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Preface

Are minds computers? Or, to put it in more philosophical jargon, are
mental states computational states? And if so, can human cognition then
be understood in terms of programs? Computationalism—the view that
mental states are computational states—is based on the conviction that
there are program descriptions of mental processes and that, at least in
principle, it is possible for computers, that is, machines of a particular
kind, to possess mentality.

In its early days cognitive science rallied around computationalism, but
in recent times this paradigmatic computational view of mind has come
increasingly under attack. Connectionists and dynamicists have tried to
replace it with alternative models. Biologists and neuroscientists have at-
tempted to understand the mind directly at the level of the brain, thus
skipping the “computational level.” Social theorists and roboticists have
argued that the essence of intelligence is to be found in situated interac-
tion with the external world, rather than in a purely internal world of
symbol manipulation. Philosophers have argued that traditional con-
ceptions of computationalism (and more generally functionalism) are
at best conceptually inadequate, if not vacuous (e.g., leading to the ab-
surd view that any physical system can be viewed as implementing any
computation).

Many of these critiques share a common theme. Computation fails as
an explanatory notion for mind, the critics claim, because computation,
assumed to be defined solely in abstract syntactic terms, necessarily ne-
glects the real-time, embodied, real-world constraints with which cogni-
tive systems intrinsically cope.

Although these views have led some researchers to abandon com-
putationalism altogether, an increasing number is willing to reconsider



x Preface

the very notion of computation, motivated in part by the recogni-
tion that real-world computers, like minds, must also deal with issues
of embodiment, interaction, physical implementation, and semantics.
This recognition raises the possibility that classical computationalism
failed not because computing is irrelevant to mind, but because purely
“logical” or “abstract” theories of computation fail to deal with issues
that are vital to both real-world computers and minds. Perhaps the prob-
lem is not with computing per se, but with our present understanding of
computing, in which case the situation can be repaired by develop-
ing a successor notion of computation that not only respects the classical
(and critical) limiting results about algorithms, grammars, complexity
bounds, and so on, but also does justice to real-world concerns of daily
computational practice. Such a notion that takes computing to be not
abstract, syntactic, disembodied, isolated, or nonintentional, but con-
crete, semantic, embodied, interactive, and intentional offers a much
better chance of serving as a possible foundation for a realistic theory
of mind.

Computationalism: New Directions is a first attempt to stake out the
territory for computationalism based on a “successor” notion of compu-
tation. It covers a broad intellectual territory, from historic developments
of the notions of computation and mechanism in the computationalist
paradigm, to questions about the role of Turing machines and computa-
tional practice in artificial intelligence research; from different construals
of computation and their role in the computational theory of mind, to
the nature of intentionality and the origin of language.

The first chapter serves both as historic overview of the computation-
alist thinking and as introduction to the later chapters. It attempts to
extract a historic trajectory that ties the mechanist views of past centuries
to present perspectives on computation. Various references to later chap-
ters point to places where the arguments are developed in more detail.

In the second chapter, Brian Smith examines various attempts to an-
swer the question “what is computation?” Focusing on formal symbol
manipulation and effective computability—two out of about a dozen dif-
ferent ways of construing “computation”—he shows that neither of them
can do justice to the three conceptual criteria he sets forth. His investiga-
tion leads to the claim that “computation” is not subject matter and even-
tually to the demand for a new metaphysics.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Preface xi

B. Jack Copeland also points to a crucial distinction in chapter three,
that between a narrow and a wide construal of “mechanism.” The wide
conception countenances the possibility of information-processing ma-
chines that cannot be mimicked by a universal Turing machine, allowing
in particular the mind to be such a machine. Copeland shows that
arguments for a narrow mechanism—the view that the mind is a ma-
chine equivalent to a Turing machine—are vitiated by various closely re-
lated fallacies, including the “equivalence fallacy” and the “simulation
fallacy.”

Chapter 4 takes on the issue of whether minds are computational in
the Turing-machine sense from a quite different perspective. Here, Aaron
Sloman criticizes the common view that the notion of a Turing machine
is directly relevant to artificial intelligence. He shows that computers are
the result of a convergence of two strands of historic developments of
machines and discusses their relevance to artificial intelligence as well as
their similarity to various aspects of the brain. Although these historic
developments have nothing to do with Turing machines or the mathemat-
ical theory of computation, he claims they have everything to do with the
task of understanding, modeling, or replicating human as well as animal
intelligence.

In chapter 5 Phil Agre reveals five “dissociations,” that is, intellectual
tensions between two opposing conceptions such as “mind versus body,”
that have accompanied artificial intelligence (and computationalism)
from its very beginning. He shows that although it is recognized that the
two concepts underwriting each opposition are distinct, they are uninten-
tionally conflated in the writings of the field. To overcome these difficul-
ties, Agre advocates a “critical” technical practice that may be able to
listen to and learn from reality by building systems and understanding
the ways in which they do and do not work.

In chapter 6 Stevan Harnad, advocating a narrow conception of mean-
ing, shows how per se meaningless symbols for categories are connected
to what they mean: they are grounded in the capacity to sort, label,
and interact with the proximal sensorimotor projections of their distal
category-members in a way that coheres systematically with their seman-
tic interpretations. He points out that not all categories need to be
grounded this way and that language allows us to “steal” categories
quickly and effortlessly through hearsay instead of having to earn them
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through risky and time-consuming sensorimotor trial-and-error learning.
It is through language that an agent (e.g., a robot) can acquire categories
it could not have acquired through its sensors.

John Haugeland, then, broadens the discussion about meaning and in-
tentionality in chapter 7 by providing a positive account of what is re-
quired for a “system” to have original intentionality, which he takes to
be essential to genuine cognition. His main conclusion is that original
intentionality presupposes an ability to accept responsibility. Thus, con-
trary to the assumptions of many researchers, responsibility is an essential
topic of cognitive science, and the notions of intentionality and computa-
tion may both be explanatorily dependent on the notion of responsibility.

All seven chapters are completely self-contained and can, therefore, be
read in any order. Common to all of them is the intention to initiate a
discussion in an attempt to explicate, distill, and assess the foundations of
cognitive science, rather than quickly and prematurely accept or dismiss
computationalism as a viable theory of the mind for whatever reason.
For each chapter (except the first) a preceding editor’s note provides a
brief overview of what to expect. The epilogue, finally, reflects in a more
speculative way on what the next steps may be in the development of a
successor notion of computation in an attempt to isolate promising direc-
tions and topics for future research.

It is my hope that Computationalism: New Directions will contribute
to the development and study of a “successor notion” of computation
and the range of its possible applications in the computationalist para-
digm. Such a notion will have to take into account issues such as the
program-process distinction, the notion of implementation and questions
of physical realization, real-time constraints and real-world interactions,
the use and limitations of models, relations between concrete and ab-
stract, the proper interpretation of complexity results, the relation be-
tween computation and intentionality, notions of “wide content” and
“wide mechanism,” notions of locality and causation, virtual machines
and architecture-based concepts, and many more. By addressing these
and other questions so crucial to a firm foundation for cognitive science
in this new century, this book is meant to be an invitation to philosophers
and scientists alike to engage in and further this discussion.

Finally, I do not want to miss the opportunity to express my gratitude
to the many without whom the book would not have become a reality.
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I would especially like to mention and thank the authors of the various
chapters for their contributions, the participants of the NTCS’99 confer-
ence in Vienna, “Computationalism: The Next Generation,” for all the
stimulating discussions, Leopold Stubenberg, Markus Peschl, my wife
Colleen Ryan-Scheutz and many others for their critical comments on
the various drafts of my contributions, Thomas Mayer for casting the
topics of this book in colorful pixels for the book cover, and Robert Prior
and Judy Feldmann from MIT Press for their editorial support. The book
would not have been the book it is without them.
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Computationalism—The Next Generation

Matthias Scheutz

The mind is to the brain as the program is to the hardware.

—P. N. Johnson-Laird

1 Generations: Computationalism and Star Trek

Everyone familiar with current science fiction will most likely recognize
the origin of the attribute “the next generation” in the title of this chapter;
it is borrowed from the Star Trek saga. So what, you might ask, do com-
putationalism and Star Trek have in common? For one, both apparently
have a “next generation,” and furthermore, I would speculate, both “next
generations” share the same fate regarding their initial popularity.

What I mean by this analogy is this: when Star Trek: The Next Genera-
tion came out, every Star Trek fan I know missed the old Starship Enter-
prise, its old crew, and in general the old technology, despite the fact
that the new Enterprise was faster, the new crew smarter, and the new
technology more advanced. It took some time to get used to the new
frontiers and to appreciate the new show’s potential. Once it grew to be
appreciated, however, fans reflected on the limitations of the original
series with a smile, perhaps even belittling the flashing lamps on the
console indicating that the computer was performing some complex
computation.

The next generation of computationalism might just be in a similar
situation: most computationalists will probably not like it at first glance,
for various reasons. Maybe because the new notion of computation it
involves will be too broad in their view, or maybe because it will place
emphasis on practical feasibility as opposed to theoretical possibility.
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Whatever one’s reason for a cautious confrontation with a successor ver-
sion of computationalism may be, I would hope that the additional ex-
planatory power slumbering in such an extension would trigger, as in
Star Trek, the same “next generation” effect.

Nevertheless, there is a major difference between both “next genera-
tions” as far as their status quo is concerned: Star Trek’s successor has
been produced already, whereas the new computationalism is still in the
making. To get an idea of where this rebound of cognitive science’s main
view on mind—the “next generation of computationalism”—might be
heading, I first trace the roots of computation to the seventeenth century
to expose the strong, original bond between mind and computation.
Then, after sketching the main tenets of the “old generation” of computa-
tionalism, I offer but a glance at some of the shortcomings for which
computationalism has been criticized, interspersed with a list of issues
that a successor notion of computation will have to address. Since this
chapter is intended to be largely introductory, I have included references
to subsequent chapters wherever appropriate—using only the last name
of the respective author—for more detailed discussions of the various
aspects of a “new computationalism.”1

2 Mind as Mechanism

The notion of computation, although most prominently visible and in-
creasingly entrenched in human culture these days, is not an invention
of our times, despite the plethora of computing devices that have become
part of our daily lives. Rather, it dates back to the seventeenth century
and before, when different kinds of mechanisms were constructed to con-
trol the behavior of various types of machines (from looms, to organs,
to watches and clocks). In particular, the first functioning mechanical
calculators were built at that time: from Schickard’s “calculating clock,”
to the first adding machine constructed by Pascal, to Leibniz’s “Stepped
Reckoner,” and others, some of which are still in working order today
(e.g., see Williams 1997 or Augarten 1985). Composed of mechanical
parts like wheels, gears, springs, cogs, levers, etc., they employed the tech-
nology developed by watchmakers and were able to perform simple nu-
merical operations such as the addition of two decimal numbers. Note
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that these machines were far from being autonomous (in that they did
not have their own energy source) or automatic (in that they could not
perform operations by themselves). To use Sloman’s distinction, both
energy and control information had to be provided by humans for them
to function properly.

While the potential of mechanisms for the construction of new kinds
of machines was generally recognized, philosophers (like Descartes,
Hobbes, Leibniz, La Mettrie, d’Holbach, and others) realized another
potential of “mechanism”: that of mechanistic explanation. As Copeland
shows, parts of the human body were described in terms of analogies to
mechanical parts (such as springs and wheels) and the behavior of the
whole body explained in terms of mechanistic principles (e.g., Descartes).
For some (e.g., La Mettrie) this explanation did not have to stop at the
body, but could be further extended to the human mind (e.g., because
the mind was viewed as organized in correspondence to parts of the body,
i.e., the brain, which, in turn, could be explained in mechanistic terms).
In nuce, the mind was viewed as a machine, giving rise to what Copeland
calls “historical mechanism.”

As Sloman points out, mechanical calculators are, in some sense, spe-
cial kinds of mechanisms, since they are used not to control other ma-
chines or mechanical devices, but rather to perform calculations, that is,
operations on numbers. However, since numbers are abstract entities,
calculations cannot be performed directly on them, but have to be medi-
ated through something physical that can be manipulated. Typically,
these mediators were found in physical objects whose physical properties
obey laws that are governed by operations that correspond systematically
to the ones performed in the calculation. For example, the property
“mass” is “additive”: put two objects on a scale and their respective
masses add up (this is why we are interested in an operation like “addi-
tion” in the first place). Hence, by correlating the magnitudes of a physi-
cal dimension (e.g., the length of physical objects) with numbers,
calculations can be performed by physically manipulating objects (e.g.,
arranging them in a line) and then measuring the resulting magnitude
(e.g., measuring the total length using a ruler). It was not until Vieta had
introduced the concept of “representatives” that these slow and error-
prone operations gave way to operations using representations (in
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modern terminology, a transition was made from “analog” to “digital”
representations). The advantages of marks to stand in for numbers (over
correlating them with physical magnitudes of objects) led to a rapid
expansion of this method for carrying out calculations with representa-
tions and eventually became a paradigm for thought in general (Pratt
1987). In the end, this rise of modern mathematics supported the view
(due to Descartes, Hobbes, Leibniz, Locke, and others) that not only cal-
culating, but thinking in general involves the use and manipulation of
representations. In its most radical form, this idea can be and has been
summarized by saying that “everything done by our mind is a computa-
tion” (Hobbes 1994, p. 30).

3 To Reason Is to Calculate . . .

In presenting these two views on mind that figure crucially in the origins
of computationalism (the “mind” as some sort of a machine, e.g., like a
calculator, and “thinking” as involving “the manipulation of representa-
tions”), I have not specified what kind of machine mind is taken to be, nor
what kinds of manipulation thinking is supposed to involve. Although the
first question is left unanswered by historical mechanists, the second may
find an answer in Leibniz’s conception of a “mechanical reasoner,” a me-
chanical system that performs logical reasoning without any human aid.

Two important ideas underwrite the possibility of a mechanical rea-
soner: (i) that reasoning involves the manipulation of representations;
and (ii) that logic can be viewed as a formal, deductive system in which
reasoning takes the form of deductions that proceed according to rules.
The first idea is intrinsically connected to Leibniz’s view on concepts and
language that there are simple representations from which all complex
representations are built, but which themselves cannot be analyzed in
terms of other representations—Harnad would call these simple repre-
sentations “grounded.” As an aside, one of the challenges in cognitive
science nowadays is to give an account of these simple representations,
what they are, where they come from, and how they can be used (see
also Harnad’s chapter).

The second idea is crucial to “mechanizing reasoning”: it is by virtue
of viewing logic as a formal, deductive system that valid principles of



Computationalism—The Next Generation 5

reasoning can be formulated as rules of deduction, and once principles
of reasoning are cast in the form of such rules, we can apply them directly
to representations without having to know what the representation is a
representation of and without having to justify the validity of the conclu-
sion. Hence a mechanism constructed to take “representations” (of what-
ever form) and apply rules to them (similar to the calculating machines
that perform operations on representations of numbers) would be able
to reason by virtue of mere “calculations.” Leibniz was even convinced
that his formal method of reasoning would resolve any philosophical dis-
agreement, for once a statement is formalized, its validity can be checked
mechanically:

There would be no more need for disputation between two philosophers than
between two accountants. For it would suffice to take their pencils in their hands,
to sit down to their slates, and say to each other (with a friend to witness, if they
liked): calculemus—let us calculate. (Leibniz 1875–90, p. 200)

Note that Leibniz’s mechanical reasoner is an early example of what
Haugeland (1985) calls “automatic formal system,” and that, further-
more, his view of calculating (e.g., as employed in the mechanical rea-
soner) already hints at the modern computationalist proposal that as long
as the syntax is right, semantics will take care of itself (e.g., see Haugeland
1981a).

The above sketch of views of and relationships between mind, mecha-
nism, and reasoning is—besides functioning as a brief historic exposition
of the mechanist thinking—intended to introduce a suggestion I would
like to make with respect to the origins of computationalism: the core
ideas of present day computationalism can already be found in the seven-
teenth century. Even though their ideas were not expressed in today’s
terminology and are not based on our modern understanding of the
notion of computation, the early “computationalists” (or historical
mechanists) realized that the notion of computation effected a link be-
tween the mental and the physical. This is because the notion of com-
putation was intrinsically connected to the operations performed by
mechanical calculators, on one hand, and to cognitive processes using
representations (such as calculating and reasoning), on the other. It was
this link that eventually gave rise to the hypothesis that mind might be
mechanizable.
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4 The Separation of Mind and Mechanism

It is important to be aware of the relationships between mind, computa-
tion, and mechanism, which were viewed as intrinsically intertwined by
the early “computationalists,” to be able to appreciate the developments
of computationalism in centuries to follow. For one thing, the material-
ism implied by the early computationalists was overshadowed by various
forms of German idealism, which took the mental and not the physical to
be primary and whose adherents were by no means open to mechanistic
explanations. Not surprisingly, the mechanistic view of mind was not
very popular in the eighteenth and nineteenth centuries except for a few
convinced materialists (e.g., the German physiologists Vogt, Büchner, or
Moleschott).

The last century, however, witnessed a major advance in both the con-
struction of computing devices and the conception of computation. While
many attempts were made at building mechanical calculators up to the
end of the nineteenth century (some of which were quite successful; e.g.,
see Pratt 1987, Williams 1997, or Augarten 1985), the computing capa-
bilities of these mechanical devices remained extremely modest compared
to the electronic computers we know today, a development initiated by
the rapid progression in the engineering of electronic components (from
vacuum tubes, to transistors, to integrated circuits, and beyond; e.g., see
Williams 1997).2 Similarly, the notion of computation (as used by the
early computationalists) remained at an intuitive level until it became the
focus of logical analysis, stimulated by investigations of the notions of
“formal system” and of “demonstrability” (i.e., proof by finite means)
of formulas in formal systems, which, in turn, led to further studies of
notions such as “recursive function,” “effectively computable function,”
“algorithm,” “finite state automaton,” and others in the first half of the
twentieth century.

It was at about this time that the notion of computation “split” and
took off in two directions, each of which led to a particular view on
and interest in computation. The “logical” or “theoretical” route was
concerned with a logical explication of the intuitive notion of computa-
tion and theoretical limitation results of what could be computed in prin-
ciple, whereas the “techno-logical” or “practical” route was very much
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focused on all sorts of problems connected to producing reliable comput-
ing devices that could be used in a variety of contexts, from scientific
computing to military and commercial applications, and that would sat-
isfy the increasing demand for fast and powerful machines.

Although both approaches are concerned with important aspects of
computation and are by no means incompatible, their use of the term
“computation” is subject- and interest-specific. Moreover, since research
can be conducted quite independently in both disciplines, it is not surpris-
ing that these two routes did not cross very often in the past. Only in
more recent times do we witness a mutual interest, as logic became more
sensitive to real-world constraints (complexity theory, for example). Al-
ternative conceptions of computations such as interactive Turing ma-
chines, games, and so on are thought to overcome the separation and
dissociation of classical logical models from worldly concerns.

5 Cognitive Science or the Rebirth of Computationalism

This separation of computation into two quite independent notions some-
what parallels the separation of mind and mechanism that had taken
place earlier at various times in the history of philosophy, but most nota-
bly with Descartes. While it enabled people to talk about computations
without the need to refer to the particular mechanism that carried them
out, it introduced an explanatory gap between computations qua compu-
tations and what does the computing, i.e., the mechanism or computer,
eventually leading to what Smith calls the mind-body problem for ma-
chines: how are computations related to computers? (I will come back
to this problem in section 9.)

The independence of computations from their physical realizers, how-
ever, was one major source of attraction for some psychologists in the
late 1950s. Another was the potential of computers to process informa-
tion—an ability thought to be crucial to human cognition. Together they
gave rise to a powerful metaphor, often called the “computer metaphor,”
that “the mind is to the brain as the program is to the hardware” (Searle
1980; Johnson-Laird 1988).3 It is this computer metaphor that under-
writes the rebirth of computationalism in the twentieth century, and the
birth of what is nowadays known as cognitive science (e.g., see Gardner
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1985): by viewing cognitive functions as computations, explanations of
mental processes in terms of programs become scientifically justifiable
without having to take neurological underpinnings into account—the
“wetware brain” is simply viewed as a computer on which the software
“mind” is running (or if not mind itself, then at least all the cognitive
functions that constitute it).

Pinpointing the various positions and claims subsumed under the no-
tion of computationalism would be a research project in its own right.
Just to give you an idea of what can be found in the literature, sloganlike
phrases such as “the brain is a computer,” “the mind is the program of
the brain,” “cognition is computation,” or “the mind is a computer”
are not uncommon, and these are only a few. Note that in a phrase like
“cognition is computation” the interpretation of every single word mat-
ters, “is” included—do we interpret “is” as “extensional identity” or
“extensional inclusion”? Or do we read it intensionally? Such statements
are necessarily condensed and cannot be taken at face value; for if they
were read together, essentially distinct notions (such as program and pro-
cess, mind and cognition) would be equivocated.

There are other descriptions of computationalism that emphasize the
information-processing capabilities of computers. For example, computa-
tionalism has been characterized as the conjunction of the theses “think-
ing is information processing,” “information processing is computing
(i.e., is symbol manipulation),” and “the semantics of those symbols con-
nect mind and world.” Again others emphasize the reliance on logical
notions of computations. Dietrich (1990), for example, takes computa-
tionalism to be “the hypothesis that cognition is the computation of func-
tions,” which “makes no claims about which functions are computed,
except to say that they are all Turing-computable (computationalists ac-
cept the Church-Turing Thesis), nor does it make any specific claims as
to how they got computed, except to say that the functions are systematic,
productive, and interpretable in a certain way” (p. 135). Since many
computationalists seem to be (or have been) content with notions of com-
putation as provided by formal logic, it is helpful to know the inter-
est of logicians in computation and to understand the motivations and
results of the “logical route” to be able to put the logical contributions
to and possible influence on twentieth-century computationalism into
perspective.
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6 Logic and Computation: The Rise of Turing Machines

The logical side of the history of computation started in the 1930s with
various attempts to make the intuitive notion of computation (then called
“effective calculability”) formally precise. It was solely concerned with
what could be computed in principle, which, in turn, required a thorough
analysis of the intuitive notion of computation. The most crucial insight
of the 1930s with respect to the meaning of this intuitive notion of com-
putation was most likely the fact that three different attempts to charac-
terize it formally could be proven equivalent: the class of recursive
functions equals the class of λ-definable functions equals the class of
Turing-machine-computable functions. These equivalence results are
possible because what “computing” means with respect to any of the
suggested formalisms is expressed in terms of functions from inputs to
outputs; and using functions as mediators, the different computational
formalisms can be compared according to the class of functions they
compute.

Later, other formalisms such as Markov algorithms, Post produc-
tion systems, universal grammars, PASCAL programs, as well as various
kinds of automata were also shown to “compute” the same class of func-
tions, referred to as recursive functions (e.g., see Hopcroft and Ullman
1979). The extensional identity of all these formalisms supports a def-
inition formulated by Church, which later became known as “Church’s
Thesis”:

We now define the notion [. . .] of an effectively calculable function of positive
integers by identifying it with the notion of a recursive function on positive inte-
gers (or of a λ-definable function of positive integers). This definition is thought
to be justified by the considerations which follow, so far as positive justification
can ever be obtained for the selection of a formal definition to correspond to an
intuitive notion. (Church 1936b, p. 356; also in Davis 1965, p. 100)

Using the various equivalence results it follows from “Church’s Thesis”
that any of the above-mentioned formalisms captures our intuitive no-
tion of computation, that is, what it means to compute. Although this
thesis cannot be proved in principle as mentioned by Church himself, it
became more and more plausible as newly conceived computational
formalisms were shown to give rise to the same class of “computable”
functions.
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What is common to all these computational formalisms, besides their
attempts to specify formally our intuitive notion of “computation,” is
their property of being independent of the physical. In other words, com-
putations in any of these formalisms are defined without recourse to the
nature of the physical systems that (potentially) realize them. Even Tu-
ring’s machine model, the so-called Turing machine, which is considered
the prototype of a “mechanical device,” does not incorporate physical
descriptions of its inner workings, but abstracts over the mechanical de-
tails of a physical realization.

Interestingly enough, Turing (1936) invented his machine model of
“computation” in order to capture the human activity of “computing,”
that is, the processes a person (the “computer”) goes through while per-
forming a calculation or computation using paper and pencil. Although
he used the term “computer” to refer to whatever is doing the com-
putations, he did not intend it for a digital computer, but for a human
person doing computations—at that time digital computers did not yet
exist.

In Turing’s analysis of the limitations of the human sensory and mental
apparatus, five major constraints for “blindly” following rules to do com-
putations crystallize (I follow the presentation in Gandy 1988):4

1. Only a finite number of symbols can be written down and used in any
computation.
2. There is a fixed bound on the amount of scratch paper (and the sym-
bols on it) that a human can “take in” at a time in order to decide what
to do next.5

3. At any time a symbol can be written down or erased (in a certain area
on the scratch paper called “cell”).
4. There is an upper limit to the distance between cells that can be consid-
ered in two consecutive computational steps.
5. There is an upper bound to the number of “states of mind” a human
can be in and the current state of mind together with the last symbol
written or erased determine what to do next.

Although there are certainly some steps in Turing’s analysis of an abstract
human being performing calculations that seem rather quick and not well
supported, one can summarize the above in Gandy’s words as follows:
“The computation proceeds by discrete steps and produces a record con-
sisting of a finite (but unbounded) number of cells, each of which is blank
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or contains a symbol from a finite alphabet. At each step the action is
local and is locally determined, according to a finite table of instructions”
(1988, p. 81).

In other words, by “abstracting away” from persons, scratch paper,
and so on, Turing claimed that all “computational steps” a human could
possibly perform (only by following rules and making notes) could also
be performed by his machine. In this way the Turing machine became a
model of human computing, an idealized model to be precise, since it
could process and store arbitrarily long, finite strings of characters. It is
worth pointing out that Turing, as opposed to Church, did not only state
a “thesis” regarding the intuitive notion of computation, but actually
intended it as a theorem (see also Gandy 1988, p. 83, who restates
Church’s Thesis as Turing’s Theorem): “Any function that can be com-
puted by a human being following fixed rules, can be computed by a
Turing machine.”

Turing also believed the converse, that every function computed by a
Turing machine could also be computed by a human computer, although
this, again, does not take time and space restrictions seriously, but rather
assumes an abstract human computer not subject to such worldly limi-
tations. In particular, Turing was convinced that “the discrete-state-
machine model is the relevant description of one aspect of the material
world—namely the operation of brains” (Hodges 1988, p. 9; see also
Copeland’s chapter). The origins of Turing’s claim can be found in the
intrinsic connection between the notion of “computability” and Gödel’s
notion of “demonstrability” (of a proof in a formal system): that which
can be “demonstrated” using “definite methods” amounts to what can
be done by a Turing machine (see Turing 1936). By relating the limita-
tions of formal systems as pointed out by Gödel to the limitations of his
machine model, Turing “perceived a link between what to anyone else
would have appeared the quite unrelated questions of the foundations of
mathematics, and the physical description of mind. The link was a scien-
tific, rather than philosophical view; what he arrived at was a new materi-
alism, a new level of description based on the idea of discrete states, and
an argument that this level (rather than that of atoms and electrons, or
indeed that of the physiology of brain tissue) was the correct one in which
to couch the description of mental phenomena” (Hodges 1988, p. 6).
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7 Strong AI—The Heyday of Computationalism

Ever since its conception, the notion of a Turing machine has been used
in the metatheoretical discourse of AI and cognitive science for two op-
posing purposes: either to justify the use of computers to model, simulate,
or duplicate cognition as underwriting computationalism, or to argue
that minds are not Turing machines (e.g., see King 1996). This philosoph-
ical tension is reflected in literature throughout AI’s (and cognitive sci-
ence’s) fifty-year history. Copeland, for example, shows how various
deviants of the Church-Turing Thesis as well as certain statements by
Turing himself have been mistaken as claims about the nature of mind.
In accordance with Agre, one could add this tension—is the human mind
a Turing machine?—to the many other foundational discrepancies,
which have been tacitly imported into AI from the surrounding intellec-
tual territory without having ever been digested.

Despite and mostly independent of this and other unresolved philo-
sophical debates (see Agre’s and Sloman’s chapters), AI based on the
computer metaphor (also called strong AI or GOFAI, for “good old-
fashioned AI”), has been quite a successful project, which already early
on produced many impressive programs (from Newell, Shaw, and Si-
mon’s Logic Theorist and General Problem Solver, to Samuel’s checkers
program, to Bobrow’s Student, to Weizenbaum’s Eliza and Colby’s
Parry, to Winograd’s SHRDLU, to Lenat’s Automated Mathematician,
to various expert systems like DENDRAL, MYCIN, and XCON and
other game playing programs; e.g., see Crevier 1993).

Two main assumptions are buried in this metaphor: (1) that the mind
can somehow be “understood as a computation” or be “described by a
program” (this requires the adoption of a notion of computation or pro-
gram, respectively); and (2) that the same kind of relation that obtains
between computational processes (i.e., executed programs) and computer
hardware—the implementation relation—obtains between minds and
brains, too. While assumption (1) led to fertile research in artificial intelli-
gence and cognitive science, which in turn has been taken as evidence
for its truth, assumption (2) by and large remained at the level of an
assumption.6

Expanding a bit on the first assumption to get a better idea of how to
think of the mind as being described by a program, note that computation
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can be viewed as the rule-governed manipulation of representations, very
much in line with the views of the early computationalists. After all, this is
what computers do: they manipulate symbol tokens (e.g., data structures
implemented in sequences of bits), which themselves are representations
of the subject matter the computation is about (compare this to Newell’s
1980 notion of “physical symbol system”). These representations, in
turn, have both formal and semantic properties, of which only the former
are causally efficacious, that is, can do “real work” in the system. This
view of computational processes as manipulating symbols by virtue of
their formal and not their semantic properties—call it “formal symbol
manipulation”—is predominantly found in the philosophical literature
(e.g., Fodor 1989 or Haugeland 1985), but summarizes nicely what is
appealing (or appalling, depending on one’s point of view) about compu-
tationalism: that the semantics of symbols, or more generally, intentional-
ity plays no role in cognitive processing, leading to the hope that compu-
tation might be the cornerstone for a theory of consciousness (e.g., see
Dennett 1991) and intentionality (see Smith’s and Haugeland’s chapters).

Computationalism has many appealing facets, especially when it comes
to high-level cognition: many features related to logic and language (such
as systematicity, productivity, compositionality and interpretability of
syntax or the compositionality of meaning; e.g., see Fodor and Pylyshyn
1988) are supported by computations “almost for free,” and many
mental operations on various kinds of representations such as rotating
three-dimensional images, searching for a good move in a chess game,
reasoning about other people’s behavior, or planning a route through
a city avoiding construction sites can be described computationally and
implemented on computers.

In sum, the crucial factors making the notion of computation an attrac-
tive candidate for explaining cognition include the potential of computa-
tions to have semantics, while being causally efficacious, algorithmically
specifiable (in programming languages), and implementable in digital
computers.7

8 Computationalism under Attack

Computationalism has always been under attack from various directions
even before it was officially recognized as such (if not for anything else,
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then for the mere fact that for some it was inconceivable that mind could
be mechanized; especially, for any dualist, who believes that the mental
substance is different from the physical, the computationalist paradigm
is unacceptable). Yet, the possibility of using formal methods to charac-
terize the notion of computation, especially the notion of “effective proce-
dure,” enabled critics of computationalist views to utilize results from
formal logic in order to make their points more rigorously. At the begin-
ning of the 1960s, for example, Lucas (1961) used Gödel’s incom-
pleteness theorems to argue that the mind cannot be a Turing machine.
The ensuing intellectual debate about what is right and what is wrong
with this claim had various repercussions throughout the subsequent de-
cades, most recently spurred by Penrose (1989, 1994) (e.g., see the vari-
ous comments on his books in Behavioral and Brain Sciences 13 and
PSYCHE 2).

Various other objections, not based on formal logic, such as problems
with the notion of representation, wide notions of meaning, content and
supervenience, universal realization results, and so on have been ad-
vanced by philosophers over the years and debated at great length (e.g.,
see Putnam 1975, 1988; and Dreyfus 1979, 1992). One particularly fa-
mous and still widely discussed problem is Searle’s Chinese room thought
experiment (e.g., see Searle 1980 and its various commentaries; Searle
1990; and also Harnad 2001b).

More recently, connectionists have tried to broaden (if not replace)
the notion of computation with alternatives arguing that the symbolic/
computational level of description so crucial to computationalism can-
not be taken for granted. Others—biologists and neuroscientists, for
example—are trying to “go in under” the computational level to
understand the mind directly at the level of the brain. Diversely, some
social theorists and roboticists have argued that the essence of intel-
ligence is to be found in situated interaction with the external world,
rather than in a purely internal world of symbol manipulation. Har-
nad, for example, calls such “disconnected,” internal symbols “un-
grounded” and shows how it is possible in a robotic system to ground
some of its internal symbols (in sensorimotor projections of distal ob-
jects), by virtue of which other “ungrounded” symbols can obtain their
“meaning.”
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While some connectionists believe that symbolic activity should emerge
from a “subsymbolic level” (e.g., Smolensky 1988), most of the so-called
dynamicists (e.g., Port and van Gelder 1995) find the symbolic level of
description superfluous altogether and argue instead for an explanation
of cognition in terms of dynamic systems.8 For example, van Gelder
(1998) argues that the notion of an effective procedure is essential to
computation, and that essential to the notion of an effective procedure,
in turn, is the notion of discrete steps in an algorithm. He claims that
this discreteness, in both its temporal and nontemporal aspects, prevents
computation from explaining many aspects of cognition, which he con-
siders to be a fundamentally dynamical phenomenon. Hence, instead of
using any of the standard computational formalisms, one ought to use
dynamical systems in describing cognitive functions, the idea being that
every real-world system (and thus cognitive systems as well!) involving
change can potentially be modeled by a dynamical system—this is what
dynamic systems have been designed to do. According to the respective
system, this will happen at different levels of description, at the very low
level of fields (consider Maxwell’s equations), or the very high level of
human decision making (e.g., consider the decision field theory by Buse-
meyer and Townsend 1993).9

Another attack, also advanced by dynamicists, challenges the role of
representation in cognitive science in general, and a fortiori can be seen
as a challenge to the role of computation in cognitive science. Especially
psychologists have argued that certain allegedly “cognitive” tasks have
nothing to do with cognition proper, but are really motor control tasks
that can be explained and modeled in the language of dynamical systems
without resorting to manipulations of representations (e.g., see Smith and
Thelen 1994). As a consequence, the following question arises: to what
extent do notions of representation have to be involved in explaining
cognitive abilities, and furthermore, is it possible to invoke “representa-
tion” within dynamical system theory itself when needed, thus bypassing
the “classical representational�computational” level of description (see
the various articles in Port and van Gelder 1995)?

Finally, there are criticisms concerning the very founding notions of
computationalism: the notion of computation and its conceptual comple-
ment, the notion of implementation, which are presented next.
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9 The Recalcitrant Notions of Computation and Implementation

As Smith argues, traditional notions of computation underwriting com-
putationalism are conceptually inadequate and at best incomplete, reveal-
ing crucial hidden assumptions and conceptual dependencies, on which
various construals of “computation”—from “formal symbol manipula-
tion,” to “effective computability,” to “execution of an algorithm”—are
based (see also Smith 1996, and forthcoming). One main consequence is
that computation cannot provide a theory of intentionality (as hoped by
computationalists), but rather seems to depend on it. Haugeland, for ex-
ample, exposes deep and complex relationships and dependencies be-
tween intentionality and responsibility, which have been largely ignored
by computationalists, and which need to be accounted for in computa-
tional terms if computationalism is to succeed as an explanatory theory
of mind.

To get a feeling for the kinds of problems that arise from classical no-
tions of computation, take the view of computation as “computation of
an input-output function” (e.g., as proposed by Dietrich 1990) and try
to answer the following questions: can every computation be explained
as the computation of a function? Consider, for example, arcade video
games. What input-output functions do they compute? Or take operating
systems. They are specified by programs, which are designed to never
halt. Contrast this then with the classical approach, where such so-called
divergent functions (i.e., functions that are not defined for certain argu-
ments) are neglected. Further questions about how a function is com-
puted arise: does computing a function imply “following rules” or
“executing an algorithm”? Does the computation of a function have to
be productive, or would nonalgorithmic methods that arrive at the same
results count as computing the function too (a big “look-up table,” for
instance)? And, in general, how can we say that a particular physical
system computes a given function, that is, that the system implements a
particular computation?

Most computationalists tacitly assume that the notion of implementa-
tion (as used in computational practice) is unproblematic; it is quite com-
mon to think of implementation as some sort of correspondence between
computational and physical states. For example, there is a tight corre-
spondence between parts of the architecture of a von Neumann CPU and
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expressions of the assembly language for that CPU. Another example of
how computational descriptions can “mirror” physical descriptions is a
logic gate (e.g., an AND gate), whose “computational capacity” is de-
scribed by a Boolean function, the values of which in turn can be related
to physical magnitudes in the physically realized circuit.

Although we may be able to establish a functional correspondence be-
tween physical and computational states for certain artifacts (i.e., devices
we have designed to allow for computational descriptions), it is unclear
that this can be done for natural kinds (such as brains) too. In particular,
one has to be aware that any such correspondence crucially depends on
“adequate” physical states:10 computations “mirror” the causal structure
of a system under a given correspondence function between computa-
tional and physical states only relative to the choice of the physical states.
Computational explanations of the behavior of a given physical system,
therefore, depend essentially on those physical states of the system that
can be set in correspondence to some computation. This dependence, per
se, is not problematic as long as one can assume the system has “appro-
priate physical states” (e.g., as in the case of electronic devices). If, how-
ever, it could be shown that for any computational description and any
given physical system, one can find “physical states” of that system that
can be set in correspondence with the computational ones and are, fur-
thermore, appropriate (in a certain sense of “appropriate” that depends
on the underlying physical theory), then computational explanations
would be in danger: every system could then be said to compute. In other
words, computationalism would be vacuous if every physical system
could be viewed as implementing every computation.

And, indeed, it has been argued that, assuming an intuitive notion of
implementation, any (open) physical system can be seen to implement
any finite state automaton (Putnam 1988), or that, for example, walls
implement the WordStar program (Searle 1992). If that is so, then some-
thing must have clearly gone wrong with our intuitions, since such a view
of computation and implementation is not tenable, either from the theo-
retician’s or from the practitioner’s perspectives.

Many people have attacked these claims by finding flaws in the argu-
ments; some have even attempted positive accounts of what it means for
a physical system to implement a computation (e.g., Chalmers 1996; Mel-
nyk 1996). However, even these revised accounts have problems of their
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own (e.g., see Scheutz 2001), which in the end might require an account
of implementation that is based not on the idea of “mirroring” computa-
tions in the physical system, but rather on a series of abstractions over
the physical peculiarities of the implementing system (Scheutz 1999).

10 A Rebound of Computationalism?

While all of the above-mentioned critiques of computationalism vary,
they share a common theme: computation fails as an explanatory notion
for mind, because computation necessarily neglects the real-time, embod-
ied, real-world constraints with which cognitive systems intrinsically have
to cope. This is a consequence of assuming computation to be defined
solely in abstract syntactic terms (abstracting over physical realization,
real-world interaction, and semantics).

How can we continue to hold on to computationalism, you may ask,
when it seems that digitality is restrictive, formal symbol manipulation
is not sufficiently world-involving, and Turing machines are universally
realizable to the point of vacuity? It should not come as a surprise that
these issues, combined with recent progress made by dynamicists (while
the classical approach prima facie appears stagnant), have led many cog-
nitive scientists to abandon computationalism altogether.

Despite the dire prospects for computationalism currently envisioned
by some (especially convinced dynamicists), an increasing number of re-
searchers are not willing to give up what has been in nuce a very promis-
ing and up to now partly quite successful approach. Inspired by their
recognition of the fact that real-world computers, like minds, also deal
with issues of embodiment, situated interaction, physical implementa-
tion, and semantics, they are motivated to reconsider the very notion of
computation as well as the whole enterprise of computing and computa-
tional modeling. This motivation is at least partly based on the possibility
of classical computationalism failing not because computing is irrelevant
to mind, but because the classical, purely “logical” or “abstract” theories
of computation, which were taken to be the fundaments of the “old gen-
eration computationalism,” do not to address real-world aspects that are
vital to both (real-world) computers and minds.

Artificial intelligence has never been out of touch with the practical,
technological route of computation (as Sloman reminds us). Many of the
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features of present-day computers employed in artificial intelligence re-
search were originally inspired by features of (natural) brains, and con-
versely inspired theories about brains. Yet, this fact is usually ignored
by any theoretical discourse that views computation as Turing-machine
computability.

Furthermore, by (mis)interpreting and applying results from the logical
route of computation, in particular the Church-Turing thesis, to argue
that cognition is or is not Turing computation, Turing-machine comput-
ability is often equated with computability by a mechanism. However,
as Copeland points out, there are conceptual computing machines that
can outperform any Turing machine (e.g., Turing’s O-machine—whether
such a machine could possibly exist is a separate issue), which are com-
patible with the mechanistic views of the early computationalists (the
operations of such machines can also be described algorithmically; e.g.,
see Shagrir 1997). Such computing devices undermine the common preju-
dice that computation is limited to “effective computation” (or Turing-
machine computability).

Another part of the problems of computationalism may be the concep-
tual separation of mind and mechanism, as reflected in the separation of
computation and what does the computing, a distinction that underwrites
computationalism. It almost seems as if this split attempts to “hold some-
thing apart from and above material reality,” to use Agre’s words, who
locates a general pattern of such “dissociations” permeating AI.

All of this seems to point in the same direction: that the current prob-
lems of computationalism do not so much lie in computing per se, but
in our present understanding of computing. The notion of Turing com-
putability (and with it other classical notions) may be part of the founda-
tional problems of computationalism, if—as Smith suggests—the theory
of Turing machines is not, contrary to current orthodoxy, a theory of
computation in the first place, but rather a theory of marks, and hence not
a theory of intentional phenomena. In fact, as Sloman’s reconstruction of
the historic development of computers and mechanical artifacts (espe-
cially within artificial intelligence research) shows, it may be irrelevant
and not required for computationalism at all.

However, what is required and will have to be addressed by the next
generation is the intrinsic relationship between intentionality and re-
sponsibility, which Haugeland makes clear in his positive account of
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intentionality: for a system to be able to have genuine intentionality is
for it to have the capacity to accept what he calls “authentic responsibil-
ity.” A milestone along the way to implementing genuine intentionality
may be to start with Harnad’s suggestion of “grounding” symbols in
sensorimotor capacities. Such grounded symbols can be used to form new
complex symbol structures, which inherit their meaning systematically
from their constituents, and may lie at the heart of language, and conse-
quently, meaning.

At this point, I have explicated the status quo of the “old generation”
and identified some of the goals for the “next generation” of computa-
tionalism. The contours of this “next generation” are already visible, but
need to be fleshed out in detail. Now is the time for the chapters to take
over, elaborating many of the above as well as other issues in a first
attempt to rehabilitate what may still be our best bet for explaining
cognition.

Notes

1. Some of the following material is based on “The Cognitive-Computational
Story” in Scheutz (2000) with the permission of Academia Verlag, St. Augustin.

2. The timeline available at IEEE’s web site demonstrates graphically the enor-
mous gain in momentum of computer development ever since the first transistor
was constructed in 1947, which led Gordon Moore in 1965 to make the predic-
tion—now called “Moore’s Law”—that the number of transistors per integrated
circuit would double every eighteen months. Interestingly, Moore’s Law is still
true today.

3. Note that the computer metaphor should read “the mind is to the brain as
(computational) processes are to the hardware” to avoid blurring the “program-
process” distinction.

4. As Gandy puts it: “Turing’s account of the limitations of our sensory and
mental apparatus is concerned with perceptions and thoughts, not with neural
mechanisms, and there is no suggestion that our brains act like Turing machines”
(1988, p. 87).

5. This requirement does not exclude an arbitrary amount of scratch paper.
It just delimits the range of perception, i.e., the amount of information the
human “computer” can use at any given time to determine the next step in the
computation.

6. This is so, presumably, because neither AI researchers nor psychologists need
to pay attention to it. AI researchers, who build computational models, implicitly
deal with the implementation relation of software on computer hardware on a
daily basis, but are not concerned with the implementation relation of minds on
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“brain hardware”; nor are psychological studies, which remain at the level of
“program description.” Neuroscience would probably be the closest discipline
concerned with implementation issues of brains. Yet, neuroscientists do not at-
tempt to relate programlike descriptions to brain areas; rather, they attempt to
study the functional role of these areas (with respect to the rest of the brain)
directly by virtue of their physiological functions. However, so-called computa-
tional neuroscientists already make use of “alternative models of computation,”
e.g., connectionist networks.

7. Compare this to Bridgeman’s (1980) statement about the subject matter of
artificial intelligence: “Artificial intelligence is about programs rather than ma-
chines only because the process of organizing information and inputs and outputs
into an information system has been largely solved by digital computers. There-
fore, the program is the only step in the process left to worry about.”

8. Surprisingly, a common misperception among dynamicists seems to be that
computationalism and “dynamicism” are mutually exclusive.

9. To describe a physical system, one needs to introduce a variable for each rele-
vant physical dimension and consider it as a function of time. The simplest way
to specify the behavior of the physical system would be to provide graphs of each
such variable over time, that is, to have a set of functions X1(t), X2(t), . . . , Xn(t)
where Xi(t) yields the “state” of the relevant physical dimension Xi at time t. This
set of functions will determine the behavior of the system for all times. However,
it does not reveal the possible dependencies of the Xi on each other. This is where
differential equations come in handy. They provide a way of specifying the vari-
ous interdependencies of variables in such a way that graphs of each variable can
be obtained from them, yet the interdependencies are also brought to the open.
The nature of these interdependencies becomes a crucial factor in an explana-
tion of the behavior of the system, and the mathematical theory of dynamical
systems seems well suited quantitatively to describe systems that exhibit such
interdependencies.

10. In the case of electronic devices, the appropriate physical states can be deter-
mined either by asking the engineers who designed the devices or by looking at
the blueprint and comparing it to the computational description of the device.
In the case of biological systems, however, such states are not clearly defined.
Consider, for example, physical states of a pyramidal cell: which of those states
could correspond to computational states such that the respective computation
captures essential parts of the causal structure of these cells? It has been suggested
that “firing” vs. “not firing” would be “natural” candidates (e.g., by McCulloch
and Pitts 1943), but it turns out that this computational model is too reductive,
as it completely neglects essential temporal processes (such as temporal integra-
tion of signals, maximal firing rates, etc.). Hence more factors about pyramidal
cells need to be taken into account, yielding more physical states that have to
correspond to computational ones, etc. Artificial neural networks seem to be
promising candidates for such computational descriptions, but to my knowledge
the issue has not been resolved. It might well be that in the end the complex
behavior of pyramidal cells defies a computational description, but this is obvi-
ously an empirical issue.
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The Foundations of Computing

Brian Cantwell Smith

Editor’s Note
What is computation? Not what current theories of computation say it is, argues
Smith, as they one way or another “implicitly rely, without explanation, on such
substantial, recalcitrant notions as representation and semantics,” possibly even
suggesting computation as a candidate for a theory of those very notions. Smith
distinguishes various accounts of computation, originating in different intellectual
areas and aiming at different goals. For example, there is the construal of compu-
tation as “formal symbol manipulation,” embracing the idea of a machine manip-
ulating symbolic or (at least potentially) meaningful expressions without regard
to their semantic content. Or there is computation seen as the “execution of an
algorithm,” or the mathematical notion of “effective computability.” Additional
notions of computation include “digital state machine,” “information pro-
cessing,” and “physical symbol system.” All of these construals fail to meet at
least one of three criteria, which a comprehensive theory has to satisfy, according
to Smith. The first, an “empirical” criterion, requires theories of computation to
do justice to real life computing, that is, to account for and be able to explain
programs like Microsoft Word, what it does, how it is used, and so on. The sec-
ond is a conceptual criterion, which requires a theory of computation to “dis-
charge all intellectual debts” such as clarifying the relation between computation
and various other notions it depends on or is related to. Finally, the third criterion
concerns computation’s role in computationalism in that it requires a theory of
computation also to be an intelligible foundation for the formulation of the com-
putational theory of mind (whether the latter is true or false is not at stake here).
Computation, Smith suggests, is intrinsically intentional—this was what made
computation an attractive aspect of computationalism in the first place. Yet, it
is this intentional or semantic character of computation that is disguised by the
widely held, pretheoretic conception of computation as being entirely formal.
Once the involved notion of formality is scrutinized, however, it becomes clear
that computation cannot be correctly classified by any reading of “formal,” and
hence the semantic character of computation is in need of explanation. So, rather
than providing one, computation will have to wait for the development of a satis-
factory theory of intentionality. But Smith does not stop here. Instead he calls
into question the whole set of ontological assumptions underlying computational
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analyses, culminating in his claim that computation is not a subject matter. Hence,
although a satisfactory analysis of computation will have to include a theory of
semantics and a theory of ontology, we will never have a “theory of computing,”
because computation does not constitute a distinct ontological or intellectual
category. To some this may seem a negative conclusion, but for Smith it opens
up the possibility of seeing computers as embedded in a rich practice, which
might enable us to see “how intentional capacities can arise in a mere physical
mechanism.”

1 Introduction

Will computers ever be conscious? Is it appropriate—illuminating, cor-
rect, ethical—to understand people in computational terms? Will quan-
tum, DNA, or nanocomputers require radical adjustments to our theories
of computation? How will computing affect science, the arts, intellectual
history?

For most of my life I have been unable to answer these questions, be-
cause I have not known what computation is. More than thirty years
ago, this uncertainty led me to undertake a long-term investigation of the
foundations of computer science. That study is now largely complete. My
aim in this chapter is to summarize a few of its major results.1

2 Project

The overall goal has been to develop a comprehensive theory of comput-
ing. Since the outset, I have assumed that such an account must meet
three criteria:

1. Empirical: It must do justice to—by explaining or at least supplying
the wherewithal with which to explain—the full range of computational
practice;
2. Conceptual: It must as far as possible discharge, and at a minimum
own up to, its intellectual debts (e.g., to semantics), so that we can under-
stand what it says, where it comes from, and what it “costs”; and
3. Cognitive: It must provide an intelligible foundation for the computa-
tional theory of mind: the thesis, often known as computationalism,2 that
underlies traditional artificial intelligence and cognitive science.

The first “empirical” requirement, of doing justice to practice, helps to
keep the analysis grounded in real-world examples. By being comprehen-
sive in scope, it stands guard against the tendency of narrowly defined
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candidates to claim dominion over the whole subject matter.3 And it is
humbling, since the computer revolution so reliably adapts, expands,
dodges expectations, and in general outstrips our theoretical grasp. But
the criterion’s primary advantage is to provide a vantage point from
which to question the legitimacy of all extant theoretical perspectives.
For I take it as a tenet that what Silicon Valley treats as computational
is computational; to deny that would be considered sufficient grounds
for rejection. But no such a priori commitment is given to any story about
computation—including the widely held recursion- or Turing-theoretic
conception of computability, taught in computer science departments
around the world, that currently lays claim to the title “The Theory of
Computation.”4 I also reject all proposals that assume that computation
can be defined. By my lights, that is, computer science should be viewed
as an empirical endeavor.5 An adequate theory must make a substantive
empirical claim about what I call computation in the wild:6 that eruptive
body of practices, techniques, networks, machines, and behavior that has
so palpably revolutionized late twentieth- and early twenty-first-century
life.

The second, “conceptual” criterion, that a theory own up to—and as
far as possible repay—its intellectual debts, is in a way no more than
standard theoretical hygiene. But it is important to highlight, in the com-
putational case, for two intertwined reasons. First, it turns out that sev-
eral candidate theories of computing (including the official “Theory of
Computation” mentioned above), as well as many of the reigning but
largely tacit ideas about computing held in surrounding disciplines, im-
plicitly rely, without explanation, on such substantial, recalcitrant no-
tions as interpretation,7 representation, and semantics.8 Second, which
only makes matters worse, there is a widespread tendency in the sur-
rounding intellectual terrain to point to computation as a possible theory
of those very recalcitrant notions. Unless we ferret out all such depen-
dencies, and lay them in plain view, we run at least two serious risks:
(i) of endorsing accounts that are either based on, or give rise to, vicious
conceptual circularity; and (ii) of promulgating and legitimating various
unwarranted preconceptions or parochial (e.g., modernist) biases (such
as of a strict mind-body dualism).

The third, “cognitive” criterion—that an adequate theory of com-
putation provide an intelligible foundation for a theory of mind—is of a



26 Brian Cantwell Smith

somewhat different character. Like the second, it is more a metatheoretic
requirement on the form of a theory than a constraint on its substantive
content. But its elevation to a primary criterion is nonstandard, and needs
explaining. Its inclusion is not based simply on the fact that the computa-
tional theory of mind (the idea that we, too, might be computers) is one
of the most provocative and ramifying ideas in intellectual history, under-
writing artificial intelligence, cognitive psychology, and contemporary
philosophy of mind. Some other ideas about computing are just as sweep-
ing in scope (such as proposals to unify the foundations of quantum me-
chanics with the foundations of information), but have not spawned their
own methodological criteria here. Rather, what distinguishes the compu-
tational theory of mind, in the present context, has to do with the episte-
mological consequences that would follow, if it were true.

Theorizing is undeniably a cognitive endeavor. If the computational
theory of mind were correct, therefore, a theory of computation would
be reflexive—applying not only (at the object-level) to computing in gen-
eral, but also (at the metalevel) to the process of theorizing. That is, the
theory’s claims about the nature of computing would apply to the theory
itself. On pain of contradiction, therefore, unless one determines the re-
flexive implications of any candidate theory (of computing) on the form
that the theory itself should take, and assesses the theory from such a
reflexively consistent position, one will not be able to judge whether it
is correct.9

More specifically, suppose that mind is in fact computational, and that
we were to judge a candidate (object-level) theory of computing from the
perspective of an implicit metatheory inconsistent with that candidate
theory. And then suppose that, when judged from that perspective, the
candidate theory is determined to be good or bad. There would be no
reason to trust such a conclusion. For the conclusion might be due not
to the empirical adequacy or failings of the theory under consideration,
but rather to the conceptual inadequacy of the presumed metatheory.10

In sum, the plausibility of the computational theory of mind requires
that a proper analysis of a candidate theory of computing must con-
sider: (i) what computational theory of mind would be generated, in its
terms; (ii) what form theories in general would take, on such a model of
mind; (iii) what the candidate theory of computing in question would
look like, when framed as such a theory; (iv) whether the resulting theory



The Foundations of Computing 27

(of computing), so framed, would hold true of computation-in-the-wild;
and (v) whether, if it did turn out to be true (i.e., empirically), mentation
and theorizing would, by those lights, also be computational. All this is
required, for reflexive integrity. To do these things, we need to under-
stand whether—and how—the theory could underwrite a theory of
mind. Hence the cognitive criterion.

It is essential to understand, however, that the cognitive criterion re-
quires only that we understand what form a computational theory of
mind would take; it does not reflect any commitment to accept such a
theory. In committing myself to honor the criterion, that is, I make no
advance commitment to computationalism’s being true or false. I just
want to know what it says.

None of this is to say that the content of the computational theory of
mind is left open. Computationalism’s fundamental thesis—that the mind
is computational—is given substance by the first, empirical criterion.
Computationalism, that is—at least as I read it—is not a theory-laden
or “opaque” proposal, in the sense of framing or resting on a specific
hypothesis about what computers are. Rather, it has more an ostensive
or “transparent” character: it claims that people (i.e., us) are computers
in whatever way that computers (i.e., those things over there) are comput-
ers, or at least in whatever way some of those things are computers.11

It follows that specific theoretical formulations of computationalism
(whether pro or con) are doubly contingent. Thus consider, on the posi-
tive side, Newell and Simon’s popular (1976) “physical symbol system
hypothesis,” according to which human intelligence is claimed to consist
in physical symbol manipulation; or Fodor’s (1975, 1980) claim that
thinking consists in formal symbol manipulation; or—on the critical
side—Dreyfus’s (1992) assertion that computationalism (as opposed to
connectionism) requires the explicit manipulation of explicit symbols; or
van Gelder’s (1995) claim that computationalism is both false and mis-
leading, deserving to be replaced by dynamical alternatives. Not only do
all these writers make hypothetical statements about people, that they
are or are not physical, formal, or explicit symbol manipulators, respec-
tively; they do so by making (hypothetical) statements about computers,
that they are in some essential or illuminating way characterizable in the
same way. Because I take the latter claims to be as subservient to empirical
adequacy as the former, there are two ways in which these writers could
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be wrong. In claiming that people are formal symbol manipulators, for
example, Fodor would naturally be wrong if computers were formal sym-
bol manipulators and people were not. But he would also be wrong, while
the computational theory of mind itself might still be true, if computers
were not formal symbol manipulators, either. Similarly, van Gelder’s
brief against computational theories of mind is vulnerable to his under-
standing of what computing is actually like. If, as I believe, computation-
in-the-wild is not as he characterizes it, then the sting of his critique is
entirely eliminated.

In sum, computational cognitive science is, like computer science, hos-
tage to the foundational project:12 of formulating a comprehensive, true,
and intellectually satisfying theory of computing that honors all three
criteria.

No one of them is easy to meet.

3 Seven Construals of Computation

Some will argue that we already know what computation is. That in turn
breaks into two questions: (i) is there a story—an account that people
think answers the question of what computing is (computers are); and
(ii) is that story right?

Regarding the first question, the answer is not no, but it is not a simple
yes, either. More than one idea is at play in current theoretic discourse.
Over the years, I have found it convenient to distinguish seven primary
construals of computation, each requiring its own analysis:

1. Formal symbol manipulation (FSM): the idea, derivative from a centu-
ry’s work in formal logic and metamathematics, of a machine manipulat-
ing symbolic or (at least potentially) meaningful expressions without
regard to their interpretation or semantic content;
2. Effective computability (EC): what can be done, and how hard it is
to do it, mechanically, as it were, by an abstract analogue of a “mere
machine”;
3. Execution of an algorithm (ALG) or rule-following (RF): what is in-
volved, and what behavior is thereby produced, in following a set of rules
or instructions, such as when making dessert;
4. Calculation of a function (FUN): the behavior, when given as input
an argument to a mathematical function, of producing as output the value
of that function applied to that argument;
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5. Digital state machine (DSM): the idea of an automaton with a finite,
disjoint set of internally homogeneous machine states—as parodied in
the “clunk, clunk, clunk” gait of a 1950s cartoon robot;
6. Information processing (IP): what is involved in storing, manipulat-
ing, displaying, and otherwise trafficking in information, whatever infor-
mation might be; and
7. Physical symbol systems (PSS): the idea, made famous by Newell and
Simon (1976), that, somehow or other, computers interact with, and per-
haps also are made of, symbols in a way that depends on their mutual
physical embodiment.

These seven construals have formed the core of our thinking about com-
putation over the last fifty years, but I make no claim that this list is
exhaustive.13 At least to date, however, it is these seven that have shoul-
dered the lion’s share of responsibility for framing the intellectual debate.

By far the most important step in getting to the heart of the founda-
tional question, I believe, is to recognize that these seven construals are
all conceptually distinct. In part because of their great familiarity (we
have long since lost our innocence), and in part because “real” computers
seem to exemplify more than one of them—including those often-
imagined but seldom-seen Turing machines, complete with controllers,
read-write heads, and indefinitely long tapes—it is sometimes uncritically
thought that all seven can be viewed as rough synonyms, as if they were
different ways of getting at the same thing. Indeed, this conflationary
tendency is rampant in the literature, much of which moves around
among them as if doing so were intellectually free. But that is a mistake.
The supposition that any two of these construals amount to the same
thing, let alone that all seven do, is simply false.

For example, consider the formal symbol manipulation construal
(FSM). It explicitly characterizes computing in terms of a semantic or
intentional aspect, if for no other reason than that without some such
intentional character there would be no warrant in calling it symbol ma-
nipulation.14 In contrast, the digital state machine construal (DSM) makes
no such reference to intentional properties. If a Lincoln-log contraption
were digital but not symbolic, and a system manipulating continuous
symbols were formal but not digital, they would be differentially counted
as computational by the two construals. Not only do FSM and DSM
mean different things, in other words; they (at least plausibly) have over-
lapping but distinct extensions.



30 Brian Cantwell Smith

The effective computability (EC) and algorithm execution (ALG) con-
struals similarly differ on the crucial issue of semantics. Whereas the effec-
tive computability construal, at least in the hands of computer scientists,
seems free of intentional connotation,15 the idea of algorithm execution,
at least as I have characterized it, seems not only to involve rules or reci-
pes, which presumably do mean something, but also (pace Wittgenstein)
to require some sort of understanding on the part of the agent producing
the behavior.

Semantics is not the only open issue; there is also an issue of ab-
stractness versus concreteness. For example, it is unclear whether the no-
tions of “machine” and “taking an effective step” internal to the EC
construal make fundamental reference to causal powers, material realiza-
tion, or other concrete physical properties, or whether, as most current
theoretical discussions suggest, effective computability should be taken
as an entirely abstract mathematical notion. Again, if we do not under-
stand this crucial aspect of the “mind-body problem for machines,” how
can we expect computational metaphors to help us in the case of people?

There are still other differences among construals. They differ on
whether they inherently focus on internal structure or external input/
output, for example—that is, on whether: (i) they treat computation as
fundamentally a way of being structured or constituted, so that surface
or externally observable behavior is derivative; or whether (ii) the having
of a particular behavior is the essential locus of being computational,
with questions about how that is achieved left unspecified and uncared
about. The formal symbol manipulation and digital state machine con-
struals are of the former, structurally constitutional sort; effective com-
putability is of the latter, behavioral variety; algorithm execution appears
to lie somewhere in the middle.

The construals also differ in the degree of attention and allegiance they
have garnered in different disciplines. Formal symbol manipulation
(FSM) has for many years been the conception of computing that is privi-
leged in artificial intelligence and philosophy of mind, but it receives al-
most no attention in computer science. Theoretical computer science
focuses primarily on the effective computability (EC) and algorithm
(ALG) construals, whereas mathematicians, logicians, and most philoso-
phers of logic and mathematics pay primary allegiance to the functional
conception (FUN). Publicly, in contrast, it is surely the information pro-
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cessing (IP) construal that receives the major focus—being by far the most
likely characterization of computation to appear in the Wall Street Jour-
nal, and the idea responsible for such popular slogans as “the information
age” and “the information highway.”

Not only must the seven construals be distinguished one from another;
additional distinctions must be made within each one. Thus the idea of
information processing (IP) needs to be broken down, in turn, into at
least three subreadings, depending on how “information” is understood:
(i) as a lay notion, dating from perhaps the nineteenth century, of some-
thing like an abstract, publicly accessible commodity, carrying a certain
degree of autonomous authority; (ii) so-called information theory, an at
least seemingly semantics-free notion that originated with Shannon and
Weaver (1949), spread out through much of cybernetics and communica-
tion theory, is implicated in Kolmogorov, Chaitin, and similar complexity
measures, and has more recently been tied to notions of energy and, par-
ticularly, entropy; and (iii) the semantical notion of information advo-
cated by Dretske (1981), Barwise and Perry (1983), Halpern (1987), and
others, which in contrast to the second deals explicitly with semantic con-
tent and veridicality.

Clarifying all these issues, bringing the salient assumptions to the fore,
showing where they agree and where they differ, tracing the roles they
have played in the last fifty years—questions like this must be part of
any foundational reconstruction. But in a sense these issues are all second-
ary. For none has the bite of the second question raised at the beginning
of the section, namely, of whether any of the enumerated accounts is
right.

Naturally, one has to say just what this question means—has to answer
the question “Right of what?”—in order to avoid the superficial re-
sponse: “Of course such and such a construal is right; that’s how compu-
tation is defined!” This is where the empirical criterion takes hold. More
seriously, I am prepared to argue for a much more radical conclusion,
which we can dub as the first major result:16

C1. When subjected to the empirical demands of practice and the
(reflexively mandated) conceptual demands of cognitive science, all
seven primary construals fail—for deep, overlapping, but distinct,
reasons.
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4 Diagnosis I: General

What is the problem? Why do these theories all fail?
The answers are found at many levels. In the next section, I discuss

some construal-specific problems. But a general thing can be said first.
Throughout, the most profound difficulties have to do with semantics.
It is widely (if tacitly) recognized that computation is in one way or an-
other a symbolic or representational or information-based or semanti-
cal—that is, as philosophers would say, an intentional—phenomenon.17

Somehow or other, though in ways we do not yet understand, the states
of a computer can model or simulate or represent or stand for or carry
information about or signify other states in the world (or at least can be
taken by people to do so). This semantical or intentional character of
computation is betrayed by such phrases as symbol manipulation, infor-
mation processing, programming languages, knowledge representation,
data bases, and so on. Indeed, if computing were not intentional, it would
be spectacular that so many intentional words of English systematically
serve as technical terms in computer science.18 Furthermore—and this is
important to understand—it is the intentionality of the computational
that motivates the cognitivist hypothesis. The only compelling reason to
suppose that we (or minds or intelligence) might be computers stems from
the fact that we, too, deal with representations, symbols, meaning, infor-
mation, and the like.19

For someone with cognitivist leanings, therefore—as opposed, say, to
an eliminativist materialist, or to some types of connectionist—it is natu-
ral to expect that a comprehensive theory of computation will have to
focus on its semantical aspects. This raises problems enough. Consider
just the issue of representation. To meet the first criterion, of empirical
adequacy, a successful candidate will have to make sense of the myriad
kinds of representation that saturate real-world systems—from bit maps
and images to knowledge representations and databases; from high-speed
caches to long-term backup tapes; from low-level finite-element models
used in simulation to high-level analytic descriptions supporting reason-
ing and inference; from text to graphics to audio to video to virtual real-
ity. As well as being vast in scope, it will also have to combine decisive
theoretical bite with exquisite resolution, in order to distinguish: models
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from implementations; analyses from simulations; and virtual machines
at one level of abstraction from virtual machines at another level of ab-
straction, in terms of which the former may be implemented.

To meet the second, conceptual criterion, moreover, any account of
this profusion of representational practice must be grounded on, or at
least defined in terms of, a theory of semantics or content, partly in order
for the concomitant psychological theory to avoid vacuity or circularity,
and partly so that even the computational part of the theory meet a mini-
mal kind of naturalistic criterion: that we understand how computa-
tion is part of the natural world. This is made all the more difficult by
the fact that the word “semantics” is used in an incredible variety of
senses across the range of the intentional sciences. Indeed, in my experi-
ence it is virtually impossible, from any one location within that range,
to understand the full significance of the term, so disparate is that practice
in toto.

Genuine theories of content,20 moreover—of what it is that makes a
given symbol or structure or patch of the world be about or oriented
toward some other entity or structure or patch—are notoriously hard to
come by.21 Some putatively foundational construals of computation are
implicitly defined in terms of just such a background theory of semantics,
but neither explain what semantics is, nor admit that semantical depen-
dence—and thus fail the second, conceptual criterion. This includes the
first, formal symbol manipulation construal so favored (and disparaged!)
in the cognitive sciences, in spite of its superficial formulation as being
“independent of semantics.”22 Other construals, such as those that view
computation as the behavior of discrete automata—and also, I will argue
below, even if this is far from immediately evident, the recursion-theoretic
one that describes such behavior as the calculation of effective func-
tions—fail to deal with computation’s semantical aspect at all, in spite
of sometimes using semantical vocabulary, and so fail the first, empiri-
cal criterion. In the end, one is driven inexorably to a second major
conclusion:23

C2. In spite of the advance press, especially from cognitivist quarters,
computer science, far from supplying the answers to fundamental
intentional mysteries, must, like cognitive science, await the
development of a satisfying theory of semantics and intentionality.
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5 Diagnosis II: Specific

So none of the seven construals provides an account of semantics. Since
I take computation to be semantic (not just by assumption, but as an
unavoidable lesson from empirical investigation), that means they fail as
theories of computation, as well (i.e., C2 implies C1). And that is just
the beginning of the problems. All seven also fail for detailed structural
reasons—different reasons per construal, but reasons that add up, over-
all, to a remarkably coherent overall picture.

In this section I summarize just a few of the problems, to convey a
flavor of what is going on. In each case, to put this in context, these results
emerge from a general effort, in the main investigation, to explicate, for
each construal:

1. What the construal says or comes to—what claim it makes about what
it is to be a computer;
2. Where it derives from, historically;
3. Why it has been held;
4. What is right about it—what insights it gets at;
5. What is wrong with it, conceptually, empirically, and explanatorily;
6. Why it must ultimately be replaced; and
7. What about it should nevertheless be retained in a “successor,” more
adequate account.

5.1 Formal Symbol Manipulation
The FSM construal has a distinctly antisemantical flavor, owing to its
claim that computation is the “manipulation of symbols independent of
their semantics.” On analysis, it turns out to be motivated by two entirely
different, ultimately incompatible, independence intuitions. The first mo-
tivation is at the level of the theory, and is reminiscent of a reductionist
desire for a “semantics-free” account. It takes the FSM thesis to be a
claim that computation can be described or analyzed in a semantics-free
way. If that were true, so the argument goes, that would go some distance
toward naturalizing intentionality. (As Haugeland says, “. . . if you take
care of the syntax, the semantics will take care of itself” [1981a, p. 23];
see also Haugeland [1985].)

There is a second motivating intuition, different in character, that holds
at the level of the phenomenon. Here the idea is simply the familiar obser-
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vation that intentional phenomena, such as reasoning, hoping, or dream-
ing, carry on in relative independence of their subject matters or referents.
Reference and truth, it is recognized, are just not the sorts of properties
that can play a causal role in engendering behavior—essentially because
they involve some sort of relational coordination with things that are
too far away (in some relevant respect) to make a difference. This rela-
tional characteristic of intentionality—something I call semantic discon-
nection—is such a deep aspect of intentional phenomena that it is hard
to imagine its being false. Without it, falsity would cease to exist, but so
too would hypotheticals; fantasy lives would be metaphysically banned;
you would not be able to think about continental drift without bringing
the tectonic plates along with you.

For discussion, I label the two readings of the FSM construal concep-
tual and ontological, respectively.24 The ontological reading is natural,
familiar, and based on a deep insight. But it is too narrow. Many counter-
examples can be cited against it, though space does not permit rehearsing
them here.25 Instead, to get to the heart of the matter, it helps to highlight
a distinction between two kinds of “boundary” thought to be relevant
or essential—indeed, often assumed a priori—in the analysis of comput-
ers and other intentional systems:

1. Physical: A physical boundary between the system and its surrounding
environment—between “inside” and “outside”; and
2. Semantic: A semantic “boundary” between symbols and their
referents.

In terms of these two distinctions, the ontological reading of the FSM
construal can be understood as presuming the following two theses:

1. Alignment: That the physical and semantic boundaries line up, with
all the symbols inside, all the referents outside; and
2. Isolation: That this allegedly aligned boundary is a barrier or gulf
across which various forms of dependence (causal, logical, explanatory)
do not reach.

The fundamental idea underlying the FSM thesis, that is, is that a barrier
of this double allegedly aligned sort can be drawn around a computer,
separating a pristine inner world of symbols—a private kingdom of ratio-
cination or thought, as it were—understood both to work (ontologically)
and to be analyzable (theoretically) in isolation, without distracting in-
fluence from the messy, unpredictable exterior.
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It turns out, in a way that is ultimately not surprising, that the tradi-
tional examples motivating the FSM construal, such as theorem prov-
ing in formal logic, meet this complex pair of conditions. First, they
involve internal symbols designating external situations, thereby satisfy-
ing Alignment: (internal) databases representing (external) employee sal-
aries, (internal) differential equations modeling the (external) perihelion
of Mercury, (internal) first-order axioms designating (external) Platonic
numbers or purely abstract sets, and so on. Second, especially in the para-
digmatic examples of formal axiomatizations of arithmetic and proof sys-
tems of first-order logic (and, even more especially, when those systems
are understood in classical, especially model-theoretic guise), the system is
assumed to exhibit the requisite lack of interaction between the (internal)
syntactic proof system and the (external, perhaps model-theoretic) in-
terpretation, satisfying Isolation. In conjunction, the two assumptions
allow the familiar two-part picture of a formal system to emerge: of a
locally contained syntactic system, on the one hand, consisting in sym-
bols or formulae in close causal intimacy with a proof-theoretic infer-
ence regimen; and a remote realm of numbers or sets or “ur-elements,”
in which the symbols or formulae are interpreted, on the other. It is
because the formality condition relies on both theses together that the
classical picture takes computation to consist exclusively in symbol-
symbol transformations, carried on entirely within the confines of a
machine.

The first—and easier—challenge to the antisemantical thesis comes
when one retains the first Alignment assumption, of coincident bound-
aries, but relaxes the second Isolation claim, of no interaction. This is
the classical realm of input/output, home of the familiar notion of a trans-
ducer. And it is here that one encounters the most familiar challenges to
the FSM construal, such as the “robotic” and “system” replies to Searle’s
(1980) Chinese room argument, and Harnad’s (1990) “Total Turing
Test” as a measure of intelligence. Thus imagine a traditional perception
system—for example, one that on encounter with a mountain lion con-
structs a symbolic representation of the form mountain-lion-043. There
is interaction (and dependence) from external world to internal represen-
tation. By the same token, an actuator system, such as one that would
allow a robot to respond to a symbol of the form cross-the-street by
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moving from one side of the road to the other, violates the Isolation
assumption in the other direction, from internal representation to exter-
nal world.

Note, in spite of this interaction, and the consequent violation of Isola-
tion, that Alignment is preserved in both cases: the transducer is imagined
to mediate between an internal symbol and an external referent. Never-
theless, the violation of Isolation is already enough to defeat the formality
condition. This is why transducers and computation are widely recog-
nized to be uneasy bedfellows, at least when formality is at issue. It is also
why, if one rests the critique at this point, defenders of the antisemantical
construal are tempted to wonder, given that the operations of transducers
violate formality, whether they should perhaps be counted as not being
computational.26 Given the increasing role of environmental interaction
within computational practice, it is not at all clear that this would be
possible, without violating the condition of empirical adequacy embraced
at the outset. For our purposes it does not ultimately matter, however,
because the critique is only halfway done.

More devastating to the FSM construal are examples that challenge
the Alignment thesis. It turns out, on analysis, that far from lining up
on top of each other, real-world computer systems’ physical and se-
mantic boundaries cross-cut, in rich and productive interplay. It is not
just that computers are involved in an engaged, participatory way with
external subject matters, in other words, as suggested by some recent
“situated” theorists. They are participatorily engaged in the world as a
whole—in a world that indiscriminately includes themselves, their own
internal states and processes. This integrated participatory involvement,
blind to any a priori subject-world distinction, and concomitantly inten-
tionally directed toward both internally and externally exemplified states
of affairs, is not only architecturally essential, but is also critical, when
the time comes, in establishing and grounding a system’s intentional
capacities.

From a purely structural point of view, four types of case are required
to demonstrate this nonalignment of boundaries: (i) where a symbol and
referent are both internal; (ii) where a symbol is internal and its referent
external; (iii) where symbol and referent are both external; and (iv) where
symbol is external and its referent internal. The first is exemplified in

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



38 Brian Cantwell Smith

cases of quotation, metastructural designation, window systems, e-mail,
compilers, loaders, network routers, and at least arguably all programs
(as opposed, say, to databases). The second, of internal symbols with
external referents, can be considered as something of a theoretical
(though not necessarily empirical) default, as for example when one re-
flects on the sun’s setting over Georgian Bay (to use a human example),
or when a computer database represents the usage pattern of a set of
university classrooms. The third and fourth are neither more nor less than
a description of ordinary written text, public writing, and so on—to say
nothing of pictures, sketches, conversations, and the whole panoply of
other forms of external representation. Relative to any particular system,
they are distinguished by whether the subject matters of those external
representations are similarly external, or are internal. The familiar red
skull-and-crossbones signifying radioactivity is external to both man and
machine and also denotes something external to man and machine, and
thus belongs to the third category. To a computer or person involved,
on the other hand, an account of how they work (psychoanalysis of per-
son or machine, as it were, to say nothing of logic diagrams, instruction
manuals, etc.) is an example of the fourth.

By itself, violating Alignment is not enough to defeat formality. What
it does accomplish, however, is to radically undermine Isolation’s plausi-
bility. In particular, the antisemantical thesis constitutive of the FSM con-
strual is challenged not only because these examples show that the
physical and semantic boundaries cross-cut, thereby undermining the
Alignment assumption, but because they illustrate the presence, indeed
the prevalence, of effective traffic across both boundaries—between
and among all the various categories in question—thereby negating
Isolation.

And this negation of Isolation, in turn, shows up, for what it is, the
common suggestion that transducers, because of violating the antiseman-
tical thesis, should be ruled “out of court”—should be taken as non-
computational, à la Devitt (1991).27 It should be clear that this maneuver
is ill advised; it’s even a bit of a cop-out. For consider what a proponent
of such a move must face up to, when confronted with boundary non-
alignment. The notion of a transducer must be split in two. In order to
retain an antisemantical (FSM) construal of computing, someone inter-
ested in transducers would have to distinguish:
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1. Physical transducers, for operations or modules that cross or mediate
between the inside and outside of a system; and
2. Semantic transducers, for operations or modules that mediate or
“cross” between symbols and their referents.

And it is this bifurcation, finally, that irrevocably defeats the antisemanti-
cal formalists’ claim. For the only remotely plausible notion of trans-
ducer, in practice, is the physical one. That is what we think of when we
imagine vision, touch, smell, articulation, wheels, muscles, and the like:
systems that mediate between the internals of a system and the “outside”
world. Transducers, that is, at least in informal imagination of prac-
titioners, are for connecting systems to their (physical) environments.28

What poses a challenge to the formal (antisemantical) symbol manipula-
tion construal of computation, on the other hand, are semantic transduc-
ers: those aspects of a system that involve trading between occurrent
states of affairs, on the one hand, and representations of them, on the
other. Antisemantics is challenged as much by disquotation as by driving
around.

As a result, the only way to retain the ontological version of the FSM
construal is to disallow (i.e., count as noncomputational) the operations
of semantic transducers. But that is absurd. It makes it clear, ultimately,
that distinguishing that subset of computation which satisfies the ontolog-
ical version of the antisemantical claim is not only unmotivated, solving
the problem by fiat (making it uninteresting), but is a spectacularly infea-
sible way to draw and quarter any actual, real-life system. For no one
who has ever built a computational system has ever found any reason to
bracket reference-crossing operations, or to treat them as a distinct type.
Not only that; think of how many different kinds of examples of seman-
tic transducer one can imagine: counting, array indexing, e-mail, dis-
quotation, error-correction circuits, linkers, loaders, simple instructions,
database access routines, pointers, reflection principles in logic, index
operations into matrices, most Lisp primitives, and the like. Further-
more, to define a species of transducer in this semantical way, and then
to remove them from consideration as not being genuinely computa-
tional, would make computation (minus the transducers) antisemantical
tautologically. It would no longer be an interesting claim about the
world that computation was antisemantical—an insight into how things
are. Instead, the word “computation” would simply be shorthand for
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antisemantical symbol manipulation. The question would be whether
anything interesting was in this named class—and, in particular, whether
this conception of computation captured the essential regularities under-
lying practice. And we have already seen the answer to that: it is no.

In sum, introducing a notion of a semantical transducer solves the
problem tautologically, cuts the subject matter at an unnatural joint,
and fails to reconstruct practice. That is quite a lot to have going
against it.

Furthermore, to up the ante on the whole investigation, not only are
these cases of “semantic transduction” all perfectly well behaved; they
even seem, intuitively, to be as “formal” as any other kind of operation.
If that is so, then those systems either are not formal, after all, or else the
word “formal” has never meant independence of syntax and semantics in
the way that the FSM construal claims. Either way, the ontological con-
strual does not survive.

Though it has been framed negatively, we can summarize this result
in positive terms:

C3. Rather than consisting of an internal world of symbols separated
from an external realm of referents, as imagined in the FSM construal,
real-world computational processes are participatory, in the following
sense: they involve complex paths of causal interaction between
and among symbols and referents, both internal and external, cross-
coupled in complex configurations.

5.2 Effective Computability
Although different in detail, the arguments against the other major con-
struals have a certain similarity in style. In each case, the strategy in the
main investigation has been to develop a staged series of counterexam-
ples, not simply to show that the construal is false, but to serve as strong
enough intuition pumps on which to base a positive alternative. In other
words, the point is not critique, but deconstruction en route to recon-
struction. Space permits a few words about just one other construal:
effective computability—the idea that underwrites recursion theory,
complexity theory, and, as I have said, the official (mathematical) “The-
ory of Computation.”

Note, for starters—as mentioned earlier—that whereas the first, FSM
construal is predominant in artificial intelligence, cognitive science, and
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philosophy of mind, it is the second, effective computability (EC) con-
strual, in contrast, that underlies most theoretical and practical computer
science.

Fundamentally, it is widely agreed, the theory of effective computabil-
ity focuses on “what can be done by a mechanism.” But two conceptual
problems have clouded its proper appreciation. First, in spite of its subject
matter, it is almost always characterized abstractly, as if it were a branch
of mathematics. Second, it is imagined to be a theory defined over (for
example) the numbers. Specifically, the marks on the tape of the para-
digmatic Turing machine are viewed as representations or encodings—
representations, in general, or at least in the first instance, of numbers,
functions, or other Turing machines.

In almost exact contrast to the received view, I argue two things. First, I
claim that the theory of effective computability is fundamentally a theory
about the physical nature of patches of the world. In underlying char-
acter, I believe, it is no more “mathematical” than anything else in
physics—even if we use mathematical structures to model that physical
reality. Second—and this is sure to be contentious—I argue that recur-
sion theory is fundamentally a theory of marks. More specifically, rather
than taking the marks on the tape to be representations of numbers, as
has universally been assumed in the theoretical tradition, I defend the
following claim:

C4. The representation relation for Turing machines, alleged to run
from marks to numbers, in fact runs the other way, from numbers to
marks. The truth is 180° off what we have all been led to believe.

In the detailed analysis various kinds of evidence are cited in defense of
this nonstandard claim. For example:

1. Unless one understands it this way, one can solve the halting
problem;29

2. An analysis of history, through Turing’s paper and subsequent work,
especially including the development of the universal Turing machine,
shows how and why the representation relation was inadvertently turned
upside down in this way;
3. The analysis makes sense of a number of otherwise-inexplicable prac-
tices, including, among other examples: (i) the use of the word “seman-
tics” in practicing computer science to signify the behavior engendered
by running a program,30 (ii) the rising popularity of such conceptual tools
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as Girard’s linear logic, and (iii) the close association between theoretical
computer science and constructive mathematics.

It follows from this analysis that all use of semantical vocabulary in the
“official” Theory of Computation is metatheoretic. As a result, the so-
called (mathematical) “Theory of Computation” is not a theory of inten-
tional phenomena—in the sense that it is not a theory that deals with its
subject matter as an intentional phenomenon.

In this way the layers of irony multiply. Whereas the FSM construal
fails to meet its own criterion, of being “defined independent of seman-
tics,” this second construal does meet (at least the conceptual reading of)
that first-construal condition. Exactly in achieving that success, however,
the recursion-theoretic tradition thereby fails. For computation, as was
said above, and as I am prepared to argue, is (empirically) an intentional
phenomenon. So the EC construal achieves naturalistic palatability at the
expense of being about the wrong subject matter.

We are thus led inexorably to the following strong conclusion: that
what goes by the name “Theory of Computation” fails not because it
makes false claims about computation, but because it is not a theory of
computation at all.31,32

In sum, the longer analysis ultimately leads to a recommendation that
we redraw a substantial portion of our intellectual map. What has been
(indeed, by most people still is) called a “Theory of Computation” is in
fact a general theory of the physical world—specifically, a theory of how
hard it is, and what is required, for patches of the world in one physical
configuration to change into another physical configuration. It applies to
all physical entities, not just to computers. It is no more mathematical
than the rest of physics, in using (abstract) mathematical structures to
model (concrete) physical phenomena. Ultimately, therefore, it should be
joined with physics—because in a sense it is physics.

We can put this result more positively. Though falsely (and mislead-
ingly) labeled, the mathematical Theory of Computation has been a spec-
tacular achievement, of which the twentieth century should be proud.
Indeed, this is important enough that we can label it as the fifth major
result:

C5. Though not yet so recognized, the mathematical theory based on
recursion theory, Turing machines, complexity analyses, and the like—
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widely known as the “Theory of Computation”—is neither more nor
less than a mathematical theory of the flow of causality.

6 Method

Similarly strong conclusions can be arrived at by pursuing each of the
other construals. Indeed, the conclusion from the analysis of the digital
state machine construal (DSM)—that computation-in-the-wild is not dig-
ital—is, if anything, even more consequential than the results derived
from either the FSM or the EC critiques. Rather than go into more con-
struals here, however, I instead want to say a word about method—spe-
cifically, about formality. For a potent theme underlies all seven critiques:
that part of what has blinded us to the true nature of computation has
to do with the often pretheoretic assumption that computation and/or
computers are formal.

In one way or another, no matter what construal they pledge allegiance
to, just about everyone thinks that computers are formal—that they ma-
nipulate symbols formally, that programs (formally) specify formal pro-
cedures, that data structures are a kind of formalism, that computational
phenomena are uniquely suited for analysis by formal methods, and so
on. In fact, the computer is often viewed as the crowning achievement of
an entire “formal tradition”—an intellectual orientation, reaching back
through Galileo to Plato, that was epitomized in the twentieth century
in the logic and metamathematics of Frege, Russell, Whitehead, Carnap,
and Turing, among others.

This history would suggest that formality is an essential aspect of com-
putation. But since the outset, I have not believed that this is necessarily
so. For one thing, it has never been clear what the allegiance to formality
is an allegiance to. It is not as if “formal” is a technical or theory-internal
predicate, after all. People may believe that developing an idea means
formalizing it, and that programming languages are formal languages,
and that theorem provers operate on formal axioms—but few write “for-
mal(x)” in their daily equations. Moreover, a raft of different meanings
and connotations of this problematic term lies just below the surface.
Far from hurting, this apparent ambiguity has helped to cement popular
consensus. Freed of the need to be strictly defined (“formal” is not a
formal predicate), formality has been able to serve as a lightning rod for
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a cluster of ontological assumptions, methodological commitments, and
social and historical biases.

Because it remains tacit, cuts deep, has important historical roots, and
permeates practice, formality has been an ideal foil, over the years, in
terms of which to investigate computation.

Almost a dozen different readings of “formal” can be gleaned from
informal usage: precise, abstract, syntactic, mathematical, explicit, digi-
tal, a-contextual, nonsemantic, among others.33 They are alike in foisting
recalcitrant theoretical issues onto center stage. Consider explicitness, for
example, of the sort that might explain such a sentence as “for theoretical
purposes we should lay out our tacit assumptions in a formal representa-
tion.” Not only have implicitness and explicitness stubbornly resisted the-
oretical analysis, but both notions are parasitic on something else we do
not understand: general representation.34 Or consider “a-contextual.”
Where is an overall theory of context in terms of which we can under-
stand what it would be to say of something (a logical representation, say)
that it was not contextually dependent?

Considerations like this suggest that particular readings of formality
can be most helpfully pursued within the context of the general theoreti-
cal edifices that have been constructed (more or less explicitly) in their
terms. Five are particularly important:

1. The antisemantical reading mentioned above: the idea that a symbolic
structure (representation, language, program, symbol system, etc.) is for-
mal just in case it is manipulated independent of its semantics. Paradig-
matic cases include so-called formal logic, in which it is assumed that a
theorem—such as Mortal(Socrates)—is derived by an automatic infer-
ence regimen without regard to the reference, truth, or even meaning of
any of its premises.
2. A closely allied grammatical or syntactic reading, illustrated in such
a sentence as “inference rules are defined in terms of the formal properties
of expressions.” (Note that whereas the antisemantical reading is nega-
tively characterized, this syntactic one has a positive sense.)
3. A reading meaning something like determinate or well-defined—that
is, as ruling out all ambiguity and vagueness. This construal turns out to
be related to a variant of the computationally familiar notion of digitality
or discreteness.
4. A construal of “formal” as essentially equivalent to mathematical.
5. A reading that cross-cuts the other four: formality as applied to analy-
ses or methods, perhaps with a derivative ontological implication that
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some subject matters (including computation?) are uniquely suited to
such analytic techniques.

The first two (antisemantical and syntactic) are often treated as conceptu-
ally equivalent, but to do that is to assume that a system’s syntactic and
semantic properties are necessarily disjoint—which is almost certainly
false. The relationship between the third (determinate) reading and digi-
tality does not have so much to do with what Haugeland (1982) calls
“first-order digitality”: the ordinary assumption that a system’s states can
be partitioned into a determinate set, such that its future behavior or
essence stems solely from membership in one element of that set, without
any ambiguity or matter of degree. Rather, vagueness and indefiniteness
(as opposed to simple continuity) are excluded by a second-order form
of digitality—digitality at the level of concept or type, in the sense of
there being a binary “yes/no” fact of the matter about whether any given
situation falls under (or is correctly classified in terms of) the given con-
cept. And finally, the fourth view—that to be formal has something to
do with being mathematical, or at least with being mathematically char-
acterizable—occupies something of an ontological middle realm between
the subject-matter orientation of the first three and the methodological
orientation of the fifth.

The ultimate moral for computer and cognitive science, I argue, is simi-
lar to the claim made earlier about the seven construals: not one of these
readings of “formal” correctly applies to the computational case. It can
never be absolutely proved that computation is not formal, of course,
given that the notion of formality is not determinately tied down. What
I am prepared to argue (and do argue in the full analysis) is the following:
no standard construal of formality, including any of those enumerated
above, is both (i) substantive and (ii) true of extant computational prac-
tice. Some readings reduce to vacuity, or to no more than physical realiz-
ability; others break down in internal contradiction; others survive the
test of being substantial, but are demonstrably false of current systems.
In the end, one is forced to a sixth major conclusion:

C6. Computation is not formal.

It is an incredible historical irony: the computer, darling child of the for-
mal tradition, has outstripped the bounds of the very tradition that gave
rise to it.
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7 The Ontological Wall

Where does all this leave us? It begins to change the character of the
project. It is perhaps best described in personal terms. Over time, investi-
gations of the sort described above, and consideration of the conclusions
reached through them, convinced me that none of the reigning theories
or construals of computation, nor any of the reigning methodological
attitudes toward computation, will ever lead to an analysis strong enough
to meet the three criteria laid down at the outset.

It wasn’t always that way. For the first twenty years of the investigation
I remained:

1. in awe of the depth, texture, scope, pluck, and impact of computa-
tional practice;
2. critical of the inadequate state of the current theoretical art;
3. convinced that a formal methodological stance stood in the way of
getting to the heart of the computational question; and
4. sure in my belief that what was needed, above all else, was a non-
formal—i.e., situated, embodied, embedded, indexical, critical, reflexive,
all sorts of other things (it changed, over the years)—theory of representa-
tion and semantics, in terms of which to reconstruct an adequate concep-
tion of computing.

In line with this metatheoretic attitude, as the discussion this far will have
suggested, I kept semantical and representational issues in primary theo-
retical focus. Since, as indicated in the last section, the official “Theory
of Computation,” derived from recursion and complexity theory, pays
no attention to such intentional problems, to strike even this much of a
semantical stance was to part company with the center of gravity of the
received theoretical tradition.

You might think that this would be conclusion enough. And yet, in
spite of the importance and magnitude of these intentional difficulties,
and in spite of the detailed conclusions suggested above, I have gradually
come to believe something much more sobering: a conclusion that, al-
though not as precisely stated as the foregoing, is if anything even more
consequential:

C7. The most serious problems standing in the way of developing an
adequate theory of computation are as much ontological as they are
semantical.
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It is not that computation’s semantic problems go away; they remain as
challenging as ever. It is that they are joined—on center stage, as it
were—by even more demanding problems of ontology.

Except that to say “joined” is misleading, as if it were a matter of
simple addition—as if now there were two problems on the table,
whereas before there had been just one. No such luck. The two issues
(representation and ontology) are inextricably entangled—a fact of obsti-
nate theoretical and metatheoretical consequence.

A methodological consequence will illustrate the problem. Especially
within the analytic tradition (by which I mean to include not just analytic
philosophy, e.g., of language and mind, but most of modern science as
well, complete with its formal/mathematical methods), it is traditional
to analyze semantical or intentional systems, such as computers or peo-
ple, under the following presupposition: (i) that one can parse or register
the relevant theoretical situation in advance into a set of objects, proper-
ties, types, relations, equivalence classes, and so on (e.g., into people,
heads, sentences, data structures, real-world referents, etc.)—as if this
were theoretically innocuous—and then (ii), with that ontological parse
in hand, go on to proclaim this or that or the other thing as an empirically
justified result. Thus for example one might describe a mail-delivering
robot by first describing an environment of offices, hallways, people,
staircases, litter, and the like, through which the robot is supposed to
navigate, and then, taking this characterization of its context as given,
ask how or whether the creature represents routes, say, or offices, or the
location of mail delivery stations.

If one adopts a reflexively critical point of view, however, as I have
systematically been led to do (and as is mandated by the cognitive cri-
terion), one is led inexorably to the following conclusion: that, in that
allegedly innocent pretheoretical “set-up” stage, one is liable, even if
unwittingly, to project so many presuppositions, biases, and advance
“clues” about the “answer,” and in general to so thoroughly prefigure
the target situation, without either apparent or genuine justification, that
one cannot, or at least should not, take any of the subsequent “analysis”
terribly seriously. It is a general problem that I have elsewhere labeled
preemptive registration.35 It is problematic not just because it rejects stan-
dard analyses, but because it seems to shut all inquiry down. What else
can one do, after all? How can one not parse the situation in advance
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(since it will hardly do merely to whistle and walk away)? And if, un-
daunted, one were to go ahead and parse it anyway, what kind of story
could possibly serve as a justification? It seems that any conceivable form
of defense would devolve into another instance of the same problem.

In sum, the experience is less one of facing an ontological challenge
than of running up against a seemingly insuperable ontological wall. Per-
haps not quite of slamming into it, at least in my own case; recognition
dawned slowly. But neither is the encounter exactly gentle. It is difficult
to exaggerate the sense of frustration that can come, once the concep-
tual fog begins to clear, from seeing one’s theoretical progress blocked
by what seems for all the world to be an insurmountable metaphysical
obstacle.

Like many of the prior claims I have made, such as that all extant
theories of computation are inadequate to reconstruct practice, or that
no adequate conception of computing is formal, this last claim, that theo-
retical progress is stymied for lack of an adequate theory of ontology, is
a strong statement, in need of correspondingly strong defense. Providing
that defense is one of the main goals of AOS. In my judgment, to make
it perfectly plain, despite the progress that has been made so far, and
despite the recommended adjustments reached in the course of the seven
specific analyses enumerated above, we are not going to get to the heart
of computation, representation, cognition, information, semantics, or in-
tentionality, until the ontological wall is scaled, penetrated, dismantled,
or in some other way defused.

One reaction to the wall might be depression. Fortunately, however,
the prospects are not so bleak. For starters, there is some solace in com-
pany. It is perfectly evident, once one raises one’s head from the specifi-
cally computational situation and looks around, that computer scientists,
cognitive scientists, and artificial intelligence researchers are not the only
ones running up against severe ontological challenges. Similar conclu-
sions are being reported from many other quarters. The words are differ-
ent, and the perspectives complementary, but the underlying phenomena
are the same.

Perhaps the most obvious fellow travelers are literary critics, anthro-
pologists, and other social theorists, vexed by what analytic categories
to use in understanding people or cultures that, by such writers’ own
admission, comprehend and constitute the world using concepts alien to
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the theorists’ own. What makes the problem particularly obvious, in these
cases, is the potential for conceptual clash between theorist’s and subject’s
worldview—a clash that can easily seem paralyzing. One’s own catego-
ries are hard to justify, and reek of imperialism; it is at best presumptuous,
and at worst impossible, to try to adopt the categories of one’s subjects;
and it is manifestly impossible to work with no concepts at all. So it is
unclear how, or even whether, to proceed.

But conceptual clash, at least outright conceptual clash, is not the only
form in which the ontological problem presents itself. Consider the bur-
geoning interest in self-organizing and complex systems mentioned ear-
lier, currently coalescing in a somewhat renegade subdiscipline at the
intersection of dynamics, theoretical biology, and artificial life. This com-
munity debates the “emergence of organization,” the units on which se-
lection operates, the structure of self-organizing systems, the smoothness
or roughness of fitness landscapes, and the like. In spite of being disciplin-
arily constituting, however, these discussions are conducted in the ab-
sence of adequate theories of what organization is, of what a “unit”
consist in, of how “entities” arise (as opposed to how they survive), of
how it is determined what predicates should figure in characterizing a
fitness landscape as rough or smooth, and so on. The ontological lack
is to some extent recognized in increasingly vocal calls for “theories of
organization.”36 But the calls have not yet been answered.

Ontological problems have also plagued physics for years, at least since
foundational issues of interpretation were thrown into relief by the devel-
opments of relativity and quantum mechanics (including the perplexing
wave-particle duality, and the distinction between “classical” and “quan-
tum” worldviews). They face connectionist psychologists, who, proud of
having developed architectures that do not rely on the manipulation of
formal symbol structures encoding high-level concepts, and thus of hav-
ing thereby rejected propositional content, are nevertheless at a loss as
to say what their architectures do represent. And then of course there are
communities that tackle ontological questions directly: not just philoso-
phy, but fields as far-flung as poetry and art, where attempts to get in,
around, and under objects have been pursued for centuries.

So there are fellow-travelers. But no one, so far as I know, has devel-
oped an alternative ontological/metaphysical proposal in sufficient detail
and depth to serve as a practicable foundational for a revitalized scientific
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practice. Unlike some arguments for realism or irrealism, unlike some
briefs pro or con this or that philosophy of science, and unlike as well
the deliberations of science studies and other anthropological and socio-
logical and historical treatises about science, the task I have in mind is
not the increasingly common meta-metaphysical one—of arguing for or
against a way of proceeding, if one were ever to proceed, or arguing that
science proceeds in this or that way. Rather, the concrete demand is for
a detailed, worked-out account—an account that “goes the distance,” in
terms of which accounts of particular systems can be formulated, and
real-world construction proceed.

For this purpose, with respect to the job of developing an alternative
metaphysics, the computational realm has unparalleled advantage. Mid-
way between matter and mind, computation stands in excellent stead as
a supply of concrete cases of middling complexity—what in computer
science is called an appropriate “validation suite”—against which to test
the mettle of specific metaphysical hypotheses. “Middling” in the sense
of neither being so simple as to invite caricature, nor so complex as to
defy comprehension. It is the development of a laboratory of this interme-
diate sort, halfway between the frictionless pucks and inclined planes of
classical mechanics and the full-blooded richness of the human condition,
that makes computing such an incredibly important stepping-stone in in-
tellectual history.

Crucially, too, computational examples are examples with which we
are as much practically as theoretically familiar (we build systems better
than we understand them). Indeed—and by no means insignificantly—
there are many famous divides with respect to which computing sits
squarely in the middle.

8 Summary

Thus the ante is upped one more time. Not only must an adequate ac-
count of computation (any account that meets the three criteria with
which we started) include a theory of semantics; it must also include a
theory of ontology. Not just intentionality is at stake, in other words; so
is metaphysics. But still we are not done. For on top of the foregoing
strong conclusions lies an eighth one—if anything even stronger:
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C8. Computation is not subject matter.

In spite of everything I said about a comprehensive, empirical, conceptu-
ally founded “theory of computing,” that is, and in spite of everything I
myself have thought for decades, I no longer believe that there is a distinct
ontological category of computing or computation, one that will be the
subject matter of a deep and explanatory and intellectually satisfying the-
ory. Close and sustained analysis, that is, suggests that the things that
Silicon Valley calls computers, the things that perforce are computers, do
not form a coherent intellectually delimited class. Computers turn out in
the end to be rather like cars: objects of inestimable social and political
and economic and personal importance, but not in and of themselves,
qua themselves, the focus of enduring scientific or intellectual inquiry—
not, as philosophers would say, natural kinds.

Needless to say, this is another extremely strong claim—one over
which some readers may be tempted to rise up in arms. At the very least,
it is easy to feel massively let down, after all this work. For if I am right,
it is not just that we currently have no satisfying intellectually produc-
tive theory of computing, of the sort I initially set out to find. Nor is
it just that, through this whole analysis, I have failed to provide one.
It is the even stronger conclusion that such projects will always fail; we
will never have such a theory. So all the previous conclusions must
be revised. It is not just that a theory of computation will not supply
a theory of semantics, for example, as Newell has suggested; or that
it will not replace a theory of semantics; or even that it will depend or
rest on a theory of semantics, as was intimated at the end of section 4.
It will do none of these things because there will be no theory of computa-
tion at all.

Given the weight that has been rested on the notion of computation—
not just by me, or by computer science, or even by cognitive science, but
by the vast majority of the surrounding intellectual landscape—this (like
the previous conclusion about ontology) might seem like a negative result.
(Among other things, you might conclude I had spent these thirty years
in vain.) But in fact there is no cause for grief; for the negativity of the
judgment is only superficial, and in fact almost wholly misleading. In fact
I believe something almost wholly opposite, which we can label as a (fi-
nal) conclusion in its own right:
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C9. The superficially negative conclusion (that computing is not a
subject matter) makes the twentieth-century arrival of computation
onto the intellectual scene a vastly more interesting and important
phenomenon than it would otherwise have been.

On reflection, it emerges that the fact that neither computing nor compu-
tation will sustain the development of a theory is by far the most exciting
and triumphal conclusion that the computer and cognitive sciences could
possibly hope for.

Why so? Because I am not saying that computation-in-the-wild is
intrinsically atheoretical—and thus that there will be no theory of these
machines, at all, when day is done. Rather, the claim is that such theory
as there is—and I take it that there remains a good chance of such a
thing, as much as in any domain of human activity—will not be a theory
of computation or computing. It will not be a theory of computation
because computers per se, as I have said, do not constitute a distinct,
delineated subject matter. Rather, what computers are, I now believe—
and what the considerable and impressive body of practice associated
with them amounts to—is neither more nor less than the full-fledged so-
cial construction37 and development of intentional artifacts. That means
that the range of experience and skills and theories and results that have
been developed within computer science—astoundingly complex and far-
reaching, if still inadequately articulated—is best understood as practical,
synthetic, raw material for no less than full theories of causation, seman-
tics, and ontology—that is, for metaphysics full bore.

Where does that leave things? Substantively, it leads inexorably to the
conclusion that metaphysics, ontology, epistemology, and intentionality
are the only integral intellectual subject matters in the vicinity of either
computer or cognitive science. Methodologically, it means that our expe-
rience with constructing computational (i.e., intentional) systems may
open a window onto something to which we would not otherwise have
any access: the chance to witness, with our own eyes, how intentional
capacities can arise in a “merely” physical mechanism.

It is sobering, in retrospect, to realize that our preoccupation with the
fact that computers are computational has been the major theoretical
block in the way of our understanding how important computers are.
They are computational, of course; that much is tautological. But only
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when we let go of the conceit that that fact is theoretically important—
only when we abandon the “c-word”—will we finally be able to see,
without distraction, and thereby, perhaps, at least partially to under-
stand, how a structured lump of clay can sit up and think.

And so that, for the last decade or so, has been my project: to take,
from the ashes of computational critique, enough positive morals to serve
as the inspiration, basis, and testing ground for an entirely new metaphys-
ics. A story of subjects, a story of objects, a story of reference, a story of
history.

For sheer ambition, physics does not hold a candle to computer or
cognitive—or rather, as we should now call it, in order to recognize that
we are dealing with something on the scale of natural science—epi-
stemic or intentional science. Hawking (1988) and Weinberg (1994)
are wrong. It is we, not the physicists, who must develop a theory of
everything.

Notes

1. This chapter is distilled from, and is intended to serve as an introduction to,
a series of books that collectively report, in detail, on the investigation identified
in section 2. The study of computing will be presented in The Age of Significance
(Smith, forthcoming—henceforth AOS); the metaphysical territory to which that
study leads is introduced in On the Origin of Objects (Smith 1996).

2. The same thesis is sometimes referred to as cognitivism, though strictly speak-
ing the term “cognitivism” denotes a more specific thesis, which takes mentation
to consist in rational deliberation based on patterns of conceptualist (i.e., “cogni-
tive”) inference, reminiscent of formal logic, and usually thought to be computa-
tionally implemented (see Haugeland 1978).

3. As explained in AOS, the aim is to include not only the machines, devices,
implementations, architectures, programs, processes, algorithms, languages, net-
works, interactions, behaviors, interfaces, etc., that constitute computing, but
also the design, implementation, maintenance, and even use of such systems (such
as Microsoft Word). Not, of course, that a theory will explain any particular
architecture, language, etc. Rather, the point is that a foundational theory should
explain what an architecture is, what constraints architectures must meet, etc.

4. Indeed, I ultimately argue that that theory—trafficking in Turing machines,
notions of “effective computability,” and the like—fails as a theory of computing,
in spite of its name and its popularity. It is simultaneously too broad, in applying
to more things than computers, and too narrow, in that it fails to apply to some
things that are computers. More seriously, what it is a theory of, is not computing.
See section 5.2.
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5. Methodological issues arise, owing to the fact that we (at least seem to) make
up the evidence. Although this ultimately has metaphysical as well as methodolog-
ical implications, it undermines the empirical character of computer science no
more than it does in, say, sociology or linguistics.

6. Adapted from Hutchins’s Cognition in the Wild (1995).

7. “Interpretation” is a technical notion in computing; how it relates to the use
of the term in ordinary language, or to what “interpretation” is thought to signify
in literary or critical discussions, is typical of the sort of question to be addressed
in the full analysis.

8. A notable example of such a far-from-innocent assumption is the widespread
theoretical tendency to distinguish (i) an abstract and presumptively fundamen-
tal notion of “computation” from (ii) a concrete but derivative notion of a
“computer”—the latter simply being taken to be any physical device able to
carry out a computation. It turns out, on inspection, that this assumption builds
in a residually dualist stance toward what is essentially the mind-body prob-
lem—a stance I eventually want to argue against, and at any rate not a thesis
that should be built into a theory of computing as a presumptive but inexplicit
premise.

9. For example, it would be inconsistent simultaneously to claim the following
three things: (i) as many do, that scientific theories should be expressed from an
entirely third-person, nonsubjective point of view; (ii) as an intrinsic fact about
all computational processes, that genuine reference is possible only from a first-
person, subjective vantage point (“first-person” from the perspective of the ma-
chine); and (iii) that the computational theory of mind is true. If one were to
believe in the ineliminably first-person character of computational reference,
and that human reference is a species of computational reference, then con-
sistency would demand that such a theory be stated from a first-person point
of view—since, by hypothesis, no other way of presenting the theory would
refer.

10. Note that the situation is symmetric; reflexive inconsistencies can generate
both false negatives and false positives.

11. The computational theory of mind does not claim that minds and computers
are equivalent (in the sense that anything that is a mind is a computer, and vice
versa). Rather, the idea is that minds are (at least) a kind of computer, and further-
more that the kind is itself computationally characterized (i.e., that the character-
istic predicate on the restricted class of computers that are minds is itself framed
in computational terms).

12. Foundationalism is widely decried, these days—especially in social and criti-
cal discourses. Attempting a foundational reconstruction of the sort I am at-
tempting here may therefore be discredited, by some, in advance. As suggested
in Smith (1996), however, I do not believe that any of the arguments that have
been raised against foundationalism (particularly: against the valorization of a
small set of types or categories as holding an unquestioned and/or uniquely privi-
leged status) amounts to an argument against rigorously plumbing the depths of
an intellectual subject matter. In this chapter, my use of the term “foundational”
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should be taken as informal and, to an extent, lay (I am as committed as anyone
to the fallacies and even dangers of master narratives, ideological inscription,
and/or uniquely privileging any category or type).

13. Especially as the boundaries between computer science and surrounding in-
tellectual territory erode (itself a development predicted by this analysis; see sec-
tion 8), several ideas that originated in other fields are making their way into the
center of computational theorizing as alternative conceptions of computing. At
least three are important enough to be seen as construals in their own right
(though the first is not usually assumed to have any direct connection with com-
puting, and the latter two are not normally assumed to be quite as “low-level”
or foundational as the primary seven):

8. Dynamics (DYN): the notion of a dynamical system, linear or nonlinear,
as popularized in discussions of attractors, turbulence, criticality, emergence,
etc.;
9. Interactive agents (IA): active agents enmeshed in an embedding environ-
ment, interacting and communicating with other agents (and perhaps also with
people); and
10. Self-organizing or complex adaptive systems (CAS): a notion—often asso-
ciated with the Santa Fe Institute—of self-organizing systems that respond to
their environment by adjusting their organization or structure, so as to survive
and (perhaps even) prosper.

Additional construals may need to be added, over time. Moreover, there are
even those who deny that computation has any ontologically distinct identity.
Thus Agre (1997a), for example, claims that computation should instead be
methodologically individuated:

11. Physical implementation (PHY): a methodological hypothesis that compu-
tation is not ontologically distinct, but rather that computational practice is
human expertise in the physical or material implementation of (apparently arbi-
trary) systems.

14. See note 22.

15. At least some logicians and philosophers, in contrast, do read the effective
computability construal semantically. This difference is exactly the sort of ques-
tion that needs to be disentangled and explained in the full analysis.

16. This numbering system (C1–C9) is used only for purposes of this chapter;
it will not necessarily be used in AOS.

17. Although the term “intentional” is primarily philosophical, there are many
philosophers, to say nothing of some computer and cognitive scientists, who
would deny that computation is an intentional phenomenon. Reasons vary, but
the most common goes something like this: (i) that computation is both syntactic
and formal, where “formal” means “independent of semantics”; and (ii) that in-
tentionality has fundamentally to do with semantics; and therefore (iii) that com-
putation is thereby not intentional. I believe this is wrong, both empirically (that
computation is purely syntactic) and conceptually (that being syntactic is a way
of not being intentional); I also disagree that being intentional has only to do
with semantics, which the denial requires. See note 22.
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18. Thus computer science’s use of (the English words) “language,” “representa-
tion,” “data,” etc. is analogous to physics’ use of “work,” “force,” “energy,”
etc.—as opposed to its use of “charm.” That is, it reflects a commitment to do
scientific justice to the center of gravity of the word’s natural meaning, rather
than being mere whimsical fancy.

19. Physically, we and (at least contemporary) computers are not very much
alike—though it must be said that one of the appeals, to some people at least,
of the self-organizing or complex-adaptive-system construal (CAS) is its prospect
of providing a naturalistically palatable and nonintentional but nevertheless spe-
cific way of discriminating people-cum-computers (and perhaps higher animals)
from arbitrary physical devices.

20. In computer science, to take a salient example, the term “the semantics of
X,” where X is an expression or construct in a programming language, means
approximately the following: the topological (as opposed to geometrical) tempo-
ral profile of the behavior to which execution of this program fragment gives rise.
By “topological” I mean that the overall temporal order of events is dictated, but
that their absolute or metric time-structure (e.g., exactly how fast the program
runs) is not. As a result, a program can usually be sped up, either by adjusting
the code or running it on a faster processor, without, as is said, “changing the
semantics.”

21. Best known are Dretske’s semantic theory of information (1981), which has
more generally given rise to what is known as “indicator semantics”; Fodor’s
“asymmetrical-dependence” theory (1987); and Millikan’s “teleosemantics” or
“biosemantics” (1984, 1989). For comparison among these alternatives see, e.g.,
Fodor (1984) and Millikan (1990).

22. Because formal symbol manipulation is usually defined as “manipulation of
symbols independent of their interpretation,” some people believe that the formal
symbol manipulation construal of computation does not rest on a theory of se-
mantics. But that is simply an elementary, though apparently common, concep-
tual mistake. As discussed further in section 5, the “independence of semantics”
postulated as essential to the formal symbol construal is independence at the level
of the phenomenon; it is a claim about how symbol manipulation works. Or so
at least I believe, based on many years of investigating what practitioners are
actually committed to (whether it is true—i.e., holds of computation-in-the-
wild—is a separate issue). The intuition is simple enough: that semantic proper-
ties, such as referring to the Sphinx, or being true, are not of the right sort to do
effective work. So they cannot be the sort of property in virtue of the manifesta-
tion of which computers run. At issue in the present discussion, in contrast, is a
more logical form of independence, at the level of the theory (or, perhaps, to put
it more ontologically and less epistemically, independence at the level of the
types). Here the formal symbol manipulation construal is as dependent on seman-
tics as it is possible to be: it is defined in terms of it. And (as the parent of any
teenager knows) defining yourself in opposition to something is not ultimately a
successful way of achieving independence. Symbols must have a semantics, in
other words (have an actual interpretation, or be interpretable, or whatever), in
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order for there to be something substantive for their formal manipulation to pro-
ceed independently of. Without a semantic character to be kept crucially in the
wings, the formal symbol manipulation construal would collapse in vacuity—
would degenerate into something like “the manipulation of structure” or, as I
put it in AOS, “stuff manipulation”—i.e., materialism.

23. As suggested in the preceding note, philosophers are less likely than computer
scientists to expect a theory of computation to be, or to supply, a theory of inten-
tionality. That is, they would not expect the metatheoretic structure to be as
expected by most computer scientists and artificial intelligence researchers—
namely, to have a theory of intentionality rest on a theory of computation. But
that does not mean they would necessarily agree with the opposite, which I am
arguing here: that a theory of computation will have to rest on a theory of inten-
tionality. Many philosophers seem to think that a theory of computation can be
independent of a theory of intentionality. Clearly, I do not believe this is correct.

24. It can be tempting to think of the two readings as corresponding to inten-
sional and extensional readings of the phrase “independent of semantics”—but
that isn’t strictly correct. See AOS.

25. See AOS, volume 2.

26. Thus Devitt (1991) restricts the computational thesis to what he calls
“thought-thought” (t-t) transactions; for him output (t-o) and input (i-t) transac-
tions count as noncomputational.

27. See the preceding note.

28. This statement must be understood within the context of computer science,
cognitive science, and the philosophy of mind. It is telling that the term “trans-
ducer” is used completely differently in engineering and biology (its natural
home), to signify mechanisms that mediate changes in medium, not that cross
either the inside/outside or the symbol/referent boundary.

29. See AOS, volume 3.

30. See note 20.

31. The fact that it is not a theory of computing does not entail that it does not
apply to computers, of course. All it means is that, in that application, it is not
a theory of them as computers.

32. That the so-called theory of computation fails as a theory of computation
because it does not deal with computation’s intentionality is a result that should
be agreed even by someone (e.g., Searle) who believes that computation’s inten-
tionality is inherently derivative. I myself do not believe that computation’s inten-
tionality is inherently derivative, as it happens, but even those who think that it
is must admit that it is still an intentional phenomenon of some sort. For deriva-
tive does not mean fake or false. If “derivatively intentional” is not taken to be
a substantive constraint, then we are owed (e.g., by Searle) an account of what
does characterize computation.

33. At one stage I asked a large number of people what they thought “formal”
meant—not just computer scientists, but also mathematicians, physicists, sociolo-
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gists, etc. It was clear from the replies that the term has very different connota-
tions in different fields. Some mathematicians and logicians, for example, take it
to be pejorative, in contrast to the majority of theoretical computer scientists, for
whom it has an almost diametrically opposed positive connotation.

34. On its own, an eggplant cannot exactly be either formal or explicit, at least
not in its ordinary culinary role, since in that role it is not a representation at all.
In fact the only way to make sense of calling something nonrepresentational ex-
plicit is as short-hand for saying that it is explicitly represented (e.g., calling egg-
plant an explicit ingredient of moussaka as a way of saying that the recipe for
moussaka mentions eggplant explicitly).

35. Smith (in press).

36. A theory of organization is essentially applied metaphysics.

37. Social construction not as the label for a metaphysical stance, but in the literal
sense that we build them.



3
Narrow versus Wide Mechanism

B. Jack Copeland

Editor’s Note
Computationalism is grounded in the mechanistic ideas of Descartes, Hobbes,
La Mettrie, and others who proposed explanations of minds analogous to those of
the prototypical machines (e.g., mechanical clocks) of their time. In the twentieth
century, the mechanistic model of the mind became more focused and concen-
trated on a particular kind of conceptual machine, the Turing machine. This was
for various reasons, but mainly because of a famous thesis put forth by Church
and Turing to the effect that no human computer (strictly following rules and
using only scratch paper and pencil) can out-compute a Turing machine. The
“Church-Turing Thesis” eventually led some to believe that the mind is a machine
equivalent to a Turing machine, a view Copeland calls “narrow mechanism.”
This is in contrast to “wide mechanism,” the view that the mind is a machine,
but possibly a machine that cannot be mimicked by a (universal) Turing machine.
Having introduced this distinction, Copeland argues that mechanism per se does
not entail narrow mechanism. He also suggests—quoting from various original
texts—that Turing himself was not a narrow mechanist. Yet, Turing’s work and
views on mind have been widely misinterpreted, especially by researchers from
within cognitive science. For example, it is not uncommon to find the claim that
all functions generated by machines are Turing-machine-computable—called the
“Maximality Thesis”—attributed to Turing. Turing, however, did not endorse
such a view. He himself defined special machines, so-called oracle-machines that
can compute functions that no Turing machine can compute (e.g., the famous
“halting function”). Copeland shows that the conflation of evidence for the
“Church-Turing Thesis” with evidence for the Maximality Thesis, which he calls
the “equivalence fallacy,” is widespread in the literature. Furthermore, another
related fallacy, which he calls the “Church-Turing fallacy,” is common. It is com-
mitted by someone who believes that either some result directly established by
Church or Turing or the Church-Turing Thesis implies that if mechanism is true,
the functions generated by Turing machines provide sufficient mathematical re-
sources for a complete account of human cognition. In particular, many au-
thors seem to believe the following “Thesis S”: that any process that can be
given a mathematical description can be simulated by a Turing machine. From
Newell’s physical symbol system hypothesis, to Searle’s Chinese room, to Block’s
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homunculus-head argument, the possibility of wide mechanism (e.g., founded on
Turing’s oracle machines) seems to be neglected in favor of a narrow mechanist
view. As Copeland points out, the question “whether our cognitive architecture,
abstracted from resource constraints, is best understood as being a generator of
(one or more) Turing-machine-uncomputable functions” remains even if, given
the physical restrictions of its implementation, the mind could be simulated by
a Turing machine.

1 Historical Mechanism

When Descartes claims that the human body is a machine, he is proposing
a novel way of explaining or modeling the functioning of the body.
Among the functions that are to be explained in this new way he includes
the operation of the sense organs, some amount of internal processing of
the resulting sensory ideas, the “stamping of these ideas in the memory,”
and “the internal movements of the appetites and passions” (L’Homme:
108).1 “I should like you to consider that these functions follow from the
mere arrangement of the . . . organs every bit as naturally as the move-
ments of a clock or other automaton follow from the arrangement of its
counter-weights and wheels.”

Clocks and other mechanical artifacts—such as church organs, water
fountains, hydraulically powered statues, and clockwork models of living
creatures—were suggesting a new paradigm of explanation in human and
animal physiology, in which the functions and (nonvoluntary) move-
ments of the body are viewed as arising “just as [they] would be produced
in a machine” (Fourth Set of Replies: 161). Even the difference between
a living and a dead body is to be understood in terms of “the difference
between, on the one hand, a watch or other automaton . . . when it is
wound up . . . and, on the other hand, the same watch or machine when
it is broken and the principle of its movement ceases to be active” (Pas-
sions of the Soul: 329–330).

Hobbes’s mechanist philosophy amounts in its essentials to a material-
ist view of mind coupled with the view that the artifactual mode of expla-
nation—typified by the explanation of the working of a clock in terms
of the nature and arrangement of its internal parts—may usefully be
transferred to the study of naturally occurring systems, including our
bodies and our minds: “[W]hat is the Heart, but a Spring; and the Nerves,
but so many Strings; and the Joynts, but so many Wheeles, giving
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motion to the whole Body, such as was intended by the Artificer?”
(Leviathan: 1).

In 1748, La Mettrie (L’Homme machine; tr. in Thomson 1996) like-
wise propounded a thoroughgoing mechanism, insisting against Des-
cartes that human beings, and not just their bodies, are machines: “Let
us then conclude boldly that man is a machine and that there is in the
whole universe only one diversely modified substance” (Thomson 1996:
39). La Mettrie gleefully applied the artifactual mode of explanation to
both body and mind:

[T]he human body is a clock. . . . [T]he heart . . . is like the mainspring of the
machine. (ibid.: 34)

[S]ince all the soul’s faculties depend so much on the specific organisation of the
brain and of the whole body that they are clearly nothing but that very organisa-
tion, the machine is perfectly explained! . . . Some wheels, a few springs more
than in the most perfect animals, the brain proportionately closer to the heart
and thus receiving more blood. . . . (ibid.: 26)

The core of the claim, as put forward by the historical mechanists, that
such-and-such naturally occurring item is a machine is this: the item’s
operation can be accounted for in monistic, materialist terms and in a
manner analogous to that in which the operation of an artifact is ex-
plained in terms of the nature and arrangement of its parts.2 I shall refer to
the proposition that the mind is a machine in the core sense of “machine”
embraced by the historical mechanists as historical mechanism.3

2 Twentieth-Century Mechanism

Under the influence of work by Alan Turing and, to a lesser extent,
Alonzo Church, mechanism took something of a wrong turn in the twen-
tieth century, or, at any rate, was steered for no very good reason in one
particular direction to the exclusion of others. In 1936, Turing published
his account of what he (later) called “logical computing machines,”
which Church, in a review, dubbed “Turing machines.”4 A Turing ma-
chine consists of a potentially infinite paper tape on which is written a
finite number of discrete (e.g., binary) symbols and a scanner that moves
back and forth along the tape symbol by symbol reading what if finds
and writing further symbols. Turing proved that one particular Turing
machine, which he referred to as a “universal computing machine,” can
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be programmed to perform any task that any other Turing machine can
perform. Twelve years later, thanks to developments in high-speed auto-
matic switching, the universal computing machine became a reality.

The effect of Turing’s invention on mechanist thinking was marked.
The classic paper of J. R. Lucas (1961) affords an excellent window on
the state of affairs that existed twenty-five years after Turing’s invention.
Lucas wished to refute mechanism: “Mechanism is false, that is, . . . minds
cannot be explained as machines” (112). To do so, it was, he thought,
sufficient to argue that the powers of the mind exceed those of a universal
Turing machine, for “any system which [is] not a Turing machine [is]
not a machine within the meaning of the act” (126).5 (Strictly, of course,
Lucas should have said that any system that cannot be simulated, or ex-
actly mimicked, by a Turing machine is not a machine within the meaning
of the act, for this was surely his intention; but the practice of suppressing
the word “simulated” and its cognates in such a context as this is a com-
mon one, and will sometimes be followed here.) Within twenty-five years
of Turing’s invention, the idea that the mind is a Turing machine had
become central to the mechanist conception of mind, so much so that
one of mechanism’s foremost critics needed to take no cognizance of al-
ternative mechanist conceptions. Indeed, by the time Lucas was writing,
it had become endemic to mechanist thinking that there could be no alter-
native mechanist conception. The absence of any alternative mechanist
conception was, and still is, held to be entailed by a principle supported
by the logical discoveries of Turing and Church. A typical formulation
of this supposed principle is: the class of possible operations that can be
carried out by information-processing machinery is identical to the class
of operations that can be carried out by a universal Turing machine. Tu-
ring’s biographer, Hodges, gives expression to the common perception
of matters when he writes: “Alan had . . . discovered something almost
. . . miraculous, the idea of a universal machine that could take over the
work of any machine. . . . So there could be a single machine which, by
reading the descriptions of other machines placed upon its ‘tape,’ could
perform the equivalent of human mental activity” (1992: 109).

The view that the universal Turing machine is in some appropriate
sense maximal among machines is widespread in the philosophical, cogni-
tive, and biological literature. For example, the following version of the
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view is from a manifesto of the Artificial Life movement (Langton 1989:
12). “There are certain behaviors that are ‘uncomputable’—behaviors
for which no formal specification can be given for a machine that will
exhibit that behavior. The classic example of this sort of limitation is
Turing’s famous Halting Problem: can we give a formal specification for
a machine which, when provided with the description of any other [sic]
machine together with its initial state, will . . . determine whether or not
that machine will reach its halt state? Turing proved that no such machine
can be specified.” As we shall see, it is far from the case that Turing
proved any such thing.

Those who have equated machines “within the meaning of the act”
with Turing machines would no doubt resist any account of themselves
as revisionists who have replaced historical mechanism with a narrower
thesis of their own devising. They may claim that they have merely been
explicit about a point to which historical mechanism was always commit-
ted, unbeknownst to its sixteenth- and seventeenth-century supporters:
had La Mettrie, for example, known of the logical discoveries of Turing
and Church, he would have accepted that his mechanism entails that the
mind is a Turing machine. I shall argue that the view that modern Turing-
machine mechanism is simply a clarified version of historical mechanism
is in error. One can uphold historical mechanism and deny Turing-
machine mechanism without contradicting oneself. Let me coin the term
narrow mechanism for the view that the mind is (strictly, can be simulated
by) a Turing machine. A wide mechanist, on the other hand, holds that
the mind is a machine but countenances the possibility of information-
processing machines that cannot be mimicked by a universal Turing
machine, and allows in particular that the mind may be such a ma-
chine. Elsewhere, I term such machines hypercomputers (Copeland and
Proudfoot 1999). I shall argue that the widespread acceptance of narrow
mechanism among mechanists represents an unwarranted circumscrip-
tion of the mechanist tradition. The view that this circumscription is
somehow necessitated by the work of Church and Turing is a muddle.
Specifically, I shall be claiming that: (1) mechanism does not entail nar-
row mechanism; (2) Turing himself, a mechanist par excellence, was not
a narrow mechanist; (3) neither the Church-Turing Thesis, nor any other
formal or semiformal result of Church or Turing, favors narrow over
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wide mechanism; (4) typical arguments for narrow mechanism are viti-
ated by what I have called elsewhere the Church-Turing fallacy (Cope-
land 1998d).

Lately there have been encouraging signs that the grip of narrow mech-
anism is loosening. The newly emerging field known as UMC (unconven-
tional models of computation) explores computational approaches to
cognition that transgress the boundaries of narrow mechanism (see Ca-
lude, Casti, and Dinneen 1998).6 Also the recent Dynamical Hypothesis
in cognitive science (van Gelder 1995, 1998) is a wide mechanist hypothe-
sis. The new dynamicists distance themselves from the mainstream com-
putational approach by pointing out that the Dynamical Hypothesis
countenances dynamical (and, specifically, cognitive) systems whose be-
havior cannot—even in principle—be calculated by a Turing machine
(van Gelder 1998, section 6.3).

3 Computers and Computers

It has often been remarked that when Turing uses the word “computer”
in his early papers, he does not employ it in its modern sense. Many
passages make this obvious, for example the following: “Computers al-
ways spend just as long in writing numbers down and deciding what to
do next as they do in actual multiplications, and it is just the same with
ACE. . . . [T]he ACE will do the work of about 10,000 computers. . . .
Computers will still be employed on small calculations” (Turing 1947:
116, 120). (The ACE or Automatic Computing Engine was an electronic
stored-program computer designed by Turing and built at the National
Physical Laboratory, London. A pilot version first ran in 1950 and at the
time was the fastest computer in the world.) Turing introduces his “logi-
cal computing machines” with the intention of providing an idealized
description of a certain human activity, the tedious one of numerical com-
putation, which until the advent of automatic computing machines was
the occupation of many thousands of people in commerce, government,
and research establishments. These people were referred to as computers.
Turing prefaces his first description of a Turing machine with the words:
“We may compare a man in the process of computing a . . . number to
a machine” (1936: 231).
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The Turing machine is a model, idealized in certain respects, of a hu-
man computer. Wittgenstein put this point in a striking way: “Turing’s
‘Machines.’ These machines are humans who calculate” (Wittgenstein
1980, §1096). It is a point that Turing was to emphasize, in various
forms, again and again. For example: “A man provided with paper, pen-
cil, and rubber, and subject to strict discipline, is in effect a universal
machine” (Turing 1948: 9). The electronic stored-program digital com-
puters for which the universal Turing machine was a blueprint are, each
of them, computationally equivalent to a Turing machine with a finite
tape, and so they too are, in a sense, models of human beings engaged
in computation. Turing chose to emphasize this when explaining the new
electronic machines in a manner suitable for an audience of uninitiates:
“The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer” (1950a: 436). He makes the point a little more
precisely in the technical document containing his preliminary design for
the ACE: “The class of problems capable of solution by the machine can
be defined fairly specifically. They are [a subset of] those problems which
can be solved by human clerical labour, working to fixed rules, and with-
out understanding” (Turing 1945: 38–39). (Turing went on to character-
ize the subset in terms of the amount of paper and time available to the
human clerk.) It was presumably because he considered the point under
discussion to be essential for understanding the nature of the new elec-
tronic machines that he chose to begin his Programmers’ Handbook for
Manchester Electronic Computer with this explanation: “Electronic com-
puters are intended to carry out any definite rule of thumb process which
could have been done by a human operator working in a disciplined but
unintelligent manner” (Turing 1950b: 1).

It was not some deficiency of imagination that led Turing to model
his logical computing machines on what could be achieved by a human
computer. The purpose for which the Turing machine was invented de-
manded it. Turing introduced the Turing machine in the course of arguing
that the Entscheidungsproblem, or decision problem, for the predicate
calculus—posed by Hilbert (Hilbert and Ackermann 1928)—is unsolv-
able. Here is Church’s account of the Entscheidungsproblem: “By the
Entscheidungsproblem of a system of symbolic logic is here understood



66 B. Jack Copeland

the problem to find an effective method by which, given any expression
Q in the notation of the system, it can be determined whether or not Q
is provable in the system” (Church 1936a: 41).

“Effective” and its synonym “mechanical” are terms of art in mathe-
matical logic. A mathematical method is termed “effective” or “mechani-
cal” if and only if it can be set out in the form of a list of instructions
able to be followed by an obedient human clerk—the computer—who
works with paper and pencil, reliably but without insight or ingenuity,
for as long as necessary. The truth table test is such a method for the
propositional calculus. Turing showed by means of a two-stage argument
that there can be no such method in the case of the predicate calculus.
First, he proved formally that there is no Turing machine that can deter-
mine, in a finite number of steps, whether or not any given formula Q
of the predicate calculus is a theorem of the predicate calculus. Second, he
argued informally for the proposition that whenever there is an effective
method for performing a mathematical task, then the method can be car-
ried out by a Turing machine in some finite number of steps. These two
stages jointly secure the result that there is no effective method for de-
termining whether or not an arbitrary formula Q of the predicate calculus
is a theorem of the calculus.

Notice that this result does not entail that there can be no machine
for determining this (contrary to various writers). The Entscheidungs-
problem for the predicate calculus is the problem of finding a humanly
executable procedure of a certain sort, and the fact that there is none is
entirely consistent with the claim that some machine may nevertheless be
able to decide arbitrary formulae of the calculus; all that follows is that
such a machine, if it exists, cannot be mimicked by a human computer.
Turing’s (and Church’s) discovery was that there are limits to what a
human computer can achieve; for all that, their result is often portrayed
as a discovery concerning the limitations of mechanisms in general.

The proposition that any effective method can be carried out by a Tu-
ring machine is known variously as Turing’s Thesis and the Church-
Turing Thesis. Turing stated his thesis in numerous places, with varying
degrees of rigor. The following formulation is one of the most accessible:

LCMs [logical computing machines] can do anything that could be described as
“rule of thumb” or “purely mechanical.” (Turing 1948: 7)



Narrow versus Wide Mechanism 67

Turing adds “This is sufficiently well established that it is now agreed
amongst logicians that ‘calculable by means of an LCM’ is the correct
accurate rendering of such phrases” (ibid.).

Church proposed the (not quite) equivalent thesis that whenever there
is an effective method for calculating the values of a function on the posi-
tive integers, then the function is recursive (not quite equivalent because
Turing did not restrict attention to functions on the positive integers,
mentioning also “computable functions of a real or computable variable,
computable predicates, and so forth”) (Church 1936b: 356; Turing 1936:
230). The term “Church-Turing Thesis” seems to have been introduced
by Kleene (with a small flourish of bias in favor of his mentor Church):
“So Turing’s and Church’s theses are equivalent. We shall usually refer
to them both as Church’s thesis, or in connection with that one of its . . .
versions which deals with ‘Turing machines’ as the Church-Turing thesis”
(Kleene 1967: 232).

Essentially, then, the Church-Turing thesis says that no human com-
puter, or machine that mimics a human computer, can out-compute a
universal Turing machine. A further proposition, very different from
this—namely that a Turing machine can compute whatever can be com-
puted by any machine—is nowadays sometimes referred to as the
Church-Turing Thesis or as Church’s Thesis. For example, Smolensky
says: “connectionist models . . . may possibly even challenge the strong
construal of Church’s Thesis as the claim that the class of well-defined
computations is exhausted by those of Turing machines” (Smolensky
1988: 3). This loosening of established terminology is unfortunate, for
neither Church nor Turing endorsed, or even formulated, this further
proposition. There are numerous examples of this and other extended
usages in the literature. The following are typical.

That there exists a most general formulation of machine and that it leads to
a unique set of input-output functions has come to be called Church’s thesis.
(Newell 1980: 150)

Church-Turing thesis: If there is a well defined procedure for manipulating
symbols, then a Turing machine can be designed to do the procedure. (Henry
1993: 149)

[I]t is difficult to see how any language that could actually be run on a physical
computer could do more than Fortran can do. The idea that there is no such
language is called Church’s thesis. (Geroch and Hartle 1986: 539)
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A typical way of stating Church’s thesis is the following: In an ideal world the
limit of computation is exactly captured by Turing computability. (Hogarth
1994: 133)

More distant still from anything that Church or Turing actually wrote:

The first aspect that we examine of Church’s Thesis . . . [w]e can formulate, more
precisely: The behaviour of any discrete physical system evolving according to
local mechanical laws is recursive. (Odifreddi 1989: 107)

I can now state the physical version of the Church-Turing principle: Every finitely
realizable physical system can be perfectly simulated by [Turing’s] universal
model computing machine. . . . This formulation is both better defined and more
physical than Turing’s own way of expressing it. (Deutsch 1985: 99)

It is important to distinguish between Turing’s thesis and the stronger
proposition that whatever functions (in the mathematical sense of “func-
tion”) can be generated by machines can be generated by a universal Tu-
ring machine.7 (To say that a function f can be generated by a machine
m is simply to say that for each of the function’s arguments, x, if x is
presented to m as input, m will carry out some finite number of atomic
processing steps at the end of which it produces the corresponding value
of the function, f(x).) I shall call this stronger proposition the “Maxi-
mality Thesis” (“Thesis M”) and shall use expressions such as “the
Church-Turing Thesis properly so called” for the proposition that
Church and Turing themselves endorsed.8

Maximality Thesis: All functions that can be generated by machines
(working on finite input in accordance with a finite program of instruc-
tions) are Turing-machine-computable.

Thesis M itself admits of two interpretations, according to whether the
phrase “can be generated by a machine” is taken in the this-worldly sense
of “can be generated by a machine that conforms to the physical laws
(if not to the resource constraints) of the actual world,” or in a sense that
abstracts from whether or not the notional machine in question could
exist in the actual world. The former version of thesis M is an empirical
proposition whose truth-value is unknown. The latter version of thesis
M is known to be false. As I explain in the next section, there are notional
machines that generate functions that no Turing machine can generate.

As previously remarked, the word “mechanical,” in technical usage, is
tied to effectiveness, “mechanical” and “effective” being used inter-
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changeably. (Gandy 1988 has outlined the history of this usage of the
word “mechanical.”) Thus, statements like the following are to be found
in the technical literature:

Turing proposed that a certain class of abstract machines could perform any “me-
chanical” computing procedure. (Mendelson 1964: 229)

Understood correctly, this remark attributes to Turing not thesis M but
the Church-Turing Thesis properly so called. This usage of “mechanical”
tends to obscure the possibility that there may be machines, or biological
organs, that generate (or compute, in a broad sense) functions that cannot
be computed by Turing machine. For the question “Can a machine exe-
cute a procedure that is not mechanical?” may appear self-answering; yet
this is precisely what is asked if thesis M is questioned.9

In the technical literature, the word “computable” is sometimes tied
by definition to effectiveness: a function is said to be computable if and
only if there is an effective procedure for determining its values. The
Church-Turing thesis then becomes:

Every computable function can be computed by Turing machine.

Corollaries such as the following are sometimes offered:

certain functions are uncomputable in an absolute sense: uncomputable even by
[a Turing machine], and, therefore, uncomputable by any past, present, or future
real machine. (Boolos and Jeffrey 1980: 55)

Of course, the decision to tie the term “computable” and its cognates
to the concept of effectiveness does not settle the truth-value of thesis M;
rather, those who abide by this terminological decision are prevented
from describing any machine that falsifies thesis M as computing the func-
tion that it generates. Yet to a casual reader of the technical literature,
statements like the one just quoted may appear to say more than they in
fact do.

Putnam, himself at one time a narrow mechanist, is one of the few
writers on the philosophy of mind to question the maximality thesis:

materialists are committed to the view that a human being is—at least metaphori-
cally—a machine. It is understandable that the notion of a Turing machine might
be seen as just a way of making this materialist idea precise. Understandable, but
hardly well thought out. The problem is the following: a “machine” in the sense
of a physical system obeying the laws of Newtonian physics need not be a Turing
machine. (Putnam 1992: 4)
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4 Turing’s Other Machines

In his doctoral thesis (which was supervised by Church), Turing intro-
duced the idea of machines able to solve mathematical problems that
cannot be solved by the “logical computing machines” of his 1936 paper
(1939, sect. 4). He described these as “a new kind of machine” and called
them “O-machines” (1939: 173).

An O-machine is in essence an ordinary Turing machine augmented
with a black box that generates some function that cannot be generated
by a Turing machine.10 Turing refers to the black box as an “oracle”
(ibid.). As in the case of an ordinary Turing machine, the behavior of an
O-machine is determined by a table of instructions (or program). The
table provides an exhaustive specification of which fundamental pro-
cesses the machine is to perform when it is in such-and-such state and
has such-and-such symbol in its scanner. The tables of the two sorts of
machine differ only in the following respect: an O-machine table may
contain instructions of the form “TRANSFORM #*”. “#*” refers to
some particular string of symbols on the machine’s tape, the beginning
of the string being marked by the presence on the tape of a reserved
symbol “#” and the end of the string being marked by a reserved sym-
bol “*”. The instruction causes the portion of tape so marked to be pre-
sented to the black box. The symbols on this portion of tape constitute
a specification of an argument of whatever function it is that the box
generates (or of a series of n arguments in case the function is n-ary). The
box replaces the symbols with a specification of the corresponding value
of the function.

One way of conceptualizing an oracle—which need not reflect the
box’s actual manner of functioning—is as a device accessing an infinite
internal tape on which there have been inscribed, in order, all the infi-
nitely many arguments and values of whatever function it is that the ora-
cle generates. This device can produce any of the function’s values after
only a finite search along the tape.

The transform operation performed by the oracle is, in Turing’s
expression, one of the “fundamental processes” of the machine (1939:
173).11 He gave no indication of how this process might conceivably be
carried out, saying only that an oracle works by “unspecified means”
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and that “we shall not go any further into the nature of [an] oracle”
(ibid., pp. 172–173). In fact, notional machinery that discharges the
task of an O-machine’s black box is not hard to concoct. Suppose for
the sake of illustration that the function generated by the box is the
Halting function. The function is easily explained. Assume the Turing
machines to be ordered in some way, so that we may speak of the first
Turing machine in the ordering, the second, and so on (there are vari-
ous standard ways of accomplishing this ordering). The arguments of
the Halting function are simply 1, 2, 3, . . . . The value of the func-
tion for any argument n is 1 if and only if the nth Turing machine
eventually comes to the end of its computation and halts, and is 0 if
and only if the nth machine runs on forever (as would a Turing ma-
chine programmed to produce in succession the digits of the decimal
representation of π, for instance). No Turing machine can generate
the Halting function.

It is convenient to write “hn” to represent the value of the Halting
function for argument n. hn is always 0 or 1. Consider the following deci-
mal specification of a number: 0⋅h1h2h3 . . . ; I call this number “τ” (for
Turing).12 (The first few digits of τ might be 0⋅000000011 . . . ) Like π,
τ is a definite—irrational—number.13 The magnitude of some physical
quantity might conceivably be exactly τ units. Suppose that some mecha-
nism A does store exactly τ units of such a physical quantity, which for
the sake of vividness one might call “charge.” Suppose further that a
mechanism B can measure the quantity of “charge” stored in A to any
specified number of significant figures. A and B jointly discharge the task
of an oracle that generates the Halting function. B determines hn by mea-
suring A’s charge to an appropriate number of significant figures and
outputting the nth digit of the result.

An O-machine consisting of a Turing machine and the oracle just de-
scribed is a machine in the sense that its behavior is the product of the
nature and arrangements of its material parts. The core claim of historical
mechanism—namely, that the mind is wholly explicable within the re-
sources of some monistic, materialist theory in a manner analogous to
that in which the behavior of artifacts is accounted for in terms of the
organization and functions of their parts—is evidently consistent with
the hypothesis that the mind is an O-machine.
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5 Arguments That Narrow Mechanism Exhausts Mechanism

I have elsewhere coined the term Church-Turing fallacy for a persistent
error that is to be encountered in modern writing concerning mechanism
(1998d). This fallacy takes a number of distinct but closely related forms,
several of which are described below. Far from being confined to writers
of one particular philosophical stripe, the Church-Turing fallacy is to be
found in the work of thinkers of very different persuasions. I shall illus-
trate the widespread nature of the fallacy by considering arguments put
forward by a diverse field of modern thinkers (including Paul and Patricia
Churchland, Dennett, Dreyfus, Fodor, Newell, and Searle). It is impor-
tant that the fallacy be exposed and eradicated. Anyone in its grip will
think that narrow mechanism exhausts mechanism: to them, conceptual
space will seem to contain no room for mechanical models of the mind
that are not equivalent, in the appropriate sense, to one or another class
of Turing machines. Propagation of the fallacy by leading theoreticians
has assisted in blotting from view a potentially rich field of possible mod-
els of human cognition.

In essence, to commit the Church-Turing fallacy is to believe that the
Church-Turing thesis, or some formal or semiformal result established
by Turing or Church, secures the proposition that, if mechanism is true,
the functions generated by Turing machines provide sufficient mathemati-
cal resources for a complete account of human cognition. One form of the
fallacy concerns specifically the notion of a Turing machine simulating, or
mimicking, the human cognitive apparatus.14 Someone commits this form
of the fallacy (the simulation fallacy) by believing that the Church-Turing
Thesis—or, again, some formal or semiformal result established by Tu-
ring or Church—entails that, if mechanism is true, then a universal Tu-
ring machine can simulate the mind. The equivalence fallacy involves
mistaking the strong evidence for the Church-Turing Thesis properly so
called for evidence supporting thesis M, and so passing from various
logico-mathematical considerations to the view that narrow mechanism
exhausts mechanism.

The Church-Turing fallacy has led to some remarkable claims in the
foundations of psychology. For example, one frequently encounters the
view that psychology must be capable of being expressed in computa-
tional terms, and so ultimately in terms of the computational properties
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of Turing machines. Yet it is certainly possible that psychology will find
need to employ mathematical functions that cannot be generated by Tu-
ring machine.

Fodor writes:

Although the elementary operations of the Turing machine are restricted, itera-
tions of the operations enable the machine to carry out any well-defined computa-
tion on discrete symbols. . . . If a mental process can be functionally defined as
an operation on symbols, there is a Turing machine capable of carrying out the
computation . . . The “black boxes” that are common in flow charts drawn by
psychologists often serve to indicate postulated mental processes for which Turing
reductions are wanting. Even so, the possibility in principle of such reductions
serves as a methodological constraint on psychological theorizing by determining
what functional definitions are to be allowed. (1981: 130; see also 1983: 38–39)

The claim made in the second sentence of this quotation is false.15 Each
O-machine carries out some well-defined operation on discrete symbols.
As in the case of an ordinary Turing machine, an O-machine generates
discrete symbolic output from discrete symbolic input, possibly via inter-
mediate structures of discrete symbols, by means of the step-by-step pro-
cedure specified in its machine table. Fodor’s overarching view that
mental processes consist of operations on discrete symbols does not entail
the narrow mechanist view of psychology which he advocates.

The Churchlands hold that Turing’s “results entail something remark-
able, namely that a standard digital computer, given only the right
program, a large enough memory and sufficient time, can compute any
rule-governed input-output function. That is, it can display any system-
atic pattern of responses to the environment whatsoever” (Churchland
and Churchland 1990: 26). If this were true then the view that psychology
must be capable of being expressed in standard computational terms
would be secure. But Turing had no result entailing this. What he did
have was a result entailing the exact opposite. The theorem that no
Turing machine can generate the Halting function entails that there are
possible patterns of responses to the environment, perfectly systematic
patterns, which no Turing machine can display. The Halting function is
a mathematical characterization of just such a pattern.

Searle argues for a narrow mechanist account of mind directly from
Church’s thesis:

Can the operations of the brain be simulated on a digital computer? . . . [G]iven
Church’s Thesis that anything that can be given a precise enough characterization
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as a set of steps can be simulated on a digital computer, it follows trivially that
the question has an affirmative answer. (1992: 200)

If the question [“Is consciousness computable?”] asks “Is there some level of de-
scription at which conscious processes and their correlated brain processes can
be simulated [by a Turing machine]?” the answer is trivially yes. Anything that
can be described as a precise series of steps can be simulated [by a Turing ma-
chine]. (1997: 87)

Of course, Church’s Thesis properly so called does not say that anything
that can be described as a precise series of steps can be simulated by
Turing machine. The behavior of an O-machine as it follows the instruc-
tions in its table can certainly be characterized as consisting of a set of
steps, each step consisting of the execution of one of the machine’s funda-
mental processes; yet if the brain is an O-machine, it is false that its opera-
tions can (in their entirety) be simulated by Turing machine.

As I have already said, the error that Searle commits here—of holding
that Church’s and Turing’s results somehow entail that the brain can be
simulated by a Turing machine—is a common one. The entry on Turing
in Guttenplan’s A Companion to the Philosophy of Mind contains the
following claims: “we can depend on there being a Turing machine that
captures the functional relations of the brain,” for so long as “these rela-
tions between input and output are functionally well-behaved enough to
be describable by . . . mathematical relationships . . . we know that some
specific version of a Turing machine will be able to mimic them” (Gut-
tenplan 1994: 595). Even Dreyfus, in the course of criticizing the view
that “man is a Turing machine,” succumbs to the belief that it is a “funda-
mental truth that every form of ‘information processing’ (even those
which in practice can only be carried out on an ‘analogue computer’)
must in principle be simulable on a [Turing machine]” (1992: 195). Simi-
larly, Johnson-Laird and the Churchlands argue:

If you assume that [consciousness] is scientifically explicable . . . [and] [g]ranted
that the [Church-Turing] thesis is correct, then the final dichotomy rests on
Craik’s functionalism. If you believe [functionalism] to be false . . . then presum-
ably you hold that consciousness could be modelled in a computer program in the
same way that, say, the weather can be modelled. . . . If you accept functionalism,
however, then you should believe that consciousness is a computational process.
(Johnson-Laird 1987: 252)

Church’s Thesis says that whatever is computable is Turing computable. Assum-
ing, with some safety, that what the mind-brain does is computable, then it can
in principle be simulated by a computer. (Churchland and Churchland 1983: 6)
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As previously mentioned, Churchland and Churchland believe, errone-
ously, that Turing’s “results entail . . . that a standard digital computer
. . . can . . . display any systematic pattern of responses to the environment
whatsoever” (1990: 26). This no doubt explains why they think they can
assume “with some safety” that what the mind-brain does is computable,
for on their understanding of matters this is to assume only that the mind-
brain is characterized by a “rule-governed” (ibid.) input/output function.

Each of the authors quoted appears to be assuming the truth of a close
cousin of thesis M, which I shall call

Thesis S: Any process that can be given a mathematical description (or
a “precise enough characterization as a set of steps,” or that is scien-
tifically describable or scientifically explicable) can be simulated by a
Turing machine.

As with thesis M, neither the Church-Turing Thesis properly so called
nor any result of Turing or Church entails thesis S. This is so even when
thesis S is taken as concerning only processes that conform to the physics
of the real world. Taken in a broader sense that abstracts from the issue
of whether or not the processes in question could exist in the actual
world, thesis S is known to make a false claim (the processing carried
out by an O-machine suffices as a counterexample to it). The view that
the mind is scientifically explicable in no way entails narrow mechanism.
For all we currently know, a completed neuroscience may present the
mind-brain as a machine that generates functions that no Turing machine
can generate.

Paramount among the evidence for the Church-Turing Thesis properly
so called is the fact that all attempts to give an exact analysis of the intu-
itive notion of an effective mathematical method have turned out to be
equivalent in extension. Because of the prima facie diversity of the various
analyses, their equivalence is generally considered extremely strong evi-
dence for the Church-Turing Thesis properly so called (see, for example,
Kleene 1952, chs. 12, 13). (Apart from Turing’s analysis, and Church’s
analyses in terms of lambda-definability and recursiveness [Church
1936b], there are analyses in terms of register machines [Shepherdson and
Sturgis 1963], Post’s canonical and normal systems [Post 1943, 1946],
combinatory definability [Schönfinkel 1924; Curry 1929, 1930, 1932],
Markov algorithms [Markov 1960], and Gödel’s notion of reckonability
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[Gödel 1936; Kleene 1952].) In the narrow mechanist literature, the
equivalence of these diverse analyses is commonly taken to be evidence
for thesis M. This is nothing more than a confusion—the equivalence
fallacy. The analyses under discussion are of the notion of an effective
method, not of the notion of a machine-generable function; the equiva-
lence of the analyses bears only on the issue of the extent of the former
notion and indicates nothing concerning the extent of the latter.

Newell and Simon (1976) encapsulate a narrow mechanist view of
mind in their famous physical symbol system hypothesis:

A physical symbol system has the necessary and sufficient means for general intel-
ligent action. . . . [A]ny physical symbol system of sufficient size can be organized
further to exhibit general intelligence. (116)

By the phrases “general intelligent action” and “general intelligence”
Newell and Simon “wish to indicate the same scope of intelligence as we
see in human action” (ibid.). A physical symbol system is a universal
Turing machine, or any equivalent system, situated in the physical (as
opposed to the conceptual) world. (The tape of the machine is accordingly
finite; Newell specifies that the storage capacity of the tape, or equivalent,
be unlimited in the practical sense of finite yet not small enough to “force
concern” [Newell 1980: 161; see also Turing 1948: 15].) The physical
symbol system hypothesis is the foundation stone of the particular brand
of narrow mechanism that has been the dominant research paradigm in
cognitive science since mid–twentieth century.

Newell thinks it is easily established that a physical symbol system can
be organized to exhibit general intelligence: “A [physical symbol] system
always contains the potential for being any other system if so instructed.
Thus, a [physical symbol] system can become a generally intelligent sys-
tem” (1980: 170).

Is the premise true? A physical symbol system, being a universal Turing
machine situated in the real world, can, if suitably instructed, simulate
(or, metaphorically, become) any other physical symbol system (modulo
some fine print concerning storage capacity). If this is what the premise
means, then it is true; but if taken literally, the premise is false, for systems
can be specified which no physical symbol system can simulate (for exam-
ple, an O-machine). If the premise is interpreted in the former manner,
however, the argument is simply a non sequitur. Only to one who be-
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lieves, as Newell does, that “the notion of machine or determinate physi-
cal mechanism” is “formalized” by the notion of a Turing machine (1980:
170) will the argument appear deductively valid. His defense of his view
that the universal Turing machine exhausts the possibilities of mechanism
involves an example of the equivalence fallacy:

[An] important chapter in the theory of computing . . . has shown that all attempts
to . . . formulate . . . general notions of mechanism . . . lead to classes of machines
that are equivalent in that they encompass in toto exactly the same set of input-
output functions. In effect, there is a single large frog pond of functions no matter
what species of frogs (types of machines) is used. . . . A large zoo of different
formulations of maximal classes of machines is known by now—Turing ma-
chines, recursive functions, Post canonical systems, Markov algorithms. . . .
(1980: 150)

Dennett (1978: 83) has fielded the following argument from “Church’s
Thesis,” which he states in the form “anything computable is Turing-
machine computable”:

[A] non-question-begging psychology will be a psychology that makes no ultimate
appeals to unexplained intelligence, and that condition can be reformulated as
the condition that whatever functional parts a psychology breaks its subjects into,
the smallest, or most fundamental, or least sophisticated parts must not be sup-
posed to perform tasks or follow procedures requiring intelligence. That condi-
tion in turn is surely strong enough to ensure that any procedure admissible as
an “ultimate” procedure in a psychological theory falls well within the intuitive
boundaries of the “computable” or “effective” as these terms are . . . used in
Church’s Thesis. . . . [A]ny psychology that stipulated atomic tasks that were
“too difficult” to fall under Church’s Thesis would be a theory with undischarged
homunculi.

The conclusion Dennett draws from the argument is that “the supposition
that there might be a non-question-begging non-mechanistic psychology
gets you nothing” (ibid.: 83, and see also 112); and, clearly, if the argu-
ment worked, it would also show that there cannot be a non-question-
begging mechanistic psychology postulating atomic processes that are not
Turing-machine computable. The transform operation discussed in sec-
tion 4 serves to highlight the error in the argument: this operation is an
example of an atomic task “too difficult to fall under Church’s thesis,”
yet the account of its implementation in terms of mechanisms A and B
is entirely mechanical and makes no “appeal to unexplained intelligence.”
At bottom, what has led Dennett astray is his belief that Church’s thesis
tells us that every “task for which there is a clear recipe composed of
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simple steps can be performed by a very simple computer, a universal
Turing machine, the universal recipe-follower” (ibid.: xviii).

It is worth remarking that a number of well-known arguments against
computational functionalism cannot be brought to bear when it is wide
rather than narrow mechanism that informs the functionalist’s account.
Examples are Searle’s Chinese room argument (discussed in Copeland
1998d) and Block’s homunculus-head argument. Block too eagerly offers
the latter as an embarrassment “for all versions of functionalism” (1978:
277). His brain-of-slaves scenario is well known: a billion Chinese clerks
working effectively are brought into functional equivalence with your
mind, each clerk implementing a single line “of an adequate machine
table that describes you” (1978: 278). Here Block tacitly assumes narrow
mechanism. His argument is powerless against the richer functionalism
countenanced by wide mechanists, which allows that the machine table
describing your mind may be of such a nature that—like the table of an
O-machine—it cannot be implemented by human clerks working effec-
tively (see section 3).

6 Some Potentially Misleading Features of Turing’s Presentation

Turing more than anyone else is to be thanked for uniting historical mech-
anism with modern mathematics. He enriched mechanism with an ab-
stract theory of (information-processing) machines, presenting us with an
indefinitely ascending hierarchy of possible machines, of which the Tu-
ring machines form the lowest level. His work posed a new question: If
the mind is a machine, where in the hierarchy does it lie? Yet Turing has
been widely misinterpreted. He is popularly believed to have proven some
limitative result concerning the extent of the class of possible machines;
and, as we have seen, expressions of the view that mechanism entails
narrow mechanism are generally accompanied by a nod toward Turing
(or Church).

Precisely how these misunderstandings of Turing’s work arose is a mat-
ter of little consequence. Part of the explanation, perhaps, is the presence
of various minor features of Turing’s mode of presentation that can easily
mislead. One of these has already been mentioned: in Turing’s early pa-
pers the words “computer,” “computable,” and “computation” are em-
ployed not in their modern sense as pertaining to machines but as
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pertaining to human calculators. So, for example, when Turing maintains
that every number or function “which would naturally be regarded as
computable” (1936: 249) can be generated by a Turing machine, he is
advancing only the Church-Turing Thesis properly so called, and not a
version of thesis M. Similarly, Turing’s use of the phrase “universal com-
puting machine” implies nothing more than that the machine so denoted
can carry out the work of any human computer.

When Turing uses the word “machine,” he often means not machine-
in-general but logical computing machine or, simply, effective method.
At one point, he explicitly draws attention to this usage: “The expression
‘machine process’ of course means one which could be carried out by the
type of machine I was considering [in Turing 1936]” (Turing 1947: 107).
Thus when, a few pages later, he asserts that “machine processes and
rule of thumb processes are synonymous” (112), he is to be understood
not as advocating narrow mechanism but as advancing the Church-
Turing Thesis properly so called (and its converse). Likewise, when he
says that an oracle “cannot be a machine,” he probably means only that
an oracle cannot be a Turing machine (as he himself had proved); he
remarks in the very next sentence that an O-machine is “a new kind of
machine” (1939: 173). Especially liable to mislead are statements like the
following, which a casual reader might easily mistake for the claim that
the universal Turing machine provides a “general notion of mechanism”
(Newell’s phrase):

The importance of the universal machine is clear. We do not need to have an
infinity of different machines doing different jobs. A single one will suffice. The
engineering problem of producing various machines for various jobs is replaced
by the office work of “programming” the universal machine to do these jobs.
(Turing 1948: 7)

In context, it is clear that these remarks of Turing’s concern machines
equivalent to logical computing machines.

Turing introduces the term “discrete-state machine” for those ma-
chines whose possible states (configurations) form a discrete set: these
machines “move by sudden jumps or clicks from one quite definite state
to another” (1950a: 439; 1948: 5). (Each Turing machine is a discrete-
state machine, of course.) He opposes the discrete-state machines to “con-
tinuous machinery,” the states of which “form a continuous manifold,
and the behavior of the machine is described by a curve on this manifold”
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(1948: 5).16 It is sometimes said that any discrete-state machine can be
simulated by a universal Turing machine.17 Turing himself may appear
to be endorsing this claim (which is a restricted form of thesis M). He
says: a “digital computer could mimic the behaviour of any discrete-state
machine” (1950a: 441). The surrounding discussion (440–441) makes it
clear that he intends this statement to apply only in the case of those
discrete-state machines that have “a finite number of possible states”
(that is, a finite number of possible configurations) (440). He points out
that when this condition is satisfied, the behavior of the machine can be
described exhaustively by a finite table of the sort nowadays commonly
called a “look-up” table (440); it is on the basis of being “[g]iven the
table corresponding to a discrete-state machine” that a digital computer
could mimic the latter (441).18

An example of a discrete-state machine whose behavior cannot be
calculated by a universal Turing machine is a digital computer with
an infinite-capacity store and what Turing calls “a random element”
(1950a: 438–439). He refers to computing machines with a random ele-
ment as “partially random machines” (1948: 9).

7 Turing’s View: The Mind as Partially Random Machine

A device that outputs a genuinely random and unboundedly long se-
quence of integers is a form of oracle (section 4). As suggested previously,
the device may be conceptualized as one accessing a tape on which an
infinite random sequence of integers has been inscribed.19 Turing explains
that a discrete-state machine to which such a device is attached may be
set up so as to choose between two paths of action by calling to the device
for a number and following one path if, say, the number is even and the
other if it is odd (1948: 9). Except in the case where the number of possi-
ble configurations of the machine is finite, a partially random discrete-
state machine cannot be simulated by a Turing machine, for as Church
pointed out in 1939, if a sequence of integers a1, a2, . . . , an, . . . is random,
then there is no function f(n) � an that is calculable by a Turing machine
(Church 1940: 134–135).

Turing often mentions this idea of partial randomness. For example,
in a paper on machine intelligence he wrote: “[O]ne feature that I would
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like to suggest should be incorporated in the machines . . . is a ‘random
element’. . . . This would result in the behaviour of the machine not being
by any means completely determined by the experiences to which it was
subjected” (Turing 1951a).20 Much interested in the issue of freewill, Tu-
ring seems to have believed that the mind is a partially random machine.
We have the word of one of Turing’s closest associates, Max Newman,
that Turing “had a deep-seated conviction that the real brain has a ‘rou-
lette wheel’ somewhere in it.”21 So far as is known, Turing’s only surviv-
ing discussion of these matters occurs in the typescript of a lecture that
he gave in 1951 on BBC radio, entitled “Can Digital Computers Think?”
(previously unpublished, the text is now available in my 1998a).22 In the
course of his discussion, Turing considers the claim that if “some particu-
lar machine can be described as a brain we have only to programme our
digital computer to imitate it and it will also be a brain.” He remarks
that this “can quite reasonably be challenged,” pointing out that there
is a difficulty if the behavior of the machine is not “predictable by calcula-
tion,” and he draws attention to Eddington’s view that “no such predic-
tion is even theoretically possible” on account of “the indeterminacy
principle in quantum mechanics.”

Turing’s overarching aim in the lecture is to answer the question posed
by his title, and his strategy is to argue for the proposition that “[i]f any
machine can appropriately be described as a brain, then any digital com-
puter can be so described.” This proposition is consistent, he explains,
with the possibility that the brain is the seat of free will:

To behave like a brain seems to involve free will, but the behaviour of a digital
computer, when it has been programmed, is completely determined. . . . [I]t is
certain that a machine which is to imitate a brain must appear to behave as if it
had free will, and it may well be asked how this is to be achieved. One possibility
is to make its behaviour depend on something like a roulette wheel or a supply
of radium. . . . It is, however, not really even necessary to do this. It is not difficult
to design machines whose behaviour appears quite random to anyone who does
not know the details of their construction. (Turing 1951b: 464)

He calls machines of the latter sort “apparently partially random”
(1948: 9); an example is a Turing machine in which “the digits of the
number τ [are] used to determine the choices” (ibid.).23 Apparently par-
tially random machines imitate partially random machines. If the brain
is a partially random machine, an appropriately programmed digital
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computer may nevertheless give a convincing imitation of a brain. The
appearance that this deterministic machine gives of possessing free will
is “mere sham”; but free will aside, it is “not altogether unreasonable”
to describe a machine that “imitate[s] a brain” as itself being a brain. (As
is well known, Turing advocates imitation as the basis of a test that
“[y]ou might call . . . a test to see whether the machine thinks” [Turing
et al. 1952: 466].)

In the course of the past four decades there have been a number of
detailed suggestions for notional machines that, although completely de-
terministic, generate functions that cannot be generated by a universal
Turing machine (Copeland and Sylvan 1999 is a survey; see also the refer-
ences in my 1998d). These suggestions are of considerable interest to wide
mechanists. They abundantly falsify the more expansive version of thesis
M which abstracts from the issue of existence in the actual world. It re-
mains an open empirical question whether or not the this-worldly version
of thesis M is likewise false, and in particular whether the thesis is falsified
by any deterministic mechanism. It is uncertain what Turing himself
might have thought about this latter issue; if he ever discussed it, nothing
appears to have survived.24

The proposition so important to Turing, that “[i]f any machine can
appropriately be described as a brain, then any digital computer can be so
described,” is consistent with the view that the brain is computationally
equivalent to, say, an O-machine whose oracle produces the values of
the Halting function. For the foregoing argument of Turing’s can readily
be modified to cover this case: an appropriately programmed Turing ma-
chine will appear to an observer “who does not know the details of [its]
construction” to behave in a perfectly brainlike fashion, and a machine
that successfully imitates a brain can reasonably be said to be a brain.
As Turing remarks elsewhere, the Turing machine will produce “an occa-
sional wrong result,” but this will hardly mark out the Turing machine
from the brain (1947: 124).

Finally, what of the point that the behavior of any discrete-state ma-
chine with only a finite number of possible configurations can be simu-
lated by a universal Turing machine? Does this undermine wide
mechanism or provide a reason for saying that the historical mechanism
of Descartes, Hobbes, La Mettrie et al. carried an implicit commitment
to narrow mechanism? Not at all. For one thing, the mind may be some
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form of continuous machine not simulable by Turing machine. But let
us suppose for argument’s sake that the mind is a discrete-state machine,
and that, being situated in a world of bounded resources (time, energy,
memory, and so on), the number of possible configurations that this ma-
chine can adopt is finite. In this case, each mind is simulable by a Turing
machine equipped with a suitable look-up table, even if the table can
be constructed only post hoc; but this provides no support for narrow
mechanism. The crucial issue here is whether our cognitive architecture,
abstracted from resource constraints, is best understood as being a gener-
ator of (one or more) Turing-machine-uncomputable functions, and the
fact that the mind is simulable by Turing machine when certain resource
constraints are operative says nothing either way. The wide mechanist
stands firm on the claims that the empirical issue of how best to model
the central mechanisms underlying cognitive performance is still pretty
much completely open, and that there are no compelling reasons to be-
lieve that the model ultimately adopted will be selected from the narrow
mechanist’s artificially constrained space of models.
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Notes

1. Page references in this paragraph are to the appropriate volume of Cotting-
ham, Stoothoff, and Murdoch (1984–1985).

2. Other distinctive but secondary claims were endorsed by various mechanists;
often such claims were emphasized more by one thinker than by others, and in
any case apply more to physical explanation than to physiological or psycho-
physiological explanation. These include the following (see McGuire 1972: 523):
(1) Occult qualities are to be banished from explanations, which must be based
on sensory experience in terms of clear and distinct ideas. (2) All natural phenom-
ena arise from matter in motion, or matter and motion. (3) Compound bodies
are composed of vortices (Descartes), centers of force (Leibniz), or microscopic
corpuscles. (4) Metaphysical principles are to be integrated with experiment.
(5) Nature is governed by immutable geometrical laws. (6) Regularities are to be
expressed and explained in a mathematical manner. (7) Nature is to be conceived
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dynamically in terms of motion, rather than statically in terms solely of size and
shape. (8) An important feature of Cartesian mechanism was that matter be inert,
in the sense that every change in the matter’s motion is accounted for in terms
of contact action. (In emphasizing the inertness, in this sense, of matter Descartes
stood against “renaissance naturalism,” i.e., the view that the material world is
an essentially active realm [Gaukroger 1995: 146–152].)

3. Bechtel and Richardson speak aptly of the mechanist’s twin heuristic strategies
of decomposition and localization (1993: 23). The former heuristic seeks to de-
compose the activity of the system whose functioning is to be explained into a
number of subordinate activities; the latter attributes these subordinate activities
to specific components of the system.

4. Turing (1936, 1948: 5–6); Church (1937).

5. Lucas says in a recent retrospect of his argument: “ ‘Minds, Machines and
Gödel’ . . . was intended to show that minds were not Turing machines. . . .
Having once got the hang of the Gödelian argument, the mind can adapt it appro-
priately to meet each and every variant claim that the mind is essentially some
form of Turing machine” (1996: 103, 105).

6. See also Copeland (1998b,c; 1997; 1996; 1994; 1993, sections 5.5, 10.8).

7. Gandy (1980: 123–126) is one of the few writers to draw such a distinction.

8. Gandy (1980) uses the label “thesis M,” but not the term “maximality thesis”
(and his thesis M differs in certain respects from the maximality thesis).

9. Dennett (1995) appears simply to conflate the proposition that evolution is a
“mindless, mechanical process” with the proposition that “evolution is an algo-
rithmic process” (60, 75–76; see also 48–60 passim). (As is customary, he expli-
cates the notion of an algorithm in terms of Turing machine activity: “Consider
the set of all Turing machines—in other words, the set of all possible algorithms”
[437].) This conflation appears to underlie his view that “algorithmic processes
. . . have created the entire biosphere, ourselves included” (427).

10. A fuller account of O-machines may be found in my (1998a). For ease of
exposition, the present account departs from Turing’s own in various matters of
detail.

11. In Turing’s original exposition, these new fundamental processes produce
the values only of Π0

2 functions. In the subsequent technical literature, the notion
of an O-machine has been widened to include fundamental processes that produce
values of any function on the integers that is not Turing-machine-computable.
I employ this extended notion here.

12. Chaitin has defined a number Ω that is analogous to, but not the same as τ.
See, for example, his 1988.

13. Pace the intuitionists. Turing assumes a classical framework.

14. I take the claim that some entity e can be simulated by a Turing machine to
mean that some Turing machine can pair any given descriptions of the stimuli
impinging on e with either exact descriptions of e’s consequent behavior or de-
scriptions that are accurate to any prespecified number of significant figures.
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15. As is Dreyfus’s similar claim that “any process which can be formalised so
that it can be represented as a series of instructions for the manipulation of dis-
crete elements can, at least in principle, be reproduced by [a universal Turing
machine]” (1992: 72).

16. Turing concludes on the basis of neurophysiological evidence that the mind,
if mechanical, is “not . . . a discrete-state machine” but a continuous machine
(1950a: 451, 455). He sees no theoretical significance in this, however: “brains
very nearly fall into this class [discrete-state machines], and there seems every
reason to believe that they could have been made to fall genuinely into it, without
any change in their essential properties” (1948: 6).

17. Hodges, for example, asserts this, attributing the view to Turing (1992: xvii;
1997: 34–36, 39).

18. Hodges (1997: 34) quotes extensively from the relevant pages of Turing
(1950a) but fails to include the crucial words “discrete state machines . . . can
be described by such tables provided they have only a finite number of possible
states” (1950a: 440; my italics).

19. The arguments of the function generated by such an oracle are first call, sec-
ond call, third call, . . . (or simply 1, 2, 3 . . . ) and the first value of the function
is the number that the oracle produces in response to the first call, and so on.

20. The date of writing of this paper is not known with certainty. It was pre-
sented on a radio discussion program called The ’51 Society. Named after the
year in which the program first went to air, The ’51 Society was produced by the
BBC Home Service at their Manchester Studio and ran for several years. (I am
indebted to Peter Hilton for information.)

21. Newman in interview with Christopher Evans (“The Pioneers of Computing:
an Oral History of Computing,” Science Museum: London). Newman played an
important part in Turing’s intellectual life over many years. It was Newman who,
in a lecture in Cambridge in 1935, introduced Turing to the concept that led
directly to the Turing machine: Newman defined a constructive process as one
that a machine can carry out. (ibid.) During the war, Newman and Turing both
worked at the Government Code and Cypher School, Bletchley Park, where the
two cooperated closely. It was Newman who initiated the electronic decryption
project that culminated in the construction of Colossus, the first large-scale elec-
tronic digital computing machine (designed by the engineer T. H. Flowers). At
the end of the war, Newman established the Royal Society Computing Machine
Laboratory at the University of Manchester, where he introduced the engineers
F. C. Williams and T. Kilburn to Turing’s idea of a universal computing machine,
and under Newman’s guidance Williams and Kilburn built the first stored-
program electronic digital computer (Copeland 1998a). In 1948, Newman ap-
pointed Turing Deputy Director of the Computing Machine Laboratory (there
being no Director), and Turing remained at Manchester until his death in 1954.

22. In an early essay entitled “Nature of Spirit,” possibly dating from Turing’s
undergraduate days, he wrote: “the theory which held that as eclipses etc. are
predestined so were all our actions breaks down . . . We have a will which is able
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to determine the action of the atoms probably in a small portion of the brain,
or possibly all over it.”

23. Turing devised a program that caused the Manchester computer to behave
in an apparently partially random manner. When given a number the program
would respond with another. Turing said “I would defy anyone to learn from
these replies sufficient about the programme to be able to predict any replies to
untried values” (1950a: 453).

24. Turing does endorse the thesis that results when the words “any machine”
in the statement of thesis M are replaced with “any calculating machine,” saying
“[a] digital computer is a universal machine in the sense that it can be made to
replace . . . any rival design of calculating machine” (1951b: 462). If he were
pressed to make it clear exactly what is meant by “calculating machine,” he would
perhaps offer paradigm examples, as in his earlier (1948: 5–6): the Brunsviga
and the NCR (popular desk calculating machines), the ENIAC (the electronic
numerical integrator and computer), and so on. Or perhaps he would say, with
greater generality, that a calculating machine is any machine that apes a human
mathematician working with pencil and paper in accordance with a “rule of
thumb” procedure (1948: 7). As previously remarked, it was in that manner that
he explained the idea of an electronic computing machine in the opening para-
graph of his Programmers’ Handbook.
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The Irrelevance of Turing Machines to
Artificial Intelligence

Aaron Sloman

Editor’s Note
Many computationalists (and their opponents) take it for granted that the notion
of computation involved in computationalism is that of Turing-machine comput-
ability (or any of its extensionally equivalent formulations), without paying atten-
tion to the fact that there are significant differences between Turing machines
and computers as used in cognitive science and AI research. Yet, according to
Sloman, these differences make computers useful and Turing machines irrelevant
to AI (and eventually computationalism). Sloman shows that computers, as built
and used in AI research, are the result of a convergence of two historical develop-
ments: that of machines for automating various physical processes and that of
machines for performing numerical calculations (i.e., performing abstract opera-
tions on abstract entities). It was the idea (involved in the latter kind of machine)
of controlling abstract entities and processes that made a crucial step toward the
development of computers as we know them today. Another important develop-
ment was the use of machines with modifiable control functions that could be
easily “programmed” to do different tasks. Whereas a machine’s capacity to per-
form abstract operations can be studied from theoretical and practical viewpoints
alike, Turing machines play a role only in theoretical investigations, although for
AI research solely the practical aspects of computers and what operations they
can perform matter. Historically, the possible ways in which different kinds of
physical mechanisms could be used to control various physical processes were of
the essence in modeling and understanding animal and human cognition. Such
analyses, in turn, showed which features are needed for computers to be useful
in modeling cognition, which then opened up new ways of thinking about the
mind. Sloman compiles eleven such features, which arose from the development
of machines manipulating physical entities as well as abstractions, and are highly
relevant to the task of understanding, modeling, or replicating human or
animal intelligence (and for the most part also animal brains). Yet, none of these
features resulted from the concept “Turing machine.” Examples of these features
include the encoding of part of the system’s behavior in substates of the system,
the coupling of the system to the physical environment via transducers, or the
handling of interrupts (i.e., the ability of the system to suspend and resume pro-
cesses). Sloman points out that the unbounded resources of a Turing machine (as
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embodied by its tape) are not only unrealistic assumptions about the nature of
human minds, but are also not needed to understand the potentially unbounded
competence of minds, since minds (and also computers) can implement (even if
only partially) unbounded virtual machines without having to require an un-
bounded physical resource. In short, had Turing machines not been invented,
contends Sloman, neither AI nor computationalism would have missed them.

1 Introduction

Many people think that our everyday notion of “computation,” as used
to refer to what computers do, is inherently linked to or derived from
the idea of a Turing machine, or a collection of mathematically equivalent
concepts (e.g., the concept of a recursive function, or the concept of a
logical system). It is also often assumed, especially by people who attack
AI, that the concepts of a Turing machine and Turing-machine comput-
ability (or mathematically equivalent notions) are crucial to the role of
computers in AI and cognitive science.1 For example, it is often thought
that mathematical theorems regarding the limitations of Turing machines
demonstrate that some of the goals of AI are unachievable.

I shall challenge these assumptions, arguing that although there is a
theoretical, mathematically precise, notion of computation to which Tu-
ring machines, recursive functions, and logic are relevant, (1) this mathe-
matical notion of computation and the associated notion of a Turing
machine have little or nothing to do with computers as they are normally
used and thought of, and (2) that although computers (both in their pres-
ent form and in possible future forms if they develop) are extremely rele-
vant to AI, as is computation defined as “what we make computers do,”
Turing machines are not relevant, and the development of AI did not
depend even historically on the notion of a Turing machine.

In putting forward an alternative view of the role of computers and
the idea of computation in AI, I shall try to clarify what it is about com-
puters that makes them eminently suitable in principle, unlike previous
man-made machines, as a basis for cognitive modeling and for building
thinking machines, and also as a catalyst for new theoretical ideas about
what minds are and how they work. Their relevance depends on a combi-
nation of features that resulted from two preexisting strands, or threads,
in the history of technology, both of which started hundreds, or thou-
sands, of years before the work of Turing and mathematical logicians.
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The merging of the two strands and further developments in speed, mem-
ory size and flexibility were enormously facilitated by the production of
electronic versions in the mid-twentieth century, not by the mathematical
theory of computation developed at the same time or earlier.

A corollary of all this is that there are (at least) two very different
concepts of computation: one of which is concerned entirely with proper-
ties of certain classes of formal structures that are the subject matter of
theoretical computer science (a branch of mathematics), and another that
is concerned with a class of information-processing machines that can
interact causally with other physical systems and within which complex
causal interactions can occur. Only the second is important for AI (and
philosophy of mind).

Later I shall discuss an objection that computers as we know them all
have memory limits, so that they cannot form part of an explanation of
the claimed infinite generative potential of our thought and language,
whereas a Turing machine with its unbounded tape might suffice for this
purpose. Rebutting this objection requires us to explain how an infinite
virtual machine can be implemented in a finite physical machine.

2 Two Strands of Development Leading to Computers

Two old strands of engineering development came together in the produc-
tion of computers as we know them, namely (a) development of machines
for controlling physical mechanisms and (b) development of machines
for performing abstract operations, for example, on numbers.

The first strand included the production of machines for controlling
both internal and external physical processes. Physical control mecha-
nisms go back many centuries and include many kinds of devices, in-
cluding clocks, musical-boxes, piano-roll mechanisms, steam engine
governors, weaving machines, sorting machines, printing machines, toys
of various kinds, and many kinds of machines used in automated or semi-
automated assembly plants. The need to control the weaving of cloth,
especially the need to produce a machine that could weave cloth with
different patterns at different times, was one of the major driving forces
for the development of such machines. Looms, like calculators and
clocks, go back thousands of years and were apparently invented several
times over in different cultures.2
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Unlike the first strand, in which machines were designed to perform
physical tasks, the second strand, starting with mechanical calculating
aids, produced machines performing abstract operations on abstract enti-
ties, for example, operations on or involving numbers, including opera-
tions on sets of symbols to be counted, sorted, translated, etc. The
operation of machines of the second type depended on the possibility of
systematically mapping those abstract entities and abstract operations
onto entities and processes in physical machines. But always there were
two sorts of things going on: the physical processes such as cogs turning
or levers moving, and the processes that we would now describe as oc-
curring in a virtual machine, such as addition and multiplication of num-
bers. As the subtlety and complexity of the mapping from virtual machine
to physical machine increased, it allowed the abstract operations to be
less and less like physical operations.

Although the two strands were very different in their objectives, they
had much in common. For instance, each strand involved both discrete
and continuous machines. In the first strand, speed governors and other
homeostatic devices used continuously changing values in a sensor to pro-
duce continuous changes in some physical output, whereas devices like
looms and sorting machines were involved in making selections between
discrete options (e.g., use this color thread or that one, go over or under
a cross-thread). Likewise, some calculators used continuous devices such
as slide rules and electronic analog computers, whereas others used dis-
crete devices involving ratchets, the presence or absence of holes in cards,
or electronic switches.3

Also relevant to both strands is the distinction between machines where
a human operator is constantly involved (turning wheels, pushing rods
or levers, sliding beads) and machines where all the processes are driven
by motors that are part of the machine. Where a human is involved we
can distinguish cases where the human is making decisions and feeding
control information from cases where the human merely provides the
energy once the machine is set up for a task, as in a music box or some
mechanical calculators. If the human provides only energy it is much eas-
ier to replace the human with a motor that is part of the machine and
needs only fuel.

In short, we can distinguish two kinds of autonomy in machines in
both strands: energy autonomy and information or control autonomy.
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Both sorts of autonomy developed in both physical control systems (e.g.,
in factory automation) and in machines manipulating abstract informa-
tion (e.g., calculators).

At first, mechanical calculators performed fixed operations on small
collections of numbers (e.g., to compute the value of some arithmetical
expression containing a few numerical constants, each specified manually
by a human operator). Later, Hollerith machines were designed to deal
with large collections of numbers and other items such as names, job
categories, names of towns, etc. This made it possible to use machines
for computing statistics from census data. Such developments required
mechanisms for automatically feeding in large sets of data, for instance
on punched cards. Greater flexibility was achieved by allowing some of
the cards to specify the operations to be performed on others, just as
previously cards had been used to specify the operations to be performed
by a loom in weaving.

This greater flexibility, in combination with the parallel development
of techniques for feeding different sets of instructions to the same machine
at different times (e.g., changing a weaving pattern in a loom), made it
possible to think of machines that modified their own instructions while
running. This facility extended control autonomy in machines, a point
that was apparently understood by Babbage and Lovelace long before
Turing machines or electronic computers had been thought of.

A natural development of numerical calculators was the production of
machines for doing Boolean logic, inspired by ideas of George Boole in
the nineteenth century (and Leibniz even earlier). This defined a new class
of operations on abstract entities (truth values and truth tables) that could
be mapped onto physical structures and processes. Later it was shown
how numerical operations could be implemented using only compo-
nents performing Boolean operations, leading to the production of fast,
general-purpose, electronic calculating devices. The speed and flexibility
of these machines made it possible to extend them to manipulate not only
numbers and Boolean values but also other kinds of abstract information,
for instance census data, verbal information, maps, pictorial information
and, of course, sets of instructions, that is, programs.

These changes in the design and functionality of calculating ma-
chines originally happened independently of developments in meta-
mathematics. They were driven by practical goals, such as the goal of



92 Aaron Sloman

reducing the amount of human labor required in factories and in govern-
ment census offices, or the goal of performing tasks with greater speed
or greater reliability than humans could manage. Human engineering in-
genuity did not have to wait for the development of mathematical con-
cepts and results involving Turing machines, predicate logic or the theory
of recursive functions, although these ideas did feed into the design of a
subset of programming languages (including Lisp).

Those purely mathematical investigations were the main concerns of
people like Frege, Peano, Russell, Whitehead, Church, Kleene, Post, Hil-
bert, Tarski, Gödel, Turing, and many others who contributed to the
mathematical understanding of the purely formal concept of computation
as some sort of philosophical foundation for mathematics.

Their work did not require the existence of physical computers. In fact
some of the meta-mathematical investigations involved theoretical ab-
stract machines that could not exist physically because they were infinite
in size, or performed infinite sequences of operations.4

The fact that one of the important meta-mathematicians, Alan Turing,
was also one of the early designers of working electronic computers sim-
ply reflected the breadth of his abilities: he was not only a mathematical
logician but also a gifted engineer, in addition to being one of the early
AI theorists (Turing 1950a; Hodges 1992).

3 Combining the Strands: Energy and Information

It was always inevitable that the two strands would merge, since often
the behaviors required of control systems include numerical calculations,
given that what to do next is often a function of internal or external
measured values, so that action has to be preceded by a sensing process
followed by a calculation. What had been learned about mechanical cal-
culators and about mechanical control systems was therefore combined
in new, extremely versatile information-based control systems, drawing
the two strands together.

It is perhaps worth mentioning that there is a trade-off between the
type of internal calculation required and the physical design of the system.
If the physical design constrains behavior to conform to certain limits
then there is no need for control signals to be derived in such a way as
to ensure conformity, for example. Engineers have known for a long time
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that good design of mechanical components of a complex system can
simplify the task of the control mechanisms: it is not a discovery unique
to so-called situated AI, but a well-known general principle of engi-
neering, that one needs to consider the total system, including the envi-
ronment, when designing a component. Another way of putting this is
to say that some aspects of a control system can be compiled into the
physical design.

Following that strategy leads to the development of special-purpose
control mechanisms, tailored to particular tasks in particular environ-
ments. There are many exquisite examples of such special-purpose inte-
grated designs to be found in living organisms. Evolution developed
millions of varieties long before human engineers existed.

However, human engineers have also learned that there are benefits to
the design of general-purpose, application-neutral computers, since these
can be produced more efficiently and cheaply if numbers required are
larger, and, more important, they can be used after their production in
applications not anticipated by the designers. Evolution appears to have
“discovered” a similar principle when it produced deliberative mecha-
nisms, albeit in only a tiny subset of animal species. This biological devel-
opment also preceded the existence of human engineers. In fact it was a
precondition for their existence.

Understanding all this requires unpacking in more detail different
stages in the development of machines in both historical strands. This
reveals distinctions between different varieties of machines that help us
to understand the significance of computers for AI and cognitive science.

Throughout the history of technology we can see (at least) two require-
ments for the operation of machines: energy and information. When a
machine operates, it needs energy to enable it to create, change, or pre-
serve motion, or to produce, change, or preserve other physical states of
the objects on which it operates. It also needs information to determine
which changes to produce, or which states to maintain. Major steps in
the development of machines concerned different ways of providing ei-
ther energy or information.

The idea of an energy requirement is very old and very well understood.
The idea of an information requirement is more subtle and less well un-
derstood. I am here not referring to information in the mathematical sense
(of Shannon and Weaver) but to an older, more intuitive notion of
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information that could be called control information, since information
is generally potentially useful in constraining what is done. I shall not
attempt to define “information,” because, like “energy,” it is a complex
and subtle notion, manifested in many forms, applicable to many kinds
of tasks, and likely to be found in new forms in future, as previously
happened with energy. So the concept is defined implicitly by the collec-
tion of facts, theories, and applications in which we use it: and therefore
the concept is still developing.5

There are many subtleties involved in specifying what information is
acquired, manipulated, or used by a machine (or an organism), especially
as this cannot be derived unambiguously from the behavior of the organ-
ism or the nature of its sensors. For our purposes, however, we do not
need to explain in more detail how to analyze precisely what control
information is used by a machine. It suffices to acknowledge that some
information is required, and that sometimes designers of a machine can
explain what is happening. In the present context we note the fact that
one difference between machines is concerned with where the energy
comes from, and another concerns where the information comes from,
discussed further below.

When a human uses a machine, the degree to which either the energy
or the information comes from the human or from some other source
can vary. Other types of variation depend on whether the energy or the
information is provided ballistically or online, or in some combination
of both.

Various kinds of machines such as water wheels, windmills, spring-
driven or weight-driven machines, steam engines, electric motors, and
many more are concerned with ways of providing energy that does not
come from the user. Sometimes most of the control information comes
from the user even if the energy does not. In many machines, such as
cars, mechanical diggers, cranes, etc. the only energy required from the
human user is that needed to convey the control information, for exam-
ple, by turning wheels or knobs, pressing buttons or pedals, or pulling or
pushing levers. Developments such as power-assisted steering or brakes,
microswitches and other devices have reduced the energy required for
supplying control information.

Sometimes the information determining what a machine should do is
implicit in the physical structure of the machine and the constraints of
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the situation in which it operates. For instance, a water wheel is built so
that all it can do is rotate, though the speed of rotation is in part deter-
mined by the flow of water. In contrast, many machines are designed
for use by humans who determine precisely what happens. The control
information then comes from the user.

However, in general, some of the information will be inherent in the
design of the machine and some will come from the environment. For
instance, a windmill that automatically turns to face the wind gets its
information about which way to turn from the environment.

Similar considerations apply to machines in the second strand: calculat-
ing machines. For example, the energy to move the beads of an abacus
comes from the user, as does most of the control information determining
which beads move when and where. However, some of the information
comes from the changing state of the abacus, which functions in part as
an extension of the user’s memory. This would not be the case if at each
step the abacus had to be disassembled and reconstructed with the new
configuration of beads.

By contrast, in a primitive music box, a human may continuously pro-
vide energy by turning a handle while all the control information de-
termining which sounds to produce next come from something in the
music box, for example, a rotating cylinder or disc with protruding
spokes that pluck or strike resonating bars of different lengths. The only
control the human has is whether to continue or to stop, or perhaps
whether to speed up the music or slow it down, depending on the con-
struction of the music box. Some music boxes may also have a volume
or tone control that can be changed while the music is playing.

Both the energy and the information required to drive a machine may
be provided by a user in either an online or a ballistic fashion. If a music
box accepts changeable cylinders with different tunes, the user will have
control, but only ballistic control: by setting the total behavior at the
beginning. Likewise energy may be provided in a ballistic fashion, if the
music box is wound up and then turned on and left to play. At the oppo-
site extreme, playing a violin or wind instrument requires exquisite online
provision of both energy and information.

The combined online provision of both energy and control information
is characteristic of tools or instruments that allow humans to perform
actions that are difficult or impossible for them to do unaided, because
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of limitations of strength, height, reach, or perceptual ability, or because
body parts are the wrong size or shape (e.g., tweezers are often used where
fingers are too big or the wrong shape), or because we cannot make the
same sound as the instrument. In such cases the user is constantly in con-
trol during the operation of such a machine, providing both energy but
also the information required to guide or manipulate the tool. In other
machines most of the energy may come from some other source, while
the human provides only the energy required to operate control devices,
for instance when power-assisted steering reduces the amount of energy
required from the user without reducing the amount of information pro-
vided. In other words, the user is still constantly specifying what to do
next.

Ballistic information provision can vary in kind and degree. In the case
of the music box or machine driven by punched cards the sequence of
behaviors is totally determined in advance, and then the machine is al-
lowed to run through the steps. However, in a modern computer, and in
machines with feedback control mechanisms, some or all of the behavior
is selected on the basis of some tests performed by the machine even if
it is running a program that was fully specified in advance. If the tests
and the responses to the tests are not predetermined but rather produced
by some kind of learning program, or by rules that cause the initial pro-
gram to be modified in the light of which events occur while it is running
(like an incremental compiler used interactively), then the ballistic control
information provided initially is less determinate about the behavior. It
may rigidly constrain sets of possible options, but not which particular
options will be selected when.

If the initial information provided to the machine makes possible a
large collection of actions but is not specific about the order in which
they should be performed, leaving the machine to make selections on the
basis of information acquired while behaving, then the machine is to some
extent autonomous. The degree and kind of autonomy will vary.6

For many types of applications, the control functions of the machine
could be built directly into its architecture, because it repeatedly per-
formed exactly the same sort of task, for example, telling time, playing
a tune. This was rigid ballistic control.

For other applications, such as weaving cloth with different patterns,
it was desirable not to have to assemble a new machine for each task.
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This required a separation of a fixed reusable physical architecture for
performing a class of tasks and a variable behavioral specification that
could somehow harness the causal powers of the architecture to perform
a particular task in that class.

For some of the earlier machines, the variable behavior required contin-
uous human intervention (e.g., playing a piano, operating a loom, manip-
ulating an abacus), that is, only online control could produce variable
results. Later, in some cases, it was possible to have various physical de-
vices that could be set manually at the start of some task to produce a
required behavioral sequence, and then reset for another task, requiring
a different sequence of behaviors. This was variable ballistic control. This
might require setting levers or cog-wheels to some starting position, and
then running the machine. In the case of the earliest electronic control
systems, this meant setting switches, or altering electric connections be-
fore starting the process.

At the beginning of the nineteenth century, Jacquard realized that the
use of punched cards could make it much easier to switch quickly between
different behavioral sequences for looms. The cards could be stored and
reused as required. A similar technique used punched rolls of paper, as
in player pianos. These mechanisms provided easily and rapidly specified
variable ballistic control.

Later, the same general idea was employed in Hollerith card-controlled
machines for analyzing census data, and paper-tape-controlled data-
processing machines. In these cases, unlike looms, some of the ballistic
control was concerned with selection of internal action sequences.

The alteration of such physically encoded instructions required human
intervention, for example, feeding in punched cards, or piano rolls, or in
the case of some music boxes, replacing a rotating disc or cylinder with
metal projections.

In Babbage’s design for his “analytical engine,” the use of conditionals
and loops allowed the machine to decide for itself which collection of
instructions to obey, permitting great flexibility. However, it was not un-
til the development of electronic computers that it became feasible to
produce computers that, while running, could create new programs for
themselves and then obey them.7

Machines programmed by means of punched cards had reached consid-
erable sophistication by the late nineteenth and early twentieth century,
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long before electronic computers, and long before anyone had thought
of Turing machines, recursive function theory, or their mathematical
equivalents.

The electronic technology developed during the twentieth century al-
lowed faster, more general, more flexible, more reliable machines to be
produced, especially after the invention of transistors allowed the replace-
ment of electromechanical relays and vacuum tubes. The advent of ran-
domly addressable memory facilitated the development of machines that
could not only rapidly select arbitrary instructions to follow, but could
also change their own programs easily at run time.

The process of development of increasingly sophisticated information
processing systems was accelerated during the 1970s onward, both by
advances in materials science and electronic engineering, and also by the
rapid evolution of new computer-assisted techniques for designing new
machines and computer-controlled fabrication techniques.

In other words, the production of new, improved machines for control-
ling physical processes accelerated the production of even better machines
for that purpose. Some of this depended crucially on the second strand
of development: machines for operating on abstract entities, such as num-
bers. The ability to operate on abstract entities was particularly important
for machines to be able to change their own instructions, as discussed
below. Developments in electronic technology in the second half of the
twentieth century facilitated construction of machines that could alter
their internal control information while running. However, the impor-
tance of this had at least partly been understood earlier: it did not depend
on the idea of Turing machines, which had this capability, but only in a
particularly clumsy form.

3.1 Toward More Flexible, More Autonomous Calculators
Numerical calculators, like machines for controlling physical processes,
were invented many centuries ago and evolved toward more and more
sophisticated and flexible machines.

Only recently have they achieved a degree of autonomy. The earliest
devices, like the abacus, required humans to perform all the intermediate
operations to derive a result from some initial state, whereas later calcula-
tors used increasingly sophisticated machinery to control the operations
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that transformed the initial state, representing a problem, to a state where
the solution could be read off the machine (or in later systems printed
on paper, or punched onto cards).

In the earliest machines, humans had to provide both the energy for
making physical changes to physical components (e.g., rotating cogs) and
the information about what to do next. At a later date it sufficed for a
human to initialize the machine with a problem and then provide the
energy (e.g., by turning a handle) in a manner that was neutral between
problems and did not feed additional information into the machine. Even-
tually even the energy for operation did not need to be supplied by a
human, as the machines began to use electrical power from mains or
batteries.

3.2 Internal and External Manipulations
In all these machines we can, to a first approximation, divide the pro-
cesses produced by the machine into two main categories: internal and
external. Internal physical processes include manipulation of cogs, levers,
pulleys, strings, etc. The external processes include movements or re-
arrangements of various kinds of physical objects, for example, strands
of wool or cotton used in weaving, cards with information on them,
lumps of coal to be sorted according to size, parts of a musical instrument
used to produce sounds, objects being assembled on a production line,
printing presses, cutters, grinders, the things cut or ground, etc.

If the internal manipulations are merely part of the process of selecting
which external action to perform or part of the process of performing
the action, then we can say that they are directly subservient to external
actions.

However, internal actions that are part of a calculation are an espe-
cially important type of action, for they involve abstract processes, as
discussed previously. Other abstract internal processes involve operations
on nonnumeric symbols and structures, such as words, sentences, en-
crypted messages, arrays, lists, trees, networks, etc. A particularly impor-
tant type of internal action involves changing or extending the initially
provided information store. This gives machines considerable additional
flexibility and autonomy. For instance, they may end up performing ac-
tions that were neither foreseen nor provided by the designer.
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3.3 Practical and Theoretical Viewpoints
The requirement that a machine be able to perform abstract operations
can be studied from two viewpoints. The first is the practical viewpoint
concerned with producing machines that can perform useful specific
tasks, subject to various constraints of time, memory requirements, cost,
reliability, etc. From this viewpoint, it may be sensible to design different
machines for different tasks, and to give machines the powers they need
for the class of tasks to which they will be applied. For this reason there
are specialized machines for doing integer operations, for doing floating
point operations, for doing operations relevant to graphical or acoustic
applications, for running neural nets, etc. It is to be expected that this
variety of machines that can be combined within computers and other
kinds of machinery will continue to grow.

The second, more theoretical viewpoint is concerned with questions
like:

• What is the simplest machine that can perform a certain class of tasks?
• For a given type of machine, what is the class of tasks that it can
perform?
• Given two machines M1 and M2, is one of them more general, for exam-
ple, able to perform all the tasks of the other and more besides?
• Given two machines M1 and M2, are they equivalent in their capabili-
ties, for example, can each provide the basis for an implementation of
the other?
• Is there a machine for performing abstract asks (e.g., mathematical cal-
culations, or logical inferences) that is most general in the sense that
it is at least as general as any other machine that can perform abstract
tasks?

From the theoretical viewpoint, Turing machines are clearly of great
interest because they provide a framework for investigating some of these
questions (though not the only framework). If AI were concerned with
finding a single most general kind of information-processing capability,
then Turing machines might be relevant to this because of their generality.
However, no practical application of AI requires total generality, and no
scientific modeling task of AI (or cognitive science) requires total general-
ity, for there is no human or organism that has completely general capa-
bilities. There are things that chimps, or even bees, can do that humans
cannot, and vice versa.
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The mathematical applications of the idea of a Turing machine did not
depend on the actual existence of such machines: they were concerned
with a purely formal concept of computation. However, it is possible in
principle to build a Turing machine, although any actual physical in-
stance must have a finite tape if the physical universe is finite.

We can now see Turing machines as just one of a class of machines
that are capable of performing either the task of controlling a physical
system or of performing abstract operations, or of using one to do the
other. Their most important single characteristic is that they have an un-
bounded tape, but that is possible only if they are treated as mathematical
constructs, for physical machines will always have a bounded tape.

However, that unique feature cannot be relevant to understanding hu-
man or animal brains, since they are finite in any case. No human being
has a memory that has unlimited capacity like a Turing machine’s tape.
Even if we include the external environment, which can be used as an
extension of an individual’s memory, anyone who has written or bought
many books or who has created many computer files knows that as the
total amount of information one records grows the harder it becomes to
manage it all, to find items that are relevant, and even to remember that
you have some information that is relevant to a task, let alone remember
where you have put it. There is no reason to believe that humans could
manage unlimited amounts of information if provided with an external
store of unlimited capacity, quite apart from the fact that we live only
for a finite time.

In a later section, we’ll consider the argument that these limitations of
human beings are merely performance limitations, and that we really do
have a type of infinite, or at least unbounded, competence. It will be
shown that analogous comments can be made about conventional com-
puters, which do not have the unbounded memory mechanism of a Tu-
ring machine.

Having previously shown that the development of computers owed
nothing to the idea of a Turing machine or the mathematical theory of
computation, we have now given a negative answer to the question of
whether Turing machines, viewed as simply a special type of computer,
are required for modeling human (or animal) minds because the un-
bounded tape of a Turing machine overcomes limitations of more con-
ventional computers.
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Turing machines, then, are irrelevant to the task of explaining, model-
ing, or replicating human or animal intelligence, though they may be rele-
vant to the mathematical task of characterizing certain sorts of esoteric
unbounded competence. However, computers have features that make
them relevant to modeling intelligence and that do not depend on any
connection with Turing machines, as will now be shown.

4 Computers in Engineering, Science, and Mathematics

The features of computers that grew out of the two strands of develop-
ment made them powerful and versatile tools for a wide variety of tasks,
which can be loosely classified as engineering, science, and mathematics.
The notion of a Turing machine and related logical and mathematical
notions of computation are only indirectly relevant to most of these. In
fact, as explained above, many of the applications were being developed
before the time of Turing. AI overlaps with all of these application areas
in different ways. I shall make a few comments on the relevance of com-
puters to all these areas before going on to a more detailed analysis of
the relevance of computers to AI and cognitive science. However, it will
help to start with an analysis of their general relevance to engineering
and science.

4.1 Engineering and Scientific Applications
Most of the features of calculating and controlling engines (e.g., the abil-
ity to manipulate physical objects and abstract entities such as numbers
or symbols) are equally relevant to a variety of application domains: in-
dustrial control, automated manufacturing systems, data-analysis and
prediction, working out properties of complex physical systems before
building them, information management in commercial, government, and
military domains, many varieties of text processing, machine interfaces
to diverse systems, decision support systems, and new forms of communi-
cation. These applications use different aspects of the information manip-
ulating capabilities described above, though with varying proportions
and types of ballistic and online control, and varying proportions of phys-
ical manipulation and manipulation of abstract entities. None of this had
anything to do with Turing machines.
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In addition to practical applications, computers have been enormously
relevant to science construed as the attempt to understand various aspects
of reality. For instance, they are used:

• to process numerical and other data collected by scientists;
• to control apparatuses used in conducting experiments or acquiring
data;
• to build working models capable of being used as explanations; and
• to make predictions that can be used to test scientific theories.

For some of these uses, the ability of computers to control devices that
manipulate physical objects is particularly relevant; for others, the ability
to manipulate abstractions such as numbers, laws, hypotheses is more
relevant.

4.2 Relevance to AI
The very features that made computers relevant to all these engineering
applications, and to science in general, also make them relevant to both
the scientific aims of AI and the engineering aims.

The scientific aims of AI include understanding general features of both
natural and artificial behaving systems, as well as modeling and ex-
plaining a wide variety of specific naturally occurring systems, for in-
stance, different kinds of animal vision, different kinds of animal
locomotion, different kinds of animal learning, etc.

Since the key features of such natural systems include both being able
to manipulate entities in the environment and being able to manipulate
abstract entities, such as thoughts, desires, plans, intentions, theories, and
explanations, the combined capabilities of computers made them the first
machines suitable for building realistic models of animals.

Moreover, the tasks of designing, extending, and using these capa-
bilities of computers led to the development of a host of new formal-
isms and concepts relevant to describing, designing, and implementing
information-processing mechanisms. Many of these are relevant to the
goals of AI and will be described below.

The engineering aims of AI include using computers to provide new
sorts of machines that can be used for practical purposes, whether or
not they are accurate models of any form of natural intelligence. These
engineering aims of AI are not sharply distinguished from other types of
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applications of computers that are not described as AI. Almost any type
of application can be enhanced by giving computers more information
and more abilities to process such information, including the ability to
learn from experience. In other words, almost any computer application
can be extended using AI techniques.

It should now be clear why computers are relevant to all the different
subdomains of AI that deal with specific aspects of natural and artificial
intelligence, such as vision, natural language processing, learning, plan-
ning, diagrammatic reasoning, robot control, expert systems, intelligent
internet agents, distributed intelligence, etc.—they all involve some com-
bination of control of physical processes and abstract information ma-
nipulation processes, tasks for which computers are better than any
preexisting type of machine.

It is noteworthy that computers are used by supporters of all the rival
“factions” of AI, each of which adopts different sorts of designs, such as
rule-based systems, logicist systems, neural nets, evolutionary computa-
tion, behavior-based AI, dynamical systems, etc.

Thus there is no particular branch of AI or approach to AI that has
special links with computation: they all do, although they may make dif-
ferent use of concepts developed in connection with computers and pro-
gramming languages. In almost all cases, the notion of a Turing machine
is completely irrelevant, except as a special case of the general class of
computers. Moreover, Turing machines are not so intrinsically relevant
as machines that are designed from the start to have interfaces to external
sensors and motors with which they can interact online, unlike Turing
machines, which at least in their main form are totally self-contained and
are designed primarily to run in ballistic mode once set up with an initial
machine table and tape configuration.

4.3 Relevance to Mathematics
The relevance of computers to mathematics is somewhat more subtle than
their relevance to other scientific and engineering disciplines. There are
at least three types of development that link mathematics and computing:

(a) More mathematics: using abstract specifications of various kinds of
(abstract) machines and the processes they can support, in order to define
one or more new branches of mathematics, for example, the study of
complexity, computability, compressibility, various properties of algo-
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rithms, etc. This is what much of theoretical computer science is about.
(Some of this investigates machines that could not be built physically,
e.g., infinite machines, and types of machines that might be built but have
not, e.g., inherently probabilistic machines.)
(b) Metamathematics: using an abstract specification of a type of
machine as an alternative to other abstract specifications of types of
mathematical objects and processes (recursive functions, Post produc-
tions, axiomatic systems, etc.), and then exploring their relationships
(e.g., equivalence), possibly to clarify questions in the philosophy of
mathematics.
(c) Automatic theorem proving or checking: using computers as tools to
help in the discovery or proof of theorems or in searches for counter-
examples. This process can be more or less automated. At one extreme,
computers are programmed to do large numbers of well-defined but te-
dious operations, for example, examining very large sets. At another
extreme, the computer may be fairly autonomous, taking many deci-
sions about which steps to try in a context-sensitive manner and pos-
sibly as a result of learning from previous tasks. AI work on theorem
proving tends toward the latter extreme. It may also allow human inter-
action, such as the communication that happens between human mathe-
maticians when they collaborate or when one teaches another. This sort
of mathematical application could build on general AI research on intel-
ligent communication.

Although mathematical explorations of types (a) and (b) involve ideas
about computation, it often does not matter whether physical computers
exist or not, for they are not needed in those explorations. Many of
the important results, for instance Gödel’s undecidability result, were
achieved before working computers were available. (Quantum computers
might also be relevant to mathematical investigations of types (a) and (b)
even if it turns out they are impossible to build as practically useful physi-
cal devices.) By contrast, work of type (c) depends on the use of working
computers.

The distinction between (a) and (b) is not yet very clear or precise; in
fact, (a) subsumes (b). Neither is there a very sharp division between the
metamathematical use of the notion of computation in (b) and the AI
uses in connection with designing theorem provers, reasoners, etc.

Ideas about Turing machines and related theoretical “limit” results
on computability, decidability, definability, provability, etc. are relevant
to all these kinds of mathematical research, but they are marginal or
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irrelevant in relation to most aspects of the scientific AI goal of trying
to understand how biological minds and brains work, and also to the
engineering AI goals of trying to design new useful machines with similar
(or greater) capabilities. The main relevance of the limit results arises
when researchers set themselves goals that are known to be unachievable,
such as trying to design a program that will detect infinite loops in any
arbitrary program.

The metamathematical ideas developed in (b) are relevant to the small
subset of AI that is concerned with general (logical) reasoning capabilities
or modeling mathematical reasoning.

By contrast, the new mathematical techniques of type (a), which were
developed for analyzing properties of computational processes such as
space and time complexity and for analyzing relationships between speci-
fications, designs, and implementations, are all equally relevant both to
AI and to other applications of computers.

One important feature of Turing machines for mathematical or meta-
mathematical research of types (a) and (b) is their universality, mentioned
previously. By showing how other notions of mathematical reasoning,
logical derivation, or computation as an abstract mathematical process
could all be mapped onto Turing machines, it was possible to demon-
strate that results about mathematical limitations of Turing machines
could not be overcome by switching to any of a wide range of alternative
formalization. It also meant that analyses of complexity and other prop-
erties of processes based on Turing machines could be carried over to
other types of process by demonstrating how they were implementable
as Turing machine processes.8

This kind of mathematical universality may have led some people to
the false conclusion that any kind of computer is as good as any other
provided that it is capable of modeling a universal Turing machine. This
is true as a mathematical abstraction, but it is misleading or even false
when considering problems of controlling machines embedded in a physi-
cal world.

The universality of Turing machines was mentioned by Turing (1950a)
as a reason for not discussing alternative digital mechanisms. In part that
was because he was considering a question-answering task for which
there were no time constraints, and where adding time constraints would
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produce no interesting differences, since only qualitative features of the
behavior were of interest.

Human intelligence, however, is often precisely concerned with finding
good solutions to problems quickly, and speed is central to the success
of control systems that manage physical systems embedded in physical
environments. Aptness for their biological purpose, and not theoretical
universality, is the important characteristic of animal brains, including
human brains. What those purposes are and what sorts of machine archi-
tectures can serve those purposes are still open research problems (which
I have discussed elsewhere), but it is clear that time constraints are very
relevant to biological designs: speed is more biologically important than
theoretical universality.

I have introduced these mathematical applications of ideas of computa-
tion in order to get them out of the way, and in order to provide a possible
explanation for the widespread but mistaken assumption that notions
such as Turing machines or Turing computability are central to AI. (This
is not to deny that Turing was important to AI as an outstanding engineer
who made major contributions to the development of practical comput-
ers. He was also important as one of the earliest AI theorists.)

4.2 Information-Processing Requirements for AI
For the mathematical and metamathematical investigations mentioned
above, the formal notions of computations were central. By contrast, for
the nonmathematical, scientific, and engineering goals of AI, the impor-
tant point, which was already clear by about the 1950s, was that comput-
ers provided a new type of physically implementable machine with a
collection of important features discussed in previous sections and ana-
lyzed in more detail below.

These features were not defined in relation to recursive functions, logic,
rule formalisms, Turing machines, and so on but rather had to do with
using machines to produce and control sophisticated internal and exter-
nal behavior with a speed and flexibility that was previously impossible
for man-made machines. Various combinations of these abilities were to
be found in precursors to modern computers, but many of these mathe-
matically important features of Turing machines were irrelevant to ani-
mal brains.
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However, I shall identify two related features that are relevant, namely
(i) the ability to chunk behaviors of varying complexity into reusable
packets, and (ii) the ability to create and manipulate information struc-
tures that vary in size and topology.

A Turing machine provides both of these features to an unlimited de-
gree, but it depends on a linear, indefinitely extendable tape, whose speed
of use is inherently decreased as the amount of information thereon in-
creases. However, for an animal or robot mind, it is not clear that unlim-
ited size of chunks or variability of structure would be useful, and the
cost of providing it may be excessive. By contrast, computers with ran-
dom access memory provide uniform speed of access to a limited memory.
Brains probably do something similar, though they differ in the details
of how they manage the trade-off.

Although humans do not have the same generality as Turing machines
in their mathematical and symbolic reasoning powers, nevertheless we
do have certain kinds of generality and flexibility, and I shall try to ex-
plain below how computers, and also brains, can provide them. Turing
machines provide much more generality but do so in a fashion that in-
volves such a heavy speed penalty in any working physical implementa-
tion, because of the need for repeated sequential traversal of linear tapes,
that they seem to be worthless for practical purposes. It appears that
brains, like computers, sacrifice total generality in favor of speed in a
large class of behaviors.

4.5 Does AI Require the Use of Working Machines?
A possible source of confusion is the fact that for some of the theoretical/
scientific purposes of AI (cognitive science) the actual construction of
computers did not matter except as a catalyst and test-bed for ideas:
the most important effect of development of computers for advances
in AI and cognitive science was in the generation of ideas about how
information-manipulating engines might be implemented in physical
mechanisms. This makes scientific AI superficially like metamathematics,
but the similarity is deceptive, since the goals are different.

For the engineering purposes of AI, working physical machines are, of
course, required. They are also needed as an aid to AI theorists, since
the models being considered have grown increasingly complex, and too
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difficult to run in our heads or on paper. But that is like the relevance of
computers to theoretical chemistry, astronomy, etc. Computers are tools
for managing complex theories. This has nothing specific to do with cog-
nitive science or AI.

5 Eleven Important Features of Computers (and Brains)

More important than the use of computers as cognitive aids to analyzing
complex theories was the way we came to understand the features needed
in computers if they were to be useful. Those features gave us new ideas
for thinking about minds.

However, those features are not specific to what we now call comput-
ers: animal brains had most of these features, or similar features, millions
of years earlier, and probably lots more that we have not yet thought of,
and will later learn to emulate, using either computers or new kinds of
machines.

There are (depending on how we separate them out) about eleven ma-
jor features, which I shall list below. Features F1 to F6, which I have
labeled “primary features,” are typically built in to the digital circuitry
and/or microcode of computers and have been common to low-level vir-
tual machine architectures since the 1960s (or earlier), though details
have changed.

The remaining features, labeled “secondary” below, depend very much
on software changing the higher level virtual machine implemented in
the basic lower level machine. The need for those extra features to be
added was driven both by AI requirements and by other software engi-
neering requirements.9

Besides the primary and secondary features of computers as control
systems listed below, there are further features that are added through the
design and implementation of various high-level languages, along with
compilers, interpreters, and software development tools. These extend
the variety of virtual machines available. However, these split into several
different families suited to different application domains and will not be
discussed here.

F1. State variability: having very large numbers of possible internal
states, and even larger numbers of possible state transitions
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Both of these—having large numbers of possible internal states and state
transitions—are consequences of the fact that computers have large num-
bers of independently switchable components, like brains. N two-valued
components can be in 2N possible states, and can support the square of
that number of possible one-step state transitions: this gives huge flexibil-
ity in coping with varied environments, goals, and forms of learning.

Of course, it is not enough that there are large numbers of components
that can change their states. That is equally true of thunderclouds. It is
also important that the switchable components are controlled in a prin-
cipled way, depending on the system’s current tasks and the available
information. Further, it is also important that those substates can be
causally connected in a principled way to various effects, both within
the machine and in external behavior. This depends on the next three
features.

F2. Laws of behavior encoded in substates: having laws of behavior
determined by parts of the internal state

The behavior of any physical object is to some extent controlled by its
substates: for example, how a rock or a bean-bag rotates if thrown into
the air will depend on its shape and the distribution of matter within it,
which may change in the bean-bag. However, computers have far more
independently switchable persistent substates, and their effects can be
made more global: a CPU is an influence-amplifier. All this depends on
the fact that a stored program typically includes components that have
procedural semantics and whose execution generates state transitions in
accordance with the program, for example, using sequencing, condition-
als, jumps, procedure invocation (if supported; see secondary feature F7
below), etc. The effects can propagate to any part of the system.

It is important, however, that not all stored information states are con-
currently active, as occurs when a large number of different forces are
simultaneously acting on a physical object whose behavior is then deter-
mined by the resultant of those forces. In computers, as in brains, differ-
ent pieces of stored information can become active at different times. This
is related to the point about conditional instructions (see below). It is also
connected with Ryle’s emphasis on the dispositional properties of minds
(Ryle 1949). Minds, like computers, have many dormant dispositions
that are activated when conditions are appropriate. This fine-grained
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control of a very large number of distinct capabilities is essential for most
biological organisms.

F3. Conditional transitions based on Boolean tests

For many physical systems, behavior changes continuously through addi-
tive influences of multiple continuously varying forces. The behavior of
such systems can typically be represented by systems of differential equa-
tions. In contrast, there is a small subset of physical systems, including
some organisms and some machines, in which behaviors switch between
discrete alternatives on the basis of Boolean (or more generally discrete-
valued) tests. The laws of such a system may include conditional elements,
with forms like

if X then do A else do B,

possibly implemented in chemical, mechanical, or electronic devices. Sys-
tems controlled by such conditional elements can easily be used to ap-
proximate continuous dynamical systems, as is done every day in many
computer programs simulating physical systems. However, it is hard to
make the latter simulate the former—it requires huge numbers of care-
fully controlled basins of attraction in the phase space. One way to
achieve this is to build a machine with lots of local dynamical systems
that can be controlled separately—that is, a computer!

F4. Referential “read” and “write” semantics

If the behavior of a system is to be controlled in a fine-grained way by
its internal state, the active elements of the system need some way of
accessing or interrogating relevant parts of the internal state, for instance
in testing conditions or selecting control signals (instructions) to become
active. Likewise, if a system is to be able to modify its internal state in
a controlled way so as to influence future behavior, it needs to be able
to modify parts of itself so that they can be interrogated later.

In principle, there are many ways this ability to interrogate or change
specific components can be implemented. In computers it involves
allowing bit patterns in memory and in address registers to be interpreted,
by the machine, as referring to other parts of the machine: a primitive
kind of “referential semantics”—discussed further in Sloman (1985,
1987), where it is argued that this can form the basis for many other
kinds of semantic capabilities. In early computers the reference was to
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specific physical parts of the system. Later it was found more useful to
support reference to virtual machine locations, whose physical implemen-
tation could vary over time.

F5. Self-modifying laws of behavior

In some machines and organisms, the features listed previously can be
combined in such a way that the machine’s laws of behavior (i.e., the
stored programs) can be changed while the machine is running by chang-
ing the internal state (e.g., extending or modifying a stored program).
Such changes involve internal behaviors based on features F2, F3, and
F4. Such self-modification can be useful in many ways, including long-
term changes of the sort we call learning and short-term changes where
what is sensed or perceived at a point in time can be stored long enough
to be used to modify subsequent actions. I suspect that the full variety
of self-modifications in animals, also required for sophisticated robots,
has not yet been appreciated, for instance changes that alter the virtual
machine architecture of a human during development from infancy to
adulthood.

F6. Coupling to environment via physical transducers

I have implicitly been assuming that some parts of a system can be con-
nected to physical transducers so that both sensors and motors can be
causally linked to internal state changes.

If external sensors asynchronously change the contents of memory lo-
cations, that allows the above “read” capabilities to be the basis for per-
ceptual processes that control or modify actions. Likewise, if some
locations are linked through transducers to motors, then “write” instruc-
tions changing those locations can cause signals to be transmitted to mo-
tors, which is how internal information manipulation often leads to
external behavior. Thus sensors can write information into certain mem-
ory locations that can then change subsequent internal behavior, and
some of the memory locations written to by the internal processes can
cause signals to be sent to external motors. This implies that the total
system has multiple physical parts operating asynchronously and concur-
rently.10 Perception and action need not be restricted to “peephole” inter-
actions through very narrow channels (e.g., transmitting or receiving a
few bits at a time). Where large numbers of input transducers operate in
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parallel, it is possible for different perceptual patterns at different levels
of abstraction to be detected and interpreted: multiwindow perception.
Likewise, concurrent multiwindow actions can occur at different levels
of abstraction.

Interesting new possibilities arise if some of the transducers asynchro-
nously record not states of the external environment but internal states
and processes, including those in physical and virtual machines. In com-
puters this plays an important role in various kinds of error checking,
memory management, detection of access-violations, tracing, and debug-
ging. See also the section on self-monitoring, below.

I believe all of the above features of computers were understood at least
intuitively and implemented at least in simple forms by the late 1950s and
certainly in the 1960s. None of this depended on knowledge of Turing
machines.

We now turn to “secondary features” of computers. These are usually
not inherent in the hardware designs, but can be added as virtual ma-
chines implemented on the basis of the core features F1 to F6. (In some
computers they are given hardware support.)

Some of these features were needed for general programming conve-
nience (for example, enabling chunks of code to be shared between differ-
ent parts of the same program), and some were needed because computers
were interacting with an unpredictable environment (e.g., a human or
some other machine). None of these features was required only for AI
purposes. In other words, they were all part of the continuing general
development of the two main historical strands: producing more sophisti-
cated, flexible, and autonomous systems for controlling physical machin-
ery, and producing more sophisticated mechanisms for manipulating
abstract structures.

F7. Procedure control stack: the ability to interrupt a process,
suspend its state, run some other behavior, then later resume the
original suspended process.

This feature facilitated programs with reusable modules that could be
invoked by other modules to which they would automatically return
when complete. Later versions allowed the reusable modules to be pa-
rameterized, that is, to have different “local” data on different invoca-
tions (unlike GOSUB and RETURN in BASIC). This allowed recursive
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procedures to perform slightly different tasks on each recursive activa-
tion. This feature, along with feature F10 below (support for variable-
length information structures), was particularly important in supporting
some of the descriptive, nonnumeric, AI techniques discussed in Minsky
(1961).

Eventually all this was facilitated in electronic computers by hardware
or microcode support for a “control stack,” that is, special memory oper-
ations for suspended process descriptors, plus mechanisms for pushing
and popping such process descriptors. This depends on the saved process
states being specifiable by relatively small state descriptors that can be
rapidly saved and restored. It would be hard to do that for a neural net,
or a mechanical loom. It can be done by mechanical devices, but it is far
easier to implement in electronic mechanisms.

It might be done by a collection of neural nets, each implementing one
process, where only one can be in control at a time. This presupposes a
fixed process topology, unless there is a supply of spare nets that can be
given new functions. The “contention scheduling” architecture (Cooper
and Shallice 2000) is something like this.

F8. Interrupt handling

The ability to suspend and resume processes also allowed a system to
respond to external interrupts (new sensory input) without losing track
of what it had been doing previously. This kind of asynchronous interrupt
is unlike the previous case where control is transferred by an explicit
(synchronous) instruction in the program that is to be suspended. Asyn-
chronous interrupts can be supported by software polling in an inter-
preter. Faster, lower-level support built in to the computer’s hardware
mechanisms reduces the risk of losing data and sometimes simplifies soft-
ware design, but the key idea is the same.

F9. Multiprocessing

On the basis of extensions of the previous mechanisms it became fairly
easy to implement multiprocessing systems, which could run many pro-
cesses in parallel on a single CPU in a time-shared fashion, with interrupts
produced at regular intervals by an internal clock instead of (or in addi-
tion to) interrupts generated by external events. This requires larger con-
texts to be saved and restored, as processes each with their own control
stacks are switched in and out.
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Such multiprocessing allows the development of virtual machine archi-
tectures that permit variable numbers of concurrent, persistent, asyn-
chronously interacting processes, some of them sharing memory or
subroutines with others. It provides more flexibility than could be
achieved by wiring together a collection of computers that were each run-
ning one process, since then the maximum number of processes would
be fixed by the number of computers.

Multiprocessing virtual machines allow new kinds of experiments with
mental architectures containing variable numbers of interacting virtual
machines, including various sorts of perceptual, motivational, learning,
reactive, deliberative, planning, plan execution, motor-control, and self-
monitoring processes. This is a far cry from the notion of AI as the search
for “an algorithm” (as discussed by Searle 1980 and Penrose 1989, and
criticized in Sloman 1992).

In the early days of AI, research focused on algorithms and representa-
tions, whereas in the last decade or so, there has been a growing emphasis
on complete systems with architectures that include many submecha-
nisms running concurrently. One consequence is that different algorithms
can interact in unexpected ways. This is important for the design of a fully
functioning intelligent robot (or animal) with multiple sensors, multiple
motors, in a changing and partly unpredictable environment, with a vari-
ety of more or less independent motive generators operating asynchro-
nously under the influence of both internal processes and external events
(Beaudoin 1994).

However, I don’t think that many serious experiments of this sort were
done by AI researchers before the 1980s. Such experiments were drasti-
cally impeded by speed and memory limitations at that time. (Examples
were some of the blackboard architectures. My POPEYE system in the
late 1970s [Sloman 1978] was an attempt at a visual architecture with
different concurrent mutually interacting layers of processing, but it was
against the spirit of the time, since the influence of Marr [1982] was
dominant.)

F10. Larger virtual data chunks

Another feature of computers that became important both for AI and for
other purposes (e.g., databases, graphic design) was the ability to treat
arbitrarily large chunks of memory as “units.” There were various ways
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this could be done, including reserving a collection of contiguous (physi-
cal or virtual machine) locations as a single “record” or “array” with
some explicit information specifying the beginning and the length so that
all the memory management and memory access mechanisms respected
that allocation.

More subtle and flexible mechanisms used list-processing techniques
implemented in software (though there have been attempts to provide
hardware support to speed this up). This allowed the creation of larger
structures composed of “chained” pairs of memory locations, each con-
taining some data and the address of the next link in the chain, until a
“null” item indicated that the end had been reached. This allowed new
links to be spliced into the middle of a chain, or old ones deleted, and
also permitted circular chains (of infinite length).

The full power of this sort of mechanism was first appreciated by
McCarthy and others interested in logic and recursive functions. But it
is a generally useful technique for many purposes that have nothing to
do with AI or cognitive science, and was bound to be reinvented many
times.11

Thus, whereas machine hardware usually treats a fixed size bit-pattern
as a chunk (e.g., 8, 16, 32, or 64 bits nowadays), software-enabled
variable-size virtual structures allow arbitrarily large chunks, and also
allow chunks to grow after creation, or to have complex nonlinear topol-
ogies. The ability of humans to memorize words, phrases, poems, or for-
mulae of varying length may be based on similar capabilities in brains.
Similar considerations apply to the ability to perceive and recognize com-
plex objects with different sorts of structures, such as wheels, cars, lorries,
railway trains, etc.

As noted in Minsky (1961), various processes involved in perception,
use of language, planning, problem solving, and learning required the
ability to create structures that were as large as needed. It also allowed
structural units to be complex trees or networks, as opposed to simply
being a bit or bit pattern, or a linear array of items.

Support for variable size and variable topology data chunks is not a
requirement for all kinds of minds. For example, it seems unlikely that
insects need it. Even if bees, for instance, are able to learn routes or topo-
graphic maps with variable length and topology, this can be implemented
in chained associations, which have many of the properties of list struc-
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tures mentioned above. (This was discussed in chapter 8 of Sloman 1978,
in connection with how children learn about numbers.)

Variable size and variable structure chunking appear to be required for
many animal capabilities, including learning about terrain, learning
about social relationships, and acquiring new complex behaviors—the
kinds of problem solving “tricks” that can be learned by various mam-
mals and birds. It seems to be essential for many aspects of human intelli-
gence, including mathematical problem solving, planning, and linguistic
communication (though it has recently become fashionable in some cir-
cles to deny this.)

Of course, it is clear that in humans (and other animals) the sizes of
the manageable unitary information chunks cannot be arbitrarily large,
and likewise the data-structures in computers are limited by the ad-
dressing mechanism and the physical memory. The infinite tape of a Tu-
ring machine is an idealization intended to overcome this, though
typically unusable in practice because of performance limitations of a
memory that is not randomly addressable. For an organism with a finite
life-span operating in real time, however, there is no need to have space
to store unbounded structures.

A single animal brain can use different sorts of chunking strategies for
different submechanisms. In particular, there are various buffers used for
attentive planning or problem solving or reflective thinking, or for real-
time processing of sensory data. These all have dedicated mechanisms
and limited capacity. So there are limits on the sizes of chunks that can
be created and directly manipulated in those short-term memories, some
of which (e.g., low level visual arrays) may be much larger than others.
Similar size limits need not hold for chunks stored in a longer term mem-
ory whose chunks may be too large for instantaneous attention (e.g., a
memorized poem, or piano sonata, or route, or one’s knowledge of a
familiar town or building).

F11. Self-monitoring and self-control

Previously, when discussing sensory transducers in feature F6, I men-
tioned the possibility of computers having sensory transducers asynchro-
nously detecting and checking internal states and processes in addition
to external ones. The need for this sort of thing has been growing as more
and more robust, reliable, secure systems have been developed.
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To some extent this self-monitoring can be implemented in software,
though it is clumsy and slows things down. For example, it could use the
following design:

• Every instruction (in a class of “monitorable instructions”) saves a de-
scription of what it has just done in some data-structure.
• A process that examines the saved descriptions is time-shared with the
other processes. Note that this process may also save descriptions of what
it has done.12

It may turn out that one of the most important directions for future devel-
opments will be to extend these mechanisms. Requirements of advanced
AI systems with various kinds of self-awareness may include hardware
(firmware?) architectures that provide some kind of general-purpose self-
monitoring capability. This might use one or more additional CPUs run-
ning the reflective and meta-management processes required to enable
such self-percepts to be analyzed, parsed, interpreted, and evaluated,
quickly enough to be of use in helping to make the whole system more
intelligent.13

Simply recording the flow of machine instructions and register contents
as a collection of state vectors may not be good enough: it is too low
level, though I presume that could be done easily with current technology,
at a price. It would be better to have direct support for language-specific
or VM-specific records, recording larger chunks. I.e., the self-monitoring
mechanisms may have to be parametrizable, like the procedure invoca-
tion records in a procedure call stack.

Feature F11 is probably implemented in a very different way in neural
systems in brains: e.g., as a neuron fires and sends signals to various other
neurons as part of doing its job, there will not be much interference with
its performance if an additional connection is made to a monitoring net-
work getting information from many other parts of the system. Compare
the “Alarm” mechanisms depicted in our recent papers on the CogAff
architecture (Sloman 2000a,b, to appear; Sloman and Logan 2000).

The features of modern computing systems listed above can all be seen
as continuations of the two trends of development that started in previous
centuries and were accelerated by the advent of electronic mechanisms
that replaced mechanical and hydraulic storage mechanisms, sensors,
switches, and connections. They owe nothing to the idea of a Turing
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machine. But they suffice for all the computer-based work that has been
done in AI and cognitive science so far, in addition to all the other types
of applications of computers.

Even if computers as we know them do not suffice for future develop-
ments it seems unlikely that what will be needed is something like a Tu-
ring machine. It is more likely that speed, power, and size requirements
may have to be met by special-purpose hardware to simulate neural nets,
or perhaps chemical computers that perform huge numbers of computa-
tions in parallel using interacting molecules such as DNA. Turing ma-
chines do not appear to offer anything that is missing.

6 Are There Missing Features?

Some AI researchers may think the above list of features of computers
leaves out important features needed for AI, for example, unification,
pattern matching, rule-interpreters, and support for logical deduction.
However, I believe these additional features are required only for more
specialized AI models and applications. Here I have tried to identify what
the most general features of the physical mechanisms and the virtual ma-
chines found in computers are that make them important for AI and cog-
nitive science. This has little or nothing to do with logic, mathematics,
or Turing machines, all of which are concerned with rather specialized
types of information processing. I shall also try to show, below, that these
general features are very similar to features of brain mechanisms, as if
evolution discovered the need for these features long before we did.

I have not explicitly included arithmetical capabilities in the eleven
main features, though in current computers they are part of the infrastruc-
ture for many of the capabilities described above, for example, calcula-
tion of offsets in data-structures, handling relative jumps in instruction
counters, and scheduling and optimizing processes, etc.

One possible objection to the above list of features is that it omits an
important human capability, namely, the ability to cope with infinity.
This ability was noted by Kant (1781), who tried to explain our grasp
of infinite sets of numbers and infinite space and time in terms of our
grasp of a rule that can be applied indefinitely. Frege’s (1960) analysis
of sentences and their meanings as “compositional” pointed to our ability
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to grasp indefinitely complex grammatical and semantic structures. This
ability was stressed by Chomsky (1965), who claimed that human beings
have a kind of infinite competence in their ability to understand or gener-
ate sentences of unbounded complexity, for example, arithmetical sen-
tences, and sentences like:

The cat sat on the mat.
The brown cat sat on the mat.
The big brown cat sat on the mat.
The big brown cat sat on the mat in the corner.
. . .

The obvious objection is that human life is finite and the brain is finite,
and any individual will produce only a finite number of sentences before
dying, and would in any case be unable to understand sentences above
a certain length. To this Chomsky replied that even though there are per-
formance limitations that get in the way of applying infinite competence,
the competence exists nevertheless—an answer that left many uncon-
vinced. Questions about the capabilities of computers generate a similar
disagreement, as we shall see. One of the important tasks for a theory of
mind and computation is to resolve the apparent conflict between infinite
competence and bounded physical resources. Both sides are saying some-
thing correct, but they talk past each other.

The infinite (or indefinitely extendable) tape of a Turing machine was
designed to support this kind of infinite, or unbounded, competence: that
was part of Turing’s motivation for the unbounded tape, since he was
trying to account for human mathematical abilities. Human mathemati-
cal abilities appear to be unbounded in various ways. For instance, there
is no largest number that we can think of—think of any large number,
and we can still think of its square. Likewise, there is no largest algebraic
expression whose meaning you can grasp. It seems that for any large
expression, you can always append “� 1” and still understand it, at least
with a bit of help, for example, by introducing a new name for the com-
plex expression, such as “BigExp,” and then thinking about BigExp with
“� 1” appended.

Must this infinite capability be built in to the underlying physical hard-
ware of computers if they are to be able to represent human minds? If
so, modern computers would fail, since they have finite memories, and
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although it is often possible to add memory to a computer, it will have
bounded addressing capabilities that limit the size of addressable mem-
ory. For example, a machine with only N-bit addressing mechanisms can
make use of only 2N distinct locations.

The situation is even more complex than this suggests, for two reasons.
One is that additional addressing capabilities can be built on top of the
hardware-addressing mechanisms, as happens when a computer uses a
segmented memory, where one address selects a segment and another
selects the location in the segment, or when it uses a large backing store,
or uses internet addresses to refer to a larger space of possibilities than
it can address directly in RAM. However, even those techniques merely
enlarge the address space, which remains finite.

There is a more subtle point, which does not depend on extending the
underlying addressing limits. We know that existing computers, despite
their finiteness as physical mechanisms, can provide implementations for
infinite virtual machines, even though the implementations, if fully tested,
turn out to be incomplete. This is because they can store and apply algo-
rithms that have no bounds.

For instance, in many programming languages it is possible to give a
recursive definition of the factorial function, which expresses no limit to
the size of the input or output numbers. When such a function runs on
a computer, either in compiled or interpreted mode, it accurately executes
the algorithm for computing the factorial of the given number, up to a
point. However, the implementation is usually incomplete in that beyond
a certain range of integers the process aborts with some sort of error
instead of computing the correct answer.

This does not stop us (correctly) thinking of this as an (albeit only
partial) implementation of an infinite virtual machine. That is because
every process can be described at different levels of abstraction, and there
is a level of abstraction at which the process can be described perfectly
correctly as running the recursive algorithm, which does not include any
size limits. That is exactly what the computer is doing at that level of
description, even though how it is doing it raises problems if too large a
number is given as input.

The point can be expressed by considering which generalizations are
true descriptions of the process. For example, the virtual machine that is
running on the computer has the feature that if it is given the task of
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computing the result of dividing the factorial of any positive number N
by the factorial of N–1, the result will be N. Similarly, we can say of a
sorting algorithm that the result of applying it to any list L will be a new
list the same length as L. In both cases the actual physical implementation
would break down if the input were too large. If that happened only
because there was not enough RAM it might be possible, on some modern
computers, to add another bank of memory while the machine was run-
ning so as to allow the process to continue; or it might be possible to kill
some other less important processes so as to make more memory avail-
able. In that case we can see that the memory limit is a contingent or
inessential feature of the implementation.

We can now see that the fact that a process might run out of memory
is analogous to the fact that a stray alpha-particle might corrupt the mem-
ory, or the power supply might fail, or the building containing it might
be struck by a large meteorite, etc. There are vast numbers of possible
occurrences that might prevent the normal completion of the calculation,
and we don’t feel we have to mention all of these when asking what result
the computer would produce if given a certain task. There is a perfectly
natural way of thinking about processes running on a computer that
treats running out of memory as analogous to being bombed. If the build-
ing were adequately defended, radar might detect the bomb and divert
and destroy it before it hit the building. Likewise, additional mechanisms
might protect the process from running out of memory.

It is not easy to extend the addressing limits of a machine at run time.
However, it is not beyond the bounds of possibility to have a machine
that generalizes what existing paged virtual memory systems do, namely,
detect that there is not enough space in the main fast memory, move some
unused pages out, and thereafter keep changing the “working set.” A
more general virtual memory mechanism for a computer that could ex-
tend its usable physical store indefinitely would need some addressing
scheme that did not use any fixed length structure for specifying locations.
In fact, it could in principle use one or more Turing machines with in-
definitely extendable tapes. Whatever method is used, the process of spec-
ifying the next location to access and the process of fetching or storing
something there might get slower and slower, as happens in a Turing
machine.
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The point of all this is that when something like the standard recursive
factorial algorithm runs on a computer the fact that there is a limit to
the size of input it can handle is an inessential feature of the current imple-
mentation, which might be changed while the machine is running. Thus
we can ask counterfactual questions about what the result would be if the
input were the number 2,000,000 while assuming that implementation
obstacles are circumvented as they turn up, including such obstacles as
the limited size of the physical universe. Of course, if someone intended
the question to be interpreted differently, so that the answer takes account
of the current mechanisms in the machine, or the run time modifications
that are currently feasible, then this constraint could be explicitly in-
cluded in the question, and a different answer might then be relevant, for
example, “the computer would run out of memory before finding the
result.” In exactly the same sense, human brains, not least the brains of
expert mathematicians, can include implementations of infinite machines,
albeit partial and buggy implementations insofar as the machines will
falter or fail if given inputs that are too complex, or, for that matter, if
tiredness, a distraction, or alcohol or some other drug interferes with
performance.

In short, then, although no human mind can actually do anything infi-
nite because of its current implementation, nevertheless humans (and pos-
sibly some other animals) have unbounded virtual machines as part of
their information-processing architecture. We already know that such
virtual machines can be implemented usefully in physical machines that
do not support the full theoretical range of functions like factorial, which
they partially implement. Thus neither human minds nor robots with hu-
manlike intelligence need have the infinite capacity of a Turing machine
in the physical implementation in order to be running a virtual machine
with unbounded competence.

What is more, insofar as the human architecture includes a meta-
management layer that can (to some extent) inspect the operations of the
system, it is able to discover such facts about itself. This is the source of
much of the philosophy of mathematics, which is concerned with, among
other things, the ability of humans to think about infinite sets. Like-
wise, a robot whose mind is implemented on a computer and includes
a meta-management layer could discover that it had a kind of infinite
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competence, and might then become puzzled about how that could be
implemented in a finite brain.

All this leaves open the question what precisely is going on when we
think about infinite sets such as the set of positive integers, or the trans-
finite ordinal consisting of the set of all powers of two followed by the
set of all powers of three, followed by the set of all powers of five, and so
on for all prime numbers. I have discussed this inconclusively in Sloman
(2001b) and will not pursue the matter here.

7 Some Implications

The important features of computers listed above (as we know them now,
and as they may develop in the near future) have nothing to do with logic,
recursive functions, or Turing machines, though systems with the features
that are important in computers can (subject to memory limits) model
Turing machines and can also be modeled by Turing machines, albeit
excessively slowly (assuming that part of a requirement for a functioning
mind is to react in time to seize opportunities and avoid dangers).

Turing machines and modern computers can both also model neural
nets, chemical soups using DNA molecules to perform computations, and
other types of information-processing engines.

Given all this, the view of computers as somehow essentially a form
of Turing machine, or as essentially concerned with logic, or recursive
functions, is simply mistaken. As indicated above, there is such a mathe-
matical notion of computation, which is the subject of much theoretical
computer science, but it is not the primary motivation for the construc-
tion or use of computers, nor is it particularly helpful in understanding
how computers work or how to use them. A physically implemented Tu-
ring machine (with a finite tape) is simply a special case of the general
class of computers discussed here, though linking it to sensory or motor
transducers might cause problems.

Neither is the idea of a Turing machine relevant to most of the capabili-
ties of human and animal minds, although, as explained above, there is
a loose analogy between a Turing machine and some of the formal capa-
bilities of human minds, including the ability to think and reason about
infinite structures. This ability must have evolved relatively late and does
not play an important role in the vast majority of everyday mental pro-
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cesses. It does not appear to be relevant to most animals or to very young
children if, as seems likely, these abstract reasoning abilities develop dur-
ing childhood rather than being there from birth.

8 Two Counterfactual Historical Conjectures

The preceding remarks are closely connected with two conjectures:

1. The development of computers was an inevitable consequence of the
availability of electronic technology that provided the potential to over-
come the limitations of previously existing machines for controlling other
machines, and machines for managing and analyzing information (e.g.,
commercial databases, airline reservation systems, etc.). Consider what
happened during World War II: the need to decipher encrypted messages
accelerated the development of electronic calculators. Most of this would
have happened anyway, even if Turing and others had not done their
metamathematical work on computation, computability, derivability,
and completeness.
2. If Turing had never existed, or had never thought of Turing machines,
and if computers with the sorts of features listed above had been devel-
oped under the pressure of requirements for increasingly sophisticated
(and fast) control of physical machines and information processing for
practical purposes, then much of AI and cognitive science would have
developed exactly as we know them now. AI would not miss the concept
of a Turing machine.

Some people interested in logic, theorem proving, etc. might have no-
ticed that computers could be used to implement logic machines of vari-
ous kinds. But there would have been no notion that computers were
somehow inherently logical, or inherently related to mathematical theo-
rems and their proofs.

These two conjectures follow from the argument that computers were
and are, above all, engines for acquiring, storing, analyzing, trans-
forming, and using information, partly to control physical machines and
partly to control their own information processing. In this they are just
like biological organisms—and that includes using the information both
to control complex physical and chemical systems and also to control
internal processing within the controller, including processing in virtual
machines.

If we think of computers in this way, then it is an empirical question
whether a particular physical object does or does not have the kinds of
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capabilities listed above. It is not true that every physical object has the
collection of features F1 to F11, or even the simpler set F1 to F6. How-
ever, finding out which features a very complex machine actually has can
be a very difficult reverse-engineering problem. The best available tools
at a particular time (e.g., brain scanners) may not be adequate for
the job.

Notes

1. Turing machines are often taken to be especially relevant to so-called good
old fashioned AI or GOFAI. This term, coined by Haugeland (1985), is used by
many people who have read only incomplete and biased accounts of the history
of AI, and have no personal experience with working on the problems.

2. Information about looms (including Jacquard looms controlled by punched
cards), Hollerith machines used for processing census data, Babbage’s and Love-
lace’s ideas about Babbage’s analytical engine, and calculators of various kinds
can be found in Encyclopedia Brittanica. Internet search engines provide pointers
to many more sources. See also Hodges (1992).

3. Pain (2000) describes a particularly interesting analog computer, the “Fi-
nancephalograph,” built by Bill Phillips in 1949. This used hydraulic mechanisms
to model economic processes, with considerable success.

4. I conjecture that this mathematical approach to the foundation of mathematics
delayed philosophical and psychological understanding of mathematics as it is
learned and used by humans. It also has impeded and continues to impede the
development of machines that understand numbers as humans do. Our grasp of
numbers and operations on numbers is not just a grasp of a collection of formal
structures but rather depends on a control architecture capable of performing
abstract operations on abstract entities.

5. For more on the parallel between energy and information, see the slides in the
following directory: http:/ /www.cs.bham.ac.uk/�axs/misc/talks/.

6. There is a “theological” notion of autonomy, often referred to as “free will,”
which requires actions to be nonrandom yet not determined by the ballistic or
online information available to the agent. This was shown by David Hume to be
an incoherent notion.

7. However, many designers of electronic computers did not appreciate the im-
portance of this and separated the memory into code and data, making it difficult
to treat program instructions as data, which incremental compilers need to do.
This caused problems for a number of AI language developers.

8. It is possible that some formalisms that cannot be manipulated by Turing ma-
chines, e.g., formalisms based on continuously varying geometric shapes, will turn
out to be relevant to goals of AI, refuting the claimed universality of Turing ma-
chines, but that will not be discussed here.
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9. I have produced fragments of the following list of features previously, e.g., in
chapter 5 of Sloman (1978), but have never really put them all together properly.
The list is still provisional, however. I am not aware of any other explicit attempt
to assemble such a list, though I believe that all the points are at least intuitively
familiar to most practicing AI researchers and software engineers.

10. In Sloman (1985, 1987), I discuss how the system can interpret these sensory
changes as due to events in an external environment whose ontology is quite
different from the machine’s internal ontology.

11. However, the usefulness of general purpose list-processing utilities is usually
severely restricted in programming languages that are strongly statically typed,
as are most conventional languages.

12. A distributed architecture for self-monitoring using mutual metalevels is out-
lined in Kennedy (1999).

13. For discussions of the role of a meta-management layer in human minds, see
Beaudoin (1994), Wright et al. (1996), Sloman (1997, 1998, 1999, 2000a,
2001a), and Sloman and Logan (2000).
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5
The Practical Logic of Computer Work

Philip E. Agre

Editor’s Note
Computationalism, or “Strong AI” as it is often called, is founded on a collection
of theories about the mind, in particular a theory of representation holding that
knowledge consists in a model of the world, a theory of perception attempting
to build a mental model by working backward from sense-impressions, and a
theory of action viewing behavior as resulting from the execution of plans. Phil
Agre isolates five conceptual tensions inherent in this collection of theories, which
underwrite AI’s history (and with it the history of computationalism) and deter-
mine its practical logic of research: the oppositions between mind and world,
mind and body, mental activity and perception, plans and behavior, and finally
abstract ideals and concrete things. Having accompanied AI from its very begin-
nings, these five tensions are deeply yet tacitly embedded in the intellectual dis-
course of the field (i.e., in its language and methods), and often surface to cause
a bewildering array of difficulties in computational practice. Although various
strategies to cope with these tensions are discussed, elaborated, accepted, or re-
jected in written expositions, Agre points out, the tensions themselves are not
recognized, reflected on, or accepted as part of Western intellectual history, but
put aside and compensated for, often by a formalist attempt to cleanse language
and liberate AI of all its cultural and contextual underpinnings. Not surprisingly,
these undigested tensions are still very much present and reveal themselves in a
recurrent pattern that Agre calls “dissociation”: the two concepts underwriting
each opposition are overtly recognized as distinct by the community, but are then
covertly (and unintentionally) conflated in particular writings. While the pattern
of coping with these tensions is the same, instances of dissociations may take
shape in various ways, as exemplified by Agre for each of the five oppositions.
The dissociation between mind and body, for example, is apparent from the typi-
cal division of labor in “planning” in AI, where “the mind” generates the plan,
and “the body” executes it. The dissociation between mind and world, on the
other hand, results from the distinction between the inside and the outside of an
agent, and eventually transforms into a conflation of the two by employing the
very notion of “world model” for the idealized, complete representation of the
world within the agent. Yet another dissociation, that between plans and be-
havior, becomes eventually conflated by using the term “plan” to refer to any
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structure in behavior (e.g., a sequence of actions). In the end, Agre blames these
unresolved tensions on a certain kind of transcendentalism in AI, which attempts
to “hold something apart from and above material reality.” Rather than trying
to view the world as negative and chaotic and the mind as positive and in charge
of ordering the worldly chaos, he concludes that AI needs to recognize the order
inherent in the world and thus advocates a “critical” technical practice that may
be able to listen to and learn from reality by building systems and understanding
the ways in which they do and do not work.

1 Inscription Errors

In his reading of John Dee’s sixteenth-century commentary on Euclid,
Knoespel (1987) describes what he calls the “narrative matter of mathe-
matics”: the discursive work by which an artifact such as a drawing on
paper is exhibited as embodying a mathematical structure such as a Eu-
clidean triangle. This process, which is familiar enough to modern tech-
nologists as the work of mathematical formalization, consists of a
transformation of language into something quite different from language,
namely mathematics, and its challenge is to circumvent or erase those
aspects of language that are incompatible with the claim that mathemat-
ics represents the world in a transparent, unmediated, ahistorical way.
Knoespel explains the larger significance of the point like this:

. . . the reification of geometry in architecture and technology has enormous impli-
cations for language. Once geometry becomes manifest in artifacts, these artifacts
retain an authority radically different from that accessible to natural language.
By virtue of their being manifested as physical objects they acquire what appears
as an autonomy utterly separated from language. The apparent separation of both
architecture and technology from language has great significance, for it works
to repress the linguistic framework that has allowed them to come into being.
(1987: 42)

Brian Smith (1996) makes a similar point when he speaks of “inscrip-
tion errors”: inscribing one’s discourse into an artifact and then turning
around and “discovering” it there. The hidden connections between arti-
facts and language are particularly significant in the case of another large
category of artifacts, namely computers. The design of a computer begins
with formalization—an intensive and highly skilled type of work on lan-
guage. A computer is, in an important sense, a machine that we build so
that we can talk about it; it is successful if its operation can be narrated
using a certain vocabulary. As the machine is set to running, we too easily
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overlook the complicated reflexive relationship between the designer and
user on which the narratability of the machine’s operation depends (see
Suchman and Trigg 1993). The corpus of language that was transformed
in producing the machine, like any discourse or text, is necessarily embed-
ded in an institutional and historical context, and the machine itself must
therefore be understood as being, in some sense, a text (see Woolgar
1991).

For practitioners of a computational research tradition such as artificial
intelligence (AI), however, the textuality of computers is a distraction at
best, to the extent that it is even comprehensible as an analysis of techni-
cal work. Like John Dee, the practitioners of AI with whom I worked
for several years, and among whom I was trained, regarded formalization
very differently, as a means precisely of freeing their work from the unrul-
iness and imprecision of vernacular language. They believed that, by de-
fining their vocabulary in rigorous mathematical terms, they could leave
behind the network of assumptions and associations that might have
attached to their words through the sedimentation of intellectual history.
As a result, I want to argue, the field of AI has been left with no effective
way of recognizing the systemic difficulties that have arisen as the unfin-
ished business of history has irrupted in the middle of an intendedly ahis-
torical technical practice. My purpose in diagnosing this situation is not
to discredit mathematics, technology, or even AI. Instead, I want to envi-
sion a critical technical practice: a technical practice within which such
reflection on language and history, ideas and institutions, is part and par-
cel of technical work itself (Agre 1995, 1997b).

2 Patterns of Dissociation

My point of departure is what AI people themselves have taken to calling
Good Old-Fashioned AI (GOFAI)—the complex of metaphors and tech-
niques from which the great majority of the AI literature until recently
has begun. Even those projects that do not fully embrace this standard
theory are usually well understood as incrementally relaxing its assump-
tions in an attempt to resolve its seemingly inherent tensions.

The standard theory encompasses, among other things, particular theo-
ries of representation, perception, and action:
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• The theory of representation holds that knowledge consists in a model
of the world, formalized (when it is formalized) in terms of the Platonic
analysis of meaning in the tradition of Frege and Tarski. Individual things
in the world (people, robots, places, tools, blocks, and so on) are repre-
sented on a one-for-one basis by constant symbols in a formal or informal
logic, and regularities, conventions, and logical connections in the world
are represented by quantified propositions.
• Perception is a kind of inverse optics (Hurlbert and Poggio 1988):
building a mental model of the world by working backward from sense-
impressions, inferring what in the world might have produced them. The
computational neurophysiologist David Marr (1982) gave methodologi-
cal form to this metaphor with his suggestion that the visual cortex con-
sists of a set of modules that reconstruct a detailed three-dimensional
model of the world by reasoning backward from sense impressions to
the processes in the world that must have produced them.
• Action, finally, is conducted through the execution of mental constructs
called plans, understood roughly as computer programs. Plans are con-
structed by searching through a space of potential future sequences of
events, using one’s world models to simulate the consequences of possible
actions.

This theory is extraordinarily productive, in the sense that it provides
a plausible starting point for research and model-building on nearly any
topic of human or machine life. It is accordingly the basis of a vast litera-
ture. It is founded in several oppositions, and I want to focus on the
specific way in which these oppositions figure in the history of the field.
They are as follows:

1. mind versus world
2. mental activity versus perception
3. plans versus behavior
4. the mind versus the body
5. abstract ideals versus concrete things

Throughout AI, one encounters a certain pattern in the handling of
these oppositions. I will refer to this pattern as “dissociation.” Dissocia-
tion has two moments: an overt distinction between the two terms and
a covert conflation of them. As the language of overt and covert may
suggest, dissociation is not consciously avowed. It must be sought in the
internal tensions of texts and in the dynamics of technical work. Dissocia-
tion occurs in many ways, none of which is fixed or stable. To the con-
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trary, much of the history of AI can be understood as attempts to
comprehend and manage the signs of trouble that originate in dissocia-
tion and that AI practitioners can recognize within the conceptual system
of the field. One purpose of a critical technical practice is to recognize
such troubles more fully and to diagnose them more deeply.

It would be impossible to demonstrate in the entire literature of AI the
workings of the five dissociations that I enumerated above. Each AI text
needs to be treated on its own terms, and no strong generalizations are
possible. Instead, I will review the workings of the five dissociations as
they become manifest in particular texts and projects. It would require
a separate and much larger effort to trace the evolution of the various
dissociations through the historical development of the literature.

3 Mind versus World

The distinction between mind and world has obviously been construed
in many ways by different philosophical systems, but in AI it has been
operationalized in terms of a sharp qualitative distinction between the
inside of the machine and the world outside. This image of the mind as
an internal space, what Lakoff and Johnson (1980) call the “container”
metaphor, underlies a large proportion of the discourse of AI (Agre
1997a). The difficulty is that it is hard to maintain accurate knowledge
of a world that is understood to be so distinct (cf. Bordo 1987). Viewed
at such a distance, the world seems profoundly uncertain, and the likeli-
hood that other people and things will change the world according to
their own agendas makes ordinary life seem nearly impossible.

As a result, it is a common idealization in the field to suppose that
one’s world model is complete in every relevant respect and stays up-to-
date automatically. Mind and world, having been distinguished at the
outset, are covertly conflated in the very concept of a world model—a
simulacrum of the world in one’s head. This conflation of mind with
world is facilitated by the use of research “domains” such as geometry
that are readily understood in mathematical terms (cf. Walkerdine 1988).
This practice first took hold with the work on logical theorem proving
by Newell, Shaw, and Simon (1960) and on chess by Newell and Simon
(1963). Even in domains that involve physical objects, it is common for
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AI people (and computer scientists in general) to employ the same words
to name both the representations in a machine and the things that those
representations represent. The erasure of language that Knoespel discov-
ered in Dee is here employed on a grand scale to facilitate the conflation,
not just of mathematics and the physical world, but of representation
and reality in general.

The point is not that AI researchers do this deliberately. Quite the con-
trary, their work is well understood as an attempt not to do it. Having
acquired the conflation of mind and world through the discursive prac-
tices they inherited from earlier intellectual projects, AI researchers con-
tinually find the conflation reinforced through the practical logic of their
research. If I may risk a mathematical metaphor, the dissociative rela-
tionship of mind and world is an attractor: although unsatisfactory as a
theory of human life, the dissociation is also difficult to escape by incre-
mental modifications because the covert conflation of mind and world
solves, even if pathologically, a problem for which no less pathological
solution is known. The mathematical metaphor here is misleading,
though, in that the terrain is a function of consciousness: which “moves”
in the space of research proposals seem comprehensible and well moti-
vated is itself a function of the critical awareness through which the symp-
toms of technical trouble are perceived and interpreted. The point,
therefore, is not that AI researchers believe that the mind and world are
the same, or that they are incapable of grasping the idea that they are
different. Rather, practices that tend to conflate the two are dispersed
throughout the discourse and practices of the field; researchers are social-
ized into the discourse and practices through their training in the field,
and the field does not provide the critical tools that would be necessary
to detect this pattern and reverse it. So long as the larger pattern remains
ungrasped, the attractor retains its grip on the research.

4 Mental Activity versus Perception

AI originated as part of the cognitivist movement whose other was behav-
iorism. In combating the behaviorist hegemony, the task of cognitivism
was to present itself as scientific by the same standard as behaviorism
did, while also opposing itself as squarely as possible to behaviorism on a
substantive level. As Karl Lashley noted in an influential early symposium
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paper (1951), the behaviorist theory of action was stimulus-chaining: the
idea that each action in a serially ordered sequence arises as a response
to, among other things, the effects of the previous action in the sequence.
Lashley, however, observed that the elementary actions involved in
speech—individual phonemes and words—have no necessary relation to
one another. The same phoneme, for example, might be found adjacent
to a large number of other phonemes in the context of particular words
(1951: 115–116). It is therefore impossible that stimulus-response con-
nections among particular linguistic elements could explain the ways in
which they are arranged in any particular utterance. He therefore urged
that serially ordered action must be understood in terms of an internal
organizing principle.

In his effort to oppose himself to the behaviorist story, Lashley equivo-
cates on the role of perception in organizing behavior. A fair-minded
reader will reconstruct his argument as advocating a two-factor theory
of behavior: continual perceptual inputs into the ongoing mental process
(1951: 112, 131), and continual outputs from that process in the form
of spoken phonemes and other actions drawn from a language-like reper-
toire. But in fact Lashley provides little substantive account of the role
of perception, emphasizing instead that serial behavior is planned and
organized in advance and performed in scripted wholes. What is more,
his use of language as a paradigm case of action leaves little room for
perceptual input. He imagines linguistic utterances to arise through the
interaction of three factors: the “expressive elements,” including pho-
nemes and words, a “determining tendency” that encodes the informa-
tion to be conveyed without itself having any internal structure, and the
“syntax of the act,” which he defines as “an habitual order or mode of
relating the expressive elements; a generalized pattern or schema of inte-
gration which may be imposed upon a wide range and a wide variety of
specific acts” (1951: 122).

Thus begins the practice in cognitive science of using language, and
specifically the production of grammatical utterances, as the prototypical
case of human action. Note, however, that the resulting pattern of behav-
ior results solely from the idea one wishes one’s actions to “express,”
and not from any stimulus in the world. This restriction can go unnoticed
in the case of language because phonemes and words follow one another
so rapidly, and their formal relationships are so densely organized, that
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the outside world has little time to influence their ordering. Of course,
the ongoing interaction between speakers and hearers can influence an
utterance as it unfolds (Goodwin 1981), but this idea plays no role in
Lashley’s argument, nor indeed in the mainstream of cognitive science.

Dissociation in Lashley takes a distinct form: rather than uniting bodily
through systematic ambiguity, the two terms are brought together in two
separate theories that are then superimposed. One of these theories envi-
sions action arising through a formal order being imposed on a popula-
tion of expressive elements; this theory of the mental scripting of action
is given the more overt billing. The other theory imagines the mind to be
a holistic process—“a great network of reverberatory circuits, constantly
active” (1951: 131)—into which perception is simply one more influence
among many. The two theories are attached at various points, but not so
closely that the impossibility of perception’s role ever becomes obtrusive.

5 Plans versus Behavior

Although rarely cited in the modern literature, the locus classicus for AI
discussion of plans is Miller, Galanter, and Pribram’s Plans and the Struc-
ture of Behavior (1960). Miller, Galanter, and Pribram’s starting point,
like Lashley’s, was the intellectual dominance of behaviorism. Their or-
ganizing question, therefore, is whether something must be imagined to
mediate between the observable categories of stimulus and response.
They find half of their answer in Boulding’s (1956) notion of “the Im-
age”—a vague precursor to the concept of a world model. They observe
that the Image explains knowledge and not action, and they ask why
behavior has any structure. The reason, they suggest (1960: 16), is be-
cause behavior arises from a mental entity that has that same structure,
namely a Plan. (They capitalized the word.) They, like Lashley, would
seem to have shifted from a theory whose only explanatory factor is per-
ception to a theory in which perception, and thus the outside world as
a whole, plays no role at all.

Although it is openly speculative and presents no computer demonstra-
tions or laboratory experiments of its own, Plans and the Structure of
Behavior served as a rhetoric for the emerging cognitivist movement. Its
most distinctive rhetorical device was a systematic conflation of behavior
and Plans. To this day, it is customary in AI research to refer to any
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structure in behavior as a plan (lower case now, but with the same mean-
ing), not as a hypothesis but as a simple matter of terminology. Thus,
for example, Cohen et al. (1989; cited by Vera and Simon 1993: 26),
echoing the earliest arguments of Lashley and Miller, Galanter, and
Pribram, ascribe to my own work (Agre and Chapman 1987) the idea
that “longer-term plans can emerge from compositions of reflexes.” The
very suggestion is not coherent unless “plans” (in the mind) are confused
with “sequences of action” (in the world).

In fact, Miller, Galanter, and Pribram took Lashley’s dissociation be-
tween perception and thought a step further. Close reading demonstrates
the presence of two distinct theories: one speaking of discrete, prescripted
Plans and another speaking of a single Plan that unfolds incrementally
through time. Thus, for example, having defined their concept of a Plan as
something like a computer program that controls behavior, they casually
amend their definition by saying: “Moreover, we shall also use the term
‘Plan’ to designate a rough sketch of some course of action, just the major
topic headings in the outline, as well as the completely detailed specifica-
tion of every detailed operation” (1960: 17). The former theory, the one
that describes a repertoire of discrete Plans, is the official theory: it is the
theory that explains the structure of behavior. Yet it is an unsatisfac-
tory theory in many ways. Computer programs, for example, do need to
be spelled out far in advance, and they must anticipate every possible
contingency of their execution; and so the official theory is overlaid with
the unofficial theory of a single Plan that can be constructed in a more
improvisational manner as an ongoing response to perception. The au-
thors return to the matter again by offering a theory of Plans based on
then-current ideas of servocontrol (1960: 26–39). This third theory—the
so-called TOTE units (test, operate, test, exit) that supposedly provide a
“unit of analysis” for Plans—is laid atop the earlier two with little overt
sense of their incompatibility; in any case, it is the equivocal relation be-
tween the first two theories that set the agenda for subsequent research.

Most of this subsequent research focused exclusively on the construc-
tion of discrete plans (Allen, Hendler, and Tate 1990; Georgeff 1987),
thus obviating the need for a theory of improvisation. It is, however,
computationally very difficult to construct a Plan that will work reliably
in a world of any great complexity. The problem is not precisely the size
of the space of possible plans, since subtle use of probabilistic search
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techniques can overwhelm even quite large planning search problems
(Gomes, Selman, and Kautz 1998). Rather, in a dynamic world it is essen-
tially impossible to know everything that would be needed to conduct
such a search. As a result, the second of Miller, Galanter, and Pribram’s
theories—the incremental, on-the-fly construction of a partial Plan—re-
surfaced in the form of “reactive planning” in the 1980s (e.g., Firby 1987;
Fox and Smith 1984). One term of the dissociation, having been sup-
pressed, returned. Yet when it did so, its internal relationship to the domi-
nant theory was hardly recognized, and research in that era saw several
attempts to resynthesize the two approaches (e.g., Payton, Rosenblatt,
and Keirsey 1990), reproducing in the architecture of cognitive models
the conflation that occurred more covertly in Miller, Galanter, and
Pribram’s text.

6 The Mind versus the Body

The AI literature often dissociates mind and body, and here again the
covert conflation between the two terms takes a different form. It can
be seen in the first computer implementation of the plans-and-execution
theory, the STRIPS model of Fikes, Hart, and Nilsson (1972), which au-
tomatically constructed plans and then executed them by directing the
movements of a robot. These authors’ dilemma is that it is hard to predict
in enough detail how the world will unfold as the robot executes its plans,
and yet it is so expensive to construct a new plan that it seems necessary
to execute as much of each plan as possible. At one point they suggest
simply executing the first step of each new plan and then constructing a
new plan from scratch, but they reject the idea as impractical.

One of the novel elements introduced into artificial intelligence research by work
on robots is the study of execution strategies and how they interact with planning
activities. Since robot plans must ultimately be executed in the real world by a
mechanical device, as opposed to being carried out in a mathematical space or
by a simulator, consideration must be given by the executor to the possibility
that operations in the plan may not accomplish what they were intended to, that
data obtained from sensory devices may be inaccurate, and that mechanical toler-
ances may introduce errors as the plan is executed.

Many of these problems of plan execution would disappear if our system gener-
ated a whole new plan after each execution step. Obviously, such a strategy would
be too costly, so we instead seek a plan execution scheme with the following
properties:
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1. When new information obtained during plan execution implies that some re-
maining portion of the plan need not be executed, the executor should recognize
such information and omit the unneeded plan steps.
2. When execution of some portion of the plan fails to achieve the intended re-
sults, the executor should recognize the failure and either direct reexecution of
some portion of the plan or, as a default, call for a replanning activity. (Fikes,
Hart, and Nilsson 1972: 268; emphasis added)

The dissociation between the mind, which constructs plans, and the body,
which executes them, manifests itself here in a seeming attempt by plan-
ning and execution to become reunited into a single compound process,
or at least to become intertwined with one another in rapid alternation.
The impracticality of the dissociation is revealed through the process of
system-building.

It is here, in the design and construction of systems, that AI learns most
of its lessons, and not in formal experimentation with the systems once
they are running. If I seem to anthropomorphize the desire of mind and
body to reverse their dissociation, this is only to give voice to a common
experience of system designers: the tangible pressures that seem to push
the design process in one direction or another.

7 Abstract Ideals versus Concrete Things

The final dissociation is between abstraction and concrete reality in the
tradition of Fregean semantics. Historically, theories of semantics have
drifted between two poles: psychologism, the theory that meanings are
mental entities, and Platonism, the theory that meanings reside in a time-
less, extensionless realm of ideals. Yet this distinction has made remark-
ably little difference in practice. The mind, as it has been constructed
through the system of dissociations that I have already described, resem-
bles the realm of Platonic ideals in many ways. The use of mathematical
domains helps to blur the distinction between Platonic ideals and real
human ideas, inasmuch as mathematical entities resemble Platonic ideals
and are now routinely employed to formalize Platonic theories of the
semantics of both language and logic.

The problem arises whenever the mind must be understood as partici-
pating in the historical, causal world. The problem manifests itself in
many ways, but it can be clearly grasped already in Frege’s own theory.
Frege’s theory of sense, that is, the cognitive content of a representation,
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conflates incompatible goals. The sense of a representation is supposed
to be a Platonic ideal, independent of place and time, and yet it is also
held to incorporate specific objects such as a car or a person. The problem
is particularly acute in the case of indexical representations, whose sense
is plainly dependent on the concrete historical circumstances of their use.
I can use words like “here” and “now” perfectly well without knowing
where I am or what time it is, and yet the sense of my utterance involves
those specific places and times. The trouble arises because Frege’s theory
of sense, and a whole subsequent tradition of semantic theories, attempts
to capture the content of thoughts and utterances without reference to
the embodied activities and relationships with which they are used. Burge
(1979: 426) summarizes the problem:

Frege appears to be caught between two objectives that he had for his notion of
sense. He wanted the notion to function as conceptual representation for a thinker
(though in principle accessible to various thinkers, except in special cases). And
he wanted it uniquely to determine the referents of linguistic expressions and
mental or linguistic acts. The problem is that people have thoughts about individ-
uals that they do not individuate conceptually.

As the realm of Platonic abstractions is conflated with the realm of
concrete activity, the semantic formalism takes on a covertly material
character and the theory of mind takes on a covertly disembodied
character.

8 Conclusion

These, then, are five dissociations that have organized the practical logic
of research within the leading tradition of artificial intelligence. The inter-
action among these dissociations defines a complex and variegated field
whose contradictory pressures must be reconciled somehow in each proj-
ect in its own unique way. In most cases I have chosen particular projects
to illustrate the practical logic of dissociation. Other projects may well
be discovered to manage the tensions in a different way. Yet few AI proj-
ects, if any, have reflected a systematic understanding of them, much less
any resolution.

Where do these dissociations originate? Do all conceptual distinctions
lead to dissociations when they are embodied in technical work? When
AI work is framed in terms of these dissociations, it becomes obvious
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that AI is part of the history of Western thought. It has inherited certain
discourses from that history about matters such as mind and world, and
it has inscribed those discourses in computing machinery. The whole
point of this kind of technical model-building is conceptual clarification
and empirical evaluation, and yet AI has failed either to clarify or to
evaluate the concepts it has inherited. Quite the contrary, by attempting
to transcend the historicity of its inherited language, it has blunted its
own awareness of the internal tensions that this language contains. The
tensions have gone underground, emerging through substantive assump-
tions, linguistic ambiguities, theoretical equivocations, technical im-
passes, and ontological confusions.

Yet the project of artificial intelligence has not been a failure. The disci-
pline of technical implementation, considered in another way, really has
done its job. The dissociations of AI have refused to go away, and in the
practical work of model-building they have ceaselessly reasserted them-
selves. As AI practitioners have tried to manage all of the many cross-
cutting tensions in their work, they have made the generative principle
of those tensions ever more visible to those with the critical means to
look. This is the motivation for my advocacy of a critical technical prac-
tice and the basis of my positive hopes for it. Bad theories of human
existence, we might conjecture, do not simply fail to correspond to the
data; they are in fact impracticable, in that nobody and nothing could
live in the ways they describe. As AI people learn to expand their under-
standing of the ways in which a system can “work” or “not work,” AI
can perhaps become a means of listening to reality and of learning from
it. The key to this transition is a reversal of the ideological function of
technology that Knoespel described at the outset. The texts that we in-
scribe in computing machinery are texts in the fullest sense. In particular,
they always have greater depths than we are aware of, and they always
encode sophisticated strategies for managing the contradictory experi-
ence of the world that we have inherited from the past. Computers and
formalization do not eliminate all this; quite the contrary, they make it
more visible.

And what exactly has AI made visible in this fashion? Running through
all of the dissociations I mentioned is a recurring theme, a kind of tran-
scendentalism that attempts to hold something apart from and above ma-
terial reality. The transcendentalist philosophy of AI is that the outside
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world is, to use the military language that AI took over during the 1980s
(Hendler 1990), uncertain, unpredictable, and changing. The dissocia-
tions portray the world as a negative, chaotic principle and the mind as
a positive, ordering principle. What we might tentatively conclude, in the
irreducibly intuitive and practical way in which such conclusions might
possibly be drawn from technical work, is that it doesn’t work that way.
If not for the positive ordering principles inherent in the world itself, life
would be impossible. Man, in this traditional sense, can live not by impos-
ing order, but only by participating in it. Only from this standpoint amid
the order of the world does the world itself become visible; only then
does the question usefully arise of how best to live in the world, and how
best to change it.



6
Symbol Grounding and the Origin of
Language

Stevan Harnad

Editor’s Note
If computationalism is right and thinking is the computational manipulation of
symbols on the basis of their formal properties, from where do these symbols
derive their meaning? This question leads to what Stevan Harnad has called the
symbol grounding problem. In Harnad’s view, computationalist theories of mean-
ing cannot provide a satisfactory answer: internal symbols of a computational
system, despite being systematically interpretable, simply do not “contain” their
meanings, which rather reside in the heads of those who use computations as
tools. So how can thoughts be about something—how can words denote anything
at all? One possibility is to extend the boundaries of the symbol system to include
the environment that contains the referents of the symbols to make sense out of
the “aboutness” relation. According to Harnad, there is no need to resort to such
“wide notions of meaning,” as it would essentially entail an extension of psychol-
ogy beyond the boundaries of the contents of the brain, which is independently
problematic. Rather, a “narrow” account can be successful if symbols are not
taken to be connected to distal objects in the environment, but rather to the
“proximal shadows that the distal objects cast on the system’s sensorimotor sur-
faces.” In other words, symbols that denote categories of objects (such as “mush-
room”) must be grounded in the capacity to sort, label, and interact with the
proximal sensorimotor projections of their distal category-members in a way that
coheres systematically with their semantic interpretations, both for individual
symbols, and for symbols strung together to express truth-value-bearing proposi-
tions. Nevertheless, not all categories need to be grounded this way. This is where
language enters the picture and allows us to “steal” categories quickly and effort-
lessly through hearsay instead of having to earn them the hard way, through risky
and time-consuming sensorimotor trial-and-error learning, guided by corrective
feedback from the consequences of miscategorization. Linguistic “theft,” how-
ever, is not possible unless some of the denoting symbols of language are previ-
ously grounded directly in categories that have been earned through sensorimotor
toil or else in categories that have been inherited through Darwinian theft (i.e.,
have been acquired genetically as a consequence of evolutionary trial and error
plus the sensorimotor toil of evolutionary ancestors). Language also enables us
to learn the meaning of an expression that we could not have acquired through
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sensorimotor projections, either because they are identical for different distal
objects, or because there is no object that could have a projection, as Harnad
illustrates with the imaginative “Peekaboo Unicorn.” He concludes that the
ontological status of the referent of a term is irrelevant to the cognitive issue of
its meaning.

1 Meaning: Narrow and Wide

Philosophers tell us that there are two approaches to explaining what our
thoughts are about, one wide and one narrow. According to the wide
approach, the object I am thinking about, that physical thing out there
in the world, is to be reckoned as part of the meaning of that thought of
mine about it; meaning is wider than my head. According to the narrow
approach, the locus of any meaning of my thoughts is inside my head;
meaning can be no bigger than my head. The question is: should psychol-
ogists who aspire to study and explain the meaning of thoughts adopt a
wide or a narrow approach?

Here is an advantage of a wide approach: as wide meaning encom-
passes both the internal thought and its external object, a complete expla-
nation of wide meaning would leave nothing out. Once you have arrived
at a successful explanation, there are no further awkward questions to
be asked about how thoughts get “connected” to what they mean, be-
cause what they mean is in a sense already part of what thoughts are.
But there are disadvantages for a psychologist adopting this approach,
because it would require him to be so much more than a psychologist:
he would have to be an authority not only on what goes on in the head,
but also on what goes on in the world, in order to be able to cover all
the territory over which thoughts can range.

We can illustrate the plight of the wide psychological theorist with an
analogy to the roboticist: if one were trying to do “wide robotics,” ac-
counting not only for everything that goes on inside the robot, but also
for what goes on in the world, one would have to model both the robot
and the world. One would have to design a virtual world and then de-
scribe the robot’s states as encompassing both its internal states and the
states of the virtual world in which it was situated. In this ecumenical
era of “situated” robotics (Hallam and Malcolm 1994) this might not
sound like such a bad thing, but in fact wide robotics would be quite
contrary to the spirit and method of situated robotics, which emphasizes
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using the real world to test and guide the design of the robot precisely
because it is too hard to second-guess the world in any virtual-world
model of it (“the world is its own best model”). At some point, the “frame
problem” (Pylyshyn 1987; Harnad 1993b) always arises; this is where
one has failed to second-guess enough about the real world in designing
the robot’s virtual world, and hence a robot that functions perfectly well
in the virtual world proves to be helpless in the real world.

So perhaps it’s better to model only the robot, and leave the modeling
of the real world to cosmologists. The counterpart of this moral for the
psychologist would be that he should restrict himself to the narrow do-
main of what’s going on in the head, and likewise leave the wide world
to the cosmologists.

2 The Symbol Grounding Problem

But there are disadvantages to the narrow approach too, for, having ex-
plained the narrow state of affairs in the head, there is the problem of
ensuring that these states connect with the wide world in the right way.
One prominent failure in this regard is the symbolic model of the mind
(“computationalism”), according to which cognition is computation:
thinking is symbol manipulation (Pylyshyn 1984). After the initial and
promising successes of artificial intelligence, and emboldened by the virtu-
ally universal power that was ascribed to computation by the Church-
Turing Thesis (according to which just about everything in the world can be
simulated computationally), computationalism seems to have run aground
precisely on the problem of meaning: the symbol-grounding problem (Har-
nad 1990, 2001b). For in a narrow computational or “language of
thought” theory of meaning, thoughts are just strings of symbols, and
thinking is merely the rule-governed manipulation of those symbols, as in
a computer. But the symbols in such a symbol system, although they are
systematically interpretable as meaning what they mean, nevertheless fail
to “contain” their meanings; instead, the meanings reside in the heads of
outside interpreters who use the computations as tools. As such, symbol
systems are not viable candidates for what is going on in the heads of those
outside interpreters, on pain of infinite regress.

So cognition must be something more than computation (Harnad
1994). Was the fatal failing of computation that it was a narrow theory,
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operating only on the arbitrary shapes of its internal symbols and leaving
out their external meaning? Do we have no choice but to subsume the
wide world after all?

Subsuming the wide world has not been the response of the cognitive
modeling community. Some have chosen to abandon symbols and their
attendant grounding problems altogether (Brooks 1991), and turn in-
stead to other kinds of internal mechanisms, nonsymbolic ones, such as
neural nets (Damper and Harnad 2000) or other dynamical systems (van
Gelder 1998). Others have held onto symbol systems and emphasized
that the solution to the grounding problem is to connect symbol systems
to the world in the right way (Fodor 1987, 1994). The problem with this
approach is that it provides no clue as to how one is to go about connect-
ing symbol systems to the world in the right way, the way that links
symbols to their meanings. Hence one does have reason to suspect that
this strategy is rather like saying that the problem of a robot that has
succeeded in its virtual world but failed in the real world is that it has
not been connected with the real world in the right way: the notion of
the “right connection” may conceal a multitude of sins of omission that
in the end amount to a failure of the model rather than the connection.
(Or, to put it another way, the hardest problems of cognitive modeling
may be in designing the robot’s internal states in such a way that they
do manage to connect to the world in the “right way.”)

But let us grant that if the symbolic approach ever succeeds in connect-
ing its meaningless symbols to the world in the right way, this will amount
to a kind of wide theory of meaning, encompassing the internal symbols
and their external meanings via the yet-to-be-announced “causal connec-
tion.” Is there a narrow approach that holds onto symbols rather than
giving up on them altogether, but attempts to ground them on the basis
of purely internal resources?

There is a hybrid approach that in a sense internalizes the problem of
finding the connection between symbols and their meanings; but instead
of looking for a connection between symbols and the wide world, it looks
only for a connection between symbols and the sensorimotor projections
of the kinds of things the symbols designate: it is not a connection be-
tween symbols and the distal objects they designate but a connection
between symbols and the proximal “shadows” that the distal objects
cast on the system’s sensorimotor surfaces (Harnad 1987; Harnad et al.
1991).
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3 Categorization: A Robotic Capacity

Such hybrid systems place great emphasis on one particular capacity that
we all have, and that is the capacity to categorize, to sort the blooming,
buzzing confusion that reaches our sensorimotor surfaces into the rela-
tively orderly taxonomic kinds marked out by our differential responses
to it—including everything from instrumental responses such as eating,
fleeing from, manipulating or mating with some kinds of things and not
others, to assigning a unique, arbitrary name to some kinds of things and
not others (Harnad 1987).

It is easy to forget that our categorization capacity is indeed a sensori-
motor capacity. In the case of instrumental responses, based on the Gib-
sonian invariants “afforded” by our sensorimotor interactions with the
world, what we tend to forget is that these nonarbitrary but differential
responses are actually acts of categorization too, partitioning inputs into
those you do this with and those you do that with. And, in the case of
unambiguously categorical acts of naming, what we forget is that this
is a sensorimotor transaction too, albeit one subtended by an arbitrary
response (a symbol) rather than a nonarbitrary one.

So the capacity to sort our sensorimotor projections into categories on
the basis of sensorimotor interactions with the distal objects of which
they are the proximal projections is undeniably a sensorimotor capacity;
indeed, we might just as well call it a robotic capacity. The narrow hybrid
approach to symbol grounding to which I referred attempts to connect
the proximal sensorimotor projections of distal objects and events to ei-
ther the instrumental responses or the arbitrary names that successfully
sort them according to what is adaptive for the hybrid system. The instru-
mental part is just an adaptive robot; but the arbitrary category names
(symbols) open up for the system a new world of possibilities whose vir-
tue is best described as the advantage of theft over honest toil (Cangelosi
and Harnad 2000).

4 Acquiring Categories by Sensorimotor Toil and Darwinian Theft

Before defining sensorimotor toil versus symbolic theft, let me define a
more primitive form of theft, which I will call Darwinian theft. In each
case, what is being either stolen or earned by honest toil are sensorimotor
categories. It is undeniable that we have the capacity to detect the proxi-
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mal sensorimotor projections of some distal categories without ever hav-
ing to “earn” that capability in any way, because we are born that way.
Just as the frog is born with its Darwinian legacy of bug-detectors, we
also arrive with a “prepared” repertoire of invariance-detectors that pick
out certain salient shapes or sounds from the otherwise blooming, buzz-
ing confusion reaching our sensorimotor surfaces without our first having
to learn them by trial and error: for sensorimotor trial and error, guided
by corrective feedback from the consequences of miscategorizing things
(Skinnerian learning), is what I am calling “honest toil.”1

We must infer that our brains, in addition to whatever prepared
category-detectors they may be born with, are also born with the capacity
to learn to distinguish the sensorimotor projections of members from
those of nonmembers of countless categories through supervised learning
(Andrews et al. 1998; Pevtzow and Harnad 1997), that is, through trial
and error, guided by corrective feedback from the consequences of cate-
gorizing correctly and incorrectly (Harnad 1996a). The exact mechanism
which learns the invariants in the sensorimotor projection that eventually
allow the system to sort correctly is not known, but neural nets are a
natural candidate: learning to categorize by honest toil is what nets seem
to do best (Harnad 1993a).2

Does a system such as the one described so far—one that is able to
sort its proximal projections, partly by Darwinian theft, partly by sensori-
motor toil—suggest a narrow or a wide explanation of meaning (insofar
as it suggests anything about meaning at all)? It seems clear that whatever
distal objects such a system may be picking out, the system is working
entirely on the basis of their proximal projections, and whatever connec-
tion those may have with their respective distal objects is entirely external
to the system; indeed, the system would have no way of distinguishing
distal objects if the distinction were not somehow preserved in their prox-
imal projections—at least, no way without the assistance either of senso-
rimotor aids of some kind, or of another form of theft, a much more
powerful one, to which I will return shortly.

5 Categories Are Context-Dependent, Provisional, and Approximate

So for the time being we note that the categories of such a Darwinian/
Skinnerian system are only approximate, provisional, context-dependent
ones (Harnad 1987). They depend on the sample of proximal projections
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of distal objects the system happens to have encountered during its Skin-
nerian history of sensorimotor toil (or what its ancestors happen to have
encountered, as reflected by the detectors prepared by Darwinian theft):
whatever systematic relation there might be between them and their distal
objects is external and inaccessible to the system.

Philosophers tend, at this juncture, to raise the so-called problem of
error: if the system interacts only with its own proximal projections, how
can its categories be said to be right or wrong? The answer is inherent
in the very definition of sensorimotor toil: the categories are learned on
the basis of corrective feedback from the consequences of miscategoriza-
tion. It is an error to eat a toadstool, because it makes you sick. But
whether the proximal projection of what looks like a safely edible mush-
room is really an edible mushroom, or a rare form of toadstool with an
indistinguishable proximal projection that does not make you sick but
produces birth defects in your great-grandchildren, is something of which
a narrow system of the kind described so far must be conceded to be
irremediably ignorant. What is the true, wide extension of its mushroom
category, then? Does its membership include only edible mushrooms that
produce no immediate or tardive negative effects? Or does it include
edible mushrooms plus genetically damaging toadstools? This is a distal
difference that makes no detectable proximal difference to a narrow
system such as this one. Does it invalidate a proximal approach to
meaning?

Let’s ask ourselves why we might think it might invalidate proximal
meaning. First, we know that two different kinds of distal objects can
produce the same proximal projections for a system such as this one. So
we know that its narrow detector has not captured this difference. Hence,
by analogy with the argument we made earlier against ungrounded sym-
bol systems, such a narrow system is not a viable candidate for what is
going on in our heads, because we ourselves are clearly capable of making
the distal distinction that such a narrow system could not make.

6 Distinguishing the Proximally Indistinguishable

But in what sense are we able to make that distal distinction? I can think
of three senses in which we can. One of them is based, trivially, on senso-
rimotor prostheses: an instrument could detect whether the mushroom
was tardively carcinogenic, and its output could be a second proximal
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projection to me, on whose basis I could make the distinction after all.
I take it that this adds nothing to the wide/narrow question, because I
can sort on the basis of enhanced, composite sensorimotor projections
in much the same way I do on the basis of simple ones.

The second way in which the distal distinction might be made would
be in appealing to what I have in mind when I think of the safe mushroom
and its tardively toxic lookalike, even if it were impossible to provide a
test that could tell them apart. I don’t have the same thing in mind when
I think of these two kinds of things, so how can a narrow system that
would assign them to the same category be a proper model for what I
have in mind? Let us set aside this objection for the moment, noting only
that it is based on a qualitative difference between what I have in mind
in the two cases, one that it looks as if a narrow model could not capture.
I will return to this after I discuss the third and most important sense in
which we could make the distinction, namely, verbally, through language.

We could describe the difference in words, thereby ostensibly picking
out a wide difference that could not be picked out by the narrow categori-
zation model described so far.

7 Acquiring Asocial Categories Asocially, by Sensorimotor Toil

Let me return to the narrow model with the reminder that it was to be
a hybrid symbolic/dynamic model. So far, we have considered only its
dynamic properties: it can sort its proximal projections based on error-
correcting feedback. But, apart from being capable of instrumental senso-
rimotor interactions such as eating, fleeing, mating, or manipulating on
the basis of invariants it has learned by trial and error to detect in its
proximal projections, such a system could also, as I had noted, simply
assign a unique arbitrary name on the basis of those same proximal
invariants.

What would the name refer to? Again, it would be an approximate,
provisional subset of proximal projections that the system had learned
to detect as being members of the same category on the basis of sensori-
motor interaction, guided by error-correcting feedback. What was the
source of the feedback? Let us quickly set aside (contra Wittgenstein
1953) the idea that acquiring such a “private lexicon” would require in-
teractions with anything other than objects such as mushrooms and toad-
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stools: in principle, no verbal, social community of such hybrid systems
is needed for it to produce a lexicon of arbitrary category names and
reliably use them to refer to the distal objects subtended by some proxi-
mal projections and not others (cf. Steels and Kaplan 1999; Steels 2001);
there would merely be little point in doing so asocially. For it is not clear
what benefit would be conferred by such a redundant repertoire of names
(except possibly as a mnemonic rehearsal aid in learning), because pre-
sumably it is not the arbitrary response of naming but the instrumental
response of eating, avoiding, and so on that would “matter” to such a
system—or rather, such an asocial system would function adaptively
when it ate the right thing, not when it assigned it the right arbitrary
name.

But if the system should happen to be not the only one of its kind, then
in principle a new adaptive road is opened for it and its kind, one that
saves them all a lot of honest toil: the road of theft—linguistic theft.

8 The Advantages of Acquiring Categories by Symbolic Theft

At this point some of the inadvertent connotations of my theft/toil meta-
phor threaten to obscure the concept the metaphor was meant to high-
light: acquiring categories by honest toil is doing it the hard way, by trial
and error, which is time-consuming and sometimes perhaps too slow and
risky. Getting them any other way is getting them by theft, because you
do not expend the honest toil.

This is transparent in the case of Darwinian theft (which is perhaps
better described as “inherited wealth”). In the case of symbolic theft,
where someone else who has earned the category by sensorimotor toil
simply tells you what’s what, “theft” is also not such an apt metaphor,
for this seems to be a victimless crime: whoever tells you has saved you
a lot of work, but he himself has not really lost anything in so doing; so
you really haven’t stolen anything from him. “Gift,” “barter,” or “recip-
rocal altruism” might be better images, but we are getting lost in the
irrelevant details of the trope here. The essential point is that categories
can be acquired by “nontoil” through the receipt of verbal information
(hearsay) as long as the symbols in the verbal message are already
grounded (either directly, by sensorimotor toil or, indirectly and recur-
sively, by previously grounded verbal messages)—and of course as long
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as there is someone around who has the category already and is able and
willing to share it with you.

9 Nonvanishing Intersections

Language, according to the model being described here, is a means of
acquiring categories by theft instead of honest toil. I will illustrate with
some examples I have used before (Harnad 1987, 1996b), by way of a
reply to a philosophical objection to sensorimotor grounding models, the
“vanishing intersections” objection: “Meaning cannot be grounded in
shared sensorimotor invariants, because the intersection of the sensori-
motor projections of many concrete categories and all abstract categories
is empty.” Perhaps the sensorimotor projections of all “triangles” and
all “red things” have something in common—though one wonders about
triangles at peculiar angles, say, perpendicular to the viewer, reducing
them to a line, or red things under peculiar lighting or contrast conditions
where the reflected light is not in the red spectral range—but surely the
intersections of the sensorimotor projections of all “plane geometric
shapes” vanish, as do those of “colored things,” or “chairs,” “tables,”
“birds,” “bears,” or “games”—not to mention the sensorimotor projec-
tions of all that is “good,” or “true,” or “beautiful”.

By way of response I make two suggestions:

(1) Successful sorting capacity must be based on detectable invariance

The theorist who wishes to explain organisms’ empirical success in sort-
ing sensorimotor projections by means other than a detectable invariance
shared by those projections (an invariance that of course need not be
positive, monadic and conjunctive, but could also be negative, disjunc-
tive, Plyadic, conditional, probabilistic, constructive, the result of any op-
eration performed on the projection, including invariance under a
projective transformation or under a change in relative luminance, in-
deed, any complex Boolean operation) has his work cut out for him—
that is, if he wishes to avoid recourse to miracles, something a roboticist
certainly cannot afford to do. Darwinian theft (innateness) is no help
here, as Darwinian theft is as dependent on nonvanishing sensorimotor
intersections as lifetime toil is. It seems a reasonable methodological as-
sumption that if the projections can be successfully partitioned, then an
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objective, nonvanishing, and detectable basis for that success must be
contained within them.

(2) The invariance can be learned via experience or via hearsay

This is also the point at which linguistic theft comes into its own. Con-
sider first the mushroom/toadstool problem: in a mushroom world I
could earn these two important survival categories the hard way, through
honest toil, sampling the sensorimotor projections and trying to sort them
based on feedback from sometimes getting sick and sometimes getting
nourished (Cangelosi and Harnad 2000). Assuming the problem is solu-
ble, that is, that the projections are successfully sortable, then if I have
the requisite learning capacity, and there is enough time in the day, and
I don’t kill myself or die of hunger first, I will sooner or later get it right,
and the basis of my success will be some sort of invariance in the projec-
tions that some internal mechanism of mine has laboriously learned to
detect. Let’s simplify and say that the invariant is the Boolean rule “if
it’s white and has red spots, it’s a toxic toadstool; otherwise it’s an edible
mushroom.”

Life is short, and clearly, if you knew that rule, you could have saved
me a lot of toil and risk if you simply told me that that was the invariant:
A “toadstool” is a “mushroom” that is “white” with “red spots.” Of
course, in order to be able to benefit from such a symbolic windfall, I
would have had to know what “mushroom” and “white” and “red” and
“spots,” were, but that’s no problem: symbolic theft is recursive, though
not infinitely regressive. Ultimately, the vocabulary of theft must be
grounded directly in honest toil (and/or Darwinian theft); as mentioned
earlier, it cannot be symbolic theft all the way down.

So far, we have not addressed the vanishing-intersections problem, for
I preemptively chose a concrete sensory case in which the intersection
was stipulated to be nonvanishing. Based on (1), above, we can also add
that empirical success in sensorimotor categorization is already a posteri-
ori evidence that a nonvanishing intersection must exist. So it is probably
reasonable to assume that a repertoire of unproblematic concrete catego-
ries like “red” and “spotted” exists. The question is about the more prob-
lematic cases, like chairs, bears, games, and goodness. What could the
sensorimotor projections of all the members of each of these categories
possibly share, even in a Boolean sense?
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10 The “Peekaboo Unicorn”

By way of a reply, I will pick an even more difficult case, one in which
it is not only their intersection that fails to exist, but the sensorimotor
projections themselves. Enter my “Peekaboo Unicorn”: A Peekaboo Uni-
corn is a Unicorn, which is to say, it is a horse with a single horn, but it
has the peculiar property that it vanishes without a trace whenever senses
or measuring instruments are trained on it. So, not just in practice, but
in principle, you can never see it; it has no sensorimotor projections. Is
“Peekaboo Unicorn” therefore a meaningless term?

I want to suggest that not only is Pekaboo Unicorn perfectly meaning-
ful, but it is meaningful in exactly the same sense that “a toadstool is a
white mushroom with red spots” or “a Zebra is a horse with black and
white stripes” are meaningful. Via those sentences you could learn what
“toadstool” and “zebra” meant without having to find out the hard
way—though you could certainly have done it the hard way in principle.
With the Peekaboo Unicorn, you likewise learn what the term means
without having to find out the hard way, except that you couldn’t have
found out the hard way; you had to have the stolen dope directly from
God, so to speak.

Needless to say, most linguistic theft is non-oracular (though it cer-
tainly opens the possibility of getting meaningful, unverifiable categories
by divine revelation alone); all it requires is that the terms in which it is
expressed should themselves be grounded, either directly by honest toil
(or Darwinian theft), or indirectly, by symbolic theft, whose own terms
are grounded either by . . . etc.; but ultimately the buck must always stop
with terms grounded directly in toil (or Darwin).

In particular, with the Peekaboo Unicorn, it is “horse,” “horn,”
“sense,” “measuring instrument,” and “vanish” that must be grounded.
Given that, you would be as well armed with the description of the Peeka-
boo Unicorn as you would be with the description of the toadstool or
the zebra to correctly categorize the first sensorimotor projection of one
that you ever encountered—except that in this case the sensorimotor
projection will never be encountered because it is both unobservable
and does not exist (a “quark” or “superstring” might be examples of
unobservable-in-principle things that do exist). I hope it is transparent
that the ontic issue about existence is completely irrelevant to the cogni-
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tive issue of the meaningfulness of the term. (So much for wide meaning,
one is tempted to say, on the strength of this observation alone.)

11 Meaning or Grounding?

At this point I should probably confess, however, that I don’t believe that
I have really provided a theory of meaning here at all, but merely a theory
of symbol grounding, a theory of what a robot needs in order to catego-
rize its sensorimotor projections, either as a result of direct trial and error
learning or as a result of having received a string of grounded symbols:
a symbol is grounded if the robot can pick out which category of sensori-
motor projections it refers to. Grounding requires an internal mechanism
that can learn by both sensorimotor toil and symbolic theft. I and others
have taken some steps toward proposing hybrid symbolic/nonsymbolic
models for toy bits of such a capacity (Harnad et al. 1991; Tijsseling and
Harnad 1997; Cangelosi, Greco, and Harnad 2000), but the real chal-
lenge is of course to scale up the sensorimotor and symbolic capacity to
Turing-Test scale (Harnad 2000b).

Imagine a robot that can do these things indistinguishably from the
way we do. What might such a robot be missing? This is the difference
between grounding and meaning, and it brings us back to a point I de-
ferred earlier in this chapter, the point about what I have in mind when
I mean something.

12 Mind and Meaning

According to the usual way the problem of mind and the problem of
meaning are treated in contemporary philosophy, there are not one but
two things we can wonder about with respect to that Turing-scale Robot:

1. Is it conscious? Is there anything it feels like to be that robot? Is there
someone home in there? Or does it merely behave exactly as if it were
conscious, but it’s all just our fantasy, with no one home in there?
2. Do its internal symbols or states mean anything? Or are they merely
systematically interpretable exactly as if they meant something, but it’s
all just our fantasy, with no meaning in there?

For (2), an intermediate case has been pointed out: books, and even com-
puterized encyclopedias, are like Turing Robots in that their symbols are
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systematically interpretable as meaning this and that, and they can bear
the weight of such a systematic interpretation (which is not a trivial cryp-
tographic feat). Yet we don’t want to say that books and computerized
encyclopedias mean something in the sense that our thoughts mean some-
thing, because the meanings of symbols in books are clearly parasitic on
our thoughts; they are mediated by an external interpretation in the head
of a thinker. Hence, on pain of infinite regress, they are not a viable ac-
count of the meaning in the head of the thinker.

But what is the difference between a Turing Robot and a computerized
encyclopedia? The difference is that the robot, unlike the encyclopedia,
is grounded: the connection between its symbols and what they are inter-
pretable as being about is not mediated by an external interpreter; it is
direct and autonomous. One need merely step aside, if one is skeptical,
and let the robot interact with the world indistinguishably from us, for
a lifetime, if need be.

13 Meaning and Feeling

What room is there for further uncertainty? The only thing left, to my
mind, is question 1 above, namely, while the robot interacts with the
world, while its symbols connect with what they are grounded in, does
it have anything in mind? There is, in other words, something it feels like
to mean something; a thought means something only if (a) it is grounded,
directly and autonomously, in what it is otherwise merely interpretable-
by-others as meaning and (b) it feels like something for the thinker to
think that thought (Harnad 2000, 2001).

If you are not sure, ask yourself these two questions: (i) would you still
be skeptical about a grounded Turing-scale Robot’s meanings if you were
guaranteed that the robot was conscious (feeling)? And (ii) would you
have any clue as to what the difference might amount to if there were
two Turing Robots, both guaranteed to be unconscious zombies, but
one of them had meaning and grounding, whereas the other had only
grounding?

Exercise: Flesh out the meaning, if any, of that distinction! (Explain, by
hearsay, what it is that the one has that the other lacks, if it’s neither
grounding nor feeling; if you cannot, then the distinction is just a nominal
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one, i.e., you have simply chosen to call the same thing by two different
names.)

Where does this leave our narrow theory of meaning? The onus is on the
Turing Robot that is capable of toil and theft indistinguishable from our
own. As with us, language gives it the power to steal categories far beyond
the temporal and spatial scope of its sensorimotor interactions and data.
That is what I would argue is the functional value of language in both
of us. Moreover, it relies entirely on its proximal projections, and the
mechanisms in between them for grounding. Its categories are all provi-
sional and approximate; ontic considerations and distal connections do
not figure in them, at least not for the roboticist. And whether it has mere
grounding or full-blown meaning is a question to which only the robot
can know the answer—but unfortunately that is the one primal sensori-
motor category that we cannot pilfer with symbols (Harnad 2000a,
2001b).

Notes

1. There are no doubt intermediate cases, in which “prepared” category detectors
must first be “activated” through some early sensorimotor exposure to and inter-
action with their biologically “expected” members (Held and Hein 1963) before
we can help ourselves to the category they pick out. There are also ways of quanti-
fying how interconfusable the initial sensorimotor projections are, and how much
toil it takes to resolve the confusion. For the most part, however, the distinction
between prepared categories (Darwinian theft) and unprepared ones learned by
trial and error (honest toil) can be demonstrated empirically.

2. Nets are also adept at unsupervised learning, in which there is no external
feedback indicating which sensorimotor projections belong in the same category;
in such cases, successful sorting can arise only from the pattern of structural simi-
larities among the sensorimotor projections themselves—the natural sensorimo-
tor landscape, so to speak. Some of this may be based on proximal boundaries
already created by Darwinian theft (inborn feature detectors that already sort
projections in a certain way), but others may be based on natural gaps between
the shapes of distal objects, as reflected in their proximal projections: sensorimo-
tor variation is not continuous. We do not encounter a continuum of intermediate
forms between the shape of a camel and the shape of a giraffe. This already re-
duces some of the blooming, buzzing confusion we must contend with, and un-
supervised nets are particularly well suited to capitalizing on it, by heightening
contrasts and widening gaps in the landscape through techniques such as competi-
tive learning and lateral inhibition. (Perhaps the basis for this should be dubbed

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



158 Stevan Harnad

“cosmological theft” [Harnad 1976].) There are also structural similarity gradi-
ents to which unsupervised nets are responsive, but, being continuous, such gradi-
ents can be made categorical only by enhancing slight disparities within them.
This too amounts to either Darwinian or cosmological theft. In contrast, honest
toil is supervised by the error-correcting feedback arising from the consequences
of the system’s having miscategorized something, rather than from the a priori
structure of the proximal sensorimotor projection.



7
Authentic Intentionality

John Haugeland

Editor’s Note
What is the relation between computation and intentionality? Cognition presup-
poses intentionality (or semantics). This much is certain. So, if, according to com-
putationalism, cognition is computation, then computation, too, presupposes
intentionality (or at least some computations do). It follows that in order to un-
derstand what is required for computation (and cognition) we need to understand
what is required for intentionality, and this is what Haugeland sets out to do.
Starting with his previous division of intentionality into “original” and “deriva-
tive” (where “derivative” just means “not original”), he introduces the new tri-
partite distinction of “authentic,” “ordinary,” and “ersatz,” the last of which,
as the name suggests, is not genuine, but rather “intentionality-like.” The other
two (together with Haugeland’s original distinction) form the four categories of
“genuine” intentionality, which, by stipulation, presupposes the capacity for ob-
jective knowledge. With this stipulation, Haugeland intends to mark a crucial
distinction between two kinds of intentionality to show what capacities are in-
volved in and hence required for genuine intentionality. Focusing on scientific
knowledge as an exemplary case of objective knowledge and the various processes
involved in obtaining it, Haugeland uncovers what is required for objective
knowledge, that is, for the possibility of nonaccidental objective truth: it is “the
taking of responsibility on the part of the person (or ‘system’) who is capable of
such objective knowledge.” In particular, three kinds of self-criticism in scientific
research, of increasing severity and consequence for a scientific field, figure cru-
cially in the establishment of objective knowledge: “first-order self-criticism,” the
way scientists scrutinize experimental procedures to ensure that they are in ac-
cord with norms of proper performance; “second-order self-criticism,” the scru-
tiny of the very norms that establish the various procedures; and “third-order
self-criticism,” the acceptance that basic laws and principles governing the do-
main of objects studied fail despite all attempts and efforts to make them work.
These three ways of being self-critical about their own achievements and their
field require scientists to accept increasing degrees of responsibility, culminating
in what Haugeland calls “authentic responsibility” (in the case of third-order
self-criticism). This kind of responsibility is authentic, because it is “personal
responsibility for the science as a whole, including in particular the basic laws
and principles in terms of which the objects are understood,” and it is the ability
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to accept this responsibility that underwrites scientific objectivity and hence is
required for genuine intentionality. The implications for cognitive science (and,
consequently, computationalism) are far-reaching: any system capable of authen-
tic intentionality must also be capable of accepting authentic responsibility. Hence
Haugeland sets a research agenda to figure out what it takes to implement the
various kinds of responsibility if systems are to have genuine intentionality.

1 Computation and Intentionality

Once upon a time, we “knew” what computation is: it’s whatever it is
that Turing machines do—generalized, of course, to include von Neu-
mann machines, production systems, LISP machines, and all the other
provably “equivalent” architectures. By these lights, so-called analog
computers weren’t really computers in the strict sense, but only devices
that had that name for historical reasons. Now, however, things don’t
seem so clear—hence the reason for this book. I will mention in passing
just two of the numerous issues that have clouded the idea of computation
in the last decade or two.

The first is the emergence and mathematical analysis of systems, with
totally different architectures and very powerful capabilities, of which it
is hard to say that they are not computing (in some pretheoretical sense).
The most conspicuous among these are connectionist networks, artificial
life (A-life) systems, and some dynamical models (including some that
make essential use of chaotic attractors). It’s enough to make one rethink
the dismissal of old-fashioned analog systems. So, the question arises:
what might it be that makes all of these (but not everything) computing
devices?

And the second is the idea that maybe semantics is essential to compu-
tation as such. This is encouraged by the easy thought that to count as
computing at all, a device must be computing something (and not just
some “function,” because, in some sense, everything does that). But there
are also two more important motives for bringing semantics into the pic-
ture. One is the hope that semantics might be what is needed to answer
the question raised by the first issue I mentioned: what makes all of those
systems computers? And the other is the long-sought assimilation of com-
putation to cognition—for cognition surely presupposes semantics.

I will not try to address either of these issues directly, but rather engage
in what might be thought of as necessary spade work preparatory to a
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resolution of either of them. In particular, I want to formulate a thesis
about what is required for semantics—or, as I prefer to call it, intentional-
ity—especially insofar as it is prerequisite to cognition. As I formulate
it, this requirement will be neutral as to the various possible “architec-
tures” for computation, but I don’t know whether it really is neutral.
That’s probably an empirical question to which no one can yet know the
answer.

2 Species of Intentionality

Almost twenty years ago, John Searle and I each introduced a pair of
contrasting terms for two different species or types of intentionality. His
distinction and mine are often confused, but they are not equivalent.

I distinguished what I called derivative intentionality from original in-
tentionality. Derivative intentionality (or meaning) is the intentionality
that something has only by virtue of having it conferred on it by some-
thing else that already has it. A common example is the intentionality of
words and sentences, which (according to this view) they have only be-
cause it is conferred on them by thoughts, which already have it.

Original intentionality, by contrast, is any intentionality that is not
derivative. I offered no positive account of original intentionality—what
it requires or what makes it possible—but only the observation that there
must be some, for the simple reason that not all intentionality could be
derivative. My purpose was only to make it clear that original intentional-
ity is the real problem, and to be able to raise the question of what has
it and what it takes to have it.

Searle, on the other hand, distinguished what he called observer-
relative intentionality from intrinsic intentionality. Observer-relative in-
tentionality, at least insofar as it also means user-relative, turns out to
be much the same as derivative intentionality, and, more recently, Searle
has often adopted the latter term. Searle’s original term, however, does
have the following advantage: it suggests, correctly, that derivative inten-
tionality is intentionality only to or for something else—a user or ob-
server, for instance—never to or for whatever has it itself.

But intrinsic intentionality means much more than just original inten-
tionality. Intrinsic intentionality is understood by Searle as an intrinsic,
higher-order property that some physical structures have just in virtue of
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their (intrinsic) physical structure. So it’s supposed to be analogous to
the wetness of H2O (water) or the hardness of tetrahedrally crystalline
carbon (diamond). I, like many other philosophers and cognitive scien-
tists, have had a hard time taking the notion of intrinsic intentionality
seriously. But it does have one important merit that the notion of original
intentionality lacks: it is intended as a positive account of the source (“ori-
gin”) of all other intentionality. The fact that Searle’s discussions of it
are sorely lacking in plausible detail about what makes it possible does
not cancel out this merit.

What I now want to do is offer my own positive account of what original
intentionality requires and what makes it possible. My account will be pro-
foundly different from Searle’s and will include significantly more detail.
But one way in which it will not differ from his is that it will not contain
any hints at all about exactly what it takes to implement it. Thus, though
moredetailed invariousways, it is likeSearle’s inbeing, ineffect,achallenge
to empirical science: go figure out what it would take to implement this.

To explain my proposal, I will need to introduce a new classification
of types or species of intentionality (or “intentionality-like” phenomena).
This is a three-way classification, for which I will use the following terms:

1. Authentic intentionality
2. Ordinary intentionality
3. Ersatz intentionality

None of these is equivalent to any of original, derivative, intrinsic, or
observer-relative intentionality. The relations among the old and new
types go like this: either authentic or ordinary intentionality can be either
original or derivative (yielding four possible subtypes, if you like). I will
refer to all of these generically as genuine intentionality. Ersatz intention-
ality is none of the foregoing, but rather, as the name suggests, not genu-
ine intentionality at all; it is only an imperfect analogue that is in some
ways “intentionality-like”; and, finally, there is no such thing as intrinsic
intentionality.

The relation between authentic and ordinary intentionality is more
complicated. In general, only systems that are in some sense capable of
authentic intentionality are capable of ordinary intentionality. (I say “in
general” because there may be deficient or partial cases that would call
for tedious qualifications.) But actually having ordinary intentionality



Authentic Intentionality 163

does not require actually having authentic intentionality. One of my main
aims here is to make the reasons for this complicated claim clear.

Before proceeding to that, however, let me explain briefly what I mean
by ersatz intentionality (and then be done with it). Ersatz intentionality
is the so-called intentionality that can be attributed in what Dennett calls
“the intentional stance.” I don’t mean that all intentionality attributable
in the intentional stance is merely ersatz, but rather that the most that
such attributability suffices for is ersatz intentionality. In other words, in
my view, the intentional stance by itself is not useful at all for explicating
the difference between genuine and ersatz intentionality.

In particular, I maintain that the intentionality-like character of various
states attributable to (subhuman) animals, or (so far as I know) to any
actual or concretely envisioned robots, is not genuine intentionality but
merely ersatz. Examples like thermostats and flowering trees are just ludi-
crously extreme cases. I will not explicitly defend either of these claims
(about the intentional stance or about animals and robots), but my rea-
sons for them should become obvious as the story unfolds.

3 Intentionality and Objectivity

The first point I want to make about genuine original intentionality,
whether ordinary or authentic, is that it presupposes the capacity for ob-
jective knowledge. Indeed, since derivative intentionality presupposes
original intentionality, the argument will apply to all genuine intentional-
ity. In the present context, I mean by ‘objective knowledge’ beliefs or
assertions that are true of objects nonaccidentally. That the intentionality
of beliefs and assertions presupposes the possibility of some of them being
objectively true—that is, true of objects as they actually are—is obvious.
For, if none of them could even possibly be true of actual objects, it would
make no sense to say that any of them were about or intended any objects
at all (or, therefore, to call any of them beliefs or assertions at all).

It is equally obvious that beliefs or assertions that are genuine knowl-
edge must be not only true but true nonaccidentally. What this means,
however, and how it is achieved scientifically, is not so obvious and will
emerge in what follows in several stages. But that the capacity for such
knowledge is prerequisite for genuine intentionality is true by stipulation:
it’s what I mean by “genuine.” The point of the term, after all, is to mark
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a distinction—a distinction that is philosophically important and that
goes missing in those discussions that indiscriminately run together the
“intentionality” of people, animals, and (current) robots (not to mention
flowering trees and thermostats). The aim of the arguments to follow is
not to defend this stipulation but rather to show how much it involves—
that is, how deep a gulf the distinction it marks really is.

(In the case of other propositional attitudes and speech acts—such as
desires, doubts, commands, questions, and so on—the connection be-
tween intentionality and the possibility of objective truth is less direct
but just as essential. I expect this claim to be uncontroversial; but, in
any event, I will take it for granted without argument. I believe that an
analogous case could also be made for nonpropositional intentional
states—if there are any—such as mental images or internal emulations
or simulations; but this, too, I will leave aside here.)

So, the fundamental question is this: what is required for the possibility
of nonaccidental objective truth—that is, knowledge? I am going to argue
that it requires the taking of responsibility on the part of the person (or
“system”) who is capable of such objective knowledge. Indeed, it will
turn out that two levels of responsibility are involved; and it will be the
difference between these levels that accounts for the distinction between
ordinary and authentic intentionality. But first things first.

4 Objectivity and Responsibility

In order to make out the case for this essential relevance of responsibility,
I will focus on a distinctive species of objective knowledge, namely, scien-
tific knowledge. The reason is not just that scientific knowledge is espe-
cially explicit and compelling, but rather that it has been much studied,
so its features and factors are fairly well known. But I am convinced that
(perhaps with more work and less clarity) basically the same case could
be made for common-sense knowledge. Thus, though I don’t agree with
Quine that science is “continuous with” common sense, I do agree that
they have the same fundamental character. Accordingly, I maintain that
examining the conditions of the possibility of scientific intentionality is
a suitable entry point for examining those of any genuine intentionality.
The advantage of the focus on science is purely expository.
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One conspicuous fact about reputable scientists is that they are always
highly trained and highly disciplined. Hand in hand with this conspicuous
fact goes another: scientific research is always and inherently self-criti-
cal—not only individually but interactively. Such self-critical discipline
is quite visible, for instance, both in how scientists perform experiments
themselves and in how they evaluate each other’s performances.

So we see here, what is obvious anyway, that scientific research is fun-
damentally communal, and, in particular, that it is governed by commu-
nal norms of proper performance—that is, of proper procedure and
technique—in terms of which particular performances can be critically
judged. These norms effectively define the discipline of normal scientific
research. At the same time, they provide the basis for what I will call
first-order scientific self-criticism. Disciplined science is self-critical in that
it carefully scrutinizes actual procedures to ensure that they are in accord
with its norms of proper performance.

This critical self-scrutiny is manifestly a crucial factor in the ability of
scientific research to discover the truth about the objects it investigates,
since it weeds out experimental results that are compromised by sloppy
or improper procedures. Such results are, of course, unreliable—in the
specific sense that they are either false or, if true, only so by accident
(“dumb luck”). Therefore, first-order self-criticism is also essential to
the fact that scientific results can be not only true but nonaccidentally
so—that is, objective knowledge. Hence it is prerequisite to genuine
intentionality.

There is also, however, a second sort of self-criticism in normal experi-
mental practice. This comes into view when we remember that, unless a
result is utterly routine, it usually won’t be accepted until it has been
replicated by other teams in other laboratories. But what does it mean
to say that a result has been replicated, and why does it matter? Why,
exactly, is there anything wrong if replication efforts fail? These questions
may seem trivial, but I think they cut pretty deep.

Note first that replication of an experimental finding is seldom simply
a duplication of the previous experiment. On the contrary, it’s much
better if the same result can be obtained by other means. So, our first
question comes to this: how can a different experiment amount to a
replication of (or a failure to replicate) the same result?
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The answer is that (except, perhaps, in times of crisis) scientists always
have pretty determinate convictions about what the objects they’re in-
vestigating must be like. The most basic of these convictions are expressed
in scientific laws and principles. These laws (and their more specific impli-
cations), in determining the objects, sharply constrain how the results of
various different experimental procedures would have to be related.

To take a contrived example, suppose an experiment were performed
to measure the electric charge on some newly isolated particle. This exper-
iment will rely on certain laws about how charged particles interact with
various other particles, fields, and so on. But there are lots of such interac-
tions and combinations thereof. So another team could proceed in quite
a different way and still be confident that it was measuring the same
property of the same particle—that is, the same object, as determined by
the same laws. In this way, the constraints expressed in the laws make
it possible for two quite different experiments to produce the same re-
sult—or, as the case may be, a conflicting result.

In the light of all of that, however, it’s also clear why replication—or,
more to the point, a failure of a replication—matters. Inasmuch as the
norms of proper performance, together with the laws governing the ob-
jects under investigation, effectively promise that the results will agree,
any disagreement means there’s something wrong somewhere. Of course,
the most common upshot is that, on closer examination, one or the other
of the experiments was not properly performed after all. Most apparently
conflicting results are actually due to experimental error.

But the more interesting case is when no such error can be found. Then
scientists turn their scrutiny not on individual performances but on the
very norms that determine procedural propriety for all performances of
that sort. This is not as drastic as it sounds: the business of refining obser-
vational technique in the light of experience is bread and butter to any
thriving experimental practice.

In other words, empirical science is inherently self-critical in a second
and deeper way: it critically scrutinizes not only individual performances
but also the very practice itself. I call this second and deeper scrutiny
second-order self-criticism. And, as with first-order self-criticism, this too
is obviously a basic factor in the ability of scientific research to discover—
nonaccidentally—the truth about its objects. Hence it too is prerequisite
to the possibility of scientific knowledge and hence genuine intentionality.
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So far, I have spoken about how scientific research as such is inherently
self-critical, and I have distinguished two “orders” of that self-criticism.
Further, I have pointed out that both the impetus and the need for this
self-criticism arises out of the relation between scientific results and their
objects—namely, the objects as what are determined and constrained by
the basic laws and principles. In particular, it arises from the fact that
certain combinations of results can show that something is wrong some-
where and so needs to be found and corrected. It is by giving content to
the idea of being wrong that this basic structure contributes essentially
to the possibility of being correct. Finally, I have drawn the obvious con-
clusion that whatever is prerequisite to getting the relation to objects
correct is prerequisite to objective knowledge, and hence to genuine
intentionality.

What I have not yet done is say anything about what scientists them-
selves must be like. Of course, it is the scientists who must “respond”
when something is wrong, and a corrective response is required—it is they
who must be “self-critical.” But what must they be like, qua scientists, if
this “requirement” is to get a grip on them, and move them to action?

Clearly, it must be something like this: scientists qua scientists will not
and cannot tolerate a body of results in which there is something wrong
in the way that I have been discussing. For such tolerance would under-
mine the process of weeding out unreliable results, and thereby also the
ability to settle nonaccidentally on the truth about objects—that is, to
discover it. Incompatible results, as determined by the laws and principles
governing the objects under investigation, must be unacceptable to scien-
tists qua scientists. Thus, in order to be a scientist, a person must be such
that she will not—because she cannot—accept or tolerate results that are
incompatible, hence somehow wrong.

Two clarifications are needed to ensure that this point is not misunder-
stood. First, the refusal to accept the results in question can’t simply be
a matter of denying or suppressing them. Rather, it must take the form
of an effort to find out what went wrong and then correct it. Second, the
“cannot” (in “cannot accept or tolerate”) must have a normative rather
that an alethic force. That is, it’s not that the scientist is unable to tolerate
such results (as in an inability to tolerate pain or pomposity), but rather
that such tolerance would be impermissible in a scientist—incompatible
with being a genuine or honest scientist.
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But as soon as the point about unacceptability is understood in this
way, it becomes clear that it can also be expressed as follows: being a
scientist entails a certain kind of responsibility. In particular, it is the
responsibility of any scientist, qua scientist, not to accept results in which
something has been shown to be wrong, and, moreover, to regard find-
ing and correcting whatever is wrong as incumbent on the scientific
community.

5 Responsibility and Cognitive Science

If you gather up (and swallow) everything I’ve said so far, then this con-
clusion about science and responsibility has important implications for
cognitive science. For I have argued that:

• genuine intentionality presupposes the capacity for objective knowl-
edge;
• scientific knowledge is an exemplary case of objective knowledge;
• scientific research, as a route to objective knowledge, is inherently self-
critical in at least two ways; and
• in order for research to be thus self-critical, scientists themselves must
accept a certain kind of responsibility.

But those together imply that any system capable of genuine (original)
intentionality must be capable of accepting that kind of responsibility.
Hence any system capable of genuine cognition must have that same ca-
pacity for responsibility.

It is my impression that cognitive science—and especially cognitive sci-
ence inspired by the idea of computation—has been effectively oblivious
to this essential connection between cognition and responsibility. I sus-
pect that an inkling of this oblivion is what lies behind various ill-formed
(and often annoying) “intuitions” to the effect that AI systems (of what-
ever stripe) can’t really mean anything, can’t understand their own in-
puts and outputs, can’t really be conscious, and so on. It’s not that
I think these intuitive judgments are false, but rather that they don’t
get at the underlying problem and hence remain mere intuitions, with
regard to which “arguments” (pro and con) can be, at best, aggravatingly
inconclusive.

Correlatively, I believe that this same oblivion also enables a pro-
foundly misguided and misleading assimilation of human cognition to so-



Authentic Intentionality 169

called animal cognition. This assimilation then encourages the perverse
supposition that, insofar as robot capabilities approach those of animals,
they thereby also approach those of people. So far as I know, no (sub-
human) animal, nor any current or envisioned robot, is capable of ac-
cepting any responsibility on its own. Therefore, by the above argument,
none is capable of any genuine intentionality or cognition. This is why
I have coined the term ersatz intentionality for those aspects of animal
and/or robot behavior that are, in certain superficial ways, undeniably
intentionality-like.

I believe that the foregoing argument suffices to show that at least most
of contemporary cognitive science seriously underestimates its own essen-
tial field, and that it cannot fully succeed in its own goals unless it rectifies
that underestimation. For, in being oblivious of personal responsibility
as prerequisite to the possibility of original intentionality, which is ac-
knowledged as prerequisite to genuine cognition, it denies itself the possi-
bility of adequately understanding the latter.

Moreover, insofar as it is held that at least some species of computation
presuppose genuine intentionality (a view on which I will voice no opin-
ion), current approaches to understanding computation suffer from the
same debilitating underestimation. (Such a view of computation would
be required of anyone who held that cognition just is computation of a
certain sort.)

All the same, I also believe that the discussion of intentionality so far
remains essentially incomplete. In beginning to address this incom-
pleteness, I will, to be sure, be raising the bar still higher for cognitive
science (and perhaps for computer science). But I would like to reempha-
size something that I indicated at the outset: it is no part of my aim to
argue that the requirements that I am setting cannot be met. They are not
intended as show-stoppers, still less as refutations, but rather as serious
scientific challenges to fundamental research. Of course, I’m also in no
position to claim that these challenges can be met—nor do I have any
clear sense of what it would take to meet them. The best I can do as a
philosopher is to try to articulate some of the boundary conditions.

In characterizing the second-order self-criticism that belongs to science,
I observed that the norms of scientific practice together with the laws
governing the objects under investigation “promise” that properly ob-
tained scientific results will all agree about those objects. It is the breach
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of this promise, when results conflict, that shows that something is
wrong. But then I considered only one of the two obvious options for
what might be wrong—namely, something in the norms governing the
practice (that is, proper procedures). Scrutinizing and refining these is
what I called second-order self-criticism.

Clearly, however, there is no guarantee that any way of refining and
improving the practice (the norms) will actually eliminate all conflicts
among properly obtained results. In other words, there may be no way
to make this field, as presently constituted, “work.” Thus, eventually, if
the conflicts prove serious and persistent enough, then—and only then—
scientists will begin to take their last option seriously: that there is some-
thing wrong with the basic laws and principles in terms of which they
understand the objects in their domain.

This process I will call—predictably—third-order scientific self-criti-
cism. It is always the last option because it raises the stakes in a funda-
mental way.

6 Authentic Responsibility

Revising the laws that a scientific community takes to govern the objects
in its domain is a far more radical undertaking than merely revising the
practices for investigating them. The reasons for this can be summarized
in three closely connected points.

First: the laws and principles tend to be interdependent, forming a co-
herent whole or “package” such that you can’t revise just one or two at
a time, leaving the others as they were. Thus, any such revision is likely
to have to be more or less “wholesale.” By contrast, revisions in the
norms for proper experimental procedure can usually be managed
roughly at “retail”—that is, one or a few at a time.

Second: the experimental procedures, as we have seen, are themselves
intelligible only in terms of the laws governing the objects. So, although
you can refine procedures without revising laws, you can’t revise laws
without revising procedures—or at least reconceiving them. What’s
worse, since the law revisions are apt to be wholesale, the required proce-
dural revisions will have to be more widespread as well. In other words,
a whole lot of things have to be reconceived at once, which makes the
space of alternatives much larger and the number of “fixed points” to
guide the search much smaller.
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But finally, and most fundamentally: the laws governing the objects
are crucial to the very intelligibility of those objects as what they are. The
point is most easily seen by example: how could one possibly understand
what mass, force, momentum, and energy—not to mention electrons,
orbiting planets, springs, and gasses—are, apart from how they figure (in
relation to one another) in the relevant laws of motion, gravity, elasticity,
thermodynamics, and so on? The connection between laws and intelligi-
bility is conspicuous as well in the fact that scientific explanation, which is
the context in which scientific understanding is made explicit, standardly
appeals to laws and principles (or something like them).

Of course, the intelligibility of the objects also depends on the (various)
empirical procedures by which they can be observed and measured—a
truism that once lent plausibility to verificationism, operationalism, and
their ilk. But, without the laws, even the procedures would make no sys-
tematic sense, and all that would remain would be a traditional craft (and
perhaps some mythology). It is because the laws and principles collec-
tively determine the intelligibility of the objects that they can’t be revised
piecemeal, nor without also revising the practice.

In sum, when it turns out (after long struggle) that a scientific discipline
cannot in fact be made to work—too many of the results that it itself
deems proper are, by its own lights, impossible—then that discipline as
a whole comes into question. This is why I said that third-order self-
criticism raises the stakes in a fundamental way. Often enough, the even-
tual changes are so radical that it makes as much sense to say that the
old discipline died out and got replaced by a successor (or successors)
related only by a pattern of family resemblances to what preceded. Hence
the appeal of such grand phrases as “paradigm shift” and “revolution.”

Yet, however radical, and however described, if a discipline just doesn’t
work, pursuing such transformations (or replacements) can sometimes
be the only responsible response to the actual situation. Accepting this
responsibility is peculiarly personal, not merely because it is so risky, but
because what is at stake in it is the individual’s own professional self-
understanding. Who, after all, are you, professionally, if your profes-
sional specialty dies?

However, even though the ability of some scientists to accept this respon-
sibility is essential to science—lest it degenerate into a dogmatic and unem-
pirical orthodoxy—it is not essential that every scientist actually be able
to accept it. As Kuhn argued, on historical grounds, most scientists won’t
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actually jump ship until they can clearly see a plausibly better vessel on the
horizon. Revolutions, as everyone knows, always need their heroes.

Since this responsibility is, in some sense, for the whole, and yet pecu-
liarly personal, I call it (not ordinary but) authentic responsibility.

7 Authentic Intentionality

Intentionality is directedness to objects—objects as they are. It therefore
presupposes not only the distinction between objective truth and falsity,
but also the ability to discover the former nonaccidentally—that is,
to know it. We have seen this structure already in the conditions of
the possibility of ordinary intentionality (first- and second-order self-
criticism, and ordinary responsibility).

But what are objects? What does it mean to say “objects as they are”?
In speaking to these questions, I will rely on an approach to metaphysics
that is far from universally endorsed. Accordingly, my conclusions will
presuppose some controversial premises. But, since I endorse this ap-
proach, I think the conclusions are valid. Your mileage may vary.

This is not the place to spell out my approach to metaphysics in detail,
let alone defend it. I will mention only one (familiar but tendentious)
claim that motivates it, and then the basic shape of an accommodation
of this claim. The claim is that “absolute” or “capital-R” Reality—Real-
ity as God describes it—is a notion that cannot be made sense of. Note:
this is not the claim that we can never come to know “capital-R Reality,”
but rather the claim that the notion of such reality does not make sense,
and that therefore neither does knowing it or not knowing it. The philo-
sophical challenge, then, is to make sense of objectivity, truth, and knowl-
edge without appealing to any notion of “capital-R Reality.”

The basic shape of the response is to relativize reality not to God’s
descriptive resources but to our own—the only ones we can ever have
or understand. Then, of course, the demon to be exorcised is mere or
capital-R Relativism, which is incompatible with any robust conception
of objectivity. What’s so upsetting about such relativism is that, according
to it, our descriptive resources are ultimately arbitrary—in effect, acci-
dental—the results of personal taste, historical happenstance, extraneous
cultural influences, and the like. This is really just the flip side of capital-
R Realism, since it accepts the same basic assumption that the only alter-
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native to arbitrariness is capital-R Reality. Therefore, what any more
satisfactory relativizing must do is show how the descriptive resources in
question are not ultimately arbitrary.

But that, after all—showing how descriptive resources are not ulti-
mately arbitrary—is exactly what authentic responsibility is all about. It
is authentic in that it is personal—one’s own—responsibility for the sci-
ence as a whole, including in particular the basic laws and principles in
terms of which the objects—hence the terms for them—are understood.
In other words, it is responsibility for the basic descriptive resources of
the field. But, inasmuch as it is genuine responsibility, it is not arbitrary.

Third-order self-criticism is driven—neither easily nor happily—by two
factors. It is driven by an overarching insistence on maintaining a discipline
that actually works by its own demanding lights—that is, a discipline that
reliablyproduces stringently constrained results that are consistently possi-
ble according to its own defining laws and principles. And, it is driven by
apersistent empirical recalcitrance in those results—results thathave them-
selves all survived careful first- and second-order critical scrutiny.

In other words, it is driven by a persistent empirical failure to make
the discipline work, despite assiduous and often ingenious efforts on the
part of many. Whether a discipline can be made to work is not up to
the scientists (or history or fads or culture). There’s nothing arbitrary or
accidental about it. That’s why I can say that, in the end, giving the whole
thing up is not just a matter of personal preference or social trends, but
rather of the highest scientific responsibility.

Accordingly, the ability to accept this responsibility—authentic re-
sponsibility—on at least some occasions by at least some scientists, is
prerequisite to scientific objectivity. Hence, by my earlier argument, it
is prerequisite to genuine intentionality and cognition. I call the inten-
tionality of someone who does accept authentic responsibility authentic
intentionality.

And that is why I said earlier (in section 2) that the capacity for authen-
tic intentionality is prerequisite to the capacity for ordinary intentionality,
but actually having the former is not prerequisite to actually having the
latter. But even this somewhat complicated dependency shows that cogni-
tive science will not have understood the conditions of the possibility
of intentionality—hence of cognition at all—until it has understood the
possibility of authentic responsibility and intentionality.
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8 Dramatic Conclusion

It used to be said—perhaps reassuringly, perhaps defensively—that the
aims of artificial intelligence are limited in a certain way. The goal, it was
said, is not to construct a machine (or “system”) capable of the full gamut
of human experience or of the human mind, but rather only a system
capable of human-like intelligence and hence cognition (so far as it is
required for intelligence).

The intended contrast (what AI is not concerned with) included things
like emotions (love, anger, fear, . . .), feelings (pleasure, disgust, em-
barrassment, . . .), and perhaps nonintellectual evaluations (this is fun,
fascinating, beautiful, . . .). I’m inclined to think that none of these separa-
tions—topical quarantines, in effect—will ultimately prove defensible.
But here I want to broach just one such doubt.

I have argued that the objectivity and intentionality of scientific
thought—and, by extension, all thought—depends essentially on a cer-
tain rather rich structure of self-criticism and responsibility. The deepest
and most fundamental layer of this structure—authentic responsibility—
can be characterized generically as follows: it is an honest commitment—
in the sense of resolve or dedication—to making something work, on
pain of having to give the whole thing up. Such honest commitment is
“double-edged”—it cuts both ways—in that, first, it requires honest and
dedicated effort to making it work, and yet, second, it also requires the
honest courage, eventually, to admit that it can’t be made to work—if
it can’t—and then to quit. These two edges are ordinary and authentic
responsibility, respectively.

But I think that this structure of double-edged commitment is wide-
spread in human life—not just in science, but in many (and in some sense
all) areas of the greatest human import. In particular, I believe that it is
the basic structure of love, and also freedom, and that love and freedom
are its most basic forms. Therefore, I close with the following dramatic—
but also perfectly serious—claim: cognitive science and artificial intelli-
gence cannot succeed in their own essential aims unless and until they
can understand and/or implement genuine freedom and the capacity to
love.
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The notion of computation has shaped our way of thinking about the
mind. From the daring imaginations of the early mechanists to the present
computational models of artificial intelligence and cognitive science re-
search, the idea that mind can in some sense be understood in mechanistic
terms—as some sort of machine—has permeated the investigations and
explanatory attempts of the mental.

Where are we left at the beginning of this new century in the founda-
tions of cognition? It seems to me that what mind is and exactly how it
is brought about by physical systems is to a large extent still as much a
mystery as it was fifty years ago, when computationalism provided a new
foundational tenet for scientific investigations of the mind. I do not intend
to be negative about the achievements of computationalist cognitive sci-
ence; quite the contrary. Nor am I pessimistic about the future of cogni-
tive science research. Neither do I want to advocate a “mysterian” view,
which takes minds as intrinsically inaccessible to scientific inquiry, as
nonobjective, mere subjective phenomena that cannot be tackled by scien-
tific methods in principle. Rather, I am somewhat skeptical about the
effectiveness and adequacy of the conceptual apparatus currently em-
ployed in our investigations of cognition. That is, I suspect that we are
still lacking the appropriate conceptual tools to grasp the intricate rela-
tionships between mind, brain, and body—a conceptual void not re-
stricted to the domain of the mental, but very visible in the domain of
computing as well.
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Computation as Real-World Activity

The struggle of computer science with its own conceptual foundations
is apparent in many ways, but nowhere as clearly as in its educational
incarnation, that is, the recent discussions about necessary revisions to
current computer science curricula. Whereas up to the end of the last
century these curricula were still largely dominated by the view that com-
putation is Turing-machine computation—what else could it be?—we
are now witnessing a shift in the educational directive. The deeply seated
conviction that computation is “the computation of a function” has given
way to new approaches that view computations as interactive processes.
And what used to be core courses of a computer science curriculum (such
as “automata,” “formal grammars,” “computability theory,” etc.) might
very well become electives. Fundamental revisions of that sort to a formal
educational curriculum are indications of a discipline’s having acknowl-
edged (in a Kuhnian sense) qua discipline its own previous foundational
confusion, that it—to a large extent—misled itself regarding what it is
all about.

With computer science maturing and computation becoming part and
parcel of our daily lives, we are beginning to grasp the impact of computa-
tional systems and computational metaphors on our way of thinking. All
kinds of systems, including cognitive systems, have become the target of
various ways of computational conceptualizing; not always rightfully so,
however.

Some of the reservations about applying computational concepts to
cognitive systems voiced by philosophers, connectionists, dynamicists,
and others are certainly justified. Today it seems clear, for example, that
classical notions of computation alone cannot serve as foundations for
a viable theory of the mind, especially in light of the real-world, real-
time, embedded, embodied, situated, and interactive nature of minds, al-
though they may well be adequate for a limited subset of mental processes
(e.g., processes that participate in solving mathematical problems). Reser-
vations about the classical conception of computation, however, do not
automatically transfer and apply to real-world computing systems. This
fact is often ignored by opponents of computationalism, who construe
the underlying notion of computation as that of “Turing-machine compu-
tation.” Computers are not abstract, but physical systems (consisting of
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monitors, keyboards, disk drives, etc.) that need to be controlled by
programs. Hence issues of timing, uncertainty, reliability, and effects
typical of dynamic systems like “coupling,” “phase locking,” or “con-
tinuous reciprocal causation,” which dynamicists take to be essential
to mind, are just as much essential to computation, at least at some lev-
els. At the level of VLSI chips design, for example, engineers have to
deal with a multitude of physical processes that happen simultaneously
in the chip. These processes have to be carefully controlled in order for
them to support a particular abstraction that is “reliable,” “clocked,”
“digital,” “discrete,” and “serial”—the computational processes as
we know them from the perspective of a higher programming language.
Just because at that level we do not have to worry about low-level
timing issues related to latency times in reading and writing registers
on disk controllers, keyboard-sampling routines, sound-producing pro-
cesses, and so on does not mean that these issues are not there or can be
ignored.

On a larger scale, any controller of an embedded system has to cope
with such issues. In artificial intelligence research, “situated AI” has been
the major driving force supporting the view that we need to think of
intelligent systems as embodied (i.e., having a body to control, which is
part of the world) and embedded in their environment. The offspring is
a research strategy that recognizes the fruitful repercussions on a theory
of cognition resulting from building complete systems: at the very least
the intrinsic constraints and limitations imposed on intelligent systems by
real-world dynamics will eliminate theoretically possible but practically
infeasible solutions. As an aside, the importance of practical feasibility
has long been acknowledged in theoretical computer science in the shift
from recursion theory (what can be computed in principle) to complexity
theory (what can be computed in practice).

Computationalism—New Directions

Once the restricting, classical view of computation as abstract, discrete,
syntactic, disconnected, and halting is abandoned in favor of a more en-
compassing perspective that allows computations to be concrete, continu-
ous, semantic, connected, and ongoing, we will be in a position to redefine
the computationalist paradigm from a new perspective. This book is a
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first attempt to sort out at different levels some of the territory that will
have to be covered by such a successor notion.

Theoretically, intentionality will not be the only contestant in the arena
of concepts on which computation may depend; at the very least, it will
be joined by the notion of responsibility (chapter 7). And once the possi-
bility is entertained that “theory of computation” is a misnomer, because
computation per se does not constitute an intellectually interesting, coher-
ent subject matter (chapter 2), then we may be more willing to concede
that there is no single such thing as computation (and hence no right
definition of it). Furthermore, by taking issues of embodiment and situat-
edness seriously, we may be able to construct a narrow notion of meaning
that is grounded in the interaction of a system with its environment and
can serve as the venture point for a theory of human language (chapter 6).

Practically, Turing computability seems to be a notion of little rele-
vance for the realm of computing. Hence cognitive science (and philoso-
phy) should not cling to it. For one, historically it did not play any role
in the conception and realization of computing systems as we know them
(chapter 4), and furthermore, it might not be a theoretically relevant limit
to cognition that delineates a boundary that minds cannot transcend
(chapter 3). Once researchers of the mind recognize and acknowledge the
tensions imposed by the various theoretical schemes (chapter 5), alterna-
tive conceptions of computation (from quantum to DNA computations)
may become accepted outside computer science, in particular, cognitive
science, as part of the standard computational repertoire.

Computation as Experimental Philosophy

Examples from computational practice may shed new light on many of
today’s unresolved issues in cognitive science and the philosophy of mind
(such as questions about “causation,” “consciousness,” “mental con-
tent,” “qualia,” and others). Although often not obvious prima facie,
computing systems deal with many problems similar to those that minds
have to cope with on a regular basis. Yet, as opposed to minds, computers
are systems we build. Hence computational examples may elucidate
otherwise opaque and obscure relationships.

For example, simple instances of the “other minds problem” come up
regularly in communication situations between two computers, where
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one computer cannot be sure whether the message it sent to the other
computer has been received or “understood.” Nor could the computer
ever “know” whether the message was indeed received by a machine of
its kind. In fact, often computers are “deceived” because we purposefully
design software to make one system “think” it is communicating with a
system of its kind (e.g., think of “terminal emulations”).

In a similar vein, simple instances of Cartesian skepticism are imple-
mented in the startup sequence of computer systems, where the operating
system has to figure out what kind of machine it is running on, how much
physical memory and what kind of permanent storage are available, and
so on. Software engineers devise clever algorithms to detect the available
hardware, but in the end the program is restricted to its own “epistemo-
logical resources” (as apparent in the case of an operating system running
on a virtual machine, which emulates a system different from the one it
is running on—the operating system has no way of “knowing” or “notic-
ing” that fact).

Another example concerns the relationship (often called “superve-
nience”) between different levels of description or layers of organization
in nature. The idea is that while upper layers are determined and depen-
dent on lower layers, upper layers are not necessarily reducible to the
lower ones. Many software systems exhibit complex layered architectures
with rich interactions and dependencies among various layers that may
serve as examples of such dependency relations. They may also be useful
as models of virtual machine architectures (e.g., as implemented by the
brain) and may lead to a clarification of notions like “mereological super-
venience” and “emergence,” possibly demarcating the path toward a gen-
eral theory of abstraction, which defines criteria for all “legitimate”
abstractions given a level of description.

Many other psychological and philosophical problems can be studied
using examples from computing: questions of causation (upper-level as
well as upward/downward causation), the impact of space-time con-
straints and limited resources on processing mechanisms, effects of
learning and adaptation on architectural organization, the nature of
qualitative states and their architectural requirements, the origin of repre-
sentation and reference in systems (e.g., how digitality is supported by
dynamic systems that stabilize over spatiotemporal regions and how the
resulting digits can be used as representations), different ways of repre-
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senting external and internal states, architecture-based concepts, and
many more.

Toward a Successor Notion of Computation

One can never be certain of what will turn out to be relevant for future
developments in any field, but I am still tempted to make a prediction
about computation, that is, what ingredients will be part of (the definition
of) a successor notion of computation. First and foremost, I am convinced
that three notions of already increasing importance in computational
practice will figure crucially in future versions of computation: the no-
tions of distributed computing, resource limitation, and locality. These
three notions exhibit interesting three-way dependencies. Because of re-
source limitations (e.g., limited space), local computations often need to
be distributed. Yet, there are limits to what can be distributed, again be-
cause of resource limitations (e.g., time lags between spatially distant
computers), so the explicit acknowledgement of what is local and what
is remote becomes important. By allowing the notions of time and space
to enter explicitly into computational descriptions—not only in terms of
discrete orders, but as continuous metrics that model actual distances in
time and space—computational descriptions will be able to reflect real-
world constraints in much the same way that differential equations reflect
the underlying metrics of the dynamical systems they capture. For exam-
ple, a program running on a node in a distributed system may be able to
determine online whether it pays off timewise to involve remote nodes
in an ongoing computation if it has access to the durations of various
operations on those nodes as well as information about their spatial
distances.

Especially with the advance of “mobile computation,” the locality of a
computation has become an issue—up to now computations have usually
taken place in one system. Even if they use remote resources (e.g., through
remote procedure calls), this simply means reaching out temporarily,
without leaving the primary locus of computation. Hence there is no need
to acknowledge the hic et nunc of the computational process. Mobile
computing, however, requires new control mechanisms to deal with the
locality, mobility, and distribution of computations, which in turn intro-
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duce new limiting factors such as latency and bandwidth that computa-
tions need to deal with explicitly.

With the distribution of processing, related issues of parallelism, syn-
chronization, and others will become even more important, and the re-
spective concepts will have to be augmented to address spatiotemporal
constraints. More than before, we will have to deal with “emergent ef-
fects,” which inevitably show up in large, distributed computational sys-
tems, and study possible ways to control them (e.g., the flooding of
subnets on the internet with useless information caused by computer vi-
ruses in an effort to block the entire traffic to particular servers in that
subnet).

Explicitly addressing resource limitations, for example, may prevent
some negative emergent systemic side effects (such as the emergence of
“thrashing” in an operating system). In general, properties of distributed
processing and ways of controlling emergent behavior in computing sys-
tems may give us new ideas about what kind of distributed control is
implemented in brains and how brains manage to keep in control of their
parts, for the most part (that brains are not always able to maintain
global synchronization is apparent from various kinds of epileptic at-
tacks and seizures, spontaneous loss of consciousness, and various other
disturbances).

Another element figuring crucially in the conceptual framework of a
successor notion of computation is the notion of interaction, for comput-
ing systems are not viewed in isolation, but as part of an integrated web
of computational activity. The crucial question, then, is how to under-
stand the notion of interaction and how to describe interactive systems.
For example, it seems clear that code written for interactive systems will
not be comprehensible by itself: the purpose of the program

while true do write(read(in channel),out channel) endwhile

is unclear, and hence what kind of program it is, if viewed in isolation
of the internet packet router it is running on. Other questions will concern
the very nature of interaction and its different realizations (e.g., whether
bandwidth limitations and problems of noise will lead to reliance on
knowledge-based communication typical of human communication,
where the communication works only because of large bodies of pre-
existing shared knowledge).
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The most intriguing and consequential pair of notions for future
investigations of the mind in cognitive science, I believe, is the no-
tion of a virtual machine (VM) together with its associated notion of
implementation.

Virtual Machines and the Philosophy of Mind

Virtual machines are quite common in computer science. Familiar exam-
ples of VMs include chess programs, word processors, the World Wide
Web and e-mail systems, operating systems, interpreters, the SCHEME
virtual machine, and so on. They are machines in that they are generally
complex systems with an architecture, which specifies the number and
kinds of interacting components and their contributions to the capabili-
ties of the (overall) machine. Yet, they are not physical machines, whose
components and interactions are partly defined in terms of physical ob-
jects and physical laws (“physical” understood in a wide sense). Rather,
they are functionally specified information-processing machines that ma-
nipulate complex information structures and are implemented in terms
of lower-level (physical) machines. What blueprints, circuit diagrams,
and other ways of specifying the architecture of physical machines are to
the engineer, programs are to the software engineer. They specify “com-
ponents” (functions, data structures, etc.) and how they are related spa-
tially (e.g., where they are placed in “logical space” or “virtual memory”)
as well as temporally (e.g., how they are created and can change over
time) through the specification of processes that operate on them.

Although VMs are not any less real than physical machines, their main
features are not physical properties and physical behaviors, although they
are implemented in physical properties and behaviors. And the interacting
components of a virtual machine do not interact (directly) via physical
causes (such as forces or voltages) even though they are implemented in
physical parts that do. Just think of a computer virus that crashes a word
processing VM. Stating it the way I just did effectively claims that it is
the virus that causes the VM to crash (rather than the sequence of changes
in the strength of the electromagnetic field at the set of spatial locations,
which instantiate the PC). Note that nothing “physical” is broken after
the virus crashed the VM—the CPU is still executing commands as it
finds them present in memory—yet the VM has ceased to exist (note that
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turning off the power to the system has the same effect at the VM level,
yet at the cost of a radical physical change).

VMs typically have their own set of concepts, which define and are
defined for the realm (and level of abstraction/description) in/on which
they work. Any description of a VM will make use of properties, func-
tions, relations, and so on particular to that domain. A word processor,
for example, manipulates words and paragraphs, though these cannot be
found in the underlying physical machine. More specifically, the architec-
ture of a word processing VM uses an ontology that includes entities like
letters, words, paragraphs, properties like italics, bold, double-spaced,
and relations like in-between, first-on-page, and anchored-at. Nowhere
in the ontology of a word processing VM do we find bits, bytes, registers,
for-loops, stacks, arrays, or procedures—rather they are part of the on-
tology of the “implementing” VM (which in turn is implemented in some
lower-level physical machine). It should not come as a surprise that many
VMs do not have a meaningful physical description (e.g., what would it
mean to describe “section break” or “spell check” in terms of physics?).
Nor will any decomposition of their components into smaller parts be
meaningful.

Consequently, it is extremely hard if not impossible to understand
whether and when a computer is implementing a word processing pro-
gram if one is allowed to look only at the level lower and not that of the
“word processing virtual machine” (e.g., the level of machine code or
electric fields); if for nothing else, then for the unavoidable fact that there
are indefinitely many virtual machines implemented by the lower-level
system. Obviously, these problems are not restricted to the ontology and
epistemology of VMs, but apply equally well to other domains (e.g., the
realm of representations).

Another complicating factor in establishing the relation between physi-
cal systems and VMs is that physical systems might only “partially” im-
plement VMs at any given time (e.g., because the VMs contain infinitely
many components or components that are per se unbounded—note that
VMs are not limited to computational abstractions such as Turing ma-
chines, but include uncomputable VMs specified by architectures such as
neural networks with arbitrary real-numbered weight connections). The
most conspicuous examples are standard PCs, which are considered to
be “universal computers” (in the sense of the universal Turing machine),
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except that they are universal only counterfactually: if they had enough
memory, wide enough data registers and address busses, and so on, then
they would be able to implement any computation. De facto, however,
they are only finite state machines that can be “in some sense” described
as implementing a universal Turing machine (which amounts to saying
that they implement it only partially).

Although VMs get their causal powers from the physical and can affect
things because they are (eventually) physically implemented, they may
still be defined in terms of concepts different from those of their physical
realizers. This raises a fundamental, open question: how is it that we can
implement VMs whose ontology is different and possibly not reducible
to that of the implementing system? (Obviously it can be done as we do
have implementations of chess computers, word processors, etc.) I sus-
pect that an answer to this challenge will not only be of great impor-
tance to computer science, but will also shed new light on the mind-body
relation.

The Next Generation Again

There is a striking similarity between the relations among mental states,
mental concepts, physical states, and physical concepts, on the one hand,
and VM states, VM concepts, physical states, and physical concepts, on
the other. One part of that similarity looks like a restatement of the well-
known “computer metaphor”—mind is to matter as virtual machines are
to matter—except that the left-hand side of the analogy will turn out to
be an instance of the right-hand side if we view minds, like computations,
as special kinds of virtual machines. This amounts to a syntactically mi-
nor but semantically significant modification of the defining statement of
computationalism: mental states are VM states (leaving open in what
sense and to what extent these VMs are computational in the classical
sense).

The second part of the similarity points to an analogy between concep-
tual relationships: mental concepts are to physical concepts as virtual ma-
chine concepts are to physical concepts in at least the respect that neither
mental nor virtual machines concepts need to be “reducible” to physical
concepts in order to make sense of them and to be able to accommodate
them in a physical world. The mental states defined by mental concepts
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are as much part of this world if instantiated in physical states as are
virtual machine states defined by virtual machines concepts.

More radically, I want to add the claim that (all/some?) mental con-
cepts are virtual machine concepts. While some researchers are still after
the “true” analysis of the concepts of folk psychology (hoping to cast
them in terms of clearly specified classical concepts), and others still “be-
lieve” that mental talk should be banned from scientific discourse alto-
gether, I want to suggest a middle-of-the-road approach. It concedes that
mental concepts are cluster concepts as suggested by their stubborn resis-
tance to any analysis in terms of classical concepts (with necessary and
sufficient conditions). Hence there is no hope to achieve the former
goal of analyzing the concepts of folk psychology. Yet, it questions
both the claim that being cluster concepts necessarily renders them useless
or unintelligible, and the conclusion that they consequently need to be
eliminated.

Instead, this view attempts to make (at least some of) our intuitive,
ordinary concepts more precise and useful by viewing them as implicitly
architecture-based, that is, as being defined relative to and hence explana-
torily dependent on a particular (cognitive) architecture. For example,
the notion of “feeling guilty” can be explicated roughly as defining a class
of cognitive processes that have the properties of frequently interrupting
current processing by diverting attention to a particular past episode . . .
It is the phrase “frequently interrupting current processing” that reveals
an implicitly assumed architecture of parallel processes that allows some
processes to interrupt others.

Once this architecture-based view is accepted, we can begin to explore
the design options of architectures and different connections among
architecture-based concepts, and hence mental concepts, bearing in mind
that different architectures will support different families of architecure-
based concepts, and therefore different mental concepts will be applicable
to individuals with different architectures (e.g., insects are not capable of
feeling guilt, because they lack the right kind of parallel, hierarchical,
“reflective” architecture).

In sum, I want to suggest that computationalism should not be focused
on viewing the mind as computational (in some fixed sense of “computa-
tional”), but rather be open to taking the wealth of resources and exam-
ples of virtual machines from computer science to address, study, and
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answer deep philosophical, conceptual questions about cognition and the
mind. I want to advocate a new view of computationalism that explicitly
encompasses and acknowledges the realm of computing as a test bed for
cognitive theories and as a playground for philosophical inquiry. This
may include taking puzzling concepts from human psychology and trans-
ferring them to “computer psychology” to see if they could be applied
and understood there, without any restrictions as to the kind of comput-
ing system. It may also include making philosophical questions precise
and testing their answers by inventing and implementing concrete exam-
ples on computers.

I am convinced that in the future, more than ever, researchers in philos-
ophy, psychology, and computer science will have to work together and
join their forces in their efforts to explore the still unknown territory of
the mind. Only then, will they (in Captain Kirk’s words) be able to “con-
tinue the voyages we have begun, and journey to all those undiscovered
countries, boldly going where no man . . . where no one . . . has gone
before.”
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