previous comparisons. (Remember, we are not using our knowledge about
the identity of the numbers themselves, for example, the number we call 7
> the number we call 6.3 and all other numbers less than 7. We are just using
the cutcomes of comparisons involving >.) The principle that we are able to
use is that whenever o> b and 4> ¢, then a> ¢, so we quickly can omit mak-
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ing comparisons that are already implied by others. Instead of having to
compare every one of a set of n numbers to every other one, which would
resultin n{n - 1)/2 comparisons, we only need to make those that are not
already implied by others. This results in only needing logy(n!) compari-
sons instead of n{n— 1) /2, which is 22 instead of 45 for n = 10, and 525 in-
stead of 4,950 for n = 100 if we were actually making comparisons, but the
point here is the generality of the principle. This property of numbers is
called fransitivify. It is fundamental to computer algorithms for rapidly sort-
ing a list into nurnerical or alphabetic order.

A third, perbaps more obvious principle can also be stated. This is that a
> bimplies that #is not> a. This principle is calied asymmetiy. A fourth prin-
ciple, that a number is not greater than itself, is called zreflexivity. For com-
pleteness, we also need to state still another principle, that either 2> bor 6>
a. That is, with numbers, we do naot allow the equivalent of a “don’t know,”
or “can't say,” or “no dice” outcome. These principles, which have been for-
mulated numerous times (Gulliksen, 1946; Krantz et al, 1971; Roberts,
1970) sometimes in slightly different combinations, constitute the require-
ments for the order properties of numbers that is based on an asymmetric
or dominance principle. For convenience of reference, we restate them in a
inore concise form than has been done so far:

Not a> a. (irreflexivity) (d1)
Either 2> bor &> a. (connectedness) (42)
a> bimplies not (4> @) (asymmetry) {d3)
a> band &> cimplies 2> ¢ (wansitivity) {d4)

These are the properties that we want both our weight and heaviness scales
to have if they are cach to be an order. As formal axioms, they can be ar-
ranged somewhat differently; for example, the set can be based on 2 in-
stead of >, making it reflexive instead of irreflexive, but these four are the
essential qualities that a systemn must have to provide a dominance order.

The four properties can be displayed in a visual form that for me has
more intuitive force than the foregoing list. This form is illustrated in Table
7.1. The elements &, &, ¢, . .. kof the set which is ordered define the rows
and columns of the table, the elements being listed in the order that is ap-
propriatc for this set. In the table, I stands for the fact that the row element
stands in the relation > to the column element. The symbols in the table
take on a nice regular form: a riangle of 1s above the main diagonal, and a
triangle of zeroes below and including the main diagonal.

This simplicity is a consequence of the properties {d1) to (d4) and of
having the objects in the correct order. The four properties correspond to
aspects of this triangular simplicity. Irreflexivity means that the main diago-
nal is all 0s. Connectedness means that, for any pair there has to be a 1 on
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TABLE 7.1
A Dominance Order

a b I3 d ¢ f g k
o 0 ] 1 1 ] 1 1 i
f 0 L] 1 1 1 1 1 1
I3 0 0 0 1 4 1 1 I
d 0 ] 0 0 1 1 ] i
¢ 0 1] 0 0 0 1 1 1
I 0 ] O 3] 0 1] 1 1
£ 0 0 0 0 0 0 0 1
h 0 0 0 0 0 0 ¢ 0

TABLE 7.2
A Scrambled Dominance Order

¢ f 4 a g h d b
¢ 0 1 1 0 1 1 i o
I L] ] L] 0 1 1 0 4
[ 0 1 L] O 1 1 ] ]
a [ 1 1 0 1 1 1 1
g 0 0 0 0 0 1 0 0
h 1] 0 0 (4] 0 1] 0 [H
d 0 1 1 0 1 1 0 0
b I 1 1 4] 1 1 1 4]

one side of the diagonal or the other. Asymmetry means that it cannot be
on both sides. Transitivity means that it is possible to put el the 0s below the
diagonal, and all the 1s above it. If we scramble the order of the objects, but
keep all the properties, then the more chaotic picture seen in Table 7.2 oc-
curs. The latter is still an order; we just have not found it

FINDING THE ORDER

The process of finding the order is quite simple when the axioms are
strictly followed, provided we do not care about efficiency. We can just
compare each element to each aother one and count the number of “wins”
that each gets, and then order the clements in terms of those numbers.
There are more efficient processes, such as the "bubble sort” that is incor-
porated in many computer routines, and a similar method that is de-
scribed in chapter 8.

Once we have found the correct order, we ¢an assign any set of corve-
spondingly ordered numbers to the ohjects a4, §, . . ., and call those nwun-
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bers a scale. Now, we no longer need the original table of observations be-
cause we can always reproduce them from the weli-known properties, which
are (dl) to (d4), of the numbers we have assigned. There is an inter-
changeability between the numbers and the observations, provided the obser-
vations behave like numbers.

Inconsistent Data

The simple order, characterized by (d1) to (d4) is an ideal, and real data
does not olien conform to ideals, so we can attempt to modify these re-
quirements to reflect more accurately the way the data behave while still ve-
taining the most essential aspects of the ordering principle. To avoid diffi-
culties that have arisen with this issue in the past, we need to deal with a
distinction at the outset. This distinction is between, on one hand, a kind of
unavoidable inconsistency between data and any maodel, reflected by the
fact that the data are not perfectly consistent due to random errors of ob-
servation or measurement, and, on the other hand, systematic departures of
the data from a model that are represented by fundamental failures of
properties such as (d1) to (44). on the other. The first kind of inconsis-
tency, which is 2 kind of unreliability or observational error, would occur if,
on replication of the comparisons, for some pairs we find first 2> 6 and, on
rcplicarion, 5> g, violating asyrametry. Or we might find some viclations of
transitivity in a single set of data just because the data-gathering method is
not sensitive enough to be completely consistent.

Coombs’ (1951, 1964) system did not accommodate such a possibility.
He did not make the distinction between date, which is never perfectly con-
sistent, even in physics of the most precise kind, and underlying scales that
behave in a consistent way except for measurement error that is imposed
onto them. In fact, he called his book Theory of Daie (Coombs, 1664). Data
that did not behave consistently did not provide scales, in his view. These bi-
ases made it difficult for many empirically oriented researchers to treat his
methods as more than abstract curiosities, while leading others, who were
more sympathetic to his orientation, to dismiss much of psychometrics as
“measurement through error.”

The orientation of this book is that systems like d1-d4 represent ideals
rather than requirements for data. When we see that data do not behave ex-
actly like (d1) o (d4), two views may still justify scales. One, an idealistic
view (in the colloquial rather than the philosophic sense), is the one that
says there really are scales underlying our data that have these propertics; it
is just that our methods can never be good enough to reveal those scales ex-
actly. A second, pragmatic, justification for deriving scales from imperfect
data is that a scale derived from data can still be a useful summmary of most
of the observed relations, even when it cannot summartze all of them.
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In dealing with oneset dominance orders, as in other chapters of this
book, we focus on two things. One is how to evaluate the extent to which
data are consistent with an underlying order, and the other is how best to
estmate what that order is. Before turning to those topics, we describe sys-
tems that are similar to simple dominance orders but are artempts at mak-
ing the requirements that underlie them less demanding.

LESS SIMPLE ORDERS

Semi-Orders

One liberalization of the simple order is the semi-order (Roberts, 1971). It
is designed 1o deal with imperfect sensitivity of a very systematic kind. Sup-
pose subjects are attempting to discriminate stimuli on some psychophysi-
cal continuum, such as the pitch of tones, and it is noticed that asymmetry is
violated for stimuli that are close to each other on the continuum. For ex-
ample, perhaps your musical ear is not acute enough to distinguish be-
tween semitones in terms of their highness, so that you may say that A and
B-sharp are equal in pitch, and on a later trial that B-sharp is equal to A. In
fact, you do that for all such pairs of tones that are not separated by a full
tone. However, you are still perfectly consistent, and make the correct judg-
ment when there is any fulktone separation. Another example might be
one in which a subject is presented with pairs of consumer items and asked
which he or she prefers, with the “don’t care” or “can’tsay” or “indifferent”
response being allowed.

The chserved relations might then look like Table 7.3, which is very like
Table 7.1, except that the triangle of 1s is smaller.

It certainly looks as if there is an order here, and it is possible to modify
{d1) to (d4) 10 accommodate this kind of observation while still giving an
order. In fact, this can be stated in a more general way that aliows more

TABLE 7.3
A Semi-Order

a b I3 d F f £ k

a G 0 1 ] I L 1 1

1 [ 0 0 1 1 i 1 L

v G 0 0 0 1 1 1 L

d 0 0 0 0 0 1 1 1

# 0 0 { 0 { 0 1 1

f 0 0 0 0 0 ¢ 0 1
g 0 0 0 0 0 0 0 0
k [ 4] 0 0 1] G ] 0
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than one failure of discrimination for each stimulus; for example, a subject
might not be able to distinguish adjacent full tones, but might always distin-
guish differences that were more than one full tone, and so on, for greater
degrees of insensitivity. An order for all the tones will still result, provided a
point is not réached so few discriminations are made that some tones have
exactly the same profile of discriminations. A process that works to define
an order is to count the number of wins, as before, hut also subtract the
number of losses. This can be seen w work in Table 7.3; the elements a
through fcan be ordered in terms of wins, and they are all shown to come
before gand &, but g and £ have the same number of wins, 0. However,
has six losses whereas g has only five, so g must come before A

Partial Order

The second important variation is the partial order. It is in a sense less satis-
tactory than the other two in that it ends up with some of the objects tied in
the order. This is not because of inconsistency, however. The relations in a
partial order look like Table 7.4, which still locks very orderly, but instead
of the neat upper triangle of 1s there is now a kind of sawtooth effect What
this means is that the objects can be separated into what are called equiva-
lence classes, subsets whose members are effectively equal to each other.
Here, the first class is {a,8}; the second is [¢,d,¢}; the third is | fg A} Within
equivalence classes, relarions are symmetric; between, they are asymmetric;
also, transitivity is never violated.

Interval Order

A third variation is called an interval order. It is similar in idea 10 the
semiorder and partial order in that it allows for some relations to be sym-
metric, as in “don’t know” or “can’t say” responses. It differs in that there is
less regularity in the pattern of the adjacency matrix. It assumes that each

TABLE 7.4
A Pardal Order
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object that is compared has a sort of range of uncertainty, and this range is
a characteristic of the object, one that is not systematically related to the
overall position of the object on the scale, and that is not dependent on
which other object it is compared 1o.

An analogy is a “snake race.” Suppose in a certain area the snakes like to
hold races 1o see which is faster. Due to rechnical problems when large
groups race, they always race in pairs. However, they do not share the hu-
man view that a race is won when any part of a snake’s anatomy, that is, the
nose, crosses the finish line before another's. In fact, some, usually the
shorter snakes, have contended that a race is won when the #ip of the tail of
one snake finishes before the other’s tip. This controversy led to consider-
able acrimony and occasional fatalities until a compromise was reached. In
nrder for there to be a clear win, the tail of one snake must finish before the
head of the other. This results in a number of tied or nocomest races, but
has been agreed to as a compromise.

When a group of snakes conducts a complete series of races in this
pairwise fashion, with winners, losers, and ties determined as described,
they would like to know as much as possible of an overall ranking of the
contestants. In contrast to the partial and semi-orders, there is uncertainty
in a snake race about the length of the snake and length is not necessarily
related to speed.

When two snakes race, the only direct information we have is whether
the tail of one finished ahead of the head of the other, but further relations
are implied. A way to think of the situation is that in pairwise comparisons
across i snakes, there are 27 things involved, n heads plus # tails. When A is
Jjudged to have defeated B, we get two pieces of information: the tail of A
{inished before the head of B, but also implied is the fact that the head of A
also finished before the head of B. When a race between A and B is deemned
a tie, there are still two pieces of information: the head of A finished before
the tail of B, and the head of B finished before the tail of A. (Otherwise,
there would not be a de.) Itis also true that the head of an animal always
finishes in front of its own tail, the type of rattlesnake called a sidewinder
traditionally not being allowed to compecte.

The observed relations can then imply others, sometimes resulting in a
nearly complete order. Suppose in a set of races among four snakes, the re-
sult is that A defeats each of the three others and B defeats D, but the other
two races result in ties. These results are recorded in the upper right section
of Table 7.5, recording that the indicated tails finished before the corre-
sponding heads. The lower left section contains the order of heads refative
to tails that are directly implied by the upper right ohservations. That is,
there is a 1 corresponding to each zere in the upper right, tails-over-heads
section because the implication is that the head finished before the tail.
The diagonal sections of Table 7.5, representing head-head and tail-tail re-
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TABLE 7.5
Hlustration of an Interval Order

Observed Relntions

Tauls Heads
A B C D A B C D
A 0 0 1 1 1
Tails B ¥ 0 0 0 |
C 0 4] 0 0 0
D 0 0 0 o 0
A 1 1 1 1 0
Heads B 0 1 1 1 4]
C L] | 1 1 0
D 0 0 1 1 0

lationg are blank because that information is not observed directly. How-
cver, in Table 7.6 thesc upper left and lower right sections show the tail-tail
and head~head relations that are implied by these known relations. For ex-
ample, the head of A must have finished before the head of B hecause A's
tail is known to have done s0; A's head finished before its own tail which fin-
ished before B's head, so its head finished before B’s. It is seen in Table 7.6
that the only relations remaining unknown are between the heads of B and
C and the tails of C and D. If there were no unknown relations, the data
would constitule a semiorder.

These three variations on simple orders, the semiorder, the partial or-
der, and the intcrval order, are perhaps less strongly contradicted by obser-
vations than the simple order, but they, too, are rarely exactly consistent
with a meaningfully large set of data. However, they represent ideals or pat-

TABLE 7.6
lmplied Relations in an Imterval Order
Tails Heads
A B 9 b A 8 C n

A 0 1 1 1
Tails B 0 1

C

D 0

A 0 1 1 1
Heads B 0 l

C 0 1

D 0
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terns that may be more suitable definitions of order for a given empirical
situation than the simple order.

Is There a Scale?

The general strategy, then, is to look at the pairwise relations between ele-
ments of a set, be these elements a set of stimuli to be judged, a group of
chess competitors, or any other. The relations between the members of the
set are examined to see the extent thal they display the definitional proper-
ties. If that is adequately the case, then we say there is an ordinal scale. If
nol, there is not.

The alert reader probably wants to know what is meant by “adequately.”
Ta take Coombs literally would mean that adequately equates with perfectly;
one inconsistency is enough to destroy the order. On the other hand, we
believe one might want o say that orders exist more frequently than that
would allow, so we adopt a perhaps wishy-washy attitude and say an order
underlies the data when the fulfillment of the axioms is sufficiently close for
the purpose to which the scale would be put. This was our approach in pre-
ceding chapters in evaluating test-type data, We devole a good deal of atten-
tion to evaluating how close a given set of data corresponds to the ideal and
to finding the best order from fallible data.

This is not to say that in defining scales one would endorse the stance
that accepts the consistency of the relations that define the scale in a given
set of data as “good enough for government work” and stops there. One of
the activities that seems to characterize scientific progress, as distinct from
mere rescarch dithering, is the attention that is paid to refining variables.
Rather than simply accepting the degree of inconsistency that occurs, it is
preferable to find cut where it occurs and then why. Then the observational
process, including the set of things that is being scaled, can be revised with
an eye toward increasing the quality of the scale. One really good scale is
likely to he more scientifically useful than any number of pretty good ones.

There are other important issues in scale construction or definition.
Ome is that the basic observational relations that are used to define the
scale should represent genuine obscrvations, not artifacts, and that they
should be as independent of cach other as possible. Having a set of observa-
tions that conform well enough to (d1) to {d4) to justify further processing,
then ene needs a way of converting the data to a single summary scale. This
will be an ordinal scale because there is nothing in d1-d4 that provides a
basis for anything more elevared, such as intervals. To be able 1o take that
step to intervals requires (2) more elaborate data and (b) conformity of it
to a more exiendced set of properties than d1-d4. We do not go into that
here. The interested reader can consult sources such as Cliff {1992), Michel
(1990), or Krantz ct al. {1971).
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EMPIRICALLY DEFINING AND EVALUATING
DOMINANCE

Defining a Dominance Relaticn

Given a set of elements, we hypothesize that there is an underlying order
for the elements and wish to discover it. The clements can be anything:
lights that vary in brightness, poems to be judged for quality, a group of
chessplayers, and so on. It often makes sense to look for the order by
means of a pairwise dominance relation. If consistency with the axioms de-
scribed in the previous section is shown, then this can be convincing evi-
dence of an order, provided the dominance relations themselves are con-
vincing. Thus, the first requirement for establishing an order is an
empirically valid demonstration of a nontrivial, nonarbitrary dominance re-
lation,

This means that the observed dominance should have several qualities.
First, it should reflect the underlying variable that determines the order
that we are interested in, and as little as possible of anything else. This is the
same validity issue thal pervades all of behavioral science; we want the order
that results, if there is one, to represent what we think it does, and not
something else, so the process of observation should not be confounded by
extrancous or artifactual effects. But there is an additional aspect here: We
are trying to find out if there is an order, whatever it represents, so we also
do notwant to be fooled into thinking that there is consistency when in fact
the consistency itself is artifactual.

Just assigning numbers to things does not necessarily mean they are or-
dered in any empirically meaningful way. We must seek other properties of
the systern of observation that support the idea of order, or quantification
of any kind, if an order is to be believed. Also, the process of observation is
Jjust as subject to the tenets of control, validity, absence of artifacts, and un-
ambiguous interpretation that define good scientific practice as in any
other aspect of research that presuunes to be scientific.

A second thing that the dominance process should display is distinct-
ness. In as many cases as possible, we need to have a clearcut decision about
which element dominates the other. Ties, or their equivalent, or any ambi-
guity in the outcome of the comparison, are to be avoided, or at least mini-
mized.

The third thing the observation of dominance should have is independ-
ence. This means that there should be no arbitrary, hidden, or artifactual
process that makes the outcome of one dominance relation associated with
another one, except for the identity of the elements involved. This means
that when subjects are judging psychophysical stimuli, there should be little
opportunity for subjects 1o remember how they treated particular stimuli in
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the past and then try to make the current response consistent with earlier
ones. Each dominance relation that is observed should furnish separate in-
formatien about the elements, uninfluenced by the outcome of any other
dominance observation,

TESTING THE DOMINANCE AXIOMS

Once a well-defined process for observing dominances has been estab-
lished, we need to go on to assessing whether the relation has the proper
ties (d1)—(d4). The prototypical case for establishing dominance relations
is human comparative judgment as pioneered by the psychophysicists of
the 19th century. The most elegant, although not the most efficient,
method of ordering stimuli is based on data gathered by the Method of
Paired Comparisons (Guilford, 1954).' Suppose a set of stimuli are to be or-
dered in terms of some subjective quality such as brightness, heaviness, de-
sirability as a prize, or suitability for viewing by children. The stimuli are
presented in pairs, and the person doing the judging is asked which mem-
ber of each pair is brighter, heavier, more desirable, or more suitable, and
the subject must choose one.

K there is a simple order, even though it may be idiosyncratic to this
judge, then the judgments should display the qualities described in
{d1}~{d4}. In the traditional presentation, each stimulus is presented in
combination with each other one once, and not with itself. This means that
reflexiveness cannot be tested because the stimuli are not compared to
themselves. However, connectedness is satisfied if all the pairs are pre-
sented, although we will see in the next chapter that connectedness may
still hold when not all the pairwise relations are observed directly, provided
transitivity holds or is assumed, The relations are asymmetric as a matter of
experimental necessity when the pairs are only presented once and a
choice is forced each time, So far, there is little in the procedure that gives
grounds for convincing us that there is an order here because none of the
properties of a dominance order have had the opportunity to be violated.

Evaluating Reflexivity

Evaluation of dominance orders has traditionally focused on transitivity
(d4). and we see next how this can be done, but let us assume first that we

“Paired Comparisons” is somewhat ungrammatical because, taken literally, it implies that
comparisens are paired, whereas in actuality it is paws that are compared. Thus, a more accurate
phrase would be “pair comparisons” or “pairwise comparisons.” These latter terms are encoun-
tered occasionally, but the “paired comparisons” terminology is deeply engrained.
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are serious about the other axioms. Reflexiveness and asymmetry can be
tested if the experimental procedure is altered. When stimuli are not iden-
tifiable by the subject, simple 1ones, for example, we can evaluate reflexivity
by presenting each stimulus with itself and eliciting the response. When
stimuli are identifiable, it usually does not make sense to compare stimuli to
themselves. (An investigator who asks the subject, for example, if she pre-
fers peanuis to peanuts when she goes to the movies is likely to lose a cer-
tain amount of credibility.} If the subject—given the opportunity—always
reports that @ dominates ¢, the responses are reflexive; if she never reports
that ¢ dominates ¢, it is irreflexive. If there is a mixture, then we have to
conclude that the response is neither reflexive nor irreflexive, and so one
of the fundamental requirements for an order cannot be established. This
deficiency may sometimes be remedied by altering the experimental proce-
dure, perhaps by clarifying the task or altering the response or the basis for
Jjudgment.

Unfortunately, the likelihood is that even the best procedure will fail to
display perfect consistency of either kind. Then, we may wish to fall back on
a quantification of the degree to which there is a consistent tendency one
way ot the other. A simple way tc do this is to calculate a “reflexiveness in-
dex” by counting the number of reflexive judgments, subtracting the num-
ber of irreflexive, and dividing by the number of stimuli.

If we wish to decide whether there is a significant tendency one way or
the other, we can use the number of reflexive responses and the .50 line of
a binomial distribution table to test that hypothesis. With multiple subjects,
we can pool the data across subjects to evaluate this conclusion, computing
the reflexiveness statistic for each subject and averaging these across sub-
jects. A confidence interval for this average can be established by using the
variance of the reflexiveness statistics in an ordinary one-sample Student's ¢
procedure.

Asymmetry

When we present each pair only once, we are implicitly assuming asymme-
try, that is, we are assuming that when « is found to dominate & in the o,b
pair, & does not dominaie a. The response process is inherently asymmetri-
cal, s0 there is no way to test asymmetry. If we wish to test this axiom, it rmust
be given an opportunity to fail, and to provide this we have to present at
least some pairs more than once.

In the simplest case, each pair is presented twice, perhaps in opposite or-
ders if the members of the pair are presented sequentially, or on both the
left and right positions if they are presented at the same time or in a "home
and home” format for an athletic contest. If the relation is truly asymmetric,
then the same member of the pair will dominate both tdmes. When com-
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plete asymmetry is not present, the degree to which the relation is asymmet-
tic can be expressed in terms of an asymmetry statistic. If responding to
cach pair is random, the same element will be chosen twice in half the pairs
and each will be chosen once in half, so asymmeury can be expressed rela-
tive to this baseline. For » things, let f represent the number of pairs where
the same member is chosen both times. Then

f-nn-1/4

71
mn—13/4 (7.1

B.SYIDmCtI'if =

is a reasonable formula for expressing the degree of asymmetry. A test of
significance can be generated from it by squaring the numerator while us-
ing the same denominator. The result is a statistic that is approximately dis-
tributed as a one-degree of freedom chisquare (Table B.1} under a null
model where all choices are random and independent. The formula (7.1)
can be generalized to situations where there are k repetitions of each pair
by replacing the 4s in it by 2 fis then number of pairs having 100% of the &
judgments in one direction {2,0; 3,0; . . . k,0; . . ). For example, if there are
four repetitions of each pair, and ten elements, 2* = 16, and the expected
number of pairs where the same element is chosen all four times is 10 x
9/16 = 5.62.

Thus, the axioms of reflexivity and asymmetry can be evaluated with the
data although data-gathering procedures may need to be extended beyond
typical practices in order to do so. Where conformity to these axioms is in-
complete, one can quantify the extent to which the data are consistent with
them and test models that investigate whether there is at least a significant
tendency toward reflexiveness and asymmetry.

ASSESSING TRANSITIVITY
Circular Triads

In assessing the conformity of a set of presumed dominance relations to the
axioms, by far the most effort has been devoted to transitivity. Suppose x
has been judped brighter than x, {whether they are lights, colors, or col-
leagues), and x, has been judged brighter than x, and now », and x; are
compared, Transitivity implies that » should be judged brighter than x,
and the empirical question is “Is it?™ If so, transitivity is supported; if not, it
is not. When it is not, the tripfe x;, x,, x, is often called a “circular triad” be-
cause the “order” implied by the dominance relations seems to go from x
to x; to xy and back to x; to x,. . . . However, following the practice of mathe-
matical graph theory, which has considerable application in this context,
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we refer to such dircularities as “cycles.” This term may have a numerical
modifier to indicate its length. Thus, a circular triad will be called a “three-
cycle” (resisnng the temptation to call it a iricycle). Longer cycles are possi-
ble: x >% x, >* x, >* x, >* x; >* . and so on.2 However, it is always possible
1o break these longer cycles up into circular triads; the number and nature
of the three<cycles that are contained in an a-<cycle depends on the direc-
tion of the other relations. With four elements, there are 4 x 3/2 = 6 rela-
tions among the four, of which a four-cyde such as the one above specifies
only four relations. A four-cycle always contains two three<cycles. The na-
ture of the other two relations will determine what they are. Longer cycles
can always be broken into three-cycles although the number may vary
{Kendall, 1975, p. 146). For simplicity, we concern ourselves only with
threecycles.

Empirical cycles usually are assumed to reflect the effect of random er-
ror in the comparison process, but the possibility exists that there are true
cycles among the elements where a dominance order is expected. Natural
examples may occur in ecology where Species 1 may outcompete Species 2,
and 2 cutcompetes 3, but 3 outcompetes 1. The most familiar example is
the rock—paper—scissors game. In it, two competitors, on signal, simulta-
neously use a hand to display one of. a fist (“rock”), the hand held Bat (“pa-
per™), or two fingers extended (“scissors”). The scoring is that rock wins
over (“breaks”) scissors; scissors wins over {“cuts”) paper; but paper wins
over {“covers”) rock. Thus there is no dominance order among the three
because they form a cycle, In an empirical context, the objective of an em-
pirical procedure is to discover an order, but the existence of true cycles
would also be of interest, so we must allow for that possibility.

In dealing with dominances, it is a good idea to arrange the dominance
relations in an # x 7 matrix A in which an entry of 1 means that the ith row
clement dominated the jth column element, and an entry of 0 means that
it did not. We assume that self-comparisons have not been made, and his-
torically it assumed that the relation is irreflexive, so 0 is entered for the 44
comparison, and we follow that convention here. Tables 7.1 and 7.2 are
cxamples.

Counting Three-Cycles

Searching for three-cycles could be a tedious process, but the number of
them that occur in a complete matrix of relations can be found from the
number of dominances by each element, the sums of the eniries in each
row of A:.

?Note that we are using >* to denote empirical dominance in order to distinguish it from >,
which denotes a mathematical relation.
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& = 2a, (7.2)

If there are no intransitivities, then one element will win all its comparisons,
a second will win all but its comparison with the first, and so on, so their to-
tals will be the integers n=1, n—~ 2, ..., 1, 0. However, where therc are
intransitivities, this will not be true. There will be ties among these totals,
and more specifically, their variance will be reduced. Kendall (1975)
showed that the number of threecycles, g, is given by

g=[n(n—1}2n- 1) - 62a,/12. (7.3)

This formula is, in effect, comparing the variance of the 4 to its maximum
possible value, (#? — 1)/12. (The same formula would, of course apply to
the column totals g, that give the number of losses by the stimuli.) Iris illus-
rated in Table 7.7, and we find (6 x5 x 11 -6(25+9+9+4+4+0)]/12=2
as the number of three-cycles in those data. Searching the relations reveals
that these involve 2,3,5; and 2,4,5. Next, we see a different way of counting
intransitivities, one that applies more smoothly to those cases where some
comparisons are omitted or tied.

The maximum possible value of goccurs when the g, are equal. How-
ever, this can only occur when n is odd. When it is even, an element is in-
volved in an odd number of comparisons and thus cannot dominate in ex-
actly half of them, so then the most even distribution occurs when half the
a, are equal to ¥en and the other half to Y4n —~ 1. This means that the maxi-
mum possible values for g are (Kendall, 1975, p. 146)

(" — u)/24, for nodd

TABLE 7.7
Nustrative Adjacency Malrix
Elements
Wins Net Wins
Versus ] 2 3 4 5 6 a, a? d,
1 0 [} i 1 1 1 5 25 5
2 0 Q 1 i 4] 1 3 9 1
3 0 0 a 1 1 1 3 9 {
4 0 Li] 0 Q 1 1 2 4 -1
) Q i )] 1} 13 1 2 4 -1
6 0 0 0 li] 0 0 Li] Q -5
o 0 2 2 k] 3 5

Ta? 51
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{(n* — 4a)/24, for =n even.

In our six-element example of Table 3.1, this is (216 — 24)/24 = 8.

Circularity Coefficient

Kendall (1975) suggested a coefficient io express the degree of transitivity
in the data, one that uses the maximum g that could occur as the baseline.
However, it seems preferable to use for this purpose the expected number
of intransitive triples under random responding to each pair instead of the
maximum number possible. In any triple of elements, a,b,c, there are three
pairwise relations, awith b, awith ¢ and bwith ¢ In any of these three pairs,
cither member could dominate, so the number of possible outcomes of
comparing the members of each pair is 22 = 8. Six of these eight possibilities
do not involve a circularity, each resulting in one of the 3! = 6 possible or-
ders of the three. The other two are the circularities a—#—=3c—>a¢— . .. and
a—r~3b—=a—y .. .. Thus, for any triple, the probability of a cycle is 2/8 =25,
There are ntake-three sets of triples, n(n — 1) (n— 2)/6, so the expected
number of three-cycles under the assumption that each comparison is an
independent 50-50 event is %4 [#2(z — 1) (% - 2} /6]. In the example, where n
= 6, the expected number under random responding is 6 x5 x 4/24 =5, If
we call this number ¢, then a coeflicient of consistency ¢ can be defined as ¢
=1- g/e In our example, thisis 1 — 2/5 = .6, Expressed in terms of the sum
of squared row totals a, ¢ is

2 2
- 123 ¢} —3n (n—l)-
a{n—1{n—-2)

(7.4)

When there are no three-cycleS, ¢is 1.0, and it is zero if the number 1s the
expected number under random responding, In our Table 7.7 example
this formula gives (612 ~ 540)/24 = .60.

True circularities, like the one in the rock-paper-scissors game, seem
unlikely except under similarly artificial circumstances, so negative values
of ¢ presumably occur as random deviations from zero, However, the possi-
bility of true cycles does exist, so consistent negative values for ¢ or highly
significant negative values for it, suggest that the observations should be ex-
amined carefully for the possibility of some procedural failure. In the ab-
sence of such irregularities, the more interesting conclusion would be that
a nurnber of true circularities exist in the relations.

In data where there are what seem 1o be a large number of circularities,
the rather discouraging null hypothesis that the subject is responding at
random may be entertained. For reasonable values of n, use can be made of
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the fact that g can be transformed to approximate a chisquared distribu-
tion (Kendall, 1975) with v degrees of freedom:

aln—1(n-—~2)

VE———

5
e (75)

2 1

x =
n-4

Uy a (g, ~D+é-nmn-Din-l+e {7.6)

INTERSUBJECT CONSISTENCY
Kendall's Tau and Spearman’s Rho

Where there are replications of the dominance relations, such as from sev-
eral subjects, it is obviously important to see how consistent the orders de-
rived from them are with each other. This consistency is most simply ex-
pressed in terms of correlations among the orders derived from the
individual replications, and the most appropriate measures of correlation
are clearly ordinal ones. As we have seen, the two main indices of ordinal
correlation are the Spearman rank correlation, %, and Kendall's tau, £. Both
have several variations; the differences among them are primarily in the
treatment of ties. We repeat their definitions and some of their formulas for
case of reference,

The Spearman coefficient is 2 Pearson correlation between two sets of
ranks, but formulas for it can take advantage of simplicities that occur for
means and variances when the data are ranks. Designating g, and g, as the
ranks on X and Y, respectively, one formula for # is therefore

12 WG ~ 3+ 1)
ONE _ (7.7)

noo—n

An even simpler looking version, perhaps the most commonly encountered
of all, simply has 6Z({q, - q,,)*, or some equivalent expression, as the numer-
ator.

The formula above has a correlation (cosine of the angle between the
vectors of ranks) interpretation only when there are no ties on either vari-
able. However, it is commonly employed, even in the presence of ties, pro-
vided that the g that are used are the averages of the tied ranks. An alterna-
tive is 1o literally compute the Pearson correlation between the ranks, the
latter coefficient being called g, (Cliff, 1996; Kendall, 1975). For present
purposes we prefer formula (7.7) because it lends itself more easily to
multivariate generalizations and because il represents how close two sets of
ranks agree, compared to the maximum possible, even in the presence of
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ties. Applications of the formula for 7, are referred to as correlations even
when there are ties.

For two matrices of dominance relations on # things as discussed before,
#; can be used to express the agreement between two sets of wins scores, g,
and g

12) 4,6, —3n(n - 1)*
£ n’ -

(7.8)

With ties among the g, because of the presence of cycles, the formula can
no longer attain the limits of +1 although the imitation will not be great
unless there are numercus ties relative to the number of pairs.

Kendall’s tau is 2 measure of ordinal correlation that is in some senses
more in the spirit of the kind of data discussed here. Like % it is typically de-
fined in terms of relations on two variables that are assumed or known to be
ordinal, but it can be adapted to the context of individual dominance rela-
tions.

Given two ordinal variables X and ¥, tau is defined for a populaton as

Ty = Pri(x > x) and (3 > 3)] ~ Prl(x > x) and (3, < y)]. (7.9}

That is, it is the probability that a pair of elements is in the same order on
both variables minus the reverse probability. Similarly, in a sample of size »,
the sample version { is
~ #[(x, > x,)and(y, > y})] ~-#[(x, > x, jand(y, < )v’)}
= Yn{n—-1)

(7.10)

where # stands for “the number of pairs.” For many purposes, it is useful to
express {in terms of dominance variables, 4,, where d,, = sign(x — x). That
is, d,,is 1, -1, or 0, depending on the direction of the difference between »x,
and x. Expressing ¢, in terms of d,, and d,, we have

. =Zdwdw i (7.11)
n{n—1)
where the sum runs over all the pairs.
Given two dominance matrices such as may result from a series of
pairwise comparisons, ¢ can be used to express the similarity of their ele-
ments in a very straightforward way in terms of the sum of products of cor-
responding elements. For elements where g, = 1, 4, can be defined as d,= 1
and the symmetrically placed element as d, = ~1. If there is no decision be-
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tween zand j, dy = 0. That is, dg =a,—- a, Thus, to assess the agreement be-
tween two dominance matrices, such as would be used to find the degree of
similarity of responses by two respondents, formula (7.11) can be used to
calculate the tan. This tau can also be calculated directly from the elements
of the adjacency matrices:

_ QEagl G5

= 7.12
an—1 ¢ )

tl 2

Tau, like %, is usually employed using variables that are already ordered,
s0 various versions of tau that take account of the presence of ties in differ-
ent. ways are possible (Cliff, 1996). However, here we are applying tau di-
rectly to the dominance relations themselves. Thus, in a matrix of domi-
nance relatons where direct connectedness holds, the issue of ties does not
apply even though, with cycles, there may be ties among the wins scores.
The formulas {(7.11) or (7.12), can give a correlation between two matrices
of dominance relations.

Now that the nature of tand 7; has been reviewed, we show how their av-
erage values across a sample of subjects can be calculated from summary in-
formation about the dominances.

Average Tau From the Total Dominance Matrix

Since a tau can be computed from two 4, matrices, each derived from their
respective g, matrices, it is always possible to find the average tau between
all pairs of replications by computing the taus beiween all the pairs of repli-
cations. However, sometimes the data do not lend themselves to this proce-
dure. For example, pairs may be presented randomly to a subject m times
without the constraint of presenting all the possible pairs as repetitions of
complete sets, so that two or more trials on the 1,2 pair can occur before
any trials of the 1,3 pair. This could also happen, for example, in an athletic
context where intraleague games occur according to some external con-
straints, such as in professional baseball, that prevent the carrying out of
the schedule as a set of complete round-robin tournaments. It can also oc-
cur that the data are only available in a foxm that gives only the number of
times thart s dominated jrather than in the complete sequence of results for
each pair.

It turns out that the definition of tau can be adapted to these circum-
stances to provide an average consistency statistic, All that is necessary is to
define the average tau as

1=Ed,d, (7.13)
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where kI=1, ..., m, the number of replications, and the expectation (E),
that is, the average over all possible vatues of 4, j, k and / runs across all
pairs of elements and pairs of replications. The definition applies whether
the d,,, d,; are organized into complete matrices, Dy, . .., Dy, ..., D, one
from each subject, or the pairs can simply be mixed into random or haphaz-
ard places in the overall sequence. All we need is Lthe matrix with elements
_ﬂ‘, which indicates the number of replications in which 7 dominated j, that
is, f, = L., Then B[ ( f, - 1) is the number of pairs of replications in which
tdominated jin both, and ‘/2]},( b 1) is the number of pairs in which jdom-
inated ¢ on both because d,d,, will be 1 in both of these cases.

On the other hand, £ £, is the number of pairs of replications in which #
dominated jin one member but j deminated ¢ in the other. The reason is
that in these cases d,;d,, = —1, and there are f, times in which 7 and j were
ordered one way, and j, that they were ordered the other way, so the num-
ber of times this pair of elements is ordered oppositely is the product of
these two numbers. (Note that the reasoning here is similar to some that
was used in chapter 6.} The number of replications that are being com-
pared is Yam(m— 1), and, since m= f, + f,, this number is equal to ¥af (f,— 1)
+W%f(f,~ 1) + ff;. Therefore, the difference between the number of times
that a given pair i,jis ordered in the same way and the number of times that
itis ordered oppositely is Vaf (f,— 1) + Kf(f, — 1) — J,f.» which simplifies to
Yol (f,— J)* — m]. Averaging across all pairs of elements, the average tau is
therefore

(S, =S, —m
T= 2,y =LY . (7.14)
1% n(n — Dmdm — 1)

Table 7.8 shows the application of this formula to data where n = 5 and
m = 4.

Kendall (1975, p. 149) presented an algebraically equivalent coefficient
that he calls . He computes it from all the ¥(ff, — 1). However, he does
not make the connection between it and the average tau.

Average 7, From Dominance Totals

The average rank-order correlation can also be obtained from summary
data as well as by computing the zs between all the replications. What is
needed are the dominance scores g, for each stimulus 7 in each replication
h. These are shown for the example in the rightmost column of the data
frorn each subject in Table 7.8. The average % among m replications, not
taking account of ties, is then given by
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Dominances, Choice Frequencies, and Coreclations

i,

#

Begpondent 2
z

Lhomindasine

¥

HKespendent I
4

134

-1
-~
-1
-1

-1

Broccoli

Creen brans
Peas

-1

~F

~1

-1

Spinach

Respendent 4

Respondent 3

e,

i,

-1

Broccali

-Z
-2

Crven beans

Peas

-1
=1

-1
=1

=1

=1

Spinath

Chowr Frequernies

La,

1¢
L]

4]
~12
—d

Creen beamy

Camots
Broccol:
Peas
Spinach




ORDERING THINGS AND STIMULI 135

TABLE 7.8
{Contenued}

Corvelations Belween Respondents

Taun T,
2 3 4 2 3 4
1 =10 70 70 —20 it B0
2 —~10 .00 20 .00
3 40 50
Average = 967 Average = .333

Averagers=(n n)(m [Z(Za,k) 2;%2]. (7.15)

The formula can be applied 1o the data in Table 7.8, resulting in an average
1, of .333, agreeing with the average of the six coefficients in the matrix at
the lower right corner of the table.

We can also apply the principles used in chapters b and 6 with respect to
coefficient ¢ in the context of ranked data. In the present case, the inter-
pretation of o is that we are estimating the correlation between the g, ob-
tzined from the observed set of msubjects and a corresponding set of values
obtained from another, equalsized group from the same population. The
tormula for o that applies here is

D T

o= f1- (7.16)

m—1 Z(Za”‘ )

FINDING THE ORDER IN COMPLETE DATA

Summary Orders for Complete Data

The procedure for finding the underlying order in data that is complete
and completely consistent is quite simple and obvious. For each object,
count the number of pairs in which it dominates, and order according to
this score, the 4, from (7.2). Those who have a more negative view in life
may wish to count the numnber of tmes each is dominated, and order in re-
verse of these totals. One can also count both and subtract “losses” from
“wins.” In fact this version, which we call the “net dominance score,” nun-
ning from -z + 1 to 2~ 1 in the completely consistent case, is our preferred
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one because it applies best to the largest number of situations. The com-
plete-data orders will, of course, be the same in all three cases. These scores
are illustrated in Table 7.7.

Although the system of using 1 and 0 to record dominanees in a table is
quite succinct, and conveys all the information in a simple order, in general
it is more informative to use d, = g, — @, as noted earlier or just + and —, as in
a dominance diagram (Cliff, 1993, 1996), thus allowing 0 to be used for var-
ious purposes such as indicating ties, if allowed. In other circumstances 0
could mean that the pair was not compared, as in systems where, for greater
efficiency, not all dominances are observed, or where circumstances have
lead to some comparisons heing omitted. Where it is necessary to distin-
guish between tied and not compared, a * or a blank space can be used for
the latter.

In the upper part of Table 7.9 the elements of Table 7.7 have been con-
verted to a matrix of dominances, D, with elements 4;. The net dominance
scores 4, for each object are then defined as

d = X.d, (7.17)

and

d. = Lo, - Yoa, (7.18)

that is, the sum of :’s wins minus the sum of i's losses. We call this the “net
wins” score.

The numbers derived fromm such a table as the number of +s in a row, the
number of —s in a column, or their differences, the net dominances, can be
the scale that summarizes the data, and presumably then used 10 represent
some property of the objects. These numbers are integers so there is a
tempiation to treat them the same way we treat other integers: the number
of eggs in a nest, the number of electrons in an atom, the number of per-
sons in a classroom. In one sense their staws as true inlegers is valid. They
directly reflect the number of titnes an object dominated, or the number of
times it was dominated, or the difference in the two, depending on which
of the three versions of the scale is used. But that number is pardy circum-
stantial. It depends on how many members there were in the set, as well as
on just which other elements were in the set, and it is likely to change when
ihese are changed, perhaps doing so in unexpected ways. So treating itas a
true integer is usually inappropriate. What probably does not change with
such circumstances is the ordinal properties of that score.

It can be used to attempt to reconstruct the orginal dominances: For
each pair, compare their respective numbersand enteral,af,ora-lina
reconstructed dominance table accordingly. Compare this table to the ac-
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TARBLE 7.9
Deminances Corresponding to Table 7.7
and Reproduced Dominances

Obserued Dominances
Element

! 2 3 4 5 6 d,
Versus 1 0 1 1 1 1 5
2 -1 0 1 1 - 1 I
3 -1 -1 0 1 i 1 1
4 -1 -1 -1 0 1 1 -1
5 -1 1 -1 -~ 0 1 -1
[ -1 w1 | -1 ~1 -1 -5

Daminances Reproduced From d,

Elemeni
1 2 3 4 5 [
Versus 1 ¢ 1 1 ? 1 |
2 -1 4] find H 1+ L
3 -1 0¥ ] 1 1 L
4 -1 -1 -1 0 o |
5 -1 —1* -1 o+ [} |
f -1 -1 -1 -1 -1 0

Reproduced Wath Ties Broken

flement
i 2 3 4 3 6
Versus 1 0 1 1 1 1 I
2 ~1 0 H 1 1* L
3 -1 -1 L] 1 1 1
4 -1 -1 -1 0 1 L
5 -1 -1% -1 -1 4] 1
b -1 -1 -1 -1 -1 0

*Disagreement with observed dominance.

tual dominance table. The score communicates the idea thatif the number
for one element of the scale is higher (mnore positive) than the number for
another that was used in the same set of comparisons, then the first should
dominate the second. In a true simple order, “should” hecomes “will.” How-
ever, any monotonic transformation of those integer scores will preserve
that property equally well. For those two reasons, 1he instability of the inte-
ger values with respect to changes in circumstances and the fact that the
ability to predict ordinal relations is preserved under monotonic transfor-



138 CHAPTER 7

mation, we avoid putting much faith in the integer scores as integers, but
we do put faith in them as indicators of order.

Using these scores works just as well when the data are inconsistent in
the sense of containing transitivity failures. Two things will then happen,
though. First, there will be ties in the number-ofdominances or net domi-
nance scores. In fact, the number of ties is 2 measure of the degree of in-
consistency, as we have seen. Second, the order of Lthe scores will not be
completely successful in predicting or accounting for the direction of dom-
inance in a given pair, even when that pair is not tied in total dominances.

It is useful to have a measure of agreement between the observed
dominances and the summary scores, and a tau between the observed
dominances and those predicted from the summary score is the obvious
choice as a coefficient. The predictions are

dy = sign(d_~ 4). {7.19)

The notation “sign ()" means to translate the difference in the parentheses
te +1 if it is positive, 1 if negative, and 0 if zero.
A measure of how well the ¢ reproduce the 4, is then

S,
[

w = n(n-1

(7.20)

Table 7.9 has in the upper section a matrix of 4, among five objects and
the resulting net wins scores, in which we see two tied pairs. The middle sec-
tion has the dominances reproduced from these net wins, and we see that,
over the whole matrix, there are 14 pairs where the predicted dominances
agree with the observed ones, two where they disagree, and four where the
prediction is a {} because the dominance scores are tied. This gives a tau of
(14 - 2)/20 = .6, indicating a fairly good level of agreement.

It turns out that a revised prediction process can sometimes increase this
tau. The revision is that whenever there is a tie in the d, we look at the direct
comparison of that pair and break the tie in favor of the winner of the di-
rect comparison, (This is a tie-breaking procedure that is ofien used in ath-
letic leagues.} We indicate this by adding a small increment to the winner's
d, score. This has been shown in the table by adding .1 to the wins score of
the tied object that was dominant in the direct comparison of the pair. The
sct of predicted dominances that results from these revised scores is in the
lower section of the table. The elements that are different from the matrix
above it have been starred (*) for ease of identification, and we see that the
only difference is that four elements have changed from 0 to 1 or —1. These
four that were previously zero are all in agreement with the observed rela-
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tions in the top section, so now there are 18 agreements and two disagree-
ments, yielding a tau of (18 — 2)/20 = .8 instead of .6.

This te-breaking procedure will not always be effective in increasing the
tau. For example, if three elements are ted in wins and they are members
of a threecycle, then they will each be a winner in direct comparison with
one of the two others, and so each will have its score incremented, thus re-
maining tied.

What Is the Best Order?

What is the best order, in the sense of providing the highest possible value
of (7.20)? So far, we have used ihe net wins order, and it might seem obvi-
ous that the process of using the net dominances and adjusting tied values
as indicated would produce the best order in terms of giving the highest
possible tau between observed and reproduced dominances, and it often
does so, but not in all cases. Table 7.10 is an example. In the left section we
have a dominance diagram where eight ohjects, a, b, ¢, 4, ¢, f, g h, have been
ordered in terms of net wins, with the ties broken as we suggested before. It
can be seen that there are six pluses below the diagonal, and the corre-
sponding six minuses above it, This yields a tau between observed domi-
nances and those predicted by the dominance order of 32/56 = .57. How-
ever, if the order is changed somewhat, reversing ¢ and d and also e and £ in
spite of their net wins differences, there are only four plu.ses below the diag-
onal, as can be seen in the righthand panel where the orderis a, b, d, ¢, f &,
& k. This order will give a tau of 40/56 = .71.

So,i5 a, b, d, ¢, £, & g hhe best order? As in many games, the best order-
ing can depend on how one keeps scare. The system we used above (7.20)
was one in which every discrepancy counted equally; it did not matter how
much two elements were misordered in the reproduced order. However, it
can be argued that degree of discrepancy should be taken into consider-
ation. A second measure of orderliness is Zd,(r, - r), where r,is the rank of
object i in the order. Here, discrepancies are weighted by how far apart
those two objects are in the order. If the order agrees perfectly with the
dominances, this sum will be n{z + 1) (n— 1} /3. This suggests a different in-
dex of agreement between an order and the observed dominances:

3% d (r, —71)
v= LL_’ (7.21)
nin+N{n-1
This index is 432 /504 = .74 for the data in the table when the net-wins order

is used, but only 336/504 = .67 for the order that gave the maximurn for the
tav-criterion.. Thus, the netwins order is better by this criterion.
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It can be proved that the net wins order always gives the largest value of
the weighted criterion (7.21). As a general practice, we feel it is preferable
o use net wins rather than trying to maximize tau (7.20) for two additonal
reasons. One is that it does seem appropriate to exact larger penalties for
larger discrepancies, so it can be argued that (7.21) is more appropriate
than (7.20). The other is that an order that maximizes {7.20) can only be
guaranteed by trying all possible permutations of the objects. This can only
be attempied with a dozen sets containing a dozen or fewer objects, even
with modern computers,

OVERVIEW

This chapter has reviewed the important properties of a dominance order
and suggested how they can be evaluated. A primary principle is that the re-
lations that are presumed to represent dominance should be free of con-
tamination and arbitrariness and that they should lead to clear outcomes.
That is, the ordinary canons of good research practice should apply. A sec-
ond major principle is that the data should correspond closely to the domi-
nance axioms, (d1) to (d4). However, data will rarely do so perfectly, so
quantitative measures of conformity have been presented. We have seen
that in many empirical contexts reflexivity (41) cannot be evaluated be-
cause an element is not compared to or matched against itself. Further-
more, such comparisons are sometimes nonsensical. Where that is not the
case, good empirical practice would suggest that such comparisons take
place. Given the likelihood of a lack of complete consistency one way or the
other, statistical procedures for evaluating the extent of consistency were
suggested.

The connectedness (d1) of arelation is usually guaranteed by the empir-
ical procedure. If the relation is observed in all pairs, then we call this direct
connectedness. As seen in the next chapter, connectedness can be present
even when not all relations are observed, provided a certain subset are ob-
served and transitivity can be assumed.

Asymmetry (d2) is typically not given an opportunity to fail either. When
a pair is presented only once, the relation has to be in one direction or the
other, so it is inherently asymmetric. Thus, the relation has to be tested
more than once in at least some pairs if asymmetry is to be Lested. Statistical
methods for evaluating the degree of asymmetry (7.1) and for testing
whether there is at least a consistent tendency toward it were suggested.

Most of the interest in evaluating the order axioms has focused on transi-
tivity (d4). Central to these evaluations is the circular triad, called here a
three-cycle because of its connections o mathematical graph theory. For-
mulas for counting the number of threeycles (7.3), expressing the degree
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of transitivity present (7.4), and testing the data to see if there is a signifi-
cant tendency toward transitivity were suggested.

Where dominance relations are replicated by using several subjects or in
some other way, it is useful to assess the degree of consistency between the
subjects. A reasonable way 10 do this is finding the ordinal correlations be-
tween the dominance scores, Either the Spearman rank correlation or
Kendall’s tau can be used for this purpose, although we have a preference
for tau since it seems more in the spirit of what we are (rying to assess—ihe
overall consistency of the a, Formulas for x; were presented, (7.5) and
(7.6), as were several for tau, (7.7), (7.8), (7.9), and (7.10).

Similarly, the average tau among a set of replications can be found from
the elements of the matrix which is the sum of the A; from the individual
subjects or from any total dominance matrix {Equation 7.13). We have also
noted 1hat the average %, among a set of replications can be calculated from
the total dominance scores (7.14). Thus, the consistency of presumed dom-
inance relations with the axioms d1-44 can be evaluated, as can the consis-
tency of the relations across replications.

The order for the objects is probably best summarized by the “net wins”
criterion, with ties broken, where possible, in favor of the winner of the
“head-to-head” comparisons. This guarantees that the order will agree
better with the data than any other according to the measure (7.21), which
takes account of the degree of discrepancy between the cbserved domi-
nances and the summary order. However, the net-wins order does not nec-
essarily maximize the tau criterion (7.20). Trying all possible permutations
is the only way to guarantee a maximum for it.



Chapter 8

Alternatives to Complete
Paired Comparisons

DATASETS ARE OFTEN INCOMFLETE

In spite of its elegance, there is a real drawback to using paired compari-
sons: The number of pairs grows as the square of the number of clements.
Ten elements means 45 comparisons, usually a manageable number, but 30
elements means 435 pairs and 100 means 4,950. Thus, there is considerable
motivation for trying to reduce the number of comparisons while still re-
taining as much of the elegance of the pairwise dominance process as possi-
ble. Also, in many situations one may wish to employ the dominance con-
cepts to yield an overall order in situations where, for circumstantial
reasons, not all pairwise dominance relations are observed, resulting in in-
complete dominance matrices. In this chapter we describe methods for ar-
riving at orders from incomplete data, including expanding the methods
beyond direct pair comparisons.

One possible cause for incomplete data is inadvertance. There was an in-
tention to have all pairs, but some were accidentally omitted. A second rea-
son is circumstances. A behaviorist observing a species of birds in an area
may be recording the dominance relations among individuals, but interac-
tions do not occur between all pairs of birds. Or an economist may observe
competition between firms, and have a way of concluding which of a pair is
dominant in a series of pairwise competitive markets, but not all pairs of
firtns are competing directly, perhaps for geographical reasons. Also, a
sports bulf may want to develop his [siz} own rank order of 115 American
college football teams, based on their head-to-head results, but not all
teams face each other, at least not to this date.

143
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Then another type of reason for incomplete data is that the investigator
planned it that way. This almost always occurs as a means of reducing the
number of dominances that are directly observed. Several strategies for re-
ducing the number of comparisons are possible, One is to systematically se-
lect a subset of all the possible pairs in advance and then develop as much
of the order as is possible from the resulting dominances; sometimes it will
even be complete. Another strategy is to present the stimuli in groups and
have the respondents partially or completely rank-order them within the
groups. The extreme possibility here, of course, is ranking the complete
set.

Finally, une can adopt an interactive process that takes advantage of the
principle of transitivity, If a relation on a set is assumed to be fransitive,
then knowing that! ¢>* band §>* ¢makes it unnecessary to compare ato ¢
because it is logically implied that a >* ¢

PLANNED SUBSETS OF FAIRS

Tournaments

If one wants to retain the pair comparisons response format while reducing
the number of judgments and selecting at least the initial pairs a priori,
then a number of approaches are possible. The commonest example of
such a shoricut is the single-elimination tournament in which, at the first
round, each contestant is matched with some other one. The loser of this
comparison is “eliminated,” whereas the winner goes on to another contest.
The winners play each other, and the losers are again eliminated. The proc-
ess goes on, half the remaining contestants being eliminated at each round,
until there is a single “winner.”

Although seemingly satisfactory to sponsors and audiences of many ath-
letic rournaments, such a process has deficiencies from a measurement
point of view. The most important is that there is no way of determining it is
other than a purely random process, with the outcome of each contest be-
ing merely the equivalent of a coinflip. Even if the process is highly valid,
the procedure is unsatisfactory from another point of view. The contes-
tants’ Lrue ranks may not be very well reflected in the overall rankings of the
players or teams that results from the tournament. For example, if the two
best players or teams meet in the first round, one will be eliminated. This
will result in the loser, who has no wins and one loss, being ranked below
many weaker players who happen to win in the first round over other weak

e use »* here rather than simply > to distinguish an observed dominance relation from
the mathematical relation >.
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players.? This can be particularly upsetting to contestants when there is
prize money involved. It alsc leads only to a partial order rather than a sim-
ple one because there is no information on which to differentiate the lesers
on a given round. This may be unimportant in an athletic context, but will
be important in many scientific and applied contexts when one wants to dif-
ferentiate among the losers as well as the winners.

Systematic Subsels

One attractive system for reducing the number of pairs is a procedure that
assures all elements will occur in an equal number of pairs, but only a frac-
tion of the pairs are observed directly. The resulting scale is again the net
dominances of each element. Although there can be some concern that the
final scale is partially the result of the luck of the draw (i.c., which cthers a
given element is compared against), the investigator may be willing to toler-
ate that ambiguity in the final results as a reasonable price to pay for reduc-
ing the number of pairs. Such a method can easily be extended to the mul-
tiple trial or multiple judge contexts discussed later.

Table 8.1 in which an “x” indicates that a pair was used and a “o” that it
was not, illustrates the method for 10 elements. In this approach, the pairs
that are included always appear as diagenal stripes, here, the xs. For clarity,
there is an x in the j,i, position as well as the ijj, but of course only one of
these pairs would be used.

In the left matrix of the table there are 25 of these xs, slightly more than
half of the complete number, 45, above the main diagonal, which is indi-
cated by dashes. The systematic approach guarantees that each element ap-
pears in five pairs, as can be seen by counting xs down any column or across
any row. Note that if we assume instead that it is the o that indicates inclu-
sion rather than the x, each element will appear in four pairs for a total of
20 altogether, slightly less than haif. We cannct have exactly half the pairs
unless n or n — 1 is divisible by four, and sometimes not even then.

The right-hand matrix illustrates choosing only a third of the pairs.
Again, the selected pairs occur as diagonal stripes, and now there are 15
above the main diagonal. Each element will occur in 15 pairs, and there are
actually two other similar ways of choosing different sets of 15 pairs. We can
get exactly one third of the pairs because z— | is nine, which is exactly divis-
ible by three,

*Ihis kine! of perceived injustice is the motivation hehind “seeding” in tournamerits. In
seeding, contestants are ranked on some prior measure of expected performance. Then, pair-
ings for the initial rounds are arranged in such a way that contestants with high prior ranks
cannot meet untl the later rounds. Another common adjustment is “double elimination,” in
which it takes twa losses to be eliminated. This makes it less likely that a top contestant is elimi-
nated early, but makes the tournament longer.
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TABLE B.1

Balaniced Subaets of Pairs
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The main aspects of this method are the diagonal stripes and that there
are a constant number of elements skipped as we go across a row. In the left
matrix we skipped one element, the first pair being 1,3, and in the right, we
skipped two. The process of selecting the pairs can be described in symbolic
terms. One part of the description is that if the ,f pair is included, then the
(¢+ 1), (F+ 1) pair is also. In both examples, the 1,2 pair is used, so the 2,3;
3,4; ... pairs are also. The second part of the description is that if the 7
pair is used, then the 1, (j+ k); 4, (j+ 2R); i, (F+ 3k) . . . pairs are also chosen.
That is, the chosen pairs are equally spaced across a row {or column) on ei-
ther side of the main diagonal, and & is the spacing between the chosen
pairs in a row. In the left illustration, &is 2; Element 1 is paired with 2, soit is
also paired with 4, 6, 8, and 10, in the right one, & = 3, so, since 1 is paired
with 2, it is also paired with & and 8.

The requirernent that each element must appear in the same number of
pairs means that not all set-sizes can provide a desired fraction, or approxi-
mate fraction, of the pairs. The most important of the constraints is that if »
is odd, we cannot skip every second pair, as in the left example, and have
each element appear in the same number of them. For example, if the last
row and column of the matrix on the leit of Table 8.1 is eliminated so as to
simulate n= 9, we see that half the elements appear in five pairs and half in
four. There are a number of other restrictions, bul often an appropriate set
can be found if we can be a little hit flexible.

The constraints on the possibilities depend on the foflowing equation:

n=(p- k+2(-1). (8.1)

In it, as before, n is the number of stimuli in the set to be studied; kis the
spacing; and j is the first element that is paired with 1. The new symbol is p,
the number of pairs in which each element will appear. The equation al-
lows us to choose the spacing, & and the first element paired with 1, j, fora
given number of presentations, g, or to conclude that it is impossible to do
what we want to do.

In a typical applied situation, we have a certain number of elements to be
ordered, and we have a target of the number of pairs to be used, one that is
based on some pracrical considerations. Let v equal that number. Suppose
n= 36 and v= 150, perhaps because that is about the maximum number of
judgments we can expect to get from a group of coerced subjects, or be-
cause of the amount of time that is available. With 36 elements, there are 36
x 35/2 = 630 pairs, so 150 is a little less than a quarter of all of them. There
needs to be some flexibility about v, because usually we cannot hit it exactly
and reach our goal of equal numbers of pairs for each element.

First, we find the ratio 2u/ 5, which will be approximately the number of
pairs in which each stimulus appears. Here, 2 x 150/36 = 8.33, which we
round to the nearest whole number, 8 = r.
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Now we choose & All the numbers in the equation are positive integers.
This means that {r— 1)k must be less than »; However, this product should
be close to n, because jis a fairly small number. So, we divide: n/(r— 1}, or
36/7 = 5.14. This suggests we try k= 5: 36="7 x5+ 2(j— 1) and solve for j. No
usable j results because we get j~ 1 = 1/2, not a whole number, and too
small anyway since j must be at least 2. We should have known this was not
going to work because 36 is e¢ven, so (r ~ 1}k has to be also.

So,we try k=4: 36 =7 x 4 + 2(5— 1). This yields j= 5. There is one more
restriction: j must be less than & + 2, otherwise, we will skip too many pairs
before beginning. This does not create a problem here because itmeans f is
allowed to be up to five, which is what we wanted to use. The selection of
pairs that results, then, is to start with the 1,5 pair and take every fourth pair
to the end of the row; then start with 2,6 and take every fourth; and so on.
This means we are using 8 x 36/2 = 144 pairs, a few less than the target of
150. The result is shown in Table 8.2.

The process is a bit complex, but usually will result in an appropriate sc-
lection of pairs. Sometimes there will be more than one combination of p,
k, and j that give about the desired number of pairs. On the hand, however,
it may sometimes be impossible to find an appropriate combination. If so, it
may be reascnable to discard one or two members of the original set in or-
der to arrive at a satisfactory subset of pairs. The method can also be useful
when all pairs are to be included as a way to select a subset of pairs to be in-
cluded twice in order to assess the reliability of responses.

IMPLIED ORDER RELATIONS

There is a computer-based procedure that gives a complete simple order
on the basis of pairwise relations, and does so efficiently. Assuming that
there is evidence that at least an approximate order exists for a set, it uses
the principle of transitivity. However, here, unlike a simple tournament,
losers are matched against losers as well as winners against winners. More-
over, each contestant or stimulus is given credit for winning against all
those who have been defeated by (or preferred to), any it has won against,
and it is charged with losing to all those who have won against any who have
defeated it. The process is also extended to higher orders in terms of defin-
ing whom the contestant has won against or has been defeated by. That is,
winrers over winners over winners and so on, are identified if there are any.
This leads to a very efficient ordering procedure when there is underlying
simple order. It yields an order in a number of comparisons that is the
smallest integer larger than #log,{#). which is the theoretical minimum
number. This number is 34 for 10 objects, 148 for 30, and 665 for 100,
rather than the 45, 435, and 4,950 that were noted earlier as required for
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TABLYE 8.2
Selected Fracton of the Pairs of 36 Elements

S00GOXNOODXO00XCOOXOD0XOQONOOON000XK 000
OOOXG0OX0O0XM0OXGOOXOOCKOD0X0C0X00
GO-D00X 000X ONOXOOOXO00OXK HIXGOOX 000X 0
DO0-DOOXOO0X 0QOXCOOXO0OX0OO0X000X000X
HOOO-00ONO0GHGO0 X0GOXOOOXQOOX D00 X000
OXO00-0OK0OOROOOXOOOXGOOK OOOXOGOX 00
OOXOOO-000XO0OXCOOKOODXOGOXOO0XO0 0RO
CGOOX000-D0OX 00X 000X 0Q0XGOOX 000N 000X
HOOOXaQO-00ONODOX0OORGI OXO0OXC0OXA00
OXCO0XOO0-D00XOOXCGOOXOOOX 000 X000 X00
GOXOCOXIO- MO KOOOXOFOROGONCOOXOO0XO
COOXO0OR OO COROGOXODOXOGDOXQOOXOOLXK
XOOOXOOOX000-000XO00OXO00X000XGDOX GO0
OXOQOXOIGXOGO-O0OX000XOUOXGDOXOO0K00
QOX 000X OO 000-GOOXGOOXKGIOXOCOXOOOX0
DOOROCOHNOGKO00-000X000XO00X000K000X
XOGOXO0OXGO0XOO0- 000X 000X 000K0 00X 000
GRODOXOOOXOICOXO0C-O00XO0QXO00KOOOX00
OOXOGOXOOONGOOX0Q0-000XOCDXCOOX 000X
COOXOCOKODOXOGOXO00-000XA0OKOO0XK000X
HOOOXOOOR0O0X000X 0O U-000K000XODON000
OX000X0O0OX000XOHXOO0D-000X000X0G0X00
GOXO0OXKQOOXGO0X 000K OD-DO0XG00XO00KO
DOOXOOORQQOROCOXQOOXOOT-000KQO0XOCOK
XOOOX0QOXIIOXOOOXODOX 000000 XCD0X 000
OXOOOHOOOKOGOXOGOXOOONC00-000XOGORO0
TQOXOCGOXOOONOGOONGOOXO0X000-000XG00K0
OQOXOGOX000X 000X000XO00X000-0QOX 000X
KOOGOROOOXGDOXKOOOXCOOXOGOX0 00-000X 000
GXOOOX0OXIGOX OO COGKOOO0XOO0-000X00
OOXO00O0XTOOXGO0X0O0ONOO0X000XO00-000K0
GOXOGOKOCOX000XOO0XMDOXO0O0K00D-D00X
KOOGOXOOOXO0ONOOOX GO0K000XOO0X000-000
OXCOOXOOOXQOOXOGOXHIOKOOOXO00X00D-00
00X000X0COXO00NOD0XO00X000X 00000
OOOXOCGCROOOXOOROGIXO0ONDCOX000XK 000~

the complete set of comparisons. A computer algorithm for carrying out
the procedure interactively with individual subjects was developed {Cliff,
1975; Kehoe & Cliff, 1975; Reynolds & Cliff, 1975, 1984). Related but more
limited methods have been suggested by Cook and Kress (1990), David
(1987}, and Kendall (1955).

The basis for the method is assuming transitivity. If a relation on a set is
assumed to be transitive, then knowing that 4 >* band b>* ¢ makes it un-
necessary to compare e to ¢ because it is logically implied that 2>* ¢ In this
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way, a subset of observed relations can be used to develop a complete order,
and the process will be efficient, provided that the pairs chosen for direct
comparison are good choices. In the procedure, a random selection of n/2
(if nis even) or {(n~ 1)/2 (it = is odd) pairs is matched first. They are pre-
sented, one pair at a {ime, to the subject. Then a “winner” is compared to a
randomly selected other winner or a “loser” to another loser, Specifically, a
stimulus is selected randomly. If it is a winner, it is matched at random with
another winner; if it is a loser, it is matched against a loser. The implication
of the result through transitivity is deduced.

After this, and at each subsequent step, the number of observed and im-
plied relations for each stimulus is counted, and the one(s) with the fewest
known relations are identified. If two or more are tied in completeness, one
of these is chosen at random; then the stimuli that are closest to it in net
wins are identified, and one of these is chosen, agzin at random if two or
more are equally close. After a check to make sure that the two have not
previously been paired, these two are presented for comparison.

The process is illustrated in Table 8.3 for six stimuli, a4, b, ¢, d, ¢ and [
There is an n x 7 matrix on the left in which the resulis of the actual com-
parisons are entered as a 1 in the row of the dominant stimulus and column
of the nondominant one, and a 0 in the symmetric position. Unknown rela-
tions are blanks. After each entry is made, its implications are deduced: If
there is a 1 in Row iand Column jand a 1 in Row j, Column % this is an im-
plication that i dominates & That is, i dominated j which dominated £, so
therefore i dominates . The implications are recorded in a second matrix,
shown at the right. The implied relations are used in turn to possibly imply
still further relations, and so on, until no higher order implications are
found. However, there can be no implications until at least two stirnuli have
more than one observed relation, (With fallible data, there is an issue of
when an implication should be believed, and we discuss this in some detail
shortly.) For the time being, we will simply assume that all implications are
accepted. Running totals are kept of the wins and losses, whether direct or
implied, for each stimulus, denoted w, and I, respectively, the net wins, w, -
{, and of the number of relations that are neither observed directly nor pre-
dicted for it, n — 1 — w, — L.

For convenience in illustrating, the true order in Table 8.3 is alphabeti-
cal, a, b, ¢ 4, ¢ f First, each element was randomly matched against an-
other, three matches in all, and it was found that 2 >* ¢, b>* 4, and e>% f
Then &, a winner, was selected randomly from the six; it was to be paired
randomly with another winner, and it happened that ¢ was selected from
the other two winners, ¢ and ¢, the comparison finding & >* & These four
observed relations are displayed in the upper left panel of the table with 1s
in the row and column of the winners, and 0s in the row and column of the
losers, other elements being blank. This matrix will be called A,



191

TABLE 8.3
Hlusiration of Implied Orders

{lserved Domimanees Irplicationy
Fourth Comparisen
Elements Elemenis
r d i [ b ¢ d HWins Laosses
P i o X 1 0
b 1 ] ® 3 0
r x € X ] 1
d 3 d % [ 1
e 1 [ 1 1
I x f 1] o 4
bu*r ba® ent f
Fijth Comparion
Elrments Elrmenits
Iy o f a b v ) HWins Losses
a 1 1] x 1 2 [+
] 1 h % 3 L]
¢ ® 1 € x 1 H
d 0 E o 0 X 0 3
r 1 r L i
I x f 0 o 2
IR o> e>* d
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There is now an implied relation: £>* £ because 6>* ¢ and ¢>* fas noted
earlier, This relation is entered in the appropriate positions in the right-
hand panel, which we refer to as A% The w, and [, scores, counting both ob-
served and implied relations, are on the far right. There are now three ele-
ments that have only one known relation, a, ¢, and 4. Element ¢ was then
chosen randomly from these three. Itis tied in net wins at —1 only with 4, so
these two are compared, and ¢ >* d, This results in a new implication be-
cause previcusly it was found that & >* ¢, s0 a>¥ ¢>¥ d. These relations and
the resulting scores are shown in the second set of panels, labeled Fifth
Comparison.

The examination of the resulting scores finds ¢, g and f to have the few-
est known relations; ¢ is randomly chosen frotn among the three and
matched with ¢ because it is closest to it in net wins. The outcome ¢ >¥* ere-
sults in two direct implications: a>* ¢>¥ eand ¢ >* ¢>* f These provide an
indirect or second-erder implication; a >¥ e >* £ The next set of pancls, la-
beled Sixth Comparison, shows the matrices with the observed (left) and
implied (right) relations to this point. The wins and losses are again given
at the Far right. The next three sets of panels show the completion of the
process. Inspecting the next-to-last set of matrices, it is seen that the only re-
lation that is not known is & versus e. ‘The result 5 >* ¢1s shown in the last set,
and all relations are now known, nine directly and six by implication.

At cach step, after the first set of matches that compare each element to
one other, the process is the same:

1. Select the element with the fewest known or implied relations, choos-
ing randomly among those tied for lowest number.

Mo

Match that elemernt with the one nearest o it in the order as known
so far, choosing randomly among those equally close.

Record the outcome of the match.

Deduce the implications, direct and indirect, if any, and record those,
Count the direct or implied wins and losses and record those,

Go back to #1.

S

‘The procedure stops, of course, when all relations are known or implied.
The complete order was deduced here from 9 of the 15 comparisons.
Thus, even with this small number of objects, 40% of the comparisons were
saved. The result can be compared with the theoretical minimum. With six
abjects, the number of possible orders s 6! = 720, and log, (720) = 9.49. This
is the average number of comparisons necessary to develop the complete
order, and accomplishing it with 9 rather than 10 ook a bit of luck. This oc-
curred most obviously in selecting the eighth comparison, dversus ¢ At that
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time, 4, which had the fewest known relations, 3, with net wins of -3, was
equidistant from ¢, with net wins of -2, and f with ~4. It happened that the
random choice came up in favor of ¢ If the reverse had happened, the 4 >*
fresult, which here was deduced when d>* g would have meant that com-
paring d to ewould still have been necessary. Thus, 16 comparisons could
have been required except for the result of one of the random selections.

Inconsistency

In the procedure just described there is, however, no opportunity for viola-
tons of transitivity to show themselves. In a sense, the outcome is as artifi-
cial as the telephonic scale, and the resulting order may be completely arbi-
trary. In demonstrating an order, here as elsewhere, the ideal is a process
where the characteristics of order have ample opportunity to fail, and they
do not fail. What is to be avoided is artificial or confounding aspects of the
process that will lead to the appearance of order where there is none, or
very little. If the strict characteristics of a simple order are false, then we
want to quantify the degree to which the refations are consistent in order to
know how much confidence to place in the approximate order that results
trom the data.

There are two motives for any data-gathering process, and they need to
be kept separate. One is the desire to answer the question of whether there
is an order, To answer that one fully, we need to allow the data ample op-
portunity to show us that there is not an order. The other motive is to find
out the order if there is one. For that purpose, we want a process that is as
efficient as possible. But the first question is the one that has precedence.
Not until it is established does the second become relevant,

Compensating for Inconsistency

The Achilles heel of the implied orders process is that it assumes perfect va-
lidity in the observed relations, which is almost certainly uarealistic, The
original research (Kehoe & Cliff, 1975; Reynolds & Cliff, 1975, 1984} em-
ployed a variety of ad hoc methods in attempts to make such a system ro-
bust to inconsistency and invalidity. These sometimes consisted of requir-
ing thata relation be implied more than once. For example, a>* band b>*
¢ would not be sufficient in itself to imply a >* ¢, but the presence of addi-
tional relations such as a>* dand d>* cwould do so because now there are
two chains that imply e >* ¢, Such an event is easy to keep track of in the
process hecause it would result in an entry of 2 in A? in a cell which is empty
in A in matrices like those in Table 8.3.
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More commmonly, a quasi-statistical decision process was employed. This
was particularly necessitated in large sets of stimuli whose relations were
fairly unreliable because then it often occurred that there would both he
implications that a>* ¢ and that ¢>* a. A simple “majority rules” procedure
is unsatisfactory because a completely random process will usually result in
one direction or the other being favored. More importantly, the weaker ele-
ment may be ahead in the short run, resulting in the conclusion that ¢ >* g
when the reverse more nearly represents the true state of affairs. This
nonoptimum conclusion could turn out to be difficult to overtwrn with
later information once it is established. Furthermore, under some circum-
stances there may be relations that imply that e>* ¢ as well as implications
that ¢ >* 4. Should these cases be treated as ties or should some majority
rules principle be applied?

CUiff and colleagues (CIiff, 1975; Kehoe & Cliff, 1975; Reynolds & CIiff,
1984) attempted to study this issue by simulation. The question sudied was
How many implied dominances, or what majority of implied dominances, is
necessary to conclude that an implied ordinal relation is established in one
direction rather than the othes? They concluded that when there were as
few as two implications of a relation, with no contradicting implications,
that was a reliable indication that a >* ¢. When there were implications in
both directions, the situation was a bit more complicated, but again a small
majority was deemed sufficient. .

However, a similar issue arose in chapter 6, and there a formula was de-
veloped for the standard error of p; — f, (6.15), which facilitated deci-
sions concerning the inference that Person i would be correct on a larger
proportion of the items in 3 universe than Person h. The situation here is
very analogous, so those formulas can be applied here as well. Since the
frequencies will be small, Table 6.3 can be used, and the modest .20 signif-
icance level indicates that two uncontradicted implications are reasonable
grounds for inferring an ordinal relation. Where there are implications in
hoth directions, the further entries in the table could be used in making
the decision as to whether to assume an implied relation on the basis of a
majority decision.

In terms of the interactive process, the requirement that at least three
ohserved relations are needed to imply an unobserved one is rather strin-
gent. It means that the savings in number of judgments required is unlikely
to be appreciable unless there are at least 20 things to be ordered. An alter-
native, perhaps cavalierseeming, approach is to accept all implications.
The reasoning behind this is simply that the odds are in favor of the impli-
cation being correct rather than incorrect over a wide variety of circum-
stances, so one may as well take advantage of any implications that occur.

A second, more empirical, approach is to delay the implication process
until a2 more-than-minimum number of pairs have been presented, perhaps
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n pairs chosen at random or in a more systematic way that would guarantee
that each element would be involved in the same number of comparisons,
as described earlier in this chapter. Again, actual relations would be com-
pared to their implied status in order to evaluate the validity of the implica-
tions. The agreement between observed and implied relations is tabulated
and an ad hoc rule is derived for deciding when implications are to be ac-
cepted. The rule would be applied 1o those implications derived to that
stage, and used for subsequent implications as well.

Evaluating Implied Orders

In chaprer 7, we discussed in some detail the evaluation of the consistency
of a dominance matrix. This was largely based on counting three-cycles.
However, in using the direct implication process, we have avoided the op-
portunity for threecycles to occur. If a>* band b>* ¢, we infer that a>* ¢, so
the circularity {a >* b; b >* ¢; £ >¥ @} cannot occur, The dominance matrix
will be completely consistent.

Given that dominance relations have been implied, how likely is it that
they are correct? For that matter, how likely is it that the observed relations
themselves will be consistent? The most natural data on which to evaluate
observations and implications is their agreement with relations that have
been observed directly. The method is to have a sample of comparisons that
are used as a “holdout” or crossvalidation sample. These are not entered
into the dominance matrix. Some of them will be repeats of observed pairs
and some will correspond to implications; these two subsets can be sepa-
rated. Consider first the holdout relation that are repeats of actual
dominances used in the implication process. The directions of the holdout
relations are compared to the ones actually observed for those pairs. This
can be quantified in formula (7.20) in which the d, are the observed
dominances and the d,” are the corresponding holdouts and the denomina-
tor is the number of pairs summmed over.

Then, the same is done for those that holdouts that correspond to im-
plied pairs. Now, the d, are implied dominances and the d; are correspond-
ing holdouts, the denominator again being the number of pairs in the sum.
Thus, we have a tau between observed dominances and replicated (hold-
out) dominances and one between implied dominances and the corre-
sponding holdout values. Finally, we can use (7.17) to evaluate the extent to
which the order derived from the dominances and their implications on
one hand agree with the holdout dominances on the cther. In this applica-
tion, the 4, are observed holdouts and the d; are the values implied by the
order that has been derived from the interactive process, the denominator
being the number of holdouts.
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PARTIAL RANKING METHODS

Because there are so many possible pairwise comparisons, and even the
shorteuts described earlier can result in a large number, methods that re-
quire fewer responses may be desired. It is often the case that research ex-
perience with the stimuli in a domain indicates that they conform reason-
ably closely to the requirements of the dominance order. In that case, some
form of ranking method is appropriate in many applications, However,
people find that a full ranking can be a tedious and confusing process when
there are more than a dozen or so elements, and this is not surprising. In
order 1o rank a set of things, the observer really has to go through some
mental process similar to the pairwise comparisons,

The most effective alternative is usually some variation on ranking or
partial ranking of subsets. Gulliksen and Tucker (1961) described metheds
for systematically composing the subsets in order to balance the presenta-
tion of each stimulus and allow it to appear in subsets that contain as many
as possible, preferably all, of the other stimuli. They also provide for the as-
sessment of threecycles.

Comnplete balancing is only possible with certain combinations of set-
sizes and numbers of stimuli, and not for all numbers of simuli. If domi-
nance information is to be cbtained for all pairs, each element must be
presented in combination with all others in exactly one sct. Using s as the
number of sets and kas the number in a set, then for complete balancing it
therefore must be that sk{(k — 1) = n(n - 1),

A small jllustration is provided in Table 8.4 in which 9 stimuli are pre-
sented in 12 sets of size three. The stunuli are labeled g, 5, . . ., 4 the firsi sec
containing @, &, ¢ and the last, ¢, £ k. When the members of a set are ranked,
this provides three dominances; 12 sets then provide 36 dominances, which
is the number of pairs in the full set. There is no possible inconsistency
within a set, but dominances from different sets can be three—cycles.
Gulliksen and Tucker (1961} provided formulas for comparing the num-
ber of three-cycles, deduced from the variance of the dominance scores we
described earlier, to the maximum possible number.

Their methods assume complete ranking within subsets. However, sub-
jects are often uncomfortable with this, feeling that some discriminations
are difficult or arbitrary. Some type of partial ranking is often preferred by
them. The simplest approach to indifference or nondiscrimination is to al-
low “don’t know,” “can’t say,” or "equal” responses. An alternative, particu-

TABLE 8.4
Balanced Sets of Three Qut of Nine Stumuli

abr def gha adg agh afi
belh bei b edi ceg ofh
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larly when the set-size is more than three or four, is to choose one liked best
and one liked least (or whatever dimension of judgment is appropriate),
and then the one liked next best and least, and so. This can be imple-
mented with 2 computer program that stops asking for choices whenever a
“can’t say” response is encountered. A variation that is even simpler for the
subject is to ask which two or three are liked best and least, or just which are
liked and which disliked. The results of the choices in any of these methods
are used to imply the obvicus dominances.

RATING SCALFS

The ubiquitous rating scale is by far the commonest data-gathering ap-
proach for getting ordinal judgments from subjects about people, con-
cepts, and things. The term rating scale refers to the familiar process in
which the respondent is presented with a list of things, say, desserts, and a
set of categories, ordered, say, in tastiness, and asked to indicate the cate-
gory in which each dessert falls. The definition of the categories can take
many forms: they can be given verbal labels or not, or just the ends can be
labeled; numerals can be used to label the categories. The number of cate-
gories can vary from 2 or 3 to 10 or more. Whatever the specifics are, the re-
spondent puts each dessert into one of the categories, and the response is
presumed to provide quantitative information.

There is no doubt that rating scales are more efficient than any pair-
comparison or direct ranking procedure in terms of the rate at which sub-
jects can provide data. In spite of the fact that there is rarely any reason 10
believe that they give anything other than ordinal information, the re-
sponses are commonly treated numerically: the numbers are averaged, dif-
ferences are compared, and the like. In this section we briefly consider the
rationale for rating scales in the context of the ideas we have presented
about the bases of measurement, and we make some suggestions about rat-
ing scale methods.

What Information Do Rating Scales Provide?

If one stops to think about it, the fact that rating scales work at all is a re-
markable psychological principle. The steps in the process that must occur
mentally, must be rather complex, and they rely on the respondent’s ability
to behave abstractly. There must not only be a concept of the thing to be
rated, or often a concept of some aspect of it, but also conecepts of the cate-
gories that are used in the rating. Moreover, both types of concepts have to
behave in a quantitative manner, at least to a reasonable degree. In spite of
the apparent complexity, the process works quite well in many situations.



160 CHAFTER 8

It is rare, however, that there is an empirical basis for calling the result-
ing numbers more than ordinal. As we have seen in earlier chapters, this
would require verification of the conjoint measurement axioms, and this is
rarely the case, although there are instances such as Anderson (1962) and
CIiff (1972). Indeed, it is not obvious how even the requirements of
ordinality can be verified, particulatly that of transitivity. The use of ratings
therefore seems to be pretty much measurernent by fiat, but because their
usefulness is beyond doubt, it must have some basis.

There are two general aspects of this basis. One can be that reasonable
ordinality has been demonstrated in the past for the ratees. That is, some
form of paired comparison procedure has been carried out for these stim-
uli, or some like them, and found to behave reasonably well. Then, ratings
have been obiained of the same stimuli, and their order as determined
from ratings has agreed well with that derived from the comparison proc-
ess. Another area of evidence for ordinality can come from replication of
the responses. Surprisingly, it is moderate disagreement among replica-
tions, rather than perfect agreement, that provides a logical basis for con-
cluding that rating scales provide ordinal information. This is because the
pattern of responses to the items often corresponds quite well to that of an
inderval order, which is discussed in chapter 9. Thus, the ordinal status of rat-
ing scales is quite reasonable in a wide variety of contexts,

Constructing Rating Scales

Rating scales are so common, the reader may have occcasion to construct, or
at least evaluate, an application. Some general advice may therefore be use-
ful. The principles suggested here may seem selfevident or common-
sensical, but they are overlooked often enough to justify their presentation.

The mostimportant is that the directions should clearly present the basis
for rating. What is the main dimension that is to be considered? If there is a
special context or point of view, it should also be stated clearly. An overview
of the range of stimuli is also useful because otherwise the respondent may
have to change the way he or she is using the scale partway through if unex-
pectedly extreme stimuli are encountered. These points may be summa-
tized by saying that what the subject is doing should correspond as closely
as possible to what the investigator intends.

The number of categories to use should be determined by the fineness
of discrimination that is to be expected from respondents, the investigator
bearing in mind that randorn others are unlikely to be as interested in the
stimuli as she or he is. Four to nine categories are probably the range that
should be considered, although simulations seem to indicate that the qual-
ity of results is not affected by the number of categories per se. A related
question is whether to use verbal anchors for the scale, and how many. Our
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preference is to use anchors for the two extremes of the scale since this
helps to remind the respondent of the context and perhaps to induce some
uniformity in the way the scale is used by different ones. Where scales are
bipolar we tend to avoid labeling the middle category as “neurral” or the
like in hope of reducing the tendency to be noncommittal. This is facili-
tated further by using an even number of categories so that there is no mid-
die ground to choose. This tactic must be used judiciously as respondents
may object to being forced to choose and retaliate by not answering items at
all. Whatever the number and format of the categories, the initial direc-
tions should urge respondents ta use the whole scale, a suggestion that may
be repeated from time to time if there are several pages of stimuli to be
rated. The overall objective of getting as much information as possible in as
uniform a manner as possible should be the basis for judging the format.
Pretesting, and subsequent discussion, with at least a few respondents who
are similar to the intended group is often superior to hours of thought or
committee discussion of the format and directions.

OVERVIEW

This chapter has dealt with methods for reducing the number of responses
thal is necessitated by complete paired comparisons. First, some possible
reasons for not having dominance information about all pairs were given,
including not only deliberate design but inadvertance. Then, after tourna-
ments were mentioned briefly, procedures for selecting systernatic subsets
of pairs that allowed all the elements to have an equal number of appear-
ances were described. It was noted that, although there are a number of
possibilities, some combinations of number of elements and number of
presentations per element are not feasible.

Another approach to using pairwise comparisons but not employing all
pairs is a computer-based method that systematically selects pairs to be pre-
sented so as to maximize the amount of information provided by each pair.
Although there are issues that revolve around how best to take advantage of
responses that are unreliable, the method has much to recommend it
Then methods that involve the rating or partial ranking of subsets were de-
scribed. Finally, a brief discussion of ranking methods was provided.



Chapter 9

The Unfolding Model

WHY “UNFOLDING™?

Tn chapters 3 to 6 we have been concerned with a single ordering of per-
sons by items or items by persons. In chapter 7, differences between the
orders from different respondents were considered random fluctuations
from one underlying order. However, suppose in an intense political cam-
paign, for example, potential voters would give different orderings. It is
assumed that these different orderings are substantiated in the way pro-
posed in chapter 7.

In this chapter the orderings will not generally be simple in that the or-
dering produced by one person may have no relationship with that pro-
duced by another. The original linear ordering of items on a single dimen-
sion may be perceived as being in one direction by one subject but in the
opposite direction by another or even in some guite different direction by a
third. This situation can be shown to arise if the items and subjects occupy
the same line but the ordering by a subject would reflect the order of the
distances of that subject from each item in that dimension.

In a particular case the order of the distances might represent the order
of preference for the items by the subject. Figure 9.1 reveals the relation-
ships between the items and the subject (I) and the ordering of the items by
the subject in terms of their distances along the folded scale (1). Hence the
term “unfolding” to describe the derivation of the items scale from the tab-
ulation of preferences on the individual’s I scale.

162
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J scale of items

A 1 E 1 C o 11 E

A i

FIG. 9.1.  The vertical scale of Person I corresponds to a preference order
ingof DECBA.

This configuration of points can generate up to 11 different orderings,
depending on the position of the individual I; for example, a subject closest
to Stimulus A will order the others as BCDE, and conversely, one closest to
Stimulus E will order the others as DCBA. If the subject closest to A moves
over the midpoint of the interval AB so that it is closest to B, his order will
become BACDE, and so we see that crossing a midpoint will change an or-
der. With five stimuli (8 = 5) there are at most 10 distinct midpoints, and so
11 different orderings of the five stimuli will be possible. Of these only
ABCDE and EDCBA will be opposites. With 8 stimuli in one dimension
there will be a maximum of 168(8 — 1) + 1 different orders, but only two of
these will have opposites. These two orders with opposites will correspond
to the order of the stimuli on the straight line. All subjects’ orders must end
with one of the two extreme stimuli of the orders with opposites.

The order DECBA applying to Person I can be thought of as consisting
of flags with the letters DCBA on one side of a string folded at Point I,
whereas the letter E is on a flag on the other side of the folded string. If the
string is unfolded, the order of the letters on the straight piece of string will
be EDCBA, which is the order of the points on the line. Hence the aim of
the model is to determine the order of the points from the preference or-
der of the stimuli from each subject. Hence the term unfolding model is used.
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ANALYZING ORDERS

In writing about the unfolding model researchers often imply that the two
scts of variables relate to individuals on the one hand and a set of stimuli on
the other. However, Keats {1972) used social class groups ordering types of
rass media as the units of an unfolding representation in one dimension.
The one-dimensional unfolding model was first put forward by Coombs
(1951) but Lttle use was made of it for the next 10 years, possibly because
the single dimension was not very commen in real empirical data.

Bennett and Hays {1960), as well as McFlwain and Keats (1961), pub-
lished articies that had titles beginning “Multidimensional Unfolding” with
the first pair of authors using an algebraic approach and the second a geo-
metrical one. To understand the nature of a two-dimensional display of
stimuli and subjects, the simplest case to consider is the one in which there
are three stimuli, A, B, and C, and start with one dimension, as in Fig. 9.2.

The order CBA and its opposite ABC cover the rightend open region
and the left-end open region, respectively, and reflect the order of the stim-
uli on the line. The combination AB and its corresponding vertical line
mark the point of change from ABC 10 BAC and similarly for AC and BC
and their vertical lines. The two orders ending in B, ACB and CAB are not
generated from the figure and confirm the fact that three stimuli in one di-
mension generate 4 = %3(3 - 1) + 1 orders. If the orders ACB and CAB do
occur in the data, then these data do not conform to the model and would
require a two<dimensional representation.

In two dimensions, A, B, and C can form a triangle, ABC, which could
generate three concurrent perpendicular bisectors of its sides AB, BC, and
AC. The six regions defined by these bisectors would correspond to the six
orderings of A, B, and C, ABC, ACB, CAB, CBA, BCA and BAC, as seen in
Fig. 9.3.

Dimensions and Orders

Some numerical propertics of the unfolding model need to be heeded if
the model is to be used with real data from empirical studies. These proper-
ties are reported in Coombs {1964, pp. 1583-180} and in McEilwain and
Keats (1961).

AB AC BC
A { ! B ! C

Qder  ABC BAC  BCA = CBA

FIG.9.2. The possible orderings of three stimuli on a line, and the regions
they cover.
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FIC. 9.3. The regions and their orders generated by three points ABC in
two dimensions and their perpendicular bisectors.

1. If one dimension is being considered for & stimuli, the largest num-
ber of orders 10 be considered is 3Ry = %S8(8~ 1) + 1 with only one order
having its opposite also occurring. The order whose opposite also occurs is
the order of the stimuli on the straight line defining the dimension.

2, If a second dimension is defined by wrapping the straight line around
a circle, the orders defined by the single dimension will all have their oppo-
sites also occurring in the circular representation. This will yield a total
number of orders of s0z = §($- 1) of orders whose opposites also occur. A
distinction is rnade between R, the total number of orders of §stimuli in a
given number of dimensions, D (e.g., sfp), and O the total number of or-
ders and their opposites that occur with 8 stirnuli in a given number of di-
mensions, D (e.g., sOp).

3. Although it is always possible to calculate the value of sR; = %8(5- 1)
+ 1 for one dimension, it is not obvious how 1o calculate the maximum
number of orders i for two dimensions. Coombs (1964) gave formulae
that lead to the relationship:

ng = (S_I)Rg + (S'- 1)13,”R| (9.1)

Thus for four stimuli in two dimensions, the greatest number of orders
with or without opposites, 4Ry, will equal 6 + 3 x 4 = 6 + 12 = 18. Thus, by
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chaining the calculations it is possible to calculate the greatest number of
orders for any number of stimuli in any numnber of dimensions. The for-
mula for (R, generalizes to:

sfip = (s-nBRo + ($— 1)es-nwRp_y. {9.2)
Coombs (1964, p. 154), formula (7.1} quoted an observation by Leisenring
which leads to this formula. Parallel formulae to those given for R can be
derived for O, the number of orders whose opposites occur.

By combining the formulae relating (R, s_, R, and 5_y R} it may be shown
that:

sFy = S(8~1)(S~ 2}(38— 1}/24 + &85(S— 1) + 1 (9.3)
or
=885~ 1)(8-2){(385- 1)/24 + s (9.4)
and the further extension to:
:;Rg = [S(S— 1)]2(5 - 2} (S— 3‘)/’48 + ng, (9.5)
or
=585 - D(S-2)(F~ 45 +95- 2) + R (9.6)
so that the values of R, the number of different rankings of 8 stimuli in two
or three dimensions can be calculated more directly.
We note that 0, = 2 irrespective of the value of §> 2 and ;0, = 5(5-1).
From these values we can use the generalized formula for (O to calculate

the greatest number of orders whose opposites occur for any number of
stimuli in any number of dimensions. We note that:

sOp=(5.10n+ (S~ 1}s-1:0m-1. (9.7)

and more generally,
=8S-1)..... {(§-D+ 1) (9.8)
Table 9.1 presents 81, the greatest number of different orders that can be

obtained from Sstimuli in S— 1 or more dimensions and the greatest num-
ber of orders that can be represented in D dimensions. This table can be ex-
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TABLE 9.1
The Number of Orders With Opposites (0) and Orders With
or Without Opposites (R} With § Stimuld in D Dimensions

Dimensions D

I 2 3 4 3

5 & O R O R (&) R 0 H [ "

2 2 2 2 2 2 2 2 2 2 2 2
] 6 2 4 6 6 6 & 6 & 6 6
4 24 2 7 12 18 24 24 24 24 24 24
b 120 2 11 20 46 72 96 120 120 120 120
6 720 2 16 30 101 172 326 480 600 720 720
7 5040 2 22 42 197 352 932 1512 2556 3600 4520

tended beyond the seven-stimuli case considered in it using formulas pre-
sented earlier.

Locating Points

Having used Table 9.1 to determine the minimum number of dimensions
required to accommodate a given R orders from § stimuli the question
arises as to how the §stimuli are to be arranged to generate the R orders.
One can proceed as follows. If there are three stimuli in one dimension, the
two orders which are opposites define the position of the stimuli on the line
and the stimulus that lies between the other two will not appear last in any
of the four orders. This is illustrated in Fig. 9.2 above. With three stimuli in
two dimensions, all six possible orders occur, as shown in Fig. 9.3.

With four stimuli, the possible configurations in one or two dimensions
have been dealt with exhaustively by McElwain and Keats (1961) and repub-
lished in Coombs (1964, pp. 153-180). In Fig. 9.4, the left-hand line gener-
ates all seven of the possible orders of four stimuli in one dimension but the
right-hand line generates only six because the midpoint of {3), (3) coin-
cides with that of (0), (0} so that one possible order is lost.

With four stimuli in two dimensions, there are only three arrangements
that generate all of the 18 possible orders, as shown in Fig. 9.5.

-

=l k] — d—
“ © @ @ @ © © @

FIG. 9.4. Possible arrangements of four points in one dimension.
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Sowtion (6, 6, 6, 0) (6,6,4,2) {6,8,3,3)
B« @ @ @@ @
N0 NN
2,

\“.l\ b . ' b . i

. o+ 61+

FIG. &.5. Three arrangements of four stimuli producing 18 orders.

Reading from left to right in Fig. 9.5, the first configuration, represent-
ing the [6,6,6,0] solution, allows for the fact that a simulus point that is
within the triangle defined by {6,6,6,] will never be placed last in any of the
possible 18 orders of the four points. The middle figure shows the effect of
the point {2) being outside the triangle [6,6,4,] but inside the circle and
parallelogram defined by the points (6,6,4,]. The point (2) will be ranked
last in two of the 18 orders. This solution is referred to as the [6,6,4,2] solu-
tion. In the right-hand figure one (3) is a point on the reference circle, tri-
angle, and parallogram while the other (3) is outside the triangle and the
parallelogram but inside the circle defined by [6,6,3). The line {3.3] is
closer to the point (6) which begins the two missing orders [6,3,6,3].

The next three orders come from special figures which have lost one or
two orders because of their special features. The four orders (2.6,6,2) oceur
but no others ending in 2, as shown in the middle section of Fig. 9.6. In the
lower section configuraton the two orders (6,6,0,4) and all orders ending
in (0) are missing. In the trapezoid, one order (6,2,6,3) occurs and the
stumulus (6), appearing first, is farther from the shorter diagonal than the
other stumulus (6).

The preceding figures and descriptions illuswrate the ways in which the
existerice and nonexistence of some of the possible orders among a small
set of points implies a particular configuration for them. There are numer-
ous other possible constraints of this type that we do not describe here.

Davidson (1972) built on the work of McEhvain and Keats (1961). He
proved 10 theorems relevant to the problem of establishing the nondegen-
erate configurations of § stimuli in ) dimensions in the case of the com-
plete set of (Rp orders appearing in the data. As an example he showed how
to use the theory to locate four stimuli in two dimeusions given the com-
plete set of L8 orders. His solutions relate to nondegenerate cases.

Following his doctoral research, Davidson studied category theory un-
der Dr. Wallace of the Mathematics Diepartment as a basis for developing
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FIG. 9.6. Degencrate cases with d W *
one or two orders missing. (3] 0 {6}

a general method of finding both degenerate and nondegenerate solu-
tions for unfolding data. The results of this research were published in
Davidson (1973). During this period various computer programs were
published for solving the general problem, but these selutions had prob-
lems arising from the fact that the spaces studied were nonhomogeneous
as far as unfolding models were concerned. Various sets of data generated
by Davidson’s methods were sent for computer solution but no solutions
were forthcoming,.

UNFOLDING OF ORDERS VERSUS ANALYSIS
OF INTERSTIMULUS DISTANCES

In 1952, Torgerson published his method of multidimensional scaling of
interstimulus differences as part of his PhD thesis. The distances were
sometimes estimated using the method of paired comparisons or by rat-
ing methods. They were treated as interval scales which, of course, the lat-
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ter were not. It seemed to be important to compare the two methods of
multidimensional scaling, scaling of orders, unfolding, and scaling of dis-
tances, using the same set of stimuli. The results of such a comparison
werce published by Keats (1964) using five Australian political parties at
that time as stirnuli: the Australian Labor Party (A), the Liberal Party (L),
the Country Party (C), the Queensland Labor Party (Q ) and the Commu-
nist Party (K}).

The data were collected by presenting the subject with each of the 10 pairs
of political parties and asking which one she preferred and asking her to rate
the difference between the two parties on a scale ranging from itele difference
o @ very greal difference. The results of the paired preferences from each of the
approximately 500 subjects could be combined 1o obtain an order of prefer-
ence providing they were transitive, which they almost always were. In the
very rare event of intransitivity the order obtained contained ties.

Almost all of the preference orderings of the five political parlies were
accounted for in terms of a two-dimensional unfolding model. The point
corresponding 1o the Liberal Party (L) lay inside the quadrilateral formed
by K, A, C, and Q and generated the full 46 orderings possible from five
stimuli in two dimensions and accounted for more than 95% of the cases.
The configuration is shown in Fig. 9.7.

When the 10 differences were analyzed as distances by Torgerson’s mul-
udimensional scaling for the full 500 cases they required four dimensions,
which were the greatest number that should be needed by five stimuli.
However, when the group placing the Australian Labor Party (ALP) first
were taken and their 10 differences analyzed that way, they were found to fit
neatly into two dimensions, as were the distances for the group placing the
Liberal Party (LP) first. However the two representations were found to be
very different, as shown in Fig. 9.8.

From this comparison it seems clear that in cases where stimuli have
strong feelings associated with them the perception of the relatdonships be-
tween them can be distorted by the preferences. From the point of view of
politcal policies, the Communist party and the Queensland Labor Party
were diametrically opposed, so that the Liberal Party’s perception of them
as being relatively close is a distoriion, whereas the Australian Labor Party's
view of them as being closer to the Liberal Party and the Country Party in
opposing the Communist Party was more realistic.

Another type of analysis was to take the figures from the Torgerson anal-
ysis and interpret them as unfolding diagrams and draw in perpendicular
hisectors and generate orders. When this is done for the LP group figure,
the orders given by that group were obtained, but not those given by the
ALP group. A similar result was obtained from the ALP group’s figure with
their group orders being obtained, but not the LP group’s orders. In other
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FIG.9.7. The unfoldingsolution for the orders of the five political parties.

words, subjects could perceive the different orders from their own group
but not those of the opposing group.

One conclusion that could be drawn from this comparison is that the un-
folding approach was suitable for stimuli that produced affective responses
but the multidimensional scaling approach was more suitable for the more
psychophysical studies where responses are less affected by qualitative re-
sponses. Using both methods with the same set of stimuli shows how the
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FIG. 9.8. Comparison of the two representations of differences for the po-
litical parties, A and L.

preferences can influence the perception of the stimuli. However, the un-
folding approach is impractical in situations in which a large number of
stimuli are invelved.

COMPARISON BETWEEN MULTIDIMENSIONAL
UNFOLDING ANALYSIES AND FACTOR ANALYSIS
OF CORRELATED VARIABLES

The data available for this comparison arose from a study of response styles
detected in personality tests. The study was reported by Jackson and
Messick (1962) on acquiescence and desirability as response determinants
on the Minnesota Multiphasic Persenality Inventory {MMPI}. Each of the
300 items consists of an affirmative statement such as “I do not tire quickly,”
or “I am worried about sex matters,” to which the subject is required to re-
spond with “True,” “False,” or “Cannot say.” The responses provide scores
on one or more of several clinical scales such as Depression, Hysteria, or
Parancia.

In the Jackson and Messick study each item was rated by experienced
psychologists in terms of how desirable a frue respense could be considered
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and the 300 items were sorted into five scales ranging from Dyl for the high-
est desirability through Dy5 for the scale with the lowest desirabiliry. Each
scale contained 60 items except Dyl for which only 50 extremely desirable
iterms could be found. The ilems of the MMPI were administered to subjects
who were either students (334), or people in prison (201), or patients from
a neuropsychiatric hospital (194). The responses were scored on the 20
scales of the MMPI as well as the five desirability scales and the MMPI valid-
ity scales. A variable of acquiescence was defined in terms of the number of
itwms times a subject endorsed. The 29 variables were intercorrelated and
factor analyzed 10 produce nine factors.

The five desirability scales were strictly ordered from Dyl (mest desirable)
to Dyb (least desirable) and it was possible 10 order them again in terms of
their correlations with each MMP] scale for each sample and tabulate the
various orders. From the point of view of the unfolding model, it should be
noted that some scales were in two forms; in one a frue response was scored
and in the other a false response was scored for the college sample and the
hospital sample separately. Thus the order for one form would tend to be
the opposite of that for the other. In Table 5.2 the scales Dyl to Dy5 are rep-
resented by the numbers 1, 2, 5, 4, and 5.

Unfelding Dimensions of the MMPI

Two of the 70 orders derived from the samples and 35 personality scales,
did not fit the pattern of the other 68. The + occurs because some of the or-
ders contained ties but otherwise agrecd with the orders they are added to.
The orders fitted into a two-dimensional circular pattern in which two pairs
did not appear because of equality of intervals, and all orders had opposites

TABLE 9.2
The Orders of the Correlations With the Desirability
Scales of Each MMPI Scale for Each Sample

Mirdpoint
Order Fregueney Crossed Opposite Frequeney
12345 6 —_ 54321 27+ 3
21545 4 (1,2 54312 5
28145 2 (1,3} H4132 -
32415 2 2,3y & (L,49) 51423 1
34251 — {2.4) & (1L.5) 15243 —
34521 2 (2.5} 12543 -
43521 i (3.4} 12534 8+1
45321 2+1 (3,5} 12354 3
54321 5 {4.5) 12345 4
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FIG. 9.9, Sdmulus locations and interval midpoints.

possible, even though one pair did not occur in the data. Figure 9.8 displays
the location of the desirability scales and the scales of the MMPI.

The unfolding figure was thus circular and the location of the scales was
very similar to that which appears in Jackson and Messick (1962, p. 291)
representing the loadings from the factor analysis of the intercorrelations
between the variables. The unfolding figures are shown below.

The left-hand column of orders in Table 9.2 form the orders for five
stimuli on a straight line with some equal intervals which lead to omissions
of possible orders. Figure 9.9 presents this special case with the stimuli
1....5, and midpoints (1,2}, (1,8) and so on to (4,5) and the orders from
12345 10 54321.

Notice that the midpoints 2,4 and 1,5, which coincide in Table 9.2, are
not included because they have no cases. Also, the 1,4 and 2,3 midpoints co-
incide, so the former is not labeled. In order to include the orders in the
righthand column of Table 9.2, the first thing to note is that two dimen-
sions are required because more than 11 different orders of five stimuli oc-
cur in the data and because more than two orders have their opposites oc-
curring. It should also be noted that inost of the orders have their opposites
occurring which is true of two dimensional cyclic sclutions. Figure 9.10
presents more complete, cyclic unfolding solution.

SOME APPLICATIONS OF THE UNFOLDING MODEL

During the almost 40 years since the formulation of the unfolding model by
Coombs (1964}, which included the work of McElwain and Keats (1961),
there are relatively few published reports using the model. These are typified
by having few numbers of stimuli because of the difficulties of analysis when
larger numbers, more than 6, are involved. Such sets of stimuli are usually
important in the cultures of the subjects and cross-cultural comparisons can
be made without needing to check the assumptions needed when the nor-
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FIG. 9.10. Cyelic solution for the MMPI daia.

mal cognitive or attitudinal items are involved as shown in chapter 5. Details
of some published examples of the use of unfolding models follow.

Example 9.1

The first example involved four idealized types of persons, Saints, Scholars,
Heroes and Artists, and subjects included students from Malay. Chinese
and Hindu populations, from Malaysia, and students from Australia of
slightly higher age level. The report (see Keats, 1962} was published in the
Joumal of Social Psychology at the request of that journal's editor for cross-
cultural reports. The main Malaysia—Australia difference lay in the fact that
some Australians tended to rank Saints Jast whereas almost none of the Ma-
laysians did.

The Malaysian subjects were all asked to rank the four idealized types ac-
cording to their importance to the community. The Australian subjects
were presented with pairs of types and asked to indicate which one was the
more important. Very few (13} of these 243 subjects produced intransitive
orders and 12 of these were cycles as discussed in the previous chapter. Well
over 80% of the subjects in each of the four cultural groups gave orders fit-
ting a 6642 mode) of the kind shown in Fig. 9.5. Figure 9.11 presents this
model with the frequencies for each of the orders for Australian and Ma-
layan subjects separately. The cycles were represented in this figure by cen-
troids of triangles in seven cases.

Example 9.2

A series of examples were presented in Keats (1964) including the political
parties already referred to as well as types of crimes and preferences for stu-
dent accommodation. These examples relate the unfelding diagrams with
those of multidimensional scaling of the kind developed by Torgerson (1952).
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Example 9.3

Another series of studies referred to the importance placed by adolescents
on consulting referent others such as parents, siblings, teachers, other
adults, and friends on problems related to school performance, personal
appearance, popularity, and other aspects of adolescence (Keats et al.,
1683}. The studies used subjects from Australia, the United States, Malay-
sia, France, and Norway.

DICHOTOMOUS DATA

Proximity-Based Responses

Our description of unfolding has been based on the assumption that the
datz consist of rank-orders of zn stimuli by m rcspondents. However, some
dichotomous data may be the result of an unfolding type of response proc-
ess in which the respondent has been required to make a dichotomous re-
sponse. For example, instead of being told to rank-order the stimuli, the re-
spondent could be asked “Which of these do you like?” or told to “Cheose
the three you like best” from among a set of possible choices. If the “ideal
point” model is descriptive of how the respondent decides which alterna-
tives to choose, he or she will give a positive response to elements that are
close to his ideal and negative responses (o those that are far from it. When
different respondents have different ideals, their selections will differ ac-
cordingly. This section describes some methods for inferring ordinal infor-
mation about stimuli and respendents from the choices.

The reader can recall from chapter 2 the classification system for data
developed by Coombs (1964). In it, the contrast between dominance and
proximity was one of three fundamental dichotomies for classifying types of
data. Unfolding is a type of proximity response, and, when the basis for
choice is unidimensional, the response matrix in situations like that de-
scribed in the previous paragraph should look like Table 9.3, once the rows
and columns are appropriately ordered. That is, dichotomous choice data
can be an example of two-set proximity data.

Recovering the Order

With real data, the neat arrangement shown by Table 9.3 can only be ap-
proximaied, and, when the underlying order for rows and columns is un-
known, finding the best oxders can be a difficult task. Cliff et al. (1988) sug-
gested a procedure that was quite successiul. The data that one starts with is
simply a table with dichotomous entries, say, Is and 0s, and the positive re-
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TABLE 9.3
Responses in Ideal Case of Dichoromous Unfalding
ftem
I 2 3 4 5 & 7 8 9 n

Person 1 1 1 1 0 0 D D 0 0 D
2 i 1 1 1 0 0 0 0 0 0
3 1 H 1 1 1 o 0 o 0 0
4 1 1 1 1 1 0 0 0 o 0
5 0 1 1 1 1 1 0 0 0 0
6 0 0 1 1 i 1 1 0 0 0
7 0 0 1 1 i 1 1 4] 0 0
8 0 0 0 1 1 1 1 i 0 0
9 0 0 o 1 1 1 1 1 0 0
10 0 o ¢ 0 1 1 1 1 1 0
11 0 0 D G 0 1 1 1 1 1
12 0 0 ¢ o 0 1 1 1 1 1
13 0 0 0 0 o 0 1 1 1 1
14 0 0 0 0 0 0 1 1 1 1
15 0 0 ¢ G 0 0 0 1 1 1

sponses from one person are initially scattered haphazardly across the row.
However, if the columns, corresponding to stimuli, were in the best order,
the 1s for that person should be bunched tightly together, but reordering
rolumns te bunch one person’s responses may result in spreading out an-
other's. Also, there is nothing to tell us whether that one person’s responses
should be near one or the other end of the continuum or in the middle
somewhere.

Note, however, that in the ideal case represented by the table, the posi-
tive responses are consecutive in ail the rows, so with data we should try to
find an ordering that has this effect. Let us number the columns from left
ta right, 1 to m. A measure of how spread out a person’s responses are is the
varignce of the column numbers corresponding to her positive responses.
This variance will be as small as it can possibly be if all the positive responses
are bunched together in consecutive locations.

This suggests an approach to take with a data matrix whose rows are in
an arbitrary order that we believe represents dichotomous unfolding data,
or what Coombs (1964) called two-set proximity data: We should reorder
the columns 50 2s 10 minimize the average variance across respondents of
the ranks of the endorsed items. Cliff et al. (1988) followed this strategy, im-
plementing it with a computer program. The program examined the effect
on the average variance of ranks of interchanging all possible pairs of col-
wnns, and interchanged the pair that gave the greatest reduction in aver-
age rank-variance. It then looked for another pair to interchange by the
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same criterion, repeating the process until no further reduction in average
rank-variance could be accomplished.

We would like to reorder the rows—corresponding to respondents—in
the same way, but here there may be a computing problem due to the possi-
bly large number of pairs of subjects; with 200 subjects there are nearly 20
thousand pairs, It is also likely that the number of steps required to find the
best order will be correspondingly large. An alternative is to adopt a simpler
approach o ordering rows. After the columns have been optimally or-
dered, the persons are ordered in terms of the median rank of the items that
they have endorsed. This should give a reasonable approximation to the
optimum order. Tt can also be used as the starting position for the iterative
procedure, thereby greatly reducing the number of required steps. Unfor-
tunately for anyone that might want to apply this kind of procedure, the
programs developed by Cliff et al. (1988), are no longer available.

A caveat should be added to the earlier description. The reader may re-
call that in chapter 7, finding the best order from an inconsistent pair com-
parison malrix, the “correct” solution depended on the definition of coe-
recl. Furthermore, using one of the definitions of optimality, there was no
guarantee of obtaining its optimum solution other than trying all possible
orders. These issues are present here as well. “Minimum average variance of
ranks” is only one possible definition of how bunched together the positive
responses are, s0 a different one might lead to a different order. However,
as long as the daea are reasonably regular, solutions that are optimum by
different criteria should be quite similar. The other caveat is that there isno
guarantee that the pairwise interchange of columns until no improvement
takes place will itself lead 10 the order that has minimum variance of ranks.
It should work quite well toward achieving that goal, but there is no proof
that it does achieve it.

SUMMARY

This chapter assunies that the orders being dealt with are well established
but different for different people or groups of people in different culuures.
The Unfolding Model represents stimuli and subjects in such a way that the
order given by subjects corresponds to the ordering of the distances of each
subject’s ideal from the stimuli. Examples are given of three, four, or five
stimuli in two or three dimensions.

The relationships between the unfolding representations and those
given by multidimensional scaling are given for political parties by Keats
(1964) and also those given by factor analysis of desirability response scales
from a personality test, MMPI, from data from Jackson and Messick {1967,
p- 291).
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Examples of unfolding analyses of various sets of stimuli are given from
the literature. The first was published by Keats (1962) comparing second-
ary students from Malaysia and Australia and their attitudes to idealized
persons. Another example published by Keats et al. (1978) compared the
importance placed by adolescents on consulting referent others such as
parents, siblings, etc. on matters such as school performance and popular-
ity. Further rescarch could be carried out on stimuli about which subjects
may have strong personal feelings, such as religious organizations.

Situations in which the individual’s responses are dichotomous but are
based on an unfoldinglike process are fairly common. Some suggestions
concerning how such data can be analyzed were made.
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The Application of Ordinal
Test Theory to Items in Tests
Used in Cross-Cultural Comparisons

INTERCULTURAL COMPARAEILITY OF SCORES

In chapters 4 and 5, ordinal test theory was used to introduce the calcula-
tion of total tied-rank scores for dichotomous and polytomous items as well
as persons. In the case of dichotomous items, chapter 4 stressed the fact
that total tied-rank scores for both items and persons are perfectly linearly
correlated with the sums of the arbitrary, dichotomous integral scores, 0
and 1. This fact justifies the use of 0 and 1 scoring and implies that the con-
sistency value for items ranking persons, o, will be the same for each of the
two methods of scoring. In the same way we need to consider, also, the con-
sistency of persons ranking items, o, which will also be the same for each of
the two methods of scoring.

However, in chapter 5, it was shown that this relationship between total
tied-ranks scores and the sums of the arbitrary integral scores of 0), 1, 2, etc.
would not be found with polytomous items except in very special cases, for
example, the case when the frequencies of choices of the categories are
equal or very nearly equal across items. There is no justification in ordinal
test theory for the use of arbitrary integral scores for polytomous iterns.
Thus tied-ranks scores are always referred to in this chapter so that the
number of alternatives, two or more than two, will not be a problem.

In this chapter we are concerned mainly with the consistency with which
persons rank items. In chapter 5 it was shown that this consistency can be
measured by using the concordance coefficient formula for W adjusted for
ties. This value of W can be tested for significance and also transformed 1o
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the value of coefficient of internal consistency, o, which is also the most
commonly quoted statistic for the consistency of the items in the ranking of
persons.

The consistency of persons ranking items is regarded by Guaiman (1944)
and some later workers as being the criterion for concluding that the items
form a scale for the persons tested. The conjoint orderings of persons by
items and of items by persons have been regarded as being of great impor-
rance as a criterion for scaling by Guttman (1944) as well as by such later
scholars as Loevinger {1948}, Rasch (1960), Luce and Tukey (1964}, and
Keats (1967). However, there is no reference in any of these writings to the
problem of comparing samples from different cultures on items that are
consistently ranked by the two cultures separately. Furthermore, the use of
Wand o as measures of the consistency of persons ranking items has only
recently been suggested by Keats (1997), and in chapter 6 we saw that ¢t's
for itermns and persons are related.

High values of W and o for persons ranking items indicate that the items
form a scale for this sample of persons. The conjoint measures for items
ranking persons indicate the consistencies of the orders of persons cb-
tained from the scale. The empirical study of conjoint ordering is not only
of academic interest but also of interest to crosscultural psychologists in
their attempts tc discover whether a test or scale is equally justified in each
of two or more cultures. We use the word cwlfures rather broadly to include
not only groups that are widely separated geographically but also ethnically
defined subgroups that are nominally in the same culture, such as Hispan-
ics, African Americans, or Mennonites living in the United States.

In most accounts of the theory of psychological scaling there is discus-
sion of the use of the parameter o for items ordering people consistently.
However, the relationship between o and Kendall’s concordance coeffi-
cient W is almost never shown. There is also virtually no discussion in the
literature of the use of the same parameter o as a measure of the extent to
which persons completing a test have ranked items, in terms of difficulty for
cognitive items or of popularity in the case of items in an attitude or person-
ality scale. A high value of the internal consistency in ordering items is a
strong indication that the items form a scale. Some examples are given in
Appendix A of items forming a very consistent scale.

This discussion is essential if comparisons of different national or cul-
tural groups are contemplated, because it must be shown not aonly that the
items form a scale in all groups but also that these scales are very highly cor-
related. However, virtually no journals or books concerned with making lin-
guistic, cultural, or other national comparisons refer to the need to use the
values of @ for items to determine whether or not the groups involved have
the same degree of scaling of iterns and whether the orders obtained for
the items are highly correlated from one group to another, Cultural com-
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parisons are reported without reference to the item characteristics for each
of the comparison groups.

In the case of item response theory (IRT), conjoint ordering of items by
persons is not insisted upon because an item discrimination parameter is
introduced to take care of the possibility that high scorers may have a differ-
ent ordering of item difficulty or popularity than low scorers. Consistent or-
dering of items by persons at all performance levels is a necessary but not
sufficient conditon to produce an interval scale. Harrington (1985)
showed that the cancellation aziom must also be satisfied. However, if an
item discrimination parameter is introduced, which differs from one item
to another as in the IRT with two or more item parameters, the necessary
condition of consistent ordering by subjects at each performance level can-
not be met and so an interval scale cannot be achieved.

In chapter 1, page 6, the point was made that many developing countries
are currently facing problems that led 1o the development of psychological
tests used in developed countries today. Some of the developing countries
find it more economical to translate and otherwise adapt tests from devel-
oped countries than to construct new tests for their own people. The fact
that this practice has led to problems is shown in an article by Zhang Houw-
Can of the Beijing Normal University.

Zhang {1992} reported that some Chinese tests in different fields have
been developed, but adapted tests still play a large part. The main problems
in scoring and interpreting these tests come from cultural differences
based on language, knowledge, customs, and values that exist not only he-
tween Western and Fastern countries but among Asian countries as well.
Even differences berween nationalities within China have been found. The
results of studies using a variety of tests applied in educational, clinical, and
industrial areas are used for demonstration. Ways of solving the problems
are also discussed in this article.

The full content of this article shows the extent to which Professor
Zhang has undertaken the study of problems of cultural and national dif-
ferences in testing. Many similar studies have been carried out in the
United States and in other countries, but these are not reviewed here.

Muniz, Cuesta, Paz, Navas, and Barbero (1992) reported results of a
study of the effects of cultural differences across England, Ireland, Korea,
and Spain and seven states of Canada. The data consisted of 63 items from
the 281 mathematics questions used in the 1986 National Assessment of Ed-
ucational Progress. Results showed that for each sample, the 63 items were
homogeneous in that they had only one factor. Muniz et al. (1992, p. 186)
commented that, “to have a unidimensional test across the countries does
not prove that this factor is the same for every country.” This possibility was
investigated using the three parameter IRT to estimate the difficulty param-
eter and to compare each sample with the U.S.-sample values. Twenty-three
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of the 63 items showed bias between at least one sample and the U.8. sam-
ple. They conclude homogeneity in each culture does not preclude bias be-
tween pairs of cultures.

INTERNATIONAL TEST COMMISSION GUIDELINES

The need for adapting 1ests to correct for cultural differences led to con-
cern within the International Test Commission (ITC) during the Kears'
presidency of that body in the 1990s. After a series of working papers, the
Commission published a set of guidelines in the ITC Bulletin (van de Vijre
& Hambleton, 1996), for adapting tests for use in another language and
culture. A revision of these guidelines by Tanzer and Sim (1999) is pre-
sented here. The guidelines are very general; they do not include the use of
a measure of agreement in ordering items by persons in different cultures
as the most important criterion for comparability of scores obtained in
these cultures.

A statement of the ITC guidelines for test adaptations has been pub-
lished by Tanzer and Sim (1999, pp. 258-269)' with minor modifications by
ITC Council in the interest of clarity. The modified guidelines approved by
ITC are:

1. The effects of cultural differences which are not relevant [i.e., nui-
sance factors] or important to the main purposes of the study should
be minimized to the extent possible.

2. The amouni of overlap in the constructs in the populations of inter-
est should be assessed.

3. Instrument developers/publishers should insure that the transla-
tion/adaptation process takes full account of linguistic and cultural
differences among the populations for whom the translated/adapted
versions of the instrument are intended.

4. Instruments’ developers/publishers should provide evidence that the
language use in the directions, rubrics and items themselves as well as
in the handbook are appropriate for all cultural and language popu-
lations for whom the instrument is intended.

5. Instruments’ developers/publishers should provide evidence that the

choice of testing techniques, item formats, test conventions and pro-
cedures are familiar to all intended populations.

6. Instrumenis' developers/publishers should provide evidence that iterm
content and stimulus material are familiar to all intended populations.

"We thank the ITC for permission to reproduce these guidelines.
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7a. Instruments’ developers/publishers should implement systematic

h.

9a.

9b.

10.

1.

12.

13,

4.

15.

16.

judgmental evidence, both linguistic and psychological, to improve
the accuracy of the translation/adaptation process of all Janguage
versions.

Instruments’ developers/publishers should compile evidence on
the equivalence of all language versions.

Instruments’ developers/publishers should ensure that the data col-
lection design permits the use of appropriate statistical techniques
[i.e., conjoint ordinal methods] to establish item and/or test equiva-
lence between the different language versions of the instrument.
Instruments’ developers/publishers should apply appropriate ordi-
nal statistical techniques to establish the equivalence of the differ-
ent versions of the instrumenis.

Instruments’ developers/publishers should apply appropriate ordi-
nal statistical techniques to identify problematic componenis or as-
pects of the instrument which may be inadequate [i.e., inappropri-
ate] to one or more of the intended populations.

Instruments’ developers/publishers should provide information on
the evaluation of the [construct, predictive ete.] validity in all popu-
lations for whom the translated/adapted versions are intended.
Instruments’ developers/publishers should provide ordinal statisti-
cal evidence of the equivalence of tied-ranks scores for all intended
populations.

Nonequivalent questions between versions intended for different
populations should NOT be used in preparing a common scale or
in comparing these populations.

Instruments’ developers and administrators should try 10 anticipate
the types of problems that can be expected and take appropriate ac-
tions to remedy these problems through the preparation of appro-
priate materials and instructons.

Insirument administrators should be sensitive to a number of fac-
tors related to the stimulus materials, administration procedures
and response modes that can moderate the validity of the infer-
ences drawn from the scores.

Those aspects of the environment that influence the administra-
tion of an instrument should be made as similar as possible across
populations for whom the instrument is intended.

Instrument administration instructions should be in the source and
target languages to minimize the influence of unwanted sources
{i.e., nuisance factors] of variation across populations,
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17. The instrument manual should specify all aspects of the instrument
and its administration that require scrutiny in the applicadon of the
instrument in a new cultural context,

18. The administration should be unobtrusive and the administra-
tor-examinee interaction should be minimized. Explicit rules that
are described in the manual for the instrument should be followed.

19. When an instrument is translated/adapted for use in another popu-
lation, documentation of the changes should be provided, along
with evidence of the equivalence.

20. Score differences among samples of populations administered the
instrument should NOT be taken at face value. The researcher [de-
veloper and/or test user] has the responsibility to substantiate the
differences with other empirical evidence.

21. Comparisons across populations can only be made at the level of
invariance that has been established for the scale on which scores
are reported.

22. The instrument developer should provide specific information on
the ways in which the socioculiural and ecclogical contexis of the
populations might affect performance on the instrument, and
should suggest procedures to account for these effects in the inter-
pretation of results [i.e., test scores and testtaking behavior].

COMPARING POPULATIONS

Although it is important to consider procedures for trying to ensure that tesis
are applicable in each of two or more cultures, it is also important to consider
procedures to ascertzin whether or uot these procedures have been effective.
In Appendix A, the data from the Institute for Child Development in Thai-
kand have such a low value of o tor ordering items by subjects that these 10
items cannot be thought of as defining a scale in that culture.

However, in the case of the iterns used to select potential medical stu-
dents, the values of @, from data supplied by Dr. Munro for ordering items
was more than .95, as also reported in Appendix A. Such values show that
these items can be thought of as forming a potential scale. Unfortunately,
in this case no data are available for subjects from a different language cul-
ture to which the items have been adapted to determine the extent to
which the adaptation has been successful.

Example of Cultural Differences

In the ficld tests reported as carried out on these ITC guidelines, Hamble-
ton, Yu, and Skater (1999) from the United States and Shanghai, China,
used a Chinese translation of a test in English. In French Canada, the arti-
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cle reported, Jeanrie and Bertrand (1999) used a French translation of the
test in English. An example of the problem arithmetic items used in the
tests is given in the reference cited:

Aeroplane Glue Paint
$4.95 31.29 $2.19

Chen had $10 to buy a model aeroplane, glue, and paint. At which of the fol-
lowing times could have an estimate been used instead of exact numbers?

A. When Chen wried to decide whether or not he had enough money to buy
the plane, glue, and paint.

B. When the clerk entered each amount into the cash register.

C. When the clerk told Chen how much he owed.

D. When Chen counted his change.

Alternative A is obviously the correct answer. It was found that, contrary
to the results for most other itemns, that Chinese students did not do as well
as North American students on this item. The difference was 51% correct
for Chinese and 74% correct for North American. These numbers may be
compared to the overall percentages of 90% correct for the Chinese and
62% correct for the North Americans.

Experience with Chinese students suggests they are most unwilling to
make guesses or estimates to arithmetic items and that some of the Chinese
students in this study did not answer the question for that reason, It was not
because they could not make estimates but rather that they would not.

In all cases there has been little or no reference to the definition of a
scale in terms of the consistency of ordering the items by the subjects. Given
that there is a well-defined scale in two cultures as judged by the Concor-
dance Coefficient, the ordering of the items in terms of difficulty or popu-
larity in one culture should agree substantially, if not completely, with that
in the other. From the graph published by Hambleton et al. (1999), it is
clear that the ordering of the 69 items is not the same in the two different
languages and cultures of China and French Canada.

Furthermore the spread of difficulty in the Chinese sample was much
smaller than that in the English-speaking sample, implying that the Chi-
nese subjects were not ordering the items as consistently as were the North
Americans. Where differences in the difficulties of an item in the two cul-
tures were noted, an attempt was made to rationalize the occurrence of
these differences. The possible explanation that the items did not form a
consistent scale in the Chinese culture was not considered.

Unfortunately, Professor Yu of Nanjing University found that the raw
data from this study had been accidentally destroyed during his long ab-
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sence from China so that further analysis was not possible. In particular, he
was not able to report the number of omissions in each sample.

THE ROLE OF ORDINAL TEST THEORY

The role of ordinal test theory in assessing the suitability of a test in two or
more languages or cullures was set out by Keats (1997). In the analysis of
data from wwo cultures, five onicomes can occur:

1. The set of iterns does not form a scale in either culture as tested by the
W coefficient for ordering itemns. The culwures cannot then be com-
pared.

2. The set of items forms a scale in one culture but not in the other. The
cultures cannot then be compared.

3. The set of itemns form a scale in both cultures, but the ordering of
items in one culture is very different from that in the other as shown
by a rank-order correlation. This indicates that the same set of items,
translated and/or adapted, has different underlying variables in the
two cultures. The cultures cannot then be compared,

4. The set of items formns a scale in both cultures and the order of the
itemns is substantially the same, but a few items show quite different or-
dinal positions in the two cultures. These biased items should be
omitied in cultural comparisons but they may provide informaton
about culiural differences.

5. If none of the foregoing condidons occur, the cultures can be com-
pared by ordinal statistical methods.

The logic of the analysis involved in the methodology was questioned by
Bontempo (1993). He wrote “Furthermore, researchers can not simply
choose to compare rank orders of item means across languages, with the
expectation that even if one sub-population is higher in the dimension of
interest than another, well translated items should retain the same relative
rank orderings” (p. 151). He notes that if the test theory being used incor-
porates the parameter of item discriminating power, this expectation will
often prove false. The theories considered here do not include the concept
of discriminating power for reasons given earlier.

MULTTLEVEL RESPONSES
The Kiasuism Scale

Empirical studies of the effects of cultural and language differences have
been made using data on the Kigsuism scale provided by Ho, Munro, and
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Carr (1999} using consistent ordering of total tied-ranks scoring of items
within each culture and the ordinal correlations between item total tied-
ranks scores for pairs of country samples.

The concept of Kiasuism originated in Singapore and appears to have a
number of aspects such as: Greed, Money conscious, Winning, Preventing
others from winning, Rushing, and Getting value for money. It has been
hailed by Ho as the one national trait that most Singaporeans recognize
and acknowledge. The question arises as to the extent to which the 49 Kiasu
items define the same scale in different cultures and languages. We repori
on the results of investigating this question. The data for this study were ob-
tained from the 49-item scale of Kiasuism items scored polytomously using
four ordered categories. The example of an item shown in the instructions
is:

Circle ONE number only for each answer. There are no right or wrong an-
swers. Here is an example:

Q. Do you enjoy watching television?
NOT AT ALLL. A LITTLE A LGT DEFINITELY

LIKE ME LIKE ME LIKE ME LIKE ME
[ — S | S— 4

The items are usually scored using the four arbitrary integers 1, 2, 3, or
4. A preliminary study was carried out in Australia and Singapore for the
purpose of selecting items on the basis of discriminating power and the in-
ternal consistency of the scale as measured by ¢. The responses obtained
from subjects in the main scudy were transformed to tied-ranks scores for
items by using the computer program in Appendix A. The tied-ranks
scores were then used to calculate Wand o for each culural and language
sample studied.

Crosscultural Data

Data were available from university students from five different cultural
contexts—Singapore (146 cases), Australia (134 cases), India {183 cases),
Taiwan (91 cases), and Japan (195 cases). In each case the ¢ value for sub-
jects was statistically significant and approximately 0.9, indicating thart the
items established an ordering of subjects. For each sample there were also
highly significant values of o for items ranked by subjects with values rang-
ing from .95 10 .98.
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The data were made available by Dr, Don Munro and the computer anal-
ysis was carried out by Dr. Mark Chorlton whose assistance is acknowledged
with thanks. Spearman’s Rho was also calculated for the orders of the total
tied-ranks item scores between each of the 10 pairs of cultural and language
samples.

Subjecis from Singapore, Australia, and India were all tested in English,
which is the national language for Singapore and Australia. Taiwanese and
Japanese subjects were tested in Chinese and Japanese languages, respec-
tively. The Indian subjects were university students who knew enough Eng-
lish to be tested in that language. The comparisons therefore were for cul-
tural differences among these three Englishdanguage cultural groups (ie.,
Singapore, India, and Australia). Comparisons involving Taiwan or Japan
cultures o1 both involved both language and culture differences.

Resulis

It would be expected that the agreement in item ordering might be much
lower for comparisons involving the Taiwanese and Japanese because of
language and culture differences. This turned out to be true for the Chi-
nese in Taiwan but not for the Japanese. The results of the ordinal compari-
sons of items are presented in Table 10.1

In Table 10.1, the o values for the total tied-ranks scores for items appear
in the diagonals and the ordinal Spearman p values between the tied-rank
scores for each pair of countries appear in the relevant above-diagonal cells
of the table. The largest of the row and column totals is that for the Austra-
lian sample, that is 3.888, which includes three of the four highest above-
diagonal entries. This result may be due to the fact that the pretest was car-
ried out in Australia. Given the high o; values it can be assumed that the
items form a scale in each country; but the rank-order correlations between
items in some pairs of countries are so low as to suggest that the scales are
not the same in these pairs.

TABLE 10.1
Coefficient ¢ for Tied-Ranks Items Scores in Each Culture
and Spearman's p Between Orders for Each Pair of Culures

Cultures Japan Singapore Australia India Tatwan
Japanese 984 659 813 519 A75
Singaporean 983 1 510 495
Australian 979 717 660
Indian G738 664
Taiwanese 550

Fotal 3.450 3.338 3.888 3.391 3.244
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Thus the Kiassu questionnaire might possibly be suitable for comparing
Japanese and Australian university students because the popularity of the
items correlates .813 between the two samples. However, the Japanese sub-
jects should not be compared with those from Singapore, India, or Taiwan
cultural contexts. With correlations of .717 and .711 respectively, the instru-
ment would be less suitable for comparing subjects from India and Singa-
pore with Australians, but they should not he compared with each other on
this dimension using this instrurnent because the key correlation is as low as
510,

Conclusions

[n view of the Iow correlation between the popularities for Taiwan and any
other culture, there is no basis for comparing people from Taiwan with
those from any of the other countries considered in this study. This result
could perhaps be attributed to the language and culture differences observ-
able in Taiwan when compared with the other cultures.

The only differences in raw score, which can justifiably be tested using
this scale, are Australia with India, Japan, and Singapore. From Table 10.2
the only significant difference is that of 14.7 on the Kiasu scale between
Australia and Singapore.

To interpret this difference one must consider that Kiasuism is a syn-
drome that amalgamates:

. Greed

. Grabhing

. Selfishness

Fear of losing out

20 KD e

Striving for one’s best
Competitiveness

No ;e

Exhausting all means of doing things that may or not he dependent
on the intentions, attitudes, needs of the person, and that may or may
not be at the expense of another person.

Motivations associated with this syndrome are:
I. Wanting to be first

2. Not wanting to he last
3. Keeping up with the crowd
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TABLE 10.2
Average Kiasu Raw Scores for Five Countries
Couritry Cases Mean ML
Singapore 146 85.49 13.60
Taiwan 91 95.92 19.46
Japan 195 98.51 17.94
Australia 134 100.20 17.65
India 1853 100.31 19.00

From the results of Ho (1998, p. 123) in terms of total of raw item scores
for the five countries, it can be seen that the preceding table can be con-
siructed.

From these results of the country comparisons it is clear that the Austra-
lian university students were much higher on the Kiasu scale than the Sin-
gapore students, which means that the Australians were much more sell-
centered in terms of the Kiasu scale than were the Singaporeans. From the
data on rank order correlations between total tied-rank scores for items,
these two countries are comparable on the Kiasu scale and there is a statisti-
cally significant difference between them. The other pairs of countries that
are comparable are Austratia and fapan and Australia and India. In neither
case are the differences between the means for the two countries statisti-
cally significant.

SUMMARY

From the analyses of crosscultural data it can be seen that ordinal test the-
ory leads to the use of the rankings of items by subjects to demonstrate the
possibility of a latent scale. In the data from the Kiasu Scale it was clear that
the items formed a latent scale in all countries. The rank order correlations
between the orders in the pairs of countries suggested that the latent scale
was not the same in each of pair of cultures.

Comparisons of ethuic groups’ performances on tests have resulted in
controversial conclusions for many years. We have pointed out here that it
is obvious a test is not measuring the same thing in two groups unless the or-
der of difficulty or popularity of the items is very similar. The fact that such
comparisons of relative difficulty have hardly ever been made makes virtu-
ally all such comparisons moot. Until it has been demonstrated that a cest is
measuring the same thing in different groups, comparisons of the groups’
average performances is irrelevant. Group differences may simply mean
that the groups are doing different things with different relative success.
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This chapter has emphasized the need to test the hypothesis that a set of
items defines a scale by calculating the extent to which the items are or-
dered the same way by subjects with widely different total tied-ranks scores
on the test.

Given a statistically significant large W and thus o of sufficient size for or-
dering items, the consistency of the items in ordering the subjects should
also be examined by W and a. Given satisfactory results from this form of
analysis for two ditferent cultural or national groups, the orderings of the
items by the two groups must be correlated to determine whether or not
the scales in the two groups are sufficiently close to make comparisons on
the common dimension plausible. In practice, as shown by the example us-
ing the Kiasuism Scale, it is very difficult to construct scales sufficiently close
to each other in pairs of cultures. Of the 10 comparisons only 3 had compa-
rable scales and, of these, one pair performed significantly differently on
their common scale. It would be interesting to speculate on what may have
caused the large difference between the Singapore and Australian samples
on the Kiasuism Scale and carry out further empirical studies.



Appendix A

FLOW CHART FOR A FROGRAM TO CARRY OUT
A COMPLETE ITEM ANALYSIS OF ITEMS IN A TEST
OR SCALE USING A SMALL PERSONAIL COMPUTER

In most books on testing, the methods of item analysis described apply only
1o dichotomous items scored 1 or 0. However, methods for polytomous
iterns with any number of ordered response categories should also be made
available. In case of either dichotomous or polytomous items the scores
used mostly in practice take arbitrary integral values such as 0 or 1 for di-
chotomous items and 1, 2, 3, 4 or 5 for polytomous items. As we have seen,
there is no scientific justification for such scoring. The statistical tests ap-
plied almost always relate only to the extent to which the items, b, consis-
tently order the persons, . However, for 2 complete examination of a test
or scale it is also necessary to study the extent to which the persons consis-
tently order the items and so justify the assumption of a latent dimension
underlying the subjects’ performances. Table A.1 illustrates the method of
analysis that could be used for dichotomous items as well as other
polytomous items.

The data in the table were part of Lthose collected by the Behavioral Sci-
ence Research Institute in Bangkok using some items from an intrinsic mo-
tivation scale. They consist of the responses X, given by n= 10 persons, f, to
M=ten S-category items, b, with categories numbered 1. . . 5. The totals for
each person and for cach item are also given.

194
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From Lhese item-person data it is possible to calculate the consistency, o,
with which the items order the persons and also the consistency o, with

TABLE Al
Raw Data for 10 Persons and 10 Items

Pevsons H 2 3 4 3 6 7 & E4 16 Total
I 5 4 3 4 3 3 b 4 3 4 36
2 2 5 3 4 3 3 2 5 5 5 37
3 2 4 4 5 3 4 3 5 5 4 39
4 5 3 1 4 1 3 2 4 5 5 36
5 2 5 5 3 4 5 4 3 5 5 41
6 3 5 5 4 3 4 2 4 5 3 38
7 2 4 5 5 2 5 5 4 5 4 41
8 2 5 3 4 3 4 3 3 5 4 36
9 2 5 5 5 3 4 3 5 b 5 42
1c 1 4 4 5 2 3 3 3 3 4 32
Total 26 44 41 43 27 38 30 40 46 43 378

which the persons order the items.! The first step in computing the tts 1s to

square the entries, as shown in Table A.2.

TABLE A2
The Squares of the Cell Entries in Table Al

Persoms ! 2 3 4 5 7 8 g i
1 25 16 9 16 9 9 16 9 16
2 4 25 9 16 9 4 25 25 25
3 4 16 16 25 9 9 25 25 16
i 25 9 16 6 1 4 16 25 25
a 4 25 25 9 16 16 9 25 25
6 9 25 25 16 S 4 i6 25 9
? 4 16 25 25 4 25 i6 25 16
8 4 25 9 1€ 9 9 9 25 16
9 4 25 25 25 9 9 25 25 25
10 L 6 16 25 4 9 9 9 16

B4 198 205 189 79 98 166 218 189

The grand total of the squares = 1576. This grand total of 1576, less the cor-
rection term, (EX,}?/mn = 3782/(100) = 1428.84, produces a total sum of

'Gratinude is expressed to Dr. Intasuwan, Director of the Institute, for making these data

available.
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squares (S8} of deviations from the mean = 147.16 since 378 is the grand
total from Table A.1. The sum of squares for persons {88} and for items
(58} may be found from the row and column totals squared, respectively.

Renw Toials Squared Columns Totals Squared
1296 676
1369 1936
1521 1681
1296 1849
1681 729
1444 1444
1681 906
1296 1660
1764 2116
1024 1849
Total 14372 14780

Persons and Items 8§ may be obtained by subtracting the correction term
1428.84 from each of these wo totals, divided by 10, which gives 8.36 and
49.16. The two-way ANOVA table may be presented as:

TABLE A3
Analysis Of Variance
Sum of Squares DF Variance
Persons B.36 9 93 N.5.
frems 49.16 9 5.46 p<.0l
Inieraction 89.64 81 1106 N.S.
Total 147.16 99

The coefficient o, for persons = (.93 - 1.1)/.95 = —.18. Thus the lack of con-
sistent differentiation between persons by the items leads to a negative o,
However, ¢, for items = (5.46 — 1.1) /5.46 = .80, which indicates a consider-
able degree of consistency in the persons’ differentiation between items. A
relationship can be shown between &, and a, by equating the interaction
term with a value of L1 in this case; see chapter 4. Thus:

(1 ~ ) Var, = Interaction Variance = {1 - .)Var,.
and by equating the first and third terms and re-arranging:

o, = 1 = (1- o) Var,/Var..
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Although this analysis corresponds to the standard ANOVA recom-
mended in books on test construction, it can be objected to on the
grounds that it assumes that the arbitrary integers 1,2,%,4, and 5 corre-
spond to equally spaced units on a scale of measurement. Critiques of this
assumption refer to it as measuring by fiat. It is much more justifiable to
assume that the item scores simply order the subjects, and these orders
should be combined in some justifiable way to produce a proper ordering
of the persons. The method of doing this uses tied-ranks scores {see Keats,
1995 and chapter 5), and the madification of the flowchart to use this
more efficient method is presented next. In practice, researchers may
wish to use both methods. It has been found that the tied-ranks scores
yield greater internal consistency than the arbitrary integral scores (see
Keats, 1995). It should be recalled that in the case of dichotomous items,
the 0,1 scoring produces the same order as the tied-ranks scoring and so
the previous formulac are appropriate.

For this form of analysis it is important to consider the ordering of items
by persons. See Table A.4 for a consideration of Person 1 and the scores
given to the 10 items.

TABLE A4
Tied-Ranks Scores for Items

Seove vrues as arbitrary

integers ! 2 3 4 5
Person 1 bs by by

by by

by by

by byg

by
Freguendcies 0 \j 5 4 1
Cumulative frequencies 0 v 5 9 10
Tiecd-ranks scores 0 & 3 Ve 10

Thus the scores for Person 1 for items are transformed from:

bl h2 b3 b4 b5 b b7 b8 b9 bl10 Total
5 4 3 4 3 3 3 4 3 4 36

to tied-ranks scores of:

Lo Ty 3 ‘e 3 3 3 ‘T4 3 74 55

Corresponding tied-ranks scores for Persons 2,3, .. .10 can be similarly
shown in Table A5,
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TABLE A5
Tied Ranks Scores for Other Persons 2-10
Rems
Persens H 2 3 4 5 -] 7 8 9 10 Total
2 1% 1% 4 6 4 4 1% Ble 8% B RS
3 1 54 5% g 24 54 244 9 9 Blg 1]
4 4 E1%] 6 6 1 34 2 il i} 5 55
5 1 8 8 2 4% 8 455 2% 8 B 65
5} 3 9 g 6 3 6 1 6 9 g 65
7 1% 4 8 8 1% 8 8 4 8 4 55
8 1 9% 3 7 4 7 314 Ll 94 7 55
9 1 T4 e R 2% 4 244 Ve T é 55
10 1 8 8 10 2 4% 414 4% 4% 8 &

Note that the row totals corresponding to individuals all equal 55 so that
the individual differences have been eliminated by transforming to tied-
ranks scores for the items, Proceeding o analysis of variance, the sum of
squares for persons is zero. The total sum of squares is 640.5 and the sum of
squares for items is 301.6. See Table A.6, from which it may be calculated
that o, = (33.51 - 4.18)/33.51 = .875 which is higher than the value of .80
obtained with the untransformed data, and this is in keeping with the find-
ings of Keats (1995).

TABLE A6
Analysis of Variance
S of Squares DLF, Variance
liems 301.6 9 33.51 p< 0l
Persons Nil 9 Nil
Interaction 38.9 81 4.18
Toral 640.5 99

TIED-RANKS SCORES FOR ITEMS

Just as it was shown to be possible to transform the arbitrary integral item
scores for each person into tied-ranks scores, it is possible to transform the
integral scores for each item into tied-ranks scores for each person on that

item.

If we consider Item 1 with scores for each of the 10 persons:



APPENDIX A 199

Score values 1 2 3 4 5
Frequency 1 & 1 0 2
Cumulative frequency I 7 8 8 10
Tted-Ranks Score 1 4% 8 8% 94

Thus the integral scores 1. . . .5 on Item 1 for each person are transformed
to tied-ranks scores:

bl Fnteraction 1 Tred-Ranks
pl 5 to 9%
p2 2 o 1%
P3 2 w0 4%
i 5 10 94
ph 2 to 4
pt 3 o 8
p7 2 to 4%
p8 2 to 446
Py 2 o 4%
plo 1 1D 1
Total 26 o 55

Thus the corresponding scores for Itemns 2 to 10 for each person are seen in
Table A_7.

TABLE A7
Tied-Ranks Scores for Items 2-10
ftems Total for

Fersors 2 7 4 5 [ 7 &8 9 10 1@ items

1 34 2 4 6% 214 1] 5% 13% 4 45

i 8 2 4 6% 24 2 9 6% BY%  53%

3 Ji5 5 Bk 6% 6% 6 g 6% 4 60

4 1 5 1 bit] 2 :3%3 6% Ble 4514

5 ] Bl4 1 10 Oty 9 2 [+1%] Bl& 674

5} B g% 4 614 6% 2 B4 6% 1 5614

7 A B4 B4 2% oL 1¢ 5% 6% 4 63

B g 2 4 (i34 [5t%] 6 2 6% 4 50

g B B4 Rle &% BY4% & g 315 BL5 T2l
10 4 5 Blg 204 F4%] 6 2 B 4 361%
Total [i%s) b5 65 b5 55 55 R5 33 55

Table A.B shows the ANOVA of these tied-ranks scores. The S8; from the
mean of the 100 numbers is 65685 and the 8§, is 111.35.
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TABLE AB
Analysis of Variance

Sof § DF Variance
Persons 111.35 9 12.37 NS.
[rems nil g il
Irneraction 547.15 8l 6.755
Total (5HB.5 99

Then Internal Consistency of items ordering persons:
o, = (12.37 — 6.755)/12.57 = .45

which is still not statistically significant from the analysis of variance but is
higher than the negative value obtained from the integral scores, suggest-
ing some degree of consistency in the way individuals are ranked by the
items.

RELATIONSHIPS TO KENDAILL’S CONCORDANCE
COEFFICIENT W

The objection has been noted that neither the arbitrary integral scores nor
the ted-ranks scores lie on an interval scale. However, Kendall’s W has
been shown to be subject to a x? test and also, when tied ranks are used to
be related to o by the equation:

W= (m—[m— 1]}

where m is the number of rankings.

Thus the o values ~ .18, .45, .80, and .875 correspond to Wvalues of .085,
.17, .35, and .47. It should be noted that W can never be negative whereas o0
can be. This makes W more satisfactory as it is difficult to interpret what
negative internal consistency could mean. Because of the algebraic rela
tionship between o and W we have a third definition of o in addition to the
Kuder-Richardson correlational definition and the Cronbach analysis of
variance definition. The third definition is in terms of ordinal consistency
and is appropriate for tied ranks scores. The formula for x2is m(n - 1) W
with » — 1 degrees of freedom, where n is the number of things (i.e., objects
or persons) ranked (see Kendall, 1975 p. 98). In the present example, m
and =z are both equal o 10. and ? values for cach W are 7.65, 15.3, 31.5,
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and 42.3, with 9 degrees of freedom and only the last two values being statis-
tically significant.

The totals of tied-ranks scores provide the best estimate of the underly-
ing rank order of the persons or items as shown by Kendall (1975, pp.
101-102) in a least squares sense. This result explains the usually higher in-
ternal consistencies of tied-rank scores. Cliff (1996, pp. 49 and 170) draws
attention to W and its relationship to the average Spearman'’s p, which he
expresses a preference for.

CONJOINT ORDERING

The tied-ranks procedure yields the best estimate of the order of the per-
sons on the one hand and the best estimate of the order of the items on the
other. However, there is no single table that produces both of these order-
ings in one operation. The table that produces the best order for persons
produces no ordering for items,

PRINTOUT FROM THE PROGRAM

In the printout from this program, all the values of W, ot and %® as well as the
total tied-ranks scores for items and persons and their orders should be
listed.

As an example of the results obtained from the computer program cal-
culating o, W, and chi? for a given set of data the results are given in Table
A.9. The test of 25 items of five ordered response categories related to the
satisfaction 194 students reported with aspects of their degree course. Their
responses ranged from (0) #o safisfaction to (4) completely satisfied. Data were
made available by Dr. Don Munro and analyzed using a program written by
Mr. Scott Brown with Dr. Mark Chorlton.

Itis to be noted that the o values for the raw data for subjects are slightly
higher than those for ded-ranks data. A similar relationship holds for items.
The results for subjects for the three tests analyzed here are contrary to
those reported by Keats (1995) for six other tests but it must be realized
that the size of the ot values reported here is much greater than that re-
ported in Keats (1995). Further results are needed on this topic but there
may be no consistent gain in internal consistency from shifiing from raw
seores to tiedrank scores for cither subjects or items unless the o values are
somewhat low in the first place.
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TABLE A9
Data From the Satisfaction Scale
Raw Results
Spuree df MS o w x? puahu
Subjects 193 7.493 0.957 0.493 2295.070 0.00000
{tems 24 R87.972 0.996 0.585 2822.628 0.00000
Interactions 4632 0321
Total 4549 1.037
Subject-Ranked Results
Svurce df MS i 3 w ¥Z prualue
Subjects 193 0.000 0000 0,000 0.000 D.50000
Items 24 1094.234 0.964 0.127 614.465 0.00600
Imeractions 4632 38.850
Total 4849 42527
ftem-Ranked Resulls
Souree df MS 13 w x? pualus
Subjects 193% 22887.014 0.913 0.823% 1504.408 D.00000
Items 24 0.0000 0.000 0.000 0.000 0.50000
Interactions 4632 1997.755
Total 4849 2819.3015

Another topic needing exploration is the correlation between raw scores
and tied-rank scores separately for subjects and items. This topic is exam-
ined for all data available and reported next.

CORRELATIONS BETWEEN RAW SCORES
AND TIED-RANKS SCORES

In the case of the Satisfaction Test reported earlier, the correlation be-
tween the item raw scores and the item tied-ranks scores was 812, whereas
for persons raw scores and persons tied-ranks scores the correlation was
much higher at .932. In the data from the Importance Rating Scale the cor-
responding correlations were 849 and .B77, which were much closer to-

gether.
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STATISTICAL TABLES
The following tables will be provided from standard sources:

B.1 Significance Levels for the Chissquared Distribution

B.2 Two-tailed Critical Values for the Student's ¢ Distribution
B.3 Proportions in Areas of the Normal Distribution

B.4 Significance Levels for the F Distribution

203
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TABLE B.1
Critical Values of the Chi-squared Distribution
o

df 300 250 dog 050 025 010 Nt

1 0.455 £.32 271 384 502 6.63 7.88

2 1.39 297 4.61 595 7.38 9.21 0.6

bl 2.37 4.1] 625 781 935 11.3 128

q 3.36 5.39 7.8 9.4% 1.1 13.3 149

5 4.35 6.63 9.24 11.1 12.8 15.1 16.7

6 5.35 7.84 10.6 126 144 16.8 i85

i 6.35 9.04 120 14.1 16.0 18.5 20.3

8 7.34 10.2 13.4 155 £75 20.1 220

9 8.34 11.4 14.7 16.9 19.6 21.7 23.6
10 0.34 125 16.0 18.3 20.5 23.2 25,2
11 10.3 13.7 173 19.7 219 24.7 26.8
12 11.3 148 185 21.0 23.3 26.2 28.3
13 12.3 16.0 19.8 224 24.7 27.7 298
14 13.3 171 21.1 23.7 26.1 29.1 313
15 14.3 18.2 223 25.0 275 30.6 32.8
16 15.3 19.4 235 26.3 288 32.0 34.3
17 163 20.5 24.8 27.6 30.2 334 35.7
18 17.3 216 26,0 289 315 348 37.2
19 1B.3 22.7 27.2 30.1 32.9 36.2 3B.6
20 19.3 238 284 jl4 34.2 376 40.0
21 20.3 249 29.6 82.7 LGRS 38.9 41.4
22 21.3 26.0 308 339 368 40.3 42 8
23 22.3 27.1 320 35.2 3B.1 416 412
S| 23.3 282 33.2 364 39.4 43.0 45.6
25 245 29.3 344 37.7 40.6 443 46.9
26 25.3 304 35.6 38.9 41.9 45.6 48.3
27 26.3 315 36.7 40.1 43.2 47.0 49.6
28 278 526 3789 41.3 44.5 48.3 51.0
29 28.3 33.7 9.1 42.6 45.7 49.6 52.3

30 293 348 40.3 43.8 47.0 50.9 53.7
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TABLE B.2
‘Twoailed o-levels of the ¢ Distribution
500 200 oo 050 620 .0f0 00T

1 1.000 2.078 6.314 12.706 31.821 63.657 636.619
2 ¢.816 1.8BG 2.920 4,303 6,965 5925 $1.508
3 0.765 1.638 2.553 3182 4.541 5841 12.941
4 0.741 1.533 2.152 2.776 3.747 4.604 8610
5 0.727 1.476 2.015 24571 3.365 4.042 6.859
5] 0.718 1.440 1.943 2,447 3143 2707 5.959
7 0.711 1415 1.895 2.365 2.998 3.499 5.405
8 0.706 1.397 1.860 2306 2.866 4365 5041
9 0.703 1.383 1.833 2.262 2821 3250 4781
10 0.700 1372 1812 2.228 2.764 3169 4.587
] 0.697 1.363 1.79%6 2.201 2.718 5.106 4.487
12 0.695 1.366 1.782 2.179 2,681 3.055 4.318
13 0.694 1.350 1.771 2.160 2.650 3012 4.9221
14 0.692 1.345 1.761 2.145 2.624 2977 4.140
15 0.691 1.5341 1.753 2.151 2.602 2947 4.07%
16 0.690 1.837 1.746 2120 2.58% 24921 4.015
17 0.689 1.333 1.740 16 2 567 2 H98 3965
18 0.688 1.350 1.734 2.101 2.552 2.878 3.922
19 0.688 1.328 1.724 2.093 2.539 2.861 3,883
20 0.687 1.325 1.725 2,086 2.528 2.84h 2.850
21 0.686 1.523 1.721 2.080 2518 2831 3.819
22 0.686 1.521 1.717 2074 2.508 2819 3.792
23 0.685 1.319 1714 2.069 2560 2807 3767
24 0).685 1.318 L7I1 2.064 2492 2.7197 3.745
25 0.684 1.316 1.708 2.060 2485 2987 3725
26 0.684 1.315 1.706 2.056 2479 2,779 3707
27 0.684 1.814 1.703 2.052 2475 2,771 5.690
28 0.683 1.313 1.701 2.048 2,467 2.763 3.674
29 0.683 1.311 1.699 2.045 2462 2756 3,659
30 0.683 L1310 1.697 2.042 2,457 2.750 3.646
40 0.681 1.303 1.684 2021 2428 2,104 3.551
60 0.670 1.296 1.671 2.000 2,390 2.660 3.460
120 0.677 1.289 1.658 1.980 2.358 2617 3.973
o 0.674 1.282 1.645 1964 2.326 2576 3.201

Adapted from Table I of R. A. Fisher and F. Yates, Statestical Tables for Binlogical, Agricul-
tural, and Medical Research, by Qliver & Boyd Ltd., Edinburgh.
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TABLE B.3
Cumnulative Wormal Distribution

APPENDIX B
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09977
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0.9994
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0.7389
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0.8264

0.8508
0.8729
0.8925
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09382
0.5495
0.9591
0.9671
0.9738

0.9795
0.9838
0.9875
0.9904
09927

0.9945
0.9959
(0.9960
0.9977
(.9984
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0.9932
0.9994
0.99%6
0.99%7

05199
0.5596
0.5987
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0.6736

0.7088
0,7422
0.7734
0.802%
.8289

0.8531
0.8749
08944
0.9115
(.9265

0.9394
0.9505
0.9599
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0.9744

0.9798
0.5842
0.9878
0.9906
0.9929

£.9946
0.9960
0.5970
0.9978
0.9984

0.998%
0.9992
0.9934
0.99596
0.9997

0.5239
0.5636
0.6026
0.6406
0.6772

0.7123
0.7454
0.7764
0.8051
0.8315

0.8554
0.8770
0.8962
0.9131
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0.9406
0.9515
0.9608
0.9686
0.9750

0.9803
0.9846
0.9881
0.990%
0.9931

0.9948
0.9961
0.5971
0.9979
0.9985

0.9989
0.9992
0.9994
0.9996
0.9997

0.5279
0.5675
0.6064
D 6443
0.6808

0.7157
0.7486
0.7794
0.B078
D.8340

0.8577
D.B730
0.B980
0.9147
0.9202

09418
0.9525
0.9616
0.9693
0.9756

0.9808
0.9850
0.9884
0.0911
0.9932

0.994%
0.9962
0.9972
0.9979
0.9985

0.9989
0.9992
0.9955
0.99%6
0.9957

0.5319
0.5714
(0.6103
0.6480
0.6844

0.7190
0.7517
0.7823
0.8106
0.8365

0.8599
0.8810
0.8997
0.9162
0.9306

0.9429
(0.9535
0.9625
0.9699
0.9761

0.9812
0.9854
0.9887
0.991%
0.9934

0.9951
0.9963
0.9973
0.9980
0.9986

0.9990
0.5993
0.9935
0.9996
0.9997

0.5359
0.5753
0.6141
0.6517
0.6879

0.7224
0.7549
0.7852
0.8133
0.8389

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
09706
0.9767

0.9817
0.9857
0.9890
0.9916
0.9436

0.9952
0.9964
0.9974
0.9981
0.9986

0.9990
0.9993
0.9995
0.9997
0.9998




TABLE B.4
Crisea] Values of tie F Distnbution o = 05 and 01

dfy degrees of freedim ( for greatrr mean squere)

df; ! 2 3 4 3 6 7 & g 10 1 12
1 i6l 200 216 225 230 294 257 239 24} 242 243 244
4,052 4,99 5,408 5,625 5,764 5,859 5,978 5981 6,022 6,056 6,082 6,106
2 1851 19.00 19,16 19.95 19.30 19.33 19.36 19.97 19.38 19,99 19.40 19.41
98.49 95.00 99.17 99.985 93.30 98.33 59.54 95,36 99.38 99.40 95.41 §9.42
3 1013 9.55 9.28 9.12 401 8.4 8.88 884 B8y 8.75 B.76 814
34,12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 7.0 2713 27.05
4 7.7 6.94 6.59 6.39 6.96 6.16 6.09 6.04 6.00 5.96 593 591
21.28 18.00 16.69 15.98 1552 15.21 14.58 14.80 14.66 1454 14.45 1437
5 6.61 5.79 5.41 5.19 5.05 4.95 488 450 478 474 470 4.68
16.26 13.97 12.06 1L.39 10.97 10.67 10.45 10.27 18.15 10.05 9.96 4.89
6 500 514 436 453 439 4,28 4.21 415 410 406 1.04 4.00
13.74 10.92 978 9.15 8.75 .47 8.26 .10 7.98 7.87 7.79 7.7
7 5.5% 474 4.35 412 3.97 8.8% 3.79 3.73 9.68 3.63 3.60 357
12.25 8.55 8.45 7.85 7.48 7.19 7.80 6.84 6.71 662 6.54 6.47
8 5.92 4,46 4.07 3.84 3.69 338 350 344 339 9.34 3.51 .28
11.26 8.65 .59 7.01 6.63 6.37 .19 6.08 5.91 5.52 5.74 5.67
9 5.12 4.26 4.86 3.6% 3.48 3.7 3.20 8.25 5.18 813 5.10 5.07
10.56 .02 6.99 6.42 6.06 5.80 5.62 5.47 535 5.26 5.18 5.11
10 1.96 4.10 .71 348 3.33 .22 .14 3.07 302 2.97 294 2.91
10.84 7.56 6.55 5.99 5.64 5.39 5.2] 5.06 4.95 485 478 am
11 4,84 %.98 959 3.36 3.90 3.09 3.0 295 2.90 2.86 282 279
9.65 7.20 6.22 5.67 532 5.07 4.88 4.74 4.63 4.54 446 4.40

£02

{Comermued}
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TABLE B 4
(Contenued)

df; degrees of freedmn { for greaty mean spumre)

fz ! 2 3 4 5 & 2 8 9 10 il 13
12 475 388 3,49 3.96 311 3.00 292 285 2,80 276 242 2.69
513 693 555 5.4l 5.06 4.82 465 4.50 4.59 4.30 $.22 4.16
18 467 2590 3.41 5.8 502 209 2.84 277 2,72 267 2,63 2,60
907 670 574 5.20 41.86 +.62 444 430 4.19 4.19 4.02 396
14 4,60 3.74 334 310 296 2,85 277 270 2.6% 260 2.56 238
B.B6 658 5.56 5.03 4.69 4,46 428 4.14 403 1.84 1.86 .5 1]
1% .54 3,68 3.99 1.06 2.90 2.7 270 264 2.50 255 251 2.48
8.68 6.36 5.42 4.89 456 432 4.14 4.00 38% 3.80 373 3.67
16 4.49 3.63 3.24 m 285 2.74 266 2,59 254 245 245 243
853 6.23 L% ] 4,77 4.44 4.20 4.0% 189 LTE 3.6% LY ] 155
17 4 40 3.hG 3.20 2.596 281 2.0 2.62 255 2,50 245 2.41 2.58
8.40 6.1¢ %18 4.67 434 410 593 ) $.68 3.59 352 3.45
[H 441 555 316 243 271 2.60 2508 2.51 .46 241 0.37 2.534
B.28 6.01 5.09 458 4.25 401 3.85 .71 5.6 351 3.44 337
19 438 352 3.13 2.90 274 2.63 255 2.48 245 238 234 241
B8 593 501 50 417 3% T AL63 3.52 .43 33 150
20 4.35 349 9.10 287 271 260 252 245 240 235 2.31 2.28
B.10 5.85 4.94 4.43 4.10 3.87 s.71 3,58 345 337 530 3.23
21 4.32 3.47 o7 254 2.68 257 240 242 2.37 2.32 2.28 225
8.2 5.78 4.57 57 404 3.81 1.65 3.51 5.40 131 .24 247
22 4.50 344 105 2.82 266 265 2.47 2.40 2,35 240 2.26 293
7.94 5.72 4,82 431 399 1.76 359 345 5. 13 3.96 518 4.12
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557
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.53
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333
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2714
414
2m
4.1
271
4.07
2.70
4.9
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2.61
3.8

259

2.6
3%

262
3190
2.60

259
382

257
e
2.56
176
254
i
2.58
.70
251
3.66
249
16t
248
358

246
354
245
351

244
349

2353
LA} |
F A
3.67
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353
243
.50
242
147

2.40
342

238
318
2.36
.85
235
332
2.34
129

232
3.3

245
354

243
3.50

241

239
i
237
358
296
336
235
333

2.54
330

2.52
3.25

230
32
228
L1B
226
LIS
2,25
3.2

2.24
Lo

238
LX H

2.3
%
2.3
132
232
3.29

230
126

b5 %}
2.28
.20
2.27
37

225
112

223
3.08
221
3.04
219
3.02
2.18
299

217
196

.32
iM%

2.50
3.25

2.28
az

227
L7
2.25
314
2.94
1.1}
2.22
308
2.21
.04

2.1%
.ot

2,17
2.97

215
294

2.14
251

212
2.88

.11

228
in
226
17
224
313

.22
3.09
220
306
219
503
2.18
3.0
216
2.88

214
294

212
2.89
210
2.86
2.09
2,82
2.07
2.80

2.06
27

324
J.14
2.22
3.09
.80
305

218
5.02

2.6
2.98
215
2.95

2.4
292
2.12
.50
2.10
2.86
2.08
2.82
2,06
.78
2.05
2,75
204
2.73
202
270

2.20
3.07

218
3.03

2.16
299

2.15
296

2.13
29
2.12
2.90

2.10

209

2.07
2.80

205
276

204
2

2,02
209

200

L.93
2.64

{Contmued)
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TABLE B.4
{Conthrred)
fy degrees of froedam ( for greatrs mean squase}
af 1 2 3 ¢ 5 6 7 8 ] 10 i1 12

44 1.06 591 z.52 258 243 2.51 2.2% 2.16 2.10 2.05 2401 1.98
T.24 512 4.26 3.78 3.46 124 3.87 .94 2.84 2.75 .68 2.62
46 405 120 2,81 257 242 2.20 2.22 214 2,09 2.04 2.00 197
7.2 5.10 4.24 176 344 3,22 185 2.92 2.82 LT 2.66 2.60
48 404 LA 260 256 2.41 2.30 2.21 214 2.08 2.0% 1.99 1.96
7.19 5.88 432 .74 3.43 130 .04 .80 2.80 2.71 264 2.58
50 4.03 3.18 2719 256 2.40 2.29 2.20 213 20T 2.08 1.98 1.95
7.17 5.06 4.20 372 .41 818 3.0% 2,88 2.78 .70 262 2.56
73 4.02 3.17 278 2.54 238 2.27 218 2.k 2.05 2.00 1.97 193
7.1% 5.01 416 368 187 115 2.58 2.85 275 2.66 259 258
4.00 515 2.76 252 287 2.25 217 2.10 204 1.99 1.95 192
7.08 4.98 413 265 384 1i2 2.95 2.82 2.72 2.63 .56 2.50
5 3.99 814 275 251 2.36 2.24 215 2.08 2,02 1.8 1.54 1.90
7.04 495 4.10 362 1.51 .09 2.93% 2.7 2.70 268 254 2.47
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D

125

150

100

1000

.98
700
AL
6.96
34
6.59
392
6.84

391
6.81

589
6.76
.86
6.70
3.85
6.66

584
6.64

.03
4.92

3.1
4,88

309
482

307
.78

3.06
4.75

3.04
4.71

.02
4.60
.00
462

2.99
4.60

M
408

2.72
4.04
270
358
2.68
3.54
2.67
L L}
265
188
2,62
383

261
330

2.60
L

250
.60
248
156
246
3.51
244
.47
243
44

241
Y41
2.39
3,345

238
3.34

287
332

235
3.29
235
75
236
120
229
517

2.27
114

2.26
LB L
223
LN ]

222
i

221
a2

223
3.07

2.21
3.
219
299
217
2.95
2.16
2.92
214
2.90
212
2.85
2.10
1.82

2.09
2.50

214
.51
212
287
2.0
2.82
2408
.74
2.7
2.76
2.05
273
243
260
2.02
2.66

2.0
264

207
277

205
2.74
205
.09
2.01
2.65

2.0
2.62

L.98
2.60
.96
255
1.95
253
1.94
2.51

201
1.67

1959
264
1.97
2.59
1.9%
256
1.94
253
152
250
1.50
246
189
243

1.88
241

187
.59
L95
.55
192
251
1.90
P47
189
244
L.B7
241
1.85
237
184
234

113
2.32

1.93
2.51

191
248
1.88
243
L.B8G
246
L85
2.7
183
234
1.81
2.29
1.0
2,26

L7e
2.24

}.BY
2.45

1.88
2.41

1.85

.83
.53
.82
236
L&D
2.28
1.78
2.23
1.76
2.20

1.75
2.18

The function, F= & with exponent 25, iv computed in part from Fuher's mble Vi (7). Additional entries are by interpolation, mouly graphical.

Source: Adapted fom George W. Snedecor, Stafistieal Methods (Ames, Towa: lova State College Pross, 1946), pp. 222-295,
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