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More than 100 years ago Paul Ehrlich coined the expression ‘horror autotoxicus’
implicating the existence of autoimmune diseases. After the first description of an
autoimmune disease of the thyroid, it soon became obvious that autoimmunity in
principle is a self-limiting process, which in certain situations might proceed in
an autoaggressive disease situation, when stringent control mechanisms have
failed or are dysregulated. Despite of extensive research activities over the past de-
cades, the etiology of autoimmune diseases is still enigmatic. Different hypoth-
eses have been postulated, although these only partially explain the phenomenon
of ‘autoimmunity’.

More recently, the relationship between autoimmunity and apoptosis has been
the focus of much research activity. Apoptosis as a genetically predetermined pro-
cess is not only a vital mechanism sustaining homeostasis in the regulation of im-
mune reactivity, but, in addition to being an important factor in general cell phy-
siology, produces pronounced morphological changes of cells and the breakdown
of cellular constituents by nucleolytic and proteolytic cleavage, resulting in the
persisting presence of potential autoantigens. This book presents an up-to-date
discussion on apoptosis and its role in autoimmunity.

We would like to express our appreciation and gratitude to the authors for their
outstanding contributions and cooperation. We also gratefully acknowledge the
continuous support of Andreas Sendtko and his colleagues at Wiley-VCH in the
realization of this book.

Erlangen, July 2002 Martin Herrmann
Joachim R. Kalden
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1.1
Introduction

Whereas the appearance of cells dying by apoptosis has been recognized for de-
cades [1], if not more than a century [2], the understanding that cell survival and
death are under stringent control is relatively new. The detailed elucidation of the
biochemistry of apoptosis that has emerged over the last decade is nothing short
of astounding and has altered the way in which we think about disease. Tradition-
ally, diseases are classified according to the organ system effected – cardiovascular,
endocrine, neurological, etc. However, it is much more useful for biomedical in-
vestigators to think about the mechanisms responsible for the diseases. In this re-
spect, the simple reclassification according to whether diseases are associated with
too little or too much cell death is highly informative [3, 4]. Cancers are clearly
caused by enhanced cell growth and survival, whereas a large number of neurode-
generative diseases are caused by premature cell death of specific neurons. Amyo-
trophic lateral sclerosis (ALS), and Alzheimer’s and Parkinson’s diseases as well as
diseases associated with polyglutamate repeats demonstrate intracellular protein
aggregates that, most likely, trigger apoptosis through the mitochondrial pathway
[5]. As will be discussed below, abnormal cell death is intimately involved in the
pathogenesis of many autoimmune disorders, in part because apoptosis is a key
facet of immunologic homeostasis and immune regulation (reviewed in [6]).

Descriptions of the biochemistry of apoptosis are detailed elsewhere in this
book. Fig. 1.1 shows a simple overview of the process. There are four key steps in
the death program: (1) initiation of death either through a professional death re-
ceptor or through the mitochondria, (2) activation of effector caspases, (3) execu-
tion of death including activation of nucleases and cell membrane changes, and
(4) phagocytosis and removal of the corpse. Each of these steps is highly regu-
lated, and, in most cases, both activators and inhibitors have been identified.

The causes and the pathogenesis of autoimmune diseases are complex. In
some diseases such as systemic lupus erythematosus (SLE) and insulin-dependent
diabetes mellitus (IDDM), a fairly strong genetic component is modulated by envi-
ronmental factors [7, 8]. In fact, the increasing prevalence of IDDM in Western
countries may well be associated with increased hygiene and reduced exposure to
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1 Apoptosis and Autoimmunity4

Fig. 1.1 Schematic of the major steps in
apoptosis. Death is induced through profes-
sional death receptors (e.g. Fas/APO-1/CD95)
on the cell surface, or by Bak- or Bax-
mediated damage to the mitochondria (e.g.
by drugs, ultraviolet radiation, genotoxic in-
jury). Caspases are activated and cleave more
than 100 substrates in the cell. These proteo-
lytic changes lead to a variety of morphologic
and functional alterations within the cell.

Amongst the most important are cell surface
membrane exposure of ligands for phagocyto-
sis, collapse of the nuclear membrane, activa-
tion of nucleases, and inactivation transcrip-
tional and protein synthesis machinery. Final-
ly, the dying cell is recognized by specific re-
ceptors on phagocytes and is degraded.
Further details are provided in subsequent
chapters in this volume.

Tab. 1.1 Autoimmune diseases associated with targeted cell destruction

Disease Cell killed

Diabetes (IDDM) pancreatic � cell
Multiple sclerosis oligodendrocyte
Hashimoto’s thyroiditis thyrocyte
Sjögren’s syndrome acinus and ductal cells
Polymyositis myocyte
? ulcerative gastrointestinal diseases intestinal cells
? primary biliary cirrhosis bile duct cells

Tab. 1.2 Autoimmune diseases associated with enhanced cell survival/proliferation

Disease Cells/tissue

Rheumatoid arthritis (RA) pannus
Scleroderma fibroblasts
Autoimmune lymphoproliferative syndrome (ALPS)/Canale–
Smith syndrome (CSS)

cells of the immune system

Thyrotoxicosis (Graves’ disease) thyrocyte



common microorganisms. Despite the varied pathogenesis, most of the autoim-
mune diseases can be compartmentalized into diseases associated with targeted
cell death (Tab. 1.1), enhanced cell growth (Tab. 1.2) or abnormal processing
(Tab. 1.3).

1.2
Autoimmune Diseases Associated with Targeted Cell Destruction

The clinical manifestations of the diseases listed in Tab. 1.1 are caused by the
death and subsequent loss of function of specific cells within a tissue or organ.
The key questions relevant to this text are as follows.

1.2.1
What is the Mode of Cell Death?

In their pure forms, death by apoptosis occurs through defined biochemical path-
ways (programmed cell death), whereas death by necrosis is not programmed.
This implies that, through intentional manipulation of the pathways, apoptotic
death can either be induced or arrested, with obvious therapeutic implications. It
is therefore vital to define the mode of cell death in organ specific autoimmune
diseases.

The criteria for distinguishing between apoptosis and necrosis are now well de-
scribed [9] and it would seem relatively straightforward to determine which pro-
cess occurs in organ-specific autoimmune diseases. In situ staining for DNA
strand breaks (TUNEL) is almost invariably positive in the effected organ in spe-
cific autoimmune diseases, but this test cannot be considered specific for apopto-
sis. A key distinction between apoptosis and necrosis is the lack of inflammation
following apoptotic cell death. By this criterion alone, most autoimmune diseases
would be associated with necrosis.

Another confounding factor relating to establishing the mode of cell death is
that apoptosis/necrosis cannot simply be inferred by the identification of the cell
type within the lesion. For example, the cell types most closely associated with a
death effector function, CD8 T cells and natural killer (NK), could cause cell death
by the perforin/granzyme pathway (apoptosis and necrosis), Fas ligand (FasL;
apoptosis) or by the release of tumor necrosis factor (TNF)-� (apoptosis or necro-
sis). CD4 T cells can kill by FasL, yet expression of FasL may serve as a chemotac-
tic signal for neutrophils [10] which, once activated, would almost certainly cause
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Tab. 1.3 Autoimmune diseases possibly associated with abnormal processing of dying cells

Disease Cells/tissue

SLE cells of the immune system



necrotic cell death. Even when a disease is clearly caused by defective apoptosis
(the lpr mouse or humans with ALPS/CSS), is the massive infiltration of lympho-
cytes in multiple organs a failure of normal homeostasis (‘lymphoaccumulation’),
a manifestation of inflammation or both?

While necrotic cell death does occur in established disease, very little informa-
tion is available on the mode of cell death in the preclinical stage of human dis-
eases. It is the earliest changes that are likely to be most informative with regard
to disease pathogenesis. Models of the human disease, IDDM in rodents, have
been particularly informative in this regard. At around 2 weeks of age, there is a
massive wave of spontaneous apoptosis of � cells in the pancreas [11]. Whereas
this seems to occur at the same rate in non-obese diabetic (NOD) and control
mice, it has been reported that the handling of the apoptotic cells may be differ-
ent in the pre-diabetic mice [11]. Could this abnormality set in motion the unre-
lenting attack of the immune system involving both apoptosis and necrosis? In
another disease, congenital heart block in the infants of mothers with SLE, could
the exposure of Ro or La (SSA/SSB) on apoptotic cardiomyocytes in the develop-
ing heart allow autoantibodies to initiate disease [12]?

1.2.2
What Cells and What Effector Pathways are Responsible for Cell Death?

It is likely that the ultimate destruction of cells shown in Tab. 1.1 and, in some
cases, the whole organ results from a concerted attack by all of the components of
the immune system – macrophages, lymphocytes, neutrophils, dendritic cells, NK
cells. Efforts to implicate a single cell type have generally been unsuccessful,
although immunohistologic studies in humans and adoptive transfer studies in
mice indicate that CD8 T cells are important effectors. As in infectious diseases, it
is likely that components of the innate immune system (macrophages, dendritic
cells, NK cells and, possibly, neutrophils) initiate the recruitment of lymphocytes
and that CD4 T cells function in antigen recognition and/or cytokine priming of
CD8 T cells.

As discussed above, each cell type can kill by multiple effector pathways and
this topic has been reviewed in the context of organ specific autoimmune diseases
previously [13]. Unfortunately, no clear consensus is available in individual dis-
eases. In mouse models of IDDM, evidence supporting the involvement of perfor-
in/granzyme, FasL, TNF-� and lymphotoxin have all been reported. More detailed
discussion of these effector pathways are discussed elsewhere in this volume. The
key question, at present, is whether attenuation of any one of these pathways will
be sufficient to treat disease in the dramatic way in which TNF-� blockade has
been of therapeutic value in RA and Crohn’s disease.
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1.3
Autoimmune Diseases Associated with Enhanced Cell Growth and Survival

Understanding the basic mechanisms responsible for prevention of cell death is
just as important as understanding how cells die in different autoimmune disor-
ders. Some pertinent examples will be discussed.

Graves’ disease is a form of thyrotoxicosis associated with an autoantibody
(LATS) that acts as an agonist for the thyroid stimulating hormone (TSH) recep-
tor on thyrocytes. Reports that TSH exerts an anti-apoptotic effect by downmodu-
lating Fas expression and that this effect is mimicked by IgG from patients with
Graves’ disease [14, 15] is appealing. However, other investigators have failed to
confirm changes in Fas expression following exposure of thyrocytes to TSH in vi-
tro. More recently, Stassi et al. [16] reported that T cell in Graves’ disease express
Th2 cytokines (IL-4 and IL-10) in contrast to T cells in Hashimoto’s disease that ex-
press Th1 cytokines [interferon (IFN)-�]. These authors propose that the two dia-
metrically opposed diseases are a consequence of the effects of the cytokines –
IFN-� causes enhanced susceptibility to Fas-mediated apoptosis (Hashimoto’s thyr-
oiditis), whereas Th2 cytokines promote Fas resistance through expression of c-
FLIP and Bcl-X

L
(Graves’ disease).

Although the initiating events are poorly understood, two rheumatic diseases as-
sociated with activation and growth of fibroblasts are scleroderma and RA. Trans-
forming growth factor (TGF)-� is the cytokine most closely associated with the
skin thickening and fibrosis observed in scleroderma (reviewed in [17]). It is of
considerable importance to determine how a cytokine such as TGF-� can be asso-
ciated with growth of cells such as fibroblasts, but with cell cycle arrest and/or
apoptosis of lymphocytes [18]. RA is characterized by growth of tissue called the
pannus that invades cartilage and bone. Growth of the pannus is driven by a
number of cytokines and growth factors, but the striking therapeutic effect of
TNF-� blockade, suggests that TNF-� is a necessary component of this pathologi-
cal process. In most cells, TNF-� activates NF-�B, which in turn activates a cas-
cade of inflammatory mediators as well as anti-apoptotic pathways. Recent results
suggest that NF-�B attenuates apoptosis through blockade of the JNK pathway
and may interfere with GADD45 [19, 20]. Since TNF-� can also induce cell death
(hence its name), elucidating how the signal transduction pathways diverge will
have major implications for therapies of inflammatory disorders.

1.4
Autoimmune Diseases Associated with Abnormal Processing of Dying Cells

As shown in Fig. 1.1, the fourth and final component of the apoptotic pathway is
the ingestion and ‘safe’ disposal of the dying cell. The basic mechanisms involved
in the clearance of apoptotic cells and the possible links to autoimmunity are dis-
cussed elsewhere in this book. The evidence linking SLE to defective clearance of
apoptotic cells (Tab. 1.3) is indirect, and derives mostly from knowledge of autoan-
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tibody specificities, the mechanisms responsible for the clearance of dying cells
and information regarding macrophage signal transduction and cytokine release.

Autoantibodies may have greater specificity for cellular components that are
either chemically modified or become more accessible to the immune system fol-
lowing death of the cell. The evidence to support this idea include: (1) phosphati-
dylserine, the negatively charged phospholipid that translocates to the outside of
the cell is antigenic for some anticardiolipin autoantibodies – possibly following
oxidation [21], (2) nucleosomes (a product of activation of DNases during the
apoptotic process) are antigenic for B and T cells in SLE [22, 23], nucleosomes are
deposited in the glomeruli (see Chapter 18), (3) some autoantigens are translo-
cated to apoptotic blebs, some autoantigens are cleaved by caspases and/or gran-
zyme B (see Chapter 15), and (4) hyperimmunization of mice with apoptotic cells
results in an increase in antiphospholipid autoantibodies [24].

In vitro and in vivo studies support the idea that defective phagocytosis of dying
cells promotes autoimmunity. Recent studies have shown that early complement
components [25] as well as acute-phase proteins such as CRP [26] bind to, and
promote the phagocytosis of [26], apoptotic cells. Mice that have disruption of
genes encoding C1q [27] or the acute-phase protein serum amyloid P [28] develop
a lupus-like disease. Of considerable interest, C1q-deficient mice demonstrate in-
creased numbers of apoptotic cells in the glomeruli [27]. Together, these observa-
tions make a compelling case that the increased susceptibility of patients with
early complement component deficiencies for the development of lupus is asso-
ciated with delayed clearance of dying cells. It remains to be determined why the
kidney is an important target organ and whether similar defects account for lupus
that is not associated with inherited complement deficiencies.

Observations relating the quality of macrophage cytokine response to the nature
of the dying cell [29–31] provide the critical link between cell death and the poten-
tial for autoimmunity. Specifically, in vitro studies revealed that the uptake of
apoptotic cells induced the expression of immunosuppressive cytokines such as
TGF-�1, prostaglandin E2 and, possibly, IL-10 by macrophages (see Chapter 12).
These cytokines are known to dampen the immune response to self or foreign
antigens. Additional evidence supporting an anti-inflammatory role of apoptotic
cells is that the administration of apoptotic cells promotes the resolution of in-
flammation in vivo [32]. In contrast, necrotic cells provoke a pro-inflammatory re-
sponse associated with the release of TNF-�. TNF-� not only provokes an immune
response to the antigens phagocytosed (self-antigens in this case), but also pro-
motes the maturation of macrophages to dendritic cells, the cell type most effi-
cient in antigen presentation [33].

The receptors and ligands involved in the recognition of apoptotic cells by pha-
gocytes are discussed elsewhere in this book. Whereas blockade of many of these
receptor/ligand systems reduce phagocytosis in vitro, deletion of the genes encod-
ing these proteins rarely cause an obvious increase in apoptotic cells or autoim-
mune diseases in mice. This suggests a redundancy in function of many of the
receptor/ligands identified to date. In contrast, knockout of the gene encoding the
MER kinase, a member of the Tyro 3 receptor tyrosine kinase family, caused both
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an increase in the numbers of apoptotic cells in the thymus and spleen as well as
a lupus-like autoimmune disease [34]. This mouse model therefore provides per-
haps the most persuasive evidence linking defective clearance of apoptotic cells to
lupus-like disease. It will be important to determine how MER is linked to apopto-
tic cell recognition and to identify its downstream signal transduction pathways.

As discussed above, macrophages provide signals that dictate the response of
lymphocytes. Regardless of how the immune response to self-antigens is initiated,
the receptors that become engaged on macrophages continue to orchestrate the
immune response. For example, Manfredi et al. [35] have shown that when anti-
cardiolipin antibodies engage Fc� receptors, they promote a TNF-� dominated pro-
inflammatory response. Thus, once initiated the antigen antibody complexes most
likely fuel the inflammatory process and continue to promote immune responses
to self.

1.5
Conclusions

Elucidation of the cell biology and biochemistry of cell death has led to some of
the most important breakthroughs in the understanding autoimmunity in de-
cades. Insight into how cells kill and how cells die provides knowledge that can
be translated into therapeutic action. The literature contains many examples of
successful blockade of death effectors or receptors with antibodies or soluble re-
ceptors as well as attenuation of biochemical pathways of apoptosis (e.g. with cell-
permeable tetrapeptide inhibitors of caspases [36]) in animal models. As exciting
as these observations are in experimental animals, the fact that either ‘too little or
too much apoptosis’ is associated with diseases, indicates that therapy must either
be short lived or cell specific when considering application to spontaneous auto-
immune diseases in humans. Furthermore, as emphasized above, it is likely that
multiple cells and death pathways are operational in established autoimmune dis-
eases suggesting that therapy administered early is much more likely to effective.

TNF-� inhibitors provide the most striking example of single molecule adminis-
tration with therapeutic efficacy in patients with rheumatoid arthritis and Crohn’s
disease. Do TNF-� inhibitors work by blocking growth, inflammation or by induc-
ing apoptosis of monocytes [37, 38]? This very important question should be re-
solved prior to the administration of small molecule inhibitors of TNF in vivo.
Can the TNF success story be replicated in other diseases?

‘Apoptosis and autoimmunity’ has been a bidirectional learning process – each
has informed the other. For example, the discovery of Fas mutations in lpr mice
led to the elucidation of the concept of ‘activation-induced cell death’ and the un-
derstanding that activated cells were eliminated at sites of inflammation by sui-
cide and fratricide [39]. This process is vital to the maintenance of peripheral tol-
erance [40]. Similarly, the almost invariable association between C1q deficiency
and lupus coupled with elucidation of the responses of phagocytes to their meals
described above have provided fundamental new insight into problem of ‘self/
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non-self’ discrimination. At this pace, it is likely that additional basic discoveries
in apoptosis will be uncovered, leading to further insight and improved therapy of
many human autoimmune disorders.
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2.1
Death, Development and Immune Function

Apoptosis has been defined as programmed cell death, a term which, in contrast
to necrosis, implies the active participation of a dying cell in its own death. This
process can be initiated in response to a range of intrinsic and extrinsic signals.
In developing vertebrates and invertebrates, apoptosis serves to carefully regulate
cell number and tissue formation. This physiologic program continues in mature
organisms, working to maintain a constant cellular homeostasis. There is growing
evidence, however, that cell death by apoptosis also plays a role in a variety of dis-
ease states. Tissue and organ injury in response to environmental stressors, such
as hypoxia, trauma and infection, are thought to be mediated in part through
apoptotic cell death. Insufficient apoptosis has been linked to conditions such as
cancer, while excess apoptosis is felt to contribute to the pathogenesis of some
chronic degenerative diseases.

In the immune system, the importance of apoptosis is borne out by observa-
tions that dysregulated apoptosis can lead to a variety of disorders including auto-
immune disease, lymphoid tumors or immune suppression from excessive lym-
phocyte death. Experimental evidence has revealed that programmed cell death
plays an important role in several steps throughout both the maturation and sub-
sequent functional life of T and B cells. During early development, apoptosis con-
tributes to the generation of a functional repertoire of mature cells by eliminating
lymphocytes that fail to express an antigen receptor (death by neglect). Expression
of both cytokine receptors and the pre-T cell receptor (TCR) is required for expan-
sion and differentiation, and in the absence of survival signals delivered via these
receptors, the CD4–CD8– cells undergo apoptosis (reviewed in [1]). Apoptosis is
also the method of elimination of T cell during the next phase of development,
positive and negative selection. During this stage, CD4/CD8 double-positive thy-
mocytes that express TCR of intermediate affinity for peptide ligands in the con-
text of MHC molecules differentiate into either CD4 or CD8 single-positive cells.
T cells that express TCR with low affinity for peptide, however, fail to receive suffi-
cient survival stimuli and die by neglect. On the other end of the spectrum from
positive selection, an overly high-affinity TCR interaction with self-MHC causes
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negative selection, the clonal deletion of these potentially autoreactive cells (re-
viewed in [2]). In a similar fashion, B cells that recognize self-antigens are elimi-
nated in the bone marrow by apoptosis. Apoptosis, therefore, serves as an impor-
tant tool in the development of lymphocytes, ensuring the central elimination of
both non-functional and potentially autoreactive cells.

Programmed cell death is also a critical component of the mature immune sys-
tem. The clonal expansion of antigen-specific lymphocytes is a central feature of
the adaptive immune response. However, once an infection has been successfully
cleared, it is important to efficiently remove these activated, proliferating lympho-
cytes to avoid risking adverse effects such as an autoimmune response or poten-
tial malignancy. In this situation, apoptosis functions to maintain homeostasis by
culling activated lymphocytes [3]. For CD4+ T cells, this aim is achieved either by
activation-induced cell death (AICD), a process of inducing apoptosis through re-
petitive TCR stimulation, or through death by cytokine withdrawal, in which lym-
phocytes die from a lack of trophic factors [4]. Likewise, activated B cells can be
induced to undergo apoptosis through B cell receptor (BCR) stimulation [5].

Our understanding of the mechanisms of apoptosis in these and other para-
digms has rapidly advanced over the last few years (Fig. 2.1), and although we
have developed a more complete understanding of its molecular events, numer-
ous aspects remain to be elucidated. Much of our appreciation of the intricacies of
apoptosis has evolved from the study of animals lacking specific caspases (cystinyl
aspartate proteases) and other related proteins.
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Fig. 2.1 Apoptotic pathways involving caspases. Established pathways appear as solid lines.
Dashed lines indicate possible pathways.



2.2
Apoptotic Pathways: from Nematode to Mammals

The crucial role of caspases in cell death was first recognized through studies of
their homologues in Caenorhabditis elegans. During development, 131 of this nem-
atode’s 1090 somatic cells die by apoptosis. Screens of C. elegans with defective
apoptosis initially revealed loss-of-function mutations of the proteins CED-3 (for
cell death abnormal) and CED-4, demonstrating their necessity for apoptosis [6].
Subsequently, the protein CED-9 has been identified as an inhibitor of apoptosis
functioning upstream of CED-3 and CED-4. Loss-of-function CED-9 mutations
cause embryonic lethality due to excess apoptosis, a phenotype that is reversible
by loss-of-function CED-3 or CED-4 mutations [7]. Finally, loss-of-function muta-
tions of the protein EGL-1, which binds to CED-9, also suppress apoptosis [8].
The scheme that has emerged (Fig. 2.2) places CED-9 as a negative regulator of
apoptosis that works by binding to and suppressing CED-4 [9]. When EGL-1 is in-
duced, it displaces this complex, allowing CED-4 to bind to CED-3 and resulting
in apoptosis.

Analysis of these proteins identified CED-3 as a caspase, with homology to the
mammalian interleukin (IL)-1�-converting enzyme (ICE, also known as caspase-1)
[10]. The recognition that CED-3 is crucial for apoptosis prompted the search for
other mammalian caspases that could play a similar role. While the general
scheme for apoptosis that has emerged for higher organisms is conserved from C.
elegans, there have been 14 mammalian caspases identified to date and the result-
ing pathways are accordingly more complex. In addition to the caspases, mamma-
lian counterparts have also been found for the other members of the C. elegans
apoptotic pathway (Fig. 2.2) [8, 11, 12].
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Fig. 2.2 Apoptosis-related molecules in C. elegans and
mammals.



2.3
Triggering a Killer: General Aspects of Caspase Activation

Although there are no fixed criteria that define apoptosis, a number of changes in
cellular morphology can help distinguish it from necrotic cell death. In the apop-
totic cell, chromosomes condense, the nucleus fragments, cytoplasmic volume de-
creases, organelles compact, the cell membrane fuses with the endoplasmic reticu-
lum and the cell finally fragments into numerous ‘apoptotic bodies’, which are en-
gulfed by surrounding cells [13]. These morphologic changes are accompanied by
other subcellular indicators of apoptosis, including the exposure of phosphatidyl-
serine on the external surface of the cell membrane and a decrease in mitochon-
drial transmembrane potential [14]. An important characteristic that results from
this distinctive cellular packaging is that apoptosis lacks the inflammation and po-
tential for injury to surrounding cells that is seen with necrosis. The subcellular
changes that transpire in apoptosis result, at least in part, from the cleavage of
specific subcellular proteins by caspases. Caspases have among the most stringent
substrate specificities of all proteases, always cleaving on the carboxyl side of as-
partate residues [15]. Their name also hints to the presence of a conserved cyste-
ine residue found in the peptide motif QACXG, which, along with a conserved
glycine and histidine, contribute to the catalytic site [16]. Caspases exist in cells as
inactive monomeric zymogens (Fig. 2.3), consisting of an N-terminal prodomain,
a large subunit and a small subunit. Processing occurs at sites between the do-
mains that, consistent with the ability of pro-caspases to autoactivate or to be acti-
vated by other caspases, contain aspartate residues. Cleavage of two zymogen pre-
cursors at these sites releases the subunits, which then form the functional het-
erotetrameric enzyme, a complex of two large and two small subunits with two
separate active sites [17, 18].

The nature of the prodomain (Tab. 2.1), classified as either short (caspase-3, -6,
-7 and -14) or long (the remainder) is thought to influence the route of caspase ac-
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Fig. 2.3 Caspase zymogen cleavage
and assembly of active heterotetramer.
Asp-X indicates aspartate residues at
processing sites; QACXG indicates cat-
alytic cysteine residue; stars indicate lo-
cation of enzyme active site.



tivation. The long prodomains have been found to contain either death effector
domains (DED) or caspase recruitment domains (CARD) that are capable of inter-
acting with adapter molecules and result in clustering of pro-caspases. This close
proximity can enhance a low, intrinsic autocatalytic activity of the zymogen, allow-
ing it to cleave and activate itself. For example, oligomerization of the Fas receptor
(Apo1, CD95) recruits the adapter molecule FADD (Fas-associated death domain
protein, also called Mort-1) through the interaction of their death domains (DD)
[19, 20]. The other end of FADD contains a DED, which can then interact with a
DED on pro-caspase-8, recruiting it to the death-inducing signaling complex
(DISC) [21, 22]. Once recruited, pro-caspase-8 can activate itself through this ‘in-
duced proximity’ [23]. Caspase-10, which also has a DED, is similarly thought to
interact with FADD [24]. Known interactions of CARD include those mediating
the association of pro-caspase-9 with Apaf-1 [25] and pro-caspase-2 with RAIDD/
CRADD [26, 27]. Caspases with long prodomains have frequently been termed
‘initiators’ and, once activated, are thought to cleave caspases with short domains,
termed ‘effectors’, which then carry out the apoptotic program. It has become
clear, however, that such a distinction is an oversimplification. For example, there
is evidence that caspase-3 can cleave upstream caspase-8 and -9 [28], and also that
it may be capable of autoactivation [29].

2.4
Caspase-1 and -11: More than Mediators of Inflammatory Cytokines?

Caspase-1, or ICE, was the first member of this family to be cloned [30]. It is a cy-
toplasmic protease that is capable of converting the 34-kDa inactive precursor of
IL-1 to its mature 17-kDa form, and can also process the cytokine precursor of IL-
18 [interferon (IFN)-inducing factor] [31]. The discovery of the serine/threonine
kinase RIP2/CARDIAK/RICK and demonstration that it can bind and activate cas-
pase-1 processing [32] provide a possible mechanism for caspase-1 regulation.
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Tab. 2.1 Characterization of murine caspases with long prodomains

Caspase Interaction domain Adaptor molecule

1 CARD CARDIAK
2 CARD RAIDD/CRADD
4 CARD ?
5 CARD ?
8 DED FADD
9 CARD Apaf-1

10 DED FADD
11 CARD ?
12 CARD ?
13 CARD ?



Upon receipt of a pro-inflammatory stimulus, RIP2 engages caspase-1 through in-
teraction of their respective CARD, causing oligomerization of pro-caspase-1.
These zymogens then undergo autoprocessing to generate large (p20) and small
(p10) subunits which combine to form the active protease. In addition to its abil-
ity to process the pro-inflammatory cytokines IL-1� and IL-18, caspase-1, like all
caspases, is able to induce apoptosis when overexpressed in cultured cells [33].
Unlike mice with targeted deletions in some of the other caspase genes, however,
caspase-1–/– mice do not have any developmental defects [34, 35]; instead, they are
deficient in IL-1� and IL-18 production.

Mouse caspase-11 is most homologous to human caspase-4 [36]. Overexpression
of caspase-11 in Rat-1 and HeLa cells induces apoptosis, which can be inhibited
by CrmA and Bcl-2 [36]. The expression of caspase-11 is highly inducible by LPS,
suggesting that it may have a regulatory role in both apoptosis and inflammatory
responses [36]. Caspase-11 does not process pro-IL-1 directly, but overexpression of
caspase-11 stimulates processing of pro-IL-1 by caspase-1 [36].

Analysis of knockout mice established the critical role of caspase-1 in acute in-
flammatory responses. As compared to wild-type animals, caspase-1–/– mice are
resistant to the effects of lipopolysaccharide (LPS)-induced shock, showing im-
proved survival and, in addition to the absence of mature IL-1�, decreased produc-
tion of IL-1�, IL-6 and tumor necrosis factor (TNF)-� [34, 35]. Interestingly, cas-
pase-11–/– mice show a similar survival advantage in LPS-induced shock [37]. The
observations that caspase-11 is absolutely required for caspase-1 activity and that
they exist in the same protein complex inside cells suggest a mechanism whereby
interaction of the two molecules is required for activity and cytokine processing.

Although caspase-1–/– and -11–/– thymocytes are normally susceptible to apopto-
sis from dexamathosone and �-irradiation exposure, both are partially resistant to
Fas-induced apoptosis [35, 37]. This raises the issue of their involvement in nega-
tive selection, possibly via CD30, a TNF family member suspected to play a role
in negative selection [38, 39]. It has been shown using H-Y transgenic mice, in
which the TCR recognizes a Y chromosome antigen resulting in clonal deletion
by negative selection in the male thymus, that CD30 knockout causes a partial de-
ficiency in eliminating self-reactive transgenic CD8+ T cells in male mice [39]. Ad-
ditionally, overexpressing CD30 in the mouse thymus results in enhance program
cell death by TCR and CD30 crosslinking reagents. In this situation, caspase-1 is
activated by CD30 and may thereby mediate negative selection. A critical role of
CD30 in negative selection is arguable, however, due to recent studies showing
that CD30-deficient mice are able to carry out negative selection of both anti-self
CD4+ and CD8+ T cells [40]. Still, further examination of this aspect of negative
selection is warranted, perhaps by employing the caspase-1–/– or -11–/– back-
grounds to generate TCR transgenic mice that recognize endogenous antigen,
either a peptide presented by MHC or superantigen, and monitor the deletion of
T cells in such mice. Likewise, future study should also address the role of cas-
pase-1 and -11 in peripheral deletion of activated cells, although there is no report
of systemic autoimmune conditions in these mice, making any role they may
have in peripheral tolerance likely to be less significant.
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In addition to its involvement in inflammation, caspase-11 has been shown to play
a role in pathological death in neurons. In a model of brain injury induced by middle
cerebral artery occlusion, caspase-11 knockout mice were found to have a reduction
in caspase-3 activation and brain apoptosis [41]. Cultured oligodendrocytes from cas-
pase-11 knockout mice also showed reduced caspase-3 activation and cell death in
response to hypoxia, IFN-� and anti-Fas stimulation [42, 43]. Furthermore, cas-
pase-11 knockout mice were found to have significant resistance to development
of MOG peptide-induced experimental autoimmune encephalitis [42]. In addition,
caspase-11 is able to activate caspase-1 and -3 by direct cleavage in vitro [41].
Although these data may indicate that caspase-11 is important in apoptosis via mod-
ulation of caspase-3 activation, it has remained difficult to definitively separate this
effect from alterations in cytokine levels seen in caspase-11 knockouts. The possibil-
ity that caspase-11 deficiency protects against apoptosis due to altered cytokine reg-
ulation will need to be more conclusively addressed in the future.

2.5
Caspase-8 and the FAS Signaling Pathway

A subset of TNF receptor (TNF-R) family members that includes Fas, TNF-RI,
DR3 (TRAMP, wsl-1, APO-3, LARD), DR4 (TRAIL-R1, APO-2), DR5 (TRAIL-R2,
TRICK2, KILLER) and DR6 (reviewed in [44]) is involved in transducing signals
that result in cell death and are therefore referred to as ‘death receptors’. Fas-in-
duced apoptosis is triggered by binding of its natural ligand, Fas ligand (FasL), re-
sulting in the rapid recruitment of FADD to the cytoplasmic membrane. FADD
then brings in pro-caspase-8, also called FLICE (FADD-like IL-1-converting en-
zyme) or MACH, via their homologous DED, forming the DISC (reviewed in [5]).
Next, proteolytic cleavage of pro-caspase-8, presumably an autocatalyzed reaction
promoted by the close proximity of multiple caspase-8 zymogens recruited to the
DISC, results in its activation and subsequent release from the DISC into the cy-
toplasm [23]. Depending on the cell context, the downstream signal of caspase-8
is propagated in one of two ways (Fig. 2.1). In so-called type I cells [45], induction
of apoptosis is accompanied by activation of large amounts of caspase-8 by the
DISC. Caspase-8 then rapidly cleaves and activates caspase-3, leading to the effec-
tor stage of apoptosis. In type II cells, on the other hand, DISC formation is
strongly reduced and activation of caspase-8 and -3 occurs following the loss of
mitochondrial transmembrane potential (see Chapter 1). In this variant of the cas-
pase cascade, caspase-8 cuts and activates the pro-apoptotic Bcl-2 family member
Bid [46]. Truncated Bid induces mitochondria pore formation via Bak or Bax [47],
resulting in the unleashing of pro-apoptotic molecules such as cytochrome c [48]
and Smac/DIABLO [49, 50]. Cytochrome c can subsequently form a complex with
Apaf-1 and pro-caspase-9 in the cytoplasm, to form the apoptosome (reviewed in
[5]), which can then activate effector caspases such as caspase-3 and -7. Of note,
although mitochondrial activation can occur in both type I and II cells, it is not
necessary for apoptosis in type I cells.
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Despite diverging at a later stage, both of these mechanisms involve caspase-8
as an initiator caspase in death receptor signaling. This linear model has been
tested by developing caspase-8–/– mice. In contrast to Fas-, TNF-�RI- or TNF-�RII-
deficient mice, which all develop normally to adulthood, caspase-8 deficiency
causes prenatal lethality [51] with two particularly striking features: impaired heart
muscle development and congested accumulation of erythrocytes (hyperemia).
This indicates that caspase-8 mediates key developmental steps, either through
death receptors other than Fas and TNF-�, or through some combination of these
receptors. Wild-type and caspase-8 embryonic fibroblasts were used to show that
the activation of JNK and NF-�B by death receptors such as Fas and TNF-� recep-
tors is not affected by caspase-8 deficiency. However, the apoptosis induced by
these receptors is totally blocked in caspase-8 knockout fibroblasts, showing that
caspase-8 is a critical initiator caspase for transducing apoptosis signals from
these death receptors. Consistent with the model that FADD is a key adaptor mol-
ecule that recruits caspase-8 to the death receptors, the phenotype of FADD–/–

mice is very similar to that of caspase-8–/– mice [51]. Interestingly, Bid-deficient
mice develop normally but are resistant to Fas-mediated hepatocyte apoptosis, in-
dicating that the developmental effects of caspase-8 deficiency likely occur in a
type I fashion through direct activation of caspase-3 by caspase-8, without involve-
ment of Bid [40].

Members of death receptors have been implicated in negative selection in the
thymus [52]. However, deletion of autoreactive thymocytes occurs normally in Lpr
(Fas mutation) [53], Fas–/– [54], TNF-RI–/– [55] and TNF-RII–/– mice [56], and is
only partially impaired in CD30–/– mice [39], indicating that negative selection
cannot be attributed to ligation of any one of these receptors alone. Therefore,
conditional deletion of caspase-8 or its partner FADD, a strategy that presumably
blocks the signaling of many death receptors, may be informative in addressing
the role of death receptors in negative selection. The role of caspase-8 in lym-
phoid development has also not been well established using the knockout model
due to the prenatal lethality of these mice. Interestingly, however, T cell-specific
FADD-deficient mice show a proliferative defect of thymocytes between the
CD4–CD8– and CD4+CD8+ stage [57]. Furthermore, analysis of transgenic mice ex-
pressing a dominant-negative mutant FADD in the thymus provided the surpris-
ing result of enhanced thymocyte negative selection [58]. The effect of the cas-
pase-8/FADD module on the homeostasis of peripheral lymphocytes appears to be
a balance of hypo-responsiveness and defective apoptosis. FADD deficiency causes
decreased activation in peripheral T cells which is associated with a defective co-
stimulatory response [58, 59]. On the other hand, it is also observed that activated
peripheral T cells are present in higher proportion in RAG1–/– animals reconsti-
tuted with FADD–/– ES cells [59], likely due to a failure of AICD or cytokine with-
drawal-mediated death. Since activated T cells have prolonged survival [60], they
may potentially accumulate in aging animals, consistent with the autoimmune
syndromes seen in TNF-RI/Fas double knockouts [61] and, in a strain-dependent
fashion, Fas and FasL mutants [62]. It is likely, therefore, that signaling pathways
operating through FADD do not lead exclusively to apoptosis, but under certain
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circumstances can promote cell survival and proliferation. Whether such pro-sur-
vival pathways would involve caspase-8 is unclear. A selective knockout strategy
that induces deletion of caspase-8 within cells undergoing negative selection, for
example, would help clarify this issue.

2.6
Caspase-3: The Chief Executioner?

Caspase-3 has assumed a position as a central executioner caspase in mammals,
though not as indispensable as its counterpart CED-3 which is absolutely required
for programmed cell death in C. elegans. This assumed role of caspase-3 is sup-
ported by the convergence of both death-receptor and mitochondrial-mediated
death pathways at caspase-3 activation as well as by the wide range of potential
caspase-3 substrates. Caspase-3–/– mice can survive to birth, but they exhibit peri-
natal mortality as a result of defects in brain development that correlate with a de-
crease in levels of apoptosis [63, 64].

In contrast to the essential role caspase-3 plays in neuronal development, it
seems to be dispensable for the developing lymphoid system, as caspase-3–/– mice
display normal T and B cell development [63, 64]. Apoptosis of thymocytes in-
duced by anti-CD3 crosslinking or anti-Fas is unaltered in the absence of caspase-
3 [63], suggesting that at least some aspect of negative selection is not affected by
caspase-2. An involvement of caspases in thymocyte apoptosis is supported, how-
ever, by previous studies that employed fetal thymic organ culture and the phar-
macological pan-caspase inhibitor zVAD-fmk. In these experiments, the authors
observed inhibition of deletion of thymocytes induced either by anti-CD3, dexa-
methasone, or antigenic peptide in vitro. Moreover, caspase-3 activation was de-
tected specifically during apoptosis induced by TCR stimulation, but not during
spontaneous cell death [65, 66]. It has been established recently [67] that compen-
satory caspase activation is a mechanism for mammalian cells to use to induce
apoptosis in the absence of a given key caspase. The lack of defects in negative se-
lection in caspase-3 mice can therefore be due to activation of other alternative
caspases, such as caspase-6 and -7.

Both p53 and Bcl-2 have been shown to be important in mediating death by ne-
glect during T cell development in the thymus (see Section 2.7) [68, 69]. However,
T cell development in caspase-3-deficient mice appears normal. Additionally, stud-
ies utilizing a strategy that block all caspase activities in the thymus failed to re-
veal a deficiency in this type of cell death [70]. These data argue that a pathway
that is not dependent on caspases, but instead on p53 and Bcl-2 may be required
for death by neglect in T cell development.

After infection, professional antigen-presenting cells, dendritic cells in particular,
present antigenic peptides of the infectious agents and drive Tcells into clonal expan-
sion. After a clonal expansion phase and resolution of infection, the number of anti-
gen-reactive lymphocytes must decline until the pool of lymphoid cells reaches a
baseline level. This is achieved by AICD, a balanced fine-tuning between growth/ex-
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pansion and death by apoptosis which classically occurs via death receptors typified
by Fas (reviewed in [71]). Activated T cells from caspase-3–/– mice show a dramatic
deficiency in AICD [64]. After challenge with superantigen staphylococcal enterotox-
in A (SEA), caspase-3–/– peripheral T lymphocytes showed reduced cell death com-
pared with wild-type controls. In addition, activated caspase-3–/– lymphocytes showed
an increased viability when treated with anti-CD3 or anti-Fas antibody [64]. These
results indicate a requirement for caspase-3 for AICD in peripheral T cells. The de-
ficiency of the Fas signaling pathway has been linked direct to systemic autoimmune
conditions such as lupus (reviewed in [5]). Therefore, further studies should focus on
the effect of caspase deficiency in this kind of autoimmune condition.

In addition to AICD, there are many other ways that cause the death of periph-
eral T and B cells. The death of peripheral T cells may be due to a high intensity
of TCR signaling [72], the withdrawal of growth factors such as IL-2 or IL-15 from
T cells [73, 74], or the absence of a tonic TCR signal on naïve T cells [75]. Future
studies should also address whether these types of cell death are affected by cas-
pase-3 mutation.

2.7
Caspase-9: Mitochondrial Activation and the Apoptosome

The caspase-9 activation pathway was discovered after the observation that the ad-
dition of ATP, or preferably dATP, to cell extracts prepared from normally grow-
ing cells initiates an apoptotic program, as measured by caspase-3 activation and
DNA fragmentation [48]. Subsequent biochemical studies identified a protein
complex consisting of Apaf-1 and cytochrome c that, upon hydrolysis of ATP or
dATP, is able to recruit and activate pro-caspase-9 (reviewed in [76]). Although cas-
pases are usually activated by cleavage, proteolytic processing of pro-caspase-9
does not significantly increase its catalytic activity [77, 78]. Rather, the key require-
ment for caspase-9 activation is its association with its protein cofactors, Apaf-1
and cytochrome c. Together they form the active holoenzyme, often referred to as
the apoptosome (reviewed in [79]).

The in vivo significance of the apoptosome has been demonstrated by studying
mice deficient in either caspase-9 or Apaf-1 [80–82]. Both of these knockouts
caused a perinatal lethality starting at post-conception day 16.5. Brain malforma-
tions with protruding neural tissues were observed in both caspase-9–/– and Apaf-
1–/– mice, and TUNEL assays revealed a lack of apoptosis in Apaf-1–/– and cas-
pase-9–/– knockouts. Additionally, the supernumerary cells were post-mitotic, sug-
gesting that these cells were not proliferating tumors. These phenotypes are remi-
niscent of those of caspase-3–/– mice, and indeed, caspase-3 activation is abolished
in the developing brain in caspase-9–/– embryos [81]. Further establishing a cen-
tral role of the apoptosome in programmed cell death is the cytochrome c knock-
out [83]. These animals die prenatally at embryonic day 8.5, presumably due to
the defect in aerobic metabolism, but analysis of knockout embryo-derived cell
lines reveal a resistance to apoptosis induced by ultraviolet (UV) irradiation, se-
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rum withdrawal and staurosporine. Interestingly, however, cytochrome c–/– cells
appear more sensitive to TNF-�-induced death.

In contrast to the dramatic effect of caspase-9 and Apaf-1 deficiency on neuro-
nal development, T cell development appears to be normal in these mice. How-
ever, when Apaf-1–/– and caspase-9–/– thymocytes are treated with stimuli such as
dexamethasone, etoposide and �-irradiation, both show resistance to apoptosis [80,
81]. In contrast, Apaf-1–/–, caspase-9–/– and wild-type thymocytes are equally sus-
ceptible to Fas-mediated apoptosis, suggesting that Fas-mediated cell death in thy-
mocytes is independent of the Apaf1/caspase-9 pathway. The lack of gross devel-
opmental defects in T cell development also suggests that Apaf-1 and caspase-9
are not involved in death by neglect in thymus.

Due to the timing of the lethality caused by caspase-9 and Apaf-1 mutation, it is
not possible to address the significance of this pathway in peripheral cell death
using these models. Since the lymphoid systems are largely normal, further ex-
periments using Rag1–/– mice reconstituted with fetal liver cells derived from
either caspase-9–/– or Apaf-1–/– embryos will aid in answering questions about the
role of this pathway in programmed cell death of the peripheral lymphoid system.
This is of particular interest because recent studies have shown an involvement of
a positive feedback loop mediated by mitochondria during tumor-induced death of
activated T cells [84, 85]. These studies demonstrate that loss of mitochondrial
transmembrane potential, an event apparently independent of death receptor sig-
naling, leads to a series of events including cleavage of Bid, that in turn further
increase mitochondrial permeability and lead to apoptosome activation. Therefore,
it is important to examine specifically whether the Apaf-1/caspase-9 pathway is in-
volved in the death of activated T cells, despite the demonstration that Fas-
mediated thymocyte death is not affected by these mutations.

In embryonic fibroblasts expressing c-Myc and Ras, Apaf-1 and caspase-9 muta-
tions can also block p53-induced cell death, a process which is felt to play a role
in the negative selection of developing thymocytes [86], placing Apaf-1 and cas-
pase-9 downstream in a p53-induced apoptosis pathway [87]. Therefore, p53 may
mediate negative selection through activation of Apaf1 and caspase-9. Interest-
ingly, p53 may also mediate death by neglect at the pre-TCR stage because its de-
ficiency partially restores development to CD4+CD8+ pre-T cells in SCID, Rag1–/–

and Rag2–/– mice [68, 88–90]. Furthermore, loss of function of p53 or pro-apopto-
tic Bcl-2 family members results in thymus hyperplasia and thymoma [91–93].

The molecular mechanisms underlying apoptosis in the immune system have
also been examined among the Bcl-2 family, whose members modulate the mito-
chondrial-directed activation of Apaf1 and caspase-9. Deficiency of the anti-apopto-
tic Bcl-2 protein results in early postnatal lethality, but initially normal lymphocyte
development [94]. At variable times after birth, however, these mice undergo ful-
minant lymphocyte apoptosis with involution of lymphoid organs, consistent with
susceptibility to uncontrolled apoptosis in the face of activation. In contrast, Bcl-x-
deficient mice, which lack both the pro-apoptotic Bcl-xS and the anti-apoptotic Bcl-
xL, are embryonic lethal with severe excessive neuronal apoptosis and reduced sur-
vival of immature lymphocytes [95]. Furthermore, chimeras of Rag2–/– mice with
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Bcl-x–/– embryonic stem cells revealed reduced survival of CD4+CD8+ thymocytes,
but no effect on survival of mature single-positive cells. Deficiency in the pro-
apoptotic Bcl-2 family member Bim, as expected, resulted in increased numbers
of CD4–CD8– and mature single-positive lymphocytes, although, surprisingly,
there was a reduction in CD4+CD8+ cells [96]. Bim-deficient mice also demon-
strated increased leukocyte numbers, peripheral lymphoid organ hyperplasia and
an age-dependent autoimmune syndrome. Although examination of the immuno-
logic consequences of caspase-9 deficiency has not been rigorously examined due
to the high degree of embryonic lethality, the lack of a clearer effect is perplexing
in light of the phenotypes seen from deficiency of these Bcl-2 family members.
This implies the possible existence of a mitochondrial-mediated death pathway in-
dependent of caspase-9, perhaps functioning by compensatory activation of other
caspases, such as caspase-2 (see Section 2.8), to counter caspase-9 deficiency [67].

2.8
Caspase-2: A Duality of Function

Caspase-2 (NEDD2) was first identified as an mRNA species highly expressed in
the developing mouse brain and then down-regulated in the adult [97]. Our under-
standing of the position of caspase-2 in apoptotic pathways is complicated by the
fact that it possesses a long prodomain, suggesting a role as an upstream initiator.
Its prodomain contains a CARD, which allows it to efficiently interact with the
adapter molecule CRADD/RAIDD, though the physiologic significance of this in-
teraction remains unclear [26, 27]. CRADD/RAIDD possesses a DD, which allows
it to interact with RIP, an enzyme that in turn associates with the TNF-RI via the
adapter molecule TRADD [26, 98]. This raises the question of whether the CARD
of caspase-2 may function to recruit it to a DISC-like complex, similar to caspase-
8. Caspase-2-deficient embryonic fibroblasts, however, are sensitive to TNF-�-
mediated apoptosis, implying that, at least in this cell type, RAIDD/caspase-2 in-
teractions are not required [99]. A second possibility, raised by the fact that cas-
pase-2 activation is decreased in Apaf-1–/– cells, is that caspase-2 participates in
the formation of an apoptosome-like complex [80]. Conversely, evidence from cell-
free extracts stimulated with cytochrome c indicates that caspase-2 can be acti-
vated by caspase-3 in a caspase-9-dependent fashion, placing it as a potential
downstream effector rather than an upstream initiator [100].

An interesting property of caspase-2 is its potential ability to either induce or an-
tagonize apoptosis through alternatively spliced forms [101]. Caspase-2L, the prevail-
ing form, is pro-apoptotic. On the other hand, caspase-2S, a truncated form gener-
ated by insertion of an early stop codon, is anti-apoptotic. Although anti-apoptotic
effects have been identified for alternatively spliced forms of other caspases, dele-
tion of caspase-2 in mice is the only example of a caspase knockout with evidence
of both pro- and anti-apoptotic effects [99]. Ovarian germ cells from mice almost ex-
clusively express the caspase-2L form. In the caspase-2 knockout mice, these germ
cells were resistant to apoptosis from both normal ovarian developments, in which
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one-half to two-thirds of germ cells normally die, and from exposure to doxorubicin.
In facial motor neurons, however, where both caspase-2L and -2S are thought to be
expressed, the knockout mice showed reduced cell numbers during late embryogen-
esis, implying an increase in apoptosis. By postnatal day 7, however, the knockout
has the same cell numbers as wild-type, implying a decrease in apoptosis. Finally,
caspase-2–/– sympathetic neurons were found to undergo apoptosis more effectively
than wild-type neurons in response to growth factor withdrawal. These results sug-
gest that the effects of caspase-2 are variable, depending not only on the particular
tissue but also on the stage of development.

Caspase-2 (like caspase-12, see below) has also been shown to play a critical role in
neuronal apoptosis induced by �-amyloid, a protein that is found to accumulate in
the brains of Alzheimer’s disease patients and is felt to contribute to the disease’s
pathophysiology. Antisense oligonucleotides to caspase-2 inhibit �-amyloid-induced
apoptosis in PC-12 cells, and sympathetic neurons from caspase-2 knockout mice
are resistant to �-amyloid-induced apoptosis, even after extended exposure [102].

Evaluation of lymphocyte apoptosis in caspase-2 knockout mice centered on a
paradigm for cytotoxic T lymphocytes (CTL), which can induce apoptosis in target
cells through the release of the serine protease granzyme B and perforin. Consis-
tent with the ability of granzyme B to cleave caspase-2 in vitro, B lymphoblasts
from caspase-2 knockout mice were resistant to apoptosis induced by granzyme
B/perforin, but not to anti-Fas, doxorubicin, etoposide, �-irradiation or staurospor-
ine [99]. Although CTL-mediated apoptosis is felt to be an important mechanism
for removal of activated B cells following an immune response, to date these ani-
mals have not been reported to have signs of autoimmune disease.

2.9
Caspase-12: Responding to Stress

As an organelle responsible for aspects of protein synthesis, folding and traffick-
ing, the endoplasmic reticulum (ER) is sensitive to alterations in protein homeos-
tasis. Perturbation of this system, such as by accumulation of malfolded proteins
or from a variety of other insults that affect the ER, including oxidative stress, gly-
cosylation inhibitors or calcium ionophores, results in the activation of the ER
stress response, which can ultimately lead to apoptosis [103]. Caspase-12 was
found to localize to the ER, raising the possibility of involvement in the ER stress
response [104]. Caspase-12–/– mice are viable with no apparent developmental ab-
normalities. Knockout thymocytes were normally susceptible to apoptosis induced
by anti-Fas and dexamethasone and, similarly, knockout embryonic fibroblasts are
normally susceptible to apoptosis from anti-Fas, TNF-� and staurosporine. When
exposed to ER stress-inducing stimuli, such as brefeldin A, tunicamycin and thap-
sigargin, however, caspase-12–/– embryonic fibroblasts showed resistance to apop-
tosis. Furthermore, using an in vivo model of tunicamycin-mediated renal epithe-
lial cell apoptosis, knockout mice were shown to have reduced apoptosis and dam-
age to renal tubular cells as well as a survival advantage. Interestingly, primary

2.9 Caspase-12: Responding to Stress 25



cortical neurons from caspase-12–/– mice (like caspase-2, see above) are resistant
to �-amyloid-induced apoptosis, implying that �-amyloid exerts its effects, at least
in part, by causing ER stress. The route leading from ER stress to caspase-12 acti-
vation, however, remains unclear. There is evidence, however, suggesting that re-
lease of intracellular calcium stores associated with ER stress activates the pro-
tease calpain, which in turn can activate caspase-12 and lead to apoptosis [105].

2.10
Compensatory Caspase Activation: A Caveat to Knockout Analysis

Although the generation of knockout animals has vastly increased our knowledge
of the cellular apoptotic machinery, one difficulty in assessing the contributions of
individual proteins has been the ability to preserve function by the compensatory
activation of related proteins. This has been shown in a number of paradigms,
such as a model of Fas-mediated cell death in hepatocytes, which are type II cells
and therefore rely on the mitochondrial pathway to execute apoptosis. Interest-
ingly, hepatocytes from caspase-9 or caspase-3 knockout mice could still undergo
cell death from anti-Fas antibody by the activation of alternative caspases, but the
patterns of caspase activation were different between wild-type and knockouts [67].
Caspase-3–/– hepatocytes showed activation of caspase-6 and -7, not seen in the
wild-type, while caspase-9–/– hepatocytes showed activation of caspase-2 and -6,
also not seen in the wild-type. Perhaps the most striking in vivo example of this
quandary is the phenotype of the double knockout of the two pro-apoptotic Bcl-2
family members Bax and Bak. Whereas a single knockout of either Bax or Bak
produces viable mice with only mild apoptotic defects, the double Bax/Bak knock-
out results in a severe phenotype consisting of perinatal lethality, persistence of
interdigital webbing, central nervous system hyperplasia, splenomegaly and signif-
icant resistance to Fas-induced hepatocyte apoptosis [106, 107]. In addition, double
Bax/Bak knockout embryonic fibroblasts are resistant to staurosporine, etoposide,
UV radiation and serum withdrawal as well as the ER stress-inducers tunicamy-
cin, thapsigargin and brefeldin A, but not to TNF-� [106].

A related illustration of this caveat is the potential for variation between mice
strains. The caspase-3 knockout, for example, is embryonic lethal in 100% of off-
spring on one pure background strain [123]. On a different background, however,
survival of knockout mice reaches approximately two-thirds of expected Mendelian
inheritance levels. Thus, there are likely to be strain-specific caspase activity-modify-
ing factors which may affect interpretation of results. These data reinforce the fact
that it is difficult to exclude a particular caspase as significant for a cell death para-
digm if its function can be assumed by another caspase. In the future, we will need to
continue to study combinations of knockouts to gain a clearer understanding of
apoptotic pathways. Furthermore, it is important to realize that future pharmacother-
apeutic approaches to diseases that target caspase pathways may need to inhibit more
than one caspase to achieve the desired effect.
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2.11
Caspases: More than Simple Killers

Although the focus of caspase research has been on their roles in apoptosis, there
is growing evidence that caspases, besides caspase-1 and -11, can play other roles
in the immune system. There are recent reports that caspase-3 cleavage happens
during T cell stimulation in the absence of apoptosis and that the poly-caspase in-
hibitor zVAD-fmk can block proliferation, MHC class II expression and blasting
during stimulation of peripheral blood lymphocytes. Moreover, T cell activation
triggers the selective processing and activation of downstream caspase-3, -6 and
-7, but not caspase-1, -2 or -4, as demonstrated even in intact cells using a cell-
permeable fluorescent substrate [108–110]. TCR stimulation activates caspase-8,
but not caspase-9, and, most importantly, caspase activity results in a selective
substrate cleavage, since poly(ADP-ribose) polymerase (PARP), lamin B and Wee1
kinase, but not DNA fragmentation factor (DFF45) or replication factor C
(RFC140), are processed. In addition, inhibitors of caspase activity block anti-CD3-
induced proliferation and IL-2 production by human T cells. Thus, caspase activa-
tion may be an early physiological response in viable, stimulated lymphocytes,
and appears to be involved in early steps of lymphocyte activation [108–110].

One model suggests that caspase activation during TCR triggering occurs by
stimulation of death receptors such as Fas, TNF-related apoptosis-inducing ligand
(TRAIL) and TNF-R [111]. This notion is supported by the fact that Fas activation
can induce cell proliferation in some experimental system [112, 113]. It was re-
cently shown that stimulation of Jurkat T cells with FasL or the closely related
TRAIL leads to up-regulation of the proto-oncogene c-fos, a target gene of mito-
genic stimuli [111]. In addition, FADD, a molecule upstream of initiator caspases,
was shown to be involved in T cell activation. T lymphocytes deficient in FADD or
expressing a dominant-negative mutant allele of FADD were not only resistant to
FasL-mediated apoptosis, but also defective in their proliferative capacity in re-
sponse to TCR stimulation [58, 114–116].

Selection of substrates in a cell context-dependent manner seems to be one of
the mechanisms by which caspases take on a role other than apoptosis. One ex-
ample is the series of well-orchestrated actions of caspases during erythroid differ-
entiation that do not involve apoptosis [110, 117]. The production of red blood
cells follows the sequential formation, from erythroid progenitors, of proerythro-
blasts and basophilic (immature erythroblasts), polychromatophilic and orthochro-
matic erythroblasts (mature erythroblasts), and enucleated red cells [117]. Imma-
ture erythroid cells express several death receptors whose ligands are produced by
mature erythroblasts. Exposure of erythroid progenitors to mature erythroblasts or
death-receptor ligands resulted in caspase-mediated degradation of the transcrip-
tion factor GATA-1, which is associated with impaired erythroblast development
[110]. The effect of differentiation arrest is independent of cell death and is stimu-
lated by death receptor activation [110]. In this manner, caspase-mediated cleavage
of GATA-1 may represent an important negative control mechanism to control dif-
ferentiation from immature erythroblasts to mature erythroblasts. Caspase activa-
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tion is also involved in terminal differentiation from mature erythroblasts to enu-
cleated red cells. The morphology of erythroblasts changes dramatically during
terminal erythroid differentiation, including condensation of chromatin, loss of or-
ganelles and enucleation. Some of these morphological changes share similarities
with features occurring during apoptosis as a consequence of caspase activation.
Caspase inhibitors arrest the maturation of human erythroid progenitors at early
stages of differentiation, before nucleus and chromatin condensation. Effector cas-
pases such as caspase-3 are transiently activated through the mitochondrial path-
way during erythroblast differentiation, and cleave proteins involved in nucleus in-
tegrity (lamin B) and chromatin condensation (acinus) without inducing cell
death and cleavage of GATA-1 [110]. Therefore activation of caspases and selection
of specific substrates are critical for terminal differentiation of erythroblasts.

Caspases, therefore, appear to function during differentiation using at least two
related modes of action: they can cleave transcription factors that program the cell
fate or they can deplete specific proteins to reorganize the cell’s internal structure.
These same mechanisms are likely used in other cell types, especially during lym-
phocyte differentiation. During memory T cell generation, caspases may be in-
volved in both the process of terminal differentiation to memory cells and the
massive apoptosis of blast T cells, depending on their substrates. Another example
is SATB1, a transcription factor that has been shown to be critical for T and B cell
differentiation [118–120], but is also processed by caspase-6 in activated T cells
[121, 122]. It would be interesting to study whether this phenomenon holds up in
vivo in caspase-6-deficient mice. This aspect of caspase biology will certainly at-
tract more active research in the future.

2.12
Concluding Remarks

The use of targeted gene ablation of caspases and other apoptosis-related proteins
in mice has vastly increased our understanding of the molecular mechanisms of
programmed cell death. Still, many crucial details remain to be elucidated, and
knockout animals will likely continue to serve as a central tool for future studies.
These include the need to use developmental stage- and tissue-specific conditional
knockouts to progress past the barriers of embryonic lethality. Examination of
compound knockouts should aim to address questions of compensatory mecha-
nisms among related proteins. Assessment of strain-specific variations in knock-
out phenotypes may serve to reveal novel modulators of the apoptotic pathways.
The study of caspase-deficient mice should also help to reveal other, non-apoptotic
functions of these enzymes. These critical animal models allow us to understand
the function of specific proteins, helping to identify potential targets for manipula-
tion to address a variety of disease states.
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3.1
Introduction

When single cells started to organize themselves to form multicellular organisms
in which individual cells became more and more specialized and differentiated,
these new organisms must have faced a novel problem: what to do with cells that
are not needed any more, misplaced, injured, infected or mutated and therefore
dangerous for the organism. In order to maintain the function of the organism,
the removal of damaged or supernumerary cells should happen quietly, rapidly
and without inflammation and organ damage. The biologic answers to this com-
plex tasks were suicide of unnecessary cells, and cannibalism by their neighbors
and specialized phagocytes [1, 2].

Cellular suicide, termed apoptosis, can be initiated by an intrinsic program at a
strictly determined stage of the development (e.g. during development of Caenor-
habditis elegans) or can be triggered by extrinsic stimuli. Multiple stimuli and sig-
naling pathways lead to the activation of an evolutionary conserved cell death pro-
gram, which results in modifications of the cell membrane, caspase-mediated
cleavage of many proteins and DNase-mediated cleavage of the nuclear DNA.

A characteristic feature of apoptotic in contrast to necrotic cell death is the ab-
sence of an inflammatory response and tissue damage, at least in most circum-
stances. The absence of inflammation at sites of increased apoptosis was com-
monly explained by the fact that cells undergoing apoptosis maintain their mem-
brane integrity and express phagocyte recognition signals, which target apoptotic
cells for phagocytosis prior to cell lysis [2]. Thereby, noxious contents such as pro-
teolytic enzymes, which could provoke inflammation and tissue damage, are not
released from apoptosing cells [2]. In addition, it has been observed that pro-in-
flammatory mediators such as thromboxane B2, which are normally induced in
macrophages upon phagocytosis, are not secreted after engulfment of apoptotic
cells [3].

These mechanisms could explain the absence of inflammation and tissue dam-
age at sites of apoptosis; however, it remained unclear, why many inducers of
apoptotic cell death such as ultraviolet (UV) light and X-rays efficiently ameliorate
numerous inflammatory diseases [4, 5]. Therefore, we began to investigate
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whether apoptotic cells simply fail to provide pro-inflammatory signals or whether
they also actively suppress an inflammatory response. Recent results from our
and other laboratories demonstrate that apoptotic cells in fact inhibit the produc-
tion of pro-inflammatory cytokines and induce the production of anti-inflamma-
tory and immunosuppressive cytokines in monocytes/macrophages. This chapter
provides an overview about the effects of apoptotic cells on the function of mono-
cytes/macrophages and – briefly – dendritic cells (DCs). Cell surface receptors and
intracellular signaling pathways, which may mediate the anti-inflammatory effects
of apoptotic cells, are summarized. Finally, the implications of the anti-inflamma-
tory and immunomodulatory properties of apoptotic cells on normal physiology
and the pathogenesis of diseases are discussed.

3.2
Anti-inflammatory Effects of Apoptotic Cells on Monocytes/Macrophages

Monocytes are generated in the bone marrow from the myeloid stem cells. After a
relatively short circulation in the peripheral blood most monocytes evade into the
tissues and differentiate into macrophages. Phenotypically and functionally differ-
ent subsets of monocytes and macrophages have been described; however, the
physiological functions of these different subsets are not yet fully understood.
Monocytes/macrophages display as, in addition to polymorphonuclear leukocytes,
the main phagocytic cells in the body. They play an important role as antigen-pre-
senting cells (APCs), since they phagocytose pathogens, digest them and are able
to present pathogen-derived peptides within major histocompatibility complex
class II (MHC II) molecules to T helper cells. Activated macrophages express both
MHC II and co-stimulatory molecules such as B7-1/B7-2 and thereby play an im-
portant role in the activation process of memory T cells. However, in contrast to
DCs, macrophages cannot efficiently activate naïve T lymphocytes.

Macrophages may be the most efficient eaters of apoptotic cells, although many
cells including fibroblasts and endothelial cells participate in the uptake of dying
neighboring cells. The engulfment of apoptotic cells – presumably via a tether
and tickle mechanism which involves a variety of receptors – occurs through macro-
pinocytosis [6, 7]. Characteristic features include membrane ruffling, formation of
fluid filled phagosomes, and the involvement of the Rho family GTPases Cdc42
and Rac, which link surface receptors to actin cytoskeletal organization [7, 8].

To investigate whether apoptotic cells modify the immune response, especially
the function of monocytes/macrophages, we analyzed the cytokine secretion pat-
terns of peripheral blood mononuclear cells (PBMCs) and purified monocytes in
the absence and in the presence of apoptotic cells. Apoptosis was induced in auto-
logous peripheral blood lymphocytes (PBLs) by UV irradiation and in murine
CTLL-2 cells by IL-2 deprivation. Without stimulation, PBMCs and monocytes did
not produce measurable amounts of cytokines. Therefore, PBMCs and monocytes
were stimulated either with bacterial lipopolysaccharides (LPS), which are potent
stimulators of cytokine secretion from monocytes and macrophages, or with heat-
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aggregated human immunoglobulins mimicking immune complexes. In the pres-
ence of apoptotic cells, but not in the presence of freshly prepared paraformalde-
hyde-fixed PBLs, PBMCs as well as purified monocytes produced substantially
more of the anti-inflammatory cytokine interleukin (IL)-10, but markedly less of
the pro-inflammatory cytokines tumor necrosis factor (TNF)-�, IL-1� and IL-12
(Figs. 3.1 and 3.2) [9]. Apoptotic cells themselves did not release measurable
amounts of cytokines (not shown). This anti-inflammatory effect of apoptotic cells
was independent of the apoptosis-inducing stimulus and of the origin of apoptotic
cells: UV- or �-irradiated human PBL or human or murine cell lines or IL-2-de-
prived murine CTLL-2 cells or human T cell clones (Figs. 3.1 and 3.3, and data
not shown). The anti-inflammatory effects of apoptotic cells appeared to be con-
served between mammalian species, since they could be mediated by both murine
and human apoptotic cells. The incubation time of monocytes with apoptotic cells
prior to LPS stimulation influenced the changes in the cytokine secretion pattern
– whereas the induction of IL-10 was highest without preincubation, the relative
inhibition of pro-inflammatory cytokine secretion increased with the preincuba-
tion time (Fig. 3.2) [9].

Monocytes or PBMCs activated with heat-aggregated human immunoglobulins
instead of LPS also secreted more IL-10 and less TNF-� when exposed to apopto-
tic cells, while IL-1� and IL-12 were undetectable under those conditions (data not
shown). Just the presence of apoptotic cells, however, may not be sufficient to in-
duce IL-10 expression in monocytes, since unstimulated monocytes cultured with
endotoxin-free autologous serum produced virtually no detectable amounts of cyto-
kines, regardless of the presence of apoptotic cells (data not shown). Possibly,
even non-activated monocytes may produce low amounts of IL-10, which are be-
low the detection threshold of our ELISA, but still may exert significant biological
effects. In contrast, just the presence of apoptotic cells can induce well measur-
able concentrations of IL-10 in human monocyte-derived macrophages (own un-
published observations and [10]).

Using human monocyte-derived macrophages, we also observed a marked de-
crease in LPS-induced IL-1� and TNF-� secretion in the presence of apoptotic
cells. The IL-10 secretion was usually significantly increased by the addition of
apoptotic cells; however, this was somewhat dependent on the experimental condi-
tions. Fadok et al. investigated the influence of apoptotic cells on the cytokine se-
cretion pattern of macrophages in more detail. They observed that in vitro differ-
entiated monocyte-derived macrophages after phagocytosis of apoptotic neutro-
phils secreted less IL-1�, IL-8, IL-10, granulocyte macrophage colony stimulating
factor (GM-CSF), TNF-�, leukotriene C4 and thromboxane B2 upon LPS-activation.
In contrast, the production of transforming growth factor (TGF)-�1, prostaglandin
E2 and platelet-activating factor (PAF) was increased [11].

In different experimental settings, however, apoptotic cells seem to induce tran-
scription of pro-inflammatory cytokines. Kurosaka et al. observed that upon inter-
action with apoptotic cells phagocytes produce not only anti-inflammatory cyto-
kines, but also pro-inflammatory cytokines such as IL-1�, IL-8 and MIP-2 [12–14].
Pro-inflammatory cytokine production was detected in phorbol myristate acetate-
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Fig. 3.1 Modulation of cytokine secretion in
LPS-activated PBMCs by apoptotic cells and
anti-CD36 antibodies. Concentrations of IL-10,
TNF-� (a), IL-1� and IL-12 (b) in supernatants
of PBMCs activated for 16 h with LPS in the
absence (Medium), or in the presence of
either freshly prepared paraformaldehyde-fixed
autologous PBLs (Fixed PBL), autologous UV-
irradiated apoptotic PBL (Apo PBL), isotype-

matched control monoclonal antibodies
(IgG1) or CD36-specific antibodies (Anti-
CD36). Results shown represent the means of
quadruplicate cultures; standard deviations
are indicated. Asterisks indicate *P< 0.05 or
**P< 0.01 in comparison to medium control.
Representative results of at least four inde-
pendent experiments are shown.
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Fig. 3.2 Influence of the incubation time of
monocytes with apoptotic cells prior to LPS
stimulation on the cytokine secretion pattern.
Results shown are the means of quadruplicate
cultures; standard deviations are indicated.

Asterisks indicate *P< 0.05 or **P< 0.01 in
comparison to medium control. Representa-
tive results of at least three independent ex-
periments are shown.
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Fig. 3.3 Concentrations of cytokines in super-
natants of elutriated monocytes activated for
16 h with LPS in the absence (Medium), or in
the presence of autologous living PBLs, auto-
logous UV-irradiated apoptotic PBLs
(ApoPBL), apoptotic PBLs together with
thrombospondin-1-specific antibody ahTSP-1
(Anti-TSP/ApoPBL), ahTSP-1 (Anti-TSP), IL-2-
deprived apoptotic CTLL-2 cells (Apo CTLL),
isotype-matched control antibodies (IgG1) or
CD36-specific antibody FA6-152 (Anti-CD36).

Paraformaldehyde-fixed, apoptotic and necrot-
ic PBLs and apoptotic CTLL-2 cells them-
selves did not release detectable amounts of
cytokines upon LPS stimulation (not shown).
Results shown represent the means of quad-
ruplicate cultures; standard deviations are in-
dicated. Asterisks indicate *P< 0.05 or
**P< 0.01 in comparison to medium control.
Representative results of at least three inde-
pendent experiments are shown.
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treated THP-1 cells, human monocyte-derived macrophages, murine thioglycol-
late-induced peritoneal exudate cells, Kupffer cells and alveolar macrophages [12–
14]. Therefore, it might be that apoptotic cells can also cause a minor pro-inflam-
matory stimulus, which is normally overcome by anti-inflammatory signals. Most
likely, different experimental settings may account for these apparently inconsis-
tent results. Another possible explanation for these seemingly contradictory re-
sults might be the contamination of apoptotic cells with primary or secondary ne-
crotic cells, which can display pro-inflammatory effects [10]. Generally, apoptotic
cell preparations contain a least some necrotic cells, with increasing numbers of
secondary necrotic cells during prolonged incubation. In addition, Kurosaka et al.
recently described that apoptotic cells caused a potentiation of anti-inflammatory
and suppression of pro-inflammatory cytokine production by macrophages in the
presence of human serum or human IgG [15], as had been observed by us and
other investigators. Moreover, they demonstrated that human IgG increases the
anti-inflammatory effect of apoptotic cells by engagement of Fc� receptor I [15].
Thus, IgG and Fc� receptor I appear to be critically involved in the generation of
an efficient anti-inflammatory signal by apoptotic cells.

3.3
The Role of Anti-inflammatory Cytokines for the Inhibition
of Pro-inflammatory Cytokine Production

To investigate whether the observed changes in the cytokine secretion pattern are
secondary to the enhanced production and/or activation of IL-10 or TGF-�, which
is proteolytically cleaved to its active form by thrombospondin-1, we performed
the cytokine secretion assays in the presence of neutralizing antibodies against IL-
10 or TGF-�, respectively. Neutralization of IL-10 largely, but not completely, re-
stored pro-inflammatory cytokine secretion in the presence of apoptotic cells,
whereas the neutralization of TGF-� displayed only a minor influence on the cyto-
kine secretion pattern (unpublished data). These results indicate that the observed
changes in cytokine secretion of monocytes are predominantly caused by in-
creased IL-10 secretion and only marginally by increased TGF-� activity. However,
these data do not exclude that the secretion and/or activation of TGF-� is in-
creased in the presence of apoptotic cells. Moreover, there is evidence that in-
creased TGF-� production by macrophages crucially contributes to the inhibition
and immunomodulatory effects of apoptotic cells [6, 11].

In macrophages, the contribution of increased IL-10 secretion to the anti-inflam-
matory and immunomodulatory effects of apoptotic cells is somewhat contradic-
tory, indicating that induction of IL-10 secretion from macrophages by apoptotic
cells might depend on the experimental conditions. Fadok et al. did not detect in-
creased IL-10 concentrations after exposure of macrophages to apoptotic cells
using human monocyte-derived macrophages stimulated with LPS [11]. In con-
trast, we and others observed increased IL-10 concentrations after exposure to
apoptotic cells in human or in murine macrophages either with or without stimu-
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lation (unpublished results) [10]. Most importantly, IL-10 appears to be critical to
mediate immunosuppressive effects of apoptotic cells in vivo, since the immuno-
genicity of apoptotic tumor cells was strongly increased in a mouse tumor vacci-
nation model in case of IL-10-deficient mice [16].

In monocyte-derived macrophages, TGF-�1, prostaglandin E2 and PAF appeared
to be involved in the inhibition of pro-inflammatory cytokine secretion, since anti-
TGF-�1 antibodies, indometacin or PAF receptor antagonists restored cytokine
production of LPS-activated macrophages that had been exposed to apoptotic cells
[11].

In addition to the paracrine inhibition of pro-inflammatory cytokine production,
there is evidence for additional mechanisms directly inhibiting the production of
pro-inflammatory cytokines in monocytes/macrophages exposed to apoptotic cells.
First, we observed that individual or even combined addition of neutralizing anti-
bodies to IL-10 and TGF-� could not completely restore cytokine secretion com-
pared to macrophages incubated with the same neutralizing antibodies, but in the
absence of apoptotic cells. Second, Cocco and Ucker described an immediate inhi-
bition of TNF-� and IL-6 secretion in macrophages exposed to apoptotic cells,
which was detectable already 2 h after LPS activation. These results suggest that
apoptotic cells exert an immediate and direct anti-inflammatory effect on the en-
gulfing macrophage [17].

In summary, there is clear evidence that apoptotic cells not only passively avoid,
but actively suppress, pro-inflammatory responses by monocytes/macrophages.
However, massive apoptosis, overwhelming the clearance system, or an impaired
engulfment of apoptotic cells by macrophages, may result in accumulation of sec-
ondary necrotic cells and thereby may exert pro-inflammatory effects and promote
autoimmunity [18].

3.4
Monocyte/Macrophage Receptors receiving the Anti-inflammatory Signal
from Apoptotic Cells

The observation of an anti-inflammatory effect of apoptotic cells raises the ques-
tion, by which mechanisms might this anti-inflammatory effect be mediated.
Changes in the architecture of the plasma membrane, such as phosphatidylserine
(PS) exposure on the outer leaflet, occur soon after the initiation of apoptosis and
serve as phagocyte recognition signals [2, 19, 20]. The trimeric glycoprotein throm-
bospondin, which is secreted by various cells including platelets, macrophages
and monocytes, may form a ‘molecular bridge’ between apoptotic cells and phago-
cytes [2, 21, 22]: on apoptotic cells, thrombospondin binds to anionic sites that are
not yet defined; on monocytes/macrophages, thrombospondin interacts with the
thrombospondin receptor (CD36) and with the vitronectin receptor (�v�3), which
are both crucially involved in recognition and engulfment of apoptotic cells [2,
21–23]. To investigate whether these receptors also transduce ‘anti-inflammatory
signals’ to monocytes, we performed blocking and activation studies using mono-
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clonal antibodies against CD36, �v�3 and thrombospondin-1, and RGD peptides
which block thrombospondin binding to �v�3. Incubation of PBMCs and mono-
cytes with the CD36-specific antibody FA6-152 (10) prior to LPS stimulation mi-
micked the anti-inflammatory effect of apoptotic cells (Figs 3.1 and 3.3). FA6-152
recognizes an epitope located within the primary thrombospondin binding site of
CD36. This domain of CD36 has been implicated in the phagocytosis of apoptotic
neutrophils [24]. Furthermore, thrombospondin-specific antibodies (ahTSP-1) were
able to restore TNF-� and IL-1� secretion, and to decrease IL-10 secretion from
monocytes in the presence of apoptotic cells (Fig. 3.3). These findings suggest that
the anti-inflammatory state in monocytes is induced by apoptotic cells binding
CD36 via thrombospondin. Thrombospondin-specific antibodies increased TNF-�
and decreased IL-10 production even in the absence of apoptotic cells (Fig. 3.3),
indicating the presence of either some spontaneously apoptosing cells or other
thrombospondin/CD36 ligands such as activated platelets. Interestingly, activated
platelets that release and bind thrombospondin on their surfaces also suppressed
pro-inflammatory cytokine secretion from monocytes (unpublished data).

Engagement of the vitronectin receptor �v�3 by antibodies (LM609) or RGD pep-
tides reduced the anti-inflammatory effect of apoptotic cells only marginally, if at
all, and displayed no agonistic activity (data not shown).

Although CD36 ligation clearly mimicked the anti-inflammatory effects of apop-
totic cells, the CD36-mediated changes in the cytokine secretion patterns of mono-
cytes were always somewhat weaker than those induced by apoptotic cells them-
selves. In addition, humans that lack the CD36 antigen due to genetic mutations
do not display an obvious phenotype in respect to impaired clearance of apoptotic
cells, increased inflammatory disorders or autoimmunity. Therefore, we suspected
that there might be more than one receptor transducing the anti-inflammatory
signal into monocytes/macrophages, as there is more than one receptor system
mediating the engulfment of apoptotic cells.

Recently, Fadok et al. identified a PS receptor, which is expressed on the sur-
faces of macrophages, fibroblasts and epithelial cells. Although other surface mol-
ecules with potential PS receptor function have been previously described, the up-
take of apoptotic cells via this novel PS receptor was stereospecifically inhibited by
PS and its structural analogs, but not by other anionic phospholipids. Transfec-
tion of the PS receptor gene into T and B cells conferred the capacity to recognize
and engulf apoptotic cells in a PS-specific manner. Most importantly, a monoclo-
nal antibody raised against the PS receptor induced an anti-inflammatory state in
macrophages [25]. Therefore, at least two receptors, which are engaged by apopto-
tic cells, can transduce an anti-inflammatory signal. However, we would not be
surprised if even more receptors, still to be identified, ensure that apoptosis does
not cause inflammation, tissue destruction and autoimmunity.
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3.5
Intracellular Signaling Events Causing the Anti-inflammatory State in Macrophages

Since induction of IL-10 and suppression of TNF-�, IL-1� and IL-12 are caused by
agents that increase intracellular cAMP concentrations (e.g. prostaglandin E2, pen-
toxifylline, isobutyl-methylxanthine and dibutyryl-cAMP) [26–28], we investigated
whether ligation of CD36 influenced cAMP levels in monocytes. Since CD36 liga-
tion caused a sustained elevation of intracellular cAMP levels in purified peripher-
al blood monocytes, we propose that the CD36 signal transduction pathway is
either coupled to the adenylate cyclase or elevation of intracellular cAMP is
caused indirectly in a autocrine/paracrine manner, e.g. by prostaglandin E2 pro-
duction. However, the fact that a marked increase in intracellular cAMP levels is
observed already less than 5 min after CD36 ligation argues for a direct rather
than an indirect, autocrine/paracrine mechanism. Therefore, elevation of intracel-
lular cAMP may provide the molecular basis for the modification of the cytokine
secretion pattern induced by CD36 ligation.

Investigating the anti-inflammatory response in a murine macrophage cell line,
McDonald et al. found that neither uptake of apoptotic cells nor exposure to TGF-
� modulated NF-�B or AP-1 DNA binding activity. Although the exact mechanism
of pro-inflammatory cytokine transcription could not be defined, TNF-� produc-
tion appeared to be translationally downregulated, whereas other pro-inflamma-
tory cytokines and chemokines appeared to be inhibited at the level of transcrip-
tion [46].

3.6
Apoptotic Cells Impair MHC Class II Surface Expression on Monocytes

We also studied the influence of apoptotic cells on MHC class II surface expres-
sion on monocytes and cytokine secretion from T cells. After phagocytosis of bac-
teria and viruses, monocytes/macrophages degrade proteins to peptides that can
then bind to MHC class II molecules and be presented to Th cells. Normally,
blood monocytes express only low levels of MHC class II molecules on their sur-
face, but MHC class II expression increases during differentiation, culture in vitro
or upon stimulation, most potently with interferon (IFN)-�. In the presence of
either CD36-specific antibodies or apoptotic cells, MHC class II surface expression
on LPS-activated monocytes was significantly reduced (not shown). Increased IL-
10 secretion, induced by apoptotic cells, may play a role in the decreased expres-
sion of MHC class II, since IL-10-neutralizing antibodies could partially restore
the MHC class II expression on monocytes (unpublished results). Therefore,
apoptotic cells should impair the ability of monocytes/macrophages to present
antigens efficiently to Th cells.
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3.7
Influence of Apoptotic Cells on DC Function in Allogeneic MLR

DCs are one of the key players of the immune response. Only DCs can efficiently
activate naïve T cells and play a critical role for the initiation of immune re-
sponses. Since sufficient amounts of primary DCs are difficult to isolate, many in-
vestigators use in vitro differentiation systems for the generation of DCs.

When monocytes are cultured for 6 days in tissue culture medium in the presence
of human IL-4 and GM-CSF they develop an immature DC-like phenotype, and are
referred to as monocyte-derived immature DCs (iDCs). These cells are potent stimu-
lators of allogeneic T cells in ‘mixed lymphocyte reactions’ (MLR). The stimulatory
capacity of iDCs for allogeneic T cells is significantly reduced if the iDCs are pre-
incubated with apoptotic cells 2 days before the addition of allogeneic T cells
(Fig. 3.4, column 2). In contrast, pre-incubation of iDCs with necrotic cells did not
reduce the allogeneic MLR. In some cases we observed an even higher stimulation
index if iDCs had been pre-incubated with necrotic cells (Fig. 3.4, column 3).

As shown in Fig. 3.5, monocytes cultured for 3 days with 500 U of IL-4 (re-
ferred to as APCs) secrete IL-10 if they are incubated with apoptotic cells. In con-
trast, necrotic cells did not induce IL-10 secretion of APCs. The addition of high
concentrations of GM-CSF to the culture abrogated the IL-10 inducing capacity of
apoptotic cells in a dose dependent manner. Culture of monocytes in the presence
of IL-4 and GM-CSF induces the maturation of monocytes into monocyte-derived
iDCs. Hence, the apoptotic cell-dependent IL-10 response may represent an im-
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Fig. 3.4 CD14+ cells were cultured for 6 days
in tissue culture medium containing 10% fe-
tal calf serum and 500 U of both recombinant
human IL-4 and GM-CSF. Then 104 DCs were
incubated with 104 UV irradiated (apoptotic)

or heat-treated [30 min 56�C (necrotic)] Hacat
cells for 2 days. Then MLR was performed
with 105 allogeneic CD14– cells for 24 h. The
experiment was performed in decaplicates. All
P values are <0.0001.



portant functional difference between monocytes and early iDCs. The influences
of apoptotic versus necrotic cells on DC function will be discussed in detail in an-
other chapter by Jenne and Sauter (Chapter 12).

3.8
The Presence of Apoptotic Cells can Shift the Th Cell Response towards Th2

Based on their cytokine secretion profile, Th cells can be classified in functionally
different subsets. Th1 cells secrete IFN-�, IL-2 and TNF-�, and are crucially in-
volved in cell-mediated immunity and inflammatory reactions [29, 30]. Th2 cells
secrete mainly IL-4, IL-5, IL-6, IL-10 (also produced by human Th1 cells) and IL-
13, and have important immunoregulatory functions and support the humoral im-
mune response [29, 30]. IL-12 is important for IFN-� expression and the differen-
tiation of naïve T cells to Th1 cells, whereas IL-10 favors the differentiation into
Th2 cells, mostly by inhibiting IL-12 production [29]. Therefore, we tested whether
the inverse regulation of IL-10 versus IL-12 caused by CD36 ligation may alter the
Th1/Th2 balance. If PBMCs have been exposed to CD36-specific antibodies or
autologous apoptotic cells prior to stimulation with antigen, production of the Th1
cytokine IFN-� was drastically decreased. The concentration of the Th2 cytokine
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Fig. 3.5 Difference between monocytes/
macrophages and immature DCs differen-
tiated in vitro using IL-4 and GM-CSF on abil-
ity to secrete IL-10 upon encounter with apop-
totic cells. Monocytes cultured for 3 days with
500 U of IL-4 (referred to as APCs) secrete IL-
10 if they are incubated with apoptotic cells.
In contrast, necrotic cells display no influence
on the IL-10 secretion of APCs. However, if

GM-CSF is added to the culture, the IL-10-in-
ducing capacity of apoptotic cells is abro-
gated in a dose-dependent fashion. Culture of
monocytes in the presence of IL-4 and GM-
CSF induces the maturation of monocytes
into monocyte-derived iDCs. The apoptotic
cell-dependent IL-10 response may, therefore,
represent an important functional difference
between monocytes and early iDCs.



IL-4 was usually reduced in comparison to control samples when measured 48 h
after stimulation, unchanged when measured after 80 h and usually increased at
later time points. This results in an increased IL-4:IFN-� ratio, consistent with a
shift in the cytokine secretion pattern from Th1 towards Th2. IFN-� production in
response to LPS containing bacteria (Escherichia coli) was markedly inhibited in all
experimental settings, whereas significant inhibition of IFN-� production in re-
sponse to tetanus toxoid was largely dependent on additional monocyte activation,
e.g. by LPS. This result suggests that monocyte-derived factors, namely IL-10,
mediate the preferential suppression of IFN-�. Indeed, neutralizing antibodies to
IL-10 partially restored IFN-� production in PBMCs incubated with anti-CD36 an-
tibodies or apoptotic cells [9] (Voll et al., manuscript in preparation). Therefore, IL-
10 may be an important mediator of the immunoregulatory effects induced by
apoptotic cells. However, inhibition of TNF-� and IL-12 early after activation
seemed to be IL-10 independent, and might be directly mediated by elevated lev-
els of cAMP [26–28].

3.9
Apoptotic Cells Suppress Delayed-type Hypersensitivity (DTH) In Vivo

Cell-mediated immunity is crucially dependent on IL-12 and IFN-� production
and can be measured by the DTH reaction. Based on our in vitro results, apopto-
tic cells were expected to increase IL-10 and inhibit IFN-� secretion also in vivo,
and thereby cell-mediated immunity should be inhibited. To test this hypothesis,
mice were subcutaneously immunized with sheep red blood cells (SRBCs), either
alone or in the presence of living or apoptotic syngeneic spleen cells. After 6 days
a DTH reaction was induced by injection of SRBCs into foot pads. Mice immu-
nized in the presence of apoptotic cells showed a significantly reduced DTH reac-
tion, indicating an impaired induction of cell-mediated immunity (Fig. 3.6 a).
Further experiments addressed the question whether apoptotic cells also modify
the inflammatory effector phase of established cell-mediated immunity. Therefore,
a DTH reaction was induced in SRBC-immunized mice by injection of SRBCs
into the left ears and SRBCs together with either apoptotic or necrotic syngeneic
spleen cells into the right ears. The presence of apoptotic, but not necrotic syn-
geneic cells significantly reduced the inflammatory ear swelling caused by the
DTH reaction (Fig. 3.6b). Similar results were obtained using allogeneic spleno-
cytes and thymocytes (not shown).

3.10
Necrosis and Inflammation

In vivo, necrotic cell death is usually associated with inflammation, tissue injury
and immune responses, even autoimmunity (e.g. Dressler’s syndrome after heart
surgery or myocardial infarctions). However, as apoptotic cells, necrotic cells ex-
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pose the ‘eat me signal’ PS on there surface and, therefore, should engage the PS
receptor, which mediates an anti-inflammatory signal. In addition, necrotic cells
may also bind to the thrombospondin receptor CD36 (unpublished data), which
also transduces an anti-inflammatory signal. However, in the case of necrotic cell
death, pro-inflammatory intracellular constituents such as heat shock proteins,
possibly also unmethylated CpG-rich mitochondrial DNA and other pro-inflamma-
tory mediators are released, and may dominate over the anti-inflammatory sig-
nals. Fadok et al. suggest an additional mechanism, by which necrotic cells reduce
anti-inflammatory signaling via the PS receptor. Proteases or Annexin V released
from necrotic cells, especially granulocytes, may efficiently cleave the PS receptor
off the membrane or mask the PS on the surfaces of necrotic cells, respectively,
thereby preventing anti-inflammatory signaling [31–33].
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Fig. 3.6 Impaired DTH response in mice co-
injected with apoptotic cells during immuni-
zation. (a) Mice were subcutaneously immu-
nized with SRBCs alone (SRBC), or SRBCs to-
gether with either syngeneic living (SRBC/liv-
ing SC) or apoptotic spleen cells (SRBC/apo
SC). A DTH reaction was induced by injection
of SRBCs into foot pads. Percent swelling of
SRBC-injected foot pads compared to PBS-in-
jected foot pads after 24 h is shown. (b) Lo-

cal inhibition of the DTH reaction by apopto-
tic cells. Mice immunized with SRBCs were
injected with SRBCs alone into the left ears
and SRBCs together with either apoptotic or
necrotic syngeneic spleen cells into the right
ears. Results shown are the means + stan-
dard deviation with n= 6 in representative ex-
periments. **P< 0.01 in comparison to un-
treated controls.
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3.11
Implications of the Anti-inflammatory and Immunomodulatory Effects
of Apoptotic Cells for Health and Disease

The data presented here suggest that apoptotic cells induce an ‘anti-inflammatory
state’ in monocytes by selectively decreasing pro-inflammatory and increasing
anti-inflammatory cytokine expression. This anti-inflammatory effect is likely to
be mediated by ligation of CD36 and the PS receptor. However, we cannot rule
out the involvement of additional receptors inducing the anti-inflammatory state.
Apoptotic cells may also provide an anti-inflammatory signal to other CD36+ cells
such as DCs [33], microvascular endothelial cells and keratinocytes in diseased
skin [34].

Conditions which result in increased apoptotic cell death in vivo are associated
with suppression of inflammation and cell-mediated immunity. Physiologically,
the anti-inflammatory and immunoregulatory effects of apoptotic cells may con-
tribute to the non-inflammatory clearance of apoptotic cells and help to avoid or-
gan damage. In addition, activation of autoreactive T cells by peptides from in-
gested apoptotic cells might be prevented. Therefore, the anti-inflammatory and
immunosuppressive clearance of apoptotic cells by macrophages appears to be an
important mechanism to prevent or control autoreactivity and autoimmunity.

3.11.1
Apoptosis and Pregnancy

During embryo implantation, uterine epithelial cells surrounding the blastocyst
undergo apoptosis [35], and thus may form an anti-inflammatory milieu and pre-
vent immunological rejection of the embryo. Moreover, the increased IL-10 expres-
sion detectable at the interface between maternal and fetal tissues may contribute
to the systemic reduction of cell-mediated immunity during pregnancy [29, 36].

3.11.2
Apoptosis and Irradiation

Moderate irradiation with �- or X-rays or UV light causes apoptosis, and exerts
strong anti-inflammatory and immunosuppressive effects [4, 5, 37]. In particular,
UV exposure of the skin potently induces IL-10 expression by immunosuppressive
tolerance-inducing CD36+ CD11+ macrophages [38, 39]. The secretion of anti-in-
flammatory mediators may contribute to the UV-mediated amelioration of inflam-
matory skin diseases such as psoriasis.

3.11.3
Apoptosis and Cancer

Most tumors display not only an increased proliferation rate, but also an in-
creased rate of apoptosis. Therefore, the presence of apoptotic cell material [40]
could impair an effective cell-mediated immune response against cancer cells and
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represent an important immune escape mechanism. We have demonstrated that
addition of annexin V, which binds with high affinity to PS on apoptotic cell sur-
faces, markedly increases the humoral immunogenicity of apoptotic cells [41].
Currently, we are investigating the potential use of annexin V as an adjuvant for
cancer vaccines.

3.11.4
Apoptosis and Infections

Many viral infections, including HIV, cause extensive apoptosis [22, 42] which
may contribute to the impaired immune response during and after such infec-
tions. Moreover, Plasmodium falciparum-infected erythrocytes bind to CD36. This
may provide an important mechanism by which the parasite impairs the host de-
fense. During Trypanosoma cruzi infection, the parasites usually survive within
macrophages, which appear to not be adequately activated or activatable, respec-
tively [43]. Since T. cruzi primarily infects neutrophils, in which they induce apop-
totic cell death, they may enter macrophages using apoptotic neutrophils as a Tro-
jan horse. The apoptotic neutrophils may force the engulfing macrophage into an
anti-inflammatory state, which prevents efficient killing mechanisms of the intra-
cellular parasites. A similar mechanism may also work in other parasite infections
which might employ apoptotic ‘Trojan horses’ as anti-inflammatory door-openers
in a similar way.

3.11.5
Apoptosis and Blood Transfusions

Immunosuppression after transfusion of allogeneic and autologous blood might
be, at least partially, caused by apoptotic leukocytes [44]. In addition, aged erythro-
cytes themselves expose PS and thereby may engage the PS receptor, resulting in
the secretion of immunosuppressive cytokines [45]. Therapeutically, it should be
possible to interfere with the immunosuppressive effects of apoptotic cells by
blocking the interaction with CD36 or by interfering with the CD36-linked signal
transduction pathway. On the other hand, agonistic CD36 ligands such as specific
antibodies, apoptotic cells or induction of apoptosis in vivo may be helpful in con-
trolling graft rejection, inflammation and autoimmunity. Similarily, blocking the
interaction between PS and the PS-receptor by annexin V appears to partialially
neutralize the anti-inflammatory effects of apoptotic cells. In contrast, agonistic li-
gands of the PS-receptor should display immunosuppressive and anti-inflamma-
tory effects.
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4.1
Introduction

Both programmed cell death and complement are tightly regulated systems,
mainly orchestrated by activation of proteases. The complement system has usual-
ly been described as a defense mechanism against invading organisms and,
although its role in clearing debris was suggested a long time ago, only recently
has its role in the clearance of apoptotic material become appreciated. Membranes
of cells undergoing apoptosis were shown to bind fragments of complement that
facilitated their clearance via specific receptors, establishing its role in homeosta-
sis in addition to defense mechanisms. On the other hand, complement-mediated
cell lysis that traditionally has been presented as a classical example of necrotic
cell death was recently suggested to have pro- or anti-apoptotic effects, at low do-
sages of the membrane attack complex (MAC).

This chapter describes and discusses the reports covering the various aspects of
the interface between complement and apoptosis, and its possible relevance to
autoimmune diseases, inflammatory conditions and homeostasis.

4.2
Programmed Cell Death (PCD)

PCD plays an important role in development and tissue homeostasis [1, 2]. Nor-
mal and altered PCD were found to be fundamental processes in the pathogen-
esis of numerous diseases, including cancer, AIDS, neurodegenerative disorders,
ischemia and autoimmune syndromes. The term apoptosis that was coined in
1972 by Kerr et al. [3] means ‘falling leaves’ in Greek, and describes a de-adhesive-
ness of cells that undergo morphological changes like cell shrinkage, plasma
membrane blebbing and chromatin condensation with intact membrane. This is
subsequently followed by cellular fragmentation into apoptotic bodies. Cell death
by necrosis, named by some authors ‘accidental cell death’ or non-PCD, has mor-
phologically distinct features from those observed in cells undergoing apoptotic
cell death, with cytoplasmic and mitochondrial swelling [4]. In addition, the mem-
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brane of apoptotic cells remains almost intact until the late stages, in contrast to
the damaged membrane of a necrotic cell. Inflammation has been traditionally
considered to be a byproduct of necrotic cell death, but not of apoptosis [5]. How-
ever, there is growing support for the claim that exceptions do exist and apoptosis
of some cell types by certain inducers can be associated with inflammatory sig-
nals [6–8], whereas necrosis may be non-pro-inflammatory under certain condi-
tions [9]. According to the circumstances, apoptotic cells are cleared by neighbor-
ing cells, professional phagocytes or both. Several receptors, including integrins,
receptor(s) for lectin(s), phosphatidylserine (PS) receptor, scavenger receptors and
CD14, were described as having a role in the clearance of apoptotic cells (reviewed
in [10]).

Apoptosis is a genetically controlled process responding to a variety of signals –
receptor- or non-receptor mediated, extracellular or intracellular. The signal for
apoptosis may originate by ligands of the described death receptors, e.g. tumor ne-
crosis factor (TNF) receptor I, Fas (CD95), DR3/WSL and TRAIL/APO-2L, or
upon DNA damage, growth factor removal or exposure to toxic chemicals. In both
cases, mitochondria are believed to play a central role in the propagation of PCD.
Accordingly, some of the major inhibitors of apoptosis, i.e. the anti-apoptotic
members of the Bcl-2 family, act at the level of the mitochondrial membrane [11–
13]. Another set of inhibitors of apoptosis proteins (IAPs) binds directly to and in-
hibits specific caspases [14].

The apoptotic executional process is based on a cascade of cytoplasmic cysteine
proteinases, known as caspases. Their name is derived from the fact that they all
cleave their substrates after aspartic acid residues [15–17]. The family of human
caspases contains over 14 evolutionary conserved homologous proteases [15, 16].
The caspases are synthesized as zymogens (pro-caspases) and are activated by
cleavage at specific aspartic acid residues. Following removal of an N-terminal
fragment, two caspase subunits assemble into a heterotetramer to form the active
enzyme. Casapases can be further divided to initiators that are more pattern-spe-
cific and effectors that designate a common pathway. For example caspase-8 is an
initiator caspase in the CD95-dependent pathway and capase-9 is an initiator in
the mitochondrial-dependent pathway. Both pathways utilize caspase-3 and -7 as
effector caspases. Caspases are known to cleave, in addition to other caspases, nu-
merous specific distinct cellular proteins, including structural and regulatory pro-
teins whose degradation leads to the morphological changes that characterize
apoptotic cell death (reviewed in [16]). Thus, digestion of nuclear lamin permits
nuclear budding [18, 19], cleavage of fodrin and gelsolin leads to membrane bleb-
bing [20], and cleavage of ICAD leads to internucleosomal DNA fragmentation
[21].

In certain cell types the caspase cascade is necessary and sufficient for the ex-
ecution of apoptosis [22]. However, apoptotic cell death of other cells requires the
release of apoptogenic proteins from damaged mitochondria [23]. Two of the pro-
apoptotic mitochondrial proteins that have been well described are cytochrome c
and apoptosis-inducing factor (AIF) [23]. Cytochrome c, once released into the cy-
toplasm, interacts with the adaptor protein Apaf-1 and with pro-caspase-9, leading
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to caspase-9 activation and induction of a death signal [24, 25]. AIF initiates apop-
tosis by activation of caspase-3 [26]. Non-apoptotic forms of PCD have been de-
scribed [27, 28]. In terms of its morphology (cytoplasmic vacuolization), at least
one of them [27] resembled the morphology of necrotic cell death. For additional
and detailed information on apoptosis activation and regulation, the reader should
refer to recent reviews [1, 2, 29, 30].

4.3
Complement

The initial descriptions of the complement system were of a heat-labile factor
‘complementing’ bacteriolytic activity of antibodies [31]. The complement system
is usually described as a defense mechanism against invading organisms and
although its role in clearing debris was appreciated a long time ago, only recently
[32, 34] has its role in the clearance of apoptotic material become appreciated. The
complement system consists of a group of 13 soluble plasma proteins (Tab. 4.1),
15 regulatory proteins (Tab. 4.2) and 10–11 known receptors (Tab. 4.3). The pro-
teins of the complement system interact with one another in three different enzy-
matic cascades, termed the classical, alternative and lectin pathways (Fig. 4.1 and
Tab. 4.1). Activation of the system leads to opsonization by proteins and genera-
tion of C3 convertase that cleaves C3. The C3 convertase structure depends on the
mode of activation (Fig. 4.1).

The classical activation pathway, suggested by Erlich and others, was described
initially as a consequence of opsonization by antibodies to a pathogen. However,
we now know that it can be activated in the absence of an antibody by nucleic
acid, phospholipids, lipopolysaccharide (LPS) and apoptotic cells.

Either receptor-dependent or -independent, complement–cell interactions lead to
variable responses like cytokine secretion, phagocytosis, mitosis or cell arrest and
proliferation or cell death. Opposite effects then depend on cell types, modes of
activation and the activity of different regulatory mechanisms. Activated comple-
ment components may induce de novo synthesis or shut-off of proteins, phosphor-
ylation or de-phosphorylation of proteins and synthesis or degradation of DNA.
Complement activation on the surface and/or in the vicinity of cells generates a
mixture of active compounds and the outcome of these complement–cell interac-
tions will be governed by their local concentration, and by many other factors
such as growth factors, hormones, cytokines and toxic substances.

Complement activation on surfaces results in the generation of convertases that
further cleave C3 (C3 convertase) or C5 (C5 convertase) to initiate terminal complex
assembly (Fig. 4.1). In addition, activated complement components and fragments
are generated, some of which are recognized by specific receptors present on the
surface of many cell types. Receptors for C3a, C5a, C3b and iC3b have been well
studied and characterized (Tab. 4.3) [35, 36]. Review articles on various aspects of
complement activation can be found in Volanakis and Frank [31]. In contrast to
these activated complement proteins, the terminal complement complexes C5b–7,
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C5b–8 and MAC are known to bind to cell membranes directly via hydrophobic re-
gions in the absence of a known receptor [37, 38]. The assembled complement MAC
contains one molecule of C5b, C6, C7 and C8, and several C9 molecules. At low copy
numbers per cell (non-lytic or sublytic doses of MAC), the MAC is known to have
stimulatory activities on many cell types [31, 39, 40]. However, at high copy num-
bers per cell (a lytic dose of MAC) the MAC induces a loss in membrane integrity
and rapid necrotic type cell death [41, 42]. The morphology of complement-
mediated cell death, as studied with Ehrlich ascites tumor cells at the ultrastructural
level, is characterized by swelling of mitochondria, dilation of the rough endoplas-
mic reticulum, disruption of the Golgi complex and of the plasma and nuclear mem-
branes, and heterochromatin disappearance [42]. Cells vary markedly in their thresh-
old for lysis by MAC. The factors that contribute to cell resistance to the damage
inflicted by the MAC have been recently reviewed [43]. It is noteworthy that cell re-
sistance depends on both extracellular protection by membrane complement regula-
tory proteins and proteases, and intracellular damage repair processes involving pro-
tein kinases and heat-shock proteins [44–46].
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Fig. 4.1 Complement activation. Complement activation in humans is initiated
either directly or following opsonization by a variety of molecules. The three path-
ways that are recognized so far, the classical, lectin and the alternative pathways, all
lead to the formation of C3 convertase. C4b2a is the convertase of the classical and
lectin pathways, and C3bBb of the alternative pathway. C3b, the cleavage product of
C3, can form C5 convertase that cleaves C5A or undergo degradation. If C5 conver-
tase is formed, MAC may be generated in the presence of C6–9 and factor S. Apop-
totic cells were shown to activate both pathways, but without formation of C5 con-
vertase, under normal conditions. Binding of factors like C1q and MBL was sug-
gested to mediate clearance via specific receptors. MAC may induce either death or
stimulatory effects, depending on dosage, cells and circumstances.
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Tab. 4.1 Proteins of the complement system.

Component Pathway Structure

C1 classical a complex of three subunits, C1q (460 kDa)
and two C1r (80 kDa), C1s (80 kDa)

MBL–MASP lectin a complex of MBL and MASP
C4 classical 3 chains; � (97 kDa), � (75kDa), � (33kDa)
C2 classical 1 chain (102 kDa)
FB alternative 1 chain (93 kDa)
FD alternative 1 chain (24 kDa)
Properdin alternative oligomers of 1 chain (53 kDa)
C3 common 2 chains; � (110 kDa), � (75 kDa)
C5 terminal 2 chains; � (115 kDa), � (75 kDa)
C6 terminal 1 chain (120 kDa)
C7 terminal 1 chain (110 kDa)
C8 terminal 3 chains; � (65 kDa), � (65kDa), � (22kDa)
C9 terminal 1 chain (69 kDa)

Proteins of the complement system can be divided according to the initial (classical, lectin and alter-
native) and common (terminal) pathways of activation. Their basic structure is indicated. C1q [106],
MBL [96], C4, C2 [32, 34] and C3 [32, 103] were shown to bind to apoptotic cells. The alternative
pathway [32, 98], classical pathway [32, 34, 103] or both [32] were shown to be possible pathways of
activation. MBL was shown to bind to apoptotic cells but activation via the lectin pathway was not
clearly shown [96]. FB= Factor B, FD= Factor D, MBL–MASP = mannan binding lectin (MBL) in com-
plex with the zymogen form of serine protease MASP.

Tab. 4.2 Regulatory proteins of the complement system.

Component Regulatory function

C1in (P, 200 �g/ml) serine protease inhibitor; inhibition of activated
C1

C4bp (P, 200–300) CP: C4b�C4d/C4c and decay acceleration of
convertase

FH (P, 200–600) AP: C3b� iC3b and decay acceleration of con-
vertase

FI (P, 30–40) serine protease. Inactivation of C3 convertase
AP: +Fh, CP: +C4bp:

S protein (P, 500) prevention of MAC
CPN (P, 30) C3a and C5a inhibitor
MCP (CD46) (M) cleavage of C4b (CP)

cleavage of C3b (AP)
DAF (M) decay acceleration of convertase, CP
and AP

CR1 (CD 35) (M) cleavage of C4b (CP), Cleavage of C3b (AP)
decay acceleration of convertase, CP and AP

CD59 (M) Blocks binding of C9 and formation of MAC

Plasma (P) and membrane bound proteins (M) that regulate complement activation. AP = alternative
pathway, C1in = C1 inhibitor, C4bp = C4 binding protein, CP = classical pathway, CPN = caboxypeptidase
N, DAF = decay-accelerating factor, fH= Factor H, fI= Factor I, MCP= membrane cofactor protein.



4.4
Complement and Apoptosis

PCD may be divided into two distinct sequential processes: execution and removal
of dying cells. The two are linked together and ex vivo examination of tissues un-
dergoing a high rate of apoptosis depicts apoptotic cells within phagocytes [47].
The prevailing notion is that uptake of apoptotic cells via specific receptors into
phagocytes results in disposal of cellular debris without an induction of inflamma-
tion [10, 48, 49]. In Section 4.4.1 we focus on the possible role of complement in
the execution phase of apoptosis and necrosis, and in Section 4.4.2 we discuss the
role complement plays in the removal of dead corpses.

4.4.1
Role of Complement in the Execution Phase

Recent works suggest a role for complement activation in the execution phase of
PCD. Cell death induced by complement MAC appears morphologically distinct
from apoptosis, especially when comparing the progression of death at the level
of cytoplasmic organelles [42]. However, certain inducers of cell death may induce
apoptotic-type cell death at low concentration and necrotic-type cell death at high-
er concentrations [50–52].

Lytic MAC doses are known to produce DNA fragmentation [53]. The question
of internucleosomal DNA fragmentation under lytic complement conditions was
addressed recently in vitro [54]. DNA fragmentation, as determined by TUNEL,
was evident as early as 30 min after addition of serum and DNA ladders were ob-
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Tab. 4.3 Membrane receptors for complement fragments.

Receptor Size and distribution Ligand Clearance of
apoptotic material

C1qR-gl-h 33, 80 kDa C1q-gl-h
C1qR-coll-r
(calreticulin)

70 kDa, LY, MO, MA, EN C1q-coll-r lectins
(MBL)

+

C1qR-coll-r 100 kDa, MO, NE C1q-coll-r
CR1 (CD35) 180–200 kDa C3b/C4b ?
CR2 (CD21) 145 kDa C3d
CR3 (CD11b/CD18) �M (165 kDa/�2 (95 kDa) iC3b +
CR4 (CD11c/CD18) �X (150 kDa/�2 (95 kDa) iC3b +
C3aR (CD88) 60 kDa C3a
C4 aR NA kDa C4a
fHR NA kDa fH
C5b–7R NA kDa C5b67

C1qR-gl-h (calreticulin), and the integrin receptors, CR3 (CD11b/CD18) and CR4 (CD18/CD11c) were
shown to have a role in removal of apoptotic material [32, 96–98]. Coll-r= collagenous region, gl-h =
globular heads, MA = macrophages LK = leukocytes, LY = lymphocytes, MA = macrophages, MO= mono-
cytes, NA = not available, NE = neutrophils, PL = platelets.



served later, between 2 and 11 h after addition of serum. Importantly, these
changes required a high (30%) serum concentration and occurred in cells with
impaired plasma membrane integrity, i.e. dead cells. Apoptosis was identified in
these studies by the use of criteria that may not be regarded as definite indicators
of apoptotic cell death [55–57]. Cragg et al. proposed that the DNA fragmentation
and laddering observed in complement-lysed cells (e.g. Raji, Daudi and EHRB
cells) is mediated by serum DNase I which enters the cells through complement-
induced pores [54]. The data presented in the ultrastructural studies [42, 54] best
supports the conclusion that complement-induced death is necrotic in essence
with the possible involvement of apoptotic features produced by external or sec-
ondary (e.g. oxygen radicals) factors.

Activated complement proteins, other than MAC, may also contribute to apopto-
tic cell death. Rosenkranz et al. demonstrated that neutrophils incubated with a
Cubrophan membrane and serum undergo apoptosis which is prevented by re-
moval of C3, but not of C5, from the serum [58]. Heat inactivation of the serum
also reduced the serum capacity to induce neutrophil apoptosis. Uwai et al. re-
ported that Factor B and its fragment Bb are apoptogenic to HL-60 cells [59]. The
apoptogenic effect of Factor B may be enhanced by the addition of C3 or Factor D
and is inhibited by antibodies directed to Factor B, CD35 or CD11c. Interestingly,
Factor B was identified in this study to be a growth-inhibiting factor produced by
HL-60 cells, activating caspase-3 and DNA fragmentation in these cells. The in-
volvement of Fas and TNF pathways in the Bb-induced apoptotic pathway was ex-
cluded. Finally, Farkas et al. showed that an oligomeric form of a C5a-derived pep-
tide may cause apoptosis (TUNEL staining) of human neuroblastoma cells [60].
This activity is C5a receptor dependent.

Complement MAC contributes to tissue injury following myocardial ischemia
and reperfusion (MI/R) [61–63]. Using a rat model of MI/R, Vakeva et al. analyzed
the cell death type, and concluded that cell loss in MI/R results from necrotic and
apoptotic-type cell death [64]. By using anti-C5 antibody therapy, it was found that
both necrotic and apoptotic (DNA fragmentation and laddering) events require
C5, suggesting that MAC is the cause of the apoptotic-type cell death in tissue fol-
lowing MI/R.

The involvement of complement in kidney tissue damage accompanying auto-
immune and inflammatory diseases is widely accepted ([31] and reviewed in [65]).
To investigate the factors involved in kidney diseases, several animal models have
been developed. Perfusion of rat kidneys with anti-Thy-1 antibodies leads to the
development of a complement-dependent nephritis accompanied by a rapid loss
of mesangial cells [66, 67]. Sato et al. used this rat model to study the type of me-
sangial cell death. Cells with condensed chromatin and cells stained by TUNEL
were observed in glomeruli of affected rats [68]. Such cells were not seen in glo-
meruli of C6-deficient rats infused with Thy-1 antibodies. Therefore, it was con-
cluded that MAC is involved in induction of apoptosis in mesangial cells. Shimi-
zu et al. used the same nephritis model and also described complement-depen-
dent mesangial cell death characterized by chromatin condensation, TUNEL stain-
ing and DNA ladder formation [69]. Based on ultrastructural analysis of the dead
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cells by transmission electron microscopy and clear indications of necrotic-type
death in the mesangial cell cytoplasm, they suggested that complement induced
both necrotic and apoptotic cell death in the same cell. In contrast, based on an
extended ultrastructural study of mesangial cells in rats developing acute nephri-
tis upon administration of anti-Thy-1 antibody, Mosley et al. concluded that these
cells undergo a typical necrotic cell death. Chromatin condensation was observed,
but there was also loss of nuclear membrane, cell swelling, degeneration of cyto-
plasmic organelles, and release of chromatin and organelles into the interstitium
[70]. Hughes et al. used two other rat models of induced experimental glomerulo-
nephritis and followed death of glomerular endothelial cells [71]. Future studies
will have to further address whether complement MAC may induce, under patho-
logical conditions, cell death by apoptosis.

Sublytic and non-lytic doses of MAC have been shown, over the years, to induce
numerous cell stimulatory effects ([31] and reviewed in [37, 40]). In 1992, Reiter et
al. demonstrated that sublytic MAC doses can also induce enhanced cell protec-
tion from lytic MAC doses [72]. This finding was later extended to include several
other protein pore-formers like perforin, mellitin, streptolysin O and staph-�-toxin
[73]. The process of complement-induced protection depends on calcium ion in-
flux and activation of protein kinase C [43], and the extracellularly regulated pro-
tein kinase ERK [46].

The possibility that sublytic MAC can induce cell protection from apoptosis was
first examined with oligodendrocytes (OLG). OLG treated with sublytic MAC
doses are stimulated to enter the cell cycle by induction of c-Jun through activa-
tion of the c-Jun N-terminal kinase pathway [74]. Upon in vitro culture, OLG spon-
taneously die by apoptosis. However, treatment of OLG with sublytic MAC re-
duces the percentage of dead cells [75]. Interestingly, sublytic MAC was shown to
increase the amount of Bcl-2 in OLG and to reduce activation of apoptosis-asso-
ciated caspase-3 activation [75]. In addition, sublytic MAC can protect OLG from
TNF-�-mediated apoptosis by prevention of caspase-3 activation [75]. A similar
study was performed recently with Schwann cells in culture [76]. Again, sublytic
MAC was shown to activate in Schwann cells, DNA synthesis and a shift into S or
G2/M phases of cell cycle, and to induce cell proliferation. Like OLG, Schwann
cells undergo during culture spontaneous apoptosis that may be inhibited by treat-
ment with sublytic MAC. Dashiell et al. concluded that the MAC is a potent
Schwann cell trophic factor capable of stimulating mitogenesis and apoptosis res-
cue. Whether or not the complement system is protecting glial cells in vivo from
apoptotic death is still not known. However, clearly, such a protective activity may
have a major impact on axonal remyelinization in the central and peripheral ner-
vous systems in neurological diseases or following axonal damage.

Another complement component that appears to have an anti-apoptotic effect is
the anaphylatoxin C5a. Complement activation in the brain has been mainly im-
plicated in neurodegeneration in diseases like Alzheimer’s disease (AD) [77]. How-
ever, surprisingly, C5-deficient mice are more susceptible to excitotoxic brain in-
jury [78]. Pasinetti et al. presented in vivo and in vitro results that suggest a role
for C5a in neuroprotection [79]. C5a reduces neuronal apoptosis in the hippocam-
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pal pyramidal layer of mice injected with kainic acid in the intra-brain ventricles
[80]. C5a also protects in vitro primary cultured neurons from cell death induced
by glutamate [81]. As neuronal cell death was measured in the latter reports by
Trypan blue exclusion [80] or release of lactic dehydrogenase [81], it is possible
that C5a prevented progression of secondary necrosis or inhibited a non-apoptotic
effect of glutamate. The fact that C5a could reduce glutamate-induced activation
of caspase-3 and staurosporin-induced activation of caspase-3 and -8 [79] supports
an anti-apoptotic effect for C5a. Ultrastructural studies will provide a more defi-
nite identification of the earliest apoptotic events affected by C5a. The protective
effect of C5a depends on a signaling cascade, initiated following engagement of
the C5a receptor and activation of ERK2 [81].

An earlier study suggested that C5a may also protect neutrophils from apoptotic
cell death [82]. The biological relevance and extent of these findings are yet un-
clear, but clearly multi-factorial and complex mechanisms appear to be involved in
the intersection between complement and apoptosis.

4.4.2
Complement Activation by Apoptotic Cells

The mechanisms whereby apoptotic cells are identified, taken up and degraded by
phagocytes are not well understood. Interestingly, at least seven of the 12 genes
involved in PCD in the nematode Caenorhabditis elegans participate in the removal
of apoptotic bodies [83, 84]. The function of these genes (ced-1, -2, -5, -6, -7, -10
and -12) has only been partially characterized. One group consists of ced-2, -5, -10
and -12 [83, 85]. Analysis of this group of genes in C. elegans indicates their role
in organizing and controlling cytoskeletal rearrangement during cell migration
and engulfment of apoptotic cells [86–88]. The ced-2 mammalian homolog was
identified as crkII [86], ced-5 encodes a homolog of human DOCK 180, a protein
involved in receptor signaling and surface extension [89], while ced-10 and -12 ana-
logs are rac [86] and elmo [87], respectively. The second group includes ced-1, -6/
gulp and -7/abc1, and may be related to recognition functions. Recently, CED-1
was cloned and identified to be a transmembrane protein sharing sequence
homology with the human scavenger receptor SREC [90]. However, SREC fail to
show any homology to the cytoplasmic region of CED-1. ced-6 encodes an adaptor
molecule with a phosphotyrosine-binding domain acting in signal transduction
that mediates engulfment of apoptotic cells [91]. Expression of human ced-6 as a
transgene rescues the engulfment defect [92], showing perhaps conservation of
function between worms and humans. CED-7 is similar to the ABC1 cassette
transporter, and may be involved in the homotypic interaction between the cell
surface of dying and engulfing cells [93]. A recent work showed interaction be-
tween CED-6/gulp and CED-1 and CD91/LRP, and suggested interaction of these
proteins during engulfment [94]. Interestingly, all six genes, as well as ced-12, are
also required for the clearance of necrotic cells [95].

Publications over the past decade have attributed to a role integrins, scavenger
receptors, PS receptor, CD14, ABC1 cassette transporter and C1q/CD91 receptors
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in the uptake of apoptotic cells by macrophages (reviewed in [10, 96]). As sug-
gested by the multitude of receptors involved, the mechanisms underlying the re-
cognition, engulfment and phagocytosis of apoptotic cells by macrophages are
complex. Complement opsonins like C1q, mannose-binding lectin (MBL) and
iC3b, appear to have a role in the uptake of apoptotic cells, possibly by interaction
with C1qR/CD91, CR3 (CD11b/CD18) and/or CR4 (CD11c/CD18) on phagocytes
[9, 32, 34, 96–98]. Complement factors were also suggested to bind to late apopto-
tic or necrotic cells [99]. Serum factors were shown to increase the uptake of apop-
totic cells by human macrophages by 3- to 10-fold [32]. Contrasting data has been
recently reported by Ren et al., who claimed that CR3 and CR4 are not essential
for uptake of aged neurophils by macrophages [100]. No difference in ingestion of
apoptotic neutrophils was found between macrophages derived from CD11b- or
CD18-deficient and wild-type mice. Unfortunately, the latter report did not provide
any clear indication of the level of complement-mediated opsonization of the aged
neutrophils employed in the interaction assay [100]. CR3 and CR4 are expected to
have an impact on phagocytosis only after efficient opsonization of the apoptotic
cells by iC3b [101]. Therefore, further experimentation is required to clarify the
role of complement receptors in uptake of apoptotic cells by macrophages.

Complement activation by apoptotic cells has been shown in a variety of cells:
human T lymphocytes, human lymphoma cell lines [32, 102], human umbilical
vein endothelial cells (HUVEC) [103, 104], human lung adenocarcinoma cells
[105], as well as in murine thymocytes [32]. Complement activation may be in-
itiated via the classical, alternative and/or lectin pathway, and the first reports
[102, 104] concluded that apoptotic cells activate the alternative pathway of com-
plement. Later, Korb and Ahearn described binding of C1q, the first component
of the classical pathway, to apoptotic keratinocytes [106], and Mevorach et al. re-
ported activation of the classical pathway by human apoptotic leukocytes and mur-
ine thymocytes [32]. Interestingly, when using a heterologous system of murine
apoptotic thymocytes and human complement, both alternative and classical path-
ways appear to be activated. This was supported by the use of sera deficient in
C1q, C2 or C4 (classical pathway components), factor B (an alternative pathway
component) or C3 (for both pathways) [32]. Apoptotic HUVEC cells subjected in
vitro to hypoxia and re-oxygenation or starvation become activators of the classical
pathway of complement [103]. This is prevented by treatment of the cells with the
pan-caspase inhibitor z-VAD. Remarkably, apoptosis of HUVEC cells [104] or hu-
man neutrophils is associated with downregulation of the complement membrane
regulatory molecules decay-accelerating factor (DAF or CD55) and CD59 [107],
whereas apoptosis of human lung adenocarcinoma cells is associated with down
regulation of DAF, membrane cofactor protein (MCP or CD46) and complement
receptor type 1 (CR1 or CD35) [105]. Reduced levels of CD59 were found also in
vivo in CD8+ T lymphocytes collected from Epstein–Barr virus-induced acute infec-
tious mononucleosis patients [108], and, more recently, from systemic lupus er-
ythematosus (SLE) and Sjögren’s syndrome patients [109]. Interestingly, the CD4+

T lymphocytes from the same patients contained normal levels of CD59. Whether
or not CD59 and the other complement membrane regulatory proteins play any
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role in the apoptotic process is still an open question. Another, yet unresolved, is-
sue is whether or not apoptotic cells lacking these membrane proteins are by na-
ture more susceptible to complement-mediated attack.

To date, little is known about complement-activating molecules on apoptotic
cells or acceptors onto which activated complement components are deposited.
One of the early molecular events in apoptosis is an externalization of PS from
the inner to the outer face of the plasma membrane [9, 110]. PS exposure on
apoptotic cells is associated with C3b deposition on the surface of apoptotic cells.
Only cells exposing PS have C3 fragments (mainly iC3b) on their surface [32].
This claim has been recently reinforced by Mold and Morris who also found a
good correlation between PS+ and C3b+ cells in a population of apoptotic HUVEC
cells treated with complement [103]. However, the role PS exposure on apoptotic
cells plays in the apoptotic process and in complement activation is still an open
question. In support of a possible direct role for PS in complement activation, PS
micelles have been shown to activate complement both in vitro [111, 112] and in
vivo [113], and loss of membrane asymmetry of red blood cells was shown to be
associated with complement activation [114, 115]. In most reports of complement
activation by phospholipids, the activation occurred via the alternative pathway
[116]. Cardiolipin, a phospholipid that shares some similarities in structure and
charge with PS, was shown to activate complement via the classical pathway in an
antibody-independent mechanism [117–119]. Thus, liposomes that share similari-
ties with the membrane of apoptotic cells have the capacity to activate comple-
ment through either the classical or alternative complement pathways [120]. Final-
ly, complement activation may also be regulated by binding to apoptotic cells of
proteins such as natural or autoimmune antibodies [9, 33], �2-glycosylphosphatidy-
linositol (�2-GPI) [9, 121–123], C-reactive protein (CRP) [124], serum amyloid P
and other proteins (reviewed in [9]).

Complement activation by apoptotic cells imposes the risk of generation of the
MAC and cell lysis, and consequently development of an inflammatory process.
However, Mevorach et al. showed that the complement system undergoes only a
limited activation by apoptotic lymphocytes, Jurkat cells and murine thymocytes,
and that C5- or C9-deficient serum are as efficient as C-sufficient sera in opsoni-
zation of apoptotic cells and in their subsequent clearance by phagocytes [32]. Giv-
en that CD59 expression was reported to be reduced on some apoptotic cells,
what protects them from the MAC? One possible explanation is that C3b depos-
ited on apoptotic cells is rapidly converted into iC3b [32, 104, 108]. In the absence
of MCP and perhaps also CR1, the inactivation of C3b is largely dependent on
Factor H [125]. It is possible that the surface of apoptotic cells permits a better
regulation of C3b by Factors H and I. Protection of apoptotic cells from MAC by
clusterin has also been proposed [126].

CRP is an acute phase reactant synthesized following tissue injury and inflam-
mation (reviewed in [31]). It binds to nucleated cells and activates complement ac-
tivation that is restricted to formation of the C3 convertase [127]. C5 convertase
formation and MAC generation are probably blocked by Factor H that binds di-
rectly to CRP [128]. A role has been proposed recently for CRP in activation of the
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classical complement pathway on apoptotic Jurkat cells and in limiting, together
with Factor H, the stage of complement activation to the C3b deposition and iC3b
generation stages [124]. Hence, CRP may support non-inflammatory clearance of
apoptotic cells and, under normal conditions, complement activation on the sur-
face of apoptotic cells will facilitate phagocytosis but not cell lysis. However, the
rules of the game may change when conditions change. The intensity of comple-
ment activation may increase at sites of inflammation and in the presence of auto-
antibodies. Will the mechanism(s) that protect the apoptotic cells from lysis still
be as effective? It is envisaged that in the presence of exogenous complement acti-
vators such as autoantibodies, immune complexes or bacterial polysaccharides,
apoptotic cells will undergo MAC-mediated necrosis to some extent.

Tagging the surface of apoptotic cells with C3b and iC3b may not only promote
efficient clearance of apoptotic cells, but may also exert anti-inflammatory re-
sponses. Binding and phagocytosis via macrophage CD11b/CD18 does not trigger
leukotriene release [129] or a respiratory burst [130, 131]. Furthermore, ligation of
CD11b/CD18 and other complement receptors may actually be immunosuppres-
sive by down-regulating interleukin (IL)-12 and interferon (IFN)-� production by
human monocytes [132]. It seems likely, therefore, that the pro- and anti-inflam-
matory consequences of complement activation will depend upon the specific li-
gands that are involved and the co-receptors that are engaged. Phagocytosis of
apoptotic cells was shown to suppress the release of granulocyte macrophage colo-
ny stimulating factor, IL-1�, IL-8, TNF-�, and thromboxane B2, but not transform-
ing growth factor-� and prostaglandin E2 [48]. IL-10 has anti-inflammatory proper-
ties manifested by suppression of the release of pro-inflammatory cytokines such
as IL-1, IL-6, IL-8 and TNF-�. However, contrasting results were obtained when
the production of IL-10 following phagocytosis of apoptotic cells was evaluated.
Both increased [133] and suppressed [48] release of IL-10 following ingestion of
apoptotic cells by human macrophages was found. The latter studies were per-
formed in the absence of serum; therefore, the effect of complement on IL-10 re-
lease could not have been evaluated. Under certain conditions, phagocytosis of
apoptotic cells may also lead to production of pro-inflammatory cytokines, such as
IL-8, by phorbol myristate acetate-activated macrophages [7].

4.5
Apoptosis, Complement and Autoimmunity

The significance of the complement system to uptake of apoptotic cells in vivo
may be illustrated in the pathogenesis of SLE (reviewed in [9, 134–136]). It has
long been appreciated that DNA and histones are major autoantigens in SLE.
However, more recently it has become clear that DNA–histone complexes, i.e. nu-
cleosomes, are preferred targets for autoantibodies in SLE [137]. How do nucleo-
somes and several other intracellular antigens become immunogenic in SLE pa-
tients? Part of the answer to this question may lie in the process of apoptosis.
During apoptosis, the plasma membrane of apoptotic cells undergoes blebbing ac-

4 Complement and Apoptosis68



companied by other membrane transformations, culminating in shedding of
apoptotic bodies. Thus, exposure of keratinocytes to ultraviolet B-mediated apopto-
sis induces cell surface expression of Ro and La, nucleosomes, and ribosomes,
possibly due to translocation of certain intracellular particles to the apoptotic sur-
face blebs [138]. PS, restricted to the inner membrane leaflet in a viable cell, trans-
locates during apoptosis to the apoptotic cell surface [139]. �2-GPI bound to PS on
apoptotic cells [123] is a major autoantigen for anti-phospholipid antibodies in
SLE and in vivo experiments in mice showed transient elevations of anti-phospho-
lipid antibodies following high-dose injection of apoptotic cells [33]. Therefore, it
has been envisaged that SLE patients are triggered by surface exposed intracellu-
lar macromolecules translocated to the cell surface during apoptosis [33, 138]. The
next question that arises then is why do SLE patients mount an immune re-
sponse to the apoptotic material? One possible explanation is an impaired capaci-
ty of SLE patients to clear apoptotic cells that serve as efficient immunogens. This
is based on the findings that macrophages of SLE patients show in vitro reduced
uptake of apoptotic cells [134, 136], and high level of circulating nucleosomes in
peripheral blood of SLE patients [140]. Furthermore, reduction of DNase I and in-
creased nucleosomes level was suggested to have a critical role in the initiation of
human SLE [141]. Interestingly, increased spontaneous apoptosis of lymphocytes
[142, 143] and monocytes [136] was documented in patients with SLE, and immu-
nization of mice with a high dose of syngeneic apoptotic cells was shown to in-
duce autoantibodies in normal strains of mice [33]. How is complement involved
in this process? Homozygous deficiency of C1q in man and mice shows the
strongest single gene association with development of an SLE-like disease (re-
viewed in [144, 145]). Furthermore, multiple TUNEL+ cells are found in the kid-
neys of C1q-deficient mice developing an SLE-like disease [144]. Clearance of
apoptotic cells in vitro [32] and ex vivo was suggested to depend both on C1q and
C4 [34]. Yet, C1q was not essential for in vivo clearance of sunburn apoptotic cells
[146]. It will be interesting to see what role has MBL and C1qR/CD91 [96] in in
vivo removal of apoptotic cells. C2- and Factor B-deficient mice do not develop au-
toantibodies or an SLE-like disease, suggesting that C3 activation is not essential
for protection from this disease development [147]. However, this does not dis-
prove the claim [32] that C3 activation is involved in clearance of apoptotic cells.
In fact, using ex vivo models of apoptotic cell clearance, Taylor et al. concluded
that, depending on the cell type studied, complement mediated apoptotic cell
clearance is either effected directly by C1q (via candidate C1q receptors) or by C1q
as an activator of the classical pathway [34]. The acceptor molecule (s) for C1q on
apoptotic cells has not been identified yet, but, apparently, C1q binds through its
globular head to the surface blebs developing on apoptotic keratinocytes [106], en-
dothelial cells and peripheral blood mononuclear cells [148]. These results act as
the basis for the hypothesis implicating the role of early classical pathway compo-
nents, together with phagocytic cells, in the disposal of potentially hazardous im-
munogens from the body. Early complement deficiencies, acting together with ge-
netic and environmental susceptibility factors, thus increase susceptibility to an
SLE-like disease due to diminished clearance of dying cells. In addition, dimin-
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ished clearance of immune complexes associated with complement-deficient states
could cause an inflammatory damage and activation of antigen-presenting cells
[149]. An alternative hypothesis, although not mutually exclusive, proposes a role
for the early classical pathway components in maintenance of self-tolerance by re-
moving or silencing self-reactive B lymphocytes [150]. Interestingly, in mice, C4
inhibits autoimmunity through a mechanism independent of complement recep-
tors CR1 and CR2 [151]. What happens to apoptotic material when clearance is
impaired? Will B cell tolerance be impaired [152]? Is it necrosis that evokes a pro-
inflammatory immune response by dendritic cells [153]? Is it lysis of apoptotic
material (secondary necrosis) and not primary necrosis that induces autoimmu-
nity [9]? What is the role of autoantibodies, antinuclear, anti-DNA and anti-C1q,
on one hand, or natural autoantibodies, on the other hand, in induction or pre-
vention of autoimmunity?

Better understanding of homeostasis, degenerative (atherosclerotic) processes
and inflammatory conditions will hopefully shed more light on the role of innate
immunity in conditions we today call ‘autoimmunity’.
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5.1
Introduction

Over the last few years, receptors for apoptotic cells have been identified on the
surface of the phagocyte. They include integrins, scavenger receptors, lectins, the
phosphatidylserine (PS) receptor and the lipopolysaccharide receptor CD14. Dedi-
cated studies allowed the dissection of signals on dying cells that activate the re-
cognition machinery required for engulfment (the so-called ‘eat me’ signals). Even
the simultaneous blockade of multiple interactions does not abrogate phagocytosis
[1]. This suggests that phagocytes use more than one receptor-based recognition
mechanism. The cooperation of independent, low-affinity receptors guarantees
rapid uptake and reduces escape possibilities [2–4]. Recent evidence also impli-
cates soluble molecules as crucial non-redundant players in the clearance of dying
cells. The more cogent demonstrations come from in vivo studies in genetically
modified animals.

5.2
Soluble Factors Involved in Apoptotic Cell Recognition and Internalization

5.2.1
Corpse Clearance at Rest: Collectins

Mice bearing a genetic deletion of the first component of the classical pathway of
complement activation, C1q, highlight the link between the clearance of dying
cells and the immune homeostasis. C1q binds to membranes of keratinocytes un-
dergoing apoptosis in vitro [5] and in vivo [6]. Apoptotic glomerular cells accumu-
late in the kidneys of C1q deficient animals [7]. A consistent number of animals
(25%) also develop glomerulonephritis. Inflammatory peritoneal macrophages
from C1q and C4 deficient mice fail to clear in vivo syngeneic apoptotic thymo-
cytes [8], and the addition of the purified complement fraction corrects the defect.
Resident peritoneal macrophages of C1q-deficient, but not of C4-deficient, mice
also dispose apoptotic thymocytes with a reduced efficiency [8].
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Endothelial cells undergoing apoptosis as a consequence of hypoxia/reoxygena-
tion bind to C1q in vitro and activate the complement cascade [9]. This does not nec-
essarily mean assembly of the C5–C9 terminal complement components [mem-
brane attack complex (MAC)] involved in cell lysis and direct tissue damage. Ger-
shov et al. recently proposed that C-reactive protein (CRP) limits MAC assembly
on the surface of dying cells, protecting tissues in which extensive cell death is tak-
ing place [10]. Interestingly caspase inhibitors, which prevent apoptotic but not ne-
crotic cell death of hypoxic/reoxygenated endothelial cells, in vivo abolish comple-
ment activation [9]. Therefore the sequence of events ensuing the delivery of an
apoptotic stimulus into living tissues comprises: (1) caspase activation, (2) ‘eat me’
signals exposure, including C1q binding, and (3) phagocytic clearance of dying cells.

The dying cell membrane, after caspase activation, acquires discrete domains in
which C1q and other related molecules, like the mannose-binding lectin (MBL)
co-cluster. Both C1q and MBL use the globular heads to bind to apoptotic cell
membranes, while interact via the collagenous tail with phagocyte receptors. Og-
den et al. suggest that this interaction per se is endowed with a relatively low affin-
ity. Clustering would be required to ensure downstream signaling via the phago-
cyte receptors, necessary to ensure internalization. Furthermore, phagocytosing
macrophages secrete MBL and C1q in vitro, while these factors possibly derive
from plasma in vivo. Convincing evidence implicates calreticulin as the moiety
bridging C1q on the apoptotic cell membrane to CD91 receptors on the phagocyte
membrane [11]. On the other hand, both anti-CD91 and anticalreticulin antibodies
quantitatively inhibited the internalization of particulates.

Not all tissues depend on C1q for proper removal of dying cells. C1q binds to
keratinocytes undergoing apoptosis after ultraviolet exposure of wild-type animals.
However, C1q-deficient mice dispose of apoptotic keratinocytes efficiently and do
not develop autoantibodies [6]. Furthermore, phagocytes from peripheral tissues
differ, e.g. alveolar macrophages phagocytose with similar efficiency in the pres-
ence or the absence of the complement fraction [12]. However, macrophages pha-
gocytosing apoptotic cells can produce and secrete C1q in vitro [11], making the
relevance of the latter information difficult to evaluate.

C1q is not a lectin. However, it is highly homologous to members of a family of
proteins named collectins – pattern recognition proteins that bind to microbial
surface carbohydrates, interfering with infectivity and targeting pathogens for rap-
id clearance by immune cells. In addition to MBL, this protein family includes
the surfactant proteins A (SP-A) and D (SP-D), ‘defense collagens’ produced in
the lung, a district continuously exposed to pathogens. C1q, MBL and SP-A all in-
teract with calreticulin via the S domain (residues 160–283) [13]. Recently, Schagat
et al. reported that SP-A and SP-D, which bind to both bacteria and lipid vesicles
enhancing their phagocytosis by alveolar macrophages, also recognize cells under-
going apoptosis. However, they rely for recognition on a domain, which is unre-
lated to their lectin functions. Upon recognition, SP-A and SP-D potentiate the in
vitro disposal of apoptotic neutrophils by alveolar macrophages [12]. Taken, to-
gether these data indicate that collectins, besides their well-characterized role in
innate immunity [14], are a key player in the disposal of dying cells.
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5.2.2
Corpse Clearance at Rest: Cationic Factors and Other PS-binding Moieties

The loss of PS asymmetry and its exposure on the outer cell membrane character-
ize cells undergoing early apoptosis. It is instrumental for the rapid internaliza-
tion and clearance of apoptotic cells. Specific receptors [15], class B scavenger re-
ceptors [16] and CD14 [17] can directly bind to PS (although they are not specific
for the phospholipid). Charge modification, and the overall subversion of the plas-
ma membrane architecture recruit bridging molecules like thrombospondin (TSP)
and �2-glycoprotein I (�2-GPI) to the site of recognition and internalization of
apoptotic cells (discussed in [18]). TSP is a glycoprotein bearing multiple RGD se-
quences, present in a variety of tissues. TSP binds to a still unidentified site on
apoptotic cell membranes and acts as a molecular bridge with the vitronectin re-
ceptor (�V�3) and CD36 [19]. A functional involvement in the clearance of early
apoptotic cells has been unequivocally demonstrated [19].

Neutrophils that undergo later phases of apoptosis bind to TSP with a substan-
tially higher efficiency [20]. This is not surprising, since there is growing consen-
sus on the observation that apoptotic cells membrane changes as the apoptotic
program proceeds (discussed in [21, 22]). This possibly reflects well-defined molec-
ular events, including the oxidation of exposed phospholipid residues [23]. From
this point of view, the swift phagocytosis by surrounding cells eliminates apopto-
tic cells before they reach further complexity.

Most PS-binding molecules efficiently associate to dying cells. This is the case
of Annexin V (AxV) [24], gas6 [25] and �2-GPI [26–30]. �2-GPI binds with similar
efficiency to early or late apoptotic cells. �2-GPI (or apolipoprotein H) is a single-
chain, highly glycosylated plasma protein (average concentration in healthy sub-
jects blood is around 200 �g/ml) of relatively unknown function (discussed in
[31]). �2-GPI binds via the cationic portion of its fifth short consensus repeat do-
main to PS [32]. In vivo, it preferentially binds to PS mainly exposed by activated
or senescent platelets and damaged erythrocytes (for recent review, see [33]). Bala-
subramanian et al. showed that macrophages uptake more efficiently lipid vesicles
and PS-expressing cells (apoptotic thymocytes and red blood cell ghosts) in the
presence of �2-GPI. While basal uptake of radioactive apoptotic mouse thymocytes
by peritoneal thioglycollate-elicited C3H mice macrophages was higher than 40%,
addition of the cofactor increased uptake to 50% [27, 28]. We failed, in a different
assay, to reveal such an enhancement when human monocyte-derived macro-
phages and apoptotic leukemia cells were co-incubated in the presence of �2-GPI
[29]. However, we consistently observed a 5–8% increase in the phagocytosis of
human activated platelets by macrophages when �2-GPI was added (Bondanza
and Rovere-Querini, unpublished). The mechanism involved in the facilitatory ef-
fect of �2-GPI is still under debate: it may be related to the alteration of the over-
all charge properties of the anionic surfaces or to a still unidentified phagocyte re-
ceptor that is, however, distinct from CD36, CD68 and CD14 [28].

The availability of high concentration of a weakly cationic cofactor, like the �2-
GPI, in the circulating blood warrants that exposed anionic charges are buffered,
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thus preventing the activation of the coagulation cascade and the initiation of
thrombosis. Other cationic factors that bind with high affinity to PS on apoptotic
cell membranes have been well characterized, including AxV [24]. The shape of
AxV is a concave disk: the convex side contains both the phospholipid and the
Ca2+ binding sites [34]. AxV forms two-dimensional crystalline arrays on mem-
branes exposing anionic phospholipids, thus yielding a ‘lattice’ that prevents the
activation of the coagulation cascade (discussed by [31]). AxV therefore provides a
soluble anticoagulant shield, ready to be assembled when anionic phospholipids
are exposed. This function is prominent in the placental circulation, particularly
on surfaces lining the intervillous spaces in contact with the maternal blood. Its
failure correlates with placental infarctions and abortions in experimental models,
and AxV expression is severely affected in pre-eclamptic placentas [35].

Gas6 is a ligand of the Axl/Mer/Tyro3 receptor tyrosine kinase family and a
member of the vitamin K-dependent protein family. It binds to PS exposing sur-
faces via its N-terminal domain, which is enriched in �-carboxyglutamic acid resi-
dues. It bridges PS exposing surfaces to the membranes of cells expressing its
specific receptors via its exposed C-terminal globular G domains. Gas6–/– animals
are protected against thromboembolic events and their activated platelets fail to
form stable macroaggregates. These observations suggest a role of Gas6 in linking
adjacent thrombocytes [36]. It also bridges PS exposing apoptotic cells to phago-
cytes, an event that associates to increased in vitro clearance [25]. The relevance of
the receptors activated by Gas6 recognition for the physiological clearance of dy-
ing cells has been substantiated in elegant in vivo studies, relying on engineered
animals bearing mutations of Gas6 receptor tyrosine kinases. These mice fail to
properly clear cell corpses, which accumulate in peripheral tissues [37, 38] (dis-
cussed in [39]). Corpse accumulation is further aggravated when apoptotic cells or
their constituents are administered acutely to experimental animals [39].

5.2.3
Corpse Clearance during Acute Inflammation: Pentraxins

Uningested corpses have been suggested to represent a threat to tissue homeosta-
sis. For example, they release their content into the tissue environment, causing
direct tissue damage [40] and possibly favoring the onset of autoimmunity [39,
41]. Different mechanisms contribute to limit the noxious effect of uninternalized
apoptotic cells. Tissue transglutaminase, which exerts a finely tuned role in the
regulation of the apoptotic machinery, is responsible for the protein crosslinks
that prevent the leakage of intracellular constituents from late apoptotic cells [42,
43]. Phagocytes involved in the clearing of dying cells release immunosuppressive
cytokines, including interleukin (IL)-10 and transforming growth factor (TGF)-�1

[44–46]. Therefore, under normal conditions, apoptotic cells that escaped phagocy-
tosis are ‘sealed’ and the environment is enriched in immunosuppressive cyto-
kines.

Acute inflammation causes the synchronous death of parenchyma and infiltrat-
ing cells. Therefore, the scavenger system of inflamed tissues must cope with a
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sudden increase of the phagocytic load, in an environment in which the anti-in-
flammatory effect of phagocytic clearance is by definition overwhelmed. ‘Unin-
gested’ dying cells often persist and release their intracellular constituents that in
turn influence the environment: elastase and serine proteases released by apopto-
tic polymorphonucleophils (PMNs) that escaped phagocytosis induce the release
of inflammatory factors by macrophages [47]. Only partially characterized released
moieties, possibly including heat shock proteins, elicit the functional maturation
of the most potent antigen presenting cells, the dendritic cells (DCs) [48]. Accord-
ingly, the cytoplasm of apoptotic cells has an adjuvant activity that favors the gen-
eration of cytotoxic T lymphocytes in response to particulate antigens (see [49, 50]
and our unpublished results). The issue of the molecular identity and functional
consequences of the release of intracellular innate adjuvants is described in better
detail in Chapter 14. However, it is important to consider that dying cells that
have escaped phagocytosis in mammals release factors that: (1) maintain inflam-
mation and (2) favor the initiation of immune responses in the absence of patho-
gens.

Persistent corpses evolve in vivo towards late apoptosis [51, 52]. Recent studies
demonstrate that several reactants that are generated during inflammation share
the ability to bind to uningested corpses. These factors possibly represent a protec-
tive feedback mechanism, aimed at limiting their noxious effect.

Pentraxins are acute-phase proteins usually characterized by cyclic pentameric
structure that are conserved during the phylogenesis [53, 54]. Short pentraxins,
like CRP or the serum amyloid P component (SAP), are produced in the liver in
response to several cytokine, in particular IL-6. PTX3 is the prototypic long pen-
traxin, structurally related to, but distinct from, CRP and SAP. PTX3 is produced
at extra-hepatic sites. Primary pro-inflammatory factors, like IL-1� and tumor ne-
crosis factor (TNF)-�, induce the release of PTX3 in peripheral tissues by endothe-
lial cells and monocytes [55–59].

Therefore, pathogens and/or cytokines present in inflamed tissues cause the im-
mediate local production of pentraxins like PTX3. This early event is followed by
the production in the liver of impressive amounts of short pentraxins. Short pen-
traxins possibly fulfill systemically functions similar to those exerted by tissue
pentraxins [58].

The function of pentraxins includes amplification of innate resistance against
microbial infections and regulation of the scavenging of DNA released from dying
cells [60]. However, binding of SAP enables microbes to evade phagocytosis by
neutrophils and treatments with drugs that inhibit SAP binding prolong the sur-
vival of mice injected with Gram-negative bacteria [61] . The data indicate that
SAP-coated organisms evade recognition in vivo and are more pathogenic, suggest-
ing an anti-opsonic role for SAP. SAP binds to Gram-negative bacteria or their
constituents, inhibits the deposition of C1q and strongly diminishes the phagocy-
tosis of bacteria in vitro [62], while SAP–/– mice display an unusual resistance to
the in vivo injection of high doses of bacterial endotoxin [63].

Both short pentraxins (SAP and CRP) and PTX3 bind to cells undergoing apop-
tosis [10, 64–66]. The ligand for pentraxins on the apoptotic cell has not yet been
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identified. It localizes to the membrane, and well-characterized ligands like chro-
matin, small nuclear ribonucleoproteins or C1q have been excluded. In different
in vitro systems (Jurkat leukemia cells for CRP, SAP and PTX3, and activated hu-
man lymphocytes and PMNs for PTX3), pentraxins preferentially recognize late
apoptotic cells [10, 65, 66] (Fig. 5.1). Since PS exposure is a hallmark of early
apoptosis, direct recognition of PS is not a likely candidate. To the best of my
knowledge, among the factors that bind to apoptotic cells, pentraxins and C1q
only bind to late apoptotic cells [67]. Soluble factors recognizing late apoptotic
cells possibly offer a second chance for safe clearance in vivo. For example, in pa-
tients with systemic lupus erythematosus (SLE) the defective clearance of apopto-
tic cells unveils autoimmune features [68, 69]. Breathnach et al. showed that glob-
ular deposits of nuclear material that persist in the dermis of SLE patients con-
tain SAP [70].

Notably, the accumulation of uncleared cells is not an exclusive feature of SLE
patients. Extensive tissue apoptosis, evolving in vivo towards post-apoptotic necro-
sis, occurs after ischemia of the central nervous system and contributes to tissue
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Fig. 5.1 The dying cell interacts with soluble factors, acquiring further complexity during late
apoptosis and ongoing inflammation. Top panels represent soluble factors interacting with early
apoptotic cells, which have been involved in the clearance by scavenger phagocytes (left) or by
inflammatory phagocytes (right). A whole array of soluble factors associates with cells under-
going later phases of the apoptotic program (bottom), recruiting novel receptor–ligand interac-
tions when the clearance is performed by scavenger phagocytes (left) or during inflammatory
and/or autoimmune conditions (right). TSP, thrombospondin; BS, binding site; �2GPI, �2-glyco-
protein I; R, receptor; aPL, anti-phospholipid antibodies; OxL, oxidized lipids; CRP, C-reactive
protein; SAP, serum amyloid P component.



damage (e.g. [71]). Nucleosomes, which are generated exclusively during apopto-
sis, become detectable only if early apoptotic cells are not efficiently removed in
living parenchimas. They consistently accumulate in patients’ blood after antineo-
plastic chemotherapy [72]. A role for persisting nucleosomes and nucleosome-as-
sociated moieties in the maintenance of autoimmunity has been convincingly pro-
posed [73–75].

Recent studies have offered clues on the molecular events underlying the pro-
tective effect pentraxins exert towards autoimmunity induced by dying cells or
their constituents [60]. PTX3 binds to apoptotic cells also in the absence of plas-
ma cofactors, a situation that mimics apoptotic cell clearance in the context of sol-
id parenchymas. PTX3 bound to apoptotic cells plays an anti-opsonic role [65] sim-
ilar to that described above for SAP and pathogens [61]. In particular, it prevents
internalization of PTX3-coated apoptotic cells by antigen-presenting DC, while
leaving apparently unaffected the binding. These data well fit with the recent de-
monstration of a functional hierarchy among receptors involved in the recognition
and in the actual internalization of apoptotic cells [22, 76].

PTX3 is produced at the site of acute cell death in vivo [77] and is the first char-
acterized molecule that behaves as a ‘do not eat me’ signal for apoptotic cells [22].
This is possibly relevant for the pathogenesis of chronic inflammatory diseases
characterized by the selective involvement of small vessels, like anti-neutrophil cy-
toplasmic autoantibodies (ANCA)-associated vasculitis. These diseases are charac-
terized by leukocytoclasia, i.e. by the persistence of uncleared cell debris in the
perivascular parenchymas of involved sites [78]. Despite the failed clearance of cell
corpses that leukocytoclasia reflects, vasculitis patients seldom develop clear-cut
features of systemic autoimmunity. In particular they do not develop antibodies
targeting antigens modified, redistributed or cleaved during apoptotic cell death.
We recently found that PTX3, which fails to increase during flares of SLE, is an
independent indicator of the activity of small vessel vasculitis [59]. Further studies
are necessary to verify whether PTX3 produced by activated endothelial cells or in-
filtrating mononuclear cells in vasculitis lesions [59] plays a role in the protection
against the spreading of the autoimmune response.

Hindering the access to DC is not the unique mechanism by which pentraxins
bound to apoptotic cells limit the initiation of autoimmune diseases. Indeed, CRP
bound to apoptotic cells in the presence of serum has been reported to increase
the phagocytosis in vitro of apoptotic Jurkat cells by monocyte-derived macro-
phages and to promote the synthesis of the anti-inflammatory cytokine TGF-�1
[10]. Therefore, pentraxins play diverse overlapping functions, including increase
clearance by scavenger macrophages and interference with internalization by pro-
fessional antigen-presenting cells. The role of Fc receptors, which have been re-
cently proposed to mediate the leukocyte recognition of short pentraxins, remains
to be established [79, 80]. The intracellular signaling events that follow pentraxins
recognition are still poorly characterized. Romero et al. demonstrated that immu-
noglobulin complexes and pentraxin complexes, although interacting with similar
receptors on PMNs, mediate different functional outcomes, since pentraxin com-
plexes fail to activate PMNs [81].
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5.3
Corpse Clearance in Autoimmune Patients: Autoantibodies

The administration of large numbers of apoptotic cells causes the transient devel-
opment of antinuclear and antiphospholipid antibodies (aPL) [82, 83]. Two lines of
evidences derive from this and following studies. (1) The phenomenon is strictly
dose dependent, since it requires that dying cells overwhelm the scavenging abil-
ities of injected animals. (2) The response is skewed towards nuclear antigens and
membrane phospholipids, i.e. autoantigens frequently targeted with low affinity
during acute infectious diseases. These features possibly represent the hallmark
of a more extensive brake of tolerance towards the antigens dying cells contain.
We recently observed that the immunization of autoimmunity resistant or suscep-
tible mice results in the generation of a similar pattern of autoantibodies. How-
ever, the elicited autoimmune response is maintained in susceptible animals only
and results in the spreading of the autoimmune response to a progressively more
ample array of autoantigens. Finally, the modalities of the targeting of dying cells
to antigen presenting phagocytes in vivo and in vitro appear to be a limiting fac-
tors, further shaping the epitope hierarchy and the kinetics of the autoimmune re-
sponse in injected animals (Rovere-Querini et al., unpublished).

At least a fraction of the antibodies elicited by apoptotic cells bind to cell
corpses. This event probably fulfils a protective function, increasing the ability of
Fc receptor-positive phagocytes to recognize and clear apoptotic cells [84]. For ex-
ample, aPL selectively bind to apoptotic cells [26, 29, 30, 85–88]. These antibodies
preferentially recognize epitopes induced by the binding of cationic soluble fac-
tors, like the �2-GPI to the apoptotic cell membranes. Well-characterized anti-DNA
autoantibodies also efficiently recognize epitopes on �2-GPI revealed by the bind-
ing to apoptotic cells [88]. This finding bears immediate relevance for the pro-
cesses that sustain autoimmunity once initiated [88]. Phospholipid epitopes per se
are also involved. For example, cardiolipin, usually incorporated in the inner mito-
chondrial membrane, translocates in association with specific mitochondrial glyco-
proteins into membranes of apoptotic blebs [87]. This complex is specifically and
selectively recognized by aPL purified from autoimmune patients. Restricted
groups of epitopes are implicated, which have also been shown to cluster on apop-
totic cell membranes in the absence of �2-GPI [86].

Macrophages do not secrete pro-inflammatory factors when they phagocytose
apoptotic cells. The engagement of PS receptor(s) and other scavenger receptors,
like CD36, results in the preferential release of immunosuppressive cytokines (see
above). Macrophages dispose of activated PS exposing platelets in a similar ‘silent’
manner, while immature DCs simply ignore them [89, 90].

The presence of circulating autoantibodies that bind to dying cell membranes,
however, does not only enhance the efficiency of corpse clearance. It also modifies
it qualitatively. Elegant experiments from the laboratory of Alan Schroit clearly
demonstrate that animals with circulating aPL dispose PS-expressing particulate
substrates in a biased, pro-inflammatory and pro-thrombotic, manner [91]. These
results well fit with the in vitro demonstration that aPL behave as potent bona fide
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opsonins in vitro for DC and macrophages: they increase the efficiency of phago-
cytosis, possibly via the recruitment of Fc receptors in recognition and clearance,
and trigger the release of TNF-� and IL-1�.

Opsonization of dying cells by aPL may be involved in the association between
these antibodies and increased risk of autoimmunity, described since the 1950s.
Moore et al. showed in large cohorts of subjects followed for decades that false
positive tests for syphilis are associated with the increased risk to develop SLE,
rheumatoid arthritis and possibly sarcoidosis [92]. This belief has been supported
by the results of more recent studies (discussed in [30]).

Other autoantibodies may as well skew the clearance of dying cells. Fetal cardi-
ac myocytes undergo apoptosis during heart remodeling. Their selective recogni-
tion by maternal anti-Ro/SSA and anti-La/SSB antibodies contributes to the patho-
genesis of the congenital heart block [93, 94]. Ro and La become accessible to anti-
bodies in myocytes undergoing late apoptosis, a result that agrees with those re-
ported in apoptotic keratinocytes [95]. Maternal antibodies also transiently deter-
mine photosensitivity in children with neonatal lupus, a feature that associates
with the failed clearance of apoptotic keratinocytes. These observations suggest
that autoantibodies bind to apoptotic cells and skew their clearance towards a pro-
inflammatory outcome. Accordingly, apoptotic fetal cardiocytes elicit the release of
TNF-� by phagocytosing macrophages only in the presence of opsonizing anti-Ro
and anti-La antibodies purified by affinity chromatography from autoimmune pa-
tient sera [94]. The inflammatory damage of the developing heart parenchyma
would ultimately cause permanent scarring of the conducting system, leading to
congenital heart block. The outcome is different in tissues with higher regenera-
tive capacity, like the skin. Accordingly, photosensitivity disappears with the disap-
pearance of maternal autoantibodies [96].

While immunization with apoptotic cells almost always causes the in vivo devel-
opment of autoantibodies, diverse autoantibodies are likely to be generated de-
pending on the pathway of immunization and on the characteristics of the immu-
nizing cells. Immunization with apoptotic lymphoma cells elicits the production
of tumor-specific antibodies [97]. Immunization with non-transformed syngeneic
cells elicits ‘bona fide’ autoantibodies, which recognize endogenous molecules se-
lectively expressed by the dying cell. This is the case of vaccination with PMNs.
Patry et al. showed that rats immunized with apoptotic PMNs develop ANCA [98].
ANCA, which recognize proteins contained in primary azurophil granules of
PMNs and lysosomes of monocytes, are closely associated and possibly involved
in the pathogenesis of systemic small vessels vasculitis, like Wegener’s granulo-
matosis, Churg Strauss syndrome and microscopic polyangiitis [99–103]. Of inter-
est, immunized rats apparently fail to develop antinuclear antibodies (ANA). This
observation well fits with clinical data. For example, only a minority of ANCA+

vasculitis patients have detectable ANA, while patients with SLE and related disor-
ders, which develop both ANA and aPL quite frequently, only occasionally have
detectable ANCA [104]. The molecular constraints explaining the discrepancy are
poorly understood. We recently observed that the adjuvant activities contained in
necrotic cells [105, 106] are apparently missing in the nuclei of short living PMNs
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(Rovere-Querini et al., submitted). The lack of proper adjuvants at the site of PMN
cell death may impair antigen presentation by DC [48], biasing the response to-
wards PMN antigens expressed at the cell surface upon activation and eventually
released, like proteinase 3 (PR3) and myeloperoxidase (MPO).

The precise role anti-PR3 and anti-MPO antibodies play in the clearance of dy-
ing PMNs is still under debate. Like activated PMNs, apoptotic PMNs also express
MPO and PR3 at the cell surface [107–110]. Moosig et al. showed that human
monocyte-derived macrophages phagocytose with higher efficiency and release
pro-inflammatory factors including TNF-� when challenged with apoptotic PMNs
in the presence of anti-PR3 antibodies [111]. TNF-� levels are elevated in vasculitis
patients and the cytokine has been involved in the ‘priming’ of PMNs (an event
which is associated with the translocation of PR3 and MPO to the plasma mem-
brane). Therefore, Moosig et al. suggested that opsonization by ANCA may play a
perpetuating role in the pathogenesis of ANCA-associated vasculitis. In support,
Harper et al. found that ANCA may exert independent actions: they accelerate
apoptosis of primed PMN, via generation of reactive oxygen species, and prompt
post-apoptotic necrosis [109]. This accelerated apoptosis actually reduces the ‘safe
window’ for clearance. However, upon binding to already apoptotic PMN, ANCA
favor in vitro clearance and pro-inflammatory cytokine generation. Opsonization
also associates with the generation of the PMN chemotactic factor IL-8 [110].

5.4
Conclusions

Studies in vitro, in which well-characterized phagocytes are challenged with popu-
lations of dying cells at a defined phase of the apoptotic program, were instru-
mental to our understanding of apoptotic cell phagocytosis as an active process.
Phagocytosis is dependent on receptor–ligand pairs and is followed by defined sig-
naling events. However, this reductionistic approach may have underscored the
role of soluble factors in the clearance of dying cells in living tissues [112]. Evi-
dence in the last few years demonstrates that molecules constitutively present or
generated during acute and chronic inflammation play both opsonic and anti-op-
sonic roles. They tightly control the functional outcome of dying cell clearance.
Many other involved factors are probably still unknown. Studies in the future
years will eventually unravel their complex role in maintaining tolerance towards
antigens contained in dying cells and indicate whether they may be valuable for
molecular therapies aimed at modulating the outcome of apoptotic cell clearance
in humans.
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6.1
Introduction

During development, programmed cell death or apoptosis acts in the shaping of
tissues, the refinement of neuronal connections and the removal of unnecessary
or damaged cells. These cells are recognized and eliminated by phagocytes before
the release of their potentially harmful contents. This process plays a crucial role
for the development of immunological tolerance, the suppression of inflammatory
response and in tissue remodeling. A panoply of molecules has been identified
both in mammals and Caenorhabditis elegans as required for the clearance of dy-
ing cells. Their cooperative action defines parallel and partially redundant molecu-
lar cascades not completely clarified as yet. In both model systems a molecule be-
longing to the structural family of ATP-binding cassette (ABC) transporters has
been identified.

We will briefly introduce here the main features of this large and evolutionary
conserved family of ABC proteins before discussing in detail the case of the mam-
malian ABCA1 and its relative in the nematode, CED-7.

6.2
The Family of ABC Transporters

ABC transporters are one of the largest families of membrane proteins [1, 2].
They drive the transport of a wide variety of substrates across cell membranes in
an ATP-dependent fashion. In terms of structure, they contain a pair of nucleo-
tide-binding domains (NBD) and two sets of membrane-anchoring domains (TM),
typically composed by six transmembrane � helices. A diagnostic combination of
consensus signatures has been defined as the hallmark of the family. This is lo-
cated in the NBD and associates the Walker A and B motifs [3], shared by several
ATP-binding proteins, with a specific C motif located just upstream of the B site
[4]. ABC genes may encode a full, intrinsically symmetrical, product or a half
transporter containing a single set of TM and NBD. In the latter case, the symme-
try, which is essential for function, is achieved by the posttranslational association
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in homo- or heterodimers. The ABC protein superfamily is extremely conserved
across evolution and represented in bacteria, yeast, nematodes, plants, insects and
mammals [2]. To date, 48 ABC genes have been fully characterized in the human
genome (www.humanabc.org). Seven subclasses have been defined, and named
from A to G, on the basis of sequence homologies and structural peculiarities
(Tab. 6.1).

In the yeast Saccharomyces cerevisiae, the 31 ABC genes can be grouped into six
clusters or subfamilies with distinguished topologies and broadly corresponding
to the mammalian subclasses B–G [5, 6]. In yeast, transporters bearing the structur-
al features of the mammalian A class are remarkably absent.

This is not the case for Arabidopsis thaliana, where a significant expansion of
the ABC family can be observed [7]. In fact, 129 ABC proteins organized in 13
subfamilies are present in plants as opposed to the 50 or so members in most of
eukaryote model genomes [2]. All the mammalian subclasses are present; how-
ever, distinctive expansion or contraction in their relative size have been reported.
Seventeen proteins belong to the A class, but only one (AtAOH1) is organized as
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Tab. 6.1 ABC transporter subclasses across the evolution (only sequences encoding TM do-
mains have been considered).

Mammals D. melanogaster C. elegans A. Thaliana S. cerevisiae

51 ORFs
48 proteins

46 sequences 63 sequences 129 ORFs
129 proteins

31 ORFs
29 proteins

ABCA
� � � �

� �

12
ABCA1
ABCA4

12
CG6162

6
CED-7

17
AtAOH1 1
AtATH 16

ABCB
� � � �

� �

11
MDR1
TAP1

2
CG9330
CG9281

25
CO5A9.1

24

AtMDR1 22
AtTAP1 2

4
STE6

ABCC

� � � � �

� � � � �

10

CFTR
SUR

13
CG5944

8
C18C4.2

15
AtMRP1

6
YOR1

ABCD
� �

� �

4

ALD

2
CG12703

5
C44B7.8

2

AtPMP1

5

PxA1

ABCG
� �

� �

6

ABCG5

14

White

9
CO5D10.3

11

AtWBC1

1

ADP1

PDR
� � � �

13
AtPDR1

9
PDR5

�, TM; �, NBD; �, Rdomain, � additional TM.



a full transporter encoded by a single gene and is considered the homolog of
mammalian ABCA1. The others A members are hemitransporters [7].

An analysis of Drosophila melanogaster genome revealed the presence of 46 ABC
genes, split in seven subclasses [2] (http://flybase.bio.indiana.edu). In the fly, an
expansion of the G class can be observed. In C. elegans, six out of the 63 se-
quences annotated as ABC proteins encode transporters of the A subclass and in-
clude CED-7 [8–10] (http://www.proteome.com/databases/index.html).

Fourteen of the human ABC genes are associated with genetic disorders featur-
ing highly varied clinical syndromes [1, 2], including cystic fibrosis, adrenoleuko-
dystrophy, pseudoxantoma elasticum, retinal degeneration, defects in lipid meta-
bolism, insulin resistance, anemia and drug resistance.

This remarkably broad spectrum of metabolic pathways affected by ABC pro-
teins stems directly from the diversified nature of the substrates that they actually
can transport via the ATPase energized mechanism. As an example, cystic fibrosis
transmembrane regulator (CFTR) is a chloride channel, P-glycoprotein confers re-
sistance to chemotherapeutic drugs on tumor cells by an active outward pumping
mechanism which lowers their intracellular concentration and ABCB4 transports
phosphatidylcholine (PC) in the liver. However, it has to be noted that the implica-
tion of a given transporter in the pathogenesis of a disease and therefore in a pre-
cise metabolic pathway is suggestive but frequently insufficient to provide any
useful information on the nature of its substrate [4, 11]. This illustrates how, to
date, the identification of a specific substrate remains a tremendous challenge.

6.3
The Case of ABCA1 in Mammals

Together with other 11 proteins, ABCA1 defines the A subclass of mammalian
transporters [2]. These can be split into two subgroups on the basis of sequence
homology, phylogenetic analysis and gene organization. The first group consists
of seven genes (ABCA1, 2, 3, 4, 7, 12 and 13) closely related to the prototype
ABCA1. Only the first five have been fully characterized. They map to different
chromosomes in the human genome and to the synthenic region in the mouse
genome. The second group includes five genes organized into a head-to-tail clus-
ter on human chromosome 17. In contrast to the first set of genes which origi-
nated before speciation, the latter probably arose by recent species-specific events
of gene duplications. All the mammalian ABCA genes encode complete transpor-
ters with four domains of the type TM1/NBD1/TM2/NBD2.

Individual ABCA proteins are extremely highly conserved in mouse and man
with interspecies identity frequently exceeding 95%. As mentioned before ABCA
proteins are present in plants, D. melanogaster and C. elegans but absent from
yeast [2] (Tab. 6.1).

The ABCA1 gene encompasses a genomic region larger than 100 kb on human
chromosome 9q and on mouse chromosome 4 [13, 14]. The transcriptional regula-
tion of ABCA1 turns out to be rather complex and incompletely understood at
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present. It is mediated by three clusters of transcriptional start sites positioned in
the ABCA1 promoter [13–15]. Each of them seems to be preferentially, but not ex-
clusively, used in a given set of tissues and responds to different sets of regulatory
proteins. Upregulation of ABCA1 transcription has been observed after treatment
with agonists of peroxisome proliferator-activated receptor �/�, which act on a pre-
cisely positioned LRR/RXR binding site [16–21], cAMP [22], oxysterols and reti-
noic acid [20]. The net effect on ABCA1 transcription of any of these inducers,
however, is expected to vary in different sets of tissues accordingly to the starting
equilibrium of each transcript.

Interestingly, a steroP dependent transcriptional regulation has been reported
for two other ABCA members, i.e. ABCA2 and 7 [23–25]. Since this profile of in-
ducers acts, as a rule, on the promoters of genes involved in lipid metabolism, it
is legitimate to surmise a similar involvement for ABCA2 and 7. No experimental
information addressing this point has, however, been provided so far.

The ABCA1 transcript and protein are ubiquitously expressed at low levels in
most mouse and human tissues. ABCA1 transcripts are particularly abundant in
the pregnant uterus and placenta, whereas an intermediate level of expression is
detectable in the liver, lungs and adrenals [12, 26, 27].

The protein encoded by the ABCA1 gene is 2261 amino acids long both in
mouse and human [12, 14, 28], and contains a minimum of 12 TM spanners as
deduced from computer-based analysis of hydrophobicity plots.

As it is frequently the case for ABC transporters and more generally for poly-
trophic membrane proteins, a precise topological assessment of individual TM he-
lices is extremely difficult. For this reason several laboratories, including our own,
have set out to address experimentally the question. Consistent with the general
structural model, both NBD are located intracellularly. The membrane-anchoring
scheme is still unclear and a number of potential models have been proposed.

The data we obtained by an approach based on systematic epitope insertion sug-
gest the model illustrated in Fig. 6.1. This proposes a symmetrical arrangement of
six TM in the two halves of the proteins, consistent with the model suggested for
ABCA4 [29]. In fact, the first hydrophobic segment which follows the starting
methionine, now positioned at bp 84 in the sequence GB X75926, behaves, in our
hands, as a signal anchor (Rigot et al., J. Lipid Res. in press 2002)) [30, 31]. Based
on this model, the original feature of the A class of transporters, as opposed to all
other mammalian classes, is the presence of a symmetrical and quite large extra-
cellular loop lying between TM1 and 2 and TM7 and 8. This architecture is pre-
dicted to be conserved in all members and throughout evolution (Fig. 6.1). It is
worth noting that the primary sequence in the loops is hypervariable; these may
therefore specify functional diversifications among members of the A subclass.

The ABCA1 transporter resides on the cell plasma membrane, from which it
has been reported to shuttle continuously and rapidly to intracellular vesicles [32,
33]. The functional significance of this trafficking along the intracellular endocytic
pathway remains to be elucidated; however, it is possible that this reflects the in-
volvement of ABCA1 in intracellular lipid metabolism [32, 34].
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ABCA1 function affects at least two apparently unrelated systemic processes.
On the one side stands its ability to promote the clearance of dying cells by pha-
gocytes, our interest here, which involves the transporter in the control of body
cell turnover. On the opposite side, ABCA1 plays a crucial role in lipid metabo-
lism acting as a rate-limiting molecule in the first step of reverse cholesterol trans-
port.
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Fig. 6.1 Topological model for ABC transpor-
ters of the A class. A schematic diagram illus-
trating the succession and position of TM �

helices in ABCA1 is shown in the top panel. A
similar topology is proposed for CED-7 on the

basis of hydrophobicity plots (middle panel).
A comparison of the length in amino acids of
each loop is shown in the lower panel. E, ex-
tracellular; I, intracellular. Loops are num-
bered progressively from the N-terminus.



6.3.1
ABCA1 and Reverse Cholesterol Transport

This term indicates the metabolic pathway shuttling cholesterol from peripheral
tissue to the liver via its loading onto high-density lipoprotein (HDL) particles [35,
36]. These arise from the successive maturation of lipid poor apolipoproteins with
phospholipids and cholesterol originated from cell membranes. Experimental evi-
dence clearly indicates now that only the initial step of HDL maturation, i.e. the
phospholipidation of apoproteins, is under the control of the ABCA1 transporter
[37, 38]. This was first suggested by the observation that spontaneous ABCA1 defi-
ciency leads to Tangier disease [39–42], one of the best in vivo models for the
study of the reverse cholesterol transport pathway. The disease is characterized by
an absence, essentially complete, of �-migrating HDL from the plasma and stor-
age of cholesteryl ester within focal accumulations of macrophages, notably the
tonsils [43].

This systemic phenotype arises from a defect of peripheral tissues to release cel-
lular lipids, as demonstrated by an impaired in vitro efflux, from Tangier cells, of
newly synthesized free cholesterol onto lipid free apoA-I, the principal apolipopro-
tein on HDL, widely used as lipid acceptor in in vitro studies [44].

These initial observations were further confirmed and refined by several labora-
tories [45–47], and, more recently, the analysis of ABCA1 knockout animals [33,
48–50] provided direct evidence of the implication of ABCA1 in the active release
of cellular lipids. These results prompted in addition an investigation into the role
of the transporter as a candidate apoA-I receptor [51, 52]. In fact the mechanism
of the interaction of apoA-I acceptor with cell membrane has long been elusive
and two conflicting hypothesis are evoked. The first suggests that apoA-I insertion
into the lipid bilayer is a mere consequence of its intrinsic lipid composition,
while the second postulates the existence of a specific membrane receptor mediat-
ing surface binding [53, 54].

The recent availability of ABCA1 transfected cells has allowed us to test these
models and confirm that indeed the presence of ABCA1 at the cell surface is suf-
ficient to promote the docking of apoproteins [51, 52, 55]. However, this cannot be
considered a direct receptor–ligand interaction since it relies on functional rather
than structural criteria [55, 56]. On the basis of the observed ability of ABCA1 to
act as a lipid floppase we propose that the transporter generates membrane do-
mains of peculiar lipid architecture and chemicophysical properties, which per se
will favor the insertion of acceptors into the membrane. This view is consistent
with the physical interaction of ABCA1 with membrane lipids reported by Wang
et al. [56] and also with the observed promiscuous ability of ABCA1 to promote ef-
fluxes to most classes of apoprotein acceptors [22, 57].

Whether or not a direct physical interaction between the ligand and ABCA1
also occurs is still matter of debate, but none of the data we could obtain so far
supports this hypothesis.
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6.3.2
ABCA1 and Engulfment

In mammals, the participation of ABCA1 transporter in engulfment was estab-
lished in the mid-1990s by the description of a direct spatio-temporal relationship
between the occurrence of developmental cell death and the in situ detection of
ABCA1 transcripts [58]. In these areas, ABCA1 is expressed by macrophages ac-
tively engaged in the clearance of cell corpses. Consistently, in an in vitro situa-
tion, the inhibition of ABCA1 function by specific antibody greatly reduces the
ability of peritoneal macrophages to phagocytose apoptotic thymocytes without af-
fecting ingestion of yeast. These observations were further supported by (1) the
finding of a persistence of apoptotic corpses during development in ABCA1 null
animals, paralleled by a defective ability to ingest apoptotic prey of ex vivo macro-
phages, and (2) the acquisition of a phagocytic phenotype as a consequence of the
forced expression of the transporter [33].

It is of note that the in vivo absence of ABCA1 does not affect the recruitment
of embryonic macrophages in the areas of cell death or result in major develop-
mental defects [33]. Indeed, the persistence of corpses is transient and matches
perfectly the phenotype elicited by mutations in the engulfment genes in the
nematode [59].

A similar result is also reported in PU-1 mice, in which the lack of macro-
phages leads to retarded clearance of corpses [60]. In this case the task is per-
formed, albeit less efficiently, by the neighboring mesenchymal cells. Neither the
transcript of ABCA1 nor that of any other ABCA transporter is detectable in these
animals [60]. This formally proves the exclusive expression of ABCA1 in macro-
phages and indicates that only the expression of ABCA1, among ABCA transpor-
ters, is enhanced during engulfment in mammals.

As mentioned before, the presence or absence of ABCA1 in in vitro or in vivo
systems, respectively, supports the involvement of ABCA1 in the two homeostatic
pathways dealing with either cell or cholesterol turnover. These observations may
reflect two parallel and independent functions of the transporters or arise secon-
darily from a single and common molecular mechanism.

We favor the latter hypothesis on the basis of the combined in vitro analysis of
cells either overexpressing the transporter or derived from ABCA1 null animals
[33]. This allowed us to determine that the absence or presence of ABCA1 at the
plasma membrane perturbs the physiological arrangement of lipid species across
the bilayer. In particular, we could demonstrate that the outward movement of
phosphatidylserine is directly affected. However, since it is known that the move-
ment of any phospholipid alters in cascade the distribution of the others [61–63],
we postulate that membrane domains of peculiar composition and, hence, with
peculiar biophysical features, are generated under the influence of the transporter.
As present it is not known whether or how these domains are related to deter-
gent-insoluble domains/rafts. These actively participate in the sorting of mem-
brane proteins into molecular platforms, essential for the delivery of intracellular
signals in mammalian cells [64–66].
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6.4
The Case of CED-7 in C. elegans

During the development of a C. elegans hermaphrodite, 131 somatic cells and ap-
proximately 300 germ cells undergo programmed cell death [67]. Since no profes-
sional phagocyte exists in the worm, the dying cells are rapidly engulfed by their
neighbors, whose identity varies in different individuals, in contrast to the fixed
fate of the dying cell [68, 69]. Genetic screens for mutants containing unengulfed
cell corpses led to the identification of seven genes that control engulfment ced-1,
-2, -5, -6, -7, -10 and -12 [59, 70–72]. The visual quantification of phenotypes in
single, double or triple combinations of mutants allowed the genes to be grouped
into two parallel pathways [59]. The first is defined by the participation in a signal-
ing cascade of CED-2, -5, -10 and -12 [70, 71]. Those which encode functional
orthologs of the mammalian Crk-II, DOCK180, ELMO and Rac-GTPase, respec-
tively [70, 73], are essential components of the intracellular signal reorganization
occurring during both the engulfment of cell corpses and cell migration. Indeed,
in mammals this cascade follows the surface stimulation of integrins [74, 75] and
mutations in any of these genes in the worm leads, as an additional phenotype, to
a defective migration of distal tip cells in the gonads [70, 73, 76].

ced-7 together with ced-1 and -6 defines a second pathway exclusively involved in
engulfment [59]. Although all these genes have been cloned, it is not clear yet
whether their products physically interact. ced-6 has, however, been positioned down-
stream on the basis of the phenotypic rescue of both ced-7 and -1 mutants. Consis-
tently CED-6, which is conserved in mouse and man, bears the structural hallmark
of an adaptor molecule containing a phosphotyrosine-binding domain [77–79].

Among the 63 sequences annotated as ABC proteins in the C. elegans genome,
six bear the structural features of the ABCA subclass and include CED-7 [80]
(Tab. 6.2) (http://www.proteome.com/databases/index.html). On the basis of se-
quence analysis, CED-7 bears an identity to all members of the A class related to
ABCA1 (i.e. ABCA2, 3, 4 and 7) of 26–28% and an overall homology of 44–46%
[81]. Not surprisingly, the best-conserved regions correspond to the NBD. It is of
note, however, that similar scores are observed when comparing any of the mam-
malian ABCA transporters against any member of the A class in the worm and
that, in contrast to mammals, the A members in the worm do not share extensive
identity. With the exception of CED-7, none of the worm A transporters has been
associated so far to a functional phenotype.

The ced-7 gene encodes a transcript of 5.8 kb. This is translated into a protein
of 1704 amino acids, which consists of two similar halves, with twice six TM do-
mains and two NBD [80]. No topological study has been carried out to date; how-
ever, the CED-7 hydrophobicity plot is consistent with an arrangement of mem-
brane � helices similar to that postulated for ABCA1 and 4 in mammals [29, 31].
On the basis of mosaic analysis, ced-7 was shown to be required in both the prey
that is the apoptotic cells and the phagocytes for an efficient engulfment [80].
This is at odds with the results obtained in mammals, where at least in the devel-
oping limb bud the ABCA1 transcript is detectable exclusively in macrophages
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[58, 60]. It has to be emphasized, however, that the pre-existence of an active pro-
tein (ABCA1 or a related transporter) at work in the dying cell has not been ad-
dressed in the study.

All the ced-7 mutant alleles turned out to encode prematurely truncated pro-
teins and a thorough structure–function analysis has not been carried out yet.
However, the relative impact of mutations impairing ATP binding and hydrolysis
at the two NBD seems to be different [80]. Indeed, it was shown that the K586R
mutation in NBD1 abolished the ability of CED-7 to engulf apoptotic corpses,
whereas the same substitution in NBD2 has a limited effect. Such hierarchical or-
ders of NBD are not new in the field of transporters and a similar result has been
reported for CFTR. However, in mammals, but again in a slightly different and in
vitro experimental setting, a K to M substitutions at either or both NBD led to the
complete loss of the ABCA1-associated phenotype [33].

CED-7 is expressed at the plasma membrane of virtually all cells during em-
bryonic development, but only on the surface of amphid sheath cells, pharyngeal
intestinal valve and phasmid sheath cells in the larvae or adult worms [80]. Of in-
terest is that none of the somatic cells expressing CED-7 appear to be involved in
engulfment and so far it has not been possible to find a ced-7-induced phenotype
associated with the specialized functions of these particular cells. No functional
study has addressed the molecular function of CED-7 in the worm during engulf-
ment; however, it is known that, whereas the absence of any other gene involved
in engulfment does not affect the localization of CED-7, the absence of the ABC
transporter alters dramatically that of the CED-1 receptor [80, 82].

The product of ced-1, which participates to the same molecular cascade, has
been recently characterized [82]. It belongs to the family of scavenger receptors,
multiligand receptors involved in mammals in the recognition/uptake of dying
corpses [83–87]. CED-1 is normally expressed on the membrane of all cells, but
during the engulfment process it redistributes on the membrane and clusters at
the phagocytic extensions formed around the dying cell [82]. This lateral mobility
of CED-1, which might highlight the requirement of a topological cluster of sur-
face receptors to start efficiently engulfment, is abolished in ced-7 mutant worms.
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Tab. 6.2 Conservation of ABCA transporters between mammals and C. elegans.

Percent identity/percent homology

CED-7 ABCA1 ABCA2 ABCA3 ABCA4 ABCA7

ABCA1 25/44 100/100 45/59 26/43 50/66 50/66
CED-7 100/100 25/44 28/46 27/46 26/45 26/44
C24F3.5 22/46 23/43 24/50 21/39 23/43 23/48
F12B6.1 26/44 30/46 29/44 30/46 29/44 29/44
F55G11.9 32/48 23/38 25/39 27/43 24/40 23/38
Y39D8C1 28/46 29/47 29/46 33/52 30/48 29/47
Y53C10A.9 33/51 24/42 25/42 27/46 26/45 26/43

ABCA1, ABCA2, ABCA4 and ABCA7 are mouse sequences, ABCA3 is human.



Zhou et al. [82] proposed that CED-7 may facilitate the physical contact between
dying cells and engulfing cells, acting on dying cells to expose a ‘eat me’ signal at
the cell surface and on the engulfing cells to facilitate the CED-1 recognition for
its ligand.

6.5
The Model

The evidence for the involvement of ABC transporters during engulfment was
provided independently and contemporarily in the two model systems. This is
rather an exception to the rule. Usually, in fact, C. elegans has played a pioneering
role in the engulfment and more generally in the apoptosis field: genes and their
product being first characterized in this organism and only then the evidence pro-
vided for their functional conservation in mammals.

Membrane receptors, on the contrary, have been mainly if not exclusively identi-
fied in mammalian systems which experimentally rely on in vitro inhibitory stud-
ies [88]. This dichotomy stems from the intrinsic strengths and drawbacks of each
system, and it is also perfectly illustrated by the complementary information de-
rived from the studies of either ABCA1 or ced-7.

In fact, the possibility to analyze the phenotype at the cell level has allowed us
to highlight the lipid-transporting activity of ABCA1 [33], whereas the powerful ge-
netic approach combined with in vivo overexpression allowed us to assess the im-
pact of ced-7 on the topological distribution of membrane receptors [33]. This in-
formation actually fits together very well and if we take the liberty of transposing
freely between the two systems, we can figure out a consistent working model for
the function of ABC transporters in engulfment (Fig. 6.2).

The ability to modify even only locally and transiently the biophysical properties
of the membrane by flipping lipids (ABCA1) between the two leaflets would be
the initial step. This provides the perfect explanation as to how ABC transporters
(CED-7) can influence the lateral mobility of surface receptors involved in the re-
cognition of dying cells. The topological recruitment witnessed by the example of
CED-1 in C. elegans can be then put in context with the notion that, in mammals,
individual receptors display a limited affinity for the ligands on the surface of the
prey. Hence, spatial recruitment may be the morphological counterpart of the re-
quirement for a threshold of signals to trigger ingestion [89]. Whether this con-
cerns all or only a subclass of the receptors involved in engulfment is as yet not
known in either model system. In fact, in mammals, the behavior of receptors
during engulfment or the influence of ABCA1 on their mobility has not been
tested and in the nematode only ced-1 encodes surface receptors. Similarly, we
may ask whether topological reinforcement is an optimizing option featured only
by professional phagocytes in mammals. These are, in fact, known to sense and
react more rapidly to the presence of an apoptotic prey [90].

As an alternative approach we may also wish to test to which extent CED-7 and
ABCA1 are interchangeable. Rescuing ced-7 mutants by overexpression of ABCA1
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may turn out to be deceptive because of the maternal effect in the nematode [59,
80]. We may also test whether and how CED-7 reproduces the phenotypes elicited
by the expression of ABCA1. Preliminary results in this direction confirm that the
two transporters share, as expected, the ability to promote engulfment in non pha-
gocytic recipient cells (Hamon, personal communication). In addition, CED-7 pos-
sesses a lipid flipping activity similar to that of ABCA1, but fails to promote
either docking of apoproteins or the consequent efflux of phospholipids from cell
membranes. Whether this depends on structural peculiarities harbored in specific
domains of each transporter or reflects evolutionary imprinted refinements of the
function is currently under investigation. Unfortunately, the complete lack of in-
formation on sterols and lipid metabolism in the worm together with the inacces-
sibility of the nematode system to the study of membrane composition and dy-
namics hampers as for now a rapid progression in this direction.
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Fig. 6.2 ABC transporter function during engulfment. This diagram proposes a
three-step model for engulfment based on the combination of evidence derived
from mammals and C. elegans. In a basal situation, engulfment receptors (R) are
homogeneously dispersed on the membrane of the phagocyte; upon contact with
the apoptotic prey they redistribute along the contact region. This spatial recruit-
ment is favored by the ABC transporter (ABC). Topological clustering allows the
minimal threshold to trigger downstream signalization to be achieved.
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7.1
Introduction: CD14, A Multifunctional Molecule involved
in Innate Immune Responses

7.1.1
Background

Discovered over a decade ago [1, 2], CD14 is a glycoprotein that appears to serve
multiple receptor functions in relation to the innate immune system. Its prototy-
pic and still its best-known function is as a receptor for the endotoxin of Gram-
negative bacteria, lipopolysaccharide (LPS). Functional in both plasma-membrane-
anchored and soluble forms, CD14 is renowned for its ability to activate severe
pro-inflammatory responses following LPS binding and in so doing contribute to
septic shock, a significant factor in post-surgical mortality [3, 4]. More recently –
and surprisingly in view of its history as a pro-inflammatory receptor – CD14 has
been implicated in apoptotic cell clearance [5], a normally anti-inflammatory pro-
cess that represents the culmination of the apoptotic programme.

7.1.2
Molecular Structure and Distribution of CD14

CD14 is expressed strongly by most monocytes and some tissue macrophages,
and weakly by granulocytes. In all these cells the molecule is attached to the outer
leaflet of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor at
its C-terminus. Soluble CD14 is also present in plasma at high levels (around
4 �g/ml [6]) and this appears to be produced by two independent mechanisms –
one involving cleavage of the membrane-anchored form by protease or phospholi-
pase D activity and the other by direct secretion [7]. Other cell lineages including
B lymphocytes, epithelial cells, endothelial cells, trophoblast, hepatocytes and fi-
broblasts have also been reported to express CD14 [8–15]. Some studies are lim-
ited to the mRNA level, whereas others fail to discriminate between exogenously
produced, adsorbed CD14 and endogenous protein. It is probable, however, that
the distribution of membrane-anchored CD14 is more widespread than was pre-
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viously thought, but the functional attributes of this distribution are not yet un-
derstood.

Human CD14 is a 356-amino-acid, 53–55-kDa protein that is glycosylated at O-
and N-linked sites [16]. The C-terminal 21-amino-acid domain is hydrophobic and
is involved in anchoring the molecule into the lipid of the membrane via a GPI
anchor. The extracellular domain contains 10 leucine-rich repeats that are evolutio-
narily conserved in many unrelated proteins (Fig. 7.1). The function of these re-
peats in CD14 is unknown, though it seems likely that they are involved in inter-
actions with other proteins [17], one contender being Toll-like receptor (TLR)-4
that is known to cooperate with CD14 to promote responsiveness to LPS [18–21].
Since the plasma-membrane-anchored form of CD14 contains no intracytoplasmic
domain, it is widely thought that such cooperation of CD14 with integral, trans-
membrane proteins is required for signal transduction following ligand binding.

7.1.3
CD14 as a LPS Receptor that Signals LPS Responses

In both its soluble (sCD14) and membrane-anchored (mCD14) forms, CD14 has
been shown to bind LPS and to generate LPS responsiveness – the activation of
inflammatory signaling pathways. CD14–LPS binding is enhanced by the LPS-
binding protein (LBP) which catalyzes transfer of LPS from micellar aggregates of
the glycolipid to CD14 to form CD14–LPS complexes [22–24]. It has largely been
assumed that mCD14 and sCD14 bind LPS in identical ways, although there are
reasons to believe that this assumption may be incorrect [25]. Whether or not this
is the case, mCD14 generates LPS responsiveness in many different cell types
after CD14 gene transfer as well as in cells on which it is expressed constitutively.
sCD14–LPS complexes are able to generate LPS responsiveness in a variety of cell
types, notably endothelial cells, that are mCD14– [25]. The nature of the receptors
that are responsible for such responses remains ill defined, although candidates
include TLR-4 [18–21], CR3 [26, 27] and an uncharacterized 216-kDa cell-surface
protein [28]. LPS responsiveness in both myeloid and endothelial cells involves
signaling pathways that induce phosphorylation of the mitogen-activated protein
(MAP) kinases ERK1, ERK2 and p38, and activate NF-�B translocation.
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Fig. 7.1 Schematic representation of the CD14 protein sequence illustrating (1) the active re-
gion of the molecule for LPS responsiveness (grey shading), (2) the three putative LPS-binding/
activation sites around positions 10, 40 and 60, and (3) the 10 leucine-rich repeats. The three
LPS-binding/activation regions may be closely apposed in the tertiary structure of CD14.



Mutational analyses have indicated that the N-terminal 151 or 152 amino acids are
sufficient for CD14 to function as a LPS receptor that can signal LPS responsiveness
[29, 30]. In other words, less than half of the molecule encompassing only three of its
10 leucine-rich repeats is involved in this function (Fig. 7.1). Considered from this
perspective, it is perhaps not surprising that CD14 proves to be a multi-functional
receptor. For mCD14, no function has yet been ascribed to the GPI anchor, as a chi-
meric mCD14 that contains the transmembrane domain and cytoplasmic tail of tis-
sue factor in place of the GPI anchor is fully capable of generating LPS responsive-
ness [31]. Studies of deletion mutants of mCD14 indicated that LPS binding and
responsiveness are dependent on amino acids at or around positions 10, 39 and
60 [32]. Detailed investigations of alanine substitution mutants confirmed the im-
portance of the regions around amino acids 10 and 39, but demonstrated that mu-
tants of amino acids 57–64 failed to affect LPS responsiveness of mCD14 [33]. By
contrast, several lines of evidence point to this region being important for the func-
tion of sCD14 in binding, and generating responses, to LPS. Thus, following LPS
binding, this region is protected by Asp-N protease digestion [34]. Also, this amino
acid sequence is required for the binding to sCD14 of LPS and of the monoclonal
antibody MEM-18 which blocks LPS responsiveness [35, 36]. Mutations around ami-
no acid 10 cause loss of sCD14 responsiveness to LPS. Furthermore, a second mono-
clonal antibody, 3C10, maps to sCD14 between amino acids 7 and 14, and blocks
LPS responsiveness, but not binding [35, 36]. Taken together, these results highlight
three areas of CD14, clustered in the first fifth of the molecule, that are important for
LPS responses (Fig. 7.1). Recent studies of charge reversal mutations support this
view [37] and, along with epitope mapping studies, suggest that these three highly
hydrophilic areas are closely apposed in the tertiary structure of CD14, together con-
tributing to the LPS-binding site [32, 33, 37]. Further structure–function relation-
ships will undoubtedly be clarified once the three-dimensional structure of CD14
has been solved.

7.1.4
CD14 Binds Multiple and Diverse Ligands

While the vast majority of current knowledge of CD14 is based upon its capacity
to bind and respond to LPS, ligands of CD14 are not limited to this glycolipid. In-
deed, over the past decade it has become clear that CD14 can interact directly
with, and/or generate responses to, many and varied ligands of both microbial
and non-microbial origin (Tab. 7.1). As well as ill-defined components, known bac-
terial structures that elicit a range of CD14-dependent responses such as NF-�B
activation, nitric oxide (NO) production and secretion of tumor necrosis factor
(TNF)-�, interleukin (IL)-1�, IL-6, IL-8 and IL-12, include lipoteichoic acid (LTA),
peptidoglycan (PGN), lipoarabinomannan (LAM), rhamnose glucose polymers,
uronic acid polymers, glycolipids and lipoproteins. Furthermore, numerous exam-
ples of proteins, lipids and phospholipids of viral, fungal, yeast or mammalian ori-
gin are known to interact directly or indirectly with CD14, in some cases to gener-
ate pro-inflammatory responses and, in others, to prevent such responses
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(Tab. 7.1). Given the diversity of structures, carbohydrate, lipid or protein in na-
ture, that can interact with CD14 – and examples of each have been shown direct-
ly to bind either to sCD14, mCD14 or both [24, 38–46] – the origins of these struc-
tures and the range of responses (pro- and anti-inflammatory) that can be gener-
ated via CD14-dependent mechanisms, it must be concluded that CD14 has
evolved to perform functions which include, but which extend beyond, innate
anti-microbial defense. In this regard, CD14 not only qualifies as a classical pat-
tern recognition receptor (PRR) [47] (see Section 7.3.1), but also as a receptor with
further functional attributes that allow it to interact with ‘self’ in addition to ‘non-
self’ structures. Amongst the ‘self’ structures with which CD14 interacts are apop-
totic cells.

7.2
Evidence that Apoptotic Cells Interact with CD14

7.2.1
61D3, a CD14 Monoclonal Antibody that Blocks Apoptotic Cell Clearance

The first evidence that CD14 is involved in the clearance of apoptotic cells
emerged from experiments in which monoclonal antibodies were tested for their
capacity to modulate the recognition and phagocytosis of apoptotic leukocytes by
human monocyte-derived macrophages. These studies identified a monoclonal
antibody, 61D3, which potently inhibited apoptotic cell clearance in vitro, both as
whole IgG and as F(ab�)2 fragments [48]. This monoclonal antibody had been
raised several years previously by immunizing mice with human monocytes [49],
but its specificity remained undefined. Ultimately, transient expression cloning in
eukaryotic cells successfully resulted in positive identification of the molecule,
known to be expressed on the surface of monocytes and macrophages, carrying
the epitope recognized by 61D3. The molecule proved to be CD14 [5]. Although
studies with CD14 mutants have not yet been performed, the 61D3 monoclonal
antibody appears to bind to the same region of CD14 as LPS. This conclusion is
based upon (1) the observation that MEM-18, a monoclonal antibody known to
block LPS binding to CD14, inhibits apoptotic cell clearance by macrophages to
the same extent as 61D3 [5], and (2) the finding that 61D3 inhibits MEM-18 bind-
ing to sCD14 and mCD14 ([5] and our unpublished observations). 61D3 also in-
hibits LPS-induced TNF-� secretion by macrophages, lending further support to
the probability that 61D3 interacts with the LPS-binding site of CD14 [5].

7.2.2
Exogenous Expression of CD14 in Non-myeloid Cells

Confirmation that mCD14 acts as a receptor in apoptotic cell clearance has been
obtained in vitro by overexpressing exogenous CD14 in cells of non-myeloid origin
such as COS-1. Similar to previous studies which demonstrated the ‘conversion’ of
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Tab. 7.1 Diversity of structures (excepting LPS) known to bind CD14 and/or induce CD14-de-
pendent cellular responses.

Structure CD14 (m or s) Responses References

Bacterial envelope components from
Gram-positive organisms.

mCD14, sCD14 NO, IL-8, IgM
expression

47

Components of Staphylococcus
aureus

sCD14, mCD14 cytokine produc-
tion, adhesion

112, 113

Bacterial cell wall components
(not LPS) of Neisseria gonorrhoeae

sCD14 IL-8 114

Streptococcal cell wall polysacchar-
ides (Rhamnose glucose polymers)

mCD14, sCD14 TNF-� 38

Uronic acid polymers (including
mannuronic acid from Pseudomonas
aeruginosa and teichuronic acids
from Micrococcus luteus)

mCD14, sCD14 TNF-�, IL-8 63, 65–67

Lipoteichoic acid (LTA) mCD14 IL-12 p40, NO,
iNOS, IL-8, IL-1�,
NF-�B

98, 115–117

Peptidoglycan (PGN) mCD14, sCD14 IL-1�, IL-6, MAP
kinases, ATF1/
CREB, AP-1,
TNF-�, sIgM,
NF-�B, I�B
degradation

39, 42,
118–122

Synthetic muramyl dipeptide mCD14 IL-6 39

Lipoarabinomannan (LAM) mCD14, sCD14 NF-�B, IL-6,
TNF-�, IL-1�,
Ca2+, migration,
NO, IL-8, IgM

31, 123–127

Flavolipin mCD14 NF-�B 128

Glycolipids from Treponema malto-
phylum

mCD14 TNF-�, NF-�B 129

Soluble tuberculosis factor (STF) mCD14 NF-�B 127

Outer membrane lipoproteins Osp
(outer surface protein) A and OspC
of Borrelia burgdorferi

sCD14 NF-�B, IL-6, IL-8 41

Acylpolygalactoside (from Klebsiella
pneumoniae membrane)

mCD14 modulation of
CD14 and CR3

130

Group B Streptococcus (released
soluble factor)

mCD14 TNF-� 131

WI-1 Yeast cell wall protein from
Blastomyces dermitidis

mCD14 none measured 132

RSV fusion (F) protein mCD14 IL-6 133

Hyphal fragments of Aspergillus
fumigatus

not clear
(plasma required)

TNF-� 134



an amateur phagocyte of apoptotic cells to one closer to a professional upon trans-
fer of CD36 cDNA [50], transfer of CD14 cDNA to COS-1 cells substantially en-
hanced the capacity of these cells to bind and phagocytose apoptotic lymphocytes
[5]. Notably, however, considering the massive amounts of CD14 expressed by
COS-1 cells relative to that of macrophages, the levels of interaction of apoptotic
cells with COS-1 never approached those observed with macrophages. Therefore,
in order to function efficiently in apoptotic cell clearance, CD14 may require con-
cordant overexpression of additional cooperating molecule(s) that are necessary
for generating CD14-dependent responses to apoptotic cells.

7.2.3
Apoptotic Cell-associated Ligands of CD14

While it remains possible that sCD14 could modulate apoptotic cell clearance by
amateur or professional phagocytes, evidence for the involvement of CD14 in the
removal of apoptotic cells is currently limited to the membrane-anchored form of
the molecule. Furthermore, in light of available evidence, it appears that apoptotic
cells interact directly with mCD14. Thus, CD14-dependent interactions between
apoptotic cells and phagocytes – be they macrophages or CD14 transfectants of
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Tab. 7.1 (continued)

Structure CD14 (m or s) Responses References

Fucoidan mCD14 (or
sCD14from serum)

TNF-�, IL-6 64

HSP60 mCD14 IL-6 69
HSP70 mCD14 TNF-�, IL-1�,

IL-6, NF-�B, Ca2+
68

Ceramide mCD14 co-localization
with CR3 in rafts

70

Phospholipids: PI, PC, PS,
PE and phosphatidic acid

mCD14, sCD14 inhibition of LPS-
induced IL-8 se-
cretion and
NF-�B activation,
arachidonate me-
tabolism

24, 40, 46,
135

Pulmonary surfactant proteins
(SP-A and SP-D)

mCD14, sCD14 TNF-� inhibited 43, 44

Rat mannose-binding protein A sCD14 none measured 45

IL-2 mCD14 IL-1�, IL-8 136

Endothelial cells (IL-1�, TNF-�
or IFN-� stimulated)

mCD14 (?) none measured 137

Apoptotic cells mCD14 phagocytosis, no
TNF-�

5



COS-1 cells – can occur in the absence of added plasma components that may
otherwise have served to opsonize or ‘bridge’ apoptotic cell surface structures with
CD14 [5]. It is conceivable, however, that CD14-dependent clearance of apoptotic
cells involves binding intermediates that associate with the apoptotic cell or pha-
gocyte surfaces since exhaustive removal of these factors has not been investi-
gated. Furthermore, it remains possible that, while CD14-dependent apoptotic cell
clearance can proceed in the absence of such factors, their presence may improve
efficiency. It is now known that multiple proteins, in addition to integral mem-
brane components, contribute to complexes at the interacting cell surfaces that en-
able engulfment of apoptotic cells via pathways involving phagocyte molecules
that include the �v�3 vitronectin receptor, CD36 and CD91 ([51, 52] and see
Tab. 7.2). In view of the variety of molecules able to interact with CD14 (Tab. 7.1),
it is tempting to speculate that, for optimal activity in mediating apoptotic cell
clearance, CD14 may require molecules in addition to those that are integral to
the plasma membrane of either the phagocyte or the apoptotic cell. In this context
it is noteworthy that members of the collectin family have been shown to contrib-
ute to complexes at phagocyte surfaces that mediate apoptotic cell clearance [52,
53] and at least some members of this family, namely the pulmonary surfactant
proteins, SP-A and SP-D and mannose-binding protein A are known to interact
directly with CD14 [43–45].

Perhaps the most obvious potential CD14 ligands of apoptotic cells are phos-
pholipids. Disruption of phospholipid distribution is the only well-defined feature
of the apoptotic cell surface and phospholipids have proven capacity to bind direct-
ly to mCD14 [40], as well as sCD14 [24, 46]. These qualities argue strongly in fa-
vor of a role for phospholipids in CD14-dependent apoptotic cell clearance. Since
phosphatidylserine (PS) becomes exposed on the outer plasma membrane leaflet
during apoptosis and, unlike other phospholipids including phosphatidylinositol
(PI), phosphatidylethanolamine (PE) and phosphatidylcholine (PC), is functional
in apoptotic cell clearance [54], an intuitively obvious possibility is that PS inter-
acts directly with macrophage CD14. Several lines of evidence, however, indicate
that PS does not function as a preferential ligand for mCD14 in apoptotic cell
clearance by human monocyte-derived macrophages in vitro. Firstly, although PS
can interact with both mCD14 and sCD14, it does so with lower affinity than PI,
PC or PE [40, 46]. Second, CD14-dependent clearance of apoptotic cells can be
demonstrated in the absence of overt PS receptor activity [55]. Last, and by no
means least, the dominant PS receptor for apoptotic cells (PS-R) has been cloned
and bears no resemblance to CD14 [56]. Therefore, based on the available evi-
dence it must be concluded that CD14 ligands other than PS predominate, at
least in the case of human monocyte-derived macrophages, in clearance of apopto-
tic cells via mCD14.

In view of CD14’s established lectin-like activity (Tab. 7.1), it is possible that gly-
can moieties at apoptotic cell surfaces may be functional as CD14 ligands.
Although not yet well defined at the molecular level, it is clear that the glycocalyx
becomes altered during apoptosis [57–62] and it is an attractive proposition that
surface sugars could participate in the formation of molecular patterns that signal
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Tab. 7.2 Molecules implicated in mammalian apoptotic cell clearance at interactive cell surfaces.

Location a) Molecule Reference b)

Phagocyte lectins 57, 138
Phagocyte �v�3 integrin 139
Phagocyte CD36 51
Phagocyte PS receptor 56, 140
Phagocyte asialoglycoprotein receptor 58
Phagocyte CD68 141
Phagocyte scavenger receptor A 142
Phagocyte c) ATP-binding cassette transporter (ABC)-1 143
Phagocyte CD14 5
Phagocyte CR3, CR4 144
Phagocyte �v�5 integrin 145
Phagocyte scavenger receptor B1 146, 147
Phagocyte PS 148
Phagocyte MER 111
Phagocyte CD91 52
Phagocyte CD31 149

Apoptotic cell sugars 57, 138
Apoptotic cell PS 54
Apoptotic cell ICAM-3 74
Apoptotic cell oxidized structures 150
Apoptotic cell CD31 149

Intermediate thrombospondin 51
Intermediate �2-glycoprotein 1 151
Intermediate C1q 107
Intermediate C3bi 144
Intermediate Gas6 152
Intermediate C-reactive protein 153
Intermediate mannose-binding lectin 52
Intermediate surfactant protein-A 53
Intermediate calreticulin 52
Intermediate milk fat globule-EGF-factor 8 154

a) Molecules are categorized as (1) integral membrane structures of either phagocytes (including
macrophages and amateur phagocytes), (2) integral membrane structures of apoptotic cells or (3)
intermediate components including soluble factors that opsonize/bridge or peripheral membrane
components.

b) Citations focus on the seminal studies.
c) Evidence from studies of the C. elegans homolog of ABC-1, CED-7, suggests that ABC-1 could act

both on phagocyte and apoptotic cell surfaces [155].



apoptosis to the extracellular microenvironment. Polysaccharides that have been
shown to induce CD14-dependent responses are currently limited to those of bac-
terial or algal origin [38, 63–67]. Therefore, there is no evidence to date to support
the notion that CD14 may interact with apoptotic cell surface structures through
its lectin-like activity. Other candidate molecules that have been shown to interact
with CD14, but as yet have no known role in apoptotic cell clearance, are heat-
shock proteins (HSP-60 and -70) [68, 69] and ceramide [70]. Intriguingly, these
HSPs have been reported to become cell-surface associated during apoptosis [71,
72]. Ceramide has been proposed to emulate LPS in three-dimensional structure
[73] and this provides a rationale for its potential to interact directly with CD14.
Again, however, there is as yet no evidence that CD14-dependent clearance of
apoptotic cells involves either HSPs or ceramide.

Circumstantial evidence suggests that the immunoglobulin superfamily (IgSF)
member, intercellular adhesion molecule (ICAM)-3 (CD50), participates in the
route to apoptotic cell clearance by human macrophages that requires CD14 [74].
ICAM-3 is expressed by all mature human leukocytes, but virtually nothing is
known about its function, excepting its role on T cells in aiding interactions with
antigen-presenting cells that promote T cell activation. During apoptosis, ICAM-3
becomes qualitatively altered such that it is unable to interact with its prototypic
counter-receptor, LFA-1. Instead, it appears that ICAM-3 gains the capacity to in-
teract with macrophage molecules that are functional in apoptotic cell clearance
[74]. Thus, as a consequence of the apoptosis programme becoming activated, the
function of ICAM-3 is radically changed from its pre-apoptotic role. That ICAM-3
gains the capacity to interact with CD14 as a result of the induction of apoptosis
is implied from observations of anti-CD14 and anti-ICAM-3 blocking monoclonal
antibodies which fail to produce additive inhibitory effects [74]. Since, in these ex-
periments, the anti-CD14 monoclonal antibody blocked on the side of the macro-
phage and the anti-ICAM-3 monoclonal antibody blocked on the side of the apop-
totic cells [74], one interpretation is that the monoclonal antibodies are blocking
two arms of the same pathway. However, it is not yet clear whether ICAM-3, in its
apoptotic form, can bind directly to CD14.

7.3
Mechanisms: Conceptualizing CD14’s Role in Apoptotic Cell Clearance

7.3.1
CD14 as a PRR that Recognizes Apoptotic Cell-associated Molecular Patterns
(ACAMPs)

The concept of pattern recognition was originally invoked to rationalize the capaci-
ty of the innate immune system to recognize conserved microbial structures
which, on pathogens, have come to be known collectively as pathogen-associated
molecular patterns (PAMPs) [75, 76]. PAMPs are recognized by innate immune
receptors known as PRRs. It has been proposed that all macrophage receptors
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may be considered as PRRs [77], but CD14, by way of its capacity to recognize
LPS, clearly falls into this category even when PRRs are viewed less generally [47].
Since CD14 is involved in binding not only PAMPs, but also ‘self’ components,
its receptor function is wider than that originally envisaged of a classical PRR. Of
relevance to its role in apoptotic cell clearance is the concept that CD14 interacts
with a broader range of molecular patterns that includes ACAMPs [78, 79], other-
wise known as ‘eat me’ signals [80]. The simplest model predicts that CD14 binds
directly to ACAMPs (Fig. 7.2). However, since the CD14 ligands that function in
apoptotic cell clearance remain elusive and taking account of the numerous solu-
ble factors that contribute to the apoptotic cell clearance process, there is a strong
possibility that CD14 associates with apoptotic cell surfaces through indirect
means (Fig. 7.2).

Just as the ACAMPs that involve CD14 in the clearance of apoptotic cells are
unknown, so too are the mechanisms that underlie their production, regardless of
whether they interact directly or indirectly with CD14. Indeed, very little is yet
known of the biochemical mechanisms that facilitate apoptotic cell clearance dri-
ven by any of the phagocyte receptors that are implicated in the process. Some ex-
perimental approaches have sought relationships between molecules controlling
the self-destruction of the cell by apoptosis and the capacity to be phagocytosed by
CD14-dependent (and -independent) mechanisms. For example, the anti-apoptosis
molecule Bcl-2, although reported not to impinge upon the capacity of neutro-
phils to be phagocytosed despite promoting their survival in the absence of macro-
phages [81], prevented human lymphocytes from displaying features of apoptosis,
including the capacity to be phagocytosed by CD14-dependent mechanisms [82].
While it is not yet known whether caspase activity is required for the surface
changes that allow engulfment of apoptotic cells, recent evidence suggests that
caspase-3, the effector caspase that is responsible for several of the hallmarks of
apoptosis, is not required – either for CD14-dependent or -independent, mecha-
nisms [83]. Intriguingly, caspase-3 activity is similarly superfluous for the externa-
lization of PS that occurs during apoptosis [38, 84, 85], and in view of evidence
that suggests that physiological cell death can occur in the absence of caspases
[86–92] it will be important to understand the relationship between caspase activa-
tion in apoptosis and the requirements for apoptotic cell clearance. There is al-
ready clear evidence that the apoptosis-like demise of platelets leads to phagocyto-
sis in the absence of caspase activation [93].
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7.3.2
Differential CD14 Signaling following Ligand Binding

Since CD14 can generate profoundly different responses to different ligands, it
follows that ligand-dependent differences between signal transduction pathways
downstream of receptor ligation must exist. In view of its GPI anchorage to the
plasma membrane, it is probable that mCD14 cooperates with transmembrane co-
receptors in order to couple extracellular ligand-binding events to intracytoplasmic
signal transduction pathways [4] (although other mechanisms have also been pro-
posed – reviewed in [94]). Candidate CD14 co-receptors in CD14-dependent pro-in-
flammatory responses are CR3 [26, 70], TLR-2 and TLR-4 [18–21, 67, 96], and
MD-2 [70, 97, 98]. TLR-4 has been shown by genetic studies to be critical for phys-
iological LPS responses [18, 21], whereas TLR-2 is involved in CD14-dependent re-
sponses to other microbial components such as peptidoglycan and lipoteichoic
acid [99, 100] and including minor contaminants of LPS preparations [101]. Bio-
chemical cross-linking and fluorescence resonance energy transfer microscopy
have indicated that CR3, TLR-4 and MD-2 become physically closely associated
with CD14 as a consequence of the presence of LPS [26, 27, 97]. Therefore, for re-
sponsiveness to LPS, CD14 forms one component of a multi-molecular receptor
complex. The same seems likely to be true in the case of its role in responses to
other ligands including those mediating apoptotic cell clearance. In this context it
is noteworthy that CD14 has been shown to be capable of associating with CD36,
a scavenger receptor implicated in apoptotic cell engulfment (Tab. 7.2) [70].

How could mCD14 elicit anti-inflammatory signaling following interaction (di-
rectly or indirectly) with ACAMPs? Three major scenarios are envisaged (Fig. 7.3).
The first predicts that the ACAMPs determine the composition of a receptor com-
plex around CD14 that differs from that which is determined by LPS. The hypo-
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Fig. 7.2 Cartoon to illustrate modes of interaction between ACAMPs and macrophage mCD14.
The scheme on the left shows the simplest scenario of direct interaction between CD14 and
ACAMP, while on the right a simplistic view of indirect interaction involving bridging molecules
or opsonins is shown.



thetical ACAMP-determined complex would then be expected to link up to an
anti-inflammatory signaling pathway (Fig. 7.3 A), rather than the pro-inflammatory
signal transduction pathway that is coupled to the LPS-determined receptor com-
plex. In the second scenario (Fig. 7.3 B), CD14-interactive ACAMPs would, like
LPS, elicit a default pro-inflammatory signaling response that would be sup-
pressed by additional ACAMPs interacting with alternative phagocyte receptors.
The implication here is that the complex nature of the apoptotic cell or body al-
lows it to display multiple ligands that together coordinate the anti-inflammatory
clearance process. In the third scenario, CD14 is envisaged as playing a tethering
role only – perhaps because it is unable to associate with the signaling partners
required for its pro-inflammatory function – and fails to activate any intracellular
signals (Fig. 7.3 C). Again, this mechanism implies that additional ACAMP–recep-
tor interactions are required to complement the tethering function of CD14 and
generate anti-inflammatory phagocytosis.

All three of these scenarios accord well with available evidence, although that
relating specifically to CD14 is currently limited. It has been proposed recently
that the engulfment of apoptotic cells is a two-phase, ‘tether-and-tickle’, process
composed (1) of mechanisms that facilitate cell–cell interactions, and (2) of events
that drive anti-inflammatory signaling and engulfment [102]. It seems likely that
the process is composed of three facets with separate molecular mechanisms: (1)
tethering, (2) signal transduction culminating in engulfment and (3) signal trans-
duction suppressing inflammatory responses. In this model, CD14 is currently
thought to play a tethering role [5, 102, 103], but further work is required in order
to determine whether it is restricted in this respect. An attractive working hypoth-
esis is that CD14 acts to tether apoptotic cells to macrophages and, because it fails
to interact preferentially with PS, allows PS-R ligation and subsequent signaling
for anti-inflammation and engulfment, both functions recently claimed for the
PS-R [56, 102, 104]. It remains possible, however, that CD14, through interaction
with co-receptors, can also contribute to signal transduction in apoptotic cell clear-
ance.

7.4
Conclusion: Relative Importance of CD14 in Apoptotic Cell Clearance

In view of the highly complex nature of the molecular interactions between apop-
totic cells and phagocytes involving integral plasma-membrane elements of both
cell types as well as non-integral ‘intermediate’ components (Tab. 7.2), it is impos-
sible to judge the importance of one component in isolation. Superficially, the
mechanisms responsible for the clearance of apoptotic cells appear redundant, re-
flecting the importance of efficient clearance, not least in militating against auto-
immune disease pathogenesis. The multiplicity of mechanisms, however, may not
represent redundancy, but rather individually essential mechanisms that (1) oper-
ate in different phagocytes including subsets of macrophages and (2) engage dif-
ferent phases of the apoptotic process. In the case of mCD14, the key to its signif-
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icance in apoptotic cell clearance lies in its restricted distribution. Thus, dendritic
cells, which are functional in antigen presentation and immune activation follow-
ing apoptotic cell engulfment, do not express CD14, in contrast to macrophages,
which are immunosuppressive following apoptotic cell clearance [105, 106]. There-
fore, one prediction based on the published literature would be that CD14 is in-
volved in tolerogenic clearance, simply because of its cellular distribution [79]. In
this respect it can be viewed as an important innate regulator of the adaptive im-
mune response to apoptotic cell-associated antigens. Of course, this simple view-
point could change radically should sCD14 also be shown to play a role in apopto-
tic cell clearance.

By far the majority of studies of the molecular mechanisms of apoptotic cell
clearance, including those of CD14, have been carried out using in vitro models.
Ultimately, only detailed in vivo studies can elucidate the relative significance of
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Fig. 7.3 Cartoon depicting theoretical models
of signal generation following CD14 interact-
ing (directly or indirectly) with ACAMPs that
leads to anti-inflammatory phagocytosis of
apoptotic cells. (A) In this scheme, GPI-an-
chored mCD14 cooperates with a transmem-
brane receptor to signal anti-inflammatory
phagocytosis. The receptor complex would be
predicted to be different from that involved in
LPS responses. (B) Here, mCD14 is com-
plexed with a co-receptor that generates pro-
inflammatory signals (i.e. the receptor com-

plex is identical to that invoked by LPS).
These are switched off by an inhibitory recep-
tor that engages other ACAMPs. (C) This re-
presents mCD14’s role simply as a signalling-
inert tethering molecule. In this scenario,
other ACAMPs engage additional receptors
(‘engulfment’ receptors) that provide the sig-
naling mechanisms for anti-inflammatory re-
sponses and phagocytosis. The PS-R would fit
into the category of engulfment and anti-in-
flammatory signaling receptor. See text for de-
tails.



individual molecules in supporting the clearance of apoptotic cells and indeed
how important the clearance process is in preventing disease development. Stud-
ies of single-knockout animals have begun [107–111] and extension of this
approach to CD14, both alone and in combination with other components of the
apoptotic cell clearance machinery, will help to provide a definitive appraisal of
the role of CD14 – and of the apoptotic cell clearance process itself – in health
and disease.
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8.1
Introduction

Studies on human and mouse natural mutants presenting with lymphoprolifera-
tive syndrome and autoimmunity (ALPS) have shed light on the role of Fas and
Fas ligand (FasL) in the regulation of lymphocyte homeostasis. T cell expansion
upon antigenic stimulation is followed by a contraction phase essentially driven
by Fas. This is underscored by the observation that mice and humans lacking a
functional Fas receptor develop a lymphoproliferative disease along with autoim-
mune manifestations. An identical phenotype is observed in mice carrying a de-
fective FasL gene. Unraveling the genetic basis of the human pathology led to the
identification of an apoptosis signaling defect, pointing to the crucial role of cas-
pase-10 in the process of apoptosis induction. This chapter will discuss the main
findings provided by the study of ALPS conditions.

8.2
Death Receptors and Signaling of Apoptosis

Apoptosis is a form of programmed cell death that can be triggered by specialized
membrane-bound receptors belonging to the tumor necrosis factor (TNF) receptor
(TNF-R)/nerve growth factor (NGF) receptor (NGF-R) superfamily. These ‘death
receptors’ (DR) define a subfamily as they all contain cysteine-rich domains
(CRDs) in their extracytoplasmic region and are characterized by the presence of a
functional domain termed the ‘death domain’ (DD) within the cytoplasmic region
[1]. Fas (also known as CD95 or Apo-1 and now as TNFRSF6) [2, 3] is a proto-
typical member with three extracellular CRDs and an 80-amino-acid intracellular
DD.

Four other DD-containing receptors have been found on peripheral blood mono-
nuclear cells, such as TNF-RI [4], TRAMP (TNF-R-related apoptosis mediating
protein; DR3/wsl1/APO-3/LARD) [5–9], TRAIL (TNF-related apoptosis-inducing li-
gand)-R1 (DR4/APO-2) [10], TRAIL-R2 (DR5/Trick/Killer) [11–16] and DR6 [17].
The ligands that interact with these receptors, apart from the DR6 ligand that re-
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mains unknown, are structurally related molecules belonging to the TNF super-
family. FasL (CD95L) binds to Fas; TNF and lymphotoxin bind to TNF-RI; APO3
ligand (APO-3L; TWEAK) and TL1-A bind to DR3; and TRAIL [APO-2 ligand
(APO-2L)] binds to DR4 and DR5 [18–22].

Decoy receptors are receptors that retain ligand-binding properties, but lack
many of the functions of the corresponding receptors. Therefore, their in vivo
function is debatable. Two of them lack a transmembrane domain and exist either
as a soluble form, like DcR-3, the decoy receptor of FasL [23], or as a glycosylphos-
phatidylinositol (GPI) -linked receptor, like DcR-1 (TRAIL-R3) that binds TRAIL.
A second decoy receptor for TRAIL, DcR-2 (TRAIL-R4), retains an incomplete
DD, making it unable to trigger apoptosis, yet it has some signaling capabilities
like NF-�B activation [12, 13, 23, 24].

The important feature of Fas and other DR signaling events is the recruitment
of a signal transduction protein complex within minutes upon triggering by their
cognate ligand or agonistic antibodies [25]. The formation of this ‘death-inducing
signaling complex’ (DISC) is mediated by the specific conformation of the intra-
cellular DD. This allows interaction with a cytoplasmic adapter protein called
FADD (Fas-associated DD; also named MORT-1) by means of its DD to the clus-
tered receptors’ DD [26, 27]. FADD then recruits pro-enzymes, the pro-caspase-8
and -10 (also called Flice/MACH-1 and Flice-2, respectively) [28, 29, 30] via inter-
actions of their mutual N-terminal ‘death effector domain’ (DED). It is thought that
pro-caspase-8 is auto-processed in the vicinity of the DISC as a consequence of a
high local concentration of the pro-enzyme. Studies with FADD and caspase-8 gene
knockout (KO) mice as well as with human caspase-10 deficiencies established that
these molecules are essential for apoptosis induction by Fas [31–34].

Caspases are cysteine proteases that cleave substrates after a specific aspartic
residue. All caspases are synthesized as latent proenzymes made of an N-terminal
caspase-recruiting domain (CARD), and a large (p20) and a small (p10) protease
subunit. DEDs are specific examples of the homophilic interaction domains called
CARDs. Processing of caspases results in proteolytic cleavage of the zymogene
form, and association of the small and large protease domain in a heterotetramer
complex forming the active caspase [35]. Activated caspase-8 and -10 can, in turn,
activate other pro-caspases such as caspase-3, thereby initiating a proteolytic cas-
cade that culminates in apoptosis. This pathway of apoptosis induction is indepen-
dent of the apoptogenic activation of mitochondria and therefore cannot be inhib-
ited by members of the Bcl-2 family. However, in some cells, referred to as type II
cells (as opposed to type I cells using the former pathway), the amount of active
caspase-8 generated is insufficient to activate the pro-caspase 3, but sufficient to
cleave the BH3-only protein Bid. The truncated Bid (tBid) then activates the mito-
chondria and provokes the release of cytochrome c, a key element of a complex
called the apoptosome and made of caspase-9, cytochrome c, ATP and Apaf-1. Ac-
tivated caspase-9 can, in turn, cleave pro-caspase-3. It seems that thymocytes and
peripheral T cells are identified as type I cells since their Fas-induced apoptosis is
mitochondria independent, and cannot be inhibited by Bcl-2 and Bcl-xL. Recent
unraveling of Fas apoptosis execution in type I cells indicates that DISC assembly
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under receptor microaggregates is driven by caspase-8. Moreover, this process and
the internalization of Fas-FasL complexes are actin dependent.

Other cytoplasmic proteins were reported to interact with Fas, such as Daxx
[36], Rip [37] and FAF [38]. However, their roles in Fas-induced apoptosis remain
controversial and may vary as a function of cell type or stage of differentiation.

The understanding of mechanisms underlying apoptosis induction upon trig-
gering of Fas by its cognate ligand was recently modified by the work of Lenardo’s
group [39]. Previously, the ‘post-ligand’ model proposed that trimerization of Fas,
and thus signaling of apoptosis, was triggered upon interaction with trimeric
FasL. However, Siegel et al., by using FRET technology, elegantly demonstrated
that Fas molecules were previously trimerized through interactions of a N-termi-
nal domain called PLAD (pre-ligand association domain). From a mechanistic
point of view this means that ligand-receptor interaction may allow formation of
receptor superclusters, a stoichiometry potentially required to induce apoptosis (as
observed by using cross-linked anti-Fas antibodies). Alternatively, the FasL-Fas in-
teraction could induce a change of the DD’s conformation enabling further inter-
actions with FADD and other downstream components. This may be the conse-
quence of DD’s cooperativity to self-associate and/or of the dissociation of a DD
silencer (SODD) as described for TNF-RI [40].

Finally, execution of Fas apoptosis is controlled by a family of viral proteins
called v-FLIPs (viral flice inhibitory proteins) and their cellular counterpart c-Flip
(also called I-Flice, Cash, Casper or FLAME). They contain a DED similar to the
corresponding domain in caspase-8 and -10 and FADD. These molecules are po-
tent inhibitors of Fas-induced apoptosis by interacting with FADD and/or caspase-
8, and may have an important role in the regulation of several DR-induced apop-
totic events [41]. Resting naive T cells express little surface Fas, but T cell receptor
(TCR) stimulation increases Fas expression and renders activated T cells progres-
sively sensitive to Fas-induced apoptosis in the presence of interleukin (IL)-2. This
has been attributed to a decrease in Flip that occurs after 3 days of T cell activa-
tion in vitro [42]. Additionally, it has been proposed that c-Flip may also connect
Fas signaling to co-stimulation through the ERK pathway and activation of NF-�B
[43]. It was reported, a decade ago, that antibodies to Fas might provide co-stimu-
lation for human T cells in vitro [44]. This observation is supported by more re-
cent studies showing that caspase-3 or -8 inhibitors can inhibit anti-CD3 T cell
proliferation [45, 46]. Nevertheless, the physiological significance of these observa-
tions remains poorly understood since Fas deficiencies in patients or in lpr mice
do not lead to immunodeficiency, but rather to uncontrolled lymphoproliferation
(see below).
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8.3
Clinical and Immunological Basis of ALPS

8.3.1
Definitions

More than 30 years ago, Canale and Smith reported a condition characterized by
non-malignant lymphadenopathies associated with autoimmune features in chil-
dren [47]. It turned out that these patients and a number of newly described ones
have a genetic disorder caused by mutations of the Fas-encoding gene [48–50].
The syndrome was also named ALPS [48]. However, the genetic basis of this lym-
phoproliferation with autoimmunity was firstly identified in MRL lpr mice [51].
This natural mouse mutant strain was considered as a model of human lupus since
these mice develop nephritis, hypergammaglobulinemia and antinuclear antibodies
in addition to lymphadenopathy. These mice accumulate CD4–CD8– TCR �� T cells
in the periphery with age. This phenotype is likely the consequence of the CD8
downregulation on mature peripheral lymphocytes. The autoimmune features
vary from strain to strain carrying the lpr mutation. Other natural mutants were
subsequently described, i.e. lprcg and gld mice [52]. The lpr strain is characterized
by an almost complete defect of Fas expression and consequently a complete de-
fect of Fas-induced apoptosis as in the Fas-defective KO mouse [53]. The lprcg mu-
tation allows the expression of a non-functional protein [51]. In the gld mouse, a
missense mutation in the extracellular domain (ECD) of FasL abrogates its func-
tion [54]. The phenotype of these mice is very similar, with a variable time course
of symptoms onset, the shortest one being observed in the Fas KO model [53].

At least five subtypes of ALPS have been described so far. ALPS 0 refers to com-
plete Fas expression defect. ALPS Ia defines functional Fas deficiency (with
slightly diminished or normal Fas expression). ALPS Ib is circumscribed to a FasL
defect; however, this term may be inappropriate, as the phenotype of the unique
patient described is dissimilar to other ALPS patients. ALPS II is used to describe
a Fas-induced apoptosis defect in the absence of Fas mutation. Defects in the Fas
signaling pathway were described in ALPS II. Finally, ALPS III designates pa-
tients presenting with ALPS symptoms but with a normal in vitro Fas-induced
apoptosis. Nevertheless, as discussed below, four criteria characterize the ALPS
condition: splenomegaly, lymphadenopathies, hypergammaglobulinemia and de-
tection of TCR �� CD4–CD8– T cells [double-negative (DN) T cells] in blood. With
a few exceptions, ALPS patients present with at least three of these criteria.

8.3.2
Clinical Presentation

8.3.2.1 Lymphoproliferation
Lymphoproliferation is usually the most salient manifestation causing lymphade-
nopathy, splenomegaly and, in some cases, hepatomegaly. Onset of symptoms oc-
curs in early childhood (0–5 years, around 6–12 months in most cases) [55, 56].
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However, in some severe cases (ALPS 0 and in some ALPS Ia), massive lympho-
proliferation is evident at birth, indicating a process that had started in the prena-
tal period [57]. Splenomegaly fluctuates in a given patient and is very variable
from one patient to another one. It can be palpable at only 2 cm below the costal
grill or, in contrast, be in the iliac fossa. In these later cases, splenectomy is often
performed because of discomfort or hypersplenism. Blood lymphocytosis or in-
creased adenopathies (in number and in size) are sometimes observed after sple-
nectomy. Adenopathies are multifocal and their size fluctuates with time. A para-
doxical decrease in lymph nodes has been observed during viral infection [47]. He-
patomegaly, when observed, is mild and is not associated with liver dysfunction.
Lymphoproliferation may also involve the thymus, which is enlarged as visualized
by computed tomography studies [58]. In severe cases, pulmonary infiltrate can be
related to the lymphoproliferation [57]. Using a long-term follow-up of a number
of patients, it has been possible to determine that there is a significant shrinkage
of lymphoproliferation in a number of them over time [56].

8.3.2.2 Autoimmune Manifestations
Autoimmune manifestations are the second most frequent event in ALPS pa-
tients. They are present in about 70% of the patients [55, 56]. Age at onset varies
considerably in contrast to the lymphoproliferative syndrome. It is therefore likely
that, among reported patients, some who have not yet developed such manifesta-
tions will do so later on. For example, in one patient, the first ALPS manifestation
was autoimmune thrombocytopenia and was observed at 18 years of age.

The most common autoimmune manifestations involve hematological lineages
leading to anemia, thrombocytopenia and neutropenia, and are associated with
the corresponding autoantibodies. Hemolytic anemia is the most frequent mani-
festation and has been found associated with dyserythropoiesis in two cases [59].
The magnitude of the cytopenia observed is variable from one patient to another;
the hemolysis can be severe (Hb< 5mg/dl) as well as thrombocytopenia (<10 000/
�l), thus constituting a prognostic element. However, autoantibodies can be de-
tected when the patient is clinically stable or even in case of the complete absence
of clinical autoimmune manifestation [57, 60, 61]. Other autoimmune manifesta-
tions can be observed, such as glomerulonephritis, Guillain-Barre syndrome, uvei-
tis, arthritis, hepatitis and diabetes [55, 56, 62]. Autoimmune manifestations in-
volving the skin, including urticaria rashes and vasculitis, are common. An auto-
immune basis is suspected in some cases of seizure, autism, ovarian failure and
mucosal ulceration [63]. In none of the patients was typical lupus detected.

In addition to autoantibodies against blood cells, autoantibodies towards cardio-
lipin, smooth muscle and nuclear antigens are commonly detected as well as
rheumatoid factor, but anti-DNA antibodies were never seen.

A striking observation is that autoimmunity appears to be always associated
with autoantibodies, although direct pathogenic intervention of T cells in some of
the autoimmune processes cannot be excluded.
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8.3.2.3 Other Clinical Manifestations
Failure to thrive is a frequent symptom in children. Of note, splenectomy could
reverse this in a number of cases. Fas mutations represent a significant risk factor
for malignancy. A study performed on a large series of patients and relatives
showed that the risk of non-Hodgkin’s as well as of Hodgkin’s lymphoma, in car-
riers of a heterozygous Fas mutation, was 14 and 51 times greater than expected,
respectively [64]. In this series, the average age of lymphoma occurrence was 28
years. This observation is in accordance with the description of somatic Fas muta-
tions in both children and adult leukemia and lymphomas [65–67]. Other malig-
nant diseases have been reported – liver carcinoma in one patient (with hepatitis
C infection), and multiple thyroid and breast adenomas together with basal cell
carcinomas in another [50].

8.3.3
Laboratory Findings

8.3.3.1 Immunological Data
The lymphocyte count is variably increased, reflecting the intensity of the lympho-
proliferative syndrome. Unusual T cells, DN T cells (TCR �� CD4–CD8–,
CD45RA+, CD57+, HLA-DR+) T cells are detected in excess in the blood of all pa-
tients with ALPS [55, 56]. This subset accounts for 1–60% of the blood T cell
counts. Moreover, excess of CD8+ T cells, TCR �� T cells and activated T cells was
also frequently observed [55, 68]. Chronic lymphocyte activation was found, as
demonstrated by the presence of high levels of HLA-DR expression on peripheral
CD3 T cells and by the presence of high levels of serum activation markers such
as soluble IL-2 receptor, soluble CD30 [61] and soluble FasL [69].

Polyclonal hyperimmunoglobulinemia G and A is a very frequent finding, while
the level of serum IgM is usually reduced. However, in some cases hypogamma-
globulinemia has been described [56]. Polyclonal B cell lymphocytosis with expan-
sion of CD5+ B cells was a characteristic finding [68].

A striking feature of ALPS Ia consists of overproduction of IL-10 as well as
reduced IL-12 production by monocytes and increased IL-10 plasma levels [70]. It
can be postulated to be a secondary regulatory event attempting to counterbalance
the persistence and activation of autoimmune clones. This is in accordance with
observations made in the mouse model where IL-10 was found to exacerbate the
autoimmunity [71]. In addition, the T cells mostly have a Th2 phenotype [72].

8.3.3.2 Pathological Findings
Lymph node paracortical areas are hyperplastic and contain many large lympho-
cytes with numerous mitotic figures. T cells as well as B cells accumulate in para-
cortical areas, while the overall architecture of lymphoid organs is preserved [57,
73]. Many of the cells express the Ki-67 antigen (indicative of active proliferation)
and markers associated with cytotoxicity, such as perforin and CD57. A majority
of the paracortical cells were DN cells TCR �� CD3+ CD45RO– CD45RA+. Sponta-
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neous apoptosis is often seen. In addition, there is also excessive B lymphocyte ac-
cumulation with plasmocytosis in some patients, but not all. Most lymph nodes
exhibited florid follicular hyperplasia. However, in some cases, follicular involu-
tion was seen.

In splenomegaly, expansion involves the red pulp and to a lesser extent the
white pulp. Lymphoid cells in the red pulp are similar to the ones observed in
paracortical areas of lymph nodes. Periarteriolar sheets are also enlarged.

DN T cells can also infiltrate the liver at the level of portal tracts and sinusoids.
ALPS has to be considered as a possible differential diagnosis with lymphoma,
especially involving T cells [74].

8.3.4
Treatment

Indications for treatment depend on the type and severity of the symptoms. In
many patients, the clinical status does not require any treatment. Splenectomy,
was often performed because of discomfort and hypersplenism, was also required,
in some cases, because of protracted autoimmunity toward blood cells [55, 56]. In
some patients autoimmunity tends to be severe, requiring aggressive immunosup-
pressive regimens including steroids and cyclophosphamide [57]. The antifolate
drug Fansidar®, a combination of pyrimethamine and sulfadoxine, has been re-
ported to be effective, especially on the lymphoproliferative manifestations [75]. In
the same way, 6-mercaptopurine may be helpful (personal data).

In two severe cases, characterized by progression of lymphoproliferation in
spite of chemotherapy including cyclophosphamide, vincristine and prednisone,
bone marrow transplantation was performed from an unrelated donor in one case
and from a haploidentical donor in the other one. In both cases, the bone marrow
transplantation led to the correction of the Fas deficiency, and to the disappear-
ance of clinical and biological manifestations [76, 77].

8.4
Genetic and Molecular Bases of ALPS

The recognition that lpr mice carry a mutation of the Fas gene was a major ad-
vance in the understanding of the role of the Fas molecule [51]. It has also
pointed the way to the identification of the human counterpart. lpr mutant mice
have an insertion of a transposon into intron 2 of the Fas gene that dramatically
reduces the normal splicing of the Fas transcript [78]. A similar, albeit less severe,
condition, lprcg, is associated with a missense mutation within the so-called DD-
encoding part of the Fas gene [51]. Mutations of the FasL gene also result in lym-
phoproliferation [54]. Similarly, the human pathology is also diverse as at least
five types can be described.
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8.4.1
ALPS 0

ALPS 0 is a complete Fas expression deficiency. These cases are consequences of
homozygous null mutations. Three cases of homozygous mutations were reported
[48, 69, 79]. In one case, a stop codon in the ECD was predicted to lead to a com-
plete expression defect. In contrast, in the two other cases mutations are localized
in the intracellular domain (ICD), affecting the DD-encoding exon 9. These mu-
tants should be expressed at the surface, according to truncation experiments per-
formed on human Fas expressed in murine fibroblasts [2]. This defect can thus re-
sult from instability and premature elimination in the endoplasmic reticulum or
retention due to the neo-peptide encoded in these mutants. Considering that the
mutation was inherited from healthy parents (carrying the mutation at the hetero-
zygous state), it was proposed that these mutations were recessive [79]. However,
we were able to detect a partial Fas-induced apoptosis in cells from both parents
of the patients we initially described (Le Deist et al., unpublished observations).
This is characteristic of a dominant effect exerted by the mutated protein with par-
tial clinical penetrance as observed in many other cases of heterozygous muta-
tions (see ALPS Ia). Another unpublished case of a family with an ALPS 0 patient
supports this observation. In this family, the mother is healthy and carries the het-
erozygous mutation, and the father, with the same genotype, presented with
symptoms of classical ALPS Ia. The proband, who received both mutated alleles,
is presenting with typical ALPS 0. Thus, it can be suggested that most, if not all,
mutations are dominant and that when homozygous they lead to a more severe
phenotype – a classical observation in dominant diseases.

In a unique family, the patients are compound heterozygotes, with one muta-
tion resulting in an amino acid substitution in the ECD [61]. It is unclear whether
this modified Fas molecule has an impaired function. These patients exhibit a
phenotype similar to the one of ALPS Ia.

8.4.2
ALPS Ia

More than 80 patients carrying a heterozygous Fas mutation have been so far re-
ported in the literature [55–59, 61, 63, 68, 69, 73, 79–87]. A large spectrum of Fas
gene mutations have been found associated with ALPS Ia, including mutations
leading to truncated products or modified sequences (Fig. 8.1). The mutant Fas
molecules exert a transdominant negative effect on Fas-mediated apoptosis as
shown by transfection experiments [84, 88]. Moreover, mutant proteins can be de-
tected at the membrane level (Rieux-Laucat et al., unpublished observations) and,
thus, random incorporation into Fas trimers of abnormal molecules likely ac-
counts for it. These mutants result in reduced FADD binding and caspase recruit-
ment, much greater than the 50% reduction predicted in a 1:1 non-cooperative in-
teraction between Fas and FADD [88]. Therefore, this suggests that there is coop-
eration between Fas subunits in the recruitment of FADD, consistent with the
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presence of only one out of eight normal trimers in this setting. A majority of the
identified mutations are located within the ICD. Sixty percent are localized within
the DD. Nonsense and missense mutations are equally represented.

One-third of mutations alter the ECD of Fas and are usually associated with a less
important Fas-induced apoptosis defect as compared with ICD mutations. ECD mu-
tations can result in truncated products unable to anchor the membrane. These mu-
tations should be considered as loss-of-function mutation. Although soluble forms of
the Fas receptor were shown to inhibit in vitro Fas-induced apoptosis, no such results
could be obtained with the supernatant of cells from patients with the ECD. Accord-
ing to the PLAD model, these mutants can be associated to the receptor complex
through the N-terminal domain [39]. The identification of a mutation leading to a
stop codon at position +12 (Rieux-Laucat et al., unpublished observations) suggests
that the PLAD is restricted to the signal peptide and the very first residues of Fas.
Alternatively it can be envisaged that such a short mutant would not be ex-
pressed, thus leading to haplo-insufficiency. This last hypothesis is supported by ex-
periments performed on thymocytes from heterozygous Fas KO mice, which exhibit
a reduced Fas-induced apoptosis [89]. Further experiments are needed to distinguish
between these two possibilities. Missense mutations in the ECD result in expression
of an abnormal Fas molecule, most likely incapable of interaction with FasL.

Of note, Fas deficiency is observed in cells from all carriers of heterozygous mu-
tations. Thus, from a functional point of view, mutations are fully penetrant. In
contrast, only 70% of the carriers of heterozygous Fas mutations develop clinical
symptoms [56, 83, 84]. This clinical penetrance is highest for intracellular mis-
sense mutations, reaching 90%. Mutations leading to intracellular truncation have
a clinical penetrance of roughly 75%. Finally, the clinical penetrance dropped to
30% for ECD mutations. Although these mutations lead to a lower Fas-induced
apoptosis defect in vitro and a lower penetrance, there is no apparent correlation
between the type of heterozygous mutations and the severity of the disease.

The partial clinical penetrance strongly suggests that a second event should be
associated to Fas mutations in order to induce an overt ALPS Ia syndrome. It is
likely that genetic rather than environmental factors, as in lpr mice, influence
ALPS expression and account for variable penetrance of some of the mutations.
So far, none of these gene modifiers have been identified. These gene products
can be either directly involved in the apoptotic process, its regulation or in other
events controlling activation, proliferation and survival of autoimmune clones. Im-
portantly, Fas mutations on both alleles (either in homozygous or in compound
heterozygous) are associated with full clinical penetrance. Similarly, in mice,
symptoms develop only in homozygous animals, despite a potential defective Fas-
induced apoptosis in heterozygous animals. More importantly, it was reported that
double heterozygous lprcg/gld animals develop a mild lymphoproliferative disease
[90]. These findings suggest that accumulation of defects in the Fas–FasL pathway
may lead to development of the syndrome. In contrast, the finding of a slight, but
statistically significant, increase of DN T cells in parents who do not carry a Fas
mutation (and therefore have normal Fas-induced apoptosis) implies that the sec-
ond event may be independent of the Fas pathway [68].
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8.4.3
ALPS Ib

A unique case of a dominant FasL mutation has been described in a patient pre-
senting with features of SLE along with chronic lymphoproliferation [91]. It was
defined as ALPS Ib although the phenotype does not fulfill criteria of classical
ALPS (DN T cells and splenomegaly were absent). The clinical manifestation
could represent a bias as the search was performed in a cohort of patients with
SLE. Moreover, there was no evidence of inheritance of this mutation event sug-
gesting it could be a somatic event.

The similar phenotype of lpr and gld mice predicted an occurrence of FasL mu-
tation in humans as frequent as Fas mutations. The absence of inherited FasL
mutations in ALPS suggests several hypotheses. On the one hand, one may spec-
ulate that FasL is more important for human development than it is in mice.
Thus, a FasL defect would not be compatible with life. On the other hand, a FasL
defect might lead to a completely different phenotype, such as severe disease (re-
lated to potential extra-hematopoietic manifestations) masking the diagnosis of
ALPS. Finally, an absence of the phenotype would then suggest the existence of
an unforeseen ligand in humans.

8.4.4
ALPS II

Some patients present with all of the typical clinical and immunological features
of ALPS along with abnormal lymphocyte Fas-mediated apoptosis in vitro. How-
ever, Fas molecule expression and sequence are normal in these patients. Re-
cently, Wang et al. reported the occurrence in two families of caspase-10 muta-
tions associated with ALPS [34]. These findings are extremely important as they
demonstrate the key role of caspase-10 in Fas-mediated apoptosis. Mutated cas-
pase-10 molecules impair auto-processing of the caspase-10 molecules and, more
importantly, caspase-8 activation while DISC recruitment is normal. It is therefore
strongly suggested that, besides caspase-8, the related caspase-10 is also incorpo-
rated into the DISC upon Fas engagement. More recent works confirmed the role
of caspase-10 in Fas-induced apoptosis [92, 93].

A second interesting finding was that not only the Fas-mediated apoptosis path-
way is impaired, but also apoptosis triggered by TNF-R1, DR3 and TRAIL recep-
tors DR4 and DR5 (Fig. 8.2). Caspase-10 appears thus involved in the apoptotic
cascade of all known receptors inducing lymphocyte apoptosis. Strikingly, unlike
in ALPS Ia patients, dendritic cell accumulation was noted in lymphoid organs of
caspase-10-deficient patients. The authors speculate that the defective death of T,
B lymphocytes and dendritic cells in this setting could account for a possibly
more severe autoimmune phenotype observed in these patients. Caspase-10-defi-
cient patients were indeed reported to exhibit extremely severe autoimmune he-
molytic anemia and thrombopenia, and optic neuritis and meningitis, respectively.
As it has been previously reported that dendritic cell death by apoptosis is in-
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volved in homeostasis of immune responses [94], abnormal persistence of dendrit-
ic cells might also contribute to the activation of autoimmune clones.

Interestingly, one of the mutations exerts a transdominant negative effect im-
pairing Fas as well as other DR-mediated apoptosis, while the second requires ex-
pression on both alleles to induce a full-blown clinical picture. Detection of the
latter mutation in the heterozygous state with a high frequency in the Danish
population has disputed its involvement in the onset of ALPS II [95]. Neverthe-
less, description of a healthy individual carrying this homozygous mutation/poly-
morphism is still awaited. In any case, the dominant caspase-10 mutation has
been validated and highlights the physiological role of this caspase in the cascade
leading to apoptosis.

8.4.5
ALPS III

We and others have investigated a number of patients (over 30) who have pre-
sented with a clinical condition close to mild ALPS, associated with hypergamma-
globulinemia and an excess of blood DN T cells (unpublished observation) [96].
Patients’ lymphocytes exhibit a normal activation of the FasL-Fas pathway. No mo-
lecular defects have been found so far. Although not demonstrated, it is plausible
that in these patients another lymphocyte apoptotic pathway is impaired. Recent
descriptions of DR deficiencies in KO mouse models provide information about
their potential role in lymphocyte homeostasis. Analyses of DR6-deficient mice
showed enhanced CD4+ T cell proliferation with a profound Th2 polarization [97].
This phenotype appears independent of the apoptosis function of DR6, but rather
implies connections with the c-Jun N-terminal kinase (JNK). Therefore, DR6 func-
tions could be related to Th2 attenuation through activation of JNK [97, 98]. This
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is of interest for ALPS studies as a bias toward Th2 cytokine production was reported
in some patients [72]. Another interesting observation was made in DR3-deficient
mice [99]. These mice exhibit negative selection impairment in the thymus when
crossed to the HY-transgenic model. Whereas anti-CD3-induced apoptosis of thymo-
cytes is defective, pre-T cell checkpoint, positive selection and superantigen-induced
negative selection are normal. This suggests that T cells with moderate but signifi-
cant self-reactivity may reach the periphery in these mice. One may therefore consid-
er that one of these receptors or both can be involved in ALPS III. They can also be
implicated in ALPS Ia as a second genetic event participating in the triggering of the
syndrome. If these hypotheses are correct, then Fas-independent apoptotic path-
way(s) is (are) important mediator(s) of the control of lymphocyte homeostasis in
humans. It would thus be important to determine which one.

8.5
Mechanism of Autoimmunity in ALPS

Autoimmunity is intrinsically a key feature of ALPS as it is in Fas-deficient
murine mutants. It is present in nearly all patients and appears to be mostly anti-
body mediated. Therefore, the relationship between the defective FasL-Fas path-
way and onset of autoimmunity is established. It appears that antigen-induced
cell death (AICD) of autoimmune clones is more profoundly affected than that of
clones specific for exogenous antigens. There is indeed no obvious expansion of T
and/or B cell clones following infection or immunization. In contrast, a transient
reduction in size of lymphoid organs has been noticed in ALPS patients during
an infection [100]. This suggests that the FasL-Fas pathway is mostly involved in
AICD during chronic exposure to autoantigens. Rathmell and Goodnow have pro-
posed an elegant model to account for the role of the FasL-Fas pathway in the con-
trol of autoreactive T and B cells [101]. Chronically stimulated T cells downmodu-
late CD28 and therefore become more vulnerable to FasL-induced cell death ac-
cording either to a suicide or a killing mechanism [102]. Fas-deficient T cells es-
cape cell death, proliferate and can activate Fas-deficient B cells. In the physiologi-
cal setting, FasL-expressing T cells kill normal autoimmune B cell clones, likely
because chronic exposure to antigens no longer induces protecting signals from
cell death. Fas-deficient B cells will thus escape this regulatory process and
further proliferate. CD40 ligand-CD40 T-B interaction can induce a switch and
further affinity maturation of Ig with autoimmune specificity. B cells produce au-
toantibodies in T cell zones where ‘normal’ autoimmune B cells, excluded from B
cell zones, are programmed to die [101].

Therefore, FasL-Fas pathway deficiency creates a defect in peripheral tolerance.
Central tolerance, at least of T cells, does not appear to be impaired as shown in
lpr mice since negative selection normally occurs in lpr mice transgenic for a giv-
en TCR [103]. These results do not exclude a minor role of FasL-Fas in the thy-
mus. Also, it would be interesting to know whether central tolerance is affected in
the caspase-10-deficient setting.
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Autoimmune features vary from strain to strain carrying the lpr mutation.
These manifestations are moderate in C57BL6 or 129 mice [53, 89, 104]. This im-
portant finding shows that Fas mutations are a predisposing factor for the onset
of autoimmunity, but that the latter requires other genetic susceptibility factors.
Loci encoding some of them have been recently mapped [105]. Further genetic
studies of mice should thus lead to the identification of other important gene
products in the control of autoimmunity. Similarly in humans, autoimmune man-
ifestations may be driven by a third genetic event. This is illustrated in a family
with several mutant carriers (Fig. 8.3). The proband presented with lymphoprolif-
eration and severe autoimmune hemolytic anemia, while his sister developed a
lymphoproliferative syndrome without any autoimmune manifestation. Finally,
the father who carries the mutation did not exhibit any clinical symptoms,
although his lymphocytes displayed a Fas-induced apoptosis defect in vitro. This
observation suggests that several modifier gene products might be involved in this
case.

8.6
Conclusion

The recent unraveling of the molecular events leading to the ALPS syndromes in
humans has brought a significant insight into the understanding of the function
of the FasL–Fas pathway in lymphocyte homeostasis. More questions are now
raised about the possible connections between apoptosis pathways, proliferation
and autoimmunity, the three components of ALPS.
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Fig. 8.3 Genetic events leading to lymphoproliferative syndrome and autoimmunity. (%: per-
centage of Fas-induced apoptosis).
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9.1
Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease presenting
with a highly variable clinical picture and course. There are cases with one major
initial flare, which will be in remission for years after appropriate treatment. On
the other hand, there are remittent courses with chronic disease activity requiring
aggressive treatment and intensive observation. The reasons for this high variabil-
ity in the clinical courses are unknown.

Infection in patients with SLE is a clinically and therapeutically difficult situa-
tion for several reasons, given the difficulty in the judgment of fever being a
symptom of an ongoing infection (lowering immunosuppression, antibiotics) or a
symptom of disease activity itself (more aggressive immunosuppression). More-
over, infections have been discussed for a long time as factors contributing to the
induction of autoimmunity per se and possibly for the initiation of SLE flares.
That certain bacteria and viruses can induce autoimmune phenomena has clearly
been shown, both in vitro and in vivo in mice and in humans. In theory, infec-
tions could be involved in the pathogenesis of SLE by several pathways including
dysregulation of apoptosis and promotion of immune responses against nuclear
constituents altered during apoptosis. In clinical terms, in our own experience in-
fections preceded SLE flares in certain cases, an observation which has been sup-
ported by various authors. On the other hand, this cannot be generalized for every
SLE patient. Moreover, safety studies in SLE patients indicated that vaccination in
SLE patients is save and effective in most cases, but may cause SLE flares in
some patients. All of these points will be discussed within the chapter.

9.2
Infection and Autoimmunity

The fact that bacterial as well as viral infections can lead to autoimmune phenom-
ena or manifest autoimmunopathies is known for a long time. Best examples are
infections with Borrelia burgdorferi, Chlamydia trachomatis and enteropathic bacte-
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ria like Salmonella, Yersinia or Campylobacter, all known to be able to induce reac-
tive or chronic arthritis, and various other clinical syndromes. A scleroderma-like
disease develops as a consequence of a chronic infection with B. burgdorferi. Guil-
lain-Barré syndrome (GBS) can develop after Campylobacter infection. It is impor-
tant to note that – at least in Borreliosis – detection of bacterial antigens or DNA
was not possible, indicating that the pathogenesis of the clinical symptoms is
probably based on autoimmune reactions and not on defense mechanisms against
replicating bacteria. In animal models, mycobacteria can prevent diabetes, but ini-
tiate a SLE-like disease in diabetes-prone non-obese diabetic mice [1] – again favor-
ing those viral or bacterial infections as triggers for autoimmunity in an appropri-
ate background and environment.

Infections with viruses like Hepatitis C and B/D or retroviruses have been
linked to autoimmunity for a long time [2]. Retroviruses have been implicated in
the pathogenesis of several autoimmunopathies including Sjögren’s disease, pri-
mary biliary cirrhosis, type I diabetes and multiple sclerosis [3–5]. However, most
of these data were obtained in murine models, where a specific infection of mice
with retroviruses (ungulate caprine arthritis encephalitis virus, equine infectious
anemia virus, Meadi-Visna virus) causes a well-defined autoimmunopathy. Data
supporting a role for retroviruses in the pathogenesis of human autoimmune dis-
eases are scarce. Retroviral particles could be detected in the salivary glands of pa-
tients with Sjögren’s syndrome [6]. In an area heavily endemic for HTLV-1 infec-
tions in Japan, antibody positivity for HTLV-1 was significantly higher in Sjögren’s
syndrome patients than in the general population, a finding which was not true
for the SLE patients [7]. On the other hand, viral load in the peripheral blood
mononuclear cells was not necessarily high. It is important to note, however, that
since Sjögren’s syndrome patients usually present with high polyclonal �-globulin
levels, false positive reactivity against different viruses is always a concern. How-
ever, viral particles were detected by electron microscopy in biliary epithelium of
patients with primary biliary cirrhosis [8] or the synovial fluid of patients with
rheumatoid arthritis as well [9]. From plasma of patients with active SLE, but not
of patients with Waldenström’s disease, rheumatoid arthritis and myasthenia
gravis, high molecular weight DNA and RNase-insensitive RNA could be isolated,
which contained high levels of CpG motifs [10]. These data more directly link in-
fection with autoimmune phenomena, but still are no prove that these viral parti-
cles play a direct pathogenetic role.

Hepatitis C-associated rheumatic complications are frequent and include mixed
cryoglobulinemia, sicca symptoms, vasculitis, arthritis or fibromyalgia, develop-
ment of antinuclear antibodies (ANA), rheumatoid factor, anticardiolipin antibod-
ies, antithyroid antibodies or antiliver/kidney antibodies [11, 12]. Formation of im-
mune complexes of viral particles and antiviral antibodies might occur and con-
tribute to the pathogenesis of vasculitis, neuropathy or glomerulonephritis [12].
Case reports describe patients with Hepatitis C infection preceding or coincidently
developing rheumatoid arthritis, SLE or polymyositis/dermatomyositis [12–15].
Another virus which needs to be considered in the diagnostic procedure at onset
of autoimmune diseases is the Parvo B 19 virus. Parvo B 19 virus infection can
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cause fever, arthritis, malaise, rash, anemia, leukocytopenia, thrombocytopenia,
presence of autoantibodies like ANA, hypocomplementemia, proteinuria or GBS.
In one case, chronic SLE was triggered by Parvo B 19 infection [16–19]. The
mechanisms responsible for the induction of autoimmunity in the course of these
infections are unresolved. Molecular mimicry as one of the possible factors has
clearly been demonstrated in herpes keratoconjunctivitis in mice: T lymphocytes
reacting against the viral UL6 protein cross-react with a peptide derived from a
corneal antigen [20]. Rheumatic fever is a good example for an autoimmune dis-
ease in humans pathophysiologically caused by molecular mimicry of streptococ-
cal and cardiac myosin [21]. In autoimmune diabetes T cells recognize both a pep-
tide derived from the autoantigen glutamic acid decarboxylase and a highly analo-
gous peptide from Coxsackie P2-C protein [22]. These examples clearly show that
molecular mimicry might centrally be involved in the pathogenesis of some auto-
immune phenomena after certain infections.

Crohn’s disease is another prototype of autoimmune disease in which infection
and autoimmunity are closely connected also in pathogenetic terms. Murine mod-
els of this inflammatory bowel disease like T cell receptor (TCR) chain knockout
mice or interleukin (IL)-2 knockout mice develop an inflammatory bowel disease
resembling Crohn’s disease. Under germ-free conditions disease does not develop
[23, 24]. The role of the bacterial flora of the gut in the pathogenesis of human
Crohn’s disease is still unresolved. Another example is HLA-B27 transgenic rats,
an animal model which develops a spondylarthropathy resembling ankylosing
spondylitis or similar diseases as well an inflammatory bowel disease. Both im-
munopathies only develop if the animals are kept under non-germ-free conditions
[25, 26]. These data show that infections might indeed be involved in the initia-
tion and/or perpetuation of autoimmunity. Thus, it is intriguing to speculate that
development of SLE is initiated by an infection as well and then leads to chronic
inflammatory autoimmune responses due to yet unknown mechanisms. This hy-
pothesis is certainly not only discussed for pathogenesis of SLE, but for other
autoimmunopathies as well like Graves’ disease [27], Sjögren’s syndrome and
many others as listed above.

9.3
Infection, Inflammation and SLE: Theory and Practical Aspects

9.3.1
Theoretical Considerations for the Pathogenesis of SLE

Based on these data and the arguments linking defective apoptosis as a central
mechanism in the pathogenesis of autoimmunity it is intriguing to hypothesize
that regulation of apoptotic cell death is altered in the course of infection and in-
flammation. A hallmark in autoimmune diseases is the presence of serum auto-
antibodies mostly directed against nuclear constituents, which are not readily ac-
cessible for immunocompetent cells under normal circumstances. The question
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how the sensitization against these antigens develops is unresolved. However, a
central hypothesis claims that a dysregulation of programmed cell death is in-
volved in the generation of autoantibodies and the pathogenesis of SLE (for re-
view, see Chapter 15 or [28]).

For several reasons, this hypothesis is relevant and highly interesting especially
in the context of SLE and infections. Rosen et al. described that after induction of
apoptosis by Sindbis virus infection in HeLa cells viral antigens and autoantigens
co-cluster exclusively in small surface blebs of apoptotic cells [29]. These blebs
form antigenic structures of mixed viral and self origin, and could define a novel
immune context. Thus, an immune response originally directed against the virus
could easily react with apoptotic bodies. This could lead to autoantibody formation
against intracellular constituents and initiation of autoimmune diseases. These
data again support the hypothesis of an induction of (auto)immunity against nu-
clear constituents in the context of uncontrolled apoptosis during infections and
inflammation.

During bacterial or viral challenges antigen-specific T lymphocytes become acti-
vated and expand within the adjacent lymph node or the inflamed tissue. From
our own data, we demonstrate that regulation of apoptosis is altered in activated
lymphocytes from patients with SLE. This is evidenced by data showing that acti-
vated lymphoblasts from SLE patients, but not mixed connective tissue disease/
vasculitis patients, were hyporesponsive to �c chain cytokines leading to acceler-
ated apoptosis if the cells were obtained during a phase with high serological ac-
tivity markers [erythrocyte sedimentation rate, low C4, elevated double-stranded
(ds) DNA antibody titers or tumor necrosis factor (TNF)-� levels] or Th1 domi-
nance in the serum [high IL-12, detectable interferon (IFN)-�] [70]. Vice versa, 16
of 60 SLE patients had none of these serological parameters in the abnormal
range as defined and response to �c chain cytokines was not different to ND con-
trol lymphoblasts in these SLE patients. In further support of this statement we
showed in this paper that accelerated apoptosis can be specifically found in in vivo
activated lymphocytes derived from SLE patients suffering from an infection with
fever (as a clinical marker for systemic involvement of the infectious process).
Similar results were not seen in cells from non-autoimmune patients or patients
with non-SLE autoimmunopathies during episodes with infections and fever [70].
Moreover, especially activated lymphoblasts could serve as a source for autoanti-
gens stemming from the nucleus. In our current work, we show that histones are
present in the cytoplasm of activated lymphoblasts in very early phases of apopto-
sis. This was not true for quiescent lymphocytes (Gabler et al., unpublished).
Moreover, cytoplasmic histones were different from the nuclear histones in their
phosphorylation and acetylation state, possibly qualifying these cytoplasmic pro-
teins as a source for (originally nuclear) autoantigens.

How could infection, inflammation and the induction of apoptosis in activated
human lymphoblasts contribute to provoke autoimmunity? An important conse-
quence of apoptosis as opposed to necrosis is that the cellular membranes are pre-
served, until finally the apoptotic cell body is rapidly removed and degraded via
phagocytosis without induction of an inflammatory response [30–32]. Thus, under
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physiological circumstances, cellular constituents are not released and therefore
cannot activate immunocompetent cells ([30, 33] and Chapter 5). However, an in-
creased rate of apoptosis could theoretically lead to an overflow of the phagocytic
system with apoptotic cell bodies. Thus, intracellular constituents like apoptotic
DNA fragments would be presented to, and recognized as non-self antigens by,
immunocompetent cells, leading to autoantibody formation against intracellular
molecules like dsDNA. In support of this scenario, Casciola-Rosen et al. [31] re-
ported that after ultraviolet irradiation-induced in vitro apoptotic cell death of kera-
tinocytes, most of the known SLE autoantigens are clustered within surface blebs
of apoptotic cells. This generated high concentrations of known autoantigens
within discrete subcellular packages, and could lead to autoantibody formation
against intracellular constituents and initiation of autoimmune diseases. Further-
more, modifications of nuclear constituents occurring during apoptotic degrada-
tion like methylation, de/phosphorylation, citrullination, oxidative stress, activa-
tion of transglutaminases, acetylation (reviewed in [34]) or degradation by gran-
zyme B [35] could change immunogenicity. Meanwhile, at least 39 proteins are
known which are proteolytically cleaved during apoptosis and possibly modified in
their antigenicity. Of these proteins, at least 17 could be detected as autoantigens
or as components of complexes containing known autoantigens [34]. In our pre-
vious work, we found that stimulation of peripheral blood mononuclear cells with
autologous apoptotic material leads to formation of histone-specific T cell clones
[36]. Furthermore, these autoantigen-specific T cells could stimulate autologous B
lymphocytes to production of dsDNA autoantibodies [36], again bringing in-
creased onflow of apoptotic material in a context with induction of autoimmunity
and production of autoantibodies (Fig. 9.1).

9.3 Infection, Inflammation and SLE: Theory and Practical Aspects 161

Fig. 9.1 Pathogenesis of SLE: a hypothesis.

Accelerated apoptosis in lymphoblasts
in situations with high inflammatory
activity, Th1 dominance

phagocytosis defect:
– in monocytes
– complement receptors



All of these factors might occur during infections and inflammation in SLE pa-
tients. SLE lymphoblasts might be the source of apoptotic material as mentioned
above [70, Gabler et al., unpublished]. An increased onflow of apoptotic material,
possibly combined with a failure to adequately clear apoptotic material ([37] and
Chapter 11), might be especially deleterious in an highly activated tissue environ-
ment in the presence of activated antigen-presenting cells and pro-inflammatory
cytokines, originally assembled to respond against an infectious agent. In this con-
text, the data by Casciola-Rosen [35] are of special interest: granzyme B is a pro-
tease which is released from CD8+ T lymphocytes or natural killer (NK) cells after
challenge with infectious organisms [38, 39]. On the other hand, granzyme B spe-
cifically cleaves nuclear autoantigens [35]. Thus, one could speculate that during
infections elevated granzyme B levels meet increased concentrations of apoptotic
cells, leading to specific degradation of nuclear constituents which become acces-
sible in the course of the degradation of apoptotic material. This could cause re-
cognition of these specifically degraded proteins as autoantigens, being followed
by an immune response mounted against these autoantigens. This chain of
events could especially be promoted and facilitated if these (neo)autoantigens are
exposed in a highly inflammatory environment (originally activated during the re-
sponse against bacteria or virus).

Our hypothesis that infection and inflammation are causative factors or promot-
ing cofactors in the induction of autoimmunity was again supported by the recent
work of Berden and his group: in MRL/lpr mice nucleosomes were persistently
present in the plasma and complexed into nucleosome immune complexes. Injec-
tion of bacterial lipopolysaccharide increased the release of nucleosomes due to an
enhancement of apoptosis and a decrease in the clearance of apoptotic cells [40].
Several bacteria, viruses or parasites have been shown to induce apoptosis in
mammalian cells [41, 42], so that a direct influence of certain bacteria or infec-
tious agents on pathogenesis or on flares of SLE could be envisioned through
these concepts.

In an alternative or complementary scenario, it is hypothesized that DNA-anti-
DNA immune complex deposition contributes to the precipitation of the inflamma-
tory response to the kidney glomerulum. The mechanisms responsible for the bind-
ing to the glomerular basement membrane are unresolved. Heparan sulfates might
be the central ligand in the glomerulum responsible for immune complex binding
[43]. On the other hand, Tabata et al. [44] investigated lupus-prone mice strains de-
veloping immune complex-dependent glomerulonephritis. It has earlier been shown
that the envelope glycoprotein gp70 of a xenotropic endogenous retrovirus impacts
the formation and deposition of immune complexes in the glomerula. Furthermore,
after injection of anti-gp70-producing hybridoma cells or purified anti-gp70, IgG an-
tibodies into syngeneic, non-autoimmune mice or SCID mice proliferative or wire
loop-like glomerular lesions developed. These data favor a hypothesis in which im-
munological responses to viruses or bacteria at least influence, if not co-induce, auto-
immune phenomena and help to precipitate organ tissue damage.

Bacteria carry dsDNA in their nuclei as well. Thus, in the context of develop-
ment of SLE and infection, it is intriguing to speculate that immunization against
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bacterial DNA during infections leads to formation of anti-human dsDNA auto-
antibodies. This has been intensively studied by Pisetsky et al. Robertson et al.
studied sera of eight patients with proven Escherichia coli bacteremia. Single-
stranded bacterial DNA could be detected using ELISA techniques in five of these
patients antibodies against [45]. The isotype distribution as well as the avidity as
assessed by competition ELISA suggested that during the course of the infection
some patients may produce antibodies with immunochemical properties similar
to those arising in SLE. Furthermore, they found that sera from patients with SLE
showed high levels of binding capacities to all bacterial DNA tested [46, 47]. This
was true for sera from healthy subjects as well, but these sera showed lower reac-
tivity and a different subclass distribution as compared to SLE sera [46]. On the
other hand, in an animal model of SLE, the NZB/NZW mice, immunization with
bacterial dsDNA from E. coli, complexed with bovine serum albumin in adjuvant,
induced significant titers of anti-dsDNA autoantibodies, but decreased the amount
of proteinuria and glomerular pathology as compared to control mice [48].

Bacterial DNA differs from vertebrate DNA in the frequency and methylation of
CpG dinucleotides, with bacterial DNA being hypomethylated [49]. In SLE sera
elevated levels of circulating plasma DNA were found, which is enriched in hypo-
methylated CpG motifs [10, 49]. On the other hand, genomic DNA is also hypo-
methylated in SLE. Nevertheless, CpG DNA has immunological properties: CpG
DNA isolated from SLE sera and transfected into endothelial cells induced the ex-
pression of ICAM-1 on the protein level as well as IL-6, IL-8, TNF-� and IFN-� on
the mRNA level [50]. In similar experiments, DNA isolated from SLE sera con-
tained CpG motifs and induced expression of HLA-DR and ICAM-1 on monocytes
as well as mRNA expression of IL-12 and IFN-�, and triggered proliferation of
mononuclear cells [51]. CpG motifs can induce resistance to apoptosis, thereby
possibly causing survival of autoreactive cells and favoring an autoimmune situa-
tion [52, 53]. Although it is still an open question whether bacterial DNA directly
influences formation of anti-human dsDNA antibodies, it is an intriguing hypoth-
esis. However, mechanisms leading to generation of autoantibodies against nucle-
ar constituents other than DNA remain unclear in this scenario.

9.3.2
Practical Aspects in Human SLE

The practical experience in our lupus cohort tells us that in the majority of the pa-
tients infections do not precede SLE flares. On the other hand, in some patients and
on some occasions, we saw a coincidence of infections and SLE disease activation. Of
course, a causal relationship cannot be proven, but the coincidence was at least re-
markable. Duffy et al. [54] studied 82 SLE patients admitted to their hospital in 5
years. By logistic regression analysis infection was significantly associated with
SLE disease activity, but not with disease duration or prednisolone dosage. In a Kor-
ean SLE population, incidence of infection was associated with high SLE disease ac-
tivity [55]. These data show that infections can influence SLE disease activity in vivo
in humans and might indirectly argue for a scenario as has earlier been discussed.
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This is again supported by the study of Nived et al. [56]. These authors found that in
102 SLE patients, disease activity was accompanied by an increase in the frequency
of bacterial infections, occurring both before and after initiation of the SLE flare. In
contrast, ter Borg et al. [57] prospectively followed 72 SLE patients for an average of
18.5 months. During this time 33 SLE flares and 31 infections were observed. Only
one infection preceded an SLE flare within a period of 3 months. The authors con-
cluded that significant infections were neither related to rises in levels of anti-
dsDNA antibodies nor to the induction of exacerbations of SLE.

On the other hand, certain infections like Hepatitis B or HIV might decrease SLE
activity: Lu et al. reported that in Taiwan, a hyperendemic area for Hepatitis B infec-
tion, SLE disease activity of patients with Hepatitis B infection was significantly low-
er as compared to the patients without the infection [58]. However, this study needs
confirmation, since the number of Hepatitis B-infected SLE patients was only six
versus 167 non-infected SLE patients. Moreover, several case reports state that
SLE significantly improved or went into remission after infection with HIV [59–
61]. Vice versa, in an HIV-infected patient, SLE developed after initiation of highly
effective antiretroviral treatment [62]. These data again support the notion that infec-
tions indeed can influence disease activity in autoimmune disorders.

This is again supported by the clinical experience that vaccination in SLE – de-
spite being safe and effective in the majority of the patients [63–66] – can lead to
exacerbation of SLE or precipitation of autoimmune symptoms in rare cases [63,
67–69]. For security reasons patients with steroid dosages of more than 20 mg/
day or on immunosuppressive drugs should not be immunized with live vaccines
as proposed in the guidelines of the British Society of Rheumatology [63].

9.4
Conclusions

In summary, without any doubt certain infectious organisms can cause autoim-
mune phenomena or manifest autoimmunity, supporting the notion that infec-
tions and autoimmunity are affiliated. In theory, this can be extrapolated to a
pathogenetic scenario in SLE, in which a dysregulation of apoptosis especially in
activated lymphoblasts (after infections, during inflammatory responses) and/or
an impaired phagocytosis of apoptotic material during certain phases of immune
responses (like infections) play a central role. Secretion of granzyme B during in-
fections within a highly inflammatory and activated environment might generate
specifically cleaved and degraded nuclear antigens, leading to recognition as auto-
antigens, B and T lymphocyte activation, and precipitation of autoimmunity. The
question whether bacterial DNA directly contributes as antigen for generation of
autoantibodies against anti-human dsDNA remains open. Our clinical experience
tells that in the majority of SLE patients overt infections do not lead to SLE flares.
In some cases, however, this has been observed in our cohort and reported by
other colleagues. This observation is supported by the fact that vaccination rarely
can lead to exacerbation of SLE disease activity.

9 Infection and Inflammation as Cofactors for Autoimmunity in Systemic Lupus Erythematosus Patients164



9.5 References 165

9.5
References

1 Baxter AG, Horsfall AC, Healey D,

Ozegbe P, Day S, Williams DG, et al.
Mycobacteria precipitate an SLE-like syn-
drome in diabetes-prone NOD mice. Im-
munology 1994, 83, 227–31.

2 Obermayer-Straub P, Manns MP. He-
patitis C and D, retroviruses and autoim-
mune manifestations. J Autoimmun 2001,
16, 275–85.

3 Herrmann M, Neidhart M, Gay S, Ha-

genhofer M, Kalden JR. Retrovirus-as-
sociated rheumatic syndromes. Curr
Opin Rheumatol 1998, 10, 347–54.

4 Nakagawa K, Harrison LC. The poten-
tial roles of endogenous retroviruses in
autoimmunity. Immunol Rev 1996, 152,
193–236.

5 Perron H, Seigneurin JM. Human ret-
roviral sequences associated with extra-
cellular particles in autoimmune dis-
eases: epiphenomenon or possible role in
aetiopathogenesis? Microbes Infect 1999,
1, 309–22.

6 Mason AL, Xu L, Guo L, Garry RF. Ret-
roviruses in autoimmune liver disease:
genetic or environmental agents? Arch
Immunol Ther Exp 1999, 47, 289–97.

7 Terada K, Katamine S, Eguchi K,

Moriuchi R, Kita M, Shimada H, et al.
Prevalence of serum and salivary antibod-
ies to HTLV-1 in Sjögren’s syndrome.
Lancet 1994, 344, 1116–9.

8 Meilof JF, Smeenk RJ. Detection of ret-
roviral antibodies in primary biliary cir-
rhosis. Lancet 1998, 352, 739–40.

9 Neidhart M, Rethage J, Kuchen S,

Kunzler P, Crowl RM, Billingham

ME, et al. Retrotransposable L1 elements
expressed in rheumatoid arthritis synovi-
al tissue: association with genomic DNA
hypomethylation and influence on gene
expression. Arthritis Rheum 2000, 43,
2634–47.

10 Krapf FE, Herrmann M, Leitmann W,

Kalden JR. Are retroviruses involved in
the pathogenesis of SLE? Evidence dem-
onstrated by molecular analysis of nu-
cleic acids from SLE patients’ plasma.
Rheumatol Int 1989, 9, 115–21.

11 Buskila D. Hepatitis C-associated arthri-
tis. Curr Opin Rheumatol 2000, 12, 295–9.

12 McMurray RW, Elbourne K. Hepatitis
C virus infection and autoimmunity.
Semin Arthritis Rheum 1997, 26, 689–701.

13 Rivera J, Garcia-Monforte A. Hepatitis
C virus infection presenting as rheuma-
toid arthritis. Why not? J Rheumatol
1999, 26, 2062–3.

14 Fiore G, Giacovazzo F, Giacovazzo M.

HCV and dermatomyositis: report of 5
cases of dermatomyositis in patients with
HCV infection. Riv Eur Sci Med Farmacol
1996, 18, 197–201.

15 Ramos-Casals M, Font J, Garcia-Car-

rasco M, Cervera R, Jimenez S, Trejo

O, et al. Hepatitis C virus infection mi-
micking systemic lupus erythematosus:
study of hepatitis C virus infection in a
series of 134 Spanish patients with sys-
temic lupus erythematosus. Arthritis
Rheum 2000, 43, 2801–6.

16 Trapani S, Ermini M, Falcini F. Hu-
man parvovirus B19 infection: its rela-
tionship with systemic lupus erythemato-
sus. Semin Arthritis Rheum 1999, 28,
319–25.

17 Moore TL. Parvovirus-associated arthri-
tis. Curr Opin Rheumatol 2000, 12, 289–
94.

18 Roblot P, Roblot F, Ramassamy A,

Becq-Giraudon B. Lupus syndrome
after parvovirus B19 infection. Rev Rhum
Engl Ed 1997, 64, 849–51.

19 Yamaoka Y, Isozaki E, Kagamihara Y,

Matsubara S, Hirai S, Takagi K. A case
of Guillain-Barre syndrome (GBS) follow-
ing human parvovirus B19 infection. Rin-
sho Shinkeigaku 2000, 40, 471–5.

20 Zhao ZS, Granucci F, Yeh L, Schaf-

fer PA, Cantor H. Molecular mimicry
by herpes simplex virus-type 1: autoim-
mune disease after viral infection. Science
1998, 279, 1344–7.

21 Guilherme L, Cunha-Neto E, Tanaka

AC, Dulphy N, Toubert A, Kalil J.

Heart-directed autoimmunity: the case of
rheumatic fever. J Autoimmun 2001, 16,
363–7.



9 Infection and Inflammation as Cofactors for Autoimmunity in Systemic Lupus Erythematosus Patients166

22 Kukreja A, Maclaren NK. Current
cases in which epitope mimicry is con-
sidered as a component cause of autoim-
mune disease: immune-mediated (type 1)
diabetes. Cell Mol Life Sci 2000, 57, 534–
41.

23 Mizoguchi A, Mizoguchi E, Sauber-

mann LJ, Higaki K, Blumberg RS,

Bhan AK. Limited CD4 T-cell diversity
associated with colitis in T-cell receptor
alpha mutant mice requires a T helper 2
environment. Gastroenterology 2000, 119,
983–95.

24 Sadlack B, Merz H, Schorle H,

Schimpl A, Feller AC, Horak I. Ulcera-
tive colitis-like disease in mice with a dis-
rupted interleukin-2 gene. Cell 1993, 75,
253–61.

25 Taurog JD, Maika SD, Satumtira N,

Dorris ML, McLean IL, Yanagisawa H,

et al. Inflammatory disease in HLA-B27
transgenic rats. Immunol Rev 1999, 169,
209–23.

26 Onderdonk AB, Richardson JA, Ham-

mer RE, Taurog JD. Correlation of cecal
microflora of HLA-B27 transgenic rats
with inflammatory bowel disease. Infect
Immun 1998, 66, 6022–3.

27 Koh LD, Napolitano G, Singer DS,

Molteni M, Scorza R, Shimojo N, et
al. Graves’ disease: a host defense mecha-
nism gone awry. Int Rev Immunol 2000,
19, 633–64.

28 Lorenz HM, Herrmann M, Winkler T,

Gaipl U, Kalden JR. Role of apoptosis
in autoimmunity. Apoptosis 2000, 5, 443–
9.

29 Rosen A, Casciola-Rosen L, Ahearn J.

Novel packages of viral and self-antigens
are generated during apoptosis. J Exp
Med 1995, 181, 1557–61.

30 Savill J, Fadok V, Henson P, Haslett

C. Phagocyte recognition of cells under-
going apoptosis. Immunol Today 1993,
14, 131–6.

31 Casciola-Rosen LA, Anhalt G, Rosen

A. Autoantigens targeted in systemic lu-
pus erythematosus are clustered in two
populations of surface structures on
apoptotic keratinocytes. J Exp Med 1994,
179, 1317–30.

32 Voll R, Herrmann M, Roth E, Stach

C, Kalden JR, Girkontaite I. Immuno-

suppressive effects of apoptotic cells. Na-
ture 1997, 390, 350–1.

33 Flora PK, Gregory CD. Recognition of
apoptotic cells by human macrophages:
inhibition by a monocyte/macrophage-
specific monoclonal antibody. Eur J Im-
munol 1994, 24, 2625–32.

34 Utz PJ, Anderson P. Posttranslational
protein modifications, apoptosis, and the
bypass of tolerance to autoantigens. Arth-
ritis Rheum 1998, 41, 1152–60.

35 Casciola-Rosen L, Andrade F, Ulanet

D, Wong WB, Rosen A. Cleavage by
granzyme B is strongly predictive of
autoantigen status: implications for initi-
ation of autoimmunity. J Exp Med 1999,
190, 815–26.

36 Voll R, Roth E, Girkontaite I, Fehr

H, Herrmann M, Lorenz H-M, et al.
Histone-specific Th0 and Th1 clones de-
rived from systemic lupus erythematosus
patients induce double-stranded DNA
antibody production. Arthritis Rheum
1997, 40, 2162–9.

37 Herrmann M, Voll RE, Zoller OM,

Hagenhofer M, Ponner BB, Kalden

JR. Impaired phagocytosis of apoptotic
material by monocyte-derived macro-
phages from patients with systemic lu-
pus erythematosus. Arthritis Rheum 1998,
41, 1241–50.

38 Lauw FN, Simpson AJ, Hack CE, Prins

JM, Wolbink AM, van Deventer SJ, et
al. Soluble granzymes are released dur-
ing human endotoxemia and in patients
with severe infection due to gram-nega-
tive bacteria. J Infect Dis 2000, 182, 206–
13.

39 Sandberg JK, Fast NM, Nixon DF.

Functional heterogeneity of cytokines
and cytolytic effector molecules in hu-
man CD8(+) T lymphocytes. J Immunol
2001, 167, 181–7.

40 Licht R, van Bruggen MC, Oppers-

Walgreen B, Rijke TP, Berden JH.

Plasma levels of nucleosomes and nu-
cleosome-autoantibody complexes in
murine lupus: effects of disease progres-
sion and lipopolysacharide administra-
tion. Arthritis Rheum 2000, 44, 1320–30.

41 Grassme H, Kirschnek S, Riethmuel-

ler J, Riehle A, von Kurthy G, Lang

F, et al. CD95/CD95 ligand interactions



9.5 References 167

on epithelial cells in host defense to
Pseudomonas aeruginosa. Science 2000,
290, 527–30.

42 Zychlinsky A, Prevost MC, Sansonetti

PJ. Shigella flexneri induces apoptosis in
infected macrophages. Nature 1992, 358,
167–9.

43 Raats CJ, Van den Born J, Berden JH.

Glomerular heparan sulfate alterations:
mechanisms and relevance for proteinu-
ria. Kidney Int 2000, 57, 385–400.

44 Tabata N, Miyazawa M, Fujisawa R, Ta-

kei YA, Abe H, Hashimoto K. Establish-
ment of monoclonal anti-retroviral gp70
autoantibodies from MRL/lpr lupus mice
and induction of glomerular gp70 deposi-
tion and pathology by transfer into non-
autoimmune mice. J Virol 2000, 74,
4116–26.

45 Robertson CR, Pisetsky DS. Immuno-
chemical properties of anti-DNA antibod-
ies in the sera of patients with Escheri-
chia coli bacteremia. Int Arch Allergy Im-
munol 1992, 98, 311–6.

46 Wu ZQ, Drayton D, Pisetsky DS. Speci-
ficity and immunochemical properties of
antibodies to bacterial DNA in sera of
normal human subjects and patients
with systemic lupus erythematosus
(SLE). Clin Exp Immunol 1997, 109, 27–
31.

47 Pisetsky D, Drayton D, Wu ZQ. Speci-
ficity of antibodies to bacterial DNA in
the sera of healthy human subjects and
patients with systemic lupus erythemato-
sus. J Rheumatol 1999, 26, 1934–8.

48 Gilkeson GS, Ruiz P, Pippen AM,

Alexander AL, Lefkowith JB, Pisetsky

DS. Modulation of renal disease in auto-
immune NZB/NZW mice by immuniza-
tion with bacterial DNA. J Exp Med 1996,
183, 1389–97.

49 Krieg AM. CpG DNA: a pathogenic fac-
tor in systemic lupus erythematosus? J
Clin Immunol 1995, 15, 284–92.

50 Miyata M, Ito O, Kobayashi H, Sasaji-

ma T, Ohira H, Suzuki S, et al. CpG-
DNA derived from sera in systemic lu-
pus erythematosus enhances ICAM-1 ex-
pression on endothelial cells. Ann Rheum
Dis 2001, 60, 685–9.

51 Sato Y, Miyata M, Sato Y, Nishimaki T,

Kochi H, Kasukawa R. CpG motif-con-

taining DNA fragments from sera of pa-
tients with systemic lupus erythematosus
proliferate mononuclear cells in vitro. J
Rheumatol 1999, 26, 294–301.

52 Wang Z, Karras JG, Colarusso TP,

Foote LC, Rothstein TL. Unmethylated
CpG motifs protect murine B lympho-
cytes against Fas-mediated apoptosis. Cell
Immunol 1997, 180, 162–7.

53 Yi AK, Chang M, Peckham DW, Krieg

AM, Ashman RF. CpG oligodeoxyribonu-
cleotides rescue mature spleen B cells
from spontaneous apoptosis and promote
cell cycle entry. J Immunol 1998, 160,
5898–906.

54 Duffy KN, Duffy CM, Gladman DD.

Infection and disease activity in systemic
lupus erythematosus: a review of
hospitalized patients. J Rheumatol 1991,
18, 1180–4.

55 Suh CH, Jeong YS, Park HC, Lee CH,

Lee J, Song CH, et al. Risk factors for in-
fection and role of C-reactive protein in
Korean patients with systemic lupus ery-
thematosus. Clin Exp Rheumatol 2001,
19, 191–4.

56 Nived O, Sturfelt G, Wollheim F. Sys-
temic lupus erythematosus and infection:
a controlled and prospective study includ-
ing an epidemiological group. Q J Med
1985, 55, 271–87.

57 ter Borg EJ, Horst G, Hummel E, Lim-

burg PC, Kallenberg CG. Rises in anti-
double stranded DNA antibody levels
prior to exacerbations of systemic lupus
erythematosus are not merely due to
polyclonal B cell activation. Clin Immunol
Immunopathol 1991, 59, 117–28.

58 Lu CL, Tsai ST, Chan CY, Hwang SJ,

Tsai CY, Wu JC, et al. Hepatitis B infec-
tion and changes in interferon-alpha and
-gamma production in patients with sys-
temic lupus erythematosus in Taiwan. J
Gastroenterol Hepatol 1997, 12, 272–6.

59 Molina JF, Citera G, Rosler D, Cuellar

ML, Molina J, Felipe O, et al. Coexistence
of human immunodeficiency virus infec-
tion and systemic lupus erythematosus. J
Rheumatol 1995, 22, 347–50.

60 Byrd VM, Sergent JS. Suppression of
systemic lupus erythematosus by the hu-
man immunodeficiency virus. J Rheuma-
tol 1996, 23, 1295–6.



9 Infection and Inflammation as Cofactors for Autoimmunity in Systemic Lupus Erythematosus Patients168

61 Fox RA, Isenberg DA. Arthritis Rheum
1997, 40, 1168–72.

62 Diri E, Lipsky PE, Berggren RE. Emer-
gence of systemic lupus erythematosus
after initiation of highly active antiretro-
viral therapy for human immunodefi-
ciency virus infection. J Rheumatol 2000,
27, 2711–4.

63 Ioannou Y, Isenberg DA. Immunisa-
tion of patients with systemic lupus ery-
thematosus, the current state of play. Lu-
pus 1999, 8, 497–501.

64 Aron-Maor A, Shoenfeld Y. Vaccina-
tion and systemic lupus erythematosus:
the bidirectional dilemmas. Lupus 2001,
10, 237–40.

65 Abu-Shakra M, Zalmanson S, Neu-

mann L, Flusser D, Sukenik S, Buski-

la D. Influenza virus vaccination of pa-
tients with systemic lupus erythemato-
sus: effects on disease activity. J Rheuma-
tol 2000, 27, 1681–5.

66 Battafarano DF, Battafarano NJ, Lar-

sen L, Dyer PD, Older SA, Muehl-

bauer S, et al. Antigen-specific antibody
responses in lupus patients following im-

munization. Arthritis Rheum 1998, 41,
1828–34.

67 Older SA, Battafarano DF, Enzenauer

RJ, Krieg AM. Can immunization preci-
pitate connective tissue disease? Report of
five cases of systemic lupus erythematosus
and review of the literature. Semin Arthri-
tis Rheum 1999, 29, 131–9.

68 Senecal JL, Bertrand C, Coutlee F. Se-
vere exacerbation of systemic lupus ery-
thematosus after hepatitis B vaccination
and importance of pneumococcal vacci-
nation in patients with autosplenectomy.
Arthritis Rheum 1999, 42, 1307–8.

69 Maillefert JF, Tavernier C, Sibilia J,

Vignon E. Exacerbation of systemic lu-
pus erythematosus after hepatitis B vacci-
nation. Arthritis Rheum 2000, 43, 468–9.

70 Lorenz H-M, Grünke M, Hieronymus

T, Winkler S, Blank N, Rascu A,

Wendler J, Geiler T, Kalden JR. Hypo-
responsiveness to �c-chain cytokines in
activated lymphocytes from patients with
Systemic Lupus Erythematosus (SLE)
leads to accelerated apoptosis. Eur J Im-
munol, 2002, 32, 1253–1263.



10.1
Introduction

Rheumatoid arthritis (RA) is a systemic inflammatory disease characterized by
synovial hyperplasia and mononuclear cell infiltration into the synovium. The dis-
ease occurs in about 1% of adults worldwide, and has both genetic and environ-
mental components. The primary manifestation of RA is inflammatory synovitis
with hyperplasia of the synovium and invasion of articular structures. This pro-
cess ultimately leads to the destruction of bone and cartilage, thereby causing sig-
nificant disability. Although current management of RA has improved with the
advent of cytokine antagonists and immunomodulators, a significant percentage
of patients have debilitating signs and symptoms despite aggressive therapy.

The rheumatoid synovium is marked by dramatically increased cellularity in
both the intimal lining and sublining regions (Fig. 10.1). Lining hyperplasia re-
sults from accumulation of both macrophage-like type A synoviocytes and fibro-
blast-like type B synoviocytes (FLS). The sublining region is infiltrated with mono-
nuclear cells, primarily CD4 T cells and macrophages, along with lesser numbers
of B cells and stromal cells. The remarkable accumulation of cells in RA syno-
vium, which is reminiscent of a locally invasive tumor in the joint, results from
an imbalance in the forces that increase and decrease cellularity (Fig. 10.2). Migra-
tion of peripheral blood cells or bone marrow cells into synovium and prolifera-
tion of FLS contributes to accumulation of synoviocytes and sublining mononu-
clear cells. On the other hand, apoptosis and egress of the cells out of the joint
via the lymphatics or to synovial fluid diminish cellularity.

Increased proliferation of RA synovial cells, especially FLS, has been suggested
by studies evaluating [3H]thymidine incorporation and expression of proliferation
markers in the intimal lining [1–3]. Although there is some disagreement, most
of the studies indicate that the proliferation rate of RA synoviocytes is rather mod-
est compared with the extent of hyperplasia [2, 3]. In addition, the number of
apoptotic cells is relatively low in RA synovium and indicates that a prolonged
lifespan of synoviocytes might play an important role. DNA fragmentation occurs
in RA synovium, but cells showing typical morphological features of apoptosis are
rare. These data suggest that defective apoptosis might participate in synovial hy-
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perplasia and pannus formation (Tab. 10.1). As a corollary, the induction of apop-
tosis in proliferating synoviocytes is a potential treatment for RA. In this chapter,
we will review the mechanisms of apoptosis in RA and explore how defects in
this process might exacerbate the disease.
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Fig. 10.1 Histology of RA synovial
tissue, showing intimal lining hy-
perplasia and mononuclear cell in-
filtration into the synovial sublin-
ing.

Fig. 10.2 Balance of cellularity in RA synovium. The remarkable accumulation of
cells in RA synovium results from an imbalance in the forces that increase and
decrease cellularity. Migration of peripheral blood cells or bone marrow cells into
synovium and proliferation of synovial cells contribute to accumulation of syno-
viocytes and sublining mononuclear cells. On the other hand, apoptosis and
egress of the cells out of the joint via the lymphatics or to synovial fluid diminish
cellularity.



10.2
Apoptosis in RA Synovium

The extent of apoptosis in RA synovium has been evaluated using several differ-
ent methods, including in situ end-labeling (ISEL), terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and electron micro-
scopic analysis [4, 5]. By and large, the methods that most precisely define apopto-
sis demonstrate that only a small percentage of cells in the hyperplastic intimal
lining undergo apoptosis. DNA ladders of rheumatoid synovium can demonstrate
a faint ladder pattern and indicate that at least some apoptosis occurs. Ultrastruc-
tural studies using electron microscopy on RA synovium indicate that only 3% of
the synovial cells, mainly in sublining, are apoptotic [6]. TUNEL techniques are
more variable (and less specific), but also suggest that a limited number of cells
undergo programmed cell death [5, 7, 8]. Abundant single-strand DNA breaks
have also been noted with ISEL indicating local DNA damage [4]. It is possible
that synovial cells showing apoptosis are not detected using these techniques due
to the rapidity of receptor-mediated scavenging processes. However, the varied re-
sults from TUNEL and other labeling techniques suggest that extensive oxidative
DNA damage occurs in the joint without effective apoptosis (Tab. 10.1).

The relative lack of cell death in the lining could result from the expression of
anti-apoptotic genes or alteration of tumor suppressor gene function. For in-
stance, Matumoto et al. reported that Bcl-2 is mainly expressed in the RA FLS in
the synovial lining layer, which might result in decreased apoptosis [6]. Sentrin is
a novel ubiquitin-like protein that binds to the death domain of Fas/APO-1 and
tumor necrosis factor receptor 1 (TNF-R1), and protects cells from both anti-Fas
and TNF-induced cell death [9]. High expression of sentrin-1 mRNA was observed
in RA synovium, predominantly in synovial fibroblasts of the lining layer and at
sites of invasion by RA synovium into cartilage, while no sentrin mRNA was de-
tected in normal synovium [10]. In addition, cultured RA FLS showed signifi-
cantly higher (approximately 15-fold) sentrin mRNA expression than cultured os-
teoarthritis (OA) FLS and normal dermal fibroblasts [10]. Similarly, deficient
PTEN gene expression in RA synoviocytes might suppress apoptosis resulting
from DNA damage. PTEN is a tumor suppressor and mutations in the PTEN
gene have been detected in various malignancies [11, 12]. In contrast to the p53
tumor suppressor, mutations of PTEN have not been detected in cultured RA FLS
[13]. However, expression of PTEN mRNA is quite low in the lining layer of RA
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Tab. 10.1 Factors that decrease apoptosis in RA synovium.

Anti-apoptotic genes high Bcl-2 expression
high sentrin expression

Tumor suppressor genes low PTEN expression
p53 mutations

Cytokines TGF-�, IL-15, IL-4, IL-13, IL-2
Cell-cell interaction T cells and FLS



synovium, despite abundant expression in the sublining [13]. In addition, defec-
tive p53-mediated cell death might result from local synovial mutations of the p53
gene (see below).

The expression of some surface adhesion molecules might distinguish FLS sub-
sets that are susceptible to cell death. FLS derived from RA synovium have been
classified into intracellular adhesion molecule (ICAM)-1 positive or negative cells.
ICAM-1+ cells are at the G0/G1 phase and exhibit some apoptotic changes,
whereas ICAM-1– cells are viable and observed at the S to G2/M phase [14]. In
ICAM-1+ cells, increased expression of p53 and p21WAF and suppression of cyclin-
dependent protein kinase 6 activity were also observed. Fas expression is higher
on ICAM-1+ cells compared to ICAM-1– cells, which might suggest participation
of Fas in apoptosis of ICAM-1+ cells.

Lymphoid aggregates in RA synovial tissues appear to be protected from both
DNA damage and apoptosis [4]. Expression of Bcl-2 is markedly high in these re-
gions, which undoubtedly contributes to this phenomenon [4, 15]. High levels of
Bcl-2 were observed in both T and B cells in lymphoid follicles, although cells in
germinal centers are Bcl-2– [15, 16]. Bcl-2 expression in lymphocytes infiltrating
into synovium is not specific for RA, and has been detected in other inflamma-
tory or degenerative joint diseases like reactive arthritis and OA [15]. More than
90% of RA peripheral blood lymphocytes are Bcl-2+, which is also similar to reac-
tive arthritis and healthy control lymphocytes. Interestingly, Bcl-2 expression in
RA synovial fluid lymphocytes is lower than in peripheral blood cells [15]. This is
also not specific for RA, since similar results were observed in reactive arthritis
patients.

10.3
Apoptosis in Synovial Fluid T Cells

Apoptosis of T cells in RA synovial fluid is quite rare, which contrasts with crys-
tal-induced arthritis where many T cells are TUNEL+ [17]. Surprisingly, RA synovi-
al fluid T cells demonstrate spontaneous apoptosis when removed from inflamma-
tory environment in the joint. Therefore, the defect in apoptosis observed in vivo
is not intrinsic but depends on external influences [17]. The synovial fluid T cells
are highly differentiated CD45RBdull CD45RObright cells and express low Bcl-2,
and high Bax and Fas, which is quite distinct from the phenotype of T cells infil-
trating into synovium in terms of Bcl-2 expression. Since highly differentiated
CD45RBdull cells from peripheral blood show marked susceptibility to apoptosis,
resistance to apoptosis of synovial fluid T cells is probably due to the inflamma-
tory environment in the joint. Cultured synovial fibroblasts provide some protec-
tion from T cell apoptosis in vitro and suggest that certain mesenchymal-derived
trophic factors contribute to T cell survival.

The mechanisms promoting T cell survival in RA synovial fluid are still uncer-
tain, but cytokines and soluble mediators could play a role. For instance, IL-2 is a
potent inhibitor of T cell apoptosis [18], but is an unlikely explanation since IL-2
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levels are extremely low in the RA joint [19]. Expression of IL-15, which has
powerful anti-apoptotic effect through induction of Bcl-2 and the large splice vari-
ant of Bcl-x (Bcl-xL) [17], is abundant in RA synovial fluid and could contribute
[20]. Perhaps the most important reason for the longevity of synovial fluid T cells
is the interaction between T cells and stromal cells [17]. When synovial fluid T
cells are co-cultured with FLS, Bcl-xL, but not Bcl-2, is increased, and apoptosis of
T cells is inhibited. Integrin binding appears to participate in the protective effect
of mesenchymal cells. Peptides containing the RGD (Arg–Gly–Asp) motif, which
is important for many integrin-binding sites, prevents rescue from T cell apopto-
sis by synovial fibroblasts [17].

10.4
Regulation of Apoptosis by Cytokines

Regulation of apoptosis is complex, and involves many intracellular signaling mol-
ecules as well as secreted and membrane bound proteins. Several cytokines and
growth factors that have been identified in rheumatoid synovial tissue and fluid
have been implicated in this process, and can contribute to the balance between
cell survival and death. The cytokine network in RA has been the object of in-
tense investigation over the last decade. These studies have demonstrated that
macrophage- and fibroblast-derived cytokines, including TNF-�, interleukin (IL)-1,
IL-6, IL-15, IL-18 and granulocyte macrophage colony stimulating factor (GM-
CSF), are abundantly expressed in RA synovium [21]. In addition, several anti-in-
flammatory cytokines, such as IL-10 and transforming growth factor (TGF)-�, are
also produced in RA synovium and serve as counter-regulatory mechanisms [22].
Both pro-inflammatory and anti-inflammatory cytokines might play a role in apop-
tosis of RA cells.

TNF-� is especially interesting in light of recent data demonstrating a beneficial
clinical effect of TNF inhibitors in RA. Various conflicting reports suggest that
TNF-� can regulate apoptosis in FLS, although the mechanism and degree of
modulation remains uncertain. TNF-� can, in some culture conditions, directly in-
duce DNA fragmentation in cultured synoviocytes [4]. In another report, TNF-�
alone did not cause apoptosis but instead sensitized cells to the effects of anti-Fas
antibody [23, 24]. Fas and FADD (Fas-associated death domain protein) expression
are not increased by TNF-� in FLS, but enhanced enzymatic activity of caspase-8
and -3 was observed. In addition, Fas-mediated apoptosis in TNF-treated FLS was
almost completely inhibited by caspase-8- or -3-specific inhibitors, which suggests
that these caspases are involved in the sensitization of FLS by TNF-� [23]. How-
ever, Ohshima et al. reported that TNF-� inhibited apoptosis of RA FLS in the
presence of anti-Fas antibody, and TNF-� blockade by neutralizing anti-TNF-� anti-
body restored the apoptotic effect of anti-Fas antibody in FLS [25]. The differences
reported by various investigators likely results from differences in patient material
(e. g., stage of the disease) and culture conditions. Clearly, additional work is
needed to define the role of TNF-� in synoviocyte apoptosis.

10.4 Regulation of Apoptosis by Cytokines 173



Several other cytokines, including IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15, use the
shared receptor signaling component of a common IL-2 receptor � chain, and
these cytokines can suppress apoptosis in some circumstances. The anti-apoptotic
effects can be partially explained by induction of Bcl-2 and Bcl-xL expression. In
particular, IL-15 has a prominent anti-apoptotic effect among these cytokines and
can prevent apoptosis of synovial fluid T cells [17]. In addition, IL-4 and IL-13, but
not IL-10, protect RA FLS from nitric oxide-induced apoptosis [26]. The anti-apop-
totic effects of IL-4 and IL-13 are blocked by phosphatidylinositol-3 kinase and
protein kinase C inhibitors. However, the relative paucity of these cytokines in RA
suggests that this mechanism plays a relatively minor role in vivo.

TGF-� is multifunctional regulatory polypeptide with 25 kDa, and its abundant
expression has been reported in RA synovium and synovial fluid [27, 28]. TGF-�
enhances the proliferation of FLS in a concentration-dependent manner. Stimula-
tion of FLS with TGF-� also causes marked resistance to Fas-mediated apoptosis
[29]. Anti-apoptotic effects by TGF-� are mediated by both decreased Fas antigen
expression and increased Bcl-2 expression in FLS. Therefore, TGF-� favors synovi-
al hyperplasia by both inducing proliferation of FLS and protecting against Fas-
mediated apoptosis.

10.5
p53 Mutations in RA Synovium and Fibroblast-like Synoviocytes

10.5.1
The Role and Regulation of p53 Tumor Suppressor Protein

The tumor suppressor protein p53 plays a central role in cell cycle regulation,
DNA replication, DNA repair, senescence and apoptosis (Tab. 10.2) [30, 31]. When
DNA is damaged by genotoxic stress, p53 induces cell cycle arrest at G1/S and
G2/M interphase through the transcriptional activation of several genes, including
p21WAF, or induce apoptosis [30–34]. These actions either allow repair of damaged
nucleotides prior to DNA synthesis, or maintain DNA integrity by deleting cells
with overwhelming DNA damage.

The p53 protein is normally detected only at very low levels but its expression is
induced in response to various stimuli, such as DNA damage (by ionizing radia-
tion, ultraviolet radiation and chemotherapeutic drugs, etc.), hypoxia, heat shock,
viral infection, growth factor deprivation, and oncogene activation [35, 36]. MDM2
oncoprotein, which is a critical protein that suppresses p53 degradation, accumu-
lates to high levels and contributes to the loss of cell cycle control in malignant
tissue [37–39]. Since wild-type p53 protein has a relatively short half-life (less than
20 min), it is usually not detected in normal tissues by immunohistochemistry
[40].
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10.5.2
p53 Protein Expression in Inflammation

p53 protein expression is typically quite low in normal joint tissues and has been
examined extensively in rodents and humans. In the presence of synovial inflam-
mation, including murine collagen-induced arthritis or rat adjuvant arthritis, p53
expression increases dramatically [41, 42]. A similar phenomenon has been de-
scribed in many human inflammatory diseases, including RA, ulcerative colitis,
psoriasis and peptic ulcers [41]. These data suggest that increased p53 protein ex-
pression is a general phenomenon of inflammation and that the tumor suppres-
sor might have a protective role (Tab. 10.2). Recent data in p53 knockout mice
confirms this hypothesis, since the lack of p53 protein increases joint destruction
and inflammation in murine collagen-induced arthritis. The mechanism of protec-
tion provided by p53 appears to be related to both increased apoptosis as well as
suppression of pro-inflammatory cytokines and matrix metalloproteinases [42].
p53 gene therapy in rabbit IL-1-induced arthritis also increases synovial apoptosis
and decreases the local inflammatory response [43]. Taken together, these studies
suggest that p53 protein has a normal homeostatic control mechanism in inflam-
mation and abnormalities in p53 function could enhance disease (Tab. 10.3).

As in the animal models, p53 protein expression is low in normal human syno-
vium but is increased in rheumatoid synovium. This phenomenon is observed in
both long-standing disease as well as early RA as determined by both immunohis-
tochemistry and Western blot analysis [44]. Of interest, p53 protein expression is
greater in RA synovium compared with other inflammatory joint diseases, includ-
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Tab. 10.2 The roles of p53 tumor suppressor gene.

Cell cycle regulation
DNA replication
DNA repair
Senescence
Apoptosis
Anti-inflammatory

Tab. 10.3 p53 in RA.

Overexpressed in RA synovium
p53 mutations in RA synovium

G/A and T/C transition mutations
Dominant-negative p53 mutations
Inactivation of p53 protein increases proliferation and invasion of synoviocytes
p53 knockout mice with collagen-induced arthritis

increased severity of arthritis and joint destruction
increased synovial IL-1, IL-6 and collagenase-3
decreased synovial apoptosis



ing inflammatory OA and reactive arthritis [44]. This might be due to the inten-
sity of the inflammatory response and oxidative stress in RA. In addition, p53 mu-
tations could also contribute to high levels of the protein.

10.5.3
p53 Mutations in RA Synovial Tissue

Although there is some variability among reports, mutations of p53 in RA syno-
vium and FLS have been identified independently by several investigators using
different methods [45–48]. Initially, we detected p53 mutations in exons 5–10
using RNA mismatch detection assay and cDNA sequencing in the majority of
RA synovium and FLS samples. Similar mutations were not found in OA syno-
vium, or RA and OA skin samples [45]. Rème et al. focused on only exon 6 and
confirmed p53 mutations at the genomic DNA level by the single-strand confor-
mation polymorphism (SSCP) technique and sequence analysis in three of 20 RA
synovium samples and one of four RA FLS lines [46]. Recently, a Japanese group
also detected p53 mutations in exons 4–11 using a modified SSCP technique in
nearly half of RA FLS lines [48]. Surprisingly, no p53 mutations were detected in
RA FLS lines from German patients, but the same group confirmed the muta-
tions in RA FLS from U.S. patients [47]. In general, approximately 5–30% of the
cDNA pools from RA synovial cells have p53 mutation [45, 46, 48]. More recently,
we have found a consistent mutation rate of 7–10% in the cDNA pool of RA syno-
viocytes (unpublished data). While there are some differences in the frequency of
mutations, these are likely due to variations in disease activity, disease duration,
genetic background, and methods used for detection.

10.5.4
Possible Mechanism of Occurrence of p53 Mutations

Most p53 mutations in RA synovial cells are single base pair G/A or T/C transi-
tion mutations; transversion mutations are rare [45, 48]. Transition mutations are
characteristically due to oxidative stress, such as reactive oxygen species (ROS)
and reactive nitrogen species (RNS) [49, 50]. ROS and RNS can induce DNA dam-
age and mutations both in vitro and in vivo [51, 52]. Therefore, we proposed that
inflammatory cells that are recruited to a diseased site produce ROS and RNS,
and provide a mutagenic stress. This notion has been confirmed in many studies
indicating elevated levels of ROS and RNS in the synovial microenvironment [53–
55]. Chronic inflammation might be a risk factor of somatic gene mutation in
other diseases, such as ulcerative colitis [56]. Therefore, oxidative stress could play
a major role in the production of somatic mutations in many chronic inflamma-
tory diseases.

Although most attention has been focused on p53, mutations in other genes
have also been detected in RA tissues. The hprt gene, which codes for hypox-
anthine guanine phosphoribosyltransferase, has been frequently used as a marker
to detect gene mutation in human cells. hprt mutations were detected in T cells
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derived from RA synovial tissues and peripheral blood [57]. The frequency of hprt
mutant T cells in synovial tissue was significantly greater than that in peripheral
blood of the same patients. These data suggest that mutations in T cells are in-
duced by the inflammatory environment as T cells traffic through synovial tissue
into peripheral blood [57]. H-ras gene mutations in codons 13 and 14 were also re-
ported in RA synovial tissues, but their pathogenetic role remains unknown [58].

10.5.5
Function of p53 Mutations in RA Synovial Cells

After identifying p53 mutations in RA synovium, the functional sequelae of this
observation were investigated. Some of p53 mutations detected in RA synovium
have dominant-negative effects, which suppress normal function of wild-type p53
and as observed in many neoplastic diseases [59]. Co-transfection of plasmids ex-
pressing wild-type p53 and mutant p53 genes found in RA synovial samples inhi-
bit bax mRNA expression as well as bax promoter activity [59]. Since Bax is a criti-
cal inducer of apoptosis, inhibition of this gene could lead to decreased apoptosis
and contribute to synovial hyperplasia. Other studies have shown that the loss of
p53 function increases collagenase gene expression and promoter activity [60, 61].
As an alternative method to assess the function of p53 in RA synovium, synovio-
cytes were infected with the papilloma virus 18 E6, which accelerates degradation
of wild-type p53 protein [62, 63]. E6 expression in FLS resulted in decreased apop-
tosis as well as increased anchorage-independent growth, proliferation and inva-
siveness into cartilage extract [62]. These findings were confirmed in vivo using a
severe combined immunodeficiency (SCID) mouse RA model, where E6 not only
increased cartilage invasion of RA synoviocytes but also converted non-invasive
normal FLS to a rheumatoid phenotype [63].

10.6
Fas-Fas Ligand (FasL) Apoptotic Pathway in RA

10.6.1
Fas and FasL

Fas (Apo-1/CD95) is a type I transmembrane glycoprotein that belongs to the
TNF-R/nerve growth factor receptor (NGF-R) family [64]. This molecule is ex-
pressed on various types of cells, including activated lymphocytes and certain
transformed cells [64]. FasL (CD178) is 40-kD type II transmembrane protein that
is homologous to TNF and its binding to Fas transmits an apoptotic signal to sus-
ceptible target cells [65]. One of the major roles of Fas-dependent apoptotic path-
way is the termination of immune responses by deletion of activated T and B
cells. In fact, mice that have mutations of Fas (lpr) or FasL (gld) develop a lupus-
like disease associated with autoantibodies, lymphadenopathy, splenomegaly and
glomerulonephritis due to interference of physiologic apoptosis [66, 67]. The Fas-
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dependent pathway is also involved in formation and regression of tumors [68].
Thus, Fas and FasL have an important role in the pathogenesis of some diseases
through defective apoptosis.

10.6.2
Fas-FasL Expression in Synovium

Fas expression has been observed in RA synovial tissue by immunohistochemistry
or flow cytometry [5, 7, 8]. The majority of Fas-expressing cells were FLS and few-
er mononuclear cells were also Fas+. Fas-expressing cells were located in the lin-
ing [7] or sublining layer [8]. As with Fas, many studies indicate that FasL expres-
sion is significantly increased in RA synovial tissue compared with OA or post-
traumatic tissues [7, 8, 69], although one report indicates a relative deficiency of
FasL expression in RA joint tissue [70]. When present, FasL is predominantly ex-
pressed by infiltrating mononuclear cells, but only small number of cells (less
than 5%) co-express both Fas and FasL [7, 8]. Interestingly, FasL+ mononuclear
cells are occasionally found in contact with Fas-expressing synoviocytes.

10.6.3
Fas-FasL Expression in Synovial Fluid Cells

Most of RA synovial fluid T and B cell express Fas and the proportion of Fas-ex-
pressing mononuclear cells in RA synovial fluid is significantly higher than pe-
ripheral blood from the same patients [70]. Fas expression is induced in T cells
through TCR crosslinking or by IL-2 or interferon (IFN)-� exposure [71, 72]. How-
ever, since concentrations of IL-2 or IFN-� in the joints are relatively low [19, 21],
another mechanism for Fas induction in RA synovial fluid T cells, such as cell-cell
interactions, probably exists. FasL expression in RA synovial fluid lymphocytes
was also confirmed by RT-PCR, but not by flow cytometry [73]. This discrepancy
might be due to rapid cleavage of FasL to soluble FasL (sFasL). FasL mRNA ex-
pression was not observed in peripheral blood mononuclear cells from RA pa-
tients whose synovial fluid lymphocytes express FasL [73].

10.6.4
sFas

An alternatively spliced form of Fas mRNA has been found in peripheral blood
mononuclear cells from normal individuals, and angioimmunoblastic lymphade-
nopathy and SLE patients [74]. This molecule lacks the transmembrane domain of
Fas (membrane Fas) and is secreted as a soluble form of Fas (sFas). sFas inhibits
Fas-dependent apoptosis in peripheral blood mononuclear cells in vitro, and alters
lymphocyte development and proliferation in response to self antigen in vivo by
neutralization of anti-Fas antibody [74]. Clinically, elevated serum concentrations
of sFas were reported in patients with SLE, juvenile rheumatoid arthritis and T
cell acute lymphoblastic leukemia [74, 75].
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The concentration of sFas in the synovial fluid from RA patients is significantly
higher than that from OA patients [76]. However, there are no significant differ-
ences of serum concentration of sFas among RA, OA and healthy controls. In RA
patients, the concentration of sFas in synovial fluid correlates with serum markers
of disease activity like erythrocyte sedimentation rate and C-reactive protein, and in-
flammatory molecules in synovial fluid, such as IL-2 receptor, IL-6 and ICAM-1 [76].
The source of sFas production is probably synoviocytes and infiltrating mononuclear
cells. Since sFas exhibits inhibitory effects on Fas-dependent apoptosis, increased
sFas in synovial fluid might prevent apoptosis of synoviocytes in the RA joints.

10.6.5
sFasL

sFasL is the 26-kDa soluble form of FasL, which is cleaved from 40-kDa mem-
brane FasL by the action of a metalloproteinase [77, 78]. sFasL has been detected
in the serum of patients with various diseases, e.g. large granular lymphocytic leu-
kemia and natural killer cell lymphoma [77]. Since most of those patients with
high levels of serum sFasL were neutropenic and had hepatic dysfunction, sFasL
might have caused systemic tissue damage when it released into the circulation
[79]. However, its actual pathogenic role remains unknown.

The concentrations of sFasL in RA synovial fluid are significantly higher than
in OA [73]. On the other hand, sFasL was not detected in RA and OA serum sam-
ples from the same patients. The levels of sFasL in synovial fluid are significantly
higher in severe RA patients compared to mild RA patients. Since sFasL inhibits
the membrane FasL-induced killing of peripheral blood T cells [80] and RA synovi-
al cells are resistant to apoptosis by human sFasL [73], sFasL might suppress Fas-
mediated apoptosis in RA synovial cells.

10.6.6
Fas-Mediated Apoptosis

Approximately 10–30% of Fas-expressing cells in RA synovium show DNA frag-
mentation, suggesting that Fas-mediated apoptosis could play a role in RA syno-
vium [7, 8]. Cultured RA FLS may be more sensitive to anti-Fas IgM monoclonal
antibody-mediated apoptosis compared with OA FLS, although this difference is
controversial [5, 73]. Since Fas-mediated apoptosis of RA FLS is associated with ac-
tivation of c-Jun N-terminal kinase (JNK) and activator protein 1 (AP-1) [81], JNK/
AP-1 signaling participates in this process. In another study, the effects of TNF
and basic fibroblast growth factor (bFGF), both of which can induce synovial cell
proliferation, on the Fas-mediated apoptosis were examined. Fas-mediated apopto-
sis by anti-Fas antibody was increased in TNF-treated RA FLS, but only weakly in-
duced in bFGF-treated FLS [24]. Thus, Fas-induced apoptosis of RA synoviocytes
might be differentially regulated by TNF-� and bFGF.

More than half of T cells infiltrating RA synovium die after treatment with anti-
Fas antibody in an in vitro model, whereas no effect was observed in synovial T
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cells from OA tissue or peripheral blood mononuclear cells from RA and OA pa-
tients [69]. RA synovial fluid mononuclear cells are also susceptible to apoptosis
by anti-Fas antibody, although peripheral blood mononuclear cells from the same
patients are resistant [69]. Fas+ cells among the CD3+ T lymphocytes from RA sy-
novium and synovial fluid increased in number compared with those from the pe-
ripheral blood of RA patients or those from blood and synovium of OA patients.
The main phenotype of T cells susceptible to anti-Fas antibody is the CD45 RO+

population [69].

10.7
Therapeutic Target of Molecules for Inducing Apoptosis in Synovial Tissues

10.7.1
Fas-FasL and Related Molecules

As the Fas-FasL system has the ability to induce apoptosis of many key cells involved
in inflammatory synovitis, considerable effort has been expended to explore Fas-
FasL-directed therapies in RA models. Therapeutic benefit of anti-Fas monoclonal
antibody was observed in human T cell leukemia virus type 1 (HTLV-1) tax trans-
genic mice, which develop chronic erosive arthritis with pannus formation and lym-
phocyte infiltration [82]. Intra-articular administration of anti-Fas monoclonal anti-
body improved paw swelling and histological features of arthritis within 2 days,
and these effects persisted for at least 9 days [83]. Many apoptotic cells in the syno-
vium were detected by TUNEL and electron microscopic analysis [83]. In this study,
no serious side effects were observed by intra-articular administration of anti-Fas
monoclonal antibody, although lethal liver damage has been reported in mice after
intraperitoneal administration [84]. Similarly, gene therapy using an adenoviral con-
struct encoding FasL was effective in murine collagen-induced arthritis [85].

As an alternative to anti-Fas antibodies or direct gene therapy, cell therapy
approaches using transfectants expressing the human FasL gene were tested on en-
grafted human RA synovium in SCID mice [86]. The local injection of human FasL-
expressing cells eliminated synoviocytes and mononuclear cells in engrafted human
synovium of SCID mice. Of interest, cytotoxicity of human FasL transfectants against
RA but not OA synoviocytes was observed even though similar levels of Fas expres-
sion in RA were confirmed [86]. Neutralizing monoclonal antibodies against Fas and
FasL inhibited human FasL transfectants-induced cytotoxicity in synoviocytes, indi-
cating that the cytotoxic effect was through the Fas-FasL apoptotic pathway.

FADD plays a critical role in Fas-mediated apoptosis of RA synoviocytes. FADD
binds to Fas through interactions with the death domains and leads to the activa-
tion of the caspase cascade. The therapeutic utility of FADD gene for RA was eval-
uated using a FADD-expressing adenoviral vector (Ad-FADD) [87]. Infection of RA
FLS with Ad-FADD increases FADD gene expression and causes apoptosis in
dose-dependent manner. When Ad-FADD is locally injected into RA synovium en-
grafted in SCID mice, synoviocytes and mononuclear cells infiltration decrease
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through induction of apoptosis [87]. Ad-FADD-induced apoptosis only occurs in
synovium, but not in cartilage, which is engrafted along with synovium. There-
fore, cartilage is protected from apoptosis while the synovium itself is targeted.

10.7.2
Nuclear Factor (NF)-�B and Related Molecules

NF-�B is a ubiquitous transcription factor that plays an important role in inflam-
matory gene transcription. It is activated by wide range of pro-inflammatory sig-
nals and cellular stresses, such as TNF-�, IL-1, ionizing radiation, lipopolysacchar-
ide and H2O2. NF-�B resides in the cytoplasm in an inactive form through its as-
sociation with inhibitory proteins called inhibitors of nuclear factor �B (I�B). I�B
family members, including I�B�, I�B� and I�B�, regulate the DNA binding and
subcellular localization of NF-�B proteins by masking a nuclear localization sig-
nal. NF-�B activation occurs through signal-induced degradation of I�B in the cy-
toplasm, allowing the translocation of NF-�B to the nucleus. Immunohistochemis-
try and electromobility shift assays show that the transcription factor is highly ac-
tivated in rheumatoid synovium as well as animal models of arthritis [88].

The ability of NF-�B to regulate apoptosis in arthritis was examined by using
an animal model of RA [89]. NF-�B is activated in the synovium of rats with strep-
tococcal cell wall (SCW) arthritis. Suppression of NF-�B by either proteasome in-
hibitors, which inhibit NF-�B activation by preventing I�B� degradation, or intra-
articular adenoviral gene transfer of the I�B� super-repressor increase apoptosis
in the synovium of arthritic rats and suppress clinical arthritis [89]. These find-
ings suggest that activation of NF-�B protects the cells in the synovium against
apoptosis, and suppression of NF-�B could induce apoptosis in synovial cells.
Similar results were observed in murine collagen-induced arthritis where a T cell-
specific NF-�B inhibitor decreased joint inflammation [90]. In addition, intra-ar-
ticular gene therapy with a dominant negative IKK� construct decreases synovial
NF-�B activation and inflammation in the rat adjuvant arthritis model [91].

Other gene therapy approaches also confirm the role of NF-�B as an attractive
apoptosis-regulating target for RA. I�B� dominant-negative adenovirus (Ad-I�B-
DN) was used to determine whether inhibition of NF-�B nuclear translocation
leads to increased apoptosis of RA synoviocytes [92]. Apoptosis was induced in RA
synoviocytes treated with Ad-I�B-DN plus TNF-� in vitro, while no apoptosis was
induced in RA cells infected with Ad-I�B-DN alone. To examine in vivo effects of
Ad-I�B-DN, the SCID mice model of RA was used 4 weeks after transplantation
of RA FLS into knee joints of the mice. Mice were treated with Ad-I�B-DN intra-
articularly followed by intra-peritoneal TNF-� administration. Extensive apoptosis
was detected in engrafted FLS of SCID mice treated with Ad-I�B-DN plus TNF-�,
but not in those treated with control vector plus TNF-�.

TNF-�-mediated activation of NF-�B also induces expression of the anti-apopto-
sis protein X-linked inhibitor of apoptosis (XIAP). Increased XIAP gene expres-
sion in RA FLS is inhibited by Ad-I�B-DN infection, which blocks nuclear translo-
cation of NF-�B. Because XIAP plays a role in TNF-�-induced apoptosis of RA
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cells, XIAP antisense expressing adenovirus vector (Ad-XIAP-AS) was used to eval-
uate the importance of this pathway [92]. After TNF-� exposure, significant apop-
tosis was observed in the cells transfected with Ad-XIAP-AS but not in the cells
transfected with control vector. Therefore, XIAP, which is induced by NF-�B, may
be a critical inhibitor of apoptosis in activated RA synoviocytes.

10.7.3
p53 Tumor Suppressor Gene

In light of data suggesting defective p53 function in RA synovium, the therapeu-
tic utility of p53 gene in RA was examined in a rabbit model with a wild-type p53
expressing adenovirus vector (Ad-p53). Infection with Ad-p53-induced apoptosis in
FLS through overexpression of wild-type p53 in a dose-dependent manner,
although FLS from RA and OA patients were equally susceptible to p53-mediated
apoptosis [43]. Intra-articular injection of Ad-p53 into the joints of rabbit with IL-
1-induced arthritis caused rapid induction of apoptosis (less than 24 h) through-
out the lining resulting in a significant reduction of cellularity. However, the cyto-
toxic effect by Ad-p53 was not observed in articular cartilage [43].

10.7.4
Proteasome

Proteasome function also can regulate programmed cell death [93]. Apoptosis of
cultured FLS is induced in a dose-dependent manner by LLL-CHO (Z-Leu-Leu-
Leu-aldehyde), a potent proteasome inhibitor, through the activation of caspase
cascade, including caspase-3 [94]. Pretreatment of FLS with TNF-� enhances apop-
tosis by LLL-CHO, while pretreatment with TGF-� suppresses cell death [94]. The
regulation of proteasome inhibitor-related apoptosis by these cytokines is similar
to Fas-mediated apoptosis [24, 94].

10.8
Conclusion

While the extent and mechanisms of apoptosis remain somewhat uncertain in
RA, it is clear that cell death is overwhelmed by the forces of cell accumulation
(proliferation, recruitment and retention). Understanding the relevant molecular
processes that regulate apoptosis in RA will hopefully identify targets that can be
targeted with therapies to delete pathogenic cells in the synovium. In vivo studies
suggest that this approach has great potential, although balancing the benefit with
toxicity is a serious concern. In the upcoming years, apoptosis-directed treatments
might be feasible in RA and other immune-mediated human diseases.
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11.1
Introduction

Systemic lupus erythematosus (SLE) is a heterogeneous systemic autoimmune
disease displaying a broad variety of symptoms and involving multiple organ sys-
tems. The age- and sex-adjusted prevalence rate for SLE in January 1993 was ap-
proximately 1.22 per 1000. The incidence rate of a Rochester SLE cohort 1980–
1992 was 5.56 per 100000 and tripled since 1950 due to improved recognition of
early stages of the disease. Due to new therapeutic approaches, the survival of
SLE patients has improved over the past 4 decades, but it is still worse than in
the general population. Furthermore, although most of the patients experience re-
missions [1], SLE remains incurable. The diagnosis is usually based on the Ameri-
can Rheumatism Association criteria for the classification of SLE [2]. The etio-
pathogenesis of SLE is multifactorial. Multiple genetic as well as environmental
factors, including viruses and other infectious agents, drugs, chemicals and food,
are discussed to contribute to the disease [1]. Profound immune alterations lead
to activation of autoreactive T cells and consecutively to the generation of various
autoantibodies. The presence of autoantibodies against double-stranded (ds) DNA
and other nuclear antigens is a characteristic feature of SLE. In this chapter, we
discuss a mechanism which might contribute to the induction and maintenance
of autoimmunity in SLE.

11.2
Involvement of B Cells in the Development of SLE

Autoantibodies to dsDNA are a hallmark of SLE [3]. The establishment of anti-
DNA hybridomas from patients with SLE and the analysis of their immunoglobu-
lin variable genes have contributed important information on possible induction
mechanisms [4–7]. Initially, it was reported that even normal individuals are able
to express anti-dsDNA antibodies with a similar specificity as SLE patients. How-
ever, recently published studies clearly indicate that the anti-dsDNA antibodies de-
tected in healthy individuals are mainly of the IgM isotype, are characterized by a
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wide cross-reactivity and are usually encoded by gene segments in the germline
configuration. In contrast, high-affinity anti-dsDNA antibodies isolated from SLE
patients had often undergone isotype switch (IgG or IgA) and affinity maturation
[4, 6, 8, 9]. Both processes are dependent on T cell help, and take place in the
germinal centers of lymph nodes and spleen. It is of special interest that there
was a prominent exchange towards the amino acids arginine and asparagine,
which are particularly important for dsDNA binding by electrostatic interaction.
The bias towards arginine and asparagine had been generated by the usage of a
particular reading frame of the D elements, by frameshifts in the V�–J� junction
or by somatic mutations. These data show that the IgG anti-dsDNA antibody re-
sponse bears all the characteristics of an antigen-driven, T cell-dependent immune
response. The analysis of VH gene usage of monoclonal anti-dsDNA revealed that
IgG anti-DNA preferentially use members of the VH3 or VH4 gene family [10].
The � and � light chains were represented normally. In contrast, no VH restriction
was observed for anti-dsDNA of the IgM isotype.

The nature of the epitopes recognized by anti-dsDNA is still a matter of contro-
versial discussion. Employing synthetic oligonucleotides, we showed that SLE pa-
tient-derived anti-dsDNA preferentially selected DNA sequences that were pre-
dicted not to form B-DNA structures. Instead, DNA molecules selected from a
random library contained significantly more adenosine triplets, suggesting that
SLE derived anti-dsDNA preferentially bind DNA [11].

11.3
Involvement of T Cells in the Development of SLE

It is well established that affinity maturation, isotype switch and memory forma-
tion are T cell-dependent processes which take place in germinal centers of sec-
ondary lymphoid organs. The isolation of autoreactive T cells from SLE patients
recognizing high-mobility group proteins and histones [12, 13], and the efficiency
of the T cell-specific immune-suppressive cyclosporin A in treatment, suggest that
DNA-protein complexes like nucleosomes [14–16] may represent the source for
autoantigens in SLE [17]. In the immune reaction against nucleosomes, both his-
tones and DNA may provide T and B cell epitopes, respectively.

Ex vivo immunization experiments revealed that increased concentrations and/
or an abnormal presentation of nuclear antigens are able to stimulate autoreactive
peripheral T cells. Autologous apoptotic cells or isolated histones induced in vitro
T cell proliferation of CD4+ T cell clones isolated from peripheral blood of both
non-Hodgkin’s disease and patients with SLE [13]. Furthermore, co-incubation of
the histone-specific T cells with autologous B cells induced the production of anti-
dsDNA antibodies in vitro [18–20]. However, the nature of the antigens or pep-
tides stimulating the proliferation of these autoreactive T cells remained elusive.
Experiments with thymectomized [21], T cell receptor-depleted [22] or anti-CD4
antibody-treated mice [23] confirmed the contribution of T cells in the etiopatho-
genesis of murine SLE.
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11.4
Genetic Factors for the Development of SLE

The association with the haplotype C2Q0, HLA-A10, B18, Dw2, BfS, suggests a
possible linkage of SLE to immune response genes [24]. The deficiency of C1q is
strongly associated with the development of SLE in humans [25–27]. Furthermore,
low levels of C1q due to complement consumption and acquired C1q ‘deficiency’
secondary to anti-C1q autoantibodies are associated with severe nephritis in hu-
man SLE [28]. In addition, deficiencies of other components of the classical com-
plement pathway are associated with disease susceptibility [29, 30].

The Fc�RIIa polymorphism affects the immune complex (IC) metabolism and
influences the clinical manifestations and course of SLE. Fc�RIIa-H131 binds
much better to complexed IgG2 and IgG3 than Fc�RIIa-R131. This might be
linked to variability in IC handling and therefore be related to the pathogenesis of
the disease. However, it did not represent a genetic risk factor for the occurrence
of the disease [31].

11.5
Animal Models for the Immunogenicity of Dying Cells

Tumor cells undergoing apoptosis display a low but detectable immunogenicity
[32], which was enhanced in IL-10 knockout mice [33]. Apoptotic cells opsonized
with antiphospholipid antibodies resumed their immunogenicity since they were
efficiently processed by murine immature dendritic cells (DCs) in vivo [34, 35]. It
was shown that high numbers of apoptotic cells, mimicking impaired clearance
function, are able to trigger DC maturation. Under these circumstances, the pre-
sentation of intracellular antigens from apoptotic cells triggers an immune re-
sponse, even in the absence of exogenous ‘danger’ signals [36, 37]. The cross-acti-
vation of cytotoxic T lymphocytes was dependent on the rate of apoptosis and on
the accumulation of late apoptotic cells [37].

In recent years, several mouse models with impaired clearance of either apopt-
otic cells or chromatin have been reported. Mice with targeted deletion of the
C1qa [38] displayed an impaired clearance, an accumulation of apoptotic cells in
the glomeruli and a lupus-like disease [39]. Targeted deletions of serum amyloid P
resulted in impaired solubilization and degradation of chromatin, inefficient clear-
ance of apoptotic cells, and development of antinuclear antibodies. The animals
displayed a SLE-like disease including severe glomerulonephritis [38, 40]. In MER
knockout mice, the detection of uningested apoptotic cells in the thymus is asso-
ciated with antinuclear autoantibodies [41] and investigation of DNase I-deficient
mice suggested that lack or reduction of DNaseI is a critical factor in the initia-
tion of human SLE [42].
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11.6
Phagocytosis of Apoptotic Cells

In tissues, apoptotic cells are usually engulfed by macrophages in the early phase
of apoptotic cell death. This process induces neither inflammation nor an im-
mune response [32, 43, 44]. In the thymus, the bone marrow, and the germinal
centers of lymph nodes and spleen, specialized phagocytes that clear dying cells
are referred to as tingible body macrophages. This clearance is so efficient that
only few apoptotic cells can be detected in the thymus, although it functions as a
mass grave for futile or dangerous thymocytes [45]. The instant removal of
apoptotic cells offers the needed space for the heavily proliferating thymocytes or
centroblasts, and is a prerequisite for a proper function of thymus, bone marrow
and lymph nodes. The early engulfment of apoptotic cells is necessary to avoid
cells entering the late stages of apoptosis. During late stages of apoptosis cells of-
ten cannot maintain their plasma membrane integrity, get secondary necrotic and
release intracellular contents [46–48]. In the case of the germinal center, released
cytoplasmic compounds have the potency to serve as autoantigens for the affinity
maturation of B cells. Therefore, the instant removal of apoptotic cells is of major
importance to avoid exposure of maturating B cells to nuclear autoantigens,
which would otherwise provide a survival signal for autoreactive B cells. Cytoplas-
mic blebs of apoptotic cells and chromatin have been demonstrated to bind C1q
[49] and to activate the classical complement cascade [50]. Consecutively, nuclear
material of apoptotic cells opsonized by iC3b, C3d and C3dg can be immobilized
by follicular DCs (FDCs) via CR2/CD21. The latter are known to trap comple-
ment-binding immune complexes, which under physiological conditions serve as
antigens for affinity maturation. In the presence of uningested, complement-bind-
ing apoptotic material, FDCs may serve as autoantigen repositories.

11.7
Reduced Phagocytosis of Apoptotic Cells in SLE Patients Challenges T Cell Tolerance

11.7.1
Increased Apoptosis in SLE Patients?

Several studies have demonstrated an increased apoptosis of in vitro cultured
blood mononuclear cells of SLE patients [51–56]. However, similar data were ob-
tained in patients with systemic vasculitis, mixed connective tissue disease [52]
and rheumatoid arthritis [56]. This leads to the conclusion that an increased apop-
tosis is not specific for SLE. The increased rate of apoptosis of SLE patients’ lym-
phocytes was shown to be normalized by addition of IL-2. This points out that the
increased rate of apoptosis rather reflects an increased number of activated lym-
phocytes and not a SLE-specific genetic defect [52]. However, lymphocytes of SLE
patients with bacterial infections do have increased spontaneous apoptosis within
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their peripheral blood mononuclear cells [52]. This could be responsible for the
clinical observation that a flare of SLE can follow an infectious episode [57, 58].

11.7.2
Reduced Phagocytosis of Apoptotic Cells by In Vitro Generated Macrophages
from SLE Patients

It has been known for a long time that macrophages from patients with SLE have
an impaired phagocytic activity for yeast and bacteria [59–62]. In addition, in vitro
differentiated macrophages from a subgroup of SLE patients show a significantly
reduced phagocytosis of apoptotic cells (Fig. 11.1). Impaired clearance functions
for dying cells may explain accumulation of apoptotic cells and, subsequently, of
secondary necrotic cells in various tissues of SLE patients [55, 63, 64]. In contrast
to early apoptotic cells, in the late phase of apoptosis when the cells enter the
stage of secondary necrosis, the cells lose their membrane integrity and cytoplas-
mic compounds are released. This may explain the increased levels of DNA and
nucleosomes reported in the circulation of SLE patients [55, 65–67]. These facts
led to the hypothesis that the clearance defect may be a major primary event in
the etiopathogenesis of a subgroup of SLE patients [38, 55, 63, 64] (Fig. 11.2).

11.7.3
Hypothesis: Accumulation of Secondary Necrotic Cells Challenges T Cell
Tolerance in SLE

In Sindbis virus-infected cells undergoing apoptosis, cellular proteins change their
subcellular location and are clustered in blebs at the surface near sites of in-
creased generation of reactive oxygen species [68, 69]. Thereby, an immune re-
sponse initiated against viral antigens may spread to adjoining autoantigens. This
‘epitope-spreading’ was observed in animal models of BK virus infection [16].
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Fig. 11.1 In vitro phagocytosis is reduced in a subgroup of SLE patients.
After 15 days of in vitro culture and differentiation macrophages isolated
from a subgroup of SLE patients showed a significantly reduced phagocy-
tosis of apoptotic cells (right column) as compared to the cells isolated
from normal healthy donors (left column). Scale bars represent 100 �m.



During necrotic as well as apoptotic cell death, proteins are cleaved and other-
wise modified [69–72]. At least 39 proteins are known which are proteolytically
cleaved during execution of apoptosis and thereby probably modified in their im-
munogenicity. Many of these modified proteins are components of complex parti-
cles, frequently targeted by autoantibodies of SLE patients [73]. In particular, pro-
teolytic cleavage of cellular proteins by the action of granzyme B was shown to
modify most targets of systemic humoral autoimmune responses [72]. Therefore,
cleavability by granzyme B was suggested to be the unifying feature of autoanti-
gens. Since proteolytic cleavage changes the epitope hierarchy for antigen presen-
tation, apoptosis may render cryptic epitopes immunodominant and lead to anti-
gen presentation of epitopes to which the immune system has not achieved toler-
ance [74].

Several surface receptors and soluble adaptor molecules are involved in the non-
phlogistic clearance of apoptotic cells (Fig. 11.3). Opsonization with antiphos-
pholipid antibodies, which are frequently found in SLE patients, directs apoptotic
cells into a pro-inflammatory pathway. Phagocytosis of opsonized apoptotic cells
resulted in massive tumor necrosis factor-� secretion, putatively enhancing their
immunogenicity [75].

Dendritic cells need to be activated to prime naïve T cells. Necrotic or virus-in-
fected cells, but not apoptotic ones, have been described to serve as ‘natural adju-
vants’. Furthermore, it was suggested that stressed autologous cells might initiate

11 Systemic Lupus Erythematosus192

Fig. 11.2 Hypothesis: reduced clearance of
apoptotic cells by SLE macrophages may re-
sult in uptake of dying cells by DCs. The up-
take and degradation of early apoptotic cells
is usually fast, efficient and nonphlogistic. In
a subgroup of SLE patients with a reduced
phagocytosis capacity the early apoptotic cells

are insufficiently cleared. Therefore, apoptosis
progresses and the cells enter the stage of
secondary necrosis. The uningested apoptotic
material including modified autoantigens is
taken up by DCs. Cryptic auto-epitopes get
dominant if processing alters the epitope hier-
archy of antigen presentation.



some forms of autoimmunity [76]. To investigate antigen cross-presentation, mice
were immunized with increasing numbers of syngeneic apoptotic tumor cells.
Only in mice that had been injected with high amounts of dying cells – mimick-
ing insufficient clearance – DCs did mature in the absence of exogenous ‘danger’
signals. These cells presented intracellular antigens from the apoptotic tumor
cells and elicited tumor-specific cytotoxic T lymphocytes responses [36] (Fig. 11.4).

11.8
The Germinal Center Reaction

Surface immunoglobulin-negative B cells proliferate as large centroblasts in the
dark zone of germinal centers. After few divisions they stop cycling, express sur-
face immunoglobulin and enter the light zone as centrocytes. Here the latter
come in contact with immune complexes immobilized by FDCs via the comple-
ment receptor 2 (CR2/CD21) [77, 78]. The contact with the antigens of the im-
mune complexes provides an essential short-term survival signal for the centro-
cytes. The latter subsequently can re-enter the dark zone or leave the germinal
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Fig. 11.3 Receptors for the phagocyto-
sis of apoptotic cells. This schema il-
lustrates surface receptors and soluble
adaptor molecules involved in the non-
phlogistic phagocytosis of apoptotic
cells. Abbreviations: ABC, ATP binding
cassette; ICAM, intercellular adhesion
molecule; LDL, low-density lipopro-
teins; TSP, thrombospondine



center and migrate into the mantle zone. Interaction with CD4+ T lymphocytes in
the mantle zone leads to a long-term survival signal [79]. Both signals, i.e. from
their antigen on FDCs and from T helper cells, are required to rescue the germ-
inal center B cells from apoptotic cell death. This is a prerequisite for the genera-
tion of antibody-secreting plasma cells and memory B cells.

If there is a lack of antigen or if somatic mutations of the B cell receptor lead to a
reduced affinity for the antigen, centrocytes do not receive survival signals and un-
dergo apoptosis. The apoptotic cells are instantly removed by specialized phagocytes
referred to as tingible body macrophages. These are CD68+ cells and have a typical
morphology. Due to their high phagocytic activity they often contain multiple apop-
totic nuclei and reach diameters of up to 60 �m. The extremely fast and efficient
uptake and degradation of early apoptotic cells is very important as it eliminates
apoptotic cell-derived autoantigens released if late apoptotic cells enter the stage of
secondary necrosis. Surface blebs of apoptotic cells are able to activate the classical
complement pathway independent of antibodies [49, 50, 80]. Therefore, uningested
apoptotic material including potential autoantigens may become coated with C3d
and hence bind to CR2/CD21 on FDCs, which may then provide survival signals
for autoreactive B cells (germinal center reaction reviewed in [81]) (see Fig. 11.5).

Protein-free B-form DNA per se is a poor immunogen and does not bear T cell
epitopes, which are required to initiate T cell help for DNA-specific B cells. How-
ever, DNA released from apoptotic or necrotic cells is complexed with proteins
that had been modified during the death program. Therefore, DNA-specific B
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Fig. 11.4 The processing of autoantigens
from apoptotic cells by DCs results in an acti-
vation of autoreactive cytotoxic CD8+ T cells
(cross-priming). High numbers of late apop-
totic cells, disintegrated apoptotic nuclei and
chromatin generate an amount of intracellular
antigens. Endocytosis of these antigens leads
to DC maturation and to the presentation of

intracellular antigens from apoptotic cells via
HLA class I and class II to cytotoxic CD8+ T
lymphocytes and CD4+ T cells, respectively.
Thus the DCs may trigger an immune re-
sponse, even in the absence of exogeneous
‘danger’ signals. The presentation of extracel-
lular antigens via HLA I molecules is referred
to as cross priming.



cells can recognize and internalize protein-DNA complexes, process and present
DNA-associated altered self-proteins, activate CD4-positive T cells, and thereby re-
ceive T cell help [82, 83] (Fig. 11.6).
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Fig. 11.5 Germinal center reaction. Unspeci-
fic activated B cells migrate from the high en-
dothelia venules (HEV) into the lymph node.
Here they get in contact with helper T cells,
become stimulated and start proliferation. As
centroblasts, these proliferating B cells com-
pose the dark zone of the germinal center.
After a few divisions they stop cycling, matu-
rate to centrocytes expressing surface immu-
noglobulin and enter the light zone. Here
they come in contact with immune complexes
immobilized by FDCs and thereby obtain a
short-term survival signal. Consecutively, they
can re-enter the dark zone or leave the germ-

inal center and migrate into the mantle zone.
Interaction with CD4+ T lymphocytes in the
mantle zone leads to a second long-term sur-
vival signal, required to rescue the B cells
from apoptotic cell death. Consecutively these
cells can differentiate into plasma cells or
memory B cells. If there is a lack of antigen
or if somatic mutations of the B cell receptor
lead to a reduced affinity for the antigen, cen-
trocytes do not receive survival signals and
undergo apoptosis. The apoptotic cells are in-
stantly removed by specialized phagocytes re-
ferred to as tingible body macrophages
(TBM).

Fig. 11.6 Nucleosomes released from apopto-
tic cells contain B and T cell epitopes. DNA
released from late apoptotic or necrotic cells
is complexed with proteins modified during
the death program. Therefore, DNA-specific B

cells can recognize and internalize these pro-
tein-DNA complexes. Furthermore these cells
may process and present the DNA-associated
altered self-proteins to T cells.

TBM

TBM



11.9
Reduced Phagocytosis of Apoptotic Cells in SLE Patients Challenges B Cell Tolerance

11.9.1
The Number of Tingible Body Macrophages is Reduced in the Germinal Centers
of SLE Patients

The presence of CD68+ tingible body macrophages is a characteristic feature of
germinal centers. Histological analyses of lymph nodes of patients with benign
follicular hyperplasia indicate numerous large tingible body macrophages distri-
buted in between centrocytes and centroblasts. Apoptotic cells with pyknotic nu-
clei representing condensed chromatin can almost exclusively be observed in the
cytoplasm of these tingible body macrophages. In the germinal centers of patients
with malign follicular lymphoma only very few small tingible body macrophages
were found. However, only very few apoptotic cells were present, they had been
all ingested by CD68 macrophages, were observed.
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Fig. 11.7 Tingible body macrophages are re-
duced in the germinal centers of a subgroup
of SLE patients (hematoxylin and eosin stain-
ing of lymph node sections). Lymph nodes
from patients with SLE or from patients with
non-malignant lymphadenopathy (non-SLE
control) were formalin fixed and paraffin em-

bedded. Sections stained with hematoxylin
and eosin show germinal centers with numer-
ous tingible body macrophages (marked with
an arrow) in non-SLE controls, whereas tingi-
ble body macrophages were virtually absent in
a subgroup of patients with SLE. The scale
bars represent 100 �m.

Fig. 11.8 Tingible body macrophages are re-
duced in the germinal centers of a subgroup
of SLE patients (TUNEL staining of lymph
node sections). Numerous tingible body
macrophages could be detected in the germ-
inal centers of lymph nodes of patients with
benign follicular hyperplasia (left column).
Apoptotic cells with pyknotic nuclei can al-
most exclusively be observed in the cytoplasm

of these specialized macrophages (marked
with a white arrow head). In contrast, in the
germinal center of a subgroup of SLE (middle
and right column), a significantly reduced
number of tingible body macrophages and
uningested apoptotic nuclei (marked with
black arrow heads) were detected. The scale
bars represent 100 �m.



In contrast, the lymph nodes of a subgroup of SLE patients contained a signifi-
cantly reduced number of tingible body macrophages, detected by hematoxylin
and eosin staining (Fig. 11.7). In addition, although the count of the CD68+

macrophages was near to normal, these cells showed an obviously different mor-
phology than in controls. They were rather small, lacked the typical shape of tingi-
ble body macrophages and rarely contained intracellular apoptotic cell material. In
some biopsies uningested apoptotic nuclei were to be found outside the CD68+

macrophages (Figs. 11.8 and 11.9). However, the total number of apoptotic nuclei
was not increased in the germinal centers of the lymph nodes of the SLE pa-
tients. The appearances of the germinal centers are compatible with the explana-
tion that the phagocytic activity for apoptotic cells is reduced in a subgroup of
SLE patients.

11.9.2
Accumulation of Apoptotic Cell-Derived Nuclear Fragments in the Germinal Centers
of SLE Patients

As in healthy individuals, in the germinal centers of patients with benign follicu-
lar hyperplasia apoptotic material was located exclusively within tingible body
macrophages and no free apoptotic cells could be detected. In the germinal cen-
ters of patients with follicular lymphoma markedly less and smaller tingible body
macrophages were found. The total amount of apoptotic cells was rather low and
all apoptotic material had been ingested by the tingible body macrophages. The
lack of apoptotic material might be a consequence of the inability of these malig-
nant cells to physiologically execute apoptosis.

In contrast, in a subgroup of SLE patients with reduced numbers of tingible
body macrophages multiple non-engulfed apoptotic cells and cellular fragments
were to be detected. In addition, disintegrated apoptotic nuclei and chromatin
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Fig. 11.9 Lymph node sections were analyzed by transmission
electron microscopy. Apoptotic nuclei ingested by tingible body
macrophages of non-SLE patient 5153 are marked with black ar-
row heads. Uningested apoptotic nuclei in SLE patient RM are
marked with a white arrow head.
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were observed to be attached to the surfaces of FDCs (Fig. 11.10, upper rows)
which form a characteristic network within the germinal center. Confocal micro-
scopy revealed that the remnants of the apoptotic nuclei have not been internaliz-
ed by the FDCs (Fig. 11.10, lower row). Furthermore, the network of FDCs by it-
self appears to be unaffected in these patients. This observation suggests that in
the germinal centers of some SLE patients apoptotic nuclei were not taken up by
macrophages or by FDCs. The apoptotic cells accumulate in the germinal centers
since they are not adequately cleared in the early phase of apoptosis. Therefore,
apoptosis progresses and the cells enter secondary necrosis. In this stage of cell
death, membrane integrity cannot be maintained and intracellular autoantigens
including dsDNA are released.

Due to the low number of lymph nodes investigated, no correlation of the pha-
gocytotic activity with any clinical feature could be established. However, the phe-
notype does not correlate with disease activity and treatment making an epiphen-
omenon unlikely.

11.9.3
Hypothesis: Accumulation of Apoptotic Dell-Derived Nuclear Fragments
in the Germinal Centers Challenges B Cell Tolerance in SLE

In the germinal center of SLE patients, due to impaired phagocytic capacity, the
apoptotic B cells are not adequately cleared in the early phase of apoptosis. There-
fore, apoptosis progresses and the cells enter secondary necrosis. Subsequently,
the membrane integrity is lost and intracellular potential autoantigens get accessi-
ble [55, 63, 64]. In this state, the classical complement cascade is activated, result-
ing in deposition of C3b on the surfaces of disintegrated apoptotic cells and nucle-
ar debris [49, 50]. Via C3b and its fragments, this opsonized material binds to
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Fig. 11.10 Tingible body macrophages are re-
duced in the germinal centers of a subgroup
of SLE patients. TUNEL/CD21 staining of
germinal centers analyzed by light microscopy
(upper and middle rows). Characteristic
lymph node sections from patients with non-
malignant follicular hyperplasia (column 1)
and of SLE patients (column 2) were double
stained for TUNEL (dark blue) and FDCs
(CR2/CD21 displayed in red). Apoptotic nu-
clei ingested by tingible body macrophages
are marked with green arrow heads. Unin-
gested apoptotic nuclear material putatively
associated with FDCs are marked with white
arrow heads. Nuclear material decorating the
surfaces of FDCs are marked with green ar-
rows. Low and high power magnifications are
shown in panel 1 and 2, respectively. TUNEL/
CD68 staining of lymph nodes analyzed by

confocal laser microscopy (lower row). Char-
acteristic lymph node sections of a non-SLE
patient with reactive follicular hyperplasia
(column 1) and of a SLE patient (column 2)
were stained with TUNEL (FITC, green) and
monoclonal anti-CD68 antibody (Cy5, red).
The sections were analyzed by confocal laser
microscopy. Co-localization of TUNEL-positive
nuclear material and the macrophage cyto-
plasmic antigen CD68 is displayed in yellow.
Whereas there germinal centers (GC) of all
non-SLE controls showed large amounts of
TUNEL-positive apoptotic nuclei taken up by
giant tingible body macrophages, the germ-
inal centers of some SLE patients contained
many apparently free apoptotic nuclei, see-
mingly ignored by the small germinal center
macrophages.

�



CR2/CD21 on the FDCs. The latter may then provide survival signals for those
autoreactive B cells that had been generated incidentally by somatic mutations
[81]. Thus an important initial control mechanism of B cell tolerance is circum-
vented under these conditions. Consecutively, B cell tolerance relies now only on
the presence of a functional T cell tolerance for nuclear autoantigens. However, as
discussed in the previous section, an impaired clearance also challenges the T cell
tolerance.

11.10
Conclusion

Increased apoptosis and/or reduced clearance of dying cells by macrophages pro-
voke accumulation of cellular fragments in various tissues. This may lead to the
uptake of modified autoantigens from apoptotic nuclei or chromatin by DCs. The
latter present altered self-epitopes to naïve T cells. Thus, potentially autoreactive T
cells are activated and may now provide T cell help for B cells that present pep-
tides processed from apoptotic prey.

In the germinal centers of secondary lymph organs, impaired phagocytic re-
moval of early apoptotic cells may cause accumulation of secondary necrotic cells
and debris. The latter bind complement and can therefore be trapped on the sur-
faces of FDCs. B cells may contact with nuclear autoantigens that had been re-
leased during late stages of apoptotic cell death and are immobilized by FDCs.
Consecutively, B cells that had gained specificity for nuclear autoantigens during
random somatic mutations can receive a short-term survival signal.

After migration into the mantle zone these autoreactive B cells may finally be
activated by autoreactive CD4+ T helper cells. B cells then differentiate into mem-
ory or plasma cells. The latter produce those pathogenic nuclear autoantibodies
thought to be responsible for the tissue destruction and the pathogenesis of SLE.
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12.1
Introduction

Apoptotic cell death has long been regarded as a programmed cellular auto-de-
struction solely designed to remove potentially antigenic cellular particles without
causing inflammation or uncontrolled liberation of antigen by damaging tissue.
Although the relevance of apoptosis in tissue homeostasis as well as its morpho-
logical criteria strongly support this opinion, concerns about the immunomodula-
tory properties of apoptotic debris especially in the context of tumors or HIV in-
fection were raised and challenged the paradigm that cellular debris left over from
apoptotic cells is just removed by macrophages without functional consequences.
It recently became apparent that dendritic cells (DCs) phagocytose apoptotic cell
debris and whole apoptotic cells. As DCs constitute a specialized system of anti-
gen-presenting cells (APCs) that are initiators and modulators of the immune re-
sponse against microbial, tumor and self-antigens, this notion implied that anti-
gen from apoptotic cells might be presented and thus play a role in the mainte-
nance of peripheral tolerance as well as in the introduction of antiviral or even
antitumoral immunity. Recent research data suggest that the efficient presenta-
tion of antigen derived from apoptotic cells can be explored for the ex vivo loading
of DCs with apoptotic tumor cells in order to generate an effective cellular vaccine
aiming at the induction of antitumoral immunity. The development of techniques
to generate clinical grade DCs has facilitated DC-based immunotherapeutic
approaches. Numerous phase-I and -II clinical trials have been introduced in or-
der to evaluate the efficacy of tumor antigen-pulsed DCs in cancer patients.
Although antitumoral T cell responses have been induced in clinical trials, DC-
based therapy is in its infancy. Utilizing apoptotic tumor cells as tumor antigen
donors in ex vivo antigen loading approaches might facilitate the loading of DCs
with whole tumor cells leading to the MHC-restricted presentation of a broad ar-
ray of tumoral antigens. In this chapter we will discuss the basis of DC loading,
apoptotic cell utilization and sum up the experimental data available for different
apoptotic tumor cells.
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12.2
Immature DCs

12.2.1
Immature DCs Capture Antigen

DCs are virtually found in all organs. They exist as interstitial DCs in peripheral
tissues, Langerhans and dermal dendritic cells in the epidermis and dermis, re-
spectively, as interdigitating cells in lymph nodes and as circulating APCs in the
blood stream [1]. This general presence makes DCs ideal sentinels to spot immu-
nological alterations at various sites. While located in peripheral tissues, DCs are
considered to be immature. This developmental stage is characterized by a high
capacity to capture and process antigens.

DCs can acquire exogenous antigens by numerous mechanisms such as macro-
pinocytosis, receptor-mediated endocytosis, phagocytosis and via specific receptors.
Receptors include Fc� [2] and Fc� receptors [3] for acquisition of immune com-
plexes, the lectin receptors macrophage mannose receptor (MMR) [4] and DEC-
205 [5] for acquisition of glycosylated proteins, and DC-SIGN, a receptor that
mediates the uptake of HIV [6]. DCs also acquire antigens through receptor-inde-
pendent mechanisms including macropinocytosis and phagocytosis [4]. Further-
more, DCs can acquire antigens through direct infection by pathogens, which in-
troduce or synthesize proteins in the DC cytoplasm. DCs express Toll-like recep-
tors (TLRs) which have specificity for conserved molecular patterns shared by
groups of pathogens including lipopolysaccharides of bacteria and CpG-containing
bacterial DNA. These receptors enable DCs to ‘sense’ microbes, acquire pathogen-
derived antigens [7] and simultaneously undergo maturation.

12.2.2
Phagocytosis of Apoptotic Cells

Apoptosis in cells is defined by a series of unique cellular changes which include
the compaction of nuclear chromatin into dense masses that move to the edge of
the intact nuclear envelope associated with extensive DNA degradation through
the activation of endonucleases; fragmentation of these chromatin masses and
condensation of the cytoplasm with shrinkage of the cell; and finally fragmenta-
tion of the cell into pieces called apoptotic bodies and blebs which are still en-
closed by intact cell membrane and contain the remaining antigen of the cell [8].
Clearance of intact apoptotic cells by phagocytes protects surrounding tissues
from intracellular factors and reduces the likelihood of tissue damage caused by
inappropriate autoimmune responses. The uptake of apoptotic cells can be per-
formed by various cell types including microvascular endothelial cells, monocytes,
macrophages and DCs. Fig. 12.1 shows an electron microscope picture of a DC
after co-cultivation with apoptotic macrophages, leading to the phagocytosis of
apoptotic bodies. Multiple ligands and receptors have been implicated in the rec-
ognition and uptake of apoptotic cells, yet attempts to assign function to discrete
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receptors have proven difficult. During apoptosis, the asymmetry of plasma mem-
brane phospholipids is lost, which exposes phosphatidylserine (PS) externally. PS
seems to be one of the well-characterized ‘eat me’ flags. Recently, Fadok et al.
characterized a new PS receptor (PSR) critical in mediating the uptake of apoptot-
ic cells [9]. This group further found that individual or multiple engagements of
the AC receptors CD36, the �v�3 integrin and �v�5 integrin, CD14, and CD68
caused tethering of erythrocytes (their ‘model food’), but little internalization. In
contrast, engagement of the PSR alone through PS-coated erythrocytes induced
neither tethering nor uptake. However, ligation of both PSR and other receptors
converted the adhesion mediated by the latter to ingestion. Hoffmann et al. [10]
recently proposed that ligation of PSR on phagocytes delivers a ‘tickle’ signal
which stimulates the internalization of apoptotic cells, including bystander cells,
that are ‘tethered’ through other recognition receptors. PSR-independent pathways
clearly exist: defense collagens such as the collectins [surfactant protein (SP)-A;
mannose-binding lectin (MBL)] and the component C1q coat apoptotic cells via
their globular heads and initiate uptake via interacting with phagocyte receptors
through their collagenous tail groups. Other possible important bridging mole-
cules include thrombospondin, lactadherin, iC3b and �2-glycoprotein I. Phagocyto-
sis of apoptotic cells by phagocytes (i.e. macrophages) via the ‘tether and tickle’
mechanism leads to the secretion of immunosuppressive cytokines suppressing
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Fig. 12.1 Electron micrograph of an immature DC with two apoptotic
bodies (*) derived from apoptotic macrophages within its cytoplasm.



any potential autoimmune responses. DCs preferentially phagocytose apoptotic
cells via the �v�5 integrin [11]. While binding to CD36 seems to influence DC re-
sponsiveness towards anti-inflammatory signals [12], binding to the �v�5 integrin
might direct the cytoskeletal changes necessary for the phagocyte surface to envel-
ope apoptotic cells through recruitment of the CrkII–DOCK180–Rac1 signaling
complex and possibly route dead cells towards a specialized antigen-presentation
pathway [13]. The phagocytosis of murine apoptotic cells was facilitated by the
binding of anti-�2-glycoprotein I antibodies indicating a pathophysiological role of
antiphospholipid antibodies in autoimmune diseases [14]. In contrast, the acute-
phase protein PTX3, which binds to dying cells, inhibits the phagocytosis of apop-
totic or necrotic cells and thus seems to play a protective role in the induction of
autoimmune reactions in inflamed tissue [15].

12.2.3
Processing of Apoptotic Cells

As DCs continuously shuttle the material derived from their intracellular process-
ing to regional lymph nodes [16] it is of interest to know whether apoptotic
material is also presented. Following internalization, exogenous antigen is con-
served in endosomes but gains access to the MHC I antigen-presentation machin-
ery restricted to cytoplasmic antigen. Apart from the possible leakage of smaller-
sized antigen through the endosomal membrane into the cytosol, DCs were
shown to have a unique membrane transport pathway linking the lumen of endo-
cytic compartments and the cytosol [17]. Furthermore, processing of the antigen
within the endosomes and subsequent ‘regurgitation’ might lead to the MHC I-re-
stricted antigen presentation on the same or neighboring cells, and this might be
an additional mechanism [18]. Although in vitro studies have suggested that both
transporter associated with antigen processing (TAP)-dependent and -independent
pathways exist for cross-presentation, in vivo data demonstrate an absolute require-
ment for a functional TAP system for cross-presentation of exogenous antigen
[19].

Most likely in vivo the antigenic material that gets access to the antigen presen-
tation machinery of a DC is derived from both apoptotic and necrotic cells. One
common denominator of both cells is heat shock protein (HSP), which can be
found enclosed in apoptotic cells and apoptotic bodies and blebs derived from
such cells [20] as well as being released by necrotic cell material [21]. HSPs are
highly conserved chaperones designed for the cellular transport and folding of
proteins. They are taken up by DCs, presumably by receptor-mediated phagocyto-
sis (CD91 seems to be the molecule involved) [21, 22], and both HSP70 [23] and
HSP96 [24] induce a maturation of immature DCs, indicating a physiological role
for HSP-dependent antigen presentation. This concept is further supported by the
in vivo induction of protective immunity and cytotoxic T lymphocytes (CTLs) by
using HSPs derived from virally infected or tumor cells for murine vaccination
studies [25].
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12.3
Mature DCs

12.3.1
Mature DCs Present Antigen and Prime T Lymphocytes

When exposed to pathogenic and inflammatory stimuli, the DCs migrate to drain-
ing lymph nodes and undergo maturation. When mature, DCs downregulate their
ability to acquire antigens, but increase their T cell-stimulatory capacity through
(1) upregulation of co-stimulatory molecules and MHC molecules, (2) increased
expression and durability of peptide–MHC complexes, (3) development of im-
munoproteasomes, and (4) the capacity to synthesize cytokines such as interleu-
kin (IL)-12, IL-15 and IL-18 [26]. Several factors induce DC maturation including
microorganisms (bacteria, viruses, yeasts), CD40 ligand on activated T cells, cyto-
kines (e.g. tumor necrosis factor (TNF)-�, IL-1�), bacterial and viral products and
nucleotides. A complete shift in the chemokine receptor expression profile en-
ables their entry into regional lymph node.

T cells recognize antigens presented as small peptides in the grooves of human
leukocyte antigen (HLA) molecules on the surfaces of APCs. CD4+ T cells detect
peptides derived from exogenously acquired antigens and which are processed
within specialized HLA class II-rich compartments of immature DCs. During ma-
turation, the peptides are bound to HLA molecules and transferred to the cell sur-
face with co-stimulatory molecules for activation of CD4+ T cells [27]. The com-
plexes remain there for several days to allow interactions with naïve CD4+ T cells.
Following recognition of antigen on HLA molecules, CD4+ T cells can differenti-
ate into T helper 1 type (Th1) or T helper 2 type (Th2) cells, which are distin-
guished by the production of interferon (IFN)-� and IL-4, respectively. Compared
to other APCs, DCs are up to 1000-fold more efficient in activating resting T cells
[28]. CD4+ T cells, in turn, are essential for licensing the DCs to activate CD8+ T
cells and to maintain their memory.

CD8+ T cells mediate protective immunity to intracellular pathogens and tu-
mors, through production of cytokines such as IFN-� and TNF-�, and/or direct cy-
tolytic mechanisms. Typically, CD8+ T cells are primed by antigens that are pre-
sented on HLA class I molecules and which have been acquired ‘endogenously’,
e.g. all proteins synthesized within the DC’s cytoplasm including viral antigens
when the DC is infected by viruses. These proteins are cleaved by enzymatic units
called proteosomes into peptides, transported into the endoplasmic reticulum via
transporter molecules and loaded onto HLA class I molecules for export to the
cell surface. Maturing DCs upregulate a subfraction of proteosomes termed im-
munoproteosomes which may enhance antigen processing, as well as HLA class I
synthesis. Furthermore, endogenously synthesized antigens can be presented on
HLA class II molecules, allowing for the simultaneous class I- and class II-re-
stricted presentation of antigens brought into DCs by viruses or vector systems.

The priming of CD8+ T cells, including their expansion, development into effec-
tor cells and maintenance as memory cells, also requires CD4+ helper cells and
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the cytokine IL-15 [29], which is produced by DCs following T cell contact. In ani-
mal models, DCs bearing viral or tumoral antigens introduced as peptides, pro-
teins, DNA, RNA, or within viral vectors or dead cells, induce protective and
therapeutic CTL responses and can reverse tolerance in some cases (reviewed in
[26]).

12.3.2
Cross-priming of CD8+ T Cells

It has now become evident that exogenously acquired antigens can also be pre-
sented on HLA class I molecules to CD8+ T cells. This phenomenon was first de-
scribed in 1976 by Bevan [30] and refers to the capacity of APCs to acquire anti-
gens from other cells in vivo, resulting in the generation of an antigen-specific
CD8+ T cell response. Bevan showed that mice immunized with cells that express
foreign minor histocompatibility antigens mount an antigen-specific response that
was restricted to self class I, demonstrating the importance of the exogenous path-
way in the induction of CD8+ T cell responses. Bevan termed the MHC I-re-
stricted presentation of antigens from cells by APC cross-presentation. Subse-
quently studies confirmed that CD8+ T cell responses could be generated to anti-
gens expressed in peripheral autologous tissue that lacked APC functions, such as
viral antigens or H-Y self-antigens and tumor antigens [31–33]. The activation of
antigen-specific CD8+ CTL is now commonly referred to as cross-priming, a
mechanism considered to be essential for the induction of immunity against
pathogens that fail to infect APCs directly [e.g. Epstein-Barr virus (EBV)] or to tu-
mors which themselves present antigen extremely inefficiently (reviewed in [34]).
The determination of the cells involved in the cross-presentation was the next key
step in the attempts to decipher the process of priming CD8+ T lymphocytes
against exogenous antigen. First of all, the relevance of bone marrow-derived
APCs was demonstrated [33, 35]. Together with growing concern about the in vivo
relevance of DCs in inducing and regulating cellular immunity, data showing
their capacity to cross-present cellular antigen emerged. In vivo studies in animals
have confirmed the immunogenicity of apoptotic tumor cell-pulsed DCs but not
macrophages in cross-priming [36].

12.3.3
Cross-Priming versus Cross-Tolerance

Although the existence of DC lineages specifically designed to induce tolerance
has been postulated [37], the current data generally support a concept based on
the maturation status of a DC in order to explain the relevance of DCs for the in-
duction of immunity and the maintenance of peripheral tolerance. Both imma-
ture and mature DCs can present antigen in a MHC-restricted fashion. Yet, the
context of this presentation is substantially different. Immature DC express only a
limited amount of co-stimulatory molecules. T cell activation heavily depends on
the context of antigen presentation as the activation threshold is substantially low-
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ered when co-stimulatory molecules are triggered [38]. A lack of co-stimulation
not only fails to activate T cell proliferation but instead induces an anergic state
and thus tolerance [39] or even antigen-specific regulatory T cells which can ham-
per T cell proliferation [40]. These mechanisms of regulation are thought to play a
major role in the induction and maintenance of peripheral tolerance as in fact
bone marrow-derived APCs, and not the peripheral tissue itself, are responsible
for the tolerization of antigen-specific CTL [41]. Studies of the interaction of cross-
presenting DCs with CD8+ T cells have revealed a substantial role for DCs in the
regulation of peripheral tolerance by cross-presenting antigen from apoptotic cells
[42, 43]. Furthermore, there is experimental evidence now for an amendment of
the second signal theory, which reduces the balance of cross-tolerance versus
cross-priming to the sole expression of co-stimulatory molecules and the amount
of antigen on the DCs. It became clear that CD4+ helper T cells play a major role
in inducing an activation stage of DCs, licensing them to prime CTL to become
activated [44]. This activation status of the DCs seems to be more than just the
further upregulation of co-stimulatory molecules and instead a third signal of yet
undefined nature active at the DC–CD4+ T cell interface [43]. Physiologically, the
cross-presentation of cellular antigen derived from apoptotic cells seems to play a
role for the induction of autoimmune diseases such as lupus erythematodes [45]
and in the induction of immunity against antigens structurally related tumoral
antigens, e.g. in paraneoplastic cerebral degeneration [46]. It is less clear which
role can be attributed to cross-presenting DC in vivo in the induction of antiviral
or antitumoral immunity. As apoptosis in tumor cells occurs not only physiologi-
cally but, instead, is induced by various treatment modalities [47, 48], experimen-
tal determination is clearly of great interest. Studying the interaction of apoptotic
tumor cells with APCs is a prerequisite to solve this problem.

12.4
Immunomodulating Properties of Apoptotic Cells

In general, tumor cells are thought to have the capacity to block DC functions by
secreting regulatory factors such as IL-10, transforming growth factor (TGF)-�,
prostaglandin E2 or other, yet undefined molecules [49]. We will concentrate here
on the effects described for apoptotic tumor cells. The dualistic function of anti-
gen presentation by immature DCs participating in the maintenance of peripheral
tolerance and the inhibition of antigen-specific CD8+ T cells through the genera-
tion of suppressor or regulatory CD8+ T cells in vivo [50] versus the immunogenic
presentation of antigen by mature DC is the basis for intense studies determining
the maturational capacities of apoptotic tumor cells. Consensus now seems to be
reached for the non-maturing effects of apoptotic cells derived from both tumor
cell lines and tumor cells up to a certain DC: tumor cell ratio of about 1 : 1 [51].
Alterations of the chemokine system, responsible for DC migration and T cell in-
teraction, have been reported in the murine system by two groups. An upregula-
tion of CCR7 with functional consequences was observed after co-cultivating
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mouse DC with apoptotic fibrosarcoma cells [52], and apoptotic BL6-10 melanoma
cells induced the synthesis of chemokines such as MIP-1�, MIP-1� and MIP-2 to-
gether with the expression of CCR7 and the downregulation of CCR2 and CCR5,
receptors that modulate responsiveness to MIP-1�, MIP-1� and RANTES [53].
These experiments await further analysis in the human system.

Concerning the ex vivo maturation of DCs, one report showed that beyond the
proinflammatory cytokines used by most researchers for the maturation of anti-
gen-loaded DCs, CD40 ligand plus IFN-� adds to the cross-presentation of tumor
antigens derived from apoptotic cells [54]. This report thus supports the opinion
that in order to achieve cross-priming DCs have to mature completely while anti-
gen presentation with immature or half mature DCs, as used in another report
[43], leads to cross-tolerance.

12.5
Antigen Loading

Although the injection of DCs into tumors had some effect related to intra-tumor-
al apoptotic murine breast cancer cells [55] most researchers will prefer to load
DC ex vivo. Ex vivo manipulation has certain advantages: it allows for the control
of DC quality (i.e. maturation status, DC subset) and expression level of desired
antigens. Furthermore, injection of the prepared DCs can be performed at ana-
tomical sites of interest (i.e. lymph nodes or tumors). Recently gained knowledge
of tumor-associated antigens (TAAs) has opened a myriad of possibilities to ma-
nipulate DCs for maximal antigen-specific presentation. In principle it is desirable
to aim for the parallel presentation of HLA class I- and class II-restricted anti-
gens, as the absence of CD4+ helper cells affects the generation of long-term
CD8+ T cell memory [56] and CD4+ helper T cells are essential for an antitumor
immune responses [57]. The cloning of TAAs was followed by the determination
of immunodominant peptide sequences suitable for MHC I-restricted presenta-
tion by a given HLA molecule. The syntheses of large quantities of 8- to 10-ami-
no-acid long peptides that fit into the HLA class I groove is technically rather easy
and several companies now provide clinical grade peptides. In a process termed
‘pulsing’ peptides are added to DC populations generated ex vivo. These peptides
replace others, which are bound to class I molecules with lower affinities. How-
ever, there are certain caveats with this approach: (1) the longevity of these HLA-
peptide complexes in vivo is unknown, (2) the affinity of peptides for their various
HLA molecules varies, (3) competition between peptides may affect immuno-
genicity, (4) epitopes that activate CD4+ T cells have yet to be identified in detail
and (5) the approach is inherently tailored for individuals as it is dependent upon
the HLA type. Nevertheless, some approaches have been developed to address
these concerns. One is the development of heteroclitic epitopes where the affinity
of the peptides derived from TAAs for HLA molecules is improved by exchanging
amino acids [58]. In order to vaccinate patients with multiple TAA-derived pep-
tides (which is desirable to avoid the development of HLA– tumor cells) it is prob-

12 Dendritic Cells Pulsed with Apoptotic Tumor Cells as Vaccines214



ably wise to pool aliquots of DCs, which have been pulsed with individual pep-
tides to avoid competition between peptides for HLA binding. Recently, HLA class
II-binding peptides have been defined for some TAAs as well, making it feasible
to load DCs with epitopes that activate both CD4+ and CD8+ T cells. The tech-
nique of peptide pulsing has been shown to induce peptide-specific CTL in
healthy subjects [59] and melanoma patients [60]. Furthermore, clinical studies
with peptide-pulsed DCs were applied against a broad variety of tumors (for re-
view, see [61]) with partial effectiveness.

In contrast to peptide pulsing, using whole tumor cell preparations for DC load-
ing avoids the need for detailed tumor analysis and individual HLA typing, as it is
assumed that all tumoral antigens, including as yet undefined TAAs and rare mu-
tations, will be presented on MHC class I and class II molecules by autologous
DCs. The disadvantage of this approach includes the uncertainty regarding the in-
duction of autoimmunity [62] and the necessity to obtain a sufficient number of
autologous tumor cells by invasive procedures. Furthermore, tumor metastases
may have a different antigen profile than the one expressed by primary cells or
the cells obtained for antigen loading. It is a well-known phenomenon that tu-
mors can ‘escape’ detection via loss of HLA molecules or TAAs. When allogeneic
cell lines are used for the loading of DCs, not all tumoral antigens of the autolo-
gous tumor might be expressed and cell lines tend to have an unstable gene ex-
pression, resulting in a possible loss of relevant tumoral antigens.

The preparations used for antigen loading are usually mechanically or ther-
mally disrupted tumor cells. Necrotic tumor cell material has the capacity to in-
duce DC maturation when given to immature DCs [51], but we feel that it is de-
sirable to induce further maturation with a standard stimulus prior to clinical use.
Although clinical trials have been performed using DCs loaded with tumor cell ly-
sates [63–65], little is known about the efficacy of antigen loading and the antigen
concentrations required to achieve antigen presentation. In vitro, at least, there is
debate as to whether tumor lysates can be efficient sources of antigens for DCs
[66, 67]. Furthermore, when comparing the loading efficacy of necrotic cellular
material with further processed lysates (generated by removing cellular debris) in
the generation of an anti-EBV immunity, conflicting data were presented [66, 68].
However, soluble antigen such as tumor-derived proteins is taken up by rather in-
efficient pinocytosis, while cellular antigen is taken up by receptor-mediated pha-
gocytosis, presumably leading to a more efficient cross-presentation [67]. With re-
gard to the phagocytosis mechanisms mentioned in Section 12.2.2, uptake and
processing of antigen derived from apoptotic cells is assumed to be very efficient.
The efficiency of cross-presentation of viral antigens from apoptotic cells, at least
in vitro, is high: one apoptotic cell fed to 100 DCs is sufficient to elicit an antiviral
CD8+ T cell response. Furthermore, the antiviral CTL responses induced are
equivalent to those elicited by direct infection of DC with virus or peptide pulsing
with nanomolar concentrations of relevant viral antigen [34]. For tumor antigens
it has been shown that cross-presentation of melanoma-derived TAAs is less effec-
tive for single TAA than peptide pulsing, but the overall efficiency of killing tu-
mor cells is better with cross-primed CTL [69]. An augmentation of this cross-pre-
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sentation can be achieved in a myeloma in vitro system by coating the apoptotic
tumoral cells with an antitumoral monoclonal antibody [70]. We will summarize
the available data concerning the usage of apoptotic tumor cells for the loading of
DCs in the following section.

12.6
Apoptotic Tumor Cells for Loading

The first report that apoptotic cells/bodies are potential sources for antigen pre-
sentation stems from Bellone et al. [71] who demonstrated that macrophages are
capable of phagocytosing lymphoma cells and presenting the resulting antigen to
specific T lymphocytes. Thereafter, the efficient MHC I-restricted presentation of
viral antigen derived from influenza-infected and thus apoptotic macrophages was
demonstrated to be a feature restricted to DCs [72], while macrophages were in-
capable to stimulate T cells. This work inspired many researchers to search for
the cross-presentation of tumoral antigen derived from apoptotic tumor cells. Rus-
so et al. [73] were the first to demonstrate the cross-presentation of MAGE-3 anti-
gen derived from DCs transduced with a retroviral vector containing recombinant
MAGE-3. The first report on the cross-presentation of tumoral antigen derived
from genuine apoptotic tumor cells was done with melanoma cells by our group
[69] and we found that in contrast to the efficient cross-presentation of viral anti-
gen, TAAs derived from theses melanoma cells did not reach the antigen levels
achieved by peptide pulsing. Yet, the CTL primed with cross-presenting DCs were
far more capable of lysing melanoma cells than CTLs generated by peptide-pulsed
DCs. The research work following these initial sparks is listed in Tab. 12.1 and
summarized in the following section. It is not clear or proven whether the use of
apoptotic instead of other tumor cell preparations has advantages. One recent re-
port describes similar in vivo capacities for necrotic or apoptotic B16 melanoma
cells loaded on DCs [74], while apoptotic cell loading was advantageous over tu-
mor lysates in other, human systems [75, 76]. Whenever clinicians initiate DC-
based trials we recommend testing the loading efficacy of the given tumor. In the
following subsections we will summarize date available for different tumors. For
an overview about clinical studies involving DCs we recommend the following re-
views: [61, 77, 78].

12.6.1
Melanoma

Melanoma is an attractive target for immunotherapy given that several TAAs have
been identified and an anti-TAA T cell response can be detected readily in melano-
ma patients. The first clinical trial using DCs was conducted in stage IV melano-
ma patients using immature monocyte-derived DCs loaded with TAA-derived pep-
tides or tumor lysates delivered intranodally [63]. This trial received criticism for
the use of fetal calf serum (FCS) in DC generation, the simultaneous loading of
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multiple peptides competing for a given HLA molecule onto one batch of DC and
the application of immature DCs, but it demonstrated that the route of delivery
was safe and led to delayed-type hypersensitivity (DTH) and some clinical re-
sponses. Since then other groups have delivered mature monocyte- or CD34+

HPC derived DCs subcutaneously and intravenously. Although clinical responses
were partially reported and TAA-specific T cells were induced or boosted by these
peptide-pulsed DCs, alternatives to antigen loading are clearly needed to improve
this strategy. After the initial demonstration of the feasibility of using apoptotic
melanoma cells for the antigen loading of DCs [69] the data were supported by
others [79] and expanded to uveal melanoma [76]. With striking similarity, these
reports demonstrate that apoptotic melanoma cells do not inhibit the artificial ma-
turation of the loaded DCs necessary to obtain mature DCs. Comparing necrotic
uveal melanoma cells in their loading capacity with apoptotic melanoma cells, the
latter report suggested the superior loading capacity of apoptotic melanoma cells
[76]. Furthermore, in a mouse model both apoptotic and necrotic BL6-10 melano-
ma cells were more efficient than peptide-pulsed DCs in the eradication of mela-
noma lung metastasis [80], supporting the in vitro data mentioned above [69].

12.6.2
Solid Tumors: Breast Cancer, Ovarian Cancer, Colorectal Cancer and Lung Cancer

The therapeutic support of DC-based immunotherapies has been probed in plenty
of solid tumor. Unlike melanoma or renal cell carcinoma, most of these tumors
were not characterized as immunogenic, a fact that somewhat limits the expecta-
tions of DC-based vaccines. Furthermore, the wide array of TAAs described for
melanoma are not present in most of these tumors, a circumstance making the
loading with tumor cell preparations desirable. On the other hand, tumor
material for DC loading will be readily available as most patients undergo surgery.
For breast and ovarian cancer overexpressed self-antigens like the HER-2/neu pro-
to-oncogene or the MUC1 gene, a heavily glycosylated protein which is expressed
in ductal epithelial cells of the normal breast, have been targeted by DC-based vac-
cination trials in a pilot study demonstrating the feasibility of DC therapy in heav-
ily pretreated patients [81]. Lysates from ovarian cancer cells have been used suc-
cessfully to load autologous DCs [82], but no apoptotic breast or ovarian cancer
cells have been applied so far.

For colorectal cancer, the carcinoembryonic antigen (CEA) is an overexpressed
self-antigen which is partially also found on breast cancer cells as well as colorectal
and lung cancer and might provide yet another potential target for immuno-
therapies. To generate an in vitro CTL antitumoral activity, DCs have been success-
fully loaded with RNA [83], peptides derived from the immunodominant CTL epi-
tope and a recombinant avipoxvirus [84]. Furthermore, initial clinical trials suggest
a role for antigen-loaded DCs in the treatment of such malignancies [85]. Apoptotic
cancer cells of gastrointestinal cancers were used in one study to activate autologous
CTLs in vitro [86], but mixed results were reported as for some patients a reduced
IFN-� synthesis of T cells in response to autologous tumor cells was found.
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DC-based vaccination studies have been probed for other tumors. For example,
lysates derived from a pancreatic tumor cells have been used to load DC [87] for
pancreatic cancer and solid tumors in pediatric patients (Wilm’s tumor, Ewing’s
tumor, osteosarcoma, fibrosarcoma were targeted) [65], but so far, no apoptotic
cells have been applied to the best of our knowledge.

12.6.3
Prostate Cancer

Antigens that are targeted in prostate cancer are differentiation antigens such as
prostatic acid phosphatase, prostate-specific antigen (PSA) and prostate-specific
membrane antigen. HLA-A*0201-restricted peptides are available for all these anti-
gens and have been used in a number of DC-based trials [88]. Different routes of
DC administration have been explored with prostate cancer patients. Comparing
intravenous, intradermal and intralymphatic injection of DCs, comparable results
in the induction of antiprostate cancer CTLs were achieved [89]. The potential of
apoptotic prostate cancer cells has been probed in one report. Apoptotic prostate
cancer lines were used to load DC and demonstrated the generation of CTL specif-
ic for yet another prostate cancer cell line after several rounds of re-stimulation
[90]. Immature DCs were used for this in vitro study and no maturation status of
the DCs was determined, thus further evaluation is recommended before clinical
trials are set up.

12.6.4
Hematological Malignancies

Multiple myeloma [91] and B cell lymphoma [92] have been targeted with DC-
based immunotherapies with limited success so far. Furthermore, unloaded DCs
derived from patients with acute myelomatous leukemia (AML) were reported to
stimulate a lytic response of autologous lymphocytes against leukemia cells [93].
Loading of DCs with whole leukemia cells might be an attractive option as not
many relevant TAAs have been described for hematological malignancies. Some
reports support the utilization of apoptotic leukemia cells for the loading.
Although apoptotic RMA cells (a mouse T cell lymphoma) were 20-fold less effi-
cient in the induction of antitumoral cellular immunity than viable, non-proliferat-
ing cells of the same lineage, DC pulsed with apoptotic RMA cells were rather ef-
ficient in the induction of an antitumoral immunity (protection of two out of five
mice protected from subsequent challenge with RMA cells) [36]. In another
mouse model, the loading efficacy of B cell lymphoma cells retrovirally trans-
fected with hCD4 was probed and compared with the efficacy of hCD4 protein.
Comparable anti-B cell lymphoma T cell activity and antitumoral protections were
reported [94]. In vitro, treatment of human Daudi lymphoma cells with the C2B8
anti-CD20 antibody induced apoptotic cell death followed by phagocytosis of DCs
[95]. After maturation, the DCs were capable of cross-priming CTLs against Daudi
cell-associated antigens. This observation might indicate that the beneficial effect
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of an anti-CD20 antibody treatment (Rituximab), as applied for B cell non-Hodg-
kin’s lymphomas, might not only be related to tumor cell killing but also to the
generation of an antilymphoma immunity after cross-presentation of lymphoma
antigens. In one recent study, the efficacy of apoptotic myeloma cells as loading
agents for DC was demonstrated [70]. Interestingly, this study demonstrated that
coating of the apoptotic tumor cells with an antitumoral antibody increased the
cross-presentation of tumoral antigen.

12.6.5
Neurological Tumors

The feasibility of DC-based vaccination as additional therapy for patients with tu-
mor material-loaded DCs has been proven for different tumors (reviewed in [96]).
DCs fused with glioma cells [97] or DCs loaded with astrocytoma cell preparations
[98] were used in vivo. Furthermore, nine patients with glioblastoma multiforme
or anaplastic astrocytoma were treated with immature monocyte-derived DCs
pulsed with peptides eluted from autologous brain tumor cells. While some tu-
mor-specific cytotoxicity was observed, two subjects had evidence of CD8+ T cell
infiltration in areas of the tumor [99]. Thus, whenever glioblastoma cells are re-
covered by surgical procedures they might be used to load autologous DC. Yet,
apoptotic glioma, glioblastoma or astrocytoma cells have not been used so far to
the best of our knowledge.

12.6.6
Renal Cell Carcinoma (RCC)

Based on the occurrence of spontaneous remissions and the partial efficacy of
non-specific immunoactivators such as IL-2, RCC is considered to be amenable to
treatment with immunotherapy. Renal cell tumor lysates have been used in two
trials and some cellular responses to tumor lysates were observed in vitro follow-
ing the vaccinations [100, 101]. The cross-presentation efficacy of lysates generated
from RCC cells and apoptotic RCC cells was compared in one report [102]. Sev-
eral rounds of re-stimulation yielded comparable levels of antitumoral CD8+ T cell
clones. Thus, apoptotic RCC cells might be an option for the loading of autolo-
gous DCs for vaccination strategies or the ex vivo generation of anti-RCC T cells
before their adoptive transfer.

12.6.7
Squamous Cell Carcinoma of the Head and Neck (SCCHN)

SCCHN are considered to be poorly immunogenic and immunosuppressive tu-
mors. Restoration of a patient immunity against this tumor might be an option to
support other antitumoral strategies. With only a few well-characterized TAAs (in-
cluding CASP-8 and SART-1), whole tumor cell preparations have to be consider-
ed as antigen-loading agents for DC-based vaccination strategies. In a murine
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model, apoptotic cells of the poorly immunogenic SCC line KLN 205 were used to
load DC ex vivo. Tumor growth of the same cell line was suppressed when intra-
peritoneal IL-2 was added [103]. Furthermore, splenic T cells of the treated mice
produced larger amounts of IFN-� when stimulated with KLN 205 tumor cells. In
a human in vitro system, the activation of anti-SCCHN T cells was demonstrated
when apoptotic PCI-13 SCCHN cells were used, but not when lysate of the same
line was added to immature DC [75]. Thus, apoptotic SCCHN cells have to be
considered as loading agent for DC-based vaccination strategies for these kinds of
tumors.

12.7
Concluding Remarks

Several areas of investigation will be required to optimize DC-based immunother-
apy. It will be important to optimize DCs preparations, in terms of subsets and
maturity. Furthermore, antigen loading and monitoring of the resulting MHC-
peptide complex formation will be as important as the determination of the route
and timing of administration.

It is our strong opinion that DCs need to be given as mature cells given recent
data showing that immature DCs induce immunoregulatory T cells in vivo [50]
and fail to prime T cells to TAAs [104]. DC immunizations have been delivered in-
tradermally, subcutaneously, intravenously, intranodally or into lymphatic vessels.
Since optimal presentation of antigens in secondary lymph nodes is crucial for
both the initiation and maintenance of T cell immunity, the route of administra-
tion must be carefully considered as this will affect DC migration to lymphoid tis-
sue and thus most likely their immunogenicity.

Loading of DCs with apoptotic tumor cells for immunotherapeutic approaches
seems to combine the efficient antigen expression, probably physiologically de-
signed to support peripheral T cell tolerance, with the ex vivo maturation of DCs
leading to an optimal antigen presentation and immunogenicity. When using anti-
gen-loaded DCs, side effects have been mostly low grade, ranging from local reac-
tions, fevers, myalgias, development of autoantibodies but without autoimmune
disease (antinuclear antibodies, anti-DNA, anti-thyroid-stimulating hormone) and
vitiligo to transfusion-like reactions with rigors. Anaphylactic reactions in anecdo-
tal reports have been linked to the use of FCS in DC culture systems [105].

Loading of DCs with apoptotic tumor cells has yet to be directly compared in
vitro and in vivo to other approaches that allow exploitation of the whole antigenic
spectrum of a tumor such as fusion [106] and RNA transfection [107]. The latter
approach is particularly exciting and attractive as RNA from minimal tumor sam-
ples can be amplified to provide a seamless unlimited supply of individualized
antigen.

Yet, it has to be kept in mind that therapeutic protocols based on DCs loaded
with whole tumor cell preparations inherit a certain risk of breaking the peripher-
al tolerance against presumably important autologous antigens presented with
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similar efficacy as the desired tumoral antigens. So far, no such side effects have
been observed in multiple clinical trials. This fact might be due to the sustained
and permanent in vivo tolerization of T cells against such antigens by powerful
mechanisms [62].
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13.1
Introduction: Immune Appraisal of Dying Cells

T cells normally ignore antigens expressed in peripheral tissues [1]. Kurts et al.
demonstrated in a seminal paper that this rule applies to living tissues only, i.e.
those tissues in which few scattered cells die at any given time. Adjacent phago-
cytes swiftly engulf cell corpses, thus sequestering their antigens from immune
recognition. The inoculation of exogenous cytotoxic cells specific for peripheral
antigens causes overwhelming apoptosis, an event that jeopardizes the ability of
local scavenger phagocytes to clear cell corpses [2]. As a consequence, T cells spe-
cific for poorly expressed antigens actively proliferate in draining lymph nodes.
Zhang et al. confirmed that the synchronized death of � cells in pancreatic islets
induced by streptozotocin determines the priming of diabetogenic CD8+ T cells,
specific for � cell autoantigens [3, 4].

The inoculation of apoptotic cells, which mimics massive death of tissue cells,
induces autoantibodies recognizing preferentially nuclear antigens or anionic
phospholipids [5]. Autoantibodies are normally transient – they can be detected
only in a narrow chronological window after the administration of dead cells. In
some individuals, however, they persist and clinical manifestations develop. The
causes are largely unknown, but genetic influences are implicated. For example,
in NZW/NZW F1 mice, the injection of dying thymocytes causes the development
of a vast array of autoantibodies, including anti-double-stranded DNA, anti-�2-gly-
coprotein I and antinucleosome antibodies. Injected animals undergo a dramati-
cally accelerated lupus syndrome, with early death due to renal involvement
(Manfredi et al., unpublished). Conversely, mice that chronically fail to clear apop-
totic cells almost invariably develop autoimmunity [6–9]. The injection of dying
cells or their products in these ‘clearance-defective’ animals further accelerates
and exacerbates autoimmunity [7, 9].

These findings support the concept that defective or deregulated disposal of cell
corpses underlies systemic autoimmunity [10, 11] (see also other chapters in this
book). The observation that autoantibodies preferentially recognize cell constitu-
ents that are preferentially cleaved, redistributed and clustered or otherwise post-
translationally modified during apoptosis further strengthens this contention [12–
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14]. Cells killed by cytotoxic T cell-assisted apoptosis are preferential sources of
autoantigens [15]. This result is intriguing, since cytotoxic T cells are crucial for
eradication of intracellular infection. Therefore, apoptosis of infected cells during
infections could represent a trigger to autoimmunity (see also later).

Cells undergoing post-apoptotic necrosis are also apparently more immuno-
genic [16]. A defective clearance of apoptotic cells cause accumulation of un-
cleared dying cells, which develop features of advanced apoptosis in vivo [2, 17].
Autoimmune systemic lupus erythematosus (SLE) patients fail to properly clear
autologous apoptotic cells [18–20] and products released from uncleared apoptotic
cells accumulate in tissues [21–27]. The defective clearance of autoantigens and
possibly of endogenous adjuvant moieties (see below) contributes to the origin of
the vast array of autoantibodies recognizing cell death-associated antigens and to
the tissue damage (in particular of kidney involvement) [26].

Why uncleared cell corpses should cause autoimmunity is poorly understood.
Elicited autoantibodies are usually affinity-matured IgG. Isotype switching and af-
finity maturation of immunoglobulins require active help from T cells [28]. Acti-
vated helper T cells, in association with native antigen on follicular dendritic cells
(DCs), indeed select in the germinal centers B cells that express high-affinity anti-
gen receptors. Eventually, this leads to affinity maturation and to the generation
of memory B cells [29]. In the case of autoantibodies preferentially recognizing dy-
ing cell epitopes, antigen-presenting phagocytes must have access to dying cells at
the periphery, internalize and process them, and migrate in draining lymph
nodes. Once there, phagocytes present their antigens either directly or indirectly
[30] and activate autoreactive T cells, which in turn control the clonal expansion
and the affinity maturation of autoreactive B cells in germinal centers.

Evidence accumulated in the last years implicating antigen-presenting phago-
cytes in the disposal of dying cells [30–38]. DCs that constitutively transport apop-
totic intestinal epithelial cells to mesenteric lymph nodes in vivo have been identi-
fied [39]. This event is observed with relative ease in healthy rodents. Therefore,
uptake of dying cells by unconventional phagocytes, which are endowed with the
ability to professionally present antigens, occurs physiologically. DCs are the most
potent antigen-presenting cells (APCs) [40]. They activate, after active processing
of apoptotic cells, autoreactive T cells in the lymph node. The outcome of antigen
presentation varies, ranging from establishment and maintenance of peripheral
tolerance towards intracellular antigens to induction of productive immune re-
sponses [40–43]. Of course, productive immunity is, in most cases, the outcome
during infections.

13.2
Death of the Host, Death of the Pathogen

Intracellular pathogens that elicit protective immune responses activate cytotoxic
T lymphocytes (CTLs). Neither the pathogen nor infected cells in peripheral tis-
sues are per se able to prime CD8+ CTLs. Professional APCs derived from bone

13 The Immune Response against Apoptotic Cells228



marrow precursors are required [44, 45]. They take up microbial antigens in in-
fected tissues, process them for presentation in MHC class I- and class II-asso-
ciated epitopes, and migrate to lymph nodes where they meet and activate T lym-
phocytes.

APCs that efficiently prime MHC class I-restricted CD8+ T cells specific for ex-
ogenous antigens express a functional transporter associated with antigen process-
ing (TAP) system. In the cytosol of infected cells, proteasomes generate antigenic
peptides (or their precursors). TAP transports cytosolic peptides into the endoplas-
mic reticulum, where they associate with nascent MHC class I molecules [46]. Re-
cent studies identified myeloid CD8+ antigen-presenting DCs as the bone mar-
row-derived DCs implicated in MHC class I-restricted presentation of exogenous
antigens in vivo [47]. These data suggest that the presence of the pathogen in the
cytosol of infected APCs and the ensuing generation of antigenic peptides upon
processing are limiting steps for the initiation of antimicrobial immunity.

One could therefore speculate that pathogens, to escape immune recognition
and generation of protective immune responses, should simply avoid infecting
DCs. However, this is not the case. DCs productively activate (‘prime’) pathogen-
specific CD8+ T cells in a TAP-dependent manner, even when they are not in-
fected in vivo [44]. This implies, however, that uninfected DC somehow internalize
and process the pathogenic antigens. Infected cells often die. They may represent
an important source of antigens for CD8+ T cell ‘cross-priming’ [48].

DC efficiently internalize dying infected cells and cross-present their antigens to
MHC class I- and class II-restricted T cells specific for microbial antigens of the
pathogen. Suitable phagocytic substrates are dying cells infected by influenza
virus [49], cytomegalovirus [50, 51], canarypox virus [52, 53], Epstein-Barr virus
[54], vaccinia virus [55] and Salmonella typhimurium [56]. The process is also inde-
pendent of the lineage of infected cells. Immature DCs internalize and process in-
fected dying monocytes [32, 49], macrophages [56], fibroblasts [50], transformed
infected B cells [54] or even dying infected DC themselves [52, 53].

Larsson et al. provided a semiquantitative estimate of the efficiency by which a
single viral epitope contained in infected dying cells is cross-presented. At a dead
cell : mature DC 1 : 1 ratio, T cell activation was comparable to that induced by 10
nM of the synthetic peptide sequence [55]. Dead cells contain a plethora of anti-
gens. This result, which is probably indicative of the efficiency by which any giv-
en processed epitope is presented, indicates that the cross-presentation is indeed
strikingly efficient.

13.3
Infection, Cell Death and DC Maturation

DCs process antigens, present their fragments bound to MHC molecules and ini-
tiate immunity. However, the uptake of antigens and the initiation of productive
immune responses are distinct events [40]. DCs at different stages of maturation
carry out these functions. Mature DCs are better at inducing immunity. They ex-
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press stable MHC–peptide complexes, high levels of membrane receptors involved
in T cell binding, co-stimulation and activation. Mature DCs synthesize cytokines
that promote T cell proliferation and differentiation, and undergo a tightly regu-
lated reorganization of chemokines and chemokine receptor expression, which in-
creases the movement into lymphoid organs and lymphatic vessels [57].

In contrast, immature DCs preferentially home to peripheral tissues, where
they capture soluble and particulate antigens via dedicated receptors, and concen-
trate them into intracellular processing compartments. Immature DC sense patho-
gens via Toll-like receptors (TLRs) [58, 59]. Activation of TLRs upon recognition of
microbial structures determines DC maturation. This event is a crucial step in the
initiation of protective immune responses against the ‘infectious non-self’ [60].

Antigens derived from the processing of internalized dying cells initiate im-
mune responses (see above). This implies that DCs received the signal to mature
and migrate to lymphoid secondary organs. However, when DC phagocytose dy-
ing infected cells, direct recognition of pathogen molecules via TLRs does not
take place. Other signals are possibly involved.

(1) Cytokines. Bystander cells belonging to the innate immune system secrete,
upon pathogen recognition, a variety of pro-inflammatory cytokines, including tu-
mor necrosis factor-� and interleukin (IL)-1�. These signals in turn can activate
DCs that phagocytosed infected dying cells [61].

(2) Heat shock proteins (HSPs). Infection per se is a stressful event and stressed cells
express HSPs. Purified HSPs trigger DC maturation via interaction with diverse
membrane receptors (CD91 for HSP70, etc. [62]). Uningested infected cells possibly
release soluble HSPs, which collaborate with pro-inflammatory cytokines in promot-
ing DC maturation [63, 64]. Of interest, even HSPs contained in dying cells influ-
ence the outcome of the cross-presentation after uptake and processing by DCs, fa-
cilitating active cross-priming of CD4 and CD8 T cells [65]. HSPs also signal ‘stress-
ful’ cell death to macrophages, limiting the release of immunosuppressive factors
while inducing soluble factors that increase tumor immunogenicity [66].

(3) Endogenous adjuvants. Infections often cause the synchronized death of tis-
sue cells. Uningested dying cells possibly release, besides HSPs, other activators
of the antigen-presenting pathways. Most are still uncharacterized [67–69]. Dou-
ble-stranded DNA fragments [70] and proteins loosely associated to the linker
DNA (Rovere-Querini et al., unpublished) are involved. Finally, natural anticoagu-
lants, which interfere with the phosphatidylserine-dependent immunosuppressive
clearance (see [71] and elsewhere in this book), interfere with the in situ immuno-
genicity of dying cells (Bondanza et al., unpublished).

(4) Adjuvant effects of uncleared cells. Dying cells per se are poorly immunogenic.
However, high numbers (5–10 per each DC) of apoptotic cells promote the auto-
crine production of pro-inflammatory cytokines and the maturation of DCs [34].
DCs fail to clear all dying cells in these systems. The latter undergo post-apoptotic
necrosis and late plasma membrane failure [35], with release of endogenous adju-
vants. Conversely, caspase inhibitors, which prevent apoptotic but not necrotic
death of infected cells, block DC maturation [52] and the generation/release of in-
tracellular adjuvants [67].
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(5) Adjuvant signals expressed by dying cells. The nature of the dying cell, and in
particular the expression on the membrane of signals that elicit the maturation of
the phagocytosing DCs, like the CD40 ligand, possibly influence the final out-
come of cross-presentation [37]. Accordingly, the local availability of CD40 ligand
promoted the cross-priming of antineoplastic CD4+ T cells as a consequence of
apoptotic tumor cell processing [72].

All together, these results suggest that the death via apoptosis of infected cells
may represent a privileged event, providing the sentinels of the immune system,
the DCs, with both the pathogen antigens and the signal to initiate immune re-
sponses. In support of this hypothesis, most successful intracellular pathogens,
and viruses in particular, developed complex and elegant strategies to prevent
apoptosis induction in the infected cell [73]. It is tempting to speculate that the
highly regulated, finely tuned cross-presentation pathway represents an evolution-
ary conserved template for acquired immunity against pathogens [48, 74, 75].

13.4
Infections, Cross-Presentation and Autoimmunity

The studies summarized above indicate that cross-presentation of antigens de-
rived from the processing of dying infected cells contributes to the initiation of
protective antimicrobial immune responses. However, infected dying cells are a re-
servoir of self-antigens. Endogenous and microbial antigens are likely to be pre-
sented in a similar fashion. Central and peripheral tolerance contributes to limit
autoimmunity. However, it is not surprising that both acute and chronically in-
fected patients develop autoantibodies [76]. Furthermore, different lines of evi-
dence implicate infectious events as triggers or at least as facilitators in the devel-
opment of autoimmune diseases [77, 78].

The autoimmune responses that infected patients develop are usually transient.
Furthermore, they are likely to target cryptic epitopes derived from the processing
of intracellular antigens [37]. Therefore, they do not necessarily cause overt clini-
cal features. For example, Propato et al. recently showed that apoptotic cell death
in vivo is related to the cross priming of vinculin-specific CTLs in HIV patients
[37]. In other cases, the autoimmune response enforces a vicious self-maintaining
circle. For example, the injection of apoptotic neutrophils causes the development
of antiproteinase 3 (PR3) antibodies, a hallmark of systemic small vessels vasculi-
tis [79]. In turn, anti-PR3 antibodies have been convincingly implicated in the
maintenance of chronic inflammation and in vascular damage of vasculitis pa-
tients [80–82]. A similar role has convincingly been demonstrated for antiphos-
pholipid antibodies [83–85], anti-Ro/SSA antibodies [86, 87] and antinucleosome
antibodies [25] (for a detailed revision, see Chapter 5).

Opsonizing antibodies facilitate the access of internalized apoptotic cells into
MHC class II compartments, the MHC class II-restricted presentation of relevant
epitopes and the activation of CD4+ helper T cells [22, 23, 85]. Cross-presentation
by mature DCs is not sufficient to initiate immunity. In the absence of proper ac-
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tivation of T helper cells this event possibly determines tolerance towards anti-
gens expressed by dying cells [43]. I propose that the ability of opsonizing auto-
antibodies, once established to promote the activation of T helper cells, is a cru-
cial event in the shift from transient low-affinity autoimmune responses to
chronic autoimmune diseases.

13.5
Cross-Presentation and Tumor Immunity

Autoimmune responses are probably common. However, several factors contribute
to quench autoimmunity. The control of immune responses elicited by dying tu-
mor cells is apparently less stringent. Tumor cells frequently die by apoptosis as a
result of the unbalance between pro- and anti-apoptotic factors or as the conse-
quence of antineoplastic treatments [88–90]. Scavenger phagocytes interspersed in
the tumor masses or, more often, surrounding cells phagocytose the corpses.

DNA is horizontally transferred from apoptotic cells to recipient cells after pha-
gocytosis [91–93]. When phagocytes lack the p53 ‘guardian’, the DNA from the dy-
ing cell is propagated. The pathway is particularly efficient for the horizontal
transfer of genes that confer to recipient cells a selective advantage. Therefore, the
phagocytosis of apoptotic tumor cells contributes to genetic instability and divers-
ity within tumors [91].

When cells with an intact p53 system phagocytose apoptotic tumor cells, the
transfer of oncogenes is not detectable. In contrast, intracellular antigens of dying
tumor cells survive the phagocytic process and are ‘cross-presented’ to tumor-spe-
cific T cells [31, 34, 37, 49, 65, 72, 94–111; reviewed in 1, 36, 38]. High numbers
of lymphoma cells dying by apoptosis in vivo recruit in normal mice a long-lasting
antineoplastic immune response, endowed with memory and specificity [96].
Agents that interfere with the immunosuppressive clearance of apoptotic lympho-
ma cells substantially enhance the immunogenicity of the tumor (unpublished).
Several groups are actively involved in determining whether tumor cell death con-
tributes to tumor immunity in neoplastic patients. Recently, Mercader et al.
showed in patients with prostate tumors undergoing androgen ablative therapy
that local apoptosis correlates with prominent CD4+ T cell infiltration of tumor
sites. Infiltrating T cells have features compatible with a local oligoclonal response
[112]. Cell death at the tumor site represents an interesting source of antigens for
immunotherapeutic approaches [105].

The access to APCs influences the immunogenicity of uningested apoptotic
cells in vivo, since they compete with more efficient or more represented phago-
cytes. This step is bypassed challenging DCs in vitro with dying tumor cells. Ac-
cordingly, in diverse systems DC loaded with apoptotic tumor cells initiate im-
mune responses against the antigens expressed by dying cells. DCs that had pha-
gocytosed dying tumor cells are therefore an attractive target to achieve antineo-
plastic immunization [113, 114] (Tab. 13.1).
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Other less well-characterized factors also contribute to increase (or quench) tu-
mor immunogenicity. Feng et al. reported that the expression of HSPs enhances
the immunogenicity of apoptotic leukemia cells [65]. This is in keeping with the
observation that DCs that phagocytosed HSP-expressing apoptotic leukemia cells
trigger a more efficient antineoplastic immune response [65].

Several studies have addressed the relative ability of tumor cells killed by di-
verse approaches to elicit the maturation of phagocytosing DC and to induce anti-
neoplastic responses in vivo. This has been evaluated in mice vaccinated with dy-
ing tumor cells or with DC that phagocytosed in vitro dying tumor cells
(Tab. 13.1). Results have been obtained in different experimental settings: both the
susceptibility to cell death and elicited immune responses are likely to depend in
vivo on features of each given cancer. Furthermore, often populations of apoptotic
or necrotic cells are heavily cross-contaminated, due to the dynamic nature of the
cell death program [115]. However, even if methodological details may differ,
these studies agree on several issues.

(1) Dying tumor cells are efficiently processed after uptake by antigen presenting
phagocytes. The efficiency of this event is not substantially different when tu-
mor cells are killed by apoptosis or necrosis.

(2) Apoptotic tumor cells are normally poorly immunogenic.
(3) When apoptotic cells outnumber phagocytes, or when proper opsonins or ad-

juvant signals are provided, their immunogenicity is rescued in vivo.

It is intriguing that, to the best of our knowledge, autoimmune responses elicited
by these approaches do not represent a major obstacle to antineoplastic immune
therapy. This may indicate that the censorship mechanisms that limit the initia-
tion and the maintenance of autoimmune responses are not apparently quench-
ing antitumor autoimmunity.

13.6
Conclusions

The phagocytosis of dying cells prevents the initiation of immune responses
against intracellular antigens in higher organisms. This finding has profound im-
plications with respect to immune homeostasis and may allow designing thera-
pies: (1) to interfere with the maintenance of autoimmune response or with the
initiation of graft rejection and (2) to exploit the immune response against grow-
ing cancers. A more sophisticated understanding of the molecular events involved
is thus necessary.
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14.1
Autoantibodies: Probes of the Perturbed State

The cellular antigens targeted by the high-titer autoantibody response in systemic
autoimmune diseases are a diverse group of molecules that are ubiquitously ex-
pressed and that share no obvious features in terms of subcellular distribution,
protein structure or function [1]. In spite of such extraordinary diversity, the speci-
ficity of the autoimmune response is remarkably predictive of disease phenotype,
such that specific autoantibodies have become clinically useful diagnostically and
prognostically [2]. For example, antibodies to nucleosomes are strongly associated
with the systemic lupus erythematosus (SLE) phenotype [3], while antibodies to to-
posiomerase I are associated with diffuse scleroderma [4]. Similarly, antibodies
recognizing components of the centromere (e.g. CENP-B) are associated with the
limited form of scleroderma [5] and are predictive of digit loss in this disease [6].
Although the targeted antigens in the different diseases do not share features that
are readily apparent, there is a growing consensus that the highly specific humor-
al immune response to these molecules is T cell dependent and that flares of dis-
ease result when this primed immune system is rechallenged with self-antigen
(reviewed in [7–9]). Thus, the autoantigens in systemic autoimmune diseases
likely satisfied the stringent criteria for initiation of a primary immune response
during disease development. Since initiation of an adaptive immune response re-
quires that a unique molecular structure (not previously generated during devel-
opment of immune tolerance) is presented to the immune system in a pro-im-
mune context, we have proposed that the association of particular autoantibodies
with specific phenotypes reflects the unique modification of autoantigen structure
during a pro-immune initiating event in the target tissue [10].

Since T cell tolerance is only induced to dominant determinants in autoantigens
(which are generated and presented at suprathreshold concentrations during natu-
ral processing of whole protein antigens), a potential exists for T cell autoreactivity
directed against ‘cryptic’ determinants (which are generated at subthreshold con-
centrations during normal antigen processing (reviewed in [11, 12]). Such T cells
recognizing the ‘cryptic’ self never encounter their antigen during natural antigen
presentation and are therefore not tolerized. Indeed, several experimental systems
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have now clearly demonstrated the existence of such T cells (reviewed in [13, 14]).
The structure of such antigens can be changed in a variety of ways, including nov-
el autoantigen cleavage [15] and altered autoantigen processing induced by high-
affinity ligand binding (e.g. to an antibody or receptor molecule [16–18]). In turn,
these changes can alter the hierarchy of epitopes which are efficiently loaded onto
MHC class II molecules, resulting in presentation of previously cryptic epitopes
[17, 18]. We have proposed that autoantigens in systemic autoimmune diseases
are all structurally altered during disease initiation, thus allowing efficient loading
of previously ‘cryptic’ epitopes onto class II and the activation of autoreactive T
cells [19–21]. We and others have therefore used high titer autoantibodies as
probes of cell biology and biochemistry of autoantigens during different clinically
relevant perturbed states, to search for those circumstances in which autoantigens
become clustered, concentrated and structurally modified [19–29]. This chapter
highlights the modifications of autoantigen structure that occur during different
forms of cell death (particularly apoptosis), and focuses attention on unique forms
of apoptotic death in distinct microenvironments as initiating and propagating
events in systemic autoimmune diseases. The numerous current gaps in knowl-
edge make parts of this chapter necessarily speculative. However, these gaps raise
important questions about the normal immune consequences of different forms
of apoptosis in tissues, and about how defects in the signaling, execution and
clearance phases of the apoptotic process are susceptibility factors for the develop-
ment of systemic autoimmune disease.

14.2
Lupus Autoantigens undergo a Striking Redistribution during Apoptosis, Becoming
Clustered and Concentrated in the Surface Blebs of Apoptotic Cells

Studies to delineate the potential perturbed states that might initiate systemic
autoimmune diseases have been focused by a striking clinical observation in SLE:
that ultraviolet (UV) irradiation has a marked propensity to induce flares of both
systemic and skin disease in lupus patients (reviewed in [30]). In this regard, the
epidermis appears to be an important target of the immunopathologic response
in lupus and constitutes an appropriate in vitro model with which to address the
effects of flare-inducing stimuli (e.g. UVB) [31]. Earlier studies demonstrated that
intracellular autoantigens can be stained at the exterior surface of keratinocytes in-
cubated in vitro for 20–24 h after irradiation with UVB, although the mechanism
of this ‘redistribution’ of antigens was not determined [32, 33]. To determine how
this phenomenon might arise, we studied the subcellular distribution of lupus
autoantigens at increasing times after UVB irradiation, in both intact and permea-
bilized cells [19, 34]. Our initial studies made several observations. (1) UVB-irra-
diated keratinocytes undergo apoptosis, beginning a few hours after irradiation.
Apoptotic keratinocytes manifest the classic morphologic hallmarks of this pro-
cess, including prominent surface blebbing (early event) and nuclear condensa-
tion and fragmentation into apoptotic bodies (later event). (2) Lupus autoantigens,
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which are not restricted to any specific subcellular compartment in control cells,
are strikingly redistributed in apoptotic cells, such that they become clustered and
concentrated within small surface blebs and apoptotic bodies (Fig. 14.1). Thus,
small surface blebs [which contain fragmented rough endoplasmic reticulum
(ER); see Fig. 14.1] are highly enriched in 52-kDa Ro, ribosomal autoantigens, as
well as those autoantigens found within the ER lumen (e.g. calreticulin). This
marked enrichment of autoantigens in small surface blebs is accompanied by a
concomitant depletion from the cytosol. Nuclear autoantigens also undergo a
striking redistribution and concentration during apoptosis (Fig. 14.1). Thus, 60-
kDa Ro, La, the snRNPs, Ku and poly(ADP-ribose)polymerase (PARP), which nor-
mally have a diffuse nuclear distribution, initially become concentrated as a rim
around the condensing chromatin in early apoptosis. As apoptosis progresses and
the nucleus becomes fragmented into multiple membrane-bound apoptotic
bodies, nuclear autoantigens remain rimmed around the condensed chromatin.
Interestingly, the surface of these apoptotic surface blebs also has the capacity to
concentrate potential autoantigens. For example, phosphatidylserine (PS) becomes
concentrated at this site early in the apoptotic process [35–41]. PS, normally re-
stricted to the inner surface of the plasma membrane bilayer, becomes rapidly re-
distributed early in apoptosis and appears at the external membrane surface. This
generates a procoagulant external cell surface which has the capacity to bind sev-
eral autoantigenic PS-binding proteins, including �2-glycoprotein I and Annexin V
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Fig. 14.1 Autoantigens cluster in unique sub-
cellular structures in cells undergoing apopto-
sis. Although autoantigens are not restricted
to any specific subcellular compartment in
normal cells, they become clustered and con-
centrated within small surface blebs and
apoptotic bodies in cells dying by apoptosis
induced by various stimuli. Small blebs are

enriched in ribosomal autoantigens and those
found within the ER lumen, while apoptotic
bodies are enriched in nuclear autoantigens.
Additionally, PS rapidly redistributes early in
apoptosis from the inner surface of the plas-
ma membrane bilayer and appears at the ex-
ternal membrane surface.



[35–39]. The demonstration that these phospholipid-binding proteins decorate the
surface of apoptotic cells strongly suggests that the immunogenic phospholipid–
protein complexes form at the surface of apoptotic cells in vivo [39]. This is
further underscored by the observation that IgG purified from the plasma of pa-
tients with antiphospholipid syndrome binds to the surface of apoptotic cells and
inhibits its procoagulant activity [37]. Recent data has also demonstrated that dual-
specificity autoantibodies recognizing both PS and double-stranded DNA also rec-
ognize their cognate antigens at the surface of some apoptotic cells [42]. This ob-
servation is of great interest as it demonstrates for the first time that anti-DNA B
cells can recognize apoptotic surface blebs and may play an important role in pro-
viding B cells with access to nuclear antigens [42].

It is also noteworthy that the surface blebs of apoptotic keratinocytes bind C1q
[43, 44], whose collagen-like domains are the frequent (around 47%) target of a
high-titer autoantibody response in patients with SLE [45]. The exact binding part-
ner for C1q at the apoptotic surface is not yet known, but recent studies suggest
that C1q binding to apoptotic cells may have a critical function in the non-inflam-
matory clearance of apoptotic cells in vitro [46] and in some microenvironments in
vivo [47]. Interestingly, C1q deficiency is strongly associated with the development
of SLE in both humans and mice (reviewed in [48]). In the C1q-null mouse, Wal-
port et al. noted a marked accumulation of apoptotic cells in the kidney, suggest-
ing that clearance of apoptotic cells is defective in this microenvironment [47] and
focusing attention on clearance of apoptotic cells as an important potential defect
underlying the development of systemic autoimmunity. In this regard, it is rele-
vant that C1q also requires the binding of the acute phase reactant C-reactive pro-
tein (CRP) to the apoptotic cell surface for generating the anti-inflammatory con-
sequences to apoptotic cells [46].

14.3
Susceptibility to Efficient Cleavage by Caspases unifies a Subgroup
of Systemic Disease Autoantigens

Proteolysis plays an important mechanistic role in the apoptotic pathway, accom-
plished through the specific cleavage of a limited number of downstream sub-
strates (reviewed in [49, 50]). This apoptosis-specific proteolysis is catalyzed by a
unique family of cysteine proteases (called caspases, for cysteine proteases that
cleave after aspartic acid) that have an absolute requirement for aspartic acid in
the substrate P1 position. Since initiation of the primary immune response re-
quires that non-tolerized structure be generated, we were intrigued by the observa-
tion that the first proteolytic victims of the caspases discovered in apoptosis were
PARP and lamins [51, 52], both of which are autoantigens targeted in systemic
autoimmune diseases [53, 54]. We therefore addressed whether other autoantigens
were similarly cleaved by caspases during apoptosis. Using western blotting of ly-
sates of control and apoptotic cells, we detected a group of more than 20 autoanti-
gens (including U1-70kDa, DNA-PKcs, NuMA, topoisomerase I, NOR-90, fodrin,
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hnRNP C1/C2, PMS2, SRP72, La, CENP-C and Mi-2) that were recognized by a
high-titer autoantibody response and which were cleaved early in apoptosis [21,
23, 24, 26, 28, 55–59]. Cleavage was prevented by caspase inhibitors, implicating
the involvement of a caspase either directly or upstream of these cleavage events.

While susceptibility to efficient cleavage by a caspase is a frequent feature of
autoantigens, it is not a universal feature of all autoantigens. For example, cas-
pase-mediated proteolytic cleavage of components of the nucleosome, the fre-
quently targeted Ro particle or the major scleroderma autoantigen CENP-B has
not been observed [21, 26]. Furthermore, susceptibility to caspase-mediated cleav-
age does not appear to be specific to autoantigens. This imperfect, albeit striking
correlation of susceptibility to caspase cleavage and status as an autoantigen re-
quires that caution be exercised in ascribing a mechanistic role for caspase cleav-
age in defining molecules as autoantigens, since it suggests that additional (par-
tially overlapping) properties might be relevant. For example, (1) caspases may
have evolved to cleave a specific regulatory motif in proteins; the association with
autoantigen status may be with the presence of this protein structure rather than
with cleavage during apoptosis; (2) such structure may also be the target of addi-
tional proteases during specific forms of apoptosis in unique tissues/microenvir-
onments [e.g. granzyme B (GrB); see below]; and (3) such a regulatory motif may
be subject to additional post-translational modifications either during apoptosis or
during other physiologic states relevant to disease propagation (e.g. phosphoryla-
tion, glutathiolation, transglutamination, citrullination, or formation of novel pro-
tein-protein or protein-nucleic acid complexes). In this regard, it is of interest that
numerous autoantigens are phosphorylated during a variety of physiologic pertur-
bations (including apoptosis) [29]. Furthermore, in several cases, recognition by
autoantibodies is dependent on the phosphorylation state of the antigens. Thus,
antibodies that preferentially recognize either the phosphorylated or dephosphory-
lated states of the large subunit of RNA polymerase II or SR proteins have been
defined [60, 61]. Understanding what role changes in the structure of autoanti-
gens during different physiologic states may play in altering the immunogenicity
of self molecules is a priority, as it may provide important insights into the initiat-
ing and propagating states in systemic autoimmunity.

Autoantigen clustering and cleavage occurs in almost all forms of apoptosis de-
scribed to date, which often occur in actively anti-inflammatory and non-immune
contexts [62–65]. The marked frequency of apoptosis in normal development and
homeostasis, coupled with the infrequency of systemic autoimmunity in the popu-
lation, strongly suggests that only a very restricted subset of apoptotic events (e.g.
those occurring in a pro-immune setting; see below) in individuals that are geneti-
cally predisposed to generation of novel autoantigen structure (e.g. from abnor-
malities in the clearance and degradation of apoptotic material in tissues; see be-
low) will initiate a self-sustaining autoimmune response.
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14.4
Novel Autoantigen Fragments are produced during Cytotoxic Lymphocyte-induced
Target Cell Apoptosis

One form of apoptosis that frequently occurs in a pro-immune setting is the
death of virally infected target cells, induced by cytotoxic T lymphocytes (CTLs)
and natural killer (NK) cells. Cytotoxic lymphocytes use several pathways to in-
duce target cell apoptosis, including Fas ligation and granule exocytosis (reviewed
in [66]). GrB, a serine protease found in the cytoplasmic granules of CTLs and
NK cells, has a similar substrate specificity to the caspases, in its near-absolute re-
quirement for aspartic acid in the substrate P1 position [67]. (The substrate resi-
dues immediately upstream of the cleavage site are termed P1, P2, P3 and P4 as
distance increases from the scissile bond; previous studies have shown that the
specificity of GrB for its substrates resides in the P1–P4 residues). Although GrB
also has a similar specificity in the P2–P4 substrate positions to the upstream acti-
vating (group III) caspases (which prefer Ileu/Val in P4 and Glu in P3 [68, 69]),
there are some amino acids in the P2 and P3 positions that are preferred exclu-
sively by GrB and not tolerated by the caspases (e.g. proline in P2, and glycine or
serine in P3, see Fig. 14.2). Recent studies have shown that GrB plays an impor-
tant role in inducing apoptotic changes in target cells during granule exocytosis
induced cytotoxicity [70–72], partly by catalyzing the cleavage and activation of sev-
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Fig. 14.2 Comparison of the substrate specifi-
cities of caspase-6 and GrB. The specificities
of the two proteases shown were determined
by Thornberry et al. using P2, P3 and P4 scan-
ning combinatorial libraries, and plots con-
structed from data in reference [68]. Although

GrB and caspase-6 have similar specificities
in the P2–P4 substrate positions, some amino
acids are exclusively preferred by GrB in the
P2 and P3 positions, and are not tolerated by
caspase-6 (marked by vertical arrows).



eral caspases (reviewed in [73]). The distinguishing features of caspases and GrB
are compared in Tab. 14.1. GrB also initiates caspase-independent pathways which
contribute to target cell death through direct targeting of several downstream cas-
pase substrates that mediate critical components of the apoptotic phenotype.
Thus, GrB directly cleaves Bid at a site close to that utilized by caspase-8 and re-
cruits the downstream mitochondrial pathway [74–78]. Similarly, GrB cleaves
ICAD allowing activation of the caspase-activated DNase, thereby generating the
internucleosomal DNA degradation that is characteristic of caspase-mediated
apoptotic death [79]. We have demonstrated that the majority of autoantigens tar-
geted across the spectrum of systemic autoimmunity are directly and efficiently
cleaved by GrB, both in vitro and in cells undergoing granule-induced cytotoxicity
[20, 22, 59, 80]. GrB-mediated cleavage of these substrates generates unique frag-
ments not generated during any other form of apoptosis studied to date. Interest-
ingly, efficient cleavage by GrB (with the generation of distinct fragments) has
also been observed for those systemic disease autoantigens that are not cleaved by
caspases. These molecules include the scleroderma autoantigens CENP-B, fibril-
larin and B23, PMS1 targeted in myositis, and the type 3 muscarinic receptor tar-
geted in Sjögren’s syndrome [20, 59, 80]. The recent demonstration that GrB
cleaves subunit III of the glutamate receptor (GluR3) (an autoantigen in Rasmus-
sen’s encephalitis) is also of significance [81]. Interestingly, the GrB cleavage site
is located within the epitope targeted by antibodies in this disease. In GluR3, the
GrB cleavage site faces the outside of the plasma membrane and cleavage effi-
ciency is markedly influenced by the glycosylation state of the receptor [81]. Thus,
when GluR3 is fully glycosylated, it is relatively resistant to cleavage by GrB; the
deglycosylated or non-glycosylated form of GluR3 is efficiently cleaved. The
authors have proposed that generation of an ‘under’-glycosylated form of GluR3
during inflammatory states may allow GluR3 cleavage by GrB and generation of
previously cryptic peptide fragments [81]. Demonstrating that such circumstances
occur in vivo will provide important evidence to support such a mechanism.

The striking susceptibility of many autoantigens to cleavage by GrB, together
with their clustering at the same site in apoptotic cells, focuses attention on gran-
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Tab. 14.1 Comparison of the distinguishing features of caspases and GrB.

Caspases GrB

Cysteine proteases Serine protease
Near absolute requirement for Asp in the P1

position
Near absolute requirement for Asp in the P1

position
Highly fastidious proteases Highly fastidious protease
Cleaves macromolecules as efficiently as
tetrapeptides

Cleaves macromolecules much more effi-
ciently than tetrapeptides

Ubiquitous expression Very limited expression
Restricted set of intracellular substrates,
whose cleavage is responsible for the
apoptotic phenotype

Restricted set of intracellular substrates, many
of which overlap with those of caspases



ule-induced apoptosis as a potential initiator of autoimmunity in the susceptible
host. It will be extremely important to evaluate whether the immunogenicity of
these novel forms of autoantigen is indeed increased over native forms of these
molecules, and to demonstrate the presence of the relevant cleavage products in
vivo during disease initiation and propagation. It is also possible that the suscepti-
bility of autoantigens to cleavage by GrB reflects some unique protein conforma-
tion which has a determinative property in terms of immunogenicity. Definition
of the structure of GrB cleavage sites and their interactions with components of
the antigen-processing pathway is an important task.

14.5
Caspase-independent Cell Death: Role in Generating Unique Autoantigen Structure?

Several studies have demonstrated that the CTL granule pathway can efficiently ac-
tivate downstream caspases and directly recruit the mitochondrial pathway through
cleavage of Bid [74–78]. Many autoantigens are efficiently cleaved by caspases, which
generate the default fragments elaborated during all forms of caspase-dependent
death. For example, U1-70kDa is cleaved by both caspase-3 and GrB, at distinct
sites. During CTL granule-induced death in normal target cells, almost all of the
fragment generated is from caspase-3 activity [20, 22]. In contrast, when endoge-
nous caspases in the target cells are specifically inhibited, generation of the cas-
pase-mediated fragments is abolished and fragments directly generated by GrB
are formed. Since several in vivo circumstances have been defined in which caspases
are under profound endogenous or exogenous inhibition (e.g. through expression of
viral or endogenous caspase inhibitors or Bcl-2 homologues), it is likely that the ini-
tial generation of unique autoantigen structure occurs under such circumstances. It
is possible that other unique structural autoantigen modifications occur during such
caspase-independent death pathways and that GrB-induced fragments are only one
relevant example of a more general phenomenon. For example, the lack of glutathio-
lation of PDC-E2 observed in cholangiocytes (in which high-level expression of Bcl-2
abrogates this modification normally observed in other cells) may generate a unique
form of this primary biliary cirrhosis autoantigen that is not generated at sites of
tolerance development [25]. In this regard, it will be of interest to define whether
unique forms of autoantigens are generated through other modifications during cas-
pase-independent death.

14.6
Defects in Clearance of the Apoptotic Corpse in Tissues may be an Important Defect
Underlying Systemic Autoimmune Diseases

There has recently been a rapid increase in understanding the mechanisms and
immune consequences of apoptotic cell clearance (reviewed in [41]). Recent stud-
ies have emphasized that apoptotic cells are not immunologically inert, but rather
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are potently anti-inflammatory both in vitro and in vivo [41]. This process has a
high degree of redundancy, and requires communication at multiple levels be-
tween the engulfed and engulfing cells (reviewed in [82–86]). Recent studies also
indicate an important role for components of the innate immune system in defin-
ing the immune consequences of such phagocytic events [46, 62–65]. New evi-
dence that abnormalities in those pathways involved with rapid clearance of apop-
totic material, or expression of its anti-inflammatory activities, may initiate auto-
immunity have underscored the importance of such innate immune pathways in
determining the non-inflammatory, non-immune response to self. For example,
the binding of C1q and pentraxins to the surface of apoptotic cells appears to en-
hance clearance of apoptotic cells [47, 87] and recruit additional components (e.g.
CRP) to activate anti-inflammatory pathways of clearance [46]. The recent observa-
tion of increased numbers of uncleared apoptotic cells in the kidneys of an SLE-
susceptible C1q-null mouse reinforces that abnormal clearance of apoptotic cells
may play a role in the pathogenesis of SLE in these animals [47]. Exciting recent
studies have further supported the notion that impairment in the phagocytosis
and anti-inflammatory cytokine secretion induction by apoptotic cells play a cen-
tral role in the initiation of autoimmunity. In studies by Matsushima et al., func-
tional deficiency in the Mer tyrosine kinase led to an impairment of phagocytosis
of apoptotic cells and was associated with an increased prevalence of anti-DNA an-
tibodies [88]. In animals deficient in the function of all three members of this
Tyro-3 family (Tyro3, Axl and Mer), Lemke’s group showed that there was marked
activation of antigen-presenting cells, which secreted large amounts of pro-inflam-
matory cytokines [89]. It is therefore likely that the propensity to develop autoim-
munity and lymphoproliferation in these animals represents both delayed clear-
ance of apoptotic cells, and a markedly impaired secretion of anti-inflammatory
cytokines. It is likely that delayed clearance of apoptotic cells changes (1) the com-
partmentation of autoantigens (allowing leakage of autoantigen during secondary
necrosis, and access of soluble molecules to efficient macropinocytotic and endo-
cytic antigen capture by dendritic cells) and/or (2) provides apoptotic cells and
membrane-bound fragments access to different (pro-immune) populations of anti-
gen presenting cells, from which they are normally excluded (see, e.g. [90]). The
presence of a highly activated group of antigen-presenting cells secreting proin-
flammatory cytokines in the Tyro-3 family mutants appears to play a critical role
[89].

A recent study in humans has demonstrated that the clearance of apoptotic lym-
phocytes and fragments by macrophages is impaired in some patients with SLE.
In this work, there was significant heterogeneity in the level of impairment
among patients, which did not appear to correlate with disease activity or therapy
[91]. It remains unclear whether (1) this phenomenon results from abnormalities
in recognition, binding or phagocytosis of apoptotic cells by SLE macrophages; (2)
the phagocytosis of all types of apoptotic cell are similarly affected; and (3) the de-
gree of impairment in a particular patient varies with disease activity. The marked
heterogeneity of the degree of impairment observed in different patients predicts
significant complexity in resolving this question, resulting from the contribution
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of multiple different clearance pathways, and the fact that the form of apoptotic
cell, the phenotype and physiologic state of the antigen-presenting cells, and the
relevant tissue microenvironment may play important roles [84, 92]. It is also of
relevance that some of the antibodies elaborated in patients with systemic autoim-
munity recognize the surface of apoptotic cells and might account for the appar-
ently normal clearance of apoptotic cells seen in some patients. The critical differ-
ence between clearance of apoptotic cells through non-inflammatory pathways
and clearance of apoptotic cells opsonized with autoantibodies is that the latter
pathway effectively induces pro-inflammatory cytokine secretion by macrophages,
potentially contributing to the propagation of the autoimmune response to other
components in apoptotic cells, as well as to tissue damage [93, 94].

14.7
Model of Systemic Autoimmunity

The studies presented above have focused attention on unique forms of apoptosis as
a candidate process that initiates and propagates systemic autoimmune diseases
(summarized in Tab. 14.2). In the genetically susceptible individual (e.g. someone
who has a defect in the ability to efficiently phagocytose and degrade apoptotic cells
and debris or to mount an adequate anti-inflammatory response upon ingestion of
apoptotic material), the confluence of several forces allows the generation of supra-
threshold concentrations of non-tolerized structure in the presence of co-stimulatory
signals and the access of this material to the MHC class II pathway of a population
of antigen-presenting cells that efficiently initiate a primary immune response. The
low frequency of this form of autoimmunity in the population likely reflects this
need to simultaneously satisfy several very stringent criteria to initiate the primary
immune response. The molecules targeted are unified by their susceptibility to mod-
ification during the perturbing process, likely revealing previously cryptic structure.
Available data demonstrates that many (but not all) autoantigens are specifically
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Tab. 14.2 Critical events in systemic autoimmunity.

Genetic susceptibility genes may affect many aspects of immunore-
gulation, cell cycle, apoptotic signaling and ef-
fector pathways or clearance of apoptotic cells,
amongst others

Primary immunization – a pro-immune
apoptotic event

(1) unique environmental force
(2) generation of non-tolerized structure
(3) pro-immune context
(4) specific immunizing microenvironment

Amplification immune effector pathways generate antigen,
which further drives antigen release and an
autoamplifying cycle of immune system acti-
vation



cleaved by caspases during apoptosis. Furthermore, a similar but not identical subset
of autoantigens is also directly cleaved by GrB, generating unique fragments not ob-
served during any other forms of apoptosis studied to date. Once primary immuni-
zation has occurred, the repeated generation of apoptotic material (e.g. during sun
exposure, viral infection or drug exposure) might efficiently rechallenge the primed
immune system (the stringency of this secondary response being significantly lower
than that of the primary response). Furthermore, the effector pathways activated by
the primed immune system include several which themselves generate loads of
apoptotic material (e.g. cellular cytotoxicity, myelomonocytic cell recruitment and
apoptosis). The opsonization of apoptotic material by antiphospholipid and anti-
�2-glycoprotein I antibodies, may both increase the efficiency of apoptotic antigen
capture, as well as induce the production of pro- rather than anti-inflammatory cy-
tokines, potentially further driving the immune response. This capacity for immune-
driven autoamplification may be one of the critical principles underlying severe sys-
temic autoimmune disease.
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15.1
Introduction

Central to understanding the pathogenesis of systemic autoimmune diseases such
as systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis and
Sjögren’s syndrome is elucidating the mechanisms that contribute to the genera-
tion of antinuclear autoantibodies (ANA). There is strong evidence to support the
hypothesis that ANA responses in systemic autoimmune diseases are driven by
proteins and nucleic acids associated with nuclear and cytoplasmic particles [1, 2].

A fundamental question that remains unanswered is how normally sequestered
self-intracellular antigens turn into evil immunogens capable of inciting and main-
taining a vigorous and prolonged autoantibody response. A hypothesis that has
emerged during the past decade is that dying cells serve as potential reservoirs of
modified forms of autoantigens that could trigger autoantibody responses in suscep-
tible individuals under appropriate conditions [3–5]. This hypothesis is supported by
two main lines of evidence: (1) the link between impaired phagocytic clearance of
apoptotic cells and systemic autoimmunity [6–8], and (2) the observation that intra-
cellular autoantigens targeted by autoantibodies in systemic autoimmunity undergo
post-translational modifications during cell death that might increase their immuno-
genicity [3, 4]. The sort of modifications sustained by autoantigens during cell death
include, but are not limited to, proteolysis [9–11], changes in phosphorylation state
[12, 13], oxidation [14, 15], transglutaminase crosslinking [16], citrunillation [17], and
ubiquitin conjugation and deconjugation [4]. It has been hypothesized that this
plethora of modifications may result in the presentation to the immune system of
self-cryptic determinants for which tolerance has not been established and that
upon repeated stimulation could sustain an autoantibody response [3, 4]. Thus far,
the most characterized autoantigen modification associated with cell death, particu-
larly apoptosis, is proteolytic cleavage. While the cleavage of intracellular autoanti-
gens during apoptosis has been the focus of increasing attention during the past
few years, information on the cleavage of autoantigens during non-apoptotic cell
death is just beginning to emerge. Along with other groups, we have demonstrated
recently that intracellular autoantigens also undergo cleavage during non-apoptotic
cell death modalities, including primary and secondary necrosis and caspase-inde-
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pendent cell death. These non-apoptotic cleavages could also enhance the immuno-
genic properties of intracellular autoantigens and stimulate an immune response
under the appropriate environment. In this chapter, we will first present a general
overview of the major modes of cell death. This will be followed by a review of
the current knowledge of the cleavage of intracellular autoantigens during various
forms of cell death and a brief discussion of the implications of autoantigen cleav-
age for the induction of autoantibody responses.

15.2
The Multiple Faces of Cell Death

Traditionally, cell death has been considered as a type of Dr Jekyll and Mr Hyde, a
process with two interrelated but morphologically distinct faces, apoptosis (the
good fellow) and necrosis (the bad fellow) [18–21]. This bimodal classification re-
lies mainly on the observation that apoptosis and necrosis are the major types of
cell death associated with most physiological and pathological processes. Recent
studies, however, have challenged this dual distinction based on the identification
of novel forms of cell death whose morphological features do not fit into the clas-
sical apoptotic or necrotic morphologies [22, 23]. In this section, we will provide a
general description of apoptosis, necrosis and caspase-independent cell death,
which are the three cell death modalities that have been best studied within the
context of autoimmunity.

15.2.1
Apoptosis

Apoptosis is a genetically regulated cell suicide process that is essential for the
elimination of unwanted cells during organ development, immune system devel-
opment and function, tumor regression and normal tissue turnover [18–21]. De-
fects in apoptosis have been associated with the pathogenesis of several human
disease conditions, including autoimmunity, cancer, diabetes, liver disease and
neurodegeneration [24–27]. Apoptotic cells display a distinctive morphology char-
acterized by general cellular shrinkage, cytoskeleton disruption, cytoplasmic mem-
brane blebbing, nuclear membrane solubilization and chromatin fragmentation. A
hallmark of apoptosis is the fragmentation of the dying cell into numerous apop-
totic bodies surrounded by a relatively intact cytoplasmic membrane. Retention of
cytoplasmic membrane integrity not only facilitates swift phagocytic recognition
but also prevents the release of potentially harmful intracellular contents, such as
proteases and pro-inflammatory signals that could damage the surrounding tissue
and provoke an inflammatory response [28]. Apoptotic cells or bodies that are not
cleared eventually lose their cytoplasmic membrane integrity and develop second-
ary necrosis, resulting in the release of intracellular contents [28].

The activation of cysteine proteases of the caspase (cysteine aspartic acid-specif-
ic proteases) family has emerged as the central effector mechanism in apoptosis
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[29, 30]. While approximately 14 mammalian caspases have been identified, only
about half of them actively participate in the execution of apoptosis. Caspases are
classified as initiators (caspase-2, -8, -9 and -10) or executioners (caspase-3, -6 and
-7) of the apoptotic process. Caspases are typically found in the cell as inactive
precursors and are activated at the onset of apoptosis by an autoaggregation pro-
cess mediated by adaptor proteins which promote autocatalytic processing of the
initiator caspases [29, 30]. Activation of initiator caspases can occur through two
basic pathways: (1) engagement of death receptors, such as Fas and tumor necro-
sis factor (TNF) receptor 1 (TNF-RI), and (2) release of caspase-activating factors
from the mitochondria [31, 32]. Once activated, initiator caspases process the ex-
ecutioner caspases, which in turn target a limited number of proteins, including
autoantigens, involved in key cellular functions [33].

15.2.2
Necrosis

Necrosis has been traditionally considered as a non-suicidal process associated
with a number of pathological conditions that develops in response to acute cell
injury, including ischemia, hypoxia, oxidative stress, extreme heat, severe infec-
tions and exposure to high levels of chemicals or toxins [20, 21, 34–38]. In patho-
logical and experimental conditions, necrosis often co-exists with apoptosis, aris-
ing either independently or as a secondary event following apoptotic cell death
[20, 21, 37–43]. Under certain circumstances, extensive necrosis of cells in a par-
ticular region of a tissue may serve as a trigger of secondary tissue damage, via
apoptosis, in surrounding areas [38, 44, 45]. It should be emphasized that necro-
sis and apoptosis can be induced in vivo and in vitro by the same insults, but the
intensity of the insult determines which mode of cell death prevails [34]. While
the role of necrosis in physiological processes is still not very clear, recent studies
have implicated this mode of cell death in natural killer cell-mediated cytotoxicity
[46, 47], interdigital cell death [48], development-associated regression of the hu-
man tail [49] and egg fertilization [50]. There is growing evidence to support the
notion that there might be two types of necrosis, one that is physiological and is
involved in programmed cell death, and another that is accidental and is asso-
ciated with pathological conditions [22].

The morphology of necrotic cells is characterized by extensive cytoplasmic swelling
and destruction, and nuclear shrinkage [20, 21]. A key feature that distinguishes ne-
crosis from apoptosis is the rapid and early loss of cytoplasmic membrane integrity
due to the swelling, which leads to extensive cytoplasmic damage with concomitant
release of noxious intracellular contents, including pro-inflammatory signals. Inter-
estingly, the cell nucleus stays relatively intact during necrosis [20, 21, 51], which
could be associated with the preservation of lamin B integrity during this cell death
process [11, 51, 52]. Lamin B is important for maintaining nuclear membrane integ-
rity and its cleavage during apoptosis facilitates nuclear fragmentation [53].

While the role of proteases in the execution of apoptosis is well established, it is
not clear whether the morphological changes observed during necrosis are driven
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by proteolysis. Activation of non-caspase proteases such as calpains and cathep-
sins (lysosomal proteases) has been implicated in necrotic cell death, both in ex-
perimental and pathological situations [38, 54]. There is evidence that elevation of
intracellular free calcium during certain pathological processes leads to activation
of calpains, phospholipases and endonucleases, alteration of membrane protein
and lipid, generation of toxic reactive oxygen species, and mitochondrial disrup-
tion [38]. Excessive activation of calpains has been associated with lysosomal
membrane disruption, leading to the release of cathepsins into the cytoplasm
with resultant cell autolysis [38]. Understanding the mechanisms of self-digestion
mediated by cathepsins would require identifying the individual cathepsins in-
volved and their substrates.

15.2.3
Caspase-independent Cell Death

The term caspase-independent cell death has been used to describe a number of
cell death pathways that occur in the absence of detectable caspase activity. This
type of cell death could be considered as a back-up system that ensures the cell’s
demise in the event that the caspase activation program is rendered non-func-
tional. Caspase-independent cell death is usually triggered in cell culture by inhi-
bition of caspases with a pan-caspase inhibitor like benzyloxycarbonyl-Val-Ala-Asp-
fluoromethyl ketone (zVAD-fmk), in the presence of a wide variety of apoptosis in-
ducers such as cancer drugs [55, 56], death receptor ligands [57, 58], oncogenes
[59], anti-CD2 antibodies [60], staurosporine (STS) [60], viral proteins [61] and ex-
pression of Bax-related proteins [59, 62]. It is unclear whether caspase-indepen-
dent cell death occurs concurrently with apoptosis as a background pathway that
is revealed or enhanced when the caspase activation program has been impaired
or whether it is activated after the cell senses this impairment.

Some caspase-independent cell death pathways share morphological features
with classical apoptosis whereas others are characterized by a necrotic morphol-
ogy [22]. Whether a particular pathway is associated with apoptotic or necrotic
morphology appears to depend on the cell type and the nature of the insult. For
instance, apoptotic features such as chromatin condensation and DNA fragmenta-
tion, and phosphatidylserine exposure on the cell surface can be induced by re-
lease of apoptosis-inducing factor from the mitochondria in the presence of
zVAD-fmk [63]. Other examples of cell death with morphological features of apop-
tosis (nuclear or cytoplasmic) in the presence of caspase inhibitors include colchi-
cine-induced cerebellar granule cell death [64], CD47-induced death of B-chronic
lymphocytic leukemia cells [65] and anti-CD2 or STS-induced cell death in acti-
vated human peripheral T lymphocytes [60]. It is unclear whether the apoptotic
features associated with caspase-independent cell death are mediated by yet to be
identified caspases that are insensitive to the known caspase inhibitors or by alter-
native mechanisms.

Most types of caspase-independent cell death described so far are associated
with features of necrosis such as nuclear pyknosis, rapid loss of cytoplasmic mem-
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brane integrity and cytoplasmic fragmentation [22, 58, 66]. Examples include
camptothecin-treatment of leukemia U-937 cells or STS treatment of human Jur-
kat T cells in the presence of zVAD-fmk [55, 67]. Recently, much attention has
been devoted to a model system of caspase-independent cell death with necrotic
morphology induced by the death receptors Fas and TNF-RI in susceptible cell
lines, such as the murine L929 fibrosarcoma, exposed to either TNF or agonistic
anti-Fas antibody in the presence of zVAD-fmk or other caspase inhibitors [68,
69]. In this system, L929 cells die by a swift and massive necrosis that appears to
be mediated by the generation of reactive oxygen species since it can be partially
inhibited by anti-oxidants such as butylated hydroxyanisole. Fas has also been
shown to induce necrosis in a caspase 8-deficient subline (JB6) of Jurkat T cells
[70]. Both TNF-RI and Fas appear to initiate the necrotic pathway through recruit-
ment of the adaptor protein FADD, which is also required for initiating the cas-
pase-8-mediated apoptotic pathway [70–73]. While there is no evidence that cas-
pase-8 activation is required for death receptor-induced caspase-independent cell
death with a necrotic phenotype, it appears that inactivation of caspase-8 favors
this death process [70–73]. Whether inactivation of caspases other than caspase-8
also favors death receptor-induced necrosis remains to be investigated, although
inhibition of caspase-3 has been implicated [69]. It is not clear how inactivation of
caspases leads to TNF or Fas-induced necrosis, but it is possible that alternative
proteolytic pathways, perhaps involving calpains and cathepsins, might drive this
process when caspases are impaired. These observations suggest that inactivation
of caspases removes a critical barrier yet to be identified that prevents the develop-
ment of pro-inflammatory, necrotic cell death, thus implicating caspases as natu-
ral repressors of necrosis.

15.3
Autoantigen Cleavage in Apoptosis

The observation that the SLE-associated autoantigens poly(ADP-ribose) polymer-
ase (PARP) and the 70-kDa protein of the U1 ribonucleoprotein particle (U1-
70kDa) were proteolytically cleaved by caspases during apoptosis [74, 75] opened
the door to the use of human autoantibodies in the systematic identification of
other intracellular autoantigens cleaved during cell death. The value of autoanti-
bodies in these studies is enhanced by their reactivity with multiple epitopes with-
in a given autoantigen, which facilitates the identification of cleavage fragments
that otherwise may escape detection when using sequence-specific, experimentally
induced antibodies.

In the first systematic study on the cleavage of autoantigens during cell death,
Casciola-Rosen et al. [9] screened over 200 human sera containing autoantibodies
to intracellular proteins by immunoblotting against lysates of apoptotic cells.
These investigators observed that a subset of intracellular autoantigens was specif-
ically cleaved in various systems of apoptosis. This subset included PARP, U1-
70kDa, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the
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nuclear mitotic apparatus protein (NuMA), lamins A and B, and several other uni-
dentified autoantigens. In a comparable study, investigators in our group used
highly specific and well-characterized human autoantibodies to identify by immu-
noblotting autoantigens cleaved during Fas-mediated T cell apoptosis [10]. Only a
subset (seven of 33) of the autoantigens examined underwent detectable proteoly-
tic cleavage during apoptosis, as evidenced by the disappearance of bands corre-
sponding to the intact protein concomitant with the appearance of lower molecu-
lar weight fragments in immunoblots. The cleaved autoantigens were PARP, la-
min B, U1-70kDa, topoisomerases (Topo) I and II, NuMA, and the upstream bind-
ing factor of RNA polymerase I (UBF/NOR-90). More recent studies by various
groups have reported the apoptotic cleavage of additional intracellular autoanti-
gens such as actin [76, 77], the cancer-associated protein BARD1 [78], fodrin [79,
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Tab. 15.1 Apoptotic cleavage of intracellular autoantigens associated with systemic autoimmu-
nity.

Autoantigen Disease association Intact protein size
(kDa)

Major cleavage
fragments (kDa)

Actin autoimmune hepatitis 45 15, 31
DFS70/LEDGF AD, asthma, various inflam-

matory conditions
70 58, 65

DNA-PK SLE, SSc, overlap syndromes 450 250
hnRNP C1 and C2 SSc, psoriasis �40 disappearance
Fodrin SS 240 120, 150
Golgin-160 SLE, SS 170 140, 163
Keratin 18 GVHD, DLE 45 19, 22, 26
Lamin B SLE-like disease, APS, CFS 68–70 45
NuMA SS 210–240 160, 180
PARP SLE 116 85
RNA helicase A SLE 140 120–130
SP1 UCTD 95, 105 45, 68
SRP72 PM/DM 72 6, 66
Topo I SSc, PM 100 70
Topo II SLE, fibrosing alveolitis 170/180 125–160
UBF/NOR-90 SS, SSc 90 24–55
U1-70kDa SLE, SSc, MCTD 70 40
Vimentin CFS 50 38, 41

AD = atopic dermatitis; APS = anti-phospholipid antibody syndrome; CFS = chronic fatigue syndrome;
DFS70 = dense fine speckles protein of 70 kDa; DM= dermatomyositis; DNA-PK = DNA-dependent
protein kinase; DLE = discoid lupus erythematosus; GVHD= graft-versus-host disease; hnRNP = hetero-
geneous nuclear ribonucleoprotein; LEDGF = lens epithelium derived growth factor; MCTD= mixed
connective tissue disease; NuMA = nuclear mitotic apparatus protein; PARP = poly(ADP-ribose) poly-
merase; PM = polymyositis; SP1 = SP1 transcription factor; SS = Sjogren’s syndrome; SRP72 = signal re-
cognition particle protein of 72 kDa; SSc= systemic sclerosis/scleroderma; UBF/NOR–90= upstream
binding factor/nucleolar organizing region protein of 90 kDa; UCTD = undifferentiated connective tis-
sue disease; U1-70kDa = U1 small nuclear RNA-associated protein of 70 kDa. The cleavage fragments
listed are those detected by immunoblotting. The information provided on this table is based on [3,
9–11, 30, 33, 67, 74–94].



80], golgin-160 [81], heterogeneous nuclear ribonucleoproteins (hnRNP) C1 and
C2 [82, 83], keratin [84, 85], the myositis associated antigens Mi-2 and PMS1 [86],
RNA helicase A [87], the signal recognition particle protein of 72 kDa (SRP72)
[88], SSB/La [89], transcription activator SP1 [90, 91], the transcription co-activator
and survival protein DFS70/LEDGF [67, 92], and vimentin [93, 94]. The current
information available on the apoptotic cleavage of autoantigens is summarized in
Tab. 15.1.

It should be emphasized that many intracellular autoantigens frequently tar-
geted by autoantibodies in systemic autoimmune diseases appear to remain intact
during classical apoptosis, as assessed by the preservation of bands corresponding
to the intact autoantigen and lack of putative cleavage products in immunoblots,
as well as failure of caspases to cleave these autoantigens in vitro [9, 10, 95].
Among these ‘uncleaved’ autoantigens are alanyl tRNA synthetase, B23/nucleo-
phosmin, C23/nucleolin, centromere protein B, fibrillarin, histidyl tRNA synthe-
tase (Jo-1), histones, isoleucyl tRNA synthetase, DNA-binding protein Ku, the ma-
jor mitochondrial autoantigens, PM-Scl, the proliferating cell nuclear antigen
(PCNA), p80 coilin, ribosomal P proteins (rRNP), RNA polymerase II large sub-
unit, Sm and SSA/Ro. These findings suggest that susceptibility to proteolytic
cleavage is not a general property of intracellular autoantigens. However, it cannot
be ruled out that some of the ‘uncleaved’ autoantigens may undergo limited pro-
teolysis during apoptosis into small fragments that cannot be detected by immu-
noblotting. For instance, while the cleavage of the nucleolar autoantigen fibrillarin
has not been detected in immunoblotting analyses performed by various groups
[9, 10, 95], Pollard et al. [96] reported that apoptotic murine J774 macrophages,
but not other murine cell lines, displayed limited cleavage of fibrillarin into small
fragments that were detected only by immunoprecipitation. This observation
raised the possibility that the apoptotic cleavage of a particular autoantigen might
be cell type dependent. Another issue that needs to be borne in mind is that auto-
antigens that are not cleaved during apoptosis may sustain other types of post-
translational modifications during cell death. For example, the ribosomal P pro-
teins are not cleaved during apoptosis but undergo dephosphorylation during Fas-
mediated apoptosis [13]. More detailed reviews of apoptotic autoantigen modifica-
tions are displayed elsewhere in this book.

15.4
Autoantigen Cleavage in Non-apoptotic Cell Death

During the past few years, investigators in our group and in other groups have
used highly specific human autoantibodies and commercially available antibodies
as tools in the systematic identification of intracellular autoantigens that undergo
cleavage during non-apoptotic cell death. In these studies, cleaved forms of auto-
antigens are normally detected in immunoblots of whole-cell lysates from cells
undergoing various types of non-apoptotic cell death, including primary necrosis,
secondary necrosis and caspase-independent cell death.
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15.4.1
Autoantigen Cleavage during Primary Necrosis

We observed that the cleavage of autoantigens during primary necrosis of Jurkat and
HL-60 cells induced with high levels of mercury, ethanol, hydrogen peroxide or heat
was associated with selective proteolysis of a subset of autoantigens [11, 67 and un-
published observations]. Cleaved autoantigens included DFS70/LEDGF, fodrin,
NuMA, PARP, Topo I, UBF/NOR-90, U1-70kDa and vimentin (for examples, see
Fig. 15.1). Interestingly, all these autoantigens are also cleaved during apoptosis, al-
beit into distinct fragments. On the other hand, autoantigens that had been reported
previously as resistant to proteolysis during apoptosis [9, 10] appeared also to be re-
sistant to cleavage during necrosis, as evidenced by the lack of proteolysis observed
in the immunoblots for B23/nucleophosmin, fibrillarin, Jo-1, Ku, PM-Scl, PCNA,
p80 coilin, rRNP, Sm and SSA/Ro. This suggested that specific caspase substrates
may be highly susceptible to proteolysis during forms of cell death other than apop-
tosis, a notion that is supported by our studies on secondary necrosis and caspase-
independent cell death ([67], and Sections 15.4.2 and 15.4.3). One exception is lamin
B, which is cleaved during apoptosis but not during necrosis (Fig. 15.1). As in apop-
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Fig. 15.1 Immunoblots of total protein from
Jurkat T cells showing the cleavage of repre-
sentative autoantigens during apoptosis and
necrosis. Note that PARP and Topo I are
cleaved into clearly distinct fragments in the
two modes of cell death, whereas lamin B is
cleaved only during apoptosis. C, control;

A, apoptosis induced with 150 �M etoposide
for 6 h; N, necrosis induced with 40 �M
HgCl2 for 6 h. Protein bands were detected
with highly specific human autoantibodies. In-
tact proteins are indicated by lines, whereas
proteolytic fragments are indicated by arrows.



tosis, one cannot rule out that some autoantigens that are resistant to proteolysis
during necrosis may sustain in this cell death process other modifications or limited
proteolysis into fragments that are not detectable by immunoblotting. This would be
consistent with the observation of Pollard et al. [96] that fibrillarin undergoes limited
cleavage during mercury-induced necrosis into a 19-kDa fragment that is detected
only by immunoprecipitation.

We have observed that other caspase substrates that are not known autoanti-
gens also undergo cleavage during necrosis (Fig. 15.2). In these studies, we used
commercial antibodies that recognize apoptotic cleavage fragments of the sub-
strates. These results indicated that cleavage during apoptosis or necrosis may not
be an exclusive property of a subset of autoantigens and that specific intracellular
proteins are highly sensitive to proteolysis in more than one cell death pathway.
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Fig. 15.2 Immunoblots of total protein from
Jurkat T cells showing the cleavage of non-
autoantigen caspase substrates during apop-
tosis and necrosis. The presence of additional
protein bands in necrotic lysates is highly in-
dicative of proteolytic degradation. Rho-GDI is
a guanine nucleotide-dissociation inhibitor for
the Rho family GTPase; n-PKC� is protein kin-
ase C ��; Wee-1 is a tyrosine-specific protein
kinase that phosphorylates the cell cycle-regu-

lated protein Cdc2; NF-�B is a transcription
factor consisting of a 65-kDa DNA-binding
subunit (p65 Rel A) and an associated protein
of 50 kDa. C, control; A, apoptosis; N, necro-
sis. Protein bands were detected with com-
mercial antibodies obtained from Santa Cruz
Biotechnology (Santa Cruz, CA). Intact pro-
teins are indicated by lines, whereas proteoly-
tic fragments are indicated by arrows.



Our studies on the selectivity of autoantigen cleavage during necrosis have been
confirmed recently by Bortul et al. [97] who reported that specific intracellular auto-
antigens such as NuMA not only undergo selective cleavage during ethanol-induced
necrosis in HL60 cells but also alterations in their nuclear distribution. These inves-
tigators also reported that SAF-A and SATB1, two nuclear matrix proteins which are
caspase substrates and are not known autoantigens, also undergo cleavage during
necrosis. They concluded that while the cleavage of NuMA, SAF-A and SATB1 could
be linked to the nuclear matrix changes observed in necrotic cells, these cleavages
did not appear to induce in necrosis the typical apoptotic nuclear fragmentation.
This finding further pointed to the lack of proteolysis of lamin B as perhaps the crit-
ical event in the preservation of a non-fragmented nucleus in necrosis.

The proteolytic cleavages which take place during primary necrosis do not ap-
pear to be dependent on the activation of caspases, since they cannot be blocked
by broad caspase inhibitors such as zVAD-fmk [11] or more specific caspase inhi-
bitors such as AcDEVD-cmk (an inhibitor of caspase-3 and -7), VEID-CHO (an in-
hibitor of caspase-6), zIETD-fmk (an inhibitor of caspase-8) and zLEHD-fmk (an
inhibitor of caspase-9) [97]. This would be in agreement with the notion that cas-
pases may not be integral components of the proteolytic activities operating in ne-
crosis. Consistent with this, we have not observed the proteolytic processing of
caspases during necrosis (for examples, see Fig. 15.3).

Although very little is known about the nature of the proteases responsible for
autoantigen cleavage during necrosis, a recent study by Gobeil et al. [98] impli-
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Fig. 15.3 Immunoblots of total protein from
Jurkat T cells showing the lack of cleavage of
caspases-3, -7 and -8 during necrosis. Note
that the intensity of the bands corresponding
to the pro-caspase decreases during apopto-
sis, consistent with the proteolytic processin-
gof these proteases into their subunits during

apoptosis. C, control; A, apoptosis; N, necro-
sis. Protein bands were detected with com-
mercial antibodies obtained from PharMingen
(San Diego, CA). Pro-caspases are indicated
by lines, whereas subunits are indicated by
arrows.



cated cathepsins in these cleavages. These investigators reported that lysosomal-
rich fractions from Jurkat T cells promoted in vitro the cleavage of purified PARP
into fragments identical to those found in lysates from Jurkat cells undergoing ne-
crosis. Moreover, they observed that cathepsins B and G, but not D, were able to
generate in vitro the necrotic PARP fragments. This was the first demonstration
that lysosomal proteases are responsible for the cleavage of a specific autoantigen
during necrotic cell death. The nature of the proteases involved in the cleavage of
other intracellular autoantigens remains to be identified.

15.4.2
Autoantigen Cleavage during Secondary Necrosis

Apoptotic cells that are not removed by phagocytosis may ultimately lose their cy-
toplasmic membrane integrity and undergo secondary necrosis (also referred to as
post-apoptotic necrosis or post-apoptotic cell lysis), with ensuing release of pro-in-
flammatory signals [28, 67]. Secondary necrosis occurs as a consequence of the
disruption of mitochondrial function, ATP depletion, and the action of proteases
and nucleases which take place during apoptosis [34–38].

An immunological consequence of defects in the phagocytic clearance of im-
mune complexes and apoptotic cells in the rheumatic diseases would be the accu-
mulation of cells in secondary necrosis [28, 99]. This would facilitate the exposure
of intracellular autoantigens to the immune system under a pro-inflammatory en-
vironment. We reported recently that the transition from apoptosis to secondary
necrosis is associated with post-translational modifications of specific autoanti-
gens, which, if persistently exposed to the immune system under pro-inflamma-
tory conditions, could potentially stimulate autoimmune responses [67]. In these
studies, various cell lines were exposed for up to 60 h to apoptosis-inducing
agents such as anti-Fas antibody, etoposide or STS. Under these conditions, cells
underwent a rapid apoptosis that gradually progressed to secondary necrosis. This
progression coincided with the loss of cytoplasmic membrane integrity, as as-
sessed by Trypan blue exclusion, and irregular cellular fragmentation characteris-
tic of late necrotic cell death.

Immunoblotting analysis indicated that the progression from apoptosis to second-
ary necrosis was associated with a second wave of proteolysis of specific intracellular
autoantigens that are cleaved during apoptosis, including DFS70/LEDGF, PARP,
SSB/La, Topo I and U1-70kDa (for examples, see Fig. 15.4). In these studies we ob-
served that the autoantigens UBF and lamin B, which are cleaved during apoptosis,
did not appear to sustain additional proteolysis during secondary necrosis. In con-
trast, the autoantigen Jo-1, which does not appear to be cleaved during apoptosis
or primary necrosis [9–11], underwent a gradual degradation as apoptosis pro-
gressed to secondary necrosis. Many autoantigens that are not cleaved during apop-
tosis or primary necrosis (e.g. Ku, SSA/Ro, PCNA, Sm, PM-SCl, mitochondrial PDC-
E2, and ribosomal proteins P0, P1 and P2) remained unaffected during the progres-
sion to secondary necrosis [67]. This further strengthened the notion that suscepti-
bility to proteolysis in dying cells is not a general feature of autoantigens. These re-
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sults also suggested that in the absence of phagocytosis, apoptotic cells are capable of
undergoing secondary necrosis, a process that involves cellular fragmentation and
additional degradation of specific autoantigens. Interestingly, although some of
the cleavage fragments produced during secondary necrosis were also detected in
primary necrosis, identical cleavage patterns were not observed in these pathways
for all the autoantigens tested (Tab. 15.2). This could be attributed to differential
compartmentalization of the proteases mediating these cleavages during upstream
events leading to primary and secondary necrosis.

15.4.3
Autoantigen Cleavage during Caspase-independent Cell Death

As mentioned earlier, caspase-independent cell death can be induced in certain cell
types by inactivation of the caspase cascade in the presence of a strong apoptotic
stimulus. We investigated whether specific intracellular autoantigens undergo pro-
teolysis during caspase-independent cell death of Jurkat T cells induced by STS in
the presence of the broad caspase inhibitor zVAD-fmk [67]. In these studies,
zVAD-fmk blocked the activation of effector caspases, but failed to block the even-
tual loss of cytoplasmic membrane permeability in the STS-treated Jurkat cells.
While zVAD-fmk initially protected STS-treated cells against apoptosis, the inhibi-
tor did not prevent a delayed cell death with features of necrosis. Immunoblotting
analysis showed that zVAD-fmk partially blocked the cleavage of Topo I and PARP
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Fig. 15.4 Immunoblots showing the time-de-
pendent progression of the cleavage of repre-
sentative autoantigens in Jurkat T cells in-
duced to undergo apoptosis with either anti-
Fas antibody or STS. Control lysates from un-
treated cells (C) and cells induced to die by
primary necrosis with 40 �M HgCl2 for 6 h
(Hg) were included. Progression of apoptosis

into secondary necrosis was evident after 12
h of incubation in the presence of the apopto-
tic stimuli [67]. Note the progressive degrada-
tion of the autoantigens, except lamin B, dur-
ing the cell death continuum. Intact proteins
are indicated by lines, whereas proteolytic
fragments are indicated by arrows.



during the initial hours of STS-treatment but failed to prevent the subsequent cleav-
age of these autoantigens into other fragments associated with secondary necrosis
[67]. For instance, the 70- and 45-kDa fragments of Topo I and the 50-kDa fragment
of PARP associated with both primary and secondary necrosis were observed in cells
undergoing caspase-independent cell death. The kinetics of appearance of these
fragments was essentially identical to the kinetics of appearance of similar frag-
ments during STS-induced secondary necrosis. The presence of zVAD-fmk in
STS-treated Jurkat cells blocked completely the cleavage of lamin B, consistent with
the lack of cleavage of this autoantigen in primary necrosis [11, 97], but did not block
the degradation of other autoantigens such as DFS70/LEDGF, UBF and U1-70kDa.
In other experiments, we have observed that Topo I, but not lamin B, also undergoes
cleavage into the necrotic signature 45-kDa fragment in murine fibrosarcoma L929
cells exposed to TNF in the presence of zVAD-fmk (Pacheco et al., unpublished ob-
servations). Under these conditions, the L929 cells undergo a quick and massive cell
death with necrotic morphology.

The observation that Topo I and PARP are cleaved into distinctive fragments
(45 and 50 kDa, respectively), not observed in apoptosis, in various systems of pri-
mary necrosis, secondary necrosis, and caspase-independent cell death ([11, 67,
98] and Tab. 15.2) suggests that these cleavage products could potentially be used
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Tab. 15.2 Cleavage profiles of specific autoantigens during apoptotic and necrotic cell death.

Autoantigen Intact protein
size (kDa)

Cleavage
fragments in
apoptosis (kDa)

Cleavage frag-
ments in primary
necrosis (kDa)

Cleavage frag-
ments in second-
ary necrosis (kDa)

DFS70 75 58, 65 47 multiple (35, 40,
47)

Lamin B 68 45 none 45
Jo-1 50 none none progressively de-

graded; no cleav-
age fragments
detected

PARP 116 89 multiple
(45, 50, 60, 89)

multiple (45, 50,
60, 89)

SSB/La 48 43 none 40
Topo I 100 70 45, 70 70, 45
UBF/NOR-90 90 multiple

(24, 34, 36, 60)
multiple
(34, 36, 45, 60,
75)

multiple (24, 34,
36, 45, 60)

U1-70 70 40 partially
degraded; no
cleavage
fragments
detected

progressively de-
graded; no cleav-
age fragments
detected

The cleavage fragments listed are those detected by immunoblotting only. See Table 15.1 for abbrevia-
tions. The information provided on this table is based on [11, 67, 97, 98].



as markers to distinguish apoptotic from non-apoptotic cell death. Such distinc-
tion could be further strengthened by examining the integrity of lamin B, which,
as mentioned previously, is cleaved in apoptosis but not in primary necrosis and
caspase-independent cell death. The conservation of the cleavage patterns of these
autoantigens in various systems of non-apoptotic cell death also suggests the pres-
ence of a relatively conserved proteolytic mechanism associated with non-apopto-
tic/necrotic cell death pathways. Since lysosomal proteases are released in massive
amounts during necrosis and can induce in vitro the necrotic cleavage of PARP, it
is very likely that these proteases are the primary mediators of autoantigen cleav-
age during non-apoptotic cell death.

One observation that still remains puzzling is the presence of autoantigen cleav-
age fragments of similar size in apoptosis, primary necrosis and caspase-indepen-
dent cell death. These include the signature apoptotic fragments of Topo I (70
kDa) and PARP (89 kDa) which have also been observed in necrotic cells, even in
the presence of caspase inhibitors [11, 67, 98]. One possibility in explaining this
phenomenon is that some caspases may be insensitive to the caspase inhibitors
used and undergo limited activation during necrosis. This could occur as a result
of the cell’s attempts to activate the apoptotic program during the initial exposure
to the necrosis-inducing agent or by exposure of caspases to other cellular pro-
teases during necrotic cellular fragmentation. Activation of caspases by calpains
and cathepsins, proteases traditionally associated with necrosis, has been reported
[100–106]. Alternatively, during non-apoptotic cell death, proteases other than cas-
pases may target protease sensitive sites at the vicinity of the caspase cleavage
sites, generating cleavage fragments similar to those produced by caspases. There
is evidence that both calpains and cathepsins can directly cleave intracellular pro-
teins during both apoptotic and non-apoptotic cell death [78, 107–111].

Caspase-independent cell death also occurs as an alternative killing mechanism
during cytotoxic T lymphocyte (CTL)-mediated) cell death associated with inflam-
matory responses [112, 113]. CTL can induce apoptosis in their target cells either
by activating the Fas-mediated pathway or by delivery of the granule protease
granzyme B (GrB) into the target cells through perforin, a granule protein that
forms pores in the cytoplasmic membrane [114]. GrB activates apoptosis through
its ability to cleave upstream caspase-10 and -8 and downstream caspase-3 and -7
after specific aspartic acid residues [115, 116]. Investigators in our group showed
previously that adenovirus-mediated GrB delivery into target cells is also asso-
ciated with cleavage of specific autoantigens (PARP, U1-70kDa and lamin B) into
their signature apoptotic fragments [116]. More recently, Casciola-Rosen et al. [117,
118] demonstrated that the majority of autoantigens targeted in human systemic
autoimmune diseases are efficiently cleaved by GrB in vitro and during CTL-in-
duced cell death, generating unique fragments not observed during apoptosis. In-
terestingly, GrB cleaved several autoantigens previously reported as not suscepti-
ble to cleavage during apoptosis or necrosis, such as Ku-70, Jo-1, CENP-B and
PM-SCl, but failed to cleave other apoptotic/necrotic protease-resistant autoanti-
gens, including SSA/Ro, Ku-80, ribosomal P proteins, histones and the Sm pro-
teins [117, 118]. In vivo killing of target cells by CTLs generated low amounts of
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the unique autoantigen fragments produced by GrB in vitro, but favored the pro-
duction of fragments corresponding to those generated by caspases during apopto-
sis, indicating that caspase-mediated proteolysis is the predominant pathway used
during GrB-mediated apoptosis [117, 118]. However, the production of GrB-specif-
ic fragments was enhanced in the presence of the caspase-specific inhibitor Ac-
DEVD-CHO, suggesting that GrB may facilitate cell death independent of cas-
pase-activation by directly cleaving intracellular substrates [117, 118]. This implies
that under conditions where caspase activation is blocked by either viral proteins
or endogenous inhibitors, GrB may generate modified forms of autoantigens that
might be immunostimulatory under a pro-inflammatory context. It was not clear
from these studies whether the activity of GrB in the presence of caspase inhibi-
tors induces cell death with necrotic morphology.

15.5
Implications of Autoantigen Cleavage for Autoimmunity

It is clear from the above discussion that cells undergoing apoptotic or non-apoptotic
cell death have the potential to serve as sources of cleaved intracellular antigens.
There is growing support for the hypothesis that these cleavages and other structur-
al modifications associated with cell death could potentially target intracellular auto-
antigens for an autoantibody response in systemic autoimmune diseases, perhaps by
revealing previously immunocryptic epitopes in individuals with the appropriate
class II MHC molecules [3–5]. This hypothesis, however, has two limitations.
First, it may not be sufficient to explain all ANA responses, since it is not clear
whether all intracellular autoantigens are modified during cell death. Second, sys-
temic autoimmunity is absent in most individuals, in spite of the constant exposure
of their immune system to self-antigens (modified or not) derived from cells dying
under a myriad of physiological situations (e.g. regulation of immune responses,
fighting infections, aging, homeostasis, tissue turnover and remodeling, etc.). In
this section, we will briefly discuss emerging evidence indicating that cell death-as-
sociated structural modifications, while potentially enhancing autoantigen immuno-
genicity, may not be sufficient to incite and sustain autoantibody responses unless
they occur in conjunction with other conditions, such as defective cell death, a
pro-inflammatory environment and breakdown of tolerance to self.

15.5.1
Immunogenicity of Apoptotic Cells

The ability of apoptotic cells to incite autoantibody responses to intracellular anti-
gens has been examined recently by various groups. Mevorach et al. [119] reported
that systematic immunization of normal mice with syngeneic thymocytes dying
by ultraviolet (UV) irradiation-induced apoptosis led to the generation of antibod-
ies that reacted predominantly against single-stranded DNA and cardiolipin. Mice
immunized with control thymocyte lysates did not produce detectable levels of au-
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toantibodies. Although this study suggested that material from apoptotic cells is
immunogenic, the induced autoantibody levels were transient and generally lower
than those arising naturally in autoimmune MRL/Fas-deficient (lpr/lpr) mice. The
autoantibodies were also considered to be of low affinity and polyreactive. Very
modest or no antibody responses were detected against double-stranded DNA,
rheumatoid factor, nucleosomes or protein autoantigens targeted in systemic auto-
immunity. While this report suggested that apoptotic cells may be immunogenic
under certain circumstances, the authors emphasized that systemic exposure to
syngeneic apoptotic cells is probably not sufficient for induction of high-titer,
high-affinity, pathogenic autoantibodies and that additional immunoregulatory de-
fects may be required for the induction of full autoimmune disorders [119]. In a
more recent study, Gensler et al. [120] demonstrated that immunization of normal
mice with apoptotic human Jurkat T cells yielded monoclonal antibodies targeting
multiple autoantigens recognized in human systemic autoimmune diseases, in-
cluding Ku, ribosomal P proteins and U small nuclear ribonucleoprotein (snRNP)
proteins. While the material used for immunization was xenogeneic, the authors
indicated that the generation of ANA in these immunization experiments was dri-
ven specifically by the apoptotic cells since previous immunization studies with
lysed Jurkat cells had failed to produce antibodies to prominent autoantigens
[120]. Ronchetti et al. [121] also reported that apoptotic, but not necrotic, tumor
cells injected into normal mice elicited a moderate antitumor response that was
20-fold weaker than that elicited by non-replicating live tumor cells. These authors
suggested that material from apoptotic cells is, though scarcely, immunogenic in
vivo. It was also shown that immunization of non-autoimmune mice with �2-gly-
coprotein I bound to apoptotic thymocytes induced antiphospholipid autoantibod-
ies and lupus anticoagulant activity, but not ANA [122]. Taken together, these stud-
ies suggested that apoptotic cells have the potential to present immunostimulatory
forms of intracellular antigens to the immune system. Detailed reviews of the im-
munogenicity of apoptotic cells can be found elsewhere in this book.

15.5.2
Immunogenicity of Necrotic Cells

There is increasing evidence indicating that signals derived from necrotic cells are
capable of stimulating immune responses. For instance, Gallucci et al. [123] re-
ported that dendritic cells (DCs) undergo maturation in vitro upon stimulation by
signals from stressed, virally infected or necrotic cells, but not from healthy or
apoptotic cells. These investigators also demonstrated that BALB/c mice immu-
nized with a combination of ovalbumin and syngeneic necrotic cells stimulated a
primary immune response to ovalbumin. However, syngeneic apoptotic cells did
not elicit this response, suggesting that signals derived from necrotic but not
apoptotic cells act as potent natural adjuvants [123]. These authors proposed that
DCs engulf material derived from both necrotic and apoptotic cells, but signals re-
leased from the necrotic cells are primarily responsible for stimulating immune
responses to antigens processed from dead cells or to local exogenous agents
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(bacteria, viruses or toxins) that may cause the cell damage. Along the same line,
Sauter et al. [124] demonstrated that immature DCs efficiently ingest apoptotic
and necrotic tumor cells, but only the latter provide maturation signals. Remark-
ably, in these studies only tumor cell lines, but not primary cells derived from
normal tissues, induced maturation of DCs, suggesting that signals specifically as-
sociated with tumor cells may enhance the induction of DC maturation factors.
These authors also observed that the cellular damage associated with necrosis has
to be extensive enough to facilitate the release of those maturation factors. Other
studies on the immunostimulatory properties of necrotic cells demonstrated that
macrophages exposed to necrotic, but not apoptotic cells, expressed increased lev-
els of co-stimulatory molecules and stimulated specific T cell responses, suggest-
ing that these macrophages present antigens to T cells with greater efficiency than
those that have ingested apoptotic cells [125, 126].

The nature of factors or so-called ‘danger signals’ released from dying cells that
could induce DC maturation is not clear, although recent studies have implicated
heat shock proteins released from necrotic cells. Melcher et al. [127] reported that
in situ killing of tumor cells by necrotic, but not apoptotic, mechanisms was asso-
ciated with a higher tumor immunogenicity that correlated with increased expres-
sion of heat shock protein 70 (Hsp70) in tumors that experienced high levels of
necrotic cell death. This increased Hsp70 expression during necrotic tumor cell
killing induced a T cell-mediated antitumor immune response characterized by in-
filtration of T cells, macrophages and DCs into the tumors as well as an intratu-
moral profile of pro-inflammatory cytokines [128]. It was also observed that Hsp70
released from dying cells not only targeted immature DC precursors to uptake re-
leased tumor antigens but was also taken up directly into DCs, suggesting that it
could be involved in direct chaperoning of cellular antigens into DCs. It has been
proposed that the combination of necrotic cell death/induction of Hsp70 may sig-
nal to the immune system the presence of an immunologically stressful situation
against which an immune reaction should be raised [127–129].

Given the mounting evidence suggesting that necrotic cells are a source of ‘danger’
signals that could trigger a pro-inflammatory context and DC-mediated antigen spe-
cific immune responses, it would seem plausible that post-translational modifica-
tions associated with necrosis may also give rise, under the appropriate genetic back-
ground, to potentially immunostimulatory forms of intracellular autoantigens.
While no systematic studies have been reported yet to explore this possibility, Pol-
lard et al. [96] provided evidence that proteolytic fragments of autoantigens gener-
ated during necrosis could elicit an autoantibody response. These investigators dem-
onstrated that a 19-kDa fragment of fibrillarin uniquely generated during mercury-
induced non-apoptotic cell death was capable of inducing an antifibrillarin autoan-
tibody response similar to that observed during mercury-induced autoimmunity
in B10.S (H-2s) mice. These results, combined with the previous observation by
the same group that mercury modifies the structure of fibrillarin [15], suggested
that an autoimmunity-inducing xenobiotic such as mercury might generate unique
immunostimulatory fragments from a self-antigen most likely by a combination of
chemical modification and necrosis-associated proteolysis.
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15.5.3
Apoptosis, Necrosis and Immunity to Intracellular Antigens

Since apoptosis is a normal, non-inflammatory physiological cell death process, it
would be difficult to envision that exposure of the immune system to modified
forms of apoptotic self-antigens may be sufficient to elicit autoantibodies. More-
over, uptake of apoptotic cells by antigen-presenting cells under normal conditions
not only stimulates the release of anti-inflammatory signals, but also serves as a
mechanism to tolerize the immune system against intracellular antigens [130–
134]. If apoptosis plays a major role in immune tolerance, then under what cir-
cumstances could apoptotic material provoke autoimmune responses? Sauter et al.
[124] suggested that uptake of apoptotic material by DCs may lead to an immune
response only if followed by a maturation signal provided under a pro-inflamma-
tory context. This could be facilitated by excessive cell fragmentation (due to pri-
mary or secondary necrosis) induced by a tissue damaging insult (e.g. bacterial or
viral infection, release of cytotoxic cytokines, trauma or toxicity) or other inflam-
matory products. This would be consistent with the report that opsonization of
apoptotic cells with anti-�2-glycoprotein I antibodies, considered as a pro-inflam-
matory context, influenced apoptotic cell uptake by DCs and enabled DCs to pre-
sent apoptosis-derived antigens with higher efficiency and to secrete pro-inflam-
matory and maturation factors [135, 136].

Various models propose that the balance between apoptosis and necrosis, and
the environment surrounding cell death, may determine the tolerogenic or immu-
nogenic response of DCs [130–134, 137, 138]. Under these models, apoptosis asso-
ciated with normal cellular turnover induces DCs or other phagocytic cells to pro-
duce anti-inflammatory molecules and cross-present apoptotic self-antigens to the
immune system, leading to induction of peripheral tolerance. However, under
pro-inflammatory conditions such as an infection, mature DCs may trigger effi-
ciently the activation of antigen-specific T and B cells. For instance, the induction
of massive apoptosis by a viral infection in vitro was found to be associated with
DC-mediated activation of virus-specific CTLs [139]. Consistent with this observa-
tion, Salio et al. [140] reported that the capacity of necrotic or apoptotic cells to in-
duce DC maturation in vitro was dependent on the presence of a mycoplasma in-
fection, suggesting that cell death in the presence of an infectious agent provides
the necessary pro-inflammatory signals for stimulating a DC-mediated immune
response. Green and Beere [137] argued that extensive necrosis associated with an
infection would induce an inflammatory response, leading the nearby DCs, which
engulf both necrotic cells and infected apoptotic cells, to display co-stimulatory
molecules and self-peptides derived from the dying cells, as well as foreign pep-
tides from the infectious agent. Normally, an immune response will ensue against
foreign antigens but not against self-antigens, because autoreactive lymphocytes
are continuously silenced by the daily phagocytic clearance and processing of dead
cells. It can be inferred from this model that self-antigens from apoptotic and ne-
crotic cells could potentially be immunogenic only if displayed by DCs under pro-
inflammatory conditions and presented to autoreactive lymphocytes that have es-
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caped elimination. It could be also envisioned that abnormal interaction or aggre-
gation of self-intracellular antigens with foreign antigens (e.g. infectious agents or
xenobiotics) during cell death may generate cryptic or novel epitopes for which
tolerance has not been established and that under pro-inflammatory conditions
could initiate an autoimmune response.

15.5.4
Modified Autoantigens and Defective Phagocytic Function

Under normal circumstances, cells dying by apoptotic and post-apoptotic/second-
ary necrotic mechanisms are rapidly removed by phagocytic cells and presented to
the immune system for induction of tolerance [28, 29, 130–138]. This rapid clear-
ance prevents the accumulation of dying cells and the release of danger signals
leading to presentation of cellular antigens to the immune system under a pro-in-
flammatory context [28, 29]. It is becoming evident that in systemic autoimmune
diseases, increased presentation of intracellular autoantigens by mature DCs un-
der a pro-inflammatory context could be triggered by excessive accumulation of
dying cells due to exposure to tissue-damaging environmental agents (e.g. UV
light, xenobiotics, anti-inflammatory drugs, and viral and bacterial infections, etc)
combined with impaired clearance of apoptotic cells [5, 141–145]. As discussed
elsewhere in this book, there is increasing evidence that defects in proteins in-
volved in the phagocytic clearance of dying cells, including C1q, C-reactive protein
(CRP), serum amyloid P component (SAP) and the Mer tyrosine kinase, may lead
to impairment of phagocytic function, with resulting development of autoimmu-
nity to intracellular antigens [145–151]. Defective phagocytic function is likely to
be associated with excessive accumulation of cells in different stages of the cell
death continuum, from early apoptosis to secondary necrosis, which may facilitate
the release of pro-inflammatory signals that induce DC maturation and presenta-
tion of modified self-antigens from the dying cells. This would be consistent with
studies by Manfredi et al. [152, 153] demonstrating in vitro that excessive apopto-
sis or delayed apoptosis leading to secondary necrosis, mimicking a failure of
their in vivo clearance, were sufficient to trigger DC maturation and presentation
of intracellular antigens. This could skew the outcome of cross-presentation of in-
tracellular antigens to autoimmunity if intracellular antigens, particularly those
that are modified or altered, are presented to autoreactive lymphocytes. Fig. 15.5 il-
lustrates how defective clearance of dying cells could contribute to the induction
of DC-mediated autoantibody responses to modified intracellular autoantigens.

15.6
Conclusions

The immunogens driving autoantibodies in systemic autoimmunity appear to be
intracellular antigens associated with subcellular organelles or particles. Emerging
evidence suggests a role for apoptotic and non-apoptotic/necrotic cell death path-
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ways in facilitating the presentation of cleaved forms of self-intracellular antigens to
the immune system. Under a non-inflammatory context, cell death, especially by
apoptosis, may serve as the leading mechanism to maintain immune tolerance to
these antigens, including their modified forms. However, in the inflammatory envi-
ronment associated with non-apoptotic/necrotic cell death (triggered by infection,
exposure to xenobiotics or defective phagocytic clearance) self-intracellular antigens
could be presented to autoreactive lymphocytes in a manner that stimulates a specif-
ic autoimmune response. Proteolytic cleavage and other modifications/alterations
associated with cell death could potentially enhance the immunogenicity of autoan-
tigens. Cell death-associated abnormal interactions of autoantigens with foreign
antigens (e.g. viral or bacterial proteins), xenobiotics (e.g. mercury) and, poten-
tially, self-proteins (e.g. Hsp70) may also expose cryptic or novel epitopes for which
the immune system has not developed tolerance, resulting in autoimmunity.
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Fig. 15.5 The possible contribution of various
cell death pathways to the induction of auto-
immune responses to intracellular self-anti-
gens. Induction of apoptosis during normal
tissue turnover leads to swift phagocytic clear-
ance of apoptotic cells under non-inflamma-
tory conditions. Under these conditions, self-
intracellular antigens are cross-presented to
the immune system to induce tolerance. In-
duction of apoptosis, necrosis or caspase-

independent cell death under conditions where
phagocytic clearance is defective leads to the
accumulation of dying cells, with subsequent
development of a pro-inflammatory environ-
ment. This leads to the exposure of self-intra-
cellular antigens (modified and non-modified)
to the immune system under pro-inflammatory
conditions. DC-mediated presentation of these
antigens to autoreactive lymphocytes may
trigger autoantibody responses.

Cross-presentation of self-
antigens

Induction of T & B cell
tolerance

Modified self-antigens pre-
sented by mature DC

Induction of autoimmunity if
DC encounter auto-reactive
lymphocytes
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16.1
Introduction

The understanding of the mechanisms of cell death has increased dramatically in
the last 10 years due to the identification of key components of the apoptotic pro-
gram. Programmed cell death is a physiological process that plays a fundamental
role in embryogenesis, tissue homeostasis and elimination of damaged cells [1]. It
is well documented that faults in the regulation of apoptosis may be implicated in
the cause or as a contributing factors in the pathogenesis of major human dis-
eases, including autoimmunity [Hashimoto’s thyroiditis, systemic lupus erythema-
tosus (SLE) and rheumatoid arthritis] [2], neurodegenerative diseases (Alzheimer’s
and Huntington’s diseases), cancer [3], infectious diseases (HIV, hepatitis viruses,
human herpes viruses and bacterial infections) [4] and myocardial malfunctions
[5], although the pathological mechanisms involved in such diseases are clearly
distinct.

Extensive structural changes occur in cells undergoing apoptosis determined by
post-translational modification of cellular proteins. This drastic remodeling of cel-
lular components may lead to profound modification of the antigenic profile of
dying cells. Evidence is accumulating that post-translational modifications of pro-
to-autoantigens during apoptosis may promote the development of autoantibodies
by passing the normal mechanisms of tolerance [6]. The potentially harmful con-
sequences of this event are mostly prevented by the rapid clearance of cells under-
going apoptosis. Phagocytosis of apoptotic cells by macrophages and dendritic
cells, in fact, is necessary to eliminate pro-inflammatory debris and neo-self-anti-
gens. Therefore, phagocytosis deregulation might play an important pathogenetic
role in the immune system, its efficiency being a key determinant in the suppres-
sion of tissue inflammation and prevention of autoimmunity. A common feature
of autoimmune diseases is the break down of tolerance consequent to the produc-
tion of autoantibodies reactive with multiple self-proteins. In this chapter we dis-
cuss how the impairment of ‘tissue’ transglutaminase (tTG), a cell death-asso-
ciated gene product, might represent an important factor in autoimmunity, both
by preventing the spreading of self-antigens and/or contributing to the post-trans-
lational modification of proteins in dying cells.
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16.2
Transglutaminases

The transglutaminase family includes seven intracellular (the ubiquitous tTG and
six different isoenzymes differentially expressed in the tissues) and two extracellu-
lar enzymes (Factor XIIIa and prostate transglutaminase) that catalyze Ca2+-depen-
dent reactions resulting in the post-translational modification of proteins at the
level of glutamine and lysine residues [7–10]. This post-translational modification
leads to the formation of the �(�-glutamyl)lysine crosslinks and/or to the covalent
incorporation of polyamines into proteins [7–10]. Diamines and polyamines may
also participate in crosslinking reactions through the formation of N,N -bis(�-glu-
tamyl)polyamine bonds [8–10]. The formation of these covalent crosslinks leads to
oligomerization of substrate proteins which become resistant to physicochemical
stress, such that the polypeptides released from the polymer(s) only by the proteo-
lytic degradation of the protein chains [8–10]. Although transglutaminases act as
crosslinking enzymes, in the absence of an appropriate acceptor peptide they may
cause the deamidation of protein-bound glutamine residues.

16.3
tTG and Apoptosis

The onset of apoptosis is associated with the marked induction of the tTG gene, fol-
lowed by its Ca2+-dependent enzymatic activation [11–13]: tTG-dependent protein
crosslinking has been observed in the most extensively characterized in vivo and
in vitro models of apoptosis [11–15]. Although a definitive role for tTG in apoptosis
has not yet been firmly established, the specific expression of the tTG gene observed
in dying cells does not seem to be an epiphenomenon [1]. Mammalian cells trans-
fected with a full-length tTG complementary DNA (cDNA) show a marked increase
in the rate of spontaneous cell death [14, 16–17]. Conversely, stable transfectants con-
taining segments of the human tTG cDNA, in antisense orientation, show a pro-
nounced decrease both in spontaneous and induced apoptosis [16]. This suggests
that the tTG-catalyzed irreversible crosslinking of intracellular proteins is an impor-
tant biochemical event in apoptosis. Mice lacking transglutaminase, although not
showing major defects during embryogenesis, present several dysfunctions related
to anomalies occurring in the apoptotic program (unpublished observations).

It has been demonstrated that over-expression of tTG reduces the release of
macromolecules [double-stranded (ds)DNA and lactate dehydrogenase (LDH)] that
characterize tumor necrosis factor �-induced death of L929 cells [17]. These results
suggest that the tTG-catalyzed intracellular protein crosslinking plays an impor-
tant role in stabilizing apoptotic bodies and in preventing the leakage of their con-
tent [17]. This phenomenon may represent a key feature of apoptosis in vivo,
since a controlled disposal of crosslinked apoptotic bodies is required to prevent
the inflammatory response as well as the exposure of self-antigens, which may
lead to the development of autoimmunity [13, 18].
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The identification of ced3, one of the pro-apoptotic genes of the Caernohabditis ele-
gans genetic death pathway [19], as the cysteine protease interleukin-1�-converting
enzyme (ICE) has led to the discovery of 14 cysteine proteases, classified as caspases
[20, 21]; as well as to define the involvement of calpains in apoptosis [22]. Although a
number of protein substrates have been shown to be cleaved by the cysteine pro-
teases during apoptosis, how many of these proteins must be processed to establish
the death phenotype is still unclear [20, 21]. It has been shown that several proteins
act as substrates for both caspases and tTG during apoptosis, and, consistent with
this observation, other well-characterized tTG substrate proteins are also cleaved
by calpains (Tab. 16.1). These findings indicate that, during apoptosis, tTG and cys-
teine proteases act on a common set of target proteins (Tab. 16.1).

Although the physiological significance of ‘cleaving and polymerizing’ the same
substrate proteins in the establishment of the apoptotic phenotype has yet to be de-
fined, several hypothesis can be proposed. For example, the presence of a cysteine
active site is essential for the catalytic activity of tTG, calpains and caspases [10,
21, 22]. Recently, tTG has been shown not only to catalyze the formation of protein
crosslinks, but also to deaminate them, acting as a hydrolytic enzyme [23]. Hence,
tTG may be considered to have evolved from a papain-like ancestral cysteine protease
[24], since papain, like caspases, cleaves proteins at aspartate residues [21, 23, 25].

16.4
tTG and Autoimmunity

Alteration of the delicate balance between cell survival and death has been impli-
cated in the pathogenesis of many autoimmune diseases [18, 26–28]. Defects in
the CD95 receptor, involved in apoptosis induction after specific interaction with
CD95 ligand (CD95L), have been shown to play an important role in autoimmune
diabetes, thyroiditis and in the lymphoproliferation disorder described in MRL/
Mp-lpr/lpr mice [26–28]. However, the complex pathogenesis of these autoimmune
diseases cannot be fully explained by a malfunctional CD95/CD95L system alone
[18]; in fact, malfunction of other gene products has also been hypothesized [18].
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Tab. 16.1 Proteins post-translationally modified by both tTG and thiol proteases.

tTG substrate Reference Corresponding thiol protease Reference

Histone H2B 19 caspase 20
Retinoblastoma protein pRb 15 caspase 21
Actin 22 caspase 20
Huntingtin 23 caspase 17
Vimentin 24 caspase 25
Spectrin 26 calpain 18
Tau 27 calpain 28
Tubulin 10 calpain 29
Troponin 30 calpain 30



A deregulated tTG is present in autoimmunity-prone MRL-lpr/lpr mice: cross-
linking activity of tTG is reduced; autoantibodies against tTG are produced fol-
lowed by the abnormal accumulation of LDH and dsDNA in the blood [17]. The
display of cryptic molecular determinants has been proposed to play an important
role in the induction of the pathogenic autoimmune response [18]. The question
then arises as to how the apoptotic process results in the formation of harmful
neo-determinants.

In addition to the autoantibodies against tTG [17, 29], immunoglobulins against
substrate proteins of tTG have been demonstrated in various autoimmune diseases
[30–38] (Tab. 16.2). This phenomenon is particularly interesting considering that
many tTG substrate proteins are also cleaved by caspases and calpains during apop-
tosis (Tab. 16.1). On this basis, it is tempting to hypothesize that the tTG-dependent
polymerization of polypeptides that are generated by proteolytic action during the
apoptosis execution phase represents a safety mechanism for the organism. In the
absence of an active tTG, the accumulation of cleavage products, not normally pre-
sent in viable cells, may represent a harmful event and may contribute to the devel-
opment of autoimmunity. In fact, these novel polypeptides can be released into the
extracellular space and/or be presented as neo-antigens with the consequent genera-
tion of autoimmune responses. Surface blebs, typically formed in apoptotic cells,
represent important immunogenic elements in SLE [39]. In keeping with this hy-
pothesis, recent findings show that tTG knockout mice have a defect in the clear-
ance of apoptotic cells and develop nuclear autoantibodies with aging (unpublished
observations). The pathogenic effects of impaired tTG-catalyzed crosslinking as a
cofactor in the development of autoimmunity could be dramatic in the presence
of the impairment of phagocytosis resulting in the accumulation of dead or dying
cells [40]. tTG may influence the clearance of apoptotic bodies by its function of po-
lymerization of protein substrates, thus contributing to the production of signals in
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Tab. 16.2 Autoantibodies against tTG protein substrates in autoimmune diseases.

tTG substrate Reference Autoimmune disease Reference

Actin 22 hepatitis 41
necrobiosis lipoidica 40
human lupus 43, 44

Keratins 5 hepatitis 41
necrobiosis lipoidica 40

Histone H2B 19 murine and human lupus 42, 44
Lipocortin 1 45 murine lupus 46
Myosin 38 human lupus 44

necrobiosis lipoidica 40
Troponin 30 necrobiosis lipoidica 40
tTG 23 human lupus 44

celiac disease 37
Tubulin 10 hemolytic anemia 39

human lupus 44



dying cells, which may favor their clearance. Consequently, the lack of tTG-depen-
dent polymerization could play a role in the accumulation of damaged cells in tis-
sues, leading to presentation of neo-determinants [38] and activation of autoim-
mune reactions. In keeping with this assumption, recent data show that apoptotic
cells injected into guinea pig skin are phagocytosed and cleared by infiltrating mono-
cyte/macrophage 48 h after their injection. This event is paralleled by the release,
from apoptotic cells, of a monocyte chemotactic factor [41] carrying out an impor-
tant role in the phagocytic clearance of apoptotic cells. This factor was identified
as the crosslinked homodimer of S19 ribosomal protein [41]. Interestingly the dimer-
ization of the S19 protein is catalyzed by transglutaminase, thus confirming an im-
portant role for tTG in the apoptotic cells clearance [41]. Taken together these find-
ings confirm that defective clearance of apoptotic cells may promote an autoimmune
response in diseases characterized by increased rates of apoptosis such as AIDS and,
eventually, SLE [42].

16.5
Celiac Disease (CD)

CD is a complex disease characterized by a wide spectrum of lesions in the intest-
inal mucosa that can ultimately lead to the atrophy of the villi [43]. Permanent in-
tolerance to gluten, and in particular to gliadin, triggers the production of ele-
vated levels of circulating anti-gliadin antibodies (AGA), anti-reticulin antibodies
and anti-endomysium antibodies (EMA), and measurement of these IgA autoanti-
bodies is generally used as a serological marker for clinical diagnosis of CD [44].

Although it has been hypothesized that autoimmune mechanisms are important
in the pathogenesis of celiac disease [29, 45], this disorder is not a classical model of
an autoimmune disease. In fact, IgA antibodies disappear and most patients’ muco-
sae regenerate villi, when gluten is removed from the diet. However, the mucosal
damage, that characterizes CD is considered to be immune-mediated [44]. It re-
mains unknown if specific immune mechanisms are responsible for the tissue dam-
age or whether they act in concert with gliadin, in a direct effect on susceptible mu-
cosa. The sequence of immunological events is still not known, but binding of glia-
din by HLA-DQ molecules, for antigen presentation to lymphoid cells, appears to be
a central event in genetically predisposed individuals [45]. Dieterich et al. identified
tTG as the predominant autoantigen recognized by EMA in patients with CD [29].
tTG seems to play an important role in CD by modifying the gliadin molecule
and increasing its affinity for HLA-DQ molecule peptide-binding groove [29]. Mol-
berg et al. demonstrated that in vitro deamination of gliadin by tTG creates new epi-
topes that bind to HLA-DQ and are recognized by gut-derived T cells [46]. This event
results in T cell activation followed by lamina propria and mucosal transformation
[47]. The modified gliadin binds strongly to tTG, probably favoring the gluten-depen-
dent production of anti-tTG antibodies [29]. At the same time, HLA-DQ binding of
tTG-modified gliadin induces T cell activation and, consequently, cytokine produc-
tion that might also play a role in the intestinal changes [48]. In fact, production
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of antibodies directed to tTG has been shown to inhibit transforming growth factor-�
and this, in turn, inhibits intestinal epithelial cell differentiation, necessary for main-
taining villus integrity [49].

It has been shown that CD antigens are localized in the extracellular matrix
(ECM) and are produced by fibroblasts [45, 50]. Although tTG is an intracellular
protein, elevated tTG activity has been demonstrated in the ECM of CD patients,
co-localizing with the structures that specifically bind IgA [51]. It has been pro-
posed that the tTG-dependent crosslinking activity contributes to stabilization of
the ECM and promotes cell–substrate interaction [52]. The tTG release from cells
occurring during inflammation seems to be implicated in a number of pathologi-
cal conditions, including fibrosis, atherosclerosis, neurodegenerative diseases, can-
cer metastasis and also CD [52].

Previous studies have demonstrated the involvement of tTG in diseases character-
ized by induction of apoptosis and a drastic remodeling of the affected tissue, par-
ticularly in ECM [53, 54]. In a recent study aimed to elucidate the role of cell death
in the pathogenesis of various degenerative diseases affecting the intestinal mucosa,
such as CD, Crohn’s disease and ulcerative rectocolitis (UR), we demonstrated that
the presence of anti-tTG antibodies is a general phenomenon related to mucosal le-
sions, and not correlated to the autoimmune nature hypothesized for these disorders
[55]. In fact, we detected both circulating anti-tTG antibodies and induction of apop-
tosis in CD, Crohn’s disease and UR, but not in other systemic autoimmune diseases
(such as diabetes, thyroiditis, multiple sclerosis and SLE) [55]. In addition, consider-
ing that the enhanced apoptosis is paralleled by the induction of tTG both in phys-
iological and pathological settings [1, 7, 11, 56], we have analyzed whether the le-
sions occurring in CD, as well as in Crohn’s diseases, are associated with an abnor-
mal onset of apoptosis and a tTG expression. Our results suggest that the accumula-
tion of tTG in the enterocytes, as well as its release in the ECM, are a consequence of
the induction of apoptosis in those regions undergoing the destruction, typical of
severe CD-associated lesions (Fig. 16.1). In fact, the enterocytes become tTG-posi-
tive and show the morphological and biochemical features typical of apoptotic
cells, including the expression of the CD95L in early stages of the diseases.
Although defects in the CD95 pathway have been shown to play an important role
in several autoimmune diseases [6, 57], very little is known about the CD95/CD95L
pathway in CD. We have presented data suggesting the involvement of this receptor
also in CD pathogenesis [55].

It is interesting to note that, similarly to the wound healing process and tissue
repair occurring in CD lesions, in autoimmunity-prone MRL lpr/lpr mice a de-
regulated tTG activity is present, and the enzyme is also detected in the ECM [17].
Several studies indicated that tTG, by crosslinking a number of proteins such as
collagens, fibronectin, laminin, nidogen and transforming growth factor-� might
play an important role in the modification of the ECM occurring in degenerative
diseases [54, 58]. The presence of the tTG in the ECM in CD lesions might repre-
sent per se an important pathogenic event. It is very likely that the tTG-mediated
polymerization of ECM proteins may generate new self-antigens and thus contrib-
ute to eliciting the autoimmune response (Fig. 16.1). In keeping with this as-
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sumption is the demonstration that the binding of gliadin to reticular matrix com-
ponents is Ca2+-dependent, and it is inhibited by putrescine and by preincubation
with antibodies against tTG: this means that binding of gliadin might be a tTG-
mediated event [45, 59]. Taken together these findings highlight an important
complex role carried out by tTG and apoptosis in the pathogenesis of CD.
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Fig. 16.1 Localization of tTG and �(�-gluta-
myl)lysine crosslinks by immunohistochemis-
try, and DNA fragmentation by the TUNEL
technique in the intestinal mucosa of CD pa-
tients. Biopsies of intestinal mucosae from
CD patients were taken, fixed and stained
with antibodies against tTG (a and b), and
�(�-glutamyl)lysine crosslinks (d). DNA frag-
mentation was detected by the TUNEL tech-
nique (c). Note that in stages of the CD dis-
ease in which the mucosa was still present (a
and c), tTG staining was detected in the en-
terocytes localized in the upper part of the
villi and in the fibroblasts lining the intestinal
epithelium (a), while DNA fragmentation was
confined to the enterocytes (c). In the acute

stage of the disease (b and d), characterized
by villus flattening, a large proportion of the
tTG staining was detected in the ECM of the
lesion and only a limited number of fibro-
blasts were stained (b). In the same lesions,
very few cells were found positive to both TU-
NEL and CD95L staining (data not shown).
Note the intense staining detected by both
the tTG (b) and anti-�(�-glutamyl)lysine cross-
link antibodies (d) in ECM of the intestinal
areas showing a complete flattening of the
mucosa. The intense staining observed with
the antibody against �(�-glutamyl)lysine cross-
links in the ECM (d) indicate that the re-
leased tTG is active.



16.6
Autoimmunity and Infectious Diseases

Both viral and bacterial infections can cause apoptosis in immune competent cells
and are often accompanied by the appearance of autoimmunity [60, 61]. Although
there is a consensus view that the onset of autoimmunity during microbial infec-
tion does not play a major role in the pathogenesis of infectious diseases, it is pos-
sible that deregulated apoptosis induced by pathogens is responsible to a substan-
tial degree for this autoimmune response. It has been suggested that this may re-
present an immunopathogenic cofactor in AIDS and tuberculosis [60, 61].

Antigen-presenting cells (APC), such as dendritic cells and macrophages in the
lymph nodes of HIV-infected individuals, express abnormally high levels of tTG
[15]. Similarly, alveolar macrophages obtained from the lavage of the lung from
HIV-infected patients with pulmonary tuberculosis display high levels of tTG in
their cytoplasm [62]. The induction of tTG in APC infected with HIV and/or My-
cobacterium tuberculosis undergoing apoptosis may not only prevent the generation
of self antigens, but also the spreading of viable bacteria and viral particles [63,
64]. Consistent with this view, autoimmunity in lpr mice is associated with the ac-
cumulation of an inactive tTG in the APC of lymphoid tissues [17]. Interestingly,
the polyclonal B cell activation and antibody production against self-epitopes ob-
served in autoimmune lpr mice is accompanied by the appearance of high titers
of antibodies binding retroviral proteins, including HIV [65]. The anti-HIV anti-
body repertoire detected in MRL lpr/lpr mice is very similar to that present in
HIV-infected humans and in patients suffering with Sjögren’s syndrome and SLE
[66], thus suggesting that different pathogenetic events might determine a similar
autoimmune response when apoptosis and APC function are impaired. In keep-
ing with this assumption, a recent report demonstrates the presence of anti-tissue
transglutaminase antibodies in HIV-infected patients [67].

16.7
Conclusions

In conclusion, we have discussed how the post-translational modification of pro-
teins catalyzed by tTG may play an important role in preventing the neo-antigens
presentation to the immune system during apoptosis. However, in the absence of
an active clearance of apoptotic bodies, tTG-catalyzed modification of proteins
may effectively represent a source of potentially pathogenetic neo-antigens. The
tight control of the potentially harmful post-translational modifications of ‘death
protein substrates’ during apoptosis is an essential step to achieve the ‘immunolo-
gically silent’ demise of the cell [39, 43, 68]. We believe that the advancement in
the knowledge of the possible role of apoptosis and its regulation in the pathogen-
esis of autoimmune diseases may provide new insight into the therapeutics for
the prevention and/or treatment of these diseases.
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17.1
Introduction

RNA specific antibodies, RNA antigens and RNA cleavage during apoptosis are
topics of interest in the field of systemic autoimmunity. First, the hypothesis that
protein and RNA neoepitopes may be the deleterious first signals in alerting the
immune system to attack against self is gaining momentum [1]. Second, neoepi-
topes are generated during apoptosis, and the list of molecules modified during
apoptosis is continuously growing [2]. Third, the role of viral nucleic acids (and
proteins) interacting with host molecules is increasingly recognized as a potential
mechanism generating neoepitopes within or outside the cell death program path-
ways. Last, the use of RNA molecules in the form of ribozymes, antisense oligo-
nucleotides or aptamers as vehicles or therapeutics in various medical applica-
tions raises safety questions concerning the immunogenic potential of these com-
pounds.

Nucleic acids have long been known to be prominent targets of autoantibodies
in animal models of autoimmunity and in human autoimmune disease. However,
the general paradigm that anti-DNA antibodies play a role in the pathogenesis of
lupus nephritis and the diagnostic usefulness of these antibodies for the clinician
have reduced awareness that anti-RNA antibodies in human autoimmune dis-
eases are also prominent. Due to a lack of experimental evidence, these antibodies
have never found a place in routine clinical testing, screening or follow-up for
autoimmune diseases. Consequently, the topic has nearly disappeared – at least
from a practitioner’s point of view – into the ‘obscurity’ of more hardcore basic
science publications. However, recent exciting findings suggest a more important
role for RNA as a target for autoimmune responses in the context of programmed
cell death.

Particularly intriguing for researchers in the field is the selectivity by which a
small subset of RNA molecules is modified during apoptosis, whereas the vast
majority of RNA molecules remain untouched. This selectivity became even more
remarkable when it was discovered that antibodies to certain individual RNA epi-
topes are associated with more severe disease, implying a pathogenic role for
these autoantibodies. Moreover, the rediscovery of certain viral infections in the
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pathogenesis of autoimmune disease will certainly spur new interest in the im-
munogenic potential of RNA. Similarly, the use of nucleic acids in gene therapy
has already caused concerns about the potential induction of autoantibodies and
autoimmune syndromes.

It is probably best to view the emergence of autoantibodies to RNA not as an
isolated phenomenon, but as part of an autoimmune response directed towards
large multi-molecular RNA-protein complexes. Interestingly, the autoimmune re-
sponse selectively targets specific components of these macromolecular com-
plexes, usually involving the biologically most active epitopes that play crucial
roles for the function of the cell. It is increasingly recognized that irreversible
events occurring during apoptosis that modify certain molecules vital to the func-
tion of the cell play a key role in the breakage of tolerance to self. During apopto-
sis, post-translational modifications of various proteins occur, and some of these
altered proteins have been identified as autoantigens [2]. Only recently it was dis-
covered that RNA modifications occur during apoptosis. Moreover, some of these
modifications are substantiated by highly specific cleavage of selected nucleic
acids. Cleavage of nucleic acids is dependent on caspases, the main enzymatic ex-
ecutioners of cell death [3]. Taken together, modifications of proteins as well as
RNA molecules during apoptosis may contribute both to the formation of neoepi-
topes, to breakage of tolerance, and to development of disease-initiating or -perpe-
tuating immune responses in autoimmune disorders. (The second prerequisite
for induction of autoimmunity within the frame of this hypothesis – insufficient
or defective clearance of apoptotic remnants – is discussed in detail in part III in
this book.) The exact chronology of the evolution of neoepitopes and the sequence
of events overriding T cell tolerance to an increasing array of self-epitopes on
macromolecular complexes (a process referred to as epitope spreading) has been
the focus of intense research in recent years [4, 5].

Although the role of naked RNA, its modifications during apoptosis and the
time point of RNA (neo) epitope recruitment to this array of autoantigenic deter-
minants that are eventually recognized by lymphocytes are incompletely under-
stood, recent work clearly suggests a more prominent involvement of RNA anti-
gens in the process of epitope spreading. Fig. 17.1 shows incorporation of such an
immunogenic RNA epitope in one possible scenario of intermolecular epitope
spreading.

This chapter is henceforth organized as follows. First, we will provide a histori-
cal framework, describing seminal work performed on anti-RNA antibodies in the
late 1960s and early 1970s. We will then provide a brief overview of this research,
which is essential for the understanding of modifications of RNA molecules dur-
ing apoptosis. Second, we will review recent data on three subsets of RNAs that
have been shown to be modified during apoptosis. Third, the role of viral infec-
tions as a triggering catalyst for the generation of altered RNA (and altered pro-
tein) molecules will be discussed. Finally, a synopsis of current hypotheses focus-
ing on modified RNA antigens as the target of autoimmune responses will con-
clude this chapter.
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Fig. 17.1 Molecular mimicry, neoepitopes
and epitope spreading. (A) Viral infection in-
troduces foreign (viral) RNA into the blood-
stream. RNA antibody production is induced
with the help of T cells. This likely occurs in
secondary lymphoid organs such as lymph
nodes and spleen. Some B cells remain as
memory B cells (B�). Virally infected cells be-
come targets of CTL and NK cells. Granzyme
B introduced into target cells generates novel
cleavage fragments of prominent autoanti-
gens. (B.i) RNA antibodies may cross-react
with similar rRNA epitopes when these epi-
topes are exposed during apoptosis of virally
infected cells: a memory B cell with anti-RNA
specificity (B�) recognizes an RNA epitope

(yellow) on the ribosome (molecular mimi-
cry). (B.ii) A naïve B cell (B�) recognizes a
peptide neoepitope (red). Ribosomal particles
relocate in apoptotic cell surface blebs, where-
by genetically susceptible individuals develop
polyclonal expansion of B cells, a subset of
which generates antibodies that have under-
gone affinity maturation: a single T cell clone
with specificity for one ribosomal antigen can
activate B cells with multiple antibody specifi-
cities. B cells internalize the whole RNA-pep-
tide complex and present one among several
peptide antigens (red) to the reactive T cell,
which in turn induces affinity maturation of
multiple B cell clones via MHC II-‘red pep-
tide’-TCR ligation (epitope spreading).



17.2
RNA, Anti-RNA Antibodies and Associated Protein Complexes

17.2.1
RNAs

Native RNA comprises many different molecules. Their abundance, nuclear and
cytoplasmic localization, and their association with nucleic acid binding proteins
are shown in Tab. 17.1. It is important to remember that these molecules differ
considerably in sequence, secondary and tertiary structure, and certainly function.
Therefore, it was recognized long ago that detailed characterization of the anti-
body-RNA interaction might yield important clues to the nature and origin of im-
munizing antigens [6]. Moreover, the discovery by Cech and Altman that certain
RNAs are catalytically active, dramatically expanded our knowledge of the role of
RNA [7]. Briefly, catalytic RNAs or ribozymes are generated to specifically cleave
or splice target mRNAs, resulting in altered expression of target molecules. For
example, anti-tumor necrosis factor (TNF)-� ribozymes can inhibit TNF-� secre-
tion [8] and human B cell clones producing pathogenic anti-DNA antibodies have
been successfully targeted by antisense ribozyme to the nephritogenic V3-7 gene
[9]. Gene therapy using this approach is a fast moving and exceptionally exciting
field. However, whether or not these therapeutic RNA molecules have immuno-
genic properties may turn out to be one of several critical questions that must be
answered prior to its potential use in human disease. This is not so unlikely a sce-
nario, bearing in mind the widespread cross-reactivity among RNA molecules.

17.2.2
Anti-RNA Antibodies and Disease

In the late 1960s, two investigators independently described antibodies to RNAs
in both human systemic lupus erythematosus and in NZB/NZW lupus-prone
mice. Schur and Monroe, and Steinberg et al., were the first to take advantage of
the then recent availability of synthetic polynucleotides representing both single-
stranded (ss) and double-stranded (ds) RNA [10, 11]. In Schur’s investigation of
RNA antibodies in the serum of patients with systemic lupus erythematosus
(SLE), his group identified antibodies directed against synthetic ssRNA and
dsRNA as well as viral dsRNA. Because of the low abundance of these antibodies
in the serum, they may have escaped detection in earlier investigations. In the
same study it was shown that these antibodies were frequently associated with
anti-DNA and anti-ribosomal antibodies, and that anti-RNA antibodies were most
frequently directed to dsRNA, i.e. poly-inosinic·poly-cytidylic acid (poly I–C), poly-
adenylic · poly-uridylic acid (poly A–U) and statalon viral RNA (derived from Polio
virus). Interestingly, no antibodies against ssRNA and ribosomal RNA, which re-
present more than 95% of the mammalian RNA, were found in patients with
SLE. The authors concluded that their findings suggest that these antibodies are
primarily directed to foreign antigen in the form of a dsRNA virus.
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In the study by Steinberg et al., it was shown that dsRNA functions as a potent
antigen in New Zealand mice. Synthetic dsRNA (and presumably also viral
dsRNA) induce antibodies to dsRNA, and it was speculated that dsRNA induces
anti-RNA antibodies and interferon that protect against viral infections. In their
study, antibodies to DNA and RNA were induced in NZB/NZW F1 female mice
by injections of the interferon inducer poly I–C. Anti-RNA antibodies were not
only found in induced animals, but also in 50% of female NZB/NZW mice, as
well as in eight of 24 sera from patients with SLE. The authors found that RNA-
treated animals produced antibodies to RNA and DNA earlier and in larger
amounts, and had accelerated renal disease as compared to control mice.

It is likely that the anti-RNA reactivity described in these investigations repre-
sents a cross-reaction with antibody directed against some other RNA, since anti-
nucleic acid antibodies are known to cross-react widely. The authors speculate that
naturally occurring nucleic acids (e.g. viruses) act as stimuli to a genetically hyper-
responsive immune system to produce anti-RNA antibodies (see Fig. 17.1).

17.2.3
Ribosomal RNAs (rRNAs) and Transfer RNAs (tRNAs)

17.2.3.1 Ribosome and rRNA
Ribosomes are the protein factories of the cell. The subunits of the ribosome on
which synthesis takes place must be preloaded with auxiliary protein factors. Ad-
ditionally, a single messenger RNA (mRNA) molecule and all the different tRNA
molecules loaded with their respective amino acids come together to form a func-
tioning ribosome. The precise stepwise movements necessary to decode mRNA
are all catalyzed in this RNA-protein complex. Interestingly, the key catalytic activ-
ities are attributed to rRNA, whereas the heterogeneous auxiliary proteins appear
to have only modulatory functions. The prokaryotic 70S ribosome is composed of
two subunits, 50S and 30S, and the eukaryotic 80S ribosome is composed of a
60S and 40S subunit. The rRNA components make up more than 50% of the ri-
bosome, and are classified as follows: (1) prokaryotic 50S subunit: 5S rRNA, 23S
rRNA; (2) prokaryotic 30S subunit: 16S rRNA; (3) eukaryotic 60S subunit: 5S
rRNA, 28S rRNA, 5.8S rRNA; and (4) eukaryotic 40S subunit: 18s rRNA.

The ribosomal phosphoproteins P0, P1 and P2, which form a pentameric com-
plex that associates with 28S rRNA and indirectly with the 60S ribosomal subunit,
are targeted by the immune response in lupus patients [12]. Some anti-ribosomal
P autoimmune sera also contain antibodies to a fragment of 28S rRNA compris-
ing a highly catalytic domain, the ribosomal GTPase center [13]. Antibodies to
this highly conserved region of 28S rRNA were found to inhibit the interaction of
elongation factors 1� and 2 with ribosomes, thus interfering with protein synthe-
sis [14].
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17.2.3.2 tRNA
Another important set of RNA molecules that are targets of autoantibodies is
tRNA. Although not known to be modified during apoptosis, tRNAs are included
in this review because antibodies to tRNA have been important tools in the eluci-
dation of antibody specificity to nucleic acids in general [15]. Interest in antibodies
to tRNA has primarily been fueled by their usefulness in the study of nucleic acid
structure, cellular localization and biologic function. In a historical context it is in-
teresting to know that the structure of tRNA was the first to be reported among
all RNA types in 1975 [16].

Eilat et al. communicated the finding of an immunoglobulin fraction in NZB/
NZW mice that specifically binds native tRNA in 1976 [17]. This immunoglobulin
is spontaneously produced by NZB/NZW F1 mice. These authors later reported
that Escherichia coli tRNA was recognized by antibodies in the serum derived from
SLE patients, but not from other connective tissue diseases [18]. As opposed to
murine antibodies, antibodies occurring in human SLE sera appeared to have lit-
tle conformation specificity for native tRNA, but contain predominantly sequence
specificity. This is in line with later findings regarding the major role of light
chains in determining the sequence specificity of disease-related anti-U1 RNA an-
tibodies (see below and [19]).

Apart from antibodies to tRNA in NZB/NZW mice [17], direct reactivity with
free native ssRNA has been observed only in the context of antibodies to riboso-
mal RNA in SLE [20] and uracil-specific anti-RNA antibodies in scleroderma [21].
Investigators could not find evidence for the involvement of secondary or tertiary
structure in the recognition of the polynucleotide chain by the human ssRNA an-
tibodies, which is in opposition to results obtained in NZB/NZW mice. In conclu-
sion, in humans there is no clearly distinct antibody subpopulation that specifical-
ly recognizes tRNA within the pool of antibodies to native RNA. The specificity
seems to be determined more by the different nucleotides rather than RNA con-
formation, and considerable multivalent binding may occur.

17.2.3.3 Studies on the Specificities of Anti-RNA Antibodies
Eilat et al. have studied anti-tRNA and anti-rRNA autoantibodies in the sera of
SLE patients [18], and NZB/NZW F1 mice [22]. They found that antibody popula-
tions that bound polyribonucleotides were distinct from populations that bound
polydeoxyribonucleotides. Competition experiments showed that the anti-RNA an-
tibodies preferentially bound naive ssRNA as compared with synthetic ss and ds
homopolyribonucleotides, suggesting sequence and/or conformation specificity for
these antibodies. Subsequent studies have demonstrated that anti-RNA antibodies
from individual patients’ sera recognize unique determinants in methionine and
alanine-specific tRNAs [23]. This holds equally true for 28S ribosomal RNA [14]
and U1 snRNA [24].

Of several monoclonal antibodies (mAb) that were later generated from differ-
ent individual NZB/NZW mice, one antibody (BWR 5) differed from the pre-
viously studied immunoglobulins in that it showed a clear preference for ds poly-
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ribonucleotides in a sequence-independent manner [25]. The authors speculated
that this mAb probably represented the SLE anti-dsRNA autoimmune response
that was described by Schur and Monroe 20 years earlier. An explanation for this
difference in antibody specificity to RNA in mice and human is still missing.

The analysis of epitopes recognized by individual anti-nucleic acid mAbs is fa-
cilitated nowadays by the recently introduced method by Tsai and Keene [26],
whereby an epitope library comprising a pool of degenerate RNA transcripts is
used in a direct immunoprecipitation assay to select RNA species capable of bind-
ing to autoantibodies present in a patient’s serum. The sequence analysis of anti-
RNA autoantibodies with fine specificity for GC-rich polyribonucleotides showed
that the heavy chains of these mAbs are very similar to each other. The RNA-re-
lated VH chains were combined with a variety of D, JH, V� and J� elements. This
suggests that RNA specificity is mostly dictated by the germline VH gene. It is no-
teworthy that some heavy chains of mAbs with Sm and anti-ssDNA specificity
were encoded by the presumed anti-RNA VH gene [27–29]. However, many of
these mAbs were of the IgM class and showed relative low affinity for ssDNA.
Moreover, the authors speculated that some of the analyzed mAbs to Sm [30] and
to other ribonucleoprotein particles [31] did, in fact, recognize determinants of
naked RNA. Evidence to confirm this hypothesis was provided by several others
and is particularly strong for U1 snRNA. In 1999, Dutch researchers described
the isolation of the first human anti-U1 snRNA autoantibodies from a combina-
torial IgG library made from the bone marrow of a systemic lupus erythematosus
patient [19]. Their findings suggest an important role for the light chain for the
determination of sequence specificity of these anti-U1 snRNA antibodies, with
possible implications to the understanding of epitope spreading as a result of sec-
ondary light chain rearrangements.

For detailed information on genetic and structural studies dealing with the spe-
cificities of autoantibodies to nucleic acids, we refer the reader to the in-depth and
exhaustive review by Eilat and Anderson [15]. In a nutshell, protein-nucleic acid
interactions are fundamental to the understanding of key processes in autoim-
mune diseases.

17.2.4
Small Nuclear RNA (snRNA) and the U1 Small Nuclear Ribonucleoprotein (snRNP)
Complex

Small U RNAs are RNAs of 250 nucleotides or less, which have arbitrarily been
named U1, U2 . . . U12 RNAs. The complexes of protein associated with these
RNAs are designated snRNPs. The principle role of these complexes is RNA spli-
cing, a process that removes the intron sequences from the primary mRNA tran-
script. RNA splicing requires the formation of a multi-protein complex, called the
spliceosome. U1, U2, U5 and U4/6 snRNPs are components of the spliceosome.
The U1 snRNP binds to the 5� splice site guided by a nucleotide sequence in the
U1 snRNA that forms base pairs complementary to the 9-nucleotide splice site
consensus sequence. It is possible that the RNA component and the protein com-
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ponent of the snRNP complex could be responsible for catalyzing the reaction
since RNA has enzymatic properties.

U1 snRNP is an autoantigen in SLE and mixed connective tissue disease
(MCTD), whereby the 70-kDa component of U1 snRNP is almost always targeted
in MCTD. Thus, autoantibodies to U1 snRNP have become a prerequisite for the
diagnosis of, and the major serological classification criterion for, MCTD [32].
U1A, U1C and eight core proteins, named the Smith (Sm) complex, are also asso-
ciated with this spliceosomal subunit and are prominent targets of autoantibodies
in SLE. Anti-Sm antibodies were discovered in 1966 and were shown to have 99%
specificity for SLE, now constituting one immunoserological criterion for the clas-
sification of SLE [33]. There is a notable relation of the Sm reactivity to the HLA-
DQw6 or HLA-DR7 histocompatibility antigens, and racial differences are present
in juvenile SLE.

Anti-U1 snRNA antibodies are seen in 49% of patients with SLE [34]. Correla-
tions with disease features include pulmonary manifestations and Raynaud’s syn-
drome, and abnormal findings on nail fold capillary microscopy, suggesting an
SLE/scleroderma overlap syndrome in these patients [35]. Moreover, it was shown
that almost 40% of patients with anti-U1 snRNP antibodies also had the anti-U1
snRNA reactivity, but surprisingly none of these double-positive sera demon-
strated Sm reactivity. These findings already suggested an intimate link in the de-
velopment of anti-U1 snRNA and anti-U1 snRNP autoantibodies [36]. Remarkably,
anti-U1 RNA antibodies are associated with more severe disease in MCTD pa-
tients, and they correlate with disease activity [37]. Whether involvement of anti-
U1 snRNA antibodies is important in the pathogenesis of subsets of connective
tissue diseases remains to be seen.

Specific cleavage of U1-70kDa [38], but not of U1A, U1C and Sm-B/B� [39] have
been described during apoptosis. U1-70kDa is cleaved by both caspase-3 and gran-
zyme B, and the U1-70kDa cleavage fragments are different. Granzyme B, a novel
protease released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells,
cleaves a broad spectrum of autoantigens and thus may be a crucial molecule in
neoepitope formation (see Fig 17.1A). Granzyme B substrates comprise a variety
of functionally very different molecules involved in DNA repair (DNA-PK, PMS1,
PMS2, Ku70), DNA binding (PARP), RNA synthesis (RNA polymerase I and II),
RNA splicing (U1-70kDa), translation (tRNA synthetases), protein translocation
(SRP72), and mitosis (NuMA), among several others [40]. The cleavage sites are
unique for each molecule and their identification has become a scientific field in
its own right (see Chapter 15). Similarly, the list of autoantigens screened for po-
tential caspase-3 cleavages is continuously growing [2]. However, cleavage by cas-
pases or granzyme B is only one mechanism by which posttranslational modifica-
tions are generated, and other death-associated autoantigen modifications may be
equally important. One example is the recently described citrullination of filaggrin
peptides by peptidylarginine deiminase, an intriguingly simple biochemical pro-
cess with the potential to create immunogenic neoepitopes significant for the de-
velopment of autoimmune disease [41]. The U1-snRNP autoantigen complex has
also been shown by our lab to associate with a family of phosphoproteins called
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serine/arginine (SR) RNA splicing factors during apoptosis [42, 43]. SR proteins
are recently described autoantigens that are recognized by autoantibodies in a
phosphorylation-dependent context [44].

17.2.5
Y RNAs and the Ro RNP complex

Yet another subset of immunogenic RNA is found within the Y RNAs. Four types
of human (h) Y RNA exist: hY1, hY3, hY4 and hY5 RNA. hY2 is a degraded form
of hY1 RNA. Human Ro ribonucleoproteins are composed of one of the four Y
RNAs and at least two proteins, Ro60 and La. Ro60 and the 48-kDa phosphopro-
tein La belong to the family of RNA-binding proteins characterized by a conserved
RNA-binding domain, the so called RNA recognition motif (RRM). Another pro-
tein associated with this complex, Ro52, is completely unrelated to Ro60 and La,
and does not bind RNA directly [45].

However, the autoimmune response to Ro60 and Ro52 is closely linked [46].
Ro52 is assumed to play a role in cell activation and transformation [47]. Y RNAs
bind to the La protein through their oligo (U) stretch at their 3� end, which is a
common feature of all Y RNAs. The many important cytoplasmic and nuclear
functions of the La protein, which is 50 fold more abundant than Ro60, will be
discussed elsewhere in this book. For a detailed review, see [48]. Moreover, the dis-
covery of a possible involvement of La in the translation of certain viral RNAs has
to be added to the list of important functions [49, 50]. Interestingly, the La autoan-
tigen is also a host substrate for poliovirus 3C protease, whereby proteolytic cleav-
age of La removes a nuclear localization motif, thus preventing shuttling of La
back to the nucleus [51]. This cleavage certainly holds the potential to create neoe-
pitopes. La is an in vitro substrate of granzyme B [40], and, in the context of apop-
tosis, La has been shown to be partly cleaved and rapidly dephosphorylated [52].
As opposed to La, Ro60 is not cleaved after induction of apoptosis [39].

The functions of Y RNA are largely unknown. Differences in secondary struc-
ture of Y3 and Y4 RNA led to the speculation that these two Y RNAs might have
different cellular functions [53]. Y RNAs might act as co-factors in La-associated
translational events or even regulate La functions. Autoantibodies are only found
to Y5 RNA, but not to the other three subsets of Y RNA [54]. Correlations with
clinical manifestations are unknown, although it is not clear if such correlations
were ever investigated.
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17.3
Modifications of Selected RNA Molecules during Apoptosis

17.3.1
Cleavage of hY RNAs during Apoptosis

Although all hY RNAs are polymerase III transcripts, only hY5 is the specific tar-
get of autoantibodies in human anti-Ro sera [54]. Following a variety of apoptotic
stimuli, hY RNAs are rapidly cleaved and/or degraded, irrespective of cell type
and type of apoptosis induction [55]. This is not the case for other polymerase III
products, like 7SL RNA, 5S ribosomal RNA or transfer RNA. The hY RNA cleav-
age products have been characterized in detail, and have been shown to differ ac-
cording to the association of the remaining fragments with the Ro and La protein,
respectively, pointing to multiple endonucleolytic cleavage reactions. The same
authors demonstrated that cleavage of hY RNA is almost completely inhibited by
caspase-1, -3 and -8 inhibitors, suggesting the recruitment of caspase-activated
RNase (CAR) to the site of RNA cleavage. In contrast, caspase-9 inhibitor only par-
tially inhibits the cleavage of hY RNA. This is roughly analogous to the results ob-
tained from U1 snRNA cleavage experiments (see below). In summary, experi-
mental evidence suggests that modifications of hY RNA during apoptosis occur in
a caspase-dependent manner, with the restriction that the caspase-9 pathway
seems to play a less important role in this process.

17.3.2
Cleavage of U1 snRNA during Apoptosis

The same group of researchers in the Netherlands one year later described the
specific cleavage of the U1 snRNA molecule during Fas-mediated apoptosis [56].
In Northern blotting experiments the authors examined the behavior of U1
snRNA and demonstrated the appearance of cleavage products as early as 2 h
after induction of apoptosis. The first appearance of these shortened U1 snRNA
products coincided with the appearance of the 40-kDa cleavage product of the U1-
70kDa protein. It is known from earlier studies that U1-70kDa is specifically
cleaved by caspase-3 at position 338DGPD341, resulting in an N-terminal 40-kDa
(amino acids 1–341) and a C-terminal 20-kDa (amino acids 342–437) protein frag-
ment [38]. The cleavage of U1 snRNA is also highly specific, as none of the other
U RNAs are detectably cleaved over a time course of 8 h after apoptosis induc-
tion. The irreversible caspase inhibitors-1, -3 and -8, but not -9, markedly inhibit
the cleavage of U1 snRNA. All caspase inhibitors inhibit cleavage of the 70-kDa
protein. Furthermore, cleavage is not restricted to Fas-induced apoptosis and oc-
curs in mammalian and mouse cell lines. It was also shown in this report that
the 2,2,7-trimethylguanosine (TMG) cap is removed during apoptotic cleavage of
U1 snRNA, and S1 mapping studies determined the exact cleavage site to be be-
tween nucleotides C5 and pseudouracil (�) 6, or between nucleotides �6 and �7.
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From data presented in this first report it is not possible to determine which
nucleolytic activity is responsible for the cleavage of U1 RNA. Despite caspase-3
being a candidate protease that may be responsible for activating a site-specific
RNase, the fact that incomplete inhibition of U1snRNA is observed under condi-
tions where the model substrate for caspase-3 (U1-70kDa) is almost completely in-
hibited, favors alternative mechanisms. One possibility is that an apoptosis-specif-
ic nuclease is only indirectly activated by caspases-1, -3, -8 or -9, as suggested by
Degen et al. [1].

17.3.3
Modification of rRNAs during Apoptosis

The vast expansion of subsets of the variable or so-called divergent (D) domains
of the 28S rRNA molecule in higher eukaryotes during phylogeny (about 50% of
sequences are divergent in eukaryotes) has been taken as an indication of an im-
portant functional role of these domains. Possible roles are: (1) regulation and
tuning of the translational machinery, (2) protein anchoring, and (3) RNA-RNA in-
teractions. However, the precise function of D domains is still unclear. Impor-
tantly, in the 1990s it could be demonstrated that these key domains are the cleav-
age sites of enzymes activated during apoptosis. Houge et al. made the first obser-
vation regarding the cleavage of the 28S rRNA in 1993 [57]. In their studies the
authors showed several distinct cleavage products generated by induction of apop-
tosis in a rat myeloid leukemia cell line (IPC-81). In other investigations, the
same researchers performed fine mapping studies and reported two specific cleav-
age sites in the hypervariable regions of both the largest divergent domains D2
and D8 of the rat 28S rRNA [58]. Interestingly, these cleavage sites, D2c and D8b,
are apoptosis-specific and are not found in necrotic cells [39]. Similarly, incubation
with RNase T1 and RNase U2 yields different cleavage patterns. In a recent re-
view of their findings, Houge et al. speculate that two alternative 28S rRNA cleav-
age pathways might be operative during apoptosis [59]. In pathway A, cleavage
would be initiated in D8b and subsequently followed by cleavage in D2c. In path-
way B, the first cleavage takes place 5� upstream of the D2c subdomain, the sec-
ond cleavage 3� downstream of the D2c subdomain, resulting in the excision of
D2c. In human cells, specific cleavage products have not yet been reported. How-
ever, the 28S rRNA was cleaved in some human leukemia cell lines (K562, Molt-3,
Molt-4 and U937), whereas in the human HL-60 leukemia cell line, rRNA re-
mains intact after induction of apoptosis [60]. This discrepancy has yet to be re-
conciled. Moreover, the 18S rRNA subunit appears to remain intact in rat leuke-
mia cells, whereas in developing rat cerebellar cells clear evidence of cleavage of
both 28S and 18S during methylazoxymethanol-induced apoptosis was found [61].
In conclusion, cleavage of 28S rRNA during apoptosis seems to be a cell-type de-
pendent biochemical mechanism, a notion that raises important questions about
the selectivity of these particular cleavage events. Intriguingly, the autoantigenic
proteins associated with the ribosome, the so-called P proteins, are not susceptible
to apoptotic cleavage by caspases and granzyme B [40]. This finding provides sup-
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portive evidence to the hypothesis that alterations of RNA rather than of proteins
during apoptosis may in some circumstances be the initial immunogenic up-
stream event in the evolution of a broader autoimmune response (see
Fig. 17.1 B.))

17.4
Viral Infection, Apoptosis and Autoimmunity

Several mechanisms have been proposed concerning virus-host interactions on a
molecular level:
(1) Host response to a virally infected cell [cytotoxic T lymphocyte (CTL)-mediated

killing]
(2) Disruption of normal cellular function by virally encoded factors
(3) Viral nucleic acid interactions with host proteins
(4) Interactions of viral and host proteins
(5) Direct modification of host proteins by viral enzymes.

Within the limits of this chapter, we would only like to briefly point out those
mechanisms with the potential to involve nucleic acids. When do epitopes appear
foreign to the organism? Truly novel epitopes are created when the powerful pro-
teolytic cascade of caspases or granzyme B is activated by direct attack of virally
infected host cells by NK cells or CTLs [62] (Fig. 17.1 A). This mechanism may be
extremely important in the initial insult leading to novel peptide fragments, illus-
trating a host response to a virally infected cell. However, with regard to nucleic
acids, an alternative mechanism is the specific interaction of viral nucleic acid
with host proteins. Important examples include the La protein, which binds to he-
patitis C virus, HIV and Epstein–Barr virus (EBV) RNA [49, 50, 63]. The interac-
tion of La with EBV RNAs EBER 1 and EBER 2 is particularly intriguing [6], the
more so with a recent albeit controversial report on the increased prevalence of
EBV infection in young lupus patients [64]. Despite these insightful reports, the
precise role for viral RNA as molecular mimics and for the generation of neoepi-
topes remains incompletely understood as of today. Fig. 17.1 attempts a synopsis
of current models.

17.5
Summary

For many reasons, RNA antigens warrant closer observation by the community of
(auto) immunologists and clinicians alike. First, the elegant work done by van
Venrooij et al. convincingly suggests an important involvement of certain RNA
molecules during apoptosis. These investigators show selective and highly specific
cleavage of RNA subsets. Their new data support the notion that anti-RNA anti-
bodies are associated with disease subsets and more severe disease, and thus may
be pathogenic. Second, the rebirth of the viral hypothesis in autoimmune disease
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points to the involvement of RNA mimics in the development of autoimmune re-
sponses. Increasing evidence for interactions of viral protein/RNA with host pro-
tein/RNA corroborates the hypothesis of the emergence of neoepitopes in suscep-
tible individuals, within or outside the context of apoptosis. Third, RNA antigens
may be early targets of autoimmune responses. One might even speculate that
RNA is involved in early events of intermolecular epitope spreading, events that
eventually lead to pathogenic antibody formation and ultimately to autoimmune
disease manifestations. Last, the advent of RNA molecules as therapeutics in the
age of gene therapy waves a red flag to those aware of the immunogenic potential
of (naked) nucleic acids.

It remains to be seen if cleavage of RNA during apoptosis might be less,
equally, or even more important than protein modifications as a trigger in initiat-
ing an autoimmune response in susceptible individuals. Hence, the scientific en-
deavors ahead of us are a promising playground for the next generation of dedi-
cated programmed cell death researchers.
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18.1
Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by
the formation of autoantibodies directed against various autoantigens. These auto-
antibodies are often specific for antigens located in the nucleus, such as nucleo-
somes, histones and double stranded (ds) DNA, but also RNA-associated proteins,
like SS-A, SS-B and Sm. Historically, antibodies against dsDNA are considered as
a hallmark of the disease. Antibodies specific for dsDNA can be detected in about
70% of SLE patients and in about 96% of SLE patients with active disease [1]. In-
creasing anti-DNA antibody levels also precede exacerbations of the disease [2].
First, polyclonal B cell activation was regarded as the mechanism behind the for-
mation of anti-dsDNA antibodies. Later, it became clear, however, that SLE is a T
cell-dependent and autoantigen-driven autoimmune disease. Since naked DNA is
a poor immunogen, the nucleosome, the basic structure of chromatin that con-
sists of DNA and proteins, has been proposed as the major autoantigen [3]. The
significance of the nucleosome as a major autoantigen in SLE has been further
substantiated by the identification of nucleosome-specific T helper cells [4] and
the high prevalence of anti-nucleosome autoantibodies [5]. In addition, nucleo-
somes have been detected in the circulation of SLE patients [6] and lupus mice
[7]. During apoptosis nucleosomes are clustered in apoptotic blebs at the surface
of apoptotic cells [8]. When the removal of apoptotic cells is impaired, nucleo-
somes may be released in the circulation due to the instability of these cells. In-
deed, there is increasing evidence that apoptosis is disturbed in SLE [9]. Apopto-
sis-induced modifications of autoantigens targeted in SLE may make them more
immunogenic [10]. This becomes particularly relevant if the removal of apoptotic
cells is insufficient.

Often no distinction is made between anti-DNA and anti-nucleosome antibod-
ies, which is confusing. Anti-DNA and anti-histone antibodies are specific for re-
spectively DNA and histones, but also recognize nucleosomes. Anti-nucleosome
antibodies are defined by their much higher specificity/reactivity towards the com-
plete nucleosome compared to isolated histones or naked DNA. The total group
of antibodies reacting with nucleosomes, histones and DNA are referred to as
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anti-chromatin antibodies. The prevalence of anti-nucleosome antibodies is even
higher than that of anti-DNA antibodies. These anti-nucleosome antibodies are
not exclusively found in SLE, but also in scleroderma and mixed connective tissue
disease [11], although this latter finding was not confirmed in another study [12].
Anti-nucleosome antibodies are detected before anti-DNA antibodies are present
in the circulation, which indicates that they most likely are responsible for the
subsequent induction of both the anti-DNA and the anti-histone antibody re-
sponses via antigen spreading [13].

Apart from their role as autoantigen, nucleosomes also play a role in mediating
tissue lesions, especially glomerulonephritis [14]. Nephritis is one of the most ser-
ious manifestations of SLE and develops in 40–50% of the SLE patients. Granular
deposits of immunoglobulins and complement factors can be found in glomeruli
in renal biopsies of SLE patients, which suggests an immune complex-mediated
pathogenesis. Renal manifestations of the disease are often preceded by a rise in
the level of anti-chromatin antibodies in the circulation, while these antibodies are
also detected in immune deposits in the glomerulus [15]. Apparently, anti-chroma-
tin antibodies play an important role in the development of renal disease during
SLE. However, the mechanism that explains the induction of nephritis by anti-
chromatin is still under debate. Until now two different models have been formu-
lated. The first model explains the deposition of anti-chromatin antibodies in the
kidney by direct interaction of these antibodies with molecules present in the glo-
merular basement membrane (GBM). The second, in our opinion more favorable
model, attributes the glomerular pathology to nucleosome-mediated deposition of
immune complexes either formed in situ or originating from circulating immune
complexes. Both models will be discussed in more detail in the next sections.

18.2
Reactivity of Anti-Chromatin Antibodies with Glomerular Components

The causal relationship between autoantibody formation and nephritis in SLE has
intrigued many investigators. A variety of autoantibody specificities has been as-
signed a pathogenic role in the development of lupus nephritis. Antibodies specif-
ic for known components of the GBM are not commonly found in SLE, but most
sera are reactive towards the GBM, which led to the idea of cross-reactive recogni-
tion of glomerular components [16]. In particular, the observation that murine
and human monoclonal antibodies specific for dsDNA showed a cross-reactivity to
several proteins, has been the basis to explain the binding of autoantibodies to
glomerular components, especially in the GBM [17]. This cross-reactivity has even
been used to distinguish pathogenic anti-DNA antibodies in SLE sera from non-
pathogenic anti-DNA antibodies present in normal sera [18]. The cross-reactivity
of anti-DNA autoantibodies has been described for various biomolecules, such as
membrane structures like cardiolipin [19–22] and phosphocholin [23], ribosomal
protein P1 [24], A and D snRNP [25], nuclear proteins like nuclear envelope pro-
teins [26] and the transcription factor EF-2 [27].
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The various in vitro and in vivo studies showing reactivity of anti-DNA antibodies
with glomerular components or the GBM are listed in Tabs 18.1 and 18.2. Immuno-
globulins in serum from lupus mice and patients show reactivity with isolated glo-
meruli [28], which could be inhibited by the addition of DNA, but not by DNase I
treatment of the glomeruli. This finding may implicate that DNA shares epitopes
with GBM constituents, but does not mediate the glomerular binding. Monoclonal
anti-DNA antibodies derived from several mouse models for human SLE, such as
the MRL-lpr/lpr, (NZW�NZB)F1 and graft-versus-host (GVH) mouse, have been
shown to react in vivo with isolated glomeruli [29–34]. As with the human sera,
DNA could in most cases inhibit the antibody binding to isolated glomeruli, while
DNase I treatment did not affect this binding. These in vitro results are summarized
in Tab. 18.1. To approach a more in vivo situation of antibody binding to the glomer-
ulus, perfusion studies have been performed in which monoclonal antibodies were
directly perfused via the renal artery after which glomerular binding could be deter-
mined by immunofluorescence (Tab. 18.2). Several mouse monoclonal anti-DNA an-
tibodies, indeed, could bind to the glomerulus [32]. When anti-DNA antibodies that
were complexed with DNA were perfused, no binding could be observed. Also these
more in vivo experiments revealed that human anti-DNA antibodies could bind to
the GBM. After perfusion of IgG, isolated from human SLE sera by Protein A-Se-
pharose, glomerular binding also could be observed [32]. Interestingly, IgG from
SLE patients with nephritis resulted in a higher intensity of glomerular binding,
than IgG from SLE patients without nephritis. The binding to the GBM could be
inhibited by pre-incubating the isolated IgG fraction with DNA, but not by pre-treat-
ment with DNase I. A different in vivo approach is intraperitoneal injection in im-
mune-deficient mice of hybridoma cells producing a monoclonal anti-DNA anti-
body. This procedure leads to circulating monoclonal antibodies, which can bind
to the GBM. Indeed the injection of anti-DNA hybridomas derived from MRL-lpr/
lpr [29, 33–36], (NZW�NZB)F1 [29, 32, 36] and SNF1 mice [34] resulted in glomer-
ular deposits in the capillary wall and in the mesangium. In some cases the staining
of the mesangium was more intense than the staining of the capillary walls. In an-
other study, i.v. injection of a mouse anti-DNA monoclonal antibody also resulted in
a glomerular staining pattern [33].

In conclusion, monoclonal anti-DNA antibodies, either from lupus mice or SLE
patients, seem to bind to the GBM both in vitro and in vivo. However, not all anti-
bodies are able to react with the GBM and the exact features of the antibodies,
which are responsible for the GBM-associated ‘cross-reactivity’ still remain un-
known. The molecules, to which the anti-DNA antibodies bind, have been identi-
fied in some cases only.

A major component of the GBM is heparan sulfate (HS), which is the negative-
ly charged glycosaminoglycan side chain of HS proteoglycan (HSPG). HS is re-
sponsible for the majority of the anionic sites in the GBM, which are the most
important determinants for the charge-selective permeability of the GBM. Loss of
anionic sites leads to proteinuria, while injection of antibodies specific for HS in
rats instantly induces an acute selective albuminuria [37]. In both human and
murine SLE sera anti-HS reactivity has been found [38]. In an early report anti-
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HS reactivity has been demonstrated in 30 out of 33 SLE patients that were posi-
tive for anti-DNA antibodies in the Farr assay and the anti-DNA ELISA. The ob-
served HS binding in ELISA could not be attributed to a much higher IgG con-
centration in the SLE patients because the IgG concentration was only 2-fold high-
er compared to the control sera, while the reactivity towards HS was about 100-
fold higher. To exclude any possible DNA contamination of the HS, which could
easily explain the apparent binding of anti-DNA antibodies, the reactivity of hu-
man SLE sera has also been tested with HS that was pre-treated with DNase I.
However, no difference in reactivity towards HS could be observed with or with-
out DNase I pre-treatment [38]. The titers of anti-HS-reactive antibodies showed a
significant correlation with the titers of anti-DNA antibodies both in sera from
SLE patients and MRL-lpr/lpr mice [38]. To obtain additional evidence that the
binding of anti-DNA antibodies to the GBM was mediated by HS, ELISA blocking
experiments with DNA and HS have been performed [29]. The binding of sera
from SLE patients and MRL-lpr/lpr mice to DNA in ELISA could be inhibited by
the addition of either HS or DNA. Vice versa, the HS reactivity in ELISA could
also be inhibited in a dose-dependent manner by the addition of either HS or
DNA. The degree of inhibition varied from 60 to 100% [29]. In addition, antibod-
ies eluted from MRL-lpr/lpr kidneys and from a kidney of a SLE patient showed
reactivity towards HS, which again could be inhibited by the addition of DNA.
The observed HS binding is very unlikely caused by entrapment of serum IgG in
the eluate, because the reactivity was much higher in the eluates than in the cor-
responding serum [29]. Murine monoclonal anti-DNA antibodies, that are able to
bind to the GBM, also showed reactivity to HS or HSPG in ELISA. Again this
could be inhibited dose dependently with DNA or HS [29]. Binding of anti-DNA
antibodies to isolated GBM loops also could be completely prevented by pre-incu-
bation of the GBM loops with cationic ferritin, while pre-treatment with hepariti-
nase (i.e. enzymatic removal of HS chains) reduced the binding considerably, but
not completely. The remaining HS might be responsible for the residual binding
of anti-DNA antibodies, but the result might also indicate that other anionic mole-
cules than HS within the GBM, such as laminin, can serve as binding sites for
anti-DNA antibodies [39]. The glomerular binding was also not due to non-specif-
ic charge interaction, since a non-related monoclonal antibody with a high isoelec-
tric point (above 9.0) did not bind to the GBM. The anti-DNA antibodies that re-
sulted in glomerular deposits and showed reactivity in ELISA towards HS, were
used for in vivo studies. Hybridomas that produced non-HS-binding anti-DNA an-
tibodies only resulted in deposits in the mesangium. Injection of HS-binding anti-
DNA producing hybridomas also led in most cases to proteinuria in normal mice.
This was not the case when non-relevant antibody-producing hybridomas were
used [29]. Similar experiments with hybridomas that produce human monoclonal
anti-DNA antibodies did also result in a capillary wall and mesangial staining and
proteinuria [40]. All in vivo results that relate anti-DNA antibodies to glomerular
deposition are summarized in Tab. 18.2. All previously discussed results seem to
support the theory that the most prominent autoantibody in SLE, anti-DNA, can
cross-react with the negatively charged component of the GBM, HS [29]. As will
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be outlined further this ‘cross-reactivity’ of anti-DNA with HS was not due to a di-
rect binding, but mediated via nucleosomes bound to the antibody.

Screening of a random peptide phage display library is a more recent approach
to identify structural motifs [41] that can explain the reactivity of anti-DNA anti-
bodies with the GBM. This technique can be used to find mimotopes for anti-
DNA (or anti-nucleosome) antibodies, which are peptide motifs that mimic the
epitopes which are recognized by the antibody. The random peptide phage display
technology has proven to be a powerful technique, especially for antibodies that
by definition do not recognize a protein-based epitope, such as anti-DNA autoanti-
bodies [42, 43]. Briefly, the autoantibody is coated on a carrier (i.e. a plate or
beads) and subsequently incubated with a phage library, which contains numer-
ous different phages that display a short random peptide fused with a phage coat
protein. Finally, the phages that bind to the anti-DNA autoantibody with the high-
est affinity are selected. In silico, the selected motifs of course can be compared to
all known proteins sequences, including GBM proteins. A positive match between
the sequence of the selected motif and the sequence of a GBM protein then read-
ily explains the observed reactivity of the anti-DNA antibody with the GBM.

Several DNA mimotopes with a motif that mimics the epitope of anti-DNA au-
toantibodies have been selected so far with this random peptide phage display
[43–45]. In one study anti-DNA antibodies from sera of SLE patients, which were
positive in the Farr assay, have been purified by a �-bind Sepharose column fol-
lowed by a DNA-Sepharose column [44]. The purified antibodies have been used
for the screening of a phage library with a random sequence of 15 amino acids
fused to the pVIII phage coat protein. After several rounds of screening a com-
mon motif (amino acid sequence: RLTSSLRYNP) could be deduced from the se-
lected sequences. Despite the negative charge of DNA, this motif surprisingly con-
tained some positive charges. The motif showed only homology with a chromo-
some-associated polypeptide. The peptide that was synthesized on the basis of the
motif did react with 88% of the anti-DNA positive SLE patient sera. The reaction
of the IgG used for the selection with the peptide could be inhibited by the addi-
tion of dsDNA, native RNA, denatured DNA, and most efficiently with ssDNA.
Apparently, the peptide mimics a common epitope present in dsDNA, ssDNA and
RNA [44].

Random peptide phage display has also been applied to several monoclonal
anti-DNA antibodies. Screening of a 16-mer random peptide phage display library
with three anti-DNA antibodies derived from (NZB�NZW)F1 mice did result in
mimotopes for two antibodies [45]. The motif obtained by one of the antibodies
(F14.6) contained two cysteines, which could form a loop, negatively charged ami-
no acids and some aromatic residues. The motif selected by the other antibody
was different, but also contained two cysteines, negatively charged and aromatic
amino acids. No significant homology could be found with any other proteins
[45]. Screening of a 10mer pIII phage library with a mouse monoclonal anti-DNA
antibody (R4A) that causes glomerular deposits in non-autoimmune mice, did
also result in a mimotope [43]. This mimotope contains a net negative charge,
like DNA, and has two aromatic amino acids, which may mimic the sugar back-
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bone structure or one of the base pairs. It was evaluated whether the mimotope-
based synthetic peptide could inhibit the deposition of the R4A antibody to the
GBM in vivo. Administration of only the anti-DNA antibody caused deposits in
the glomerulus in SCID mice. Administration of both the mimotope-based pep-
tide and the R4A antibody reduced the deposits in the glomerulus. Binding of the
antibody to the GBM seems likely, because of the inhibition of glomerular bind-
ing by the mimotope-based peptide. Therefore, one could expect or argue that the
mimotope should mimic a GBM component or structure. However, on the pro-
tein level only homology with collagen XIII could be found (C. Putterman,
personal communication), a molecule that is normally not present in the GBM.
The DWEYS peptide on a MAP backbone has been used to immunize 4- to 6-
week-old BALB/c mice [46]. The immune response resulted in antibodies against
DNA, histones and cardiolipin. Most importantly, the mice developed a SLE-like
disease with glomerular deposits of IgG and complement C3 [46]. In a recent
study the reactivity of R4A with the NR2 glutamate receptor was found [47].

Comparison of the amino acid sequences of the different DNA mimics that
have been identified thus far [43–45] reveals that there is no homology between
the mimotopes at all. At first, this finding may seem rather unexpected because
the basic structure of naked DNA, i.e. without associated proteins, is a double he-
lix. The differences between the several reported DNA mimics may be explained
by different characteristics of the original DNA autoantigen such as different
higher-order structures of DNA (supercoils) or just differences in the nucleotide
sequence. Most importantly, on the amino acid level the DNA mimotopes do not
show homology with any known protein in the GBM. However, it cannot be ex-
cluded that the DNA mimotopes mimic a structural feature of the GBM that can-
not be easily deduced from the amino acid sequences of known proteins.

In summary, several studies suggest that certain anti-nuclear antibodies can
bind to glomerular components and induce glomerular deposits. However, from
these studies it is difficult to conclude which characteristics of the antibody deter-
mine glomerular binding. After a decade of research by several groups, the li-
gands in the glomerulus that could serve as cross-reactive epitopes for anti-nucle-
ar antibodies still have not been identified. So the direct binding of anti-DNA anti-
bodies to the GBM cannot yet be explained by a look-a-like of DNA present in the
GBM.

After our initial observation that anti-DNA antibodies could cross-react with HS
and GBM loops [38], we showed that this binding was mediated by nucleosomes
bound to the anti-DNA antibodies [48]. As will be outlined in the subsequent sec-
tion, removal of these nucleosomal components completely abrogated the binding
to HS in vitro and to the GBM in vivo [14]. A similar observation has been made
with respect to other cross-reactive molecules [31, 49]. Given these results, in our
opinion, it is likely that the majority of the observed cross-reactions, as discussed
above, are mediated by nucleosomal components bound to the antibodies. Let us
assume that this is the case, is it possible to explain the results described in Tabs
18.1 and 18.2. A common feature of all these experiments, is that DNA can block
the binding to the GBM and DNase I treatment has no effect. This led to the con-
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clusion that binding of DNA to the antigen binding sites of the antibody prevents
cross-reactive recognition of the GBM ligand. The lack of effect of DNase I treat-
ment was regarded as proof for the absence of DNA in the antigen binding site.
However, these findings can be explained differently. When an anti-DNA antibody
is complexed to nucleosomes, addition of DNA to these complexed antibodies will
lead to binding of DNA to the positively charged histone tails, thereby neutraliz-
ing these positive charges. This masking will lead to the abrogation of binding to
HS in the GBM. Addition of DNase I to the antibodies complexed to nucleosomes
will lead to the removal of DNA from the nucleosome, but will not remove the
bound histone part, as we have documented [50]. These remaining histone mole-
cules are still able to bind HS in the GBM.

18.3
The Nucleosomes as Mediator of Autoantibody Binding to the GBM

The nucleosome is the fundamental unit of chromatin, which is defined as the to-
tal of compacted DNA and DNA-associated biomolecules in the eukaryotic cell nu-
cleus. In the nucleosome two superhelical turns of 146 base pairs of DNA are
complexed to the pairs of four different core-histones that form an octamer
(Fig. 18.1). The core histones are histones H2A, H2B, H3 and H4, while histone
H1 is bound outside of the nucleosome. The core histones have a molecular
weight that ranges from about 11 to 15 kDa, a positive charge and an isoelectric
point of about 11. The basic residues are clustered in the flexible N-terminal parts
of the core histones, which are located outside of the histone octamer. Nucleo-
somes are exclusively formed during apoptosis by enzymatic cleavage of the linker
dsDNA regions of chromatin. The observation that apoptosis is disturbed in SLE
makes the nucleosome an important candidate autoantigen. The antigenicity of
nucleosomes can probably be enhanced by modifications of the histones or DNA
during apoptosis. Several types of modifications associated with apoptosis and/or
chromatin condensation have been described so far. These include (1) phosphory-
lation or dephosphorylation of specific sites on the N-terminus of the core his-
tones [51], (2) methylation of certain amino acids on the N-terminus of the core
histones, (3) hyperacetylation or deacetylation of histones [52, 53], (4) ubiquitina-
tion so far described for topoisomerase II and histone H2A [54], (5) citrullination,
the selective deamination of arginine to citrullin [55], and (6) transglutaminase-fa-
cilitated crosslinking of proteins like histone H2B [56]. In addition to protein
modifications, (nucleosomal) DNA can be altered by methylation.

As outlined in the introduction there is now convincing evidence that the nu-
cleosome is the driving autoantigen in SLE. Nucleosomes are not only important
in the induction phase of SLE, but they also play an important role in the develop-
ment of tissue lesions. Several studies provided the evidence that nucleosomes
can act as a mediator for the binding of autoantibodies to the GBM. As outlined
before we found that certain anti-DNA monoclonal antibody derived from MRL-
lpr/lpr, (NZB�NZW)F1 and GVH mice bound to HS isolated from bovine kidney
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in ELISA [38]. The majority of these HS positive anti-DNA antibodies also showed
reactivity with HSPG isolated from human kidneys. The antibodies showed no
‘cross-reactivity’ with other GBM components such as fibronectin, laminin or col-
lagen IV. However, when the culture supernatants of the anti-DNA antibody-pro-
ducing hybridomas were treated with DNase I, the binding to HS or HSPG was
strongly reduced in both ELISA and Western blot. This could mean that DNA
mediates the binding of anti-DNA antibodies to HS or HSPG. The residual bind-
ing then might be explained by the insufficient removal of DNA form the anti-
body preparations by DNase I treatment, therefore further purification of the anti-
bodies on a Protein A-Sepharose column under dissociating high salt conditions
was carried out. Strikingly, after this extended purification procedure all pre-
viously HS positive anti-DNA antibodies lost their ability to bind to HS as could
be determined in the anti-HS ELISA, whereas they showed an unaltered anti-nu-
clear antibody reactivity in immunofluorescence on rat liver sections. The reactiv-
ity of these purified antibodies with HS and HSPG could be restored by the addi-
tion of the effluent of the Protein A–Sepharose column. Figure 18.2(A) depicts a
representative experiment with the monoclonal antibody clone #32, which later
appeared to be a genuine anti-nucleosome antibody. The purified anti-DNA anti-
body was used for immunoprecipitation of the component that could restore the
binding to HS, from the Protein A effluent. After SDS-PAGE, the precipitated ma-
terial clearly showed multiple bands with a molecular weight between 10 and 15
kDa, which were identical to calf thymus histones (Fig. 18.2B). In addition, the
presence of DNA in the unpurified antibody preparation could be detected by
agarose gel electrophoresis after DNA isolation (Fig. 18.2C). DNase I treatment of
the Protein A-Sepharose column effluent abolished the reconstitutive effect of the
effluent with respect to HS binding of purified anti-DNA antibodies, which pro-
vided additional evidence for the presence of bound DNA in unpurified anti-DNA
antibodies. The presence of both DNA and histones was required for the binding
of anti-DNA antibodies to HS because the separate addition of histones or DNA
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Fig. 18.1 Composition of the nucleo-
some. The core particle consists of an oc-
tamer of four pairs of core histones H2A,
H2B, H3 and H4, and around 146 bp of
dsDNA, histone H1 is attached to the nu-
cleosomes.
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Fig. 18.2 Reactivity with HS and the GBM of
anti-nucleosome antibody #32. The purifica-
tion procedure included DNase I treatment
and Protein A-Sepharose chromatography un-
der dissociative high salt conditions. (A)
Clone #32 binds in the HSPG ELISA before
purification (sup); after purification under dis-
sociative condition on a Protein A column
this reactivity is lost (pur), while addition of
the Protein A column effluent to the purified
monoclonal antibody restores the binding ac-
tivity (pur + eff). (B) SDS–PAGE followed by
silver staining of antibody fractions before
purification (lane 3) and after purification
(lane 1 and 2). Before purification histone
bands are visible. Marker (M) is a protein
marker (in kDa). (C) Agarose gel electrophor-

esis after DNA extraction of antibody frac-
tions before (lane 1) and after purification
(lane 2). Marker (M) is a DNA marker (in
bp). The gel is stained with ethidium bro-
mide. (D) Immunofluorescence (stained with
FITC-labeled anti-IgG) of rat kidney sections.
After successive renal perfusion of histones,
DNA and purified monoclonal antibody #32
into the left kidney. A strong staining of glo-
meruli can be detected. (E) Similar to (D),
but now histones, DNA and a non-relevant
antibody (WT32) have been successively per-
fused. No glomerular staining is seen (glo-
meruli indicated with arrow). Note that due
to prolonged exposure auto-fluorescence of
the tubuli is observed.

A



to the purified antibody could not restore the HS binding. Apparently, a DNA-his-
tone complex was already bound to the unpurified anti-DNA antibody. Indeed,
during hybridoma culture nucleosomes are released [57]. We therefore concluded
that the binding of anti-DNA antibodies to HS and HSPG is mediated by DNA-
histone complexes bound to the anti-DNA antibody [48].

In addition to the ELISA studies, in vitro binding studies have been performed
with isolated GBM loops [58]. Anti-DNA antibodies extensively purified as de-
scribed above did not bind in vitro to the GBM loops isolated from human kidney.
Pre-incubation of the anti-DNA antibodies with both DNA and histones led to a
strong granular binding. Addition of histones or DNA alone to the anti-DNA anti-
bodies did not lead to binding to GBM loops. Pre-incubation of GBM loops with
cationic ferritin prevented subsequent binding of histone-DNA-antibody com-
plexes, which indicated that anionic sites like HS in the GBM were important for
this binding.

To analyze whether this in vitro binding to HS could also take place in vivo, re-
nal perfusion studies in normal rats have been performed. In this approach his-
tones, DNA and purified antibody were subsequently perfused via the renal artery
(Fig. 18.2D and E). Perfusion of non-complexed purified antibodies did not lead to
glomerular binding, however, after successive perfusion of histones, DNA and sev-
eral anti-DNA antibodies, immunofluorescence analysis revealed an intense stain-
ing of the glomeruli, arteries and peritubular capillaries. Immunoelectron micro-
scopy analysis showed large deposits at the cell membranes of glomerular endo-
thelial cells and smaller complexes in the GBM. In the case of a high-avidity anti-
DNA monoclonal antibody, perfusion of only DNA and subsequently an anti-DNA
antibody did only result in mesangial deposits, but not in deposits in the capillary
loop.

A completely different glomerular deposition pattern could be observed when
the high avidity anti-DNA antibody was administered into the tail vein 1 h after
the perfusion of histones and DNA into the left kidney via the renal artery and
subsequent restoration of the renal circulation [58]. Deposits now could be de-
tected along the capillary wall in a membranous pattern, while variable amounts
were present in the mesangium. Immunoelectron microscopy revealed the pres-
ence of immune deposits in the GBM located in the slit pores and under the foot
processes of the podocytes. In contrast to the direct perfusion method, no binding
to the endothelial cells could be observed. Most likely the 1 h time interval be-
tween intrarenal perfusion of histones-DNA and the intravenous administration
of the anti-DNA antibody allows for the penetration of DNA-histones into the glo-
merular capillary wall, where they then serve as planted antigens for the monoclo-
nal anti-DNA antibody. The direct perfusion method also resulted in an increased
urinary excretion of albumin, which suggests a damaged glomerular filter. Control
experiments with non-related monoclonal antibodies of the same isotype and at
the same concentration did not result in any glomerular binding. In conclusion,
anti-DNA antibodies can bind via complexes of histones and DNA to the GBM,
which results in subendothelial or subepithelial deposits and proteinuria. Only in
the case of high-avidity anti-DNA antibodies was the presence of DNA alone suffi-
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cient for glomerular binding, which, however, was exclusively localized in the me-
sangium. These studies revealed that the DNA-histone complex served as a
planted antigen in the GBM for anti-DNA antibodies [58]. Histones alone can also
act as planted antigens for artificially prepared DNA-anti-DNA complexes as has
been shown in a study in rats, in which prior to the administration of DNA-anti-
DNA complexes, histones were perfused through the renal artery [59].

In vivo histone-DNA complexes exist as nucleosomes, therefore, the perfusion
experiments described above were repeated with antibodies complexed with nu-
cleosomes [50]. The applied monoclonal antibodies were partially purified from
the hybridoma culture supernatant by Protein A-Sepharose under physiological
salt conditions, which yields antibodies still complexed to nucleosomes. Control
perfusions were performed with purified antibodies free of nucleosomes (see also
Fig. 18.2B and C). This latter purification method included DNase I treatment of
the hybridoma culture supernatant, a Protein A-Sepharose column under high
salt conditions and in some cases a DNA-cellulose column, which removes anti-
bodies still bound to histones. The purity of the antibody fractions was analyzed
by SDS-PAGE and agarose gel electrophoresis for the presence of histones and
DNA, respectively. In contrast to unpurified antibodies and antibodies purified un-
der physiological conditions, all extensively purified antibodies did not contain
DNA and/or histones. The purified antibodies have been tested in ELISA for their
reactivity towards DNA, histones and nucleosomes. It then turned out that only
some anti-DNA antibodies reacted with DNA. Most likely, the reactivity with
dsDNA of the formerly classified anti-DNA antibodies was due to histones within
the nucleosome bound to the antibody. The ‘genuine’ anti-DNA antibodies reacted
after purification with both DNA and nucleosomes. The reactivity of ‘anti-DNA
antibodies’, which were in fact anti-nucleosome antibodies, with HS in ELISA
could only be demonstrated when these antibodies were not purified. In agree-
ment with this latter finding, the purified anti-nucleosome antibodies did not
show glomerular binding, while unpurified anti-nucleosome antibodies did show
glomerular binding, as could be seen by immunofluorescence after renal perfu-
sion experiments. As expected, reconstitution of purified anti-nucleosome antibod-
ies with purified calf thymus nucleosomes restored glomerular binding. In con-
clusion, both immune complexes consisting of anti-DNA-nucleosome and anti-nu-
cleosome-nucleosome are able to bind to the glomerulus in vitro and in vivo [50].
To investigate the significance of HS in the GBM for glomerular binding of nu-
cleosome-complexed autoantibodies, heparinase was perfused intrarenally prior to
administration of the immune complexes. After heparinase perfusion the staining
of HS side chains of HSPG within the GBM almost disappeared completely, while
the staining of the HSPG core protein was not affected. Staining of other GBM
components, like laminin and collagen IV also was not affected by heparinase per-
fusion. Perfusion of nucleosome-autoantibody complexes after the heparinase
treatment did result in a decreased binding to the GBM, but this binding did not
disappear totally [50]. This observation suggested that HS is not the only ligand
that is responsible for the binding of anti-nucleosomes-nucleosome immune com-
plexes to the GBM. The binding of nucleosome-containing immune complexes to
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other GBM components has indeed been reported [60]. In this latter study, the
binding of sera from MRL-lpr/lpr mice to the GBM could be competitively inhib-
ited by DNA or histones and collagenase treatment of the GBM. The binding of
the antibodies could only be restored after the addition of collagen IV. With puri-
fied GBM components coated in ELISA antibody binding could only be observed
when DNA was coated on collagen I; however, no or little binding was observed
when DNA was coated on collagen IV, laminin or fibronectin. Coating of histones
prior to DNA coating on collagen IV resulted in a positive binding of the MRL/lpr
sera. These latter findings suggested that nucleosomes can bind to collagen IV via
their histone parts, analogous to the situation with HS [60].

Other evidence that HS is the major target in the GBM for nucleosome-
mediated autoantibody binding came from our studies in which we used heparin,
which is structural very similar to HS [61]. We hypothesized that heparin could
bind to the positively charged N-terminal parts of the core histones within the nu-
cleosomes, thereby preventing histone binding to HS. Indeed, in ELISA heparin
and non-coagulant heparinoids could inhibit dose-dependently the binding of nu-
cleosome-complexed autoantibodies to HS or DNA (Fig. 18.3A and B). Similarly,
in renal perfusion experiments heparin could prevent glomerular binding of nu-
cleosome-complexed autoantibodies, while dextran showed no effect (Fig. 18.3C).
In vivo in MRL-lpr/lpr mice daily subcutaneous administration of heparin or non-
coagulant heparin derivatives prevented the development of proteinuria and glo-
merular lesions (Fig. 18.3D and F). Immunohistology of the kidneys revealed that
in heparin(oid)-treated mice only mesangial deposits were present and in 80% of
the heparin(oid)-treated animals no glomerular lesions could be observed (Fig.
18.3E) [61]. These results support that immune complex deposition in lupus mice
is mediated for the greatest part by the interaction of cationic histones with anion-
ic HS. To further document that the N-termini of the core histones are important
for the binding to HS, we performed in vivo inoculation studies with hybridoma
cells in BALB/c nude mice [62]. We hypothesized that anti-histone producing hy-
bridomas would generate less nephritogenic nucleosome-autoantibody complexes
than anti-nucleosome or anti-DNA antibodies. Our hypothesis was based on the
fact that the epitopes for anti-histone antibodies reside within these N-termini.
Binding of anti-histone antibodies to the cationic tails would reduce the ability of
histones to bind to the anionic HS in the GBM, i.e. because of masking of the
positive charges on these N-termini. Binding of anti-nucleosome or anti-DNA anti-
bodies would hardly influence these charges. Inoculation of the different hybrido-
ma cells led to detectable levels of antibodies in ascites only against the part of
the nucleosome, to which the antibody produced by the hybridoma was directed
(Fig. 18.4A). Antibody reactivities in plasma samples were comparable to those ob-
tained in ascites indicating that the antibodies were transferred to the systemic
circulation. Indeed, inoculation of mice with three different anti-histone hybrido-
mas induced only in 15% of the animals glomerular deposits, while with three
different anti-nucleosome and three anti-DNA antibodies 60% of the animals had
GBM deposits (Fig. 18.4C and D) [62]. Apparently, the differences in glomerular
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Fig. 18.3 Effect of heparin and non-coagulant
heparinoids on binding of nucleosome/anti-
nucleosome complexes to HS or the GBM. In
vitro experiments: inhibition of the binding of
the complexed anti-nucleosome antibody #34
to coated HS (A) or DNA (B) in the inhibition
ELISA. Binding of complexed #34 to both HS
(A) and DNA (B) was inhibited dose depen-
dently by heparin (HEP), N-desulfated/acety-
lated heparin (DSA-HEP) and low-molecular-
weight desulfated/acetylated heparin (LMW-
DSA-HEP). Dextran could not inhibit the bind-
ing. In vivo experiments: (C) Direct immuno-
fluorescence (with FITC-labeled anti-IgG) of
glomeruli of BALB/c mice after perfusion of
complexed anti-nucleosome #34 mixed with
dextran (1) or heparin (2). After perfusion of
complexed antibody #34 mixed with dextran
clear binding of the complex to the glomeru-
lus was observed (1). However, the addition
of heparin to the complexed antibody #34
could completely prevent this binding (2). (D)
Cumulative incidence of albuminuria in the
various groups of MRL-lpr/lpr mice. Starting

at the age of eight weeks MRL-lpr/lpr mice
were treated once daily with either 50 �g
HEP, DSA-HEP, LMW-DSA-HEP or with PBS
as control. Each group consisted of 15 ani-
mals. Albuminuria was considered to be pre-
sent when the urinary albumin excretion ex-
ceeded 300 �g/18 h (mean +2 SD of albumi-
nuria in non-SLE normal control mice). This
mean value is 100 �g/18 h, P< 0.05. (E) Re-
presentative examples of the immunofluores-
cence findings of glomeruli of MRL-lpr/lpr
mice either treated with PBS (1) or HEP (2).
PBS-treated mice show extensive deposition
of IgG, mainly along the capillary wall. In
HEP-treated animals the deposits were con-
fined to the mesangium. Thus, HEP treat-
ment prevented deposition in the capillary
loop. (F) Severity of glomerular lesions in
MRL-lpr/lpr mice treated with phosphate-buf-
fered saline (PBS), HEP, DS-HEP or LMW-
HEP. The severity of the glomerulus was
scored as normal (no), mild glomerulonephri-
tis or severe glomerulonephritis.



18 Nucleosomes and Anti-Nucleosome Autoantibodies as Mediators of Glomerular Pathology334

A

B

C

D



binding between the antibodies were not due to differences in the levels of nu-
cleosome-autoantibody complexes, since these were similar (Fig. 18.4B).

These latter observations may seem in contrast with previous results that show
direct binding of anti-DNA antibodies to the GBM, which were explained by
cross-reactivity. However, there is a good explanation for this apparent contradic-
tion. A major point of concern is the purity of the antibody fractions that have
been used in the experiments as outlined earlier. During the culture of hybridoma
cells apoptosis occurs spontaneously and nucleosomal material is released [57].
This material will subsequently bind to the monoclonal antibodies that are pre-
sent in the supernatant and which are directed against nucleosomal material.
This undoubtedly leads to the formation of nucleosome-antibody complexes [50,
63]. In studies describing cross-reactivity mostly unpurified antibodies from cul-
ture supernatants or only partial purified antibodies by Protein A/G-Sepharose col-
umns are used. However, this latter purification step under physiological condi-
tions does not dissociate the bound DNA and especially the bound histones from
the antibody, as we have shown [50]. Sometimes a DNase I treatment of the cul-
ture supernatant is used, but in most cases not in combination with high salt-Pro-
tein A/G-Sepharose. In our experience anti-nucleosome-anti-DNA antibodies have
to be purified by DNase I treatment, high salt-Protein A/G-Sepharose and a DNA
cellulose column (which removes residual histone-containing complexes). Many
reports do not show or discuss the purity of the applied anti-DNA, anti-histone or
anti-nucleosome antibody preparations, which is of prime importance for studies
that aim to unravel the mechanism of glomerular deposition in SLE.

18.4
Evidence for Nucleosome-Mediated Binding in Lupus Nephritis

So far, we have presented experimental data for the role of nucleosomes as media-
tors for autoantibody binding to the GBM. However, if this concept is true, nucleo-
somes and anti-nucleosome antibodies should be present in the glomeruli of pa-
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Fig. 18.4 Glomerular binding after intraperi-
toneal inoculation of hybridomas producing
anti-nuclear antibodies. (A) Reactivity of as-
cites of mice inoculated with anti-DNA, anti-
histone, anti-nucleosome or control hybrido-
ma (producing anti-CD7) in ELISA towards
the different nuclear antigens: histones, DNA
and nucleosomes. The titer in ELISA was de-
fined as the reciprocal of the dilution giving
an OD of 1.0 at 450 nm and expressed per
mg of Ig. The results show that the appropri-
ate specificity was detected in the ascites. (B)
Nucleosome-IgG complex assay performed on
ascites from mice inoculated with anti-DNA

(n= 3), anti-histone (n = 3), anti-nucleosome
(n= 3) or anti-CD7 control hybridomas (n= 3).
Values are given as mean ± SEM. No statisti-
cally significant difference was found between
the amounts of complexes formed for the dif-
ferent anti-nuclear antibodies. (C) Immuno-
fluorescence analysis of kidney sections of
mice inoculated with anti-DNA (n= 15), anti-
histone (n= 13), anti-nucleosome (n= 13) or
control hybridomas (n= 6). The results are ex-
pressed as percentage of mice with GBM de-
posits. (D) Representative examples of kidney
sections of mice inoculated with anti-DNA
#42 (1) or anti-nucleosome #32 (2).

�



tients and mice with spontaneous lupus nephritis. We therefore set up a number of
studies to investigate whether these proteins and antibodies were present in the glo-
merulus in lupus nephritis. First, we searched for the presence of nucleosomes/nu-
cleosomal antigens in glomerular deposits. A polyclonal anti-histone H3 serum
which reacts with the N-terminal amino acids 1–21 was used to probe histones in
kidney biopsies of 11 SLE patients with diffuse proliferative glomerulonephritis
(DPGN) and six patients with lupus membranous glomerulonephritis (MGN) [64].
Histones could be detected in all of the eleven SLE patients with DPGN and two
out of the six SLE patients with MGN (Fig. 18.5A). A histone monoclonal antibody
(KM-2), which reacts with the N-terminal parts of both histone H2A and H4, only
demonstrated the presence of histones in three patients with DPGN and none of
the patients with MGN. In addition a nucleosomal staining could be detected by
using three different nucleosome-specific antibodies (LG10-1, LG8-1 and #34) in
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Fig. 18.5 Presence of nucleosomes and anti-
nuclear antibodies in glomerular deposits in
lupus nephritis. (A) Presence of nucleosomal
antigens in GBM deposits in kidney biopsies
of SLE patients with either DPGN or MGN
and non-SLE controls with either mesangioca-
pillary glomerulonephritis (MCGN) or idio-
pathic MGN. Staining of histones with poly-
clonal rabbit anti-H3 1-21 serum, staining of

nucleosomes with monoclonal antibody #34,
LG8-1 and LG10-1, staining for DNA with
antibody #42 was negative in all biopsies. (B)
Immunoglobulin concentration and titers to-
wards nucleosomal antigens of glomerular el-
uates from MRL-lpr/lpr mice. The 18- to 24-
week-old mice either had no albuminuria,
short albuminuria of less than 7 days or pro-
longed albuminuria for 14–21 days.



five patients with DPGN and two patients with MGN (the same two patients that
stained positively for histones). Anti-DNA antibodies (#36, #42 and #56) did not re-
veal DNA in glomerular deposits. This latter finding seems remarkable since nucleo-
somes (that contain DNA per definition) could be detected by anti-nucleosome anti-
bodies. We assume that all epitopes within DNA recognized by the probing anti-
DNA antibodies were masked by autoantibodies present within the glomerular de-
posits. This also explains why the histone epitopes were much more easily to de-
tect, because when these epitopes are covered by anti-histone antibodies the com-
plex will not bind to the GBM as outlined above. In non-SLE glomerulonephritis
none of the applied monoclonal antibodies could stain glomerular deposits. How-
ever, the presence of DNA in immune deposits associated with human lupus nephri-
tis has been demonstrated at the electron microscopy level by an anti-DNA antibody
labeled with Protein A-gold and DNase I-gold complexes [65]. Histones and nucleo-
somes have also been detected in immune deposits in two models of murine SLE,
(NZB�NZW)F1 and GVH mice [66].

In order to evaluate the sequence of deposition of the different autoantibody
specificities in MRL-lpr/lpr mice, we eluted glomeruli from 18- to 24-week-old
mice with either no proteinuria, short duration proteinuria (within 1 week of on-
set) or heavy proteinuria (for more than 3 weeks) [15]. The onset of proteinuria
was accompanied by a 3-fold higher IgG content of the eluate, which did not in-
crease further in mice with heavy proteinuria. The analysis of the antigen specific-
ities in the eluates showed that anti-nucleosome antibodies deposited first, while
the highest reactivity for anti-DNA antibodies was found in mice with heavy pro-
teinuria. Anti-histone reactivity was low and did not increase further when protei-
nuria developed or progressed (Fig. 18.5B).

Evidence for the presence of nucleosome-immune complexes in lupus nephritis
was obtained rather indirectly. Using monoclonal antibodies against HS and
HSPG core protein [37, 67] we found an almost complete absence of HS staining
in the GBM in renal biopsies from patients with lupus nephritis, while the stain-
ing for the core protein remained unaltered [68]. Since MRL/lpr mice also showed
this decrease in HS staining at advanced states of nephritis [69], we could study
the responsible mechanisms in more detail. In these lupus mice the decrease in
HS staining correlated inversely with the amount of immunoglobulin deposits in
the GBM. The pathophysiological significance of the reduction of HS staining
was underlined by the inverse correlation with albuminuria. Also in human lupus
nephritis an inverse correlation was found between HS staining and the amount
of histone deposits in the GBM [64]. The decrease in HS staining was not due to
decrease in HS content since the amount of HS within the GBM was normal
[69]. Together, these data suggest that the decrease in HS staining is due to mask-
ing of HS by nucleosome-immune complexes. Indeed, nucleosome autoantibody
complexes were able to inhibit dose dependently the binding of the anti-HS
monoclonal antibody JM403 to HS in ELISA, whereas non-complexed autoanti-
bodies had no effect [69]. As outlined above, heparin treatment in MRL/lpr mice
prevented formation of deposits in the GBM. In these heparin-treated animals a
decrease in HS staining was not observed [61]. Therefore, in SLE nephritis HS is
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masked by deposited nucleosome-autoantibody complexes. This masking may
have the same functional consequences as reduction of HS, since it may lead to
an enhanced permeability of the GBM as shown by the induction of albuminuria
by the anti-HS monoclonal [37].

18.5
Conclusion

Nucleosome-mediated autoantibody binding to HS in the GBM is responsible for
the formation of immune deposits in the GBM in lupus nephritis. As outlined in
this review, a large part of the evidence for direct binding of autoantibodies to the
GBM due to ‘cross-reactivity’ is questionable and is explained by the use of
unpurified autoantibodies, more specifically the use of autoantibodies already
complexed with nucleosomes. In our model, detailed in Fig. 18.6, autoantibody
binding or deposition to the anionic GBM is mediated by the binding of the cat-
ionic and protruding N-termini of the histones to the GBM. Furthermore, the
binding of anti-nucleosome or anti-DNA antibodies to the nucleosome will mask
its negative charge and will facilitate the binding of the positively charged N-ter-
minal histone tails to the GBM, which ultimately leads to the deposition of im-
mune complexes. On the other hand the binding of anti-histone antibodies to the
N-terminal histone parts will mask their positive charge, which will lead to reduc-
tion of deposition of immune complexes (see Fig. 18.6 for details).
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Fig. 18.6 Schematic representation of the
binding of nucleosome-anti-nucleosome com-
plexes to the GBM. (Left to right) No binding
will occur of non-complexed anti-nuclear anti-
bodies (1) or free nucleosomes (2). Binding
of anti-nucleosome (3) or anti-DNA (4) will
decrease the density of negative charges of

the nucleosome – this will enhance binding of
the complex to the negatively charged GBM.
In contrast to this, binding of anti-histone an-
tibodies (5) to the nucleosome will decrease
the amount of positive charges, which re-
duces the capacity to bind to HS in the GBM.
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Murine model for human SLE.

Removed during apoptotic cleavage of U1 snRNA. The exact cleav-
age site is between nucleotides C5 and �6, or between nucleotides
�6 and �7.

Contains two specific cleavage sites in the hypervariable regions of
the largest divergent domains D2 and D8. Both sites are apoptosis
specific and are not found in necrotic cells.

One of the largest families of membrane proteins. They drive trans-
port of a wide variety of substrates across cell membranes in an
ATP-dependent fashion. Structurally they contain a pair of nucleo-
tide-binding domains (NBD) and two sets of membrane-anchoring
domains (TM), typically composed by six transmembrane � helices.
To date 48 ABC genes have been fully characterized in the human
genome (www.humanabc.org). Seven subclasses have been defined,
named A–G, on the basis of sequence homologies and structural
peculiarities. A diagnostic combination of consensus signatures has
been defined as the hallmark of the family. This is located in the
NBD and associates the Walker A and B motifs, shared by several
ATP binding proteins, with a specific C motif located just upstream
of the B site.

Apoptotic cell-associated molecular pattern.

Inhibitor of caspase-3 and -7.

Initiates apoptosis by activation of caspase-3.

Autoimmune lymphoproliferative syndrome [synonym for Canale–
Smith Syndrome (CSS)].

Refers to complete Fas expression defect.

Defines functional Fas deficiency (with slightly diminished or nor-
mal Fas expression).
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Circumscribed to a FasL defect.

Used to describe Fas-induced apoptosis defect in the absence of Fas
mutations.

Designates patients presenting with ALPS symptoms but with a
normal in vitro Fas-induced apoptosis.

During apoptosis protein epitopes get modified post-translationally
in various ways (e.g. phosphorylation, glutathiolation, citrullination,
transglutamination, or formation of novel protein–protein or pro-
tein–nucleic acid complexes).

The total group of antibodies reacting with nucleosomes, histones
and DNA are referred to as anti-chromatin antibodies.

Defined by their much higher specificity/reactivity towards the com-
plete nucleosome compared to histones or naked DNA.

Autoantibodies recognizing various phospholipids like phosphatidyl-
serine or cardiolipin. A hallmark for the anti-PL syndrome (Hughes
syndrome).

Directed against eight spliceosomal core proteins, named the Smith
(Sm) complex, were discovered in 1966 and were shown to have
99% specificity for SLE.

In contrast to the dramatic effect of deficiency on neuronal develop-
ment, T cell development appears to be normal. The knockout
caused a perinatal lethality starting at post-conception day 16.5.

Binds to DR3.

A key distinction between apoptosis and necrosis is the lack of in-
flammation following apoptotic cell death.

Although there are no fixed criteria that define apoptosis, a number
of changes in cellular morphology can help distinguish it from ne-
crotic cell death. In the apoptotic cell, chromosomes condense, the
nucleus fragments, cytoplasmic volume decreases, organelles com-
pact, the cell membrane fuses with the endoplasmic reticulum and
the cell finally fragments into numerous ‘apoptotic bodies’, which
are engulfed by surrounding cells.

Major form of programmed cell death defined by a series of unique
changes which include the compaction of nuclear chromatin into
dense masses that move to the edge of the intact nuclear envelope.
Apoptosis is associated with extensive DNA degradation through
the activation of endonucleases, fragmentation of the chromatin
masses and condensation of the cytoplasm with shrinkage of the
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cell. Finally, the cell is fragmented into pieces called apoptotic
bodies and blebs which are still enclosed by intact cell membrane,
and contain the remaining antigen of the cell. In vivo apoptotic
cells are rapidly cleared before they enter the late stages of cell
death.

The complement activation of apoptotic cells may also be regulated
by binding to apoptotic cells of proteins such as natural or autoim-
mune antibodies, �2-glycoprotein 1 (�2GP-1), C-reactive protein
(CRP), serum amyloid P (SAP), mannose binding lectin (MBL) and
others.

The term apoptosis that was coined in 1972 by Kerr et al. means in
Greek ‘falling leaves’ and describes a de-adhesiveness of cells that
undergo morphological changes like cell shrinkage, plasma mem-
brane blebbing and chromatin condensation with intact membrane.

Induced by cleavage of ICAD.

There are four key steps in the death program: (1) initiation of
death either through a professional death receptor or through the
mitochondria, (2) activation of effector caspases, (3) execution of
death including activation of nucleases and cell membrane changes,
and (4) phagocytosis and removal of the corpse.

Induced by cleavage of fodrin and gelsolin.

Induced by digestion of nuclear lamin.

Under normal circumstances, cells dying by apoptotic and post-
apoptotic/early necrotic mechanisms are rapidly removed by phago-
cytic cells and presented to the immune system for induction of tol-
erance.

Pro-apoptotic structure made of caspase-9, cytochrome c, dATP and
Apaf-1.

Usually display poor immunogenicity.

In the context of apoptosis, La is partly cleaved and rapidly dephos-
phorylated. La is an in vitro substrate of granzyme B.

Not cleaved after induction of apoptosis.

The following autoantigens were recognized by a high titer autoan-
tibody response and were not cleaved in apoptosis: CENP-B (tar-
geted in scleroderma), fibrillarin and B23, PMS1 (targeted in myosi-
tis), and the type-3 muscarinic receptor (targeted in Sjögren’s syn-
drome) U1A, U1C and Sm-B/B.
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DFS70/LEDGF, fodrin, vimentin, NuMA, PARP, Topo I, UBF/NOR-
90, U1-70kD, SSA/La, DNA-PKcs, SRP72, NuMA, Sm, topoisomerase
I, NOR-90, fodrin, hnRNP C1/C2, PMS2, La, CENP-C, Mi-2, Jo-1, Ku,
PM-Scl, PCNA, p80 coilin, rRNP and SSA/Ro.

Granzyme B cleaves several autoantigens that are not susceptible to
cleavage during apoptosis or necrosis, such as Ku-70, Jo-1, CENP-B
and PMScl, but failed to cleave other apoptotic/necrotic protease-re-
sistant autoantigens, including SSA/Ro, Ku-80, ribosomal P pro-
teins, histones and the Sm proteins.

Excessive activation of calpains is associated with lysosomal mem-
brane disruption, leading to the release of cathepsins into the cyto-
plasm with the resultant cell lysis.

Contains statistically random amounts of unmethylated CpG mo-
tifs. Ligand for TLR-9.

Viable with only mild apoptotic defects.

Bcl-2 and the large splice variant of Bcl-x (Bcl-xL) have powerful
anti-apoptotic effects.

Bak and Bax have powerful pro-apoptotic effects.

Deficiency of the anti-apoptotic Bcl-2 protein results in early postna-
tal lethality, but initially normal lymphocyte development.

Lack both the pro-apoptotic Bcl-xS and the anti-apoptotic Bcl-xL.
They are embryonic lethal with severe excessive neuronal apoptosis
and reduced survival of immature lymphocytes.

Develop normally but are resistant to Fas-mediated hepatocyte apop-
tosis.

Induces mitochondria pore formation via Bak or Bax, resulting in
the unleashing of pro-apoptotic molecules such as cytochrome c
and Smac/DIABLO.

The first component of the classical pathway of complement activa-
tion.

Anaphylatoxin, which reduces neuronal apoptosis in hippocampal
pyramidal layer in vivo and in in vitro cultured primary neurons.

Terminal complement components [membrane attack complex
(MAC)].

CED-1, -2, -5, -6, -7, -10 and -12 participate in the removal of apop-
totic bodies. CED-2, -5, -10 and -12 are involved in organizing and
controlling cytoskeletal rearrangement during cell migration and
engulfment of apoptotic cells. The CED-2 mammalian homolog
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was identified as crkII, CED-5 encodes a homolog of human DOCK
180, a protein involved in receptor signaling and surface extension,
while CED-10 and -12 analogs are rac and elmo, respectively. CED-
1, CED-6/gulp and CED-7/abc1 may be related to recognition func-
tions. CED-1 was cloned and identified to be a transmembrane pro-
tein sharing sequence homology with the human scavenger recep-
tor SREC. However, SREC fails to show any homology to the cyto-
plasmic region of CED-1. CED-6 encodes an adaptor molecule that
mediates engulfment of apoptotic cells. CED-7 is similar to the
ABC1 cassette transporter.

CED-1, -2, -5, -6, -7, -10 and -12 are also required for the clearance
of necrotic cells.

The release of calcium from intracellular stores, which is associated
with ER stress, activates this protease, which in turn activates cas-
pase-12 and leads to apoptosis.

Non-caspase lysosomal proteases involved in necrotic cell death.

More than 30 years ago, Canale and Smith reported a condition char-
acterized by non-malignant lymphadenopathies associated with auto-
immune features in children. It turned out that these patients and a
number of newly described ones have a genetic disorder caused by
mutations of the Fas-encoding gene. Fas deficiency is observed in
cells from all carriers of heterozygous mutations. Thus, on a func-
tional point of view, mutations are fully penetrant. In contrast, only
70% of the carriers of heterozygous Fas mutations develop clinical
symptoms. A paradoxical decrease in lymph node has been observed
during viral infection. Splenomegaly, lymphadenopathies and hyper-
gammaglobulinemia are frequently observed in the patients. Syno-
nym: ALPS (autoimmune lymphoproliferative syndrome).

A phospholipid that shares some similarities in structure and
charge with PS, was shown to activate complement via the classical
pathway in an antibody-independent mechanism. CL is a target of
anti-phospholipid antibodies (aPL).

The first member of the caspase family to be cloned. It is a cyto-
plasmic protease that is capable of converting the 34-kDa inactive
precursor of IL-1 to its mature 17-kDa form and can also process
the cytokine precursor of IL-18 (IFN-inducing factor).

Mice are resistant to the effects of LPS-induced shock. They do not
have any developmental defects; instead, they are deficient in IL-1�
and IL-18 production.

In facial motor neurons, where both caspase-2L and -2S are thought
to be expressed, the knockout mice showed reduced cell numbers
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during late embryogenesis, implying an increase in apoptosis; an
example of a caspase knockout with evidence of both pro- and anti-
apoptotic effects. B lymphoblasts were resistant to apoptosis in-
duced by granzyme B/perforin, but not to anti-Fas, doxorubicin, eto-
poside, �-irradiation or staurosporine.

An interesting property is its ability to either induce or antagonize
apoptosis through alternatively spliced forms. Caspase-2L, the pre-
vailing form, is pro-apoptotic. On the other hand, caspase-2S, a
truncated form generated by insertion of an early stop codon, is
anti-apoptotic. Caspase-2 possesses a long prodomain and partici-
pates in the formation of an apoptosome-like complex. Its prodo-
main contains a CARD, which allows it to efficiently interact with
the adapter molecule CRADD/RAIDD, though the physiologic sig-
nificance of this interaction remains unclear.

A central executioner caspase in mammals, though not as indis-
pensable as its counterpart CED-3 which is absolutely required for
programmed cell death in C. elegans. An effector caspase, which is
transiently activated through the mitochondrial pathway during ery-
throblast differentiation and cleaves proteins involved in nucleus in-
tegrity (lamin B) and chromatin condensation (acinus) without in-
ducing cell death and cleavage of GATA-1.

Activation of caspase-6 and -7, not seen in the wild-type.

Can survive to birth, but they exhibit perinatal mortality as a result
of defects in brain development that correlate with a decrease in
levels of apoptosis. They display normal T cell and B cell develop-
ment. The lack of defects in negative selection may be due to activa-
tion of other alternative caspases, such as caspase-6 and -7. Acti-
vated T cells show a dramatic deficiency in AICD.

A critical initiator caspase for transducing apoptosis signals from
death receptors.

In contrast to Fas-, TNF-RI- or TNF-RII-deficient mice, which all de-
velop normally to adulthood, caspase-8 deficiency causes prenatal
lethality with two particularly striking features: impaired heart mus-
cle development and congested accumulation of erythrocytes (hy-
peremia). The phenotype is very similar to that of FADD knockout
mice.

A key requirement for its activation is the association with the pro-
tein cofactors, Apaf-1 and cytochrome c, and with dATP.

Activation of caspase-2 and -6, not seen in the wild-type.
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In contrast to the dramatic effect of deficiency on neuronal develop-
ment, T cell development appears to be normal. The knockout
caused a perinatal lethality starting at post-conception day 16.5.

Appears to be involved in the apoptotic cascade of all known recep-
tors inducing lymphocyte apoptosis. Some caspase-10 mutations are
associated with ALPS.

Absolutely required for caspase-1 activity. Caspase-11 of mice is
most homologous to human caspase-4. Overexpression of caspase-
11 in Rat-1 and HeLa cells induces apoptosis, which can be inhib-
ited by CrmA and Bcl-2. The expression of caspase-11 is highly in-
ducible by LPS.

Mice show a survival advantage in LPS-induced shock.

Localizes to the ER, raising the possibility of involvement in the ER
stress response.

Neurons are resistant to �-amyloid-induced apoptosis, implying that
�-amyloid exerts its effects, at least in part, by causing ER stress.
The mice are viable with no apparent developmental abnormalities.
Knockout thymocytes were normally susceptible to apoptosis in-
duced by anti-Fas and dexamethasone and, similarly, knockout em-
bryonic fibroblasts are normally susceptible to apoptosis from anti-
Fas, TNF-� and staurosporine. When exposed to ER stress-inducing
stimuli, such as brefeldin A, tunicamycin and thapsigargin, how-
ever, caspase-12 knockout embryonic fibroblasts showed resistance
to apoptosis.

May be an early physiological response in viable, stimulated lym-
phocytes and appears to be involved in early steps of lymphocyte ac-
tivation.

Cleaves RNA substrates during apoptosis.

Term used to describe a number of cell death pathways that occur
in the absence of detectable caspase activity. This type of cell death
could be considered as a back-up system that ensures the cell’s de-
mise in the case that the caspase activation program is rendered
non-functional.

Exposure of erythroid progenitors to mature erythroblasts or death-
receptor ligands resulted in caspase-mediated degradation of the
transcription factor GATA-1.

The long prodomains of caspases contain either DEDs or CARDs.
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Upstream activating caspases (group III) prefer Ile/Val in P4 and
Glu in P3.

Cysteine proteases that cleave after aspartic acid. Many caspases are
activated during apoptosis. They exist in cells as inactive mono-
meric zymogens, consisting of an N-terminal prodomain, a large
subunit and a small subunit. Processing occurs at sites between the
domains that, consistent with the ability of pro-caspases to autoacti-
vate or to be activated by other caspases, contain aspartate residues.
Cleavage of two zymogen precursors at these sites releases the sub-
units, which then form the functional heterotetrameric enzyme, a
complex of two large and two small subunits with two separate ac-
tive sites. Caspases have among the most stringent substrate specifi-
cities of all proteases, always cleaving on the carboxyl side of aspar-
tate residues.

Found in the cell as inactive precursors and are activated at the on-
set of apoptosis by an autoaggregation process mediated by adaptor
proteins which promotes autocatalytic processing of the initiator
caspases.

Caspase-3, -6 and -7.

Caspase-2, -8, -9-, and -10.

Only about half of the 14 mammalian caspases actively participate
in the execution of apoptosis.

Synthesized as latent proenzymes made of an N-terminal CARD,
and a large (p20) and a small (p10) protease subunit.

Frequently been termed ‘initiators’ and, once activated, are thought
to cleave caspases with short domains, termed ‘effectors’. The long
prodomains have been found to contain either DEDs or CARDs
that are capable of interacting with adapter molecules and result in
clustering of pro-caspases. This close proximity can enhance a low,
intrinsic autocatalytic activity of the zymogen, allowing it to cleave
and activate itself.

Frequently been termed ‘effectors’. They get activated by caspases
with long prodomains that have been termed ‘initiators’.

Non-caspase lysosomal proteases involved in necrotic cell death.

Human CD14 is a 356-amino-acid, 53- to 55-kDa protein that is gly-
cosylated at O- and at N-linked sites. CD14 is expressed strongly by
most monocytes and some tissue macrophages, and weakly by
granulocytes. In both its soluble (sCD14) and membrane-anchored
(mCD14) forms, CD14 has been shown to bind LPS and to gener-
ate LPS responsiveness. The 152 N-terminal amino acids are suffi-
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cient for the activation of inflammatory signaling pathways. CD14/
LPS binding is enhanced by the LPS-binding protein, LBP, which
catalyses transfer of LPS from micellar aggregates of the glycolipid
to CD14 to form CD14-LPS complexes.

Macrophages, which are immunosuppressive following apoptotic
cell clearance do express CD14 and DCs, which are functional in
antigen presentation and immune activation following apoptotic
cell engulfment, do not.

Its prototypic and still its best-known function is as a receptor for
the endotoxin of Gram-negative bacteria, LPS. In addition, phospho-
lipids have proven capacity to bind directly to mCD14. The pulmo-
nary surfactant proteins, SP-A and SP-D, and mannose-binding pro-
tein A are known to interact directly with CD14. Apoptotic cells di-
rectly interact with murine CD14. However, CD14 may require ad-
ditional co-operating molecules that are necessary for generating
CD14-dependent responses to apoptotic cells. The monoclonal anti-
body MEM-18, known to block LPS binding to CD14, inhibits apop-
totic cell clearance by macrophages to the same extent as monoclo-
nal antibody 61D3. 61D3 appears to bind to the same region of
CD14 as LPS. Furthermore, numerous examples of proteins, lipids
and phospholipids of viral, fungal, yeast or mammalian origin are
known to interact directly or indirectly with CD14, in some cases to
generate pro-inflammatory responses and, in others, to prevent
such responses. Lipoteichoic acid (LTA), peptidoglycan (PGN), li-
poarabinomannan (LAM), rhamnose glucose polymers, uronic acid
polymers, glycolipids and lipoproteins are molecularly defined li-
gands of CD14. Glycan moieties at apoptotic-cell surfaces may be
functional as CD14 ligands. HSP-60 and -70 have been shown to in-
teract with CD14, but as yet have no known role in apoptotic cell
clearance.

Present in plasma at around 4 �g/ml.

Mice with a partial deficiency in eliminating self-reactive transgenic
CD8+ T cells in male mice.

Can cause cell death of target cells by FasL (apoptosis) or by the re-
lease of TNF-� (apoptosis or necrosis).

Can cause cell death of target cells by the perforin/granzyme path-
way (apoptosis or necrosis), FasL (apoptosis) or by the release of
TNF-� (apoptosis or necrosis).

Protein of C. elegans similar to the human scavenger receptor
SREC. It is normally expressed on the membrane of all cells, but
during the engulfment process it redistributes on the membrane
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and clusters at the phagocytic extensions formed around the dying
cell.

Protein of C. elegans similar to mammalian crkII.

Pprotein of C. elegans similar to ICE, caspase-3.

Protein of C. elegans similar to Apaf-1.

Protein of C. elegans similar to human DOCK 180.

Adaptor molecule of C. elegans involved in engulfment of apoptotic
cells.

Protein of C. elegans similar to the ABC1 cassette transporter.

Protein of C. elegans similar to XK a putative membrane transport
protein.

protein of C. elegans similar to Bcl-2.

Protein of C. elegans similar to human rac.

Protein of C. elegans similar to human elmo.

A complex disease characterized by a wide spectrum of lesions in
the intestinal mucosa that can ultimately lead to the atrophy of the
villi.

Necrotic in essence with possible involvement of apoptotic features
produced by external or secondary (e.g. oxygen radicals) factors.

Lectins with partial collagenous structure like C1q, SP-A, and SP-D.

Complement can be activated in the absence of an antibody by nu-
cleic acid, phospholipids, LPS, and apoptotic cells.

C1q, mannose binding lectin, and iC3b are referred to as opsonins.

CD11b/CD18 and other complement receptors may actually be im-
munosuppressive by down-regulating IL-12 and IFN-� production
by human monocytes.

C1qR/CD91, CR3 (CD11b/CD18) and/or CR4 (CD11c/CD18) are
complement receptors on phagocytes.

An acute-phase reactant synthesized following tissue injury and in-
flammation. It binds to nucleated cells and activates complement
activation that is restricted to formation of the C3 convertase. C5
convertase formation and MAC generation are probably blocked by
factor H that binds directly to CRP.

Antigenic determinants, which are generated at subthreshold con-
centrations during normal antigen processing of whole protein anti-
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gens. T cells recognizing the ‘cryptic’ self never encounter their anti-
gen during natural antigen presentation and are therefore not toler-
ized.

Can form a complex with Apaf-1 and pro-caspases 9 in the cyto-
plasm to form the apoptosome. Once released into the cytoplasm, it
interacts with the adaptor protein Apaf-1 and with pro-caspase-9
leading to caspase-9 activation and induction of an apoptosis signal.

Animals die prenatally at embryonic day 8.5, presumably due to the
defect in aerobic metabolism, but analysis of embryo-derived cell
lines reveal a resistance to apoptosis induced by UV irradiation, se-
rum withdrawal and staurosporine. Interestingly, however, cyto-
chrome c knockout cells appear more sensitive to TNF-�.

Induce apoptosis in their target cells either by activating the Fas-
mediated pathway or by delivery of the granule protease granzyme
B (GrB) into the target cells through perforin, a granule protein
that forms pores in the cytoplasmic membrane.

Antigen-presenting cells (APCs) that are found in virtually all or-
gans. They exist as interstitial DCs in peripheral tissues, interdigi-
tating cells in lymph nodes and as circulating APCs in the blood
stream. Langerhans cells and dermal DCs reside in epidermis and
dermis, respectively.

A GPI-linked receptor, like that binds TRAIL.

Decoy receptor of FasL.

The long prodomains of caspases contain either DEDs or CARDs.

A subset of TNF-R family members that includes Fas, TNF-RI, DR3
(TRAMP, wsl-1, APO-3, LARD), DR4 (TRAIL-R1, APO-2), DR5
(TRAIL-R2, TRICK2, KILLER) and DR6; the receptors are involved
in transducing signals that result in cell death.

Receptors that kept ligand binding properties, but lack much of the
functions of the corresponding receptors.

Molecules with partial collagenous structure that are as adaptor
molecules involved in the defense reactions of the innate immune
system.

Occurs normally in lpr (Fas mutation), Fas knockout, TNF-RI
knockout, and TNF-RII knockout mice, and is only partially im-
paired in CD30 knockout mice.

Contains reduced numbers of the CpG motif. Most CpG motifs are
methylated in human DNA. No ligand for TLR-9.
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From serum enters the cells through complement-induced pores.

DD-containing receptor on mononuclear cells.

Causes decreased activation in peripheral T cells which is associated
with a defective costimulatory response.

Phenotype is very similar to that of caspase-8 knockout mice.

Fas-associated death domain protein does not lead exclusively to
apoptosis, but under certain circumstances can promote cell surviv-
al and proliferation.

Transgenic mice expressing a dominant-negative mutant FADD in
the thymus provided the surprising result of enhanced thymocyte
negative selection.

Type I transmembrane glycoprotein that belongs to the TNF-R/
NGF-R family. Fas is expressed on various types of cells, including
activated lymphocytes and certain transformed cells. Fas molecules
were previously trimerized through interactions of a N-terminal do-
main called PLAD (pre-ligand association domain). Fas activation
can induce cell proliferation in some experimental systems.

Symptoms develop only in homozygous animals, despite a potential
defective Fas-induced apoptosis in heterozygous animals. They accu-
mulate with age CD4–CD8– TCR �� T cells in the periphery. This
phenotype is likely the consequence of the CD8 downregulation on
mature peripheral lymphocytes.

A 40-kDa type II transmembrane protein that is homologous to
TNF and its binding to Fas transmits an apoptotic signal to suscep-
tible target cells.

Antibodies to Fas might provide co-stimulation for human T cells in
vitro.

Induction of apoptosis is accompanied by activation of large
amounts of caspase-8 by the DISC. Caspase-8 rapidly cleaves and
activates caspase-3, leading to the effector stage of apoptosis.

DISC formation is strongly reduced and activation of caspase-8 and
-3 occurs following the loss of mitochondrial transmembrane poten-
tial. In this variant of the caspase cascade, low levels of caspase-8
cut and activate the pro-apoptotic Bid.

An autoantigen in Rasmussen’s encephalitis. Whereas fully glycosy-
lated GluR3 is relatively resistant to cleavage by GrB, the under-gly-
cosylated form of GluR3 generated during inflammatory states al-
lows the cleavage of GluR3 by granzyme B and the generation of
previously cryptic peptide fragments.
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A serine protease found in the cytoplasmic granules of CTLs and
NK cells, and is involved in the induction of target cell death. It
cleaves ICAD allowing activation of the caspase-activated DNase
(CAD). GrB also cleaves Bid and promotes mitochondrial cell death.
GrB cleaves caspase-2 in vitro. GrB facilitates cell death independent
of caspase-activation by directly cleaving intracellular substrates.
However, caspase-mediated proteolysis is the predominant pathway
used during GrB-mediated apoptosis. GrB activates apoptosis
through its ability to cleave upstream caspase-10 and -8 and down-
stream caspase-3 and -7 after specific aspartic acid residues.

Some amino acids in the P2 and P3 positions that are preferred ex-
clusively by GrB and not tolerated by the caspases (e.g. proline in
P2, and glycine or serine in P3).

Released from dying cells. It is targeted to immature DC precur-
sors. Increased Hsp70 expression during necrotic tumor cell killing
induced a T cell-mediated anti-tumor immune response character-
ized by infiltration of T cells, macrophages and granulocytes.

Highly conserved chaperones designed for the cellular transport
and folding of proteins.

Four types of human Y RNA exist: hY1, hY3, hY4 and hY5 RNA,
which are cleaved during apoptosis. The cleavage of hY RNA is in-
hibited by caspase-1, -3 and -8 inhibitors, suggesting the recruit-
ment of caspase-activated RNase (CAR) during apoptosis.

During apoptosis the function of ICAM-3 is radically changed from
its pre-apoptotic role as adhesion molecule. ICAM-3 becomes quali-
tatively altered such that it is unable to interact with its prototypic
counter-receptor LFA-1. Instead, it appears that ICAM-3 gains the
capacity to interact with macrophage molecules that are functional
in apoptotic-cell clearance.

Both increased and suppressed release of IL-10 following ingestion
of apoptotic cells by human macrophages was found.

Catalyses the transfer of LPS from micellar aggregates to CD14 to
form CD14-LPS complexes.

Lytic MAC doses are known to produce DNA fragmentation in-
duced by entrance of DNase I. The morphology of complement-
mediated cell death at the ultrastructural level is characterized by
swelling of mitochondria, dilation of the rough endoplasmic reticu-
lum, disruption of the Golgi complex and of the plasma and nucle-
ar membranes and heterochromatin disappearance. The terminal
complement complexes C5b-7, C5b-8 and MAC are known to bind
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to cell membranes directly via hydrophobic regions in the absence
of a known receptor.

At low copy numbers per cell (non-lytic or sublytic doses), the MAC
is known to have stimulatory activities on many cell types.

Oncoprotein, which suppresses p53 degradation, accumulates to
high levels and contributes to the release from cell cycle control in
malignant tissue.

Terminal complement components C5–C9.

A member of the Tyro 3 receptor tyrosine kinase family.

Artificial epitopes.

Murine model for human SLE.

Signals derived from necrotic but not apoptotic cells act as potent
adjuvants.

Non-suicidal process associated with a number of pathological con-
ditions that develops in response to acute cell injury, including isch-
emia, hypoxia, oxidative stress, extreme heat, severe infections and
exposure to high levels of chemicals or toxins. Necrosis can be in-
duced with high levels of mercury, ethanol, hydrogen peroxide or
heat.

The transition from apoptosis to secondary necrosis is associated
with post-translational modifications of specific autoantigens.

Preservation of lamin B integrity. Necrotic cells but not apoptotic
ones release the pro-inflammatory nuclear protein HMGB1.

A ubiquitous transcription factor that plays an important role in in-
flammatory gene transcription. I�B family members, including
I�B�, IkB� and IkB�, regulate the DNA binding and subcellular lo-
calization of NF-�B proteins by masking a nuclear localization sig-
nal. NF-�B activation occurs through signal-induced degradation of
I�B in the cytoplasm, allowing the translocation of NF-�B to the
nucleus. Immunohistochemistry and electromobility shift assays
show that the transcription factor is highly activated in rheumatoid
synovium as well as animal models of arthritis. Proteasome inhibi-
tors inhibit NF-�B activation by preventing I�B degradation.

When DNA is damaged, p53 induces cell cycle arrest at G1/S and
G2/M interphase through the transcriptional activation of several
genes, including p21WAF, or apoptosis. The p53 protein is normally
detected only at very low levels but its expression is induced in re-
sponse to various stimuli, such as DNA damage (by ionizing radia-
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tion, UV radiation, and chemotherapeutic drugs, etc), hypoxia, heat
shock, viral infection, growth factor deprivation and oncogene acti-
vation. Since wild-type p53 protein has a relatively short half-life
(less than 20 min), it is usually not detectable in normal tissues by
immunohistochemistry. In the presence of synovial inflammation,
including murine collagen-induced arthritis or rat adjuvant arthri-
tis, p53 protein expression increases dramatically. p53 may mediate
negative selection through activation of Apaf1 and caspase-9. It may
also mediate death by neglect at the pre-TCR stage.

Pathogen-associated molecular pattern.

C-reactive protein (CRP) or the serum amyloid P component (SAP)
is produced in the liver in response to several cytokines, in particu-
lar IL-6.

Shown to suppress the release of GM-CSF, IL-1�, IL-8, TNF-� and
thromboxane B2, but not TGF-� and prostaglandin E2.

Anionic phospholipid (PL) that can interact with both mCD14 and
sCD14; it does so with lower affinity than PI, PC or PE. PS is ex-
posed by apoptotic and necrotic cells. PS binds various adaptor mol-
ecules (e.g. MFG-E8, �2GP-1, Gas-6 and C3bi) and receptors (e.g.
PS-R, CD36, SR-A and CD14).

Cleaves GPI anchored proteins from membranes.

60-kDa Ro, La, the snRNPs, Ku and poly(ADP-ribose)polymerase
(PARP), which normally have a diffuse nuclear distribution, be-
come concentrated as a rim around the condensing chromatin in
early apoptosis. Lupus autoantigens, which are not restricted to any
specific subcellular compartment in control cells, are strikingly re-
distributed in apoptotic cells, such that they become clustered and
concentrated within small surface blebs and apoptotic bodies. Thus,
small surface blebs (which contain fragmented rough ER) are
highly enriched in 52-kDa Ro, ribosomal autoantigens, as well as
those autoantigens found within the ER lumen (e.g. calreticulin).

A tumor suppressor gene. Mutations in the PTEN gene have been
detected in various types of malignancies.

Prototypic long pentraxin structurally related to CRP and SAP. It is
produced at the site of acute cell death in vivo and behaves as a ‘do
not eat me’ signal for apoptotic cells.

Powerful technique to produce antibodies especially against non-
protein epitopes. Briefly, an autoantibody is coated on a carrier and
incubated with a phage library containing numerous phages that
display a short random peptide fused with a phage coat protein. Fi-
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nally, the phages that bind to the autoantibody with the highest af-
finity are selected. In silico the selected motifs are compared to
known proteins sequences.

The serine/threonine kinase can bind and activate caspase-1 proces-
sing, and provides a possible mechanism for caspase-1 regulation.

Reactive nitrogen species.

Reactive oxygen species.

RNA components make up more than 50% of the ribosome, and
are classified as follows: (I) prokaryotic 50S subunit: 5S rRNA, 23S
rRNA; (II) prokaryotic 30S subunit: 16S rRNA; (III) eukaryotic 60S
subunit: 5S rRNA, 28S rRNA, 5.8S rRNA; and (IV) eukaryotic 40S
subunit: 18s rRNA.

Monocyte chemotactic factor released from apoptotic cells, carrying
out an important role in their phagocytic clearance. The dimeriza-
tion of the S19 protein is catalyzed by tTG, thus confirming an im-
portant role for this enzyme in the apoptotic cells clearance.

Anti-opsonin; SAP-coated microorganisms evade recognition in vivo,
suggesting an anti-opsonic role of SAP.

A transcription factor that has been shown to be critical for T and B
cell differentiation, but is also processed by caspase-6 in activated T
cells.

Multiligand receptors involved in mammals in the recognition/up-
take of dying corpses.

A ubiquitin-like protein that binds to the death domain of Fas/
APO-1 and TNF-RI, and protects cells from both anti-Fas- and TNF-
induced cell death.

A 26-kDa soluble form of FasL, which is cleaved from 40-kDa mem-
brane FasL by the action of a metalloproteinase. sFasL has been de-
tected in the serum of patients with various diseases.

Murine model for human SLE.

Complexes of protein associated with these U RNAs are designated
small nuclear ribonucleoproteins (snRNPs).

U1, U2, U5 and U4/6 snRNPs are components of the spliceosome,
which are frequently targeted autoantigens in SLE.

Collectin lectin with partial collagenous structure.

Collectin lectin with partial collagenous structure.
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Systemic autoimmune disease of unknown origin.

T helper cells which produce cytokines like IFN-� favoring cellular
immune responses.

T helper cells which produce cytokines like IL-4 and IL-10 favoring
humoral immune responses.

An enzyme is associated with apoptotic cell death. It is crosslinking
a number of proteins such as collagens, fibronectin, laminin, nido-
gen and TGF-� and might play an important role in the modifica-
tion of the ECM occurring in degenerative diseases.

Binds to DR3.

DD-containing receptors have been found on peripheral blood
mononuclear cells.

Activated T cells have prolonged survival. They may potentially accu-
mulate in aging animals, consistent with the autoimmune syn-
dromes.

Involved in CD14-dependent responses to non-LPS microbial com-
ponents such as peptidoglycan and lipoteichoic acid.

Critical for physiological LPS responses.

Prototypic pattern recognition receptors, which are involved in
proinflammatory responses.

Binds to DR4 and DR5.

TNF-related apoptosis-inducing ligand-R1. DD-containing receptor
on mononuclear cells.

DD-containing receptor on mononuclear cells.

TNF-R-related apoptosis mediating protein. DD-containing receptor
on mononuclear cells.

Family of enzymes includes seven intracellular (the ubiquitous tTG
and six different isoenzymes differentially expressed in the tissues)
and two extracellular enzymes (Factor XIIIa and prostate transgluta-
minase).

Mice that have a defect in the clearance of apoptotic cells and devel-
op nuclear autoantibodies with aging.

Bind to TNF-RI.
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Thymocytes and peripheral T cells.

Hepatocytes.

RNAs of 250 nucleotides or less, which have arbitrarily been named
U1, U2 . . . U12 RNAs. The complexes of protein associated with
these RNAs are designated snRNPs.

Specifically cleaved by caspase-3 at position 338DGPD341, resulting
in an N-terminal 40-kDa (amino acids 1–341) and a C-terminal
20kDa (amino acids 342–437).

Inhibitor of caspase-6.

Inhibitor of caspase-8.

Inhibitor of caspase-9.

Pan-caspase inhibitor that initially protected staurosporine treated
cells against apoptosis. However, the inhibitor did not prevent de-
layed cell death with features of necrosis.
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– caspase-dependent death pathways 252
– cell death (see there) 5, 9, 14, 21, 57, 70,

88, 104, 228, 261, 263–264, 273–274, 279,
292

– DED (death effector domains) 17, 136
– DD (death domains) 17, 135
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heparin 332
hepatitis 158, 311
– hepatitis B 158
– hepatitis C 158, 311
– hepatitis D 158
hepatocytes 26
HER-2/neu 219
heterochromatin disappearance 60
heteroclitic epitopes 214
high density lipoprotein (HDL) 102
hippocampal pyramidal layer 64
histidyl tRNA synthetase (Jo-1) 267

Subject Index370



histones 160, 188, 327
– cytoplasmic 188
– H1 327
– H2A 327
– H2B 327
– H3 327
– H4 327
– modifications of 327
HIV/AIDS infection 57, 207, 293, 296, 311
HI-virus 164
HLA class II-rich compartments 211
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– ICAM-1 172
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– and inflammation, cofactors for autoim-

munity of SLE patients 157–164
– severe 13, 263
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mannose-binding
– lectin (MBL) 69, 80, 209
– protein A 117
maturation 208, 210–211
– affinity 147, 188, 190, 228

– of immature DC 210
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– serine/arginine (SR) RNA splicing fac-

tors 308
– statalon viral RNA 302
– tRNA (see there) 267, 305
– UBF/NOR-90 (upstream binding factor of

RNA polymerase I) 266
– uracil-specific anti-RNA antibodies 305
– Y RNAs 308–309
RNA-related vH chains 306
RNAse
– caspase-activated (CAR) 309
– RNAse T1 310
– RNAse U2 310
RNS (reactive nitrogen species) 176
Ro ribonucleoproteins 308
– exposure of SSA/SSB 6
– Ro52 308
– Ro60 308
Rochester SLE, incidence rate 187
ROS (reactive oxygen species) 176
RRM (RNA recognition motif) 308
rRNA (ribosomal RNAs) 302, 304–305
– anti-rRNA 305
– 5S rRNA 304
– 5.8S rRNA 304
– 16S rRNA 304
– 18S rRNA 304
– 23S rRNA 304
– 28S rRNA 304
– – divergent domains of 310

�
S19 protein 293
– homodimer of ribosomal S19 protein 293
Saccaromyces cerevisiae 98
SAF-A 270
Salmonella 158
– S. typhimurium 229
SAP (serum amyloid P) 8, 67, 83, 189, 279
SART-1 221
SATB1 28, 270
scavenger
– phagocytes 232
– receptors (SREC) 58, 65, 79, 105
SCCHN (squamous cell carcinoma of head

and neck) 221
Schwann cells 64

SCID 23
scleroderma 245, 261, 311
– diffuse 245
scleroderma 7
selection
– negative 13, 18, 20, 147
– positive 13
self-cryptic determinants 261
sentrin 171
– sentrin-1 mRNA 171
septic shock 111
serine
– protease granzyme B 25
– serine/arginine (SR) RNA splicing fac-

tors 308
serum amyloid P (SAP) 8, 67, 83, 189,

279
sheep red blood cells (SRBL) 51
sicca symptoms 158
signal /signaling
– anti-inflammatory signaling 121–122
– chemotactic 5
– pro-inflammatory signaling 121
– recognition particle protein of 72 kD

(SRP72) 267
signature aptoptotic fragments 274
single-strand conformation polymorphism

(SSCP) 176
Sjögren‘s disease 158, 251, 261, 296
SLE (systemic lupus erythematosus) 68, 84,
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