
The Neural Simulation Language
A System for Brain Model ing

Alfredo Weitzenfeld

Michael Arbib

Amanda Alexander

The MIT Press

Cambridge, Massachusetts

London, England

© 2002 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval) with-

out permission in writing from the publisher.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Weitzenfeld, Alfredo.

The neural simulation language : a system for brain modeling / Alfredo Weitzenfeld,

 Michael Arbib, Amanda Alexander.

 p. cm.

Includes bibliographical references and index.

ISBN 0-262-73149-5 (pbk. : alk. Paper)

 1. Neural networks (Neurobiology) 2. Neural networks (Computer science)

3. Brain—Computr simulation. I. Arbib, Michael A. II. Alexander, Amanda. III. Title.

QP363.3 . W45 2002

006.3'2–dc21

 2001056253

Contents

 Preface xiii

 Acknowledgments xvii

 1 Introduction 1
1.1 Neural Networks 1
 Modeling
 Simulation
1.2 Modularity, Object-Oriented Programming, and Concurrency 2
 Modularity in Neural Networks 2
 Object-Oriented Programming 4
 Concurrency in Neural Networks 4
1.3 Modeling and Simulation in NSL 5
 Modeling 5
 Modules 5
 Neural Networks 6
 Simulation 7
1.4 The NSL System 9
 Simulation System 10
 Schematic Capture System 11
 Model/Module Libraries 11
 Basic Hierarchy 12
1.5 Summary 13

 2 Simulation in NSL 15
2.1 Selecting a Model 15
2.2 Simulation Interface 17
2.3 Simulating a Model 18
2.4 Maximum Selector 19
 Model Description 19
 Simulation Interaction 20
2.5 Hopfield 24
 Model Description 25
 Simulation Interaction 26
2.6 Backpropagation 31
 Model Description 32
 Simulation Interaction 35
2.7 Summary 38

 3 Modeling in NSL 39
3.1 Implementing Model Architectures with NSLM 39
 Modules and Models 39
 Neural Networks 46
3.2 Visualizing Model Architectures with SCS 50
3.3 Maximum Selector 52
 Model Implementation 53
3.4 Hopfield 56

V I C O N T E N T S

 Model Implementation 56
3.5 Backpropagation 60
 Model Implementation 60
3.6 Summary 68

 4 Schematic Capture System 69
4.1 SCS Tools 69
 Schematic Editor (SE) 69
 Icon Editor (IE) 69
 NSLM Editor (NE) 70
 Library Path Editor (LPE) 70
 Library Manager (LM) 70
 Consistency Checker (CC) 70
 NSLM Generator (NG) 70
 NSLM Viewer (NV) 70
4.2 An Example Using SCS 70
 Create a Library 70
 Create Icons 71
 Specifying the Ports on the Icon 74
 Creating the Schematic 77
 Mouse Action Commands 84
 Automatic Generation of Code 84
 Manual Generation of Leaf Level Code 85
 Generating NSLM Code 87
 Compiling and Generating the Executable File 88
 Reusing Modules and Models 88
 Copying Existing Modules and Models 88
4.3 Summary 88

5 User Interface and Graphical Windows 89
5.1 NSL Executive User Interface 89
 System Menu 89
 Edit Menu 89
 Protocol Menu 90
 Simulation Menu 90
 Train Menu 90
 Run Menu 91
 Display Menu 92
 Help menu 92
5.2 NslOutFrames 92

The NslOutFrame’s Frame Menu 93
 The NslOutFrame’s Canvas Menu 96
 NSL Output Graph Types 98
5.3 NslInFrames 100
 The NslInFrame’s Menu 100
 The NslInFrame’s Canvas Menu 101
 NSL Input Graph Types 101
5.4 Summary 102

 6 The Modeling Language NSLM 103
6.1 Overview 103
 General Conventions 103

C O N T E N T S V I I

 Types 104
 Variables, Attributes, and Methods 104
 Attribute Reference Hierarchies 105
 Class Reference Hierarchies 106
 Predefined Reference Variables 106
 Importing Libraries 106
 Verbatim 107
6.2 Primitive Types 107
 Defined Types 107
 Declarations 108
 Expressions 109
 Control Statements 110
 Conversions, Casting, and Promotions 111
6.3 Object Types 112
 Defined Types 112
 Declarations and Instantiations 114
 Expressions 117
 Control Statements 121
 Conversions, Casting, and Promotions 121
6.4 Creation of New Object Types 121
 Template 121
 Header 122
 Inheritance 122
 Attributes 123
 Methods 123
 Static Modifier 124
6.5 Creation of New Module Types 124
 Template 125
 Header 125
 Inheritance 125
 Attributes 126
 Methods 126
 Differential Equations 129
 Scheduling 130
 Buffering 132
6.6 Creation of New Model Types 133
6.7 Summary 134

 7 The Scripting Language NSLS 135
7.1 Overview 136
 General Conventions 136
 Help 137
 Exit 137
7.2 TCL Primitives Types 137
 Variables 137
 Arrays 138
 Expressions and Control Statements 138
 Procedures 139
 System Commands 140
7.3 NSL Objects, Modules, and Model Types 140
 Access 140

V I I I C O N T E N T S

 Reference Tree for Model Variables 140
 Expressions 141
 Simulation Methods 144
 Simulation Parameters 147
7.4 Input Output 149
 Script Files 149
 Data Files 149
7.5 Graphics Displays 151
 Reference Tree for Canvases 151
 Create and Configure 151
 Print 155
7.6 Summary 156

 8 Adaptive Resonance Theory 157
8.1 Introduction 157
8.2 Model Description 157
 Recognition 159
 Comparison 160
 Search 160
 Learning 161
 Theorems 162
8.3 Model Implementation 163
 Art Module 163
 Comparison Module 164
 Recognition Module 164
8.4 Simulation and Results 166
 Execution 167
 Outpu 167t
8.5 Summary 168

 9 Depth Perception 171
9.1 Introduction 171
9.2 Model Description: Disparity 173
9.3 Model Implementation: Disparity 174
 Dev 175
 DepthModel 175
9.4 Simulation and Results: Disparity 176
9.5 Model Description: Disparity and Accommodation 178
9.6 Model Implementation: Disparity and Accommodation 181
 Dev2 181
 Retina 181
 Stereo 182
 Visin 182
 DepthModel 183
9.7 Simulation and Results: Disparity and Accommodation 183
9.8 Summary 186

 10 Retina 189
10.1 Introduction 189
10.2 Model Description 189
 Stimulus Shape and Size Dependency 192
10.3 Model Implementation 193

C O N T E N T S I X

 Visin 194
 Receptor 194
 Horizontal Cells 195
 Bipolars 195
 Amacrines 195
 Ganglion Cell R2 196
 Ganglion Cell R3 197
 Ganglion Cell R4 198
10.4 Simulation and Results 198
 Simulation Parameters 199
 Model Parameters 199
 Input Stimulus 200
10.5 Summary 203
 Stimulus Size Dependence of R3 cells 204
 Predictions Based on the modified model behavior 204
 Future Refinements of the Retina Model 205
 Providing a Flexible Framework for Modeling anuran retina 205

 11 Receptive Fields 207
11.1 Introduction 207
11.2 Model Description 207
11.3 Model Architecture 209
 LayerA Module 210
 ConnectW Module 211
 LayerB Module 213
 ConnectQ Module 213
11.4 Simulation and Results 215
11.5 Summary 217

 12 The Associative Search Network: Landmark Learning and Hill Climbing 219
12.1 Introduction 219
12.2 Model Description 219
12.3 Model Implementation 221
12.4 Simulation and Results 222
12.5 Summary 223

 13 A Model of Primate Visual-Motor Conditional Learning 225
13.1 Introduction 225
13.2 Model Description 228
 Network Dynamics 228
 Learning Dynamics 231
13.3 Model Implementation 234
 Model 234
 Train Module 235
 CondLearn Module 235
 Feature Module 237
 Noise Module 240
 Motor Module 243
 WTA Module 245
13.4 Simulation and Results 246
 Simulation 246
 Parameters 246

X C O N T E N T S

 Training Patterns 249
 Simulation Results 249
 Results 252
 Primary Experiments 252
 Changes in Protocol 254
 Reversal Experiments 256
13.5 Summary 258

 14 The Modular Design of the Oculomotor System in Monkeys 261
14.1 Introduction 261
14.2 Model Description 261
14.3 Model Implementation 265
14.4 Simulation Results 272
 The Single Location Saccade Experiment 272
 The Single Location Saccade Experiments Using Memory 274
 The Double Location Saccade Experiments 275
 The Lesioning of SC or FEF Experiments 276
 The Double Location Memory Saccade Experiments 278
 The Compensatory Saccade Experiments 279
14.5 Summary 281

 15 Crowley-Arbib Saccade Model 283
15.1 Introduction 283
15.2 Model Description 283
 Lateral Intraparietal Cortex (LIP) 284
 Thalamus (Thal) 285
 Prefrontal Cortex (PFC) 286
 Superior Colliculus (SC) 287
 Frontal Eye Field (FEF) 289
 Basal Ganglia 289
 Lateral Basal Ganglia 290
 Medial Basal Ganglia 291
 Brain Stem Saccade Generator 292
15.3 Model Implementation 293
15.4 Simulation and Results 302
15.5 Summary 304

 16 A Cerebellar Model of Sensorimotor Adaptation 305
16.1 Introduction 305
16.2 Model Description 305
16.3 Model Implementation 306
 Neuron Populations 306
 High-level modules 313
16.4 Simulation and Results 314
 Aftereffect of prism adaptation 315
 Transfer between over- and underhand throwing 315
 Relation to other models 316
16.5 Summary 317

 17 Learning to Detour 319
17.1 Introduction 319
 Problem Background 319

C O N T E N T S X I

 Experiment I: Barrier 10 cm Wide 320
 Experiment II: Barrier 20 cm Wide 320
17.2 Model Description 320
 Component Schemas: Architecture 321
 Perceptual Schemas 321
 Sensorimotor Schemas 322
 Motor Schemas 324
 Schema Dynamics 324
17.3 Model Implementation 325
 World 326
 Perceptual Schemas 327
 Sensorimotor Schemas 330
 Motor Schemas 333
 Learning Dynamics 334
17.4 Simulation and Results 335
 Experiment I 336
 Experiment II 338
 Experiment III 340
17.5 Summary 341

 18 Face Recognition by Dynamic Link Matching 343
18.1 Introduction 343
18.2 Model Description 345
 Principle of Dynamic Link Matching 345
 Blob Formation 349
 Blob Mobilization 349
 Layer Interaction and Synchronization 349
 Link Dynamics 350
 Attention Dynamics 350
 Recognition Dynamics 351
 Bidirectional Connections 351
 Blob Alignment in the Model Domain 352
 Maximum Versus Sum Neurons 352
18.3 Model Implementation 352
 Similarity Module 354
 H Module 356
 H1 Module 356
 H2 Module 357
 Attention Module 359
 W Module 360
 W12 Module 360
 W21 Module 362
 Correlation Module 362
 Recognition Module 365
18.4 Simulation and Results 366
 Blob Formation 366
 Blob Mobilization 366
 Layer Interaction and Synchronization 366
 Link Dynamics 367
 Attention Dynamics 367
 Recognition Dynamics 367

X I I C O N T E N T S

 Data Base 368
 Technical Aspects 368
 Results 369
18.5 Summary 370

 Appendix I – NSLM Methods 373
A.I.1 System Methods 373
 Data Access 373
 Simulation Parameters 373
 Incrementing, Breaking, and Continuing 374
 Model Variables 374
 Dynamic Memory Allocation 376
 Printing 376
 File Manipulation 377
 Display Step 379
A.I.2 Mathematical Methods 379
 Basic Arithmetic Methods and Operators 379
 Additional Arithmetic Methods 381
 Trigonometric Methods 384
 Threshold Methods 384

 Appendix II – NSLJ Extensions 387
A.II.1 Additional NslModule Types 387
A.II.2 NSLM Extensions 388
 Additional System Methods 388
 Differential Approximation 389
 Differential Approximation 389
 DisplayDelta 389
 Additional NslBase Methods 389
 Additional NslData Methods 390
 Additional NslNumeric Methods 391
 Additional NslNumeric0 Methods 391
 Additional NslNumeric2 Methods 392
 Additional NslBoolean Methods 393
 Additional NslString0 Methods 394
 Additional NslHierarchy Methods 394
 Nsl Module Methods 395
 Additional NslClass Methods 398
 Logical Methods 398
A.II.3 Displays and Protocols 399
 NSL Protocols 399
 Adding Protocols 399
 Removing Protocols 399
 Setting the Default Protocol 400
 Menu Selection of a Protocol 400
 Getting the Schedule Associated with a Protocol 400
 Protocol Associated Methods 400
A.II.4 Command Line Parameters 401
A.II.5 The Interactive System 402

 Appendix III – NSLC Extensions 403
A.III.1 Object Type Extensions 403

C O N T E N T S X I I I

 Arrays 403
 Defined Types 403
 Convolution 403
 Connect 404
 Disconnect 404
 Relabel 404
 Delabel 405
 File Manipulation 405
A.III.2 Script Extensions 406
A.III.3 Input Facility 406
 Object Types 406
 Input Processing 407
 Input Specification 407
A.III.4 Distribution 410

 Appendix IV – NSLJ and NSLC Differences 411
A.IV.1 Ports 411
A.IV.2 Read/Write Script Access 411
A.IV.3 Frames and Modules 411
A.IV.4 NslBoolean 411
A.IV.5 Methods 411

 Appendix V – NSLJ and NSLC Installation Instructions 413
A.V.1 NSLJ Version 413
A.V.2 NSLC Version 413

 Bibliography 415

 Index 425

This page intentionally left blank

Preface

Since 1985 more than a hundred neurosimulators have been developed (see Murre (1995)
for a list of many of the most important ones). These neurosimulators can be generally
described as software packages intended to reduce the time and effort in simulating neu-
ral networks, ranging from the most rudimentary unsupported systems provided at no
cost by academia, to the very expensive ones provided by industry for commercial use
with technological applications in mind. Academia neurosimulators tend to be used for
exploring new biological and artificial neural architectures while commercial packages
are primarily used in non-biological areas such as credit-assessment, signal analysis,
time-series prediction, pattern recognition and process control. These particular commer-
cial systems tend to support a predefined set of artificial neural networks. Most existing
neurosimulators are useful when using and extending standard paradigms but not so
much when developing new ones, a phenomenon marked by the proliferation of the large
number of simulators developed by researchers to experiment with specific new neural
architectures.

During the last decade our group has worked to overcome the shortcoming of “one
group, one neurosimulator” by designing a general-purpose simulator known as the Neu-
ral Simulation Language NSL, now in its third major release. NSL is neural network
simulator that is both general and powerful, designed for users with diverse interests and
programming abilities. As opposed to commercial neurosimulators, we provide NSL at
no cost yet with extensive documentation.

We address the needs of a wide range of users. For novice users interested only in an
introduction to neural networks, we provide user-friendly interfaces and a set of prede-
fined artificial and biological neural models. For more advanced users well acquainted
with the area, who require more sophistication, we provide evolved visualization tools
together with extensibility and scalability. We provide support for varying levels in neu-
ron model detail, which is particularly important for biological neural modeling. In artifi-
cial neural modeling the neuron model is very simple, with network models varying
primarily in their network architectures and learning paradigms. While NSL is not par-
ticularly intended to support detailed single neuron modeling, NSL does provide suffi-
cient expressiveness to support this level of modeling.

In general, NSL has the following characteristics:

� provides a powerful neural development environment supporting the efficient crea-
tion and execution of scalable neural networks;

� is designed to run on a large number of platforms;

� is built exclusively using object-oriented technology;

� offers rich graphics and a full mouse-driven window interface supporting creation of
new models as well as their control and visualization;

� incorporates a compiled language NSLM for model development and a scripting
language NSLS for model interaction and simulation control;

� provides extensibility with Java and C++ for users who want to develop applications
under specific programming environments or to integrate with other software or
hardware;

� offers free download of the complete NSL system, including full source code as well
as forthcoming new versions;

X V I P R E F A C E

� offers free and extensive support for downloading new models from our Web sites,
where users may contribute with their own models and may criticize existing ones.

In summary NSL is especially suitable for the following tasks:

� Use in an academic environment where NSL simulation and model development can
complement theoretical courses in both biological and artificial neural networks.
Models included in the second part of the book are examples of models that can be
used for this purpose. Students are able to run these models and change their behav-
ior by modifying input in general or specific network parameters.

� Use in a research environment where scientists require rapid model prototyping and
efficient execution. NSL may easily be linked to other software tools, such as addi-
tional numerical libraries, or hardware, such as robotics, by doing direct programming
in either Java or C++.

� In the book we describe how to design modular neural networks in order to simplify
modeling and simulation while providing better model extensibility. We provide
extensive examples on how neural models should be built in general and in particular
with NSL.

The book is divided in two major parts, the first part is required reading for NSL
users, while the second part provides additional model examples for those interested in
more specific modeling domains. We define three levels of user expertise:

� low level for running existing models—requiring no previous knowledge of software
programming;

� medium level for developing simple models—requiring the user to learn only the
NSL high level programming language;

� high level for developing complex models or linkage to other systems—requiring the
user to have a basic understanding of Java or C++.

Part I An Overview of NSL Modeling and Simulation
The following table gives a brief description of each chapter in Part I of this book in its
order of occurrence and the level of complexity involved (low, medium, high).

Chapter Complexity Description

1 Low Introduction to neural network modeling and simulation

2 Low Simulation Overview—using computers to explore the
behavior of neural networks: Examples of biological and
artificial neural network simulation in NSL.

3 Medium Modeling Overview—developing a neural network to
describe a biological system or serve a technological
application: Examples of biological and artificial neural
networks model in NSL.

4 Medium Describes the Schematic Capture System for designing
neural models and libraries.

5 Medium Describes the User Interface and Graphical Windows.

6 Medium Describes the NSLM high level modeling language for
writing models.

7 Medium Describes the NSLS scripting language for specifying
simulation interaction.

P R E F A C E X V I I

Part II Neural Modeling and Simulation Examples Using NSL
The following table gives a brief description of each chapter in Part II of this book in its
order of occurrence and level of model complexity involved.

Chapter Complexity Description

8 Medium Adaptive Resonance Theory by T. Tanaka and A.
Weitzenfeld

9 Medium Depth Perception by A. Weitzenfeld and M. Arbib

10 Medium Retina by R. Corbacho and A. Weitzenfeld

11 Medium Receptive Fields by F. Moran, J. Chacón, M.A. Andrade
and A. Weitzenfeld

12 Medium The Associative Search Network: Landmark Learning and
Hill Climbing by M. Bota and A. Guazzelli

13 High A Model of Primate Visual-Motor Conditional Learning
by A. Fagg and A. Weitzenfeld

14 High The Modular Design of the Oculomotor System in
Monkeys by P. Dominey, M. Arbib and A. Alexander

15 High Crowley-Arbib Saccade Model by M. Crowley, E. Oztop
and S. Marmol

16 High A Cerebellar Model of Sensorimotor Adaptation by Jacob
Spoelstra

17 High Learning to Detour by F. Corbacho and A. Weitzenfeld

18 High Face Recognition based on Dynamic Link Matching by L.
Wiskott and C. von der Malsburg and A. Weitzenfeld

We end the book with a discussion on current work and future directions, such as
distributed simulation and robotics, together with appendices containing information on
how to download from our web sites (in Los Angeles and in Mexico City) the software
described in the book as well as model overviews, FAQs, emails and other relevant
information.

Alfredo Weitzenfeld
 Mexico City

Michael A. Arbib
Amanda Alexander
 Los Angeles

Acknowledgments

We acknowledge the support of the Human Brain Project (Grant 5-P20-52194), the NSF-
CONACyT collaboration project (NSF grant #IRI-9522999 and CONACyT grant
#546500-5-C018-A), CONACyT REDII (Information Research Network by its spanish
acronym) the “Asociación Mexicana de Cultura, A.C.,” as well as all the people involved
in the development of NSL and SCS throughout the past years.

We would especially like to thank the following research assistants at USC: Isaac
Ta-yan Siu, Danjie Pan, Erhan Oztop, George Kardaras, Nikunj Mehta, Tejas Rajkotia,
Salvador Marmol (previously at ITAM), Weifanf Xie and Nitin Gupta; together with the
following research assistants at ITAM: Claudia Calderas, Oscar Peguero, Francisco
Peniche, Sebastián Gutiérrez, Francisco Otero, Rafael Ramos, Munir Estevane, Eric
Galicia, and Mirlette Islas.

In addition we would like to thank the following individuals for allowing us to use
their public domain software: Jacl TCL interpreter: Ioi Lam, Cornell University, 1996;
Java preprocessor: David Engberg, Effective Edge, 1995 and Dennis Heimbigner,
University of Colorado, 1996; and Display tree: Sandip Chitale, 1996.

And, finally, we would especially like to thank our families for their patience: Tica,
Jonathan, Gabriela, Ariel, Prue, Steven, David, and Thomas.

1 Introduction

The NSL Neural Simulation Language provides a platform for building neural architec-
tures (modeling) and for executing them (simulation). NSL is based on object-oriented
technology, extended to provide modularity at the application level as well. In this chap-
ter we discuss these basic concepts and how NSL takes advantage of them.

1.1 Neural Networks
Neural network simulation is an important research and development area extending from
biological studies to artificial applications. Biological neural networks are designed to
model the brain in a faithful way while artificial neural networks are designed to take
advantage of various “semi-neural” computing techniques, especially the use of different
learning algorithms in distributed networks, in various technological domains. Challenges
vary depending on the respective areas although common basic tasks are involved when
working with neural networks: modeling and simulation.

Modeling
Modeling or development of a neural network or neural architecture depends on the type
of network being constructed. In the case of artificial neural modeling, neural architec-
tures are created to solve the application problem at hand, while in the case of biological
modeling neural architectures are specified to reproduce anatomical and physiological
experimental data. Both types of network development involve choosing appropriate data
representations for neural components, neurons and their interconnections, as well as network
input, control parameters and network dynamics specified in terms of a set of mathematical
equations.

For biological modeling, the neuron model varies depending on the details being
described. Neuron models can be very sophisticated biophysical models, such as
compartmental models (Rall 1959) in turn based on the Hodgkin-Huxley model (Hodgkin
and Huxley 1952). When behavioral analysis is desired, the neural network as a whole
may often be adequately analyzed using simpler neuron models such as the analog leaky
integrator model. And sometimes even simpler neural models are enough, in particular
for artificial networks, as with discrete binary models where the neuron is either on or off
at each time step, as in the McCulloch-Pitts model (McCulloch and Pitts 1943).

The particular neuron model chosen defines the dynamics for each neuron, yet a
complete network architecture also involves specifying interconnections among neurons
as well as specifying input to the network and choosing appropriate parameters for differ-
ent tasks using the neural model specified. Moreover, artificial neural networks—as do
many biological models—involve learning, requiring an additional training phase in the
model architecture.

To generate a neural architecture the network developer requires a modeling language
sufficiently expressive to support their representation. On the other hand, the language
should be extensible enough to integrate with other software systems, such as to obtain or
send data. In general, a neural network modeling or development environment should
support a set of basic structures and functions to simplify the task of building new models
as well as interacting with them.

Clearly, the user’s background plays an important role in the sophistication of the
development environment. Novice users depend almost completely on the interactivity
provided through window interfaces, while more sophisticated users usually desire exten-
sibility in the form of programming languages.

2 C H A P T E R 1

Simulation
Simulation of neural network architectures also varies depending on whether it relates to
artificial or biological networks. Artificial neural networks particularly those involving
learning usually require a two-stage simulation process: an initial training phase and a
subsequent processing or running phase. Biological networks usually require a single
running phase (in which behavior and learning may be intertwined).

Simulation consists of using the computer to see how the model behaves for a variety
of input patterns and parameter settings. A simulation may use values pre-specified in the
original formulation of the model, but will in general involve specifying one or more
aspects of the neural architecture that may be modified by the user. Simulation then
involves analyzing the results, both visual and numerical, generated by the simulation; on
the basis of these results one can decide if any modifications are necessary in the network
input or parameters. If changes are required these may be interactively specified or may
require more structural modifications at the neural architecture level going back to the
development phase. Otherwise the model is simulated again with newly specified input.
Simulation also involves selecting one of the many approximation methods used to solve
neural dynamics specified through differential equations.

In addition, the environment requirements can change when moving a model from
development phase to test phase. When models are initially simulated, good interactivity
is necessary to let the user modify inputs and parameters as necessary. As the model
becomes more stable, simulation efficiency is a primary concern where model processing
may take considerable time possibly hours or even days for the largest networks to proc-
ess. Parallelism and distributed computing will increasingly play key roles in speeding up
computation.

1.2 Modularity, Object-Oriented Programming, and Concurrency
Modularity, object-oriented programming and concurrency play an important part in
building neural networks in NSL as well as in their execution. Furthermore, the actual
NSL system is built based on object-oriented technology.

Modularity in Neural Networks
Modularity is today widely accepted as a requirement for structuring software systems.
As software becomes larger and more complex, being able to break a system into separate mod-
ules enables the software developer to better manage the inherent complexity of the overall
system. As neural networks become larger and more complex, they too may become hard
to read, modify, test and extend. Moreover, when building biological neural networks,
modularization is further motivated by taking into consideration the way we analyze the
brain as a set of different brain regions. The general methodology for making a complex
neural model of brain function is to combine different modules corresponding to different
brain regions. To model a particular brain region, we divide it anatomically or physio-
logically into different neural arrays. Each brain region is then modeled as a set of neuron
arrays, where each neuron is described for example by the leaky integrator, a single-com-
partment model of membrane potential and firing rate. (However, one can implement
other, possibly far more detailed, neural models.) For example, figure 1.1 shows the basic
components in a model describing the interaction of the Superior Colliculus (SC) and the
saccade generator of the Brainstem involved in the control of eye movements. In this
model, each component or module represents a single brain region.

I N T R O D U C T I O N 3

BrainStem

Superior
Colliculus

Figure 1.1
The diagram above shows
two interconnected
modules, the Superior
Colliculus (SC) and the
Brainstem. Each module is
decomposed into several
submodules (not shown
here) each imple-mented
as an array of neurons
identified by their different
physiological response
when a monkey makes
rapid eye movements.

BrainStem

Lateral Basal
Ganglia

Medial Basal
Ganglia

Substantia
Nigra

Compacta

PreFrontal
Cortex

Frontal Eye
Field

Thalamus

Lateral Inter
Parietal

Superior
Colliculus

PFCgo

Structured models provide two benefits. The first is that it makes them easier to
understand, and the second is that modules can be reused in other models. For example,
figure 1.2 shows the two previous SC and BrainStem modules embedded into a far more
complex model, the Crowley-Arbib model of basal ganglia. Each of these modules can be
further broken down into submodules, eventually reaching modules that take the form of
neural arrays. For example, figure 1.3 shows how the single Prefrontal Cortex module
(PFC) can be further broken down into four submodules, each a crucial brain region
involved in the control of movement.

There are, basically, two ways to understand a complex system. One is to focus in on
some particular subsystem, some module, and carry out studies of that in detail. The other
is to step back and look at higher levels of organization in which the details of particular

Figure 1.2
The diagram shows the SC
and BrainStem modules from
figure 1.1 embedded in a
much larger model of
interacting brain regions.

4 C H A P T E R 1

modules are hidden. Full understanding comes as we cycle back and forth between differ-
ent levels of detail in analyzing different subsystems, sometimes simulating modules in
isolation, at other times designing computer experiments that help us follow the dynamics
of the interactions between the various modules.

Thus, it is important for a neural network simulator to support modularization of
models. This concept of modularity is best supported today by object-oriented languages
and the underlying modeling concepts described next.

PFCmem
PFCmem

PFCgo
PFCgo

PFCseq

PFCfovea
LIPvis

LIPmem

THPFCmem

PFCfovea Figure 1.3
The Prefrontal Cortex (PFC)
model is further
decomposed into 4
submodules.

Object-Oriented Programming
Object-oriented technology has existed for more than thirty years. However, only in this
past decade have we seen it applied in so many industries. What makes this technology
special is the concept of the object as the basic modularization abstraction in a program.
Prior to object-orientation, a complete application would be written at the data and func-
tion level of abstraction. Since data and functions are global to a program any changes to
them could potentially affect the complete system, an undesired effect when large and
complex systems are being modified. To avoid this problem an additional level of
abstraction is added—the object. At the highest level, programs are made exclusively out
of objects interacting with each other through pre-defined object interfaces. At the lowest
level, objects are individually defined in terms of local data and functions, avoiding
global conflicts that make systems so hard to manage and understand. Changes inside
objects do not affect other objects in the system so long as the external behavior of the
object remains the same. Since there is usually a smaller number of objects in a program
than the total number of data or functions, software development becomes more manage-
able. Objects also provide abstraction and extensibility and contribute to modularity and
code reuse. These seemingly simple concepts have great repercussion in the quality of
systems being built and its introduction as part of neural modeling reflects this. Obvi-
ously, the use of object-orientation is only part of writing better software as well as neural
models. How the user designs the software or neural architectures with this technology
has an important effect on the system, an aspect which becomes more accessible by pro-
viding a simple to follow yet powerful modeling architecture such as that provided by
NSL.

Concurrency in Neural Networks
Concurrency can play an important role in neural network simulation, both in order to
model neurons more faithfully and to increase processing throughput (Weitzenfeld and
Arbib 1991). We have incorporated concurrent processing capabilities in the general
design of NSL for this purpose. The computational model on which NSL is based has
been inspired by the work on the Abstract Schema Language ASL (Weitzenfeld 1992),

I N T R O D U C T I O N 5

where schemas (Arbib 1992) are active or concurrent objects (Yonezawa and Tokoro
1987) resulting in the ability to concurrently process modules. The NSL software sup-
plied with this book is implemented on serial computers, emulating concurrency. Exten-
sions to NSL and its underlying software architecture will implement genuine
concurrency to permit parallel and distributed processing of modules in the near future.
We will discuss this more in the Future Directions chapter.

1.3 Modeling and Simulation in NSL
As an object-oriented system, NSL is built with modularization in mind. As a neural
network development platform, NSL provides a modeling and simulation environment
for large-scale general-purpose neural networks by the use of modules that can be
hierarchically interconnected to enable the construction of very complex models. NSL
provides a modeling language NSLM to build/code the model and a scripting language
NSLS to specify how the simulation is to be executed and controlled.

Modeling
Modeling in NSL is carried out at two levels of abstraction, modules and neural net-
works, somewhat analogous to object-orientation in its different abstraction levels when
building applications. Modules define the top-level view of a model, hiding its internal
complexity. This complexity is only viewed at the bottom-level corresponding to the
actual neural networks. A complete model in NSL requires the following components: (1)
a set of modules defining the entire model; (2) neurons comprised in each neural module;
(3) neural interconnections; (4) neural dynamics; and (5) numerical methods to solve the
differential equations.

Module Level 1

Module Level 2

Figure 1.4
The NSL computational
model is based on
hierarchi-cal modules. A
module at a higher level
(level 1) is decomposed
into submod-ules (level 2).
These sub-modules are
themselves modules that
may be further
decomposed. Arrows show
data communication among
modules.

Modules
Modules in NSL correspond to objects in object orientation in that they specify the
underlying computational model. These entities are hierarchically organized as shown in
figure 1.4.

Thus a given module may either be decomposed into a set of smaller modules or
maybe a “leaf module” that may be implemented in different ways, where neural net-
works are of particular interest here. The hierarchical module decomposition results in
what is known as module assemblages—a network of submodules that can be seen in
their entirety in terms of a single higher-level module. These hierarchies enable the
development of modular systems where modules may be designed and implemented
independently of each other following both top-down and bottom-up development.

6 C H A P T E R 1

Module Level

Neural Network Level

Figure 1.5
A module in NSL imple-
mented by neural networks
made of multiple neurons.

Neural Networks
Some modules will be implemented as neural networks where every neuron becomes an
element or attribute of a module, as shown in figure 1.5. (Note that although neurons also
may be treated as modules, they are often treated as elements inside a single module—
e.g., one representing an array of neurons—in NSL. We thus draw neurons as spheres
instead of cubes to highlight the latter possibility.)

There are many ways to characterize a neuron. The complexity of the neuron
depends on the accuracy needed by the larger model network and on the computational
power of the computer being used. The GENESIS (Bower and Beeman 1998) and
NEURON (Hines 1997) systems were designed specifically to support the type of model-
ing of a single neuron which takes account of the detailed morphology of the neuron in
relation to different types of input. The NSL system was designed to let the user represent
neurons at any level of desired detail; however, this book will focus on the simulation of
large-scale properties of neural networks modeled with relatively simple neurons.

mp mfsm

input neuron output

We consider the neuron shown in figure 1.6 to be “simple” since its internal state is
described by a single scalar quantity, membrane potential mp, its input is sm and its out-
put is mf, specified by some nonlinear function of mf.

The neuron may receive input from many different neurons, while it has only a sin-
gle output (which may “branch” to affect many other neurons or drive the network’s
outputs). The choice of transformation from sm to mp defines the particular neural model
utilized, including the dependence of mp on the neuron’s previous history. The membrane
potential mp is described by a simple first-order differential equation,

() ()tmpsmf
dt

tdmp
,,=� (1.1)

depending on its input s. The choice of f defines the particular neural model utilized,
including the dependence of mp on the neuron’s previous history. In this example we
present the leaky integrator. The leaky integrator model is described by

Figure 1.6
Single compartment neural
model represented by a value
mp corresponding to its
membrane potential, and a value
mf corresponding to its firing,
the only output from the neuron.
sm represents the set of inputs
to the neuron.

I N T R O D U C T I O N 7

() () ()tsmtmptmpsmf +�=,, (1.2)

while the average firing rate or output of the neuron, mf, is obtained by applying some
“activation function” to the neuron’s membrane potential,

() ()()tmptmf �= (1.3)

where � usually is described by a non-linear function also known as threshold functions
such as ramp, step, saturation or sigmoid. The general idea is that the higher the neuron
membrane potential, the higher the firing rate, and thus the greater its effect on other
neurons to which it provides input.

The neural network itself is made of any number of interconnected neurons where
the most common formula for the input smj to a neuron mj from the output of a neuron mi

as shown in figure 1.7 is given by,

(1.4)

where ufi(t) is the firing rate of the neuron whose output is connected to the ith input line
of neuron vj, and wij is the corresponding weight on that connection (up and vp are analo-
gous to mp, while uf and vf are analogous to mf). These interconnections are called exci-
tatory or inhibitory depending on whether the weight wij is positive or negative.

vpjupi

wij

vfj
ufi svj

vj

sui

ui neuronneuron

Figure 1.7
Interconnection between
two neurons showing the
input svj to a neuron vj

from the output of a
neuron ui with connection
weight wij

When modeling a large number of neurons it becomes extremely tedious to individu-
ally name each one of the neurons. In the brain as well as in many neural engineering
applications, we often find neural networks structured into two-dimensional arrays, with
regular connection patterns between various arrays. For this reason, as part of our model-
ing primitives, we extend a simple single neuron into neuron arrays and single neuron-to-
neuron links into connection masks, describing spatial arrangements among homogene-
ous neurons and their connections, respectively. If mask wk (for -d�k�d) represents the
synaptic weight from the ufj+k (for -d�k�d) elements to vj element for each j, we then
have

�
�=

+=
d

dk
kjkj ufwsv (1.5)

The computational advantage of introducing such concepts when describing a
“regular” neural network, as shall be seen in chapter 3, is that neuron arrays and intercon-
nection masks can then be more concisely represented. Interconnections among neurons
would then be processed by a spatial convolution between a mask and an array. Once
interconnections are specified between neurons or neural arrays, we only need to specify
network input; weights and any additional parameter before simulation can take place.

Simulation
The simulation process starts with a model already developed. Simulation involves inter-
actively specifying aspects of the model that tend to change often, in particular parameter

�
�

=

=
1

0

n

i
iijj ufwsv

8 C H A P T E R 1

values and input patterns. Also, this process involves specifying simulation control and
visualization aspects.

For example, figure 1.8 shows five snapshots of the Buildup Cell activity after the
simulation of one of the submodules in the Superior Colliculus of the Crowley and Arbib
model shown in figure 1.1. We observe the activity of single neurons, classes of neurons
or outputs in response to different input patterns as the cortical command triggers a
movement up and to the right. We see that the cortical command builds up a peak of
activity on the Buildup Cell array. This peak moves towards the center of the array where
it then disappears (this corresponds to the command for the eye moving towards the tar-
get, after which the command is no longer required).

� �

� �

�

Figure 1.8
An example of Buildup
Cell activity in the
Superior Colliculus
model of figure 1.1.

It is not only important to design a good model, it is also important to design differ-
ent kinds of graphical output to make clear how the model behaves. Additionally, an
experiment may examine the effects of changing parameters in a model, just as much as
changing the inputs. One of the reasons for studying the basal ganglia is to understand
Parkinson’s disease, in which the basal ganglia are depleted of a substance called dopa-
mine, whose depletion is a prime correlate of Parkinson’s disease. The model of figure
1.2 (at a level of detail not shown) includes a parameter that represents the level of
dopamine. The “normal” model, yields two saccades, one each in turn to the positions at
which the two targets appeared; the “low-dopamine” model only shows a response to the
first target, a result which gives insight into some of the motor disorders of Parkinson’s
disease patients. The actual model is described in detail in chapter 15. We shall describe
the simulation process in more detail in chapter 2.

1.4 The NSL System
The Neural Simulation Language (NSL) has evolved for over a decade. The original
system was written in C (NSL 1) in 1989, with a second version written in C++ (NSL 2)
in 1991 and based on object-oriented technology. Both versions were developed at USC
by Alfredo Weitzenfeld, with Michael Arbib involved in the overall design. The present
version NSL 3 is a major release completely restructured over former versions both as a
system as well as the supported modeling and simulation, including modularity and con-
currency. NSL 3 includes two different environments, one in Java (NSLJ, developed at
USC by Amanda Alexander’s team) and the other in C++ (NSLC, developed at ITAM in

I N T R O D U C T I O N 9

Mexico by Alfredo Weitzenfeld’s team), again with Arbib involved in the overall design.
Both environments support similar modeling and simulation, where each one offers dif-
ferent advantages to the user.

The advantages with Java are

� portability: Code written in Java runs without changes “everywhere”;

� maintainability: Java code requires maintaining one single software version for
different operating systems, compilers and other software on different platforms.

� web-oriented: Java code runs on the client side of the web, simplifying exchange of
models without the owner of the model having to provide a large server on which
other people can run simulations.

The advantages with C++ are

� efficiency: Since C++ is an extension to C, C++ models get simulated on top of one
of the most efficient execution languages;

� integration: C++ code may be directly integrated with a large number of software
packages already in existence written in C++;

� linkage to hardware: Currently most linkages to robots are done through C and C++;
however, more and more of these systems are moving to Java.

The great advantage on having support for both environments is the ability to switch
between the two of them to get the best of each world with minimum effort.

The complete NSL system is made of three components: the Simulation System, the
Schematic Capture System and the Model/Module Libraries, as shown in figure 1.9.
Three file types are used as communication between the three modules:

� mod files describing NSL models, executed by the Simulation System, stored in the
Model Library and optionally generated from SCS,

� nsl files describing NSL model simulation, executed by the Simulation System and
stored in the Model/Module Libraries,

� sif files storing schematic information about the model stored in the Model/Module
Libraries as well.

Simulation
System

BMW

sif files

modfiles

Main Components of the NSL System

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 1.9
Schematic Capture System
and its relation to the NSL
System.1

Simulation System
The NSL Simulation System comprises several subsystems: the Simulation subsystem
where model interaction and processing takes place and the Window Interface subsystem
where all graphics interaction takes place, as shown in figure 1.10. Note that we are now
discussing the subsystems or modules that comprise the overall simulation system, not

1 0 C H A P T E R 1

the modules of a specific neural model programmed with NSL. But in either case, we
take advantage of the methodology of object-oriented programming.
The subsystems of the Simulation System are:

� ����Control where external aspects of the simulation are controlled by the Script
Interpreter and the Window Interface;

� Scheduler which executes the model and modules in a specific sequence.

� Model Compiler where NSLM code is compiled and linked with NSL libraries to
generate an executable file;

� Script Interpreter that can be used to specify parameters and to control the simula-
tion.

� The subsystems of the Window Interface are:

� Graphics Output, consists of all NSL graphic libraries for instantiating display
frames, canvases and graphs;

� Graphics Input consists of NSL window controllers to interact with the simulation
and control its execution and parameters.

I/O Control Scheduler

Model
(mod) files

Script
Interpreter

Window Interface subsystem

Main System

Simulation subsystem

Model
Compiler

Script
(nsl) files

Graphics
Output

Graphics
Input

Figure 1.10
NSL Simulation System
composed of the
Simulation and Window
Interface subsystems.

Schematic Capture System
NSL supports development of models by explicitly programming the code for each mod-
ule as well as visual modeling by using the Schematic Capture System (SCS). The
Schematic Capture System facilitates the creation of modular and hierarchical neural net-
works. SCS provides graphical tools to build hierarchical models following a top-down
or bottom-up methodology. In SCS the user graphically connects icons representing mod-
ules, into what we call a schematic. Each icon can then be decomposed further into a
schematic of its own. The benefit of having a schematic capture system is that modules
can be stored in libraries and easily accessed by the schematic capture system. As more
modules are added to the NSL Model/Module Libraries, users will benefit by being able
to create a rich variety of new models without having to write new code. When coming to
view an existing model, the schematics make the relationship between modules much
easier to visualize; besides simplifying the model creation process. To create a new
model, the user places icons on the screen representing modules already available and
connects them to provide a high level view of a model or module. As modules are sum-

I N T R O D U C T I O N 1 1

moned to the screen and interconnected, the system automatically generates the corre-
sponding NSL module code. The success of this will obviously depend on having good
modules and documentation.

Figure 1.11
Schematic Editor showing
the Crowley Top Level
Saccade Module. Thin
lines describe connections
among sub-modules while
thick lines describe entry
(with arrows) and exit
points to and from mod-
ules.

Figure 1.11 shows a schematic of the top level of a model. The complete schematic
describes a single higher-level module, where rectangular boxes represent lower-level
modules or sub-modules. These modules can be newly defined modules or already exist-
ing ones. Thin lines describe connections among sub-modules while thick lines describe
entry (with arrows) and exit points to and from modules. Pentagon shaped boxes repre-
sent input ports (when lines come out from a vertex) and output ports (when lines point to
a side) for the higher-level module whose schematics is being described.

SCS also provides many of the library functions that are necessary to organize and
manage the modules including model and module version management as overviewed in
the following section. More details of the Schematic Capture System are described in
chapter 4.

Model/Module Libraries
Models and modules developed under NSL are hierarchically organized in libraries. NSL
supports two library structures. The first is called the basic hierarchy while the second

1 2 C H A P T E R 1

structure is known as the extended hierarchy built and maintained by the Schematic
Capture System (SCS). Both are shown in table 1.2. The difference between the two is
how modules are managed. The basic organization does not give a version number to
modules only models. The extended one gives version numbers to both models and mod-
ules, and contains an extra directory, called the exe directory, for executables specific to
different operating systems for the C++ version of the software.

Library Organization

Basic Hierarchy Extended Hierarchy

nsl3_0 nsl3_0

Library Name Library Name

Model Name Model or Module Name

Version Number Version Number

io src doc io src exe doc

Table 1.1
NSL model library hierarchy
organization for the Basic
Hierarchy on the left and the
Extended Hierarchy on the
right�

There are several reasons for maintaining both systems. In the extended one, the user
can experiment with different versions of a module shared among a number of models.
Typically, larger models will share modules thus needing management by the SCS
system. For the basic structure (not using SCS) it is easier to manage all of the module
files in one directory, src. Additionally, if the modules are not intended to be shared or
contributed to Brain Models on the Web (BMW), then they do not necessarily need to be
versioned.

Basic Hierarchy
In the general organization of the basic hierarchy levels in the tree correspond to
directories. The root of the hierarchy trees is “nsl3_0”, the current system version. A
library name is defined to distinguish between libraries. Obviously there may be multiple
model libraries. Each library may contain multiple models identified by their corre-
sponding name. Each model is then associated with different implementations identified
each by its corresponding numerical version; (version numbers start at 1_1_1). At the end
of the directory hierarchy, the last level down contains the directories where the actual
model or module files are stored: input/output files (io), source module files (src) and
documentation (doc). The io directory stores input and output files usually in the form of
NSLS script files. The src directory contains source code that needs to be compiled writ-
ten in the NSLM modeling language; this directory also includes files produced from the
compilation including executables. The doc directory contains any documentation rele-
vant to the model including theoretical background, why certain values were chosen for
certain parameters, what is special about each of the protocols, how to perform more
sophisticated experiments, relevant papers, etc. All models given in this book where
originally developed using the basic system. table 1.2 illustrates the directory hierarchy
for the basic book models described in chapters 2 and 3 in the book. Note that we actually
have two versions of the Hopfield model; one where we illustrate the use of scripts for
input, and another for illustrating the use of input and output modules.

I N T R O D U C T I O N 1 3

Basic BookLib

MaxSelectorModel HopfieldModel BackPropModel

1_1_1 1_1_1 1_2_1 1_1_1

io src doc io src doc io src doc io src doc

Extended Hierarchy
In the extended hierarchy, the directory structure for the library is almost identical to the
basic one except for the fact that each module is versioned, and there is an extra exe
directory. There may be multiple libraries, and it is up to the model builder to decide
what modules and models will go into each. Also, each library may contain multiple
models and modules, identified by their corresponding name. Each model and module
must have a unique name. Also, each model and module is then associated with different
implementations identified by its corresponding numerical version, (version numbers
start at 1_1_1). Obviously, many versions of a model or module may exist in a library,
thus we identify versions using a version identification number composed of three digits
denoting the model or module release number, revision number, and modification num-
ber, respectively. All numbers are initialized to 1. At the end of the directory hier-archy,
the last level down contains the directories where the actual model or module files are
stored: input/output files (io), source module files (src), documentation (doc), and the
executable files (exe). Typically the io and exe directories are empty except for model
directories. In table 1.3, we illustrate the MaxSelectorModel hierarchy previously shown
in table 1.2 in the basic architecture and now shown with modules in the extended library.

Extended BookLib

MaxSelectorModel MaxSelector MaxSelectorStimuli MaxSelectorOutput ULayer VLayer

1_1_1 1_1_1 1_1_1 1_1_1 1_1_1 1_1_1

i

o

s

r

c

d

o

c

e

x

e

i

o

s

r

c

d

oc

e

x

e

i

o

s

r

c

d

o

c

e

x

e

i

o

s

r

c

d

o

c

e

x

e

i

o

s

r

c

d

o

c

e

x

e

i

o

s

r

c

d

oc

e

x

e

SCS manipulates the model and module library allowing the user to create new
libraries as well as add new revisions to existing models and modules. The user can
browse and search the libraries for particular models or modules. When building a sche-
matic, the user has the choice of choosing the most recent modification of a model or
module, or sticking with a fixed version of that model or module. If the user chooses a
specific version this is called “using the fixed version.” If the user specifies “0_0_0” the
most current version of the module would be used instead and whenever there is a more
recent version of the module, that version will be used. This is called “using the floating
version.” Each individual library file stores metadata describing the software used to
create the corresponding model/module.

1.5 Summary
In this first chapter we have introduced modeling and simulation of neural networks in
general and in relation to NSL. We also gave an overview of the NSL system components
including a description of the technology used to build the system as well as simulate
models using NSL.

Table 1.3
The extended library structure for
the basic book library showing
one of its models, the
MaxSelector, and its children.

Table 1.2
The basic hierarchy organization
for the book models.

1 4 C H A P T E R 1

Notes
1. Figure 1.9 also shows BMW (Brain Models on the Web). This is not part of NSL, but

is a model repository under development by the USC Brain Project in which model
assump-tions and simulation results can be explicitly compared with the empirical data
gathered by neuroscientists.

2 Simulation in NSL

We will concentrate in this chapter primarily on how to run already existing models and leave new

model development for the next chapter. Three neural networks simulated in NSL will be

overviewed in this chapter: Maximum Selector, Hopfield and Backpropaga-tion. Simulation in NSL

requires a basic level of understanding of neural networks. The models chosen here will help the

novice gain that understanding because of their simpli-city and importance in the area of neural

networks.

2.1 Selecting a Model
The simulation process begins with the selection of an already developed model; the modeling process

which creates such models will be described in chapter 4, the Schematic Capture System.

However, if you do not have SCS, then to select a model from the BookLib models,
simply change directories to where the desired model is located following the path
<installation-site>/nsl3_0/BookLib/<modelname>. (Note that if you are working on a
PC, you will want to specify the path using backward slashes “\” instead.) From there you
will want to change directories to the first version, 1_1_1, and then to the src directory.
From there either type:

nslj model_name

or

nslc model_name

These commands will invoke NSL and load the model specified. Make sure that your
system administrator has set up your environment correctly. There are several environ-
ment variables we use for both NSL implemented in C++ and Java. These are discussed
in chapter 5, The User Interface and Graphical Windows. See Appendix V for further
details on executing models for the different platforms.

To select a model from the SCS archive of BookLib models, we must first open the
library by calling the Schematic Capture System (SCS) responsible for model management
(see Appendix IV for platform particulars). We execute from a shell (or by double click-
ing).

prompt> scs

The system initially presents the Schematic Editor (SE) window as shown in figure 2.1.

Figure 2.1
Schematic Editor Window.
The different menu and
button options control the
creation and modification of
model schematics.

1 6 C H A P T E R 2

To execute an existing model we select “Simulate Using Java” (or “Simulate Using
C++”) from the “Tools”menu, as shown in figure 2.2.

Figure 2.2
Select “Simulate Using Java”
from the “Tools” menu to
bring a listing of models
available in the library of
models and modules which
are available for use in Java.

SCS then presents a list of available models, as shown in figure 2.3.

Figure 2.3
Open Model for Execution
Window

For example, to choose the MaxSelectorModel, we select the model and version
found under “nsl3_0/BookLib/ /MaxSelectorModel/1_1_1/”.

Once we chose the particular model, the system brings up the NSL Executive win-
dow presented in figure 2.4 together with an additional output display window particular
to this model shown in figure 2.5. At this point we are ready to simulate the selected
model. Yet, before we do that, we will quickly introduce the NSL Simulation Interface.

Window Title or Name

Window Control

Executive Menu Bar

Script Window

Figure 2.4
The NSL Executive window.
The top part of the window
contains the title and
underneath the title is the
Executive Menu Bar. The
larger section of the window
contains the NSL Script
Window or shell.

S I M U L A T I O N I N N S L 1 7

2.2 Simulation Interface
The NSL Executive window, shown in figure 2.4, is used to control the complete simulation

process such as visualization of model behavior. Control is handled either via mouse-driven menu

selections or by explicitly typing textual commands in the NSL Script (NSLS) window. Since not

all possible commands are available from the menus, the “NSLS” window/shell is offered for more

elaborate scripts.

The top part of the window (or header) contains the window name, NSL Executive,
and the Window Control (right upper corner) used for iconizing, enlarging and closing
the window. Underneath the header immediately follows the Executive Menu Bar, con-
taining the menus for controlling the different aspects involved in a simulation. The lower
portion of the window contains the Script Window, a scrollable window used for script
command entry, recording and editing. The NSL Script Language is a superset of the pull
down menus in that any command that can be executed from one of the pull-down menus
can also be typed in the Script window, while the opposite is not necessarily so. Further-
more, commands can also be stored in files and then loaded into the Script window at a
later time. The NSLS language supports two levels of commands. The basic level allows
Tool Command Language commands (TCL) (Ousterhout 94) while the second level
allows NSL commands. The NSL commands have a special “nsl” prefix to distinguish
them from TCL commands. These commands are overviewed later in the chapter and are
discussed thoroughly in chapter 7, the NSL Scripting Language.

While there is a single NSL Executive/Script window per simulation there may be
any number of additional output and input windows containing different displays. For
example, the Maximum Selector model brings up the additional output frame shown in
figure 2.5.

NslOutFrame Title

NslOutFrame Menu Bar

NslDrawingArea

NslOutCanvas

Figure 2.5
MaxSelectorModel
NslOutFrame.

The top part of the window contains the title or frame name and the very bottom of
the frame contains the Status line. The status line displays the current simulation time,
finished cycles, finished epochs, and phase. In the middle, the frame contains the
NslDrawingArea. In this example, the drawing area contains three NslOutCanvases: the

1 8 C H A P T E R 2

first and third corresponds to Area graphs while the second corresponds to a Temporal
graph. (We will describe these graphs in more detail in chapter 5, The User Interface and
Graphical Windows.)

2.3 Simulating a Model
If a model is a discrete-event or discrete-time model, the model equations explicitly describe how

to go from the state and input of the network at time t to the state and output after the event

following t is completed, or at time t+1 on the discrete time scale, respectively. However, if the

model is continuous-time, described by differential equations, then simulation of the model requires

that we replace the differential equation by some discrete-time, numerical method (e.g., Euler or

Runge-Kutta) and choose a simulation time step �t so that the computer can go from state and input

at time t to an approximation of the state and output at time t+�t. In each case, the simulation of the

system proceeds in steps, where each simulation cycle updates every module within the model

once.

In simulating a model, a basic simulation time step must be chosen. Simulation
involves the following aspects of model interaction: (1) simulation control, (2) visualiza-
tion, (3) input assignment and (4) parameter assignment.

Simulation Control Simulation control involves the execution of a model. The Executive

window’s “Simulation,” “Train” and “Run” menus contain options for starting, stopping,

continuing and ending a simulation during its training and running phase, respectively.

Visualization Model behavior is visualized via a number of graphics displays. These displays are

drawn on canvases, NslOutCanvas, each belonging to a NslOutFrame output frame. Each

NslOutFrame represents an independent window on the screen containing any number of

NslOutCanvas for interactively plotting neural behavior or variables in general. NSL canvases can

display many different graph types that display NSL numeric objects—objects containing numeric

arrays of varying dimensions. For example the Area graph shown in figure 2.5 displays the activity

of a one-dimensional object at every simulation cycle. the size of the dark rectangle represents a

corresponding activity level. On the other hand, the Temporal graph shown displays the activity of

a one-dimensional objects as a function of time (in other words, it keeps a history).

Input Assignment Input to a model varies both in terms of the particular model but also in terms

of how it is specified. NSL supports input as script commands in the NSLS language using the

Script Window, by loading script files, as well as by custom-designed input windows.

Parameter Assignment Simulation and model parameters can be interactively assigned by the user.

Simulation parameters can be modified via the “Options” menu while model parameters are

modified via the Script Window. Additionally, some models may have their own custom-designed

window interfaces for parameter modification.

The remaining sections of this chapter illustrate model simulation starting with the
Maximum Selector model then with Hopfield and finally with Backpropagation.

S I M U L A T I O N I N N S L 1 9

up0

s0
wm

uf0

wu0
up1

s1
wm

uf1

wu1

… …upi

si
wm

ufi

wui
upn-1

wm

ufn-1

vp

vf

w1 wi

wn-1

wun-1

sn-1

w0

Figure 2.6
The neural network architec-
ture for the Maximum
Selector (Didday 1976;
Amari and Arbib 1977) where
si represents input to the
network, upi and vp represent
membrane potentials while
ufi and vf represent firing
rates. wm, wui, and wi

correspond to connection
weights.

2.4 Maximum Selector
The Maximum Selector neural model (Amari and Arbib 1977) is an example of a biologically

inspired neural network. The network is based on the Didday model for prey selection (Didday

1976) and is more generally known as a Winner Take All (WTA) neural network. The model uses

competition mechanisms to obtain, in many cases, a single winner in the network where the input

signal with the greatest strength is propagated along to the output of the network.

Model Description
The Maximum Selector neural network is shown in figure 2.6. External input to the network is

represented by si (for 0 � i � n-1). The input is fed into neuron u, with upi representing the

membrane potential of neuron u while ufi represents its output. ufi is fed into neuron v as well as

back into its own neuron. vp represents the membrane potential of neuron v which plays the role of

inhibitor in the network. wm, wui, and wi represent connection weights, whose values are not

necessarily equal.

The neural network is described by the following set of equations,

() () () imiui
i

u shvgwufwu
dt

tdu
+��+�= 1�

(2.1)

�v

dv

dt
= �v +wn f ui()

i=1

n

� � h2

where wu is the self-connection weight for each ui, wm is the weight for each ui for feedback from v,

and each input si acts with unit weight. wn is the weight for input from each ui to v. The threshold

functions involve a step for f(ui)

f (ui) =
1 ui > 0

0 ui � 0
��
��
�� (2.2)

and a ramp for g(v)

g(v) =
v v > 0

0 v � 0
��
��
�� (2.3)

2 0 C H A P T E R 2

Again, the range of i is 0 � i � n-1 where n corresponds to the number of neurons in
the neural array u.

Note that the actual simulation will use some numerical method to transform each
differential equation of the form � dm/dt = f(m,s,t) into some approximating difference
equation m(t+�t) = f(m(t), s(t), t) which transforms state m(t) and input s(t) at time t into
the state m(t+�t) of the neuron one “simulation time step” later.

As the model equations get repeatedly executed, with the right parameter values, ui
values receive positive input from both their corresponding external input and local feed-
back. At the same time negative feedback is received from v. Since the strength of the
negative feedback corresponds to the summation of all neuron output, as execution pro-
ceeds only the strongest activity will be preserved, resulting in many cases in a “single
winner” in the network.

Simulation Interaction
To execute the simulation, having chosen a differential equation solver (approximation method)

and a simulation time step (or having accepted the default values), the user would simply select

“Run” from the NSL Executive’s Run menu as shown in figure 2.7. We abbreviate this as

Run�Run.

Figure 2.7
The “Run � Run” menu
command.

The output of the simulation would be that as shown in figure 2.8.

S I M U L A T I O N I N N S L 2 1

Figure 2.8
Output of the
MaxSelectorModel. Notice
that the second and fourth
elements in the up
membrane potential layer are
affected by the input stimuli;
however, the “winner take
all” circuit causes the fourth
element to dominate the
output, as seen in the firing
rate, uf.

The resulting written output is displayed in the Executive window’s shell, as shown
in figure 2.9.

Figure 2.9
Executive window showing
the status from Maximum
Selector execution.

Recall that NSLS is the NSL scripting language in which one may write a script file
specifying, e.g., how to run the model and graph the results. The user may thus choose to
create a new script, or retrieve an existing one. In the present example, the user gets the
system to load the NSLS script file containing preset graphics, parameters, input and
simulation time steps by selecting “System�Nsls file …,” as shown in figure 2.10.

2 2 C H A P T E R 2

Figure 2.10
Loading a “NSLS” script
file into the Executive.

From the file selection pop-up window we first choose the “nsl” directory and then
MaxSelectorModel, as shown in figure 2.11. Alternatively, the commands found in the
file could have been written directly into the Script Window but it is more convenient
the previous way.

Figure 2.11
The MaxSelectorModel script
loaded into the Executive.

Simulation Control
Simulation control involves setting the duration of the model execution cycle (also known as the

delta-t or simulation time step). In all of the models we will present, we will provide default values

for the simulation control parameters within the model. However, to override these settings the user

can select from System�Set�RunEndTime and System� Set�RunDelta as shown in figure

2.12.

Figure 2.12
Setting system control
parameters.

S I M U L A T I O N I N N S L 2 3

A pop-up window appears showing the current parameter value that may be modi-
fied by the user. In this model we have set the runEndTime to 10.0, as shown in figure
2.13, and runDelta to 0.1 giving a total of 100 execution iterations. These values are long
enough for the model to stabilize on a solution.

Figure 2.13
RunEndTime parameter
setting.

To execute the actual simulation we select “Run” from the “Run” menu, as we did in
figure 2.7.

The user may stop the simulation at any time by selecting the “Run” menu and then
selecting “Break.” We abbreviate this as Run�Break. To resume the simulation from
the interrupt point select Run�Continue.

Visualization
The model output at the end of the simulation is shown in figure 2.8. The display shows input array

sout with an Area type graph, i.e., the area of the black rectangle codes the size of the

corresponding input, while array up, with a Temporal type graph, shows the time course for up.

The last canvas shows another Area type graph for uf at the end of the simulation. The largest input

in sout determines the only element of sout whose activity is still positive at the end of the

simulation as seen in uf—the network indeed acts as a maximum selector.

Input Assignment
The Maximum Selector model example is quite simple in that the input sout is constant. In the

example chosen, is consists of only two different positive values (set to 0.5 and 1.0) while the rest

are set to zero (total of 10 elements in the vector). In general, input varies with time. Since input is

constant in the present case, it may be set similarly to any model parameter. To assign values to

parameters, we use the “nsl set” command followed by the variable and value involved. For

example, to specify all ten-element values for sout we would do:1

nsl set maxSelectorModel.stimulus.sout { 0 0 0 1 0 1 0 0 0 0 }

Since all variables are stored within modules, being themselves possibly stored in
other modules until reaching the top level model, it is necessary to provide a full “path”
in order to assign them with new values. (These hierarchies will be made clear in chapter
3. For the moment simply provide the full specified path.) Note that arrays are set by
specifying all values within curly brackets. Individual array elements may be set by using
parentheses around a specific array index, e.g. to set the value of only array element 3 we
would do (array indices starting with 0):

nsl set maxSelectorModel.stimulus.sout(3) 1

As previously mentioned, this model is atypical in that the input is constant. In gen-
eral, input varies with time as will be shown in most of the other models in the book. If
we are dealing with dynamic input we have different alternatives for setting input. One is
to specify a “nsl set” command with appropriate input values every time input changes.
Another alternative is to specify the input directly inside the model description or through
a custom interface. Both Hopfield and Backpropagation models give examples on how to
dynamically modify input at the script level and through the use of training files

2 4 C H A P T E R 2

described as part of the model definition, respectively. On the other hand, the Adaptation
model and the Crowley model appearing in the second section of the book are examples
that set up their input and parameters through custom-designed windows.

Parameter Assignment
Parameters whose values were not originally assigned in the model description, or that we may

want to modify, are specified interactively. Two parameters of special interest in the model are the

two thresholds, hu and hv. These two parameters are restricted as follows, 0 � hu, and 0 � hv < 1.

(For the theory behind these restrictions, see Arbib, 1989, Sec.4.4.) Their initial values are set to

0.1 and 0.5 respectively. These parameters have their values specified with the “set” command

followed by the variable and value involved

nsl set maxSelectorModel.maxselector.u1.hu 0.1

nsl set maxSelectorModel.maxselector.v1.hv 0.5

To exercise this model the reader may want to change both the input and parameter
values to see different responses from the model. We suggest trying different combina-
tions of input values, such as changing input values as well as specifying different num-
ber of array elements receiving these values. In terms of parameters we suggest changing
values for hu and hv, including setting them beyond the mentioned restrictions. Every
time parameters or input changes, the model should be reinitialized and executed by
selecting the “run” menu option.

2.5 Hopfield
Hopfield networks (Hopfield 1982) are recurrent networks in that their complete output at one time

step serves as input during the next processing cycle. These networks rely on locally stable states or

attractors enabling the association of a particular input pattern to one of its “remembered” patterns.

These networks are also known as associative memories since they will in many cases transform

the input pattern into one of the stored patterns (encoded in the network weights) that it best

approximates. Unlike the Maximum Selector, a Hopfield network involves two processing phases—

the training phase where synaptic weights are set to desired values and the running phase where the

initial state of each neuron is set to the input pattern being tested.

Hopfield networks have been applied to problems such as optimization as in the
famous “Traveling Salesman Problem” (Hopfield and Tank, 1985) where given a number
of cities a salesman must choose his travel route in order to minimize distance traveled.
In general, it may be quite challenging to go from the specification of an optimization
problem to the setting of weight matrices to control memory states of a neural network
which will “solve” the problem. This becomes more difficult as the number of inputs,
cities in this case, increases. (Due to this difficulty, the “Traveling Salesman Problem”
has sometimes been called the “Wandering Salesman Problem”!) What makes the matter
worse is that this “solution” may only be locally optimal, i.e., it may be better than any
similar solution yet not as good as some radically different solution. Attempts to find
algorithms that produce better than local optimal solutions (e.g., the introduction of
noise) have attracted much effort in the neural networks literature, but lie outside our
present concern—to demonstrate NSL simulation of Hopfield networks. Besides optimi-
zation, Hopfield networks have been used in other practical applications such as error-
correcting codes, reconstruction, and pattern recognition. The example presented in this
section will be a Hopfield network for recognizing letter patterns.

S I M U L A T I O N I N N S L 2 5

mp

mpi-1, j-1 mpi-1, j

mfi-1, j-1

mpi-1,j+1

mfi-1,j+1mfi-1, j

mfi+1, j

mpi+1, j

mpi, j-1

mfi, j-1

wk,l,i-1,j-1

wk,l,i,j-1

wk,l,i+1,j-1

wk,l,i+1,j+1

wk,l,i,j+1

wk,l,i-1,j+1

wk,l,i+1,j

wk,l,i-1,j

mpi+1, j-1

mfi+1, j-1 mpi+1, j+1
mfi+1, j+1

mpi, j+1
mfi, j+1

Figure 2.14
The Hopfield network is fully
connected with the
restriction that no unit may
connect to itself.

Model Description
A Hopfield network is a discrete-time model consisting of a group of neurons projecting to all other

neurons in the network with the restriction that no neuron connects to itself and weights are

symmetric throughout the network, as shown in figure 2.14. The Hopfield model is based on

asynchronous updating of states: only a single unit, randomly chosen, has its state updated at any

given time. As a result the state of the chosen unit may change to reflect prior changes in the states

of other units or may remain the same if those changes “cancel out.”

The image to be processed does not, as might be expected, provide input to the net-
work throughout processing. But rather the input pattern is used to set the initial states of
the neurons of the network. To this end, we use double indexing for units m in order to
make each unit correspond to a single picture element in a two-dimensional image. The
dynamics of the network is then to convert the original pattern into some desired trans-
formation thereof. Each element in the connection matrix w is then specified through four
indices. If wklij is the connection between unit mij and unit mkl, then the activity mpkl of
unit mkl is computed directly from the input from all other connections where mfij is the
output from neuron mij. The computation is given by

� �=+
i j

ijklijkl tmfwtmp)()1((2.4)

Note that unlike the leaky integrator model, the state of a neuron in this discrete-time
model does not depend on its previous state—it is completely determined by the input to
the neuron at that time step. For our example, we concentrate on binary Hopfield net-
works using discrete neurons whose values can be either +1 or -1. The state of a neuron is
given by

�
�
�

<�
�

=
0if1

0if1

kl

kl
kl mp

mp
mf (2.5)

2 6 C H A P T E R 2

To analyze the network, Hopfield (1984) suggested viewing the network as minimizing
an energy function E given by

� � � ��=
k l i j

ijklklij mpmpwE
2

1
(2.6)

Each term is composed of the state of the mij unit, the state of the mkl unit and the
strength of the connection wklij between the two units. (Sophisticated readers will note
that each neuron has threshold zero.) This energy function may be interpreted as a meas-
ure of constraint satisfaction in the network. If we consider that neurons represent
hypotheses in a problem, with an assertion of the hypothesis seen as corresponding to the
+1 state of a neuron, and connection weights encode constraints between hypotheses,
then the energy function is chosen to be a measure of the overall constraint violation in
the current hypotheses. A low energy state would correspond to a state of maximum
agreement between pairs of coupled assertions, while energy would increase when states
become in disagreement. So long as the weights wklij are symmetric, wklij = wlkji, some
simple algebra (omitted here) shows that changes in state during asynchronous updates
always decrease the energy of the system. Of course, if the “update” of a neuron leaves
its state unchanged, then the state of the whole system and thus its energy also remain
unchanged. Because all terms are finite there is an energy lower bound in the system and
the energy function must have at least one minimum, although many minima may exist.
As the system evolves with time, its energy decreases to one of the minimum values and
stays there since no further decreases are possible. These points are known as local
energy minima—we say that they are attractors because states move as if attracted to
them; once at an energy minimum, the state of the network remains there, so we may also
speak of these as fixed points. We can arrange the network in such a way that the desired
associations occupy low energy points in state space so that the network will seek out
these desired associations. In the present section, we look at a network such that we pre-
sent noisy images and get back the image that most resembles it by comparing corre-
sponding fixed points.

The key to defining a Hopfield network is in choosing the weight matrix. In the pre-
sent image processing example, we initialize the synaptic weights of the network using a
given set of input vectors, i.e., n exemplars patm for 0 � m < n. We define the weight
matrix w as

��

�
�
� ==

= � otherwise

,0

m
mijmklklij patpat

jlik
w (2.7)

for all n exemplars or training patterns in the network. If the input vectors are orthogonal (i.e., their

scalar product is 0) then Hopfield guarantees that each exemplar becomes a fixed point of the

network. (The mathematical justification requires some simple linear algebra. See, e.g., Section 8.2

of Arbib 1989.)

Simulation Interaction
We start the simulation interaction by selecting the Hopfield model by selecting

“HopfieldModel.nsl” as shown in figure 2.15 (after selecting “system�Nsls file…” as shown in

figure 2.10).

S I M U L A T I O N I N N S L 2 7

Figure 2.15
The Hopfield model
opened by selecting
HopfieldModel.nsl from
the “io” directory.

The example we have chosen is a pattern recognition problem where we train the
network to remember letters A, B, C, D and E, as shown in figure 2.16. During testing we
shall use one of these letters or a similar pattern as input. We have designed the particular
patterns for each letter trying to keep orthogonality between them, that is, they are as
distinct as possible. This is an important requisite in Hopfield networks for good associa-
tion.

Figure 2.16
Letter A, B, C, D and E,
used for setting the
connection weights of the
Hopfield network. Here we
indicate the connections for
a typical neuron.

Simulation Control
Two simulation phases, for training and running, are involved in the Hopfield model as opposed to

the single one in the Maximum Selector model. The training phase in Hopfield is unusual in that

connection weights are not learned but adjusted directly from input patterns, as opposed to the

training phase in most other training algorithms such as Backpropagation. We set trainEndTime to

1.0, and also trainDelta to 1.0, giving a total of 1 iteration through all the patterns. Additionally, the

train cycle is executed for a single epoch, a single pass over all training patterns, thus we set

trainEpochSteps to 1 as well. All the control commands are set in the “hopfield.nsl” file, including

specification of the five letters, A, B, C, D and E chosen for the example.

Once all letters have been read we are ready to execute the run phase indefinitely
until a stable solution is reached. Depending on the test letter the solution may take a
different number of time steps. Thus, the model will stop running only when the solution
has stabilized, in other words, when output for a new time step would yield exactly the
same output as in the previous time step. To achieve this, we set runEndTime to 5000

2 8 C H A P T E R 2

(corresponding to protracted execution; alternatively, we could specify that detection of a
suitable period of constant internal states makes it stop) and runDelta is set to 1.0 (this
value is arbitrary in discrete-time models). To execute the running phase we select “Run”
from the Run menu. To start processing all over again we would execute “Simulation�
initModule” followed by the training phase and then the run phase.

Figure 2.17
The figure presents the
5x5x10x10 weight array after
training the Hopfield network.
The 5x5 array organization
represents the twenty-five
10x10 sub-matrices.

Visualization
The stored script file generates a number of display frames. We show in figure 2.17 the matrix of

connection weights that you should obtain after training the model with letters A, B, C, D and E.

Once the network has completed the training cycle we input different letters to recall
the memorized letter closer to it. We first try the model by recalling letters from the
original ones, as shown in figure 2.18.

Figure 2.18
The top portion of the figure
shows the input letter A,
while the lower portion
shows the output at the end
of the simulation. In this
simpler case letter A is
recalled exactly as presented.

We show the energy as a function of time in figure 2.19, notice how it goes down as
the network settles into a solution.

S I M U L A T I O N I N N S L 2 9

Figure 2.19
Energy as a function of time.

The network is able to recall correct answers from noisy versions of these letters. For
example, the input image shown in figure 2.20 would recall letter A. Watch how the
isplay reveals the cleaning up of the noisy image.

Figure 2.20
Recalling letter A from
noisy image.

We can also input a letter such as an F that closely resembles letter E in the training
set, as shown in figure 2.21.

Figure 2.21
Recalling letter E from letter
F, the closest to it in the
training set.

In some cases the network may “remember” patterns that were not in the original set
of examples, as shown in figure 2.22. These are called spurious states, unexpected
valleys or local minima in the energy function, an unavoidable feature of Hopfield net-
works where processing is “stuck” in intermediate undefined states.

Figure 2.22
Spurious state of the
Hopfield network.

This aspect exemplifies one of the shortcomings of Hopfield networks in terms of its
tendency to stabilize to a local rather that a global minimum of the energy function. An-
other shortcoming relates to the capacity of Hopfield networks is that its capacity goes

3 0 C H A P T E R 2

down as the number of stored patterns increases beyond some critical limit. This results
in crosstalk from nonorthogonal patterns causing attractors to wander away from the
desired locations. As more nonorthogonal patterns are stored, the more likely errors
become (Abu-Mustafa and St. Jacques 1989). Hopfield (1982) has shown that if more
patterns are stored than 15% of the number of units in the network (in our example 15
patterns, compared to 100 units in total), the system randomizes its energy minima. In
other words, above this critical value the retrieved pattern has no relation to the stored
pattern. (Of course, if there are 100 neurons, then one can store 100 orthogonal patterns.
However, “real” patterns such as the letters of the alphabet are very unlikely to form an
orthogonal set of vectors. Thus the mathematical results are based on expected perform-
ance when vectors are chosen at random. The point here is that if a few vectors are cho-
sen at random, with each “pixel” as likely to be on as off, their pairwise scalar products
will be close to zero, but this becomes more and more unlikely as the number of patterns
increases. The surprise, to people unacquainted with critical phenomena in statistical
mechanics, is that there is a critical number of patterns at which quasi-orthogonality
breaks down, rather than a slow degradation of performance as the number of patterns
increases.)

Input Assignment
Input plays an important and delicate role in the model. During training, network weights are set

according to input matrices representing letters to be remembered. During an execution or

simulation run, the network is given an input matrix to be associated with one of its remembered

states that best matches the pattern.

In the Maximum Selector model we showed how we set constant input, in a manner
similar to parameter assignment. In the training phase of the Hopfield model, we need
dynamic input to read in a sequence of n input patterns. In the present model, these do not
function as neural network inputs (as might happen if we modeled an explicit learning
model) but instead serves as input for a process that computes weights according to equa-
tion (2.7). Training the Hopfield model thus requires dynamic input. We read in the n
training patterns by calling the “nsl set” command multiple times. In the example each
letter corresponds to a 10x10 matrix. For example, letter “A” is defined as follows:

nsl set HopfieldModel.input.out {

{ -1 -1 1 1 1 1 -1 -1 -1 -1 }

{ -1 1 1 1 1 1 1 -1 -1 -1 }

{ 1 1 1 1 1 1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 -1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 1 1 1 1 1 1 -1 -1 }

{ 1 1 1 1 1 1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }}

Note the curly brackets separating matrix rows. The rest of the letters are defined in a
similar way. In order to control the input in a dynamic way we set the input from the
script window for each letter being computed by the weight assignment equation fol-
lowed by the Train command (performs initTrain, simTrain repeated, endTrain) with
each epoch incrementing the expressions in Equation (2.7) by adding in the terms corre-
sponding to the current pattern pattm.

nsl train

S I M U L A T I O N I N N S L 3 1

We now turn to the “input” for the Running phase. As we have seen, a Hopfield net-
work does not have input in the conventional neural network sense. Instead, the “input”
sets the initial state of the network, which then runs to equilibrium, or some other halting
condition. The “output” for this particular run is taken from the final state of the network.
In each run phase of a simulation, we set the “input” to any arbitrary pattern (i.e., it will
probably not belong to the training set) and then run the network as many cycles as
necessary. We shall look at the details for defining this model in chapter 3, The Modeling
Overview.

Parameter Assignment
There are no parameters that need to be adjusted in the model. Being a discrete-time model,

Hopfield updates the state directly from its current input and state. Unlike the leaky integrator, there

are no time constants. Weights are computed by the training phase and neuron thresholds are set to

zero.

You may exercise the model by modifying both the test-input patterns as well as the
patterns used for training. They do not even have to be letters.

2.6 Backpropagation
Backpropagation (Werbos 1974; Rumelhart et al. 1986) is an especially widespread neural network

architecture embodying supervised learning based on gradient descent (“hill climbing” in the

downward direction). Supervised learning involves a training set representing both the given

problem and the corresponding solution defined as a set of (input, target) training pairs. The goal of

successful learning is to acquire general knowledge about the data or training set so the network

can use it to resolve similar problems it has not seen before. There are two important factors in

building a successful backpropagation network: the training set and the network configuration.

The training set consists of a number of training pairs where each pair (input, target)
contains a target vector that is deemed the correct response to its corresponding input
vector. A “supervisor” compares the resulting network output for a given input vector
against the target vector to produce an error. This error is then used to drive the adjust-
ment of weights in the network in such a way that the error is reduced to its minimum.
The process of error minimization consists of following a steep path down the input-
output error function. Although there is no guarantee of minimizing all errors (gradient
descent may only find a local minimum, like a valley high in the hills, as for Hopfield), a
backpropagation network is usually able after many training cycles to reduce the errors
to a satisfying degree.

3 2 C H A P T E R 2

in0 in1 ins insmax-1Input Layer

Hidden Layer

Output Layer

mpp0

mfp0

mpp1

mpq1 mpqj mpqjmax-1

mfqjmax-1mfqjmfq1

mppiwp0i

wp1i wpsi

mppimax-1
wpsmax-1i

mfpimax-1

mfpimfp1

mp

mf

…

…

…

…

… …

The network configuration consists of neurons organized into at least three different
layers: an input layer, one or more hidden or middle layers and an output layer (figure
2.23). The network processes information in two distinct modes, a feedforward and a
backpropagation mode. The feedforward mode is just the normal mode of operation of a
neural network without loops: activity is fed forward from one layer to the next (input to
hidden layer, hidden to additional hidden layers if more than one exists, and finally hid-
den to output layer). There are no loops in strong contrast to the fully recurrent Hopfield
network. In the backpropagation mode, learning propagates backwards by adjusting
synaptic weights from output to input layers. The most common configuration is a three-
layer network with all possible connections from each layer to the next. Implementing
four or more layers is usually discouraged because of the computational burden of the
backpropagation training process. Both mathematical proof and practical uses of back-
propagation show that three-layer networks are sufficient for solving most problems
(Rumelhart, et al. 1986).

In designing the network configuration, the most important parameter is the network
size and the number of units used in the hidden layer to represent features of the problem.
There are tradeoffs to consider. With too large a number of hidden units, the network will
have the ability to memorize each element of the training set separately, and thus will not
generalize well. With too small a number of hidden units, there may not be enough mem-
ory to store the knowledge (refer to Smith (1993) on how to build appropriate network
configurations).

Backpropagation has been applied to a large number of applications in many domain
areas, from handwriting recognition and speech synthesis to stock market prediction and
on.

Model Description
As we have seen, Backpropagation is a typical multi-layer neural network model consisting of an

input layer, hidden or middle layer(s), one in this case, and an output layer (figure 2.23). The

network is fully connected from one layer to the next, but lacks any connectivity between neurons

belonging to the same layer, or back to previous layers.

The BackPropagation algorithm works in two phases, as in Hopfield. First, a training
phase adjusts network weights and then a running phase matches patterns against those

Figure 2.23
The Backpropagation network
architecture is made of an input
layer connected to a hidden
layer that is then connected to
an output layer. Units are fully
connected between layers
without any interconnection to
other units in the same layer.

S I M U L A T I O N I N N S L 3 3

already learned by the network. However, these two phases are not to be confused with a
feedforward and a backpropagation modes introduced above. The training phase is made
up of a large number of learning cycles, each comprising a forward pass (feedforward
mode) and backward pass (backpropagation mode). The running phase is made of a
single forward pass taking a single cycle although sharing the same forward pass equa-
tions (feedforward mode) as in the training phase.

Feedforward Mode
During the feedforward mode, the network reads an input vector that is fed into the input layer. The

input layer does not do any computation on the input pattern and simply sends it out to the hidden

layer. Both the hidden layer and output layer have their neuron activity (corresponding to the

membrane potential in more biologically oriented models) defined as a direct summation of all

inputs to the neuron multiplied by their respective weights. In the model, in represents a unit in the

input layer, mpp represents a neuron in the hidden layer and mpq a neuron in the output layer.

Hidden Layer
The membrane potential mpp for a neuron in the hidden layer receives its activation from the input

layer multiplied by the respective weights, as described next.

p
s

sspp hinwmp += � (2.8)

where hp is the threshold value.

After mpp is computed, an activation function is used to produce the output mfp.

() ()pp hmpppp
e

hmpfmf
+�+

=+=
1

1
(2.9)

where f is a sigmoid function used to compress the range of mpp so that mfp lies between zero and

one, and e is the mathematical exponential constant. The sigmoid function is used since

Backpropagation requires the activation function to be everywhere differentiable. The sigmoid

function not only satisfies this requirement but also provides a form of automatic gain control. If

mpp is near one or zero, the slope of the input/output curve is shallow and thus provides a low gain.

The sigmoid function also has the advantage that large mpp values will not dominate small mpp

values in influencing the network in going towards the global minimum.

Output Layer
The membrane potential mpq for a neuron in the output layer receives input from the hidden layer

multiplied by the respective weights.

�=
p

ppqq mfwmp (2.10)

where hq is the threshold value.

After mpq is calculated, an activation function is used to produce the output mfq.

() ()qq hmpqqq
e

hmpfmf +�+
=+=

1

1
(2.11)

and the activation function f is similar to that defined for neurons in the hidden layer.

3 4 C H A P T E R 2

Backpropagation Mode
While the feedforward mode is used during both the training and running phases of the network,

the backpropagation mode is only used during training. For each cycle of training, the simulator

reads a pair of input and target vectors from a training data file. The input vector is fed into the

input layer for a feedforward computation, while the target vector is set aside for later error

computation. After completion of the forward activation flow, each output neuron will receive an

error value—the difference between its actual and desired input—from the training manager

module, (the training manager module will be discussed in detail in chapter 3, The Modeling

Overview).The backpropagation mode then adjusts the weights according to a modified gradient

descent algorithm wherein weight adjustment propagates back from the output layer through the

hidden layers of the network.

Output Layer
The error is first calculated for the output layer:

errorq = desiredOutputq - actualOutputq (2.12)

where desiredOutput is obtained from the training file and actualOutput is computed by the

forward pass output layer firing mfq.

The accumulated error tss is given by the sum of the square of the errors for all neu-
rons of the output layer

�=
t

qerrortss 2 (2.13)

To compensate for this error we define �q representing the change to be applied to
weights and threshold in the output layer given by

� q = f�(mpq) � errorq (2.14)

where f’(mp q) is the derivative of squashing function f. With the simple sigmoid function used, the

derivative is:

f�(mpq) = mfq��(1- mfq) (2.15)

The resulting � q is then used to modify the thresholds and weights in the output layer
as follows

�hq = ��q (2.16)

hq(t+1) = hq(t) + �hq (2.17)

�wpq = ��q ��mfp (2.18)

wpq(t+1) = wpq(t) + �wpq (2.19)

where

�� represents the learning rate parameter corresponding to how fast learning should be.

hq(t) represents the threshold value for neuron q in the output layer at step t before adjustment
is made.

hq(t+1) represents the threshold value for neuron q in the output layer at step t+1 after
adjustment.

wpq(t) represents the weight value from neuron p in the hidden layer to neuron q in the output
layer at step t before adjustment is made.

wpq(t+1) represents the value of the weight at step t+1 after adjustment.

Hidden Layer
Once the errors are computed and threshold and weight updates have taken place in the output

layer, the hidden layer errors need to be computed as well. Since there is no explicit teacher for the

hidden units, Backpropagation provides a solution by propagating the output error back through the

S I M U L A T I O N I N N S L 3 5

network. To compensate for this error we define �p representing the change to be applied to weights

and threshold in the hidden layer,

() ���=
q

pqqpp wmpf �� � (2.20)

where f�(mpp) is the derivative of the sigmoid function in neuron p similar to the f�(mpq) function in

the output layer and wpq is the value of the weight from neuron p in the hidden layer to neuron q in

the output layer. As before,

f�(mpp) = mfp��(1- mfp) (2.21)

There is a reason why the hidden layer needs to receive the summation of the prod-
ucts of error � q multiplied by weight wpq. Since each neuron contributes differently to the
output, its share of the error is also different. By associating the error and the weight,
each neuron in the hidden layer will be evaluated by its corresponding contribution to the
error and corrected accordingly.

The threshold and weight modification equations are similar in computation to that
of the output layer, with delta change � p used to modify the thresholds and weights in the
output layer,

�hp = ��p (2.22)

hp(t+1) = hp(t) + �hp (2.23)

�wsp = ��p ��ins (2.24)

wsp(t+1) = wsp(t) + �wsp (2.25)

where

�� represents the learning rate parameter corresponding to how fast learning should be.

hp(t) represents the threshold value for neuron p in the hidden layer at step t before adjustment
is made.

hp(t+1) represents the threshold value for neuron p in the hidden layer at step t+1 after
adjustment.

wsp(t) represents the weight value from unit s in the input layer to neuron p in the hidden layer
at step t before adjustment is made.

wsp(t+1) represents the weight value at step t+1 after adjustment.

Simulation Interaction
To illustrate an actual example we will train the network to learn an exclusive or (XOR) function,

as shown in the table below. This is a simple although illustrative example in that a simpler

Perceptron without the hidden layer would not be able to learn this function. The function is shown

in table 2.1.

Input Output

0 0 0

0 1 1

1 0 1

1 1 0

We turn now to the NSLS commands stored in “BackPropModel.nsl”, where the file
is loaded into the NSL Executive in order to simulate the model. We load
“BackPropModel.nsl” by selecting the BackPropModel.nsl model as shown in figure 2.24
(after selecting “system�Nsls file…” as shown in figure 2.10).

Table 2.1
Training file format.

3 6 C H A P T E R 2

Figure 2.24
Opening the BackPropModel
script file.

Simulation Control
As for Hopfield, Backpropagation requires both the training and running phases. Simulation control

for this model involves setting up the duration for both phases as well. The training phase involves

multiple cycles. From the script window we set trainEndTime to the number of training patterns

specified by numPats and trainDelta to 1.0 in order to have as many training steps as there are

training patterns. (These are also the defaults specified in the model code which we will be

discussing in chapter 3, The Modeling Overview.) We then set runEndTime to 1.0 and runDelta to

1.0.

Additionally, the training cycle will be executed for an unspecified number of
epochs, where every epoch corresponds to a single pass over all patterns. We set
trainEpochSteps to 5000 telling the system to train almost indefinitely until some suitable
ending makes it stop, in this case, when the error (stopError) is small enough. To make
the system learn, we issue the nsl train command from the script window. As learning
keeps progressing, if the total sum of the square error (tss) is not satisfactory, the learning
rate ��can be adjusted. When the tss value reaches a very small stopError, the network
has been successfully trained. At that point we issue the “nsl source backproprun”
command from the script window. To reinitialize the system after a complete run, we
would issue the “nsl initModule” command.

Visualization
The network training error tss can be visualized as the network gets trained, as shown in figure

2.25. As the error gets smaller tss approaches 0 meaning the network has learned.

Figure 2.25
The error tss is visualized
as a temporal graph as the
network is training with the
XOR example.

S I M U L A T I O N I N N S L 3 7

Figure 2.26 shows the result of running the trained network with one of the XOR inputs.

Figure 2.26
The display on the left-hand
side shows an input to the
network set to “0 1”. After
the network has been run
the output becomes 1, as
expected. The display on
the right-hand side shows
an input to the network set
to “1 1” The output this
time becomes 0.

Input Assignment
To simplify the training process and to avoid deeper knowledge of NSL, we assign the training set

directly to the model as a training array rather than from an external file as is usually the case. (We

will show this more “realistic” approach in the NSLM chapter where we go over more extensive

details of the modeling language NSLM. Obviously the approach taken will be more involved

when dealing with large data sets.) The training set format is shown in table 2.2.

File Format Example (XOR)

<num_patterns> 4

<input1> <input 2> <output> 0 0 0

<input1> <input 2> <output> 0 1 1

<input1> <input 2> <output> 1 0 1

<input1> <input 2> <output> 1 1 0

The first row in the file specifies the number of patterns in the file. Training pairs are
specified one per row consisting in the XOR example of two inputs <input1> and
<input2> and a single output <output>. The training set input is assigned as follows

nsl set backPropModel.train.pInput {

{ 0 0 } { 0 1 } { 1 0 } { 1 1 } }

nsl set backPropModel.train.pOutput {

{ 0 } { 1 } { 1 } { 0 } }

Note again the curly brackets separating elements in two-dimensional arrays, similar
to input in the Hopfield model.

Parameter Assignment
The Backpropagation layer sizes are specified within the present implementation of model, i.e., if

the number of units in any layer changes, the model has to be modified accordingly and

recompiled. The alternative to this example could be to treat layer sizes as model parameters to be

set interactively during simulation initialization. While the latter approach is more flexible since

Table 2.2
Training file format.

3 8 C H A P T E R 2

layer sizes tend to change a lot between problems, we use the former one to avoid further

complexity at this stage. Thus, the user will need to modify and recompile the model when

changing layer sizes. In our example we use 2 units for the input layer, 2 for the hidden layer and 1

for the output layer.

Additionally, we set stopError to a number that will be small enough for the network
to obtain acceptable solutions. For this example, we use 0.1 or 10% of the output value,

nsl set backPropModel.layers.be.stopError 0.1

The learning parameter �� is represented by the learningRate parameter determining
how big a step the network can take in correcting errors. The learning rate for this prob-
lem was set to 0.8 for both the hidden and output layers.

nsl set backPropModel.layers.bh.lRate 0.8

nsl set backPropModel.layers.bo.lRate 0.8

The training step or delta is typically set between 0.01 to 1.0. The tradeoff is that if
the training step is too large—close to 1—the network tends to oscillate and will likely
jump over the minimum. On the other hand, if the training step is too small—close to 0—
it will require many cycles to complete the training, although it should eventually learn.

This is obviously a very simple model but quite illustrative of Backpropagation. As
an exercise we encourage you to try different learningRates (lRate) and stopError values.
Additionally, you can modify the training set although keeping the same structure. In
section 3.5 you may try changing the layer sizes in designing new problems. Also, if you
are not satisfied with the training, there are two ways to keep it going. One is to issue an
initModule command, adjust trainEndTime to a new value, and then train and run again.
The other is to save the weights, issue an initModule, load the weights again, and then
type simTrain at the prompt.

2.7 Summary
In this chapter we have given an introduction to NSL simulation as well as an overview of three

basic neural models, Maximum Selector, Hopfield and Backpropagation in NSL. These models,

although different, take advantage of a consistent simulation interface provided by NSL.

Notes

1. Currently, we are completing the Numerical Editor Input interface/widget which will
allow us to set any writable variable within the model from a pop-up window. The
widget will eliminate extra typing in the script window.

3 Modeling in NSL

In chapter 2 we introduced model simulation in NSL. The models overviewed were
“canned” ready for simulation, having preset parameters as well as visualization specifi-
cations. In this chapter we overview how to build neural network models in NSL using
the NSLM modeling language. Note that this material is intended for the model builder,
as distinct from the model user. We first explain how models are described in terms of
modules and neural networks in NSLM, followed by an introduction to the Schematic
Capture System (SCS), our visual tool to create and browse model architectures. We then
describe the NSL implementation of the Maximum Selector, Hopfield and Backpropaga-
tion models introduced in chapter 2.

3.1 Implementing Model Architectures with NSLM
A neural network model is described by a model architecture representing its structure
and behavior. In NSL, model architectures can be built either top-down or bottom-up. If
built top-down, the two step approach to building the model is: first build modules to
define the overall “black-box” structure of the network and then build the detailed func-
tionality of the neural networks. To build bottom-up, we just do the reverse. We illustrate
the bottom-up approach with the Maximum Selector, Hopfield, and Backpropagation
models.1

Modules and Models
At the highest-level model architectures are described in terms of modules and inter-
connections. We describe in this section these concepts as well as the model, representing
the main module in the architecture together with a short overview of scheduling and
buffering involved with modules.

Modules
The module, the basic component in a model architecture, is somewhat analogous to the
object in object-oriented applications. Additionally, the corresponding module definition
is analogous to an object definition, known as the object class, used to instantiate the
actual modules or objects, respectively. A module encapsulates the internal complexity of
its implementation by separating the internal details from the external interface. The
external portion of the module is the part of the module seen by other modules. The
internal portion is not seen by other modules—this makes it easier to create and modify
modules independently from each other—and defines the actual module behavior. This
behavior need not be reducible to a neural network: (a) it may be an abstraction equiva-
lent to that of a neural network, or (b) it may be a module doing something else, e.g.
providing inputs or monitoring behavior.

The most important task of a module’s external interface is to permit communication
between different modules. As such, a module in NSL includes a set of input and output
data ports (we shall call them simply ports). The port represents an entry or exit point
where data may be sent or received to or from other modules, as shown in figure 3.1.

Module

din1 dout1

dinn doutm

… …… …

Figure 3.1
The NSL computational
model is based on the
module concept. Each
Module consists of
multiple input, din1,dinn,
and output, dout1,...,doutm,
data ports for
unidirectional
communication. The
number of input ports
does not have to be the
same as the number of
output ports.

4 0 C H A P T E R 3

For example, the Maximum Selector model architecture incorporates a module having
two input ports sin and vin together with a single output port uf, as shown in figure 3.2.

Ulayer

vin

sin

uf

Data sent and received through ports is usually in the form of numerical values.
These values may be of different numerical types while varying in dimension. In the
simplest form a numerical type may correspond to a single scalar, a one-dimensional
array (vector), a two-dimensional array (matrix), or higher dimensional arrays.2 For
example in the Ulayer module shown in figure 3.2, vin is made to correspond to a scalar
type while sin and uf both correspond to vector arrays (the reason for this selection will
become clear very soon).

In terms of implementation, the NSL module specification has been made as similar
as possible to a class specification in object-oriented languages such as Java and C++ in
order to make the learning curve as short as possible for those already having program-
ming background. The general module definition is described in code segment 3.1. The
module specification consists of a header and a body. The header comprises the first line
of the template, in other words the code outside the curly brackets. The body of the mod-
ule is specified inside the curly brackets made up of the structure and behavior, both to
be explained later on.

nslModule Name (arguments)

{

 structure

 behavior

}

Let us begin with the header (bold letters represent NSLM keywords):

� nslModule (note the initial lower case “nsl” prefix) specifies the beginning of a
module template.

� Name (note the initial upper case letter) represents the name of the module to which
all module instances will refer.

� arguments are an optional variable list useful when passing external information to
the module during an instantiation.

� The body of the module consists of two different sections:

� structure representing module attributes (data).

� behavior representing module methods (operations).

For example, the Ulayer module in the Maximum Selector model architecture con-
tains the header described in code segment 3.2.

nslModule Ulayer (int size)

{

}

The header specification consists of:

� nslModule, the always present module definition keyword.

� Ulayer, the name of the module.

Code Segment 3.1
The NslModule definition.

Code Segment 3.2
MaxSelector Ulayer
header.

Figure 3.2
The ULayer module of the
Maximum Selector model
has two input ports sin
and vin and a single output
port uf.

M O D E L I N G I N N S L 4 1

� size, an integer type passed as argument to the module.

The module structure consists of the module’s external interface—its ports, as
shown in code segment 3.3.

nslModule Ulayer(int size)

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin();

 public NslDoutDouble1 uf(size);

}

The Ulayer module defines the three ports previously mentioned, sin, vin and uf.
Each line ending in a semicolon defines a single port declaration:

� public tells NSLM that the port (or any other specification) is known outside the
module—it is part of the module’s external interface. (Defining all ports as public is
very important if we want to be able to make connections or communication chan-
nels with other modules.)

� NslDinDouble1 represents a one-dimensional port array of type “double,” where Nsl
is the prefix to all NSL defined types. As part of the type description, Din specifies
an input data port. Double specifies the primitive data type for the port (other primi-
tive types are Float and Int) while 1 identifies the array dimension, in this case 1, for
a vector (other dimensions are 0, 1, 2, 3, or 4).

� sin is the port name used for NSLM referral both from inside the module as well as
from its outside.

� The parentheses after sin indicate the instantiation parameter section. In this example
the parameter size in the header is passed to the module during its instantiation.

� Ports vin and uf are defined in a similar way. Port vin is of NslDinDouble0 type
corresponding to an input port of zero dimensions (i.e., a scalar). uf is of
NslDoutDouble1 type corresponding to a one dimensional output port array.

Besides the external interface in the form of ports, the structure of a module may
include additional local data. In our example we include three additional “internal” vari-
ables up, hu, and tau as shown in code segment 3.4.

nslModule Ulayer(int size)

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin();

 public NslDoutDouble1 uf(size);

 private NslDouble1 up(size);

 private NslDouble0 hu();

 private double tau();

}

up represents an internal module variable of type NslDouble1. Since all attributes, with
the exception of ports, should be encapsulated we use the private visibility keyword to
specify a local variable not viewed externally to the module. Note how the Din/Dout
section of the port types is taken out from a regular variable declaration. The other
section, primitive type and dimension are still important, in this case Double and 1,
respectively.

Code Segment 3.3
MaxSelector’s Ulayer
external interface.

Code Segment 3.4
MaxSelector’s Ulayer
attribute definition.

4 2 C H A P T E R 3

� hu and tau represent the offset and approximation method time constant, both of type
NslDouble0.

In terms of behavior, every module must have methods in order to do something
“meaningful.” Modules include a number of specific methods called by the simulator
during model execution. These methods are used for different purposes, e.g. initialization,
execution, termination.

nslModule Ulayer(int size)

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin();

 public NslDoutDouble1 uf(size);

 private NslDouble1 up(size);

 private NslDouble0 hu();

 private NslDouble0 tau();

 public void initRun() {

uf = 0.0

up = 0.0;

 hu=0.1;

 tau=1.0;

 }

}

For example, the initRun method in the Ulayer module definition shown in code
segment 3.5 is called during the module’s run reinitialization. (Additional methods will
be defined for this module later in this chapter.) Tasks that we may want to do during
reinitialization are for example resetting of all variables to their initial value. (Note that
we usually set values for local variables and output ports but not input ports since their
values are externally received.) Every method is distinguished by its unique signature,
consisting of a return type, name and arguments, as well as additional modifiers such as
the visibility keyword. In our example the method is defined as follows:

� public is the visibility modifier telling NSLM that the method is to be known outside
the module, an important requisite if we want NSL to be able to call this method
during module simulation.

� void is the return type from the method, i.e., no value is returned from the method.
This is the case with most NSL predefined methods.

� initRun is the name of the method, taken from the set of predefined NSL method
names.

Arguments are specified within the parenthesis. In this example no arguments are
passed to the method, the case with most NSL predefined methods.

The method body corresponds to the section between curly brackets. Note that the
initRun defined here sets both the values of arrays uf and up to 0.0, in other words it
assigns zero to every element in the corresponding arrays. On the other hand hu and tau
are initialized to 0.1 and 1.0 respectively.

Interconnections
Interconnections between modules is achieved by interconnecting output ports in one
module to input ports in another module. Interconnections free the user from having to
specify how data should be sent and received during simulation processing. Communica-
tion is unidirectional, flowing from an output port to an input port. Code segment 3.6

Code Segment 3.5
���������	
’s����
�

attribute and method
definition.

M O D E L I N G I N N S L 4 3

shows the Vlayer header and structure (we omit its behavior) for the Maximum Selector
model. It contain s an output vf, input port uin and three private variables, vp, hv and tau.

nslModule Vlayer(int size)

{

 public NslDinDouble1 uin(size);

 public NslDoutDouble0 vf();

 private NslDouble0 vp();

 private NslDouble0 hv();

 private NslDouble0 tau();

}

The description is very similar to Ulayer. The major difference is that Ulayer’s out-
put, uf, is a vector while Vlayer’s output, vf, corresponds to a single scalar. figure 3.3
then shows the interconnections between the Ulayer module and another, Vlayer.

Ulayer Vlayer

sin

uin

vin

uf vf

In the example, a connection is made from output port uf in Ulayer to input port vin
in Vlayer; additionally, output port vf in Vlayer is connected to input port vin in Ulayer.
Note the input port sin in Ulayer is disconnected at the time. In general, a single output
port may be connected to any number of input ports, whereas the opposite is not allowed,
i.e., connecting multiple output ports to a single input port. The reason for this restriction
is that the input port could receive more than one communication at any given time,
resulting in inconsistencies.

This kind of interconnection—output to input port—is considered “same level
module connectivity.” The alternative to this is known as “different level module con-
nectivity.” In this case, an output port from a module at one level is relabeled (we use
this term instead of connected for semantic reasons) to an output port of a module at a
different level. Alternatively, an input port at one level module may be relabeled to an
input port at a different level. For example, in figure 3.4 we introduce the MaxSelector
module, containing an input port in and an output port out, encapsulating modules
Ulayer and Vlayer. MaxSelector is considered a higher level module to the other two
since it contains—and instantiates—them. In general, relabeling lets input and output
ports forward their data between module levels. (This supports module encapsulation in
the sense that a module connected to MaxSelector should not connect to ports in either
Ulayer or Vlayer nor be able to get direct access to any of the modules private vari-
ables.) Relabelings, similar to connections, are unidirectional, where an input port from
one module may be relabeled to a number of input ports at a different level.

Code Segment 3.6
MaxSelector’s Vlayer
attribute definition.

Figure 3.3
Interconnections between
modules Ulayer and Vlayer
of the Maximum Selector
model.

4 4 C H A P T E R 3

Ulayer
u1

Vlayer
v1

sin

uin

vin

uf vf

out

in

MaxSelector Figure 3.4
Maximum Selector model
architecture contains a
MaxSelector module with
two interconnected modules
Ulayer and Vlayer.

The NSLM specification for figure 3.4 is given in code segment 3.7. the
MaxSelector module definition incorporates Ulayer and Vlayer instantiations—u1 and
v1 are the corresponding instance variables—together with port in and out instantiations.
Note that we have made the instantiations of Ulayer and Vlayer private variables. Again
this is for encapsulation, or in other words, to protect these module instances from being
modified accidentally.

nslModule MaxSelector (int size)

{

 public NslDinDouble1 in(size);

 public NslDoutDouble1 out(size);

 private Ulayer u1(size);

 private Vlayer v1(size);

 public void makeConn(){

 nslRelabel(in,u1.sin);

nslConnect(v1.vf,u1.vin);

 nslConnect(u1.uf,v1.uin);

 nslRelabel(u1.uf,out);

 }

}

In terms of behavior, the MaxSelector module includes the predefined makeConn
method, analogous to the initRun method, for specifying port interconnections. (Note
that module interconnections are carried out in the parent—higher level—MaxSelector
module, with Ulayer and Vlayer considered the children—lower level—modules.) Con-
nections and relabels between ports are specified as follows:

� nslConnect connects an output port (first argument) to an input port (second argu-
ment). In this example we connect output port vf in v1 to input port vin in u1. The
second connect statement connects output port uf in u1 to input port uin in v1.

� nslRelabel relabels an input port at a higher module level with an input port at a
lower module level, or changing the order, an output port at a lower level with an
output port at a higher level. In the example, we relabel input port in in MaxSelector
to input port sin belonging to u1 and output port uf belonging to u1 to output port out
in MaxSelector.

Code Segment 3.7
���������	
 top-level
module definition.

M O D E L I N G I N N S L 4 5

MaxSelectorMaxSelector
Stimulus

MaxSelectorModel

MaxSelector
Outputsout

uin
in

out

din

Figure 3.5
MaxSelectorModel
architecture contains the
MaxSelectorStimulus,
MaxSelector, and
MaxSelectorOutput
interconnected module.

Note in the previous examples that specifying connections and relabels is carried out
from outside the participating modules—the modules having the actual port to be con-
nected. This way we can design modules independently and without priori knowledge of
how they are going to be interconnected promoting module reuse applying them in a
number of model architectures.

Models
There is a special module, known as the model, which should be present in any model
architecture. The model is somewhat analogous to a main procedure in programming
languages in that it is responsible for instantiating the rest of the application. The model
contains the complete set of modules defining the particular model architecture. For
example, the MaxSelectorModel is shown in figure 3.5, which includes two additional
modules, MaxSelectorStimulus responsible for generating model input, MaxSelector-
Output, for the processing of module output. These two additional modules may be quite
simple, as the case in our example, or may provide sophisticated functionality as probing
MaxSelector module correctness, or make use of the output as part of further processing.
The MaxSelectorModel definition is described in code segment 3.8.

nslModel MaxSelectorModel ()

{

private MaxSelector maxselector(10);

private MaxSelectorStimulus stimulus(10);

private MaxSelectorOutput output();

public void makeConn() {

 nslConnect(stimulus.sout,maxselector.in);

 nslConnect(stimulus.sout,output.sin);

 nslConnect(maxselector.out, output.uin);

 }

}

The header specification is similar to the module with the exception that we use the
nslModel keyword instead of nslModule. The model may define both attributes and
behavior as part of its body similar to a module. Note how we specify the network sizes
and pass them to the two modules. The only restriction is that there may not be more than
one model in the application. The Maximum Selector model is further described in the
Maximum Selector section in this chapter. However, before we can describe the complete
model, we need to discuss additional issues such as scheduling of modules and buffering
of data.

Scheduling and Buffering
Before we get into the detailed implementation of modules we should understand two
special aspects in processing models: scheduling and buffering. Scheduling specifies the

Code Segment 3.8
MaxSelectorModel model.

4 6 C H A P T E R 3

order in which modules and their corresponding methods are executed while buffering
specifies how often ports read and write data in and out of the module. NSL uses a multi-
clock-scheduling algorithm where each module clock may have a different time step
although synchronizing between modules during similar time steps. During each cycle,
NSL executes the corresponding simulation methods implemented by the user. We will
expand upon this later in the chapter and give complete details in the NSLM chapter.

In NSL, buffering relates to the way output ports handle communication. Since mod-
els may simulate concurrency, such as with neural network processing, we have provided
immediate (no buffer) and buffered port modes. In the immediate mode (sequential
simulation), output ports immediately send their data to the connecting modules. In the
buffered mode (pseudo-concurrent simulation), output ports do not send their data to the
connecting modules until the following clock cycle. In buffered mode, output ports are
double buffered. One buffer contains the data that can be seen by the connecting modules
during the current clock cycle, while the other buffer contains the data being currently
generated that will only be seen by the connected modules during the next clock cycle.
By default NSL uses the non-buffered mode, although the user may change this. Most of
the models presented in the book make use of the immediate buffering mode. Full details
on scheduling and buffering are given in the NSLM chapter.

Neural Networks
As discussed in the Introduction, NSL favors model architectures where modules are
implemented by neural networks. A module defines the structure and behavior of the
neural network. The neural network structure consists of a set of neurons and their
interconnections, whereas the neural network behavior is defined in terms of non-linear
dynamics with connection weights subject to a number of learning rules.

Neurons
Without precluding the importance of other neural models, we focus here on the leaky
integrator neuron model. As we described in chapter 1, Neural Networks section, the
leaky integrator’s internal state is described by its membrane potential or neural activity
mp and by its output or firing mf, specified by some nonlinear function, as shown in fig-
ure 3.6 (drawn again from figure 1.6).

mp mfsm

input neuron output

In NSL two data structures are required to represent such a neuron in addition to its
inputs. One data structure corresponds to the membrane potential and the other one to its
firing rate. Different NSLM data types may be used for these structures, for example,
NslFloat0 or NslDouble0 depending on the numerical type desired.

private NslDouble0 mf();

Notice the two variables are set to private with a scalar type such as NslDouble0.
(In many cases we may want the value of mf to be communicated to other modules. If
such is the case, the declaration for mf should be modified from a private variable to a
public port.)

public NslDoutDouble0 mf();

Figure 3.6
Single compartment neural
model represented by a
value mp corresponding to
its membrane potential, and
a value mf corresponding to
its firing, the only output
from the neuron. sm
represents the set of inputs
to the neuron.

M O D E L I N G I N N S L 4 7

In addition to the membrane potential and firing rate we need to define variable sm
holding a weighted spatial summation of all input to the neuron

private NslDouble0 sm();

We may also need to declare the “unweighted” input to the neuron. In general, input
may be specified as internal to a module or obtained from another module. In the latter
case we define input sin as a public input port. Note that if sin is a vector, then sm is a
scalar holding the sum of all values in the input vector.

public NslDinDouble1 sin(size);

The leaky integrator model defines the membrane potential mp with a first-order
differential equation with dependence on its previous history and input sm given by equa-
tion 3.1 (combining together equations 1.1 and 1.2 and omitting the t parameter from
both)

smmp
dt

dmp
+�=� (3.1)

While neural networks are continuous in their nature, their simulated state is approxi-
mated by discrete time computations. For this reason we must specify an integration or
approximation method to generate as faithfully as possible the corresponding neural state.
The dynamics for mp are described by the following statement in NSLM

mp=nslDiff(mp,tau,-mp+sm);

nslDiff defines a first-degree differential equation equal to “-mp+ sm” as described by the
leaky integrator model. Different approximation methods can be used to approximate the
differential equation. The choice of this method may affect both the computation time
and its precision. For example, NSL provides Euler and Runge-Kutta II approximation
methods. The selection of which method to use is specified during simulation and not as
part of the model architecture. We provide further explanation on approximation methods
in chapter 6.

mf

mp

� ramp
mf

mp

� step

mf

mp

� saturation
mf

mp

� sigmoid

Figure 3.7
Common Threshold
Functions.

4 8 C H A P T E R 3

The average firing rate or output of the neuron mf is obtained by applying some
“threshold function” to the neuron’s membrane potential as shown in equation 3.2 (taking
out the t parameter from previous equation 1.3),

()mpmf �= (3.2)

where � usually is described by a non-linear function. For example, if � is set to a step
threshold function, the NSLM equation for the firing rate mf would be described by

mf = nslStep(mp);

where nslStep is the corresponding NSLM step threshold function. Some of the threshold
functions defined in NSL are step, ramp, saturation and sigmoid, whose behaviors are
plotted in figure 3.7 and described in detail in chapter 6, the NSLM language.

Neural network dynamics are generally specified inside the simRun method, as
described code segment 3.9.

public void simRun()

{

 sm=nslSum(sin);

 mp = nslDiff(mp,tau,-mp+sm);

 mf = nslStep(mp);

}

While initRun is executed once prior to the “run,” simRun gets executed via multiple
iterations during the “run.” A “run” is defined as execution over multiple clock cycles
(simulation time steps) from time equal zero to the runEndTime. Similar to initRun, the
simRun method must also be specified as public in order for NSL to be able to process it.

Interconnections
The previous definition specifies a single neuron without any interconnections. An actual
neural network is made of a number of interconnected neurons where the output of one
neuron serves as input to other neurons. In the leaky integrator neural model, inter-
connections are very simple structures. On the other hand, synapses, the links among
neurons, are—in biological systems—complex electrochemical systems and may be
modeled in exquisite detail. However, many models have succeeded with a very simple
synaptic model: with each synapse carrying a connection weight that describes how neu-
rons affect each other. The most common formula for the input to a neuron is given by
equation 3.3 (omitting the t parameter from previous equation 1.4),

�
�

=

=
1

0

n

i
iijj ufwsv (3.3)

where ufi is the firing of neuron ui whose output is connected to the jth input line of neu-
ron vj, and wij is the weight for that link, as shown in figure 3.8 (up and vp are analogous
to mp, while uf and vf are analogous to mf).

Code Segment 3.9
Leaky Integrator
neuron
implementation.

M O D E L I N G I N N S L 4 9

…

…

…

…

s0 s1 s1 sn-1

upn-1

ufn-1

upi

ufi

up1

uf1

up0

uf0

vp0

vf0

vpm-1

vfm-1

vpj

vfj

wj0

wj1
wji

wjn-1vp1

vf1

Expanding the summation, input to neuron vj (identified by its corresponding mem-
brane potential vpj) is given by svj defined by equation 3.4

svj = w0juf0 + w1juf1 + w2juf2 + ... + wn-1, jufn-1 (3.4)

While module interconnections are specified in NSLM via a nslConnect method
call, doing this with neurons would in general be prohibitively expensive considering that
there may be thousands or millions of neurons in a single neural network. Instead we use
mathematical expressions similar to those used for their representation. For example, the
input to neuron vj, represented by svj, would be the sum for all outputs of neuron ufi mul-
tiplied (using the ‘*’ operator) by connection weight wij, correspondingly.

svj = w0j*uf0 + w1j*uf1 + w2j*uf2 + ...;

Note that there exist m such equations in the network shown in figure 3.8. We could
describe each neuron’s membrane potential and firing rate individually or else we could
make all ui and vj neuron vector structures. The first approach would be very long, ineffi-
cient, and prone to typing errors; thus we present the second approach and describe it in
the following section.

upj-1 upj+1

sj+1

ufj+1ufj-1

wk-1 wk+1

wk

ufj

upj

vpj

vfj

sjsj-1 Figure 3.9
Mask connectivity.

Figure 3.8
Neurons vpj receive input
from neuron firings,
uf0,...,ufn-1, multiplied by
weights wj0,...,wjn-1,
respectively.

5 0 C H A P T E R 3

Arrays and Masks
Instead of describing neurons and links on a one by one basis, we extend the basic neuron
abstraction into neuron arrays and connection masks describing spatial arrangements
among homogeneous neurons and their connections, respectively. We consider ufj the
output from a single neuron in an array of neurons and svj the input to a single neuron in
another array of neurons. If mask wk (for -d�k�d) represents the synaptic weights, as
shown in figure 3.9, from the ufj+k (for -d�k�d) elements to svj, for each j, we then have

�
�=

+=
d

dk
kjkj ufwsv (3.5)

where the same mask w is applied to the output of each neuron ufj+k to obtain input svj. In
NSLM, the convolution operation is described by a single symbol “@”.

sv = w@uf;

This kind of representation results in great conciseness, an important concern when
working with a large number of interconnected neurons. Note that this is possible as long
as connections are regular. Otherwise, single neurons would still need to be connected
separately on a one by one basis. This also suggests that the operation is best defined
when the number of v and u neurons is the same, although a non-matching number of
units can be processed using a more complex notation.

To support arrays and masks, a NslDouble1 or higher dimensional array structure is
used, as was demonstrated in chapter 2, using the Hopfield model. In the Hopfield model
neurons are organized as two-dimensional neuron arrays—instead of one dimensional—
and weights result in four dimensional arrays—instead of two dimensional. For
simplification, both neural arrays and connection masks are represented in NSLM with
similar array types. The simRun method describing dynamics for neuron v would be as
shown in code segment 3.10.

public void simRun()

{

sv = w@uf;

vp = nslDiff(vp,tau,-vp+sv);

 vf = nslStep(vp);

}

There are special considerations with convolutions regarding edge effects—a mask
centered on an element at the edge of the arrays extends beyond the edge of the array—
depending on how out of bound array elements are treated. The most important alterna-
tives are to treat edges as zero, wrap around array elements such as if the array was
continuous at the edges, or replicate boundary array elements. We will explain this in
more detail in chapter 6, The NSLM Language.

3.2 Visualizing Model Architectures with SCS
There are two ways to develop a model architecture: by direct programming in NSLM as
previously explained or by using the Schematic Capture System (SCS). SCS is a visual
programming interface to NSLM that serves both as a browser as well as a tool for creat-
ing new model architectures as discussed in the Simulation chapter. While SCS does not
provide the full programming functionality of NSLM, it provides visual support in
designing modules and their interconnections. We will show in this section how to visu-
alize already created model architectures with SCS. Extended details on how to created
new model architectures will be overviewed in chapter 4, the Schematic Capture System.

Code Segment 3.10
Leaky-Integrator ������

method implementation.

M O D E L I N G I N N S L 5 1

To start executing the Schematic Capture System we invoke (see Appendix IV for
platform particulars):

prompt> scs

The system initially presents the Schematic Editor (SE) window (shown in figure
3.10).

Figure 3.10
Select “Open” from the “File”
menu to bring a listing of
schematics available in the
library of models.

To open the schematic of an existing model from the library of models we select
“Open” from the “File” menu, as shown in figure 3.10. SCS presents a list of models,
where we select for example the MaxSelectorModel, as shown in figure 3.11.

Figure 3.11
Select the MaxSelectorModel
Schematic.

Once the model has been selected it is shown in the canvas section of the window, as
shown in figure 3.12.

Figure 3.12
MaxSelectorModel
Schematic. (The “descend”
selection requires us to first
select the module that we are
to display.)

5 2 C H A P T E R 3

By “double clicking” on the MaxSelector module we will descend one level down
the module hierarchy, and the schematics shown in figure 3.13 will be displayed.

Figure 3.13
MaxSelector module from
the MaxSelectorModel.

We can then return one level up by selecting “Ascend” from the “Hierarchy” menu,
as shown in figure 3.14. The rest of the SCS interface is described in chapter 4.

Figure 3.14
Select “ascend” from the
“Hierarchy” Menu to go one
level up the module
hierarchy.

3.3 Maximum Selector
We presented an introduction to Maximum Selector model in chapter 2. We now describe
its complete model architecture.

M O D E L I N G I N N S L 5 3

Ulayer MaxSelector
Output

MaxSelector
Stimulus

MaxSelector

MaxSelectorModel

Vlayer

vin

sinin
out

uin
sin

uin
uf

sout
vf

Model Implementation
As we have seen, the MaxSelectorModel is composed of five instances of modules: u1,
v1, maxSelector, stimulus, and output of corresponding module types Ulayer, Vlayer,
MaxSelector, MaxSelectorStimulus, and MaxSelectorOutput, as shown again in fig-
ure 3.15. Given an input vector in of array size size, the maxSelector module generates
as output a similarly sized vector pattern out in which the only active unit (or neuron)
corresponds—under suitable conditions—to the largest of the n vector inputs. These
modules were introduced throughout the chapter so we will quickly recall and extend
their description.

Ulayer
For simplicity we have kept only the minimum structure for the model (weights in this
module have “1” as their value) described in code segment 3.11.

nslModule Ulayer (int size)

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin();

 public NslDoutDouble1 uf(size);

 private NslDouble1 up(size);

 private NslDouble0 hu();

 private NslDouble0 tau();

 public void initRun() {

up =0;

 uf = 0;

 hu = 0.1;

 tau =1.0;

 }

public void simRun() {

 up = nslDiff(up, tau, -up + uf - vin – hu + sin);

 uf = nslStep(up,0.1,0.1.0);

 }

}

Note that sin, up, and uf are vector arrays, while vin, tau and hu are scalar. The mod-
ule behavior is described by the two equations introduced in chapter 2, with slight modi-
fications for better correspondence with the module structure:

sinhuvinufup
dt

dup
tau +��+�= (3.6)

Figure 3.15
The MaxSelectorModel
contains the MaxSelector
module incorporating an
input port in used as input
to the network and an
output port out represents
network output, and two
module instances of type
Ulayer and Vlayer,
respectively. Additionally,
the MaxSelectorStimulus
module generates stimulus
for the model and
MaxSelectorOutput
displays the output results.

Code Segment 3.11
Ulayer module definition.

5 4 C H A P T E R 3

�
�
�

�
>

=
0if0

0if1

up

up
uf (3.7)

There are two separate initializations: the first, initModule gives script access to the
hu offset variable; the second, initRun resets the neuron activity values—the values
being computed during the simulation—restarting the network with a new initial state.
The simRun method contains the above expressions to be repeatedly executed during the
simulation process. Note that the two statements for up and uf, respectively, require vec-
tor array return types since both structures are vectors. When adding or subtracting a
vector with a scalar, such as “uf—vin” in the nslDiff expression, vin is subtracted from
every element to uf as if vin were a vector with all elements having the same value.

Vlayer
Again, for simplicity we have kept only the minimum structure for the module without
the weight terms, described in code segment 3.12. Note that uin is a vector array, while
vp, vf, tau and hv are scalars.

nslModule Vlayer(int size)

{

 public NslDinDouble1 uin(size);

 public NslDoutDouble0 vf();

 private NslDouble0 vp();

 private NslDouble0 hv();

 private NslDouble0 tau();

 public void initRun() {

vp =0;

 vf = 0;

 hv=0.5;

 tau=1.0;

 }

 public void simRun() {

vp = nslDiff(vp,tau, -vp + nslSum(uin) – hv);

 vf = nslRamp(vp);

 }

}

The module behavior is described by the two equations introduced in chapter 2, with
slight modifications for better correspondence with the module structure

hvuinvp
dt

dvp
tau

n

�+�= � (3.8)

�
�
�

�
>

=
0if0

0if

vp

vpvp
vf (3.9)

These equations are implemented in the simRun method above. Note that the two
statements for vp and vf, respectively, require this time a scalar return type since both
structures are scalars. For this reason we apply nslSum() to all array element values from
uin, the output received from uf, to obtain a single scalar value. nslRamp is a ramp
threshold function.

Code Segment 3.12
MaxSelector‘s Vlayer module
definition.

M O D E L I N G I N N S L 5 5

MaxSelector
The MaxSelector module instantiates both Ulayer and Vlayer, as well as defining two
external ports, in and out, as shown in code segment 3.13. Port interconnections are made
inside the makeConn method, two connections and two relabels.

nslModule MaxSelector (int size)

{

 public Ulayer u1(size);

 public Vlayer v1(size);

 public NslDinDouble1 in(size);

 public NslDoutDouble1 out(size);

 public void makeConn(){

nslConnect(v1.vf,u1.vin);

 nslConnect(u1.uf,v1.uin);

 nslRelabel(in,u1.sin);

 nslRelabel(u1.uf,out);

 }

}

MaxSelectorStimulus
The MaxSelectorStimulus generates the visual stimulus sent to the MaxSelector mod-
ule. The module is described in code segment 3.14. The actual stimulus can be set
directly as part of the module definition, or as we discussed in the previous chapter,
interactively assigned by the user through the visual interface or through the NSLS shell
window. If done directly in the module definition, the initRun method would contain for
example the corresponding stimulus specification.

nslModule MaxSelectorStimulus (int size)

{

 public NslDoutDouble1 sout(size);

 public void initRun(){

 sout=0;

sout[1]=1.0;

 sout[3]=0.5;

 }

}

MaxSelectorOutput
The MaxSelectorOutput receives input from both MaxSelectorStimulus and
MaxSelector modules and generates the canvases/graphs shown in the chapter 2, figure
2.8. For the sake of simplicity we leave the detailed description of this module until
chapter 5, The User Interface and Graphical windows.

MaxSelectorModel
The MaxSelectorModel instantiates both the MaxSelectorStimulus, MaxSelector, and
MaxSelectorOutput as shown again in code segment 3.15.

Code Segment 3.13
MaxSelector module.

Code Segment 3.14
MaxSelectorStimulus
module.

5 6 C H A P T E R 3

nslModel MaxSelectorModel()

{

 public MaxSelectorStimulus stimulus(size);

 public MaxSelector maxselector(size);

 public MaxSelectorOutput output(size);

 private int size = 10;

 public void initSys() {

 system.setRunEndTime(10.0);

 system.setRunStepSize(0.1);

 }

 public void makeConn(){

nslConnect(stimulus.sout,maxselector.in);

nslConnect(stimulus.sout,output.sin);

nslConnect(maxselector.out,output.uf);

 }

}

As an exercise the user may want to add the different weight parameters specified by
the original equations and change their value to see their effect on the model. Additionally,
the network could be modeled with different neuron array sizes to see how this affects
overall behavior.

3.4 Hopfield
Recall from the Simulation chapter the Hopfield model description. We now describe the
model architecture.

Hopfield
Hopfield

Input

HopfieldModel

Hopfield
Outputout inpat mf

Model Implementation
The Hopfield model contains three module instances hopfield, in, and out of the corre-
sponding module types Hopfield, HopfieldInput and HopfieldOutput as shown in
figure 3.16. Input port pat in Hopfield receives a number of initial patterns from output
port out during training to adjust the network’s connection weights. During model execu-
tion pat receives from out a single input pattern to be associated to the one that it best
approximates.

Hopfield
The Hopfield module implements the neural network dynamics. In our example both pat
and mf are set to two- dimensional arrays associating letter images to be tested (although
both could have been implemented by vectors). In our example, both input and output
ports have the same size for both dimensions. The structure is shown in code segment
3.16.

Code Segment 3.15
MaxSelectorModel model
definition.

Figure 3.16
The Hopfield Model. The
Hopfield module contains an
input port pat used as input
to the network, and an output
port mf representing network
output. The HopfieldInput
module contains a single
output port out while the
HopfieldOutput module
contains a single input port
in.

M O D E L I N G I N N S L 5 7

nslModule Hopfield (int size)

{

public NslDinInt2 pat(size,size);

public NslDoutInt2 mf(size,size);

private NslInt2 mp(size,size);

private NslInt2 pmf(size,size);

private NslInt4 w(size,size,size,size);

private NslInt0 energy();

private NslInt0 change();

}

Notice that we are describing a binary Hopfield network, thus we implement all
types as integers. Two additional two-dimensional arrays are defined, mp storing the
activity and output of neurons and pmf storing previous output. We also define a four-
dimensional connection matrix w, and two parameters, energy and change. We define a
connection matrix w instead of a connection mask due to the varying weight values for all
connections. We lose a bit on efficiency due to the higher dimension arrays but we add
the ability to better map units to images. The last attribute defined is invisible to the user,
but thrown in by the pre-parser. It is a primitive-type integer size storing the size passed
to the module. This variable is later used in the module methods to avoid having to obtain
the size each time.

During the training phase, model weights are initialized according to equation 2.7
from chapter 2 and in correspondence to our particular Hopfield network application at
hand,

��

�
�
� ==

= � otherwise

,0

m
mijmklklij patpat

jlik
w (3.10)

Besides the initRun and simRun methods, the model also requires making use of
the initTrain and simTrain methods for network training. Inside the initTrain method,
weights are set by going over all n input patterns and applying the above equation. Each
iteration of the initTrain method adds a new pattern to the weight computation. Thus, the
initTrain method has to be executed for as many times as patterns exist.

for (int k=0; k<size; k++)

 for (int l=0; l<size; l++)

 for (int i=0; i<size; i++)

 for (int j=0; j<size; j++)

 if (k==l && l==i && i==j)

 w[k][l][i][j]=0;

 else

 w[k][l][i][j]=w[k][l][i][j]+pat[k][l]*pat[i][j];

Notice that NSLM enables the user to write his/her own matrix manipulation func-
tions when necessary, such as in the above example.

After weights have been set, the network executes according to equations 2.4 and 2.5
from chapter 2

� �=
i j

ijklijkl mfwmp (3.11)

Code Segment 3.16
Hopfield module definition.

5 8 C H A P T E R 3

�
�
�

<�
�

=
0if1

0if1

kl

kl
kl mp

mp
mf (3.12)

The initRun method initializes neuron activity to the input pattern. One important
aspect previously mentioned in the Simulation chapter is that the network gets updated
asynchronously, with neurons randomly chosen for update. Thus, we compute the output
for each neuron immediately after computing its activity, so it can be used as input by the
next neuron chosen for update. The neuron activity mp and the neuron output mf are
computed according to the above equations. The simulation proceeds as described in the
simRun method. Since it contains a number of interesting expressions, we explain each
one separately.

We first obtain two random integer values, k and l, used as indices in selecting the
next neuron to be updated. Recall that all neurons are stored in a two-dimensional array
and thus the need for the two indices.

int k = nslRandom(0,(size-1));

int l = nslRandom(0,(size-1));

The method nslRandom is one of a number of NSL library methods (described in
more detail in the NSLM chapter) for numerical computations, in this case to obtain an
integer random number between 0 and “size-1.” Since array indices start at 0 we do not
want numbers that are equal to or larger than the size of the arrays. We then apply a
summation over all inputs to the randomly selected neuron multiplied by the respective
connection weights—we use the “^” operator for pointwise array multiplication, i.e.,
multiplication between corresponding array elements.

mp[k][l] = nslSum(w[k][l]^mf);

Note that “w[k][l]” generates a matrix array, resulting in a valid operation. Once we
get the activity for the neuron we compute its firing with a step function with outputs set
to either -1 or 1, as specified by the last two parameters of the following nslStep
expression. (The zero term specifies the threshold.)

mf[k][l] = nslStep(mp[k][l],0,-1,1);

We then check if the error is zero, corresponding to the output of all neurons
generating exactly the same values as in the previous computation—previous values are
stored in pmf. This is done by first subtracting mf from pmf, and then transforming the
result to its absolute value to make sure all differences are positive. Finally, we add the
resulting absolute values together to generate the change, as shown next,

change = nslSum(nslAbs(pmf-mf));

If change is zero, convergence has occurred, we print out a “Convergence”
message—we use the nslPrintln printing method—and we break the simulation cycle
effectively stopping execution by using the system.breakCycles method as follows

if (change == 0)

 nslPrintln(“Convergence“);

system.breakCycles();

}

The module conditional ending is very common in many neural networks, especially
those involving training, as will also be seen in the Backpropagation model.

M O D E L I N G I N N S L 5 9

The last expression in the simRun method sets the new mf value to the previous pmf
value for the next simulation iteration.

pmf[k][l] = mf[k][l];

Additionally, we compute the energy in the network, described by equation 2.6 from
chapter 2,

� � � ��=
k l i j

ijklklij mpmpwE
2

1
(3.13)

This equation is implemented as follows

energy = 0;

for (int k=0; k<size; k++)

 for (int l=0; l<size; l++)

 for (int i=0; i<size; i++)

 for (int j=0; j<size; j++)

 energy=energy+w[k][l][i][j]*mp[k][l]*mp[i][j];

energy = -0.5*energy;

Again we need to do our own element by element multiplication.

HopfieldModel
The HopfieldModel instantiates the Hopfield, HopfieldInput and HopfieldOutput
modules. Both the HopfieldInput and HopfieldOutput modules are quite simple,
analogous to the MaxSelectorModel, and we leave their description until chapter 5, The
User Interface and Graphical Windows. Model input can be set directly as part of the
module definition or, as we discussed in the previous chapter, interactively assigned by
the user via the script or menu interface. We pass the network size to the two modules, in
this case “10.” Module connections are made inside the makeConn method as described
in code segment 3.17.

As an exercise the user may want to change network size as well as extend the model
to make use of two different sizes for array rows and columns, respectively, instead of a
single one. If you have a different problem at hand, such as the “Traveling Salesman,”
you may want to modify the equation for weights as well as the energy function. The rest
of the computation should be the same.

nslModel HopfieldModel ()

{

private int size = 10;

public Hopfield hopfield(size);

public HopfieldInput in(size);

public HopfieldOutput out(size);

 public void makeConn(){

nslConnect(in.out,hopfield.pat);

nslConnect(hopfield.mf,out.in);

 }

}

Code Segment 3.17
HopefieldModel model
definition.

6 0 C H A P T E R 3

3.5 Backpropagation
Recall from Section 2.6 the Backpropagation model description. We now describe the
model architecture.

BPForward
fh

BPForward
fo

BPBackwardError
be

BackPropModel

TrainManager

BackProp

BPBackward
bh

BPBackwardProp
bo

eOutput

w

dw dw

dwdw

dh dh

dhdh

ww

fInput fInput

fInput fInput

bInput

bInput

dInput

dOutput

bOutput

desired
desired

in

out

mf

mf

mf

mf

mf

Figure 3.17
Backpropagation model
architecture. The
BackPropModel is
decomposed into the
TrainManager module where
training data is read feeding
training signals into the
BackPropLayers module where
actual neural dynamics are
described. The
BackPropLayers module is
further decomposed into two
BPForward modules, and the
BPBackward, BPBackwardProp
and BPBackwardError
modules.

Model Implementation
The model architecture is shown in figure 3.17. The BackPropModel is decomposed into
a TrainManager module and a BackPropLayers module. The TrainManager module
reads training data and sends it one cycle at a time to the BackPropLayers module. The
BackPropLayers module communicates with to BPForward, BPBackward,
BPBackwardProp and BPBackwardProp modules to implement neural behavior. Note
that there could be more modules if there were additional hidden layers in the network.
Also note that we do not model the input layer as a separate module since this layer
simply reads training or simulation data without any additional processing. Thus, the
input layer can be directly mapped to the input port of the BackPropLayers module. All
ports in the network are set to a one-dimensional array or vector of similar size.

The network is processed in two modes, training and simulation. Training proceeds
itself in two modes:

� A feedforward mode where an input is selected and processed by the network in
order to generate an output vector.

� A backpropagation mode where the error is computed as the difference between the
current output vector and the desired or target output vector. The backward pass then
adjusts the synaptic weights of the output layer neurons and then the hidden layer
neurons, in that particular order.

As a result of this continual “wearing away” of the synaptic weights, the network
will, in general, come to provide outputs that better and better approximate the target
values.

Once the network has been completely trained, a process that finishes depending on
the error produced simulation, the simulation run proceeds in a single mode:

M O D E L I N G I N N S L 6 1

A feedforward mode where an input vector is processed by the network to generate
an output vector. The forward pass is executed a single time with the desired input
pattern.

It is the job of the BackPropLayers module (and BPForward, BPBackward,
BPBackwardProp and BPBackwardProp submodules) to conduct the forward pass and
backward pass after being supplied by the TrainManager module with the training pair.
It is the job of the TrainManager to take a whole training set and cycle through calling
BackPropLayers for each pair.

We next describe the different modules top-down: TrainManager, BackPropLayers,
BPForward, BPBackward, BPBackwardProp, BPBackwardProp and finally
BackPropModel.

nslModule TrainManager (int nPats, int inSize, int outSize)

{

public NslDoutFloat1 dInput(inSize);

public NslDoutFloat1 dOutput(outSize);

private NslFloat2 pInput(nPats, inSize);

private NslFloat2 pOutput(nPats, outSize);

private int counter = 0;

private int numPats = nPats;

}

TrainManager
The TrainManager module reads training data from a training file and sends them one
cycle at a time to the BackPropLayers module. The module structure is described in
code segment 3.18.

The model structure includes two output ports sending both input and desired output
data, dInput and dOutput, respectively. To simplify the example, we directly assign the
training data into two-dimensional variables pInput and pOuput. This is quite efficient
when having small training sets such as in this case. With very large data sets this would
not be possible since data files may be too large to store in memory and it will be more
efficient to load them from a file as needed. We include two additional parameters,
counter and numPats. Variable counter is used to control the particular data being sent
during the training cycle as will be explained next. Variable numPats stores the number
of patterns being used for training. The actual layer sizes are passed into the module
during module instantiation.

The module’s main responsibility is to provide with training data to the rest of the
model. Recall the training set format from table 3.1.

<num_patterns>

<input1> ... <inputN> <output1> ... <outputM>

<input1> ... <inputN> <output1> ... <outputM>

:

<input1> ... <inputN> <output1> ... <outputM>

During model training, the simTrain method sends out the data. This is achieved by
grabbing the next (input, desired output) pair in the given order, as shown in code
segment 3.19.

Code Segment 3.18
TrainManager attribute
definition.

Table 3.1
TrainManager input file
format.

6 2 C H A P T E R 3

public void simTrain()

{

 counter++;

 int pat = counter%numPats;

 dInput = pInput[pat];

 dOutput = pOutput[pat];

}

Note how we control this by doing a “mod”—operator %—of the current cycle
counter over the number of total patterns in numPats. Although the training procedure is
in the given order or sequential, where the total number of training steps is set equal to
the total number of patterns, it does not have to be always that way. There are many other
approaches, e.g., having the training given as a random choice of next (input, desired
output) pair.

BackPropLayers
The BackPropLayers module is responsible for controlling the detailed training cycle. It
defines data structures and simulation methods for the network necessary to execute the
feedforward (activation) mode and backpropagation (adaptation) mode. The module
instantiates five modules, two BPForward modules and single BPBackward,
BPBackwardProp, and BPBackwardError modules. The module also defines two
input ports and two output ports to receive and send information from and to the
TrainManager module, respectively. The module definition is described in code
segment 3.20.

nslModule BackPropLayers (int inSize, int hidSize, int outSize)

 {

public BPForward fh(inSize,hidSize);

public BPForward fo(hidSize,outSize);

public BPBackwardError be(outSize);

public BPBackwardProp bo(hidSize,outSize);

public BPBackward bh(inSize,hidSize);

public NslDinFloat1 in(inSize);

public NslDinFloat1 desired(outSize);

public NslDoutFloat1 out(outSize);

}

Two input ports in and desired receive their data from the TrainManager and are
relabeled to fInput and desired in the respective submodules. fInput represents the input
layer feeding data into the hidden layer corresponding to both the first BPForward and
the BPBackward modules. On the other hand desired is used to compute the backward
error in the BPBackwardError module. In terms of BackPropLayers output ports, out
is relabeled from the output mf of the second BPForward module representing the
feedforward mode output. Note the specific order in specifying the five submodules.
Since we are using immediate mode buffering this order is significant and results in the
following:

Code Segment 3.19
TrainManager simTrain
method.

Code Segment 3.20
BackPropLayers module
attributes.

M O D E L I N G I N N S L 6 3

1. Process fh BPForward module.

2. Process fo BPForward module.

3. Process be BPBackwardError module.

4. Process bo BPBackwardProp module.

5. Process bh BPBackward module.

Remember that two processing modes are involved in the model. It is crucial that the
feedforward mode for both hidden and output layer be completed before the backpro-
pagation mode on both layers. After each training epoch—a complete pass through all the
training patterns—the network should have learned something and can use the new
weights to estimate better and fine-tune itself. The network requires many epochs for
training. While BPForward modules are processed in both modes, the last three modules
are only involved in the backpropagation mode as will be seen in the rest of the section.

BPForward
The BPForward module implements both the hidden and output layers in the “forward”
computations. The module attributes, three input ports, fInput, dw and dh, two output
ports mf and w, and two internal variables mp and h, as shown in code segment 3.21.

nslModule BPForward (int inSize, int hidSize)

{

 public NslDinFloat1 fInput(inSize);

public NslDinFloat1 dh(hidSize);

public NslDinFloat2 dw(inSize, hidSize);

public NslDoutFloat1 mf(hidSize);

public NslDoutFloat2 w(inSize, hidSize);

private NslFloat1 mp(hidSize);

private NslFloat1 h(hidSize);

}

This module is involved in both feedforward and backpropagation modes. Since
backpropagation mode is processed before the feedforward mode let us start describing
first the module’s behavior during the backpropagation mode.

Backpropagation mode
The module first initializes network thresholds and weights to random values inside the
initSys method that gets executed every time the complete model gets reinitialized, as
shown in code segment 3.22.

public void initSys()

{

 nslRandom(h,-1.0, 1.0);

 nslRandom(w,- 1.0, 1.0);

 dw = 0.0;

 dh = 0.0;

}

The nslRandom function sets the variables, h and w, to random values between the
two limits, -0.5 and 0.5, in this case. The model also sets the two “deltas,” dw and dh to 0.

We then define a “forward” computation (used in both the backpropagation and
feedforward modes) calculating the activity mp by doing a weight matrix multiplication
with over input vector fInput. This input is received from the previous stage, i.e. hidden

Code Segment 3.21
BPForward module
attributes.

Code Segment 3.22
BPForward initSys method.

6 4 C H A P T E R 3

layer receives input from the input layer and the output layer receives input from the
hidden layer output. The output mf is computed by applying a sigmoid threshold function
over the activity. This output will then be fed into the next BPForward module in the
case of the hidden layer, or to the BPBackwardError module in the case of the output
layer.

The two equations (for every i) are as follows,

() () ()�=
j

ijii tfInputtwtmp (3.14)

() () ()() () ()()thtmpiii
iie

thtmpftmf
+�+

=+=
1

1
(3.15)

Since we define a single BPForward module to define both the hidden layer and
output layer “forward” dynamics, we use a single set of equations for the two, using the
indices i and j instead of s, p, and q as originally used in Section 2.6 for the two layers.
These two statements are stored in the forward method shown in code segment 3.23.

public void forward()

{

 mp = w*fInput;

 mf = nslSigmoid(mp + h);

}

Notice that fInputi corresponds to ins (we use fInput instead of the original in to be
consistent with the rest of the modules here to distinguish between forward and backward
input), while nslSigmoid is a NSL library function computing the sigmoid transfer
function in the above equation.

In the backpropagation mode the thresholds and weights get updated by adding in
new “deltas,” dh and dw (for every i) computed from the previous backpropagation cycle.

hi(t+1) = hi(t) + �hi(t) (3.16)

wji(t+1) = wji(t) + �wji(t) (3.17)

The backpropagation mode is stored in the simTrain method as described in code
segment 3.24. It consists of the two updates with the “deltas” and the “forward”
computation.

public void simTrain()

{

 w = w + dw;

 h = h + dh;

 forward();

}

Feedforward mode
During the feedforward mode the simRun method is executed as described in code
segment 3.25. It simply calls the “forward” computation.

public void simRun()

{

 forward();

}

Code Segment 3.23
BPForward forward
method.

Code Segment 3.24
BPForward simTrain
method.

Code Segment 3.25
BPForward simRun
method.

M O D E L I N G I N N S L 6 5

BPBackwardError
The BPBackwardError module does only backpropagation mode computation. The
module includes two input ports mf and desired, an output port eOutput and three local
parameters change, tss and pss, as shown in code segment 3.26.

nslModule BPBackwardError (int outSize)

{

 public NslDinFloat1 mf(outSize);

 public NslDinFloat1 desired(outSize);

 public NslDoutFloat1 eOutput(outSize);

 private NslFloat1 stopError();

 private NslFloat0 pss();

 private NslFloat0 tss();

 public void initModule() {

 stopError.nslSetAccess(‘W’);

 }

}

The module receives the output mf from the fo BPForward output layer and
compares its value against the desired value being forwarded from the TrainManager as
follows

eOutput(t) = desired(t) - mf(t) (3.18)

The network stops its training when a small enough error tss has been reached. The
error calculation is as follows,

()�=
t

teOutputtss 2 (3.19)

The computation is implemented in the simTrain method as shown in code segment
3.27. In order to compute the epoch error tss we compute first a train cycle error pss
being accumulated through the epoch.

public void simTrain()

{

 eOutput = desired - mf;

 pss = pss + nslSum(eOutput ^ eOutput);

}

To stop training we compare the tss value against a previously set change value—
telling the model when to stop learning—as given in the endTrain method, a method
called at the end of every epoch completion, shown in code segment 3.28.

public void endTrain()

{

 tss = pss;

 if (tss < change) {

 nslPrintln(“Convergence“);

system.breakEpochs();

 return;

 }

}

Code Segment 3.26
BPBackwardError module
attributes.

Code Segment 3.27
BPBackwardError simTrain
method.

Code Segment 3.28
BPBackwardError endTrain
method.

6 6 C H A P T E R 3

We first print a message (“Convergence”) telling the user that we have completed the
training cycle. This completion is actually achieved through the system.breakEpochs
method specifying that epoch processing should be interrupted (as opposed to a
system.breakCycles method for breaking a single training cycle). The interruption is
only processed internally by NSL after the return statement.

BPBackwardProp
The BPBackwardProp module is only involved in the backpropagation mode. The
module is defined in code segment 3.29 and it contains four input ports, fInput, bInput, mf
and w, three output ports, bOutput, dw and dh, and two variables, delta and lrate.

nslModule BPBackwardProp (int hidSize, int outSize)

{

public NslDinFloat1 bInput(outSize);

public NslDinFloat1 fInput(hidSize);

public NslDinFloat1 mf(outSize);

public NslDinFloat2 w(hidSize, outSize);

public NslDoutFloat1 dh(outSize);

public NslDoutFloat2 dw(hidSize, outSize);

public NslDoutFloat1 bOutput(hidSize);

private NslFloat1 delta(outSize);

private NslFloat0 lrate();

}

The module receives the BPBackwardError output layer error eOuput in bInput
using it to compute output layer “deltas.” The computation is as follows (� represents the
learning rate lrate),

� q(t) = mfq(t) ��(1- mfq(t))� bInpute(t) (3.20)

�hq(t) = ��q(t) (3.21)

�wpq(t) = ��q(t) ��fInputp(t) (3.22)

() () ()�=
q

qqpp ttwtbOutput � (3.23)

The simTrain method computes output the deltas, �, dh and dw, and the output
bOutput sent to the hidden layer as shown in code segment 3.30.

public void simTrain()

{

 delta = (mf * (1.0 - mf)) * bInput;

 dw = lrate * delta * fInput;

 dh = lrate * delta;

 bOutput = w*delta; //this is the product of a matrix

 times a vector

}

BPBackward
The BPBackward module is similar to BPBackwardProp module except that it does not
compute the additional bOutput (unless additional hidden layers are present). The module
is defined in code segment 3.31 and it contains three input ports, fInput, bInput, and mf,
two output ports, dw and dh, and two variables, delta and lrate.

Code Segment 3.29
BPBackwardProp module
attributes.

Code Segment 3.30
BPBackwardProp simTrain
method.

M O D E L I N G I N N S L 6 7

nslModule BPBackward (int inSize, int hidSize)

{

public NslDinFloat1 bInput(hidSize);

public NslDinFloat1 fInput(inSize);

public NslDinFloat1 mf(hidSize);

public NslDoutFloat1 dh(hidSize);

public NslDoutFloat2 dw(inSize, hidSize);

private NslFloat1 delta(hidSize);

private NslFloat0 lrate();

}

The computation is as follows,

() () () qpp bInputmftmft ���= 1� (3.24)�

�hp(t) = ��p(t) (3.25)

�wsp(t) = ��p(t) ��fInputp(t) (3.26)

The simTrain method computes output the deltas, �, dh and dw, as shown in code
segment 3.32.

public void backwardPass()

{

 delta = mf * (1.0-mf) * bInput;

 dw = lrate * delta * fInput;

 dh = lrate * delta;

}

BackPropModel
The BackPropModel is responsible for instantiating its two submodules, BackProp-
Layers and TrainManager, as well as initializing the appropriate layer sizes and the
number of patterns to be stored. The code is shown in code segment 3.33.

nslModel BackPropModel ()

{

 int inSize = 2;

 int hidSize = 2;

 int outSize = 1;

 int nPats = 4;

 public TrainManager train(nPats,inSize,outSize);

 public BackPropAllLayers layers(inSize,hidSize,outSize);

}

There are a number of exercises that can be done on this model. In particular, since
Backpropagation is a gradient descent algorithm, there are concerns that the slope of the
error surface could contain local minima that the network could become stuck in. An
additional training parameter known as momentum (identified by �) could be defined in
the BPBackwardProp module. The momentum variable is quite useful in order to keep
the network from becoming stuck in local minima. In such a way, the error computation
equations would be modified to contain both the training rate and momentum terms as
follows, for the hidden layer

Code Segment 3.31
BPBackward module attributes.

Code Segment 3.32
BPBackward simTrain
method.

Code Segment 3.33
BackPropModel model
attributes.

6 8 C H A P T E R 3

��hp(t+1) = ��p + ����hp(t) (3.27)

� wsp(t+1) = ��p ��fInputp + ��� wsp(t) (3.28)

and for the output layer

��hq(t+1) = ��q + ����hq(t) (3.29)

� wpq(t+1) = ��q ��fInputq + ��� wpq(t) (3.30)�

Parameter �, the momentum constant, is commonly set to around 0.9.
An additional common modification to the algorithm is to update thresholds and

weights at the end of each epoch instead of every training cycle. You can modify this and
see the effect on model training as well.

On a different perspective, most of the modifications on the Backpropagation model
are usually in terms of layer sizes and input file structure. We invite the user to make the
layer sizes parameters of the model instead of constant. The actual values could then be
interactively assigned or read from a NSLS script file. The model would require the use
of dynamic memory allocation (the nslMemAlloc method handling dynamic memory
allocation described in the NSLM chapter).

Another possible modification is to take advantage of NSL object-oriented pro-
gramming, in particular inheritance. Inheritance is quite useful in avoiding class
definition duplication. For example, BPBackward and BPBackwardProp are quite
similar. We could make BPBackwardProp definition inherit from BPBackward where
we would only need to add the backward output port bOutput to the BPBackwardProp
definition while the rest gets inherited. Again, we invite the user to exercise this but only
after having read the NSLM chapter.

3.6 Summary
We have shown how modeling of neural architectures is done following the module
approach in NSL. The three models described in this chapter, Maximum Selector,
Hopfield and Backpropagation, use different features of NSL although keeping a very
consistent organization based on the NSL module architecture.

Notes

1. The complete syntax for NSLM as well as further descriptions is found in chapter 6.

2. At the moment NSL supports up to 4-dimensional array ports and in general numerical
type arrays.

4 Schematic Capture System

The Schematic Capture System (SCS) provides graphical tools to build hierarchical neu-
ral models either by a top-down or bottom-up approach. SCS consists of the Schematic
Editor, Icon Editor, NSLM Editor, Library Path Editor, Consistency Checker, Library
Manager, NSLM Code Generator, and NSLM Viewer. SCS allows one to build a model
graphically by connecting icons together into what we call a schematic. Each icon can
then be decomposed further into a schematic of its own. In addition, SCS also provides
an interface to the USC Brain Project, Brain Models on the Web database (BMW)

The Schematic Capture System (SCS) is an important component of the NSL system.
SCS is primarily used to generate NSL models as shown in figure 4.1.1 (This chapter
covers the latest version of the software found in NSL3_0_n., database version 4.)

Simulation
System

BMW

sif files

modfiles

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 4.1
NSL System Diagram.

4.1 SCS Tools
The Schematic Capture System consists of many subsystems—the Schematic Editor, the
Icon Editor, the NSLM Editor, the Library Path Editor, the Library Manager, the Consis-
tency Checker, the NSLM Generator, and the NSLM Viewer.

Schematic Editor (SE)
The Schematic Editor is responsible for building the structure of the model. It is also
serves as the control window for the Schematic Capture System. From the Schematic
Editor window we can start any of the other SCS tools, load a model or module into the
Schematic Editor, or descend/ascend into a schematic. When selecting icons to use in the
schematic, SE allows the user to pick which version of a module to use: the user can
choose a floating version that can change at any time or a fixed version, which cannot
change.

When opening other tools from the Schematic Editor it is import to note that each
new tool pops up in its own window and we can have as many open as we would like.
However, there is always one and only one Schematic Editor Window open at any time.

Icon Editor (IE)
The Icon Editor allows the user to build the graphical appearance of the individual icons
(modules).

7 0 C H A P T E R 4

NSLM Editor (NE)
The NSLM Editor allows the user to add NSLM code to the code that SCS has generated.
This is particularly important for “leaf” level modules since they contain most of the
functionality of the module.

Library Path Editor (LPE)
The Library Path Editor allows the user to modify the list of libraries in use.

Library Manager (LM)
The Library Manager allows the user to access and create new libraries of models and
modules within the file system, move module from one library to another, and edit mod-
ule attributes.

Consistency Checker (CC)
The Consistency Checker is responsible for keeping track of the versions of the modules
that the model contains and checking that the ports from one level match those of the next
level. The Consistency Checker is called automatically when a model is generated
(NSLM Generator) or when a module is saved using Schematic, Icon, or NSLM editors.

NSLM Generator (NG)
The NSLM Generator generates the code from the schematic structure of the model. It
also calls the Consistency Checker

NSLM Viewer (NV)
The NSLM Viewer displays the code generated by the NSLM Generator.

4.2 An Example Using SCS
We start by invoking the Schematic Capture System with scs.

The Schematic Editor window is shown in figure 4.2.

Figure 4.2
The Schematic Editor
Window.

There are a number of steps to follow in creating a new schematic: (1) Create a
library to save your work in; (2) Create the icons or borrow existing ones; (3) Place the
icons in the schematics(4) Connect the icons together; (5) Save the schematic back to one
of the libraries; and (6) Generate the NSLM file.

Create a Library
From the Schematic Editor window choose the Tools menu and then select the Library
Manager option. (We will abbreviate this to: “Tools�Library Manager” in the future.)
The system opens the window shown in figure 4.3.

S C H E M A T I C C A P T U R E S Y S T E M 7 1

Verify that the first library is “<somepath>/nsl3_0/BookLib” (the “/” directory sym-
bol in UNIX corresponds to a “\” symbol in a PC) where somepath is where your
administrator installed the basic SCS library. Create another library in which to save your
schematics by selecting Library�New Library. A popup will appear as shown in figure
4.4.

Figure 4.4
New Library Path Prompy

Enter the path where you wish to create your library, in our case it is
f:/usc/ns/NSL3_0_m/nsl3_0/FirstLib. Then select OK. When you are finished, select
Close from the Library Management Window.

Create Icons
To create a schematic, we first need to verify that the icons we want exist. In this exam-
ple, we will start from scratch and create icons for the Ulayer and Vlayer modules we
wrote earlier. First open the Icon Editor where individual icons/modules are edited. This
is achieved by Tools�IconEditor from the Schematic Editor Window. A pop-up win-
dow will appear as shown in figure 4.5.

Figure 4.5
The picture shows the layout of
the Icon Editor Window. The top
row of menu options allows us
to create new icons, edit old
ones, and change the graphical
options. The left tool bar is in
charge of the graphical editing
commands.

Since we want to create a new icon we select File�New from the top menu bar. In
response to this option we get the window shown in figure 4.6.

Figure 4.3
The SCS Library Manager
Window

7 2 C H A P T E R 4

Figure 4.6
New Icon Prompt

In figure 4.6 we note that the first thing in the Icon Prompt Window is the library
name. By default the last library we enter is the first library on the list. Next, we type in
the name Ulayer as the icon or module name (the icon is just one view of the mod-
ule). We also note here that the first letter of Ulayer is capitalized since it is a module
and not an instance of one. Next we specify the version number of the module or icon we
are creating. We will take the default 1_1_1. Next we specify the icon type corresponding
to the type of template that we want to specify. At this point we choose NslModule since
we are about to specify a module (see table 4.1), and we would like the buffering to be
“false” for non-double buffering (see table 4.2). Next we select the option of “float all
submodules” which allows specify the default option to apply to submodule of this mod-
ule (see table 4.3). This will be explained in more detail later. Finally, we specify the
arguments for this module/icon, and there is only one “int size”.

Module Types Description

NslModule leaf and middle level modules

NslModel top level module

NslClass user defined class

NslInModule stimuli

NslOutModule output displays

Buffering Choices Description

true double buffering of output ports—this option is for
simulated parallel processing

false no buffering—this option is for sequential
processing (default)

Get Newest Version of Submodules Description

true Specify a default that submodule versions
may change

false Specify a default that submodule versions
may not change.

When we are finished we select “OK”. You should see a figure similar to that shown
in figure 4.7.

Table 4.1
Module Types

Table 4.2
Buffering Choices

Table 4.3
“Get Newest Version of
Submodules” Choices

S C H E M A T I C C A P T U R E S Y S T E M 7 3

Figure 4.7
Icon Editor Window after
������ Module just created.

Figure 4.8
The Ulayer’s Icon without
Ports.

We then go back to the Icon Editor Window where we press the rectangle button.
To get the rectangle icon in the canvas we first move the mouse to the canvas window
and then drag the mouse across the screen until the rectangle is the desired size. The out-
put of this is shown in figure 4.8.

7 4 C H A P T E R 4

Specifying the Ports on the Icon
Now we want to add two input ports, v_in and s_in, and one output port, uf, to the icon.
This is done by selecting “InPort” and then selecting “OutPort”. A popup window will
appear similar to the one in figure 4.9.

In this window we first type the name, s_in. Then a window which looks like that in
figure 4.10 will appear. We specify what kind of data structure the port will hold, mainly
NslDinInt, NslDinFloat or NslDinDouble. In this case we choose NslDinDouble. Next
we specify the Dimension X where X represents the dimension: 0, 1, 2, 3, 4, or higher-
Dim. Nsl currently only handles dimension of 4 or less but you can create your own user
defined type with more than 4 dimensions. In this example, we choose “1” as the dimen-
sion. Direction indicates the direction the user would like the port to point “left� right”,
“right� left”, “up� down”, or “down� up”. We choose “left� right”. The “Signal Type”
indicates whether the port has an excitatory or inhibitory affect on the module. We
choose the signal type to be “excitatory”, and the parameters to be just the “size” of the
array used. The parameters correspond to the same parameters we would provide in the
NSLM language. (s_in has 10 elements which will be defined through the “size”
parameter.) When done entering, select “OK” from the bottom of the window. See figure
4.10.

Figure 4.9
Input�Port Name s_in on the
Ulayer module.

Figure 4.10
Input Port information for s_in
on the Ulayer module

Once entered, you will need to specify the position of the pin or port. For conven-
ience, select any spot on the Icon Canvas where you would like the end point of the pin to
go. We have selected a location such that it looks like the input is going into the rectan-
gle. See figure 4.11.

S C H E M A T I C C A P T U R E S Y S T E M 7 5

Figure 4.11
Input�Port s_in on the Ulayer
module

For input port v_in, we choose type NslDinDouble0, and we choose “left� right” as
the direction. We choose the “excitatory” signal type, and there are no parameters. When
done entering, select “OK” from the bottom. See figure 4.12.

Figure 4.12
Input Port Information for v_in

The resulting port is shown in figure 4.13.

7 6 C H A P T E R 4

Figure 4.13
Input Port picture for v_in.

For port uf, we select the “OutPort” button, and type the name uf, choose the option
“NslDoutDouble1”, with direction “left� right”, and parameter “size”. When done enter-
ing select “OK” from the bottom as shown in figure 4.14.

Figure 4.14
Output Port Information for uf.

We next save the icon by selecting the File�Save menu option from the Icon Editor
window. We have now completed the icon creation process and should have an icon with
port entries as shown in figure 4.15.

S C H E M A T I C C A P T U R E S Y S T E M 7 7

Figure 4.15
Output Port picture for uf.

Now it is time to create the second icon, Vlayer. Vlayer is created in exactly the
same manner as Ulayer, except that its input port is u_in (with dimension 1 and parame-
ter “size” without the quotes) and its output port is vf (with no dimension). After
completing it, we are ready to move on to creating the schematic of the MaxSelector
module itself.

Creating the Schematic
To create a schematic from the Schematic Editor Window select the Module�New
Module menu option. A window should appear similar to the one below. Type in the
name “MaxSelector” and version number “1_1_1”. Specify the library as the
c:\users\me\nsl3_0\FirstLib or whatever library you are using. Since this module is go-
ing to be a middle level module, we will declare it to be of type “NslModule”. When you
are finished select “OK” as shown in figure 4.16.

Figure 4.16
New Module Creation Window
for MaxSelector.

Now we are going to add the two icons we just created and then connect them. First
select the Insert�Icon menu option. A popup window will appear, similar to figure
4.17. We type in the instance name of u1.

7 8 C H A P T E R 4

Figure 4.17
Submodule instance name
popup dialog.

Next, a popup window similar to the one in figure 4.18 appears. We fill in the
instance information: which is the instance name and the instance parameters. In this
case, u1 and size. Instead of typing in the name of the library, module, and version, we
simple select the “Or Choose File” option and select the Ulayer icon from the library as
shown in figure 4.19.

Figure 4.18
Choose submodule or icon
popup window.

In figure 4.19 if we click on the library name we want (in this case the first line),
then we will see a list of modules to choose from. If we click on the Ulayer module, we
will see the different versions of this module as shown. For this exercise, we will version
“1_1_1”.

Figure 4.19
Selection of the Ulayer module
from the Declaration Dialog
“Choose File” popup.

Finally, we return to the Declaration Dialog box, and the fields for library, module
and version are filled in for us as show in figure 4.20. The “Let Version Float” option
allows us to specify that we want to take the most recent version of the module or icon—
always. This means that even if someone else changes a submodule, we want the latest
updates. If we do not want the changes to the submodule, say Ulayer, to affect our sche-
matic, then we should set the option to “Let Version Float” to false. Finally, we select
“OK” as shown in figure 4.20.

S C H E M A T I C C A P T U R E S Y S T E M 7 9

Figure 4.20
Filled in Open Module Dialog
Box.

The Ulayer icon with an instance name of u1 will appear on the Schematic Canvas.
You will need to take your mouse and select the icon and move it to where you would
like it to be located. See where we put it in figure 4.21.

Figure 4.21
Icon placed on schematic.

Next select the “Insert� Icon” command, and use the Choose File button to find the
Vlayer icon template name we just created. Give it an instance name of v1. And again,
you will need to move v1 to where you would like it to be located. See figure 4.22.

8 0 C H A P T E R 4

Figure 4.22
The u1 instance and v1 instance
placed in a schematic.

Next we must add input and output ports to the MaxSelector schematic. We select
the “Insert� Inport” menu option and a pop-up window appears. The name is “in”, the
type is “NslDinDouble1”, the direction is “left� right”, the signal type is excitatory, and
the parameter is size. See figure 4.23.

Figure 4.23
MaxSelector input port
specification.

Again, move the input port icon into position as shown in figure 4.24. (We some-
times call these ports “inports”.)

S C H E M A T I C C A P T U R E S Y S T E M 8 1

Figure 4.24
MaxSelector input port
specification.

We also must add an output port to this schematic. Add an output port by selecting
“Insert� Outport” from the menu. The name of this port should be “out”, the type is
“NslDoutDouble0”, the direction is “left-� right”, the buffering is set to true, and the
parameter is “size”. See figure 4.25.

Figure 4.25
MaxSelector output port
specification.

You should now see the picture in figure 4.26.

8 2 C H A P T E R 4

Figure 4.26
All icons placed in the
MaxSelector module.

Finally, with all of the icons in place we are ready to add the “interconnect”. Select
insert� connection from the Schematic Editor menu. (But before doing so make sure
you do not have anything else selected. You can unselect an object by click on the right
mouse button.) You can tell that you are in “connection” mode by the status window at
the bottom. It should say “Insert Connection”. Let us connect the icons moving from left
to right. First, place your mouse over the output pin of the input port “in”. Push the
mouse button down. Next, drag the mouse to the upper input pin on the “u1” icon.
Release the mouse about in the middle of the pin. You should see a picture similar to
figure 4.27.

Figure 4.27
First line of interconnect
between “in” and “u1”.

Next, place your mouse over the output port of the “u1” instance. (First, a little flag
with the name of the pin should appear.) Push the mouse down and drag the mouse to the
inport of the v1 instance and release the mouse button. Next, place your mouse over the
outport of the v1 instance, push the mouse down, and drag the mouse to the right by
about one half inch, release the mouse. With the mouse in the same place, press the

S C H E M A T I C C A P T U R E S Y S T E M 8 3

mouse down and drag it downward one inch. Release the mouse. With the mouse in the
same place, press the mouse down and drag it to the left until it is just past the “u1” input
pins. Release the mouse. With the mouse in the same place, press the mouse down and drag
it to the lower input pin of the “u1” icon. You should then see the picture in figure 4.28.

Figure 4.28
Connection between the
output port of v1 and the input
port of u1.

The last connection we need to make is from the “u1” output port to the output port
of the MaxSelector schematic itself. Move the mouse over the output pin of the icon “u1”
and push down. Next drag the mouse up about three-quarters of an inch, and release the
mouse. With the mouse in the same position, drag it to the input side of the “out” output
port icon, and release the mouse.

At this point, we have just completed our first schematic. The result is shown in
figure 4.29.

Figure 4.29
Finished Schematic of
MaxSelector module.

8 4 C H A P T E R 4

Mouse Action Commands
Before we move on, we would also like to describe some of the mouse action commands that
SCS provides. We have already mentioned the “unselect” option, and here are three more.
� Select one object—The user clicks on any object in the schematic canvas and that

object will be highlighted, indicating that it is selected. If the user keeps pressing the
Shift key down, then the selected objects will be this newly selected one plus previ-
ous selected ones.

� Unselect object—When an object is in a selected mode, then clicking with the right
mouse button again will make it unselected.

� Move object—The user can move any object (individual or group object) in the
canvas by first clicking on it and then dragging the mouse.

� Descend—In current schematic page, if the user double clicks on a module, then the
detailed layer corresponding to that module will be shown in the canvas.

Automatic Generation of Code
After completing the schematic we can see the NSLM code that it generates by selecting
Tools�View NSLM from the Schematic Editor window. Next, select File�Open from
the NSLM Viewer window and open the MaxSelector module we just created, as shown
in figure 4.30.

Figure 4.30
NSLM Viewer with MaxSelector
module.

We notice that SCS has generated the definition of the module, the ports and the
variables for us. It has also generated the “makeConn”, but not methods such as
“initModule”, “initTrain”, and “initRun” which are still needed. The we need to fill in
these other methods using the NSLM editor. We will examine how to use the NSLM
Editor next.

S C H E M A T I C C A P T U R E S Y S T E M 8 5

Manual Generation of Leaf Level Code
Although a lot of the code has been automatically generated, we still need to fill in the
code for both the Ulayer and Vlayer modules. We do this with the NSLM editor. Select
Tools�NSLM Editor from the Schematic Editor window. Next select File�Open,
from the NSLM Editor window and then select Ulayer version “1_1_1” from the list. An
editor similar to the following should appear. Notice how template oriented this editor
is, as shown in figure 4.31.

Figure 4.31
The First Half of the NSLM
Editor Window showing the
Name, Arguments, and Flags.

Figure 4.32
Second half of the NSLM Editor
Window showing the variables
and the Methods Editor.

8 6 C H A P T E R 4

Now we just need to add the internal variables up, and h1. Add these variables and
give them the same data types and parameters as in the figure 4.33 and figure 4.34

Figure 4.33
Adding the Equation
Variable h1 to the Ulayer.

Figure 4.34
Adding Ulayer’s potential
layer up

We note that the output port variables are already declared but not initialized; thus
we will initialize them in the initModule and initRun methods within the Methods Win-
dow. See figure 4.35.

S C H E M A T I C C A P T U R E S Y S T E M 8 7

Figure 4.35
The Ulayer NSLM code.

Next, add the initRun method and the simRun method as shown in the figure 4.34.
And then select File�Save. Now do the same for Vlayer using the code in figure 4.36.

Figure 4.36
The Vlayer NSLM code.

Generating NSLM Code
We can generate the NSLM code for our modules at any point in the development. For
the MaxSelectorModel we need to generate the top level module called the model—
MaxSelectorModel (A popup window will appear similar to figure 4.16). We also need to
create the modules “MaxSelectorStimulus” and “MaxSelectorOutput”, see figure (3.12)
and code segements 3.13, 3.14, and 3.15.

8 8 C H A P T E R 4

To generate the NSLM (mod or module) files for both the NSLJ System and the
NSLC System, the Schematic Editor menu select “Tools-� Generate NSLM”. The pro-
gram performs automatic checks to make sure that the icons used in the schematic match
what is contained in the NSLM View, it then generates the NSLM code. Once the icons,
schematics, and leaf level modules have been created we are ready to make a Makefile
and executable code.

Compiling and Generating the Executable File
To generate the Makefile and executable code, select “Tools� Build Java Version” or
select “Tools� Build C++ Version”. (When building the executable code, the system
checks to see that all of the “mod” files are created and the proper time stamps are on the
files. Thus, we can actually skip the “Generate NSLM Code” step if we plan to make an
executable file anyway.) We provide both generate options so that we can execute both
systems if we desire. Both commands will prompt for the name of the model executable
to be built. (This window is the same as that in figure 4.19) The Makefile and the execu-
table file will be generated for your particular platform that you are running on and the
particular operating system that you are using. These files can be found in the subdirec-
tory “exe” directory below the version directory. Additionally, models can be compiled
from a system shell writing ‘nsljc model’ for Java and ‘nslcc model’ for C++. For addi-
tional compilation and execution details see Appendix V where web site links are speci-
fied”.

Reusing Modules and Models
To re-use an existing module, simply select it from one of the libraries and include it the
schematic for your new module. To reuse a model, you must rename it. If you add ports
to an existing model, it them becomes a module, and you must specify the type as such
when you go to save your new module.

Copying Existing Modules and Models
As mentioned above we can copy modules, modify them, and give them new names. To
copy a module, simply open the existing module in any editor and save it under a new
name (you can also save it under the same name but a different version number).

4.3 Summary
We have introduced the different tools available in the Schematic Capture System in
helping the user with model creation. In particular, we have shown how to visually build
modules and automatically generate code. Some of the tools we covered where the Sche-
matic Editor, the Icon Editor, the NSLM Editor, the Library Path Editor, and the Library
Manager. We also showed how to create a library, an icon, and a schematic.2

Notes

1. The NSL Schematic Capture System version is based on Sun Microsystem’s Java 1.2
programming language and virtual machine. SCS can only be executed as an appli-
cation and not as an applet since applets put security restrictions on generating output
files. We assume that the user has a two-button mouse attached to the computer.

2. Since SCS is one of our newer applications, we encourage the reader to review the
latest documentation and technical reports on the NSL web site. See Appendix V for
details.

5 User Interface and Graphical Windows

The NSL graphical user interface provides interactive simulation control by means of the
NSL Executive Window and different types of input and output displays customized for
every model. Each model may include a number of protocols corresponding to different
experiments involving different sets of input, parameters and graphics displays. In a well-
written model, every model experiment should correspond to one of these protocols. Some-
times, however, models only come with scripts that must be read via the Script Window
and sometimes they only come with “README” files that describe the proper script com-
mand sequences that should be issued to get the different results. (The script language is
described in chapter 7.) The NSL graphical user interface is designed to provide an environ-
ment that protects as much as possible the novice model user from having to type too many
commands. At the same time, the graphical interface provides flexibility for the advanced
model builder to experiment with multiple simulation options in analyzing model results.

Ideally every model executes with just selecting one of the protocols from the Proto-
col menu, and then selecting the Simulation, TrainAndRunAll menu item.

5.1 NSL Executive User Interface
When NSL is first invoked, the NSL Executive Window is displayed as shown in figure
5.1. From the Executive window the user controls the simulation and brings up other dis-
play windows or frames.

Executive Menu Bar

Script Window

Window Control
Figure 5.1
The NSL Executive Window
controls model simulation. It
includes menu options as well
as a script window for written
commands.

The top portion of the NSL executive window corresponds to the “Window Control”
section containing a title and three buttons for window control. Underneath the “Window
Control” the “Executive Menu Bar” contains five menu buttons: System, Edit, Protocol,
Simulation, Train, Run, Display, and Help, discussed in the following sections. The
bottom portion of the window corresponds to the “Script Window” allowing the user to
interactively type commands. Any command that can be selected from one of the menu
pull-downs can also be typed in the Script Window as well as stored in files for later
retrieval. Script commands are discussed more thoroughly in chapter 7.

System Menu
The System menu contains commands related to general system aspects. In particular, the
menu contains the following items:

� Source—to read NSLS model scripts.
� Set—to read or modify system parameter values.
� Exit—to stop the simulation, close all windows, and exit.

Edit Menu
The Edit menu allows the user to select text from the script window, copy text from the
script window into the clipboard or paste text into the script window from the clipboard.
These commands are quite handy when importing commands to the script window or
saving script commands into another file. The menu contains the following items:

9 0 C H A P T E R 5

� Select—select text from the script window.
� Copy—copy text from the script window into the clipboard.
� Paste—paste text from clipboard into the script window.

Protocol Menu
The Protocol menu specifies the protocols or experiments included with each model.
Protocols are model driven, i.e. the modeler decides which protocols should be placed in
the menu. The default “manual” protocol is always provided allowing the user to write
script commands to set up stimuli and parameters for the simulation. Protocols are an
easy way for the model builder to setup customized input and output windows to handle
model input and output respectively. This customization takes place directly in NSLM.
The protocol menu contains the following items:

� Manual—default user specified input by means of scripts.
� Additional Protocols—Modeler define additional protocols (none by default).

Simulation Menu
The Simulation menu contains different options to control the general aspects of the
simulation, such as setting up system variables and global initialization of the modules
(see chapter 6, The NSLM Language). The following menu options exist:

� The InitSys menu item executes the initSys method for every module.
� The InitModule menu item executes the initModule method for every module.
� The TrainAndRunAll menu item executes the initialization of the training epochs,

all of the epochs for the training phase of simulation as well as the initialization of
the run epochs and all of the epochs for the run phase of simulation.

� The EndModule menu item executes the EndModule method of every module.
� The EndSys menu item executes the EndSys method of every module.

Train Menu
The Train menu item executes all the methods necessary to train the model. The menu
contains the following options:

� The InitTrainEpochs menu item executes all of the “initTrainEpochs” methods for
all modules.

� The InitTrain menu item executes all of the “initTrain” methods for all modules.
� The SimTrain menu item executes all of the “simTrain” methods over and over again

until “system.trainEndTime” is reached. The system.trainEndTime is the system variable
that specifies how long the training process should last. Based on the training delta used,
the system.trainEndTime is used to calculate the number of cycles for each epoch.

� The EndTrain menu item executes all of the “endTrain” methods.
� The EndTrainEpochs menu item executes all of the “endTrainEpochs” methods.
� The Train menu item executes one epoch that includes the execution of initTrain,

simTrain for the number of cycles or steps specified, and finally endTrain.
� The DoTrainEpochTimes menu item executes the initTrainEpochs method for all

modules, then executes the initTrain, simTrain (repeated for n cycles), and endTrain
methods for however many training epochs have been specified with
system.numTrainEpochs. And finally, it executes the endTrainEpochs method for all
modules.

� We can execute the Break command to stop the simulation between cycles. We can
then use the “continue” menu option to continue the simulation.

� We can execute the BreakModules command to stop the simulation between modules.
� We can execute the BreakCycles command to stop the simulation between cycles.
� We can execute the BreakEpochs command to stop the simulation between epochs.

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 9 1

� The Continue menu item continues the simulation from the last break point. It
then executes all of the “simTrain” methods over and over again until
“system.trainEndTime” is reached.

� The ContinueModule menu item continues the simulation from the last break point.
If the last break was with BreakModules, then it continues with the next module in
the scheduler. It then executes all of the “simTrain” methods over and over again
until the last module in the scheduler is executed.

� The ContinueCycle menu item continues the simulation from the last break
point. If the last break was with BreakCycles, then it continues with the next
cycle. It then executes all of the “simTrain” methods over and over again until
“system.trainEndTime” is reached.

� The ContinueEpoch menu item continues the simulation from the last break point.
If the last break was with BreakEpochs, then it continues with the next epoch. It then
executes all of the epochs over and over again until numTrainEpochs is reached.

� The StepModule menu item executes the “simTrain” method of the next module in
the scheduler.

� The StepCycle menu item executes all of the “simTrain” method once for each mod-
ule in the scheduler.

� The StepEpoch menu item executes one epoch that includes the initTrain method,
the simTrain methods for however many cycles are specified, and the endTrain
method.

Run Menu
The Run menu item executes all the methods necessary to run the model. The menu con-
tains the following options:

� The InitRunEpochs menu item executes all of the “initRunEpochs” methods for all
of the modules

� The InitRun menu item executes all of the “initRun” methods for all of the modules
� The SimRun menu item executes all of the “simRun” methods over and over again

until “system.runEndTime” is reached. The system.runEndTime is the system vari-
able that specifies how long the Running process should last. Based on the Run delta
used, the system.runEndTime is used to calculate the number of cycles for each
epoch.

� The EndRun menu item executes all of the “endRun” methods.
� The EndRunEpochs menu item executes all of the “endRunEpochs” methods.
� The Run menu item executes one epoch that includes the execution of initRun, sim-

Run for the number of cycles or steps specified, and finally endRun.
� The DoRunEpochTimes menu item executes the initRunEpochs method for all

modules, then executes the initRun, simRun (repeated for n cycles), and endRun
methods for however many training epochs have been specified with system.num-
RunEpochs. And finally, it executes the endRunEpochs method for all modules.

� We can execute the Break command to stop the simulation between cycles. We can
then use the “continue” menu option to continue the simulation.

� We can execute the BreakModules command to stop the simulation between modules.
� We can execute the BreakCycles command to stop the simulation between cycles.
� We can execute the BreakEpochs command to stop the simulation between epochs.
� The Continue menu item continues the simulation from the last break point. It then

executes all of the “simRun” methods over and over again until “system.RunEndTime”
is reached.

� The ContinueModule menu item continues the simulation from the last break point.
If the last break was with BreakModules, then it continues with the next module in

9 2 C H A P T E R 5

the scheduler. It then executes all of the “simRun” methods over and over again until
the last module in the scheduler is executed.

� The ContinueCycle menu item continues the simulation from the last break point. If
the last break was with BreakCycles, then it continues with the next cycle. It then
executes all of the “simRun” methods over and over again until “system.RunEndTime”
is reached.

� The ContinueEpoch menu item continues the simulation from the last break point.
If the last break was with BreakEpochs, then it continues with the next epoch. It then
executes all of the epochs over and over again until numRunEpochs is reached.

� The StepModule menu item executes the “simRun” method of the next module in
the scheduler.

� The StepCycle menu item executes all of the “simRun” method once for each mod-
ule in the scheduler.

� The StepEpoch menu item executes one epoch that includes the initRun method, the
simRun methods for however many cycles are specified, and the endRun method.

Display Menu
The Display menu contains commands to control output and input display window crea-
tion. The display options in the menu are,

� NslOutFrame used to create a frame to display results of model variables,
� NslInFrame used to create a frame to control input stimulus and model parameters.

The two frame types are described in the following sections.

Help menu
The Help menu retrieves help on any command. It contains three types of help: “How
To”, “Command Help”, and “Setup”.

5.2 NslOutFrames
Upon selection of a new NslOutFrame from the executive window, a NslOutFrame will
appear with a long name in the form of “.nsl.frameNameX” where the “.nsl” comes from
the fact that all windows are actually subwindows of the NslExecutiveWindow associ-
ated with “.nsl” prefix. The frameName is set to “OutModule” when selecting an output
frame (“InModule” when selecting an input frame). The X is assigned to an incremental
integer number resulting in names such as “.nsl.OutModule2”. A popup window will ap-
pear first requesting a protocol name to be associated with the new NslOutFrame, as
seen in figure 5.2. Note that if no protocols exist for the model then only the “manual”
option on the right hand side will appear.

Figure 5.2
Popup Window for Adding a
New NslOutFrame

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 9 3

Once the OutputFrame or more appropriately, the OutputModule has registered for
certain protocols, a new window is instantiated as shown in figure 5.3. At the top is the
title or frame name. Underneath the frame’s title is the frame’s menu bar. In this menu
bar we have the Frame, Canvas, and Help menus, as follows,

� Frame—The Frame menu items are responsible for changing the items and attrib-
utes of the frame.

� Canvas—The Canvas menu items are responsible for changing the items and attrib-
utes of a selected canvas.

� Help—The Help menu displays information on any command.

In the middle of the frame is the drawing area or the place where canvases can be
placed. And at the bottom of the frame is the status bar.

Status Bar

NslOutFrame’s
Area For
Canvas

NslOutFrame
Menu Bar

Figure 5.3
The NslOutFrame without any
canvases

The NslOutFrame’s Frame Menu
A NslOutFrame is basically a container for NslOutCanvases displays of NSL variables.
All NSL variables that have been declared to have either “Read” or “Write” visibility can
be displayed in a NslOutFrame. The NslOutFrame contains a menu bar for adding new
canvases/variables and for manipulating the canvases, as shown in figure 5.4.

Figure 5.4
NslOutFrame’s Menu

9 4 C H A P T E R 5

The Frame menu contains commands necessary to change the contents and attrib-
utes of the frame. These commands are New Canvas, Remove Canvas, Columns,
Frame Options, Frame Print, and Close. The following describes these commands.

Create a New Canvas Containing a Plot of a NSL Variable
To add a variable display to an existing NslOutFrame, you go to the NslOutFrame’s
menu bar and select “Frame� New Canvas” as shown in figure 5.4. A popup window as
shown in figure 5.5 will appear.

Add a New Canvas
or Replace an
Existing Canvas

Can type variable name

Can select plot type

Figure 5.5
Add New or Change Current
Canvas-Popup Window

At the top of the window, we have the choice of typing a full path variable name, or
we can select the variable by tracing down the hierarchy tree in the lower gray area of the
window. In this example, we will select the variable from the hierarchy tree. To do this,
we first click on the little “plus sign” icon next to the word “MaxSelectorModel”. Next
we click on the “plus sign” icon next to the word “stimulus”, and then the plus of s_out.
At this point the tree should look like that in figure 5.6.

Figure 5.6
New Canvas or Change Current
Canvas Popup Window with
selection of �����

To add the selection to the NslOutFrame, we select the Next button at the bottom of
the window. We repeat the process again this time selecting a different type of plot. In the
“Graph Type Selector” we change the graph or plot type to “Temporal”. (The plot types
are Area, Bar, Dot, Spatial, String, Temporal, AreaColor, MultiTemporal and XY
being described in the section titled “Output Graph Types”.) This time we expand the
plus sign next to the maxselector module, then u1, then up. The window should look like
that in figure 5.7.

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 9 5

Figure 5.7
New Canvas or Change Current
Canvas Popup Window with
selection of ��.

We select the Next button to add up to the NslOutFrame, and then we add uf. To add uf,
we change the graph type back to Area and select the NSL variable “maxselector.u1.uf”.
After we have done this, we select the “Next” button at the bottom of the window. The
resulting canvases are shown in figure 5.8.

Figure 5.8
An example of a NslOutFrame
that contains a menu bar,
drawing area, and three
NslOutCanvases corresponding
to the variables stimulus.s_out,
maxselector.u1.up, and
maxselector.u1.uf.

Selecting and Deselecting a Canvas from a Frame
We can select a specific canvas in a frame by moving the mouse to the desired canvas
and then clicking the left mouse button on it. The canvas will become highlighted in the

9 6 C H A P T E R 5

default highlighting color. Once selected there are a number of operations that can be
applied to the canvas as will be seen later on such as changing the type of graph or vari-
able being displayed. To deselect the canvas either click the mouse’s right button or
select another canvas.

Deleting a Canvas from a Frame
To delete a canvas from a frame, first select the canvas and then choose “Frame� Delete
Canvas” from the Frame’s menu.

Modifying the Number of Rows and Columns in a NslOutFrame
To modify the number of rows or columns NslOutFrame displays, select
“Frame� Columns” and then the number of columns desired. This will also affect the
number of rows displayed since if we display 8 canvases, we can display them in 1 row
with 8 columns, or 2 rows with 4 columns, or 4 rows and 2 columns, etc.

Positioning and Resizing a Canvas
To change the position of a canvas, you need to delete it first and then re-add it in the
desired location. To resize a canvas we can only make the frame larger or smaller. Cur-
rently all canvas sizes are the same in every frame as seen in figure 5.8.

Changing Options that Effect All Canvases
To change the update time, the starting graph time, ending graph time, the vertical mini-
mum, vertical maximum, the default colors (background, grid color, drawing color) in
every canvas currently displayed or later instantiated in this frame, select the
“Frame� Frame Options” menu item. This will cause the popup window shown in figure
5.9. to appear. The “Apply to Future” button causes the canvases that are created in the
future to have these default properties. The “Apply to All” button causes all of the current
and future canvas to have these properties. And the “Cancel” button takes no action.

Figure 5.9
The NslOutFrame’s Options for
Properties Popup Menu

Printing a Frame
To print a NslOutFrame or to save an image of a NslOutFrame in any of the supported
formats1 select the NslOutFrame’s “Frame� Frame Print” menu item. To print one of
the NslOutCanvases, first select that canvas and then select the “Frame� Print option”.
A print popup window will appear. The look of this window varies depending on the
environment.

Closing a NslOutFrame
To close a NslOutFrame, simply select the “Frame� Close” option. This will close the
frame, but will leave the simulation still executing. To exit the NSL System, select
“System� Exit” from the Executive window.

The NslOutFrame’s Canvas Menu
All of the Frame’s Canvas Menu items pertain to changing the properties of a particular
canvas. A canvas must first be selected with the mouse. Once selected the canvas will
become highlighted in the default highlighting color, as shown in figure 5.10 where the
“maxselector.u1.up” graph has been selected.

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 9 7

Figure 5.10
The NslOutFrame’s Canvas
Menu only appears when one of
the canvases is selected. In this
case, the canvas selected is
“maxselector.u1.up” as indi-
cated by the shaded area or
highlighted area.

Change Type of Graph in Canvas
To change the type of graph displayed within the canvas, select “Canvas� Change
Type”. A submenu will appear with the following graph type options: Area, Bar, Dot,
Spatial, String, Temporal, AreaColor, ImageColor, MultiTemporal and XY. All of
these graph types are described in the section titled “Output Graph Types”.

Zoom Canvas
To see the labels on the axis and tick marks, first select the canvas, and then select
“Canvas� Zoom”. A separate Zoom window will appear, as shown in figure 5.11. Once
the window appears, drag the mouse over the area of interest starting in one corner and
holding down the mouse button, drag mouse to the opposite corner. Then select
“ZoomIn”, and the window should now magnify the area selected. (In figure 5.11, we
have actually executed the model before selecting the graph, and then we selected zoom.)

Figure 5.11
Zoom Window Pop-up
Displaying the Zoomed
Temporal Graph

9 8 C H A P T E R 5

Options for a Canvas
To change the property options of a selected canvas, choose “Canvas� Canvas Options”
from the NslOutFrame menu bar. A Properties popup window based on the graph type
displayed will appear. figure 5.12 displays the options for the “Area Level Graph”.

Figure 5.12
Canvas Options—Change Area
Level Graph Plot Properties

The Canvas or Plot Properties that can be changed are the y minimum, y maximum
values, the style of the box, and the color of the box.

Print a Canvas
To print a canvas in any of the predetermined formats, first select the canvas and then the
“Canvas� Canvas Print” menu item. A popup window should appear that looks exactly
like that of the “Frame� Frame Print” menu.

Exporting the Data from a Canvas Window to a File
To export the data from a Canvas Window in one of the specified binary formats first
select the canvas and then select “Canvas� Export Data”. A pop-up window will appear
as explained in more detail in Appendix II.

NSL Output Graph Types
NSL canvases can display different graph types, as either a basic intensity plot (shows
variable’s values at the current time) or a temporal plot (shows a variable’s values over a
certain time period). This list of graph types will grow as more and more modelers add
their custom output widgets or graph types to the standard set of Nsl Output Widgets or
Graphs. Thus it is recommended that you consult the NSL web site for new widgets and
graphs that have been added (see Appendix II). The graph types are the following:

� Area—The window is divided into small rectangular boxes each representing the
activity of an element of the variable during one cycle. Negative values are drawn
with an open box while positive values are shaded. The shaded boxes are centered in
the middle of the element and the stronger the element value, the larger the box. The
graph is updated every Display Delta increment. figure 5.13 shows two such can-
vases, the one on the left (s_out) and the one on the right (uf).

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 9 9

Figure 5.13
Examples of ���� Level and
�������	
Graph Types

� Bar—The bar graph is similar to the area plot. Instead of drawing a box representing
the value of the element, a bar is drawn instead. The bottom of the box represents the
y minimum value and the top of the box the y maximum value. Positive values
display a filled in bar while negative values display an open bar. The graph is
updated every Display Delta increment.

� Dot—The dot plot is most similar to the area plot, however, instead of plotting each
element as a box, a small “dot” is drawn instead and no grid is displayed. Typically,
the dot plot is only applied to two-dimensional matrices and the location of the dot
represents x and y coordinates. If a value is zero or negative, it is not drawn. The
graph is updated every Display Delta increment. The graph on the right-hand side of
figure 5.14 contains a dot plot.

Figure 5.14
Example of ���
�� and ���
Plots

� Spatial—The Spatial plot is similar to the Area plot, however, instead of shading the
boxes, a point is drawn on the y-axis representing the activity of the variable.
Negative values are drawn below the zero line. Positive values are drawn above the
zero line. Once all elements are plotted, a line is drawn connecting the points. For
two-dimensional data, the plot is draw in three dimensions. The graph is updated
every Display Delta increment. figure 5.15 shows a canvas containing a three dimen-
sion spatial plot.

1 0 0 C H A P T E R 5

Figure 5.15
Example of ������� Graph or
Three Dimensional graph.

� String—The String plot is similar to the Dot plot, however, the dots are much
smaller and a line is draw between consecutive dots (time wise). The graph is
updated every Display Delta increment. The graph on the left-hand side of figure
5.14 contains a String plot.

� Temporal—The Temporal graph represents Time along the horizontal axis and the
value of the element of the variable along the vertical axis. In the current version,
only 1000 cycles can be viewed at any given time. If a variable has several elements,
as in one and two-dimensional arrays, each element will be displayed in its own
temporal plot. The middle graph shown in figure 5.13 contains a temporal plot

� AreaColor—For the area-level graph in color is just like the area level graph except
that it uses both size denote the value of the element represented by the box and
color to represent the data type of the element within the box. Each different color
can represent a different type of data, such as a special type of neuron. The graph is
updated every Display Delta increment.

� ImageColor—The color scale map represents each element of a color array as a
pixel. The greater the value of the element the warmer the color.

� MultiTemporal—The Multi-variable Temporal graph is just like the regular temp-
oral plot, only instead of plotting one variable it can plot up to ten variables each in
its own color and line style.

� XY—The x axis represents one variable and the y axis represents another variable.

5.3 NslInFrames
NslInFrame is a container for one or more NslInCanvases that contain widgets that con-
trol the input to NSL variables. Just like the NslOutFrames, NslInFrames have a stan-
dard menu system.

The NslInFrame’s Menu
The Frame menu contains all of the commands necessary to change the contents and
attributes of the frame. These commands are New Canvas, Remove Canvas, Columns,
Frame Options, Frame Print, and Close. These commands have already been described
in section 5.2 except for the types of input widgets that can be placed on the frame when
a “New Canvas” command is selected, as shown in figure 5.16.

U S E R I N T E R F A C E A N D G R A P H I C A L W I N D O W S 1 0 1

Figure 5.16
Input Widget Types that can be
selected at Run-time and placed
on a NslInFrame.

The NslInFrame’s Canvas Menu
All of the Frame’s Canvas Menu items pertain to changing the properties of a particular
canvas. The canvas menu options are the same as they are in section 5.3 for the
NslOutFrame.

NSL Input Graph Types
The input graph type options currently supported are:

� NumericEditor—The NumericEditor graph displays a one-dimensional or a two-
dimensional grid containing the values of the elements. It is unique in that the values
shown can also be modified for input to the simulation. figure 5.17 shows three can-
vases containing a numeric editor each.

Figure 5.17
Example of the Three
��������	�
���Canvases. The
first canvas shows the variable

�����, and the single value it
contains as well as an Apply
button. The second canvas
shows the variable �����, and
the four values it contains as
well as an Apply button. The
third canvas shows the variable
��
���, and the nine values it
contains as well as an Apply
button. The values are updated
every Display Delta increment.

1 0 2 C H A P T E R 5

� InputImage—InputImage graphs divides a canvas into small boxes; each box
represents the absolute value of an element of the variable during one cycle. If the
box is not selected the variable will take wymin value, otherwise it will be wymax.
figure 5.18 shows two canvases containing the second one an image editor.

Figure 5.18
The Hopfield Example (chapter
3) of an input image editor.

5.4 Summary
In this chapter we have demonstrated the NSL user interface. We showed how the NSL
Executive window is used to control the complete simulation as well as to display new
windows via pull-down menus. (Users more comfortable with scripts can use the script-
ing language within the NSL Script window to accomplish the same tasks as explained in
chapter 7.) We have also demonstrated how users can use the built-in graph types to dis-
play the results of their simulation, or as input to the simulation.

Notes

1. Different formats depending on the particular environment are PostScript (PS), Graph-
ics Interchange Format (GIF), or Joint Picture Extraction Group (JPEG).

6 The Modeling Language NSLM

In this chapter we describe the NSLM modeling language. NSLM is a high-level
programming language designed to support the construction of model architectures in
NSL. For efficiency and extensibility reasons, the NSLM language is translated into
either C++ or Java, depending on the chosen environment. While NSLM is a self-
contained programming language supporting a complete set of types and expressions—
the user may take advantage of the full power of C++ and Java when necessary. Yet, we
strongly recommend avoiding as much as possible writing “direct” Java or C++ code but
try to follow NSLM modeling philosophy and expressions as much as possible. This will
result in more consistent and extensible code. In general terms, NSLM is actually a super-
set of either language in that it provides a set of types and expressions common to both
languages together with a library of classes useful in constructing and simulating models
in NSL. NSLM syntax has been kept as close as possible to Java with slight variations to
simplify the task of building model architecture while at the same time supporting C++
translation as well. Once translated into either Java or C++, an appropriate compiler
should process the resulting code (refer to Appendix II for supported compilers). If you
are already familiar with either C++ or Java you will find much of the material discussed
in this chapter quite familiar, with some aspects such as modules and ports going beyond
the semantics provided by either C++ or Java. If you are not familiar with either of the
two languages, we recommend getting acquainted with the basic concepts found in
object-oriented programming. We recommend reading one of the introductory texts such
as The C++ Programming Language by Stroustrup (1997) or Core Java by Cay
Horstmann and Gary Cornell (1999), among others.

This chapter is given more as a reference for the NSLM Language than a tutorial. It
and the NSLM Methods Appendix I reviews more structures and expressions found in the
language. We start by giving an overview of general aspects followed by a description of
the different language components.

6.1 Overview
There are a number of general aspects in NSLM that we will overview in this section.

General Conventions
We shall be using throughout this chapter a number of general conventions used in
NSLM:

� Comments are denoted by “/*” at the beginning and “*/” at the end. Single line com-
ments are denoted with “//” at the beginning of the comment.

� All statements end with a semicolon “;”.

� We consider object types, object classes or simply classes as equivalent terms (some
programming languages distinguish between the concept of class and type). In gen-
eral, objects represent instances of classes.

� We consider module objects as instances of module classes. Similarly, model objects
represent instances of model classes. We treat module classes and model classes as
special kinds of object classes in the programming language sense, where module
objects and model objects become special kinds of objects.

� Classes—model classes, module classes and any other object classes—begin their
names with an uppercase alphabetic character, e.g. MaxSelectorModel or MaxSelectorStimulus.

1 0 4 C H A P T E R 6

� Objects—model objects, module objects and objects in general—together with vari-
ables and function begin their names with a lowercase alphabetic character, e.g.
maxSelectorModel, maxSelectorStimulus or var.

� File names storing NSLM model definitions should have a “.mod” suffix (analogous
to “.C” and “.java” suffixes generated by the NSLM compiler translation).

Types
NSLM is a typed-language, similar to C++ and Java, supporting different types of struc-
tures. In particular, NSLM supports the following general types:

� The primitive or native data type corresponds to the basic types available in most
languages, such as C and Pascal, as well as in object-oriented languages such as C++
and Java. These types always start with a lowercase letter and consist of the ubiqui-
tous: int, float, double, char and void (the null type). NSLM adds two more types to
this short list: charString and boolean. The charString type translates into “String”
in Java and “char*” in C++. The boolean type translates into “boolean” in Java and
into an enumerated type in C++ containing 1 (true) and 0 (false).

� The general object class data type corresponds to the basic types available only in
object-oriented languages, such as C++ and Java. As opposed to the limited set of
predefined native or primitive types, object types represent an extensible family of
classes, either specified by the user or provided by the language in the form of
libraries. The classes included in the NSLM class library are an essential component
of the system and includes types, such as the scalar NslFloat0 or the input port vec-
tor NslDinDouble1, used in describing neural elements, data ports or any other
structure.

� The module class and model class data types corresponds to the unique family of
NSLM types, distinguishing it from other object-oriented languages, such as C++
and Java. While module classes and model classes are object-oriented structures in
their nature, they go beyond the basic semantics of an object class. Module classes
and model classes incorporate semantics for input and output port based communica-
tion, something not found in “regular” object classes.

Variables, Attributes and Methods
Variables are the most basic entity in a programming language. Variables provide dual
function-ality, they are used to hold either values (e.g. 0.5) or references (i.e., a virtual
memory address indirectly specifying where to find the actual values in memory). As in
most object-oriented languages, NSLM variables may not exist as independent global
entities but only within an object, module or model class—being called class attributes.
This is also the case with functions that may only be defined within an object, module or
model class as well—being called class methods. Since NSLM is a typed language, every
variable or attribute must first be declared according to an existing type.

� When a variable refers to a native primitive type, the variable will store a value.
These types will be defined in section 6.2, Primitives Types.

� When a variable refers to a module, model or class type, the variable will store a
reference to the particular object instead of holding a simple value. This is quite
common, since objects are more complex than primitive types and thus require more
sophisticated handling. (As a general comment to those users familiar with the con-
cept of pointers—pointers exist in C++ but not in Java—NSLM does not include any
pointer computation, only references.) Note that variables never refer to a class but
to an object instantiated from that class. These types will be defined in sections 6.4
and 6.6, Creation of Module Types and Creation of Class Types respectively.

T H E M O D E L I N G L A N G U A G E N S L M 1 0 5

Attribute Reference Hierarchies
Since attributes belong to classes and attributes may provide references to other objects,
we end up with attribute reference hierarchies or simply Attribute Trees. By providing the
starting point of a tree—the root—we can access any attribute by knowing all references
in its path. When NSL is running, there are two different trees present in the system:

� The system tree for storing NSL specific attributes, and

� The model tree for storing user defined attributes.

Actually, every model and module has its own attribute reference tree. If we examine
one of these attribute reference trees we see that attributes of a primitive type (to be dis-
cussed below)—can only be leaves in the tree while attributes holding references are con-
sidered nodes of the tree. For example, the model attribute reference tree for the
Maximum Selector model (as we saw in chapter 3), is shown in figure 6.1. The instance
maxSelectorModel is the root.

maxSelectorModel

stimulus maxSelector output

sout

u1 sin uf v1

sin up

tv hv uin vphu sin vin up uf

uf

vftu

Note that every entry in the tree corresponds to a variable referencing an object and
not the name of a class.

To refer to any variable we use the “dot” notation, i.e. var1.var2. There exist two
ways of referencing a variable in the tree: absolute and relative referencing format.

� The absolute reference notation starts from the root of the tree specifying the com-
plete path from there. For example, in the Maximum Selector model to refer to vari-
able vp we must use

maxSelectorModel.maxSelector.v1.vp

All references for the model tree start with the name of the model.

� The relative reference notation starts from a particular node in the tree and
continues on from there. For the previous example, if we currently reference
maxSelectorModel.maxSelector, we would then refer to vp by

v1.vp

Note that referencing a variable requires specifying its visibility as public (described
in section 6.2) effectively breaking up the module encapsulation (where variables are
defined as private instead). (We will also describe a similar concept called accessibility in

Figure 6.1
Reference tree of the
Maximum Selector model.
Note all instances of objects,
or references to objects, are
in lowercase, where
���������	
�	��� is the
root of the hierarchy. The
model object is implicitly
instantiated by NSL when
simulating it (see chapter 3).

1 0 6 C H A P T E R 6

section 6.3.) These concepts are analogous to how directories are made readable or not in
a file system.

Class Reference Hierarchies
A different reference hierarchy also exists in all object-oriented languages. This hierarchy
or tree defines references between classes as opposed to objects and it is known as the
Class Tree. Since classes primarily exist to help define object instances, class trees are
used to organize the different class definitions. The goal behind this hierarchical organi-
zation is to avoid duplicate attributes and methods by specifying common ones in the
base class or super class (the class where common attributes and functions are first
defined) while having other classes, known as subclasses, inherit these common attrib-
utes and methods from the super class. Class Inheritance Specification is quite useful in
building systems and NSL takes advantage of this mechanism both internally and in let-
ting the user build classes in general. We introduce in this section the main class hierar-
chy in NSL while describing how to build user-defined class trees in section 6.4 and 6.6.
(Please see the NSL web site for the complete NSL Class Hierarchy details.)

Predefined Reference Variables
NSLM includes a number of pre-defined reference variables:

� nslName represents a charString type variable referencing the name of a particular
object. For example, nslName within the maxSelector module object would refer to
“maxSelector”.

� nslParent provides a reference from any object back to where it was instantiated.
For example, any reference within the Vlayer module instance would refer back to
the maxSelector module instance where Vlayer was instantiated.

� this provides a reference to the current object. this is particularly important as a
return reference inside functions as well as passing it as argument to another func-
tion.

� super provides a reference from any class back to its base class, in other words, the
class from which it inherits. The super reference is used to retrieve attributes or
methods defined in the base class, used in conjunction with inheritance. For example,
a reference such as super.method()would call the function method() defined in its
base class. In general, unless specified otherwise super refers to the NslModule base
module class since all modules by default inherit from it. (We will discuss this in
more detail in section 6.3.).

� null represents the null or invalid reference. It is primarily used within expressions
that check the validity of a reference variable.

Importing Libraries
NSLM lets the user call external libraries within a model description by using the
nslImport statement. As in most programming languages, NSLM requires all definitions
to be present during compilation. Since the user may call externally defined classes, it is
necessary to include an import statement specifying what additional definitions are
needed and where they should be found. For example a class defined in a file called
moreobjects.class in Java or moreobjects.h in C++ would be imported using the follow-
ing format,

nslImport moreobjects;

T H E M O D E L I N G L A N G U A G E N S L M 1 0 7

Since Java and C++ use different syntax for defining a path to an imported file, the
NSL verbatim statement allows us to block off a section of and make it a purely Java code
or C++ code. We will discuss verbatim in more detail in section 6.2.

Verbatim
NSLM includes a verbatim keyword telling the compiler that part of the code contains
C++ or Java specific statements, as opposed to NSLM general statements, that should not
be parsed by the NSLM compiler but left intact for direct C++ or Java compiler process-
ing. For example, if the user needs more complex import statements than the ones offered
in the previous section, then the verbatim keyword could be used. We mark verbatim
sections in the following way:

C++-only sections of code use the notation:

verbatim_NSLC;

and Java-only sections of code use the notation:

verbatim_NSLJ;

To end the C++ or Java section of code use:

verbatim_off;

While the use of verbatim should be avoided, we do offer such an option when there
is no appropriate NSLM construct. Note that if you use a verbatim section, the NSL pre-
parser will not preprocess that section of code and many of the NSL constructs will need
to be manually expanded to their Java or C++ correct forms. For instance all NSL library
module and object instantiations actually take two extra parameters, a charString name
and NslModule parent,

NslDouble2 someobj(“someobj”,this,4,5);

SomeModule somemod(“somemod”,this,..otherparams..);

We thus recommend being extremely careful when adding verbatim sections.1

6.2 Primitive Types
As previously mentioned, native or primitive data types store values.2

Defined Types
The primitive types in NSLM are shown in table 6.1. They include numeric, string, boo-
lean and void types.

Type Description Initial Value

int integer type 0

float single precision floating point number 0

double double precision floating point number 0

boolean true or false false

char single character null

charString string of characters null

void non type

Table 6.1
Native or Primitive types in
NSLM with their initial
default value.

1 0 8 C H A P T E R 6

It is a good practice to always set the initial value of a variable in one of the initiali-
zation methods, as will be discussed in section 6.3. It should also be noted that void is not
actually a type but a non-type. It represents the lack of a type and it is used, for example,
when a method returns nothing.

Declarations
Specifying the type of a variable is known as a declaration. In NSLM variables are
declared and defined (assigning automatic space for storing values) as follows:

VisibilitySpec PrimitiveType varName;

The VisibilitySpec is discussed in the next section. PrimitiveType is the correspond-
ing type, such as int; varName is the name of the variable storing values according to the
associated type.

An example of a primitive type variable declaration with the optional initialization is
as:

private double x = 1.0;

Note that we also include a private visibility specification in front of the declaration
of x (described in the next section). The variable initialization is given by “=” followed
by a numerical value in this case “1.0”.

Visibility
Visibility specifies attributes (variables) and methods can be seen from outside a class or
module. This is a very important aspect in object-oriented programming since it is the
basis for encapsulation. Three levels of visibility are supported by NSLM, private, pro-
tected and public. (This is similar to visibility levels available in both C++ and Java.) The
three levels are defined as follows,

� private—attributes and methods are local to every object instantiated from the
particular class,

� protected—attributes and methods are local to every object instantiated from the
particular class or from any of its subclasses,

� publi—attributes and methods are both local and external to every object instantiated
from any class.

In general all attributes should be defined as private for encapsulation reasons. The
exception to this rule is the declaration of the ports (to be described below) and external
methods. Ports need to be available for external referencing, as do some external meth-
ods. Methods that are only used within the class should be defined as private. (You
should be careful if omitting visibility specifications since the defaults are inconsistent
between C++ and Java: C++ considers the default to be private, while Java considers the
default to be public to classes defined in the same directory.) Also, the above rules only
apply to attributes and methods; the visibility specification is not need if variables are
declared within a method. The same visibility rules apply to object and modules types.

Arrays
NSLM supports multiple dimension arrays on all primitive types with the exception of
void. For example a single dimension array of integers is defined as

private int alpha[10];

T H E M O D E L I N G L A N G U A G E N S L M 1 0 9

where the array alpha consists of 10 integers accessed each by its index,

alpha[index];

an integer going from 0 to the array size minus one, in this case 9.
For example, a two-dimension array or matrix is defined as

private float beta[10][5];

where the array beta consists of 10 by 5 float number accessed each by its row and col,

private beta[row][col];

an integer going from 0 to the array size minus one, in this case up to 9 for the row num-
ber and an integer going from 0, in this case up to 4, for the col number.3

Constants
The nslConstant keyword can be used to specify certain variables of primitive types to be
constants, in other words variables that will not change over the course of the execution
of the program. The syntax to do this is:

nslConstant VisibilitySpec type var = value;

For example a public constant would be specified as follows,

nslConstant public float pi = 3.14;

Expressions
NSLM supports primitive type expressions mainly in the form of operators similar to
those common to Java and C++. Primitive expressions may be part of independent state-
ments, passed as parameters to a method, or even as part of a return statement.

Numeric
Arithmetic operators can only be applied to numerical types—int, float or double—as
shown in table 6.2. (Note that “unary” operators take a single argument, e.g. “-alpha,”
while “binary” operators take two arguments, e.g. “beta-alpha.”)

Operator Usage Description

++ ++a or a++ pre-or-post increment (unary)

-- --b or b-- pre-or-post decrement (unary)

+ +b or a+b positive (unary) or addition (binary)

- -b or a-b negative (unary) or subtraction (binary)

* a*b multiplication

/ a/b division for doubles and floats, or modulus for integer values

% a%b remainder

= a=b assignment

= a=b a=a*b

/= a/=b a=a/b

+= a+=b a=a+b

-= a-=b a=a-b

Table 6.2
Operators that may be
applied to numerical type
variables, i.e.,����,������,
and 	�
���.

1 1 0 C H A P T E R 6

For example, the assignment operator “=” assigns one number to a variable:

int x;

x = 5;

The first line defines the variable x to be of integer type, while the second line
assigns a value of 5 to the variable. The two can be combined into a single statement as
follows (this is known as initialization),

int x = 5;

Other operators are used in a similar fashion.
Logical operators compare numerical—int, float or double—values to obtain a boo-

lean type value—either true or false—as shown in the table 6.3.

Operator Usage Description

< a < b less than

> a > b greater than

<= a <= b less than or equal

>= a >= b greater than or equal

== a == b equal

!= a!= b not equal

Boolean
Boolean operators are usually seen in control statements (described in the next section):
if, while, for, and switch. Operators that can be applied to boolean types are shown in
table 6.4.

Operator Usage Description

= a=b Assignment among boolean values

== a == b Return true if the two boolean values are equal

!= a!= b Return true if the two boolean values are not equal

&& a && b Logical AND

| | a | | b Logical OR

! !a Logical NOT

String
Operators that can be applied to charString types are shown in table 6.5.

Operator Usage Description

= a=b Copy one string to the other one

+ a+b String concatenation

== a == b Return true if the two string values are equal

!= a!= b Return true if the two string values are not equal

Control Statements
Control statements control the flow of execution by incorporating conditions on state-
ments. The while, do and for statements allows the execution flow to loop over one sec-

Table 6.3
Logical operators that may
be applied to numerical type
variables, i.e., ���, �����, and
��	
��. Returns ��	� or
���
�.

Table 6.4.
Assignment and logical
operators that may be
applied on boolean types.

Table 6.5.
Assignment, concatenation
and logical operators that
may be applied on string
types.

T H E M O D E L I N G L A N G U A G E N S L M 1 1 1

tion of code several times until a particular condition is met. The if and switch statements
execute a certain section of code once if a certain condition is met. NSLM includes the
standard control statements shown in table 6.6. (square brackets represent optional con-
trol expressions).

Statement Usage Example Description

if (condition) { statements }
[else if (condition)
{ statements }]
[else { statements }]

if (a>b) { a = 2; }
else if (a>c) { a = 1; }
else { a = 0; }

if-else statement with optional
intermediate else-if expressions and
a final optional else expression.
When condition is true the corre-
sponding statements are processed.

while (condition) { statements } while (a<b) { a ++; c= a *2; } while statement. While condition is
true process statements.

do { statements }
while (condition);

do { a ++; c = a *2; }
while (a<b);

do-while statement. Process state-
ments until condition becomes
false.

for (initial-expression; continua-
tion-condition; continuation-
expression)
{ statements }

for (a =0; a< b; a ++)
{ c = a *2; }

for statement. Execute initial-
expression; then execute statements
while continuation-condition is
true. After each successful con-
tinuation execute continuation-
expression.

switch (variable) {
case value: statements break;
[case value: statements break;]
[default: statements]
}

switch (a) {
case 0: c = 0; break;
case 1: c = 2; break;
default: c = a;
}

switch statement. Choose from the
appropriate variable value the
equivalent value case statement (as
many as cases as necessary); then
execute the corresponding state-
ments, with an optional default
when no matching value is found.
This is equivalent to an if-else
statement with multiple sections. At
the end of each switch section a
break statement is added.

condition?statement-
true:statement-false

c>d?a:b if condition, then statement-true
else statement-false

In general, all control statements can include both a break and continue statement
used to either break or stop processing the control statement or continue with the next
cycle in the control statement without completing the current one. Both the break and
continue statements search for the closest loop (while, do, for) to escape from when many
nested control statements exist.

Conversions, Casting, and Promotions
As in most languages, expression return a type that can be deduced from the structure of
the expression and the types of the literals or operands involved (numbers, characters,
etc.). Variables may not be used in expressions where their type does not match the
expected one. However, in some cases such restrictions are loosened. For example, in a
method requiring an argument of type double, it would not be appropriate to supply a
parameter of int type. However, languages such as C++ and Java, perform an implicit

Table 6.6
Control statements: if, while,
do, for and switch.

1 1 2 C H A P T E R 6

conversion from the deduced expression type to a type acceptable for its surrounding
context, such as implicitly converting an int type to a double. In general, NSLM supports
all conversions permitted by both C++ and Java on primitives, such as assignment con-
version, method parameter conversion, and numeric promotion (or casting).

An assignment conversion between an integer and a float would involve an implicit
cast or conversion:

private int x = 5;

private float y;

y = x;

where y stores the float version of x, in other words, 5.0.
A method invocation conversion between an integer and a float for a method defined

as

private void func(float x) { ... }

would involve an implicit cast:

private int x = 5;

func(x);

converting x into a float when passed as an argument to the function.
Numeric promotion between an integer and a float would involve an explicit cast or

conversion:

 private int x = 5;

 private float y;

y = (float) x;

where x gets promoted to a float before doing the assignment.

6.3 Object Types
NSLM object types or classes are analogous to those found in object-oriented languages,
having both attributes (data) with corresponding methods (functions) to manipulate them.
NSLM lets the user define new object classes as well as instantiate from a number of
predefined ones, organized as numeric, string, and boolean classes.

Defined Types
We describe these structures followed by operators and expressions that can be applied to
them.

Numeric
NSLM defines set of numeric object types varying in their dimension particularly useful
for arithmetic computations. These classes vary according to the underlying numeric
attribute type, int, float or double, and its corresponding dimension (0-4), as shown in
table 6.7.

T H E M O D E L I N G L A N G U A G E N S L M 1 1 3

Dimension
Type

0 1 2 3 4

float NslFloat0 NslFloat1 NslFloat2 NslFloat3 NslFloat4

double NslDouble0 NslDouble1 NslDouble2 NslDouble3 NslDouble4

int NslInt0 NslInt1 NslInt2 NslInt3 NslInt4

The reason for providing these special types is that by encapsulating the dimension
within the object, NSLM is able to overload a number of operators that the user would
otherwise have to explicitly define. For example, additions may be specified in a single
“+” statement avoiding the use of multiple “for” loops going through one primitive
numeric element addition one at a time. Additionally, NSL protects the user from accessing
undefined index elements (overflows), a major headache when doing direct array
manipulations at the primitive level.

Boolean
NSL defines several boolean object types with varying dimensions as shown in table 6.8.

Dimension
Type

0 1 2 3 4

boolean NslBoolean0 NslBoolean1 NslBoolean2 NslBoolean3 NslBoolean4

As with the primitive boolean types the values any element of a NslBoolean array
can hold is either true or false. NslBoolean object methods are discussed in more detail
in the Appendix.4

String
NSL defines a charString object type useful in storing single strings of characters5 as
shown in table 6.9.

Dimension
Type

0 1 2 3 4

charString NslString0

The NslString0 type, together with charString, are introduced in NSLM to over-
come the different handling of strings in C++ and Java as well as enable the user to use
strings as parameters. The methods that apply to NslString0 types are discussed in
Appendix I, NSLM Methods.

Ports
Ports are special object types that by linking them together enable data communication
between modules—as opposed to simply storing private data within objects or modules.
Ports have all the functionality defined of analogous “non-port” object types, and as such
they can be used in any expression having been previously defined. Port specific expres-
sions are described in the following sections. Ports are organized in two categories
according to their semantics, output ports (Dout) and input ports (Din). We describe
them according to their underlying object type.

Numeric
The numeric output and input port types are shown in table 6.10.

Table 6.8
Boolean object types defined
in NSL. The types are
classified accord-ing to the
corresponding dimensions,
represented by the last
number in the type.

Table 6.9
String object types defined in
NSL. The types are classified
according to the
corresponding dimensions,
represented by the last
number in the type.

Table 6.7
Numeric object types defined
in NSL. The types are
classified according to the
corresponding dimensions,
represented by the last
number in the type.

1 1 4 C H A P T E R 6

Dimension
Type

0 1 2 3 4

NslDoutFloat0 NslDoutFloat1 NslDoutFloat2 NslDoutFloat3 NslDoutFloat4 float

NslDinFloat0 NslDinFloat1 NslDinFloat2 NslDinFloat3 NslDinFloat4

NslDoutDouble0 NslDoutDouble1 NslDoutDouble2 NslDoutDouble3 NslDoutDouble4 double

NslDinDouble0 NslDinDouble1 NslDinDouble2 NslDinDouble3 NslDinDouble4

NslDoutInt0 NslDoutInt1 NslDoutInt2 NslDoutInt3 NslDoutInt4 int

NslDinInt0 NslDinInt1 NslDinInt2 NslDinInt3 NslDinInt4

Boolean
The boolean output and input port types are shown in table 6.11.

Dimension
Type

0 1 2 3 4

NslDoutBoolean0 NslDoutBoolean1 NslDoutBoolean2 NslDoutBoolean3 NslDoutBoolean4 boolean

NslDinBoolean0 NslDinBoolean1 NslDinBoolean2 NslDinBoolean3 NslDinBoolean4

String
The string output and input port types are shown in table 6.12.

Dimension
Type

0 1 2 3 4

NslDoutString0 charString

NslDinString0

Declarations and Instantiations
While classes define types, actual objects are required to exist for a program to do any-
thing meaningful. In NSLM as in typed languages such as C++ or Java, objects are
identified through variables referencing them. Specifying the type of a variable is known
as a declaration, while actually defining the objects to which the variable refers is known
as instantiation—creating the object for the first time. In NSLM variables are declared
and have their referred object instantiated together in a single expression as follows:

VisibilitySpec ObjectType varName(paramList);

The VisibilitySpec is similar to that of primitive types as discussed in the next section.
ObjectType is the corresponding object type, such as NslInt0, varName is the name of the
variable storing the reference to the new instantiated object, and paramList is a list of
instantiation parameters that vary depending on the associated type.

Instantiation Parameters
While declarations and instantiations are similar for any NSLM or user defined types,
instantiation parameters (paramList) vary depending on the specific type. In particular,
NSLM defines certain types with a corresponding dimension suffix as shown in table
6.13.

Table 6.10
Numeric output and input port
types.

Table 6.11
Boolean output and input port
types.

Table 6.12
String output and input port
types. (Only “0” dimension
string ports are currently
defined.)

T H E M O D E L I N G L A N G U A G E N S L M 1 1 5

ObjectType paramList

NslType0

NslType1 size

NslType2 row , col

NslType3 dim, row , col

NslType4 dim1 , dim2 , row , col

For example:

private NslInt0 x();

declares and instantiates an object of type NslInt0 referenced by variable x. Note that
NSLM automatically creates the C++ or Java code needed to allocate memory space for
the new variable x.6 Examples of object instantiations for different dimensions and types
are,

private NslDouble1 y(10);

private NslFloat2 z(10,5);

where 10 is the size of object y and 10 by 5 is the size (row,col) of object z.
In the case of ports, the syntax to declare and instantiate a port type is similar to that

used for normal NSL numeric types, namely:

public NslDinInt0 xp();

declares and instantiates an object of type NslDinInt0 referenced by variable xp. Exam-
ples of object instantiations for different dimensions and types are,

public NslDinDouble1 yp(10);

public NslDoutFloat2 zp(10,5);

where 10 is the size of object yp and 10 by 5 is the size (row,col) of object zp. Also note
that we always include the visibility declaration of “public” since other modules need to
be able to connect to these ports. Ports should only be defined as attributes and not within
methods.

There is an alternative option for defining objects without fully assigning its internal
size during instantiation. This is particularly useful when providing array sizes in a
dynamic way. The format is as follows:

private NslDouble1 r();

private NslFloat2 s();

where no specific values are given for the r or s corresponding dimensions. The dimen-
sions are set at a later time using the var.nslMemAlloc(sizeList) method (see Appendix I
for further details) where sizeList represents the corresponding sizes from the original
paramList in one of the constructor or initialization methods discussed in section 6.3.
Defining objects this way provides great flexibility since models may have their internal
sizes dynamically assigned during model execution avoiding recompilation such as in the
extensions mentioned for the Backpropagation model described at the end of chapter 3.

Table 6.13
Instantiation parameters for
the different object types in
NSLM according to their
dimension and
corresponding suffix (0, 1, 2,
3 and 4). In the current NSL
version, ���� corresponds to
either����,������, 	�
���, or

������ with dimensions
between 0 and 4, and ������
for dimension 0 only. When
dealing with ports, ����
would include either 	�� or
	�
� together with the actual
numeric type. Parameters
size, row, col, dim, dim1 and
dim2 are integer values
specifying the object internal
size in correspondence to the
object dimension.

1 1 6 C H A P T E R 6

Arrays
Array usage with object types varies from that of primitive types. In the current NSLM
version the user may define arrays of primitive types but they may not define object type
arrays. This is because of the differences of array handling in Java and C++. Yet, the
NSL C++ version does support C++ arrays of NSL types as described in Appendix III
(NSLC extensions). On the other hand, since NSL predefined object types already
include up to four dimensions, NSL includes array-style data accessing in those types.

In general, accessing data from an object is done through method invocations or in
the case of NSL dimensional objects, it varies depending on the particular dimension
objects may have. To access an element within an object, NSLM provides array indexing
using the conventional bracket pair “[]” according to the following considerations (note
that all array indices start at zero).

� Zero: A zero-dimensional type stores a single primitive type value or scalar. For
example NslFloat0 type stores a float type.

� One: A one-dimensional type stores a one-dimensional primitive type array (consid-
ered a row vector). For example NslFloat1 type stores a float type array. In a one-
dimensional object m, m[j] returns the j+1-th element in m, where j must be a posi-
tive integer value (or an expression returning a positive integer value).

� Two: A two-dimensional type stores a two-dimensional primitive type array (consid-
ered a matrix). For example NslFloat2 type stores a float type two-dimensional
array. The first dimension of the array represents the rows while the second dimen-
sion represents the column. In a two-dimensional object m, m[i] returns the i+1-th
row of the array, which is a one-dimensional array. m[i][j] returns the element at the
i+1-th row and j+1-th column of the array.

� Three: A three-dimensional type stores a three-dimensional primitive type array
(considered a vector of matrices). For example NslFloat3 type stores a float type
vector containing two-dimensional arrays. The left-most dimension identifies the
vector while the other two represent the rows and columns of the matrix, respec-
tively. In a three-dimensional object m, m[h] returns the h+1-th two-dimensional
array. m[h][i][j] returns the element at the h+1-th array, i+1-th row and j+1-th col-
umn of the two-dimensional array.

� Four: A four-dimensional type stores a four-dimensional primitive type array
(considered a vector of three-dimensional matrices). For example NslFloat4 type
stores a float type array of a float type array that stores a two-dimensional arrays. In
a four-dimensional object m, m[g] returns the g+1-th three-dimensional array,
m[g][h] returns the g+1-th and h+1-th two-dimensional array. m[g][h][i] returns the
g+1-th, h+1-th, i+1-th vector. m[g][h][i][j] returns the g+1-th, h+1-th, i+1-th , j+1-th
element of the array.

(A number of methods manipulation objects with different dimensions are described
in Appendix I.) table 6.14 summarizes array indexing and partial indexing.

T H E M O D E L I N G L A N G U A G E N S L M 1 1 7

ObjectType Indexing ResultType

NslType1 var[index] type

var[row] NslType1NslType2

var[row] [col] type

var[index1] NslType2

var[index1] [row] NslType1

NslType3

var[index1] [row] [col] type

var[index1] NslType3

var[index1] [index2] NslType2

var[index1] [index2] [row] NslType1

NslType4

var[index1] [index2] [row] [col] type

Constants
Similar to primitive types, the nslConstant keyword can be used in conjunction with
object types in order to for them to be constants, in other words variables that will not
change over the course of the execution of the program. The syntax to do this is:

nslConstant visibilitySpec objectType varName(paramList) =

value;

For example a public constant would be specified as follows,

nslConstant public NslFloat0 pi = 3.14;

Expressions
NSLM supports a number of expressions on the different defined types. We will
described them according to numeric, boolean, string and port types.

Numeric
NSLM supports most numeric operators to those defined for primitive numeric types (this
applies to both numeric and numeric port types). The supported arithmetic expressions
are shown in the table 6.15.

Operator Usage Description

= a=b Assignment

+ +b or a+b Unary Positive or Two Parameter Addition

- -b or a-b Unary Negative or Two Parameter Subtraction

/ a/b Pointwise Division

^ a^b Pointwise Multiplication

* a*b Scalar Multiplication or Vector/Matrix Product

@ a@ b Vector/Matrix Convolution (see Appendix II)

For instance, a NSL NslFloat0 object would have its value assigned as follows:

private NslFloat0 x();

x = 5.0;

Table 6.14
Indexing for dimensional object
types. ���� corresponds to
either ���, �����, ��	
���

������ or String for their
correspondingly defined
dimensions (similarly with port
types). Again, index, row, col,
index1 and index2 are integer
values specifying the
corresponding index number.
type would correspond to a
primitve type either����,������,
��	
��,
������ or ����������
respectively.

Table 6.15
Arithmetic operators for object
numeric types. Typically,
operands required on each side
of the operator (except in the
case of the unary operators)
must be of a similar type and
dimension although in some
cases parameter may be of
different dimension. More
details on valid operands are
described in Appendix II.

1 1 8 C H A P T E R 6

If the assignment takes place on the same line as the declaration and instantiation
then it is known as initialization:

private NslFloat0 x() = 5.0;

A NSL NslFloat2 object would have one of its elements assigned a value as follows:

private NslFloat2 y(2,3);

y[0][1] = 5.0;

or all its elements as follows,

y = 5.0;

where 5.0 is assigned to every element in y.
Note that assignment copies values from one object to another one. This is not a

copy of references (as opposed to Java handling of object to object assignment). For
example

private NslFloat2 z(2,3);

z = y;

assigns every element value in y to every element value in z, where y and z must be
equally sized.

Also note that numeric objects on the left-hand side of an assignment statement may
be assigned with primitive types returned on the right-hand side. For example, the follow-
ing code works without having to add an explicit cast. (Explicit cast is covered in this
section on Conversions, Casting, and Promotions.)

private NslFloat1 phi(5);

private NslFloat0 force();

private float mu;

phi=22;

mu=phi[0];

force=phi[0];

The previous to last equation copies the content of phi[0] into mu, while the last
statement copies phi[0] to force.

NSLM also provides logical operators for numeric port types. The logical operators
are shown in table 6.16.

Operator Usage Description

< a < b less than

> a > b greater than

<= a <= b less than or equal

>= a >= b greater than or equal

== a == b equal

!= a!= b not equal

All logical operators are applied as pointwise to arrays and return an array of similar
size. If the arrays are of different dimension or size, an error will occur.

Table 6.16
Logical operators for object
numeric types.

T H E M O D E L I N G L A N G U A G E N S L M 1 1 9

Boolean
Boolean types are mainly used as resulting values from statement conditions. For exam-
ple all expressions in table 6.15 return a boolean value. Since boolean values can only be
true or false, the only expression that can be applied to this values are the ones shown in
table 6.17.

Operator Usage Description

= a=b Assignment among boolean values

== a == b Return true if the two boolean values are equal

!= a!= b Return true if the two boolean values are not equal

&& a && b Logical AND

| | a | | b Logical OR

! ! a Logical NOT

String
String type expressions are shown in table 6.18.

Operator Usage Description

= a=b Copy one string to the other one

+ a + b String concatenation

== a == b Return true if the two string values are equal

!= a!= b Return true if the two string values are not equal

For example, to declare as well as initialize a variable of type NslString0 we type:

private NslString0 protocol()= “Protocol”;

Ports
In general all “non-port” expressions apply to port types, i.e., numeric type expressions
apply to numeric port types, similarly with booleans and strings. There a number of addi-
tional expressions, in the form of methods particular to port types defined for specifying
connections and relabels between them. When connecting or relabeling ports the type
and dimension of the ports must match or a compilation error will occur, the only excep-
tion is connecting among different numeric port types. In order to illustrate these expres-
sions in more detail we present in figure 6.2 a comprehensive diagram of the Maximum
Selector model previously described in chapter 3.

Table 6.17
Logical operators that may be
applied on boolean
expressions.

Table 6.18
Logical operators that may
be applied on boolean
expressions.

1 2 0 C H A P T E R 6

in

uin

sin

sout din

uin

out

vfvin uf

Children Module Level

Parent Module Level

Vlayer
v1

Ulayer
u1

MaxSelector
maxSelector

MaxSelectorStimulus
stimulus

MaxSelectorOutput
output

Connections
NSL provides the user with a special function nslConnect to make connections between
ports. Connections are always specified from output ports to input ports as follows,

nslConnect (m1.dout,m2.din);

where output port dout in module m1 is connected to input port din in module m2. This
statement, specified within the makeConn method, shows how to specify port connec-
tions between modules and should be specified at the parent module level, that is inside
the module that actually instantiated both m1 and m2. For example, at the parent module
level the following three connections are made in figure 6.2,

nslConnect(stimulus.sout,maxselector.in);

nslConnect(stimulus.sout,output.sin);

nslConnect(maxselector.out, output.uin);

At the children module level the following two connections are made in figure 6.2,

nslConnect(v1.vf,u1.vin);

nslConnect(u1.uf,v1.uin);

As an additional consideration, in order to refer to a port it must have been defined
with visibility public, otherwise the above connection statement would cause a compila-
tion error.

Relabels
Besides connections NSL provides a special connectivity function nslRelabel to forward
data between ports belonging to modules at different levels in the module tree hierarchy.
Recall that connections are done between an output port and an input port belonging to
different modules at the same decomposition level. On the other hand, relabeling is speci-
fied between a parent module input port and a child module input port or between a child
module output port and a parent module output port, respectively. Relabeling plays an
important role when building module compositions or assemblages. For example, the

Figure 6.2
Complete diagram
representation for the
Maximum Selector presented
in chapter 3. The model
contains a top-level (Parent
Module Level) consisting of
the the ���������	r module
and both the
���������	
����
�
� and
���������	
�
��
�

modules. The ���������	

module is decomposed at the
bottom-level (Children
Module Level) into the
�����
 and �����
 modules.
Connections are made
between modules at the top-
level or bottom-level,
respectively. Relabels are
made across modules in the
top-level and bottom-level.

T H E M O D E L I N G L A N G U A G E N S L M 1 2 1

following statements would relabel an input port din at the parent module level to din in
m1 and an output port dout in m1 to din at the parent module level,

nslRelabel(din,m1.din);

nslRelabel(m1.dout,dout);

For example, the following two relabels are made in figure 6.2,

nslRelabel(in,u1.sin);

nslRelabel(u1.uf,out);

Note that we do not need a module reference in the first argument since the reference
is the actual module where the relabel is taking place—the “this” module.

Control Statements
Previously defined control statements (see “Primitive Types” section) support the use of
object types as long as the corresponding expressions allow it. For example, boolean
conditions permit the use of object type expressions returning boolean types. More gen-
erally, statement accept any object type defined expressions.

Conversions, Casting, and Promotions
Analogous to primitive types, object type variables may not be used in expressions where
their type does not match the expected one. However, in some cases such restrictions are
also loosened. For example, in a method requiring an argument of type NslDouble0 a
NslInt0 type would be accepted as well. This applies between all numeric types as long
as their dimension corresponds. In particular port types can be used whenever “non-port”
types correspond. (The opposite is not true since “non-port” types cannot be connected
among themselves.) No conversions, castings or promotions may be applied between
primitive and object types.

6.4 Creation of New Object Types
NSLM allows for the creation of new object-oriented style classes (creation of new mod-
ule and model types is described in section 6.5 and 6.6 respectively). As will be seen
later, the major differences between modules and classes is their lack of ports and any
control from the NSL scheduler. Defining a new class involves defining attributes and
methods common to all its objects. New objects may be instantiated only if there exists a
previously defined corresponding class as in most object-oriented languages. The class
definition format is somewhat similar to that in C++ or Java. (The user can also define
native C++ or Java classes with the use of the verbatim modifiers.)

Template
To define a new class we use the special nslClass keyword in the class definition header,
as shown in code segment 6.1.

nslClass class-name (class-instantiation-spec) class-

inheritance-spec

{

class-attribute-spec

 class-method-spec

}

Code Segment 6.1
�������� definition
template.

1 2 2 C H A P T E R 6

The code section outside the curly brackets corresponds to the class header, consist-
ing of the following:

� class-name represents the name identifying the class.

� class-instantiation-spec defines instantiation arguments (type-name pairs separated
by commas) that must be passed when instantiating a new object. (This corresponds
to the header of the object constructor in either C++ or Java.)

� class-template-inheritance-spec defines the inheritance specification for the class.

� The code section that appears inside the curly brackets defines the actual structure
and functionality of the class:

� class-attribute-spec defines the structure of the class in terms of its attributes, primi-
tive and object type variables.

� class-method-spec defines the behavior of the class in terms of local function or
method definitions.

Header
The basic class header includes the nslClass keyword, the class-name, and the class-
instantiation-spec. For example, code segment 6.2 describes the main header section for a
MemoryCalc class.

nslClass MemoryCalc (int size) class-inheritance-spec

{

class-attribute-spec

 class-method-spec

}

The class-instantiation-spec defines a single instantiation parameter size passed to
class MemoryCalc.

Inheritance
Every class definition in NSLM requires a class-inheritance-spec. Inheritance is an
important feature present in all truly object-oriented languages permitting the definition
of new classes as extensions to already existing ones. The inheritance scheme provides
the new class with all the attributes and methods (except for the private ones) of the
superclass or baseclass, where the new class is known as the subclass. Inheritance is also
the basis for code reuse in an application. As an aside for those users familiar with the
concept, NSL supports only single inheritance—as opposed to multiple inheritance. In
order to show how the class-inheritance-spec is used, we will create another class called
MovementCalc that inherits from MemoryCalc as shown in code segment 6.3.

nslClass MovementCalc (int size) extends MemoryCalc (size)

{

class-attribute-spec

 class-method-spec

}

We define MovementCalc as a subclass of MemoryCalc. Recall that MemoryCalc
requires an instantiation argument. Thus, we must pass size to MemoryCalc as shown in
the inheritance specification to avoid an error. Note the difference between the instantia-
tion argument specification containing the type of the argument—int for size—and the
parameter passed to the base class containing only the parameter name and not its type.

Code Segment 6.2
Class header specification.

Code Segment 6.3
���������	
� class
header with inheritance from
MemoryCalc.

T H E M O D E L I N G L A N G U A G E N S L M 1 2 3

Also note that MovementCalc can use all of the public and protected attributes and
methods from MemoryCalc class.

NSLM provides a default empty inheritance specification on the previous
MemoryCalc class definition as shown in code segment 6.4. In this case, the NSLM
compiler generates the default inheritance specification “extends NslClass(charString
nslName, NslModule nslParent)” when none is provided. NslClass is directly or indi-
rectly the highest superclass for all class objects.

nslClass MemoryCalc (int size)

{

class-attribute-spec

 class-method-spec

}

Attributes
Attributes define the structure of the class. Attributes may be either primitive or object
types. For example, in code segment 6.5 we add a private object to the MovementCalc
class.

nslClass MovementCalc (int size) extends MemoryCalc (size)

{

private NslInt1 vector1(size);

 class-method-spec

}

The attribute section consists of a private NslInt1 type object referenced by variable
named vector1, with instantiation argument size corresponding to the vector size. Vari-
able size is part of the instantiation arguments. Note that we should not name attributes
the same as instantiation arguments since that will cause a compilation error. Further-
more, since we also have a base class containing its own attributes and methods, we must
avoid conflicts with attributes with similar names in base classes.

Methods
Methods or functions define the behavior of the class. Methods correspond to functions in
structured languages such as C and directly correspond to those defined in object-oriented
languages. Methods must always be defined within a class corresponding to the class-
method-spec section. The body of a method—its implementation—supports expres-sions
and statements similar to those used in C++ or Java, involving both primitive and object
types. Methods can take any number of parameters and may or may not have a return
type. Both arguments and the return type may be either objects or primitive types. As an
example, we add a print method to the MemoryCalc example as shown in code segment
6.6.

nslClass MovementCalc (int size) extends MemoryCalc (size)

{

private NslInt1 vector1(size);

public int print() {

 nslPrint(“vector1:”,vector1);

 }

}

Code Segment 6.4
Class header with empty
inheritance specification.

Code Segment 6.5
Example of a class variable
attribute.

Code Segment 6.6
Example of a class method.

1 2 4 C H A P T E R 6

This simple print method prints the values stored in vector1. To actually call the
method we use the “dot” notation. For example, if we want to call the print method from
within this or other class we would do the following:

MemoryCalc m();

m.print();

Similar to the nslPrint method NSLM also provides a wide number of methods for
arithmetic calculations, file manipulation and other functionality as described in
Appendix II.

Static Modifier
NSLM offers an additional static modifier affecting both attributes and methods. The
modifier makes the previously defined object attributes and object methods become what
is known as class attributes and class methods respectively. The difference between the
two lies in that object attributes and methods are designed to be accessed by an object
reference where every object from a particular class refer to different data (with similar or
different values) for the same attribute. On the other hand, class attributes and methods
are designed to be accessed by a class reference where all objects from a particular class
refer to a common data with a unique value for the same attribute. In other words a class
attribute is an attribute whose value is always the same to all objects instantiated from
that class, i.e. each object does not have its own private copy of the attribute but a shared
one with all other objects. For example, in code segment 6.7, we show how to define a
class attribute and a class method for MemoryCalc.

nslClass MemoryCalc (int size) {

private static int version;

public static int print() {

 nslPrint(“MemoryCalc“);

 }

}

The method print is used to print the name of the class as opposed to the name of an
object instance. The method is called using the class name as its reference

MemoryCalc.print();

This is quite useful in defining libraries that perform transformations dependent
exclusively on data passed to it, such as with numerical functions. In this case no objects
need to be instantiated from that class in order to execute the function. (In general objects
are instantiated to store data for future use. In the case of simple transformation no
“memory” is required and functions perform direct transformations based exclusively on
arguments currently passed to it.)

6.5 Creation of New Module Types
Modules are the basis for processing and simulation in NSL. Modules are the most
important NSL structure, distinguishing NSL from being “just another” object-oriented
language. Modules are concurrent or active entities with the potential to be distributed7

based on communication ports for sending and receiving data between modules. This is
in addition to traditional object-oriented message passing between objects in the form of
method invocations. Thus, modules are distinguished from object classes in that module
methods are executed by the NSLM scheduler, whereas object methods have to be explic-
itly called by the user.

Code Segment 6.7
Example of the use of the
������ keyword

T H E M O D E L I N G L A N G U A G E N S L M 1 2 5

Template
The process of defining new modules is similar to that of object classes. A module tem-
plate is defined having module attributes and methods similar to those defined for an
object class in addition to specific module port attributes and simulation methods. In
terms of syntax, modules use the special nslModule keyword instead of nslClass. The
module definition template is shown in code segment 6.8.

nslModule module-name (module-instantiation-spec) module-

inheritance-spec

{

module-attribute-spec

 module-method-spec

}

The template section that appears outside the curly brackets corresponds to the mod-
ule header, consisting of the following

� module-name is the name identifying the module.

� module-instantiation-spec defines instantiation arguments that must be passed when
creating a new module instance.

� module-inheritance-spec defines class inheritance aspects for the module.

The template section that appears inside the curly brackets defines the actual struc-
ture and functionality of the module:

� module-attribute-spec defines the structure of the module in terms of primitive,
object and module type variables, including ports necessary for external communica-
tion.

� module-method-spec defines the behavior of the module in terms of local functions
or methods definitions, including simulation methods.

Header
The module-instantiation-spec within the header defines arguments that must be passed
when instantiating a new module similar to class templates in NSLM. The specification is
made of a list of type-name pairs separated by commas that may also be empty. For
example, code segment 6.9 shows two instantiation parameters in BasicModule.8

nslModule BasicModule (int size, NslString0 c) module-

inheritance-spec

{

module-attribute-spec

 module-method-spec

}

Inheritance
The module-inheritance-spec allows the module to inherit attributes and methods from a
base module class or super module. Module inheritance is similar to that in regular
classes except that all modules must inherit directly or indirectly from NslModule in
order for modules to be correctly managed. If we want to define a new module type that
inherits from one already created, then we must pass the required parameters to the super
module class as shown in code segment 6.10. Since BasicModule requires both size and
c, we pass them as parameters from ExtendedModule.

Code Segment 6.8
nslModule definition
template.

Code Segment 6.9
��������	
� header
specification.

1 2 6 C H A P T E R 6

nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

module-attribute-spec

 module-method-spec

}

If inheritance is not specified, as in code segment 6.11, the NSLM compiler
automatically appends the code “extends NslModule(charString nslName, NslModule
nslParent)” to the header.

nslModule BasicModule (int size, NslString0 c)

{

module-attribute-spec

 module-method-spec

}

Also note that all modules inherit directly or indirectly from a class called
NslModule in order to take advantage of attributes and methods such as getting the vari-
able's name, getting the variable’s parent, setting the script access to the variable, and
printing the variable. Similar to class, NSL supports only single inheritance for modules.

Attributes
Attributes define the structure of the module. As in object classes, attributes may be
either primitive, object or module types. For example, we add single input and output
port to the ExtendedModule module structure, as shown in code segment 6.12.

nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

public NslDinFloat1 din(size);

 public NslDoutFloat1 dout(size);

module-method-spec

}

The attribute section consists of,

� public NslDinFloat1 input port named din, with instantiation parameter size since it
corresponds to a numeric vector.

� public NslDoutFloat1 output port named dout, with instantiation parameter size
since it corresponds to a numeric vector.

Methods
Modules are different from objects in their incorporation of simulation methods in addi-
tion to object type style methods. In this section we describe simulation methods fol-
lowed by differential equation methods, of particular importance to modules.

Simulation
Simulation methods are executed during system runtime according to control parameters
specified by the user from the script or window interpreter. Simulation methods, in addi-
tion to class methods, are inserted into module-method-spec section. In code segment
6.13, we define one protected method and three public methods. Two of these methods
override two NSLM's predefined simulation methods, initRun and simRun, respectively.

Code Segment 6.10
�����������	
� module
header with inheritance from
��
�����	
�.

Code Segment 6.11
��
�����	
� header with
empty inheritance
specification.

Code Segment 6.12
Example of module port
attributes.

T H E M O D E L I N G L A N G U A G E N S L M 1 2 7

(The initRun and simRun are discussed below; however, for a complete list of
NslModule methods please see Appendix I, NSLM Methods.)

nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

 public NslDinFloat1 din(size);

 public NslDoutFloat1 dout(size);

public double getVelocity(int deltax, int deltay) {

 //more code

}

 public void initRun() {

 dout=0;

}

 public void simRun(){

 //more code

}

 protected NslDouble2 eyeMoveSpecial(int deltax, int deltay)

{

 //more code

}

}

All simulation methods are defined in the class NslModule and are overridden by
the user through similarly named methods in the new module. Note that many of these
methods were given in chapter 3 together with examples. The following tables describe
the available methods for overriding (all methods return a void type and have no argu-
ments passed to them). table 6.19 shows the connection method.

Connection Method Description

makeConn All connections and relabels between modules should be specified
within this method.

Table 6.20 shows the system methods called once throughout the execution of the
complete system.

System Methods Description

initSys This method should contain any initializations required for the com-
plete system (one per module). This usually involves system variable
initialziations.

endSys It is the last method called before the end of the complete system
simulation, for example to execute any summary type calculations.

Code Segment 6.13
Example of modules
methods.

Table 6.19
Connection method.

Table 6.20.
System methods.

1 2 8 C H A P T E R 6

Table 6.21 shows the module methods called once during a complete module simu-
lation.

Module Methods Description

initModule Initializes a module during every simulation, both training and run phases.
For example, the number of simulation epochs or cycles per epoch may be
set here.

endModule Ends the complete simulation, both training and run phases. Performs any
simulation post-processing.

Table 6.22 shows the train methods called in relation to training aspects of the
simulation.

Train Methods Description

initTrainEpochs Initializes variables that are needed for all train epochs.

endTrainEpochs Summarizes the results from all train epochs.

initTrain Initializes the training phase for all train cycles and is executed once per train
epoch. Training variables are reset in this method.

simTrain Contains training dynamics. Simulates the training phase for as many steps as
specified or until reaching trainEndTime divided by trainDelta.

endTrain Executes at the end of the training phase for a single step when the time step
corresponds to trainEndTime. Usually used for compiling statistics and print-
ing results after each train epoch.

Table 6.23 shows the run methods called in relation to running aspects of the simu-
lation.

Run Methods Description

initRunEpochs Initializes the variables that are needed for all run epochs.

endRunEpochs Summarizes the results from all run epochs.

initRun Initializes the run phase for al run cycles and is executed once per run epoch.
Variables for the run are reset in this method.

simRun Contains running dynamics. Simulates the run cycle for as many steps as speci-
fied or until reaching runEndTime divided by runDelta.

endRun Executes at the end of the run phase for a single step when the time step corre-
sponds to runEndTime. Usually used for compiling statistics from each run
and printing some kind of results. It may include modifications on the simula-
tion parameters.

Table 6.21 Module methods.

Table 6.22 Train methods.

Table 6.23 Run methods.

T H E M O D E L I N G L A N G U A G E N S L M 1 2 9

Note that it is not mandatory to redefine or override any of these methods. When not
overridden, the default method within the direct superclass (or NslModule by default)
will be called. Also, the simulation time in a simTrain phase or a simRun phase starts
with time equal zero and changes by time equal trainDelta or runDelta after each cycle
or step. The number of cycles and the number of epochs both start at one when time
equals zero.

Since NSLM controls the scheduling of module methods, these should not be
directly called from user-defined expressions or control statements.

Differential Equations
Differential equations are quite important in modeling neural networks. Simulation of
neural networks as introduced in chapter 1 is based in NSL on the leaky integrator neural
model specified by a first-order differential equation of the form

()t
t mptf

dt

dmp
,=� (6.1)

This first-order differential equation requires the use of numerical approximations to
solve it. NSLM provides a general method for first-order differential equations defined as
follows:

nslDiff(mp,�,f(t,mp));

or

mp = nslDiff(mp,�,f(t,mp));

where f(t,mp) represents any mathematical expression, for example

f(t,mp) = -mp+s;

corresponds to the leaky integrator model where s represents to the neuron input. � is a
time constant having default value 1.0, and dt is the time delta. Since dt is not specified,
its value is given from the script command interpreter.

While different numerical methods may be used to solve the equation, NSLM
defines it in such a way that the actual neural network architecture and connections do
not change when changing the aproximation method used. Different numerical methods
may be more or less appropriate according to the desired numerical precision and the
processing power of the computing machine. NSLM includes two approximation
methods, Euler and 2nd order Runge-Kutta, specified by

setApproxMethod(method);

where method can be either the string Euler or RungeKutta2.

� The difference equation specified by the Euler approximation method is:

() ()t
ttt mptf

t

mpmp
,=

�
��+�

(6.2)

and is modified to

() ()ttttttt smp
dt

mpmptf
dt

mpmp +��
�
�

�
�
�+=�

�
�

�
�
�+=�+ ��

, (6.3)

1 3 0 C H A P T E R 6

or expanding the equation for the leaky integrator,

tttt s
t

mp
t

mp
��
�

+�
�
�

�
�
� �
�=�+ 1 (6.4)

� The difference equation specified by the Runge-Kutta2 approximation method is
expanded into:

�
t

h
�

= (6.5)

k1 = hf(t,mpt,)(6.6)

�
�
�

�
�
� ++= 12 2

1
,

2

1
kmphthfk t (6.7)

2kmpmp ttt +=�+ (6.8)

or expanding the equation again,

()
�
�
�

�
�
� �
+

�
+�

�
�

�
�
�
�

� �
�=�+ ��� 2

1
24

1
2

2 t
s

t
mp

t
mp tttt (6.6)

Scheduling
NSL provides a multi-clock scheduler for each module during simulation. Every train
cycle executes the simTrain method trainDelta times for as many cycles as specified by
numTrainEpochs. Similarly, every run cycle executes the simRun method runDelta
times for as many cycles as specified by numRunEpochs. The detailed order of execu-
tion including initializations is as follows:

1. For all modules execute initSys.

2. For all modules execute makeConn.

3. For all modules execute initModule.

4. Execute simulation cycles for as many epochs as specified, both train and run.

5. For all modules execute endModule.

6. For all modules execute endSys.

The controls these cycles by using either the menu commands from the NSL Execu-
tive window or the NSLS script commands in the script window (see chapter 5). How-
ever, initSys, makeConn, and initModule will all be called before the NSL Executive
window and the script window appear. Figure 6.3 shows in more detail a flowchart corre-
sponding to step 4: the train and run phases. (Usually the train phase is executed before
the run phase.)

T H E M O D E L I N G L A N G U A G E N S L M 1 3 1

initTrainEpochs initRunEpochs

no no

yes yes

yes yes

no no

initTrain initRun

simTrain simRun

t>trainEndTime? t>runEndTime?

endTrain endRun

trainEpochs>
numTrainEpochs?

runEpochs>
numRunEpochs?

endTrainEpochs endRunEpochs

The scheduling described above is applied sequentially to all modules. In other
words no module will execute a simTrain method unless all modules have previously
executed an initTrain method. If a module does not define a particular method (say
initRun), then that module will simply be skipped when its turn comes up for that phase
of execution. The order in which modules are processed for a single method pass is
preorder starting with the main model in the attribute reference tree hierarchy, as
exemplified in figure 6.4. The simulation sequence is generated by going over all mod-
ules according to their initial instantiation specification, i.e. as soon a module is
instantiated it is immediately put into the scheduling list. In figure 6.4, the scheduler
would start from the top module ModuleA followed by its first child ModuleB. Since
ModuleB has children, then the scheduling list continues with ModuleC and son on. The
complete execution order in this example is alphabetical, i.e. ModuleC followed by
ModuleD then followed by ModuleE and so on.9 Note that the tree is implicitly built by
NSL following the order of module instantiations by the user.

Figure 6.3
Flowchart showing train and
run processing phases. Note
that the outer loop is referred
to as the “epoch” and the
inner loop is referred to as
the “cycle”.

1 3 2 C H A P T E R 6

ModuleA

ModuleB

ModuleC ModuleD ModuleF ModuleG

ModuleE

The actual code to generate the tree shown in figure 6.14 is as follows (note the exact
declaration order with the modules. The order of module definition templates is
unimportant).

nslModule ModuleA ()

{

 ModuleB b();

 ModuleE e();

}

nslModule ModuleB ()

{

 ModuleC c();

 ModuleD d();

}

nslModule ModuleE ()

{

 ModuleF f();

 ModuleG g();

}

Buffering
To simulate concurrency in module execution NSL offers buffered ports as well as non-
buffered (default) ports. In the default mode, ports are non-buffered and processing
becomes sequential processing where new values from output ports are immediately sent
to all ports connected to it. In this form, ports operate as a numeric object keeping values
for internal and external use always the same. Concurrency is only simulated with buff-
ered ports making processing order unimportant since all communication becomes
buffered and output values are not immediately sent out from a module’s output ports.
With buffered ports, the buffer keeps temporary internal port values. After each simula-
tion cycle the system copies the all buffered values into a second buffer used for
communications with other modules. Since the default mode is set to non-buffered ports,
the user may change a particular port to the buffering mode with the following command:

Figure 6.4
Dashed arrows in the frame
specify instantiation order,
starting with the top module
in preorder and depth first
fashion, in other words,
following names “alphabet-
wise.”

Code Segment 6.14
Module code definitions
generating the hierarchy tree
shown in figure 6.4. Note
however, that each module
must be declared in its own
file. Thus the above example
would take three files.

T H E M O D E L I N G L A N G U A G E N S L M 1 3 3

port.nslSetBuffering(true);

If instead of true the argument is false then the port becomes non-buffered. Addition-
ally, NSL offers the following command to set all ports in a module to the buffered state:

module.nslSetBuffering(true);

To make all ports in all modules buffered the user may use the following command
(again a false would reset this mode):

system.nslSetBuffering(true);

When dealing with buffered ports, the system internally executes a method named
nslUpdateBuffers after each simulation cycle to update port buffers.

To get the current buffer setting we can call one of the following methods returning a
fg boolean value:

fg=system.nslGetbuffering();

fg=module.nslGetBuffering();

fg=port.nslGetBuffering();

6.6 Creation of New Model Types
A model defines a complete program or application. Instead of having a “main” function
as required in most programming languages, NSL applications require the existence of a
model where execution begins. This model is unique to every NSL application. Its defini-
tion is somewhat similar to module definitions except in the use of the nslModel key-
word (instead of nslModule) as shown in code segment 6.16. Note that NSLM does not
allow any instantiation parameters nor a inheritiance specification for models.10

nslModel model-name ()

{

 model-attribute-spec

 model-method-spec

}

The template section that appears outside the curly brackets corresponds to the
model header, consisting of the following

� model-name is the name identifying the model. This name is internally used by
NSLM to implicitly instantiate the complete model.

The template section that appears inside the curly brackets defines the actual struc-
ture and functionality of the model:

� model-attribute-spec defines the structure of the model in terms of primitive, object
and module type variables. With the exception of not having any port instantiations,
this section is similar to that in modules.

� model-method-spec defines the behavior of the model in terms of local functions or
methods definitions, including simulation methods.

Code Segment 6.15
nslModel Definition
Template.

1 3 4 C H A P T E R 6

For example, the ExtendedModel instantiates the ExtendedModule module as
shown in code segment 6.17.

nslModel ExtendedModel ()

{

public ExtendedModule em(10,”p1”,’H’);

}

ExtendedModel is implicitly instantiated by NSL in order to execute the model.

6.7 Summary
In this chapter we have presented the key concepts and constructs needed to build a NSL
model. Since NSLM is built on top of C++ and Java, we discussed the parts of the NSLM
language that is shared with these two native languages. We also discussed the basic
NSLM types and how to build NSLM modules and models. Finally, we presented a sec-
tion on how to build your own NSLM classes and what restrictions one might encounter
when doing this. Although this chapter described the NSL modeling language in more
detail than that presented in chapter 3, to fully grasp the language we recommend that
Appendix I, The NSLM Methods be reviewed.

Notes

1. We explain how to expand many of the NSLM constructs in the NSLM Parser Guide
for Java and C++ technical report that can be found on the NSL web site. These
expansions usually vary between Java and C++.

2. We use the terms primitive and native interchangeably in this document, although
many languages make a distinction between these two terms. Native types in NSLM
reflect the native types present in both C++ and Java except for charString and boo-
lean which are special cases. We also refer to all other types as NSLM types.

3. Indexing in similar to C++ array indexing except for the fact that no pointer arithme-
tic is allowed. Additionally, Java allows one array to be assigned to another, in which
case the reference of the array is copied between the two variables and not the ele-
ments. If we were to assign one native array to another native array, we would need
to use the verbatim keyword described below.

4. A boolean array can be converted to an int, float, or double array.

5. In the current NSL version only 0 dimension NslString objects are supported
although future NSL version will include additional dimension types.

6. We avoid the use of the new operator as in C++ or Java since C++ returns a pointer
and Java returns a reference.

7. See some of our current work on distributed simulation discussed Appendix III—
NSLC Extensions.

8. In addition to these two arguments, the NSLM compiler generates two more:
“charString nslName” and “NslModule nslParent,” where nslName is the name of
the instance being instantiated and nslParent is the instance of the parent module
instantiating this module instance. The parser adds these parameters when the mod-
ule is instantiated as well.

9. Currently the order of execution of modules defaults to their hierarchical order and
the order in which they were defined in the module. However, we expect to offer
more control in the scheduling order in the future.

10. We expect to provide in the future instantiation parameters for models, analogous to
the args parameters in Java.

Code Segment 6.16
nslModel example.

7 The Scripting Language NSLS

In order to simulate a model created with NSLM it is necessary to specify the simulation
interaction consisting of simulation control, model parameters, and visualization control.
This can be done either by hard-coding the parameters within the model using NSLM,
selecting the commands via the menu system, typing them in the Executive/Script win-
dow, or providing a script/batch file. While the NSLM language provides great expressive-ness,
crucial for describing model architectures—and produces efficient code it requires the
user to compile the models. To avoid re-compiling we provide the NSL script language
known as NSLS which also provides a dynamic user control environment. With NSLS
the user can interact very efficiently with a model during its simulation. Moreover, NSLS
can be used to create a script/batch files to be executed over and over again. This is handy
when the user is only interested in final results after a large number of iterations such as
in the Backpropagation model (see chapter 3). NSLS contributes the following
functionality:

� model parameter assignment

� input specification

� simulation control

� file control

� graphics control

Additionally, the NSL script interpreter interacts with the well-known scripting
language TCL, the Tool Command Language (Ousterhout 1994) and Jacl, the Java Com-
mand Language extension to TCL (Scriptics 1999), thus providing NSL and TCL func-
tionality. We refer to the combined language as NSLS and to individual commands as
belonging to TCL or to NSL. An important characteristic of NSLS is that TCL and NSL
commands may be combined as part of single more powerful commands, one of the
advantages of having the two. In particular, NSLS commands may be applied to TCL
primitive types and NSLM object types (NslFloat0, etc.) but unfortunately we cannot
access the NSLM primitive types (float, etc.) from the Script Language. NSLS com-
mands include assigning and retrieving NSLM object values as well as instantiating new
NSLM objects from NSLS.

As introduced in chapter 2, when NSL is originally launched from the operating
system, it brings up the NSL Executive window.1 The top part of this window, the execu-
tive panel, contains menu buttons that let the user execute many of the NSLS control
commands. The bottom part of the executive window, the script window, is where NSLS
commands can be interactively typed.

1 3 6 C H A P T E R 7

Figure 7.1
The NSL Executive Window

In the rest of this chapter we describe how parameters, simulation control, and visu-
alization control are interactively specified using the NSLS language.

7.1 Overview
We give an overview of general aspects to NSLS.

General Conventions
There are a number of general conventions we shall be using throughout this chapter:

� Bold letters indicate key words or commands and italics indicate variables or
parameters to be provided by the user.

� Names for classes, modules and models start with upper case letters, e.g., ModuleX.

� Names for objects, module instances, model instances, and methods start with lower
case letters, e.g., moduleX.

� Names of files storing NSLS simulation scripts should end with a “.nsl” extension.

� The script (interpreter) window provides a main prompt of “nsls%” and a secondary
prompt of “>”. The secondary prompt is used when a command is unfinished and
continued on the next line.

� Either a carriage return or a semicolon marks the end of line in NSLS.

� A hash sign ‘#’ precedes comments. If there is a comment at the end of a line, then a
semi-colon must appear before the comment, i.e. “;#”.

� To continue a command on more than one line a backslash “\” must be used at the
end of every line except the last one. No characters may appear after the backslash,
including empty spaces. The only exception is a statement involving an open bracket
being closed on a different line.

� Spaces are very significant in NSLS (as in TCL). For example, m(1,1) is not the
same as m(1, 1) (the latter has a space and generates two separate expressions instead
of one).

� TCL commands do not have any particular prefix, they follow directly with the
command,

nsls% command

� All NSL commands must have a nsl prefix followed by the actual command,

nsls% nsl command

� Variable names must begin with an alphabetic character either upper, lower case or
an underscore.

T H E S C R I P T I N G L A N G U A G E N S L S 1 3 7

� In terms of graphics, all frame and canvas names should start with a lower case
letter.

Help
NSL provides extensive on-line information from the NSL web page at http://www-
hbp.usc.edu or http://cannes.rhon.itam.mx. NSLS script related information is also
available by typing one of the following commands in the Executive/Script window:

nsls% nsl help

or specific information on a command can be retrieved by typing:

nsls% nsl help command

Exit
To terminate the script interpreter and close all windows, type the following command in
the Executive/Script window:

nsls% nsl exit

Note that the TCL exit command can also be used, but does not handle the termina-
tion as nicely as nsl exit. The nsl exit command calls endModule and endSystem as well
as closing all files before exiting.

7.2 TCL Primitives Types
We briefly describe some of the more important commands on primitive types in TCL
with relation to NSLS (for a complete language description please refer to Ousterhout
(1994)). TCL primitive types are made primarily of numbers and characters and do not
have any relation with primitive types defined in NSLM. In general, TCL is considered a
non-typed language since variables do not involve an explicit type declaration but instead
have their type implicitly specified according to initial value assignment. While there is
some TCL support for objects types, such as with TK graphic objects, we will concen-
trate only in TCL basics, primarily variables, arrays, expressions, control statements and
procedures.

Variables
TCL variables may be assigned values directly from TCL or indirectly from NSLM
objects. TCL variables are assigned values as they are initialized using the set command
as follows

set var value

For example, to set the value of i to 0 we would do

set i 0

TCL variable values can be obtained by preceding the variable name with a “$” sign,
e.g. $var. For example, to set the value of a new variable j to the value of i:

set j $i

The values of TCL variables may then be used to set values to other TCL variables
or NSLM objects attributes, the latter being of particular interest in NSLS.

1 3 8 C H A P T E R 7

Arrays
Arrays in TCL are somewhat different in both semantics and syntax from traditional pro-
gramming language arrays. Arrays in TCL are actually associative arrays, in that ele-
ments are associated with a particular element name instead of index number. Arrays are
only single sized but multiple dimensions can be simulated with names containing multi-
ple commas. Arrays are defined using the set command together with parenthesis group-
ing elements. For example:

set vararray(one) 1

Multiple dimension arrays are simulated as follows,

set vararray(1,1) 30

set vararray(1,2) 99

set vararray(1,3) 7

where vararray(1,1) simulates the first row and column. Note that vararray is not really
double sized in TCL but instead each vector element is associated with a “x,y” style
name. Thus, you should be careful not to add additional letters to the element name such
as spaces, since “x, y” (extra space character) would specify a different string and thus a
different element name.

Expressions and Control Statements
TCL supports a number of expressions on numerical and character variables. These
include numerical operators as well as commands and functions applied to both numeric
and character sets. Brackets are quite particular in TCL in that they separate all kinds of
expressions. In terms of control statements, TCL provides with the following (note the
space between bracket sections):

� for control statement. For example

for {set x 0} {$x<10} {incr x} {

puts “x is $x”

}

where curly brackets separate sections in the for loop, incr increments x while puts,
which can also print to a file, prints to the screen.

� while control statement. For example

set x 0

while {$x<10} {

puts “x is $x”

incr x

}

which performs the same computation as the previous for loop.

� if-else-then control statement. For example

if { x > 0 } {

set y 1

} elseif { x = 0 } {

set y 0 }

} else { set y -1 }

T H E S C R I P T I N G L A N G U A G E N S L S 1 3 9

where there may be any number of elseif sections and both the elseif and else section are
optional.

� switch control statement. For example

switch $x {

 abc {set b $y }

 hij {set b $z}

 default {set b $v}

}

where x is a string being compared to the different string options. If the string matches
one of the options, then the corresponding execution statements within the curly brackets
are executed.

Procedures
TCL procedures are helpful in reusing script code. For example, we define a
testHopfiledNet procedure to run the Hopfield model with different input sets (the nsl set
and run commands are described in section 7.3),

proc testHopfiledNet { input {distortion 0} } {

puts “Testing with distortion $distorion”

 nsl set hopfieldModel.distortion $distortion

 nsl set hopfieldModel.in.pat $input

 nsl train

}

The procedure receives two parameters, input and distortion, the latter with default
of 0. We can then generate a variable a set to simulate a double array of positive or nega-
tive ones. Note how array elements are specified in different (brackets) sections in
variable a.

set a {

{ -1 -1 1 1 -1 -1 }

{ -1 1 -1 -1 1 -1 }

{ -1 1 1 1 1 -1 }

{ -1 1 1 1 1 -1 }

{ -1 1 -1 -1 1 -1 }

{ -1 1 -1 -1 1 -1 }

}

We call the procedure with a and 10 and obtain back the “puts” string.

testHopfieldNet $a 10

Testing with distortion equal 10, we call all call the procedure with only a single
parameter, obtaining back the default value of 0 in this case.

testHopfieldNet $a

Testing with distortion equal 0.
Note that procedure parameters are always local to that procedure and are passed by

value. If we want to pass variables by reference, we should use the TCL command
upvar. If we want to use a non-local variable, we will have to let the procedure know the
global variables by using the TCL global command.

1 4 0 C H A P T E R 7

System Commands
TCL offers a number of commands to interact with the external system environment. Of
particular interest are the following commands,

cd

that changes the current relative directory to a new one. This is particularly important
when the user wants to load script files from that directory and even more important
when script files themsleves load additional files from that directory. Without doing a
“cd” these latter files would not be found. Another useful command is,

pwd

checking the current working directory.

7.3 NSL Objects, Modules and Model Types
Besides TCL primitive type, NSLS can process object, module and model type variables
as defined in NSLM. Sharing of variables between NSLM and NSLS is quite important
since without it the user would not be able to have a good control over the model during
its simulation. In general there are some limitations on how much can be accessed from
NSLM in NSLS. For example, NSLM variables can be accessed from NSLS but the other
way around is not possible. In the following sections we describe in more detail this
sharing and how it is achieved.

Access
Accessing NSLM variables from NSLS is exclusively done by variable name and as long
as the corresponding NSLM protection allows. Protections are set within NSLM via the
nslSetAccess method where three options can be specified: “N” for no access, “R” for
read access and “W” for write (and read) access, with the default being “W”. (We hope to
change the default access to “R” in a future version.)

public void initModule() {

 hv.nslSetAcccess(’W’);

}

Recall that initModule is the method where module variables are initialized. In
chapter 2 we showed how to modify the offset, hu, from the scripting window. To do
this, hu, must have write access which can be set with nslSetAccess. Since variables are
not global in NSLM but local within some branch of a particular model hierarchy tree, to
access a particular variable we must know its exact location within the tree, similar to
referencing variables within NSLM.

Reference Tree for Model Variables
Variables are referenced using the “dot” notation similar to that in NSLM. The exception
is that visibility for accessing NSLM objects is controlled by name and not by the vari-
able’s visibility modifier, i.e. public, protected or private. Referencing can be either
absolute or relative as in NSLM referencing.

Absolute referencing starts always from system when accessing system variables or
from a particular model name when accessing model variables. For example, the absolute
reference to an object named obj111 would be as follows

model.obj1.obj11.obj111

T H E S C R I P T I N G L A N G U A G E N S L S 1 4 1

Relative referencing starts from a current location in the tree hierarchy using the path
variable. For example, we could set the special variable called varpath that acts as a
“bookmark” of where we are:

nsl set varpath model.obj1.obj11

Once this is set, we can use relative referencing from then on. The relative reference
for obj111 would simply be:

obj111

Expressions
NSLS provides two basic methods, set and get, to access NSLM attribute variables.

Set
Objects can be assigned data values using the set command, analogous to the assignment
operator in NSLM.

To assign data,

nsl set object-name value

where object-name is the name of an existing object and value corresponds to a matching
attribute type value.

For example, to set the value of “1” to a scalar object found in model.obj1.obj11
would be use:

nsl set model.obj1.obj11 1

In general, the number of elements typed in value will correspond to the dimension
defined for the object. The exception is to set all of the values in an object to a unique
value corresponding to a single element. According to the object type and corresponding
dimension NSL uses the following format:

� For NslType0 corresponding to single elements, for example, we set a scalar as

nsl set tu 1.0

assigning 1.0 to a zero dimension tu object.

� For NslType1 corresponding to a list or vector, for example, we set a 9-element
vector as

nsl set s { 0 0 0 0 1 0 2 0 0 }

The expression assigns the nine integer values to a one dimension s object: 1 to s[4]
and 2 to s[6], and the rest 0. (Remember that indices start with 0 and spaces must be left
between brackets and other characters.) Objects can be assigned single element values by
using parenthesis around element indices. For example:

nsl set s 0

nsl set s(4) 1

nsl set s(6) 2

is equivalent to the initial example.

1 4 2 C H A P T E R 7

� For NslType2 corresponding to a two-dimensional list or matrix, we set the values of
a 2x9 matrix using:

nsl set s {{ 0 0 0 0 1 0 2 0 0 }

 { 3 0 0 0 0 0 0 0 0 }}

The expression assigns integer values to a two dimensional s object: 1 to s(0,4) 2 to
s(0,6), 3 to s(0,1) and the rest 0. We can also type the above all on one line. (Notice that
if an interactively specified command is incomplete then the “>” prompt will appear.
When the command is complete the prompt will change back to “nsls%”.)

Matrices can be assigned single element values by using parenthesis around element
indices. For example

nsl set s 0

nsl set s(0,4) 1

nsl set s(0,6) 2

nsl set s(1,0) 3

is equivalent to the initial example.

� For NslType3 corresponding to a three-dimensional list or vector of matrices, we set
the values of a 2x2x9 array using:

nsl set s {{{ 0 0 0 0 1 0 2 0 0 } { 3 0 0 0 0 0 0 0 0 }}

 {{ 0 0 0 0 4 0 5 0 0 } { 6 0 0 0 0 0 0 0 0 }}}

The expression assigns integer values to a three dimension s object: 1 to s(0,0,4) 2 to
s(0,0,6), 3 to s(0,0,1), 4 to s(1,0,4) 5 to s(1,0,6), 6 to s(1,0,1) and the rest 0. Again we can
assign single element values by using parenthesis around element indices. For example

nsl set s 0

nsl set s(0,0,4) 1

and so forth.

� For NslType4 corresponding to a four-dimensional list or a vector of three-
dimensional matrices, for example, we set a 2x2x2x9 array as

nsl set s {{{{ 0 0 0 0 1 0 2 0 0 }{ 3 0 0 0 0 0 0 0 0 }}

 {{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}}

 {{{ 0 0 0 0 7 0 8 0 0 }{ 9 0 0 0 0 0 0 0 0 }}

 {{ 0 0 0 0 10 0 11 0 0 }{ 12 0 0 0 0 0 0 0 0 }}}}

The expression assigns integer values to a four dimensional s object: 1 to s(0,0,0,4) 2
to s(0,0,0,6), 3 to s(0,0,0,1) and so forth. Again we can assign single element values by
using parenthesis around element indices. For example

nsl set s 0

nsl set s(0,0,0,4) 1

and so forth.

Get
The get command is somewhat similar to the set command. The main difference lies in
that it retrieves the value instead of setting it. Since NSLS does not let the user create new
NSLM variables, the result from a get command must be stored into a TCL variable. We

T H E S C R I P T I N G L A N G U A G E N S L S 1 4 3

use the following TCL substitution format to retrieve values with the NSLS get command
into a TCL variable command (notice the brackets below):

set tclvar [nsl get object-name]

where tclvar is the name of the TCL variable storing the resulting value, object-name is
the name of an existing object. For example,

set s [nsl get model.obj1.obj11]

Since TCL expressions always return a string, the “[nsl get object-name]” will return
a string as well, setting the value of s to the corresponding return value. For example, if
“model.obj1.obj11” was a two dimensional 2x2 matrix containing integer values, then
“model.obj1.obj11” might return the string “{{ 9 5 }{7 4 }}”.

If the user tries the “nsl get object-name” command without assigning the returning
string to a variable, a TCL script error will occur. TCL would not know how to interpret
the resultant string and would print an “invalid command name” message.

According to the object type and corresponding dimension NSL uses the following
format:

� For NslType0 corresponding to single elements, for example, we get a scalar as

nsl get tu

would return the value stored in tu, for example 1.0.

� For NslType1 corresponding to a list or vector, for example, we get a 9-element
vector as

nsl get s

The expression returns a one dimension vector, for example { 0 0 0 0 1 0 2 0 0 }.
Using parenthesis around element indices can retrieve single values. For example

nsl get s(4)

would return 1.

� For NslType2 corresponding to a two-dimensional list or matrix, for example, we get
a 2x9 matrix as

nsl get s

The expression returns a two dimension matrix, for example {{ 0 0 0 0 1 0 2 0 0 }{ 3
0 0 0 0 0 0 0 0 }}. Using parenthesis around element indices can retrieve single values.
For example

nsl get s(0,4)

would return 1.

� For NslType3 corresponding to a three-dimensional list or array of matrices, for
example, we get a 2x2x9 array as

nsl get s

1 4 4 C H A P T E R 7

The expression returns a three dimension array, for example {{{ 0 0 0 0 1 0 2 0 0 }{
3 0 0 0 0 0 0 0 0 }}{{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}}. Using parenthesis around
element indices can retrieve single values. For example

nsl get s(0,0,4)

would return 1.

� For NslType4 corresponding to a four-dimensional list or two-dimensional array of
matrices, for example, we get a 2x2x2x9 array as

nsl get s

The expression returns a four dimensional array, for example {{{{ 0 0 0 0 1 0 2 0 0
}{ 3 0 0 0 0 0 0 0 0 }}{{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}}{{ 0 0 0 0 7 0 8 0 0 }{ 9
0 0 0 0 0 0 0 0 }}}{{ 0 0 0 0 10 0 11 0 0 }{ 12 0 0 0 0 0 0 0 0 }}}}. Using parenthesis
around element indices can retrieve single values. For example

nsl get s(0,0,0,4)

would return 1.
Another useful function is the -dim option. We can use -dim to get the sizes of the

dimensions from a NSL type object:

nsl get s -dim

returns {2 2 2 9} for the four dimensional array mentioned above.

Simulation Methods
NSLS enables the user to call all NSLM simulation methods described in chapter 6

in controlling the overall simulation sequence. Starting with table 7.1 we describe simu-
lation methods that may be called from NSLS as control commands together with addi-
tional one. These commands may involve optional parameters and most of these
commands can be called from the executive window menus as well (see chapter 5), all
requiring the “nsl” prefix in the script. table 7.1 shows the connection command called
once throughout the execution of the complete system.

Connection Command Optional Parameters Description

makeConn none Execute the makeConn simulation method for all modules
in the model.

Table 7.2 shows the system commands called once throughout the execution of the
complete system.

System Command Optional Parameters Description

initSys none Execute the initSys simulation method for all modules in the
model.

endSys none Execute the endSys simulation method for all modules in the
model.

Table 7.1 Connection command.

Table 7.2 System commands.

T H E S C R I P T I N G L A N G U A G E N S L S 1 4 5

Table 7.3 shows the module commands called once during a complete module
simulation.

Module Command Optional Parameters Description

initModule none Execute the initModule simulation method for all modules
in the model.

endModule none Execute the endModule simulation method for all modules
in the model.

Table 7.4 shows the basic train commands called in relation to training aspects of
the simulation.

Train Command Optional Parameters Description

initTrainEpochs none Execute the initTrainEpochs simulation method for all modules in
the model.

endTrainEpochs none Execute the endTrainEpochs simulation method for all modules in
the model.

initTrain none Execute the initTrain simulation method for all modules in the
model.

simTrain trainEndTime Execute the simTrain simulation method for all modules in the
model. Simulation starts at t=0 until trainEndTime (a real number) or
until system.trainEndTime is reached. The actual number of steps is
specified by trainEndTime divided by trainDelta.

endTrain none Execute the endTrain simulation method for all modules in the model.

Table 7.5 shows additional train commands called in relation to training aspects of
the simulation.

Train Command Optional Parameters Description

train trainEndTime Execute initTrain once, followed by simTrain starting at t=0 until
reaching trainEndTime or system.trainEndTime followed by
endTrain at the end. Simulation takes place for all specified epochs.

doTrainEpochTimes numTrainEpochs Execute the previous train command for numTrainEpochs times.

breakEpochs none Stop the simulation in between two epochs.

stepEpochs numTrainEpochs According to the current state of the simulation, execute either the
train phase or run phase for all modules in the model
numTrainEpochs, or once if not specified. If a breakEpochs was
previously called then start from the next epoch.

contEpochs lastTrainEpoch According to the current state of the simulation, execute either the train
phase or run phase for all modules in the model until lastTrainEpoch or
until all epochs have been processed. If a breakTrainEpochs was
previously called then start from the next epoch.

breakCycles none Stop the simulation in between two cycles.

Table 7.3 Module commands.

Table 7.4 Basic ������commands.

Table 7.5 Additional ������commands.

1 4 6 C H A P T E R 7

Table 7.5 (continued)

Train Command Optional Parameters Description

contCycles trainEndTime Execute simTrain method starting at t=trainTime (current training
time) until reaching trainEndTime (a real number) or
system.trainEndTime if not specified.

stepCycles numTrainCycles Execute the simTrain method for numTrainCycles (an integer). If
numTrainCycles is not specified, it steps one cycle only.

breakModules none Stop the simulation in between modules.

stepModules numTrainModules According to the current state of the simulation, execute the simTrain
method for all modules in a model numTrainModule times, or once if
not specified. If a breakModule was previously called then start from
the next module.

contModules lastTrainModule According to the current state of the simulation, execute the simTrain
for all modules in the model until numTrainModule, or until all
modules have been processed. If a breakModule was previously
called then start from the next module.

Table 7.6 shows the basic run commands called in relation to running aspects of the
simulation.

Run Command Optional Parameters Description

initRunEpochs none Execute the initRunEpochs simulation method for all modules
in the model.

endRunEpochs none Execute the endRunEpochs simulation method for all modules
in the model.

initRun none Execute the initRunsimulation method for all modules in the
model.

simRun runEndTime Execute the simRun simulation method for all modules in the
model. Simulation starts at t=0 until runEndTime (a real num-
ber) or until system.runEndTime is reached. The actual number
of steps is specified by runEndTime divided by runDelta.

endRun none Execute the endRun simulation method for all modules in the
model.

Table 7.6
Basic ��� commands.

Table 7.5
Additional ����� commands.

T H E S C R I P T I N G L A N G U A G E N S L S 1 4 7

Table 7.7 describes additional run commands called in relation to running aspects of
the simulation.

Command Optional Parameters Description

run runEndTime Execute initRun once, followed by simRun starting at t=0
until reaching runEndTime or system.runEndTime followed
by endRun at the end. Simulation takes place for all
specified epochs.

doRunEpochTimes numRunEpochs Execute the previous run command for numRunEpochs
times.

breakEpochs none Stop the simulation in between two epochs for all modules
in the model.

stepEpochs numRunEpochs According to the current state of the simulation, execute
either the train phase or run phase for all modules in the
model numRunEpochs, or once if not specified. If a
breakEpochs was previously called then start from the next
epoch.

contEpochs lastRunEpoch According to the current state of the simulation, execute
either the train phase or run phase for all modules in the
model until lastRunEpoch or until all epochs have been
processed. If a breakEpochs was previously called then
start from the next epoch.

breakCycles none Stop the simulation in between two cycles.

contCycles runEndTime Execute simRun method starting at t=runTime (current run
time) until reaching runEndTime (a real number) or
system.runEndTime if not specified.

stepCycles numRunCycles Execute the simRun method for numRunCycles (an
integer). If numRunCycles is not specified, it steps one
cycle only.

breakModules none Stop the simulation in between modules.

stepModules numRunModules According to the current state of the simulation, execute the
simRun method for all modules in a model numRunModule
times, or once if not specified. If a breakModules was
previously called, then start from the next module.

contModules lastRunModule According to the current state of the simulation, execute the
simRun for all modules in the model until numRunModule,
or until all modules have been processed. If a
breakModules was previously called, then start from the
next module.

Simulation Parameters
There are a number of simulation parameters that can be specified affecting the overall
simulation. These values can be overriden by paremeters passed to the simulation meth-
ods as described in the previous section. These parameters are applied to all modules at
once when setting them at the system level as follows,

nsl set system.parameter value

where parameter is the corresponding system parameter.

Table 7.7
Additional NSL ���
commands

1 4 8 C H A P T E R 7

These attributes may also be set by module by specifying the following

nsl set module.parameter value

These parameters will be described in terms of “train”, “run” and “integration”
parameters.

Train
The system train parameters are described in table 7.8.

Parameter Default Value Description

trainDelta 1.0 Training delta (step size) for the entire system.

trainEndTime 1.0 Training end time for the entire system.

numTrainEpochs 1 Training epochs for the entire system.

For example, to set the value to 5.0 of trainEndTime for all modules in the system
do the following:

nsl set system.trainEndTime 5.0

Run
The system run parameters are described in table 7.9.

Parameter Default Value Description

runDelta 1.0 Run delta (step size) of the entire system.

runEndTime 1.0 Run end time of the entire system.

numRunEpochs 1 Number of runs (analogous to epochs) for the entire system

For example, to set the value to 5.0 of runEndTime for all modules in the system do
the following:

nsl set system.runEndTime 5.0

Integration Approximation Methods
As discussed in chapter 6, NSL provides numerical methods for integration. The involved
parameters may be set at the system level or per module. The parameters are described in
the following statements, and they are set as follows,

nsl set system.approximation.parameter value

or for a particular module,

nsl set module.approximation.parameter value

where parameter represents the corresponding integration parameter as shown in table
7.10.

Parameter Default Value Description

method Euler NSL offers the following two numerical method options: Euler or
RungeKutta2.

delta 1.0 The user specifies the approximation step or delta for the complete system.

Table 7.8
System Train Parameters

Table 7.9
System Run Parameters

Table 7.10
System Approximation
Parameters

T H E S C R I P T I N G L A N G U A G E N S L S 1 4 9

7.4 Input Output
There are a number of input and output commands dealing with script and data files.

Script Files
Script files store NSLS style command files. These files may be loaded to avoid writing
single commands at a time. Additionally, the user may store a complete window interac-
tion (a “log”) to be loaded at a alter time without having to duplicate it again. In general,
multiple script files can be associated with a single model.

Source
Script files are loaded into the simulator with following command:

nsl source file-name

(File names must be either relative to the current directory or require an absolute
path to the desire file. Additionally, NSL uses the file “SCS_LIBRARY_PATHS”
located in at the user’s home directory to also search for these files.

Data Files
Besides script files, NSLS also supports reading and writing data as “open format” ascii
text—text that would need to be read or written in a specific format for the particular
model—from/to files or the screen (“standard output”). In particular, it is quite useful to
read and store data generated by the simulation into files. Data stored in files can be used
as input to new simulations, such as when saving training weights as with
Backpropagation, or simply as a means of analyzing the simulation output later on in
numerical detail. Note that for simplicity these files may actually follow the NSLS script
format although NSL gives the user this “open format” added flexibility. Note also that
script files are usually loaded (read) all at once while data files are read line by line since
only the user knows its particular format. For this reason NSL provides with a number of
commands to manipulate files.

Open
Opens a file using a particular access type: read (r), write (w) and append (a) having as
default read.

open file-name file-access

If the file is successfully opened, the command will return a file descriptor that can
be saved into a TCL variable using for example

set f [open input.dat r]

Gets
The gets command retrieves the next line from the file associated with the file descriptor
passed as an argument. If the file has reached its end, it returns the empty string. For
example

nsl set hopfieldModel.in.pat [gets $f]

Puts
The puts command passes a string as argument to the file associated with the file descrip-
tor. It adds a new line character at the end of the string, for example

puts $f [nsl get hopfieldModel.hopfield.weights]

1 5 0 C H A P T E R 7

Eof
The eof command tells you if the file associated with the file descriptor has reached its
end. If this is true, it returns 1, otherwise 0.

while {![eof $f]} {

 nsl set hopfieldModel.in.pat [gets $f]

 nsl run

}

Close
The close command closes the file associated with the file descriptor passed as an argu-
ment.

close $f

Monitor
The monitor command is similar to the “puts” command; however, it continuously “puts”
the value of the variable being monitored into the file or screen until specified otherwise
and returns a monitor descriptor. To enable an object specified by name to be written into
a file do:

nsl monitor object-name –file file-descriptor

If file-descriptor is not specified, then “standard output” is taken as the output file
name, which sends the data to the script window, (or where the standard output was redi-
rected):

nsl monitor object-name

Additional parameters may be included in the monitor command.

nsl monitor -parameter value

These parameters are given in table 7.11.

parameter default description

start Current time Start time in the user’s specified units of time (usec, msec, seconds, etc).

stop End time Stop time in the user’s specified units of time.

freq Delta Frequency is the number of cycles until the next reporting period. One means
report every cycle, two means report every other cycle, etc.

All visible NSL objects in a module may be enabled for monitoring by using an
asterisk, “*”, for example

nsl monitor model.module.*

In the case of NSL types of 0 dimension, the object data will be written in a single
line. In the case of NSL array types, the object data will be written in row major format.

To “unmonitor” a particular variable we can type:

nsl unmonitor object-name

Table 7.11
Parameters for the Monitor
Command—start parameter,
stop parameter, freq
parameter.

T H E S C R I P T I N G L A N G U A G E N S L S 1 5 1

7.5 Graphics Displays
Another important functionality of NSLS is to support interactive graphical display
generation. This is achieved both using the script window and script files. In chapter 5 we
discussed how to build the window interface and graphical displays using the NSLM lan-
guage and how to interact with them from the menu interface. In this chapter we will dis-
cuss how to interact using the NSLS language.

Reference Tree for Canvases
In NSLS as in TCL, all windows spring from one parent window—the root window—
denoted by “.nsl”. In addition to varpath (section 7.3), NSLS also provide the displaypath
variable that acts just like varpath but is used to reduce the amount of typing when speci-
fying a display path, for example

nsl set displaypath .nsl.frame1.canvas12

Create and Configure
NSLS uses a general format in creating new windows and configuring already created
ones. Window properties or attributes can be set during their creation or modified after-
wards.

To create a new window where initial attributes are specified using the “-attribute
value” format,

nsl create window window-name -attribute value

To configure an already created window with attributes specified by the “-attribute
value” format,

nsl configure window window-name -attribute value

Note many any attributes may be changed in a single command using multiple
“-attribute value” pairs in the same line.

NslExecutiveWindow
The first window in the graphics interface is always the NSL Executive/Script instanti-
ated by the system and window shown in figure 7.1. This is the root window or console
in the NSL window hierarchy and denoted by “.nsl”. Each additional window/frame
added to the screen should append its name to this executive window name. Since the
executive window is already instantiated, we can only modify its attribute values shown
in table 7.12.

parameter type default description

width int 100 width in pixels

height int 100 height in pixels

x0 int 0 left position in x in pixels

y0 int 0 top position in y in pixels

For example, we could change the size of the NslExecutiveWindow window by
specifying the following

nsl configure .nsl -width 400 -height 200

Table 7.12
Executive Window
Parameters—width
parameter, height parameter,
x0 parameter, y0 parameter.

1 5 2 C H A P T E R 7

NslOutFrame
The user may instantiate multiple NslOutFrames representing independent windows on
the screen, analogous to the NslExecutiveWindow. NslOutFrames are used to display
NslOutCanvas (to be described in the next section) holding actual graphical output. To
create a new NslOutFrame we can type

nsl create NslOutFrame .nsl.frame-name

where frame-name is used to reference the newly instantiated frame object. This name
can then be used for further configuration. The NslOutFrame attribute list is shown in
table 7.13

parameter type default description

display charString frame name

title charString display name any string name to appear in the frame label

rows int 1 the number of rows

column int 1 the number of columns

x0 int 0 position in x direction in pixels

y0 int 0 position in y direction in pixels

width int 100 frame width in pixels

height int 100 frame height in pixels

font charString font used

background charString background color

foreground charString foreground color

freq int 1 graphics update frequency in relation to simulation step.
Default is 1 corresponding to simulation step

Note that NSL can display the output data with frequencies different to those used by
the simulator in performing the actual variable updates. Since displaying data may
become very slow, modifying this frequency can significantly speed up the overall time
or “wall clock time” of the simulation. The only restriction on frequency is that all the
variables within an output frame must have the same output display frequency.

To create an output frame named diddayOut with width 100 and height 200, we
would type:

nsl create NslOutFrame .nsl.diddayOut -width 100 -height 200

For example, if we later want to change the foreground color to white we would
type:

nsl configure .nsl.diddayOut –foreground white

NslOutCanvas
NSL can instantiate multiple NslOutCanvas inside a single independent NslOutFrame
window. Canvases are not independent windows on the screen, but are always part of a
NslOutFrame. To instantiate a new NslOutCanvas the user has to specify besides a
canvas-name a variable name “–var var-name” specifying the particular variable being

Table 7.13
NslOutFrame Attributes.

T H E S C R I P T I N G L A N G U A G E N S L S 1 5 3

output in addition to attribute values. For example, the following line instantiates a new
canvas in an existing frame,

nsl create NslOutCanvas .nsl.frame-name.canvas-name \

–var var-name –attributes value

Note that the variable name is a required parameter. The NslOutCanvas parameter
list is given in table 7.14.

parameter type default description

display charString frame name

title charString display name canvas label

var Object type NSL object to be display in the canvas. Required.

graph charString graph type—see table 5.2.

position charString position in output frame: first, next, previous, and last.

wymin float
double

low variable value in y direction

wymax float
double

high variable value in y direction

wxmin float
double

low value in the x direction—for temporal plots this is
time zero.

wxmax float
double

high value in the x direction—for temporal plots this is
the max time.

freq int the frequency or time step used for collecting data from
the simulation thread

drawcolor charString draw color

drawstyle charString draw style

xlabel charString label placed along x axis

ylabel charString label placed along y axis

option charString re-scale or shift

grid boolean true grid is drawn

As a general example, to create a display canvas s inside an output frame named
maxSelector with an area level graph displaying the values between -1 and 2 for layer
variable “s” we would type

nsl create NslOutCanvas .nsl.maxSelector.s -var didday.s \

 -wymin -1 -wymax 2 -graph Area

When can change for example the NslOutCanvas minimum and maximum values as
follows:

nsl configure .nsl.maxSelector.s -wymin -10 -wymax 20

Note that the order in specifying parameters is irrelevant.

Table 7.14
NslOutCanvas Parameters.

1 5 4 C H A P T E R 7

NslInFrame
The user may instantiate multiple NslInFrames, similar to the NslOutFrames.
NslInFrames are used to display NslInCanvases where the user may interact with the
simulation by providing input or by changing values as the simulation is running. To
isntantiate a new NslInFrame we type

nsl create NslInFrame .nsl.frame-name

where frame-name is used for referencing the newly created frame. The NslInFrame
attribute list is shown in table 7.15

parameter type default description

display charString frame name

title charString display name any string name to appear in the frame label

rows int 1 the number of rows

column int 1 the number of columns

x0 int 0 position in x direction in pixels

y0 int 0 position in y direction in pixels

width int 100 frame width in pixels

height int 100 frame height in pixels

font charString font used

background charString background color

foreground charString foreground color

freq charString 1 graphics update frequency in relation to simulation step.
Default is 1 corresponding to simulation step

To create an input frame named diddayIn with width 100 and height 200, we would
type:

nsl create NslInFrame .nsl.diddayIn -width 100 -height 200

For example, to change the foreground color to white we would do

nsl configure .nsl.diddayIn –foreground white

NslInCanvas
NSL can instantiate multiple NslInCanvases inside a NslInFrame in order to generate
graphical input from the simulation. Similar to NslOutCanvases, NslInCanvases are not
independent windows on the screen, but are always part of a NslInFrame. To instantiate
a new NslInCanvas the user has to specify besides a canvas-name a variable name “–var
var-name” specifying the particular variable being used for input in addition to attribute
values.

nsl create NslInCanvas .nsl.frame-name.canvas-name \

–var var-name –attributes value

Note that the variable name is a required parameter. The parameter list is shown in
table 7.16

Table 7.15
NslInFrame Attributes.

T H E S C R I P T I N G L A N G U A G E N S L S 1 5 5

parameter type default description

display charString frame name

title charString display name canvas label

var Object Type NSL object to be display in the canvas. Required.

graph charString graph type—see specified list below

position charString position in output frame: first, next, previous, and last.

wymin float double low variable value in y direction

wymax float double high variable value in y direction

wxmin float double low value in the x direction—for temporal plots this is
time zero.

wxmax float double high value in the x direction—for temporal plots this is
the max time.

freq float
double

the frequency or time step used for collecting data from
the simulation thread

drawcolor charString draw color

drawstyle charString draw style

xlabel charString label placed along x axis

ylabel charString label placed along y axis

option charString rescale or shift

grid boolean true grid is drawn

Input graph types may be specified with one of the following strings: InputImage
and NumericEditor as described in chapter 5.

As a general example, to create a display canvas s inside an output frame named
maxSelector with an inputImage graph displaying the values between 0 and 1 for layer
variable “s” we would type

nsl create NslInCanvas .nsl.didday.s -var maxSelector.s \

-wymin 0 -wymax 1 –graph inputImage

When can change for example the NslInCanvas minimum and maximum values as
follows:

nsl configure .nsl.maxSelector.s -wymin -10 -wymax 20

Print
The user can print graphical windows to a file using the PostScript format. The command
to do this is:

nsl print -name displayname -filename -filename

Note that the name parameter can be either a whole frame or a single canvas. The
parameters for the print command are given in table 7.17.

Table 7.16
NslInCavas Attributes.

1 5 6 C H A P T E R 7

Parameter type default description

name charString Display name: either “screen”, “.ex”, fully extended frame
name, or fully extended canvas name

size int, int 8.5” by 11” width and height in pixels

position int, int centered x and y position in pixels

orientation charString portrait landscape or portrait

7.6 Summary
The NSLS scripting language is a very powerful language whereas we have only
described its basics. We showed how to use TCL commands to manipulate values of
NSLM variables and how to provide control structure to scripts (if, while, for, and
switch). We also saw how to get data from NSLM variables and store the information in
NSLS variables. A very popular use of the NSLS language is in controlling the simulation
with commands such as “nsl trainAndRunAll”, “nsl stepTrain”, “nslBreakCycle”, etc. Finally,
we documented how to create new NslOutFrames and NslInFrames, as well as how to
add NslOutCanvases and NslInCanvases to them.

Notes

1. Note that NSL can be executed in noDisplay mode in which case no executive win-
dow is brought up.

Table 7.17
Print Command Parameters.

8 Adaptive Resonance Theory
T. Tanaka and A. Weitzenfeld1

8.1 Introduction
The adaptive resonance theory (ART) has been developed to avoid the stability-plasticity
dilemma in competitive networks learning. The stability-plasticity dilemma addresses
how a learning system can preserve its previously learned knowledge while keeping its
ability to learn new patterns. ART architecture models can self-organize in real time pro-
ducing stable recognition while getting input patterns beyond those originally stored.

ART is a family of different neural architectures. The first and most basic architec-
ture is ART1 (Carpenter and Grossberg, 1987). ART1 can learn and recognize binary
patterns. ART2 (Carpenter and Grossberg, 1987) is a class of architectures categorizing
arbitrary sequences of analog input patterns. ART is used in modeling such as invariant
visual pattern recognition (Carpenter et al 1989) where biological equivalence is dis-
cussed (Carpenter and Grossberg 1990).

An ART system consists of two subsystems, an attentional subsystem and an orient-
ing subsystem. The stabilization of learning and activation occurs in the attentional sub-
system by matching bottom-up input activation and top-down expectation. The orienting
subsystem controls the attentional subsystem when a mismatch occurs in the attentional
subsystem. In other words, the orienting subsystem works like a novelty detector.

An ART system has four basic properties. The first is the self-scaling computational
units. The attentional subsystem is based on competitive learning enhancing pattern fea-
tures but suppressing noise. The second is self-adjusting memory search. The system can
search memory in parallel and adaptively change its search order. Third, already learned
patterns directly access their corresponding category. Finally, the system can adaptively
modulate attentional vigilance using the environment as a teacher. If the environment
disapproves the current recognition of the system, it changes this parameter to be more
vigilant.

There are two models of ART1, a slow-learning and a fast-learning one. The slow
learning model is described by in terms of differential equations while the fast learning
model uses the results of convergence in the slow learning model. In this chapter we will
not show a full implementation on ART1, instead an implementation of the fast learning
model will be more efficient and sufficient to show the ART1 architecture behavior.

8.2 Model Description
ART1 is the simplest ART learning model specifically designed for recognizing binary
patterns. The ART1 system consists of an attentional subsystem and an orienting subsys-
tem as shown in figure 8.1.

1 5 8 C H A P T E R 8

Gain2

Gain1

Recognition
Layer F2

Comparison
Layer F1

I

Attentional Subsystem Orienting
Subsystem

Reset

+

+

+

+

++

+

+ +

Figure 8.1 �
ART1 consists of an atten-
tional subsystem and an
orienting subsystem. The
attentional subsystem has two
short term memory (STM)
stages, F1 and F2. Long term
memory (LTM) traces
between F1 and F2 multiply
the signal in these pathways.
Gain control signals enable
F1 and F2 to distinguish
current stages of a running
cycle. STM reset wave inhib-
its active F2 cells when mis-
matches between bottom-up
and top-down signals occur
at F1.

The attentional subsystem consists of two competitive networks, the comparison
layer F1 and the recognition layer F2, and two control gains, Gain 1 and Gain 2. The ori-
enting subsystem contains the reset layer for controlling the attentional subsystem overall
dynamics.

The comparison layer receives the binary external input passing it to the recognition
layer responsible for matching it to a classification category. This result is passed back to
the comparison layer to find out if the category matches that of the input vector. If there
is a match a new input vector is read and the cycle starts again. If there is a mismatch the
orienting system is in charge of inhibiting the previous category in order to get a new
category match in the recognition layer. The two gains control the activity of the recog-
nition and comparison layer, respectively.

A processing element x1i in layer F1 is shown in figure 8.2.

Unit x1i

From F2
To F2

To Orient

From Gain1

X1i

Ii

V1i

G1

Figure 8.2 �
A processing unit x1i in F1
receives input from: pattern Ii,
gain control signal G1 and V1i

equivalent to output X2j from
F2 multiplied by interconnec-
tion weight E21ij. The local
activity serving also as unit
output is X1i.

The excitatory input to x1i in layer F1 comes from three sources: (1) the external
input vector Ii, (2) the control gain G1and (3) the internal network input V1i made of the
output from F2 multiplied appropriate connections weights. There is no inhibitory input
to the neuron. The output of the neuron is fed to the F2 layer as well as the orient sub-
system.

A D A P T I V E R E S O N A N C E T H E O R Y 1 5 9

A processing element x2j in layer F2 is shown in figure 8.3.

Unit x2 j

From F1

From Orient

X2 j

V2 j

From Gain2

G2

To all F2: WTA Figure 8.3��

A processing element x2j in
F2 receives input from: gain
control signal G2 and V2j

equivalent to output X1i from
F1 multiplied by intercon-
nection weight W12ji. The
local activity is also the unit
output X2j.

The excitatory input to x2j in F2 comes from three sources: (1) the orient subsystem,
(2) the control gain G2 and (3) the internal network input V2j made of the output from F1
multiplied appropriate connections weights. There is no inhibitory input to the neuron.
The output of the neuron is fed to the F1 layer as well as the Gain 1 control.

The original dynamic equations (Carpenter and Grossberg 1987) handle both binary
and analog computations. We shall concentrate here on the binary model. Processing in
ART1 can be divided into four phases, (1) recognition, (2) comparison, (3) search, and
(4) learning.

Recognition
Initially, in the recognition or bottom-up activation, no input vector I is applied disabling
all recognition in F2 and making the two control gains, G1 and G2, equal to zero. This
causes all F2 elements to be set to zero, giving them an equal chance to win the subse-
quent recognition competition. When an input vector is applied one or more of its compo-
nents must be set to one thereby making both G1 and G2 equal to one.

Thus, the control gain G1 depends on both the input vector I and the output X2 from
F2,

�
�
� =�

=
otherwise0

0and0if1 2
1

XI
G (8.1)

In other words, if there is an input vector I and F2 is not actively producing output,
then G1 = 1. Any other combination of activity on I and F2 would inhibit the gain control
from exciting units on F1.

On the other hand, the output G2 of the gain control module depends only on the
input vector I,

�
�
� �

=
otherwise0

0if1
2

I
G (8.2)

In other words, if there exists an input vector then G2 = 1 and recognition in F2 is
allowed.

Each node in F1 receiving a nonzero input value generates an STM pattern activity
greater than zero and the node’s output is an exact duplicate of input vector. Since both
X1i and Ii are binary, their values would be either 1 or 0,

X1 = I, if G1 = 1 (8.3)

1 6 0 C H A P T E R 8

Each node in F1 whose activity is beyond the threshold sends excitatory outputs to
the F2 nodes. The F1 output pattern X1 is multiplied by the LTM traces W12 connecting
from F1 to F2. Each node in F2 sums up all its LTM gated signals

�=
i

jiij WXV 1212 (8.4)

These connections represent the input pattern classification categories, where each
weight stores one category. The output X2j is defined so that the element that receives the
largest input should be clearly enhanced. As such, the competitive network F2 works as a
winner-take-all network described by.

{ }
�
�
� �=�=

=
otherwise0

kmax1if1 22j2
2

k
kj

VVG
X (8.5)

The F2 unit receiving the largest F1 output is the one that best matches the input
vector category, thus winning the competition. The F2 winner node fires, having its value
set to one, inhibiting all other nodes in the layer resulting in all other nodes being set to
zero.

Comparison
In the comparison or top-down template matching, the STM activation pattern X2 on F2
generates a top-down template on F1. This pattern is multiplied by the LTM traces W12

connecting from F2 to F1. Each node in F1 sums up all its LTM gated signals

�=
j

ijji WXV 2121 (8.6)

The most active recognition unit from F2 passes a one back to the comparison layer
F1. Since the recognition layer is now active, G1 is inhibited and its output is set to zero.

In accordance with the “2/3” rule, stating that from three different input sources at
least two are required to be active in order to generate an excitatory output, the only com-
parison units that will fire are those that receive simultaneous ones from the input vector
and the recognition layer. Units not receiving a top down signal from F2 must be inactive
even if they receive input from below. This is summarized as follows

�
�
� =�

=
otherwise0

11 1
1

ii
i

VI
X (8.7)

If there is a good match between the top-down template and the input vector, the sys-
tem becomes stable and learning may occur.

If there is a mismatch between the input vector and the activity coming from the rec-
ognition layer, this indicates that the pattern being returned is not the one desired and the
recognition layer should be inhibited.

Search
The reset layer in the orienting subsystem measures the similarity between the input
vector and the recognition layer output pattern. If a mismatch between them, the reset
layer inhibits the F2 layer activity. The orienting systems compares the input vector to
the F1 layer output and causes a reset signal if their degree of similarity is less than the
vigilance level, where � is the vigilance parameter set as 0 < � � 1.

The input pattern mismatch occurs if the following inequality is true,

I

X1<� � (8.8)

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 1

If the two patterns differ by more than the vigilance parameter, a reset signal is sent
to disable the firing unit in the recognition layer F2. The effect of the reset is to force the
output of the recognition layer back to zero, disabling it for the duration of the current
classification in order to search for a better match.

The parameter � determines how large a mismatch is tolerated. A large vigilance
parameter makes the system to search for new categories in response to small difference
between I and X2 learning to classify input patterns into a large number of finer catego-
ries. Having a small vigilance parameter allows for larger differences and more input
patterns are classified into the same category.

When a mismatch occurs, the total inhibitory signal from F1 to the orienting subsys-
tem is increased. If the inhibition is sufficient, the orienting subsystem fires and sends a
reset signal. The activated signal affects the F2 nodes in a state-dependent fashion. If an
F2 node is active, the signal through a mechanism known as gated dipole field causes a
long-lasting inhibition.

When the active F2 node is suppressed, the top-down output pattern X2 and the top-
down template V1 are removed and the former F1 activation pattern X1 is generated again.
The newly generated pattern X1 causes the orienting subsystem to cancel the reset signal
and bottom-up activation starts again. Since F2 nodes having fired receive the long-
lasting inhibition, a different F2 unit will win in the recognition layer and a different
stored pattern is fed back to the comparison layer. If the pattern once again does not
match the input, the whole process gets repeated. .

If no reset signal is generated this time, the match is adequate and the classification
is finished.

The above three stages, that is, recognition, comparison, and search, are repeated
until the input pattern matches a top-down template X1. Otherwise a F2 node that has not
learned any patterns yet is activated. In the latter case, the chosen F2 node becomes a
learned new input pattern recognition category.

Learning
The above three stages take place very quickly relative to the time constants of the learn-
ing equations of the LTM traces between F1 and F2. Thus, we can assume that the
learning occurs only when the STM reset and search process end and all STM patterns on
F1 and F2 are stable.

The LTM traces from F1 to F2 follow the equation

() ()

�
�

�
�

� ���
=

inactiveisonlyif0

activeisonlyif-

activeareandif11

1

1121

1111212
12

1

j

jij

jiijij
ij

V

VWX

VVXWLW

dt

dW
� (8.9)

where �1 is the time constant and L is a parameter with a value greater than one. Because
time constant � is sufficiently larger than the STM activation and smaller than the input
pattern presentation, the above is a slow learning equation that converges in the fast
learning equation

�
�

�

�
�

�

�
+�

=
inactiveisonlyifchangeno

activeisonlyif0

activeareandif
1

1

1

11
1

12

j

j

ji

ij

V

V

VV
XL

L

W (8.10)

1 6 2 C H A P T E R 8

The initial values for W12ij must be randomly chosen while satisfying the inequality

0 < W12ij <
ML

L

+�1
 (8.11)

where M is the input pattern dimension equal to the number of nodes in F1.

The LTM traces from F2 to F1 follows the equation,

()ijij
ji

XWX
dt

dW
1212

21
2 +�=� (8.12)

where �2 is the time constant and the equation is defined to converge during a presenta-
tion of an input pattern. Thus, the fast learning equation of the for W21ji is

�
�
�

=
inactiveisonlyif0

activeareandif1

1

11
21

i

ji
ji V

VV
W (8.13)

The initial value for W21ji must be randomly chosen to satisfy the inequality

1 � W21ji(0) > C (8.14)

where C is decided by the slow learning equation parameters. However, all W21ji(0) may
be set 1 in the fast learning case.

Theorems
The theorems describing ART1 behavior are described next with proofs given in Carpen-
ter and Grossberg (1987). These theorems hold in the fast learning case with initial LTM
traces satisfying constraints (10) and (14). If parameters are properly set, however, the
following results also hold in the slow learning case.

(Theorem 1) Direct Access of Learned Patterns
If an F2 node has already learned input pattern I as its template, then input pattern I acti-
vates the F2 node at once.

The theorem states that a pattern that has been perfectly memorized by an F2 node
activates the node immediately.

(Theorem 2) Stable Category Learning
This theorem guarantees that the LTM traces W12ij and W21ji become stable after a finite
number of learning trials in response to an arbitrary list of binary input patterns. The V1j

template corresponding to the jth F2 node remains constant after at most M-1 times.
In stable states, the LTM traces W12ij become L/(L-1+M) if the ith element of the top-

down template corresponding to the jth F2 node is one. Otherwise, it is zero. The LTM
traces W21ji become one if the ith element of the template of corresponding to the jth F2
node is one. Otherwise, it is zero.

However, theorem 2 doesn’t guarantee that a perfectly coded input pattern by an F2
node will be coded by the same F2 node after presentation. The F2 node may forget the
input pattern in successive learning, though the template of the F2 node continues to be a
subset of the input pattern.

(Theorem 3) Direct Access after Learning Stabilizes
After learning has stabilized in response to an arbitrary list of binary input patterns, each
input pattern I either directly activates the F2 node which possesses the largest subset
template with respect to I, or I cannot activate any F2 node. In the latter case, F2 contains
no uncommitted nodes.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 3

This theorem guarantees that a memorized pattern activates an F2 node at once after
learning and that all F2 nodes have been already committed if any input patterns cannot
be coded. If an input pattern list contains many different input patterns and F2 contains
fewer nodes, all input patterns cannot be coded with � close to 1.

However, the theorem doesn’t guarantee that an input pattern having activated an F2
node during learning should have been coded. If there are many input patterns with
respect to the number of F2 nodes, input patterns which have smaller |X1| tend to be
coded while input patterns with larger | X1| tend to be coded by their subsets or not coded
at all after learning.

8.3 Model Implementation
The complete model incorporates the Attentional and Orient Subsystem into a single Art
module, as shown in figure 8.4, together with the ArtModel instantiating the Art module
with the appropriate sizes for its layers.

Recognition
f2

Comparison
f1

Art

s

matI

matX

in

in

s

x

x

Figure 8.4��

ART module containing the F2
and F2 submodules incorpo-
rating the functionality of both
the Attentional and Orienting
subsystems.

Art Module
Due to the limited process complexity of some of the components of the model only two
submodules F1 and F2 are defined within the Art module. These two submodules corre-
spond to layers F1 and F2 in the Attentional subsystem and include their respective
gains. Also considering the simplicity of the orienting subsystem structures, it is incorpo-
rated directly into module F1.

Every simulation run initialization, corresponding to the beginning of a new epoch, a
new input pattern is sent to the F1 and F2 input vector ports in. Since the input ports in
is a vector and matI is a matrix we do a corresponding conversion between the two.

public void initRun() {

 matrixToVector(matI,in);

}

After completing a simulation run the endRun method is called, in this case we want
to update the matX array in order to display to the user the letter output in a visually
appropriate form.

public void endRun() {

 vectorToMatrix(x,matX);

}

1 6 4 C H A P T E R 8

Comparison Module
The Comparison module contains the corresponding data structure for the F1 layer
including gain 1. Input layer s and activity layer x are both initialized to 0 while weights
are initialized 1.0. This is all done in the initModule method. The initTrain method
resets the active elements. Simulation processing is specified in the simTrain method as
follows

public void simTrain() {

 if (resetActive == 1) { // input vector G1 condition, eq

(8.1)

 resetActive = 0;

 active = -1;

 x = in;

 }

 else { // eq (8.7)

 if (s.nslMax() > 0)

 s.nslMax(active);

 v = w*s; // eq (8.6)

// this is a step function: x=nslStep(in+s,1.99)

 for (int i = 0;i < in.getSize();i++) {

 if (in[i] + v[i] >= 1.99)

 x[i] = 1.0;

 else

 x[i] = 0.0;

 }

 }

}

This module executes the bottom-up activation, the top-down template matching, and the
STM reset and search. The activation cycle is repeated until matching is complete.

After running a complete simulation for a single pattern the endTrain method gets
called. The module changes the LTM traces F12 and F21 after the system reaches stable
responding to an input pattern. This modifies bottom-up and top-down traces F12 and
F21 by the fast learning equations. The LTM learning module may be turned off when
learning is unnecessary.

public void endTrain() {

 s.nslMax(active); // eq. (8.9)

 for (int i = 0;i < w.getRows();i++) {

 if (x[i] == 1.0)

 w[i][active] = 1.0;

 else

 w[i][active] = 0.0;

 }

}

Recognition Module
The Recognition module contains the corresponding data structures for the F2 layer.
Simulation variables are initialized in the initModule method as follows:

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 5

public void initModule() {

// initialization of all LTM weights // eq (8.10)

 float max_value = l.getData()/(l.getData() - 1.0 +

 in.getSize());

 for (int xi = 0; xi < w.getRows(); xi++) {

 for (int yi = 0; yi < w.getCols(); yi++) {

 w[xi][yi] = uniformRandom(float(0.0),max_value);

 }

 }

}

The initTrain method resets the active elements. Simulation processing is specified
in the simTrain method where LTM traces are multiplied to the input from F1 and F2
activation x is computed. The F2 unit that receives the biggest input from F1 that has not
been reset is activated while the other units are deactivated.

public void simTrain() {

 if (s.nslSum() / in.nslSum() < rho.getData()) { // eq (8.8)

 resetY[active] = -1.0;

 active = -1;

 }

 if (active >= 0) {

 nslPrintln(“Matching is passed”);

 system.breakCycle();

 return;

 }

 v = w*s; // eq (8.6)

 num_type maxvalue;

 int i;

 active = -1;

 x = 0.0;

 float BIG_MINUS = -1.0; // the smallest value in this

 program

 // To exclude units which have been already reset

 for (i = 0;i < resetY.getSize();i++) {

 if (resetY[i] == -1.0) {

 v[i] = BIG_MINUS;

 }

 }

 // search for the unit which receives maximum input

 maxvalue = v.nslMax();

 // In the case that there is no available unit

 if (maxvalue == BIG_MINUS) {

 active = -1;

 nslPrint(“An error has occured”);

 system.breakCycle();

 return;

 }

1 6 6 C H A P T E R 8

 // To find the maximum input // eq (8.5)

 for (i = 0;i < v.getSize();i++) {

 if (v[i] == maxvalue) {

 x[i] = 1.0;

 active = i;

 break;

 }

 }

 // For the error

 if (i >= v.getSize()) {

 nslPrintln(“An error has occured”);

 system.breakCycle();

 return;

 }

 if (active < 0) {

 nslPrintln(“There are no available units”);

 system.breakCycle();

 return;

 }

}

After running a complete simulation for a single pattern the endTrain method gets
called.

public void endTrain() {

 nslPrintln(“Top-Down Template Unit:” ,active);

 if (active < 0) {

 nslPrintln(“There are no units for this input”);

 system.breakCycle();

 return;

 }

 float val = l.getData() / (l.getData() - 1.0 + s.sum()); //

 eq (8.11)

 for (int i = 0; i < w.getCols(); i++) {

 if (s[i] == 1.0)

 w[active][i] = val;

 else

 w[active][i] = 0.0;

 }

}

8.4 Simulation and Results2

The ART1 model simulation will be illustrated with character recognition example
(Carpenter and Grossberg, 1987). The NSLS command file ART1.nsls contains NSL
command to set parameters and prepare graphics. The parameters to be set are only the
vigilance parameter and the weight initialization parameter besides the usual simulation
steps specification.

nsl set art.f2.rho 0.7

nsl set art.f2.l 2.0

The system may run without learning by setting the epoch steps to 0.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 7

A window frame with two windows inside corresponding to the input vector and F1
activation pattern X, both shown as a square pattern, are opened in the simulation. A sec-
ond frame with a single window shows the F2 activation pattern X. The latter layer is
shown as a vector representing a group of classified categories.

Execution
A typical ART1 simulation session is as follows;

1. Loading ArtModel.nsl: “nsl source artModel.nsl.”

2. Initialization: Execute the NSL command “nsl init.” This initializes LTM traces and
variables.

3. Setting character: Characters may be interactively fed by the user or read from a
script file. For example read the “nsl source patI1.nsl” file for a single letter.

4. Activation and Learning: Type “nsl train” to train a single cycle of the Art model.
After either the maximum number of simulation steps are executed or X2 stabilizes,
endTrain is executed. Learning may be disabled, only by setting the epoch step
number to 1.

Input

1

2

3

4

5

6

7

I2 I3 I4 V1

V1

V1

V1

V1

V2

V2

V2

V2

I1 Active
Figure 8.5�

Four two-dimensional 5 by 5
(I1, I2, I3 and I4) patterns are
presented to the ART1 system.
The correct output is specified
by the active V element.

Output
We give a simple simulation example in this section. Four input patterns are presented to
the model for a total of seven times. The input patterns, the F2 nodes activated by them,
and top-down template of the activated F2 nodes are shown in figure 8.5.

5. An input pattern I1 is given in the first presentation. Because no patterns have been
memorized yet, the input pattern is completely learned by an F2 node n1 and the top-
down template of n1 is I1 after learning.

6. An input pattern I2 is then given. Because I2 is a subset of I1, I2 directly activates the
same F2 node n1, and I2 becomes a new template of n1.

1 6 8 C H A P T E R 8

7. The input pattern I1 is presented again in the third trial. The F2 node n1 is activated at
first, but it is reset because its template pattern I2 and the input pattern I1 are very
different. Thus, another F2 node n2 is activated and I1 becomes its template.

8. An input pattern I3 is given in the fourth presentation. Though I3 looks closer to I1

than I2, I3 directly accesses n1 and the activated pattern on F1 is I2. The top-down
template of n1 doesn’t change and it is still I2.

9. The next input pattern I4 activates n1 because I4 is a subset of the current template I2

of n1. Then, the template of n1 becomes I4 instead of I2.

10. Next, the input pattern I3 is given again. It activates n1 at first, but it is reset because
its current template I4 and I3 are very different. Thus, I3 activates the F2 node n2 at
the second search, and it becomes the template of the node.

11. Finally, the input pattern I1 is given again. It directly activates the F2 node n2 and the
activated pattern on F1 is I3.

The NSL simulation displays for the V elements are shown in figure 8.6.

Figure 8.6
V elements in the recognition
module of the ART1 system.

The NSL simulation displays comparing the letter input to the corresponding output
is shown in figure 8.7. The above example illustrates some of the features of the model:

� An F2 node that memorizes an input pattern will not necessarily keep memorizing it.
Though the F2 node n1 first memorizes the input pattern I1 in the above simulation,
for example, the node doesn’t respond to I1 in the final presentation. This means that
the final stable state of the model may be largely different from early stages.

� Simpler patterns which have smaller |I|’s tend to be learned. Thus, when the number
of the F2 nodes are limited, complex patterns may not be learned. Skilled adjustment
of a vigilance parameter is indispensable for balanced learning.

� The criterion to classify input patterns is not intuitive. For example, the input pattern
I3 is judged closer to I2 than I1.

� The previous top-down template n presented as an input pattern is not necessarily the
final activation pattern on F1. This means that the model cannot restore pixels erased
by noise though it can remove pixels added by noise.

� These features may be flaws of the model, but they can be taken also as good points.

8.5 Summary
Though we chose a simplified way to simulate ART1 on NSL, some interesting features
of ART1 have been made clear. Different extensions can be made to the NSL implemen-
tation of ART1:

� The first extension would be a full implementation of ART1 original dynamic equa-
tions, in particular the inclusion of membrane potential equations of F1 and F2 nodes
and the slow learning equations.

� The second extension would be to improve ART1. Some features present in our
simulation are not desirable for many applications. We believe some improvements
of the learning equations and matching rules would extend to further applications
while keeping the basic structure of ART.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 9

The third extension would be the implementation of other ART models. ART is a
theory applying to many models, such as ART2, FUZZY-ART (Carpenter et al 1991),
besides various practical applications.

A good exercise here would be to use the Maximum Selector model instead of the
simple WTA used in ART.

Figure 8.7�

Sample letter input and output
in the ART1 system.

Notes

1. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by T. Tanaka as well as contributed Section 8.3 and part of
Section 8.4 to this chapter.

2. The Art model was implemented and tested under NSLC.

9 Depth Perception
A. Weitzenfeld and M. Arbib

9.1 Introduction
Depth Perception enables us to see the world in terms of objects located at various dis-
tances from us. From a single eye at a single time we can determine the direction in space
of various features of the world. Different techniques are available to locate where the
feature is in depth along the given direction (see Arbib 1989 for further details):

� Stereopsis uses cues provided by correlating visual input to two spatially separated
eyes.

� Optic flow uses the information provided to the eye at different times.

� Accommodation works by determining what focal length will best bring an object into
focus.

� Convergence is based on how the eyes must turn to fixate the object in question.

A three dimensional scene presented to the left eye differs from that presented to the
right eye. A single point projection on each retina corresponds to a whole ray of points in
space, but points on two retinae determine a single point in space, the intersection of the
corresponding rays (figure 9.1).

C OA

L R

+qmax

+qmax–qmax

–qmax

qL

qLC

qRC

qR

q0 q0

OA Figure 9.1
Points on a single ray
(projector) match to a single
point on each retina. The
inter-section of two rays, a
ray for each retina, deter-
mines a single point in space.
In this example, C projects to
qRC on the right retina and qLC

on the left retina, respec-
tively. OA defines the optic
axis.

In stereopsis, depth computation is based on the disparity or displacement between
the projection of corresponding points on the two retinae. For example, from figure 9.1,
the disparity generated by the projection of point C in the two retinae is defined as the
spatial displacement between qRC and qLC. This is calculated by (qRC–q0) – (qLC–q0) = qRC

–qLC.
In order to visualize the relationship between disparity d and retinal angle q, the

mapping of the right eye coordinate system onto a Cartesian grid is shown in figure 9.2.
Radial lines are at equal angular increments q and arcs are lines of constant disparity d
spaced at equal increments of disparity. Disparity increases as the arcs get closer to the
retina, where depth resolution becomes finer for closer objects.

1 7 2 C H A P T E R 9

–q3

–q2

q2

q4

q5

–q2 q0 q1 q2

–q4

–q5

d1

d2

d3

d4
d5

Figure 9.2
Mapping of the right eyed coordi-
nate system onto a Cartesian grid.
The two disks under the grid
represent the two eyes. Arcs cor-
respond to disparity d, increasing
as objects get closer to the
retinae. Disparity resolution
increases as well, as the arcs get
closer to the eyes. Angular
position q corresponds to the rays
emanating from the retina at
constant angular increments.

An problem arising from stereopsis is the ambiguity created by pairs of points gener-
ating similar retinal projections (figure 9.3),

 qRA = qRD, qLA = qLC, qRB = qRC, qLB = qLD

The generated disparities are:

 dA = qRA - qLA, dB = qRB - qLB, dC = qRC - qLA, dD = qRD - qLD

giving rise to the following ambiguity:

 dA + dB = dC + dD

where one pair of points would be the be correct one, while the second pair corresponds
to “ghost” points emerging from the disparity maps. In this situation there is no way of
knowing which pair is the “true” pair of points.

C

D

A
B

OA OA

L R

+qmax q0

qR

qRB, qRC

qRA, qRD

-qmaxq0

qLA, qLC

qLB, qLD

qL

+qmax -qmax

Figure 9.3
There is an ambiguity gener-
ated by projections of pairs of
points. Stimuli B and C project
to the same point on the right
retina, similarly A and D. The
same happens on the left ret-
ina, where A and C match to
the same point, similarly to B
and D. While one of the pairs
may be the true pair, there is
no way to distinguish it from
the second ghost pair since
their projection is exactly the
same.

D E P T H P E R C E P T I O N 1 7 3

Two depth perception models resolving this ambiguity are described here: (1) The
disparity model by Dev (1975), based exclusively on disparity cues, and (2) the disparity
and accommodation model by House (1985), using accommodation cues cooperatively
with disparity cues to improve depth estimates.

9.2 Model Description: Disparity
To remove the ambiguity problem Dev (1975) developed a cooperative computational
model for building the depth map “guided by the plausible hypothesis that our visual
world is made up of relatively few connected regions.” This model used neurons whose
firing level represented a degree of confidence that a point was located at a corresponding
position in three-dimensional space. The neurons were so connected via inhibitory
interneurons that cells that coded for nearby directions in space and similar depths should
excite each other, whereas cells that corresponded to nearby directions in space and dis-
similar depths should inhibit each other. The model is shown in figure 9.4: (1) an excita-
tory manifold M indexed by retina position q and disparity d, where nearby cells excite
each other, and cells for a given q and differing d inhibit each other via (2) an inhibitory
interneuron U indexed only by retinal position q. Competition along the d dimension
ensures that for each q, a cell (q,d) will be active for at most one d; cooperation along the
q dimension encourages groups of active cells for a nearby q to have similar d, thus
yielding a segmentation of the image. (See Amari and Arbib 1977 for more detail).

inhibotory fieldU (q)

q (retinal position)

q (retinal position)

excitatory field
d (disparity)

M (q,d) Figure 9.4
The Dev disparity model incor-
porates an excitatory manifold
M indexed by retina position q
and disparity d, and an inhibi-
tory interneuron U indexed
only by retinal position q.

The model contains a Dev disparity module (figure 9.5):

sp mp
data in data out

Dev

Figure 9.5
The ��� disparity module
contains an input port �� that
receives external data and an
output port �� that generates
output data.

The Dev module is implemented by a neural network described by the following
equations, where m corresponds to the excitatory field, u corresponds to the inhibitory
field and s corresponds to the input from the retina (figure 9.6):

() () ijmjuijmij
ij

m shugwmfwm
t

m
+����+�=

�

�
� (9.1)

1 7 4 C H A P T E R 9

() u
i

ijj
j

u hmfu
t

u
�+�=

�

�
�� (9.2)

() ()kmstepmf ijij ,= (9.3)

() ()jj urampug = (9.4)

Input s is computed by calculating disparity between left rL and right rR retina map-
pings. rL(q) is set to 1 if some object projects to point q on the left retina, rL(q) is set to 0
otherwise; and similarly for rR(q). Stereo input is then defined as

sd(q) = RL(q) RR(q+d) (9.5)

which is 1 only if there is an object at position q on the left retina as well as at q+d on the
right retina, and is otherwise 0. In the present section, we simply present the computed s-
array to the Dev module; in the second half of the chapter we will present a Retina mod-
ule that explicitly computes the s-array (and an accommodation array) from the activity
on the 2 retinas. (Note that a more subtle version of the model would require similar local
features, rather than mere presence of an object, at qL and (q+d)R. However, the modular
design of NSL would come to the rescue here, since the input s, rather than being com-
puted by the above formula, would then be supplied by a module computing feature-
based disparities instead.)

u

m

s

Figure 9.6
The ��� module consists
of layers m corresponding
to the excitatory field and u
corresponding to the
inhibitory field and s to the
input from the retina.

9.3 Model Implementation: Disparity
There exist a number of possible different designs when building the model in NSLM.
Different neural layers may be assigned to different modules, or a number of them may
be part of a single module. In the design presented here, the second approach is taken,
where the Dev and DevModel implementation in NSLM are as shown below:

D E P T H P E R C E P T I O N 1 7 5

Dev
The Dev module has the following definition:

nslModule Dev (int sizeX, int sizeY) {

Input layer s(d,q), corresponds to the s layer. The excitatory layer m(d,q) and inhibi-
tory layer u(q) are each defined by a membrane potential array (mp and up) and a firing
array (mf and uf).

private NslDinFloat2 s(sizeX, sizeY);

private NslDoutFloat2 mf (sizeX, sizeY);

private NslFloat2 mp(sizeX, sizeY);

private NslFloat1 up (sizeY);

private NslFloat1 uf(sizeY);

Following, constants are declared. tm and tu are time constants, hm and hu are
threshold constants. ksm, kmu, and kum are connectivity constants; k is used as a step
function parameter; and wm is used as an excitatory convolution mask.

The initRun procedure reinitializes all layers for each simulation run:

public void initRun () {

 mp = 0;

 mf = 0;

 up = 0;

 uf = 0;

}

The simRun procedure defines the dynamic equations:

public void simRun () {

 mp = nslDiff(mp, tm, -mp + ks*s –

kum*nslExpandRows(uf,mp.getRows())+ wm@mf + hm);

 mf = nslStep(mp, k);

 up = nslDiff(up,tu, -up + kmu*nslReduceRows(mf) + hu);

 uf = nslRamp(up);

}

DepthModel
The DepthModel module is used to instantiate the Dev module. No connections are
required between the two modules since no information is passed. The Dev module pro-
duces output but does not receive input from other modules. (Input port sp is actually not
used, but is defined for future extensibility.)

nslModel DepthModel () {

Constant sizes for arrays are:

private int sizeX = 10;

private int sizeY = 8;

The assemblage consists of the following module:

private Dev dev(sizeX, sizeY);

1 7 6 C H A P T E R 9

9.4 Simulation and Results: Disparity
The NSLS script for the Dev model contains system simulation parameter assignments.
Three of these parameters are time step, simulation end time, and the approximation
method:

nsl set system.simDelta 0.1

nsl set system.simEndTime 10.0

nsl set system.diff.approximation euler

The Dev module parameters are then assigned. Connectivity constants are assigned
to 1.0. tm and tu need a common value, as well as hm and hu. wm is assigned five ele-
ments between 0 and 1.0. (These constants could have been assigned values directly in
NSLM, but can be overridden by the script language.):

The parameters within the Dev module are set as follows:

nsl set devModel.kum 1.0

nsl set devModel.kmu 1.0

nsl set devModel.ks 2.0

nsl set devModel.wm 0.4 0.6 1.0 0.6 0.4

nsl set devModel.tm 1.0

nsl set devModel.tu 1.0

nsl set devModel.hm -1.2

nsl set devModel.hu -0.7

nsl set devModel.k 0.75

Input data is directly generated into s, mapping real points as well as “ghosts” (points
with value 1). In the present example, we have followed the scenario of figure 9.3 where
2 “real” points generate a set of disparities that is also consistent with 2 “ghost” points,
yielding a total of 4 “initial candidates” in the array below.

nsl set devModel.s {

{ 0 0 0 0 0 0 0 0 }

{ 0 0 0 0 0 0 0 0 }

{ 0 0 0 0 1 0 0 0 }

{ 0 0 0 0 0 0 0 0 }

{ 0 0 1 0 1 0 0 0 }

{ 0 0 0 0 0 0 0 0 }

{ 0 0 1 0 0 0 0 0 }

{ 0 0 0 0 0 0 0 0 }

{ 0 0 0 0 0 0 0 0 }

{ 0 0 0 0 0 0 0 0 }}

Graphics is specified by first creating a frame to contain the desired display win-
dows:

nsl create DisplayFrame .depth

In each frame we reproduce three windows containing a layer activity each: on top the
input s staying the same throughout the simulation, in the middle the main layer activity mp
and in the bottom the main layer activation mf. The three display windows are created using
the default layout where each new window is added beneath the previous one:

D E P T H P E R C E P T I O N 1 7 7

 nsl create DisplayWindow s -width 500 -height 200

 -graph areaLevel -wymin -1.0 -wymax 2.0

 nsl create DisplayWindow mp -width 500 -height 200

 -graph areaLevel -wymin -3.0 -wymax 3.0

 nsl create DisplayWindow mf -width 500 -height 200

 -graph areaLevel -wymin 0.0 -wymax 1.0

Simulation results during time steps 0 and 2, corresponding to the network building
up internal values, are shown in figure 9.7.

Simulation results during time steps 4 and 6, corresponding to the network complet-
ing building up internal values and solving the ambiguity, are shown in figure 9.8.

Figure 9.7
The Dev model simulation
steps 0 and 2.

1 7 8 C H A P T E R 9

Figure 9.8
The Dev model simulation
steps 4 and 6.

Returning to the situation shown in figure 9.3, the reader will note that the Dev
model favors targets A and B as the “real” targets, and exorcises C and D as “ghost tar-
gets”, even though we had noted that the retinal data were neutral as to the choice of
(A,B) versus (C, D). This is because the design of the Dev model meets the constraint that
the world is made up of surfaces, and thus favors a choice consistent with nearby points
of similar disparity over other choices. We now turn to an architecture which exploits
accommodation as well as disparity cues. Although we do not show this explicitly, the
reader can check that if C and D are the “real” inputs, then the new model will verify this,
whereas the Dev model will not.

9.5 Model Description: Disparity and Accommodation
In many cases, depth perception models depending entirely on disparity cues will con-
verge to an adequate depth segmentation of the image. However, such a system may need
extra cues. The ambiguity resulting from matching a number of points in space to the
same retina coordinate can be reduced by the use of vergence information to give the
system an initial depth estimate. Another method is to use accommodation information to
provide the initial bias for a depth perception system. It is the latter approach that we
adopt here.

The cue interaction model (House 1985) uses two systems, each based on Dev’s
stereopsis model, to build a depth map. One is driven by disparity cues, the other by
accommodation cues, while corresponding points in the two maps have excitatory cross-
coupling. The model is sketched in figure 9.9. M is an accommodation driven field; it
receives information about accommodation and—left to its own devices—sharpens up
that information to yield depth estimates. S is the disparity driven-field, corresponding to
Dev’s original system: it receives disparity information and suppresses (what may be)
ghost targets. Moreover, the systems are intercoupled so that a point in the accommoda-
tion field M excites the corresponding point in the disparity field S, and viceversa. Thus, a
high confidence in a particular (direction, depth) coordinate in one layer will bias activity
in the other layer accordingly. The model is so tuned that binocular depth cues predomi-
nate where available, but monocular accommodative cues remain sufficient to determine
depth in the absence of binocular cues.

D E P T H P E R C E P T I O N 1 7 9

Accommodation
depth inference
system

Monocular
accommodation
driven field

Stereoscopic
disparity
driven field

Disparity
depth inference
system

Efferent
depth
estimates

A

M

S

D

+

+

Figure 9.9
The cue interaction model
for depth mapping uses
cross-coupling between an
accommodation-driven
system and a disparity-
driven system.

The model is composed of the following modules (figure 9.10):

� Dev2: There are two instances of an extended Dev module, now called Dev2, one
processing disparity information and the other accommodation information. Each
consists of an input port a, receiving data from the Retina, a second input port s,
receiving input from the other Dev2 module, and an output port mf, delegating its
output back to Stereo.

� Retina: The Retina module processes retina information. It contains an input port in,
delegated from Stereo, and two output ports, d and a, for disparity and accommoda-
tion, respectively.

� Stereo: The Stereo assemblage provides composition and encapsulation for the
entire model. It delegates its processing to the Retina and two Dev2 modules. The
Stereo module consists of two external ports, input port in and output port out.

� Visin: The Visin module generates the external stimuli. It contains an out output port
connected to the Stereo module.

in

a

a

s

s
d

in

out out

mfmf

a

Dev2 m

Dev2 s

Retina r

Stereo stereo

Stereo assemblage

Visin visin

Figure 9.10
Disparity and Accommodation
model modules: A Visin input
module, a Stereo assemblage,
a Retina module, and two
Dev2 modules.

1 8 0 C H A P T E R 9

Note, the two Dev2 modules are implemented by neural networks similar to those
defined in the original Dev module. These equations are extended to enable cross-
coupling between Dev modules, where m and s correspond to the excitatory fields, u and
v to the inhibitory fields and a and d are the input from the retina (figure 9.11). Consistent
with the definition of Stereo below, you must make the Dev2 modules identical—we
have 2 instances of the same module, and we will show how we connect them to yield
their differential function. The variables internal to each instance must be identical, only
connections and relabelings distinguish them:

� Disparity (Dev2 s):

() () () ijsjvijtijsij
ij

s dhvgwtfwsfws
t

s
+����+�+�=

�

�
� (9.6)

() v
i

ijj
j

v hsfv
t

v
�+�=

�

�
�� (9.7)

() ()ijij ssigmasf = (9.8)

() ()jj vrampvg = (9.9)

� Accommodation (Dev2 m):

() () () ijmjuijtijmij
ij

m ahugwtfwmfwm
t

m
+����+�+�=

�

�
� (9.10)

() u
i

ijj
j

u hmfu
t

u
�+�=

�

�
�� (9.11)

() ()ijij msigmamf = (9.12)

() ()jj urampug = (9.13)

u

m

a

u

d

s

Figure 9.11
Two ��� neural networks
consisting of m and s corre-
sponding to the excitatory
fields, u and v to the inhibi-
tory fields, and a and d are
the input from the retina.

D E P T H P E R C E P T I O N 1 8 1

9.6 Model Implementation: Disparity and Accommodation1

The model is composed of the following modules: Dev2, Retina, Stereo, and Visin:

Dev2
The Dev2 module is defined as before:

nslModule Dev2 (int sizeX, int sizeY) {

Input layer s(d,q), corresponds to the s layer. An additional layer t is used for cross-
coupling between Dev2 modules.

public NslDinFloat2 a(sizeX,sizeY);

public NslDinFloat2 s(sizeX,sizeY);

public NslDoutFloat2 mf(sizeX,sizeY);

private NslFloat2 mp(sizeX,sizeY);

private NslFloat1 up(sizeY);

private NslFloat1 uf(sizeY);

Following, constants are declared similar to the original Dev module. wm is the con-
volution mask, with size 3, and instead of a step function, a saturation function is used;
thus instead of k, x1 and x2 are used as parameters.

private NslFloat0 ksm();

private NslFloat0 kmu();

private NslFloat0 kum();

private NslFloat0 ktm();

private NslFloat1 wm(3);

private NslFloat0 tm();

private NslFloat0 tu();

private NslFloat0 hm();

private NslFloat0 hu();

private NslFloat0 x1();

private NslFloat0 x2();

The initRun procedure reinitializes all layers to 0 for each simulation run:

public void initRun () {

 mp = 0;

 mf = 0;

 up = 0;

 uf = 0;

}

The simRun procedure defines the dynamic equations. They are similar to the Dev
equations except for the addition of t in the expression:

public void simRun () {

 mp = nslDiff(mp, tm, -mp + ksm*s –

kum*nslExpandRows(uf,mp.getRows())+ ktm*t + wm@mf + hm);

 mf = nslSigmoid(mp,x1,x2);

 up = nslDiff(up,tu, -up + kmu*nslReduceRows(mf) + hu);

 uf = nslRamp(up);

}

1 8 2 C H A P T E R 9

Retina
The Retina module is defined as follows (detailed processing for this assemblage is
described in House (1985)):

nslModule Retina (int sizeX, int sizeY, int sizeR) {

The external data arrays are: world input in and output retina vector r:

private NslDinFloat2 in(sizeX, sizeY); // world input

private NslDoutFloat2 a(sizeX, sizeY); // accommodation layer

private NslDoutFloat2 d(sizeX, sizeY); // disparity layer

private NslFloat1 rr(sizeR); // right retina

private NslFloat1 rl(sizeR); // left retina

Following, constants are declared:

private NslFloat0 w(); // 1/2 of interpupillary distance (cm)

private NslFloat0 yf(); // intersection of optical axes

 (0,yf) (cm)

private NslFloat0 l(); // interpupillary line distance from

 origin (cm)

private NslFloat0 dmax(); // maximum disparity

private NslFloat0 sigma(); // spread parameter

The initRun procedure produces the retina mapping (since images are static, there is
no need for a simRun procedure):

public void initRun()

{

 view_to_right_retina(rr,in,w,yf,l);

 view_to_left_retina(rl,in,w,yf,l);

 retina_to_accommodation(a,in,rr,w,yf,l,dmax,sigma);

 retina_to_disparity(d,rr,rl);

}

Stereo
The Stereo assemblage is defined as follows:

nslModule Stereo (int sizeX, int sizeY, int sizeR) {

The assemblage consists of the following modules:

private Retina r(sizeX, sizeY, sizeR);

private Dev2 m(sizeX, sizeY), s(sizeX, sizeY);

Input and output ports are defined as follows:

public NslDinFloat2 in(sizeX, sizeY);

public NslDoutFloat2 out(sizeX, sizeY);

D E P T H P E R C E P T I O N 1 8 3

Connections and relabels are as follows:

public void makeConn () {

 nslConnect (r.a,m.a);

 nslConnect (r.d,s.a);

 nslConnect (m.mf,s.s);

 nslConnect (s.mf,m.s);

 nslRelabel (in,retina.in);

 nslRelabel (s.mf,mf);

}

Visin
The Visin module is defined as follows:

nslModule Visin (int sizeX, int sizeY) {

The external data array is: world input in:

private NslDoutFloat2 out(sizeX, sizeY);

DepthModel
The DepthModel model instantiates the Visin and Stereo modules. A connection is
made between ports in these two modules.

nslModel DepthModel () {

Constant sizes for arrays are:

private int sizeX = 11; // 81;

private int sizeY = 11; // 81;

private int sizeR = 21; // 161;

The assemblage consists of the following modules:

private Visin visin(sizeX, sizeY);

private Stereo stereo(sizeX, sizeY,sizeR);

Connections and relabels are as follows:

public void makeConn () {

 nslConnect (visin.out, stereo.in);

}

9.7 Simulation and Results: Disparity and Accommodation2

The NSLS code for the House model involves system simulation parameter assignments,
including time steps, simulation end time, and the integration method to be used by all
differential equations:

nsl set system.simDelta 0.05

nsl set system.simEndTime 2.0

nsl set system.diff.approximation euler

nsl set system.diff.delta 0.05

1 8 4 C H A P T E R 9

Retina parameters,

nsl set DepthModel.stereo.r.w 3.0

nsl set DepthModel.stereo.r.yf -10.0

nsl set DepthModel.stereo.r.l 22.0

nsl set DepthModel.stereo.r.dmax 0.25

nsl set DepthModel.stereo.r.sigma 0.25

Dev2 disparity parameters,

nsl set DepthModel.stereo.s.tu 0.1

nsl set DepthModel.stereo.s.tm 0.3

nsl set DepthModel.stereo.s.hu 0.0

nsl set DepthModel.stereo.s.hm 0.0

nsl set DepthModel.stereo.s.x1 0.1

nsl set DepthModel.stereo.s.x2 1.1

nsl set DepthModel.stereo.s.wm 0.25 0.68 0.25

nsl set DepthModel.stereo.s.kmu 1.0

nsl set DepthModel.stereo.s.kam 0.5

nsl set DepthModel.stereo.s.kum 0.6

nsl set DepthModel.stereo.s.ks 0.8

Dev2 accommodation parameters,

nsl set DepthModel.stereo.m.tu 0.1

nsl set DepthModel.stereo.m.tm 0.3

nsl set DepthModel.stereo.s.hu 0.0

nsl set DepthModel.stereo.s.hm 0.0

nsl set DepthModel.stereo.m.x1 0.1

nsl set DepthModel.stereo.m.x2 1.1

nsl set DepthModel.stereo.m.wm 0.25 0.68 0.25

nsl set DepthModel.stereo.m.kmu 1.0

nsl set DepthModel.stereo.m.kam 0.5

nsl set DepthModel.stereo.m.kum 0.6

nsl set DepthModel.stereo.m.ks 0.8

Input to the model, Visin module, is

nsl set DepthModel.visin.out{35,41} 1.0

nsl set DepthModel.visin.out{45,55} 1.0

Graphics is specified as follows:

nsl create DisplayFrame .fw0

nsl create DisplayWindow vis.out -width 450 -height 600 -graph

areaLevel \-wymin 0.0 -wymax 1.0

nsl create DisplayFrame .fw1

nsl create DisplayWindow st.m.mf -width 450 -height 300 -graph

spatial3 \ -wymin -1.0 -wymax 1.0 -x0 20 -x1 80 -y0 35

–y1 50 -sz 100 nsl create DisplayWindow st.s.mf -width 450

-height 300 -graph spatial3 \

 -wymin -1.0 -wymax 1.0 -x0 20 -x1 80 -y0 35 -y1 50 -sz 100

D E P T H P E R C E P T I O N 1 8 5

Simulation input (time step 0) is shown in figure 9.12. Input array in and output
arrays a and d, all read from the Retina.

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.13, during time 0.25.

Figure 9.13
Disparity s and accommoda-
tion m corresponding to the
two ���� modules, during
time 0.25.

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.14, during time 0.50.

Figure 9.14
Disparity s and accommo-
dation m corresponding to
the two ���� modules,
during time 0.50.

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.15, during time 0.75.

Figure 9.12
World input for processing:
Input array in and output
arrays a and d, from the
�����	.

1 8 6 C H A P T E R 9

Figure 9.15
Disparity s and accommo-
dation m corresponding to
the two ��� modules,
during time 0.75.

9.8 Summary
We have shown how to take advantage of the features in NSLM to modularly extend the
original Dev disparity model into the House depth perception model. The ability to
extend models makes NSL a very powerful simulation language. There are other modular
decompositions alternative to the one presented in this model. When to choose one
decomposition versus another one, depends on the complexity of the model and how
much extensibility is desired. For example, we could further decomposing the retina
module into an assemblage made of a left and right retina and disparity and accommoda-
tion components as shown in figure 9.16. This would require further refinement of the
model equations and would be useful as far as we can actually assign separate code to
each box. We leave this to the user as an exercise.

D E P T H P E R C E P T I O N 1 8 7

r
in

Retina rr

in

a

a

r

rl

rr

s

s

d

in

in

in

out out

mfmf

a

a

d

Stereo assemblage

RetinaMap assemblage

Dev2 m

Accommodation a

Dev2 s

Disparity d

RetinaMap rm

Retina rl

Stereo stereoVisin visin Figure 9.16
Additional depth model
decomposition by making
the Retina module a
RetinaMap assemblage
composed of two retina
submodule (left and right)
and separate accommoda-
tion and disparity
submodules.

Notes

1. The Depth Perception model was implemented and tested under NSLC.

2. The Depth Perception model was implemented and tested under NSLC.

10 Retina1

F. J. Corbacho and A. Weitzenfeld2

10.1 Introduction
Teeters and Arbib (1991) (Teeters and Arbib 1991) presented a model of the anuran
retina which qualitatively accounts for the characteristic response properties used to
distinguish ganglion cell types in anurans. Teeters et al. (1993) tested the model’s ability
to reproduce quantitatively tabulated data on the dependency on stimulus shape and size,
with a new implementation of the model in the neural simulation language NSL. Data of
Ewert & Hock (1972) relating toad R2, R3, and R4 ganglion cell responses to moving
worm, antiworm, and square-shaped stimuli of various edge lengths are used to test
stimulus shape and size dependency. Gaillard et al. (1998) submitted the model to the
whole battery of physiological experiments to validate the performance under different
stimulation conditions. We stress here the importance of a populational approach to the
models. We place more emphasis on the variation of response properties in a population
of neurons of the same class, rather than questing for the neuron of a given type.

10.2 Model Description
The anuran retina model of Teeters et al. (1993) accounts for the qualitative characteristic
response properties used to classify anuran ganglion cell types as well as for the quantita-
tively determined ganglion cell responses dependent on stimulus size and shape. The
structure of the model is shown in figure 10.1.

Ganglion Cells

Rectification

OPL processing

IPL processing

HIgh-pass
filter

pdb
on-S

adt
on-T

ath
off-T

pbh
off-S

HC

DBC HBC

R
Figure 10.1 �
Overview of model structure. Cell
types are: R - Receptors; HC -
Horizontal cells, DBC and HBC -
Depolarizing and Hyperpolarizing
bipolar cells; PBD and PBH -
positive part of bipolar cell poten-
tials; ATD and ATH - transient
amacrine cells from DBC and HBC
channel; OPL - outer plexiform
layer. IPL - inner plexiform layer.

The top part shows the layers of cells that feed all the ganglion cells, while the bot-
tom part shows the specific inputs for each ganglion cell type. Each single cell in these
diagrams represents a layer of cells in the formal model. We summarize the different

1 9 0 C H A P T E R 1 0

layers of the model in table 10.1 and the equations for the model in table 10.2. We will
present possible improvements as the exposition progresses.

Abbreviation Description

R
H (HC)
R0 - R4
HBC
DBC
PBH
PBD
ATH
ATD
ERF
IRF

Receptor cell
Horizontal Cell
Retinal ganglion cell types: classes 0 to 4
Hyperpolarizing Bipolar Cell
Depolarizing Bipolar Cell
Positive component of the Hyperpolarizing Bipolar Cell
Positive component of the Depolarizing Bipolar Cell
Hyperpolarizing Transient Amacrine
Depolarizing Transient Amacrine
Excitatory Receptive Field
Inhibitory Receptive Field

Neuron
Layer

Equations

Receptor R = 1 - I (10.1)

Horizontal �H dH/dt= H0 - H, H0 = 0 ambient light, 1 ambient dark; �H = 0.1 (10.2)

 Off channel On channel

Bipolars HBC = R - H
PBH = max(HBC, 0)

(10.3)
(10.5)

DBC = H - R
PBD = max(DBC, 0)

(10.4)
(10.6)

Amacrines �a dHBX/dt = HBC - HBX, �a = 0.3
ATHt = max
(HBC-HBX, ATHt-1 e

-t/�a)

(10.7)

(10.8)

�a dDBX/dt = DBC - DBX
ATDt = max
(DBC-DBX, ATDt-1 e

-t/�a)

(10.9)

(10.10)

R0 Cells R0 = k0*ATD - k1 * ((3 . ATH) + ATD)
with k0 = mask(4, 1.8, 1), k1 = mask(15.5, 3.7, 0.8)

(10.11)

R1 Cells R1 = k0 * (PBD+PBH+ATD+ATH) - k1 * (ATD+ATH)
with k0 = mask(3, 2.3, 1), k1 = mask(19.5, 4.6, 3)

(10.12)

R2 Cells R2 = g . ((k0*PBH) + tc)
where tc = k0*ATH - k1 * (ATH+ATD),
and g = pos(tc) where pos(x) = 1 if x > 0, 0 otherwise
with k0 = mask(4, 2.4, 1), k1 = mask(19.5, 4.6, 3)

(10.13)

R3 Cells R3 = k0*a - (k1*a)delayed
where a = p . ATD + ATH
with p = 0.4, k0 = mask(8, 2.4, 1), k1 = mask(19.5, 4.6, 1.4)
while (s)delayed = signal s delayed by 40 milliseconds.

(10.14)

R4 Cells R4 = k0 * (ATH - x . ATD)
with x = 1, k0 = mask(15.5, 3.5, 1).

(10.15)

Receptors (R) convert light energy into neural potentials. The hyperpolarizing
response to light is modeled by setting the receptor potential to the inverse of light inten-
sity (I) that ranges from 0 (dark) to 1 (light). Adaptation and other complexities are not
included in the model. Note that in the case of R2, the model uses two temporary

Table 10.1
Neural layers.

Table 10.2�

Algorithms for receptors
through ganglion cells in the
model.

R E T I N A 1 9 1

variables tc and g where tc is the total transient input to the cell and g is a gate which is
set to 1 if the net transient excitation is larger than the inhibition.

Horizontal cells (H) form the surround receptive field of both bipolar cell types.
They are modeled so that they are only sensitive to the background illumination of the
surround (H0 in table 10.2) and are spatially invariant (uniform potential model) through
the infinite spread of the activation within the cells. This simple interpretation of hori-
zontal cell function ignores the effect of presentation of a local stimulus and suggests that
their main function is to bias the bipolar cells so they operate in their region of maximal
sensitivity.

Bipolar cells (HBC, DBC) are computed as a difference between receptor and hori-
zontal cell activity. Hyperpolarizing bipolar cells (HBC) hyperpolarize in response to
light, depolarizing bipolar cells (DBC) depolarize in response to light. PBH and PBD are
the positive components of the HBC and DBC responses.

Transient Amacrine Cells (ATH, ATD) convert the sustained bipolar outputs into
transient signals. The transient amacrines are modeled as pseudo differentiators which
operate by subtracting the leaky-integrated bipolar potential from the sustained bipolar
potential, and then amplifying the difference if it is above threshold. We modeled the
Bipolars and Amacrines to have one-to-one connections from the preceding layers based
on the following assumptions: (i) horizontal cells in this model have a uniform potential
which in effect makes the spatial connection properties mostly irrelevant, and (ii) den-
dritic tree diameters of the Bipolars and Amacrines are smaller than those of the ganglion
cells.

The model input to the ganglion cells (receptors through bipolar and amacrine)
ignores optics, different receptor types, light adaptation, and distinctions between other
subtypes of horizontal, bipolar, and amacrine cells. It is not our claim that this simplifica-
tion exhausts the functionality of these cells. Rather, we seek to emphasize that only
those properties analyzed in this paper are essential for understanding the range of
ganglion cell properties described here. In fact, the Teeters and Arbib (1991) implemen-
tation of the horizontal and bipolar cells does not really affect the outcome of the stim-
ulus shape and size discrimination tasks. Nevertheless we need the horizontal and bipolar
cells to account for other phenomena caused by changes in whole field illumination.

Ganglion cells (R0 – R4) receive input from bipolar and amacrine cells. Unlike the
bipolar and amacrine cells which have one-to-one connections to their preceding layers,
each ganglion cell input is composed of a central ERF (Excitatory Receptive Field), and
a wider IRF (Inhibitory Receptive Field). The spatial properties of the ERF and IRF are
specified as two-dimensional Gaussians. The notation “mask(dia, sig, wgt)” in table 10.2
denotes a 2-dimensional Gaussian with standard deviation sig (in visual degrees) which
is truncated with diameter dia (so that the Gaussian values are replaced by 0 for points
more distant than dia/2, also in visual degrees, from the center), and which is normalized
so that the sum of all elements is equal to wgt (for a more detailed description see
Appendix I). The ERF extent is modeled as arising from ganglion cell dendritic tree
topology that is narrowly spread, whereas the IRF arises from a more widely spread
topology. The corresponding diagrams are shown in figure 10.2.

1 9 2 C H A P T E R 1 0

g

+

+

–

–delay

(a) Class 0

(d) Class 3

(c) Class 2

(b) Class 1

(e) Class 4

delay

atd
on-T

pbd
on-S

atd
on-T

atd
on-T

atd
on-T

atd
on-T

pbh
on-S

pbh
off-S

ath
off-T

ath
off-T

ath
off-T

ath
off-T

ath
off-T

Figure 10.2�

Ganglion cells R0 through R4. The
receptive field for ganglion cells
type R0 through R3 is composed of
a small excitatory receptive field
(ERF) and an overlapping larger
inhibitory receptive field (IRF). The
ERF and IRF in the R4 model are the
same size. Input to both ERF and
IRF are from bipolar and amacrine
cells (pbd, phb, ath, atd). Spatial
connections and other details of the
algorithms are not shown here but
are given in the text. (From Teeters
and Arbib 1991.)

Stimulus Shape and Size Dependency
In general, the average response of anuran ganglion cells to a moving stimulus depends
on stimulus configuration, size, and velocity—a long thin bar moving in the direction of
its long axis (a “worm” stimulus) will normally give a different response than the same
sized stimulus moving perpendicular to its long axis (“antiworm”). Likewise, a square
shaped stimulus will often generate a different response than do worm or antiworm
stimuli. The response dependence on the edge length of moving worm, antiworm, and
square-shaped stimuli has been determined in the toad (Ewert and Hock, 1972; Ewert,
1976) and in the frog (Schürg-Pfeiffer and Ewert, 1981). The data sets are quite different
even though the same anuran cell types are recorded. In the frog data, only the R3 cell
shows a distinct difference in response to worm, antiworm, and square stimuli. Although
Teeters and Arbib (1991) mainly tuned the ganglion cell models to frog data, this paper
will use the toad data because toad ganglion cells show a much better ability to
differentiate between stimulus types.

Ewert (personal communication) only used a cell’s response to the leading edge of
the stimulus to calculate the average response (nevertheless, our temporal graphs show
both the leading and the trailing edge). In accordance to this methodology, we relied on
the leading edge response to calculate the average response—in all the cases the leading
edge responses are clearly discernible from the residual responses. Our ability to match
these data (and those analyzed by Teeters and Arbib (1991)) suggests that the model is
indeed robust enough to serve as a valid “front end” for Rana computatrix (Arbib, 1987).

A brief qualitative analysis of the model responses to various stimulus shapes and
sizes could offer some useful guidelines for further tuning of the base model. An
instantaneous response of a ganglion cell is the result of summation of ERF induced
excitatory response and the IRF induced inhibitory response. The inputs to ERF and IRF
could be of different combinations of channels (PBH, PBD, ATH, ATD) depending on

R E T I N A 1 9 3

the ganglion cell types. For instance, R2 receives PBH and ATH channels for its ERF,
ATH and ATD channels for its IRF. However, sustained bipolar channel (PBH, PBD)
responses and transient amacrine channel (ATH,ATD) responses present different spatial
characteristics. For example, the PBH bipolar channel layer forms an activation profile
identical to the size and shape of the dark stimulus. The Teeters and Arbib (1991) model
uses a high pass filter to represent the amacrine cells as they convert sustained bipolar
signals into transients. The resulting amacrine cell layer forms an exponentially decaying
surface starting from the edges of the moving stimulus: the ATH layer forms such a
surface starting from the leading edge of a dark moving surface, and the ATD layer from
the trailing edge.

If the shapes of the stimulus classes are restricted to rectangles and if each bipolar
and amacrine cell has maximum instantaneous firing rate of 1, overall activities of PBH
and ATH on their layers are:

PBHsum = lh (10.15)

�
=

�=
1

0x

vx
sum dxehATH � (10.16)

where x is the distance between the amacrines corresponding to the leading edge and the
position of amacrines the stimulus has passed over. Obviously, PBHsum is a function of
both stimulus length (l) and height (h) while ATHsum is only dependent on height of the
stimulus for given velocity (v) and time constant (�). Thus, while the activation pattern on
the PBH layer directly reflects stimulus shape and size, ATH layer activation pattern pro-
duces identical firing patterns for worm, antiworm and square so long as they have the
same height. These different spatial firing patterns of bipolars and amacrines will form
the basis of the shape dependence of ganglion cells.

The average response of anuran ganglion cells usually increases with stimulus size
smaller than the ERF. Assuming that response durations are about equal for a given
velocity, the increase in ganglion cell response in our model stems from the fact that as
stimulus size increases, it excites a larger area of receptors and thus bipolars and
amacrines. This increases the instantaneous ganglion cell response that is proportional to
the sum of activation of amacrines and/or bipolars within the ERF. However, bipolar and
amacrine contributions to the response growth will be different in that bipolar channel
contributions will increase proportional to the stimulus area but the amacrine channel
contribution will increase proportional to the height. As the stimulus size increases
beyond the ERF and into the IRF region, the IRF-contributed inhibition takes effect and
reduces the total response.

Due to size limitations, in this chapter we will focus on R3 cells for a detailed analy-
sis. A similar analysis is provided in Teeters et al. (1993) for the rest of the ganglion
cells.

10.3 Model Implementation
The model implementation consists at the top level of a RetinaModel and a Retina mod-
ule. The Retina module contains a Visin module for generating synthetic visual input,
the Receptors, Horizontal Cells, Bipolar Cells, Amacrine Cells and Ganglion Cells, R2,
R3 and R4, each organized into its own module, as shown in figure 10.3.

1 9 4 C H A P T E R 1 0

Receptor

VisIn

Horizontal

BipolarOn
dbc

BipolarOff
hbc

AmacrineOn
atd

AmacrineOff
ath

R2 R3 R4

out

in

r hor

r hor r hor

bc bc

bc bc

at at0

ath0 atd0

at0 at

pb

ath ath athatd atd atd

Retina

pbh

Figure 10.3 �
Retina module consisting of the
following submodules intercon-
nected between them: Stimulus,
Receptors, Horizontal Cells,
Bipolar Cells (on and off
channel), Amacrine Cells (on and
off channels) and ganglion cells
R2, R3 and R4

Note that we use the same module definition for both on and off channel bipolars
and Amacrines.

Visin
The Visin module uses a special input structure to simulate visual input (see Appendix III
for details). Different kinds of moving (or static) stimuli may be defined interactively. In
the simRun function the model simply needs to specify the in.run() function call for
the actual computation to take place. Note that we initialize in to 0 previously to reset the
visual input.

public void simRun()

{

 in = 0; // need to reset all values first

 in.run(); // compute stimulus position according to pars

 set in file

 out = in; // export

}

Receptor
The Receptor module contains an input port in receiving visual input, while an output
port r sends output to the following modules in the data path. The initRun method ini-
tializes r to 0. The simRun method sets the receptor r value to the input stimulus while
time is less than 7.0 in order to stop it in the ERF. After that its value is sustained from its
last value staying constant.

R E T I N A 1 9 5

public void simRun()

{

if (system.getSimTime() <= 7.0)

 r = in;

}

Horizontal Cells
The horizontal cells get their input from the ambient light through hLevel. The Horizon-
tal module has only a single output port hor. The initRun method initializes hor to 0.
The simRun method computes a differential equation corresponding to a leaky integrator
model for the horizontal cells

public void simRun()

{

 nslDiff(hor,tm,hLevel - hor);

}

Bipolars
Bipolar cells receive input from both the receptors and the horizontal cells. We describe a
single Bipolar module for both the on and off channel cells. The distinction is made in
terms of an on_off instantiation parameter. If “1” the cells are considered
Hyperpolarizing Bipolars and if “-1” they are considered Depolarizing Bipolars. The
initRun method initializes bc and pb to 0. The simRun method computes the bipolar cell
activity bc as a difference between the values of the receptors and horizontal cells, with
its sign depending on whether they are on or off channel cells. An additional output to
the module is pb corresponding rectified value from the cell activity.

public void simRun()

{

 bc = on_off*(r - hor);

 pb = nslMax(bc,0);

}

Amacrines
Amacrine cells receive input from the bipolar cells. We describe a single Amacrine mod-
ule for both the on and off channel cells. The distinction is made this time in terms of
whether it receives input from an on or off channel bipolar cell. The initRun method
initializes all variables to 0 and gets the value of the system delta to be used for
numerical approximation (dt = system.getRunDelta()). The simRun method computes
the amacrine cell activity at through an average exact method instead of the leaky inte-
grator method.

public void simRun()

{

 // nslDiff(ax,tm, bc - ax); // Euler method.

 ax = diff_ae(ax,bc,old_bc,tm); // Average Exact Method.

 at1 = 5*(bc - ax);

 at2 = nslExp(-dt/tm.getData())*at; // compute from

 previous at value

 at = nslMax(at1,at2);

 old_bc = bc; // keep old bc

}

1 9 6 C H A P T E R 1 0

The following average exact approximation method is used,

private NslFloat2 diff_ae(NslFloat2 v,NslFloat2 s,NslFloat2

 prev,NslFloat0 tm)

{

 float dt,tc,temp;

 int vmax = v.getRows(); // Size of the matrices.

 NslFloat2 term1(vmax,vmax);

 NslFloat2 term2(vmax,vmax);

 dt = system.getSimDelta();

 tc = tm.getData();

 if (dt != 0 && tc != 0){

 temp = exp(-dt/tc);

 term1 = (NslFloat2) ((1 - temp) * s + temp * v);

 term2 = (NslFloat2) ((s - prev) * (temp * (tc + dt) –

 tc) / dt);

 }

 return (term1 + term2);

}

Ganglion Cell R2
We model only ganglion cells R2, R3 and R4. All of them receive input from both the on
and off channel amacrine cells. R2 in particular also receives input from the rectification
of the on channel bipolar cell. The R2 module thus includes three input ports without any
output port. It includes both an excitatory receptive field (ERF) and an inhibitory recep-
tive field (IRF). The initRun method initializes the cell activity to 0. It also calculates the
excitatory and inhibitory receptive fields through a Gaussian function. R2 in particular
calculates the difference of gaussians (DOG) between erf and irf in rf.

public void initRun()

{

 r2 = 0; r2f = 0;

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF

kernel

 nslGaussian(irf,irf_dia,irf_sig,irf_wgt); // Gaussian IRF

 kernel

 rf = erf - irf; // DOG for the r2 ganglion cells

}

The simRun method computes a sustained erf (sust_erf) and irf (sust_irf) values
from the erf and irf rectified bipolar cell input convolution, respectively. The cell activity
r2 is computed from a convolution of r2 with the amacrine cell input. The output r2f is
computed by a ramp function.

R E T I N A 1 9 7

public void simRun()

{

 sust_erf = newconv(erf, pbh_erf * pbh); // sustained erf

 input

 sust_irf = newconv(irf, pbh_irf * pbh); // sustained irf

 input

 sust = sust_erf - sust_irf; // sustained

 input

 temp = ath + trailing * atd; // trailing is the effect of

 the trailing

 // edge set to 0 to get Ewert’s data

 r2 = newconv(rf, temp) + sust; // New convolution and No

 Leaky Integ.

 r2f = k*nslRamp(r2);

}

The following convolution method returning a 2d matrix of different size (in this
example 1x1) is used:

private NslFloat2 newconv(NslFloat2& a, NslFloat2& b)

// a is the Mask and b is the input layer.

{

 int saimax = a.getRows();

 int sajmax = a.getCols();

 int sbimax = b.getRows();

 int sbjmax = b.getCols();

 int leftbound = 1; // 32; for the 72x72

 NslFloat2 c(1,1); // Make this variable size // c(8,8) for

 72x72

 for (int i = 0; i < leftbound; i = i+4) {

 for (int j = 0; j < leftbound; j = j+4){

 float val = 0.0;

 for (int m = 0; m < saimax; m++)

 for (int n = 0; n < sajmax; n++)

 val = val + a[m][n] * b[i+m][j+n];

 c[i/4][j/4] = val;

 }

 }

 return c;

}

Ganglion Cell R3
The ganglion cells R3 are similar to R2 in that they receive input from both the on and
off channel amacrine cells. The R3 module includes two input ports without any output
port. It includes both an excitatory receptive field (ERF) and an inhibitory receptive field
(IRF). The initRun method initializes the cell activity to 0. It also calculates the excita-
tory and inhibitory receptive fields through a Gaussian function.

1 9 8 C H A P T E R 1 0

public void initRun()

{

 r3 = 0; r3f = 0;

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF

 kernel

 nslGaussian(irf,irf_dia,irf_sig,irf_wgt); // Gaussian IRF

 kernel

}

The simRun method computes an all input value from both amacrine cells for its erf
while storing old values for its irf. The cell activity r3 is computed from a convolution of
r3 with the amacrine cell input from all by its erf and old for its irf. The output r3f is
computed by a ramp function.

public void simRun()

{

 all = p * atd + ath;

 old = p * old_atd + old_ath;

 r3 = newconv(erf, all) - newconv(irf, old);

 r3f = k*nslRamp(r3);

}

Ganglion Cell R4
The ganglion cells R4 are similar to R2 and R3 in that they receive input from both the
on and off channel amacrine cells. The R4 module includes two input ports without any
output port. It includes only an excitatory receptive field (ERF). The initRun method
reinitializes the cell activity to 0. It also calculates the excitatory receptive field through a
Gaussian function.

public void initRun()

{

 r3 = 0; r3t = 0; r3f = 0;

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF

 kernel

}

The simRun method computes the cell activity r4 by a convolution with the
amacrine cell input difference by its erf. The output r4f is computed by a squashing
function on r4t computed as a ramp function on r4.

public void simRun()

{

r4 = newconv(erf, (ath - atd));

 r4t = nslRamp(r4);

 r4f = k*r4t/(r4t+0.2); // Squashing function

}

10.4 Simulation and Results3

As previously mentioned, we do quantitative modeling of Anuran retina responses for
stimulus shape and size dependency. In this simulations we test the model’s ability to
reproduce quantitatively tabulated data on the dependency on stimulus shape and size

R E T I N A 1 9 9

(Ewert 1976). The goal has been to match Ewert’s quantitative data on the Toad’s retinal
ganglion cells. Input to the model is Light on the receptors (40X40 to simulate the recep-
tive field of a single ganglion cell of each type). The model also simulates “simple”
Horizontal and Bipolar cells. The output of the model represents the temporal firing rate
of a Ganglion cell of each type (R2, R3, R4). Note that there is no trailing-edge effect
since Ewert computed his data with only the response to the leading edge. Furthermore,
no Leaky Integrators we used for the Ganglion Cells.

Simulation Parameters
The simulation parameters include the delta and endTime

nsl set system.runDelta 0.066 ;# Simulation Time Step = 66

 msec.

nsl set system.runEndTime 7.0 ;# Total simulation time = 7 sec

Model Parameters
Model parameters are set for the different modules.

Horizontal Cell parameters:

nsl set retinaModel.retina.hor.tm 0.1

nsl set retinaModel.retina.hor.hlevel 0 ;# Uniform horizontal

 cell potential

 ;# 0 if the background is bright, 1 if dark.

Amacrine Cell parameters:

nsl set retinaModel.retina.ath.tm 0.3

nsl set retinaModel.retina.atd.tm 0.3

Ganglion Cell R2 parameters:

nsl set retinaModel.retina.r2.pbh_erf 0.3

nsl set retinaModel.retina.r2.pbh_irf 0

nsl set retinaModel.retina.r2.trailing 0 ;# Effect of trailing

 edge on R2.

nsl set retinaModel.retina.r2.k 43.8 ;# Scaling Factors for

 ganglion cells.

nsl set retinaModel.retina.r2.erf_dia 4.0 ;# R2 ERF diameter.

nsl set retinaModel.retina.r2.irf_dia 19.5

nsl set retinaModel.retina.r2.erf_sig 2.4 ;# R2 ERF sigmoid

 (for the Gaussian)

nsl set retinaModel.retina.r2.irf_sig 4.0

nsl set retinaModel.retina.r2.erf_wgt 1.0 ;# R2 ERF weight

nsl set retinaModel.retina.r2.irf_wgt 2.3

2 0 0 C H A P T E R 1 0

Ganglion Cell R3 parameters:

nsl set retinaModel.retina.r3.p 0.5 ;# Effect of trailing

 edge on R3

nsl set retinaModel.retina.r3.k 44.0

nsl set retinaModel.retina.r3.erf_dia 8.0

nsl set retinaModel.retina.r3.irf_dia 19.5

nsl set retinaModel.retina.r3.erf_sig 2.0

nsl set retinaModel.retina.r3.irf_sig 10.0

nsl set retinaModel.retina.r3.erf_wgt 1.15

nsl set retinaModel.retina.r3.irf_wgt 2.38

Ganglion Cell R4 parameters:

nsl set retinaModel.retina.r4.k 37.5

nsl set retinaModel.retina.r4.erf_dia 15.5

nsl set retinaModel.retina.r4.erf_sig 3.5

nsl set retinaModel.retina.r4.erf_wgt 1.0

Input Stimulus
Visual input stimulus plays an important role in the Retina model. To simulate this input
the model uses the NSL input library which generates arbitrary sized 2D rectangles mov-
ing on the visual field as explained in Appendix III. To be able to incorporate this input
the modeler needs to specify mapping parameters between the input and the receptor
layer.

In the Retina model, the user has to choose among different types of stimuli. There
are 15 options among Worms, Antiworms and Squares of 2, 4, 8, 16 and 32 visual
degrees. These sizes are used in order to reproduce Ewert’s data on presentation of
Squares, Worms and Antiworms from 2 to 32 visual degrees. A particular concern on
stimulus presentation relates to single cone receptors in the retina. While they have a
density of about 5 to 30 cells per visual degree depending on their location (Carey, 1975)
simulation tests have shown that a density of only 2 cells per visual degree allows suffi-
cient accuracy for modeling responses to the stimuli considered here. When the stimulus
edge partially covers a receptor, we set the receptor inputs to values proportional to the
area covered by the actual (analytical/continuous) stimulus. The error from the edge
effect is then about 4% relative to the analytical solution (Teeters, 1989).

We allow an arbitrary size and shape bitmap to represent our stimulus. In the simula-
tions for the size and shape dependence of the ganglion cells, the velocity of the stimulus
was set to 7.6°/sec so that the stimulus moves approximately 15 pixels in the grid each
simulated second.

The following code in the “retina.nsl” file contains specification parameters for the
visual input. The first values to be set are the distance between adjacent array elements in
the receptor in mapping to the visual input coordinates (dx and dy) together with the
origin of the coordinate system (xz and yz). Instead of 0.5°/cell we specify here 2°/cell for
visualization purposes. This will affect the sizes of stimuli chosen in that we will make
them 4 times as big to compensate for the enlargement.

nsl set retinaModel.retina.visin.input.dx 2

nsl set retinaModel.retina.visin.input.dy 2

nsl set retinaModel.retina.visin.input.xz 0

nsl set retinaModel.retina.visin.input.yz 20

R E T I N A 2 0 1

For each stimulus we want to simulate on the visual field we choose its size and ini-
tial position. In the retina model, the user will choose among three types of stimuli with
varying sizes, consisting of 5 sizes starting with 2 degrees. In table 10.3 we show three
different experiments for the Retina model.

Stimulus Initial Center
Location (xc,yc)

Size (dx,dy) Speed (vx,vy)

Antiworm (-1,0) (2,16) (7.6,0)

Worm (-8,0) (16,2) (7.6,0)

Square (-8,0) (16,16) (7.6,0)

Since we will be scaling values, as previously explained, by 4, we provide a cor-
responding scale variable as follows,

set scale 4

For a WORM stimulus we load the “worm.nsl” file:

set dx [expr 16*$scale] ;# Size, 2 4 8 16 32

set dy [expr 2*$scale] ;# CTE

set vx [expr 7.6*$scale] ;# Speed, number of squares per

 second, 7.6 deg/sec.

nsl create BlockStim stim -layer retinaModel.retina.visin.in \

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy –

 vx $vx

Note how we create a rectangle or “BlockStim” whose size is given by “dx” and
“dy”, its speed by “vx”, all scaled by the scale factor, and whose initial center position is
given by “-xc” and “-yc”. The resulting temporal output for the three ganglion cells for a
16x2 worm is shown in figure 10.4.

Figure 10.4�

These graphs display cell activity
(top level) and firing rate (bottom
level) versus time in seconds for a
16x2 moving worm. Columns
specify different types of ganglion
cells, R2, R3 and R4.

Table 10.3
Algorithms for the model of
ganglion cells

2 0 2 C H A P T E R 1 0

For ANTIWORM as the stimulus we need to load the “antiworm.nsl” file:

set dx [expr 2*$scale]

set dy [expr 16*$scale] ;# Size, 2 4 8 16 32

set vx [expr 7.6*$scale] ;# Speed, number of squares per

 second, 7.6 deg/sec.

nsl create BlockStim stim -layer retinaModel.retina.visin.in \

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy -

 vx $vx

Again we create a rectangle or “BlockStim” whose size is given by “dx” and “dy”,
its speed by “vx”, all scaled by the scale factor, and whose initial center position is given
by “-xc” and “-yc”. The resulting temporal output for the three ganglion cells for a 2x16
antiworm is shown in figure 10.5.

Figure 10.5�

These graphs display cell activity
(top level) and firing rate (bottom
level) versus time in seconds for a
2x16 moving antiworm. Columns
specify different types of ganglion
cells, R2, R3 and R4.

For a SQUARE as the stimulus we need to load the “square.nsl” file:

set dx [expr 16*$scale] ;# Size, 2 4 8 16 32

set dy [expr 16*$scale] ;# Size, 2 4 8 16 32

set vx [expr 7.6*$scale] ;# Speed, number of squares per

 second, 7.6 deg/sec.

nsl create BlockStim stim -layer retinaModel.retina.visin.in \

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy –

 vx $vx

The resulting temporal output for the three ganglion cells for a 16x16 square is
shown in figure 10.6.

R E T I N A 2 0 3

Figure 10.6�

These graphs display activity (top
level) and firing rate (bottom level)
versus time in seconds for a 16x16
moving square. Columns specify
different types of ganglion cells, R2,
R3 and R4.

To allow comparison between the model behavior and tabulated data, the temporal
responses of the ganglion cells generated by the model are converted to an average
response that is then scaled. The average response is calculated as the area under the
above threshold curve divided by the time from first to last above threshold response to
the leading edge of the stimulus (or, in other cases, from the beginning of the leading
edge response to the end of the trailing edge response):

�
= �

0

0 0

)(T

Tt n TT

tR
(10.17)

where T0 is the time for the first such response and Tn is the time for the last. If the
response decays in an exponential manner and is not actively abolished, the response
duration will be infinitely long. For that reason the threshold used is not zero but a small
positive number (0.001).

The analogous experimental average is equal to the total number of spikes divided
by the time from first to last spike during this period. Scaling is achieved by multiplying
all calculated average responses by a “scaling constant” so that the scaled average
response to a 2x2 square moving at 7.6°/second matches that found experimentally by
Ewert (1976).

10.5 Summary
The essential features of the models presented in this paper enabling a close match to the
stimulus shape and size dependency data were also used by several earlier models that
attempted to explain those properties in anurans.

For example, the DOG center-surround structure was used to account for response in
the R2 and R3 cells by an der Heiden & Roth (1987, 1989), Ewert & von Seelen (1974,
also reported in Ewert 1976), and by Grüsser & Grüsser-Cornehls (1973). Variations in
the temporal filter characteristics of retinal elements have been used by Eckmiller (1975),
Grüsser (1967) and Grüsser et al. (1968) to account for variations in the velocity expo-
nent. However, where the previous models were specialized to account for only
particular phenomena, the models in this paper are not only able to account for the
dependence on stimulus shape and size, but also able to account for the generation of
characteristic ganglion cell response properties despite additional constraints applied to
the ganglion cell models developed by Teeters and Arbib (1991). For the R2, R3 and R4

2 0 4 C H A P T E R 1 0

cell models given in Teeters and Arbib (1991), the response dependence on stimulus
shape and size was tested in two parts. First, the original unmodified model was tested.
Second, parameter adjustments and in some cases algorithm modifications, were made in
an attempt to “tune” the model to attain a closer match to the experimental data on
stimulus shape and size dependence. While the original untuned models did not quanti-
tatively match the data, they were qualitatively correct.

Stimulus Size Dependence of R3 Cells
The Teeters and Arbib (1991) model does not match the data very well because the
response to worms decreases with increasing edge length and there is a separation of the
square and antiworm responses for large stimuli. Both of these effects are due to the
inclusion of the slight trailing edge response generated by the model to long square and
worm stimuli when calculating the average response.

Only minor changes are needed to tune the model. Excluding the trailing edge (and
relying only on the leading edge) response for the calculation of the average responses
(Ewert, personal communication) allows a good match to the data, although the response
to the 32° square and antiworm is too large. Further, increasing the weight and the stan-
dard deviation of the IRF Gaussian mask and a little decrease in standard deviation of
ERF mask allows a better match. This suggests that the IRF receptive field is essentially
like a plateau, with a very small decay with distance, while the ERF receptive field is like
a sharp peak. Comparison with the R2 temporal responses (Teeters et al., 1993) reveals
that the main differences lie in (i) R2 responses show a sustained component for the long
worm and a sustained rebound for the large square stimuli, while (ii) R3 responses show
transient responses for both the leading and the trailing edges of the long worm and large
square stimuli. The simulated temporal responses of R2 and R3 for the different stimuli
approximate observed experimental data (Gaillard, personal communication) fairly well.

Predictions Based on the Modified Model Behavior
We now consider two important questions in detail: how do the changes made to the
models here affect their ability to account for characteristics addressed by Teeters and
Arbib (1991), and what predictions result from the changes?

� R2 cell: Characteristic R2 responses as identified by Maturana, Lettvin, McCulloch
& Pitts (1960), and Grüsser & Grüsser-Cornehls (1976) are a lack of response to a
diffuse light change, a lack of response to a moving antiworm longer than 10°, a
prolonged response to a moving stimulus that stops in the ERF, a sensitivity to
movement, a cessation of sustained response following a transient off of the general
illumination, and a stronger response to small objects than to large objects. All of
these characteristic responses but one are found in the toad R2 cells studied by Ewert
& Hock—toad R2’s respond to antiworm stimuli up to 16° in length. The tuning per-
formed in this paper does not destroy the ability of the R2 model to account for these
properties. Specifically, reduction in the IRF weighting to the R2 model will not
allow response to full field flashes because the total IRF weighting is still larger than
that of the ERF. Sensitivity to movement is preserved because the modified R2 cell
receives input from transient amacrine cells that respond only to change. However,
inclusion of PBH input to IRF leads to:

� Prediction 1: For R2 cells tested by Ewert & Hock (1972), while the average
response to squares and antiworms of the same height may be almost identical, the
temporal responses (spike trains) will be different as shown in figure 10.4.

R E T I N A 2 0 5

Future Refinements of the Retina Model
The shape/size tuned retinal model could be tested against other qualitative and quan-
titative data such as the average response as a function of velocity, adaptive state, etc.
(Grüsser & Grüsser-Cornehls, 1976). In order to account for these data, we should proba-
bly incorporate more detailed physiological and morphological facts. Some of the most
obvious ingredients could be:

1. A more detailed Horizontal cell model that is sensitive to the presentation of local
stimuli.

2. Feedback loops among some layers (e.g., feedback from the amacrines to the
bipolars).

3. Multi-compartmental dendritic processing and axonal transmission properties.

Also we have to note that the modeling of transient amacrine cells was based on phe-
nomenological observations rather than on detailed physiological data on these cells. It
might be possible to express the comparatively more responsive synaptic transfer process
of R3s by, for instance, decreasing the amacrine time constant.

Teeters (1989) comments that the high-pass filter transient amacrine is unsuitable for
the R4 cell model. This points out the need for an improved transient generating mecha-
nism in the R4 cell. In retrospect, this is not surprising, because other properties of R4
cells, such as rhythmical bursting and delayed response to illumination decreases also
cannot be accounted for easily by the high pass filter mechanism used in the model.
Rhythmical bursting also occurs in some R3 cells (Maturana et al., 1960), suggesting that
a high pass filter may also be inadequate to explain all of their response properties. Some
type of negative feedback, with time delays or voltage dependent activation, is an
obvious candidate mechanism that could generate oscillations in the neural potentials
leading to bursting type response patterns. Further simulations will be needed to
determine if such a mechanism can be made to simultaneously account for the
characteristic R4 properties, the velocity exponent, rhythmic bursting, and the long
response duration to a decrease in illumination. However, some of the characteristic R4
properties such as prolonged response to a stationary dark object and to the general
illumination decrease can be achieved by incorporating the off channel bipolar inputs. In
fact, Lee (1986) uses the sustained amacrine channel, PBH in our model, as the sole input
to his R4 cells. It may also be possible to model the R4’s large time constant for a
moving object with the proper formulation of spatially sensitive horizontal cells.

Providing a Flexible Framework for Modeling Anuran Retina
In summary, our current retina model cannot match all the experimental data, but does
show how a relatively simple model can explain a wide range of ganglion cell properties.
It also makes clear how, by changing parameter values of different inputs to the ganglion
cells, the response properties of the ganglion cells will in turn change. For instance, when
the weight of the input from the PBH to the IRF of R2 cells is increased, the previously
described average response of the cell will diminish as well as the strength of the sus-
tained response.

We should also note that retinal ganglion cells of the “same” type show a population
of responses, as is elegantly shown in Gaillard’s (personal communication, 1991) experi-
ment on R3 type cells. Gaillard’s result shows surprisingly large variances in ERF size,
temporal activation patterns, etc., among the R3 cells. Similarly, we can expect that bipo-
lars and amacrines will also form statistical distributions of responses. It may be that
during embryogenesis a connection pattern from amacrines to a ganglion cell will be
basically homogeneous, but that during postnatal development certain connections are
strengthened while some are weakened thus giving the diversity among ganglion cells of

2 0 6 C H A P T E R 1 0

the same type. The fact that reciprocal connections exist between the bipolar cells and
amacrines gives some hope that a similar connectivity may exist between amacrines and
ganglion cells, which could provide information paths for selective strengthening and
weakening required for diversity.

In our current model the amacrine population is represented by a layer of cells that
share exactly the same properties. This has proven enough to match the experimental
data described in this paper. But it is certain that the real retina contains several kinds of
amacrine cells showing different properties, and this could promote higher variability in
the response profiles of the ganglion population whose response depend on amacrine
input. For instance, in our preliminary studies on the velocity dependence of ganglion
cells we found it beneficial to decrease the high pass filter (amacrine) time constant from
300ms to 50ms for the R3 and R4 ganglion cells to yield a better fit to the quantitative
data. This suggests that the amacrine time constant may be better represented as forming
a statistical distribution such as a normal distribution centered at a “typical” value and
that the amacrines feeding into the R3 consists mostly of the values in the lower
spectrum. The populational approach could also be applied to the ganglion cells. Thus,
we are led to place more emphasis on the variation of response properties in a population
of neurons of the “same” class, rather than questing for “the” neuron of a given type.

One question that could arise when considering the populational approach is whether
there exists an ill-defined boundary or just a “continuum” between different classes of
ganglion cells. Should we construct a model so that it is possible for one category of cells
to jump to another simply by, for instance, adjusting the “power” of a sustained input or
the transient input? Gaillard (personal communication) has found “R3-like” units whose
characteristic responses are similar to R3 units but whose velocity dependence is closer
to that found in R2 ganglion cells. Their response profiles are stronger in intensity and
temporally more extended than those of typical R3 units. R3s differ from R2s in that (i)
their ERFs are larger, (ii) their ERFs receive no sustained input channel, and (iii) they
have delayed IRF-inhibition. We believe the significance of these differences increases in
the order listed above. We also think the more important a characteristic is, the less
flexible are the parameters that make the characteristic. Notice that the “discrimination
curves” of R2 and R3 cells to different stimuli are surprisingly similar. The main
difference lies in a shift of the optimal length of the square (S) and the antiworm (A)
from 4° (R2 units) to 8° (R3 units) and consequently in a shift of the crossing point
between Worm (W), S, and A curves. This difference can be accounted for by a simple
difference in the R3’s ERF size and therefore we may predict that some R3 cells may
have smaller ERFs so that their responses to dynamic visual stimuli are similar to R2
responses.

Notes

1. Preparation of this paper was supported in part by award number IBN-9411503 for
Collaborative Research (M.A. Arbib and A. Weerasuriya, co-Principal Investigat-
ors) from the National Science Foundation.

2. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by F. Corbacho as well as contributed Section 10.3 and part of
section 10.4 to this chapter.

3. The Retina model was implemented and tested under NSLC.

11 Receptive Fields1

F. Morán, J. C. Chacón, M. A. Andrade and A. Weitzenfeld

11.1 Introduction
The visual nervous system in higher mammals shows a high degree of organization in
which different selectivity properties are found. However, the necessary quantity of
information for specifying that connectivity is much higher than the information stored in
the genetic code (von der Malsburg 1987). Some organizing processes have been found
which could explain this fact.

In an early stage of the development of the mammal embryo, the nervous fibers com-
ing from the ganglion cells grow from retina to brain establishing connections into the
visual cortex. Once a primary gross connection is reached, a self-organizing process,
dependent on neural activity, takes place and the connections are pruned, which gives
functional characteristics to the visual system (Linsker 1990; Singer 1987; Stryker 1986;
von der Malsburg and Singer 1988). This mechanism permits several superposed map-
pings to appear in the visual cortex (Fregnac and Imbert 1984; Orban 1984; Tootell et al
1981).

The receptive field is a characteristic organization of the visual system (Hubel and
Wiesel 1963; Orban 1984). A receptive field of a neuron is the compact region of the
visual space that affects the activity of that neuron. A well-known example is the on-off
or Mexican-hat shaped receptive field, with circular symmetry. If the center area is
stimulated, an activatory response is produced in the target neuron, whereas the stimula-
tion in the neighborhood produces inhibition.

Based on neurophysiological knowledge, some models that explain visual cortex
organization during development have been proposed (Erwin et al 1995). Most of them
use neural network architectures and activity dependent rules (Linsker 1986; Miller et al
1989; von der Malsburg 1990).

The self-organizing network presented in this chapter shows how diffusion of
synaptic activity, competitive synaptic growth and synaptic evolution can explain the
development of variable sized on-off receptive fields in a developmental stage of a
mammal embryo prior to visual experience. Synaptic activity is driven by either activity
correlation or activity anti-correlation (i.e., Hebbian (Hebb 1949) or anti-Hebbian
(Carlson 1990; Földiak 1990) learning rules, respectively).

11.2 Model Description
The model presented in this chapter is based on the classical work of von der Malsburg
(Häussler and von der Malsburg 1983), that has been previously proposed elsewhere
(Andrade and Moran 1996). The architecture of the network is schematically represented
in figure 11.1.

Na
1

Ni
a

Nn
a

N1
b

Nj
b

Nk
b

Nm
b

a b

Wij

Qjk

–

+

Figure 11.1�

The model consists of two neuron layers: (1) an input layer a
(corresponding to LGN - Lateral Geniculate Nucleus) and (2) an output
layer b (corresponding to Primary Visual Cortex). These two layers are
fully interconnected by excitatory connections, Wij > 0 (i = 1,...,n ; j =
1,...,m), while the output layer is fully interconnected by lateral
inhibitory connections, Qjk > 0, (j,k = 1,...,m).

2 0 8 C H A P T E R 1 1

The evolution of the system connectivity starts with an initial random state that will
converge into a final state by processing the following differential equations:

))()()((
d

)(d

))()()((
d

)(d

2

2

tQtFtQ
t

tQ

tWtFtW
t

tW

jk
b
jkjk

jk

ij
a

ijij
ij

���

���

�+=

�+=
(11.1)

where � is a positive constant that accounts for the generation of new synaptic connec-
tions, and parameter � accounts for the rate of change of the established connections.

The terms,)()(tFtW a
ijij and)()(tFtQ b

jkjk , represent a growth factor whose value
depends on the temporal correlation of the signals connecting the neurons. The growth
factor describes the increase (or decrease) of a particular synapse depending on the
global state of all the network synapses. a

ijF and b
jkF are the growth factors of synaptic

weights W and Q, respectively. Growth factor a
ijF uses a Hebbian rule, since it increases

the value of an excitatory connection when correlation grows, as described in previous
models for the development of retinotopic connectivity (Häussler and von der Malsburg
1983) and ocular domains (Andrade and Moran 1996). However, growth factor b

jkF one
uses an anti-Hebbian rule (Carlson 1990; Földiak 1990), since the inhibitory connection
is increased.

The decaying terms Wij(t)��W2
ij(t) and Qjk(t)� Q2

jk(t) are cubic weight terms multi-
plied by a constant � controlling their respective contribution. These terms account for
the individual growth restrictions for each synaptic connection.

The growth factors are a function of the neurons activity correlation (Andrade and
Moran 1997; Häussler and von der Malsburg 1983):

ttAtAtF

ttAtAtF

b
k

b
j

b
jk

b
j

a
i

a
ij

>�<

>�<

)(),()(

)(),()(
 (11.2)

where)(tAa
i

 represents the activity of the input layer neurons a
iN (for i = 1,...,n), and

)(tAb
j represents the activity of the output layer neurons b

jN (for j = 1,...,m).
Initially, the only source of activity is spontaneous activity from the photoreceptors

(layer a in this model), since the visual system does not receive any coherent visual sig-
nal from the environment. Therefore, the spontaneous and non-correlated activity fi(t)
will be the only source of activity in layer a. Moreover, due to the lateral propagation of
activity in that layer, the resulting neuron output will depend on its own activity as well
as on its neighboring neurons, modulated by a cushioning diffusion term,

()jiGD aa
ij �= (11.3)

where Ga is a function of the distance between the neurons assumed to be Gaussian:

()

())2/)/(exp)(

)2/)/(exp)(

2

2

b
b

bb

a
a

aa

sx
s

h
xG

sx
s

h
xG

�=

�=
(11.4)

where sa and sb are positive constants describing the Gaussian width, and ha and hb indi-
cate the surface under the curve, with x i j= � .

In other words, the output activity of the neuron is given by:

a
ki

n

k
k

a
i DtftA �

=

=
1

)()((11.5)

R E C E P T I V E F I E L D S 2 0 9

This activity is transmitted to the output layer by means of the excitatory connections
Wij. In output layer b, the signal received by each neuron is modified by two different
effects: lateral excitatory diffusion of the signal and lateral inhibitory transmission of the
signal, Qjk. The two combined effects lead to the following expression describing activity
in the output neurons:

� � ��
= = ==

�
�
�

�
�
�
�

�
�=

n

q

n

p

m

l
lj

b
ol

b
kjpo

m

o

a
qp

a
q

b
j tQDDtWDtftA

1 1 11

)()()()((11.6)

Since the input layer activity is spontaneous, there is no correlation between the
activity of two neurons, that is to say:

�
�
�

�
=

=><
ji

ji
ttftf ji if0

if1
)(),((11.7)

Or what amounts to:

ijji ttftf �=><)(),((11.8)

where � is Kronecker’s delta. Taking this into account, we can rewrite expression (11.1)
as follows (for a more detailed description see (Andrade and Moran 1997)):

�
�
�

�

�
�
�

�
�+=

�
�
�

�

�
�
�

�
�+=

�

�

=

=

n

q
ijqkqjjk

jk

n

q
ijqj

a
qiij

ij

tQtEtEtQ
t

tQ

tWtEDtW
t

tW

1

2

1

2

)()()()(
d

)(d

)()()(
d

)(d

���

���

 (11.9)

where

� � �
= = =

�
�
�

�
�
�
�

�
�=

n

k

m

p

m

l
lj

b
pl

b
pjkp

a
ikij tQDDtWDtE

1 1 1

)()()((11.10)

It should be noted that a side effect of these correlation functions is that all sponta-
neous activity has been explicitly eliminated from the two equations. Among other con-
siderations, this results in a much easier numeric integration.

11.3 Model Architecture
The model is implemented by a Recfield instantiated by the RecfieldModel at the top
level. The Recfield module contains four modules, LayerA, LayerB, ConnectW and
ConnectQ as shown in figure 11.2.

d
LayerA

ConnectW ConnectQ
LayerB

d
e

p
w qd d

The Recfield module instantiates its four submodules as follows (note the different
parameters passed to each),

Figure 11.2 �
The �������� module is
composed of �	
���
module sending data d to
the excitatory connection
module
������� and
�	
��� module send data
d to inhibitory connection
module
�������.
Module ConnectW send
data e to ConnectQ.
ConnectQ module sends
data p to ConnectW.

2 1 0 C H A P T E R 1 1

nslModule Recfield (int x1, int y1, int x2, int y2)

{

 private LayerA a(x1, y1);

 private LayerB b(x2, y2);

 private ConnectW w(x1, y1, x2, y2);

 private ConnectQ q(x1, y1, x2, y2);

}

In our model all parameters passed to Recfield, x1, y1, x2 and y2, have a size of 5.

LayerA Module
LayerA module defines the diffused activation da with the help of a gaussian distribu-
tion function,

nslModule LayerA (int x1, int y1)

{

 public NslDoutFloat4 d(x1, y1, x1, y1); // (da), to w

 private NslFloat0 s(); // gaussian spread (sa)

 private NslFloat0 h(); // gaussian height (ha)

}

The initRun method computes d value. Note that a user defined external function is
applied,

public void initRun()

{

 nslGaussian(d,h,s);

}

The gaussian function is defined as a library (it will also be used by LayerB).

private void nslGaussian(NslFloat4 g, NslFloat0 h, NslFloat0 s)

{

 int i, j, k, l; // loops

 float dist,dx,dy;

 int x1 = g.getRows();

 int y1 = g.getCols();

 for (i = 0; i < x1; i++)

 for (j = 0; j < y1; j++)

 for (k = 0; k < x1; k++)

 for (l = 0; l < y1; l++) {

 dx = nslAbs(i - k);

 if (dx > (x1 / 2))

 dx = x1 - dx;

 dy = nslAbs(j - l);

 if (dy > (y1 / 2))

 dy = y1 - dy;

 dist = nslSqrt (dx*dx + dy*dy);

 g[i][j][k][l] = (h/s)*nslExp(-nslPow((dist/s),2)/2) ;

 }

}

R E C E P T I V E F I E L D S 2 1 1

ConnectW Module
The excitatory connection module ConnectW is defined as follows

nslModule ConnectW (int x1, int y1, int x2, int y2) {

 public NslDinFloat4 d(x1, y1, x1, y1); // from a

 public NslDinFloat4 p(x2, y2, x2, y2); // from q

 public NslDoutFloat4 e(x1, x2, y1, y2); // to q

 private NslFloat4 w(x1, x2, y1, y2);

 private NslFloat0 maxinitval(); // max weight val

 private NslFloat0 seed(); // random seed

 private NslFloat0 alpha();// get weights out from zero

 private NslFloat0 beta();// integration parameter for act

 private NslFloat0 gamma();// cubic decay term for w

}

Parameters x1, y1, x2 and y2 are assigned to local attributes so they can later be used by
local methods cycling on every array element. Weights are initialized by a random function

public void initWeights(float randa)

{

 int i, j, k, l; // loops

 for (i = 0; i < _x1; i++)

 for (j = 0; j < _x2; j++)

 for (k = 0; k < _y1; k++)

 for (l = 0; l < _y2; l++)

 w[j][i][l][k] = maxinitval*randa;

}

Function nslNormRand() is shown as follows

private int nslNormRand(NslFloat0 seed)

{

 // calculation of the random maximum value

 int j, max_rand = 0;

 for (int i = 0; i < 1000; i++) { // max number of iterations ?

 j = nslRand();

 if (j > max_rand)

 max_rand = j;

 }

 // random seed

 nslRand(seed);

 return nslRand()/max_rand; // normalization to 1

}

The initRun method simply initializes the weights by a normalized random function

public void initRun()

{

 int randa = nslNormRand(seed);

 initWeights(randa);

}

2 1 2 C H A P T E R 1 1

Function convGauss() is shown as follows

private void convGauss()

{

 int i, j, k, l, m, n, o, p; /* loops */

 float sum, sum2;

 /* convolutions gaussian 1 w pp (from L2) */

 for (i = 0; i < x1; i++)

 for (j = 0; j < y1; j++)

 for (k = 0; k < x2; k++)

 for (l = 0; l < y2; l++) {

 sum = 0;

 for (m = 0; m < x1; m++)

 for (n = 0; n < y1; n++) {

 sum2 = 0;

 for (o = 0; o < x2; o++)

 for (p = 0; p < y2; p++)

 sum2=sum2+w[o][m][p][n]*pp[o][p][k][l];

 sum = sum + d[i][j][m][n] * sum2;

 }

 e[k][i][l][j] = sum;

 }

}

Function modifyWeights() is shown as follows

private void modifyWeights()

{

 int i, j, k, l, m, n, o, p; // loops

 float sum, sum2;

 // weight modification

 for (i = 0; i < x1; i++)

 for (j = 0; j < y1; j++)

 for (k = 0; k < x2; k++)

 for (l = 0; l < y2; l++) {

 sum = 0;

 for (m = 0; m < x1; m++)

 for (n = 0; n < y1; n++)

 sum = sum + d[m][n][i][j] * e[k][m][l][n];

 w[k][i][l][j] = alpha + w[k][i][l][j] *

 (1 + beta*(sum - gamma * w[k][i][l][j]

 * w[k][i][l][j]));

 if (w[k][i][l][j] < 0)

 nslPrint(“no”);

 }

}

R E C E P T I V E F I E L D S 2 1 3

The simRun method processes the differential equation defining the weight activity

public void simRun()

{

 // convGauss()

 e = d * (w * p);

 // modifyWeights()

 nslDiff(w,1.0,alpha + beta*w(d*e - gamma*(w^w)); // eq

 (11.9)

}

LayerB Module
LayerB module defines only diffused activation db with the help of a gaussian distribu-
tion function,

nslModule LayerB (int x2, int y2)

{

 public NslDoutFloat4 d(x2, y2, x2, y2); // (db) to Q

 private NslFloat0 s(); // gaussian spread (sb)

 private NslFloat0 h(); // gaussian height (hb)

}

The initRun method computes d value. Note that a user defined external function is
applied,

public void initRun()

{

 nslGaussian(d,delta,sp);

}

ConnectQ Module
The inhibitory connection module ConnectQ is defined as follows

nslModule LayerB (int x1, int y1, int x2, int y2)

{

 public NslDinFloat4 e(x1, x2, y1, y2); // from w

 public NslDinFloat4 d(x2, y2, x2, y2); // from b (db)

 public NslDoutFloat4 p(x2, y2, x2, y2); // to w

 private NslFloat4 q(x1, y1, x2, y2);//x2*y2,x2*y2 inhib(q)

 private NslFloat0 alpha(); // get weights out from zero

 private NslFloat0 beta();// integration parameter for act

 private NslFloat0 gamma(); // cubic decay term for w

}

The initRun method simply initializes the weights to zero

public void initRun()

{

 q = 0;

}

2 1 4 C H A P T E R 1 1

Function convGauss() is shown as follows

private void convGauss()

{

 int i, j, k, l, m, n, o, p; // loops

 float sum, sum2;

 // convolutions q gaussian 2

 for (i = 0; i < x2; i++)

 for (j = 0; j < y2; j++)

 for (k = 0; k < x2; k++)

 for (l = 0; l < y2; l++) {

 sum = 0;

 for (m = 0; m < x2; m++)

 for (n = 0; n < y2; n++)

 sum = sum + d[i][j][m][n] * q[m][n][k][l];

 p[i][j][k][l] = d[i][j][k][l] - sum;

 }

}

Function modifyWeights() is shown as follows

private void modifyWeights()

{

 int i, j, k, l, m, n, o, p; // loops

 float sum, sum2;

 // weight modification

 for (i = 0; i < x2; i++)

 for (j = 0; j < y2; j++)

 for (k = 0; k < x2; k++)

 for (l = 0; l < y2; l++) {

 sum = 0;

 for (m = 0; m < x1; m++)

 for (n = 0; n < y1; n++)

 sum = sum + e[i][m][j][n] * e[k][m][l][n];

 w[i][j][k][l] = alpha + w[i][j][k][l] * (1 + beta *

 (sum - gamma*q[i][j][k][l] * q[i][j][k][l]));

 if (q[i][j][k][l] < 0)

 nslPrint(“no”);

 }

}

The simRun method processes the differential equation defining the weight activity

public void simRun()

{

 // convGauss()

 p = d - (d * q);

 // modifyWeights()

 nslDiff(q,1.0,alpha + beta*q(e*e - ga*(q^q)); // eq (11.9)

}

R E C E P T I V E F I E L D S 2 1 5

11.4 Simulation and Results1

The simulation control file contains parameter value assignment. Note how we can assign
common values to different module parameters (alpha, beta and gamma)

Figure 11.3��

Excitatory connection weight w in ��������
module.

2 1 6 C H A P T E R 1 1

nsl set system.simDelta 0.1

nsl set system.simEndTime 50

set alpha 0.00005

set beta 0.001

set gamma 1e4

nsl set recfield.w.alpha $alpha

nsl set recfield.w.beta $beta

nsl set recfield.w.gamma $gamma

nsl set recfield.q.alpha $alpha

nsl set recfield.q.beta $beta

nsl set recfield.q.gamma $gamma

nsl set recfield.a.seed 77

nsl set recfield.a.maxinitval 0.001

nsl set recfield.a.sp 1

nsl set recfield.a.delta 4

nsl set recfield.b.sp 1

nsl set recfield.b.delta 4

To simulate the model load “recfield.nsl” and then run it. Three display frames are
created containing a display canvas each, for w, q and e respectively. The connection
matrices w and q and the resulting matrix e are shown in the figures 11.3 to 11.5. Matrix
e represents the excitatory/inhibition effect produced on each output layer neuron when
the input layer neuron is activated and the signal is transmitted through the network.
Therefore, it represents the set of receptive fields corresponding to the cortex neurons.

Figure 11.4��

Inhibitory connection weight q
in �������� module.

R E C E P T I V E F I E L D S 2 1 7

In figure 11.3, the variations in geometry of the receptive fields can be noted, while
in figure 11.4 the inhibitory weights show a more homogeneous shape, that is, each neu-
ron is connected to its neighbors in a circular manner. These differences are more rele-
vant if larger number of neurons are used (i.e., a layer of 8x8 neurons presents neurons
with highly different oriented receptive fields)

The result of the joint action of the two weight matrices and the intra-layer lateral
diffusion of signal become apparent in the receptive field values showed in figure 11.5.
Thus, different receptive fields consist of a compact activation area placed in different
positions, and the form of this area is also variable, showing oriented symmetries and
different orientations. The size of the receptive fields is variable, too. When observed in
detail, there is a spatial continuity between the receptive fields. So, closer neurons tend to
coincide in the situation of its positive-area and to have similar geometry, either in ori-
entations or sizes.

11.5 Summary
Through the simulation of this model, the essential characteristics of self-organization
have been demonstrated. The kind of resulting connectivity let us to explain how the
nervous system in general, and the visual system in particular, can obtain their specific
connectivity through self-organizing process based in the system activity and a reduced
number of local rules, easily justifiable from a physiological point of view.

Figure 11.5�Receptive
field e in ��������
module.

2 1 8 C H A P T E R 1 1

Notes

1. This work has been supported in part by grants from the DGICYT, MEC, Spain
(project no. PB92-0456) and from the CICYT, Spain. (project no. BIO96-0895).
This work is part of the Doctoral Thesis of M.A.A. developed under a fellowship
from the MEC, Spain. We thank Prof. Ch. von der Malsburg for his support and
suggestions.

2. The Receptive Fields model was implemented and tested under NSLC.

�

12 The Associative Search Network:
 Landmark Learning and Hill Climbing

M. Bota and A. Guazzelli

12.1 Introduction
In 1981, Barto and Sutton showed how a simple network could be used to model land-
mark learning. Their work was based on a previous paper by Barto et al. (1981) which
defined the associative search problem and presented the associative search network the-
ory. The associative network described by Barto and Sutton (1981) controls locomotion
in a spatial environment composed of distinct olfactory gradients, which are produced by
landmarks. In this chapter, we show how this simple network and associated task can be
easily implemented in NSL. Further discussion of this example is provided in Barto and
Sutton (1981).

Figure 12.1 shows a NSL window, which was used to depict the network and its
environment. For didactic reasons, from now on, we assume that a simple robot, which
contains an associative search network is actually the agent in the environment. The
robot’s only task it to move from its current position to a tree located at the center. Four
additional landmarks, located at the cardinal points exist in this rather simple and
imaginary world.

Figure 12.1 �
A window representing the
robot’s environment (40 x 40
small rectangles). Three con-
secutive filled rectangles
located at the cardinal points
represent the four landmarks:
North, South, West, and East.
The one filled rectangle on the
Southeast quadrant represents
the initial position of the robot.
The four filled rectangles in the
middle represent the tree.

Not only the tree, but also the landmarks emit each a distinctive odor, whose
strengths decay with distance. However, only the odor emitted by the tree is attractive to
the robot. The odors emitted by the landmarks can only be used as a cue to location in
space.

12.2 Model Description
It can be shown that by using a hill-climbing algorithm, the robot can find its way
towards the tree, even without an associative network or landmarks. If we imagine that
the tree is located on the top of a hill, we can use a measure, a payoff function z, that tells
the robot how high up in the hill it is each time it moves one step. Since the goal is to get
to the tree, the higher the robot climbs, the closer it will get to its goal. In this case, the
payoff function reaches its maximum at the goal, i.e. the top of the hill, and decreases
smoothly with increasing distance from the tree. Note that the robot itself does not know

2 2 0 C H A P T E R 1 2

how far it is from the goal. Its only concern is to maximize the value of the payoff
function. In formal terms, at time t the robot takes one step in direction d(t), moving from
a position with payoff z(t) to a new position with payoff z(t+1). If z(t+1) > z(t), then the
robot will continue to move in the same direction, d(t+1) = d(t), with a high probability.
However, if z(t+1) < z(t), then d(t+1) is chosen randomly. This is like a goal-seeking
strategy used by simple organisms, like the bacterial chemotaxis strategy used by several
types of bacteria.

While this hill-climbing strategy alone can give the robot the capacity of eventually
getting to the top of the hill, its trajectory, as we can imagine, will look rather clumsy and
inefficient. Nevertheless, we can improve the robot’s goal-seeking behavior by using
Barto and Sutton’s associative search network (figure 12.2). The network is composed of
four input and four output units. Each input unit i, where i = North, South, East, and
West, receives an input xi(t) from their respective landmark. Moreover, each input unit is
fully connected with all four output units j, where j = North, South, East, and West. This
allows each input unit to adapt four connection weights wji(t) in the connection matrix.
Each weight encodes a degree of confidence that, when the robot is near landmark i, it
should proceed in direction j to get closer to the tree. An extra input unit (depicted in fig-
ure 12.2 as a triangle), represents the specialized payoff pathway z, which has no associ-
ated weights. The payoff function can also be seen as a reinforcement signal.

��������	�
��
���

����

�����

��	��

���

���

���������	���
���

����� ��	��
���
���

Figure 12.2��

The associative search network. The tree and the four
additional landmarks are labeled vertically on the left.
Each landmark releases an odor. The five distinct odors
give rise to five different input pathways (input units are
depicted as filled circles and as a triangle). At the
bottom of the network, four distinct actions (representing
the direction to be taken at the next step) give rise to
four output pathways (output units are depicted as filled
hexagons). Adaptable weights are depicted as
rectangles: bigger weights are represented as bigger
rectangles (negative weights are depicted as hollow
rectangles; positive weights as filled rectangles). See
text for more details.

When the robot is at a particular location in its environment, it is able to sense its
distance from each of the landmarks. The degree of confidence sj(t) for a move in direc-
tion j is determined by the sum of the products of the current weights and the current sig-
nals received from the four landmarks:

sj(t) = w0j(t) + �i wji(t) xi(t) (12.1)

where w0j(t) can be seen as a bias term to be further described below. If we assume that
the connection matrix contains appropriate weights, we can also assume that the chosen
direction j is also appropriate. If, for example, our robot is close to the Northern land-
mark, the output unit South will be activated and the robot’s next step will be towards
South. Moreover, if the robot is in the Southwest quadrant, output units North and East
will be activated and the robot’s next step will be towards Northeast.

T H E A S S O C I A T I V E S E A R C H N E T W O R K : L A N D M A R K L E A R N I N G A N D H I L L C L I M B I N G 2 2 1

However, since it is still too early for us to assume that the network contains suitable
weights, a noise term is added to sj(t), setting the output of unit j at time t to be

yj(t) = 1 if sj(t) + NOISEj(t) > 0, else 0 (12.2)

where each NOISEj(t) is a normally distributed random variable with zero mean. If sj(t) is
bigger than 0 when noise is added, the robot’s next step will be towards direction j. If, on
the other hand, sj(t) is smaller than 0, a random direction is chosen.

At this point, however, the biggest challenge for the robot is to learn appropriate
weights. For this reason, a learning rule has to be implemented. This follows the follow-
ing equation:

wji(t+1) = wji(t) + c[z(t) – z(t-1)] yj(t-1) xi(t-1) (12.3)

where c is a positive constant determining the learning rate. In the simulations depicted
below, c = 0.25. According to this rule, a connection weight wji will only change if a
movement towards direction j is performed (yj(t-1) > 0) and if the robot is near an i-land-
mark (xi(t-1) > 0). If we return to the view of z(t) as height on a hill, we can see that wji

will increase if z increases, which implies that direction j moves the robot uphill. In this
situation, a j-movement will be more likely to happen again. If, on the other hand, wji

decreases, z decreases, which implies the robot is moving downhill. In this case, a j-
movement will be less likely to occur.

12.3 Model Implementation
In NSL, this learning rule is implemented by the following code:

NslDouble2 W(4,4); // weight matrix

NslDouble1 Y(4); // output vector

NslDouble1 X(4); // input vector

double tmp;

double z;

double z1;

…

tmp = 0.25 * (z1 - z);

W=W+tmp*Y*X;

for (i = 0; i < 4; i++){

 for (j = 0; j < 4; j++) {

 if ((W[i][j] >= (0.5))

 W[i][j] = 0.5;

 if (W[i][j]<= (-0.5))

 W[i][j] = -0.5;

 }

}

where z1 = z(t) and z = z(t-1). As it can be seen above, in the computations we per-
formed, the weights are bounded inside the interval [-0.5, 0.5].

The weights w0j (formerly described as biases) are updated as follows:

w0j(t+1) = f[w0j(t) + c0[z(t) – z(t-1)] yj(t-1)], (12.4)

where f(x) = BOUND if x > BOUND, 0 if x < 0, x otherwise (this will bound each w0j to
the interval [0, BOUND]), c0 = 0.5, and BOUND = 0.005. Moreover, this learning rule is
necessary only to permit the robot to climb the hill in the absence of landmark input
information xi.

2 2 2 C H A P T E R 1 2

12.4 Simulation and Results
By providing our robot with an associative search network and the appropriate values for
its connection weights, we are giving the robot the chance of conducting hill climbing in
weight space, instead of physical space. The simulations below try to show this newly
acquired capacity. Figure 12.3a shows a NSL window containing the histogram of places
occupied by the robot in its first attempt to get to the goal (training phase). Figure 12.3b
shows the histogram of the robot’s second attempt to get to the tree (testing phase), this
time starting from a different position. If we compare (a) and (b), we can clearly see that
there is a major improvement in the trajectory taken by the robot, since in 3b, it is using
its long-term store acquired during the training phase. Both histograms are depicted over
the environment as shown in figure 12.1.

Figure 12.3��

Two NSL windows containing the histogram of places occupied by the robot while in search of the tree during
(a) the training phase and (b) the testing phase. In the test phase, the robot starts its trajectory from a different
position than the one used for the training phase. Empty rectangles with a bold contour mean that the robot did
not entered at that position. Empty rectangles with a light contour mean that the robot entered at that position at
most one time. Each window displays a total of 400 steps for each phase.

This landmark-guided hill-climbing example illustrates how the results of explicit
searches can be transferred to an associative long-term store so that in future encounters
with similar (but not identical) situations the system need only access the store to find out
what to do. As pointed out by Arbib (1989), the associative search network shows how
all of this can be accomplished without centralized control. It is thus an improvement
over a non-learning search method, and it also has the important property that the optimal
responses need not be known a priori by the environment, the system, or the system’s
designer.

The NSL environment built to illustrate the robot’s search for the tree is also com-
posed by additional windows than the ones showed above. Figure 12.4 depicts a typical
run. The main window is composed of six small windows. From left to right and top to
bottom, the first window (x) shows the distance on the horizontal plane from the robot to
the tree during the training phase. The second window (y) shows the distance on the
vertical plane during the training phase. One can see that during the search, both
distances are converging to 0. This is reflected in the third window (D), which shows the
computed Euclidean distance between the robot and the tree during the training phase.
The fourth window (Dtest) shows the computed Euclidean distance during the testing
phase. The fifth window (Weight) shows the connection weights in the same way as
shown in figure 12.2. The magnitude of the rectangles reflect the weights obtained at the
end of the training phase. The next two windows (histtrain and histtest) show the
histograms for the training and testing phases as in figure 12.3. In the present case,

T H E A S S O C I A T I V E S E A R C H N E T W O R K : L A N D M A R K L E A R N I N G A N D H I L L C L I M B I N G 2 2 3

however, the robot started its trajectory from the same position in both phases. The last
two windows (pathtest and pathtrain) show the trajectories of the robot on its path from
the initial position to the goal. Each window displays a total of 400 steps.

Figure 12.4 �
The NSL interface window used to
simulate Barto & Sutton’s (1981)
landmark learning task. See text
for details.

12.5 Summary
With this model we have shown how the hill-climbing strategy can give a robot the capa-
bility of getting to the top of a hill. However, we have also shown how to make the algo-
rithm more efficient by improving the robot’s goal-seeking behavior by using Barto and
Sutton’s associative search network (figure 12.2). Also, by using the NSL 3.0 simulation
system we were able to easily encapsulated some of our more complex mathematical
computation, and we were able to easily debug the model. We also used the NSL “Train
and Run” feature to separate out the learning phase from the execution phase of the
model. Finally, we were able to use NSL dynamic plot capability to plot the variables we
were interested in and print the results for this book.

Notes

1. The Associative Search Network model was implemented and tested under NSLJ.

�

13 A Model of Primate Visual-Motor Conditional
 Learning1

A. H. Fagg and A. Weitzenfeld 2

13.1 Introduction
Mitz, Godshalk and Wise (Mitz, Godshalk, and Wise, 1991) examine learning-dependent
activity in the premotor cortex of two rhesus monkeys required to move a lever in a par-
ticular direction in response to a specific visual stimulus. Figure 13.1 shows the protocol
and expected response for one such trial. The monkey is initially given a ready signal,
which is followed by a visual stimulus (instruction stimulus, IS). The monkey is then
expected to wait for a flash in the visual stimulus (trigger stimulus, TS), and then produce
the appropriate motor response. The four possible motor responses are: move the handle
left, right, down, or no movement. When a correct response is produced, the subject is
rewarded with a squirt of juice and a stimulus is picked randomly for the next trial. On
the other hand, when an incorrect response is produced, no reward is given and the same
stimulus is kept for the next trial.

Figure 13.1��

Top row: visual stimulus as
seen on the video screen.
Second row: temporal trace of
the visual stimulus. Third and
fourth rows: Primary events
and periods of the experimental
trial. Fifth row: expected motor
response. (From Mitz et al.,
Figure 1; reprinted by permis-
sion of the Journal of
Neuroscience.)

During the initial training phase, the two subjects were trained to perform the task
with a fixed set of visual stimuli. This phase taught the protocol to the subjects, including
the four appropriate motor responses. Through the second phase of learning, which we
model here, the subjects were presented with novel stimuli and were expected to produce
one of the four previously-learned motor responses. It was during this phase that single-
unit recordings were taken from neurons in the primary- and pre-motor cortices.

Figure 13.2 demonstrates the results of a typical set of second-phase experiments.
The left-hand column shows the correct response, and each row of the right-hand column
shows the monkey’s response over time. Two features of this figure are particularly inter-
esting. First, there are a number of cases in which the monkey exhibits an incorrect
response, and even though it does not receive the positive feedback, it will continue to
output the same response for several additional trials. In most of these cases, the no-go
response is given, which appears to be the “default” response. The second interesting

2 2 6 C H A P T E R 1 3

feature, demonstrated in almost half of these response traces, is that once the monkey
exhibits the correct response, it may give one or more improper responses before pro-
ducing the correct response consistently.

Figure 13.2��

Samples of responses to novel
stimuli given example specific
expected motor responses.
Each row represents only those
trials from an experiment that
corresponds to a specific
desired motor response.
Correct answers are indicated
with a ‘+’. (From Mitz et al.,
table 1; reprinted by permis-
sion of the Journal of
Neuroscience.)

This behavior may be captured at a high level by considering a separate decision box
for each stimulus (A more formal treatment of these computing elements (stochasitic
learning automata) may be found in Bush (1958) and Williams (1988)). A box maintains
a measure of confidence that each motor output is correct, given its particular input
stimulus. When the system is presented with a stimulus, the appropriate box is chosen,
and a motor output is selected based upon the confidence vector. When the monkey
exhibits an incorrect response, positive reinforcement is not given. Therefore, the likeli-
hood of the last response should be reduced slightly, while the probability of picking one
of the other motor responses increases. When a correct response is given, the confidence
value for the exhibited response is rewarded by a slight increase. Our challenge is to
construct a neural implementation that is both distributed in nature and is capable of
identifying novel stimuli as they are presented. The following data gives some hint as to
how the implementation might look.

Mitz et al. recorded primarily from cells in the premotor cortex. A variety of cell
types were identified. Anticipatory cells tend to fire between the ready signal and the IS.
Signal cells respond to the presentation of a relevant stimulus, whereas set-related cells
fire after the IS, in preparation for a particular motor response. Movement-related cells
respond to the presentation of the TS and in some cases stay on for the duration of the
movement. Most cells exhibit multiple response properties (e.g., combined set- and
movement-related responses). Signal- , set-, and movement-related cells typically fired in
correlation with a particular motor response. Thus, for any particular visual stimulus,
only a small subset of cells fired significantly during the execution of the corresponding
motor program. As learning progressed, some cells were seen to increase in their
response activity towards a stimulus, while others decreased in their response.

Figure 13.3 shows normalized activity and performance curves for one experiment
plotted against the trial number. The normalized activity is computed for a particular
stimulus by looking at the activity of the ensemble of units that show an increase in
activity over the course of learning. The performance curve is computed as a sliding win-
dow over a set range of trials. It is important to note that the performance curve precedes
the activity curve in its sudden increase.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 2 7

Figure 13.3 �
Normalized activity and per-
formance curve plotted as a
function of trial for the pres-
entation of a novel stimulus.
The rise in overall perform-
ance precedes that of cellular
activity by about 3 trials.
(From Mitz, figure 3;
reprinted by permission of the
Journal of Neuroscience.)

Mitz et al. (1991) identified a number of key features of learning-dependent activity
in these experiments:

a. The increase in cell activity (for those cells that increased their activity over the
learning period) was closely correlated with, but was preceded by, the improvement
in performance. Similar relations were seen in signal-, set-, and movement-related
units.

b. Activity of a particular unit for correct responses was, in most cases, higher than that
during incorrect responses in the same movement direction.

c. Activity for correct responses during times of good performance exceeded that at
times of poor performance.

d. When multiple sets of novel stimuli were presented to the monkey, similar learning-
dependent responses of the signal-, set-, and movement-related cells were observed
for stimuli that yielded the same motor response.

e. The activity pattern resulting from a familiar stimulus closely correlated with the
activity due to novel stimuli (after learning), although this correlation was not a per-
fect one. This and previous point (d) demonstrate that a similar set of premotor neu-
rons are involved in responding to all stimuli mapping to the same motor output.
From this, we can conclude that the pattern discrimination is probably not happening
within the premotor cortex. If this were the case, one would expect separate groups
of cells to respond to different stimuli, even if these stimuli mapped to the same
motor output.

This set of experimental results presents a set of modeling challenges. We here list
both those that we meet in the present model, and those that pose challenges for future
research.

1. Our neural model is capable of learning the stimulus/motor response mapping,
producing qualitatively similar response traces to those of figure 13.2:

a. The appropriate number of trials that are required to learn the mapping.

b. Incorrect responses are sometimes given on several repeated trials.

c. Correct responses are sometimes followed by a block of incorrect responses.

The model can generate the variety of response traces, with the network starting conditions
determining the actual behavior.

2 2 8 C H A P T E R 1 3

2. The model produces realistic normalized activity/performance curves (figure 13.3).
The performance curve leads the activity curve by a number of learning trials.

3. A complete model will also reproduce the temporal activity of various neurons in the
premotor cortex, including: anticipatory units, signal-related units, set-related units,
and movement-related units.

13.2 Model Description
Much of neural network research has concentrated upon supervised learning techniques,
such as the generalized delta rule or backpropagation (Rumelhart, Hinton and Williams,
1986). In our modeling efforts, we have chosen to explore other algorithms within an
architecture that can be related (at least at a high level) to the biological architecture,
while perhaps also offering greater computational capability.

Backpropagation with sigmoidal units suffers from the problem of global representa-
tion—in general, every unit in the network, and thus every weight, participates in a single
input-output mapping. As a result, the gradient in weight space due to a single pattern
will contain a component for almost every weight, and therefore learning can become
rather slow. A related problem is that, in order to maintain an older memory for at least
some amount of time, the learning of a new memory cannot alter the older memory to all
but a very small degree. This is difficult to accomplish if all units are participating in
every mapping and all weights are altered as a result of learning a single pattern.

With these problems in mind, we have sought distributed representations in which a
single pattern (or task) is coded by a small subset of the units in the network. Although
different subsets of units are allowed to overlap to a certain degree, interference between
two patterns is minimized by the non-overlapping components. Inspired by the cell
activities observed by Mitz et al., we see a unit that has not learned to participate in a
motor program as being able to respond to a wide range of different inputs. As learning
progresses for this unit, its response increases significantly for some stimuli, while it
decreases for the remainder.

Network Dynamics
The primary computational unit in the proposed model is the motor selection column,
each consisting of two neurons: the feature detector unit and the voting unit (figure 13.4).
The overall network is composed of a large number of these columns, each performing a
small portion of the stimulus-to-motor program mapping.

Threshold
Modulator

Feature
Detector

Voting
Unit

Noise

Threshold

Stimulus
Pattern

Motor OutputsMotor Program

Figure 13.4 �
The motor selection column
model. The feature detector
detects specific events from the
sensory input. The voting unit
produces a vote for an appropriate
set of motor programs. This unit,
along with the noise and the
threshold modulator, implements
a search mechanism.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 2 9

The feature detector recognizes small patterns (microfeatures) in the input stimulus.
Due to the distributed construction of the circuit, a particular signal unit is not restricted
to recognize patterns from a single stimulus, but may be excited by multiple patterns,
even if these patterns code for different responses. A particular signal unit is physically
connected to only a small subset of the input units. This enforces the constraint that only
a small subset of the columns will participate in the recognition of a particular pattern. As
will be discussed later, this reduces the interference between patterns during learning.

The state of the feature detector units are described by the equations:

InputsWThresholdFeature
dt

Featured
featureinfmem

mem
f *,+��=� (13.1)

()memFeaturerampFeature =

where:

� �f is the time constant (scalar) of membrane potential change.

� Thresholdf is the internal threshold of the feature detector units (a scalar).

� Featuremem is a vector of membrane potentials for the set of feature detector units.
The initial condition (at the beginning of a trial) is Featuremem = - Thresholdf for all
elements of the vector.

� Win,feature is the weight matrix between the input stimulus and the feature detector
units. These weights are updated by learning.

� Inputs is the vector of stimulus inputs.

� Feature is the vector of firing rates of the feature detector units.

The voting unit receives input from its corresponding feature detector, as well as
from a noise process and the threshold modulator. Based upon the resulting activity, the
voting unit instantiates its votes for one or more motor programs. The strength of this
vote depends upon the firing rate of this neuron and the strength of the connection
between the voting unit and the motor program selector units.

The behavior of the voting units is governed by the equations:

() NoiseFeaturetThresholdVoting
dt

Votingd
vmem

mem ++��=� (13.2)�
()memVotingsaturationVoting = �

where :

� �v is the time constant of the voting units.

� Votingmem is the membrane potential of the voting units (vector). The initial condi-
tions are Votingmem = -Thresholdv(t) for all units.

� Thresholdv(t) is the time-dependent threshold determined by the threshold modulator
(a scalar).

� Feature is the vector of firing rates. Each voting unit receives input only from its
corresponding feature unit.

� Noise is a low-amplitude noise process that changes slowly relative to �v (vector).

� Voting is the firing rate vector.

As shown in figure 13.5, the votes from each column are collected by the motor pro-
gram selection units, labeled “Left”, “Right”, “Down”, and “No-Go”. The final activity of
these units determines whether or not a particular motor program is activated, and thus
executed.

2 3 0 C H A P T E R 1 3

Sensory Input

Threshold
Modulator

No-
go Left Right Down

s

Motor Output

WTA

Motor Program
Selection Units

Figure 13.5��

The motor program selection
units label corresponds to the
four action circles (no-go, left,
right, down). A set of motor
selection columns votes for the
motor responses. The votes are
collected by units representing
the activity of the schemas for
each of the legal motor
responses. The winner-take-all
circuit ensures that only one
motor program is selected.

Depending upon the state of the voting units, the motor program selection units/
winner- take-all circuit attempts to choose a single motor program to activate. This selec-
tion process is governed by the following equations:

NoiseMotorMotorSVotingWThresholdMotor
dt

Motord
motorvotemmem

mem
m _*, ++�+��=�

(13.3)

where :

� �m is the motor selection unit time constant.

� Motormem is the membrane potential of the motor selection units (a vector). The ini-
tial conditions are Motormem = -Thresholdm for all elements in the vector.

� Thresholdm is the scalar threshold of the motor selection units.

� Wvote,motor is the weight matrix representing the projection from the voting units to the
motor selection units.

� S is the firing rate of the inhibitory neuron. The initial condition of this neuron is
S = 0.

� Motor is the firing rate vector. Initially, Motor = 0 for all elements.

� Motor_noise is a low-amplitude noise process, that changes slowly relative to �m

(a vector).

� The winner-take-all circuit (Didday 1976) ensures that at most one motor program
will be activated at any one time. This is accomplished through the inhibitory neuron
(S).

[]�
=

+��=
N

i
Smem

mem
S iMotorThresholdS

dt

Sd

1

� (13.4)

()memSrampS =

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 3 1

� Smem is the membrane potential of the inhibitory neuron (a scalar, since there is only
one). The initial condition for this neuron is Smem = -Thresholds. Thresholds is the
threshold of the inhibitory neuron.

When more than one motor program selection unit becomes active, this unit sends an
inhibitory signal to the array of motor program selection units. The result is that all of the
units will begin turning off, until only one is left (the unit receiving the largest total of
votes from the motor columns; Amari and Arbib 1977). At this point, the one active unit
will cue the execution of its motor program.

The reception of the trigger stimulus (TS) causes the execution of the selected motor
program. Although only a single motor program selection unit will typically be active
when the TS is received, two other cases are possible: none active, and more than one
active. In both cases, the No-Go response is executed, irrespective of the state of the No-
Go motor program selection unit. Thus, the No-Go response may be issued for one of two
reasons: explicit selection of the response, or when the system is unsure as to an appro-
priate response by the time the TS is received.

The global threshold modulator and the local noise processes play an important role
in the search for the appropriate motor program to activate. When a new visual stimulus
is presented to the system, the feature detector units will often not respond significantly
enough to bring the voting units above threshold. As a result, no voting information is
passed on to the motor program selection units. The threshold modulator responds to this
situation by slowly lowering the threshold of all of the voting units. Given time (before
the TS), at least a few voting units are activated to contribute some votes to the motor
program units. In this case, a response is forced, even though the system is very unsure as
to what that response should be.

Noise processes have been used as an active element of several neural models. Noise
is used in Boltzmann machines as a device for escaping local minima and as a way of
breaking symmetry between two possible solution paths (Hinton & Sejnowski, 1986).
Although the problem of local minima is not a concern in this work, the problem of
choosing between two equally desirable solutions is a considerable one. By injecting a
small amount of noise into the network, we randomly bias solutions so that a choice is
forced within the winner-take-all (WTA) circuit. There are some cases in which two
motor program selection units receive almost the same amount of activity. Due to the
implementation of the winner-take-all circuit, this situation may send the system into
oscillations, where it is not able to make a decision. The added noise coming into the
voting units helps to bias one of the motor programs, to the point where a decision can be
made quickly. Moreover, rather than always selecting the motor program that has the
highest incoming feature support, the system is enabled by the noise to choose other pos-
sibilities. This keeps the system from prematurely committing to an incorrect solution,
maintaining diversity during the search process (Barto, Sutton, & Anderson, 1983). Thus,
the amount of time dedicated to the search process can be significantly decreased.

Learning Dynamics
Learning in this model is reinforcement-based, and is implemented by modifying two sets
of synapses: the sensory input to feature detector mapping and the voting unit to motor
program selection unit mapping, i.e., the weight matrices Win,feature and Wvote,motor corres-
ponding to the fan-in and fan-out of figure 13.4, respectively. Only those columns that
participate in the current computation adjust their weights. In the experimental setup,
positive reinforcement is given when the monkey exhibits a correct response, but not
otherwise. Similarly, in the model, a scalar quantity called reinforcement is set by the
teacher to +1 if the selected motor program is correct, and to -1 otherwise.

2 3 2 C H A P T E R 1 3

However, a special case occurs when the system is unable to make a decision within
the allotted time (causing the “No-Go” response to be selected). Two possible situations
have occurred: no motor program selection units are active, or more than one are active.
In the first case, the reinforcement term is set to +1 by the system itself, regardless of the
teacher feedback. Therefore, the currently active columns are rewarded, ensuring that the
next time the pattern is presented, these columns will yield a greater response. Thus, they
will have a greater chance of activating one of the motor program selection units. With-
out this additional term, negative reinforcement from the teacher is disastrous. The nega-
tive reinforcement further decreases the response of the already poorly responding
columns, further decreasing their response. The result is a self-reinforcing situation that
can never discover the correct response.

In the second situation, where more than one motor program selection unit becomes
active at one time, the reinforcement term is set by the system to -1. This decreases the
response of all columns involved, adjusting the input to the two (or more) motor program
selection units until one is able to achieve threshold significantly before the other(s). It is
at this point that the symmetry between the two is broken.

When positive reinforcement is given, the weights leading into the feature detector
units are adjusted such that the feature detector better recognizes the current sensory
input. In the case of negative reinforcement, the weights are adjusted in the opposite
direction, such that the current input is recognized by the feature detector unit to an even
lesser degree. Note that this reinforcement depends on whether or not the overall system
response was correct, not on the output of any individual motor selection column. We
thus have:

�
�
� <

=
otherwise

entreinforcemffactornegative
lgain

1

0if__

()()maskfeatureinWVotingInputlratelgainentreinforcemW T
ffeaturein ___^***, �=� (13.5)

where:

� lratef is the learning rate coefficient for the stimulus-to-feature mapping

� Input�VotingT is the outer product of the Input and Movement vectors.

� lgain scales the effect of negative reinforcement relative to positive reinforcement.

� � is a point/wise multiplication operator.

� W_in_feature_mask is a binary matrix indicating the existence of a synapse.

In this case, the effect of negative reinforcement on the weights is intended to be less
than that of positive reinforcement. This is done because negative reinforcement can be
very devastating to columns that are just beginning to learn an appropriate mapping.

To simultaneously weaken those weights that are not strengthened by reinforcement,
we then set:

()featureinfeatureinfeaturein WWNormalizeW ,,, �+=
(13.6)

where:

� Normalize() is a function that L1-normalizes the vector of weights leading into each
feature detector unit to length 1, given by

�
=

j
j

i
i

X

X
Y (13.7)

� W_in_feature_mask is a matrix of ones and zeros that determines the existence of a
weight between the corresponding voting and motor program selection units. The

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 3 3

elements of this matrix are point-wise multiplied with those of �Win,feature to mask out
weight deltas for weights that do not exist.

Equation (13.2) produces a competition between the weights associated with a
particular unit. Thus, the weights are self-regulating, forcing unneeded or undesirable
weights to a value near zero. If a column continues to receive negative reinforcement (as
a result of being involved in an incorrect response), then it becomes insensitive to the
current stimulus, and is reallocated to recognize other stimuli.

The voting unit to motor selection mapping is adjusted similarly. Positive reinforce-
ment increases the weight of the synapse to the correct motor program. When negative
reinforcement is given, the synapse is weakened, allowing the other synapses from the
voting unit to strengthen slightly through normalization. Thus, more voting power is allo-
cated to the other alternatives:

()()maskmotorvoteWMotorVotinglrateentreinforcemW T
vmotorvote ___^**, �=� (13.8)

()motorvotemotorvotemotorvote WWNormalizeW ,,, �+= (13.9)

where:

� lratev is the learning rate coefficient for the voting-to-motor response mapping.

� W_vote_motor_mask is a weight matrix mask similar to the mask that appears in
(13.2).

A similar type of reinforcement learning is utilized in Barto et al. (1983, see later
discussion).

Win,feature and Wvote,motor are initially selected at random. When a response is generated,
learning is applied to each of the columns that are currently participating in the computa-
tion. The learning objective of an individual column is to recognize particular patterns (or
subpatterns) and to identify which of the possible motor programs deserve its votes given
its view of the sensory input. Equation (13.1) attempts to create feature detectors that are
specific to the incoming patterns. As these feature detectors begin to better recognize the
correct patterns, the activity of the signal units will grow, thus giving the column a larger
voting power. The feature detecting algorithm is related to the competitive learning of
von der Malsburg (1973) and Grossberg (1976) (discussed further in Rumelhart and
Zipser 1986). Individual columns learn to become feature detectors for specific subpat-
terns of the visual stimulus. However, a column does not recognize a pattern to the exclu-
sion of other patterns. Instead, several columns participate in the recognition at once. In
addition, a column is responsible for directly generating an appropriate motor output.
Therefore, the update of the feature detector weights not only depends upon recognition
of the pattern (as in competitive learning), but also upon whether or not the network gen-
erates the correct motor output. In the case of a correct response, the feature detector
weights become better tuned towards the incoming stimulus, as in the von der Malsburg
formulation. For an incorrect response, the weights are adjusted in the opposite direction,
such that recognition is lessened for the current input.

Note that in this scheme, all of the columns that participate in the voting are pun-
ished or rewarded as a whole, depending upon the strength of their activity. Thus, a col-
umn that votes for an incorrect choice may still be rewarded as long as the entire set of
votes chose the correct motor program. This method works, in general, because this
“incorrect column” will always be active in conjunction with several other columns that
do vote appropriately and are always able to overrule its vote. This scheme is similar to
that used by Barto et al. (1983) in that one or more elements may correct for errors made

2 3 4 C H A P T E R 1 3

by another element. In their case, however, the correction is made sequentially through
time, rather than in parallel.

It should be noted that there is a tradeoff in this algorithm between the speed of
learning and the sensitivity to noise. Because this protocol always gives the correct feed-
back and the possible motor outputs are finite and discrete, this tradeoff is not quite as
evident. Imagine the case where learning is very fast and the reinforcement function
occasionally makes a mistake (as can easily be imagined in real-world situations). If the
system has discovered the correct response, but is then given no positive reinforcement
for the correct response, extremely rapid learning would cause this response to lose favor
completely. Likewise, if an incorrect behavioral response is positively rewarded, a high
learning rate would cause the incorrect response to rise quickly above the alternatives.

13.3 Model Implementation
The model is implemented by three top level models, CondLearn module, TrainFile
module and CondLearnModel as shown in figure 13.6.

CondLearn

CondLearnModel

TrainFile
output

new_read

input

Figure 13.6 �
Conditional Learning model
modules. ��������� module
where dynamics are described,
	��
��
�� module where
training data are read, and
���������
���� which
instantiates and connects the
modules.

Model
The complete model is described in CondLearnModel. It is responsible for instantiating
two modules, the CondLearn and TrainFile modules.

nslModel CondLearnModel ()

{

 private TrainFile tf();

 private CondLearn cl();

}

The initModule methods perform model initialization by reading training data and
instantiating the number of layer elements dynamically specified.

public void initModule()

{

 tf.readFile();

 NslInt0 inSize = tf.getValue(“inSize”);

 cl.memAlloc(inSize.getValue(),

 num_columns.getValue(),num_choices.getValue());

}

Note in this instantiation how we obtain the number of patterns from the TrainFile mod-
ule as it reads this value from the training data file, and only then do we pass it to the
CondLearn module to be used to instantiate data arrays. While the number of columns
and number of choices are directly specified by the user, the input size is read from the
training file. These sizes are then used to call all memAlloc methods in the model.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 3 5

Train Module
The TrainFile module contains input and output ports for interconnections with the
CondLearn module. It stores training data in memory similar to the BackProp Train
module.

nslModule TrainFile()

{

 public NslDinInt0 new_read();

 public NslDoutInt1 input();

 public NslDoutInt0 output();

 private NslFloat2 pInput();

 private NslFloat1 pOutput();

}

The readFile method reads the training data while the intTrain picks a new random
pattern during each new epoch

public void initTrain()

{

 int pat = nslIntRand(numPats);

 input = pInput[pat];

 output = pOutput[pat];

}

CondLearn Module
The CondLearn module contains a number of submodules, Feature, Vote, Motor,
Threshold and WTA (winner take all) modules, as shown in figure 13.7.

Threshold

Feature

WTA

Vote

Motor

input

inputs

new_read

factor factor

factor

winner

above_thresh_num

feature

feature

voting

voting

voting
contribution

voting
contribution

voting
contribution

s

motormotor

s

s

threshold_vthreshold_v

CondLearn

stable_num

Figure 13.7 �
CondLearn module

2 3 6 C H A P T E R 1 3

The neural computational model for these modules are implemented using the leaky-
integrator model (e.g., Arbib 1989), in which each neuron is represented by a membrane
potential and a firing frequency. In the following set of equations, neural states are
represented as vectors. Two vectors are connected through a set of weights through either
a one-to-one connection scheme, or a fully-connected scheme (all neurons of the input
layer are connected to each of the neurons of the output layer). The first case is repre-
sented by a vector addition, while the second case is represented by multiplying the
vector I with a “mask” of synaptic weights W to yield W@I. The network is initialized by
randomizing the input-to-feature and voting-to-motor projections and prepares the model
to begin execution.

nslModule CondLearn()

{

 private Feature feature();

 private Threshold threshold();

 private Vote vote();

 private Motor motor();

 private WTA wta();

 public NslDinInt1 input();

 public NslDinInt0 output();

 public NslDoutInt0 new_read();

 public NslDoutInt0 factor();

 public NslDinInt0 above_thresh_num();

 public NslDinInt0 stable_num();

 public NslDinInt0 winner();

}

The simTrain method detects four termination conditions, computes the appropriate
reinforcement, updates the weight matrices and prepares the network for the next trial.

public void simTrain()

{

 if(above_thresh_num.getData() == 1 && (stable_num.getData()

 == _num_choices || first_pole_mode.getData() != 0.0))

 {

 timer_flag = 1;

 punish_reward_func(winner.getData());

 system.breakCycles();

 }

}

The state of the motor program selection units is checked to determine whether or
not the system is itself ready to generate an output. The model is ready to output a motor
response in one of two cases, depending upon the state of the first_pole_mode flag.
When this flag is FALSE, this indicates that the standard WTA is being used as the
competition mechanism. This mechanism requires that exactly one motor program be
selected and that all motor program selection units have reached equilibrium. When the
flag is TRUE, first-past-the-pole WTA is used, which relaxes the constraint that the
motor program selection units be in an equilibrium state.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 3 7

public void endTrain() // Timeout: NO-GO case

{

 if (timer_flag == 1)

 return;

 if(above_thresh_num.getData() == 0)

 timer_flag = -1;

 else

timer_flag = 1;

 punish_reward_func(NO_GO_CASE);

}

The trial is terminated and timer_flag is set to 1. Termination of the current trial
may also be forced if the go signal has arrived. As stated earlier, two cases are possible:
no motor program selection units active or more than one active. In either case, the trial is
terminated and the weight matrices are updated. The reinforcement is set to 1 if the
timer_flag = -1, meaning no winner has been found yet. Reward and punishment are the
reinforcement signals used to update the weight matrices if there is at least one winner.
Weights are modified in the feature and vote modules, respectively.

The punish_reward_func() routine selects a new input pattern to present to the
system in preparation for the next trial.

public void punish_reward_func(int win)

 {

 factor = 1;

 if(output.getData() == win)

 new_read = 1;

 else

 {

 new_read = 0;

 if (timer_flag != -1)

 factor = -1;

 }

}

Feature Module
The Feature module computes the membrane potential feature_mem, the firing rate
feature of the feature detector units and the feature detector weights, most important ones
are w_in_feature, w_in_feature_mask, and dw_in_feature. It receives input pInput
and the voting_contribution for learning, while its output is feature

2 3 8 C H A P T E R 1 3

nslModule Feature ()

{

 public NslDinFloat1 inputs();

 public NslDinFloat1 voting_contribution();

 public NslDinFloat0 threshold_v();

 public NslDinInt0 factor();

 public NslDoutFloat1 feature();

 private NslFloat1 feature_mem();

 private NslFloat2 w_in_feature();

 private NslFloat2 dw_in_feature();

 private NslFloat2 w_in_feature_mask();

 private NslFloat0 negative_factor_f();

}

The initModule method initializes the feature detector weights. Initially, the module
configures the input-to-feature weight matrix w_in_feature.

public void initModule()

{

 nslRandom(w_in_feature);

 select_random(w_in_feature_mask,w_in_feature_probability.

 getData());

 w_in_feature = (w_in_feature/2.0 + 0.5 + input_weight_bias)

 ^ W_in_feature_mask;

 normal_col(w_in_feature);

}

A random value is selected for each of the individual weights (uniform distribution
in the interval [0,1]). Then existing physically connections are found. The call to
select_random() initializes w_in_feature_mask with a set of 0’s and 1’s (0 = no
connection; 1 = connection). The probability that each element is set to 1 is determined
by w_in_feature_probability. The w_in_feature_mask weight mask is applied to
w_in_feature, after a linear transformation is applied to the weights. After this operation,
w_in_feature will consist of elements that are either 0 (when no connection exists), or
selected from the distribution [0.5+input_weight_bias, 1.0+input_weight_bias]. The
linear transform of the weight elements guarantees that those that exist take on significant
initial values. The random trimming out of connections from the weight matrix is impor-
tant for giving us a wide diversity of feature detectors to begin with. This will play an
important role both in the initial behavior of the network, as well as in limiting the inter-
ference during learning.

A normalization is applied to w_in_feature weight matrix. The call to normal_col()
L1-normalizes the columns of w_in_Feature. This ensures that the total output weight
from any single input unit is 1 (presynaptic normalization). As these weights change
during learning, this condition will continue to hold, thus implementing a form of com-
petition between the connections leading from the input unit.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 3 9

The simTrain method processes the dynamics of the feature detector,

public void simTrain()

{

 nslDiff(feature_mem, u_feature, -feature_mem - threshold_f

 + w_in_feature * inputs);

 if (LIMITED_ACTIVITY_FLAG == true)

 feature = nslSat(feature_mem, 0, 1, 0, 1);

 else

 feature = nslRamp(feature_mem);

}

where feature_mem depends upon the threshold_f, and the matrix product of weight
matrix w_in_feature by column vector pInput, this returns a vector containing the net
input to the feature detector units.

The firing rate of the feature detector unit is limited to the range [0..1].
The endTrain() routine is responsible for the internal modulation of the reinforce-

ment signal and the update of the weight matrices. As discussed earlier, if the system was
unable to make a decision in the allotted time and no motor program selection units were
active, then the reinforcement signal is set to 1. This will cause all of the currently active
feature detector units to become a little more active the next time the same input is
presented, improving the chances that a motor program selection unit will be activated.
Note for the other degenerate case, where more than one motor program selection unit is
active at the completion of the trial, factor has already been set to -1 (passed in to
endTrain()).

public void endTrain()

{

 float f_factor;

 if(factor.getData() < 0.0)

 f_factor = factor.getData() * negative_factor_f.

 getData();

 else

 f_factor = factor.getData();

 dw_in_feature = f_factor * lrate_f *

 vec_mult_vec_trans(voting_contribution,inputs) ^

 w_in_feature_mask);

 w_in_feature = nslRamp(w_in_feature + dw_in_feature);

 normal_col(w_in_feature,L1_norm_mode.getData());

}

In the feature detector, the information content of a negative reinforcement is much
less than that of positive reinforcement. This is the case because positive reinforcement
indicates the exact answer that is expected, whereas negative reinforcement only tells the
system that the selected action was not the correct one. Because this is the case, the con-
nection strength adjustment due to negative reinforcement should be smaller than in the
positive reinforcement case. This is implemented here by discounting the negative rein-
forcement signal, and leaving the positive reinforcement signal intact

2 4 0 C H A P T E R 1 3

voting_contribution identifies those columns that are currently participating in the
computation and the degree to which they are participating. Only those connections
which carry signals into or out of the active columns will change in strength. The update
to the input-to-feature mapping is computed in. The call to vec_mult_vec_trans() com-
putes the outer product of the two vectors, returning a matrix of elements which indicate
coactivity of input unit and column pairs (Hebbian component). W_in_feature_mask
filters out all elements of the resulting matrix except for those pairs between which a
connection exists. lrate_f is the learning rate, and f_factor modulates the update based
upon the incoming reinforcement signal. This update matrix is then combined into the
weight matrix (the call to nslRamp() ensures that all connection strengths are always
positive), and the weights are normalized.

The call to normal_col() L1-normalizes the columns of the weight matrix. This con-
tinues to maintain the constraint that the total output weight from any single input unit is
1 (presynaptic normalization). In other words, each input unit has a fixed amount of sup-
port that it can distribute between the feature detector units. When positive reinforcement
is received, more of this support is allocated to the currently active columns at the
expense of those columns that are not active. Likewise, when negative reinforcement is
received, the support for the active columns is reduced, to the benefit of the remaining
columns (driving the search for a more appropriate group of columns).

Noise Module
The Noise module computes the next noise signals that are to be injected into the voting
units and the motor selection units. What is implemented here are noise processes that
change value on occasional time-steps. This slow change of injected noise is important
for the behavior of the network. As will be seen in the next two modules, the voting units
and the motor selection units are also implemented as leaky-integrator neurons, which
implement a low-pass filter on the inputs coming into them. If the injected noise changed
drastically on every time-step, this high-frequency noise would for the most part be fil-
tered out. By forcing the noise process to change more slowly, the neurons are given an
opportunity to respond in a significant manner.

nslModule Noise ()

{

 private Noise noise();

}

Noise initialization.

public void initExec()

{

 randomize(noise);

 noise = noise_gain * noise;

}

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 4 1

In the noise vector is initialized.
Noise is modified if necessary in the simExec method

public void simExec()

{

 if(random_value2() < noise_change_probability.getData())

 {

 randomize(noise);

noise = noise_gain * noise;

 }

}

In the frequency at which a new noise vector (noise) is selected is determined by the
parameter noise_change_probability.

If it is time to update the noise vector, a completely new vector is generated, and
then scaled by the noise_gain parameter.

Vote Module
The Vote module computes the state of the voting units.

nslModule Vote ()

{

 private Noise noise();

 public NslDinFloat0 threshold_v();

 public NslDinFloat1 feature();

 public NslDoutFloat1 voting();

public NslDoutFloat1 voting_contribution();

 private NslFloat1 voting_mem();

 private NslFloat0 voting_contribution_mode();

 private NslFloat0 voting_contribution_scale();

 private NslFloat1 voting_participation();

}

2 4 2 C H A P T E R 1 3

The simTrain method specifies local processing

public void simTrain()

{

 noise.simExec();

 nslDiff(voting_mem, u_voting, -voting_mem - threshold_v +

 feature + noise.noise);

 if (LIMITED_VOTING_ACTIVITY_FLAG == true)

 voting = nslSat(voting_mem, 0, 1, 0, 1);

 else

 voting = nslRamp(voting_mem);

 voting_participation = nslStep(voting);

 if (voting_contribution_mode.getData() == LINEAR)

 voting_contribution = voting;

 else if (voting_contribution_mode.getData() == BINARY)

 voting_contribution = voting_participation;

 else if (voting_contribution_mode.getData() ==

 COMPRESSED_LINEAR)

 voting_contribution = nslSat(voting,0.0,

 voting_contribution_scale.getData(),0.0, 1.0);

 else if (voting_contribution_mode.getData() == JUMP_LINEAR)

 voting_contribution = nslSat(

 nslRamp(voting, 0.0,

 0.0,voting_contribution_scale.getData()));

 else

 nslPrintln(“Unknown voting_contribution_mode:“,

 voting_contribution_scale.getData());

}

The membrane potential of these units (voting_mem) is determined by the firing rate
of the corresponding feature detector units, a noise signal, and the signal from the thresh-
old modulator. When a visual stimulus is initially presented, the inhibitory signal from
the threshold modulator is at a high level. If the stimulus is relatively unfamiliar, the
input from the feature detector unit will typically not be above this threshold. As a result,
no decision will be immediately made. However, the threshold modulator will begin to
slowly drop this threshold, ultimately forcing several voting units to fire, causing a deci-
sion to be made at the motor selection unit level.

The noise process plays an important role in the search for the correct input/output
mapping. At this level, the noise causes different columns to participate in the mapping
from trial to trial. Over time, this allows the system to consider many combinations of
sets of columns until an appropriate set can be found.

The firing rate of the voting units requires a membrane potential above some thresh-
old.

The vector voting_participation is used to display to the user which columns are
participating within any particular computation.

Threshold Module
The Threshold module implements the dynamics of the threshold modulator.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 4 3

nslModule Threshold ()

{

 public NslDinFloat0 s();

 public NslDoutFloat0 threshold_v();

}

The simTrain method updates the threshold

public void simTrain()

{

 if(s <= 0.0)

 nslDiff(threshold_v,u_threshold_v, -threshold_v);

}

The threshold level, threshold, is initially set at the beginning of the trial to the
parameter init_threshold. This value then decays exponentially. However, this decay
only happens as long as no motor selection units have begun to fire (as measured by the
activity level of the inhibitory unit). In order for this event to occur, several voting units
must have begun to fire giving the system the ability to make some sort of decision.

Motor Module
The motor selection unit dynamics are described within the Motor module.

nslModule Motor ()

{

 private Noise noise();

 public NslDinFloat1 voting();

 public NslDinFloat1 voting_contribution();

 public NslDinFloat0 s();

 public NslDinInt0 factor();

 public NslDoutFloat1 motor();

 public NslDoutInt0 above_thresh_num();

 public NslDoutInt0 stable_num();

 public NslDoutInt0 winner();

 private NslFloat1 dmotor_mem();

 private NslFloat1 motor_mem();

 private NslFloat1 motor_inputs();

 private NslFloat2 w_vote_motor();

 private NslFloat2 dw_vote_motor();

 private NslFloat2 w_vote_motor_mask();

 private NslFloat0 voting_weight_bias();

 private NslFloat0 w_vote_motor_probability();

 private NslFloat0 voting_factor();

 private NslFloat0 normalize_input_mode();

 private NslFloat0 stable_detect_threshold();

}

2 4 4 C H A P T E R 1 3

The initModule method initializes the voting weights

public void initModule()

{

 noise.initExec();

 winner = 0;

 randomize(w_vote_motor);

 select_random(w_vote_motor_mask, w_vote_motor_probability.

 getData());

 w_vote_motor = (w_vote_motor/2.0 + 0.5 +

 voting_weight_bias) ^

 w_vote_motor_mask;

 if (normalize_input_mode.elem() == 1.0)

 normal_col(w_vote_motor,L1_norm_mode.getData());

 else

 normal_row(w_vote_motor,L1_norm_mode.getData());

}

The vote-to-motor weights w_vote_motor are initialized in a similar manner. How-
ever, normalization may be done one of two ways, depending upon the flag
normalize_input_mode. Presynaptic normalization (normalize_input_mode = 1) is as
above, maintaining the condition that the weights leading from the voting unit sum to 1.
For postsynaptic normalization (normalize_input_mode = 0), the sum of the weights
leading to the motor selection units would sum to 1. For the simulations results reported
in this chapter, normalize_input_mode = 1 (presynaptic normalization).

The motor selection unit dynamics are determined within the simTrain method.

public void simTrain()

{

 noise.simExec();

 motor_inputs = mat_mult_col_vec(w_vote_motor,

 voting)/_num_columns;

 dmotor_mem = -motor_mem - threshold_m +

 voting_factor * motor_inputs - s + motor + noise.noise;

 nslDiff(motor_mem, u_motor,dmotor_mem);

 motor = nslStep(motor_mem);

 above_thresh_num = 0;

 stable_num = 0;

 for (int i = 0; i < _num_choices; ++i)

 {

 if (motor(i) > 0.0) // Above threshold

 {

 above_thresh_num = above_thresh_num + 1;

 winner = i;

 }

 if(fabs(dmotor_mem[i]) <

 stable_detect_threshold.getData())

 stable_num = stable_num + 1;

 }

}

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 4 5

The membrane potential of these units is a function of the votes from the feature
detector units (motor_inputs), the inhibitory signal from the WTA (Winner-Take-All)
inhibitory unit s, and an injected noise signal (motor_noise). The inhibitory unit ensures
that when the system has reached an equilibrium point, at most one motor program has
become selected. This style of distributed Winner-Take-All computation is due to Amari
& Arbib (1977).

The noise signal is important at this point for providing a diversity in the search for
the correct mapping. In addition, it helps to prevent the system from becoming stuck onto
a saddle point, where it cannot decide between one of two equally-active motor selection
units.

The motor selection cells fire maximally whenever the membrane potential exceeds
the cell’s threshold. We consider that a selection has been made only when one motor
program selection unit is firing.

The endTrain() routine is responsible for the internal modulation of the reinforce-
ment signal and the update of the weight matrices. As discussed earlier, if the system was
unable to make a decision in the allotted time and no motor program selection units were
active, then the reinforcement signal is set to 1. This will cause all of the currently active
feature detector units to become a little more active the next time the same input is pre-
sented, improving the chances that a motor program selection unit will be activated. Note
for the other degenerate case, where more than one motor program selection unit is active
at the completion of the trial, factor has already been set to -1 (passed in to endTrain()).

public void endTrain()

{

 dw_vote_motor = factor * lrate_v *

 (vec_mult_vec_trans(motor, voting_contribution) ^

 w_vote_motor_mask);

 w_vote_motor = nslRamp(w_vote_motor + dw_vote_motor);

 if(normalize_input_mode.getData() == 1.0)

 normal_col(w_vote_motor,L1_norm_mode.getData());

 else

 normal_row(w_vote_motor,L1_norm_mode.getData());

}

A similar learning rule to that of the input-to-feature mapping is applied to the
voting-to-motor mapping. The change in weights is a function of the co-activity of voting
columns and the motor program selection units, modulated by the learning rate (lrate_v)
and the reinforcement signal. These delta values are then added into the weight matrix,
and normalized. For this mapping, the type of normalization is selectable as either pre-
synaptic or postsynaptic. For the results reported in this chapter, presynaptic normaliza-
tion is used, implementing a competition between the different motor program selection
units for support from the columns.

WTA Module
The WTA module implements the dynamics of the winner-take-all inhibitory unit.

2 4 6 C H A P T E R 1 3

nslModule WTA ()

{

 public NslDinFloat1 motor();

 public NslDoutFloat0 s();

 private NslFloat0 s_mem();

}

The simTrain method executes the wta dynamics

public void simTrain()

{

 nslDiff(s_mem, u_s, - s_mem - threshold_s + nslSum(motor));

 s = nslRamp(s_mem);

}

The membrane potential of this unit is driven to a level that is essentially propor-
tional to the number of motor selection units that have become active (these units either
have an activity level of 0 or 1). The firing rate of this unit also reflects the number of
currently active motor selection units.

13.4 Simulation and Results3

Simulation

Parameters
The set of parameters used to produce the results presented in this paper are described
next. Table 13.1 to 13.9 show the complete list of parameters and the values used in the
simulation.

Network Parameters Value Description

num_columns 30 Number of columns in the middle layer.

num_inputs 14 Number of inputs into the columns.

num_choices 4 Number of motor program selection units
(no-go, left, right, down)

Simulation Parameters Value Description

delta 0.01 Integration step

Weight Initialization Value Description

voting_weight_bias 4.0

w_vote_motor_probability 1.0

normalize_input_mode 1 Determines whether postsynaptic or presynap-
tic normalization is used for this set of weights
(0 = postsynaptic; 1 = presynaptic).

input_weight_bias 1.0 Constant added to random weight value (see
weight initialization)

w_in_feature_probability 0.3 Probability that a particular weight will exist.

Table 13.1
Network Parameters

Table 13.2
Simulation Parameters

Table 13.3
Weight Initialization
Parameters

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 4 7

Feature detector parameters Value Description

threshold_f 0.1 Threshold

u_feature 0.05 Time constant

Threshold Modulator Value Description

init_threshold_v 0.2 Initial threshold (threshold is determined by
the threshold modulator).

u_threshold_v 4.0 Time constant of threshold modulator for
voting units.

Voting Unit Value Description

u_voting 0.05 Time constant

gain 0.045 Injected noise to voting units.

change_probability 0.01 Determines how often the injected noise term
changes value.

Motor Program Selecion
Unit

Value Description

u_motor 2.0 Time constant

gain 0.05 Injected noise to motor units

change_probability 0.01 Determines how often the injected noise term
changes value.

threshold_m 0.035 Motor program unit threshold.

Analysis Parameters Value Description

� 0.8 Used to compute average performance.

Simulation Parameters Value Description

display_participation_mode 0 1 indicates that the participation vector is
printed to the screen at the end of each trial.

collect_mode 0 If 1, collecting statistics.

1 If no MPSUs are active at time of punishment,
then reward to get voting activity up.

A number of parameters play a crucial role in the behavior of the network. These are
further discussed here:

w_in_feature_probability determines how likely that a connection exists between
an input unit and a feature unit. For this work, it was important to keep this parameter at a
low value (0.3). This serves to minimize the number of columns that will respond at all to
an input stimulus, thus minimizing the interference between columns. If set too low, not
enough columns will react to a particular input.

Table 13.4
Feature Detector Parameters

Table 13.5
Threshold Modulator
Parameters

Table 13.6
Voting Unit Parameters

Table 13.7
Motor Program Selection
Unit Parameters

Table 13.8
Analysis Parameters

Table 13.9
Simulation Parameters

2 4 8 C H A P T E R 1 3

input_weight_bias determines the distribution of weight values for those weights
that do exist. A high value forces the existing weights synapsing on a particular feature to
be very similar. On the other hand, a low value causes the weights to be more randomly
distributed. In the case of our simulation, this value is set to 1.0 (a low value), yielding a
reasonable distribution that allows different columns to respond differently to an individ-
ual stimulus. Thus, the weight initialization procedure biases the symmetry breaking
between stimuli that goes on during the learning process.

noise_gain determines the magnitude of noise injected into the voting units. It is im-
portant that this value is significantly less than init_threshold_v. Otherwise, the voting
unit may fire spontaneously (without feature unit support) before the threshold is low-
ered.

noise_change_probability is set such that the noise value changes slowly relative to
the time constant of the voting unit (u_voting). When the noise changes at this time
scale, on average, the effects of the noise are allowed to propagate through the system
before the noise value changes again. Thus, in the early stages of learning, different
groups of voting units may fire given the same input stimulus, allowing the system to
experiment with what the appropriate set of voting units might be. If the noise changes
too quickly, then the average effect will be very little noise injected into the system.
Therefore, all eligible columns will fire together, and not in different subsets.

WTA (Inhibitory Unit) Value Description

u_s 0.5 Time constant of membrane potential.

threshold_s 0.1 Unit threshold.

Learning Parameters Value Description

lrate_v 0.035 Voting/motor program selection unit lrate

lrate_f 0.4 Input/feature detector unit lrate

negative_factor_f 0.25 Input/feature factor for negative reinforcement

L1_norm_mode 1 1 indicates L1-normalization is used (0 indicates
L2-normalization).

Protocol Parameters Value Description

first_pole_mode 1 1 indicates first-passed-the-pole mode is turned
on.

repeat_mode 1 1 indicates stimuli are repeated when an
incorrect response is generated by the system.

max_time_counter 200 Maximum number of time steps alotted to the
system for making a decision.

The constraints on motor.noise_gain and threshold_m are similar.
lrate_f determines how much effect that one trial will have on the weight matrix that

maps from the input units to the feature units (the value used in these simulations was
0.4). When set too low, the slope of the overall activity curve begins to decrease and the
system will take longer before it achieves perfect performance. On the other hand, setting
this parameter too high will amplify the interference between the various weights (this is

Table 13.10
WTA parameters.

Table 13.11
Learning parameters.

Table 13.12
Protocol parameters.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 4 9

critical during the early stages of learning). Thus, the learning of one pattern may erase
(in one trial) the information associated with another pattern.

lrate_v is the learning constant for the vote-to-motor weight matrix (the value used
was 0.035). Setting this constant too high will cause the system to very quickly commit
columns to particular motor responses. The result is that the network is able to learn the
mapping much quicker than in the cases discussed in this paper. Although it appears to be
advantageous to use a higher parameter value, we would move away from the behavioral
results seen in the Mitz experiments. In addition, the network may become more sensitive
to interference, a problem that will show itself as the task difficulty is increased.

negative_factor_f scales the effect of negative reinforcement on the network. When
this value approaches 1, the effect of a negative signal can be devastating to the network
(see discussion of learning dynamics). In general, we found that too high of a value will
decrease the slope of the overall activity curve (evident when the network begins to pro-
duce the correct answer, but then tries other responses).

Training Patterns
The patterns shown in table 13.13 were used to train the network for most of the above
experiments. The right-hand column denotes the expected motor response. For this case,
the input patterns are orthogonal. Other training sets that were used for the comparison
with backpropagation included overlapping patterns. One such training set is shown in
table 13.14.

Training Pattern Expected Response

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go

0 0 0 0 0 0 0 0 0 0 1 1 1 0 Left

0 0 0 0 1 1 1 0 0 0 0 0 0 0 Right

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down

Training Pattern Expected Response

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go

1 0 0 0 0 0 1 0 0 1 0 0 0 0 Left

0 0 0 1 0 1 1 0 0 0 0 0 0 0 Right

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down

Simulation Results
Once NSL has been compiled for the model, the simulation is started by loading the
startup script, which loads in the standard set of parameters (CondLearn.nsl) together
with graphics (CondGraphics.nsl):

nsl% source startup.nsl

The system parameters involve 100 epochs of 200 training cycles each:

nsl set system.epochSteps 100

nsl set system.trainDelta 1

nsl set system.trainEndTime 200

Table 13.13
Input patterns and expected
motor responses.

Table 13.14
Input patterns and expected
motor responses (more
difficult case). Each of the
patterns overlaps at least one
other pattern.

2 5 0 C H A P T E R 1 3

The seed is used to configure the random number generator (useful for forcing the
same conditions for multiple experiments):

nsl set condLearnModel.condLearn.seed 10

The pattern file contains a list of input patterns and the corresponding desired out-
puts.

nsl set condLearnModel.trainFile.pName a1.dat

For example, the “a1.dat” train file looks as follows:

4

1

24

1 1 1 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

The first line specifies the number of train patterns in the file, “4” in this example.
The second line specifies the number of elements in the output pattern, while the third
line specifies the number of elements in the input pattern, “1” and “24” respectively.
Finally, each additional line specifies the actual train pattern consisting of the input pat-
tern followed by its corresponding desired output.

Once configuration is complete, begin execution as follows:

nsl% nsl train

In this configuration, at the end of each trial the system reports if it is unable to make
a decision by the time the trigger stimulus is received:

No-pick no-go!

On the following line, the number of time steps (equivalent to train steps) required to
obtain a decision is printed (in this case, 200 is the maximum number of time steps).

200

On the next line, the system prints the current trial (followed by a “:”), presented
pattern number (“p”), expected motor output (“s”), selected motor output (“w”), indica-
tion of correctness (+/-), and a measure of total activity of the voting units.

0 : p0 s0 w0 + 0.022166

Next the system prints the participation vector, which indicates those columns that
were active at the end of the trial.

voting_participation

1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

To perform an entire experiment, the simulation continues executing until the system
has learned the mapping completely. A good indication of this is that all mapping have
been learned, and all decisions are made in a very short amount of time (for the given
parameters, 50 time steps should be sufficient).

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 5 1

32

50 : p3 s3 w3 + 0.123120

voting_participation

0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0

77

51 : p0 s0 w0 + 0.057379

voting_participation

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

55

52 : p1 s1 w1 + 0.094080

voting_participation

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

.

.

.

68

58 : p2 s2 w2 + 0.069137

nsl set voting_participation

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0

In figure 13.8 we show a sample graphical display as the system has already learned.

Figure 13.8��

The top portion of the display,
“.columns.input”, represents the
train pattern input, in this case
corresponding to the third input
pattern with corresponding
desired output “2”. The display in
the middle represents the corre-
sponding “.columns.feature”
pattern while the bottom display
represents the “.columns.voting”
pattern. The more correspon-
dence between the two bottom
displays the better the learning.

2 5 2 C H A P T E R 1 3

Results
The following experiment utilized a variant of the winner-take-all (WTA) algorithm in
the simulation, referred to as first-past-the-pole WTA. Rather than requiring that the net-
work settle down into a stable state, the first unit that achieves a membrane potential
above the threshold is declared the winner. In the case that more than one unit activated
at the same instant, the standard winner-take-all circuit is used to squelch the activity of
all but one. Using this particular algorithm allows for a faster simulation, since more time
is required if the units must settle down to equilibrium.

During the testing/learning trials, a pattern is randomly presented to the system. The
overall control system waits until a single selection is made (after the TS is presented),
before moving on to the next trial. When the network produces an incorrect answer, the
same pattern is presented on the next trial (as in the primate experiments). This protocol
allows for much quicker learning, as opposed to a completely random sequence of
stimulus/response pairs.

Primary Experiments
Next we show the behavioral traces resulting from a single experiment. In two of the
three traces, the network produces a correct answer, and then attempts other choices
(given the identical pattern). This happens due to the fact that the voting strengths are
influenced by the noise process. Even though a correct answer has been given, there is
still a probability that another answer will be output at a later time. Eventually, however,
the learning biases the correct motor program to a level sufficiently above the noise.
After this point, the correct motor program is always chosen. The behavioral responses of
one experiment broken into sequences corresponding to a particular stimulus/motor
output pair. +’s indicate correct responses, letters indicate an incorrect response of a
particular type.

N : +

L : N + R +

R : N + L D L N +

D : L L N N +

For the same experiment, the pattern of activity for a particular motor response and
the behavioral performance were compared to those of the monkey. The overall activity
of the resulting voting unit response is measured by using the final voting unit activity
pattern (i.e. after learning) as a reference. The overall activity is defined as the dot prod-
uct between this reference and the voting unit activity pattern from every trial in the
learning sequence. As in the results reported by Mitz et al., the normalized activity and
performance curves for a single motor response are plotted together. The performance is
computed by low-pass filtering the performance value (where 0 corresponds to an incor-
rect response and 1 corresponds to a correct response).

Figure 13.9 shows the resulting set of curves for one such experiment. The solid
curve corresponds to the activity measure and the dotted line is the behavioral perform-
ance of the subject. These values are plotted over the number of trials. In this, as in sev-
eral other experiments, the performance begins its steady increase 3 to 4 trials before the
activity measure becomes significant.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 5 3

Figure 13.9��

Overall activity (solid) curve and
performance (dotted) curve
plotted against trial for the (A)
“Right” and (B) “Left” responses.
As in the experimental curves,
the performance curve begins to
increase prior to the increase in
the activity curve. Note that the
trial axis represents only those
trials for which the “Right” and
“Left” responses are expected,
respectively.

When a naive network is first tested, the presentation of a pattern causes some ran-
dom set of columns to be active, as determined by the initial weight values from the input
units to the feature detector units. Based on the strength of the pattern match, the corre-
sponding voting units may not immediately become active, but instead have to wait for
the Threshold Modulator to lower the threshold to an appropriate level. Given time, this
function forces the system to vote for some response, even though it is not very sure
about what the correct response might be.

With respect to identifying the correct response, positive reinforcement gives the
system more information than does negative reinforcement. For the case of positive rein-
forcement, we are telling the system what the correct response is (specific feedback), but
negative reinforcement only tells the system that the correct response is one of three
choices (nonspecific feedback).

Because the system is essentially guessing on these initial trials, the performance is
very poor at first. Therefore, the system is primarily receiving negative reinforcement,
keeping the overall response activity at a low level. An occasional correct response, in
combination with the negative feedback for other choices, begins to bias the voting unit
output towards the correct motor program selection unit. In turn, this effect begins to
increase the probability of selecting the correct motor response.

Once the performance of a set of columns begins to increase, the positive feedback
becomes significant enough to reward the correctly responding feature detector units on
average, thus switching over from nonspecific to specific feedback information (in the
weight update equations, the reinforcement term becomes +1 for the most cases). In
figure 13.10, as in other experiments, the overall activity does not begin to rise signifi-
cantly until the performance passes the 0.5 mark. This also appears to be the case in most
of the graphs provided by Mitz et al. (1991). Once the performance is correct on average,
the activity of the feature detector units belonging to the “correct” set of columns

2 5 4 C H A P T E R 1 3

increases. This increase comes from the fine-tuning of the feature detector weights to-
wards the incoming pattern.

Figure 13.10 �
(A) Activity of a single voting unit
plotted against trial number. The
four curves represent responses to
each of the four input stimuli
(solid = no-go, long dash = left,
dotted = right, and short dash =
down). Note that trial number N
corresponds to the Nth occurrence
of each of the four stimuli, and
does not necessarily correspond
to the same moment in time. (B)
Evolution of the voting strength of
the same unit. The four curves
(designated as above) represent
the voting strength to each of the
four motor program selection
units. Note that in this graph, the
trial axis represents all trials.

As a result, we see an overall increase in activity in response to the learned stimulus,
and, most importantly, we see this increase after the increase in performance.

In addition to looking at the overall activity of the network, it is also possible to
examine an individual column’s response to input stimuli as learning progresses. Figure
13.10A shows the response activity of one voting unit from the same experiment. In this
particular case, the unit initially responds equally well to two different stimuli. As
learning progresses, however, the response to one stimulus grows to a significant level.
Ultimately, this unit becomes allocated to the recognition of the stimulus pattern that
maps to the Left response.

Figure 13.10B represents the same unit’s orientation towards a particular motor
program, as measured by the weight from the unit to the motor program selection unit.
Initially, the unit supports the four motor program selection units almost equally, but
within 12 trials, the weight corresponding to the Leftward motor unit begins increase
above the others possibilities. After learning has completed, this weight completely
dominates the others.

Changes in Protocol
In initially examining the protocol described by Mitz et al. (1991), we found it interesting
that when the monkey responded incorrectly to a particular stimulus, the same stimulus
was presented for the next trial. This repetition was continued until the monkey produced
the correct response. The question that came immediately to mind was why a totally
random presentation sequence was not used. We presented this question to our model
through a simple modification of the protocol. The results shown in figure 13.11 repre-
sent a typical behavioral trace under this new protocol. In this case, the system requires
almost twice as many trials before it begins to perform the task perfectly. This is espe-
cially evident in the Rightward response.

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 5 5

Figure 13.11��

The behavioral responses of one
experiment with a completely
random sequence of stimulus
presentations. Under these condi-
tions, the task requires more trials
of learning.

This effect can best be explained by looking at the competition between the different
stimuli. The degree of competition is determined by the amount of overlap between the
sets of columns that are activated by each of the stimuli. In addition, certain stimuli may
activate their set of columns more strongly than other stimuli, due to the initial random
selection of weights. This activity difference can give the stronger stimulus a slight
advantage in the learning process, since a weight update is related to the degree of acti-
vation of the voting unit. Therefore, given that a significant overlap exists between
groups of columns, as well as an activity bias towards one or more stimuli, the learning
induced by the stronger patterns can often cancel out any learning caused by the weaker
stimulus. In the original protocol, this interference is not as much of a problem, since
incorrectly mapped stimuli are allocated a larger number of consecutive trials. Within the
new protocol, the probability of a favorable set of trials is relatively low.

Figure 13.11 shows the overall activity curve corresponding to the Right response in
the above experiment. It is interesting to note that the activity curve increases prior to the
performance curve. This can be explained by looking closer at the individual unit partici-
pation for the Rightward mapping. In this case, only a single column takes on the task of
performing this particular mapping. During the early stages of learning, the network
quickly learns the other three mappings. This particular column initially responds to both
the Rightward and Downward stimuli (figure 13.12 A). When the Rightward stimulus is
presented, the support to the columns is so weak that the system does not make a decision
in the allotted time. Therefore, the input/feature weights are adjusted to maintain recog-
nition of the Rightward stimulus. As shown in figure 13.12B, the system finally discovers
the correct motor program to output at about trial 95. At this point, though, it still signifi-
cantly supports the Downward response, but not enough to make incorrect decisions.

2 5 6 C H A P T E R 1 3

Figure 13.12��

(A) Activity of the one voting unit
that learned to perform the map-
ping plotted against trial number.
Because this is the only unit that
learns the mapping, it determines
the curve of figure 13.10. (B)
Evolution of the voting strength of
the same unit. Only towards the
end of the experiment (95th trial)
does the unit discover the correct
motor program selection unit.

Reversal Experiments
Another set of experiments performed on the model asked about the system’s behavioral
and neural responses after a reversal takes place. In this experiment the network is pre-
sented with the standard set of four novel stimuli. After a given number of trials, the
teaching system switches the mapping of two responses. In this case, the stimulus that
originally mapped to the No-Go motor response, now maps to the Down motor response,
and vice versa. In looking at this experiment, we are interested in seeing how quickly the
network is able to recover from the change in mapping and in understanding the under-
lying neural basis for this change. Next we show the behavioral results of one such
experiment. After 26 trials, the visual/motor mapping had been learned perfectly for all
cases. The first few responses that are generated after the reversal correspond to the
original mapping. The system requires only a few trials of negative reinforcement to the
Left and Right responses before the original mappings lose their dominance. At this
point, the system continues its search as in the other experiments. Behavioral response
during a reversal task. The break in the strings indicates the point at which the reversal
(between the No-Go and Down responses) takes place.

N : + + D D D D D D R + + + + + + + + + + + + + +

L : N + R + + + + +

R : N + L D L N + + +

D : L L N N + + + + + N N R + + + + + + + + + + + + + + + + + +

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 5 7

Figure 13.13��

Graph displays�activity/performance curve for the reversal case (“Down” motor mapping). The solid (activity)
curve corresponds to the overall activity in response to the stimulus that maps to the “Down” motor response,
which switches between the 9th and 10th trials. The drastic change in overall activity after the reversal indicates
that two separate sets of columns are being used to process the two different stimuli (recall that overall activity
is measured by comparing the current activity pattern of the voting units to their activity pattern after learning is
complete, in this case, trial 40). This also shows that the column continues responding to the same input before
and after the reversal.

The activity/performance curve for the Left response is shown in figure 13.13. Recall
that the activity curve is computed by taking the dot product between current activity of
the voting unit vector and the same vector of activity after the learning is complete. The
sudden jump in the activity curve indicates the point at which the reversal takes place.
This jump happens because although the column continues to respond to the same
stimulus, the stimulus is now supposed to map to the No-Go response (which has also
been plotted). This and figure 13.14 A demonstrate that the column maintains its map-
ping to the specific stimulus. Figure 13.14 B (the output weights from the same column)
demonstrates that it is these weights that are adjusted to deal with the new mapping. Note
in this figure, the reversal takes place over just a few trials (both in the reduction of the
Downward weight and the increase of the No-Go weight.

Figure 13.14��

(A) A single unit’s response
to the various input stimuli
over time. The solid curve
represents the unit’s
response to the Nth
occurrence of the stimulus
that maps to the “No-Go”
response. Likewise, the
dashed curve represents the
unit’s response to the Nth
occurrence of the stimulus
that maps to the “Down”
response. The drastic
increase of the solid curve
and decrease of the dashed
curve indicate the point of
reversal (after the 2nd
occurrence of the stimulus
that maps to “No-Go”, and
the 9th occurrence of the
stimulus that maps to “Down,
respectively). Note that the
unit continues to respond to
the same stimulus after the
reversal, although the
stimulus now maps to a
different motor program.

2 5 8 C H A P T E R 1 3

13.5 Summary
Our model has primarily addressed the computational issues involved in learning appro-
priate stimulus/motor program mappings. However, we believe that the functional role of
voting units within our network may be related to that of set units within the premotor
cortex. The actual visual/motor mapping is considered to be taking place further upstream
from premotor cortex (within the Win,feature weights in our model). We believe this to
be the case, due to the fact the Mitz et al. (1991) observed similar set unit activity pat-
terns in response to different visual stimuli that mapped to the same motor response.

The motor programs, themselves, are most likely stored in regions further down-
stream from premotor cortex, as is the circuitry that chooses a single motor program to
execute (motor program selection units and the winner-take-all circuit of our model).

This model was successful in meeting a number of the challenges set forth earlier It
produces a behavior similar to that which was seen in the monkey experiments (goals 1a–
c), and also produces normalized activity/performance curves that are qualitatively simi-
lar to the experimental data. Although neither of these two challenges (goal 2) were
explicitly designed into the neural algorithm, the two features resulted from the original
formulation of the model. Finally, the model produces neuronal activity phenomena that
are representative of those observed by Mitz et al. (Mitz challenges a–c).

The primary computation within the model was performed using distributed coding
of the information, thus demonstrating that not all of the relevant information need be
present at a single location to perform a complex task. Rather, a distributed set of com-
puters, each acting with a limited set of information, is capable of producing a global
decision through a voting mechanism. However, in this model, votes were cast in a more
centralized manner than is appropriate for a more faithful model of the brain’s circuitry.

The concept of the column served to bind together a minimal set of computational
capabilities needed to perform the local computation. This structure was then replicated
to solve the more global computation. The claim here is not that a cortical column in the
neurophysiological sense consists strictly of feature detector and voting units, but that a
local organization is sufficient to perform a significant part of the computation. Allowing
all neurons to connect to all other neurons is not practical from a hardware standpoint,
and may impede the learning process.

The learning algorithm was a local one. Except for the reinforcement signal, the
update of a particular weight only used the information available locally (the activation of
the presynaptic and postsynaptic neurons, and the surrounding weights that shared com-
mon dendritic tree). This feature adds to the biological plausibility of the process, and
may also have important consequences such as easy implementation in VLSI. In addition,
the learned function was stored in a local manner (any particular column was active for
only a subset of the inputs). This type of representation can limit the amount of interfer-
ence between different input patterns, and thus the learning may be faster and more effec-
tive in achieving its goal.

The model, however, does not attempt to account for the different types of units
observed within the premotor cortex (goal 3). In particular, Mitz challenges d and e are
not in general satisfied by the model (multiple stimulus patterns that map to the same
motor response do not necessarily activate the same set of columns). This is due to the
normalization operation that is performed on the input to the feature detector units.
Again, in the premotor cortex of monkey, one would expect a set unit to continue partici-
pating in the same motor program after a reversal has taken place, rather than responding
continually to the same input stimulus. This would be due in part to the fact that the mon-
key has already created and solidified its motor programs in memory (during the first
stage of learning). Because the mapping from visual stimulus to motor program is trans-

A M O D E L O F P R I M A T E V I S U A L - M O T O R C O N D I T I O N A L L E A R N I N G 2 5 9

ient, the synaptic changes are more likely taking place in regions upstream from premotor
cortex.

Finally, the behavior of the model under different experimental conditions may yield
some predictions as to the monkey‘s behavior under similar conditions. As discussed
earlier, the use of a completely random sequence of stimuli (as opposed to repeating trials
in which the incorrect response was given) significantly hindered the system’s ability to
learn the visual-motor mapping. From this observation, we would like to posit that the
monkey would suffer a similar fate given the completely random trial presentation. This
is not meant to say that the monkey would necessarily be unable to learn the task, but that
the learning would at least be significantly more difficult. The degree to which this is true
can ultimately feed back to future work on this model, since it would tell us something
about the degree of interference between the different mappings.

Notes

1. This work was supported in part by a fellowship from the Graduate School, the
School of Engineering, and the Computer Science Department of the University of
Southern California, and in part by a grant from the Human Frontiers Science Pro-
gram. We thank Steven Wise and Andy Mitz for correspondence that formed the
basis for this project, and George Bekey for his help in the shaping of this document.
In addition, we would like to thank Rob Redekopp for his aid in performing some of
the backpropagation experiments.

2. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model
implementation written by A.H. Fagg as well as contributed Section 13.3 to this
chapter.

3. The Primate Visual-Motor Conditional Learning Model model was implemented and
tested under NSLC.

�

This page intentionally left blank

14 The Modular Design of the Oculomotor System
in Monkeys

P. Dominey, M. Arbib, and A. Alexander

14.1 Introduction
In this model we examine the modular design methodology as it applies to the design of
both cortical and subcortical regions in the monkey. We will examine the topographic
relations between the Posterior Parietal Cortex (PP), the Frontal-Eye Field (FEF), the
Basal Ganglia (BG), the Superior Colliculus (SC), and the Mediodorsal thalamus (MD)
as they work together to control the oculomotor regions of the brainstem (BS). We will
also describe several experiments that can be performed on the model that demonstrate
the modulation of eye movement “motor error maps”, sustained potentiation (memory),
and dynamic remapping of spatial targets within the “motor error maps”. Although, the
experiments were originally documented in Cerebral Cortex in 1992 (Dominey and
Arbib), we have modified the model to make it easier to understand and to take advantage
of the new features in NSL.

This work was initially motivated by data on the double saccade by Mays and
Sparks, 1980 and 1983. In their testing, they found that monkeys could perform the dou-
ble saccade task (as described below), though their accuracy was considerably affected
by the delay between the retinal error input and the representation of eye position. Also,
single unit recording studies of the Frontal-Eye Field, the Superior Colliculus, and the
Lateral Inter Parietal (LIP) during visual and memory guided saccades indicate that cells
in these regions code saccades in terms of direction and amplitude rather than head-
centric spatial locations (Sparks 1986, Segraves and Goldberg 1987, Anderson et al.
1990, and Barash et al. 1991). We will attempt to duplicate their findings by examining
two saccade paradigms in which retinotopic coding alone is inadequate to explain the
spatial accuracy of the saccade. The five catagories of saccade experiments that we will
be looking at are the simple saccade task, the double saccade task, the memory guided
saccade task, the lesioning of FEF or SC, and the compensatory (or stimulated) saccade
task.

14.2 Model Description
In the simple saccade task, a monkey is seated in a primate chair with its head fixed and
eyes free to move. An illuminated point appears in the center of a grid of lights in front of
him. We call this the fixation point. The fixation point disappears and a single light is
illuminated. To get his reward, the monkey must saccade to this target. The timing dia-
gram of these sequences and the resultant saccade are shown in figure 14.1.

2 6 2 C H A P T E R 1 4

Figure 14.1��

Timing Diagram for Simple
Saccade Experiment.
“visinP3M3” is the stimulus
for the first target, “fixation” is
the fixation timing,
“verticalTheta” is the vertical
eye movement response, and
“horizontalTheta” is the
horizontal eye movement
response. Notice that the eyes
do not move until the
“posteriorParietalCenter” goes
low.

After performing several simple saccade experiments, it became clear that the longer
the saccade, the more likely the error in acquiring the target became.

In the double saccade task, an illuminated point appears in the center of a grid of
lights in front of him (figure 14.2). The illumination point disappears and two different
lights are illuminated in rapid succession. To get his reward, the monkey must saccade to
the first target and then to the second. The total duration of the two targets presentation is
less than the time it takes to saccade to the first target. Because there are two targets, the
representation of the second target, visinM3P3, in the motor error map would move as
visinM3P3 itself would move across the retina during the saccade to the first target,
visinM3P0.

Figure 14.2
Timing Diagram for the Double
Saccade Experiment I.
“visinM3P0” is the stimulus for
the first target and “visinM3P3”
is the stimulus for the second
target. “fixation” is the fixation
timing., “verticalThet” is the
vertical eye movement response,
and “horizontalTheta” is the
horizontal eye movement
response.

In the single, memory saccade task, an illuminated fixation point appears, then a tar-
get is while the fixation point is still illuminated (figure 14.3.) Once the fixation point is
un-illuminated, the monkey is free to move his eye to the target. Thus, he has to remem-
ber where this target was to saccade to it.

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 6 3

Figure 14.3
Timing Diagram for Single,
Memory Saccade Experiment.
“visinM2P2” is the stimulus for
the first target “fixation” is the
fixation timing, “verticalTheta” is
the vertical eye movement
response, and “horizontalTheta”
is the horizontal eye movement
response.

In the lesioning experiments we simply disable the output of the FEF (actually the
fefsac variable) when we lesion FEF, and when we lesion SC we disable the output of the
SC (actually the “supcol” variable). The lesioning experiments we describe here are dif-
ferent than the lesioning experiments we will talk about later where we combine the
lesioning with stimulation. In these experiments the Long Lead Burst Neurons (LLBN)
are strengthened due to the lesioning; however, it is not the case when we combine
lesioning with the stimulation.

Figure 14.4
Timing Diagram for Lesioning of
SC Experiment.”sisinP3M3” is
the stimulus for the first target ,
“fixation” is the fixation timing,
“verticalTheta” is the vertical eye
movement response, and
“horizontalTheta” is the horizon-
tal eye movement response.

In the compensatory experiments we first describe two experiments where we stimu-
late the SC, and then we describe two experiments where we stimulated the FEF. Finally
we describe an experiment where we stimulate the SC but lesion the FEF, and then
describe an experiment where we stimulate the FEF but lesion the SC. When performing
the stimulate and lesion experiment (Schiller and Sandell, 1983; Keating and Gooley,
1988) a visual target is briefly presented and removed before a saccade can begin. Before
the visual saccade can begin, an electrical stimulus is applied to either the FEF or SC.
The monkey will first saccade to the stimulated location and then to the real target
(Dassaonville, Schlag, Schlag-Rey, 1990) even though timewise the real target appeared
first. This is due to the fact that the visual signal takes much longer to get from the retina
to either the FEF or SC. After performing either of these experiments we will see that

2 6 4 C H A P T E R 1 4

when either the FEF or SC is externally stimulated during an ongoing saccade that the
brain compensates for different components of the ongoing movement.

Figure 14.5
Compensatory Saccade:
Stimulation of FEF with
Lesioning of SC

The simple saccade experiment allows us to study the topographic relations between
sensory and motor areas, including inhibitory projections that manage motor field activi-
ties during the saccade. The double saccade experiment allows us to study the dynamic
remapping of the target representation to compensate for intervening movement. The
memory saccade experiment allows us to study the cortical and subcortical activity that
sustains spatial memory. The lesioning experiments allow us to study the affects of
lesioning. And the compensatory experiments allow us to study both the affects of
stimulation to the FEF and of stimulation to the SC.

In the model, (figure 14.6) we have tried to localize the mechanisms that allow the
monkey to accurately attain its target when an intervening saccade takes the eyes away
from the location where the target was illuminated. The problem is that in many oculo-
motor structures, saccades are coded as a displacement from a given eye position, rather
than as a final location. This means that the displacement code is only valid if it is
updated almost continuously to account for the intervening changes in eye position, or if
the saccade begins from the eye position at which the target was specified. Some experi-
mental results indicate that the updating of the displacement code occurs before the signal
reaches the FEF while other experiments indicate that this transformation occurs down-
stream from the FEF. In our model, we have chosen to represent this remapping in the
lateral intra parietal (LIP) (part of the PP) before the signal reaches the FEF. Gnadt and
Andersen (1988) found cells in the LIP that appear to code for future eye movement and
show quasi-visual (QV) cell behavior. In a double saccade task they found cells that code
for the second eye movement, though a visual target never falls in these cells’ receptive
fields. They proposed that PP might receive corollary feedback activity from saccades,
suggesting that PP has access to eye position information that could be used to generate
the QV shift. And since PP projects to both FEF and SC, it is likely that the PP is the
origin of the QV activity seen in those two areas.

Looking at figure 14.6 we see that the dynamic re-mapping of spatial information
contributes to the second saccade via multiple routes:

 LIP/PP to SC to the Brain Stem
 LIP/PP to FEF to the Brain Stem
 LIP/PP to FEF to SC to the Brain Stem

These multiple routes also contribute to the monkey‘s ability to saccade to the a tar-
get even though the SC or the FEF has been lesioned.

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 6 5

14.3 Model Implementation
The eye movement or saccade model as portrayed in figure 14.5 has been a useful system
for studying how spatial information is transformed in the brain from a retinotopic
coordinate system to the appropriate temporal discharge pattern of the motor plant. In this
schematic we see the images transmitted to the Retina, and then to the Visual Cortex.
From the Visual Cortex the image is transferred to the Posterior Parietal Cortex (PP) and
specifically the Lateral Intra Parietal (LIP) within the PP. The Quasi Visual (QV) cells of
the LIP/PP project to the intermediate layers of the SC (Lynch et al. 1985) and to the FEF
(Petrides and Pandya 1984). Lesion studies have demonstrated that either the frontal eye
field (FEF) or the superior colliculus (SC) is sufficient for commanding the execution of
saccades. (Schiller and Sandell 1983; Keating and Gooley 1988). Also in figure 14.5, we
see the basic mechanisms for calculating spatial accuracy. Mechanism A performs a
dynamic memory remapping that updates motor error via an efferent velocity signal that
is approximated by the damped change in eye position (DCEP).

Retina,
VisCx
Delay
(d1)

Mechanism A

7a/LIP/PP

FEF

SC

LLBN,
MLBN

EBN MNTN

PN RI

Brain Stem – Saccade Burst Generator

trig

DCEP

velocity

dimension

Figure 14.6�

Spacial Accuracy within the
Saccade Model. DCEP-Damped
Change in Eye Position, 7a/LIP-
Oculomotor Region of Posterior
Parietal Cortex, FEF-Frontal Eye
Field,SCd-Deep, Motor Layer in
Superior Colliculus, LLBN-Long
Lead Burst Neurons, MLBN-
Medium Lead Burst Neurons,
EBN-Excitatory Burst
Neurons,PN-Omni-Pause
Neurons, RI-Resettable
Integrator, TN-Tonic Neurons,
MN-Oculomotor Neurons

Also in figure 14.6 we see the Saccade Burst Generator. The saccade burst generator
(SBG) performs the spatiotemporal transformation from the motor error maps of the SC
and FEF to generate eye movements as a function of activity in tonic position cells and
excitatory burst neurons (Robinson 1970, 1972).

The two neural areas we do not see in the figure 14.6 but which are included in our
model in figure 14.7 are the mediodorsal thalamus (THAL) and the basal ganglia (BG).
The thalamus with the FEF provides a reciprocal connection that implements the spatial
memory loop. The basal ganglia (BG), on the other hand, provides a mechanism for the
initiation of cortico-thalamic interactions via the removal of inhibition from the basal
ganglia’s substantia nigra pars reticulata (Snr) on the mediodorsal thalamus. The BG also
plays a role in the disinhibition of SC and THAL for saccades requiring spatial memory
(Fuster and Alexander 1973; Hikosaka and Wurtz 1983; Ilinsky et al 1985; Goldman-
Rakic 1987).

The computer model emulates the above system as closely as possible. In figure 14.7
below, we see the exact schematic that is used to generate the code for the top level of the
model, DomineyTop. DomineyTop contains many of the same components as in figure
14.6 above; however, we have encapsulated the Burst Saccade Generator (BSG) as part
of the brainstem into one module. We have also changed the names of the neural areas to
conform to the NSLM naming conventions (names begin with lower case letters for
instances of objects).

2 6 6 C H A P T E R 1 4

Figure 14.7
DomineyModel or
CorticalSaccade Schematic

In figure 14.7, we see the complete Dominey Model for all of the saccade experi-
ments we will be performing. The external world is represented by a 27 by 27 neural ele-
ment array, called visualinput. The fixation point and targets are specified on this array
via the user interface or by using the default parameters. The visual input is remapped on
to the retina, in retinotopic coordinates and then the visual image travels through the
Visual Cortex (viscortex) to the Posterior Parietal. At this point, we connect the PP to
both the FEF and to the Lateral Inter Parietal within the Posterior Parietal (ppqv1). In
PPQV, we have implemented a variation of the Dynamic Memory algorithm by Droulez
and Berthoz, 1991, for shifting targets on a motor error map, (what we called Mechanism
A in figure 14.6.) This algorithm for the dynamic shifting of targets is called from PPQV
but located in a library class we call DomineyLib. By providing special functions in
library classes instead of buried in the model, we make it easier for other modelers to
reuse these functions. This library is also used in the case of the Superior Colliculus, SC,
which uses the “WinnerTakeAll” algrorithm to compute the tonic quasi-visual property

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 6 7

seen in the superior colliculus (Mays and Sparks 1980). We call the variable that repre-
sents these cells scqv. SC also contains cells that receive direct input from the retinal
ganglion cells, and are active in generating reflexive saccades to visual targets. We call
these cells scsup. If a fixation target is not present, then these cells will drive SC, gener-
ating short latency saccades (Braun and Breitmeyer 1988) via the transcollicular pathway
(Sparks 1986). Note that since scsup cells are connected to both the retinal input and the
fovea on cells, FOn, these cells will not fire until the FOn turns off. Also SC contains
cells that generate presaccadic bursts before voluntary saccades. We call these cells scsac.
Experimental data indicates that SC receives an excitatory topographic projection from
presaccadic cells in FEF (Segraves and Goldberg 1987). This is accomplished via fefsac
in our model.

The FEF module has three classes of saccadic cells. Visual cells (fefvis) respond to
all visual stimulus (Bruce and Goldberg 1984). We have grouped these with our Quasi-
visual like cells. Coding for the second saccade in the double saccade, these QV cells
demonstrate the right movement field and the wrong receptive field responses, character-
istic of QV cells, and are referred to as right-MF/wrong-RF cells (Goldberg and Bruce
1990) or fefvis within our model. Memory cells (fefmem) sustain activity during the
delay period in memory experiments (Funahashi et all 1989) while movement cells, fef-
sac, discharge before all voluntary saccades corresponding to the cell’s preferred
dimensions (Segraves and Goldberg 1987).

In figure 14.7 , we see the FON module which contains cells distinguished in the
FEF that have an on or off response to visual stimulation in the fovea. These foveal cells
are not localized to a particular location of the topographic map of FEF, and they project
to a wide range of locations within the SC (Seagraves and Goldberg 1987). We model
the Foveal On cells, FOn, projecting the center element of the PP layer (the fovea) to a
standard size array, that is used to provide inhibition to the elements of the caudate (CD
in BG). In each of the following experiments we note that the removal of the illumina-
tion of the fixation point signals the monkey that he is free to move his eyes; thus, when
FOn is off, the monkey is free to perform the saccades.

Also in figure 14.7 we see several darkened modules. These are the input modules
where the user can change the defaults. The visual input module is used for specifying the
targets and fixation point. The stimulation modules are used to provide stimulus to the
FEF or SC in the compensatory saccade cases. The user is also free to dynamically
change these NSL type variables at run-time using the NSLS scripting language.
(However, note that variables must be writable to change them from the scripting
language. Currently we have declared the variables “visualinput1/visualinput”,
“stimfef1/stimFEF”, “stimsc1/stimSC”, “brainstem1/llbn1/llbnPot_k1”, “brainstem1-
/llbn1/llbnPot_k3”, “fef1/fefmemPot_k2”, ”fef1/fefsac”, ”supcol1/supcol”, “supcol1/supcol_k3”,
and “ppqv1/qvMask_k1” as writable variables since their values change depending on the
protocol used.)

2 6 8 C H A P T E R 1 4

Figure 14.8
Saccade Burst Generator or
BrainStem Schematic

As stated in the earlier, the saccade burst generator (SBG) or the BrainStem Saccade
Burst Generator (figure 14.8) performs the spatiotemporal transformations from the
motor error maps of the SC and FEF (Robinson 1970, 1972). This SBG is based on one
by Scudder (1988). Two of the properties of this model are that it will yield a saccade
with the topographically coded metrics in response to either FEF or SC stimulation or
both, and it accurately emulates the FEF and SC in that increased firing at a given point
will increase the velocity and decrease the latency without changing the metrics of the
saccade.

Also in figure 14.8 we see the Tonic Neuron modules. The tonic neurons (TN) pro-
vide corollary discharge signals lefttn, righttn, uptn, downtn, which, together with a
delayed version of these signals, provide the input used by our model of the PP for the
dynamic remapping function which underlies successful completion of the double sac-
cade task (Mechanism A).

The main module in the BrainStem is the Motor Schema shown and described in
figure 14.9.

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 6 9

Figure 14.9
The Motor Module’s
Schematic

In figure 14.9 we see the Motor Schema. This schematic represents the bulk of the
Saccade Burst Generator (SBG). We can compare this to the schematic given by
Dominey and Arbib 1992 describing the shared and cooperating spatial accuracy mecha-
nisms. (See figure 14.6.) The Medium Lead Burst Neurons (mlbn) provide input to the
Excitatory Burst Neurons (ebn). And the ebn neurons provide inputs to the tonic neurons,
the resetable integrator within the Pause module, and the motor neurons, MN. The Pause
module contains the resetable integrator, trigger cells, and the Omni-Pause Neurons. The
TNDelta module gates the tonic neuron response. The oculer motor neurons (MN) move
the eyes, and the STM module calculates spatio temporal transformations.

2 7 0 C H A P T E R 1 4

Figure 14.10
Basal Ganglia Schematic

In figure 14.10, we see two inhibitory nuclei of the basal ganglia (BG), caudate (CD)
and substantia nigra pars reticulata (SNr). They provide an additional, indirect link
between FEF and SC (Chevalier et al 1985). This link allows FEF to selectively modulate
the tonic inhibition of the SNr on the SC and the thalamus (Deniau and Chevalier, 1985;
Alexander et al. 1986) through the caudate nucleus.

Originally this model was written in NSL2.1 as a series of functions which were exe-
cuted sequentially. We have re-written the model to make it more object-oriented and
modular. The first thing we did was to stop representing neural areas as functions and
start representing them as classes. This allowed us the ability to set the initialization
parameters in each class/neural area as well as provide other functionality that was local
to the neural area.

Next, we instantiated those classes where practical in the model. For instance, in the
Saccade Burst Generator (figure 14.5) we instantiate the Motor Schema module four
times: once for each direction (left, right, up, down). This of course reduced the amount
of code we needed to write for the saccade burst generator in the brain stem: we only had
to write MLBN, EBN, Pause, TNDelta, and MN once, instead of four times: one for each
direction of right, left, up, and down.

We also made the model hierarchical, grouping together neural areas by schema.
Thus the MLBN, EBN, Pause, RI, TN, and MN are all part of Motor which is part of the
Brainstem which is part of the top level model. Other schemas include the Memory
System, and the Vision System.

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 7 1

Once we had grouped the modules together, and added ports to connect the different
modules, it was clear that we had created the same circuit as that documented in Dominey
and Arbib (1992) (see figure 14.6). Since the model was now in the Schematic Capture
System (SCS), we could automatically generates the structural part of the model code
(see figure 14.7).

Another aspect of the new model, is ability to change the dimension of the internal layer
sizes (arrays) by changing just one variable. In the original model, we needed to improve the
spatial resolution and thus changed the model from using a visual input layer of 27 by 27 neu-
rons to 57 by 57 neurons (Dominey 1991); which meant that the retina and the rest of the
neural arrays were 19 by 19. Since there are over 80 of these structures, being able to change
80 structures by changing just one variable is a big improvement over the old model.

 Some of the more interesting uses of the NSLM code appeared in the SC and FEF
modules. In both modules we have called custom routines from the library we created
called “DomineyLib”. Code Segment 14.1 shows the code for the SC, and code segment
14.2 shows the code for the FEF.

public void simRun() {

 scsupPot=nslDiff(scsupPot,scsupPot_tm, - scsupPot -

 scsupPot_k1*fon + scsupPot_k2*retina);

 ppqv_winner = DomineyLib.winnerTakeAll

 (ppqv,nWTAThreshold.get(),stdsz);

 scqvPot=nslDiff(scqvPot,scqvPot_tm,-scqvPot + ppqv_winner);

 scsacPot=nslDiff(scsacPot,scsacPot_tm, -scsacPot

 +scsacPot_k1*fefsac -

 scsacPot_k2*snrsac);

 supcolPot=nslDiff(supcolPot,supcolPot_tm, -supcolPot +

 supcolPot_k2*scsac +

 supcolPot_k3*scqv -

 supcolPot_k4*fon +

 supcolPot_k6*scsup -

 supcolPot_k1*scDelay); // this is zero.

 supcolPot[center][center] = 0; // no saccades to where we

 already are!

 sc_winner = DomineyLib.winnerTakeAll(supcolPot,

 nWTAThreshold.get(),stdsz);

 scsup = nslSigmoid

 (scsupPot,scsup_x1,scsup_x2,scsup_y1,scsup_y2);

 scqv = (saccademask^scqvPot);

 scsac = nslSigmoid

 (scsacPot,scsac_x1,scsac_x2,scsac_y1,scsac_y2);

 //aa: from the 92 paper equation 15 is set to zero if

 lesioning SC

 if ((protocolNum==6)|| (protocolNum==13)) { // lesion SC

 supcol=0;

 } else {

 supcol = nslSigmoid(sc_winner,supcol_

 x1,supcol_x2,supcol_y1,supcol_y2);

 supcol = supcol + (supcol_k3*stimulation);

 }

 scDelay=nslDiff(scDelay,scDelay_tm, -scDelay + supcol);

}

Code Segment 14.1�

Code Segment from SC

2 7 2 C H A P T E R 1 4

public void simRun() {

 fefvisPot=nslDiff(fefvisPot,fefvisPot_tm,

 (- fefvisPot + ppqv));

 fefmemPot=nslDiff(fefmemPot,fefmemPot_tm,(- fefmemPot +

 fefmemPot_k4*thmem + fefmemPot_k2*fefvis –

 fefmemPot_k1*fon));

 fefsacPot=nslDiff(fefsacPot,fefsacPot_tm,(- fefsacPot +

 fefsacPot_k1*fefvis +fefsacPot_k2*fefmem -

 fefsacPot_k3*fon));

 fefsacPot[center][center] = 0;

 fefvis = nslSigmoid

 (fefvisPot,fefvis_x1,fefvis_x2,fefvis_y1,fefvis_y2);

 fefmem = nslSigmoid

 (fefmemPot,fefmem_x1,fefmem_x2,fefmem_y1,fefmem_y2);

 fefsactmp = nslSigmoid(fefsacPot,

 fefsac_x1,fefsac_x2,fefsac_y1,fefsac_y2);

 fefsac = fefsactmp + (fefsac_k1*stimulation);

 if ((protocolNum==7)||(protocolNum==14)) {//lesion fef

 fefsac=0;

 }

}

14.4 Simulation Results1

We now report the simulation results. We note that the neural populations we model
carry information in terms of their discharge frequencies, the durations of discharge, and
the latencies both between stimulus and firing, and between neural events in connected
regions. All of the experiments can be found on line at our website, at http://www-
hbp.usc.edu/~nsl/unprotected. The World Wide Web applet for this model and these
experiments can also be found at the same location, as well as, example experimental
results. We will note here that the run delta was set to 0.005, or 5 milli seconds and the
run end-time was set to 0.7 seconds for each of the following 15 experiments/protocols.

The Single Location Saccade Experiment
In the single saccade experiment a light illuminates the fixation point which for the
monkey is in the center of a screen, but for us is in the center of an array called
visualinput. After .02 seconds the light goes away and a target appears someplace on the
screen. For the monkey to get his reward he must saccade to the target location.

Protocol 1: single saccade
 Fixation 0-0.02 at [(i=center,j=center)]
 Target A 0.02-0.07 at [(i=center+3,j=(center-3)]

Code Segment 14.2�

Code Segment from FEF

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 7 3

Figure 14.11 displays the system at time equal 0.16 seconds.

Figure 14.11
Single Saccade Protocol 1 at
time t=0.16 seconds.

At 0.16 seconds the saccade is under way and we can see activity in several of the
major brain areas. After the fixation has been removed and the target appears, the center
of the Posterior Parietal (PP) is off, and the FOn signal is off, which releases the inhibi-
tion on the caudate. The caudate after receiving the fovea off signal and the target
information from the FEF, then projects an inhibitory signal to the SNR which releases
the inhibition on the SC which contains the information of where the target is. Target
information contained in SC and FEF output drive the brainstem to reposition the eye
such that the target is in the center of the fovea. If the target is still lit, then this causes the
center element of the PP to be on. If the target is not still lit, then the center of PP will be
off, as in figure 14.12.

Figure 14.12
The final results of the
simple saccade protocol at
time=0.7.

2 7 4 C H A P T E R 1 4

Figure 14.13
The final values for
horizontalTheta for the
simple saccade protocol at
time=0.7.

The Single Location Saccade Experiments Using Memory
The memory saccade experiment requires the thalamus to store spatial locations in
memories via a reciprocal excitatory connections with FEF. When the target disappears,
it is held in FEF memory (fefmem) by the reciprocal excitatory connection between MD
of the thalamus and FEF. The removal of the fixation point causes the FOn signal to be
reduced which allows the fefsac to fire and removes a source of inhibition from the SC.
The combination of these events allows the stored spatial memory to command a saccade.
The effect of the spatial memory is to keep the target position in the FEF active after it is
extinguished.

Protocol 2: memorySingleI saccade.
 Fixation 0-0.28 at [(i=center),(center)]
 Target A & fixation 0.02 - 0.07 at [(i=center-2),(j=center+2)]
 Note: Fixation off at off at 0.28

Protocol 3: memorySingleI saccade.
 Fixation 0-0.28 at [(i=center),(center)]
 Target A & fixation 0.02 - 0.07 at [(i=center-2),(j=center-3)]
 Note: Fixation off at off at 0.28

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 7 5

Figure 14.14
Single Memory I Saccade
Protocol 2 at time=0.2
seconds.

In figure 14.14, we see that at time equal 0.21 seconds no saccade has happened yet,
but we can see that the location of the saccade is stored in the Thalmus (thmem) and the
FEF (fefmem). As long as the fixation point remains on, the Thalamus and FEF will
maintain the memory loop.

The Double Location Saccade Experiments
 When performing the double saccade task, the motor error representation of the second
target is dynamically remapped to com-pensate for the intervening movement. By using
the ppqv layer as input to the fefvis layer, the FEF can contribute to the correct specifica-
tion of both saccades in the double step task.

Protocol 4. doubleI saccade.
 Fixation 0-0.02 at [(i=center),(j=center)]
 Target A 0.02 - 0.07 at [(i=center-3),j=(center)]
 Target B 0.09 - 0.13 at [(i=center-3),j=(center+3)]

Protocol 4. doubleII saccade.
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec
 Fixation 0-0.02 at [(i=center),(j=center)]
 Target A 0.02 - 0.07 at [(i=center),j=(center-2)]
 Target B 0.085 - 0.125 at [(i=center-3),j=(center)]

2 7 6 C H A P T E R 1 4

Figure 14.15
Double Saccade Experiment
- Protocol 4 at time=.15
seconds.

Figure 14.16
Double Saccade Experiment
- Protocol 4 at time=.18
seconds

In figure 14.15 we see the activity in the ppqv before the dynamic remapping of the
target takes place. The quasi-visual (QV) convolution mask (qvmask) is generated from
the temporal offset of the horizontal and vertical eye position. When convolved with
ppqv, the qvmask represents interactions thought to implement the quasi-visual shifting
seen in the parietal cortex. The initial upward saccade along with the qvmask causes the
cells on the upper part of ppqv to be excited, while the cells on the bottom part of ppqv
are in inhibited, which causes the second target contained within ppqv to be shifted three
cells down (the opposite direction). Or in otherwords, as the first target moves into the
fovea or center of ppqv, the distance between the first and second target must be main-
tained, and thus it looks like the second target is moving away from its original location
(see figure 14.16).

The Lesioning of SC or FEF Experiments
In the lesioning experiments either the SC or the FEF is lesioned. The protocol is the
same as that for the simple saccade experiment except for the lesion.

Protocol 6 - lesionSC saccade.
 Fixation 0-0.02 at [(i=center,j=center)]
 Target A 0.02-0.4 at [(i=center+3,j=(center-3)]

Protocol 7 - lesionFEF saccade.
 Fixation 0-0.02 at [(i=center,j=center)]
 Target A 0.02-0.4 at [(i=center+3,j=(center-3)]

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 7 7

Figure 14.17
Lesion SC experiment -
Protocol 6 at time=0.25
seconds

Figure 14.18
Lesion FEF experiment -
Protocol 7 at time=0.16

Figure 14.19
Lesion SC experiment -
Protocol 6 at time=0.4
seconds

2 7 8 C H A P T E R 1 4

Figure 14.20
Lesion FEF experiment -
Protocol 7 at time=0.4

Note that in figure 14.17 we see that when we lesion the SC, there is no activity in
“supcol”. In figure 14.18 we see that when we lesion FEF, there is no activity in “fefsac”.
In figure 14.19 we see that lesioning the SC causes about a 0.34 second delay (.167-.133)
and shortens the amplitude by a small amount when compared to the simple saccade of
figure 14.12. In figure 14.20 we see that lesioning the FEF causes a 0.19 second delay in
the saccade when compared to the simple saccade of figure 14.12. and shortens the am-
plitude by a small amount but then tries to correct for the mistake. When the amplitude of
the saccade is reduced, the eyes do not move as far, and it can take several saccades to
acquire the target in the center of the fovea.

The Double Location Memory Saccade Experiments
In the double location memory saccade experiments the quasi-visual field shifting is used
to reposition the location of the second target in “ppqv” as the eyes moves to the first
location. In addition, when the first target location goes on again, fixation re-occurs and
the memory elements within the FEF and Thalamus are activated, causing the location of
the second target to be stored until the fixation (or in this case the illumination of the first
target) goes off. Thus this experiment combines attributes of the double saccade experi-
ment with the memory saccade experiment. The timing on these types of experiments is
very critical. If the second saccade happens too late it will not be shifted in ppqv. If the
second saccade happens too early, the location will not get stored in the FEF and Thala-
mus memory loop.

Protocol 8 - memoryDouble saccade
 Fixation 0-0.02 at [(i=center),(j=center)]
 Target A 0.02 - 0.05 at [(i=center-3),(j=center)]
 Target B 0.095 - 0.11 at [(i=center-3),(j=center+3)]
 Target A 0.165 - 0.5 at [(i=center-3),(j=center)]

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 7 9

Protocol 15 - memoryDouble2 saccade
 Fixation 0-0.02 at [(i=center),(j=center)]
 Target A 0.02 - 0.07 at [(i=center),(j=center-2)]
 Target B 0.09 - 0.105 at [(i=center-3),(j=center)]
 Target A 0.17 - 0.5 at [(i=center),(j=center-2)]

Figure 14.21
The First Memory Double
Saccade Experiment -
Protocol 8 at time =0.55

Just as in the single memory saccade we can see in figure 14.21 some activity in
fefmem and thmem for storing memory. Also, we see that the remapped location of the
second target is off by a couple of degrees. This is probably due to the fact that the sac-
cade falls short of the target and thus retains some of the information needed to acquire
the first target. However, the second double memory saccade experiment (protocol 15)
does not have this problem since it acquires the first target without overshooting. Its first
saccade is also a shorter saccade than protocol 8’s first saccade.

The Compensatory Saccade Experiments
In the first four compensatory saccade experiments, no lesioning is involved. Only
stimulation of the indicated areas.

Protocol 9 - stimulated SC CompensatoryI saccade.
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)]
 Stimulation 0.07 - .11 at [(i=center-3),(j=center)]
 Note: Reduced target error due to location - only going 1 direction

Protocol 10 - stimulated SC CompensatoryII saccade.
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center)]
 Stimulation 0.07 - 0.11 at [(i=center),(j=center-2)]
 Note: Increased target error due to location - must go two directions

Protocol 11 - stimulated FEF CompensatoryI saccade.
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)]
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)]

2 8 0 C H A P T E R 1 4

Protocol 12. stimulated FEF Compensatory II saccade.
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center)]
 Stimulation 0.07 - 0.11 at [(i=center),(j=center-2)]

Figure 14.22
The First Compensatory
Saccade Experiment -
Stimulate SC - Protocol 9
at time =0.7

As can be seen in the figure 14.22, the activity within “ppqv” is very similar to that
as shown for the double saccade experiment. However, we can also see that the stimu-
lated target is acquired first even though the stimulus was applied after the visual input
cue was illuminated. Again this is due to the long path between the retina and the SC.

In the compensatory saccade experiment with lesioning simulated the electrical
stimulation of both FEF and SC (figure 14.6), as described in Schiller and Sandell (1983)
in which one of the two neural area was lesioned and the other was stimulated. For FEF
stimulation we set the k1 parameter to 1.58, and applied electrical stimulation at 175 Hz
for 40ms to fefsac. For SC stimulation we set the k1 parameter to 2.9, and applied electri-
cal stimulation at 175 Hz for 40 ms to various locations in SC. The timing and movement
data for these trials are summarized below and the results for protocol 14 are shown in
figure 14.21.

Protocol 13 - stimulated FEF LesionSC I saccade. - no SC
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)]
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)]

Protocol 14 - stimulated SC LesionFEF I saccade. no FEF
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec
 Fixation 0-0.02 at [(i=center,center)]
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)]
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)]

T H E M O D U L A R D E S I G N O F T H E O C U L O M O T O R S Y S T E M I N M O N K E Y S 2 8 1

Figure 14.23
Lesioning FEF and
Stimulating SC experiment
- protocol 14 at time=.7

As can be seen in figure 14.23, the stimulation of the SC causes the second target to
be acquired first; while the lesioning of FEF causes some delay in making the saccade.
However, in this group of experiments we also increase the strength of the projections
from either the SC or the FEF (which ever was not lesioned) to the long lead burst neu-
rons. The changes corresponding to the postoperative adaptation of the system reported
by Schiller and Sandell (1983).

14.5 Summary
We have discussed the basis of our computer model and how NSL 3.0 has made it easier
to represent and understand. In 1992 Dominey compared his simulated results as far as
timing and output amplitude with the corresponding literature and found that they com-
pared well. The original model demonstrates that:

1. The inhibitory projection from BG to SC allows selective cortical control of remem-
bered target locations.

2. The topographic position codes in motor error maps of future saccades can be
dynamically updated to account for ongoing eye movement (ppqv).

3. Saccades can be driven by memory that is hosted in reciprocal connections between
FEF and the Thalamus.

4. Either the projection from SCS to the LLBNs or the projection from FEF to the
LLBNs can trigger a saccade but in degraded mode.

This new model demonstrates the same concepts but at the same time does it in a
more user friendly fashion. We have demonstrated that with the new NSL 3.0, one can
represent neural areas in a more natural fashion, treating neural areas as objects or classes
incorporating all of the features of one neural area into one section of the code instead of
strewn about the code. We have added the “protocol” interface which allows us to switch
from one protocol to another without leaving the simulator or loading a nsl script file.
We have also added the ability to see the temporal plots with their X and Y markings
within the Zoom Window. We have also added the ability to add new plots dynamically
at run time for debugging the model dynamically. Also, not shown here, but another plot
feature that can be used is color for encapsulating more information in one plot. Finally,
we would like to offer that the ability to see the structure of the model before performing

2 8 2 C H A P T E R 1 4

an experimentis a very valuable tool since it allows the experimenter to better understand
the model so that he/she does not waste time before performing possibly computer inten-
sive and time consuming experiments with the model.

Notes

1. The Oculomotor model was implemented and tested under NSLJ.

15 Crowley-Arbib Saccade Model
M. Crowley, E. Oztop, and S. Mármol

15.1 Introduction
The visual system provides the primary sensory input to human brains. Nearly every
activity we undertake first requires some information to be obtained from the visual sys-
tem, whether it is identifying a face, or locating an object for manipulation. To obtain this
information, the visual system must first move the eyes so that the region of interest falls
upon the fovea, the most sensitive part of the eye. Additionally, moving objects must be
tracked once they are foveated. These two aspects of “target” acquisition illustrate the
two types of movements the oculomotor system are capable of producing. The former is
called as saccades, which are quick eye movements to bring an object into the fovea. The
latter is referred as smooth pursuit eye movements which are for tracking moving
objects.

Crowley-Arbib model is a saccade model with an emphasis on the functional role of
the Basal Ganglia (BG) in production of saccadic eye movements. It is based on the
hypothesis that the BG has two primary roles the first being the inhibition of a planned
voluntary saccade until a GO signal is established by the prefrontal cortex and the second
being the provision a remapping signal to parietal and prefrontal cortex, through thalamic
projections, that is a learned estimate of the future sensory state based upon the execution
of the planned motor command.

The hypothesis that one of the basal ganglia roles is to inhibit a planned motor com-
mand prior to its execution was also used by Dominey and Arbib (1992) but is different
than the action selection proposed by Dominey, Arbib, and Joseph and by Berns and
Sejnowski (1995). However, both ideas require the involvement in the BG in motor pre-
paratory activity. The issue is whether this preparatory activity assists cortical areas in
selecting an action, or whether it instead is involved in “freezing” the execution of the
motor command until the planning cortical areas, e.g., prefrontal cortex, execute a go sig-
nal. We suggest that nearly all motor planning occurs in cortical areas and that these
areas use subcortical regions to provide specific information to aid in the motor planning.

15.2 Model Description
This model includes a number of cortical and subcortical areas known to be involved in
saccadic eye movements: Lateral Intraparietal Cortex (LIP), Thalamus (Thal), Prefrontal
Cortex (PFC), Superior Colliculus (SC), Frontal Eye Field (FEF), Basal Ganglia (BG),
Brainstem (BS). For each of these areas we will arrange one or more modules depending
on their individual functionality (i.e., for each of the two main roles of the BG described
above we are going to create two different modules: Lateral Basal Ganglia (Lat) and
Medial Basal Ganglia (Med)). In addition each module could be an assemblage of more
submodules, creating with this a hierarchy where the leaves implement the details of the
neurons involved. figure 1 shows the top level modules and how they are interconnected,
as implemented by means of the Schematic Editor. We will discuss more about each
module in the next paragraphs.

2 8 4 C H A P T E R 1 5

Figure 15.1
Top Level of the Crowley and
Arbib Model

Lateral Intraparietal Cortex (LIP)

Figure 15.2
Lateral Inter Parietal Cortex l

LIP provides the retinotopic location of saccade targets through excitatory connec-
tions form its memory related neurons to SC, FEF and BG. It also exhibits the result of
the remapping of saccade targets.

This module is modeled as composed of two types of cells due to the data from
Gnadt and Andersen (1988). They found cells in area LIP that responded to a visual cue
that did not last through the delay period in a delay saccade task. They also found sus-
tained response cells whose firing was turned off by the eye movement. We will model

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 8 5

the first class of neurons as visually responsive neurons (LIPvis) and the second class as
memory-responsive neurons (LIPmem).

Visual Response Cells (LIPvis) only respond to visual stimuli. These neurons are
modeled as receiving visual input from primary visual centers. In order to obtain saccade
latencies that match experimental data we have included a chain of primary visual cortex
regions that simply pass the visual signal to the next layer with a slight delay.

Memory Response Cells (LIPmem) fire continuously during the delay portion of a
delay saccade task. These cells would fire even if the stimulus never entered their recep-
tive field when second saccade was arranged so that it matched the cell’s movement or
receptive field. We propose that a memory loop is established between these cells in LIP
and mediodorsal thalamus. The connection strength between LIP and thalamus were cho-
sen so that the memory of saccade targets would remain without the target. Also the
strength had to be not too strong to disable BG’s power to eliminate memory traces.

Thalamus (Thal)

Figure 15.3
Thalamus

The thalamus relays sensory input to the primary sensory areas of the cerebral
cortex, as well as information about motor behavior to the motor areas of the cortex.
Based on the experimental data discussed below, we will consider only the mediodorsal
nucleus and ventral anterior thalamic areas in our model. Additionally, these two areas
will be implemented as a single layer within the model as the afferent and efferent
connections are very similar between these two areas. In the model three types of cells in
the thalamus and reticular nucleus are used as described next.

Thalamic Relay Cells (THrelay) have reciprocal connections with specific cortical
areas. These are further divided into different sets for LIP, FEF, and PFC. These

2 8 6 C H A P T E R 1 5

reciprocal loops maintain neuronal activity during delay periods of memory tasks essen-
tially forming a memory loop.

Thalamic Local Circuit Cells (THlcn) fire continuously providing inhibition to the
relay cells. But they are controlled by the inhibitory actions of the thalamic reticular
nucleus (RNinh) neurons. When inhibition upon these LCN neurons drops below a
threshold, their increased inhibition puts the thalamic relay neurons into a bursting mode
until the corresponding cortical cells begin firing and inhibitory activity of the SNr
returns to its normal levels.

Reticular Inhibitory Cells (RNinh) are tonically firing neurons receiving inhibition
from SNr. They provide inhibition of the thalamic local circuit neurons.

Prefrontal Cortex (PFC)

Figure 15.4
Prefrontal Cortex

It has been fairly well agreed that PFC is crucial for the process of working memory
(Boussaoud and Wise 1993; Goldman-Rakic 1987; Kojima and Goldman-Rakic 1984;
Sawaguchi and Goldman-Rakic 1994; Sawaguchi and Goldman-Rakic 1991). Lesions of
this area render monkeys unable to perform spatial memory tasks even when the delay
period is only a few seconds. We introduce the following layers in our model.

Visual Memory Cells (PFCmem) simulate the spatial working memory cells found
in prefrontal cortex. These cells maintain a memory loop with the thalamus, as well FEF
and LIP. We use the go signal (PFCgo) to inhibit the activation letting the remapped tar-
get information to be created. This mimics a memory state change from a current state to
a future state. The connection strength was chosen to be strong enough to form target
memory but not strong enough to disable BG from washing out the memory traces.

Go Cells (PFCgo) pass the trigger signal to FEF and the BG. This trigger will
increase the receiving layers’ activation for the selected target to cause the activation
through to the superior colliculus to effect the saccade selected by prefrontal cortex. They

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 8 7

receive visual memory information from LIP (LIPmem), the next saccade target location
(PFCseq) and a cortical fixation signal (PFCfixation).

Fixation Cells (PFCfixation) provide a fixation signal as FEFfovea cells. The dif-
ference is that these cells have a large time constant. Thus it takes longer time to activate
and deactivate the PFCfixation cells.This allows for the maintenance of fixation without
a foveal signal.

Sequence Memory Cells (PFCseq) maintain a representation of the order in which
the saccades are to be performed. The target locations are channeled via PFCmem.

Saccade Selector Cells (PFCsel) select the next saccade to be performed. We use
refractory period to control when saccades can occur. This is a decaying value that must
be overridden by the level of excitation in the visual memory calls (PFCmem). These
cells select the target memory in PFCmem that has the highest activation and project this
signal to the go cells (PFCgo) to assist in the activation of a saccade.

Superior Colliculus (SC)

Figure 15.5
 Superior Colliculus

The superior colliculus can be divided into two regions (Mason and Kandel 1991):
the superficial layers and the intermediate and deep layers. The 3 superficial layers of SC

2 8 8 C H A P T E R 1 5

receive both direct input from the retina and a projection from striate cortex for the entire
contralateral visual hemifield. Neurons in the superficial SC have specific visual
receptive fields: Half of the neurons have a higher frequency discharge in response to a
visual stimulus when a monkey is going to make a saccade to that stimulus. If the
monkey attends to the stimulus without making a saccade to it, for example by making a
hand movement in response to a brightness change, these neurons do not give an
enhanced response.

Cells in the two intermediate and deep layers are primarily related to the oculomotor
system. These cells receive visual inputs from prestriate, middle temporal, and parietal
cortices, and motor input from FEF. In addition, there is also representation of the body
surface and of the locations of sound in space. All of these maps are in register with the
visual maps. Among the various saccade generation and control by superior colliculus
hypothesis we are using the relatively recent one due to (Munoz and Wurtz 1993;
Optican 1994). This revised theory proposes that the activity of one class of saccade-
related burst neurons (SRBN) declines sharply during saccades, but the spatial location
of this activity remains fixed on the collicular motor map. The spatial activity profile in
another class of saccade-related cells, called buildup neurons, expands as a forward
progression in the location of its rostralmost edge during the saccade. Eventually the
expanding activity reaches fixation neurons in the rostral pole of the colliculus, which
become reactivated when the balance between the declining activity of the SRBNs and
the fixation cells again tips in favor of the fixation cells. Reactivation of these fixation
neurons, which have been hypothesized to inhibit more caudally located burst neurons in
the rest of the colliculus in turn functions to terminate the saccade. Buildup neurons may
also be located in the intermediate layers, but are more ventrally situated with respect to
SRBNs.

Since the superficial SC layer does not project directly to the intermediate/deep
layer, we will only model the intermediate/deep layer. We also will not use the FOn cells
in FEF to directly inhibit the SC, instead we will use rostral SC as the inhibitory
mechanism. Thus, saccades will be inhibited when there is fixation on the fovea and
saccades will be terminated when the buildup neuron activity reaches the rostral pole of
the SC. Target locations for the SRBNs will be mapped as quasi-visual cells receiving
their input from LIP. The model implement SC as composed of four types of neurons.

Quasi-Visual Cells (SCqv) are visually responsive neurons and receive topographi-
cally organized output from the LIP (LIPvis). They project to saccade related burst neu-
rons (SCsac), passing the visual information they have received from LIP.

Saccade Response Cells (SCsac) are the SRBN neurons responsible for the initia-
tion of saccades by their projection to the long-lead burst neurons in the brainstem. These
cells receive inhibitory afferents from the substantia nigra pars reticulata (SNr) and
excitatory input from the SCqv cells, they also receive excitatory input from the FEF sac-
cade-related neurons.

Buildup Cells (SCbu) are retinotopically organized, but the activity that arises at the
beginning of a saccade acts as a moving hill towards the central element of this array
which represents the fixation cells described below (SCfixation). Corollary feedback
from the eye movement cells (BSGEyeMove) provide the information needed as to how
far the eye is being moved. This controls the rate of progression of activity in these
neurons towards the fixation cells, determining when the saccade is to be terminated.

Fixation Cells (SCfixation) represent the rostral pole of SC. Once the locus of
activity in the buildup cells (SCbu) reaches the central element of this array, an inhibitory
signal is propagated to the burst neurons (SCsac) in SC and the brainstem (BSGsac) to
terminate the saccade.

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 8 9

Frontal Eye Field (FEF)

Figure 15.6
Frontal Eye Field

In FEF layer we model two types of saccade-related cells in FEF and a third type of
cell relating to saccade inhibition (when a target is foveated)

Memory Response Cells (FEFmem) fire continuously during the delay portion of a
delay saccade task. It has been found that there are neurons in FEF, in a double saccade
task that would begin firing after the first saccade and continued firing until the second
saccade (Goldberg and Bruce 1990). The cell would fire even if the stimulus never
entered their receptive field when the second saccade was arranged so that it matched the
cell’s movement or receptive field. In the model a memory loop is established between
these cells in FEF and mediodorsal thalamus (McEntee, Biber et al. 1976; Squire and
Moore 1979; Fuster 1973). This memory loop is modulated by the inhibitory activity of
BG upon the thalamus relay cells. The remapping of saccade targets performed by the
BG is sent to thalamus. The connection strength between FEF and thalamus is chosen so
that it is not strong enough to block BG from washing out the memory traces but strong
enough to form a memory for the saccade targets.

Saccade Cells (FEFsac) are presaccadic movement neurons that respond to both
visually and memory-guided saccades. These cells code for particular saccades.

Foveal Response Cells (FEFfovea) respond to visual stimuli falling on the fovea.
They receive this input from LIP (LIPvis neurons) and project this information to BG
and to the fixation neurons in SC (SCfixation neurons).

Basal Ganglia
The basal ganglia consist of five subcortical nuclei: the caudate nucleus (CD), putamen,
globus pallidus, subthalamic nucleus, and substantia nigra. The neostriatum, or striatum,
consists of both the caudate nucleus and putamen as they develop from the same telen-
cephalic structure. The striatum receives nearly all of the input to the basal ganglia,
receiving afferents from all four lobes of the cerebral cortex, including sensory, motor,
association, and limbic areas. However, it only projects back to frontal cortex through the
thalamus. This cortical input is topographically organized (Alexander, Crutcher et al.
1990; Alexander, R et al. 1986; Gerfen 1992; Parent, Mackey et al. 1983). There is also
significant topographically organized input from the intralaminar nuclei of the thalamus
(Cote and Crutcher 1991; Kitai, Kocsis et al. 1976; Sadikot, Parent et al. 1992; Wilson,

2 9 0 C H A P T E R 1 5

Chang et al. 1983): the centromedian nucleus projects to the putamen and the para-
fascicular nucleus projects to the caudate nucleus.

The model deals specifically with the saccadic oculomotor system within the brain.
For this reason, the internal globus pallidus and the putamen in the model is not included
in the model since they are more involved in motor control.

In terms of saccadic eye movement control the model proposes the purpose of the
basal ganglia to be twofold:

• A lateral circuit that inhibits saccadic motor commands from execution until a
trigger signal is received from higher motor centers, e.g., the prefrontal cortex.

• A medial circuit that estimates the next sensory state of the animal through an asso-
ciative network for the execution of voluntary motor commands. This network
receives as input the current sensory state, from LIP, and the currently planned
motor command, from FEF, and outputs the next sensory state to limbic cortex and
prefrontal cortex.

Lateral Basal Ganglia

Figure 15.7
Lateral Basal Ganglia

The lateral basal ganglia circuit inhibits saccadic motor commands from execution
until a trigger signal is received from higher motor centers, e.g., the prefrontal cortex.
The lateral circuit is modeled as different set of cell groups. The following describes
these cell groups.

Caudate Burst Cells (CDlatburst) are typically quiet and are tonically inhibited by
the TAN interneurons. They receive excitatory input from cortex and the thalamus.
These cells project to lateral SNr and GPe. They also receive afferents from the SNc
dopaminergic cells.

Caudate Tonically Active Cells (CDlattan) are interneurons that fire continuously
except when a go signal is received from prefrontal cortex. They are inhibited by the

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 9 1

non-dopaminergic interneurons in the caudate. These cells also receive inhibitory input
from the SNc dopaminergic neurons.

Caudate Non-dopaminergic Interneuron Cells (CDlatinh) are normally quiet. In
the lateral circuit, these neurons receive the motor command from FEF and a go signal
from PFC. When this input exceeds a certain threshold, these cells will fire and inhibit
the tonically active interneurons (CDlattan).

GPe Burst Cells (GPElatburst) are tonically active and receive inhibition from the
caudate burst cells. These cells project to the STN burst cells.

STN Burst Cells (STNlatburst) receive tonic inhibition from the GPe burst cells.
These excitatory cells project to the SNr topographically, but with a wider projection area
than that of the direct part from the striatum to SNr.

SNc Dopaminergic Cells (SNCdop) project to the burst cells and tonically active
cells in the caudate. They receive excitatory afferents from limbic cortex about primary
reward related events.

SNr Burst Cells (SNRlatburst) are tonically active and receive inhibition from the
caudate burst cells and excitation from the STN burst cells. These cells project to the
thalamus and SC and are responsible for inhibiting the execution of a saccade motor
command until deactivated by a corticostriatal “go” signal.

Medial Basal Ganglia

Figure 15.8
Medial Basal Ganglia

As in the lateral case the medial basal ganglia circuit is modeled as different set of
cell groups. The following describes these cell groups that are modeled.

Caudate Burst Cells (CDmedburst) are typically quiet and are tonically inhibited
by the TAN interneurons. They receive excitatory input from cortex and the thalamus.
These cells project to medial SNr and GPe. They also receive afferents from the SNc
dopaminergic cells.

Caudate Tonically Active Cells (CDmedtan) are interneurons that fire continu-
ously except when a behaviorally significant, i.e., primary reward, signal is received
from SNc through an increase in dopamine. They are inhibited by the non-dopaminergic
interneurons in the caudate.

Caudate Non-dopaminergic Interneuron Cells (CDmedinh) are normally quiet.
In the medial circuit, these neurons receive the motor command from FEF and the

2 9 2 C H A P T E R 1 5

possible saccade targets from LIP. When this input exceeds a certain threshold, these
cells will fire and inhibit the tonically active interneurons (CDmedtan).

GPe Burst Cells (GPEmedburst) are tonically active and receive inhibition from
the caudate burst cells. These cells project to the STN burst cells.

STN Burst Cells (STNmedburst) are typically quiet and receive tonic inhibition
from the GPe burst cells. These excitatory cells project to the SNr topographically, but
with a wider projection area than that of the direct part from the striatum to SNr.

SNc Dopaminergic Cells (SNCdop) project to the burst cells and tonically active
cells in the caudate. They receive excitatory afferents from limbic cortex about primary
reward related events. These are the same cells as in the lateral circuit.

SNr Burst Cells (SNRmedburst) are tonically active and receive inhibition from
the caudate burst cells and excitation from the STN burst cells. These cells project to the
thalamus and thalamic reticular nucleus and are responsible for inhibiting the thalamic
activity for the current sensory state and facilitating the growth of activation for the next
sensory state.

Brain Stem Saccade Generator

Figure 15.9
Brain Stem Saccade Generator l

Once the PFC issues a ‘GO’ signal the combination of increasing activity from PFC
and decreased inhibition from BG allow activation to grow in the SC. This activation is
projected to the brainstem where motor neurons are excited and cause the eye muscles to
move the eyes to the new target location.

Brainstem Saccade Generator generates the saccade depending on the outputs of SC,
where SCbu acts as inhibitory and SCsac excitatory. Once a saccade started SCbu neu-
rons' activity start to grow and the activity of SCsac neurons start to decrease. Eventually
the saccade ends (Note this is implemented in BSG). The BSG module is modeled as two
types of cells:

BSG Saccade Generating Cells (BSGsac) are a composite of the burst, tonic and
omnipause neurons in the brainstem. This layer receives the saccade command from
SCsac and generates the saccade velocity and amplitude. They project to the
BSGEyeMove layer. They also receive inhibitory feedback from SC buildup cells which
inhibits saccades from occurring.

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 9 3

BSG Eye Movement Cells (BSGEyeMove) are equivalent to the brainstem motor
neurons that actually drive the eye muscles. Corollary discharge from these neurons is
received by SC buildup neurons (SCbu) to control the progression of their activity
toward the rostral pole of SC. These neurons also receive activity from the SC buildup
neurons (from the rostral pole only). This specific SC activity terminates an ongoing
saccade.

15.3 Model Implementation
The complexity of this model in terms of the high number of brain areas and cell types
involved, as well as the number of experiments implemented results in a wide use of the
NSLM language functionality. Since the code is very long, we will focus on the special
features that this model makes use of, like for example buffered ports to make processing
order unimportant. The multiple experiments studied lead us to define new protocols and
canvases. The protocols allow us to easily select and control the experiment to be simu-
lated. The canvas offers an interactive way to collect and display experiment related
information intuitively. Finally, we will explain how to extend NSLM to provide
additional functionality not directly available in the language.

As always we need to define the top most module in the hierarchy, where we declare
the model’s constants, global variables, children modules, input and output modules and
simulation methods such as initSys, initModule and makeConn. The top most module has
to be defined with the reserved keyword nslModel. The children modules are those we
previously saw in figure 1: Lateral Intraparietal Cortex (LIP), Thalamus (Thal), Basal
Ganglia (Med, Lat, SNC), Prefrontal Cortex (PFC), Superior Colliculus (SC), Frontal
Eye Field (FEF) and Brain Stem (BSG). To show the activity of the different cells we
take advantage of the standard output interface (CrowleyOut). However, since we have
different experiments we will extend the standard input interface with two canvases to
collect the data for each of them (DoubleSaccadeInterface, GapSaccadeInterface).

At the instantiation of the model, the method initSys is called. Within this method
we assign the values of the simulation parameters: simulation end time, step length and
port buffering type. Once all the modules have been created, the scheduler executes the
initModule method. Here we declare the protocols associated with each experiment using
the method nslDeclareProtocol that adds new entries to the protocol menu (see figure
10). We will latter need to define which module will be part of which protocol. For that
purpose we call the nslAddProtocolToAll function that add all modules to a particular
protocol. Finally the method makeConn communicates the different modules by
connecting their input and output ports. To connect siblings we use the nslConnect call,
whereas nslRelabel allows a children module to inherit ports of their parents.

2 9 4 C H A P T E R 1 5

nslModelCrowleyTop()

{

 nslConst int CorticalArraySize = 9;

 nslConst int StriatalArraySize = 90;

 private int half_CorticalArraySize;

 public NslInt0 FOVEAX(half_CorticalArraySize);

 public NslInt0 FOVEAY(half_CorticalArraySize);

 // input modules that hold single output matrices

 VISINPUT visinput(CorticalArraySize);

 LC lc(CorticalArraySize);

 // LIP and Thalamus

 LIP lip(CorticalArraySize);

 Thal thal(CorticalArraySize);

 // Medial circuit

 Med med(CorticalArraySize, StriatalArraySize);

 // Lateral Circuit

 Lat lat(CorticalArraySize);

 SNC snc(CorticalArraySize);

 // Others

 PFC pfc(CorticalArraySize);

 SC sc(CorticalArraySize);

 FEF fef(CorticalArraySize);

 BSG bsg(CorticalArraySize);

 // Graphic interfaces

 private CrowleyOut

 crowout(CorticalArraySize,StriatalArraySize);

 private DoubleSaccadeInterface doubleSaccade();

 private GapSaccadeInterface gapSaccade();

 public void initSys(){

 system.setEndTime(0.55);

 system.nslSetRunDelta(0.001);

 //all output ports will be double buffered

 system.nslSetBuffering(true);

 half_CorticalArraySize = CorticalArraySize / 2;

 }

 public void initModule(){

 nslDeclareProtocol(“gap”, “Gap Saccade”);

 nslDeclareProtocol(“double”, “Double Saccade”);

 system.addProtocolToAll(“gap”);

 system.addProtocolToAll(“double”);

 }

 public void makeConn() {

 // LIP inputs

 nslConnect(visinput.visinput_out , lip.SLIPvis_in);

 nslConnect(thal.ThLIPmem_out , lip.ThLIPmem_in);

 …

 }

}

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 9 5

Figure 15.10
Standard executive interface
extended with new protocols.

As we mentioned before we utilize the standard output interface to graphically dis-
play the neural activity of the model. For that purpose we create a nslOutModule which
includes all the functionality of a normal nslModule, but it incorporates a NslFrame, a
window where graphs are displayed. Commonly this module contains the definition of
input ports where the information will arrive. If we want this data to be displayed, we
have to create a canvas and associate it with a particular input port. We do this with the
nslAddCanvas methods family (e.g. nslAddAreaCanvas and nslAddSpatialCanvas).

nslOutModule CrowleyOut

 (int CorticalArraySize, int StriatalArraySize) {

 //input ports

 public NslDinFloat2

 visinput(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 pfcGo(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 lipMem(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 thna(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 fefsac(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 scsac(CorticalArraySize, CorticalArraySize);

 public NslDinFloat2

 scbu(CorticalArraySize ,CorticalArraySize);

 public void initModule() {

 nslAddAreaCanvas(visinput,0,100);

 nslAddAreaCanvas(lipMem,0,100);

 nslAddAreaCanvas(thna,0,10);

 nslAddAreaCanvas(fefsac,0,100);

 nslAddAreaCanvas(scsac,0,100);

 nslAddSpatialCanvas(scbu,0,10);

 }

}

In order to build the new input user interface, two steps are required. The first one is
the definition of a NslInModule. Within this module we associate an instance of the new
canvas with an output port, where the information collected by the interface will be sent.
For this purpose we use the nslAddUserCanvas method, which takes as parameters an
outputPort and the name of the nslClass that implements the new canvas. In addition we
call nslRemoveFromLocalProtocols function to remove this module and its window

2 9 6 C H A P T E R 1 5

from the “manual” and “gap” protocols. This ensures that this interface will only be
available when the “double” protocol is selected.

nslInModule DoubleSaccadeInterface() {

 NslDoutDouble1 params(8);

 public void initModule(){

 nslAddUserCanvas(params,”DoubleSaccade”);

 nslRemoveFromLocalProtocols(“manual”);

 nslRemoveFromLocalProtocols(“gap”);

 }

}

In the second step is the implementation of nslClass that defines the new canvas.
This has to be a subclass of NslInCanvas from which it inherits methods to handle input
events and display graphics. As a NslInCanvas subclass it has to take two parameter, the
first of them being the NslFrame where the canvas will be displayed and second a
wrapping object that contains the port given by the parent NslInModule.

Every time the canvas has to be repainted, the nslRefresh method is called. Within
this method we can draw lines, shapes, strings, change colors, etc. Every simulation step,
the nslCollect function is executed, allowing input data to be gathered and sent to all the
involved modules.

nslClass DoubleSaccade (NslFrame frame, NslVariableInfo vi)

 extends NslInCanvas(frame,vi) {

 public void nslInitCanvas() {

 nslClearDisplay();

 }

 public void nslRefresh() {

 drawSaccadeTargetLocations();

 drawSaccadeTargetDurations();

 …

 }

 public void drawSaccadeTargetDurations() {

 int gx0, gx1, gy0, gy1, h, w;

 int x0, x1, y0, y1;

 float fix_start, fix_end;

 float t1_start, t1_end, t2_start, t2_end;

 NslString0 xTicks();

 int i;

 fix_start = (float) 0.;

 fix_end = (float) 0.2;

 t1_start = (float) 0.05;

 t1_end = (float) 0.1;

 t2_start = (float) 0.1;

 t2_end = (float) 0.15;

 h = nslGetHeight();

 w = nslGetWidth();

 // Draw grid

 gx0 = w / 10;

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 9 7

 gx1 = w - gx0;

 gy0 = h / 5;

 gy1 = h - gy0;

 nslDrawLine(gx0,gy1,gx1,gy1,”black”); // X-axis

 // X-ticks

 y0 = gy1 - 5;

 y1 = gy1 + 5;

 for(i=0;i<=12;i++){

 x0 = x1 = gx0 + ((gx1 - gx0) * i)/12;

 nslDrawLine(x0,y0,x1,y1,”black”);

 xTicks.set(i*5./100.);

 if(i%2 == 0)

 nslDrawString(xTicks.get(),x0-5,y1+15);

 }

 // Draw time bars

 y1 = gy0/2;

 // Fixation

 y0 = gy0;

 x0 = gx0 + (int)((fix_start/.6)*(gx1-gx0));

 x1 = (int) (((fix_end-fix_start)/.6)*(gx1-gx0));

 if (x1<=0)

 x1 = 1;

 nslFillRect(x0,y0,x1,y1,”red”);

 // T1

 y0 = gy0*2;

 x0 = gx0 + (int)((t1_start/.6)*(gx1-gx0));

 x1 = (int)(((t1_end-t1_start)/.6)*(gx1-gx0));

 if(x1<=0)

 x1 = 1;

 nslFillRect(x0,y0,x1,y1,”green”);

 // T2

 y0 = gy0*3;

 x0 = gx0 + (int)((t2_start/.6)*(gx1-gx0));

 x1 = (int)(((t2_end-t2_start)/.6)*(gx1-gx0));

 if(x1<=0)

 x1 = 1;

 nslFillRect(x0,y0,x1,y1,”blue”);

 }

 public void nslCollect() {

 NslNumeric1 params = (NslNumeric1)vi.getNslVar();

 params[0] = getXFixValue();

 params[1] = getYFixValue();

 …

 }

 …

}

To provide the continuous remmaping capability we utilized in the buildup neurons
in the superior colliculus, we had to create a mechanism to keep track of the location of
the centroid of the “moving hill”, as we did not have enough neurons to allow the activity
to propagate “naturally”. We created a NSLM class called Target that had x and y coordi-
nates as well as a variable to support a list of Target objects. We created a member

2 9 8 C H A P T E R 1 5

function called Move that accepted a two-element vector of an x, y delta to be moved.
This function applied the movement to the current location of the Target. A separate
function applied to the new location of the buildup neuron targets onto the buildup neu-
rons to simulate the continuous movement across the buildup cells.

nslClass Target() {

 // This class provides for a linked list of target objects

 // that all have the size of a single array element.

 // The contents of this class are the x,y coordinates

 // of the corner closest to array element 0,0, and a pointer

 // to the next Target in the list. The x-coordinate is the

 // first sort.

 private double xcor, ycor;

 private Target next;

 initTarget() {

 xcor = 0; ycor = 0; next = nslNull;

 }

 …

 void Move(NslDouble1 invec){

 // This method applies the input movement vector to all of

 the

 // Targets in the linked list. The x,y-coordinates of each

 // Target have the input movement vector subtracted from

 their

 // corner coordinates as the motion of the Targets across

 the

 // visual space is in the opposite direction to the movement

 // of the eyes.

 Target cur;

 // Do the first target as it always exists

 xcor = xcor – invec[0];

 ycor = ycor – invec[1];

 cur = next; //get pointer to next Target

 // The do-while will “move” the second and higher

 // Targets if they exist

 while (cur != nslNull) {

 cur.xcor = cur.xcor – invec[0];

 cur.ycor = cur.ycor – invec[1];

 cur = cur.next;

 }

 }

 …

 double X() {return xcor;}

 double Y() {return ycor;}

 Target Next() {return next;}

}

Our most comprehensive extension to NSLM was the ability to map arbitrary
neurons in one layer onto a larger layer. This was the basis of out remapping algorithm
between the cortex and the basal ganglia. Specifically, we created a linked list

C R O W L E Y - A R B I B S A C C A D E M O D E L 2 9 9

mechanism for each element in the input layer (FEF, LIP and PFC) for our model that
pointed to all neurons to which they project (striatum in or case). Thus, for any given
input neuron, you only need to read the linked list out to determine its projections. We
used the same mechanism to establish the remapping from striatum to SNr. In this case,
however, there were multiple connections onto SNr from striatum, but the same principle
applies. You can find out which striatal neurons talk to a specific SNr neuron by just
indexing the linked list for that neuron. This “bi-directional” mapping made the teaching
of the weights between cortex, striatum and SNr very simple, since we specified the
cortical inputs and knew what SNr outputs we wanted. It was simple to match the linked
lists that both pointed back to the striatum and then modify the weight matrix for the
striatum. Summing the SNr inputs during runtime was also simplified as we accessed the
linked list for each SNr neuron and summed the inputs for that neuron by reading the list
only once per time step.

nslClass Element() {

 int x, y, xo, yo;

 Element next;

 nslConst int FOVEAX = 4;

 nslConst int FOVEAY = 4;

 …

 public void initElement() {

 x = y = x0 = y0 = -1;

 next = nslNull;

 }

 …

 public void Remap(int max, Element elem) {

 // This function “remaps” the calling Element and

 returns an

 // Element containing the remapped location.

 int xt, yt, xot, yot;

 xt = FOVEAX - x; yt = FOVEAY - y;

 xot = xt + xo; yot = yt + yo;

 elem.x = FOVEAX; elem.y = FOVEAY;

 if ((xot > -1) && (xot < max))

 elem.xo = xot;

 else

 elem.xo = -1;

 if ((yot > -1) && (yot < max))

 elem.yo = yot;

 else

 elem.yo = -1;

 }

 public Element Next() { return next; }

 public int X() { return x; }

 public int Y() { return y; }

 public int XO() { return xo; }

 public int YO() { return yo; }

 }

 nslModule Med (int CorticalArraySize, int StriatalArraySize)

 extends Func (CorticalArraySize) {

 private nslConst int MaxConnections = 50;

3 0 0 C H A P T E R 1 5

 private nslConst int NumberIterations = 10;

 // Output ports

 public NslDoutInt3

 FEFxmap(CorticalArraySize,CorticalArraySize,MaxConnections);

 public NslDoutInt3

 FEFymap(CorticalArraySize,CorticalArraySize,MaxConnections);

 public NslDoutInt3

 LIPxmap(CorticalArraySize,CorticalArraySize,MaxConnections);

 public NslDoutInt3

 LIPymap(CorticalArraySize,CorticalArraySize,MaxConnections);

 public NslDoutInt3

 PFCxmap(CorticalArraySize,CorticalArraySize,MaxConnections);

 public NslDoutInt3

 PFCymap(CorticalArraySize,CorticalArraySize,MaxConnections);

 // See MappingParameters

 private int FEFPatchCount;

 private int LIPPatchCount;

 private int PFCPatchCount;

 private Element LearnedElements();

 private Element UnlearnedElements();

 private Element Teacher();

 public void initRun () {

 MakeMapping();

 …

 LearnNewElements();

 }

 …

 public void MakeMapping() {

 int MapSize = StriatalArraySize/3;

 …

 // Establish the direct path mapping from CD to SNr

 SNRMapping(FEFxmap, FEFymap, FEFPatchCount, MapSize);

 SNRMapping(LIPxmap, LIPymap, LIPPatchCount, MapSize);

 SNRMapping(PFCxmap, PFCymap, PFCPatchCount, MapSize);

 …

 }

 public void learnNewElements() {

 LearnConnections(UnlearnedElements);

 LearnedElements.Merge(UnlearnedElements);

 UnlearnedElements.Remove();

 }

 public void LearnConnections(Element elem) {

 Element curelem(elem);

 while (curelem != null) {

 for (int ii=0; ii<NumberIterations; ii++) {

 //# of iterations

 // Set cortical excitation

 …

 // Determine correct remappings for non-neural

 Teacher

 curelem.Remap((int)CorticalArraySize, Teacher);

 MapToFovea(curelem.X(), curelem.Y());

 // Time to map the nonsaccade target as well

C R O W L E Y - A R B I B S A C C A D E M O D E L 3 0 1

 …

 // increment weights between active CD neurons

 // and remapped location

 MapToOffset(curelem.X(), curelem.Y(),

 curelem.XO(), curelem.YO());

 }

 curelem = curelem.Next();

 }

 }

}

nslModule SNRmedburst (int CorticalArraySize,

 int StriatalArraySize) {

 public NslDinDouble3 SNRweights(CorticalArraySize,

 CorticalArraySize, CorticalArraySize);

 public NslDinInt3 SNRxmap(CorticalArraySize,

 CorticalArraySize, CorticalArraySize);

 public NslDinInt3 SNRymap(CorticalArraySize,

 CorticalArraySize, CorticalArraySize);

 public NslDinDouble2

 CDdirmedburst_in (StriatalArraySize, StriatalArraySize);

 private NslDouble2 SNRcdinput

 (CorticalArraySize, CorticalArraySize);

 …

 public void SumCDtoSNR (NslDouble2 CD, NslDouble2 SNR) {

 // This function sums the activity in the medial CD

 // circuit onto the medial SNR circuit through

 // SNRweights, SNRxmap and SNRymap.

 int i, j, k, xmaploc, ymaploc;

 SNR = 0; // Ensure new mapping only

 for (i = 0; i < CorticalArraySize; i ++) {

 for (j = 0; j < CorticalArraySize; j ++) {

 for (k = 0; k < SNRMapCount [i][j]; k ++) {

 xmaploc = SNRxmap [i][j][k];

 ymaploc = SNRymap [i][j][k];

 SNR [i][j] = SNR[i][j]

 + CD [xmaploc][ymaploc] *

 SNRweights [i][j][k];

 }

 }

 }

 }

 …

 public void simRun () {

 SumCDtoSNR (CDdirmedburst_in, SNRcdinput);

 …

 }

}

3 0 2 C H A P T E R 1 5

15.4 Simulation and Results1

The Crowley model can be tailored to test various experimental saccade paradigms. The
current version of the model has two built-in paradigms: gap saccade and double saccade.
The latter is more subtle. So we are going to go over the double saccade paradigm and
show how the model can reproduce real world experimental results.

The double saccade can be briefly described as the following. The subject is pre-
sented a fixation point which he must maintain a fixation until the stimuli is there. After
some certain time delay first target is flashed somewhere in the visual field of the subject.
It is followed by a second flash of target which may or may not overlap with the first
stimuli. While the targets are being shown the subject must still maintain his fixation.
Only after the fixation goes off the subject can make the saccades. The saccades he
makes must follow the right temporal order. That is the first saccade to the first target and
the second saccade to the second target.

In order to enable user to modify certain paradigm specific parameters in a conven-
ient way a custom user interface is designed for Crowley Model. The user can bring
either of the paradigms’ user interface by using via experiment menu. The double
saccade user interface gives user the convenience of setting up experiment parameters by
dragging and clicking. Figure 15.11 shows how the double saccade interface looks like:

Figure 15.11
Double saccade experiment
interface window

The upper part of the window is used to specify the location of the targets and the
fixation point. The user needs simply to click on one of the buttons for fixation, target1
or target2 and point the position of the stimulus on the grid. Fixation point is denoted by
blue, target 1 is by green and target 2 by red color. Once the user specifies the position of
the stimuli then he/she has the opportunity to modify the timing of the stimuli by simply

C R O W L E Y - A R B I B S A C C A D E M O D E L 3 0 3

dragging the gauges on the lower level of the interface window. For example on the sam-
ple interface window the visual events that occur can be described as follows. At time 0.0
the fixation stimuli appears. At time 0.5 first target appears. At time 0.1 first target disap-
pears and target two appears. At time 0.15 target two disappears. Finally the fixation
stimulus goes away at time 0.2. Once the spatial and temporal characteristics of the dou-
ble saccade paradigm is specified user has to click on Apply button to load the settings
into the simulator. Then the double saccade experiment can be simulated by clicking the
Start button. The simulator will, then, create the visual events defined by the user and
simulate the model. NSL display window can be used to display the model variables as
usual. The Crowley Model comes with a NSL display window with 8 graphic displays as
shown in the below figure. The visual events specified occurs in the top left graph. Other
graphs show the various model variables. For example the CrowleyTop.lip.LIPmem_out
labeled graph shows the NSL variable LIPmem_out which is defined in lip module. In
regard to model semantics this layers keeps the memory of the visual stimuli.

The activity of the buildup neurons in SC can be used to track the saccades that the
model executes. The moving activity towards to center following by a decay at the center
in SCbu1 layer corresponds to a saccade that the model executes. Thus a double saccade
would mean two consecutive buildup neuron activity. The SCbu1 layer is retinotopically
organized so the start of the activity corresponds to the target stimulus for the saccade.
However the second target is remapped with anticipation of the first saccade. So the sec-
ond saccade activity seen in buildup neurons are based on the remapped location.

Figure 15.12
First saccade in progress

The buildup neuron activity is shown using a 3d graph (figures 15.12 and 15.13).
The targets in this simulation run were horizontally aligned and above the fixation point.
The first target were also aligned with the fixation point. The system was expected to
make a vertical (upward) saccade then a horizontal (rightward) saccade to the second
target. If there were no remapping the second saccade would not be horizontal but it
would be an up-right one. The prediction for the buildup neuron activity was to have two
perpen-dicular activities decaying at the center. The following two figures demonstrate
the expected result. First figure shows the simulator display window during first saccade.

3 0 4 C H A P T E R 1 5

The second figure shows the expected second saccade (Note that the direction of the
saccades are towards the center so they are perpendicular).

Figure 15.13
Second saccade in progress

15.5 Summary
We have developed a neural network model of the saccadic motor control system that
includes a number of cortical and subcortical systems known to be involved in saccadic
eye movements. One primary thesis of our model is that the basal ganglia has two
primary roles in saccadic motor control: (1) inhibition of voluntary saccadic eye
movements until cortical centers provide a go signal and (2) provide for the sensory
remapping of potential saccade targets based upon an impeding saccade command.
Additionally, we have implemented a mechanism simulating the effects of dopamine
deficit in saccadic eye movements. Lastly, we have implemented a model that places the
superior colliculus within a feedback control loop responsible for terminating saccades.

We have made use of the NSLM language functionality showing how buffered ports
can be utilized to make the order in which modules are executed unimportant. We have
explained the creation of standard and custom user interfaces. We reviewed how proto-
cols are declared to simulate different experiments for the same model. We provided an
example of how to extend NSLM to obtain additional functionality not directly available
in the language. We ended showing how the NSL simulation environment can be used to
run the implemented model for the double saccade experiment.

Notes

1. The Saccade model was implemented and tested under NSLJ.

16 A Cerebellar Model of Sensorimotor Adaptation
J. Spoelstra

16.1 Introduction
This chapter describes a neural network model of adaptation, based on the Martin et al.
(1995) study of normal subjects and cerebellar patients throwing at a target after donning
30° prisms. The prisms caused subjects to miss the target by an angle corresponding to
the prism deflection angle. With subsequent throws, however, normal subjects adjusted
until they were once again throwing on target. After doffing the glasses the prism gaze-
throw calibration remained and subjects made corresponding errors in the opposite direc-
tion. A cartoon sketch of the experiment is shown in figure 16.1.

Figure 16.1
The experiment done by
Martin et al. (1995). Subjects
throw at a visual target while
wearing prism glasses.
Donning the glasses cause
subjects to miss the target,
but normal subjects adjust
until they once again throw
on target. After doffing the
prism glasses, subjects make
errors in the opposite
direction and have to readjust
their normal throwing.

From a modeling perspective, three results were particularly interesting:

� The calibration was throw-strategy specific: What was learned was not a general
sensorimotor transformation; over- and under-hand throwing required independent
adaptation.

� After a number of weeks of training subjects acquired the ability to throw accurately
from the first throw, both with and without the prism glasses.

� Patients with lesions in the intermediate and medial cerebellum could not learn to
throw accurately while wearing prisms, implicating the part of the cerebellum pro-
jecting “downstream” to the brainstem and spinal cord.

16.2 Model Description
Ito (1984) defined the basic building block of the cerebellar cortex and underlying nuclei
as the microcomplex, shown in figure 16.2. Inputs arrive via mossy fibers (MF) to the
granule cells (GC) whose axons bifurcate to form parallel fibers (PF) in the cerebellar
cortex. Each Purkinje cell (PC) receives input from a large number of parallel fibers and
one climbing fiber originating in the inferior olive (IO). Purkinje cells are the sole output
from the cortex and inhibit the nuclear cells (NUC). Nuclear cell axons connect the cere-
bellum to the rest of the motor system, but have also been shown to produce an inhibitory
effect on the same inferior olive cells that project to the overlying Purkinje cells to com-

3 0 6 C H A P T E R 1 6

plete the loop. Learning occurs as long term depression (LTD) of parallel fiber-Purkinje
dendrites after coactivation of parallel- and climbing fibers (Marr 1969; Albus 1971).

Figure 16.2
The major cell types and
circuitry of the cerebellar
cortex, also showing the loop
made with the underlying
nuclear cells and the inferior
olive.

16.3 Model Implementation
Figure 16.3 shows the overall structure of the NSL implementation, including modules,
submodules and input/output ports. The naming convention is that modules representing
neuron populations are named xxx_layer, whereas high-level modules and other model
systems “boxes” are named xxx_module.

Figure 16.3
A box diagram of the NSL
simulation code showing the
different NSL modules with
their inputs and outputs.

Neuron Populations
All neurons are modeled as having firing rate f computed from the membrane potential p
using the sigmoid function:

))(exp(1

1
)(max �� ��+
=

p
Fpf (16.1)

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 0 7

with Fmax the maximum firing rate, � determining the slope and � the offset of the sig-
moid. The membrane potential is simply the weighted sum of the inputs to the neuron

�
�

=
Aj

jIp (16.2)

with Ij the current synaptic input from neuron j and A denoting the set of projecting neu-
rons.

PP_layer
The cerebellar granule cell layer receives input from two other layers, both containing a
coarse coding of physical variables. The first input, putatively called posterior parietal
(PP), is a 10x10 array with coordinates ranging from (0,0) to (9,9) and codes the arm con-
figuration at the end of the throw. Because we are only interested in the horizontal throw
direction, only the arm yaw angle relative to the head direction is represented. We also
want to distinguish between over- and underhand throwing, so the PP layer arbitrarily
codes both aiming angle (where the target appears visually) and throw strategy (over-
/underhand).

A group of cells in a circular region with diameter of roughly 6 grid units were acti-
vated simultaneously, with activity maximal in the center and tapering off from there. As
displayed by the NSL system, throw direction was coded on the Y-axis, with strategy on
the X-axis. Using our coding convention, planning an overhand throw at a target centered
in the visual field would cause a bump of activity centered at (3,4.5). If an underhand
throw is planned the activity would be centered at (7,4.5).

The NSL code for generating this input is shown below. The parameter pp_sep de-
termines the separation between the activity bumps for overarm and underarm throwing
respectively, while pp_noise determines what portion of the signal will be generated by
random to simulate noise. The inputs s_in and a_in represent throw strategy (0 for over-
arm, 1 for underarm) and aim direction respectively.

public void simRun(){

 int i,j;

 double mx, my;

 double dx,dy;

 if(s_in < .5) // throw = over

 my = 4.5 - pp_sep/2.;

 else // throw = under

 my = 4.5 + pp_sep/2.;

 mx = 4.5 + 4.5*a_in/30.; // Fit [-30:30] in [0:9]

 for(i=0;i<10;i++){

 dx = mx - i;

 for(j=0;j<10;j++){

 dy = my - j;

 pp_out[i][j] = pp_noise * nslRandom() +

 (1. – pp_noise) *

 nslExp(-1.*(dx*dx/sx2 + dy*dy/sy2));

 }

 }

}

3 0 8 C H A P T E R 1 6

FCX_layer
The second input layer contains a population code indicating an awareness of wearing
prism glasses. Given enough time subjects could learn to throw accurately both with and
without the prism glasses, indicating that the cerebellum received some information,
possibly from the frontal cortex (FCX), telling it whether this was a prism-on or prism-
off trial. In the model a 10x4 array was used with the Gaussian bump of activity centered
around (2.5,2) normally, and at (2.5,7) when prism glasses were worn.

In the NSL code below p_in is the prism angle while the parameter fcx_noise deter-
mines the noise level as for the PP input.

public void simRun(){

 int i,j;

 double mx, my, dx, dy;

 mx = 1. + 9.*p_in/50.; // Fit [0:50] in [1:10]

 my = 1.5;

 for(i=0;i<10;i++){

 dx = mx-i;

 for(j=0;j<4;j++){

 dy = my - j;

 fcx_out[i][j] = fcx_noise*nslRandom() +

 (1.-fcx_noise)*nslExp(-1.*(dx*dx/sx2 +

 dy*dy/sy2));

 }

 }

}

GC_layer
Input arrives at the cerebellum via mossy fibers from the two input regions PP and FCX.
Granule cells provide the input to the cerebellar cortex and are represented by a 30x30
array. In the real cerebellum each granule cell synapses with on average four mossy
fibers—in the model four inputs were randomly selected with varying probability from
the two input regions. The result is that the granule cell layer in a sense acts as the hidden
layer in a multi-layer perceptron artificial neural network by providing nonlinear
combinations of the raw inputs.

In order to produce this random mapping from the two input matrices onto the 30x30
GC grid, 5 arrays were set up in the initModule procedure: For each of the 3600 synapses
(30x30x4) an input is selected randomly from the two input matrices. Vectors Xo and Yo
record the coordinates on the input matrix; Xd and Yd record the coordinates on the GC
matrix; and src records which of the two inputs was chosen.

During execution of the model the simRun method uses these vectors to map ele-
ments of the input matrices onto the GC inputs. The model is sensitive to GC parameters,
so a number were made a available to the user for experimentation: The number of inputs
each granule cell receives is determined by gc_nd; gc_dist determines the fraction of PP
inputs versus FCX inputs chosen; gc_offset and gc_slope determine cell properties as
described above.

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 0 9

public void initModule(){
 int gx,gy,i,x,y;
 double td;
 w = 1./((double)gc_nd);
 // Create mapping function
 NC = 0;
 for(gx=0;gx<30;gx++){
 for(gy=0;gy<30;gy++){
 for(i=0;i<gc_nd;i++){
 Xd[NC] = gx;
 Yd[NC] = gy;
 if(NslRandom() < gc_dist){ // PP input
 src[NC] = 0;
 td = (NslRandom()*5. + 3.);
 Xo[NC] = (int)td;
 td = (NslRandom()*10.);
 Yo[NC] = (int)td;
 } else { // FCX input
 src[NC] = 1;
 td = (NslRandom()*10.);
 Xo[NC] = (int)td;
 td = (NslRandom()*2. + 1);
 Yo[NC] = (int)td;
 }
 NC++;
 }
 }
 }
}

public void simRun(){
 int i,j;
 int mx,my,ix,iy;

 // Map inputs onto 30x30 array using mapping function
 gc_mp = 0.;
 for(i=0;i<NC;i++){
 mx = Xd[i];
 my = Yd[i];
 ix = Xo[i];
 iy = Yo[i];
 if(src[i]==0)
 gc_mp[mx][my] = gc_mp[mx][my] + pp_in[ix][iy];
 else
 gc_mp[mx][my] = gc_mp[mx][my] + fcx_in[ix][iy];
 }

 gc_mp = w * gc_mp;
 for(i=0;i<30;i++){
 for(j=0;j<30;j++){
 gc_out[i][j] =
 f_max/(1.+nslExp(gc_slope*(gc_offset-
 gc_mp[i][j])));
 }
 }
}

3 1 0 C H A P T E R 1 6

PC_layer
Granule cell axons bifurcate to give rise to the parallel fibers in the cortex that synapse
with the Purkinje cell (PC) dendrites. The PCs are modeled as a 2x5 array. Parallel fibers
run parallel to the X-direction and are modeled to span the entire width of the cerebellar
patch modeled. Thus, if a PC receives input from one granule cell in a row, it receives
input from all the granule cells in that row. The synaptic weights are excitatory and
modifiable.

The section of NSL code below, taken from the simRun method shows how GC
inputs are mapped onto the PC layer so that each PC receives input from a beam of GCs
comprising one third of the total GC population. All the weights are stored in a single
large vector.

// GC inputs

 pc_mp = 0.;

 wc = 0;

 for(px=0;px<2;px++){

 for(py=0;py<5;py++){

 beam_start = py*30/5;

 for(gx=0;gx<30;gx++){

 for(y=0;y<10;y++){

 gy = (beam_start + y)%30;

 pc_mp[px][py] = pc_mp[px][py]

 + w[wc] * gc_in[gx][gy];

 wc++;

 }

 }

 }

 }

We follow the current thinking that learning in the cerebellum occurs at the parallel
fiber-Purkinje synapses and specifically that long term depression (LTD) of synaptic
weights occur with simultaneous granule (pre synaptic), Purkinje (post synaptic) and
climbing fiber activity. In order to prevent all weights systematically decreasing to zero,
it is postulated that long term potentiation (LTP) will occur if pre- and post-synaptic
activity is paired without climbing fiber activity.

Climbing fibers originate in the inferior olive (IO) and project topographically to the
Purkinje layer: Each PC receives only one climbing fiber from the IO (Ito 1984). In this
model we do not address the real-time role of climbing fiber activity on the firing rate of
PCs; the inputs from the inferior olive (IO) are used solely as training signals.

The learning rule can be formalized as:

()back
ioiopg FFFFw ��=� � (16.3)

with w the synaptic efficacy at one of the parallel fiber-Purkinje synapses, � some con-
stant, Fg the firing rate of the granule cell, Fp the firing rate of the Purkinje cell, Fio the
climbing fiber activity and Fio

back the tonic activity rate of the IO cells. IO activity below
the tonic rate will result in LTP while any activity higher than the tonic rate will cause
LTD.

In the NSL implementation below the same loop structure is used as above to make
clear which PC, GC and IO cells are used when updating a specific weight. The test
against getCurTime is made to ensure that all the inputs have filtered through the various
stages of the process.

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 1 1

// Learning

if(system.getCurTime()>.055){ // give others time to settle

 (dart to fly)

 wc = 0;

 for(px=0;px<2;px++){

 for(py=0;py<5;py++){

 beam_start = py*30/5;

 for(gx=0;gx<30;gx++){

 for(y=0;y<10;y++){

 gy = (beam_start + y)%30;

 w[wc] = w[wc]

 + alpha * (gc_in[gx][gy]*.01) *

 (io_in[px] - 2.);

 if(w[wc] < 0.)

 w[wc] = 0.;

 else if(w[wc] > 1.)

 w[wc] = 1.;

 wc++;

 }

 }

 }

 }

}

Purkinje cells inhibit nuclear cells which in turn inhibit IO cells, producing a stable
system: Any activity (disturbance) in the IO higher than Fio

back will cause a decrease in the
PC firing, leading to an increase in nuclear cell activity which inhibits the IO cell. Stabil-
ity is reached when nuclear activity is such that inhibition has all IO cells firing at Fio

back .
One could think of the nuclear cells providing an expectation of the disturbance.

NUC_layer
The PC layer projects topographically onto the 20x1 nuclear layer. Each nuclear cell syn-
apses with all the PCs in its column. These synapses are fixed and inhibitory. Nuclear
cells also receive topographical projections with fixed weights from PP. Each nuclear cell
receives input from a column of PP cells (coding aim direction) so that without PC inter-
vention (no adaptation) normal throws go in the aim direction. In order to facilitate
nuclear cell activity through PC disinhibition, the offset and slope parameters for the
nuclear cells are set so that the cells are tonically active at about 10% of their maximum
firing rate.

3 1 2 C H A P T E R 1 6

public void simRun(){

 int i,j;

 int ix;

 double td;

 // Map PP and PC inputs onto 2x1 array

 nuc_mp = 0.;

 for(i=0;i<10;i++){

 ix = i/5;

 for(j=0;j<10;j++){

 nuc_mp[ix] = nuc_mp[ix]+ 2.*pp_in[i][j];

 }

 }

 for(i=0;i<2;i++){

 for(j=0;j<5;j++){

 nuc_mp[i] = nuc_mp[i] - .2 * pc_in[i][j];

 }

 }

 for(i=0;i<2;i++){

 nuc_out[i] = f_max/(1.+NslExp(slope*(offset-

 nuc_mp[i])));

 }

}

IO_layer
As discussed above, each IO cell receives inhibitory projections from the nuclear cells
and an excitatory connection from a sensory layer that indicates an error in performance.
An interesting aspect is that the IO cells receive inhibition not only from the correspond-
ing nuclear cell (which closes the negative-feedback learning loop), but also from the
other (opposing) nuclear cell. The reason for this is that the output of the nuclear cells
drive the direction of the eventual throw in a push-pull manner. In such a system, if the
slightest disparity exists between LTD and LTP, small random errors will eventually
drive the system to saturate with all weights at either their maximum or minimum values.
By adding inhibition from the opposing side, however, any coactivation suppresses IO
activity (which would increase NUC activity by decreasing PC weights) and steers the
system towards reciprocal nuclear cell activation.

public void simRun(){

 int i;

 double nuc_act;

 nuc_act = nuc_in[0] + nuc_in[1];

 io_mp = sens_in - .01*nuc_act;

 for(i=0;i<2;i++){

 io_out[i] = f_max/(1.+NslExp(slope*(offset-io_mp[i])));

 }

}

SENS_layer
We postulate that a system (also PP) codes the perceived error in the final arm configura-
tion or dart flight direction. This system then projects onto the IO layer where it is com-
bined with inhibition from the nuclear cells to generate the cerebellar training signal.

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 1 3

Each of two cells are proportionally receptive to either a leftward or rightward throw
error. The module takes as input both the throw direction and the prism angle.

public void simRun(){

 double Derror;

 Derror = p_in - t_in;

 if(Derror < 0.){ /* go leftward */

 sens_out[0] = .1-Derror/10.;

 sens_out[1] = 0.1;

 } else { /* go right */

 sens_out[0] = 0.1;

 sens_out[1] = .1+Derror/10.;

 }

}

High-level modules

CEREB_module
This module is simply a convenient abstraction of the cell layers comprising the cerebel-
lar part of the model. It does not do any processing, but simply instantiate its child mod-
ules and pass on inputs and outputs.

THROW_module
The output of the model is the yaw direction of the throw, derived from the activity of the
two nuclear cells. Gilbert and Thach (1977) reported that cerebellar nuclear cells firing is
related to arm yaw angle at the end of a trial. Following the hypothesis that cerebellar
output influence brainstem motor pattern generators, it is assumed that each synergy cell
will activate a combination of spring-like muscles to pull the final arm position to a side
in a push-pull configuration. In a simplified model, the throw direction can be computed
as the ratio of the activity of one cell to the total activity in both cells as shown below.
The formula used gives a range of [-100:100] for the throw direction.

public void simRun(){

 throw_out = (.5 - (1.+nuc_in[0])/(2.+nuc_in[1] +

 nuc_in[0]))*100.;

}

DART_top
This module acts as a controller, automating the execution of specific experiments by
executing a predetermined sequence of trials. A trial consists of setting up the inputs, then
letting the simulation run for 6 steps at the end of which the throw direction is computed
and the cerebellar weights adapted. An example of an experiment would be to execute a
number of warm-up throws, followed by 20 throws while wearing prisms and 20 throws
after doffing the prism glasses.

DART_UI_module
Although NSL provides an interface for displaying model variables and setting parame-
ters, this module incorporates Java code for a model-specific user interface. It uses the
standard NSL ports and facilities for hierarchical variables to communicate with the
model, but is designed to present the experimenter with a more intuitive interface for dis-
playing results and facilitate access to the model parameters.

3 1 4 C H A P T E R 1 6

Figure 16.4�

The custom user interface
window for setting model
parameters.

The custom interface window, shown in figure 16.5, pops up alongside the two NSL
windows. The center panel indicates where consecutive throws hit the target, color-coded
to indicate whether prisms were worn and differentiate between overarm and underarm
throwing. From the menu bar users may select between three experiments or choose to
set parameter values (shown in figure 16.4).

Figure 16.5
Simple adaptation
experiment. 30° prism on at
trial number 20, prism off at
trial number 40

16.4 Simulation and Results1

There are three basic experiments: Simple adaptation to wearing prisms and readaptation
to overcome the aftereffect; transfer between over- and underarm throwing; and the
acquisition of two gaze-throw calibrations. To reproduce the data presented by Martin et
al. (1995) and Kitazawa et al. (1995) it has to be shown that parameters exist to simulta-
neously satisfy 4 constraints:

1. Rate of adaptation: Approximately 30 throws are required to adapt to the prisms,
slightly less to readapt. In both cases errors decrease exponentially, with readaptation
occurring at a higher rate.

2. Magnitude of aftereffect: There is some variation, but the first throw after doffing the
prisms usually misses by about 80% of the prism angle.

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 1 5

3. Transfer between over- and underarm throwing: Different levels of transfer should
be possible.

4. Acquisition of two calibrations: This should take a large number of prism-on/prism-
off adaptation trials. The initial error after donning or doffing the prisms should
decrease exponentially.

After Effect of Prism Adaptation
Figure 16.5 depicts results of the basic experiment. A subject throws at a target, then dons
30° wedge prism glasses causing him to throw 30° off target. With repeated throws he
improves until he once again throws on target. When the prisms are removed the subject
misses by almost 30° on the opposite side and has to readjust his aim.

The activity of cells after adaptation to throwing with prisms as displayed by the
NSL system is shown in figure 16.6. It can be seen how a depression in Purkinje cell
activity (pc_out) leads to an increase in nuclear cell activity (nuc_out) that drives the
direction of throwing.

Figure 16.6
NSL output display of model
variables after adaptation to
prisms is complete. Note the
depression in the activity of cells
in the Purkinje layer and
corresponding higher activity
levels in the corresponding
nuclear cells.

Transfer between Over- and Underhand Throwing
Martin reported that some patients showed no transfer, i.e., the first underhand throw
without prisms after adapting overhand throwing with prisms was on target, while others
showed partial transfer. He also noted that for patients that showed partial transfer, the
first overhand throw after readjusting underhand throwing was closer to target by an
amount roughly equal to the amount adjusted during underarm adaptation. In simulation
we can replicated this phenomenon by adjusting the separation between over- and under-
hand in PP (parameter pp_sep). Due to the Gaussian shape of the activity bump in PP, a
separation of 6.0 leads to almost no overlap, while a separation of 1.5 leads to substantial
overlap in representation. The results shown in figure 16.7 were obtained with the default
setting of 4.0 and produces only limited transfer.

3 1 6 C H A P T E R 1 6

Figure 16.7
Transfer between over- and underhand throwing. At trial 20 30° prisms were donned while throwing overhand.
At trial 40 the prisms were taken off but throwing was underhand. From trial 60 throwing is overhand again. In
cases where the separation is large (solid line), the adaptation is independent—underhand throwing does not
show the prism aftereffect. Where the separation is smaller, overhand adaptation affects underhand throwing and
the overhand aftereffect is reduced proportional to the amount of adaptation that was required for underhand
throwing.

Relating this result to human studies we would predict that the cortical representa-
tions for under- and overhand throwing could differ between subjects in terms of the
amount of overlap. One interpretation could be that those who show partial overlap
acquired underhand throwing as a variation of the overhand strategy, while those who
showed no transfer learned two separate skills.

Relation to Other Models
The model shares many features with the AST model (Arbib, Schweighofer and Thach,
1994). In both models the cerebellar nuclear cells represent a population code of horizon-
tal direction. However, in the AST model this direction is “added” as a rotation to the
gaze angle in premotor cortex, whereas the current model does not need the complicated
rotation computation and posits that the cerebellar nuclear neurons contain a direct code
of the throw direction.

The AST model further required an artificial error detection system in register with
the shoulder position that would activate an array of binary “leftward” and “rightward”
cells in the inferior olive depending on where the throw went. While the current model
does not yet offer a full explanation of the inferior olive, the error signal is generated in
the IO through a combination of excitatory projections from PP and inhibitory projections
from cerebellar nuclei to provide realistic IO firing rates and a stable learning system.

The learning circuitry based on inhibitory feedback from the cerebellar nuclear cells
to the inferior olive has previously been suggested in models of cerebellar function in
classical conditioning by Moore et al. [1989] and again by Bartha and Thompson (1995).

Martin et al. (1995) proposed a model where pairs of Purkinje cells, via disinhibition
of nuclear cells, control eye, head and shoulder direction. The inputs are the current val-
ues of the controlled variables plus again the required “prism detector” input. However,
no modeling results were published, so direct comparisons might not be appropriate.

A C E R E B E L L A R M O D E L O F S E N S O R I M O T O R A D A P T A T I O N 3 1 7

16.5 Summary
The model described in this chapter shows how observed behavior could be generated in
a cerebellar-like structure. In this context we offer explanations to the following ques-
tions:

What influences partial vs. zero transfer between over- and underhand throwing?
The model can replicate the behavior by varying a single parameter that controls repre-
sentations in (possibly) posterior parietal cortex.

What is the function of the known inhibitory projections from cerebellar nuclei to the
inferior olive? The model demonstrates that when combined with a plausible cerebellar
learning mechanism that incorporates both LTD and LTP, the loop results in a stable
learning system that will adapt to provide the correct output and encourage reciprocal
activation.

Notes

1. The Cerebellar model was implemented and tested under NSLJ.

This page intentionally left blank

17 Learning to Detour1

F. J. Corbacho and A. Weitzenfeld 2

17.1 Introduction
Anurans (frogs and toads) show quite flexible behavior when confronted with stationary
objects on their way to prey or when escaping from a threat. Rana computatrix (Arbib,
1987), an evolving computer model of anuran visuomotor coordination, models complex
behaviors such as detouring around a stationary barrier to get to prey on the basis of an
understanding of anuran prey and barrier recognition, depth perception, and appropriate
motor pattern generation mechanisms based on sensory perception. This chapter presents
a model of detour in Rana computatrix with an extension to learning of new schemas
“How are schemas combined to form new schema assemblages acquired for the system to
become more efficient?” We describe the construction mechanisms and interactions with
the environment necessary to achieve higher levels of detour performance. This chapter
describes a model that includes all these phenomena implemented in NSL. More details
on some of the model components can be found in (Corbacho and Arbib, 1995) whereas
Corbacho et al. (1996) present more behavioral data. This is a specific model in Schema-
based Learning (SBL) but it serves to exemplify some of the general points and mecha-
nisms included in the general framework of SBL. For the general framework we refer the
reader to (Corbacho, 1998).

In this chapter we present a Schema-based model of learning to detour including dif-
ferent schemas implemented in some cases as functional units and in other cases as neural
networks. The motivation for the study of Learning to Detour in frogs as our case study
in Schema-based learning (SBL) is three-fold:

1. SBL is constrained by data on a neuro-ethologycally sound system -both the task, the
environment and the agent.

2. The study of Rana Computatrix allows for horizontal integration (across many inte-
grated functionalities) and not just vertical integration (action-perception within one
central functionality, e.g., saccadic eye movements).

3. Learning to Detour has proved to be a very adaptive process relaying on important
processes of learning (Corbacho et al., 1996).

Problem Background
Ingle (1983) and Collett (1983), to cite some examples, have observed that a frog/toad’s
approach to a prey or avoidance from a threat are also determined by the stationary ob-
jects in the animal’s surround. A frog or toad, viewing a vertical paling fence barrier
through which it can see a worm, may either approach directly to snap at the worm, or
detour around the barrier. However, if no worm is visible, the animal does not move.
Thus, it is the worm that triggers the animal’s response but, when the barrier is present,
the animal’s trajectory to the worm changes in a way that reflects the relative spatial
configuration of the worm and the barrier. Corbacho and Arbib (1995) modeled the dif-
ferent behavioral responses to different barrier configurations, as well as the learning
involved in the behavioral transitions. The present section is based on behavioral studies
of frogs, Rana pipiens (Corbacho et al., 1996). Here we sample a few of our observations
of the main capabilities of frogs for detour behavior that set challenges for our learning
model.

3 2 0 C H A P T E R 1 7

Experiment I: Barrier 10 cm Wide
Frogs that started from a long enough distance (15–25 cm) in front of a 10cm wide
barrier (and with the worm 10 cm behind the barrier) showed (in 95% of the trials)
reliable detour behaviors from the first interaction with the 10 cm barrier. They produced
an immediate approach movement towards one of the edges of the barrier (see 17.1A).
This experiment shows that an adult frog has the capability without training to perform
detours when the barrier is narrow enough (10 cm long) and the frog is at a far enough
distance (15-20 cm) from the barrier.

Experiment II: Barrier 20 cm wide
From now on we will refer to a frog which has not been exposed to the barrier paradigm
as naive. If the chopsticks are placed the same distance apart, so that the gaps have the
same width, and the barrier is 20 cm wide, then the naive frog tends to go for the gap in
the direction of the prey (this was the case for 88% of the trials). The frog starts out ap-
proaching the fence trying to make its way through the gaps. During the first trials with
the 20 cm barrier the frog goes straight towards the prey thus bumping into the barrier.
When the frog is not able to go through a gap towards the prey it backs-up about 2 cm
and then reorients towards one of the neighboring gaps (see figure 17.1B).

Observation: After 2 (43%) or 3 (57%) trials, the frog is already detouring around the
barrier without bumping into the barrier (see figure 17.1C). The behavior involves a
synergy of both forward and lateral body (sidestep) movements in a very smooth and
continuous single movement.

�
�

�

�
�

�

�
�

	

		

�

�

Figure 17.1�

���Approach to prey with
single 10 cm barrier
interposed. ���Approach to
prey with single 20 cm barrier
interposed: first trial with frog
in front of 20 cm barrier
(numbers indicate the
succession of the
movements). ���Approach to
prey with single 20 cm barrier
interposed: after 3 trials with
frog in front of 20 cm barrier.
Arrowheads indicate the
position and orientation of
the frog following a single
continuous movement after
which the frog pauses.

17.2 Model Description
We start by defining the environment and the agent (frog in this case). The environment
provides the agent with an interaction space. Ultimately the behavior of any agent is very
dependent on its environment so that the behavior can only be understood in relation to
the synergy agent-environment. In order to define the structure of the agent we start by
defining the spaces of interaction/communication with the environment and then follow
with the functional units that constitute the agent.

Definition. An Environment is a space that includes a collection of entities and their
relations (interactions). A particular instance configuration at time t will be denoted as

L E A R N I N G T O D E T O U R 3 2 1

Environment(t). Environment is a 150x150 grid where different entities e.g., frog(xf,yf),
barrier(xb,yb,wh,g). The simulation system contains simplified Environment functions
designed to allow for an adequate interaction between the simulated agent and its envi-
ronment, for instance the simulation system performs simple “shifts” of the agent’s visual
field as it moves in the environment and its coordinates change. The environmental func-
tions will be described in more detail in the Model Architecture section.

Basically, the visual field of the agent corresponds to a sector of the Environment,
and the coordinates of this sector are updated as the agent moves around. This 2D sector
corresponding to the agent’s visual field is projected upon the retina of the agent, which
is the front-end visual perception system. The agent may also perform several actions that
may cause environmental and agent parameters to change.

Component Schemas: Architecture
The detour model incorporates schemas (functional units) and neural modules (structural
units) described in table 17.1 and shown in figure 17.2.

Function Schema Level Modules Neural Level Modules

Perceptual Visual, Depth, Tactile, PreyRec, SoRec Retina, T5_2layer, TH10layer

Sensorimotor PreyApproach, SoAvoid Motor Heading Map (MHM)

Motor Forward, Orient, Sidestep, Backup

R4

Visual

R1-R2

R3

Retina

T5_2 layer

TH10 layer
Motor

Heading
Map

Static Object
Recognizer

Prey
Recognizer

TH10

T5_2

Static Object
Avoidance

Prey Approach

Forward

Orient

Sidestep

BackwardTactile Schema Level

Neural Level

Figure 17.2
Schema Architecture for Detour
Model consisting of two levels: a
schema level and a neural
networks level. The schema level
consists of Perceptual Schemas:
Visual and Tactile, Prey
Recognition, Static Object
Recognition (SOR);
Sensorimotor Schemas: Prey
Approach and Static Object
Avoidance; and Motor Schemas
Orient, Forward, Sidestep and
Backup. The neural level
consists of four modules: Retina,
T5_2layer, TH10layer and the
Motor Heading Map (MHM).

Perceptual Schemas
Perceptual schemas involve both sensors and recognizers based on these sensors.

Visual
The Visual schema simulates a visual sensor discriminating among different objects in
the visual field, mainly prey and barrier in this model.

Depth
The Depth schema generates a depth map for the objects of interest, primarily barrier in
order to avoid hitting it and generating appropriate responses according to how close the
frog is to it.

Table 17.1
Frog schemas according to
their functional (schema
level) and structural
organization (neural level).

3 2 2 C H A P T E R 1 7

Tactile
When the frog hits an object, in the current case the barrier, the Tactile schema gets trig-
gered. The simulation environment checks when the frog comes level with the barrier
(equal y-coordinates), and then checks whether there is a passable opening (we have
chosen 3 cm wide or more for our simulations—this would change as the frog grows) at
the frog’s current x-coordinate. If the gap is not passable then the Tactile schema gets
triggered:



 =

=
otherwise0

 wise3cm than lessisclosest to theandif1 xyy fbf
Tactile

(17.1)

where (fx,fy) are the (x,y) coordinates of the “snout” of the simulated frog in the 2D
world, and by is the “depth” coordinate of the barrier.

Prey Recognizer
Cervantes-Perez et al. (1985) presented a detailed neural network implementation for
prey recognition. Here we present a schema (PreyRec) that approximates this neural
network mapping. The presence of prey within the visual field of the animal produces a
2D pattern of activity in the prey recognition system, while absence of prey leaves the
system at rest. This is here implemented by simplified feature detectors but it is open to
more detailed implementations.

Ewert (1971) found in toad’s pretectum near the ventral part of the pct (postero-
central thalamic nucleus), units that give continued discharge in the presence of a large
dark stationary object. This occurred even when the stationary object was revealed by
turning on the room lights without prior motion: Class th10 neurons—with an ERF of
about 30–90°— exhibit prolonged discharge to large contrast stimuli that are stationary in
their ERF.

Static Object Recognizer
A model of Stationary Object Recognition in anurans was proposed by Lee (1994) based
on these findings. In this paper we provide a schema (SorRec) that approximates this
model providing the output through the th10 cells map.

Sensorimotor Schemas
Sensorimotor schemas integrate between sensory perception and motor action.

Prey Approach
Epstein (1977) introduced, and Arbib & House (1987) refined, the notion of prey attrac-
tant field. A prey sets up a symmetric attractant field whose strength decays gradually
with distance from the prey. Arbib & House (1987) described the mask for prey objects
as projecting very broadly in the lateral direction and somewhat less broadly in the for-
ward direction This “prey-attractant-field” represents the location of the stimulus accu-
rately as the center of mass of the representation. It also provides the system with
neighbor positions available as targets were the accurate position impossible to reach,
thus providing the system with a coarse representation of prey location.

PreyApproach projects this excitatory field onto the MHM (motor heading map)
explained below. We hypothesize the projection of activity giving rise to coarse coding of
prey location.

prey(i,j,t)@kp(i,j) (17.2)

where i and j are indices for 2D arrays of neurons, t is time, kp is a kernel, and @ denotes
spatial convolution. In general, each kernel in the present model will be a truncated Gaus-
sian of the general form

L E A R N I N G T O D E T O U R 3 2 3





 ≤++−=

otherwise0

if]2/)(exp[
),,(

222222 RyxsyxW
tyxk (17.3)

where R is the receptive field size.

Static Object Avoid
Analogously, the model also includes a repellent vector field associated with each fence
post. Its effect is more localized to its point of origin than is that of the prey field.

th10(i,j,t)@ks(i,j,t) (17.4)

We hypothesize the inhibitory pattern of connectivity to be also Gaussian shaped.

Bump Avoid
The BumpAvoid schema produces a reorientation that triggers the projection of an activ-
ity pattern (with quite large eccentricity) to the MHM. This field gives rise to excitation
on the neighbor regions thus encoding the reorientation under bumping. It takes the form
of

reorient(i,t) (17.5)

Motor Heading Map
Cobas and Arbib (1992) propose that a motor heading map (MHM) determines the direc-
tion to jump: i.e., prey-catching and predator avoidance systems share a common map for
the heading of the responding movements (coded in body coordinates), as distinct from a
common tectal map for the direction of the stimulus. Note that the direction of prey and
the direction of prey catching are the same, but the directions of a predator and the escape
are different. Thus, in the latter case, the sensory map and the motor map must be distin-
guished. Projections to the MHM must differ depending on whether a visual stimulus is
identified as prey, predator or obstacle.

In our model, the outputs of the previously defined schemas (th10 and prey(T5_2)
respectively) are projected to MHM through kernels.

In the current study the “neural field” generated in the MHM will be 1D (vs. 2D prey
and th10 maps) - we restrict here to the eccentricity component since the elevation com-
ponent is not important for the problem at hand. That is, the height of each fence-post (for
fences high enough that the frog could not jump over them) does not affect the detour
behavior. The eccentricity component which actually represents the target heading angle
in the MHM will be the key “feature” in determining the sidestep to detour around the
barrier.

In our model, then, the total input Iin to MHM becomes

),(*),,(),,(*),,(10),(jiktjipreytjiktjithtiI P
j

s
j

in ∑∑ += (17.6)

Thus the total input to MHM when including reorientation due to bumping becomes

),(),(*),,(),,(*),,(10),(tireorientjiktjipreytjiktjithtiI P
j

s
j

in ++= ∑∑ (17.7)

Winner-take-all dynamics over MHM assure the selection of the strongest target
angle, upon which a transformation from retinotopic to motor coordinates takes place.
This is the input (besides different gating signals from the sensory apparatus) to the dif-
ferent motor schemas. The motor schemas are then selected based upon competition and
cooperation dynamics. Corbacho and Arbib (1995) present a winner-take-all model
(Amari & Arbib, 1977; Didday, 1976) which uses a competition mechanism to obtain a
single winner in the network.

3 2 4 C H A P T E R 1 7

Heading Transform
The Heading Map in Cobas and Arbib (1992) is differentially connected with the Orient
schema depending on the region represented. The more lateral the stimulus is, the more
strongly the Orient schema will be activated. The central portion of the heading map has
a very light projection onto the oriented schema, and thus a prey falling into that region
will only elicit a weak activation and consequently a very small turning movement or
perhaps no turn at all.

We have implemented the transformation from spatially coded to population coded
in a similar manner. The output of the sensory motor transformation codes for the ampli-
tude of the target-heading angle. To perform the transformation we use a gradient of
weights with a “V” shape. The highest value corresponding to the highest eccentricity.

]),([)^()(∑ Θ=
i

tiIigradienttangle (17.8)

where “^” is a pointwise vector multiplication, and implements a thresholding function to
avoid producing an orienting response until the motor heading map “settles down” on a
target position. Before the winner-take-all dynamics settle down on a “winner” target
heading angle several clusters of activity may coexist in MHM corresponding to the
representation of several barrier gaps in MHM. We use (Eq. 17.8) so that during the win-
ner-take-all dynamics, the cluster of activity with higher amplitude will reach this thresh-
old first as it is growing faster than any of the other clusters of activity. This enables the
model to avoid computing a heading angle that could be a linear combination of several
clusters of activity in MHM.

Motor Schemas
In the current model, motor schemas are implemented as functional units/black boxes
schematizing the neural interactions underlying behavior. The intrinsic motor patterns or
muscle activations are not simulated. When active they simply change the coordinates of
the agent (and/or environmental parameters) appropriately.

We postulate that each component of the behavior (sidestep, orient, approach, snap,
etc.) is governed by a specific motor schema. We then see detour behavior as an example
of the coordination of motor schemas. Ingle (1980, 1983) has offered some clues as to the
possible neural correlates of the various schemas. Apparently, thalamic and tectal visual
mechanism can operate somewhat independently (Ingle, 1973). Monocular frogs without
a contralateral optic tectum can quite accurately localize barriers, and while visual input
to the pretectal region of the caudal thalamus mediates barrier avoidance behavior, caudal
thalamic lesions produce an inability to sidestep stationary barriers set in the frog’s path
during pursuit of prey.

Among other motor schemas we provide the system with forward movement and lat-
eral (sidestep) movement. The forward schema when active produces a movement in the
direction of the midsagittal axis of the body with frontal direction. The lateral sidestep
movement is a movement orthogonal to the sagittal midline. Backup movement is similar
to forward but in the opposite direction.

Cobas and Arbib (1992) proposed a general mechanism of motor pattern selection
through the interaction of motor schemas. MHM contains target location but motor
schema selection is the result of competition of many maps. Each of the motor schemas
has a threshold so that its action on the controlled musculature is only enabled when its
internal level of activation reaches or surpasses that threshold.

Schema Dynamics
Schemas consist of schema behavioral mappings and schema activity variables. The full
formalization is beyond the scope of this chapter; here simply mention that schemas

L E A R N I N G T O D E T O U R 3 2 5

correspond formally to port automata with activity variables indicating the degree of
confidence. The schema activity dynamics is described by the leaky integrator. The equa-
tion describing the dynamics of the schema activity variables is

() () () ()∑ ⋅+−=
j

jiji
i

i tRtSts
dt

tds
,τ (17.9)

where S is the result of a saturation by a sigmoid transfer function that guarantees that the
activity variables remain within the interval [-1, 1],

())()(tstS ii Θ= (17.10)

R is the matrix of support. It indicates how the activation of a schema supports the
activation of another schema. The leaky integrators time constants may be different for
different schema activation variables since some schemas may have a faster dynamics
e.g. Tactile must reset quickly and with it BumpAvoid.

Schema Assertion
Schema assertion takes place when the schema activity variable surpasses certain thresh-
old hence indicating enough confidence on the application of that particular schema to
the particular context. Once asserted the schema mapping output is produced, this pattern
may in turn become the input for other schema mapping output. For many schemas once
they are asserted they must be reset to avoid successive unrealistic activations. For
instance once a motor schema has been asserted its activity variable is reset to 0.

Schema Interactions
There are some “reflex” dynamics corresponding to fast pathways e.g. Tactile activates
Backup in one step (instantiation and activation). Also Tactile must reset quickly and
with it BumpAvoid. Tactile momentarily inhibits Forward since otherwise Forward
would be too active and lower down Backup activity variable to the point where Backup
could not get activated. In general many schemas will be simultaneously active interact-
ing with each other, for instance Sidestep and Forward schemas are simultaneously active
when “detouring” after learning.

17.3 Model Implementation
The Detour model is composed of the World module—a 3D input stimulus library, Prey
and Frog modules, as shown in figure 17.3. The static objects, in this case the Barrier,
are interactively specified from the scripting language as opposed to the other two.

Detour

World

Frog

xfwangle

xwxw

xwxfwanglexb_init

worldXZ

worldXZ

xb_init

xb_end

xb_end yf

ywyw

ywyfyb

yb zf zwzw

zwzfzb

zb

Prey

Figure 17.3
Schema Architecture showing
the top-level world topology.

3 2 6 C H A P T E R 1 7

Frog
xf xwworldXZ xb_init xb_endyf ywyb

Depth

depthX depthX

depthY depthY
psps

Visual

visualField

worldXZ

Tactile

xf xf xw
xb_init xb_end

yf yf yw

yb

depthX

depthY

depthX

depthY

SorRecPreyRec

t5_2f

t5_2f

preyHorf

mhm

preyHorf

gapsf

gapsf

gaps

gapsf

baf

baf

th10f

th10f

ps

psfo

ps

ps

ps

ps

ps

psso

psoa

pspa

psta

PreyApproach
BumpAvoid

SorAvoid

MHM

visualFieldvisualField

depthY angle

angle

out outout

wtaMhm

psfo

psbk ps psfwps

pspa

psdp

pstapsta

psmhm psmhm

psbapsba psta

ps

psso

psx

psoa

Forward
Backup

Sidestep

Xform

wtaMhm
mhm

WTA

angleforward_step backward_step

Figure 17.4
Schema Architecture showing
the frog schemas topology.

World
We have provided for simple interactions with the World module. We simulate a simpli-
fied 3D environment by defining two different 2D projections or views: worldXY corre-
sponding to the top down view only available to the user, and worldXZ corresponding to
the view of an agent immersed in the environment. The worldXZ view is used as visual
input to the frog.

The model takes advantage of the input layer components (see Appendix III for
details) in generating external visual stimuli. A NslInputFloat3 3d input layer of
sizex1xsizex2 in the x-direction and sizez1xsizez2 in the z-direction is instantiated by the
World module as follows,

L E A R N I N G T O D E T O U R 3 2 7

private NslInputFloat3 in(sizex1,sizex2,sizez1,sizez2);

Note that a the NslInputFloat3 input layer actually involves two NslInputFloat2
layers: an xy-matrix and a xz-matrix corresponding two the two different views in the 3d
space. Input processing takes places as follows,

public void simRun(){

 ...

 in.run();

 worldXZ = in.get_xzview();

}

The in object is processed by applying a the run method to it. This generates a new
xy-matrix together with a new xz-matrix assigned to worldXZ for further processing in the
model.

Prey
The prey (worm in this case) is a static entity (although movement can be added to it,
such as twiggling). In the current version the prey is described by its location and size.

Barrier
The obstacle (barrier in this case) is also a static entity composed of multiple posts sepa-
rated by gaps, wide enough to let the frog see the prey behind it. The barrier gaps don’t
let the frog pass through it and are tall enough so the Frog won’t jump over it. The size
and gaps between barrier posts can be modified interactively as will be seen later on.

Frog
The agent (frog in this model) is the heart to the detour model. The frog model includes a
number of perceptual, sensorimotor and motor schemas instantiated within the frog, as
shown in figure 17.4, and described each in the following sections.

Perceptual Schemas
Perception for the frog in the model is based on Visual and Tactile sensors, where also
Depth is computed. In particular, the frog perceives the prey, PreyRec (Prey
Recognizer), and the barrier, SoRec (Static Object Recognizer).

Visual
The visual input to the frog correspond to 2D image projections of the virtual 3D world
reflected on the eyes (or camera) of the agent. The model computes a visualField corre-
sponding to the section of worldXZ that the frog can see at each time step. As the frog
moves - frog coordinates xf, yf change - the visualField needs to be recomputed.

The simRun methods computes the new visualField from the complete worldXZ
view depending on the size of its receptor field recsize

public void simRun()

{

 int recsize = visualField.getRows();

 int isize = worldXZ.getRows();

 int jsize = worldXZ.getCols();

 visualField = worldXZ.getSector(isize-recsize,isize-1,

 jsize/2-recsize/2,jsize/2+recsize/2-1);

}

The getSector method obtains the portion of the worldXZ view perceived by visual-
Field.

3 2 8 C H A P T E R 1 7

Depth
The Depth module computes the distance in both x (depthX) and y (depthY) to the barrier
or prey depending on the Frog’s current position in the world. This information is passed
to the static object recognition and bump avoidance modules as well as the Forward
module in avoiding hitting the barrier. The module output ps is a confidence level
describing when depthY is greater than safeDistance, where safeDistance corresponds to
the minimum distance the Frog should be to avoid hitting the barrier.

The simRun method computes the dynamic location of the frog, and then calculates
through simple subtractions the depth of the barrier and finally the ps confidence level
that the frog is not too close to the barrier as output to other modules.

public void simRun()

{

...

if (depthY > safeDistance || depthX > safeDistance)

 ps = 2.0; // Go up fast

 else

 ps = 0.0;

}

Tactile
The Tactile module simulates the frog hitting the barrier from its current position to the
barrier computed by Depth.

The simRun method computes the output confidence level ps depending on whether
the frog is close enough, both x and y, to the barrier.

public void simRun()

{

 if (depthY > 0 && depthY <= safeDistance &&

 depthX <= safeDistance)

 ps = 2; // Go up fast

 else

 ps = 0.0;

 ps = nslSigma(ps, -1.0, 1.0, -1.0, 1.0);

}

Prey Recognizer
The Prey Recognizer (PreyRec) module recognizes and localizes prey stimuli within the
visual field of the frog. The Prey is defined as a set of features. In this particular
implementation we have simplified this perceptual schema a great deal (see Corbacho
and Arbib 1995 for a more detailed implementation). The module receives visualField
input from the frog visual module and generates both an output confidence level and
simulates the behavior of the t5_2 neural cells.

L E A R N I N G T O D E T O U R 3 2 9

The simRun method computes the prey recognizer output in terms of filtering the
visualField for a prey stimulus.

public void simRun()

{

 t5_2 = DetourLib.filter(visualField,2);

 if (nslSum(t5_2) >= 1)

 ps=0.9;

 else

 ps=0;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th)

 t5_2f = nslRamp(t5_2);

 else

 t5_2f = 0;

}

In particular

t5_2 = DetourLib.filter(visualField, 2); (17.11)

defines a prey in terms of a feature “2” corresponding to preys. The function filters
out all elements in the matrix that do not have a corresponding value, in this case “2”.
This filtering function can be made more realistic including color, spatial frequency,
complex shape filters, etc.

The output t5_2 is still a 2D map representing the retinotopic position of the prey
(vs. allocentric prey coordinates).

Since this is a “seed” perceptual schema it must also provide “seed support” for its
schema activation variable ps.



 >=

=
otherwise0

1)2_5nslSum(if9.0 t
ps (17.12)

Then, once the schema is asserted, ps > th,

t5_2f = nslRamp(t5_2); (17.13)

corresponding to the activation of the output port.

Static Object Recognizer
The Static Object Recognizer (SoRec) module recognizes and localizes static objects
within the visual field of the frog. The Static Object is defined as a set of features. The
module receives visualField input from the frog visual module and generates both an
output confidence level and simulates the behavior of the th10 neural cells.

The simRun method computes the prey recognizer output in terms of filtering the
visualField for a barrier.

3 3 0 C H A P T E R 1 7

public void simRun()

{

 th10 = DetourLib.filter(visualField, 1);

 if (nslSum(th10) >= 1)

 ps=0.9;

 else

 ps=0;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th)

 th10f = nslRamp(th10);

 else

 th10f = 0;

}

Similarly to the Prey Recognizer, the stationary object recognition filter stationary
objects,

th10 = DetourLib.filter(visualField, 1); (17.14)

corresponding to feature “1” defining stationary objects.
Then, once the schema is asserted, ps > th,

th10f = nslRamp(th10); (17.15)

corresponding to the activation of the output port.

Sensorimotor Schemas
The frog model incorporates a number of sensorimotor schemas: PreyApproach,
SoAvoid, BumpAvoid, Motor Heading Map (MHM) and Heading Transform (Xform).

Prey Approach
The PreyApproach module integrates the horizontal projection of t5_2 cells generating a
1D representation (parcellation), since it is more efficient to make the 1D projection
before convolving with the gaussian kernel. preyHor corresponds to the eccentricity
component of the prey attractant field (horizontal component).

The initSys method reinitializes variables to 0, sets the confidence level input weight
rs to 1, and initializes the excitatory gaussian kernel t5_2_erf,

public void initSys()

{

 preyHor = 0;

 preyHorf = 0;

 rsfo = 1.0; // Prey & Prey Approach.

 ps = 0;

 DetourLib.gauss2D(t5_2_erf,t5_2_erf_sig);

 t5_2_rf = t5_2_erf_wgt * t5_2_erf;

}

L E A R N I N G T O D E T O U R 3 3 1

The simRun method computes the module activity,

public void simRun()
{
 preyF = t5_2_rf * t5_2f;
 preyHor = nslReduceRow(preyF); // Parcellation:
 horizontal comp
 ps = rsfo*psfo;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 float mx = nslMax(prey_hor);
 if (mx != 0.0)
 prey_hor_f = prey_hor/mx; // Normalize.
 }
 else
 prey_hor_f = 0;
}

Once the schema is asserted, PreyHor contains the field (normalized by the maxi-
mum value) to be projected to the other modules (e.g. MHM).

Static Object Avoid
The SorAvoid schema is implemented in a similar manner. IT integrates th10Hor as the
1D horizontal component corresponding to a parcellated representation (C&A95). Gaps
corresponds to the inhibitory obstacle repellent field. Once the schema is asserted, gapsf,
which is normalized by the maximum value, is projected to the other schemas (e.g.
MHM).

The initSys method reinitializes variables to 0, sets the confidence level input weight
rs to 1, and initializes the inhibitory gaussian kernel tm_irf and the final resulting kernel
tm_rf

public void initSys()
{
 rsso = 1.0; // Obstacle & Obstacle Avoid
 ps = 0;
 DetourLib.gauss1D(tm_irf,tm_irf_sig);
 tm_rf = - tm_irf_wgt * tm_irf;
}

The simRun method computes the schema activity,

public void simRun()
{
 th10Hor = nslReduceRow(th10f); // Parcellation (from 2D to 1D)
 gaps = tm_rf * th10Hor; // Convolve with kernel
 ps = rsso*psso;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 float mx = nslMax(gaps*-1);
 if (mx != 0.0)
 gapsf = gaps/mx;
 }
 else
 gapsf = 0;
}

3 3 2 C H A P T E R 1 7

Bump Avoid
The BumpAvoid schema contains two components: field projection baf for reorientation
(avoid keeping bumping on the same point) and, tuning of the SorAvoid module.

The simRun method computes the activity as follows

public void simRun()
{
 if (depthY <= safeDistance && depthX <= safeDistance)
 //Bumping ps = 0;
 else
 ps = -1.0; // Go down fast: -2.0
 if (tune_tm < 1.5) // saturate tune_tm.
 tune_tm = tune_tm + tune_tm_base;
 tune_tm_layer = tune_tm;
 tune_tm_layer = tune_tm_layer ^ nslStep(-gaps);
 gaps = gaps - tune_tm_layer;
 gapsf = gaps;
 ps = ps + rsta*psta;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th){
 field_center = field_center + 2;
 baf[field_center.getValue()] = field_A;
 }
 else
 baf = 0;
}

The function modulates the kernel. Every time it bumps it increases tune_tm until it
reaches a saturation point. It tunes the bump avoid field by increasing eccentricity, modu-
lating only already active neurons. Every bump it increases tune_tm until it reaches a
saturation point.

Motor Heading Map
The Motor Heading Map (MHM) schema then integrates the different fields preyHorf,
gapsf and, baf. Another input to MHM, in, contains further modulating fields learned by
the system. In particular, it will contain fields generated by newly constructed schemas
(e.g. detour schema, at the moment the only one in the model).

The simRun method computes the schema activity,

public void simRun()
{
 if (d_mhm > d_norm && gapsf ! = 0)
 {
 baf[field_center.getValue()] = field_A;
 in = baf; // New Field “inserted”
 }
 else
 in = 0; // reset input (cf. antidromic
 mhm_hat = mhm;

 // Predictive MHM.
 mhm = gapsf + preyHorF + baf + in;
 // Fields over MHM.
 d_mhm = 0.03 * DetourLib.dist(mhm, mhm_hat);
 ps = ps + rspa*pspa + rsoa*psoa;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
}

L E A R N I N G T O D E T O U R 3 3 3

The above code computes the dynamics of Motor Heading Map (MHM), integrating
several fields, while new fields can also be added while learning. The “if” section com-
putes learning dynamics. It detects an incoherence and hence a trigger for a new schema.

Heading Transform
The winner take all selects a single target where maxim returns the vector normalized
(subtraction) by its maximum, where only the maximum is above threshold (by 0.01).

public void simRun()

{

 wta_mhm = DetourLib.maxim(mhm);

}

Heading Transform
The Xform schema transforms from retinotopic (vector) to population code (scalar) the
representation of the target.

The simRun method computes the schema activity,

public void simRun()
{
 int i = nslAvgMaxValue(wta_mhm);
 angle = 0;
 if (i != 0)
 angle = i - wta_mhm.getRows()/2;
 ps = ps + rspa*pspa + rsoa*psoa;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
}

The method computes the transformation to population coding corresponding to

angle = nslSum(gradient ^ wtaMhm); (17.16)

coding the heading angle as a scalar (cf. population coding).

Motor Schemas
We have included three motor schemas as explained in the Model Description section,
forward, sidestep and backup.

Forward
The Forward motor schema receives confidence contributions from other schemas as
well as depth information to avoid hitting the barrier. step is a scalar coding the amplitude
of forward movement. The simRun method computes the motor schema activity,

public void simRun()
{
 ps = ps + rsfo*psfo + rsta*psta + rsdp*psdp +
 rsmhm*psmhm + rsbk*psbk;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 ps = -1.0; // Reset
 out = step;
 }
 else
 out = 0;
}

3 3 4 C H A P T E R 1 7

Sidestep
The Sidestep motor schema receives confidence contributions from other schemas. angle
is a scalar coding the amplitude of the sidesteps. The simRun method computes the mo-
tor schema activity,

public void simRun()

{

 ps = ps + rsso*psso + rsta*psta + rsba*psba + rsmhm*psmhm +

 rsx*psx;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 out = angle;

 if (ps > th) {

 ps = 0; // -1.0; // Reset

 }

}

Backup
The Backup motor schema receives confidence contributions from other schemas. step is
a scalar coding the amplitude of the backup movement (we omit the sign). The simRun
method computes the motor schema activity,

public void simRun()

{

 ps = ps + rsta*psta + rsba*psba + rsfw*psfw;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th) {

 ps = -1.0; // Reset

 out = step;

 }

 else

 out = 0;

}

Learning Dynamics
Schema dynamics previously presented are a simplification of Relaxation Labeling
(Hummel & Zucker, 1983). Additionally, we provide a broad description of some of the
learning mechanisms involved in both constructing a new schema and in tuning a existing
schema. For the overall Schema-Based Learning (SBL) framework please refer to (Cor-
bacho, 1998).

Schema Learning
We explain how a “new” field of activity over mhm is able to reproduce a previously
successful pattern of interaction. Concretely the field of activity projected over mhm that
caused the frog to reach the edge of the barrier.

Learning of a new schema is triggered when incoherence is detected. In this case the
unexpected interaction when the frog gets to the edge of the barrier is reflected internally
as incoherence in mhm. For every field projecting to mhm the predictive response is
calculated by simply storing the previous value corresponding to the result of activating
that field.

mhm_hat(t+1) = mhm(t) (17.17)

The incoherence is measured as the distance between the current and the expected
result,

L E A R N I N G T O D E T O U R 3 3 5

d_mhm(t+1) = Detour_lib.dist(mhm(t+1), mhm_hat(t+1)) (17.18)

when the incoherence is larger than a threshold it indicates “unexpected”. In this case the
“culprit” is the field of activity baf (triggered by the BumpAvoid schema in the first
place), and hence this field is internally stored so that it can be “played back” in future
interactions with the barrier.

if (d_mhm > d_norm) (17.19)

in = baf

On second presentation of the barrier in (reflecting a pattern of activity similar to
baf) projects a field of activity over mhm which in turn gives rise to a large value in angle
hence activating the Sidestep motor schema and detouring around the barrier.

Schema Tuning
In terms of schema tuning, the kernel for SorAvoid is tuned every time the BumpAvoid
schema is asserted.

if (tune_tm < 1.5) (17.20)

tune_tm = tune_tm + tune_tm_base

Additionally in tuningField

tune_tm_layer = tune_tm ^ nslStep(-gapsf) (17.21)

gapsf = gapsf - tune_tm_layer (17.22)

updates the field obstacle avoidance field (gapsf) by subtracting the modulation compo-
nent.

17.4 Simulation and Results1

Different experiments were carried varying the barrier size (10cm and 20cm) as well as
applying learning to the 20cm barrier experiment. The main simulation files are described
in table 17.2:

File Description

detour.nsl contains all the model parameters

detour_sti.nsl contains all the model stimulus specifications

detour_fields.nsl displays different fields

detour_env.nsl displays a top down and visual view of the environment

To execute the model do:

nsl source detour

nsl run

The stimuli specifications are done using the NSL input library described in Appen-
dix III. The detour_sti.nsl file includes parameters for the input layer as follows,

nsl set detour.world.in.dx 1

nsl set detour.world.in.dy 1

nsl set detour.world.in.dz 1

nsl set detour.world.in.xz 0

nsl set detour.world.in.yz 0

nsl set detour.world.in.zz 0

Table 17.2
NSLS script files needed
to run the different
simulations.

3 3 6 C H A P T E R 1 7

The worm specification is given by an input stimulus defined from the NSL input
library as follows,

nsl create BlockStim prey -layer detour.world.in -val 2 \

 -xc $xw -yc $yw -zc $zw -dx 1 -dy 1 -dz 1 -spec_type center

Note that all variables preceded by the “$” symbol corresponds to variable values
from Tcl (see the NSLS scripting language description in chapter 7). The values for these
variables are chosen according to the particular experiment selected through variables
learning and trial as will be described next.

The frog specification is given similarly by an input stimulus defined from the NSL
input library as follows,

nsl create BlockStim frog -layer detour.world.in -val 1 \

 -xc $xf -yc $yf -zc $zf -dx 3 -dy 3 -dz 3 -spec_type center

The barrier (or fence) specification is a little more involved given this time by a set
of input stimuli defined from the NSL input library as follows,

for {set xb $xb_init} {$xb <= $xb_end} {incr xb $gap} {

 nsl create BlockStim fence -layer detour.world.in -val 1 \

 -x0 $xb -y0 $yb -z0 $zb -dx 1 -dy 1 -dz 100 -spec_type

 corner

}

Note that in the above specification the notation and expressions correspond to the
NSLS scripting language extended from Tcl as described in chapter 7.

Experiment I
For experiment I (barrier 10 cm wide) set the following variable in detour_sti.nsl

set learning 0

set trial 10

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.5.

L E A R N I N G T O D E T O U R 3 3 7

Figure 17.5
Different activity fields for the 10cm barrier
experiment due to visual_field processing in the frog
with the exception of the bottom one processed after
the tactile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it
is negative). The next display down (prey_hor)
represents the attraction field generated from the
prey (note that it is positive). The next display down
(mhm) represents the combined gaps and prey_hor
fields. The next display down (wta) represents the
winner-take-all element from the above mhm field.
This winning element results in the heading or frog’s
orientation when moving forwards. The last display
(baf) is currently empty and represents activity due
to bumping against the barrier.

The most important factor in the frog movement direction results from the wta field,
resulting itself from the combination of the prey attraction and barrier repulsion fields. In
this experiment the direction of movement is towards the side of the barrier, heading
towards the right since the frog was positioned just a bit to the right from the axis joining
the center of the prey and barrier. The resulting path motion is shown in figure 17.6.

Figure 17.6
Rana Computatrix interacting with the 10 cm wide
barrier. Note how the frog heads itself towards the side
of the barrier.

3 3 8 C H A P T E R 1 7

Experiment II
For experiment II (barrier 20 cm wide) set the following variable in detour_sti.nsl

set learning 0

set trial 20

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.7.

Figure 17.7
Different activity fields for the 20cm barrier experiment
before bumping due to visual_field processing in the
frog with the exception of the bottom one processed
after the tactile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it is
negative). The next display down (prey_hor) represents
the attraction field generated from the prey (note that it
is positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
currently empty and represents activity due to bumping
against the barrier.

Again, the most important factor in the frog movement direction results from the wta
field, resulting itself from the combination of the prey attraction and barrier repulsion
fields. In this experiment the direction of movement before bumping into the barrier is
towards the middle of the barrier. Once the frog hits the barrier a bumping (baf) field is
generated. The purpose of this field is to redirect the movement towards a different
heading. Before that occurs the frog will backup. The resulting field after bumping is
shown in figure 17.8.

L E A R N I N G T O D E T O U R 3 3 9

Figure 17.8
Different activity fields for the 20cm barrier
experiment after bumping due to visual_field
processing in the frog with the exception of the
bottom one processed after the tactile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
represents activity due to bumping against the
barrier.

The resulting path motion after hitting the barrier several times is shown in figure
17.9.

�

�

�

� � �

� �
	

		

Figure 17.9
Rana Computatrix interacting with the 20 cm barrier
before learning. We have added numbers
corresponding to the frog’s position in time. In this
experiment the frog hits the barrier three times before
perceiving the side of the barrier.

3 4 0 C H A P T E R 1 7

Experiment III
For experiment III (barrier 20 cm wide with learning) set the following variable in

detour_sti.nsl

set learning 1

set trial 20

We change the threshold of d_norm to simulate that after one interaction with the
20cm barrier the frog would have learned and from then on it would detour when pre-
sented with the 20 cm barrier. The resulting behavior is shown in figure 17.10.

Figure 17.10
Different activity fields for the 20cm barrier
experiment after learning due to visual_field
processing in the frog with the exception of the
bottom one processed after the tactile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
currently empty and represents activity due to
bumping against the barrier.

Note that although no bumping occurs, the mhm field involves a similar integration
where heading is explicitly generated, in this case by learning. The resulting behavior is
shown in figure 17.11.

L E A R N I N G T O D E T O U R 3 4 1

Figure 17.11
Rana Computatrix interacting with
the 20 cm wide barrier after
learning.

17.5 Summary
The model explains basic facts about detour behavior. If the retinotopic representation of
the edge of the barrier in SorRec falls within the prey-attractant-field spread, then the
summation of activity from the prey-attractant-field and from the SOR-repellent map on
MHM at the retinotopic position just beyond the barrier’s edge is stronger then the sum-
mation at the “center” of the barrier where the prey is located. Hence, the winner-take-all
dynamics will select the cluster of activity corresponding to the retinotopic position of the
edge of the barrier, thus predicting that frogs would detour around narrow barriers. On
the other hand, for wide barriers the prey-attractant-field extent falls within a much wider
barrier field. Hence, at the MHM retinotopic position corresponding to the barrier’s edge
there will be no input activity from the prey map. On the other hand, there will be a great
projection of activity on MHM at the retinotopic position of the prey; and this in turn will
trigger approach to a point within the barrier map, so long as the peak of prey attraction
exceeds the trough of barrier inhibition. Thus, the model predicts that the naive frog
would approach wide barriers rather than detour around them.

Notes

1. Preparation of this paper was supported in part by award number IBN-9411503 for
Collaborative Research (M.A. Arbib and A. Weerasuriya, co-Principal Investigators)
from the National Science Foundation.

2. A. Weitzenfeld developed the NSL3.0 version and extended the original NSL2.1
model implementation written by F. Corbacho as well as contributed Section 17.3
and part of 17.4 to this chapter.

3. The Detour model was implemented and tested under NSLC.

This page intentionally left blank

18 Face Recognition by Dynamic Link Matching1

L. Wiskott, C. von der Malsburg and A. Weitzenfeld2

We present here a biologically motivated system for invariant and robust recognition of
objects from camera images. It originally arose from a homework assignment for a course
of neural network self-organization at USC, and in a way it can be seen as a serious test
of NSL’s maturity as a (neural) simulation tool. Formulated as a large system of coupled
non-linear differential equations comprising altogether approximately 3 million variables,
its development required extensive series of experiments and continuous graphical
monitoring of large sets of variables. Not only did NSL support this process, requiring
just minor extensions, but it now makes our system directly accessible to students and
colleagues for close inspection and for further development.

Our model is based on the principles of temporal feature binding and dynamic link
matching. Objects are stored in the form of two-dimensional aspects. These are competi-
tively matched against current images. During the matching process, complete matrices
of dynamic links between the image and all models are refined by a process of rapid self-
organization, the final state connecting only corresponding points in image and object
models. As a data format for representing images we use local sets (“jets”) of Gabor-
based wavelets. We have tested the performance of our system by having it recognize
human faces against databases of more than one hundred images. The system is invariant
with respect to retinal position, and it is robust with respect to head rotation, scale, facial
deformation, and illumination.

18.1 Introduction
For the theoretical biologist, the greatest challenge posed by the brain is its tremendous
power to generalize from one situation to others. This ability is probably most concretely
epitomized in terms of invariant object recognition—the capability of the visual system to
pick up the image of an object and recognize that object later in spite of variations in
retinal location (as well as other important changes such as size, orientation, changed
perspective and background, deformation, illumination, and noise). This capability has
been demonstrated by flashing the image of novel objects briefly at one foveal position,
upon which subjects were able to recognize the objects in a different foveal position (and
under rotation in depth) (B & Gerhardstein 1993).

The conceptual grandfather of many of the neural models of invariant object recog-
nition is Rosenblatt’s four-layer perceptron (Rosenblatt 1961). Its first layer is the sen-
sory or retinal surface. Its second layer contains detectors of local features (that is, small
patterns) in the input layers. Each one of these is characterized by a feature type and a
position x. The third layer contains position-invariant feature detectors, each of which is
characterized by a feature type and is to respond to the appearance of its feature type
anywhere on the input layer. It is enabled to do so by a full set of connections from all of
the cells of the same feature type in the second layer. Thus, the appearance of a pattern in
any position of the input layer leads to the activation of the same set of cells in the third
layer. Layer four now contains linear decision units which detect the appearance of cer-
tain sets of active cells in the third layer and thus of certain objects imaged into the input
layer. A decision unit contains an implicit model of an object in the form of a weighted
list of third-layer features to be present or absent.

The four-layer perceptron has to contend with the difficulty that a set of feature types
has to be found on the basis of which the presence or absence of a given pattern becomes
linearly separable on the basis of the un-ordered feature lists displayed by the third layer.

3 4 4 C H A P T E R 1 8

If the feature types employed are too indistinct, there is the danger that different patterns
lead to identical third-layer activity, just because the only difference between the patterns
is a different spatial arrangement of their features. The danger can be reduced or avoided
with the help of feature types of sufficient complexity. However, this is a problematic
route itself, since highly complex features are either very numerous (and therefore costly
to install) or they are very specific to a given pattern domain (and have to be laboriously
trained or hand-designed into the system and limit the system’s applicability to the pat-
tern domain). The difficulty arises from the fact that on the way from layer two to layer
three position information is discarded for each feature individually (as is required by the
condition of position invariance), so that also information on relative position of the fea-
tures is lost (which creates the potential confusion).

In the study presented here we are solving the indicated problem using a double
strategy. Firstly, we employ highly complex features which are constructed during pres-
entation of individual patterns (and which are stored individually for each pattern later to
be recognized), and secondly, we employ a data format and a pattern matching procedure
(between our equivalent of Rosenblatt’s layers two and three) which represent and pre-
serve relative position information for features.

The features we employ are constructed from image data in a two-step process. First,
elementary features in the form of Gabor-based wavelets of a number of scales and a
number of orientations are extracted from the image (Daugman 1988), giving a set of
response values for each point of the image, then the vector of those response values for a
given point are treated as a complex feature, which we call a jet. Jets are extracted from
an array of sample points in the image (the approach is described in detail in (Lades et al.
1993)).

Our system is explicit in its representation of analogs for layers two and three, which
we call “image domain” and “model domain”, respectively. The image domain is an
array of (16x17) nodes, each node being labeled by a jet when an image is presented. The
model domain is actually a composite of a large number (more than one hundred in some
of our simulations) of layers (“models”) composed of arrays of (10x10) nodes. To store
the image of an object (e.g., a human face) a new model is created in the model domain
and its nodes are labeled by copying an array of jets from the appropriate part of the im-
age domain.

To recognize an object, the system attempts to competitively match all stored object
models against the jet array in the image domain, a process which we call “Dynamic Link
Matching.” The winning model is identified as the object recognized. The two domains
are coupled by a full matrix of connections between nodes, which is initialized with
similarity values between image jets and model jets. (This can be seen as our version of
Rosenblatt’s feature-preserving connections.) The matching process is formulated in
terms of dynamical activity variables for the image and model layers (forming localized
blobs of activity in both domains), for the momentary strengths of connections between
the domains (we assume that synaptic weights change rapidly and reversibly during the
recognition process), and for the relative recognition status of each model. The matching
process enforces the condition that neighboring nodes in the image layer link up with
neighboring nodes in a model layer. In this way the system suppresses the feature rear-
rangement ambiguity of the Rosenblatt scheme.

Our model cannot be implemented (at least not in any obvious way) in conventional
neural networks. Its implementation is, however, easily possible if two particular features
are assumed to be realized in the nervous system, temporal feature binding and rapid
reversible synaptic plasticity. Both features have been proposed as fundamental compo-
nents of neural architecture in (von der Malsburg 1981). Temporal feature binding has in
the mean time been widely discussed in the neuroscience literature and has received some

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 4 5

experimental basis (König and Engel 1995). Although rapid synaptic weight changes
have been discussed (Crick 1982) and reported in the literature (Zucker 1989), the quasi-
Hebbian control and the time course for rapid reversible plasticity which is implied and
required here must still wait for experimental validation.

18.2 Model Description

Principle of Dynamic Link Matching
In Dynamic Link Matching (DLM), the image and all models are represented by layers of
neurons, which are labeled by jets as local features (see figure 18.1). Jets are vectors of
Gabor wavelet components (see Lades et al. 1993; Wiskott et al. 1997) and a robust
description of the local gray value distribution. The initial connectivity is all-to-all with
synaptic weights depending on the similarities between the jets. In each layer, neural
activity dynamics generates one small moving blob of activity (the blob can be inter-
preted as covert attention scanning the image or model). If a model is similar in feature
distribution to the image, its initial connectivity matrix contains a strong regular compo-
nent, connecting corresponding points (which by definition have high feature similarity),
plus noise in the form of accidental similarities. Hence the blobs in the image and that
model tend to align and synchronize in the sense of simultaneously activating, and thus
generating correlations, between corresponding regions. These correlations are used, in a
process of rapid reversible synaptic plasticity, to restructure the connectivity matrix. The
mapping implicit in the signal correlations is more regularly structured than the connec-
tivity itself, and correlation-controlled plasticity thus improves the connectivity matrix.
Iteration of this game rapidly leads to a neighborhood preserving one-to-one mapping
connecting neurons with similar features, thus providing translation invariance as well as
robustness against distortions.

For recognition purposes, DLM has to be applied in parallel to many models. The
best fitting model, i.e. the model most similar to the image, will finally have the strongest

Figure 18.1
DLM between image and model. The
nodes are indicated by black dots,
and their local features are
symbolized by different textures. The
synaptic weights of the initial all-to-
all connectivity are indicated by
arrows of different line widths. The
net displays below show how
correlations and connectivity co-
develop in time. The image layer
serves as a canvas on which the
model layer is drawn as a net. Each
node corresponds to a model
neuron, neighboring neurons are
connected by an edge. The nodes are
located at the centers of gravity of
the projective field of the model
neurons, considering synaptic
weights as physical mass. In order to
favor strong links, the masses are
taken to the power of three. The
correlations are displayed in the
same way, using averaged
correlations instead of synaptic
weights. It can be seen that the
correlations develop faster and are
cleaner than the connectivity. The
rotation in depth causes a typical
distortion pattern; the mapping is
stretched on one side and
compressed on the other.

3 4 6 C H A P T E R 1 8

connections to the image and will have attracted the greatest share of blob activity. A
simple integrating winner-take-all mechanism detects the correct model (see figure 18.2).

Figure 18.2
Architecture of the DLM face
recognition system. Image and
models are represented as
neural layers of local features, as
indicated by the black dots. DLM
establishes a regular one-to-one
mapping between the initially
all-to-all connected layers,
connecting corresponding
neurons. Thus, DLM provides
translation invariance and
robustness against distortion.
Once the correct mappings are
found, a simple winner-take-all
mechanism can detect the model
that is most active and most
similar to the image.

The equations of the system are given in table 18.1; the respective symbols are listed
in table 18.2. In the following sections we will explain the system step by step: blob
formation, blob mobilization, interaction between two layers, link dynamics, attention
dynamics, and recognition dynamics.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 4 7

Layer dynamics:

() 00 =th p
i

()() ()��
�

�
�
���

�� ��+�=
i

p
ihs

p
ih

p
i

p
i

ii
p

i
p

i shhghh ����max�

()() ()() ()p
ac

p
iha

q
j

pq
ij

qj
hh rrahW ����++ �������� max

(18.1)

() 00 =ts p
i

()p
i

p
i

p
i shs �= ���

(18.2)

()
�
�

�

�

�
�

�

� ��
�=�� 2

2

2
exp

g
ii

ii
g

�
(18.3)

()
�
�

�
�

�

�
<<

�
=

�
���

h

hh

h

h

1

0

00

(18.4)

Attention dynamics:

() N
p
i ta �=0

() () ()()��
�

�
�
�
�

�
+�+�= ��

�

�

���
�

��
i

p
i

p
ah

p
ia

p
i

i
ii

p
ia

p
i haagaa ������ max�

(18.5)

Link dynamics:

() ()()S
q
j

p
i

pq
ij

pq
ij JJSStW �� ,,max0 ==

() () () () pq
ij

pq
ji

pq
ji

j

q
j

p
iW

pq
ij WSWhhtW ��

�

�
��
�

�
�
�
�

�
�
� ���= ���

1max����

(18.6)

Recognition dynamics:

() 10 =tr p

() ()�
�
�

�
�
� �= ��

�

pp

p

pp
r

p FrFrtr max��

() ()�=
i

p
i

p htF �

(18.7)

Table 18.1
Formulas of the DLM face
recognition system

3 4 8 C H A P T E R 1 8

Variables:
h internal state of layer neurons

s delayed self-inhibition

a attention

W synaptic weights between neurons of two layers

r Recognition variable

F total activity of each neuron (fitness)

Indices:
(p;p’ ; q;q’) layer indices, -1 indicates image layer, 1,...,M indicate model layers

=(-1; -1; 1,...,M; 1,...,M) if equations describe image layer dynamics

=(1,...,M; 1,...,M; -1; -1) if equations describe model layer dynamics

(i; i’; j; j’) two-dimensional indices for individual neurons in layers (p; p’; q; q’)
 respectively

Functions:
gi-i’ Gaussian interaction kernel

�(h)� nonlinear squashing function

� (·)� heavy side function

S�(J,J’)� similarity between feature jets J and J’

Parameters:

�h = 0.2 strength of global inhibition

�a = 0.02 attention blob global inhibition strength

�ac = 1 global inhibition strength compensating for attention blob

���= � model supression global inhibition strength

�hs = 1 self inhibition strength

�hh = 1.2 image and model layers interaction strength

�ha = 0.7 attention blob effect on running blob

�ah = 3 running blob effect on attention blob

�� delayed self-inhibition decay constant

= �+�= 0.2 if h-s > 0

= ���= 0.004 if h-s � 0

�a = 0.3 attention dynamics time constant

�W = 0.05 link dynamics time constant

�r = 0.02 recognition dynamics time constant

�N = 0.1 attention blob initialization constant

�S = 0.1 minimal weight

��= 2 squashing function slope radius

�g = 1 excitatory interaction kernel Gauss width

r��= 0.5 model suppression threshold

Table 18.2
Variables and parameters of the DLM face recognition system.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 4 9

Blob Formation
Blob formation on a layer of neurons can easily be achieved by local excitation and
global inhibition (consider equations 18.1, 18.3, and 18.4 with �hs = �hh = �ha = �� = 0; cf.
also Amari 1977). Local excitation is conveyed by the Gaussian interaction kernel g and
generates clusters of activity. Global inhibition, controlled by �h, lets the clusters com-
pete against each other. The strongest one will finally suppress all others and grow to an
equilibrium size determined by the strength of global inhibition.

Blob Mobilization
Generating a running blob can be achieved by delayed self-inhibition s, which drives the
blob away from its current location to a neighboring one, where the blob generates new
self-inhibition. This mechanism produces a continuously moving blob (consider equa-
tions 18.1 and 18.2 with �hh = �ha = �� = 0; see also figure 18.3). In addition, the self-
inhibition serves as a memory and repels the blob from regions recently visited. The
driving force and the recollection time as to where the blob has been can be independ-
ently controlled by the time constants �+ and �-, respectively.

Layer Interaction and Synchronization
In the same way as the running blob is repelled by its self-inhibitory tail, it can also be
attracted by excitatory input from another layer, as conveyed by the connection matrix W
(consider equation 18.1 with �ha = �� = 0). Imagine two layers of the same size mutually
connected by the identity matrix, i.e. each neuron in one layer is connected only with the
one corresponding neuron in the other layer having the same index value. The input then
is a copy of the blob of the other layer. This favors alignment between the blobs, because
then they can cooperate and stabilize each other. This synchronization principle hold also
in the presence of the noisy connection matrices generated by real image data (see figure
18.4). (The reason why we use the maximum function instead of the usual sum will be
discussed later on)

Figure 18.3�

A sequence of layer states.
The activity blob h shown in
the middle row has a size of
approximately six active
nodes and moves
continuously over the whole
layer. Its course is shown in
the upper diagram. The
delayed self-inhibition s,
shown in the bottom row,
follows the running blob and
drives it forward. One can see
the self-inhibitory tail, which
repels the blob from regions
just visited. Sometimes the
blob runs into a trap (cf.
column three) and has no
way to escape from the self-
inhibition. It then disappears
and reappears again
somewhere else on the layer.
(The temporal increment
between two successive
frames is 20 time units.)

3 5 0 C H A P T E R 1 8

Link Dynamics
Links are initialized by the similarity S� between the jets J of connected nodes (see
Wiskott 1995), with a guaranteed minimal synaptic weight of �S Then, they become
cleaned up and structured on the basis of correlations between pairs of neurons (consider
equation 18.6; see also figure 18.1). The correlations, defined as () ()q

j
p

i hh �� , result
from the layer synchronization described in the previous section. The link dynamics typi-
cally consists of a growth term and a normalization term. The former lets the weights
grow according to the correlation between the connected neurons. The latter prevents the
links from growing infinitely and induces competition such that only one link per neuron
survives, suppressing all others.

Attention Dynamics
The alignment between the running blobs depends very much on the constraints, i.e. on
the size and format of the layer on which they are running. This causes a problem, since
the image and the models have different sizes. We have therefore introduced an attention
blob a which restricts the movement of the running blob on the image layer to a region of
about the same size as that of the model layers (consider equations 18.1 and 18.5 with ��
= 0). The basic dynamics of the attention blob is the same as for the running blob, except
there is no self-inhibition. The model layers also have the same attention blob to keep the
conditions for their running blobs similar to that in the image layer (only one attention
blob is effectively used for all models for computational efficiency). This is important for
the alignment. The attention blob restricts the region for the running blob via the term

()()ac
p
iha a ��� � (18.8)

with the excitatory blob

()p
ia� (18.9)

compensating the constant inhibition �ac. The attention blob on the other hand gets exci-
tatory input

()()p
iha h�� (18.10)

from the running blob and can thus be shifted into a region where input is especially large
and favors activity. The attention blob therefore automatically aligns with the actual face
position (see figure 18.5). The attention blob layer could be initialized based on pre-
attentive segmentation cues, such as texture or color. However, we use a flat initialization
and leave the alignment of the attention blob to an initial synchronization phase based
purely on the similarity values of the image jets with the model jets in the gallery.

Figure 18.4
 Synchronization between two
running blobs. Layer input as
well as the internal layer state h
is shown at an early stage, in
which the blobs of two layers
are not yet aligned, left, and at a
later state, right, when they are
aligned. The two layers are of
different size, and the region in
Layer 1 which correctly maps to
Layer 2 is indicated by a square
defined by the dashed line. In
the early non-aligned case one
can see that the blobs are
smaller and not at the location
of maximal input. The locations
of maximal input indicate where
the actual corresponding
neurons of the blob of the other
layer are. In the aligned case the
blobs are larger and at the
locations of high layer input.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 5 1

Figure 18.5
Function of the attention
blob, using an extreme exam-
ple of an initial attention blob
manually misplaced for dem-
onstration. At t=150 the two
running blobs ran synchro-
nously for a while, and the
attention blob has a long tail.
The blobs then lost alignment
again. From t=500 on, the
running blobs remained
synchronous, and eventually
the attention blob aligned
with the correct face position,
indicated by a square made of
dashed lines. The attention
blob moves slowly compared
to the small running blob, as
it is not driven by self-
inhibition. Without an
attention blob the two running
blobs may synchronize
sooner, but the alignment will
never become stable.

Recognition Dynamics
We have derived a winner-take-all mechanism from Eigen’s (1978) evolution equation
and applied it to detect the best model and suppress all others (See equations 18.1 and
18.7). Each model cooperates with the image depending on its similarity. The most simi-
lar model cooperates most successfully and is the most active one. We consider the total
activity of the model layer p as fitness Fp. The layer with the highest fitness suppresses
all others (as can easily be seen if the Fp are assumed to be constant in time and the rec-
ognition variables rp are initialized to 1). When a recognition variable rp drops below the
suppression threshold r�, the activity of layer p is suppressed by the term

()prr ��� ��� (18.11)

Bidirectional Connections
The connectivity between two layers is bidirectional and not unidirectional as in the
previous system (Konen and Vorbrüggen 1993). This is necessary for two reasons:
Firstly, by this means the running blobs of the two connected layers can more easily
align. With unidirectional connections one blob would systematically run behind the
other. Secondly, connections in both directions are necessary for a recognition system.
The connections from model to image layer are necessary to allow the models to move
the attention blob in the image into a region which fits the models well. The connections
from the image to the model layers are necessary to provide a discrimination cue as to
which model best fits the image. Otherwise, each model would exhibit the same level of
activity.

3 5 2 C H A P T E R 1 8

Blob Alignment in the Model Domain
Since faces have a common general structure, it is advantageous to align the blobs in the
model domain to insure that they are always at the same position in the faces, either all at
the left eye or all at the chin etc. This is achieved by connections between the layers,
expressed by the term

()� �
�
����+

i
p

ipii hg �max (18.12)

instead of

()� � ���+
i

p
iii hg � (18.13)

in equation 18.1. If the model blobs were to run independently, the image layer would get
input from all face parts at the same time, and the blob there would have a hard time to
align with a model blob, and it would be uncertain whether it would be the correct one.
The cooperation between the models and the image would depend more on accidental
alignment than on the similarity between the models and the image, and it would then be
likely that the wrong model was picked up as the recognition result. One alternative is to
let the models inhibit each other such that only one model would have a blob at a time.
The models then would share time to match onto the image, and the best fitting one
would get most of the time. This would probably be the appropriate setup if the models
were of different structure, as is the case for arbitrary objects.

Maximum Versus Sum Neurons
The model neurons used here use the maximum over all input signals instead of their
sum. The reason is that the sum would mix up many different signals, while only one can
be correct, i.e. the total input would be the result of one correct signal mixed with many
distractions. Hence the signal-to-noise ratio would be low. We have observed an example
where even a model identical to the image was not picked as the correct one, because the
sum over all the accidental input signals favored a completely different-looking person.
For that reason we introduced the maximum input function, which is reasonable since the
correct signal is likely to be the strongest one. The maximum rule has the additional
advantage that the dynamic range of the input into a single cell does not vary much when
the connectivity develops, whereas the signal sum would decrease significantly during
synaptic re-organization and let the blobs loose their alignment.

18.3 Model Implementation
The DlmModel is made of a top level Dlm module as shown in figure 18.6. These sub-
modules are related to the image/object domain (layer 1), model domain (layer 2) or their
interconnection.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 5 3

DlmSimilarity
similarity

sim[]

sim[]

sim[]

Image/
Object Model

hInput hInput sh[] sh[]

sh2[]

sh

sh

sh1

sh

hInput[] hInput[]

sa

sa

shMax

sh

sa

sa correlSum[]

correlSum[]

correlSum[]

DlmAttention
a1

DlmAttention
a2

DlmCorrelation
correlation

DlmW21
w21

DlmW12
w12

DlmRecognition
recognition

shSum[]

shSum[]

DlmH1
h1

DlmH2
h2

Dlm Figure 18.6
The ��� module includes image
or object domain modules
(layer 1) and model domain
(layer 2). The object domain
comprises h1 and a1 modules,
the model domain comprises h2,
a2, recognition and similarity,
while the interconnection
modules are implemented by
w12, w21 and correlation
modules. Note that some ports
in the submodules have a “[]”
(brackets) ending; these
represent port arrays instead of
the usual single value ports. The
connections between such ports
are actually multiple ones.

An important concern of this model is how to implement the fact that the model layer
manipulates multiple faces, the ones stored in the database, as opposed to the image/
object layer representing a single one to be compared against. We had the choice to create
multiple model, recognition, attention, connection and correlation modules corresponding
each to a single face transformation. This would have incremented the total number of
modules in the system together with its complexity. Instead, we chose to have single
model layer modules representing each multiple face transformations. To make this pos-
sible we implemented port arrays instead of single ports in each of these modules when
appropriate (see the “[]” (brackets) port array notation in the figure). For example, the sim
input port array in many of the modules, such as in w12, is defined as a NslDinFloat4
array of size gallerySizeMax to make it really a 5-dimensional array,

public NslDinFloat4 sim()[gallerySizeMax];

Note that in this case we use dynamic memory allocation since no instantiation
parameters were given above. For example, in the w12 module, the sim port array is
assigned memory space as follows (see Appendix I for further details),

for (int i=0; i<gallerySizeMax;i++)

 sim[i].nslMemAlloc(i2max,j2max,i1Rmax,j1Rmax);

3 5 4 C H A P T E R 1 8

Thus, module interconnections for port array interconnections require a “for loop”
style format as follows,

for (int i=0; i<gallerySizeMax; i++)

 nslConnect(similarity.sim[i],w12.sim[i]);

Note that gallerySizeMax represents the maximum number of gallery faces used
from the database for comparison purposes.

Similarity Module
The Similarity module performs the initial DLM model processing. The DLM database,
implemented as special text and binary files (see Appendix I for a detailed description of
text file manipulation and Appendix III for NSLC extensions to binary files), consists of
objects and models in the form of stored graphs with the precomputed Gabor-wavelet
transform coefficients. For the models they are taken from a grid of 10 x 10 nodes cen-
tered on the faces. For the objects the grids cover the whole image plane with 16 x 17
nodes. From these stored graphs a subgraph can be selected. From the 16 x 17 graph for
example a 12 x 12 subgraph will automatically be selected if the size of layer 1 is 12 x
12. In addition one can choose the location of the subgraph by Si1offset and Sj2offset off-
sets given as integer numbers behind the model names in the gallery files.

Since the object and model layers vary in size a mapping must be created to match
elements in both. This is achieved by using a connection patch in layer 1 corresponding
to a single cell in layer 2, as shown in figure 18.7.

connection patch

layer 1

layer 2

0 j1max-1

i1
m

ax
-1

i1
0

j1

0 j1R j1Rmax-1

0 j2 j2max-1

0
i1

R
i1

R
m

ax
-1

0
i2

i2
m

ax
-1

Figure 18.7
Matrix representation of
layers 1 and 2, and the
connectivity patch from a cell
in layer 2 to layer 1.

The size of the patches in layer 1 is always i1Rmax x j1Rmax, but their position
depends on the position of the corresponding cell in layer 2 (layer 2 can be as large as
layer 1). If we consider only one dimension, for example the i1-index, the patches would
have i1max-i1Rmax+1 different offsets varying in range from 0 to i1max-i1Rmax). These
offsets should be equally distributed depending on the different positions in range from 0
to i2max-1 in layer 2. Since i2/(i2max-1) lies in the range [0..1], (i1max-
i1Rmax)*i2/(i2max-1) covers the correct range [0,..,(i1max-i1Rmax)]. In order to round it
to the closest integer we define an index function named i1Index returning (i1max-
i1Rmax)*i2/(i2max-1)+0.5. For example, given a layer 1 of size 7 and a patch size of 4,
there are 4 different offsets, from 0 to 3.

In terms of actual computation, the initSys method initializes the sim array (order of
five) corresponding to the module’s output by computing the similarity between the
original DlmGImage and the different DlmGModel library images, both read from exter-
nal files (not shown here). For all models taken from the gallery (1 to gallerySize), for

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 5 5

every element (i2, j2) in layer 2 (i2max and j2max are the 2-dimension sizes of the model
layer), for every element (i1R, j1R) in the connection patch and for every offset element
(i1, j1) in layer 1 (i1Rmax and j1Rmax represent the 2-dimension sizes of the patch while
i1max and j1max represent the 2-dimension sizes of the object layer), compute the simi-
larity as follows,

for (int model=1; model<=gallerySize; model++) {

 for (int i2=0; i2<i2max; i2++)

 for (int j2=0; j2<j2max; j2++)

 for (int i1R=0,int i1=i1Index

 (i2,0,frame,i1max,i1Rmax,i2max);

 i1R<i1Rmax; i1R++, i1++)

 for (int j1R=0,int j1=j1Index

 (j2,0,frame,j1max,j1Rmax,j2max);

 j1R<j1Rmax; j1R++, j1++) {

 sim[model][i2][j2][i1R][j1R] =

 nslMax(alpha_s,

 similarity(DlmGImage,i1,j1,DlmGModel,

 i2,j2));

 }

}

(Note that model=0 represents the average face model.) There are a few aspects to
note in the above code. The i1Index (and j2Index) functions include a frame variable. The
frame, whose elements are not connected to layers 2, is put around layer 1, the object
layer, in order to give the attention blob space to move around the border of layer 1. If
i1max and j1max are equal in size as i2max and j2max then no attention blob is required
and the frame not necessary. The actual i1Index function (analogous to the j2Index func-
tion) is as follows,

int i1Index(int i2, int i1R, int frame,int i1max,int i1Rmax,

 int i2max){

 return i1R + frame + (i1max-2*frame-i1Rmax)*i2/

 (i2max-1)+0.5;

}

Note also in the similarity equation, that the value of sim, for each model, is assigned
as the maximum value between parameter alpha_s and the resulting similarity value. This
is done to restrict minimum values in sim.

Once the similarity computation has been completed, the average layer values
(model=0) are set the maximum of all models.

for (int i2=0; i2<i2max; i2++)

 for (int j2=0; j2<j2max; j2++)

 for (int i1R=0; i1R<i1Rmax; i1R++)

 for (int j1R=0; j1R<j1Rmax; j1R++) {

 float s = 0;

 for (int model=1; model<=gallerySize; model++)

 s = nslMax(s,sim[model][i2][j2][i1R][j1R]);

 sim[0][i2][j2][i1R][j1R] = s;

 }

3 5 6 C H A P T E R 1 8

H Module
To take advantage of common functionality between the image and layer models, a su-
permodule H is defined containing aspects common to both H1 and H2. At the structure
level the two submodules H1 and H2 share a number of variables having the exact same
dimension, corresponding to previously defined equation symbols, as shown in table 18.3
(we omit all scalar parameters from the table).

Symbol Variable Name Variable Type Description

()()p
i

p
i

ii
p

i hgG �
���

���= �max hTransE NslFloat2 Gaussian lateral interaction

()p
ia� sa NslDinFloat2 Input received from the attention

module

p
i

p
i sh � d NslFloat2 Delayed self inhibition argument

Additionally, the following method implements equation (18.3) and is used to
initialize the Gaussian variable g used in both submodules,

protected void initGauss(){

 for (int k = 0; k < gSize; k++) {

 float x = (float) (k-gSigma/2);

 g[k] = nslExp(-x*x/(2*gSigma*gSigma);

 }

}

Additionally, the following method performs the convolution described in the second
hand side element of equation (18.1) performed by both submodules,

protected NslFloat2 gaussConvolved(NslFloat1 g,NslFloat2 sh){

 return nslConvZero(nslFillRows(g,1),nslConvZero

 (nslFillCols(g,1),sh));

}

The above function generates a two dimensional array as result from this convolu-
tion. It first convolves sh against a matrix whose columns are replications (nslFillCols) of
the gaussian vector g. The result of this convolution is applied to a matrix whose rows are
replications (nslFillRows) of the gaussian vector g. We use a convolution function treat-
ing elements beyond the matrix border as zeroes (nslConvZero).

H1 Module
The image layer implementation defines a number of variables corresponding to previ-
ously defined equation symbols, as shown in table 18.4.

Symbol Variable Name Variable Type Description

()()q
j

pq
ij

qj

p
i hWI �max= hInput NslDinFloat2 Input received from hInput from w12 layer

()p
ih� sh NslDoutFloat2 Layer output

p
ih h NslFloat2 Layer activity
p
is s NslFloat2 Delayed self inhibition

Table 18.3
Symbol and variable
relationship defined in �
and common to both �� and
�� in dimension.

Table 18.4
Symbol and variable
relationship defined in ��.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 5 7

The simRun main computation, describing layer dynamics on h and s in module h1,
is as follows:

1. Calculate the Gaussian lateral interaction hTransE in the image layer,

()()p
ip

i
ii

p
i hgG �

���
���= �max (18.14)

corresponding to the second term of the right hand size of equation (18.1) where g has
been computed in the initRun method during initialization,

hTransE = gaussConvolved(g,sh);

The maximum operation is not necessary since there is only one image layer p.

2. Integrate the differential equation for the image layer in correspondence to equation
(18.1),

()() ()��
�

�
�
���

�� ��+�=
i

p
ihs

p
ih

p
i

p
i

ii
p

i
p

i shhghh ����max�

 ()() ()() ()p
ac

p
iha

q
j

pq
ij

qj
hh rrahW ����++ �������� max

The equation is implemented as follows,

nslDiff(h,1.,- h + hTransE - beta_h*nslSum(sh) - kappa_hs*s

 + kappa_hh*hInput + kappa_ha*(sa-beta_ac));

Note that nslSum(sh) corresponds to the following expression,

()�
�

�
i

p
ih�

Additionally notice that the strong inhibition term

()qrr ��� ���

is ineffective in the image layer since there are no competing image layers.

3. Compute the image layer output sh from current activity h as given by equation
(18.4),

computeOutputFunc(sh,h,rho);

4. Integrate the differential equation (equation 18.2) given by,

()p
i

p
i

p
i shs �= ���

with lambda depending on the sign of the difference of h and s,

d = h - s;

for (i1=0; i1<i1max; i1++)

 for (j1=0; j1<j1max; j1++)

 if (d[i1][j1]>0)

 d[i1][j1] = d[i1][j1]*lambda_p;

 else

 d[i1][j1] = d[i1][j1]*lambda_m;

nslDiff(s,1.,d);

H2 Module
The image layer implementation defines a number of variables corresponding to previ-
ously defined equation symbols, as shown in table 18.5. Notice that these variables differ

3 5 8 C H A P T E R 1 8

from those defined in module H1 in that an additional dimension has been added in the
form of an array (having its size correspond gallerySizeMax).

Symbol Variable Name Variable Type Description

()()p
i

qp
ji

pi

q
j hWI �max= hInput NslDinFloat2[] Input received from hInput from

w12 layer

()q
jh� sh NslDoutFloat2[] Layer output

()�
�

�
j

q
jh� shSum NslDoutFloat0[] Sum over sh

()()q
j

q
h �

�
�max shMax NslDoutFloat2[] Maximum activity of layer 2

q
jh h NslFloat2[] Layer activity

q
js s NslFloat2[] Delayed self inhibition

The simRun main computation describing layer dynamics on h and s in module h2,
is quite similar to module h1, being as follows:

5. Calculate the Gaussian lateral interaction hTransE in the model layer,

()()q
j

q
j

jj
q
j hgG �

���
���= �max

Since the maximum operation is equal for all models it needs to be calculated only
once.

hTransE = gaussConvolved(g,shMax,rho);

Notice that we have an additional variable shMax in H2.

6. Integrate the differential equation for the model layer in correspondence to equation
(18.1),

()() ()��
�

��
�
���

�� ��+�=
j

q
jhs

q
jh

q
j

q
j

jj
q
j

q
j shhghh ����max�

()() ()() ()q
ac

q
jha

p
i

qp
ji

pi
hh rrahW ����++ �������� max

The equation is implemented as follows and applied to each model,

nslDiff(h[model],1.0, - h[model] + hTransE

 - beta_h*shSum[model] - kappa_hs*s[model]

 + kappa_hh*hInput[model] + kappa_ha*(sa-beta_ac));

Notice that the strong inhibition term

()qrr ��� ���

is simulated simply by skipping over those layers that have too low recognition values rq

(skip statement in the source code), else continue processing the model layer.
Also notice that the output sum shSum is computed for each model as follows,

shSum[model] = nslSum(sh[model]);

Table 18.5
Symbol and variable
relationship defined in ��.
Notice that all types have an
additional dimension
specified by the “[]” array
symbol.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 5 9

7. Compute for each model layer output sh from current activity h as described in
equation (18.4),

computeOutputFunc(sh[model],h[model],rho);

8. Integrate for each model the differential equation (equation 18.2) given by,

()q
j

q
j

q
j shs �= ���

with lambda depending on the sign of the difference of h and s,

d = h[model] - s[model];

for (i2=0; i2<i2max; i2++)

 for (j2=0; j2<j2max; j2++)

 if (d[i2][j2]>0)

 d[i2][j2] = d[i2][j2]*lambda_p;

 else

 d[i2][j2] = d[i2][j2]*lambda_m;

nslDiff(s[model],1.,d);

9. Compute the model layer output shMax

()()q
j

q
h �

�
�max

implemented by,

for (i2=0; i2<i2max; i2++)

 for (j2=0; j2<j2max; j2++) {

 shMax[i2][j2] = 0;

 for (int model=1; model<=gallerSizeMax; model++)

 shMax[i2][j2] = nslMax(shMax[i2][j2],sh[model]

 [i2][j2]);

 }

Attention Module
We take advantage of the similarity between the attention modules for image and model
layers to define a single one instantiated twice, respectively. The Attention module
defines equation symbols and variable names, as shown in table 18.5.

Symbol Variable Name Variable Type Description

p
ia a NslFloat2 Attention layer activity

()p
ia� sa NslDoutFloat2 Attention layer output

()p
i

i
ii

p
i agA �

�
���= � aTransE NslFloat2 Gaussian lateral interaction

()p
ih� or ()()p

i
p

h �

�
�max sh NslDinFloat2 Layer input received from the image or

model (max) layer, respectively.

Attention modules compute only if attention is set. The initRun method initializes
the attention layer (a1 and a2) as follows,

a = alpha_N;

sa = computeOutputFunc(a);

Table 18.5
Symbol and variable
relationship.

3 6 0 C H A P T E R 1 8

The simRun method describes the attention dynamics for the two layers,

10. Calculate the Gaussian lateral interaction aTransE from its previous output sa,

()p
i

i
ii

p
i agA �

�
���= � (18.15)

The implementation is as follows,

aTransE = gaussConvolved(g,sa);

Due to the maximum operation there is effectively only one attention layer for all
models,

11. Integrate differential equation for the attention layer as described in equation (18.5)
by obtaining inputs from the image or model layer outputs, respectively,

() () ()��
�

�
�
�
�

�
��+�= ��

�
��

�
��

i

p
iah

p
ia

p
i

i
ii

p
ia

p
i haagaa �������

The equation is implemented as follows,

nslDiff(a,1.,lambda_a*(-a+aTransE-beta_a*nslSum(sa)+

 kappa_ah*sh));

12. Compute the output function

()p
ia�

The equation is implemented as follows,

computeOutputFunc(sa,a,rho);

W Module
To take advantage of common functionality between the image and layer model connec-
tivity, a supermodule W is defined containing aspects common to both W12 and W21. At
the structure level the two submodules W12 and W21 share a number of variables having
the exact same dimension, corresponding to previously defined equation symbols, as
shown in table 18.6 (we omit all scalar parameters from the table).

Symbol Variable Name Variable Type Description

pq
ijW w NslFloat4[] Connection weights

() ()q
j

p
i

qp
ij hhC ��= correlSum NslDinFloat4[] Input from Correlation module

qp
ijS sim NslDinFloat4[] Input from Similarity module

Notice that since the link dynamics for both connection layers is simulated only after
every loops iterations.

W12 Module
The connectivity layer from the model layer to the image layer is defined by module
W12. The symbols particular to this layer are shown in table 18.7. In addition this layer
inherits all symbols defined in supermodule W.

Table 18.6
Symbol and variable
relationship defined in � and
common to both ��� and
��� in dimension. Notice
that all types have an
additional dimension
specified by the “[]” array
symbol.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 6 1

Symbol Variable Name Variable Type Description

()()q
j

pq
ji

qj

p
i hWI �max= hInput NslDoutFloat2 Output to image layer

()q
jh� sh NslDinFloat2[] Input from model layer

{ }pq
ji

qp
ij

qj

p
i WSN ,1min= normFactor NslFloat2 Normalization matrix

The initRun method computes the initialization values for the connection module
given by the following equation (equation 18.6),

() ()()Sq
j

p
i

qp
ij

pq
ji JJSStW �� ,,max0 ==

Taking out the nested “for” loops, the equation is implemented as follows,

w[model][i1R][j1R][i2][j2] = sim[model][i2][j2][i1R][j1R];

Notice how we switch subscripts since W12 connects layer 2 elements to layer 1
patch elements. Also, the max function has already been applied in the similarity module.
Additionally, the initRun method computes maximum values for the average layer
(model=0).

float stmp = 0;

for (model=1; model<=gallerySize; model++)

 stmp = nslMax(stmp,sim[model][i2][j2][i1R][j1R]);

w[0][i1R][j1R][i2][j2] = stmp;

The simRun method describes connection dynamics on W12. Computation is as fol-
lows:

13. Calculate growth of the weight matrix w from model layers to image layer according
to the first term in differential equation equation (18.6) based on the accumulated
correlations and according to the equation

() pq
ji

qp
ijW

pq
ji WCtW �=� (18.16)

Since this integration switches scripts around we perform the integration directly as
follows,

tWCWW pq
ji

qp
ijW

pq
ji

pq
ji �+= �

The latter is implemented by the following code,

w[model][i1R][j1R][i2][j2] += nslSystem.getSimDelta()

 *w[model][i1R][j1R][i2][j2]*lambda_W

 *correlSum[model][i2][j2][i1R][j1R];

Note the “+=” expression directly adding the left hand side variable to the right hand
side. The “nslSystem.getSimDelta()” expression returns the system’s “delta”.

14. Although link dynamics is not simulated as a differential equation but by strict
normalization, the outcome is the same. The normalization rule corresponding to the
second term in equation (18.6) becomes an explicit and separate normalization rule
in the program. The normalization factors by which the weights converging on the
image layer need to be multiplied is

Table 18.7
Symbol and variable
relationship defined in ���.
Notice the types having an
additional dimension
specified by the “[]” array
symbol.

3 6 2 C H A P T E R 1 8

{ }pq
ji

qp
ij

qj

p
i WSN ,1min=

Notice that sim is symmetric and can be used for both directions. The variable norm-
Factor is initialized to 1. Also notice that each model layer needs its own set of normali-
zation factors for w21 but not for w12 (although we end up computing one for each
anyway).

if (w[model][i1R][j1R][i2][j2]>sim[model][i2][j2][i1R][j1R])

 normFactor[i1][j1] = minimum(normFactor[i1][j1],

 sim[model][i2][j2][i1R][j1R]/w[model][i1R][j1R][i2][j2]);

15. Normalize the weights going from each model layer to the image layer by the
normalization factors,

pq
ji

p
i

pq
ji WNW =

w[model][i1R][j1R][i2][j2] *= normFactor[i1][j1];

Note the “*=” expression directly multiplying the left hand side variable with the
right hand side.

16. Skip computation if inhibition in model layer sh is too strong. (There is no competi-
tion between links going to different models while there is competition between links
converging to the image layer from different models.)

17. Calculate the output hInput sent to the image layer calculated as the maximum of the
input sh from the model layer multiplied by the connection w as described in
equation (18.1),

()()p
i

pq
ji

pi
hW �max

The implementation is as follows,

hInput[i1][j1] = nslMax(hInput[i1][j1],

 w[model][i1R][j1R][i2][j2]*sh[model][i2][j2]);

W21 Module
The connectivity layer from the image layer to the model layer is defined by module
W21. The symbols particular to this layer are shown in table 18.8. In addition this layer
inherits all symbols defined in supermodule W.

Symbol Variable Name Variable Type Description

()()p
i

qp
ij

pi

q
j hWI �max= hInput NslDoutFloat2[] Output to model layer

()p
ih� sh NslDinFloat2 Input from image layer

{ }qp
ij

qp
ij

pi

q
j WSN ,1min= normFactor NslFloat2[] Normalization matrix

Table 18.8
Symbol and variable relationship defined in ���.
Notice the types having an additional dimension
specified by the “[]” array symbol, exactly the
opposite from those specified in ���.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 6 3

The initRun method computes the initialization values for the connection module
given by the following equation (equation 18.6),

() ()()S
q
j

p
i

qp
ij

qp
ij JJSStW �� ,,max0 ==

An important consideration here is that subscripts correspond to those in the similar-
ity output. Taking out the nested “for loops” the equation is implemented as follows,

w[model] = sim[model]

Notice how we switch subscripts since W21 connects layer 1 patch elements to layer
1 elements. Also, the max function has already been applied in the similarity module.
Additionally, the initRun method computes maximum values for the average layer
(model=0).

float stmp = 0;

for (model=1; model<=gallerySize; model++)

 stmp = nslMax(stmp,sim[model]);

w[0] = stmp;

The simRun method describes connection dynamics on W21. Computation is as fol-
lows:

18. Calculate growth of the weight matrix w from model layers to image layer according
to the first term in differential equation equation (18.6) based on the accumulated
correlations and according to the equation

() qp
ji

qp
ijW

qp
ij WCtW �=�

Since this integration switches scripts around we perform the integration directly as
follows,

tWCWW qp
ij

qp
ijW

qp
ij

qp
ij �+= �

The latter is implemented by the following code,

w[model] += nslSystem.getSimDelta()

 *w[model][i2][j2]*lambda_W*correlSum[model];

Note the “+=” expression directly adding the left hand side variable to the right hand
side. The “nslSystem.getSimDelta()” expression returns the system’s “delta”.

19. Although link dynamics is not simulated as a differential equation but by strict
normalization, the outcome is the same. The normalization rule corresponding to the
second term in equation (18.6) becomes an explicit and separate normalization rule
in the program. The normalization factors by which the weights converging on the
image layer need to be multiplied is

{ }qp
ij

qp
ij

pi

q
j WSN ,1min=

Notice that sim is symmetric and can be used for both directions. The variable norm-
Factor is initialized to 1. Also notice that each model layer needs its own set of normali-
zation factors for w21 but not for w12 (although we end up computing one for each
anyway).

3 6 4 C H A P T E R 1 8

if (w[model][i2][j2][i1R][j1R]>sim[model][i2][j2][i1R][j1R])

 normFactor[i1][j1] = minimum(normFactor[i1][j1],

 sim[model][i2][j2][i1R][j1R]/w[model][i2][j2][i1R][j1R]);

20. Normalize the weights going from each model layer to the image layer by the
normalization factors,

qp
ij

q
j

qp
ij WNW =

w[model][i2][j2][i1R][j1R] *= normFactor[i1][j1];

Note the “*=” expression directly multiplying the left hand side variable with the
right hand side.

21. Skip computation if inhibition in model layer sh is too strong. (There is no competi-
tion between links going to different models while there is competition between links
converging to the image layer from different models.)

Calculate the output hInput sent to the image layer calculated as the maximum of the
input sh from the model layer multiplied by the connection w as described in equation
(18.1),

()()q
j

qp
ij

qj
hW �max

The implementation is as follows,

hInput[i1][j1] = nslMax(hInput[i1][j1],

 w[model][i2][j2][i1R][j1R]*sh[model][i2][j2]);

Correlation Module
The correlation module between image-model connections and model-layer connections.
The correlation symbols and variable names are shown in table 18.9.

Symbol Variable Name Variable Name Description

()p
ih� Sh1 NslDinFloat2 Image layer input

()q
jh� Sh2 NslDinFloat2[] Model layer input

qp
ijC correlSum NslDoutFloat4[] Accumulated correlation

The initRun method initializes variables to zero. The simRun method computes the
link dynamics on the correlation module.

22. Calculate the input received from the image layer output sh1 and from the model
layer output sh2 multiplied to compute correlSum as described in the following
equation,

() ()q
j

p
i

qp
ij hhC ��= (18.17)

Notice that since the link dynamics is simulated only after every loops iterations, the
correlations are accumulated over time, leading to the += operator. The correlations are
symmetric and can be used for the weight matrices from image layer to model layers and
vice versa.

correlSum[model][i2][j2][i1R][j1R] +=

 sh1[i1][j1]*sh2[model][i2][j2];

Table 18.9
Symbol and variable
relationship.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 6 5

23. After the weights have been changed the accumulated correlations need to be reset to
zero.

correlSum[model] = 0;

Recognition Module
The recognition module describes the recognition dynamics. If the recognition variable
of a model drops below r_theta, the model becomes ruled out by a strong inhibition term.
In the simulation it is just skipped in order to save cpu-time. The variables and symbols
are shown in table 18.10.

Symbol Variable Name Variable Type Description

rp rec NslFloat0[] Recognition activity

Fp shSum NslDinFloat0[] Recognition sum value from model layers

()pp

p
FrR ��

�
= max recShSumMax float Recognition maximum sum value for the

model layers

The initRun method initializes the recognition layer (winner-take-all mechanism).
The simRun method processes the recognition layer (winner-take-all mechanism).
Recognition dynamics are

24. Calculate terms shSum and recShSumMax from equation (18.7),

()pp

p
FrR ��

�
= max

The implementation is as follows,

float recShSumMax = 0;

for (model=1; model<=gallerySize; model++)

 recShSumMax = nslMax(recShSumMax,rec[model]*shSum[model]);

25. Integrate the recognition dynamics as described in equation (18.7),

() ()�
�
�

�
�
� �= ��

�

pp

p

pp
r

p FrFrtr max��

The implementation is as follows,

nslDiff(rec[model],1.,lambda_r*rec[model]^(shSum[model] –

 recshSumMax));

26. Compute which models to skip. This information is propagated back to other mod-
ules requiring this information through port interconnections not shown here.

if (model>0 && rec[model] <= r_theta)

 skipModel[model] = 1;

Table 18.10
Symbol and variable
relationship.

3 6 6 C H A P T E R 1 8

18.4 Simulation and Results3

Different experiments were carried out using different combinations of layer and patch
sizes as shown in table 18.11.

Experiment Layer and Patch
Flags

frame i1max j1max i2max j2max i1Rmax j1Rmax

Blob, layer and
link dynamics

small_layer = 1
small_patch = 0

0 10 10 10 10 10 10

Attention
dynamics

small_layer = 0
small_patch = 0

2 17+4 16+4 10 10 17 16

Recognition
dynamics

small_layer = 0
small_patch = 1

2 17+4 16+4 10 10 8 8

The first four experiments: Blob formation, blob mobilization, layer interaction and
synchronization and link dynamics use the first combination where flags are set as
small_layer = 1 and small_patch = 0. All modifications are made to the source file.

Blob Formation
Load the simulation file (gallerySize = 0, attention = 0)

nsl source DLMB

nsl init

nsl run

and observe how a blob arises.
Restart the simulation with different initial conditions
[Ctrl-C; nsl init; mouse clicks with left button on layer h1; nsl cont].
Vary also �h, originally set to 0.2 e.g. [Ctrl-C; nsl set dlm.h1.beta_h

0.1; nsl set dlm.h2.beta_h 0.1; nsl cont].
What is a reasonable range for �h?

Blob Mobilization
Load the simulation file (gallerySize = 0, attention = 0)

nsl source DLMR

nsl init

nsl run

and observe how a blob arises and moves over the layer.
Vary �+, �-, and �hs (lambda_p, lambda_m, kappa_hs), originally set to 0.2, 0.004,

and 1, respectively, to e.g. [Ctrl-C; nsl set dlm.h1.lambda_m 0.001; nsl
set dlm.h2.lambda_m 0.001; nsl cont].

Why should �- be larger for smaller layers? Is the shape of the blob speed-
dependent?

Layer Interaction and Synchronization
Load the simulation file (gallerySize = 1, attention = 0, workOnAverage = 0)

nsl source DLMS

nsl init

nsl run

Table 18.11
Size combinations for layers
and patches for the different
experiments.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 6 7

observe how the two blobs synchronize and align with each other. Try different runs (for
each run a new object is selected randomly and some synchronize easier than others) and
use different object galleries [edit the file DLMobjects and exchange the *pose1 (= 15
degrees rotated faces) block with the *pose2 (= 30 degrees rotated faces) or *pose3 (=
different facial expression) block]. Vary �hh (kappa_hh), originally set to 1.2. What hap-
pens if �hh is too large or too small?

Link Dynamics
Load the simulation file (gallerySize = 1, attention = 0, workOnAverage = 0)

nsl source DLMM

nsl init

nsl run

observe how the connectivity develops in time.
Vary �w (lambda_W). What happens if �w is too large?

Attention Dynamics
Load the simulation file (gallerySize = 1, attention = 1, workOnAverage = 0)

nsl source DLMR

nsl source DLMA

nsl init

nsl run

observe how an attention blob arises and restricts the region in which the small blob is
allowed to move.

Vary �ah and �ha (kappa_ah, kappa_ha), originally set to 3 and 0.7, respectively.
Now restart the simulation with

nsl source DLMS

nsl init

nsl run

and see whether the two blobs on the layers of different size can synchronize without an
attention blob.

Then add the attention blob [Ctrl-C; nsl load DLMA; nsl init; nsl run]
and see how the alignment between the blobs can become more stable (notice that

for each run a new object is selected randomly, which can be suppressed by

[nsl set dlm.similarity.ObjectSelectionMode 1] in which case always
the object indicated by preferredObject is used; with [nsl set dlm.similarity.
ObjectSelectionMode 3] objects are selected randomly again).

You can also experiment with the attention blob misplaced in the beginning [Ctrl-C;
nsl init; mouse clicks with the left button near the border on layer a1; nsl cont]. Vary �ah

and �ha.

Recognition Dynamics
Load the simulation file (gallerySize = 5, attention = 1, workOnAverage = 1)

nsl source DLMG

nsl source DLMA

nsl init

nsl run

3 6 8 C H A P T E R 1 8

observe the recognition process. In the first 1000 time units only the average layer with
index 0 is simulated. The correct model has index 1. Shown are, for all models, the total
layer activity, the recognition variable, and the sum over all synaptic weights (cf. also
figure). The connectivity and the layer 2 internal state as well as its input is shown only
for the currently most active layer. The time, the index of the most active layer, and the
values of the recognition parameters are given as usual output. Asterisks indicate layers
that have been ruled out.

Data Base
As face database we used galleries of 111 different persons. For most persons there is one
neutral frontal view, one frontal view of different facial expression, and two views
rotated in depth by 15 and 30 degrees respectively. The neutral frontal views serve as
model gallery, and the other three are used as test images for recognition. The models, i.e.
the neutral frontal views, are represented by layers of size 10X10. Though the grids are
rectangular and regular, i.e. the spacing between the nodes is constant within each dimen-
sion, the graphs are scaled horizontally and vertically and are aligned manually: The left
eye is always represented by the node in the fourth column from the left and the third row
from the top, the mouth lies on the fourth row from the bottom, etc. The x- (that is, hori-
zontal) spacing ranges from 6.6 to 9.3 pixels with a mean value of 8.2 and a standard
deviation of 0.5. The y-spacing ranges from 5.5 to 8.8 pixels with a mean value of 7.3 and
a standard deviation of 0.6. An input image of a face to be recognized is represented by a
16X17 layer with an x-spacing of 8 pixels and a y-spacing of 7 pixels. The image graphs
are not aligned, since that would already require recognition. The variations of up to a
factor of 1.5 in the x- and y-spacings must be compensated for by the DLM process.

Technical Aspects
DLM in the form presented here is computationally expensive. We have performed single
recognition tasks with the complete system, but for the experiments referred to in
table 18.12 we have modified the system in several respects to achieve a reasonable
speed. We split up the simulation into two phases. The only purpose of the first phase is
to let the attention blob become aligned with the face in the input image. No modification
of the connectivity was applied in this phase, and only one average model was simulated.
Its connectivity was derived by taking the maximum synaptic weight over all real models
for each link:

() ()00 max tWtW pq
mn

pq

a
mn =

This attention period takes 1000 time steps. Then the complete system, including the
attention blob, is simulated, and the individual connection matrices are subjected to
DLM. Neurons in the model layers are not connected to all neurons in the image layer,
but only to an 8X8 patch. These patches are evenly distributed over the image layer with
the same spatial arrangement as the model neurons themselves. This still preserves full
translation invariance. Full rotation invariance is lost, but the jets used are not rotation
invariant in any case. The link dynamics is not simulated at each time step, but only after
200 simulation steps or 100 time units. During this time a running blob moves about once
over all of its layer, and the correlation is integrated continuously. The simulation of the
link dynamics is then based on these integrated correlations, and since the blobs have
moved over all of the layers, all synaptic weights are modified. For further increase in
speed, models which are ruled out by the winner-take-all mechanism are no longer simu-
lated; they are just set to zero and ignored from then on (�� = �). The CPU time needed
for the recognition of one face against a gallery of 111 models is approximately 10-15
minutes on a Sun SPARCstation 10-512 with a 50 MHz processor.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 6 9

In order to avoid border effects, the image layer has a frame with a width of 2 neu-
rons without any features or connections to the model layers. The additional frame of
neurons helps the attention blob to move to the border of the image layer. Otherwise, it
would have a tendency to stay in the center.

Results
Figure 18.8 shows a sample recognition process using a test face strongly differing in
expression from the model. The gallery contains five models. Due to the tight connec-
tions between the models, the layer activities show the same variations and differ only
little in intensity. This small difference is averaged over time and amplified by the recog-
nition dynamics, which rules out one model after the other until the correct one survives.
The example was monitored for 2000 units of simulation time. An attention phase of
1000 time units had been applied before, but is not shown here. We selected a sample run
which had exceptional difficulty to decide between models. The sum over the links of the
connectivity matrices was even higher for the fourth model than for the correct one. This
is a case where the DLM is actually required to stabilize the running blob alignment and
recognize the correct model. In some other cases the correct face can be recognized with-
out modifying the connectivity matrix.

Recognition rates for galleries of 20, 50, and 111 models are given in table 8.12. As
is already known from previous work (Lades et al. 1993), recognition of depth-rotated
faces is in general less reliable than, for instance, recognition of faces with an altered
expression. It is interesting to consider recognition times (measured in arbitrary units).
Although they vary significantly, a general tendency is noticeable: Firstly, more difficult
tasks take more time, i.e. recognition time is correlated with error rate. This is also known
from psychophysical experiments (see for example Bruce et al. 1987; Kalocsai et al.
1994). Secondly, incorrect recognition takes much more time than correct recognition.
Recognition time does not depend very much on the size of the gallery.

Figure 18.8
DLM recognition: A sample
run. The test image is shown on
the left, with 16X17 neurons
indicated as black dots. The
models have 10X10 neurons
and are aligned with each other.
The corresponding total layer
activities, i.e. the sum over all
neurons of one model, are
shown in the upper graph. The
most similar model is usually
slightly more active than the
others. On that basis the
models compete against each
other, and eventually the
correct one survives, as
indicated by the recognition
variable. The sum over all links
of each connection matrix is
shown in the lower graphs. It
gives an impression of the
extent to which the matrices
self-organize before the
recognition decision is made.

3 7 0 C H A P T E R 1 8

Correct Recognition Rate Recognition Time
Gallery Size Test Images

% Correct
Recognition

Incorrect
Recognition

20 111 rotated faces (15 degrees)
110 rotated faces (30 degrees)
109 frontal views (grimace)

106
93
100

95.5
84.5
91.7

320�490
990�1900
290�530

4110�2860
2480�2580
5610�7480

50 111 rotated faces (15 degrees)
110 rotated faces (30 degrees)
109 frontal views (grimace)

104
83
95

93.7
75.5
87.2

390�500
930�1010
440�1290

3770�2120
2080�1440
4480�6190

111 111 rotated faces (15 degrees)
110 rotated faces (30 degrees)
109 frontal views (grimace)

101
69
92

91.0
62.7
84.4

420�460
1350�3017
380�410

3770�3130
4600�3720
3380�4820

18.5 Summary
We routinely use NSL for homework assignments in class as well as for our own
research, and we found it appropriate for both. It is very easy to get started with NSL. It
provides a reasonable set of basic structures and functions to create a neural model with
just a few lines of code. Moreover, when a more complex model requires more than this
basic functionality, additional functions and data structures can conveniently be added.
As a matter of fact, the model presented here used very little of the NSL-specific algo-
rithms and functions and profited mainly from NSL’s graphic display facilities and inter-
active control structures.

The model presented here deviates in some very fundamental ways from other bio-
logical and neural models of vision or of the brain. Foremost among these is its extensive
exploitation of rapid reversible synaptic plasticity and temporal feature binding. Since
these features, although first presented a decade and a half ago (von der Malsburg 1981),
have not received wide acceptance in the community yet, we have expended great effort
to demonstrate the functional superiority of the dynamic link architecture over more con-
ventional neural models by using it to solve a real-world problem, object recognition. We
are presenting here our best achievement so far in this venture.

The model presented here is closely related to a more technically oriented system
(the “algorithmic system” in contrast to the “dynamical system” described here). It has
also been developed in our group and is described in (Lades et al. 1993; Wiskott et al.
1997). Essential features are common to the two systems, among them the use of jets
composed of Gabor-based wavelet features, and of dynamic links to establish a mapping
between the image domain and individual models.

Our model for object recognition is successful in emulating the performance and
operational characteristics of our visual system in some important aspects. As in the
biological case, the flexible recognition of new objects can be installed simply by
showing them once. Our system works with a type of standard feature detector, wavelets,
which dominates much of the early visual cortical areae (Jones & Palmer 1987). The
sensitivity of our system to changes in the stimulus, as for instance head rotation and
change in facial expression, is strongly correlated with that of human subjects (Kalocsai
et al. 1994; this study involved a version of our algorithmic system). And, above all, our
model is superior in its object discrimination ability to all biologically motivated models
known to us, and is at least one of the top competitors among technical systems for face
recognition (in a blind test of face recognition against large galleries, performed by the
American Army Research Lab, our algorithmic system came out as one of the top

Table 18.12
Recognition results against a
gallery of 20, 50, and 111
neutral frontal views.
Recognition time (with two
iterations of the differential
equations per time unit) is the
time required until all but one
models are ruled out by the
winner-take-all mechanism.

F A C E R E C O G N I T I O N B Y D Y N A M I C L I N K M A T C H I N G 3 7 1

competitors). Moreover, our system goes beyond mere recognition of objects, providing
the basis for a detailed back-labeling of the image with interpretations in terms of explicit
object or pattern models which are linked to the image by dynamic links and temporal
feature binding.

In spite of this success, there are still some difficulties and discrepancies. One con-
cern is processing time. The reorganization of the connectivity matrix between the image
domain and the model domain requires that the two domains be covered at least twice by
the running blob. The speed of this blob is limited by the time taken by signal transmis-
sion between the domains and by the temporal resolution with which signal coincidence
can be evaluated by dendritic membranes and rapidly plastic synapses. Assuming a char-
acteristic time of a few milliseconds we estimate that our model would need at least one
second to create a synaptic mapping. This is much too long compared to the adult’s speed
of pattern recognition (Subramaniam et al. 1995). We therefore see our system as a model
for processes that require the establishment of mappings between the image and object
models. This is often the case whenever the absolute or relative placement of parts within
a figure is important, and is very likely to be also required when a model for a new object
is to be laid down in memory. The actual inspection times required by subjects in such
cases are much longer than those required for mere object recognition and can easily be
accommodated by our model. We believe that mere recognition can be speeded up by
short-cuts. Potential for this we see in two directions, a reduction of the ambiguity of
spatial feature arrangement with the help of trained combination-coding features, and a
more efficient way (than our running activity blobs) of installing topographically struc-
tured synaptic mappings between the image domain and the model domain. A possible
scheme for this would be the switching of whole arrays of synapses with the help of spe-
cialized control neurons and presynaptic terminals (Anderson & van Essen 1987).

Another as yet weak point of our model is the internal organization of the model
domain and the still semi-manual mode in which models are laid down. It is unrealistic to
assume completely disjoint models, for several reasons, not the least of which economy
in terms of numbers of neurons required. Also, it is unrealistic to see the recognition
process as a competition between the dozens of thousands of objects that an adult human
may be able to distinguish. Rather, pattern similarities within large object classes should
be exploited to give the recognition process hierarchical structure and to support gener-
alization to new objects with familiar traits. The existence of such hierarchies is well
supported by neurological observations (Damasio & Damasio 1992) and is implicit in
psychophysical results (Biederman 1987) showing that many objects are recognized as
simple arrays of shape primitives which are universally applicable. In a system closely
related to the one presented here (von der Malsburg & Reiser 1995), a model domain was
dynamically constructed as one comprehensive fusion graph containing as sub-graphs
models for different objects, and in fact for different aspects of these objects, with differ-
ent models sharing many nodes. Further research is required in this direction.

Another limitation of the present system is its inability to deal with alterations of size
and orientation of the object image beyond a few percent and beyond a few degrees. For
this it would be necessary that the connections between the image domain and the model
domain linked also features of different size and orientation. Size and orientation invari-
ance has been successfully demonstrated in the context of the algorithmic system
(Buhmann et al. 1990; Lades 1995). Direct implementation in the present model would,
however, make the DLM process slower and much more difficult or perhaps even impos-
sible, because the system would have to start with a connectivity matrix with many more
non-zero entries. The problem may have to be solved with the help of a two-step DLM
process, the first step installing an expectation as to size and orientation of the image,
specializing the dynamic links accordingly, the second step organizing the match as

3 7 2 C H A P T E R 1 8

described here. In many cases, estimates of size and orientation of an object’s image can
be derived from available cues, one of which being the object’s outline as found by a
segmentation mechanism.

In the set of simulations presented here we simplified the recognition problem by
presenting the objects to be recognized against a homogeneous background. More diffi-
cult scenes may require separate segmentation mechanisms which first identify an image
region or regions as candidates for recognition (although a version of the algorithmic
system was able to recognize known objects in spite of a dense background of other
objects and of partial occlusion (Wiskott & von der Malsburg 1993)). Our model is
ideally suited to implement image segmentation mechanisms based on temporal feature
binding, as proposed in (von der Malsburg 1981), implemented in (von der Malsburg &
Buhmann 1992; Vorbrüggen 1995) and supported by experimental data as reviewed in
(König & Engel 1995). According to that idea, all neurons activated by a given object
synchronize their temporally structured signals to express the fact that they are part of
one segment. This coherent signal, suitably identified with our attention variable ai

p,
equation (5), could focus the recognition process on segments.

In summary, we feel that in spite of some remaining difficulties and discrepancies
we may have, with our model, a foot in the door to understanding important functional
aspects of the human visual system. The environment provided by NSL has proved to be
of great help in the development of our system, and we are extremely pleased that with
NSL’s help we can share our system with students and research groups, both for didactic
purposes and as a cutting-edge research tool.

Notes

1. This work has been funded by grants from the German Federal Ministry of Science
and Technology (413-5839-01 IN 101 B/9), from AFOSR (F49620-93-1-0109), from
the EU (ERBCHRX-CT-930097), and a grant by the Human Frontier Science
Program.

2. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model
implementation written by L. Wiskott and he contributed Section 18.3 to this
chapter.

3. The DLM model was implemented and tested under NSLC.

Appendix I – NSLM Methods

We describe in this appendix a number of library methods in addition to those already
introduced in chapter 6.

A.I.1 System Methods
NSLM provides a number of system methods for getting and setting the NSL system
variables and for manipulating the simulation. These methods are accessed using the
“system” prefix as follows:

system.methodCall();

We mention the most important system methods in the following sections. Note that
chapter 7 commands that begin with the “nsl” prefix all have an equivalent method call in
NSLM.

In general, setting parameter values at the system level may be overridden by each
module, i.e. system method calls to set parameter value are used as a default, such as set-
ting the value for a “delta” for the complete system while each module may assign its
own particular value.

Data Access
The nslSetAccess method sets the default NSL access of the entire system:

system.nslSetAccess(’W’);

This is an important statement since all model variables get their default access from
the system, similarly all module variables get their default access from either the model
or their corresponding parent modules and so on. The nslSetAccess method takes a single
character as argument, either ‘W’, ‘R’ or ‘N’ for write/read, read, and no-access, respec-
tively. The system default setting is ‘W’. (We hope to change the default access to ‘R’ in
a future version.) The nslGetAccess method will retrieve the default access value for the
system,

char cur_access = system.nslGetAccess();

Simulation Parameters
Simulation parameters are usually set from a model’s initSys method. It is important to
remember that simulation time starts at 0, cycles start at 1, and epochs start at 1. Code
segment A.I.1. shows the most important simulation parameters that may be set at the
system level,

system.setTrainEndTime(dval);

system.setRunEndTime(dval);

system.setTrainDelta(dval);

system.setRunDelta(dval);

system.setNumTrainEpochs(ival);

system.setNumRunEpochs(ival);

Code Segment A.I.1: Methods for setting simulation parameter values for the entire
system where dval corresponds to a double value and ival corresponds to an int (integer)
value.

3 7 4 A P P E N D I X I

Getting the simulation parameters with a double or int type var as shown in the fol-
lowing methods in code segment A.I.2.

dval = system.getTrainEndTime();

dval = system.getRunEndTime();

dval = system.getTrainDelta();

dval = system.getRunDelta();

ival = system.getNumRunEpochs();

ival = system.getNumTrainEpochs();

ival = system.getCurrentTime();

ival = system.getCurrentCycle();

ival = system.getCurrentEpoch();

ival = system.getTrainEpoch();

ival = system.getRunEpoch();

Code Segment A.I.2: Methods for getting simulation parameter values from the
entire system where dval corresponds to a double value and ival corresponds to an int
(integer) value.

Incrementing, Breaking and Continuing
This section describes methods for incrementing, breaking and continuing with system
defined loops. Note that unless otherwise specified, the method can be applied in either
the training phase or the run phase. Methods that increment counters are:

system.incCycle();

system.incRunEpoch();

system.incTrainEpoch();

system.incTime();

Methods that break the simulation between modules, cycles, or epochs are:

system.breakModules();

system.breakCycles();

system.breakEpochs();

Methods continuing with the next module, cycle, or epoch after a break are:

system.continueModule();

system.continueCycle();

system.continueEpoch();

Model Variables
NSL lets the user set and get a number of parameters from existing model variables.

To set the name of an object instance we use:

obj.nslSetName(charString);

To get the NSL instance name of an module or class object we use:

charString name=obj.nslGetName();

The user may obtain or assign values to and from arbitrary variables in a model using
the nslSetValue and nslGetValue methods, respectively. Note that all value setting and
getting using these functions requires a corresponding data access similar to NSLS script
data accessing. To set the value of a variable var1 to a variable var2 the user may use the

N S L M M E T H O D S 3 7 5

following functions (cast represents a NSLM object type where variables, var1 and var2,
are object types as well),

var1=(cast)system.nslGetValue(“var1”);

system.nslSetValue(“var2”, var1);

Note that in the above methods the user must know each variable’s absolute name
starting at the tree hierarchy root, i.e. the model name. For example, if we wanted to get
the value of a variable named w1 located in module m1 of model modelA and assign it to
a variable foo, we would type,

NslFloat1 foo(10);

foo=(NslFloat1)system.nslGetValue(“modelA.m1.w1”);

or

NslFloat1 foo(10);

system.nslSetValue(“modelA.m1.w1”, foo);

In some cases the user may want to convert some of the above object type values
into primitive types. This is accomplished using the nslGetValue method applied directly
to an object type. This applies only to scalar object types using an appropriate cast. For
example for a scalar NslFloat0 w0 object we could do the following,

NslFloat0 doo;

doo=(NslFloat0)system.nslGetValue(“modelA.m1.w0”);

double d;

d=(double)doo.nslGetValue();

Note that simple assignment wouldn’t work since a primitive type cannot be directly
assigned from an object type unless such method is present.

There are a number of methods that obtain values from objects of higher dimensions.
The getDimensions method returns an integer specifying whether the object has 0, 1, 2,
3, or 4 dimensions.

int dim=obj.getDimensions();

The getSizes method obtains the different dimensions of an object where obj1 is of
dimension 1, obj2 is of dimension 2 and so on:

obj1.getSizes(int);

obj2.getSizes(int,int);

obj3.getSizes(int,int,int);

obj4.getSizes(int,int,int,int);

We can also get the size of each dimension individually.

int size1=obj1.getSize1();

int size2=obj2.getSize2();

int size3=obj3.getSize3();

int size4=obj4.getSize4();

One more note about the different getSizes methods is that they can be used to con-
trol the looping for say initialization of a variable. For example, to assign a value to each
element in the two-dimensional NSL object we could use the for control statement as
follows,

3 7 6 A P P E N D I X I

NslFloat2 y(2,3);

int i,j;

for (i=0; i<y.getSize1(); i++)

 for (j=0; j<y.getSize2(); j++)

y[i][j] = i+j;

where the functions y.getSize1() and y.getSize2() get the rows and columns sizes, respec-
tively.

We include as well the following methods returning different sectors of multidimen-
sional objects. For example, to get the jth column (1 dimensional object) of a 2 dimen-
sional object we would do:

obj2.nslGetColumn(j);

(Recall that a row is simply obtained using squared brackets, e.g. obj[i].) To obtain a
2 dimensional sector from a 2 dimensional object we would do

obj2.nslGetSector(start1, start2, end1, end2);

Similarly, for 3 dimensional objects we would do:

obj3.nslGetSector(start1, start2, start3, end1, end2, end3);

For a 4 dimensional object we would do:

Obj4.nslGetSector(start1, start2, start3, start4,

 end1, end2, end3, end4);

Dynamic Memory Allocation
As introduced in chapter 6 NSL lets the user set the size of an object in a dynamic fash-
ion. This applies to other than scalar types having dimensions higher than 1. The user
first instantiates the variable as follows without specifying its actual size:

VisibilitySpec ObjectType obj();

Then a call to the dynamic memory allocation routine is done where sizeList depends
on the particular ObjectType chosen:

obj.nslMemAlloc(sizeList);

For example, in chapter 18, the “Face Recognition by Dynamic Link Architecture”
model defines almost all the variables in such a way as NormFactor:

private NslFloat2 normFactor();

Since the dimensions of the variable type is 2 then two arguments are passed to the
memory allocation routine:

normFactor.nslMemAlloc(i1max,j1max);

Printing
Printing data in NSL takes the form of nslPrint and nslPrintln (print on a new line) for
output of any string or variable. Note that we do not preface them with “system”. For
example, to print the value of a variable we would do (note the use of the “+” string con-
catenation operator),

N S L M M E T H O D S 3 7 7

nslPrint(“x=“+ x);

The above represents an implicit conversion from any variable type into a string
equivalent to the explicit form:

nslPrint(“x=“+ x.toString());

Additionally, to print the name of an object we type:

nslPrint(“x=“+ x.getName());

Since every class should have a “toString” method, we provide one for the “sys-
tem”. The system toString method returns the current model name if it is set and an error
string if it is not set:

nslPrintln(system.toString());

Another useful method is nslPrintAllVariables. This method prints out the name
and value of all variables in the system; however, this method is very time consuming
and we recommend using it sparingly.

system.nslPrintAllVariables();

Also the nslPrintStatistics is very useful, printing the current model name, the cur-
rent phase (initialization, train, run, or end), the current epoch, the current time and the
current cycle.

system.nslPrintStatistics();

File Manipulation
NSL supports reading and writing into external files.1 NSLM defines a NslFile object
class for doing the corresponding input and output manipulations. For example, to access
a file named “file.dat” (suffix is not relevant), the user must first define an object holding
the reference to the file as follows,

NslFile file(“file.dat”);

To open a file we use the following function specifying the type of interaction we
want to use: ‘R’ for read only, ‘A’ (all) for both read and write or ‘W’ for write only. For
example, to opening “file.dat” for both read and write,

file.open(‘A’);

To close the file we simply do,

file.close();

Also since the text files we use are buffered, we provide the flush command to
immediately flush the buffer:

file.flush();

To write string values into the file one line at a time, we use the method puts just as
in the NSL script language that is based on TCL. Note that the puts method write one
line at a time, and will convert numerical objects to strings of characters:

file.puts(obj);

3 7 8 A P P E N D I X I

To read a value into a charString object named obj, we would use the method gets
which gets one line of text and puts the whole line into obj:

file.gets(obj);

To write string values into the file one lexeme at a time, we use the method write.
Note values are separated by white-space (space, tab, carriage return, linefeed). The
method write will also convert numerical objects to strings of characters:

file.write(obj);

To write a value into the file with a new line at the end,

file.writeln(obj);

To read a value into a charString object named obj, we would use the method read ,
which gets one lexeme of text and puts the whole lexeme into obj:

file.read(obj);

In addition, what we have defined as white-space, may not be what the user desires;
thus we provide two more methods that allow the user to define what white-space is,
where char1 specifies one character to put between lexemes and array10 specifies a
native array of 10 characters defining white-space

file.write(obj,char1);

file.read(obj,array10);

For example, the Backpropagation model of chapter three uses the readFile method
described in the code segment A.1.3 to read training data from a file.

public int readFile(CharString fname,NslInt1 nPats,

NslFloat2 pInput, NslFloat2 pOutput, int iSize, int oSize)

{

 int pat=0;

 int i,j =0;

 status=-1;

 NslFile file(fname);

 if (file.open(‘R’) <0) {

 nslPrintln(“Bad File Name: “+fname);

 return(status);

 } else {

 file.gets(nPats);

 for (pat = 0; pat < nPats; pat++) {

 for (i = 0; i < iSize; i++) {

 file.read(pInput[pat][i]);

 }

 for (j = 0; j < oSize; j++) {

 file.read(pOutput[pat][j]);

 }

 file.close();

 }

}

Code Segment A.1.3
Example of the readFile method
within the Backpropagation
mode.

N S L M M E T H O D S 3 7 9

Display Step
The following display and protocol methods are provided for manipulation of the dis-
plays and creation and selection of the protocols. The value of a variable t representing
the display delta or update time can be set or get as follows,

system.setDisplayDelta(t);

double var = system.getDisplayDelta();

A.I.2 Mathematical Methods
Numerical methods/functions supported by NSLM can be applied to any numerical
object of any dimension (NslInt, NslFloat, NslDouble, dimensions 0,1,2,3,4 unless
otherwise specified) or primitive type (int, float, double). They consist of arithmetic,
threshold, differential approximation methods as well as some additional miscellaneous
functions. Some of these functions have a corresponding operator, see section 6.2. There
are two general formats for methods, the first one where the resultant is passed as return
value and the second where the resultant is passed as the first parameter to the method as
shown next,

z = method(x,y);

method(z,x,y);

While the first style is more elegant the second one is more efficient since a return
value requires additional memory allocation, a relatively slow operation that should be
avoided if possible. In particular, this becomes critical when dealing with higher level
object dimensions.

Basic Arithmetic Methods and Operators
NSLM provides a number of numerical functions taking either a single or two arguments
and returning a value.

� The arithmetic functions shown in table A.I.1 are defined for x, y and z of similar
NSL type and dimensions

Operator Expression Method Expression Description

z = x + y z = nslAdd(x,y) element by element addition

z = x - y z = nslSub(x,y) element by element subtraction

z = x ^ y z = nslElemMult(x,y) element by element multiplication

z = x / y z = nslElemDiv(x,y) element by element division

If both operands are of the same dimension, the operation will apply to correspond-
ing object elements. For example, in the case of 2D arrays if x and y are 4-by-4 matrices,
the expression “z=x+y” will add elements x[i][j] with y[i][j] and store the resulting
x[i][j]+y[i][j] into z[i][j], for 0�i,j<4. Additionally, if one argument of the operation is an
array and the other one is a scalar, the operation will apply to every object element with
the scalar number. For example, if x is a scalar, y is 4-by-4 matrix, the expression
“z=x+y” will add element y[i][j] with x and store the resulting x+y[i][j] into z[i][j], for
0�i,j<4.

� The “*” product operator works for scalars, a vector and a scalar, a scalar and a vec-
tor, a vector and a vector, a vector and a two dimensional matrix, and two, two
dimensional matrices. In the case where a scalar is involved, the “*” operator will
call nslElemMult. In the case of two vectors, then the “*” operator will call

Table A.I.1
Basic arithmetic operators
and methods.

3 8 0 A P P E N D I X I

nslElemMult as well. In the case where two matrices are involved, then the “*”
operator will call nslProduct and return a matrix.

In table A.I.2 nslProduct assumes x is a matrix and y is matrix having the same
number of rows as the number of columns in x. The size and dimension of resultant, z, is
constructed from the number of rows in x and the number of columns in y.

Operator Expression Method Expression Description

z = x * y z = nslProduct(x,y) vector/matrix product

In the case where x is a matrix or a vector and y is a vector, we should use the
nslTrans vector transpose method (see following sections) on the vector to make it a
column vector.

The convolutions operators and methods shown in table A.I.3 are defined for both
vectors and matrices of two dimensions. The type and dimension of z corresponds to that
of y.

Operator Expression Method Expression Description

z = x @ y z = nslConv(x,y) zero-edge convolution

z = nslConvW(x,y) wrap-edge convolution

z = nslConvC(x,y) copy-edge convolution

For example, for the zero-edge effect and two matrices x, and y we have:

�
�

�
�

�
=

111

121

111

y

�
�
�

�

��
�

�

�

=

08421

88421

44421

22221

11111

x

will result in “z = x@y”as follows:

� First a larger matrix is created with 0 values for the edges (the size of the new matrix
depends on both the size of the mask and the convolved matrix; for example for a
(2d+1)x(2d+1) mask, the border of zeroes must be d-deep):

�
�
�
�

�

�
�
�
�

�

�

=

0000000

0084210

0884210

0444210

0222210

0111110

0000000

xc

� Second we overlap y on the left top corner of xc with y [0,0] on top of xc[0,0] so the
first convolution will be given by:

z[0,0] = (0*1 + 0*1 + 0*1) + (0*1 + 1*2 + 1*1) +

 (0*1 + 1*1 + 2*1) = 6

and so on for the other elements. For the wrap around edge effect and copy edge effect
please see the website.

Table A.I.2�

Multiplication method.

Table A.I.3
Multiplication method.

N S L M M E T H O D S 3 8 1

Additional Arithmetic Methods
NSL offers a number of additional arithmetic functions. We describe the most important
of these in table A.I.4.

Method Expression Description

z=nslAbs(x); absolute value

z=nslDistance(x,y); calculates the distance to a point x,y.

z=nslGaussian(x,mean,stddev); guassian distribution for x with defaults of mean 0, and standard deviation 1.

z=nslRandom(x,lower, upper); Calculates a random value for every element of var9 between the bounds of
lower and upper. The defaults for lower and upper are 0 and 1.

z=nslRint(x); rounds every element of x to an integer value but returns the values in the same
native type of array as x. The variable z must be of the same native primitive
type as the value stored by x (int, float, double).

z=nslExp(x); calculates e to the power x.

z=nslLog(x); calculates the log of x.

z=nslPow(x,n); calculates x to the power of n. The variable n must be of the same native
primitive type as the value stored by x (int, float, double).

z= nslSqrt(x); calculates the square root of x.

For example, the nslDistance function calculates the distance to a point x,y using the
following formula:

z=sqrt(pow(x,2)+pow(y,2));

In table A.I.5 we include different forms of the maximum and minimum methods.

Method Expression Description

z=nslMaxValue(x); finds the element with the maximum value throughout all of x and returns it in
z. Variable z must be of the same native primitive type as the values of x.

z=nslMinValue(x); finds the element with the minimum value throughout all of x and returns it in
z. Variable z must be of the same native primitive type as the values of x.

nslMaxElem(nj,x); finds the maximum value in a vector x returning the index of the element

nslMinElem(nj,x); finds the minimum value in a vector x returning the index of the element

nslMaxElem(ni,nj,x); finds the maximum value in a matrix x returning the index of the element

nslMinElem(ni,nj,x); finds the minimum value in a matrix x returning the index of the element

nslMaxElem(,nh,ni,nj,x); finds the maximum value in a 3d array x returning the index of the element

nslMinElem(nh,ni,nj,x); finds the minimum value in a 3d array x returning the index of the element

nslMaxElem(ng,nh,ni,nj,x); finds the maximum value in a 4d array x returning the index of the element

nslMinElem(ng,nh,ni,nj,x); finds the minimum value in a 4d array x returning the index of the element

z=nslMaxMerge(x,y); Calculates the maximum between the two elements of x and y returning it in z.

z=nslMinMerge(x,y); Calculates the minimum between the two elements of x and y returning it in z.

Table A.I.4�

Abs,Distance,Gaussian,Rand
om,Rint,Exp,Log,Pow, and
Sqrt methods.

Table A.I.5�

Maximum and minimum methods.

3 8 2 A P P E N D I X I

Since we have up to four dimensions, the nslMaxElem method is overloaded and
can have 2, 3, 4, or 5 parameters. For example, in the case where x is a four-dimensional
object we use the return variables ng, nh, ni, and nj which are indexes of type NslInt0
and are returned as well as the element they point to which is z. z must be of the same
native primitive type as the values of x. We perform a similar task for function
nslMinElem.

In table A.I.6 we include different forms of the sum methods.

Method Expression Description

z= nslSum(x); sums all of the values in x and returns it in z. Variable z must be of the same
native primitive type as the values of x.

z= nslSumColumns(x); sums the columns of matrix x and returns a native vector of the same type as
the values of x and returns it in z. Variable z must be of the same native primi-
tive type as the values of x.

z= nslSumRows(x); sums the rows of matrix x and returns a native vector of the same type as the
values of x and returns it in z. Variable z must be of the same native primitive
type as the values of x.

In table A.I.7 we include different forms of the fill method.

Method Expression Description

z = nslFillColumns(x,y); the method takes a y vector and fills every column of matrix x with it. The
length of y and the number of rows in x must match. Also the values of x and
y should be of similar types, and z should all be of the same type as x.

z = nslFillRows(x,y); the method takes a y vector and fills every row of matrix x with it. The length
of y and the number of columns in x must match. Also the values of x and y
should be of similar types, and z should all be of the same type as x.

Table A.I.6�

Sum methods.

Table A.I.7�

Fill methods.

N S L M M E T H O D S 3 8 3

In table A.I.8 we include different forms of the set and get method.

Method Expression Description

z= nslGetColumn(x,n); the method takes a matrix x and returns a vector z made of the n-th column
of x The length of z and the number of rows in x must match. Also the val-
ues of x and z should be of similar types.

z= nslGetRow(x,n); the method takes a matrix x and returns a vector z made of the n-th row of x.
The length of z and the number of columns in x must match. Also the values
of x and z should be of similar types.

z= nslGetSector(x,start1,start2,
end1,end2);

returns the specified sector of matrix x. Variables start1 through end2 should
be int or NslInt0.

z= nslGetSector(x,start1,start2,
start3, end1,end2,end3);

returns the specified sector of 3d array x. Variables start1 through end3
should be int or NslInt0.

z= nslGetSector(x,start1,start2,
start3,start4,end1,end2,
end3,end4);

returns the specified sector of 4d array x. Variables start1 through end4
should be int or NslInt0.

nslSetColumn(z,x,n); set a vector z with a vector made of the n-th column of x The length of z and
the number of rows in x must match. Also the values of x and z should be of
similar types.

nslSetRow(z,x,n); set a vector z with a vector made of the n-th row of x. The length of z and
the number of columns in x must match. Also the values of x and z should
be of similar types.

nslSetSector(z,x,start1,start2
,end1,end2);

sets the specified sector of z with a matrix x. Variables start1 through end4
should be int or NslInt0.

nslSetSector(z,x,start1,start2,
start3,end1,end2, end3);

sets the specified sector of z with a 3d array x. Variables start1 through end4
should be int or NslInt0.

nslSetSector(z,x,start1,start2,
start3,start4,end1,end2,
end3,end4);

sets the specified sector of z with a 4d array x. Variables start1 through end4
should be int or NslInt0.

In table A.I.9 we include matrix transformation methods.

Method Expression Description

z= nslTrans(x); the method transposes a vector or matrix x into z.

z= nslInverse(x); the method computes the inverse of a matrix x into z.

Table A.I.8�

Set and Get methods.

Table A.I.9�

Fill methods.

3 8 4 A P P E N D I X I

Trigonometric Methods
In table A.I.10 we include a number of trigonometry methods.

Method Expression Description

z= nslCos (x); compute cosine of the values in x and returns it in z.

z= nslSin (x); compute sine of the values in x and returns it in z.

z= nslTan (x); compute tangent of the values in x and returns it in z.

z= nslArcCos (x); compute arc cosine of the values in x and returns it in z.

z= nslArcSin (x); compute arc sine of the values in x and returns it in z.

z= nslArcTan (x); compute arc tangent of the values in x and returns it in z.

Threshold Methods
NSLM provides with a number of threshold functions: ramp, step, saturation, bound, and
sigmoid, as shown in figure A.I.1. All these functions are considered pointwise opera-
tions similar to addition, being applied to corresponding elements in the object independ-
ent of dimension.

mf

ky2

ky1

kx1 mp

� ramp
mf

ky2

ky1

kx1 mp

� step

mf

ky2

ky1

kx1 kx2 kx2mp

� saturation
mf

ky2

ky1

kx1 mp

� sigmoid

The functions are defined as follows:

� Step function is defined for x and y of similar NSL type and dimensions

y = nslStep(x,k
x1
,k

y1
,k

y2
)

Table A.I.10�

Trigonometry methods.

Figure A.1.2�

Common Threshold
Functions.

N S L M M E T H O D S 3 8 5

corresponding to the pointwise application of

�
�
�

<
�

=
11

12

xy

xy

kxk

kxk
y

with defaults kx1 = 0, ky1 = 0, and ky2 = 1.

� Ramp function is defined for x and y of similar NSL type and dimensions

y = nslRamp(x,k
x1
,k

y1
,k

y2
)

corresponding to the pointwise application of

�
�
�

<
�+�

=
11

121

xy

xyx

kxk

kxkkx
y

with defaults kx1 = 0, ky1 = 0, and ky2 = 0.

� Saturation function is defined for x and y of similar NSL type and dimensions

y = nslSaturation(x,k
x1
,k

x2
,k

y1
,k

y2
)

corresponding to the pointwise application of

()()
()

�
�
�

��
�

�

<

<�+
�

��
�

=

11

211
12

112

22

xy

xxy
xx

xyy

xy

kxk

kxkk
kk

kxkk
kxk

y

with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1.

� Bound function is defined for x and y of similar NSL type and dimensions

y = nslBound(x,k
x1
,k

x2
,k

y1
,k

y2
)

corresponding to the pointwise application of

�
�

�
�

�

<
<�

�
=

11

21

22

xy

xx

xy

kxk

kxkx

kxk

y

with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1.

� Sigmoid function is defined for x and y of similar NSL type and dimensions

y = nslSigmoid(x,slope,offeset)

corresponding to the pointwise application of

()
�
�
�

��
�

�

+
=

��))((exp1

1
offsetxslope

y

with defaults x= 1, slope = 1, and offset=0, and

3 8 6 A P P E N D I X I

y = nslSigmoid(x,k
x1
,k

x2
,k

y1
,k

y2,inverseErrorConst);

corresponding to the pointwise application of the above function but with the following
substitutions:

offset=(kx1+kx2)/2;

slope=(inverseErrorConst /(kx2-kx1));

result=nslSigmoid(x,slope,offset) * (ky2-ky1) + ky1;

with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1, error_const=10.

Notes

1. In the current version only ascii (text) files are supported. The NSLC system supports
extensions to binary files as exemplified in chapter 18 with the DLM model.

Appendix II – NSLJ Extensions

This section describes the features of the NSLJ simulation environment that are not pre-
sent in the standard system. We expect that these extensions will be incorporated into
NSL3_0 in the future.

A.II.1 Additional NslModule Types
The NslOutModules and NslInModules are import within the NSLJ system since they
allow for the special processing of display data and are a core part of the user interface. It
is important to note that NslInModules and NslOutModules are scheduled by the sched-
uler while NslInFrames and NslOutFrames are not. NslInFrames and NslOutFrames are
just one variable within a NslInModule or a NslOutModule. The NslOutModule is used
to control the output going to a NslOutFrame. Every NslOutModule has one and only one
NslOutFrame. (The frame’s title is generated from the NslOutModule’s instance name.)
Every NslOutModule has one and only one NslOutFrame. (The frame’s title is generated
from the NslOutModule’s.) Each NslOutModule must specify to which protocols it
belongs and all NslOutModule are assumed to belong to the “manual” protocol unless
specifically removed. If a NslOutModule is enabled by selection of a protocol, it is exe-
cuted by the scheduler at the frame’s specified DisplayDelta times. The same holds true
for NslInModules as well: the module has one and only one NslInFrame, each NslInMod-
ule must specify to which protocols it belongs, and it executes at the frame’s specified
DisplayDelta time.

To define a module of type NslOutModule, type the following:

nslOutModule Foo (int size) {

 public void initModule() {

nslAddProtocolRecursiveUp(“Jumping”);

nslAddAreaCanvas(outpu,-1,1);

nslAddTemporalCanvas(energy,-1-,10);

 }

}

In the code above, we have declared the nslOutModule “Foo” and have subscribed to
the protocol “Jumping”. In addtion, we have also declared that two plots shall appear on
this NslOutModule’s NslOutFrame—namely one Area graph and one temporal graph. All
standard output plots can be added in this way.

To define a module of type NslInModule, type the following:

nslInModule Moo (int size) {

 public void initModule() {

 nslAddProtocolRecursiveUp(“Learn”);

nslAddPanel(“controlBar”);

nslAddButton(“clear”,”Clear image”,”controlBar”);

 //stuff

 }

public void clearPushed() {//the name “clear” came from

nslAddButton

 //stuff

 }

}

3 8 8 A P P E N D I X I I

In the NslInModule we have added a few of the NSLJ widget types. For a complete
list of these, please see our website at http://www-hbp.usc.edu/Projects/nsl.htm. Here are
the ones we used above.

NslAddPanel is used to add a blank panel to the canvas

public void nslAddPanel(charString name){}

where name is the variable name of the panel. The size of the panel will grow with each
new button added to the panel.

NslAddButton is used to add a button to the panel.

public void nslAddButton(charString name, charString label,

charString panel name){}

where name is the name of the button. A corresponding method must be written in the
user’s code with the name “buttonnamePushed” (“buttonname” concatenated with
“Pushed”.). The label name is the name that will appear on the button, and the panel
name is the name of the panel in which to place the button.

nslAddInputImageCanvas looks like that shown in figure 5.18. NslInputImage-
Canvas is placed directly on NslInFrames. Clicking the box of the element desired within
the grid will cause that box to become shaded and take on the ymax value. All boxes not
selected will have the ymin value.

public void nslAddInputImageCanvas(NslNumeric variable, int

ymin, int ymax){}

where the NslNumeric can have one or two dimensions; ymin is the lower bound on y;
and ymax is the upper bound on y.

NslAddNumericEditorCanvas allows the user to see the values of a zero, one, or
two-dimensional array displayed in a grid like fashion.

public void nslAddNumericEditorCanvas(NslNumeric variable, int

ymin, int ymax){}

where the NslNumeric can have zero, one or two dimensions; ymin is the lower bound on
y, and ymax is the upper bound on y. For an example of the NumericEditor widget please
see figure 5.17. In that example we add three NumericEditor Widgets to one frame. The
NumericEditor widget can be used both as an input widget and an output widget. If used
as an output widget, the values are updated every Display Delta increment.

A.II.2 NSLM Extensions

Additional System Methods
Two convenient methods in neural simulation are “nslGetValue” and “nslSetValue.”
These methods can act as probes (system.nslGetValue, system.nslSetValue-(foo,
“modelA.m1.w1”) and as injectors (system.nslSetValue(“modelA.m1.w1”, foo)). We
can use them in a NslModule or a NslClass without having to put the “system” in front
of the method name. Thus we would just type:

foo=(NslFloat1)nslGetValue(“modela.m1.w1”);

The method nslGetModelRef is also convenient for manipulating the model instance
by returning a reference to a variable of type NslModel. The syntax is:

var1=system.nslGetModelRef();

N S L J E X T E N S I O N S 3 8 9

The nslGetRefOfModuleOrClass method is similar to the getModelRef method. It
returns a reference to a NslHierarchy class object, thus you will need to cast it to the
appropriate type:

var2=(NslModule)system.nslGetRefOfModuleOrClass

(“modelA.m1”,’R’);

var3=(NslClass)system.nslGetRefOfModuleOrClass

(“modelA.c1”,’R’);

Note that “modelA.m1” is m1’s long-name or real-name. long-names or real-names
start with the model instance names and each child module or class instance is appended
from there.

Differential Approximation
To add a new approximation method we type:

system.addApproximationMethod(NslDiff);

To set or get the system approximation method we use:

system.setApproximationMethod(NslDiff);

NslDiff diffObj;

diffObj=system.getApproximationMethod();

Currently only NslDiffEuler and NslDiffRungeKutta2 are available as parameters
to the setApproximationMethod. The default approximation method is Euler.

To set or get the current approximation delta we type:

system.setApproximationDelta(double);

double var=system.getApproximationDelta();

The default delta is 0.1.
To set or get the current approximation time constant we type:

system.setApproximationTimeConstant (double);

double var=system.getApproximationTimeConstant();

The default time constant is 1.0.

DisplayDelta
To set or get t5 as a double representing the display delta or update time. The current
default display delta is set to every cycle.

system.setDisplayDelta(t5););

double var = system.getDisplayDelta();

Additional NslBase Methods
The NslBase class is the most primitive class in the NSL class hierarchy tree. Every NSL
object inherits this class (except for system) and thus can use these methods. Since these
classes could be subclassed, we prefix their names with “nsl” so that the model builder
does not override our methods accidentally.

To set the parent of an object instance we can use:

obj.nslSetParent(NslHierarchy parent);

3 9 0 A P P E N D I X I I

To get the parent objects reference we can type:

NslHierarchy objParent;

 objParent = objChild.nslGetParent();

To get the parent objects reference of type NslModule we can type:

NslModule objParent;

 objParent = objChild.nslGetParentModule();

To get the parent objects reference of type NslClass we can type:

NslClass objParent;

 objParent = objChild.nslGetParentClass();

Additional NslData Methods
The NslData class provides the backbone for the classes NslNumeric, NslString and
NslBoolean. Half of the methods are abstract or virtual meaning that they must be over-
ridden in all of the subclasses. In all of the following examples we assume that objX is of
some NslData type, such as NslBoolean0, NslString0, NslDouble0, NslDinDouble0, or
NslDoutDouble0.

The first method we will discuss is duplicateData. This method is abstract/virtual,
and it copies or clones the value of obj1 and places it in the parameter.

NslFloat2 obj1(4,4);

NslFloat2 obj2(4,4);

obj1.duplicateData(obj2);

The duplicateThis method is abstract/virtual, and it returns a copy of itself.

obj2=(NslFloat2)obj1.duplicateThis();

where obj2 is of type and will probably need to be cast to the same type that obj1 is.
The next method is also abstract and called setReference. This method sets the ref-

erence pointer of this object to the data value of the parameter. (It is similar to two point-
ers pointing to a same object in C/C++.) Whenever the data value of one side is changed,
the other side is changed as well. It is used only in NslPorts.

obj3.setReference(obj1);

The isDataSet method is also used within the NSL system. This method checks
whether the object value is null or not. (This method is also abstract/virtual.) A NslData’s
value can be null if the NslData object was created without instantiations, and the user
was planning to use nslMemAlloc to allocate the space for the value.

obj4.isDataSet();

The next method is a complement to isDataSet. It is called resetData. It sets the ob-
jects value back to null. (This method is also abstract/virtual.)

obj5.resetData();

The methods which are not abstract/virtual but which can be overridden are:

int sizes[4];

sizes=obj8.getSizes();

N S L J E X T E N S I O N S 3 9 1

The last statement returns the sizes for all dimensions. If obj8 is a scalar, then the
sizes array will contain all zeros. If obj8 is a vector (dimension1), then sizes[0] will con-
tain the length of the vector, etc.

Additional NslNumeric Methods
The numeric methods involve the following classes: NslNumeric (only abstract /virtual),
NslNumericX (mostly abstract/virtual), NslDoubleX, NslFloatX, NslIntX, NslDinDou-
bleX, NslDinFloatX, NslDinIntX, NslDoutDoubleX, NslDoutFloatX, NslDoutIntX
where X represents 0, 1, 2, 3, or 4. The class hierarchy of the NslDinDouble4 class is
shown in figure A.1.1.

Since there are so many NslNumeric associated classes, we will just mention two of
them here: NslNumeric0, and NslDouble2. We feel that this will give most readers an
overview of the methods they are interested in and if the user would like more informa-
tion, he/she can see our website for the full details on each class.

Additional NslNumeric0 Methods
In this section we will not reiterate the methods that were covered in NslBase and
NslData, we will just assume that the abstract methods mentioned in those classes were
implemented correctly in this class or in one of its subclass. In addition to the
abstract/virtual type methods, this class also contains pseudo templates for several meth-
ods that return a different type based on the type of object the method is associated with.
We do this since Java does not let us return different types when a method is declared
abstract. In all of the following we assume obj0 is of some NslNumeric type such as
NslDouble0, NslDinDouble0, or NslDoutDouble0.

The first of these pseudo abstract methods is get, returning a native primitive value
or native primitive array reference.

var1=obj0.get();

The next set of methods are all abstract/virtual, meaning they are all overridden in
one of the subclasses NslDouble0, NslFloat0, or NslInt0.

doubleVar= obj0.getdouble() ;

floatVar = obj0.getfloat() ;

intVar = obj0.getint() ;

NslDouble0 var = obj0.getNslDouble0() ;

NslFloat0 var = obj0.getNslFloat0() ;

NslInt0 var = obj0.getNslInt0() ;

In the next statement value is a either double, float, int, or NslNumeric0; notice the
set method is overloaded

obj0.set(value);

This last method is not abstract/virtual. It is called getSize and is only implemented
in NslNumeric0, NslNumeric1, NslBoolean0, and NslBoolean1.

int someint=obj0.getSize();

where obj0 is either a NslNumeric0, NslNumeric1, NslBoolean0, and NslBoolean1
type.

Figure A.II.1�

Class Hierarchy of the
NslDinDouble4 Class using
UML notation.

3 9 2 A P P E N D I X I I

Additional NslNumeric2 Methods
Note that in this class we do not declare any abstract/virtual methods since this is a leaf
class. However, the methods within the NslDinDouble2 and NslDoutDouble2 classes
can override these methods. And again we will not repeat the methods covered in
NslBase or NslNumeric. In the following examples, obj2 is of type NslDouble2 return-
ing either a reference to the original object’s value in the case where no casting is needed,
and returning a reference to an object of the appropriate type where casting is indicated.

double[][] somedouble2d=obj2.get();

double[] somedouble1d=obj2.get(int);

double somedouble=obj2.get(int,int);

double[][] somedouble2d=obj2.getdouble2();

float[][] somefloat2d=obj2.getfloat2();

int[][] someint2d=obj2.getint2();

double[] somedouble1d=obj2.getdouble1(int);

float[] somefloat1d=obj2.getfloat1(int);

int[] someint1d=obj2.getint1(int);

double somedouble=obj2.getdouble(int,int);

float somefloat=obj2.getfloat(int,int);

int someint=obj2.getint(int,int);

NslDouble2 someNslDouble2(4,4);

NslFloat2 someNslFloat2(4,4);

NslInt2d someNslInt2(4,4);

someNslDouble2=obj2.getNslDouble2();

someNslFloat2=obj2.getNslFloat2();

someNslInt2d=obj2.getNslInt2();

Next we have the set methods. All set methods copy the value passed in before
assigning to the value of the object. The set methods are overloaded so that they can take
a variety of parameters. The first method is:

obj2.set(value);

where value is a native double, float, int array of dimension 2 or NslNumeric2; obj2 is
NslDouble2. The next method is:

obj2.set(int,int,value);

where value is of type double, float, int, or NslNumeric0. This method sets a particular
element within the array. The next method is:

obj2.set(value);

where value is of type double, float, int or NslNumeric0. This method sets all of the
elements of the matrix to the value specified.

Finally, we need to mention the memAlloc method. We use this method when we
want to dynamically allocate the size of a matrix sometime later on in the simulation. A
typical use is to set the dimensions of a variable from a script file or from the NSLS script
window. The Backpropagation model from chapter 3 set the sizes of some of its NSL
objects this way. While a NSL numeric object must be initially specified with an
appropriate dimension type, the user may delay specifying the corresponding dimension
sizes. For example, a two-dimensional object may have its corresponding sizes specified
during object instantiation as follows,

Code Segment A.II.5�

NslDouble2 Methods Using
Get.

N S L J E X T E N S I O N S 3 9 3

NslDouble2 a(size1,size2);

or could be specified in two steps using the memAlloc function as follows

NslDouble2 a();

a.memAlloc(size1,size2);

The above memory allocation expression can take place anywhere in the program.
Just beware that if the object is used before doing the memory allocation call, errors may
result in the program. In addition, NSL port types can only use the memAlloc method
within the callFromConstructorBottom method, or the top of the makeConn method.
This is due to the fact that makeConn wants to make sure the ports are well defined
before it connects them to other modules. Remember the dimensions and the sizes of the
dimensions on the port types must match to make a connection. If the sizes are not know,
then makeConn cannot make a connection.

Additional NslBoolean Methods
The NslBoolean class inherits from NslData and NslBase; thus we will not cover the
methods from those classes again. However, NslBoolean and NslBooleanN have some
methods unique to the boolean class. For this example we will look at the NslBoolean2
class.

In all examples obj2 is of type NslBoolean2. Also the methods that convert from
boolean to native primitive types, convert true to the value 1 or 1.0, and false to 0 or 0.0.

boolean[][] someboolean2d=obj2.get();

boolean[] someboolean1d=obj2.get(int);

boolean someboolean=obj2.get(int,int);

boolean[][] someboolean2d=obj2.getboolean2();

boolean[] someboolean1d=obj2.getboolean1(int);

boolean someboolean=obj2.getboolean(int,int);

NslBoolean2 someNslBoolean2(4,4);

someNslBoolean2=obj2.getNslBoolean2();

Next we have the set methods. All set methods copy the value passed in before
assigning to the value of the object. The set methods are overloaded so that they can take
a variety of parameters where value is a native double, float, int array of dimension 2 or
NslNumeric2; obj2 is NslBoolean2.

obj2.set(value);

In the following statement value is of type double, float, int, NslNumeric0 or
NslBoolean0.

obj2.set(int,int,value);

In the following statement value is of type double[], float[], int[], NslNumeric1, or
NslNumeric1.

obj2.set(int, value);

Finally we have the memAlloc method, and just as in the NslDouble2 case above,
we can dynamically set the sizes of the dimensions of the arrays at run time in any
method. However, NSL port types and their dimensions sizes must be defined before the
first nslConnect statement is made using one of these ports.

3 9 4 A P P E N D I X I I

 NslBoolean2 b();

b.memAlloc(size1,size2);

Additional NslString0 Methods
The NslString or the NslString0 class was covered somewhat in section 6.2. However,
we will describe its unique method in more detail here. Again note, that since NslString
is a subclass of NslData and NslBase we will not cover those methods here.

In all of the following examples, the obj0 is of type NslString0.

charString somestring=obj0.get();

charString somestring= obj0.getstring() ;

NslString0 someNslString0();

someNslString0 = obj0.getNslString0() ;

In the following statement value is either a double, float, int, boolean, charString,
NslNumeric0, NslBoolean0, or NslString0; notice the set method is overloaded

obj0.set(value);

In the following statement obj0 is of type NslString0. getLength is only imple-
mented in NslString0 and it returns the length of the string.

int someint=obj0.getLength();

Additional NslHierarchy Methods
The NSLJ class NslHierarchy is the parent class for NslModule and NslClass. Its original
name was NslThingsWithChildren but we felt the name was too long. Many of the
NslHierarchy methods have already been discussed in the NslSystem methods earlier in
this appendix. We will mention some of them here but will refer you to the NslSystem
section for a more in depth description of these functions. When the set methods are used
in relation to a NslModule or NslClass object, the setting of a value only change the
value of the current module or class and not the entire system. When the get methods are
used in relation to a NslModule or NslClass object, the getting of a value only returns the
default for that module or class, and not the system default.

The methods that are also in NslSystem are:

value=(cast)mod1.nslGetValue(name);

mod1.nslSetValue(target,data);

where target is a charString and data is of type NslData

mod1.nslSetValue(target, num);

where target is of type NslData and num is a charString.

mod1.nslSetAccessRecursive(char1);

where char1 is either ‘R’, ‘W’, or ‘N’.
The NslHierarchy class also contains the following methods (note that all of these

methods begin with “nsl” to avoid accidental overrides by subclasses). The following
gets the long-name or real-name of the module or class,

somestring=mod1.nslGetRealName();

N S L J E X T E N S I O N S 3 9 5

To print the name of the current module/class and the name of its parent module

charString=nslGetNameAndParent();

To print the name of the current module/class and all ancestors

charString=nslGetNameAndParentRecursive();

This method gets a reference to the variable with the specified name. This method
works as long as the named variable has NSL read access; otherwise it returns null. Note:
only NSL types are stored as data variables.

var2=nslGetDataVar(name);

where name is of type charString and var2 is of type NslData. And also

var2=nslGetDataVar(name,’R’);

where name is of type charString and var2 is of type NslData. This method gets a refer-
ence to the variable with the specified name. This method works as long as the named
variable has the specified NSL access; otherwise it returns null. Additional methods,
where name is charString and status is boolean are given below:

status=nslHasChildClass(name);//true if has instance of

 NslClass

nslPrintChildClasses();// prints all child classes

Additional NslModule Methods
All NSL modules inherit from this class. This class contains many methods that we
manipulate internally to NSL, and it also contains many classes for the flow of execution,
such as the initSys, initModule, initRun, simRun, and endRun methods that were cov-
ered in chapter 6. Since this class is meant to be subclassed we begin all method names
with “nsl” and all public attribute variables with underscore. (The exceptions to this rule
are the simulation control methods, the setting and getting of delta values, and the getting
and setting of the buffering flag.) Also, these methods are typically called from within a
NslModule and thus we do not need to put the module instance name in front of the
method name. However, if we were to call one of these methods from a different
NslModule or NslClass, then we would need to use the syntax:

somemodule.method(param1);.

The first set of methods we would like to discuss are the methods that augment the
automatic constructor “makeInst”. These methods are meant to be built by the model
builder and are described in table A.II.1.

3 9 6 A P P E N D I X I I

Constructor Methods Description

callFromConstructorTop
Allows the user to instantiate special objects before the NSL types are
instantiated in makeInst. callFromConstructorTop is called immediately upon
instantiating a new module; right after any parent attributes are instantiated.

callFromConstructorBottom
Allows the user to instantiate special objects before makeConn called. The
callFromConstructorBottom is called immediately after instantiating a new
module.

makeInst

makeInst is not overridable and is not callable from the user’s code. We use
makeInst to instantiate all NSL type parameters and native arrays that were
declared in the attribute section of the code. In object-oriented programming
terms, makeInst is the heart of the constructor for the module. We could have
called it callFromConstrutorMiddle but did not.

There are no arguments to callFromConstructorTop or callFromConstructor-
Bottom method. Also, NSL type variables defined in the attribute section of the
NslModule, are instantiated after callFromConstructorTop and before callFrom-
ConstructorBottom. Thus, if you need to manipulate one of these attributes, it is best to
put the code in callFromConstructorBottom. For example, in code segment A.II.1 the
callFromConstructorBottom method will print the name stored for the object as well as
the size parameter passed to the class during instantiation. This will be done for every
new object created of type MemoryCalc.

public void callFromConstructorBottom()

{

 nslPrint(“MemoryCalc instance name: “, nslName);

 nslPrint(“MemoryCalc size: “, size);

}

The next method adds a child NslModule to the list:

nslAddToModuleChildren(child1);

The next method gets a reference to the named child module where name is of type
charString:

NslModule foo;

foo=nslGetModuleRef(name);

To set the access for module and all below it where char1 is ‘R,’ ‘W,’ or ‘N’ we use:

nslSetAccessRecursive(char1);

nslHasChildModule will tell you if a module has submodules. Note status is of type
boolean and name is of type charString.

status=nslHasChildModule(name);

nslPrintChildModules prints all of the submodules.

nslPrintChildModules();

nslGetPort will retrieve the reference to the named port.

Table A.II.1�

Module constructor methods.

Code Segment A.II.1�

callFromConstructorBottom
for NslClasses.

N S L J E X T E N S I O N S 3 9 7

NslDinFloat2 port1(5,5);

port1=nslGetPort(name);

The getDelta method returns the current simulation delta either Train or Run for this
module.

double d1=getDelta();

double d1=getTrainDelta();

double d1=getRunDelta();

The setTrainDelta method sets the current simulation train delta for this module
where d1 is of type double. And the getRunDelta method gets the runDelta value.

setTrainDelta(d1);

double var1=getRunDelta(d1);

The next methods reset the train delta to the system train delta or the system run
delta for all modules :

nslResetTrainDelta();

nslResetRunDelta();

In the next method, flag indicates whether the current module is in the schedule for
the training or running phase. We provide this method since sometimes protocols leave
out certain modules.

boolean status=nslGetTrainEnableFlag();

boolean status=nslGetRunEnableFlag();

The next methods sets or gets the currently set approximation delta or methods used
in the nslDiff methods for this module.

double d2=getApproximationDelta();

setApproximationDelta(d2);

NslDiff m2=nslGetApproximationMethod();

nslSetApproximationMethod(m2);

Buffering was discussed in chapter 6. However, there are some additional methods.
The next method resets the buffering to the system buffering default for all modules
below this one.

nslResetBuffering ();

To add the following protocol name to the system list of protocols and add this name
to the module’s list of protocols, and add this name to all of the protocol lists within the
child.

nslAddProtocolRecursiveDown(name);

To add the following protocol name to the system list of protocols and add this name
to the module’s list of protocols, and add this name to all of the protocol lists of the
ancestors of this module. This is the method typically used by users.

nslAddProtocolRecursiveUp(name);

3 9 8 A P P E N D I X I I

To remove the following name from the modules protocol list.

nslRemoveFromLocalProtocols(name);

To add the name to the system list of protocols and add it also to the NSL Executive
list of protocol names.

nslDeclareProtocol(name,label);

The following methods return the value of the named variable within the parent
module. This method is not encouraged since the variable should have been passed to the
child.

NslData var1;

var1=nslValParent(name);

Additional NslClass Methods
NslClass exists because NslClasses cannot contain NslModules. It inherits from
NslHierarchy and NslBase. Thus, all of the methods available from NslClass have
already been discussed.

The following method is generated by the preparser and initializes the invisible tem-
porary variables the NSL system uses to in mathematics expressions. It initializes the
variables in the specified methods so that it does not have to reinitialized them every
cycle.

initTempClass();

Logical Methods
The following logical methods can be applied pointwise to the variables of either
NslNumeric, NslBoolean or native primitive variables and arrays/matrices.

If var1 and var2 are of equal value, the method returns true; else false.

nslEqu(var1,var2);

If var1 is greater than or equal to var2, the method returns true; else false.

nslGeq(var1,var2);

If var1 is greater than to var2, the method returns true; else false.

nslGtr(var1,var2);

If var1 is less than or equal to var2, the method returns true; else false.

nslLeq(var1,var2);

If var1 is less than var2, the method returns true; else false.

nslLes(var1,var2);

If var1 is not equal to var2, the method returns true; else false.

nslNeq(var1,var2);

The following logical methods can be applied to the variables of type NslBoolean or
native primitive variables and arrays/matrices of type boolean. All logical methods are
applied pointwise except for nslAll, nslNone and nslSome.

N S L J E X T E N S I O N S 3 9 9

If var1 and var2 are both true, the method returns true, else false.

nslAnd(var1,var2);

If none of the values in var1 are true, then returns true, else false.

nslNone(var1);

The following function returns the opposite boolean value as that stored in var1.

nslNot(var1);

If var1 or var2 is true, the method returns true, else false.

nslOr(var1,var2);

If all of the values in var1 are true, then return true, else false.

nslAll(var1,);

If some of the values in var1 are true, then return true, else false.

nslSome(var1);

A.II.3 Displays and Protocols

NSL Protocols
As mentioned in chapter 5 protocols provide an easy way for the model builder to set up
predetermined parameters and windows for a particular protocol. We make the distinction
between experiment and protocol in that many experiments can be executed for one
protocol. For instance if the model builder has a random number generator in the model,
then the results of the “run” will be different each time the protocol is executed. The
default protocol is “manual” which means that the model does not have any particular
protocols. All modules and the script window subscribe to the manual protocol initially.

Adding Protocols
The user is free to add new protocols via on of the following statements:

system.addProtocolToAll(“protocolName”)

nslAddProtocolRecursiveUp(“protocolName”)

The first statement will subscribe all known modules to the specified protocol; the
second will only subscribe the current module and all its ancestors to the protocol. Both
statements will add the protocol name to the Executive’s menu list of protocols as well as
the systems internal list of protocols. The addition of protocols should occur as early as
possible in the model creation process; thus we recommend that they be placed in the top
module’s initModule method although they can be placed in any of the initialization
methods other than initSys. Also to change the name of protocol in the Executive win-
dows menu, we can use:

nslDeclareProtocol(“protocolName”, “protocolLabel”)

where only the protocol label will appear in the menu.

Removing Protocols
It is also important to note that a module can remove itself from a particular protocol
within an any of the initialization methods (other than initSys) via one of the statements

4 0 0 A P P E N D I X I I

nslRemoveFromLocalProtocols(“protocolName”)

nslRemoveProtocolRecursiveUp(“protocolName”)

The difference between the two statements is that the first will unsubscribe only that
module from the protocol; the second will unsubscribe the current module and all of it
ancestors (even the model module) from the protocol. For instance, in code segments 5.1
and 5.2 we see that these display windows or frames should not appear if the protocol is
the default “manual”. If we do not want a particular NslInFrame or NslOutFrame to
appear when the NSL system is first started, then we should add a nslRemoveFrom-
LocalProtocols(“manual”) statement or a nslRemoveProtocolRecur-siveUp(“name”)
statement to the NslOutModule’s or NslInModule’s initModule method.

Setting the Default Protocol
To set the model up with a particular protocol on start up we can add the statement

system.setProtocol(“protocolName”)

to any of the initialization methods (other than the initSys) but should be added after all
the other protocol statements (if any) have been issued. The statement system.set-
Protocol(“protocolName”) first disables any module not subscribed to the protocol, and
then enables any module that is subscribed to the protocol. Next it reconnects all of the
subscribed modules. Since this is a very expensive operation, we recommend that it be
use sparingly and that it only be called from initModule. Also we should note that the
setting of the protocol name would only happen after the completion of the initialization
cycle or epoch that the statement appears in.

Menu Selection of a Protocol
From the Executive menu we can select a particular protocol that the model builder has
provided for us. The new protocol may or may not bring up a new NslInFrame or
NslOutFrame (to be discussed below); however, it will almost certainly set different
parameter inputs to the model. This is demonstrated in Dominey’s model in chapter 14
and by Jacob Spoelstra’s model in chapter 16.

Getting the Schedule Associated with a Protocol
If curious, the modeler can also query the NSL system to retrieve the schedule of NSL
modules that will run under the selected protocol. The call to do this is:

nslShowSchedule(“protocolName”);

This statement should only be executed only after a protocol has been selected either
via the menu system, or via the “system.setProtocol” statement.

Protocol Associated Methods
We can also declare methods associated with the protocol in the same module file that the
protocol was declared in. If a protocol is selected, then its associated protocol method
will also be called. These methods are not necessary but are a convenient for printing
status messages or setting certain variables. Associated protocol methods should be
declared in the following way:

public void procolnameProtocol() {

 //code

}

N S L J E X T E N S I O N S 4 0 1

As can be seen above, the associated protocol method should have a name such as
“protocolnameProtocol” where protocol name matches one of the protocols declared con-
catenated with the word “Prococol”.

The following protocol methods are provided for manipulation of the displays and
creation and selection of the protocols. We note here that all of the following commands
usually are placed in the initModule method of the model.

To check if the following protocol exists in the any module use:

system.protocolExist(charString);

To set or get the current protocol specified by the string name use:

system.setProtocol(name);

charString var = system.getProtocol();

Another useful method for adding the protocol name to the Executive’s menu is:

NslDeclareProtocol(“name”);

defined within the NslModule class.

A.II.4 Command Line Parameters
The following methods where designed to get some of the values of the parameters that
can be passed into the main model at execution time from the shell window.

Set or get the flag stating whether debug is set or not; default=0. This method can
take any integer value and it is up to the user as to its interpretation; debug=0 means no
debug.

Command line: nslj ModelA –debug int

system.setDebug(int);

int var=system.getDebug();

Set or get the flag indicating whether the any graphics should be displayed. If no
graphics are to be displayed, the operating system shell window is used as the script win-
dow. The default is false. The noDisplay option is nice when your are running from a
remote machine.

Command line: nslj ModelA -noDisplay

system.setNoDisplay(true);

boolean var=system.getNoDisplay();

Redirect standard input and output to the console or script window and retrieve
whether the stdio is to going either the console or script window.

Command line: nslj ModelA –stdio script

system.setStdio(charString);

charString var = system.getStdio();

Redirect standard error to the console or script window and retrieve whether the
stderr is going to either the console or script window.

Command line: nslj ModelA –stderr console

system.setStderr(charString);

charString var = system.getStderr();

4 0 2 A P P E N D I X I I

Set or get the flag indicating this is a batch job—meaning no graphics and a default
script should be provided. The default is false. Batch jobs are convenient for timing a
simulation.

Command line: nslj ModelA –batch fileName

system.setBatch(boolean);

boolean var=system.getBatch() ;

A.II.5 The Interactive System
One of the features left out of chapter 5 was NSLJ’s ability to save temporal plot data in
the Mathworks Matlab format. To export the data from a Canvas Window first select the
canvas and then select “Canvas� Export Data”. A pop-up window will appear that looks
like that in figure A.II.3. The only plot output currently supported is Matlab from Math-
Works. The file specified by the user should end with the “.m” extension. The other files
needed to view the NSL data in Matlab are available in NSLJ’s “copyme/matlab” direc-
tory.

A.II.2 Figure�

The Export Data Popup
Window

Appendix III – NSLC Extensions

The NSL C++ (NSLC) version includes a number of extensions not included at the
moment in NSLM, the common language to both C++ and Java versions. We expect that
these extensions will be incorporated into NSLM in the future.

A.III.1 Object Type Extensions
NSLC adds a number of extensions to NSLM object types. Among these the most
important ones are the addition of object type arrays, new object types and a number of
extensions on module connectivity.

Arrays
NSLC adds a dimSpec array specification to any object type definition as follows:

VisiblitySpec ObjectType varName(paramList)dimSpec;

For example a single dimension 10 element private array of ObjX named x can be
defined as follows:

private ObjX x()[10];

where no instantiation parameters are provided in this example. Additional dimensions
are provided by simply adding new brackets with their corresponding element number
specification. An extended example of array usage is shown in the “Face Recognition by
Dynamic Link Matching” model in chapter 18.

Defined Types
NSLC adds additional defined types besides those described in chapter 6.

String
NSL defines two additional charString object types as shown in table A.III.1.

Dimension Type 0 1 2 3 4

charString NslString1 NslString2

Ports
NSLC defines additional charString port object types as shown in table A.III.2.

Dimension Type 0 1 2 3 4

NslDoutString1 NslDoutString2 charString

NslDinString1 NslDinString2

Convolution
NSLC adds two additional convolutions methods as shown in table A.III.3 defined for
both vectors and matrices of two dimensions. The type and dimension of z corresponds to
that of y.

Table A.III.1
Additional charString object
types defined in NSLC.

Table A.III.2
Additional charString port
object types defined in NSLC.

4 0 4 A P P E N D I X I I I

Method Expression Description

z = nslConvW(x,y) wrap-edge convolution

z = nslConvC(x,y) copy-edge convolution

Connect
NSLC provides additional nslConnect statements enabling fan-out and fan-in
connections between multiple ports at once (NSLM as described in chapter 6 permits
single port interconnections). Fan-out enables the output of a particular port to be sent
out to a number of input ports at the same time using the following format,

nslConnect (port-out, port-in-list);

where port-out specifies an output port and port-in-list specifies a list of input ports
separated by commas. Each input port is connected to the same output port. Analogous,
fan-in enables the output of a list of port to be sent out to a particular input port using the
following format,

nslConnect (port-out-list, port-in);

where port-out-list specifies a list of output ports separated by commas and port-in
specifies a particular input port. Each output port is connected to the same input port.
Note that in this case the input port would queue data from the different output ports
according to the order in which they are received.

More generally, a list of output ports may be connected to a list of input ports using
the following format,

nslConnect (port-out-list, port-in-list);

where port-out-list specifies a list of output ports and port-in specifies a list of input ports
port both separated by commas.

Disconnect
NSLC provides an additional construct, nslDisconnect, to delete existing connections.
The basic format is as follows,

nslDisconnect (port-out, port-in);

where port-out specifies an output port and port-in specifies an input port.
Similarly to connections, NSLC provides fan-out, fan-in and the more general dis-

connection formats as follows,

nslDisconnect (port-out, port-in-list);

nslDisconnect (port-out-list, port-in);

nslDisconnect (port-out-list, port-in-list);

Relabel
NSLC provides additional nslRelabel statements enabling fan-out and fan-in relabels
between multiple ports at once (NSLM as described in chapter 6 permits single port
relabels). Fan-out enables either a particular output or input port to be relabeled to a
number of output or input ports at the same time, respectively. We use either of the
following formats,

Table A.III.3
Multiplication method.

N S L C E X T E N S T I O N S 4 0 5

nslRelabel (port-out, port-out-list);

nslRelabel (port-in, port-in-list);

Analogous, fan-in enables either a list of output or input ports to be relabeled to a
particular output or input port at the same time, respectively. We use either of the follow-
ing formats,

nslRelabel (port-out-list, port-out);

nslRelabel (port-in-list, port-in);

More generally, a list of either output or input ports may be relabeled to a list of out-
put or input ports, respectively, using the following formats,

nslRelabel (port-out1-list, port-out2-list);

nslRelabel (port-in1-list, port-in2-list);

Delabel
Analogous to nslDisconnect NSLC supports a delabeling (deleting a relabel) construct
nslDelabel. The basic formats are as follows,

nslDelabel (port-out1, port-out2);

nslDelabel (port-in1, port-in2);

where port-out1 and port-out2 specify output port and port-in specifies an input port.
Similarly to disconnections, NSLC provides fan-out, fan-in and the more general

delabel formats as follows,

nslDelabel (port-out, port-out-list);

nslDelabel (port-in, port-in-list);

nslDelabel (port-out-list, port-out);

nslDelabel (port-in-list, port-in);

nslDelabel (port-out1-list, port-out2-list);

nslDelabel (port-in1-list, port-in2-list);

File Manipulation
As described in Appendix I NSL supports reading and writing into external text files.
NSLC additionally supports reading and writing into binary files as shown in chapter 18
with the “Face Recognition with Dynamic Link Architecture” model.

NSLC uses the same basic file manipulation methods described in Appendix I with
an additional optional second argument in the open method describing the type of file
(file-type) being manipulated, text or binary, as shown next:

file.open(interaction-spec,file-type);

As previously discussed in Appendix I interaction-type corresponds to any of the
following: ‘R’ for read only, ‘A’ (all) for both read and write or ‘W’ for write only. Note
that binary files do not separate values with spaces thus the user must read each byte or
character at a time such as in the model described in chapter 18. Since NSLC is based on
C++ the user may take advantage of char and unsigned char types when reading binary
files.

4 0 6 A P P E N D I X I I I

A.III.2 Script Extensions
NSLC adds the following script extensions.

Logs
Log files contain the history of previous user model interaction. This is quite useful in
generating a previous interaction that has not been stored. Scripts can be logged and
saved automatically at the end of the simulation (however, the default is logging false).

nsl set system.log true

There is one default log for the complete simulation. The log file name corresponds
to the model name followed by a dot and a numeric suffix corresponding to the log
version followed by a “log” and it may be specified with a different name by the user. For
example,

nsl set system.logfile maxSelectorModel.1.log

Besides being able to review the log file, it is possible to reload it and execute it as
any other NSLS script.

A.III.3 Input Facility
NSLC includes predefined object classes for the generation of temporal visual stimuli.
These types are usually instantiated inside a special visual input module such as the Visin
module used in the “Retina” model (chapter 10) and the World module used in the
“Learning to Detour” model (chapter 17). Using these object types different stimuli may
be set, with constrains on their location and time when they should appear and disappear.
In the following sections we explain these in more detail.

Object Types
Input object types extend their basic semantics from NSLM numeric types while adding
special functionality for processing visual stimuli. These types vary according to their
dimension and types as shown in table A.III.4.

Dimension Type 0 1 2 3

float NslInputFloat0 NslInputFloat1 NslInputFloat2 NslInputFloat3

double NslInputDouble0 NslInputDouble1 NslInputDouble2 NslInputDouble3

int NslInputInt0 NslInputInt1 NslInputInt2 NslInputInt3

Since the input layer object types are derived from the regular numeric layer types
have the same instantiation parameters as regular layers. The only exception is the 3-
dimensional input array taking four instead of three instantiation arguments. This differ-
ence corresponds to the fact that a 3-dimensional input layer is actually a combination of
two 2-dimensional input layers corresponding to the xy and xz space views (see the
“Learning to Detour” model in chapter 17 as an example of its usage). Thus input layers
may be added with regular layers, and so on. On the other hand the input layer is able to
map visual stimulus objects onto the layer. For example, figure A.III.1 shows an
AreaLevel graph view of a NslInputFloat2 input layer made of 40x40 elements,
containing an object of size 8x4. This example is taken from the Visin module in the
Retina model in chapter 10.

Table A.III.4
Input layer object types
defined in NSLC.

N S L C E X T E N S T I O N S 4 0 7

Figure A.III.1�

A ��������	�
��� input layer
of 40x40 elements containing
a 8x4 stimulus.

Figure A.III.2 shows a Temporal graph view of a NslInputFloat0 input layer,
containing an stimulus appearing at two different time intervals.

Figure A.III.2

A ��������	�
��� with a time
varying stimulus.

Input Processing
Actual input layer processing involves “running” the stimuli specified for the particular
layer. We show how to interactively specify stimuli in the next section. Input layer
processing is achieved by including the following statement inside a module,

input_layer = 0;

input_layer.run();

where input_layer specifies the name of the layer, and run is the method processing any
existing stimuli specification. For example, in the “Retina” model the visual input in is
processed in the Visin module as follows,

in = 0;

in.run();

Note that the input layer is first reset to “0”. This is optional since in some case the
user may want to leave a trail or history of previous stimuli locations as in the “Learning
to Detour” model in chapter 17.

Input Specification
In the current NSLC version all input and stimuli specification takes place interactively
using the NSLS script interpreter. Before being able to specify any stimuli one must

4 0 8 A P P E N D I X I I I

understand the coordinate system used in the input layer and stimuli, shown in figure
A.III.3.

(input.xz,input.yz)

input.dx

input.dy

stim.dx

stim.dy

stim.xc
stim.yc

x

y

j j+1j-1

i

i-1

i+1

j+2

stim.x1
stim.y1

stim.x0

stim.y0

x,y origin
Figure A.III.3�

Input layer and stimulus
specification details.

There are two aspects to input specification. First the coordinate system in the input
layer must be specified. This involves specifying the origin of the coordinate system,
(input.xz,input.yz) and the distance among adjacent elements in the input layer,
(input.dx,input.dy) as shown in figure A.III.3.

These parameters are specified as follows where input in this figure represents the
input_layer name,

nsl set input_layer.par-name par-value

where the different alternatives for par-name with their corresponding par-value types
and descriptions are given in table A.III.5. Note that the input library supports up to 3-
dimensional specifications.

Parameter Type Description

xz int coordinate system x-axis origin element

yz int coordinate system y-axis origin element

zz int coordinate system z-axis origin element

dx numeric distance among adjacent elements in the x-axis

dy numeric distance among adjacent elements in the y-axis

dz numeric distance among adjacent elements in the z-axis

For example, in the “Retina” model the input layer coordinate system is specified as
follows,

nsl set retinaModel.retina.visin.input.xz 0

nsl set retinaModel.retina.visin.input.yz 20

nsl set retinaModel.retina.visin.input.dx 2.0

nsl set retinaModel.retina.visin.input.dy 2.0

Table A.III.5
Input layer parameter
options.

N S L C E X T E N S T I O N S 4 0 9

Once the input layer coordinate system has been specified it is necessary to add
stimuli specifications. The general stimulus specification format is as follows,

nsl create stim-type stim-name -layer input-name -val val \

 [-x0 x0 -y0 y0 -z0 z0] [-xc xc -yc yc -zc zc] \

-dx dx -dy dy -dz dz -vx vx -vy vy -vz vz -spec_type spec-type

These parameters are those shown in figure A.III.3 and specified in more detail in
table A.III.6. In the current NSLC version stim-type can only be set as BlockStim, while
stime-name and input-name are the names of the stimulus and input layer, respectively.

Parameter Type Description

val numeric value taken for the complete stimulus

spec_type string specification format: center [xc,yc] or corner [x0,y0]

x0 numeric stimulus upper left corner x-coordinate

y0 numeric stimulus upper left corner y-coordinate

z0 numeric stimulus upper left corner z-coordinate

xc numeric stimulus center x-coordinate

yc numeric stimulus center y-coordinate

zc numeric stimulus center z-coordinate

dx numeric stimulus width in x-direction

dy numeric stimulus depth in y-direction

dz numeric stimulus height in z-direction

vx numeric stimulus speed in x-direction

vy numeric stimulus speed in y-direction

vz numeric stimulus speed in z-direction

The location of the stimulus may be specified either by setting spec_type to either
corner or center and specifying [x0,y0,z0] or [xc,yc,zc], respectively. For example, the
stimulus shown in figure A.III.1 was specified with the following script,

nsl create BlockStim stim -layer retinaModel.retina.visin.in –

val 1.0 \

 -spec_type center -xc 2.0 -yc 0.0 -dx 4.0 -dy 4.0 -vx 7.6

Note that the actual figure shows the stimulus situated in a new location according to
its initial position, current speed and simulation time elapsed.

Additionally, NSL lets the user define time intervals when a stimulus should appear
using the following format,

nsl create TimeInterval -stim stim-name -t0 t0 -t1 t1

Table A.III.6
Stimulus parameter options.

4 1 0 A P P E N D I X I I I

Table A.III.7 describes the two parameters in more detail.

Parameter Type Description

t0 numeric interval starting time

tz numeric Interval ending time

For example, the stimulus shown in figure A.III.2 was created using the following
script:

nsl create BlockStim stim1 -layer tectum11Model.tectum.in

nsl create TimeInterval -stim stim1 -t0 0.0 -t1 0.3

nsl create TimeInterval -stim stim1 -t0 3.0 -t1 3.3

This creates a time interval between 0.0 and 0.3 and a second one for the same
stimulus between 3.0 and 3.3. Notice that in this example the input layer was actually a
scalar thus no other stimulus parameters were given, including stimulus size or location).

A.III.4 Distribution
One additional extension to the NSLC system currently in development is the distributed
execution environment to make processing more efficient. See the NSLC web site
(http://www.cannes.itam.mx/) for the latest developments.

Table A.III.7
Time interval parameter
options.

Appendix IV – NSLJ and NSLC Differences

There are several small differences between the NSLC and NSLJ implementations.

A.IV.1 Ports
One such difference is the way in which the input and output ports are implemented on a
module. In the NSLJ version, output ports allocate memory whereas input ports do not.
In the NSLC version both input and output ports allocate memory.

A.IV.2 Read/Write Script Access
Another difference, is the fact that the NSLJ system actually implements the
“nslSetAccess” methods and thus variables that do not have a ‘W’ access associated with
them are not manipulatable from the scripting environment nor from the other modules.
The current NSLC version does not implement “nslSetAccess,” thus providing a default
'W' access for all variables.

A.IV.3 Frames and Modules
Another difference is the fact that in NSLJ all NslOutFrames and NslInFrames
automatically create a NslOutModule or NslInModule respectively. This is due to the
fact that the modules are the objects that actually get scheduled by the scheduler and not
the frames.

A.IV.4 NslBoolean
Another difference is the NslBoolean class. NSLJ allows boolean arrays from dimension
0 to 4 and provides a number of methods to manipulate and compare boolean arrays.
NSLC treats the NslBoolean class as NslInt.

A.IV.5 Methods
One important thing to note about the NSLJ mathematical methods is that since it is not
possible to provide every combination of parameters when parameters can be one of six
different types, it was decided to implement the most “logical” combinations. Typically
this means that if the method takes more than one parameter, the parameters and result
should be of all the same base type (int, float, double, NslInt, NslFloat, NslDouble).
NSLC implements the different combintations as templates.

This page intentionally left blank

Appendix V – NSLJ and NSLC Installation Instructions

All installation instructions and extensions can be found at
www.neuralsimulationlanguage.org, the official NSL web site. At the time of book
impression, different NSL locations exist, one for NSLJ and the other for NSLC.

A.V.1 NSLJ Version
The NSL Java Version can be download from the following site:

http://www-hbp.usc.edu/Projects/nsl.htm

A.V.2 NSLC Version
The NSL C++ Version can be download from the following site:

http://www.cannes.itam.mx/English/Simulators/Nsl.htm

This page intentionally left blank

Bibliography

Abu-Mustafa, Y., and St. Jacques, J. 1989. “Information Capacity of the Hopfield Model,”
IEEE Transactions on Information Theory 31(4), 461–464, July.

Albus, J. S. 1971. A theory of cerebellar function. Mathematical Bioscience 10, 25–61.
Alexander, G. E., Crutcher, M. R., and DeLong, M. R. 1990. “Basal ganglia-thalamo-

cortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic”
functions.” Prog. Brain Res. 85, 119–146.

Alexander G. E., DeLong, M. R., Strick, P. L. 1986. Parallel Organization of Functionally
Segregated Circuits Linking Basal Ganglia and Cortex. Ann. Rev. Neurosci. 9, 357–
381.

Alexander, G. E., and Fuster, J. M. 1973. Effects of cooling prefrontal cortex on cell
firing in the nucleus medialis dorsalis. Brain Res. 61, 93–105

Amari, S. 1977. Dynamics of pattern formation in lateral-inhibition type neural fields.
Biol. Cybern. 27, 77–87.

Amari, S., and Arbib, M. A. 1977. Competition and cooperation in neural nets. In Systems
Neuroscience, ed. J. Metzler, pp. 119–165, Academic Press.

Andrade, M. A., and Morán, F. 1996. Structural study of the development of ocularity
domains using a neural network model. Biol. Cybern. 74, 243–254.

an der Heiden, U., and Roth, G. 1987. Mathematical model and simulation of retina and
tectum opticum of lower vertebrates. Acta Biotheoretica 36, 179–212.

Anderson, C. H., and Van Essen, D. C. 1987. Shifter circuits: A computational strategy
for dynamic aspects of visual processing. Proc Natl. Acad. Sci. USA 84, 6297–6301.

Andrade, M. A., and Morán, F. 1997. Receptive field map development by anti-hebbian
learning. Neural Networks 10, 1037–1052.

Arbib, M. A. 1987. Levels of modeling of mechanisms of visually guided behavior.
Behavioral and Brain Sciences 10, 407–465.

Arbib, M. A. 1989. The Metaphorical Brain 2, Neural Networks and Beyond. Wiley.
Arbib, M. A. 1990. Programs, Schemas, and Neural Networks for Control of Hand Move-

ments: Beyond the RS Framework. In Attention and Performance XIII. Motor
Representation and Control, ed. M. Jeannerod. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Arbib, M. A. 1992. Schema Theory. In the Encyclopedia of Artificial Intelligence, 2nd
Edition, ed. Stuart Shapiro. 2, 1427–1443, Wiley.

Arbib, M. A., Schweighofer, N., and Thach, W. T. 1994. Modeling the role of cere-
bellum in prism adaptation. In From Animals to Animats 3, ed. D. Cliff, P. Husbands,
J.-A. Meyer, and S. W. Wilson, pp.–44. The MIT Press.

Bartha, G. T., and Thompson, R. F. 1995. Cerebellum and conditioning. In The Hand-
book of Brain Theory and Neural Networks, ed. M. A. Arbib, pp.169–172. The MIT
Press, Cambridge, MA.

Barto, A. G., Sutton, R. S., and Brouwer, P. S. 1981. Associative search networks: A
reinforcement learning associative memory. Biological Cybernetics 40, 201–211.

Barto, A. G., and Sutton, R. S. 1981. Landmark learning: An illustration of associative
search. Biological Cybernetics 42, 1–8.

Barto, A. G., Sutton, R. S., and Anderson, C. W. 1983. Neuronlike Adaptive Elements
That Can Solve Difficult Learning Control Problems. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-5, 834–46.

4 1 6 B I B L I O G R A P H Y

Berns, G. S., and Sejnowski, T. J. 1995. A model of basal ganglia function unifying
reinforcement learning and action selection. Joint Symposium on Neural Computa-
tion. 129–148.

Berthoz A., and Droulez, J. 1991. The concept of Dynamic Memory in Sensorimotor
Control. Motor Control: Concepts and Issues, ed. D. R. Humphrey and H.-J. Freund.
John Wiley & Sons Ltd.

Biederman, I. 1987. Recognition-by-components: A theory of human image under-
standing. Psychological Review 94, 115–147.

Biederman, I., and Gerhardstein, P. C. 1993. Recognizing depth-rotated objects: Evidence
and conditions for three-dimensional viewpoint invariance. J. Exp. Psychology 19,
1162–1182.

Boussaoud, D., and Wise, S. P. 1993. “Primate frontal cortex: Effects of stimulus and
movement.” Exp. Brain Res. 95, 28–40.

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The Unified Modeling Language, User
Guide, Addison-Wesley.

Bower, J. M., and Beeman, D. 1998. The Book of GENESIS, Exploring Realistic Neural
Models with the GEneral NEural SImulation System, Telos, Springer-Verlag, 2nd

Edition.
Braun, D., Breitmeyer, B. G. 1988. Relationship between directed visual attention and

saccadic reaction times. Exp. Brain Res. 73, 546–552.
Bruce, C. J., and Goldberg, M. E. 1984. Physiology of the frontal eye fields. Trends

Neurosci. 7, 436–441.
Bruce, V., Valentine, T., and Baddeley, A. 1987. The basis of the 3/4 view advantage in

face recognition. Applied Cognitive Psychology 1, 109–120.
Buhmann, J., Lades, M., and von der Malsburg, C. 1990. Size and distortion invariant

object recognition by hierarchical graph matching. In Proceedings of the IJCNN
International Joint Conference on Neural Networks, pages II 411–416, San Diego.
IEEE.

Carey, R. G. 1975. A quantitative analysis of the distribution of the retinal elements in
frogs and toads with special emphasis on the Area Retinalis. Masters Thesis,
University of Massachusetts at Amherst, Amherst Massachusetts.

Carlson, A. 1990. Anti-Hebbian learning in a non-linear neural network. Biol. Cybern.
64, 171–176.

Carpenter G. A., and Grossberg S. 1987. A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision. Graphics and
Image Processing 37, 54–115.

Carpenter G. A., and Grossberg S. 1987. ART2: Self-Organization of Stable Category
Recognition Codes for Analog Input Patterns. Applied Optics 26, 4919–4930.

Carpenter G. A., Grossberg S., and Mehanian S. 1989. Invariant Recognition of Cluttered
Scene by a Self-Organizing ART Architecture: CORT-X Boundary Segmentation.
Neural Networks 2, 1169–1181.

Carpenter G. A., and Grossberg S. 1990. ART3: Hierarchical Search Using Chemical
Transmitters in Self-Organizing Pattern Recognition Architectures. Neural Networks
3, 129–152.

Carpenter G. A., Grossberg S., and Rosen D. B. 1991. Fuzzy ART: Fast Stable Learning
and Categorization of Analog Patterns by an Adaptive Resonance System. Neural
Networks 4, 759–771.

Cervantes-Pérez, F., Lara, R., and Arbib, M. A. 1985. Neural Model of Interactions
Subserving Prey-Predator Discrimination and Size Preference in Anuran Amphibia.
J. Theor. Biol. 113, 117–152

B I B L I O G R A P H Y 4 1 7

Chevalier, G., Vacher, S., Deniau, J. M., and Desban, M. 1985. Disinhibition as a Basic
Process in the Expression of Striatal Functions. I. The Striato-Nigral Influence on the
Tecto-spinal/Tecto-diencephalic Neurons. Brain Res. 334, 215–226

Cobas, A., and Arbib, M. A. 1992. Prey-catching and Predator-avoidance in Frog and
Toad: Defining the Schemas. J. Theor. Biol. 157, 271–304.

Collett, T. 1983. Picking a route; Do toads follow rules or make plans? In Advances in
Vertebrate Neuroethology, ed. J. P. Ewert, R. R. Capranica, and D. J. Ingle, pp.321 –
330.

Corbacho, F. J., and Arbib, M. A. 1995. Learning to Detour. J. Adaptive Behavior 3(4),
419–468.

Corbacho, F., Khort, B., Lin, B., Nothis, A., and Arbib, M. A. 1996. Learning to Detour:
Behavioral Experiments with Frogs. Proceedings of the Workshop on Sensorimotor
Coordination: Amphibians, Models, and Comparative Studies. Sedona, Arizona.

Corbacho, F. 1998. Commentary: Schema-based Learning. Artificial Intelligence 101,
370–373.

Cote, L., and Crutcher, M. D. 1991. The Basal Ganglia. Principles of Neuroal Science.
New York, Elsevier.

Crick, F. 1982. Do dendritic spines twitch? Trends in Neurobiology, February:44–46.
Damasio, A. R., and Damasio, H. 1992. Cortical systems underlying knowledge retrieval:

Evidence from human lesion studies. In Neurobiology of Neocortex. John Wiley.
Dassonville, P., Schlag, J., and Schlag-Rey, M. 1990. Oculomotor Localization Relies On

a Damped Representation of Saccadic Eye Displacement in Human and Nonhuman
Primates. Vis Neurosci 9, 261–269.

Daugman, J. G. 1988. Complete discrete 2-D Gabor transform by neural networks for
image analysis and compression. IEEE Transactions on Acoustics, Speech and
Signal Processing, 36(7), 1169–1179.

Deniau, J. M., and Chevalier, G. 1985. Disinhibition as a basic process in the expression
of striatal functions. II. The striato-nigral influence on thalamocortical cells of the
ventromedial thalamic nucleus. Brain Res. 334, 227–233

Dev, P. 1975. Perception of Depth Surfaces in Random-dot Stereograms: A Neural
Model. Int J. Man-Machine Studies 7, 511–528.

Didday, R. L. 1976. A model of visuomotor mechanisms in the frog optic tectum, Math.
Biosci. 30, 169–180.

Dominey P. F., and Arbib, M. A. 1991. Multiple Brain Regions Cooperate in Sequential
Saccade Generation. In Visual Structures and Integrated Functions, ed. M. A. Arbib
and J.-P. Ewert. Springer-Verlag pp.281–295.

Dominey, P. F., and Arbib, M. A. 1992. “A cortico-subcortical model for generation of
spatially accurate sequential saccades.” Cerebral Cortex. 2, 153–175.

Eckmiller, R. 1975. Electronic simulation of the vertebrate retina. IEEE Transactions on
Biomedical Engineering, BME-22(4), 305–311.

Eigen, M. 1978. The hypercycle. Naturwissenschaften, 65, 7–41.
Erwin, E., Obermayer, K., and Schulten, K. 1995. Models of orientation and ocular

dominance columns in the visual cortex: a critical comparison. Neural Computation
7, 425–468.

Ewert, J. P. 1971. Single unit response of the toad’s (Bufo americanus) caudal thalamus
to visual objects. Z. vergl. Physiol. 74, 81–102.

Ewert J.–P. 1976. The visual system of the toad: Behavioral and physiological studies on
a pattern recognition system. In The Amphibian Visual System, ed. K. V. Fite.
Academic Press : New York. pp. 142–202.

Ewert J.-P., and Hock, F. 1972. Movement-sensitive neurons in the toad’s retina.
Experimental Brain Research 16, 41–59.

4 1 8 B I B L I O G R A P H Y

Földiak, P. 1990. Forming sparse representations by local anti-Hebbian learning. Biol.
Cybern. 64, 165–170.

Frégnac, Y., and Imbert, M. 1984. Development of neuronal selectivity in primary visual
cortex of cat. Physiol. Rev. 64, 325–434.

Funahashi S., Bruce, C. J., and Goldman-Rakic, P. S. 1989. Mnemonic Coding of Visual
Space in Monkey’s Dorsolateral Prefrontal Cortex. J Neurophysiol. 61, 331–349.

Fuster, J. M., and Alexander, G. E. 1973. Firing changes in cells of the nucleus medialis
dorsalis associated with Memory response behavior. Brain Res. 61, 79–91.

Gaillard, F., Arbib, M. A., Corbacho, F., and Lee, H. B. 1998. Modeling the Physio-
logical Responses of Anuran R3 Ganglion Cells. Vision Research 38, 1282–1299.

Gerfen, C. R. 1992. “The neostriatal mosaic: Multiple levels of compartmental organiza-
tion in the basal ganglia.” Ann. Rev. Neurosci. 15, 285–320.

Gilbert, P. F. C., and Thach, W. T. 1977. Purkinje cell activity during motor learning.
Brain Research 128, 309–328.

Gnadt J. W., and Andersen, R. A. 1988. Memory related motor planning activity in post-
erior parietal cortex of macaque. Exp Brain Res. 70, 216–220.

Goldberg M. E., and Bruce, C. J. 1990. Primate Frontal Eye Fields. III. Maintenance of a
Spatially Accurate Saccade Signal. J Neurophysiol. 64, 489–508.

Goldman-Rakic, P. S. 1987. Circuitry of primate prefrontal cortex and regulation of
behavior by representational memory. In Handbook of Physiolog, Chap V. The
Nervous System 9, 373–417.

Grossberg, S. 1976. A Theory of Visual Coding, Memory, and Development: Part 1.
Parallel Development and Coding of Neural Feature Detectors. Biological Cybernetics
23, 121–134.

Grüsser O.-J., and Grüsser-Cornehls, U. 1976. Neurophysiology of the anuran visual
system. In Frog Neurobiology, ed. R. Llinás and W. Precht. Springer: New York. pp.
297–385.

Grüsser-Cornehls, U. 1988. Neurophysiological properties of the retinal ganglion cell
classes of the Cuban treefrog, Hyla septentrionalis. Exp Brain Res. 73, 39–52.

Häussler, A. F., and von der Malsburg, C. 1983. Development of retinotopic projections:
an analytical treatment. J. Theo. Biol. 2, 47–73.

Hebb, D. O. 1949. Organization of Behavior. John Wiley & Sons, New York.
Hikosaka, O. 1989. Role of Basal ganglia in Initiation of Voluntary Movement. In

Dynamic Interactions in Neural Networks: Models and Data, ed. M. Arbib and S.
Amari. Springer-Verlag, New York, pp 153–168.

Hikosaka, O., and Wurtz, R. 1983a. Visual and Oculomotor functions of Monkey
Substantia Nigra Pars Reticulata. I. Relation of visual and Auditory Responses to
Saccades. J Neurophysiol. 49, 1230–1253.

Hikosaka, O., and Wurtz, R. 1983b. Visual and Oculomotor functions of Monkey
Substantia Nigra Pars Reticulata. II. Visual Responses Related to Fixation of Gaze. J
Neurophysiol. 49, 1254–1267.

Hikosaka, O., and Wurtz, R. 1983c. Visual and Oculomotor functions of Monkey
Substantia Nigra Pars Reticulata. III. Memory-Contingent Visual and Saccade
Responses. J. Neurophysiol. 49, 1268–1284.

Hikosaka, O., and Wurtz, R. 1983d. Visual and Oculomotor functions of Monkey
Substantia Nigra Pars Reticulata. IV. Relation of Substantia Nigra to Superior
Colliculus. J. Neurophysiol. 49, 1285–1301.

Hines, M., and Carnevale, T. 1997. The NEURON Simulation Environment, Neural
Computation 9, 1179–1209.

Hinton, G. E, and Sejnowski, T. J. 1986. Learning and Relearning in Boltzmann
Machines. In Parallel Distributed Processing: Explorations in the Microstructure of

B I B L I O G R A P H Y 4 1 9

Cognition, Volume 1: Foundations, ed. J. L. McClelland and D. E. Rumelhart, pp.
282–317. Bradford Book/The MIT Press.

Hodgkin, A. L., and Huxley, A. F. 1952. A quantitative description of membrane current
and its application to conduction and excitation in nerve. Journal of Physiology 117,
500–544.

Hopfield, J. 1982. “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proc. of the National Academy of Sciences 79, 2554–2558,
April.

Hopfield, J. J., and Tank, D. W. 1985. Neural Computation of Decisions in Optimization
Problems. Biological Cybernetics 52, 141–152.

House, D. 1985. Depth Perception in Frogs and Toads: A study in Neural Computing,
Lecture Notes in Biomathematics 80, Springer-Verlag.

Hubel, D. H., and Wiesel, T. N. 1963. Receptive fields in cells in striate cortex of very
young visually inexperienced kittens. J. Neurophysiol. 26, 994–1002.

Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S. 1985. Organization of the
Nigrothalamo-cortical system in the Rhesus Monkey. J. Comp Neurol. 236, 315–330.

Ito, M. 1984. The Cerebellum and Neural Control. Raven Press, New York.
Ingle, D. 1983. Brain mechanisms of visual localization by frogs and toads. Advances in

Vertebrate Neuroethology, ed. J.-P. Ewert, R. R. Capranica, and D. J. Ingle, 177–
226.

Jones, J. P., and Palmer, L. A. 1987. An evaluation of the two dimensional Gabor filter
model of simple receptive fields in cat striate cortex. J. of Neurophysiology 58,
1233–1258.

Kalocsai, P., Biederman, I., and Cooper, E. E. 1994. To what extent can the recognition
of unfamiliar faces be accounted for by a representation of the direct output of
simple cells. In Proceedings of the Association for Research in Vision and
Ophtalmology, ARVO, Sarasota, Florida.

Keating, E. G., and Gooley, S. C. 1988. Saccadic disorders caused by cooling the
superior colliculus or the frontal eye fields or from combined lesions of both
structures. Brain Res. 438, 247–255.

Kitai, S. T., Kocsis, J. D., Preston, R. J., and Sugimori, M. 1976. “Monosynaptic inputs to
cuadate neurons identified by intracellular injection of horseradish peroxidase.”
Brain Res. 109, 601–606.

Kitazawa, S., Kohno, T., and Uka, T. 1995. Effects of delayed visual information on the
rate and amount of prism adaptation in the human. The Journal of Neuroscience,
15(11), 7644–7652.

Kojima, S., and Goldman-Rakic, P. S. 1984. “Functional analysis of spatially discrimin-
ative neurons in prefrontal cortex of rhesus monkey.” Brain Res. 291, 229–240.

Konen, W., and Vorbrüggen, J. C. 1993. Applying dynamic link matching to object
recognition in real world images. In Proceedings of the International Conference on
Artificial Neural Networks, ed. S. Gielen, and B. Kappen, ICANN, pages 982–985,
London. Springer-Verlag.

König, P., and Engel, A. K. 1995. Correlated firing in sensory-motor systems. Current
Opinion in Neurobiology 5, 511–519.

Lades, M. 1995. Invariant Object Recognition with Dynamical Links, Robust to
Variations in Illumination. PhD thesis, Fakultät für Physik und Astronomie, Ruhr-
Universität Bochum, D-44780 Bochum.

Lades, M., Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R.
P., and Konen, W. 1993. Distortion invariant object recognition in the dynamic link
architecture. IEEE Transactions on Computers 42(3), 300–311.

4 2 0 B I B L I O G R A P H Y

Lee, Y. B. 1986. A Neural Network Model of Frog Retina: A Discrete Time-Space
Approach. Ph.D. Dissertation, Department of Computer and Information Science,
University of Massachusetts at Amherst.

Lee, H. B. 1994. A Neural Network and Schematic modeling of anuran visuomotor
coordination in Detour Behavior. Ph. D. Thesis. University of Southern California.

Linsker, R. 1986. From basic network principles to neural architecture. (Three papers).
Proc. Natl. Acad. Sci. USA. 83, 7508–7512, 8390–8394, 8779–8783.

Linsker, R. 1990. Perceptual neural organization: Some approaches based on networks
models and information theory. Annu. Rev. Neurosci. 13, 257–281.

Lynch, J. C., Graybiel, A. M., and Lobeck, L. J. 1985. The differential projection of two
cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep
layers of the superior colliculus. J. Comp. Neurol. 235, 241–254

Marr, D. 1969. A theory of cerebellar cortex. Journal of Physiology 202, 437–470.
Martin, T., Keating, J., Goodkin, H., Bastian, A. J., and Thach, W. T. 1995. Throwing at

visual targets: Acquisition and specificity of eye-hand coordination and its depend-
ency on the olivocerebellar system.

Mason, C., and Kandel, E. R. 1991. Central Visual Pathways. Principles of Neural
Science. New York, Elsevier.

Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H. 1960. Anatomy and
physiology of vision in the frog (Rana pipiens). Journal of General Physiology 43,
(Suppl.), 129–175.

Mays, L. E., and Sparks, D. L. 1980. Dissociation of Visual and Saccade Related
Responses in Superior Colliculus Neurons. J. Neurophysiol. 43, 207–232

McCulloch, W. S., and Pitts, W. H. 1943. A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bull. Math. Biophys. 5, 115–133.

McEntee, W. J., Biber, M. P., Perl, D. P., and Benson, D. F. 1976. “Diencephalic
amnesia: A reappraisal.” J. Neurol. Neurosurg. Psychiatry 39, 436–441.

Miller, K. J., Keller, J. B., and Stryker, M. P. 1989. Ocular dominance columnar
development: Analysis and simulation. Science 245, 605–615.

Mitz, A. R., Godshalk, M., and Wise, S. P. 1991. Learning-dependent Neuronal Activity
in the Premotor Cortex. Journal of Neuroscience 11(6), 1855–72.

Moore, J. W., Desmond, J. E., and Berthier, N. E. 1989. Adaptively timed conditioned
responses and the cerebellum: A neural network approach. Biological Cybernetics
62, 17–28.

Munoz, D. P., and Wurtz, R. H. 1993a. “Fixation cells in monkey superior colliculus. I.
Characteristics of cell discharge.” J. Neurophysiol. 70, 559–570.

Munoz, D. P., and Wurtz, R. H. 1993b. “Fixation cells in monkey superior colliculus. II.
Reversible activation and deactivation.” J. Neurphyusiol. 70, 576–589.

Munoz, D. P., and Wurtz, R. H. 1993c. “Interactions between fixation and saccade
neurons in primate superior colliculus.” Soc. Neurosci. Abstr. 19, 787.

Murre, J. 1995. Neurosimulators. In Handbook of Brain Theory and Neural Networks, ed.
M. Arbib. The MIT Press.

Optican, L. M. 1994. Control of saccadic trajectory by the superior colliculus. Contemp-
orary Ocular Motor and Vestibular Research: A Tribute to David A. Robinson.
Stuttgart, Thieme.

Orban, G. A. 1984. Studies on Brain Function. Neuronal Operations in the Visual
Cortex. Springer-Verlag, Berlin.

Ousterhout, J. 1994. Tcl and the Tk Toolkit, Addison-Wesley.
Parent, A., Mackey, A., and De Bellefeuille, L. 1983. “The subcortical afferents to

caudate nucleus and putamen in primate: a florescence retrograde double-labeling
study.” Neurosci. 10, 1137–1150.

B I B L I O G R A P H Y 4 2 1

Petrides, M., and Pandya, D. N. 1984 Projections to frontal cortex from the posterior
parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116.

Rall, W. 1959. Branching dendritic trees and motoneuron membrane resistivity, Exp.
Neurol. 2, 503–532.

Robinson, D. A. 1970. Oculomotor unit behavior in the monkey. J. Neurophysiol. 33,
393–404.

Robinson, D. A. 1972. Eye Movement Evoked By Collicular Stimulation In The Alert
Monkey. Vision Res. 12, 1795–1808

Rosenblatt, F. 1961. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington, D.C.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal representations
by error propagation, in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, ed. D. E. Rumelhart, J. L. McClelland, and PDP Research
Group, vol. 1, Foundations, Cambridge, MA: The MIT Press, pp. 318–362.

Rumelhart, D. E., and Zipser, D. 1986. Feature Discovery by Competitive Learning. In
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Volume 1: Foundations, ed. J. L. McClelland and D. E. Rumelhart, pp. 151–193.
Bradford Books/The MIT Press.

Sadikot, A. F., Parent, A., Smith, Y., and Bolam, J. P. 1992. “Efferent connections of the
centromedian and parafascicular thalamic nuclei in the squirrel monkey: A light and
electron microscopic study of the thalamostriatal projection in relation to striatal
heterogeneity.” J. Comp. Neurol. 320, 228–242.

Sawaguchi, T., and Goldman-Rakic, P. S. 1991. “D1 dopamine receptors in prefrontal
cortex: Involvement in working memory.” Science 251, 947–950.

Sawaguchi, T., and Goldman-Rakic, P. S. 1994. “The role of D1-dopamine receptor in
working memory: Local injections of dopamine antagonists into the prefrontal
cortex of rhesus monkeys performing an oculomotor delayed-response task.” J.
Neurophysiol. 71(2), 515–528.

Schiller, P. H., and Sandell, J. H. 1983. Interactions between visually and electrically
elicited saccades before and after superior colliculus and frontal eye field ablations in
the rhesus monkey. Exp. Brain Res. 49, 381–392.

Schürg-Pfeiffer, E., and Ewert, J.-P. 1981. Investigation of neurons involved in the
analysis of gestalt prey features in the frog, “Rana temporaria.” Journal of
Comparative Physiology 141, 139–152.

Scudder, C. A. 1988. A New Local Feedback Model of the Saccadic Burst Generator. J.
Neurophysiol. 59, 1455–1475.

Segraves, M., Goldberg, M. E. 1987. Functional Properties of Corticotectal Neurons in
the Monkey’s Frontal Eye Field. J. Neurophysiol. 58, 1387–1419.

Singer, W. 1987. Activity-dependent self-organization of synaptic connections as a
substrate of learning. In The Neural and Molecular Basis of Learning, ed. J.-P.
Changeaux and M. Konishi, pp. 239–262. Dahlem Konferenzen. Chichester: John
Wiley & Sons Ltd.

Smith, M. 1993. “Neural Networks for Statistical Modeling,” Van Nostrand Reinhold.
Sparks, D. L. 1986. Translation of Sensory Signals Into Commands for Control of

Saccadic Eye Movements: Role of Primate Superior Colliculus. Physiol Rev 66:
118–171.

Sparks, D. A., Mays, L. E. 1983. Spatial Localization of Saccade Targets I. Compensa-
tion for Stimulation-Induced Perturbations in Eye Position. J. Neurophysiol. 46, 45–
63.

Squire, L. R., and Moore, R. Y. 1979. “Dorsal thalamic lesion in a noted case of human
memory dysfunction.” Ann. Neurol. 6, 503–506.

4 2 2 B I B L I O G R A P H Y

Stirling, R. V., and Merrill, E. G. 1987. Functional morphology of frog retinal ganglion
cells and their central projections: The dimming detectors. Journal of Comparative
Neurology 258, 477–495.

Stryker, M. P. 1986. The role of neural activity in rearranging connections in the central
visual system. In The Biology of Change in Otorrino-laryngology, ed. R. Ruben, et
al. Elsevier Science Publisher, B. V., pp. 211–224.

Subramaniam, S., Biederman, I., Kalocsai, P., and Madigan, S. R. 1995. Accurate
identification, but chance forced-choice recognition for rsvp pictures. In Proceedings
of the Association for Research in Vision and Ophtalmology, ARVO, Ft. Lauderdale,
Florida.

Teeters, J. L., and Arbib, M. A. 1991. A model of anuran retina relating interneurons to
ganglion cell responses, Biol. Cybern. 64, 197–207.

Teeters, J. L., Arbib, M. A., Corbacho, F., and Lee, H. B. 1993. Quantitative modeling of
responses of anuran retina: Stimulus shape and size dependency. Vision Research 33,
2361–2379.

Tootell, R. B., Silverman, M. S., and de Valois, R. L. 1981. Spatial frequency columns in
primary visual cortex. Science 214, 813–815.

von der Malsburg, C. 1973. Self-organizing of Orientation Sensitive Cells in the Striate
Cortex. Kybernetik, 14, 85–100.

von der Malsburg, C. 1981. The correlation theory of brain function. Internal report, 81–
2, Max-Planck-Institut für Biophysikalische Chemie, Postfach 2841, 3400 Göttingen,
FRG. Reprinted in Models of Neural Networks II, ed. E. Domany, J. L. van
Hemmen, and K. Schulten, chapter 2, pages 95–119. Springer, Berlin, 1994.

von der Malsburg, C. 1987. Synaptic plasticity as basis of brain self-organization. In The
Neural and Molecular Basis of Learning, ed. J.-P. Changeaux and M. Konishi, pp.
411–431. Dahlem Konferenzen. Chichester: John Wiley & Sons Ltd.

von der Malsburg, C. 1990. Network self-organization. In An Introduction to Neural and
Electronic Networks, ed. S. F. Zornetzer, J. L. Davis, and C. Lau, Academic Press,
pp. 421–432.

von der Malsburg, C., and Buhmann, J. 1992. Sensory segmentation with coupled neural
oscillators. Biol. Cybern. 67(3), 233–242.

von der Malsburg, C., and Reiser, K. 1995. Pose invariant object recognition in a neural
system. In Proceedings of the International Conference on Artificial Neural
Networks ICANN ’95, pages 127–132, Paris. EC2 & Cie.

von der Malsburg, C., and Singer, W. 1988. Principles of cortical network organization.
In Neurobiology of Neocortex, ed. P. Rakic and W. Singer, p. 69–99.

Vorbrüggen, J. C. 1995. Data-driven segmentation of grey-level images with coupled
nonlinear oscillators. In Proceedings of the International Conference on Artificial
Neural Networks ICANN ’95, pages 297–302, Paris. EC2 & Cie.

Wasserman, P. D. 1989. Neural Computing: Theory and Practice, 127–149, Van
Norstrand Reinhold.

Weitzenfeld, A.. 1993. ASL: Hierarchy, Composition, Heterogeneity, and MultiGranularity
in Concurrent Object-Oriented Programming, Proceedings of the Workshop on
Neural Architectures and Distributed AI: From Schema Assemblages to Neural
Networks, USC, October 19–20.

Weitzenfeld, A., and Arbib, M. 1991. A Concurrent Object-Oriented Framework for the
Simulation of Neural Networks, Proceedings of ECOOP/OOPSLA ’90 Workshop on
Object-Based Concurrent Programming, OOPS Messenger 2(2), 120–124, April.

Werbos, P. J. 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Master Thesis, Harvard University.

B I B L I O G R A P H Y 4 2 3

Wilson, C. J., Chang, H. T., and Kitai, S. T. 1983. “Origins of postsynaptic potentials
evoked in spiny neostriatal projection neurons by thalamic stimulation in the rat.”
Exp. Brain Res. 51, 217– 226.

Wiskott, L. 1995. Labeled Graphs and Dynamic Link Matching for Face Recognition and
Scene Analysis, volume 53 of Reihe Physik. Verlag Harri Deutsch, Thun, Frankfurt
am Main, Germany. (PhD thesis).

Wiskott, L., Fellous, J.-M., Krüger, N., and von der Malsburg, C. 1997. Face recognition
by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(7), 775–779.

Wiskott, L., and von der Malsburg, C. 1993. A neural system for the recognition of
partially occluded objects in cluttered scenes. Int. J. of Pattern Recognition and
Artificial Intelligence 7(4), 935–948.

Yonezawa, A., and Tokoro, M. 1987. Object-Oriented Concurrent Programming. The
MIT Press.

Zucker, R. S. 1989. Short-term synaptic plasticity. Ann. Rev. Neuroscience 12, 13–31.

Index

-, 86, 87, 91, 96, 97, 98, 99, 102, 105, 106, 107,

110, 113, 115, 117, 118, 127, 138, 139, 242,

243, 245, 246, 247, 248, 249, 250, 251, 252,

253, 340, 346, 357

--, 106

-=, 106

Absolute referencing, 131

accessibility, 103

accommodation, 157, 158, 161, 162, 165, 166,

 167, 168, 169

adaptation, ii, 21, 171, 277

adaptive resonance theory, ii, 144

addApproximationMethod, 347

allocentric, 297

amacrine cells, 170, 172, 173, 174, 177, 178,

 183, 184

anatomical, 1

Anticipatory cells, 202

anuran retina, 170, 184, 370

Anurans, 287

applications, i, 5, 6, 22, 28, 34, 85, 126, 154

Apply to All, 93

Apply to Future, 93

approximation method, 2, 18, 36, 41, 123, 159,

 176, 339, 347

approximation methods, 123, 339

Area graph, 346

Area Level Graph, 16, 95, 346

argument, 35, 37, 39, 65, 104, 106, 108, 115,

 116, 117, 118, 119, 121, 125, 138, 321, 335,

 337, 339, 340, 352, 360

array, 67, 98, 105, 111, 112, 114, 128, 129,

 242, 340, 345, 351, 352, 354

array elements, 21, 44, 52, 130, 180

array manipulations, 109

array size, 47, 106, 111

array specification, 358

Arrays in TCL, 129

ART1, 144, 145, 146, 148, 152, 153, 154

artificial neural networks, i, ii, 1

ascii text, 138

assemblage, 159, 162, 163, 165, 166, 168, 169,

 254

assignment conversion, 108

associative memories, 21

associative search, ii, 196, 197, 198, 199, 200,

 365

asynchronous updating, 22

attentional subsystem, 144, 145

attractors, 21, 23, 26

attribute, 5, 35, 36, 37, 40, 51, 54, 55, 56, 57,

 58, 59, 62, 89, 90, 98, 102, 103, 104, 105,

 109, 111, 116, 117, 118, 119, 120, 124, 129,

 131, 136, 139, 140, 141, 142, 189, 250, 352

Attribute Trees, 102

automatically generated, 79

average firing rate, 6, 42

avoidance from a threat, 287

Backpropagation, 13, 17, 21, 24, 27, 28, 29, 30,

 31, 33, 34, 52, 53, 56, 59, 60, 111, 127, 138,

 204, 338, 339, 350

backpropagation mode, 28, 29, 54, 55, 56, 57,

 58

BackPropLayers, 53, 54, 55, 59

BackPropModel, 11, 31, 53, 54, 59

bacterial chemotaxis strategy, 196

Basal Ganglia, 231, 241, 254, 260, 261, 262,

 263, 365, 366

base class, 103, 104, 117

batch, 127, 357

behavioral, 1, 209, 220, 223, 225, 226, 227,

 287, 292

binary, 22, 51, 96, 106, 144, 145, 146, 149,

 208, 286, 320, 338, 360

biological, i, ii, 1, 2, 42, 144, 204, 230, 333

biological systems, 42

biophysical, 1

BlockStim, 180, 181, 182, 301, 302, 362, 363

body of the module, 35

Boltzmann machines, 207

boolean, 101, 105, 107, 109, 110, 112, 114,

 116, 126, 141, 142, 345, 350, 351, 352, 353,

 354, 356, 357

borrow, 63

bottom-up, 5, 9, 34, 61, 144, 145, 146, 147, 150

BPBackwardProp, 53, 54, 55, 58, 59, 60

BPForward, 53, 54, 55, 56, 57

Brain Models on the Web, 8, 11, 61

brainstem, 231, 236, 244, 259, 263, 277, 283

Brainstem, 2, 242, 254, 263

Break command, 87, 88

breakCycles, 135, 136

BreakCycles, 87, 88

4 2 6 I N D E X

breakEpochs, 135, 136

BreakEpochs, 87, 88

breakModules, 135, 136

BreakModules, 87, 88

browser, 44

buffering (double), 34, 40, 55, 65, 75, 125, 264,

 352, 353

Build C++ Version, 84

Build Java Version, 84

build neural network models, 34

C++, i, ii, 8, 11, 13, 35, 84, 101, 102, 104, 105,

 106, 108, 110, 111, 116, 117, 126, 348, 358,

 360, 364

canvas, 21, 45, 66, 78, 89, 93, 94, 95, 96, 97,

 98, 99, 128, 140, 141, 142, 143, 193, 263,

 266, 267, 311, 346, 357

Canvas menu, 89

canvases, 9, 16, 49, 89, 90, 92, 93, 94, 96, 98,

 99, 263

cardinal points, 196

Cartesian grid, 155, 156

case statement, 108

cast, 108, 113, 229, 336, 347, 348, 351

Casting, 108, 113, 116

caudate, 238, 241, 244, 260, 261, 262, 369

cd, 130

cerebellar, ii, 277

cerebellar granule cell, 279

cerebellum, 277, 279, 280, 281, 365, 368

Change Type of Graph in Canvas, 95

Changing Options that Effect All Canvases, 93

channel, 170, 171, 174, 175, 176, 177, 178, 184

char, 101, 105, 120, 121, 335, 360

character recognition, 152

charString, 101, 104, 105, 107, 109, 110, 112,

 117, 119, 120, 140, 141, 142, 143, 336, 338,

 346, 347, 351, 352, 353, 356, 357, 358

Choose File, 71, 72, 73

Class Inheritance Specification, 103

Class Reference Hierarchies, 103

class-attribute-spec, 116, 117

class-instantiation-spec, 116

class-method-spec, 116, 117

class-name, 116

class-template-inheritance-spec, 116

clear, 7, 21, 35, 154, 184, 231, 242, 282, 346

clearPushed, 346

climbing fiber activity, 281

close, 15, 27, 33, 64, 86, 90, 94, 98, 101, 128,

 138, 149, 182, 197, 289, 296, 309, 338, 339

Close, 90, 94, 98, 138

Closing a NslOutFrame, 94

color of the box, 95

Columns, 90, 93, 98, 181, 182

commands, 13, 15, 17, 20, 24, 31, 64, 78, 84,

 86, 87, 88, 90, 98, 123, 127, 128, 129, 130,

 133, 134, 135, 136, 137, 138, 143, 260, 261,

 335, 356

comments, 101, 128, 183

Communication, 37

Comparison module, 150

compartmental models, 1

compensatory experiments, 234, 235

competition, 17, 147, 208, 211, 212, 217, 226,

 291, 292, 316, 326, 327, 334

competitive learning, 144, 208

competitive synaptic growth, 185

compilation, 88

compiled language, i

complex patterns, 154

computation time, 41

computational model, 4, 5, 34, 157, 210

concurrency, 2, 4, 8, 40, 125

concurrent objects, 4

conditional learning, ii, 201, 209

connect, 22, 38, 39, 40, 61, 71, 76, 97, 111,

 114, 146, 147, 163, 186, 230, 237, 242, 264,

 277, 309, 310, 312

connection command, 133

connection mask, 6, 43, 44, 51

connection matrix, 22, 51, 197, 315, 332

connection weight, 6, 17, 23, 24, 25, 40, 42, 43,

 50, 52, 192, 194, 197, 198, 199

connectivity matrix, 310, 331, 333, 334

Consistency Checker, 61, 62

constants, 27, 106, 112, 148, 159, 164, 165,

 187, 263, 292, 315

contCycles, 135, 136

contEpochs, 135, 136

Continue menu, 87, 88

ContinueCycle, 87, 88

ContinueCycles, 87, 88

ContinueEpoch, 88

ContinueEpochs, 88

ContinueModule, 87, 88

ContinueModules, 87, 88

continuous-time, 16

contModules, 135, 136

control, 86, 87, 88, 98, 100, 127, 128, 129, 130,

 133, 143, 231, 253, 337, 346, 352

Control Statements, 129

I N D E X 4 2 7

control window, 61

Convergence, 52, 58, 155

Conversions, 108, 113, 116

convolution, 44, 159, 164, 177, 178, 190, 191,

 247, 322, 340, 341, 358

convolution operation, 44

copy, 85, 86, 113, 118, 310, 315, 341, 348, 350,

 351

cortical, 7, 230, 231, 235, 253, 254, 257, 260,

 270, 272, 276, 286, 333, 370

create a library, 85

create icons, 63

credit-assessment, i

crosstalk, 26

cue interaction model, 162

curly brackets, 21, 27, 33, 35, 37, 129

dart, 282, 283

data ports, 34, 102

data structure, 41, 55, 67, 150, 333

data types, 41, 81, 102, 104

decision box, 202

declaration, 36, 41, 105, 110, 111, 113, 125,

 128

Declarations, 105, 110

defining a path, 104

delete, 93, 359

Deleting a Canvas, 93

delta rule, 204

dendritic tree, 172, 230, 369

Depolarizing, 170, 171, 176

depth computation, 155

depth map, 157, 162, 289

depth perception, ii, 155, 157, 162, 168, 287,

 367

DepthModel, 159, 166, 167

descend, 46, 61

Deselecting, 93

detouring, 287, 288, 292, 301

development environment, i

DevModel, 159

differential equations, 2, 5, 16, 18, 41, 122,

 144, 166, 176, 186, 190, 192, 309, 322, 323,

 324, 326, 327, 333

diffusion of synaptic activity, 185

dimension, 35, 36, 51, 67, 70, 97, 105, 109,

 110, 111, 112, 113, 114, 116, 129, 131, 132,

 133, 139, 148, 157, 242, 320, 321, 323, 325,

 327, 331, 336, 337, 339, 340, 343, 345, 350,

 351, 358, 360

direct programming, i, 44

direction, 27, 67, 68, 69, 74, 75, 140, 141, 142,

 155, 162, 173, 196, 197, 198, 201, 203, 207,

 208, 231, 241, 247, 251, 270, 275, 277, 279,

 282, 283, 285, 286, 288, 290, 291, 292, 303,

 304, 334

directory, 11, 13, 20, 23, 63, 85, 105, 130, 137,

 357

discrete binary models, 1

discrete-event, 16

discrete-time, 16, 22, 24, 27

Display Delta, 96, 97, 98, 99, 347

Display Menu, 88

displaypath, 139

distributed computing, 2

distributed simulation, ii, 118

documentation, i, 10, 11, 12, 85

dopamine, 7, 262, 276, 369

doRunEpochTimes, 136

DoRunEpochTimes, 88

dot plot, 96

doTrainEpochTimes, 135

DoTrainEpochTimes, 87

double, 13, 22, 36, 40, 46, 65, 78, 101, 105,

 106, 107, 108, 109, 110, 112, 121, 129, 130,

 141, 142, 198, 231, 232, 235, 238, 239, 246,

 250, 251, 252, 260, 265, 266, 270, 273, 274,

 275, 276, 279, 280, 282, 283, 310, 335, 336,

 339, 341, 345, 347, 348, 349, 350, 351, 353,

 360

double buffer, 40, 65, 125, 126, 338

double clicking, 13, 46

double saccade experiment, 235, 250, 252, 274,

 276

do-while statement., 108

download, i, ii, 364

drawcolor, 141, 142

drawing area, 16, 89, 93

drawstyle, 141, 142

duplicateData, 348

duplicateThis, 348

dynamic equations, 146, 154, 159, 165

dynamic link matching, 309, 368

dynamic memory, 60, 236, 320, 337

Dynamic Memory algorithm, 237

Dynamic Memory Allocation, 337

dynamic remapping, 231, 235, 239, 247

edge effects, 44

edit, 62, 64, 330

Edit Menu, 86

editing, 15, 64

4 2 8 I N D E X

efficient, i, 8, 54, 127, 144, 200, 287, 297, 334,

 339, 363

electrochemical systems, 42

element indices, 131, 132, 133

else, 129

elseif, 129

embryo, 185

embryogenesis, 184

encapsulating modules, 38

encapsulation, 38, 103, 105, 162

endModule, 121, 123, 128, 134

EndModule, 87

endRunEpochs, 88, 122, 135

EndRunEpochs, 88

endSys, 121, 123, 133

EndSys, 87

endTrain, 27, 58, 87, 88, 122, 134, 135, 150,

 151, 152, 211, 213, 217

EndTrain, 87

endTrainEpochs, 87, 122, 134

EndTrainEpochs, 87

energy, 22, 23, 25, 26, 51, 52, 171, 346

energy function, 22, 23, 26, 52

Environment, 288, 289, 367

eof command, 138

epoch, 16, 24, 27, 31, 55, 57, 58, 60, 87, 88,

 121, 122, 123, 124, 135, 136, 137, 150, 152,

 210, 221, 335, 336, 338, 355

error, 28, 29, 30, 31, 32, 52, 54, 55, 57, 58, 59,

 114, 115, 117, 132, 151, 180, 231, 232, 236,

 237, 239, 246, 251, 253, 283, 285, 286, 331,

 338, 345, 356, 369

error-correcting codes, 22

Euler, 16, 41, 123, 137, 176, 347

evolution equation, 317

examples, i, 21, 26, 39, 121, 287, 348, 349, 351

excitatory, 6, 67, 68, 74, 145, 146, 147, 157,

 158, 159, 162, 163, 164, 173, 174, 177, 178,

 186, 187, 188, 189, 193, 236, 238, 245, 255,

 259, 261, 262, 263, 281, 283, 286, 290, 297,

 314, 315, 316

exe, 11, 85

executable code, 84

execution, i, 2, 8, 9, 16, 18, 19, 20, 24, 27, 36,

 42, 50, 52, 87, 88, 106, 107, 111, 112, 121,

 123, 124, 125, 126, 129, 133, 200, 202, 206,

 207, 210, 221, 236, 254, 260, 261, 262, 280,

 283, 352, 356, 363

execution iterations, 20

Executive Menu Bar, 15, 86

Executive window, 16, 19, 86, 94, 100, 123,

 127, 355

Exit, 86, 94, 128

experiment, i, 7, 11, 86, 184, 202, 219, 221,

 222, 223, 225, 226, 227, 234, 235, 243, 245,

 247, 248, 249, 250, 251, 252, 253, 263, 264,

 273, 277, 284, 285, 288, 301, 302, 303, 304,

 305, 306, 307, 330, 355

experimental data, 1, 183, 184, 229, 256, 334

explicit cast, 108, 113

Exporting the Data from a Canvas, 96

expressions, 27, 43, 48, 51, 101, 104, 106, 107,

 108, 109, 110, 112, 113, 114, 116, 117, 122,

 128, 129, 132, 302, 354

extends, 44, 117, 118, 120, 121, 268, 271

extensible, 1, 101, 102

external referencing, 105

eye muscles, 263

face recognition, ii, 309, 337, 358, 360, 370

fan-in, 207, 358, 359

fan-out, 207, 358, 359

feature detector, 204, 205, 207, 208, 212, 213,

 215, 217, 220, 224, 230, 290, 309, 333

feature_mask, 208, 212, 213

feedback, 17, 18, 183, 184, 201, 207, 209, 224,

 235, 259, 263, 276, 286

feedforward, 28, 29, 54, 55, 56, 57

feedforward mode, 28, 29, 54, 55, 56, 57

file, 8, 9, 12, 19, 20, 23, 24, 25, 29, 30, 31, 32,

 54, 60, 62, 63, 84, 86, 103, 104, 118, 125,

 127, 129, 137, 138, 143, 152, 176, 180, 181,

 192, 209, 221, 253, 301, 320, 329, 330, 338,

 339, 350, 356, 357, 360

File Open, 78, 79

file system, 62, 103

file-descriptor, 138

firing rate, 2, 6, 17, 19, 41, 42, 43, 174, 181,

 182, 205, 206, 212, 213, 215, 218, 279, 281,

 282, 286

FirstLib, 64, 71

first-order differential equation, 6, 41, 122

fixed version, 12, 61

Flags, 80, 329

float, 65, 101, 105, 106, 107, 108, 109, 110,

 112, 113, 141, 142, 151, 152, 177, 178, 188,

 189, 190, 191, 213, 268, 298, 321, 322, 328,

 339, 341, 345, 349, 350, 351, 360

float all submodules, 65

floating version, 12, 61

flush, 338

I N D E X 4 2 9

for statement., 108

four dimensional arrays, 44

fovea, 238, 244, 247, 250, 254, 259, 260

Frame menu, 89, 90, 98

Frame Options, 90, 93, 98

Frame Print, 90, 94, 95, 98

freq, 138, 140, 141, 142

freq parameter, 138

frogs, 173, 287, 288, 289, 290, 291, 292, 294,

 295, 296, 297, 301, 302, 303, 304, 305, 306,

 307, 308, 366, 368, 369, 370

Frontal-Eye Field, 231

fusion graph, 334

Gabor-based wavelets, 309, 310

ganglion, 170, 171, 172, 173, 174, 175, 177,

 178, 179, 180, 181, 182, 184, 185, 238, 367,

 369, 370

gated dipole field, 147

Gaussian, 172, 177, 178, 179, 183, 187, 279,

 285, 290, 314, 315, 321, 322, 323, 324, 341

Generate NSLM Code, 84

Generating NSLM Code, 84

Generating the Executable File, 84

GENESIS, 5, 365

get command, 132

Get Newest Version of Submodules, 65

get();, 349, 350, 351

getApproximationDelta, 347, 353

getApproximationMethod, 347

getboolean, 351

getDelta, 353

getDimensions, 336

getdouble, 349, 350

getfloat, 349, 350

getint, 349, 350

getLength, 351

getNslString0, 351

getRunDelta, 353

gets, 338

gets command, 138

getSize1, 337

getSize2, 337

getSize3, 337

getSize4, 337

getSizes, 336, 337, 349

getstring, 351

getTrainDelta, 353

GIF, 94

global, 4, 26, 29, 87, 130, 131, 186, 204, 207,

 229, 263, 314, 315

globus pallidus, 260

goal-seeking strategy, 196

gradient descent, 27, 28, 29, 59

graph, 91, 92, 93, 94, 95, 96, 97, 98, 100, 141,

 142, 143, 334, 346

graph types, 16, 95, 96, 100, 143

graphical user interface, 86

graphical windows, ii, 13, 16, 52, 86

Graphics Input, 9

Graphics Interchange Format, 94

Graphics Output, 9

graphs, 95, 96, 97

grid, 93, 96, 98, 141, 142, 156, 180, 231, 232,

 268, 274, 279, 280, 288, 320, 347

growth factors, 186

handwriting recognition, 28

Hebbian, 185, 186, 213

height parameter, 139

hidden layer, 28, 29, 30, 31, 33, 53, 54, 55, 56,

 58, 59, 60, 280

hierarchical modules, 5

hierarchical neural networks, 9

hierarchy tree, 11, 91, 125, 131, 348

higherDim, 67

high-pass filter, 183

hill climbing, ii, 196

hill-climbing algorithm, 196

histogram, 198, 199

Hodgkin-Huxley model, 1

homogeneous neurons, 6, 43

Hopfield, 11, 13, 17, 21, 22, 23, 24, 25, 26, 27,

 28, 29, 31, 33, 34, 44, 50, 51, 52, 53, 60,

 100, 130, 365, 367

HopfieldInput, 50, 52, 53

HopfieldModel, 11, 23, 27, 52, 53

HopfieldOutput, 50, 52, 53

horizontal axis, 97

http, 85, 128, 243, 346, 364

human studies, 286

hyperpolarizing, 171

icon creation, 70

Icon Editor, 61, 64, 66, 70, 85

Icon Editor Window, 64, 66

iconizing, 15

icons, 9, 61, 63, 64, 71, 76, 84

if then else statement, 108

if-else statement, 108

implicit cast, 108

implicit conversion, 108, 337

4 3 0 I N D E X

Indexing, 106, 112

inferior olive, 277, 278, 281, 286

inherit, 60, 103, 104, 119, 120, 264, 352

inheritance, 60, 104, 116, 117, 119, 120

inhibitory, 6, 67, 145, 146, 147, 157, 158, 159,

 163, 164, 173, 174, 177, 178, 186, 187, 188,

 191, 194, 206, 215, 217, 235, 241, 244, 253,

 257, 259, 260, 261, 263, 277, 282, 283, 286,

 290, 298

initialization, 33, 36, 87, 105, 106, 111, 113,

 150, 151, 152, 209, 214, 218, 219, 241, 314,

 317, 322, 325, 327, 337, 338, 355

initModule, 24, 31, 33, 48, 57, 79, 83, 87, 121,

 123, 131, 134, 150, 209, 212, 216, 263, 264,

 265, 266, 267, 280, 346, 352, 355, 356

InitModule, 87

initRun, 37, 39, 42, 48, 49, 51, 79, 83, 88, 120,

 121, 122, 124, 135, 136, 150, 159, 164, 165,

 176, 177, 178, 188, 189, 191, 272, 322, 324,

 325, 327, 328, 352

InitRun, 88

initRunEpochs, 88, 122, 135

InitRunEpochs, 88

initSys, 50, 56, 87, 121, 123, 133, 263, 264,

 265, 297, 298, 320, 335, 352, 355

InitSys, 87

initTempClass, 354

initTrain, 27, 51, 79, 87, 88, 122, 124, 134,

 135, 150, 151, 210

InitTrain, 87

initTrainEpochs, 87, 122, 134

inport, 67, 77

Input Assignment, 17, 21, 27, 32

Input Graph Types, 98

input to a neuron, 42

InputImage, 99, 143

insert, 76

Insert Connection, 76

Instantiation, 111, 125

Instantiation Parameters, 111

int, 35, 36, 37, 39, 48, 49, 50, 51, 52, 53, 54,

 55, 56, 57, 58, 59, 65, 150, 151, 152, 154,

 159, 164, 165, 166, 177, 178, 188, 189, 190,

 191, 210, 212, 217, 265, 266, 268, 269, 271,

 272, 273, 279, 280, 282, 283, 284, 295, 299,

 320, 321, 322, 324, 335, 336, 337, 339, 341,

 343, 345, 346, 347, 349, 350, 351, 356, 360,

 362

int,, 101, 106, 107, 109, 112, 143, 337, 339,

 341, 345, 349, 350, 351

integration method, 166

interconnect, 76

Internet, 61

introduction, i, 4, 22, 33, 34, 47

invoke, 13, 44, 62

isDataSet, 348

Jacl, 127

java, 101

Jets, 310

Joint Picture Extraction Group, 94

JPEG, 94

landmark learning, ii, 196, 200

lateral intra parietal, 235

leaf level module, 84

leaky integrator, 1, 2, 6, 22, 27, 40, 41, 42, 122,

 176, 292

learning, ii, 148, 149, 152, 207, 220, 278, 282,

 287, 300, 301, 360, 361, 365, 366, 367, 369,

 370

learning equation, 148, 150, 154

learning model, 27, 144, 287

learning rules, 40, 185

learningRates, 33

Lesion, 233, 234, 236, 242, 243, 247, 248, 249,

 250, 366, 369

levels of organization, 3

library, ii, 9, 11, 12, 13, 14, 45, 52, 57, 62, 63,

 64, 65, 71, 72, 85, 101, 102, 104, 118, 180,

 188, 238, 242, 292, 301, 302, 320, 335, 362

Library Management Window, 64

Library Manager, 61, 62, 63, 85

Library Path Editor, 61, 62, 85

limbic cortex, 261, 262

links, 6, 42, 43, 309, 311, 316, 326, 327, 331,

 332, 333, 334

literals, 108

locomotion, 196

Logical operators, 107, 113, 114

long term depression, 278, 281

long term memory, 145

long term potentiation, 281

low-pass filter, 214, 223

LTM, 145, 146, 147, 148, 149, 150, 151, 152

main module, 34, 240

main procedure, 39

makeConn, 39, 40, 49, 50, 52, 53, 79, 115, 121,

 123, 133, 165, 166, 263, 264, 265, 350, 352

makeInst, 352

mammals, 185

I N D E X 4 3 1

Manual Generation of Leaf Level Code, 79

mathematical equations, 1

Mathworks, 357

Matlab, 357

Maximum Selector model, 15, 17, 21, 24, 27,

 34, 35, 37, 38, 40, 47, 154

MaxSelector, 11, 12, 14, 16, 19, 20, 35, 36, 37,

 38, 39, 40, 45, 46, 47, 48, 49, 50, 52, 70, 71,

 74, 75, 76, 77, 78, 79, 84, 91, 101, 115

MaxSelectorModel, 11, 12, 14, 16, 19, 20, 39,

 40, 45, 46, 47, 49, 50, 52, 84, 91, 101

MaxSelectorOutput, 12, 39, 40, 47, 49, 50, 84,

 115

MaxSelectorStimulus, 39, 40, 47, 49, 50, 84,

 101, 115

McCulloch-Pitts model, 1

mediodorsal nucleus, 256

mediodorsal thalamus, 231, 236, 256, 260

memAlloc, 209, 350, 351

membrane potential, 2, 6, 17, 19, 29, 40, 41,

 42, 43, 154, 159, 205, 206, 210, 212, 215,

 217, 218, 219, 223, 279

memorize, 28

memory, 22, 28, 54, 60, 144, 204, 209, 230,

 231, 232, 235, 236, 238, 245, 246, 250, 251,

 253, 255, 256, 257, 258, 260, 275, 315, 320,

 333, 337, 339, 345, 350, 365, 367, 369

memory allocation, 60, 337, 339, 350

memory saccade experiment, 235, 245, 250,

 251

memory search, 144

MemoryCalc, 116, 117, 118, 353

metadata, 12

method invocations, 112, 118

method parameter conversion, 108

Methods Window, 83

mod, 8, 12, 55, 84, 101

model, 61, 62, 84, 85, 101, 102, 338

model architectures, 34, 39, 40, 44, 101, 127

Model Compiler, 9

model tree, 102, 103

model-attribute-spec, 126

model-method-spec, 126

modes, 28, 40, 53, 55

modify, 2, 21, 30, 33, 34, 52, 60, 62, 85, 86, 93,

 131, 139, 270, 273, 274

Modifying the Number of Rows, 93

modularity, 2

modulation of eye movement, 231

module, 61, 62, 64, 65, 67, 68, 70, 71, 72, 76,

 78, 79, 84, 85, 101, 102, 104, 119

module assemblages, 5

monitor command, 138

monkey, 2, 201, 202, 203, 207, 223, 225, 229,

 230, 231, 232, 234, 235, 238, 243, 258, 368,

 369

morphology, 5, 369

mossy fibers, 277, 280

move, 23, 62, 66, 70, 73, 74, 78, 196, 197, 201,

 220, 231, 232, 238, 240, 250, 254, 263, 270,

 287, 318, 321, 330, 331

Move object, 78

multi-clock scheduling, 123

multi-clock-scheduling, 40

multiple dimension arrays, 105

native, 101, 102, 104, 105, 106, 116, 126, 338,

 341, 342, 349, 350, 351, 352, 354

neostriatum, 260

network configuration, 27, 28

network dynamics, 1, 42, 50

neural architectures, i, 4, 60, 144

neural dynamics, 2, 5, 53

neural interconnections, 5

neural network modeling and simulation, ii

neural networks, i, ii, 1, 2, 4, 5, 6, 12, 13, 22,

 34, 40, 41, 52, 122, 163, 164, 287, 289, 310,

 366, 367

Neural Simulation Language for Modeling, i, ii,

 4, 9, 11, 32, 34, 35, 36, 37, 38, 40, 41, 42,

 43, 44, 51, 52, 60, 61, 62, 63, 67, 78, 79, 80,

 81, 83, 84, 85, 87, 101, 102, 103, 104, 105,

 106, 107, 108, 109, 110, 111, 112, 113, 116,

 117, 118, 119, 120, 122, 126, 127, 128, 129,

 130, 131, 132, 133, 139, 143, 159, 168, 236,

 242, 263, 269, 270, 276, 335, 336, 338, 339,

 343, 347, 358, 359, 360

Neural Simulation Language for Scripting, i, ii,

 4, 11, 15, 17, 19, 31, 49, 60, 86, 123, 127,

 128, 129, 130, 131, 132, 133, 137, 138, 139,

 143, 152, 159, 166, 238, 301, 302, 336, 350,

 360, 362

Neural Simulation Language or System, i

neural state, 41, 210

NEURON, 5, 367

neuron array, 2, 6, 7, 43, 50

neurons, 1, 2, 4, 5, 6, 7, 18, 22, 23, 27, 28, 29,

 30, 40, 42, 43, 44, 51, 52, 54, 157, 170, 184,

 186, 187, 193, 194, 201, 203, 204, 210, 214,

 230, 236, 239, 240, 242, 253, 254, 255, 256,

 257, 258, 259, 260, 261, 262, 263, 269, 270,

 272, 275, 279, 286, 290, 299, 310, 311, 312,

4 3 2 I N D E X

neurons (cont.)

 314, 315, 316, 318, 331, 332, 334, 367, 368,

 369, 370

neurophysiological, 185, 230

neurosimulators, i

New Canvas, 90, 91, 92, 98

New from File, 64

New Icon Prompt, 65

New Library Path Prompt, 64

New Module, 71, 118

noDisplay mode, 127

Noise module, 213

non-linear dynamics, 40

nonlinear function, 6, 40

normalization, 189, 202, 203, 208, 212, 213,

 216, 217, 218, 223, 229, 230, 316, 326, 327

nsl configure .nsl, 139, 140, 141, 142, 143

nsl configure window, 139

nsl create NslInCanvas, 142, 143

nsl create NslInFrame, 141, 142

nsl create NslOutCanvas, 140, 141

nsl create NslOutFrame, 139, 140

nsl create window, 139

NSL Executive, 14, 15, 18, 31, 86, 100, 123,

 127, 139, 354

nsl exit, 128

Nsl Output Widgets, 96

nsl print -name, 143

NSL scheduler, 116

nsl set, 21, 27, 33, 130, 131, 132, 136, 137,

 138, 139, 152, 159, 160, 166, 167, 179, 180,

 192, 193, 221, 222, 301, 329, 330, 360, 362

nsl source, 31, 137, 152, 330

NSL System Diagram, 61

NSL System for the C++ Compiler, 8, 84, 104,

 111, 118, 320, 338, 345, 358, 359, 360, 362,

 363

NSL System for the Java Compiler, 8, 84, 104,

 345, 346, 351, 357

nsl unmonitor, 139

NSL verbatim, 104

NSL web site, 85, 96, 103, 104

nslAbs, 52, 188, 341

nslAdd, 340

nslAddAreaCanvas, 266, 346

nslAddButton, 346, 347

nslAddInputImageCanvas, 347

NslAddNumericEditorCanvas, 347

nslAddPanel, 346

nslAddProtocolRecursiveDown, 354

nslAddProtocolRecursiveUp, 346, 354, 355

nslAddTemporalCanvas, 346

nslAddToModuleChildren, 353

nslAll, 354, 355

nslAnd, 354

nslArcCos, 343

nslArcSin, 343

nslArcTan, 343

NslBase, 348, 349, 350, 351, 354

NslBoolean0, 109, 348, 349, 351

NslBoolean1, 109, 349

NslBoolean2, 109, 350, 351

NslBoolean3, 109

NslBoolean4, 109

nslBound, 345

nslBreakCycle, 143

nslClass, 116, 117, 118, 119, 266, 267, 268,

 270, 271

NslClass, 65, 117, 347, 348, 351, 352, 354

nslConnect, 39, 40, 43, 49, 50, 53, 115, 165,

 166, 264, 265, 320, 351, 358, 359

nslConstant, 106, 112

nslConv, 340

nslConvC, 340, 358

nslConvW, 340, 358

nslCos, 343

NslData, 348, 349, 350, 351, 352, 354

nslDeclareProtocol, 264, 265, 354, 355

NslDeclareProtocol, 356

nslDelabel, 359, 360

nslDiff, 41, 42, 44, 48, 122, 159, 165, 176, 190,

 192, 213, 215, 217, 218, 242, 243, 322, 323,

 324, 325, 329, 353

NslDiffEuler, 347

NslDiffRungeKutta2, 347

NslDinBoolean0, 110

NslDinDouble, 67

NslDinDouble0, 36, 37, 48, 68, 110, 348, 349

NslDinDouble1, 36, 37, 39, 41, 48, 49, 74, 102,

 110, 111

NslDinFloat, 67

NslDinFloat0, 110, 212, 214, 215, 216, 328

NslDinInt, 67

NslDinInt0, 110, 111, 210, 211, 212, 216

NslDinString0, 110

nslDisconnect, 359

NslDouble0, 36, 37, 41, 48, 109, 116, 348, 349

NslDouble1, 36, 37, 44, 48, 109, 111, 198, 270

NslDouble2, 104, 109, 121, 198, 272, 349, 350,

 351

NslDouble3, 109

NslDouble4, 109

I N D E X 4 3 3

NslDoutBoolean0, 110

NslDoutDouble0, 37, 41, 48, 75, 110, 348, 349

NslDoutFloat0, 110, 215, 218, 323

NslDoutInt0, 110, 210, 211, 216

NslDoutString0, 110

nslElemDiv, 340

nslElemMult, 340

nslEqu, 354

NslExecutiveWindow, 89, 139

nslExp, 176, 189, 279, 280, 281, 322, 341

NslFile, 338, 339

nslFillColumns, 342

nslFillRows, 322, 342

NslFloat0, 41, 57, 58, 59, 102, 109, 112, 113,

 164, 165, 177, 188, 189, 190, 191, 212, 214,

 216, 218, 328, 336, 349

NslFloat1, 56, 57, 58, 59, 109, 112, 113, 159,

 164, 165, 210, 212, 214, 216, 322, 336, 347

NslFloat2, 54, 109, 111, 112, 113, 159, 164,

 177, 178, 210, 212, 216, 321, 322, 323, 324,

 325, 327, 337, 339, 348, 350

NslFloat3, 109, 112

NslFloat4, 109, 112, 188, 189, 191, 325

nslGaussian, 177, 178, 188, 191, 341

nslGeq, 354

nslGetAccess, 335

nslGetApproximationMethod, 353

nslGetbuffering, 126

nslGetColumn, 337, 343

nslGetDataVar, 352

nslGetModelRef, 347

nslGetModuleRef, 353

nslGetNameAndParent, 352

nslGetNameAndParentRecursive, 352

nslGetParent, 348

nslGetParentClass, 348

nslGetParentModule, 348

nslGetPort, 353

nslGetRealName, 352

nslGetRefOfModuleOrClass, 347

nslGetRow, 343

nslGetRunEnableFlag, 353

nslGetSector, 337, 343

nslGetTrainEnableFlag, 353

nslGetValue, 336, 347, 351

nslGtr, 354

nslHasChildClass, 352

nslHasChildModule, 353

NslHierarchy, 347, 348, 351, 352, 354

nslImport, 104

NslInCanvas, 142, 143, 267, 268

NslInCanvases, 98, 141, 142, 143

NslInFrame, 88, 98, 141, 142, 346, 355

nslInModule, 267, 346

NslInModule, 65, 266, 267, 345, 346, 355

NslInputDouble0, 360

NslInputDouble1, 360

NslInputDouble2, 360

NslInputDouble3, 360

NslInputFloat0, 360, 361

NslInputFloat1, 360

NslInputFloat2, 295, 360, 361

NslInputFloat3, 295, 360

NslInputInt0, 360

NslInputInt1, 360

NslInputInt2, 360

NslInputInt3, 360

NslInt0, 51, 109, 110, 111, 116, 209, 265, 342,

 343, 349

NslInt1, 109, 117, 118, 339

NslInt2, 51, 109

NslInt3, 109

NslInt4, 51, 109

nslInverse, 343

nslLeq, 354

nslLes, 354

nslLog, 341

NSLM Code Generator, 61

NSLM Editor, 61, 62, 79, 80, 81, 85

NSLM Editor Window, 80, 81

NSLM View, 61, 62, 78, 79, 84

NSLM Viewer, 61, 62, 78, 79

nslMaxElem, 342

nslMaxMerge, 342

nslMaxValue, 299, 342

nslMemAlloc, 60, 111, 320, 337, 348

nslMinElem, 342

nslMinMerge, 342

nslMinValue, 342

nslModel, 40, 50, 53, 59, 126, 159, 166, 209,

 263

NslModel, 65, 347

nslModule, 35, 36, 37, 39, 40, 48, 49, 51, 54,

 55, 56, 57, 58, 59, 119, 120, 121, 125, 126,

 159, 164, 165, 188, 189, 190, 191, 210, 211,

 212, 214, 215, 216, 218, 266, 271, 272

NslModule, 35, 65, 71, 104, 117, 119, 120,

 121, 122, 346, 347, 348, 351, 352, 353, 356

NslModule parent, 104

nslName, 104, 117, 119, 120, 353

nslNeq, 354

nslNone, 354

4 3 4 I N D E X

nslNot, 354

NslNumeric, 347, 348, 349, 354

nslOr, 355

NslOutCanvas, 16, 90, 93, 94, 139, 140, 141,

 142, 143

NslOutFrame, 16, 88, 89, 90, 91, 92, 93, 94, 95,

 98, 139, 140, 346, 355

nslOutModule, 266, 346

NslOutModule, 65, 345, 346, 355

nslParent, 104, 117, 119, 120

nslPow, 341

nslPrint, 151, 190, 192, 337, 338, 353

nslPrintAllVariables, 338

nslPrintChildClasses, 352

nslPrintChildModules, 353

nslPrintln, 52, 58, 151, 152, 215, 337, 338, 339

nslPrintStatistics, 338

nslProduct, 340

nslRamp, 48, 49, 159, 165, 177, 178, 179, 213,

 215, 217, 218, 296, 297, 344

nslRandom, 52, 56, 212, 279, 280, 341

nslRelabel, 39, 49, 115, 165, 264, 359

nslRemoveFromLocalProtocols, 266, 267, 354,

 355

nslRemoveProtocolRecursiveUp, 355

nslResetBuffering, 354

nslResetRunDelta, 353

nslResetTrainDelta, 353

nslRint, 341

nslSaturation, 344

nslSetAccess, 57, 130, 131, 335, 345

nslSetAccessRecursive, 352, 353

nslSetApproximationMethod, 353

nslSetBuffering, 125, 126, 265

nslSetColumn, 343

nslSetParent, 348

nslSetRow, 343

nslSetSector, 343

nslSetValue, 336, 347, 351, 352

nslShowSchedule, 356

nslSigmoid, 56, 57, 165, 242, 243, 345

nslSin, 343

nslSome, 354, 355

nslSqrt, 189, 341

nslStep, 42, 44, 48, 52, 150, 159, 215, 217, 299,

 301, 344

NslString, 109, 348, 351

NslString0, 109, 110, 114, 119, 120, 121, 268,

 348, 351

nslSub, 340

nslSum, 42, 48, 49, 52, 58, 151, 218, 296, 297,

 300, 322, 324, 325, 342

nslSumColumns, 342

nslSumRows, 342

NslSystem, 351

nslTan, 343

nslTrans, 340, 343

nslUpdateBuffers, 126

nslValParent, 354

nuclear cell adaptation, 277, 278, 282, 283,

 285, 286

null, 101, 104, 105, 272, 348, 352

numeric integration., 187

numeric promotion, 108

numeric types, 16, 98, 105, 108, 109, 110, 111,

 112, 113, 114, 116, 120, 125, 129, 187, 349,

 350, 360, 362, 363

Numerical Editor Input, 21

numerical libraries, i

numerical methods, 5, 122, 137

NumericEditor, 98, 99, 143, 347

numPats, 31, 54, 55, 210

numRunCycles, 136

numRunEpochs, 88, 136, 137

numTrainEpochs, 87, 88, 123, 135, 137

object assignment, 113

object classes, 101, 102, 109, 118, 119, 120,

 334, 360

Object Recognition, 289, 290, 368

object types, 101, 102, 109, 110, 111, 112, 116,

 117, 127, 336, 358, 360

object-oriented technology, i, 2, 8

ObjectType, 110, 111, 112, 337, 358

ocular domains, 186

oculomotor, 231

oculomotor structures, 235

oculomotor system, 254, 258, 260

olfactory, 196

open, 13, 45, 61, 64, 78, 85, 96, 290, 338, 339,

 360

Opens a file, 138

operands, 108, 113, 340

optics, 172

orthogonality, 23

outport, 67, 69, 77

OutPort, 67, 69

Output Graph Types, 91, 95, 96

overflows, 109

overload, 109

override, 20, 120, 121, 122, 348, 349

I N D E X 4 3 5

overriden, 136

parallelism, 2

parameter, 67, 68, 69, 70, 71, 74, 75, 81, 86,

 87, 88, 104, 106, 108, 110, 111, 113, 116,

 117, 119, 120, 122, 126, 127, 128, 130, 133,

 136, 137, 138, 139, 140, 141, 142, 143, 237,

 241, 252, 335, 336, 339, 342, 345, 347, 348,

 350, 351, 352, 353, 355, 356

Parameter Assignment, 17, 21, 27, 33

parentheses, 21, 36, 37

parenthesis, 129, 131, 132, 133

parietal cortices, 258

paste text, 86

pattern file, 221

pattern recognition, i, 22, 23, 144, 148, 333,

 367

patterns, 1, 6, 7, 21, 22, 23, 24, 26, 27, 29, 31,

 32, 50, 51, 54, 55, 59, 144, 147, 148, 149,

 153, 154, 174, 184, 204, 208, 209, 220, 221,

 226, 229, 230, 291, 309, 310

payoff function, 196, 197

perceptron, 280, 309

Perceptron, 31

phenomenological, 183

photoreceptors, 186

physiological, 1, 2, 170, 183, 194, 367

pin, 68, 76, 77

pixel, 27, 98

plexiform, 170

plot, 91, 96, 97, 98, 200, 253, 357

plus sign, 91

pointers, 102, 348

populational approach, 170, 184

port, 10, 34, 35, 36, 37, 38, 39, 40, 41, 47, 49,

 50, 53, 54, 55, 57, 58, 59, 60, 62, 65, 67, 68,

 69, 70, 74, 75, 76, 77, 79, 83, 85, 101, 102,

 105, 110, 111, 112, 113, 114, 115, 116, 118,

 119, 120, 125, 126, 150, 158, 159, 162, 165,

 166, 176, 177, 178, 209, 242, 263, 264, 265,

 266, 267, 271, 276, 278, 284, 292, 297, 319,

 320, 329, 345, 350, 351, 353, 358, 359

Positioning, 93

Posterior Parietal Cortex, 231, 235, 236

postnatal development, 184

PostScript, 94, 143

potential, 17, 82, 118, 171, 172, 179, 276, 309

precision, 41, 105, 122

Prefrontal Cortex, 3, 4, 254, 257, 263, 367

premotor cortex, 201, 202, 203, 229, 230, 286

preorder, 124, 125

pre-parser, 51

prestriate, 258

prey-catching, 291

primate, ii, 201, 365, 367, 369

primitive types, 36, 102, 105, 106, 110, 111,

 112, 113, 116, 118, 127, 128, 336, 351

primitives, 6, 108, 334

Print, 151, 190, 192, 337, 338, 353

Print a Canvas, 95

Printing a Frame, 94

private, 36, 37, 38, 39, 40, 41, 48, 50, 51, 53,

 54, 56, 57, 58, 59, 103, 105, 106, 108, 109,

 110, 111, 113, 114, 117, 118, 131, 159, 164,

 165, 166, 177, 178, 188, 189, 190, 191, 209,

 210, 211, 212, 214, 216, 218, 265, 270, 271,

 272, 295, 337, 358

process control, i

programming environments, i

Promotions, 108, 113, 116

protected, 105, 117, 120, 121, 131

protocol, 11, 86, 87, 89, 114, 201, 209, 223,

 225, 226, 238, 243, 244, 245, 247, 251, 252,

 253, 263, 264, 266, 276, 339, 346, 353, 354,

 355, 356

Protocol Menu, 87

protocols, 86, 87, 89, 243, 339, 346, 353, 354,

 355, 356

pseudo-concurrent simulation, 40

public, 36, 37, 39, 40, 41, 42, 44, 48, 49, 50,

 51, 53, 54, 55, 56, 57, 58, 59, 103, 105, 106,

 111, 112, 115, 117, 118, 120, 121, 126, 131,

 150, 151, 152, 159, 164, 165, 166, 176, 177,

 178, 179, 188, 189, 190, 191, 192, 209, 210,

 211, 212, 213, 214, 215, 216, 217, 218, 242,

 243, 265, 266, 267, 268, 269, 271, 272, 273,

 279, 280, 282, 283, 295, 296, 297, 298, 299,

 300, 339, 346, 347, 352, 353, 356

Purkinje cell, 277, 281, 282, 285, 286, 367

putamen, 260, 369

puts, 257, 338, 356

puts command, 138

pwd, 130

quantitative data, 179, 183, 184

ramp, 6, 17, 42, 49, 177, 178, 343

random choice, 55

rapid model prototyping, i

read, 2, 24, 27, 40, 53, 60, 86, 145, 152, 167,

 209, 210, 211, 212, 270, 320, 335, 338, 339,

 352, 360

4 3 6 I N D E X

README, 86

receptive fields, ii, 185

Receptors, 170, 171, 174, 175

recognition competition, 146

Recognition module, 150

recognize human faces, 309

reconstruction, 22

rectangle, 16, 21, 66, 68, 180, 181, 196

reflex, 292

reinforcement-based, 207

relabeled, 38, 55, 359

Relabeling, 115

Relative referencing, 131

Remove Canvas, 90, 98

resetData, 348

Resizing a Canvas, 93

retina, ii, 155, 156, 157, 158, 162, 163, 164,

 165, 166, 167, 168, 169, 170, 174, 175, 179,

 180, 181, 182, 183, 184, 185, 232, 234, 235,

 237, 242, 252, 258, 289, 360, 361, 362, 363,

 365, 366, 367, 368

retinotopic, 186, 231, 235, 237, 255, 291, 297,

 299, 308, 367

retinotopic coding, 231

return reference, 104

re-use, 85

Re-use, 85

reusing script code, 130

rhesus monkeys, 201, 369

RNinh, 257

robotics, i, ii

run, i, 8, 13, 19, 21, 24, 27, 31, 32, 33, 37, 42,

 54, 87, 88, 150, 152, 159, 164, 175, 176,

 193, 199, 243, 253, 275, 276, 281, 283, 295,

 301, 302, 303, 318, 329, 330, 331, 332, 336,

 338, 351, 353, 355, 356, 361

Run Menu, 88

runDelta, 20, 24, 31, 122, 123, 135, 137, 179,

 353

runEndTime, 20, 24, 31, 42, 88, 122, 135, 136,

 137, 179

Runge-Kutta, 16, 41, 123

saccade, ii, 10, 231, 232, 233, 235, 236, 239,

 240, 241, 243, 244, 245, 246, 247, 250, 251,

 252, 254, 258, 259, 260, 263, 265, 366, 367,

 368, 369

saccade experiment, 231, 235, 237, 243, 247,

 250, 251, 252, 274

saturation, 6, 42, 164, 292, 299, 343

save, 33, 63, 70, 85, 86, 94, 138, 328, 357

scalable neural networks, i

Scheduler, 9

Scheduling, 40, 123

Schema-based Learning, 287, 366

schemas, 4, 206, 242, 287, 289, 290, 291, 292,

 294, 295, 297, 298, 299, 300

schematic, 8, 9, 10, 12, 13, 45, 46, 61, 62, 63,

 64, 70, 71, 72, 73, 74, 75, 77, 78, 84, 85,

 235, 236, 240

Schematic Capture System, ii, 8, 9, 11, 12, 13,

 14, 34, 44, 45, 46, 61, 62, 63, 78, 79, 85,

 137, 242, 253

Schematic Editor, 10, 13, 44, 61, 62, 63, 64, 71,

 76, 78, 79, 84, 85, 254

Schematic Editor Window, 13, 61, 63, 64, 71

scope, 292

Script command, 86

script interpreter, 9, 127, 128, 362

script language, 86, 127, 159, 338

script window, 21, 27, 31, 86, 123, 127, 138,

 139, 350, 355, 356

Script Window, 15, 17, 20, 86

scripting language, i, ii, 4, 19, 100, 127, 143,

 238, 292, 301, 302

SCS Library Manager Window, 63

Search, 147, 366

seed, 189, 193, 221, 297

segmentation, 157, 162, 316, 334, 370

select text, 86

Selecting, 13, 93

self-inhibition, 314, 315, 316, 317

self-organizing, 185, 194

sensorimotor, ii, 277, 289, 290, 297, 365, 366

sensory perception, 287, 290

sequential, 40, 55, 65, 125, 366

set command, 128, 129, 131, 132

set(value);, 349, 350, 351

setApproximationDelta, 347, 353

setApproximationTimeConstant, 348

setApproxMethod, 123

setTrainDelta, 353

shell, 13, 15, 19, 49, 356

shell window, 49, 356

short term memory, 145

sigmoid, 6, 29, 30, 42, 56, 57, 179, 279, 292,

 343

sigmoid function, 29, 30, 279

sigmoid., 6, 279

signal analysis, i

Signal Type, 67

signature, 37

I N D E X 4 3 7

simRun, 42, 44, 48, 49, 51, 52, 57, 83, 88, 120,

 121, 122, 123, 135, 136, 159, 165, 175, 176,

 177, 178, 179, 190, 192, 242, 243, 273, 279,

 280, 281, 282, 283, 295, 296, 297, 298, 299,

 300, 322, 323, 324, 326, 327, 328, 352

SimRun, 88

simTrain, 27, 33, 51, 54, 55, 57, 58, 59, 87, 88,

 122, 123, 124, 134, 135, 150, 151, 211, 212,

 213, 214, 215, 216, 217, 218

SimTrain, 87

simulation cycle, 16, 52, 123, 125, 126

Simulation Menu, 87

single neuron, i, 5, 6, 7, 42, 44

single-compartment model, 2

single-unit recordings, 201

Snr, 236

software tools, i

Source, 86, 137

source code, i, 11, 323

spatial connection, 172

spatial convolution, 7, 290

Spatial Graph, 97

spatial memory, 235, 236, 245, 257

Spatial plot, 97

speech synthesis, 28

spinal cord, 277

standard deviation, 172, 183, 331, 341

start parameter, 138

state of a neuron, 22, 23

statistical mechanics, 27

statistics, 122, 219

status bar, 89

status window, 76

step, 1, 3, 6, 16, 17, 18, 20, 21, 22, 24, 30, 33,

 34, 40, 42, 52, 84, 122, 123, 137, 140, 141,

 142, 150, 152, 159, 164, 167, 196, 197, 218,

 246, 264, 267, 270, 292, 295, 300, 312, 331,

 334, 343

StepCycle, 88

stepCycles, 135, 136

StepEpoch, 88

stepEpochs, 135, 136

StepModule, 88

stepModules, 135, 136

Stereo, 158, 162, 163, 164, 165, 166

stereopsis, 155, 156, 162

stimuli, 19, 65, 87, 162, 170, 173, 175, 180,

 183, 184, 201, 202, 203, 204, 208, 219, 220,

 225, 226, 227, 228, 229, 230, 256, 260, 273,

 274, 290, 295, 296, 301, 302, 360, 361, 362

STM, 145, 146, 147, 148, 150, 240

stochasitic learning, 202

stock market prediction, 28

stop parameter, 138

stopError, 31, 33, 57

striatum, 260, 261, 262, 270

String plot, 97

style of the box, 95

subcortical, 231, 235, 254, 260, 276, 369

substantia nigra, 236, 241, 259, 260

substantia nigra pars reticulata, 236, 241, 259

subthalamic nucleus, 260

super, 103, 104, 119

super class, 103

Superior Colliculus, 2, 7, 231, 236, 238, 254,

 258, 263, 367, 368, 369

supervised learning, 27, 204

switch, 8, 129, 143, 253, 325, 327

synapse, 42, 186, 208, 281

synaptic evolution, 185

synaptic plasticity, 310, 333, 370

synaptic transfer process, 183

synaptic weights, 21, 23, 28, 44, 54, 186, 210,

 281, 310, 311, 314, 330, 331

System Menu, 86

system tree, 102

system.addProtocolToAll, 265, 355

system.approximation.parameter, 137

system.breakCycles, 52, 58, 211, 336

system.breakEpochs, 58, 336

system.breakModules, 336

system.continueCycle, 336

system.continueEpoch, 336

system.continueModule, 336

system.getBatch, 357

system.getCurrentCycle, 335

system.getCurrentEpoch, 335

system.getCurrentTime, 335

system.getDebug, 356

system.getNumRunEpochs, 335

system.getNumTrainEpochs, 335

system.getRunDelta, 176, 335

system.getRunEndTime, 335

system.getRunEpoch, 335

system.getStderr, 357

system.getStdio, 356

system.getTrainDelta, 335

system.getTrainEndTime, 335

system.getTrainEpoch, 335

system.incCycle, 336

system.incRunEpoch, 336

system.incTime, 336

4 3 8 I N D E X

system.incTrainEpoch, 336

system.nslGetAccess, 335

system.nslGetValue, 336, 347

system.nslSetAccess, 335

system.nslSetValue, 336, 347

system.numTrainEpochs, 87

system.protocolExist, 356

system.setBatch, 357

system.setDebug, 356

system.setDisplayDelta, 339, 348

system.setNumRunEpochs, 335

system.setNumTrainEpochs, 335

system.setProtocol, 355, 356

system.setRunDelta, 335

system.setRunEndTime, 50, 335

system.setStderr, 357

system.setStdio, 356

system.setTrainDelta, 335

system.setTrainEndTime, 335

system.trainEndTime, 87, 134, 135, 137, 221

Tactile schema, 290

TCL, 15, 127, 128, 129, 130, 132, 138, 139,

 143, 338

tectal visual mechanism, 292

telencephalic structure, 260

template, 35, 65, 73, 79, 116, 119, 126, 147,

 148, 149, 150, 153, 154

temporal firing rate, 179

Temporal Graph, 95, 96

temporal plot, 96, 98, 141, 142, 253, 357

termination, 36, 128, 211

text, 86, 138, 173, 197, 200, 320, 338, 360

thalamic, 254, 257, 262, 290, 292, 366, 369,

 370

thalamic reticular nucleus, 257, 262

thalamus, 236, 241, 245, 256, 257, 260, 261,

 262, 292, 367

this, 104

threshold function, 6, 17, 42, 49, 56, 343

threshold functions, 343

time stamps, 84

TimeInterval, 363

time-series prediction, i

title, 15, 16, 86, 89, 140, 141, 142, 346

toads, 287, 366, 368

tonic position cells, 236

Tool Command Language, 15, 127

Tools, 13, 14, 61, 63, 64, 78, 79, 84, 370

top-down, 5, 9, 34, 54, 61, 144, 145, 147, 148,

 149, 150, 153, 154

train, 23, 24, 27, 31, 33, 57, 59, 87, 130, 134,

 135, 136, 152, 220, 221, 222, 338, 353

Train Menu, 87

TrainAndRunAll, 86, 87

trainDelta, 24, 31, 122, 123, 134, 137, 221

trainEndTime, 24, 31, 33, 87, 122, 134, 135,

 137

trainEpochSteps, 24, 31

training cycles, 28, 221

training phase, 1, 21, 24, 27, 29, 31, 51, 87,

 122, 198, 199, 201, 336

training set, 26, 27, 28, 32, 33, 54, 220

TrainManager, 53, 54, 55, 57, 59

transformation, 6, 22, 118, 212, 235, 236, 277,

 291, 300, 319, 343

Traveling Salesman Problem, 21

two-dimensional arrays, 6, 33, 51, 98, 112

two-dimensional neuron arrays, 44

unary, 106, 113

unidirectional, 34, 37, 38, 317

UNIX, 63

unmonitor, 139

unselect, 76, 78

unsigned char, 360

upvar, 130

USC Brain Project, 8, 61

user defined type, 67, 111

user interface, ii, 13, 16, 49, 52, 86

user-defined class trees, 103

user-friendly, i

variables, 79, 81, 83, 87, 88, 90, 93, 98, 128,

 129, 130, 131, 132, 140, 143, 238, 335, 336,

 337, 338, 342, 345, 352, 354, 356

varpath, 131, 139

ventral anterior thalamic, 256

verbatim, 104, 106, 116

verify, 64, 161

version, i, 8, 11, 12, 13, 14, 26, 61, 62, 65, 71,

 72, 79, 85, 97, 108, 109, 111, 118, 144, 158,

 170, 201, 239, 273, 287, 295, 309, 310, 333,

 334, 335, 338, 358, 360, 362

version directory, 85

version numbers, 11, 12

vertical axis, 97

View NSLM, 78

visibility, 36, 37, 90, 103, 105, 111, 115, 131

VisibilitySpec, 105, 106, 110, 337

visual cortex, 185, 256, 366, 367, 370

Visual Cortex, 186, 235, 237, 369

I N D E X 4 3 9

visual interface, 49

visual system, 185, 186, 194, 254, 309, 333,

 334, 367, 370

visualization, i, 7, 15, 16, 34, 127, 180

visualization tools, i

visually build modules, 85

visual-motor, ii, 201

void, 37, 39, 40, 42, 44, 48, 49, 50, 53, 55, 56,

 57, 58, 59, 101, 105, 108, 121, 131, 150,

 151, 152, 159, 164, 165, 166, 176, 177, 178,

 179, 188, 189, 190, 191, 192, 209, 210, 211,

 212, 213, 214, 215, 216, 217, 218, 242, 243,

 265, 266, 267, 268, 269, 270, 271, 272, 273,

 279, 280, 282, 283, 295, 296, 297, 298, 299,

 300, 322, 346, 347, 353, 356

voltage, 184

weights, 138

while statement, 108

widget, 21, 346, 347

width parameter, 139

window interfaces, 1, 17

Winner Take All, 17

winner-take-all, 146, 206, 207, 217, 222, 229,

 291, 302, 304, 305, 307, 308, 311, 312, 317,

 328, 331, 333

worm, 170, 173, 174, 180, 181, 183, 287, 288,

 295, 301

write, 9, 19, 40, 51, 87, 241, 335, 338, 360

writeln, 338

WTA, 17, 154, 207, 210, 211, 217, 218, 219,

 220, 222

XOR, 31, 32

Zoom Canvas, 95

ZoomIn, 95

