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Preface

Since 1985 more than a hundred neurosimulators have been developed (see Murre (1995) 
for a list of many of the most important ones). These neurosimulators can be generally 
described as software packages intended to reduce the time and effort in simulating neu-
ral networks, ranging from the most rudimentary unsupported systems provided at no 
cost by academia, to the very expensive ones provided by industry for commercial use 
with technological applications in mind. Academia neurosimulators tend to be used for 
exploring new biological and artificial neural architectures while commercial packages 
are primarily used in non-biological areas such as credit-assessment, signal analysis, 
time-series prediction, pattern recognition and process control. These particular commer-
cial systems tend to support a predefined set of artificial neural networks. Most existing 
neurosimulators are useful when using and extending standard paradigms but not so 
much when developing new ones, a phenomenon marked by the proliferation of the large 
number of simulators developed by researchers to experiment with specific new neural 
architectures.

During the last decade our group has worked to overcome the shortcoming of “one 
group, one neurosimulator” by designing a general-purpose simulator known as the Neu-
ral Simulation Language NSL, now in its third major release. NSL is neural network 
simulator that is both general and powerful, designed for users with diverse interests and 
programming abilities. As opposed to commercial neurosimulators, we provide NSL at 
no cost yet with extensive documentation. 

We address the needs of a wide range of users. For novice users interested only in an 
introduction to neural networks, we provide user-friendly interfaces and a set of prede-
fined artificial and biological neural models. For more advanced users well acquainted 
with the area, who require more sophistication, we provide evolved visualization tools 
together with extensibility and scalability. We provide support for varying levels in neu-
ron model detail, which is particularly important for biological neural modeling. In artifi-
cial neural modeling the neuron model is very simple, with network models varying 
primarily in their network architectures and learning paradigms. While NSL is not par-
ticularly intended to support detailed single neuron modeling, NSL does provide suffi-
cient expressiveness to support this level of modeling.  

In general, NSL has the following characteristics: 

� provides a powerful neural development environment supporting the efficient crea-
tion and execution of scalable neural networks; 

� is designed to run on a large number of platforms; 

� is built exclusively using object-oriented technology; 

� offers rich graphics and a full mouse-driven window interface supporting creation of 
new models as well as their control and visualization; 

� incorporates a compiled language NSLM for model development and a scripting 
language NSLS for model interaction and simulation control; 

� provides extensibility with Java and C++ for users who want to develop applications 
under specific programming environments or to integrate with other software or 
hardware; 

� offers free download of the complete NSL system, including full source code as well 
as forthcoming new versions; 
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� offers free and extensive support for downloading new models from our Web sites, 
where users may contribute with their own models and may criticize existing ones. 

In summary NSL is especially suitable for the following tasks: 

� Use in an academic environment where NSL simulation and model development can 
complement theoretical courses in both biological and artificial neural networks. 
Models included in the second part of the book are examples of models that can be 
used for this purpose. Students are able to run these models and change their behav-
ior by modifying input in general or specific network parameters. 

� Use in a research environment where scientists require rapid model prototyping and 
efficient execution. NSL may easily be linked to other software tools, such as addi-
tional numerical libraries, or hardware, such as robotics, by doing direct programming 
in either Java or C++. 

� In the book we describe how to design modular neural networks in order to simplify 
modeling and simulation while providing better model extensibility. We provide 
extensive examples on how neural models should be built in general and in particular 
with NSL.  

The book is divided in two major parts, the first part is required reading for NSL 
users, while the second part provides additional model examples for those interested in 
more specific modeling domains. We define three levels of user expertise: 

� low level for running existing models—requiring no previous knowledge of software 
programming; 

� medium level for developing simple models—requiring the user to learn only the 
NSL high level programming language; 

� high level for developing complex models or linkage to other systems—requiring the 
user to have a basic understanding of Java or C++.  

Part I An Overview of NSL Modeling and Simulation 
The following table gives a brief description of each chapter in Part I of this book in its 
order of occurrence and the level of complexity involved (low, medium, high). 

Chapter Complexity Description 

1 Low Introduction to neural network modeling and simulation 

2 Low Simulation Overview—using computers to explore the 
behavior of neural networks: Examples of biological and 
artificial neural network simulation in NSL. 

3 Medium Modeling Overview—developing a neural network to 
describe a biological system or serve a technological 
application: Examples of biological and artificial neural 
networks model in NSL. 

4 Medium Describes the Schematic Capture System for designing 
neural models and libraries. 

5 Medium Describes the User Interface and Graphical Windows. 

6 Medium Describes the NSLM high level modeling language for 
writing models. 

7 Medium Describes the NSLS scripting language for specifying 
simulation interaction. 
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Part II Neural Modeling and Simulation Examples Using NSL 
The following table gives a brief description of each chapter in Part II of this book in its 
order of occurrence and level of model complexity involved.  

Chapter Complexity Description 

8 Medium  Adaptive Resonance Theory by T. Tanaka and A. 
Weitzenfeld 

9 Medium Depth Perception by A. Weitzenfeld and M. Arbib 

10 Medium Retina by R. Corbacho and A. Weitzenfeld 

11 Medium Receptive Fields by F. Moran, J. Chacón, M.A. Andrade 
and A. Weitzenfeld 

12 Medium The Associative Search Network: Landmark Learning and 
Hill Climbing by M. Bota and A. Guazzelli 

13 High A Model of Primate Visual-Motor Conditional Learning 
by A. Fagg and A. Weitzenfeld 

14 High The Modular Design of the Oculomotor System in 
Monkeys by P. Dominey, M. Arbib and A. Alexander 

15 High Crowley-Arbib Saccade Model by M. Crowley, E. Oztop 
and S. Marmol 

16 High A Cerebellar Model of Sensorimotor Adaptation by Jacob 
Spoelstra  

17 High Learning to Detour by F. Corbacho and A. Weitzenfeld 

18 High Face Recognition based on Dynamic Link Matching by L. 
Wiskott and C. von der Malsburg and A. Weitzenfeld 

We end the book with a discussion on current work and future directions, such as 
distributed simulation and robotics, together with appendices containing information on 
how to download from our web sites (in Los Angeles and in Mexico City) the software 
described in the book as well as model overviews, FAQs, emails and other relevant 
information.  

Alfredo Weitzenfeld 
   Mexico City 

Michael A. Arbib 
Amanda Alexander 
   Los Angeles 
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1 Introduction 

The NSL Neural Simulation Language provides a platform for building neural architec-
tures (modeling) and for executing them (simulation). NSL is based on object-oriented 
technology, extended to provide modularity at the application level as well. In this chap-
ter we discuss these basic concepts and how NSL takes advantage of them.  

1.1 Neural Networks 
Neural network simulation is an important research and development area extending from 
biological studies to artificial applications. Biological neural networks are designed to 
model the brain in a faithful way while artificial neural networks are designed to take 
advantage of various “semi-neural” computing techniques, especially the use of different 
learning algorithms in distributed networks, in various technological domains. Challenges 
vary depending on the respective areas although common basic tasks are involved when 
working with neural networks: modeling and simulation.

Modeling  
Modeling or development of a neural network or neural architecture depends on the type 
of network being constructed. In the case of artificial neural modeling, neural architec-
tures are created to solve the application problem at hand, while in the case of biological 
modeling neural architectures are specified to reproduce anatomical and physiological 
experimental data. Both types of network development involve choosing appropriate data 
representations for neural components, neurons and their interconnections, as well as network 
input, control parameters and network dynamics specified in terms of a set of mathematical 
equations.  

For biological modeling, the neuron model varies depending on the details being 
described. Neuron models can be very sophisticated biophysical models, such as 
compartmental models (Rall 1959) in turn based on the Hodgkin-Huxley model (Hodgkin 
and Huxley 1952). When behavioral analysis is desired, the neural network as a whole 
may often be adequately analyzed using simpler neuron models such as the analog leaky 
integrator model. And sometimes even simpler neural models are enough, in particular 
for artificial networks, as with discrete binary models where the neuron is either on or off 
at each time step, as in the McCulloch-Pitts model (McCulloch and Pitts 1943).  

The particular neuron model chosen defines the dynamics for each neuron, yet a 
complete network architecture also involves specifying interconnections among neurons 
as well as specifying input to the network and choosing appropriate parameters for differ-
ent tasks using the neural model specified. Moreover, artificial neural networks—as do 
many biological models—involve learning, requiring an additional training phase in the 
model architecture. 

To generate a neural architecture the network developer requires a modeling language 
sufficiently expressive to support their representation. On the other hand, the language 
should be extensible enough to integrate with other software systems, such as to obtain or 
send data. In general, a neural network modeling or development environment should 
support a set of basic structures and functions to simplify the task of building new models 
as well as interacting with them. 

Clearly, the user’s background plays an important role in the sophistication of the 
development environment. Novice users depend almost completely on the interactivity 
provided through window interfaces, while more sophisticated users usually desire exten-
sibility in the form of programming languages.  
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Simulation 
Simulation of neural network architectures also varies depending on whether it relates to 
artificial or biological networks. Artificial neural networks particularly those involving 
learning usually require a two-stage simulation process: an initial training phase and a 
subsequent processing or running phase. Biological networks usually require a single 
running phase (in which behavior and learning may be intertwined). 

Simulation consists of using the computer to see how the model behaves for a variety 
of input patterns and parameter settings. A simulation may use values pre-specified in the 
original formulation of the model, but will in general involve specifying one or more 
aspects of the neural architecture that may be modified by the user. Simulation then 
involves analyzing the results, both visual and numerical, generated by the simulation; on 
the basis of these results one can decide if any modifications are necessary in the network 
input or parameters. If changes are required these may be interactively specified or may 
require more structural modifications at the neural architecture level going back to the 
development phase. Otherwise the model is simulated again with newly specified input. 
Simulation also involves selecting one of the many approximation methods used to solve 
neural dynamics specified through differential equations. 

In addition, the environment requirements can change when moving a model from 
development phase to test phase. When models are initially simulated, good interactivity 
is necessary to let the user modify inputs and parameters as necessary. As the model 
becomes more stable, simulation efficiency is a primary concern where model processing 
may take considerable time possibly hours or even days for the largest networks to proc-
ess. Parallelism and distributed computing will increasingly play key roles in speeding up 
computation. 

1.2 Modularity, Object-Oriented Programming, and Concurrency 
Modularity, object-oriented programming and concurrency play an important part in 
building neural networks in NSL as well as in their execution. Furthermore, the actual 
NSL system is built based on object-oriented technology.  

Modularity in Neural Networks 
Modularity is today widely accepted as a requirement for structuring software systems. 
As software becomes larger and more complex, being able to break a system into separate mod-
ules enables the software developer to better manage the inherent complexity of the overall 
system. As neural networks become larger and more complex, they too may become hard 
to read, modify, test and extend. Moreover, when building biological neural networks, 
modularization is further motivated by taking into consideration the way we analyze the 
brain as a set of different brain regions. The general methodology for making a complex 
neural model of brain function is to combine different modules corresponding to different 
brain regions. To model a particular brain region, we divide it anatomically or physio-
logically into different neural arrays. Each brain region is then modeled as a set of neuron 
arrays, where each neuron is described for example by the leaky integrator, a single-com-
partment model of membrane potential and firing rate. (However, one can implement 
other, possibly far more detailed, neural models.) For example, figure 1.1 shows the basic 
components in a model describing the interaction of the Superior Colliculus (SC) and the 
saccade generator of the Brainstem involved in the control of eye movements. In this 
model, each component or module represents a single brain region.  
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BrainStem

Superior
Colliculus

Figure 1.1 
The diagram above shows 
two interconnected 
modules, the Superior 
Colliculus (SC) and the 
Brainstem. Each module is 
decomposed into several 
submodules (not shown 
here) each imple-mented 
as an array of neurons 
identified by their different 
physiological response 
when a monkey makes 
rapid eye movements. 

BrainStem

Lateral Basal
Ganglia

Medial Basal
Ganglia

Substantia
Nigra

Compacta

PreFrontal
Cortex

Frontal Eye
Field

Thalamus

Lateral Inter
Parietal

Superior
Colliculus

PFCgo

Structured models provide two benefits. The first is that it makes them easier to 
understand, and the second is that modules can be reused in other models. For example, 
figure 1.2 shows the two previous SC and BrainStem modules embedded into a far more 
complex model, the Crowley-Arbib model of basal ganglia. Each of these modules can be 
further broken down into submodules, eventually reaching modules that take the form of 
neural arrays. For example, figure 1.3 shows how the single Prefrontal Cortex module 
(PFC) can be further broken down into four submodules, each a crucial brain region 
involved in the control of movement. 

There are, basically, two ways to understand a complex system. One is to focus in on 
some particular subsystem, some module, and carry out studies of that in detail. The other 
is to step back and look at higher levels of organization in which the details of particular 

Figure 1.2  
The diagram shows the SC 
and BrainStem modules from 
figure 1.1 embedded in a 
much larger model of 
interacting brain regions. 
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modules are hidden. Full understanding comes as we cycle back and forth between differ-
ent levels of detail in analyzing different subsystems, sometimes simulating modules in 
isolation, at other times designing computer experiments that help us follow the dynamics 
of the interactions between the various modules.  

Thus, it is important for a neural network simulator to support modularization of 
models. This concept of modularity is best supported today by object-oriented languages 
and the underlying modeling concepts described next.  

PFCmem
PFCmem

PFCgo
PFCgo

PFCseq

PFCfovea
LIPvis

LIPmem

THPFCmem

PFCfovea Figure 1.3
The Prefrontal Cortex (PFC) 
model is further 
decomposed into 4 
submodules. 

Object-Oriented Programming  
Object-oriented technology has existed for more than thirty years. However, only in this 
past decade have we seen it applied in so many industries. What makes this technology 
special is the concept of the object as the basic modularization abstraction in a program. 
Prior to object-orientation, a complete application would be written at the data and func-
tion level of abstraction. Since data and functions are global to a program any changes to 
them could potentially affect the complete system, an undesired effect when large and 
complex systems are being modified. To avoid this problem an additional level of 
abstraction is added—the object. At the highest level, programs are made exclusively out 
of objects interacting with each other through pre-defined object interfaces. At the lowest 
level, objects are individually defined in terms of local data and functions, avoiding 
global conflicts that make systems so hard to manage and understand. Changes inside 
objects do not affect other objects in the system so long as the external behavior of the 
object remains the same. Since there is usually a smaller number of objects in a program 
than the total number of data or functions, software development becomes more manage-
able. Objects also provide abstraction and extensibility and contribute to modularity and 
code reuse. These seemingly simple concepts have great repercussion in the quality of 
systems being built and its introduction as part of neural modeling reflects this. Obvi-
ously, the use of object-orientation is only part of writing better software as well as neural 
models. How the user designs the software or neural architectures with this technology 
has an important effect on the system, an aspect which becomes more accessible by pro-
viding a simple to follow yet powerful modeling architecture such as that provided by 
NSL.

Concurrency in Neural Networks  
Concurrency can play an important role in neural network simulation, both in order to 
model neurons more faithfully and to increase processing throughput (Weitzenfeld and 
Arbib 1991). We have incorporated concurrent processing capabilities in the general 
design of NSL for this purpose. The computational model on which NSL is based has 
been inspired by the work on the Abstract Schema Language ASL (Weitzenfeld 1992), 
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where schemas (Arbib 1992) are active or concurrent objects (Yonezawa and Tokoro 
1987) resulting in the ability to concurrently process modules. The NSL software sup-
plied with this book is implemented on serial computers, emulating concurrency. Exten-
sions to NSL and its underlying software architecture will implement genuine 
concurrency to permit parallel and distributed processing of modules in the near future. 
We will discuss this more in the Future Directions chapter. 

1.3 Modeling and Simulation in NSL 
As an object-oriented system, NSL is built with modularization in mind. As a neural 
network development platform, NSL provides a modeling and simulation environment 
for large-scale general-purpose neural networks by the use of modules that can be 
hierarchically interconnected to enable the construction of very complex models. NSL 
provides a modeling language NSLM to build/code the model and a scripting language 
NSLS to specify how the simulation is to be executed and controlled. 

Modeling 
Modeling in NSL is carried out at two levels of abstraction, modules and neural net-
works, somewhat analogous to object-orientation in its different abstraction levels when 
building applications. Modules define the top-level view of a model, hiding its internal 
complexity. This complexity is only viewed at the bottom-level corresponding to the 
actual neural networks. A complete model in NSL requires the following components: (1) 
a set of modules defining the entire model; (2) neurons comprised in each neural module; 
(3) neural interconnections; (4) neural dynamics; and (5) numerical methods to solve the 
differential equations. 

Module Level 1

Module Level 2

Figure 1.4
The NSL computational 
model is based on 
hierarchi-cal modules. A 
module at a higher level 
(level 1) is decomposed 
into submod-ules (level 2). 
These sub-modules are 
themselves modules that 
may be further 
decomposed. Arrows show 
data communication among 
modules.

Modules
Modules in NSL correspond to objects in object orientation in that they specify the 
underlying computational model. These entities are hierarchically organized as shown in 
figure 1.4.  

Thus a given module may either be decomposed into a set of smaller modules or 
maybe a “leaf module” that may be implemented in different ways, where neural net-
works are of particular interest here. The hierarchical module decomposition results in 
what is known as module assemblages—a network of submodules that can be seen in 
their entirety in terms of a single higher-level module. These hierarchies enable the 
development of modular systems where modules may be designed and implemented 
independently of each other following both top-down and bottom-up development. 
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Module Level

Neural Network Level

Figure 1.5
A module in NSL imple-
mented by neural networks 
made of multiple neurons. 

Neural Networks  
Some modules will be implemented as neural networks where every neuron becomes an 
element or attribute of a module, as shown in figure 1.5. (Note that although neurons also 
may be treated as modules, they are often treated as elements inside a single module—
e.g., one representing an array of neurons—in NSL. We thus draw neurons as spheres 
instead of cubes to highlight the latter possibility.) 

There are many ways to characterize a neuron. The complexity of the neuron 
depends on the accuracy needed by the larger model network and on the computational 
power of the computer being used. The GENESIS (Bower and Beeman 1998) and 
NEURON (Hines 1997) systems were designed specifically to support the type of model-
ing of a single neuron which takes account of the detailed morphology of the neuron in 
relation to different types of input. The NSL system was designed to let the user represent 
neurons at any level of desired detail; however, this book will focus on the simulation of 
large-scale properties of neural networks modeled with relatively simple neurons. 

mp mfsm

input neuron output

We consider the neuron shown in figure 1.6 to be “simple” since its internal state is 
described by a single scalar quantity, membrane potential mp, its input is sm and its out-
put is mf, specified by some nonlinear function of mf.

The neuron may receive input from many different neurons, while it has only a sin-
gle output (which may “branch” to affect many other neurons or drive the network’s 
outputs). The choice of transformation from sm to mp defines the particular neural model 
utilized, including the dependence of mp on the neuron’s previous history. The membrane 
potential mp is described by a simple first-order differential equation, 

( ) ( )tmpsmf
dt

tdmp
,,=� (1.1)

depending on its input s. The choice of f defines the particular neural model utilized, 
including the dependence of mp on the neuron’s previous history. In this example we 
present the leaky integrator. The leaky integrator model is described by 

Figure 1.6 
Single compartment neural 
model represented by a value 
mp corresponding to its 
membrane potential, and a value 
mf corresponding to its firing, 
the only output from the neuron. 
sm represents the set of inputs 
to the neuron. 
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( ) ( ) ( )tsmtmptmpsmf +�=,, (1.2)

while the average firing rate or output of the neuron, mf, is obtained by applying some 
“activation function” to the neuron’s membrane potential, 

( ) ( )( )tmptmf �= (1.3)

where � usually is described by a non-linear function also known as threshold functions 
such as ramp, step, saturation or sigmoid. The general idea is that the higher the neuron 
membrane potential, the higher the firing rate, and thus the greater its effect on other 
neurons to which it provides input. 

The neural network itself is made of any number of interconnected neurons where 
the most common formula for the input smj to a neuron mj from the output of a neuron mi

as shown in figure 1.7 is given by, 

(1.4)

where ufi(t) is the firing rate of the neuron whose output is connected to the ith input line 
of neuron vj, and wij is the corresponding weight on that connection (up and vp are analo-
gous to mp, while uf and vf are analogous to mf). These interconnections are called exci-
tatory or inhibitory depending on whether the weight wij is positive or negative. 

vpjupi

wij

vfj
ufi svj

vj

sui

ui neuronneuron

Figure 1.7
Interconnection between 
two neurons showing the 
input svj to a neuron vj

from the output of a 
neuron ui with connection 
weight wij

When modeling a large number of neurons it becomes extremely tedious to individu-
ally name each one of the neurons. In the brain as well as in many neural engineering 
applications, we often find neural networks structured into two-dimensional arrays, with 
regular connection patterns between various arrays. For this reason, as part of our model-
ing primitives, we extend a simple single neuron into neuron arrays and single neuron-to-
neuron links into connection masks, describing spatial arrangements among homogene-
ous neurons and their connections, respectively. If mask wk (for -d�k�d) represents the 
synaptic weight from the ufj+k (for -d�k�d) elements to vj element for each j, we then 
have

�
�=

+=
d

dk
kjkj ufwsv (1.5)

The computational advantage of introducing such concepts when describing a 
“regular” neural network, as shall be seen in chapter 3, is that neuron arrays and intercon-
nection masks can then be more concisely represented. Interconnections among neurons 
would then be processed by a spatial convolution between a mask and an array. Once 
interconnections are specified between neurons or neural arrays, we only need to specify 
network input; weights and any additional parameter before simulation can take place.  

Simulation 
The simulation process starts with a model already developed. Simulation involves inter-
actively specifying aspects of the model that tend to change often, in particular parameter 

�
�

=

=
1

0

n

i
iijj ufwsv
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values and input patterns. Also, this process involves specifying simulation control and 
visualization aspects.  

For example, figure 1.8 shows five snapshots of the Buildup Cell activity after the 
simulation of one of the submodules in the Superior Colliculus of the Crowley and Arbib 
model shown in figure 1.1. We observe the activity of single neurons, classes of neurons 
or outputs in response to different input patterns as the cortical command triggers a 
movement up and to the right. We see that the cortical command builds up a peak of 
activity on the Buildup Cell array. This peak moves towards the center of the array where 
it then disappears (this corresponds to the command for the eye moving towards the tar-
get, after which the command is no longer required). 

� �

� �

�

Figure 1.8
An example of Buildup 
Cell activity in the 
Superior Colliculus 
model of figure 1.1. 

It is not only important to design a good model, it is also important to design differ-
ent kinds of graphical output to make clear how the model behaves. Additionally, an 
experiment may examine the effects of changing parameters in a model, just as much as 
changing the inputs. One of the reasons for studying the basal ganglia is to understand 
Parkinson’s disease, in which the basal ganglia are depleted of a substance called dopa-
mine, whose depletion is a prime correlate of Parkinson’s disease. The model of figure 
1.2 (at a level of detail not shown) includes a parameter that represents the level of 
dopamine. The “normal” model, yields two saccades, one each in turn to the positions at 
which the two targets appeared; the “low-dopamine” model only shows a response to the 
first target, a result which gives insight into some of the motor disorders of Parkinson’s 
disease patients. The actual model is described in detail in chapter 15. We shall describe 
the simulation process in more detail in chapter 2. 

1.4 The NSL System 
The Neural Simulation Language (NSL) has evolved for over a decade. The original 
system was written in C (NSL 1) in 1989, with a second version written in C++ (NSL 2) 
in 1991 and based on object-oriented technology. Both versions were developed at USC 
by Alfredo Weitzenfeld, with Michael Arbib involved in the overall design. The present 
version NSL 3 is a major release completely restructured over former versions both as a 
system as well as the supported modeling and simulation, including modularity and con-
currency. NSL 3 includes two different environments, one in Java (NSLJ, developed at 
USC by Amanda Alexander’s team) and the other in C++ (NSLC, developed at ITAM in 
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Mexico by Alfredo Weitzenfeld’s team), again with Arbib involved in the overall design. 
Both environments support similar modeling and simulation, where each one offers dif-
ferent advantages to the user. 

The advantages with Java are  

� portability: Code written in Java runs without changes “everywhere”;  

� maintainability: Java code requires maintaining one single software version for 
different operating systems, compilers and other software on different platforms.  

� web-oriented: Java code runs on the client side of the web, simplifying exchange of 
models without the owner of the model having to provide a large server on which 
other people can run simulations.  

The advantages with C++ are  

� efficiency: Since C++ is an extension to C, C++ models get simulated on top of one 
of the most efficient execution languages;  

� integration: C++ code may be directly integrated with a large number of software 
packages already in existence written in C++;  

� linkage to hardware: Currently most linkages to robots are done through C and C++; 
however, more and more of these systems are moving to Java. 

The great advantage on having support for both environments is the ability to switch 
between the two of them to get the best of each world with minimum effort. 

The complete NSL system is made of three components: the Simulation System, the 
Schematic Capture System and the Model/Module Libraries, as shown in figure 1.9. 
Three file types are used as communication between the three modules: 

� mod files describing NSL models, executed by the Simulation System, stored in the 
Model Library and optionally generated from SCS, 

� nsl files describing NSL model simulation, executed by the Simulation System and 
stored in the Model/Module Libraries, 

� sif files storing schematic information about the model stored in the Model/Module 
Libraries as well. 

Simulation
System

BMW

sif files

modfiles

Main Components of the NSL System

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 1.9
Schematic Capture System 
and its relation to the NSL 
System.1

Simulation System 
The NSL Simulation System comprises several subsystems: the Simulation subsystem
where model interaction and processing takes place and the Window Interface subsystem
where all graphics interaction takes place, as shown in figure 1.10. Note that we are now 
discussing the subsystems or modules that comprise the overall simulation system, not 
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the modules of a specific neural model programmed with NSL. But in either case, we 
take advantage of the methodology of object-oriented programming. 
The subsystems of the Simulation System are:

� ����Control where external aspects of the simulation are controlled by the Script 
Interpreter and the Window Interface;  

� Scheduler which executes the model and modules in a specific sequence. 

� Model Compiler where NSLM code is compiled and linked with NSL libraries to 
generate an executable file; 

� Script Interpreter that can be used to specify parameters and to control the simula-
tion. 

� The subsystems of the Window Interface are: 

� Graphics Output, consists of all NSL graphic libraries for instantiating display 
frames, canvases and graphs; 

� Graphics Input consists of NSL window controllers to interact with the simulation 
and control its execution and parameters. 

I/O Control Scheduler

Model
(mod) files

Script
Interpreter

Window Interface subsystem

Main System

Simulation subsystem

Model
Compiler

Script
(nsl) files

Graphics
Output

Graphics
Input

Figure 1.10
NSL Simulation System 
composed of the 
Simulation and Window 
Interface subsystems. 

Schematic Capture System 
NSL supports development of models by explicitly programming the code for each mod-
ule as well as visual modeling by using the Schematic Capture System (SCS). The 
Schematic Capture System facilitates the creation of modular and hierarchical neural net-
works. SCS provides graphical tools to build hierarchical models following a top-down 
or bottom-up methodology. In SCS the user graphically connects icons representing mod-
ules, into what we call a schematic. Each icon can then be decomposed further into a 
schematic of its own. The benefit of having a schematic capture system is that modules 
can be stored in libraries and easily accessed by the schematic capture system. As more 
modules are added to the NSL Model/Module Libraries, users will benefit by being able 
to create a rich variety of new models without having to write new code. When coming to 
view an existing model, the schematics make the relationship between modules much 
easier to visualize; besides simplifying the model creation process. To create a new 
model, the user places icons on the screen representing modules already available and 
connects them to provide a high level view of a model or module. As modules are sum-



I N T R O D U C T I O N    1 1

moned to the screen and interconnected, the system automatically generates the corre-
sponding NSL module code. The success of this will obviously depend on having good 
modules and documentation.  

Figure 1.11 
Schematic Editor showing 
the Crowley Top Level 
Saccade Module. Thin  
lines describe connections 
among sub-modules while 
thick lines describe entry 
(with arrows) and exit 
points to and from mod-
ules.

Figure 1.11 shows a schematic of the top level of a model. The complete schematic 
describes a single higher-level module, where rectangular boxes represent lower-level 
modules or sub-modules. These modules can be newly defined modules or already exist-
ing ones. Thin lines describe connections among sub-modules while thick lines describe 
entry (with arrows) and exit points to and from modules. Pentagon shaped boxes repre-
sent input ports (when lines come out from a vertex) and output ports (when lines point to 
a side) for the higher-level module whose schematics is being described.  

SCS also provides many of the library functions that are necessary to organize and 
manage the modules including model and module version management as overviewed in 
the following section. More details of the Schematic Capture System are described in 
chapter 4. 

Model/Module Libraries 
Models and modules developed under NSL are hierarchically organized in libraries. NSL 
supports two library structures. The first is called the basic hierarchy while the second 
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structure is known as the extended hierarchy built and maintained by the Schematic 
Capture System (SCS). Both are shown in table 1.2. The difference between the two is 
how modules are managed. The basic organization does not give a version number to 
modules only models. The extended one gives version numbers to both models and mod-
ules, and contains an extra directory, called the exe directory, for executables specific to 
different operating systems for the C++ version of the software. 

Library Organization 

Basic Hierarchy Extended Hierarchy 

nsl3_0 nsl3_0

Library Name Library Name 

Model Name Model or Module Name 

Version Number Version Number 

io src doc io src exe doc

Table 1.1 
NSL model library hierarchy 
organization for the Basic 
Hierarchy on the left and the 
Extended Hierarchy on the 
right�

There are several reasons for maintaining both systems. In the extended one, the user 
can experiment with different versions of a module shared among a number of models. 
Typically, larger models will share modules thus needing management by the SCS 
system. For the basic structure (not using SCS) it is easier to manage all of the module 
files in one directory, src. Additionally, if the modules are not intended to be shared or 
contributed to Brain Models on the Web (BMW), then they do not necessarily need to be 
versioned. 

Basic Hierarchy 
In the general organization of the basic hierarchy levels in the tree correspond to 
directories. The root of the hierarchy trees is “nsl3_0”, the current system version. A 
library name is defined to distinguish between libraries. Obviously there may be multiple 
model libraries. Each library may contain multiple models identified by their corre-
sponding name. Each model is then associated with different implementations identified 
each by its corresponding numerical version; (version numbers start at 1_1_1). At the end 
of the directory hierarchy, the last level down contains the directories where the actual 
model or module files are stored: input/output files (io), source module files (src) and 
documentation (doc). The io directory stores input and output files usually in the form of 
NSLS script files. The src directory contains source code that needs to be compiled writ-
ten in the NSLM modeling language; this directory also includes files produced from the 
compilation including executables. The doc directory contains any documentation rele-
vant to the model including theoretical background, why certain values were chosen for 
certain parameters, what is special about each of the protocols, how to perform more 
sophisticated experiments, relevant papers, etc. All models given in this book where 
originally developed using the basic system. table 1.2 illustrates the directory hierarchy 
for the basic book models described in chapters 2 and 3 in the book. Note that we actually 
have two versions of the Hopfield model; one where we illustrate the use of scripts for 
input, and another for illustrating the use of input and output modules. 



I N T R O D U C T I O N    1 3

Basic BookLib 

MaxSelectorModel HopfieldModel BackPropModel

1_1_1 1_1_1 1_2_1 1_1_1

io src doc io src doc io src doc io src doc

Extended Hierarchy 
In the extended hierarchy, the directory structure for the library is almost identical to the 
basic one except for the fact that each module is versioned, and there is an extra exe 
directory. There may be multiple libraries, and it is up to the model builder to decide 
what modules and models will go into each. Also, each library may contain multiple 
models and modules, identified by their corresponding name. Each model and module 
must have a unique name. Also, each model and module is then associated with different 
implementations identified by its corresponding numerical version, (version numbers 
start at 1_1_1). Obviously, many versions of a model or module may exist in a library, 
thus we identify versions using a version identification number composed of three digits 
denoting the model or module release number, revision number, and modification num-
ber, respectively. All numbers are initialized to 1. At the end of the directory hier-archy, 
the last level down contains the directories where the actual model or module files are 
stored: input/output files (io), source module files (src), documentation (doc), and the 
executable files (exe). Typically the io and exe directories are empty except for model 
directories. In table 1.3, we illustrate the MaxSelectorModel hierarchy previously shown 
in table 1.2 in the basic architecture and now shown with modules in the extended library. 

Extended BookLib 

MaxSelectorModel MaxSelector MaxSelectorStimuli MaxSelectorOutput ULayer VLayer 

1_1_1 1_1_1 1_1_1 1_1_1 1_1_1 1_1_1
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SCS manipulates the model and module library allowing the user to create new 
libraries as well as add new revisions to existing models and modules. The user can 
browse and search the libraries for particular models or modules. When building a sche-
matic, the user has the choice of choosing the most recent modification of a model or 
module, or sticking with a fixed version of that model or module. If the user chooses a 
specific version this is called “using the fixed version.” If the user specifies “0_0_0” the 
most current version of the module would be used instead and whenever there is a more 
recent version of the module, that version will be used. This is called “using the floating 
version.” Each individual library file stores metadata describing the software used to 
create the corresponding model/module.  

1.5 Summary 
In this first chapter we have introduced modeling and simulation of neural networks in 
general and in relation to NSL. We also gave an overview of the NSL system components 
including a description of the technology used to build the system as well as simulate 
models using NSL. 

Table 1.3
The extended library structure for 
the basic book library showing 
one of its models, the 
MaxSelector, and its children. 

Table 1.2  
The basic hierarchy organization 
for the book models. 
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Notes 
1. Figure 1.9 also shows BMW (Brain Models on the Web). This is not part of NSL, but 

is a model repository under development by the USC Brain Project in which model 
assump-tions and simulation results can be explicitly compared with the empirical data 
gathered by neuroscientists. 



2 Simulation in NSL 

We will concentrate in this chapter primarily on how to run already existing models and leave new 

model development for the next chapter. Three neural networks simulated in NSL will be 

overviewed in this chapter: Maximum Selector, Hopfield and Backpropaga-tion. Simulation in NSL 

requires a basic level of understanding of neural networks. The models chosen here will help the 

novice gain that understanding because of their simpli-city and importance in the area of neural 

networks.

2.1 Selecting a Model 
The simulation process begins with the selection of an already developed model; the modeling process 

which creates such models will be described in chapter 4, the Schematic Capture System.  

However, if you do not have SCS, then to select a model from the BookLib models, 
simply change directories to where the desired model is located following the path 
<installation-site>/nsl3_0/BookLib/<modelname>. (Note that if you are working on a 
PC, you will want to specify the path using backward slashes “\” instead.) From there you 
will want to change directories to the first version, 1_1_1, and then to the src directory. 
From there either type: 

nslj model_name 

or

nslc model_name 

These commands will invoke NSL and load the model specified. Make sure that your 
system administrator has set up your environment correctly. There are several environ-
ment variables we use for both NSL implemented in C++ and Java. These are discussed 
in chapter 5, The User Interface and Graphical Windows. See Appendix V for further 
details on executing models for the different platforms. 

To select a model from the SCS archive of BookLib models, we must first open the 
library by calling the Schematic Capture System (SCS) responsible for model management 
(see Appendix IV for platform particulars). We execute from a shell (or by double click-
ing). 

prompt> scs 

The system initially presents the Schematic Editor (SE) window as shown in figure 2.1.  

Figure 2.1 
Schematic Editor Window. 
The different menu and 
button options control the 
creation and modification of 
model schematics. 
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To execute an existing model we select “Simulate Using Java” (or “Simulate Using 
C++”) from the “Tools”menu, as shown in figure 2.2.

Figure 2.2 
Select “Simulate Using Java” 
from the “Tools” menu to 
bring a listing of models 
available in the library of 
models and modules which 
are available for use in Java. 

SCS then presents a list of available models, as shown in figure 2.3.  

Figure 2.3 
Open Model for Execution 
Window

For example, to choose the MaxSelectorModel, we select the model and version 
found under “nsl3_0/BookLib/ /MaxSelectorModel/1_1_1/”.  

Once we chose the particular model, the system brings up the NSL Executive win-
dow presented in figure 2.4 together with an additional output display window particular 
to this model shown in figure 2.5. At this point we are ready to simulate the selected 
model. Yet, before we do that, we will quickly introduce the NSL Simulation Interface. 

Window Title or Name

Window Control

Executive Menu Bar

Script Window

Figure 2.4 
The NSL Executive window. 
The top part of the window 
contains the title and 
underneath the title is the 
Executive Menu Bar. The 
larger section of the window 
contains the NSL Script 
Window or shell. 
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2.2 Simulation Interface 
The NSL Executive window, shown in figure 2.4, is used to control the complete simulation 

process such as visualization of model behavior. Control is handled either via mouse-driven menu 

selections or by explicitly typing textual commands in the NSL Script (NSLS) window. Since not 

all possible commands are available from the menus, the “NSLS” window/shell is offered for more 

elaborate scripts. 

The top part of the window (or header) contains the window name, NSL Executive, 
and the Window Control (right upper corner) used for iconizing, enlarging and closing 
the window. Underneath the header immediately follows the Executive Menu Bar, con-
taining the menus for controlling the different aspects involved in a simulation. The lower 
portion of the window contains the Script Window, a scrollable window used for script 
command entry, recording and editing. The NSL Script Language is a superset of the pull 
down menus in that any command that can be executed from one of the pull-down menus 
can also be typed in the Script window, while the opposite is not necessarily so. Further-
more, commands can also be stored in files and then loaded into the Script window at a 
later time. The NSLS language supports two levels of commands. The basic level allows 
Tool Command Language commands (TCL) (Ousterhout 94) while the second level 
allows NSL commands. The NSL commands have a special “nsl” prefix to distinguish 
them from TCL commands. These commands are overviewed later in the chapter and are 
discussed thoroughly in chapter 7, the NSL Scripting Language. 

While there is a single NSL Executive/Script window per simulation there may be 
any number of additional output and input windows containing different displays. For 
example, the Maximum Selector model brings up the additional output frame shown in 
figure 2.5. 

NslOutFrame Title

NslOutFrame Menu Bar

NslDrawingArea

NslOutCanvas

Figure 2.5 
MaxSelectorModel 
NslOutFrame.

The top part of the window contains the title or frame name and the very bottom of 
the frame contains the Status line. The status line displays the current simulation time, 
finished cycles, finished epochs, and phase. In the middle, the frame contains the 
NslDrawingArea. In this example, the drawing area contains three NslOutCanvases: the 
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first and third corresponds to Area graphs while the second corresponds to a Temporal
graph. (We will describe these graphs in more detail in chapter 5, The User Interface and 
Graphical Windows.) 

2.3 Simulating a Model 
If a model is a discrete-event or discrete-time model, the model equations explicitly describe how 

to go from the state and input of the network at time t to the state and output after the event 

following t is completed, or at time t+1 on the discrete time scale, respectively. However, if the 

model is continuous-time, described by differential equations, then simulation of the model requires 

that we replace the differential equation by some discrete-time, numerical method (e.g., Euler or 

Runge-Kutta) and choose a simulation time step �t so that the computer can go from state and input 

at time t to an approximation of the state and output at time t+�t. In each case, the simulation of the 

system proceeds in steps, where each simulation cycle updates every module within the model 

once.

In simulating a model, a basic simulation time step must be chosen. Simulation 
involves the following aspects of model interaction: (1) simulation control, (2) visualiza-
tion, (3) input assignment and (4) parameter assignment. 

Simulation Control Simulation control involves the execution of a model. The Executive 

window’s “Simulation,” “Train” and “Run” menus contain options for starting, stopping, 

continuing and ending a simulation during its training and running phase, respectively.  

Visualization Model behavior is visualized via a number of graphics displays. These displays are 

drawn on canvases, NslOutCanvas, each belonging to a NslOutFrame output frame. Each 

NslOutFrame represents an independent window on the screen containing any number of 

NslOutCanvas for interactively plotting neural behavior or variables in general. NSL canvases can 

display many different graph types that display NSL numeric objects—objects containing numeric 

arrays of varying dimensions. For example the Area graph shown in figure 2.5 displays the activity 

of a one-dimensional object at every simulation cycle. the size of the dark rectangle represents a 

corresponding activity level. On the other hand, the Temporal graph shown displays the activity of 

a one-dimensional objects as a function of time (in other words, it keeps a history). 

Input Assignment Input to a model varies both in terms of the particular model but also in terms 

of how it is specified. NSL supports input as script commands in the NSLS language using the 

Script Window, by loading script files, as well as by custom-designed input windows.  

Parameter Assignment Simulation and model parameters can be interactively assigned by the user. 

Simulation parameters can be modified via the “Options” menu while model parameters are 

modified via the Script Window. Additionally, some models may have their own custom-designed 

window interfaces for parameter modification. 

The remaining sections of this chapter illustrate model simulation starting with the 
Maximum Selector model then with Hopfield and finally with Backpropagation.
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Figure 2.6 
The neural network architec-
ture for the Maximum 
Selector (Didday 1976; 
Amari and Arbib 1977) where 
si represents input to the 
network, upi and vp represent 
membrane potentials while 
ufi and vf represent firing 
rates. wm, wui, and wi

correspond to connection 
weights.

2.4 Maximum Selector 
The Maximum Selector neural model (Amari and Arbib 1977) is an example of a biologically 

inspired neural network. The network is based on the Didday model for prey selection (Didday 

1976) and is more generally known as a Winner Take All (WTA) neural network. The model uses 

competition mechanisms to obtain, in many cases, a single winner in the network where the input 

signal with the greatest strength is propagated along to the output of the network.  

Model Description 
The Maximum Selector neural network is shown in figure 2.6. External input to the network is 

represented by si (for 0 � i � n-1). The input is fed into neuron u, with upi representing the 

membrane potential of neuron u while ufi represents its output. ufi is fed into neuron v as well as 

back into its own neuron. vp represents the membrane potential of neuron v which plays the role of 

inhibitor in the network. wm, wui, and wi represent connection weights, whose values are not 

necessarily equal. 

The neural network is described by the following set of equations, 

( ) ( ) ( ) imiui
i

u shvgwufwu
dt

tdu
+��+�= 1�

(2.1)

�v

dv

dt
= �v +wn f ui( )

i=1

n

� � h2

where wu is the self-connection weight for each ui, wm is the weight for each ui for feedback from v,

and each input si acts with unit weight. wn is the weight for input from each ui to v. The threshold 

functions involve a step for f(ui)

f (ui ) =
1 ui > 0

0 ui � 0
��
��
�� (2.2)

and a ramp for g(v)

g(v) =
v v > 0

0 v � 0
��
��
�� (2.3)
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Again, the range of i is 0 � i � n-1 where n corresponds to the number of neurons in 
the neural array u.

Note that the actual simulation will use some numerical method to transform each 
differential equation of the form � dm/dt = f(m,s,t) into some approximating difference 
equation m(t+�t) = f(m(t), s(t), t) which transforms state m(t) and input s(t) at time t into 
the state m(t+�t) of the neuron one “simulation time step” later. 

As the model equations get repeatedly executed, with the right parameter values, ui
values receive positive input from both their corresponding external input and local feed-
back. At the same time negative feedback is received from v. Since the strength of the 
negative feedback corresponds to the summation of all neuron output, as execution pro-
ceeds only the strongest activity will be preserved, resulting in many cases in a “single 
winner” in the network. 

Simulation Interaction 
To execute the simulation, having chosen a differential equation solver (approximation method) 

and a simulation time step (or having accepted the default values), the user would simply select 

“Run” from the NSL Executive’s Run menu as shown in figure 2.7. We abbreviate this as 

Run�Run.

Figure 2.7 
The “Run � Run” menu 
command.

The output of the simulation would be that as shown in figure 2.8.  
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Figure 2.8 
Output of the 
MaxSelectorModel. Notice 
that the second and fourth 
elements in the up
membrane potential layer are 
affected by the input stimuli; 
however, the “winner take 
all” circuit causes the fourth 
element to dominate the 
output, as seen in the firing 
rate, uf.

The resulting written output is displayed in the Executive window’s shell, as shown 
in figure 2.9. 

Figure 2.9 
Executive window showing 
the status from Maximum 
Selector execution. 

Recall that NSLS is the NSL scripting language in which one may write a script file 
specifying, e.g., how to run the model and graph the results. The user may thus choose to 
create a new script, or retrieve an existing one. In the present example, the user gets the 
system to load the NSLS script file containing preset graphics, parameters, input and 
simulation time steps by selecting “System�Nsls file …,” as shown in figure 2.10.  
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Figure 2.10 
Loading a “NSLS” script 
file into the Executive. 

From the file selection pop-up window we first choose the “nsl” directory and then 
MaxSelectorModel, as shown in figure 2.11. Alternatively, the commands found in the 
file could have been written directly into the Script Window but it is more convenient 
the previous way.  

Figure 2.11 
The MaxSelectorModel script 
loaded into the Executive. 

Simulation Control 
Simulation control involves setting the duration of the model execution cycle (also known as the 

delta-t or simulation time step). In all of the models we will present, we will provide default values 

for the simulation control parameters within the model. However, to override these settings the user 

can select from System�Set�RunEndTime and System� Set�RunDelta as shown in figure 

2.12.

Figure 2.12 
Setting system control 
parameters. 
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A pop-up window appears showing the current parameter value that may be modi-
fied by the user. In this model we have set the runEndTime to 10.0, as shown in figure 
2.13, and runDelta to 0.1 giving a total of 100 execution iterations. These values are long 
enough for the model to stabilize on a solution. 

Figure 2.13 
RunEndTime parameter 
setting. 

To execute the actual simulation we select “Run” from the “Run” menu, as we did in 
figure 2.7. 

The user may stop the simulation at any time by selecting the “Run” menu and then 
selecting “Break.” We abbreviate this as Run�Break. To resume the simulation from 
the interrupt point select Run�Continue.

Visualization 
The model output at the end of the simulation is shown in figure 2.8. The display shows input array 

sout with an Area type graph, i.e., the area of the black rectangle codes the size of the 

corresponding input, while array up, with a Temporal type graph, shows the time course for up.

The last canvas shows another Area type graph for uf at the end of the simulation. The largest input 

in sout determines the only element of sout whose activity is still positive at the end of the 

simulation as seen in uf—the network indeed acts as a maximum selector. 

Input Assignment  
The Maximum Selector model example is quite simple in that the input sout is constant. In the 

example chosen, is consists of only two different positive values (set to 0.5 and 1.0) while the rest 

are set to zero (total of 10 elements in the vector). In general, input varies with time. Since input is 

constant in the present case, it may be set similarly to any model parameter. To assign values to 

parameters, we use the “nsl set” command followed by the variable and value involved. For 

example, to specify all ten-element values for sout we would do:1

nsl set maxSelectorModel.stimulus.sout { 0 0 0 1 0 1 0 0 0 0 } 

Since all variables are stored within modules, being themselves possibly stored in 
other modules until reaching the top level model, it is necessary to provide a full “path” 
in order to assign them with new values. (These hierarchies will be made clear in chapter 
3. For the moment simply provide the full specified path.) Note that arrays are set by 
specifying all values within curly brackets. Individual array elements may be set by using 
parentheses around a specific array index, e.g. to set the value of only array element 3 we 
would do (array indices starting with 0): 

nsl set maxSelectorModel.stimulus.sout(3) 1

As previously mentioned, this model is atypical in that the input is constant. In gen-
eral, input varies with time as will be shown in most of the other models in the book. If 
we are dealing with dynamic input we have different alternatives for setting input. One is 
to specify a “nsl set” command with appropriate input values every time input changes. 
Another alternative is to specify the input directly inside the model description or through 
a custom interface. Both Hopfield and Backpropagation models give examples on how to 
dynamically modify input at the script level and through the use of training files 
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described as part of the model definition, respectively. On the other hand, the Adaptation 
model and the Crowley model appearing in the second section of the book are examples 
that set up their input and parameters through custom-designed windows. 

Parameter Assignment 
Parameters whose values were not originally assigned in the model description, or that we may 

want to modify, are specified interactively. Two parameters of special interest in the model are the 

two thresholds, hu and hv. These two parameters are restricted as follows, 0 � hu, and 0 � hv < 1. 

(For the theory behind these restrictions, see Arbib, 1989, Sec.4.4.) Their initial values are set to 

0.1 and 0.5 respectively. These parameters have their values specified with the “set” command 

followed by the variable and value involved 

nsl set maxSelectorModel.maxselector.u1.hu 0.1 

nsl set maxSelectorModel.maxselector.v1.hv 0.5 

To exercise this model the reader may want to change both the input and parameter 
values to see different responses from the model. We suggest trying different combina-
tions of input values, such as changing input values as well as specifying different num-
ber of array elements receiving these values. In terms of parameters we suggest changing 
values for hu and hv, including setting them beyond the mentioned restrictions. Every 
time parameters or input changes, the model should be reinitialized and executed by 
selecting the “run” menu option.  

2.5 Hopfield 
Hopfield networks (Hopfield 1982) are recurrent networks in that their complete output at one time 

step serves as input during the next processing cycle. These networks rely on locally stable states or 

attractors enabling the association of a particular input pattern to one of its “remembered” patterns. 

These networks are also known as associative memories since they will in many cases transform 

the input pattern into one of the stored patterns (encoded in the network weights) that it best 

approximates. Unlike the Maximum Selector, a Hopfield network involves two processing phases—

the training phase where synaptic weights are set to desired values and the running phase where the 

initial state of each neuron is set to the input pattern being tested.  

Hopfield networks have been applied to problems such as optimization as in the 
famous “Traveling Salesman Problem” (Hopfield and Tank, 1985) where given a number 
of cities a salesman must choose his travel route in order to minimize distance traveled. 
In general, it may be quite challenging to go from the specification of an optimization 
problem to the setting of weight matrices to control memory states of a neural network 
which will “solve” the problem. This becomes more difficult as the number of inputs, 
cities in this case, increases. (Due to this difficulty, the “Traveling Salesman Problem” 
has sometimes been called the “Wandering Salesman Problem”!) What makes the matter 
worse is that this “solution” may only be locally optimal, i.e., it may be better than any 
similar solution yet not as good as some radically different solution. Attempts to find 
algorithms that produce better than local optimal solutions (e.g., the introduction of 
noise) have attracted much effort in the neural networks literature, but lie outside our 
present concern—to demonstrate NSL simulation of Hopfield networks. Besides optimi-
zation, Hopfield networks have been used in other practical applications such as error-
correcting codes, reconstruction, and pattern recognition. The example presented in this 
section will be a Hopfield network for recognizing letter patterns. 



S I M U L A T I O N  I N  N S L   2 5

mp

mpi-1, j-1 mpi-1, j

mfi-1, j-1

mpi-1,j+1

mfi-1,j+1mfi-1, j

mfi+1, j

mpi+1, j

mpi, j-1

mfi, j-1

wk,l,i-1,j-1

wk,l,i,j-1

wk,l,i+1,j-1

wk,l,i+1,j+1

wk,l,i,j+1

wk,l,i-1,j+1

wk,l,i+1,j

wk,l,i-1,j

mpi+1, j-1

mfi+1, j-1 mpi+1, j+1
mfi+1, j+1

mpi, j+1
mfi, j+1

Figure 2.14 
The Hopfield network is fully 
connected with the 
restriction that no unit may 
connect to itself. 

Model Description 
A Hopfield network is a discrete-time model consisting of a group of neurons projecting to all other 

neurons in the network with the restriction that no neuron connects to itself and weights are 

symmetric throughout the network, as shown in figure 2.14. The Hopfield model is based on 

asynchronous updating of states: only a single unit, randomly chosen, has its state updated at any 

given time. As a result the state of the chosen unit may change to reflect prior changes in the states 

of other units or may remain the same if those changes “cancel out.” 

The image to be processed does not, as might be expected, provide input to the net-
work throughout processing. But rather the input pattern is used to set the initial states of 
the neurons of the network. To this end, we use double indexing for units m in order to 
make each unit correspond to a single picture element in a two-dimensional image. The 
dynamics of the network is then to convert the original pattern into some desired trans-
formation thereof. Each element in the connection matrix w is then specified through four 
indices. If wklij is the connection between unit mij and unit mkl, then the activity mpkl of 
unit mkl is computed directly from the input from all other connections where mfij is the 
output from neuron mij. The computation is given by 

� �=+
i j

ijklijkl tmfwtmp )()1( (2.4)

Note that unlike the leaky integrator model, the state of a neuron in this discrete-time 
model does not depend on its previous state—it is completely determined by the input to 
the neuron at that time step. For our example, we concentrate on binary Hopfield net-
works using discrete neurons whose values can be either +1 or -1. The state of a neuron is 
given by 

�
�
�

<�
�

=
0if1

0if1

kl

kl
kl mp

mp
mf (2.5)
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To analyze the network, Hopfield (1984) suggested viewing the network as minimizing 
an energy function E given by  

� � � ��=
k l i j

ijklklij mpmpwE
2

1
(2.6)

Each term is composed of the state of the mij unit, the state of the mkl unit and the 
strength of the connection wklij between the two units. (Sophisticated readers will note 
that each neuron has threshold zero.) This energy function may be interpreted as a meas-
ure of constraint satisfaction in the network. If we consider that neurons represent 
hypotheses in a problem, with an assertion of the hypothesis seen as corresponding to the 
+1 state of a neuron, and connection weights encode constraints between hypotheses, 
then the energy function is chosen to be a measure of the overall constraint violation in 
the current hypotheses. A low energy state would correspond to a state of maximum 
agreement between pairs of coupled assertions, while energy would increase when states 
become in disagreement. So long as the weights wklij are symmetric, wklij = wlkji, some 
simple algebra (omitted here) shows that changes in state during asynchronous updates 
always decrease the energy of the system. Of course, if the “update” of a neuron leaves 
its state unchanged, then the state of the whole system and thus its energy also remain 
unchanged. Because all terms are finite there is an energy lower bound in the system and 
the energy function must have at least one minimum, although many minima may exist. 
As the system evolves with time, its energy decreases to one of the minimum values and 
stays there since no further decreases are possible. These points are known as local 
energy minima—we say that they are attractors because states move as if attracted to 
them; once at an energy minimum, the state of the network remains there, so we may also 
speak of these as fixed points. We can arrange the network in such a way that the desired 
associations occupy low energy points in state space so that the network will seek out 
these desired associations. In the present section, we look at a network such that we pre-
sent noisy images and get back the image that most resembles it by comparing corre-
sponding fixed points.  

The key to defining a Hopfield network is in choosing the weight matrix. In the pre-
sent image processing example, we initialize the synaptic weights of the network using a 
given set of input vectors, i.e., n exemplars patm for 0 � m < n. We define the weight 
matrix w as

��

�
�
� ==

= � otherwise

,0

m
mijmklklij patpat

jlik
w (2.7)

for all n exemplars or training patterns in the network. If the input vectors are orthogonal (i.e., their 

scalar product is 0) then Hopfield guarantees that each exemplar becomes a fixed point of the 

network. (The mathematical justification requires some simple linear algebra. See, e.g., Section 8.2 

of Arbib 1989.) 

Simulation Interaction 
We start the simulation interaction by selecting the Hopfield model by selecting 

“HopfieldModel.nsl” as shown in figure 2.15 (after selecting “system�Nsls file…” as shown in 

figure 2.10). 
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Figure 2.15 
The Hopfield model
opened by selecting 
HopfieldModel.nsl from  
the “io” directory. 

The example we have chosen is a pattern recognition problem where we train the 
network to remember letters A, B, C, D and E, as shown in figure 2.16. During testing we 
shall use one of these letters or a similar pattern as input. We have designed the particular 
patterns for each letter trying to keep orthogonality between them, that is, they are as 
distinct as possible. This is an important requisite in Hopfield networks for good associa-
tion.  

Figure 2.16 
Letter A, B, C, D and E,  
used for setting the 
connection weights of the 
Hopfield network. Here we 
indicate the connections for 
a typical neuron. 

Simulation Control 
Two simulation phases, for training and running, are involved in the Hopfield model as opposed to 

the single one in the Maximum Selector model. The training phase in Hopfield is unusual in that 

connection weights are not learned but adjusted directly from input patterns, as opposed to the 

training phase in most other training algorithms such as Backpropagation. We set trainEndTime to 

1.0, and also trainDelta to 1.0, giving a total of 1 iteration through all the patterns. Additionally, the 

train cycle is executed for a single epoch, a single pass over all training patterns, thus we set 

trainEpochSteps to 1 as well. All the control commands are set in the “hopfield.nsl” file, including 

specification of the five letters, A, B, C, D and E chosen for the example. 

Once all letters have been read we are ready to execute the run phase indefinitely 
until a stable solution is reached. Depending on the test letter the solution may take a 
different number of time steps. Thus, the model will stop running only when the solution 
has stabilized, in other words, when output for a new time step would yield exactly the 
same output as in the previous time step. To achieve this, we set runEndTime to 5000 
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(corresponding to protracted execution; alternatively, we could specify that detection of a 
suitable period of constant internal states makes it stop) and runDelta is set to 1.0 (this 
value is arbitrary in discrete-time models). To execute the running phase we select “Run” 
from the Run menu. To start processing all over again we would execute “Simulation�
initModule” followed by the training phase and then the run phase.  

Figure 2.17 
The figure presents the 
5x5x10x10 weight array after 
training the Hopfield network. 
The 5x5 array organization 
represents the twenty-five 
10x10 sub-matrices. 

Visualization 
The stored script file generates a number of display frames. We show in figure 2.17 the matrix of 

connection weights that you should obtain after training the model with letters A, B, C, D and E.  

Once the network has completed the training cycle we input different letters to recall 
the memorized letter closer to it. We first try the model by recalling letters from the 
original ones, as shown in figure 2.18.  

Figure 2.18 
The top portion of the figure 
shows the input letter A, 
while the lower portion 
shows the output at the end 
of the simulation. In this 
simpler case letter A is 
recalled exactly as presented. 

We show the energy as a function of time in figure 2.19, notice how it goes down as 
the network settles into a solution. 
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Figure 2.19 
Energy as a function of time. 

The network is able to recall correct answers from noisy versions of these letters. For 
example, the input image shown in figure 2.20 would recall letter A. Watch how the  
isplay reveals the cleaning up of the noisy image.  

Figure 2.20 
Recalling letter A from  
noisy image. 

We can also input a letter such as an F that closely resembles letter E in the training 
set, as shown in figure 2.21. 

Figure 2.21 
Recalling letter E from letter 
F, the closest to it in the 
training set. 

In some cases the network may “remember” patterns that were not in the original set 
of examples, as shown in figure 2.22. These are called spurious states, unexpected 
valleys or local minima in the energy function, an unavoidable feature of Hopfield net-
works where processing is “stuck” in intermediate undefined states. 

Figure 2.22 
Spurious state of the 
Hopfield network. 

This aspect exemplifies one of the shortcomings of Hopfield networks in terms of its 
tendency to stabilize to a local rather that a global minimum of the energy function. An-
other shortcoming relates to the capacity of Hopfield networks is that its capacity goes 
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down as the number of stored patterns increases beyond some critical limit. This results 
in crosstalk from nonorthogonal patterns causing attractors to wander away from the 
desired locations. As more nonorthogonal patterns are stored, the more likely errors 
become (Abu-Mustafa and St. Jacques 1989). Hopfield (1982) has shown that if more 
patterns are stored than 15% of the number of units in the network (in our example 15 
patterns, compared to 100 units in total), the system randomizes its energy minima. In 
other words, above this critical value the retrieved pattern has no relation to the stored 
pattern. (Of course, if there are 100 neurons, then one can store 100 orthogonal patterns. 
However, “real” patterns such as the letters of the alphabet are very unlikely to form an 
orthogonal set of vectors. Thus the mathematical results are based on expected perform-
ance when vectors are chosen at random. The point here is that if a few vectors are cho-
sen at random, with each “pixel” as likely to be on as off, their pairwise scalar products 
will be close to zero, but this becomes more and more unlikely as the number of patterns 
increases. The surprise, to people unacquainted with critical phenomena in statistical 
mechanics, is that there is a critical number of patterns at which quasi-orthogonality 
breaks down, rather than a slow degradation of performance as the number of patterns 
increases.)

Input Assignment  
Input plays an important and delicate role in the model. During training, network weights are set 

according to input matrices representing letters to be remembered. During an execution or 

simulation run, the network is given an input matrix to be associated with one of its remembered 

states that best matches the pattern. 

In the Maximum Selector model we showed how we set constant input, in a manner 
similar to parameter assignment. In the training phase of the Hopfield model, we need 
dynamic input to read in a sequence of n input patterns. In the present model, these do not 
function as neural network inputs (as might happen if we modeled an explicit learning 
model) but instead serves as input for a process that computes weights according to equa-
tion (2.7). Training the Hopfield model thus requires dynamic input. We read in the n 
training patterns by calling the “nsl set” command multiple times. In the example each 
letter corresponds to a 10x10 matrix. For example, letter “A” is defined as follows: 

nsl set HopfieldModel.input.out { 

{ -1 -1 1 1 1 1 -1 -1 -1 -1 } 

{ -1 1 1 1 1 1 1 -1 -1 -1 }  

{ 1 1 1 1 1 1 1 1 -1 -1 }  

{ 1 1 -1 -1 -1 -1 1 -1 -1 -1 } 

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 1 1 1 1 1 1 -1 -1 }  

{ 1 1 1 1 1 1 1 1 -1 -1 }  

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }

{ 1 1 -1 -1 -1 -1 1 1 -1 -1 }} 

Note the curly brackets separating matrix rows. The rest of the letters are defined in a 
similar way. In order to control the input in a dynamic way we set the input from the 
script window for each letter being computed by the weight assignment equation fol-
lowed by the Train command (performs initTrain, simTrain repeated, endTrain) with 
each epoch incrementing the expressions in Equation (2.7) by adding in the terms corre-
sponding to the current pattern pattm.

nsl train
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We now turn to the “input” for the Running phase. As we have seen, a Hopfield net-
work does not have input in the conventional neural network sense. Instead, the “input” 
sets the initial state of the network, which then runs to equilibrium, or some other halting 
condition. The “output” for this particular run is taken from the final state of the network. 
In each run phase of a simulation, we set the “input” to any arbitrary pattern (i.e., it will 
probably not belong to the training set) and then run the network as many cycles as 
necessary. We shall look at the details for defining this model in chapter 3, The Modeling 
Overview. 

Parameter Assignment 
There are no parameters that need to be adjusted in the model. Being a discrete-time model, 

Hopfield updates the state directly from its current input and state. Unlike the leaky integrator, there 

are no time constants. Weights are computed by the training phase and neuron thresholds are set to 

zero.  

You may exercise the model by modifying both the test-input patterns as well as the 
patterns used for training. They do not even have to be letters. 

2.6 Backpropagation 
Backpropagation (Werbos 1974; Rumelhart et al. 1986) is an especially widespread neural network 

architecture embodying supervised learning based on gradient descent (“hill climbing” in the 

downward direction). Supervised learning involves a training set representing both the given 

problem and the corresponding solution defined as a set of (input, target) training pairs. The goal of 

successful learning is to acquire general knowledge about the data or training set so the network 

can use it to resolve similar problems it has not seen before. There are two important factors in 

building a successful backpropagation network: the training set and the network configuration.

The training set consists of a number of training pairs where each pair (input, target) 
contains a target vector that is deemed the correct response to its corresponding input 
vector. A “supervisor” compares the resulting network output for a given input vector 
against the target vector to produce an error. This error is then used to drive the adjust-
ment of weights in the network in such a way that the error is reduced to its minimum. 
The process of error minimization consists of following a steep path down the input-
output error function. Although there is no guarantee of minimizing all errors (gradient 
descent may only find a local minimum, like a valley high in the hills, as for Hopfield), a 
backpropagation network is usually able after many training cycles to reduce the errors 
to a satisfying degree.  
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The network configuration consists of neurons organized into at least three different 
layers: an input layer, one or more hidden or middle layers and an output layer (figure 
2.23). The network processes information in two distinct modes, a feedforward and a 
backpropagation mode. The feedforward mode is just the normal mode of operation of a 
neural network without loops: activity is fed forward from one layer to the next (input to 
hidden layer, hidden to additional hidden layers if more than one exists, and finally hid-
den to output layer). There are no loops in strong contrast to the fully recurrent Hopfield
network. In the backpropagation mode, learning propagates backwards by adjusting 
synaptic weights from output to input layers. The most common configuration is a three-
layer network with all possible connections from each layer to the next. Implementing 
four or more layers is usually discouraged because of the computational burden of the 
backpropagation training process. Both mathematical proof and practical uses of back-
propagation show that three-layer networks are sufficient for solving most problems 
(Rumelhart, et al. 1986).  

In designing the network configuration, the most important parameter is the network 
size and the number of units used in the hidden layer to represent features of the problem. 
There are tradeoffs to consider. With too large a number of hidden units, the network will 
have the ability to memorize each element of the training set separately, and thus will not 
generalize well. With too small a number of hidden units, there may not be enough mem-
ory to store the knowledge (refer to Smith (1993) on how to build appropriate network 
configurations). 

Backpropagation has been applied to a large number of applications in many domain 
areas, from handwriting recognition and speech synthesis to stock market prediction and 
on. 

Model Description 
As we have seen, Backpropagation is a typical multi-layer neural network model consisting of an 

input layer, hidden or middle layer(s), one in this case, and an output layer (figure 2.23). The 

network is fully connected from one layer to the next, but lacks any connectivity between neurons 

belonging to the same layer, or back to previous layers.  

The BackPropagation algorithm works in two phases, as in Hopfield. First, a training 
phase adjusts network weights and then a running phase matches patterns against those 

Figure 2.23 
The Backpropagation network 
architecture is made of an input 
layer connected to a hidden 
layer that is then connected to 
an output layer. Units are fully 
connected between layers 
without any interconnection to 
other units in the same layer. 
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already learned by the network. However, these two phases are not to be confused with a 
feedforward and a backpropagation modes introduced above. The training phase is made 
up of a large number of learning cycles, each comprising a forward pass (feedforward 
mode) and backward pass (backpropagation mode). The running phase is made of a 
single forward pass taking a single cycle although sharing the same forward pass equa-
tions (feedforward mode) as in the training phase.  

Feedforward Mode 
During the feedforward mode, the network reads an input vector that is fed into the input layer. The 

input layer does not do any computation on the input pattern and simply sends it out to the hidden 

layer. Both the hidden layer and output layer have their neuron activity (corresponding to the 

membrane potential in more biologically oriented models) defined as a direct summation of all 

inputs to the neuron multiplied by their respective weights. In the model, in represents a unit in the 

input layer, mpp represents a neuron in the hidden layer and mpq a neuron in the output layer. 

Hidden Layer 
The membrane potential mpp for a neuron in the hidden layer receives its activation from the input 

layer multiplied by the respective weights, as described next. 

p
s

sspp hinwmp += � (2.8)

where hp is the threshold value. 

After mpp is computed, an activation function is used to produce the output mfp.

( ) ( )pp hmpppp
e

hmpfmf
+�+

=+=
1

1
(2.9)

where f is a sigmoid function used to compress the range of mpp so that mfp lies between zero and 

one, and e is the mathematical exponential constant. The sigmoid function is used since 

Backpropagation requires the activation function to be everywhere differentiable. The sigmoid 

function not only satisfies this requirement but also provides a form of automatic gain control. If 

mpp is near one or zero, the slope of the input/output curve is shallow and thus provides a low gain. 

The sigmoid function also has the advantage that large mpp values will not dominate small mpp

values in influencing the network in going towards the global minimum. 

Output Layer 
The membrane potential mpq for a neuron in the output layer receives input from the hidden layer 

multiplied by the respective weights. 

�=
p

ppqq mfwmp (2.10)

where hq is the threshold value. 

After mpq is calculated, an activation function is used to produce the output mfq.

( ) ( )qq hmpqqq
e

hmpfmf +�+
=+=

1

1
(2.11)

and the activation function f is similar to that defined for neurons in the hidden layer. 
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Backpropagation Mode  
While the feedforward mode is used during both the training and running phases of the network, 

the backpropagation mode is only used during training. For each cycle of training, the simulator 

reads a pair of input and target vectors from a training data file. The input vector is fed into the 

input layer for a feedforward computation, while the target vector is set aside for later error 

computation. After completion of the forward activation flow, each output neuron will receive an 

error value—the difference between its actual and desired input—from the training manager 

module, (the training manager module will be discussed in detail in chapter 3, The Modeling 

Overview).The backpropagation mode then adjusts the weights according to a modified gradient 

descent algorithm wherein weight adjustment propagates back from the output layer through the 

hidden layers of the network.  

Output Layer 
The error is first calculated for the output layer:  

errorq = desiredOutputq - actualOutputq (2.12)

where desiredOutput is obtained from the training file and actualOutput is computed by the 

forward pass output layer firing mfq.

The accumulated error tss is given by the sum of the square of the errors for all neu-
rons of the output layer 

�=
t

qerrortss 2 (2.13)

To compensate for this error we define �q representing the change to be applied to 
weights and threshold in the output layer given by 

� q = f�(mpq) � errorq (2.14) 

where f’(mp q) is the derivative of squashing function f. With the simple sigmoid function used, the 

derivative is: 

f�(mpq) = mfq��(1- mfq) (2.15)

The resulting � q is then used to modify the thresholds and weights in the output layer 
as follows 

�hq = ��q (2.16)

hq(t+1) = hq(t) + �hq (2.17)

�wpq = ��q ��mfp (2.18)

wpq(t+1) = wpq(t) + �wpq (2.19)

where

�� represents the learning rate parameter corresponding to how fast learning should be. 

hq(t) represents the threshold value for neuron q in the output layer at step t before adjustment 
is made. 

hq(t+1) represents the threshold value for neuron q in the output layer at step t+1 after 
adjustment. 

wpq(t) represents the weight value from neuron p in the hidden layer to neuron q in the output 
layer at step t before adjustment is made. 

wpq(t+1) represents the value of the weight at step t+1 after adjustment. 

Hidden Layer 
Once the errors are computed and threshold and weight updates have taken place in the output 

layer, the hidden layer errors need to be computed as well. Since there is no explicit teacher for the 

hidden units, Backpropagation provides a solution by propagating the output error back through the 
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network. To compensate for this error we define �p representing the change to be applied to weights 

and threshold in the hidden layer, 

( ) ���=
q

pqqpp wmpf �� � (2.20)

where f�(mpp) is the derivative of the sigmoid function in neuron p similar to the f�(mpq) function in 

the output layer and wpq is the value of the weight from neuron p in the hidden layer to neuron q in 

the output layer. As before, 

f�(mpp) = mfp��(1- mfp) (2.21)

There is a reason why the hidden layer needs to receive the summation of the prod-
ucts of error � q multiplied by weight wpq. Since each neuron contributes differently to the 
output, its share of the error is also different. By associating the error and the weight, 
each neuron in the hidden layer will be evaluated by its corresponding contribution to the 
error and corrected accordingly.  

The threshold and weight modification equations are similar in computation to that 
of the output layer, with delta change � p used to modify the thresholds and weights in the 
output layer, 

�hp = ��p (2.22)

hp(t+1) = hp(t) + �hp (2.23)

�wsp = ��p ��ins (2.24)

wsp(t+1) = wsp(t) + �wsp (2.25)

where

�� represents the learning rate parameter corresponding to how fast learning should be. 

hp(t) represents the threshold value for neuron p in the hidden layer at step t before adjustment 
is made. 

hp(t+1) represents the threshold value for neuron p in the hidden layer at step t+1 after 
adjustment. 

wsp(t) represents the weight value from unit s in the input layer to neuron p in the hidden layer 
at step t before adjustment is made. 

wsp(t+1) represents the weight value at step t+1 after adjustment. 

Simulation Interaction 
To illustrate an actual example we will train the network to learn an exclusive or (XOR) function, 

as shown in the table below. This is a simple although illustrative example in that a simpler 

Perceptron without the hidden layer would not be able to learn this function. The function is shown 

in table 2.1. 

Input  Output 

0 0 0

0 1 1

1 0 1

1 1 0

We turn now to the NSLS commands stored in “BackPropModel.nsl”, where the file 
is loaded into the NSL Executive in order to simulate the model. We load 
“BackPropModel.nsl” by selecting the BackPropModel.nsl model as shown in figure 2.24 
(after selecting “system�Nsls file…” as shown in figure 2.10). 

Table 2.1 
Training file format. 
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Figure 2.24 
Opening the BackPropModel 
script file. 

Simulation Control 
As for Hopfield, Backpropagation requires both the training and running phases. Simulation control 

for this model involves setting up the duration for both phases as well. The training phase involves 

multiple cycles. From the script window we set trainEndTime to the number of training patterns 

specified by numPats and trainDelta to 1.0 in order to have as many training steps as there are 

training patterns. (These are also the defaults specified in the model code which we will be 

discussing in chapter 3, The Modeling Overview.) We then set runEndTime to 1.0 and runDelta to 

1.0.

Additionally, the training cycle will be executed for an unspecified number of 
epochs, where every epoch corresponds to a single pass over all patterns. We set 
trainEpochSteps to 5000 telling the system to train almost indefinitely until some suitable 
ending makes it stop, in this case, when the error (stopError) is small enough. To make 
the system learn, we issue the nsl train command from the script window. As learning 
keeps progressing, if the total sum of the square error (tss) is not satisfactory, the learning 
rate ��can be adjusted. When the tss value reaches a very small stopError, the network 
has been successfully trained. At that point we issue the “nsl source backproprun”
command from the script window. To reinitialize the system after a complete run, we 
would issue the “nsl initModule” command. 

Visualization 
The network training error tss can be visualized as the network gets trained, as shown in figure 

2.25. As the error gets smaller tss approaches 0 meaning the network has learned.  

Figure 2.25 
The error tss is visualized 
as a temporal graph as the 
network is training with the 
XOR example. 
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Figure 2.26 shows the result of running the trained network with one of the XOR inputs. 

Figure 2.26 
The display on the left-hand 
side shows an input to the 
network set to “0 1”. After 
the network has been run 
the output becomes 1, as 
expected. The display on 
the right-hand side shows 
an input to the network set 
to “1 1” The output this 
time becomes 0. 

Input Assignment 
To simplify the training process and to avoid deeper knowledge of NSL, we assign the training set 

directly to the model as a training array rather than from an external file as is usually the case. (We 

will show this more “realistic” approach in the NSLM chapter where we go over more extensive 

details of the modeling language NSLM. Obviously the approach taken will be more involved 

when dealing with large data sets.) The training set format is shown in table 2.2.  

File Format  Example (XOR) 

<num_patterns>                   4 

<input1> <input 2> <output> 0 0 0 

<input1> <input 2> <output> 0 1 1 

<input1> <input 2> <output> 1 0 1 

<input1> <input 2> <output> 1 1 0 

The first row in the file specifies the number of patterns in the file. Training pairs are 
specified one per row consisting in the XOR example of two inputs <input1> and 
<input2> and a single output <output>. The training set input is assigned as follows 

nsl set backPropModel.train.pInput { 

{ 0 0 } { 0 1 } { 1 0 } { 1 1 } } 

nsl set backPropModel.train.pOutput { 

{ 0 } { 1 } { 1 } { 0 } } 

Note again the curly brackets separating elements in two-dimensional arrays, similar 
to input in the Hopfield model. 

Parameter Assignment 
The Backpropagation layer sizes are specified within the present implementation of model, i.e., if 

the number of units in any layer changes, the model has to be modified accordingly and 

recompiled. The alternative to this example could be to treat layer sizes as model parameters to be 

set interactively during simulation initialization. While the latter approach is more flexible since 

Table 2.2 
Training file format. 
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layer sizes tend to change a lot between problems, we use the former one to avoid further 

complexity at this stage. Thus, the user will need to modify and recompile the model when 

changing layer sizes. In our example we use 2 units for the input layer, 2 for the hidden layer and 1 

for the output layer. 

Additionally, we set stopError to a number that will be small enough for the network 
to obtain acceptable solutions. For this example, we use 0.1 or 10% of the output value, 

nsl set backPropModel.layers.be.stopError 0.1

The learning parameter �� is represented by the learningRate parameter determining 
how big a step the network can take in correcting errors. The learning rate for this prob-
lem was set to 0.8 for both the hidden and output layers.  

nsl set backPropModel.layers.bh.lRate 0.8

nsl set backPropModel.layers.bo.lRate 0.8 

The training step or delta is typically set between 0.01 to 1.0. The tradeoff is that if 
the training step is too large—close to 1—the network tends to oscillate and will likely 
jump over the minimum. On the other hand, if the training step is too small—close to 0—
it will require many cycles to complete the training, although it should eventually learn. 

This is obviously a very simple model but quite illustrative of Backpropagation. As 
an exercise we encourage you to try different learningRates (lRate) and stopError values. 
Additionally, you can modify the training set although keeping the same structure. In 
section 3.5 you may try changing the layer sizes in designing new problems. Also, if you 
are not satisfied with the training, there are two ways to keep it going. One is to issue an
initModule command, adjust trainEndTime to a new value, and then train and run again. 
The other is to save the weights, issue an initModule, load the weights again, and then 
type simTrain at the prompt. 

2.7 Summary 
In this chapter we have given an introduction to NSL simulation as well as an overview of three 

basic neural models, Maximum Selector, Hopfield and Backpropagation in NSL. These models, 

although different, take advantage of a consistent simulation interface provided by NSL. 

Notes 

1. Currently, we are completing the Numerical Editor Input interface/widget which will 
allow us to set any writable variable within the model from a pop-up window. The 
widget will eliminate extra typing in the script window. 



3 Modeling in NSL 

In chapter 2 we introduced model simulation in NSL. The models overviewed were 
“canned” ready for simulation, having preset parameters as well as visualization specifi-
cations. In this chapter we overview how to build neural network models in NSL using 
the NSLM modeling language. Note that this material is intended for the model builder, 
as distinct from the model user. We first explain how models are described in terms of 
modules and neural networks in NSLM, followed by an introduction to the Schematic 
Capture System (SCS), our visual tool to create and browse model architectures. We then 
describe the NSL implementation of the Maximum Selector, Hopfield and Backpropaga-
tion models introduced in chapter 2.  

3.1 Implementing Model Architectures with NSLM 
A neural network model is described by a model architecture representing its structure 
and behavior. In NSL, model architectures can be built either top-down or bottom-up. If 
built top-down, the two step approach to building the model is: first build modules to 
define the overall “black-box” structure of the network and then build the detailed func-
tionality of the neural networks. To build bottom-up, we just do the reverse. We illustrate 
the bottom-up approach with the Maximum Selector, Hopfield, and Backpropagation
models.1

Modules and Models 
At the highest-level model architectures are described in terms of modules and inter-
connections. We describe in this section these concepts as well as the model, representing 
the main module in the architecture together with a short overview of scheduling and 
buffering involved with modules. 

Modules 
The module, the basic component in a model architecture, is somewhat analogous to the 
object in object-oriented applications. Additionally, the corresponding module definition 
is analogous to an object definition, known as the object class, used to instantiate the 
actual modules or objects, respectively. A module encapsulates the internal complexity of 
its implementation by separating the internal details from the external interface. The 
external portion of the module is the part of the module seen by other modules. The 
internal portion is not seen by other modules—this makes it easier to create and modify 
modules independently from each other—and defines the actual module behavior. This 
behavior need not be reducible to a neural network: (a) it may be an abstraction equiva-
lent to that of a neural network, or (b) it may be a module doing something else, e.g. 
providing inputs or monitoring behavior.  

The most important task of a module’s external interface is to permit communication 
between different modules. As such, a module in NSL includes a set of input and output 
data ports (we shall call them simply ports). The port represents an entry or exit point 
where data may be sent or received to or from other modules, as shown in figure 3.1.  

Module

din1 dout1

dinn doutm

… …… …

Figure 3.1 
The NSL computational 
model is based on the 
module concept. Each 
Module consists of 
multiple input, din1,dinn,
and output, dout1,...,doutm,
data ports for 
unidirectional 
communication. The 
number of input ports 
does not have to be the 
same as the number of 
output ports. 
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For example, the Maximum Selector model architecture incorporates a module having 
two input ports sin and vin together with a single output port uf, as shown in figure 3.2. 

Ulayer

vin

sin

uf

Data sent and received through ports is usually in the form of numerical values. 
These values may be of different numerical types while varying in dimension. In the 
simplest form a numerical type may correspond to a single scalar, a one-dimensional 
array (vector), a two-dimensional array (matrix), or higher dimensional arrays.2 For 
example in the Ulayer module shown in figure 3.2, vin is made to correspond to a scalar 
type while sin and uf both correspond to vector arrays (the reason for this selection will 
become clear very soon). 

In terms of implementation, the NSL module specification has been made as similar 
as possible to a class specification in object-oriented languages such as Java and C++ in 
order to make the learning curve as short as possible for those already having program-
ming background. The general module definition is described in code segment 3.1. The 
module specification consists of a header and a body. The header comprises the first line 
of the template, in other words the code outside the curly brackets. The body of the mod-
ule is specified inside the curly brackets made up of the structure and behavior, both to 
be explained later on.  

nslModule Name (arguments)

{

 structure 

 behavior 

}

Let us begin with the header (bold letters represent NSLM keywords): 

� nslModule (note the initial lower case “nsl” prefix) specifies the beginning of a 
module template.  

� Name (note the initial upper case letter) represents the name of the module to which 
all module instances will refer. 

� arguments are an optional variable list useful when passing external information to 
the module during an instantiation.  

� The body of the module consists of two different sections:  

� structure representing module attributes (data). 

� behavior representing module methods (operations).  

For example, the Ulayer module in the Maximum Selector model architecture con-
tains the header described in code segment 3.2. 

nslModule Ulayer (int size)

{

}

The header specification consists of: 

� nslModule, the always present module definition keyword.  

� Ulayer, the name of the module. 

Code Segment 3.1
The NslModule definition. 

Code Segment 3.2
MaxSelector Ulayer 
header. 

Figure 3.2 
The ULayer module of the 
Maximum Selector model 
has two input ports sin
and vin and a single output 
port uf.
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� size, an integer type passed as argument to the module.  

The module structure consists of the module’s external interface—its ports, as 
shown in code segment 3.3.  

nslModule Ulayer(int size) 

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin(); 

 public NslDoutDouble1 uf(size); 

}

The Ulayer module defines the three ports previously mentioned, sin, vin and uf.
Each line ending in a semicolon defines a single port declaration: 

� public tells NSLM that the port (or any other specification) is known outside the 
module—it is part of the module’s external interface. (Defining all ports as public is 
very important if we want to be able to make connections or communication chan-
nels with other modules.) 

� NslDinDouble1 represents a one-dimensional port array of type “double,” where Nsl 
is the prefix to all NSL defined types. As part of the type description, Din specifies 
an input data port. Double specifies the primitive data type for the port (other primi-
tive types are Float and Int) while 1 identifies the array dimension, in this case 1, for 
a vector (other dimensions are 0, 1, 2, 3, or 4). 

� sin is the port name used for NSLM referral both from inside the module as well as 
from its outside. 

� The parentheses after sin indicate the instantiation parameter section. In this example 
the parameter size in the header is passed to the module during its instantiation. 

� Ports vin and uf are defined in a similar way. Port vin is of NslDinDouble0 type 
corresponding to an input port of zero dimensions (i.e., a scalar). uf is of 
NslDoutDouble1 type corresponding to a one dimensional output port array. 

Besides the external interface in the form of ports, the structure of a module may 
include additional local data. In our example we include three additional “internal” vari-
ables up, hu, and tau as shown in code segment 3.4.  

nslModule Ulayer(int size) 

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin(); 

 public NslDoutDouble1 uf(size); 

 private NslDouble1 up(size); 

 private NslDouble0 hu(); 

 private double tau(); 

}

up represents an internal module variable of type NslDouble1. Since all attributes, with 
the exception of ports, should be encapsulated we use the private visibility keyword to 
specify a local variable not viewed externally to the module. Note how the Din/Dout 
section of the port types is taken out from a regular variable declaration. The other 
section, primitive type and dimension are still important, in this case Double and 1, 
respectively.

Code Segment 3.3
MaxSelector’s Ulayer 
external interface. 

Code Segment 3.4
MaxSelector’s Ulayer 
attribute definition. 
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� hu and tau represent the offset and approximation method time constant, both of type 
NslDouble0.  

In terms of behavior, every module must have methods in order to do something 
“meaningful.” Modules include a number of specific methods called by the simulator 
during model execution. These methods are used for different purposes, e.g. initialization, 
execution, termination.  

nslModule Ulayer(int size) 

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin(); 

 public NslDoutDouble1 uf(size); 

 private NslDouble1 up(size); 

 private NslDouble0 hu(); 

 private NslDouble0 tau(); 

 public void initRun() {

uf = 0.0 

up = 0.0;

  hu=0.1; 

  tau=1.0;

 } 

}

For example, the initRun method in the Ulayer module definition shown in code 
segment 3.5 is called during the module’s run reinitialization. (Additional methods will 
be defined for this module later in this chapter.) Tasks that we may want to do during 
reinitialization are for example resetting of all variables to their initial value. (Note that 
we usually set values for local variables and output ports but not input ports since their 
values are externally received.) Every method is distinguished by its unique signature,
consisting of a return type, name and arguments, as well as additional modifiers such as 
the visibility keyword. In our example the method is defined as follows: 

� public is the visibility modifier telling NSLM that the method is to be known outside 
the module, an important requisite if we want NSL to be able to call this method 
during module simulation. 

� void is the return type from the method, i.e., no value is returned from the method. 
This is the case with most NSL predefined methods. 

� initRun is the name of the method, taken from the set of predefined NSL method 
names.  

Arguments are specified within the parenthesis. In this example no arguments are 
passed to the method, the case with most NSL predefined methods.  

The method body corresponds to the section between curly brackets. Note that the 
initRun defined here sets both the values of arrays uf and up to 0.0, in other words it 
assigns zero to every element in the corresponding arrays. On the other hand hu and tau
are initialized to 0.1 and 1.0 respectively.  

Interconnections 
Interconnections between modules is achieved by interconnecting output ports in one 
module to input ports in another module. Interconnections free the user from having to 
specify how data should be sent and received during simulation processing. Communica-
tion is unidirectional, flowing from an output port to an input port. Code segment 3.6 

Code Segment 3.5
���������	
’s�����

attribute and method 
definition.
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shows the Vlayer header and structure (we omit its behavior) for the Maximum Selector
model. It contain s an output vf, input port uin and three private variables, vp, hv and tau.

nslModule Vlayer(int size) 

{

 public NslDinDouble1 uin(size); 

 public NslDoutDouble0 vf(); 

 private NslDouble0 vp(); 

 private NslDouble0 hv(); 

 private NslDouble0 tau(); 

}

The description is very similar to Ulayer. The major difference is that Ulayer’s out-
put, uf, is a vector while Vlayer’s output, vf, corresponds to a single scalar. figure 3.3 
then shows the interconnections between the Ulayer module and another, Vlayer.

Ulayer Vlayer

sin

uin

vin

uf vf

In the example, a connection is made from output port uf in Ulayer to input port vin
in Vlayer; additionally, output port vf in Vlayer is connected to input port vin in Ulayer.
Note the input port sin in Ulayer is disconnected at the time. In general, a single output 
port may be connected to any number of input ports, whereas the opposite is not allowed, 
i.e., connecting multiple output ports to a single input port. The reason for this restriction 
is that the input port could receive more than one communication at any given time, 
resulting in inconsistencies.  

This kind of interconnection—output to input port—is considered “same level 
module connectivity.” The alternative to this is known as “different level module con-
nectivity.” In this case, an output port from a module at one level is relabeled (we use 
this term instead of connected for semantic reasons) to an output port of a module at a 
different level. Alternatively, an input port at one level module may be relabeled to an 
input port at a different level. For example, in figure 3.4 we introduce the MaxSelector
module, containing an input port in and an output port out, encapsulating modules
Ulayer and Vlayer. MaxSelector is considered a higher level module to the other two 
since it contains—and instantiates—them. In general, relabeling lets input and output 
ports forward their data between module levels. (This supports module encapsulation in 
the sense that a module connected to MaxSelector should not connect to ports in either 
Ulayer or Vlayer nor be able to get direct access to any of the modules private vari-
ables.) Relabelings, similar to connections, are unidirectional, where an input port from 
one module may be relabeled to a number of input ports at a different level. 

Code Segment 3.6 
MaxSelector’s Vlayer 
attribute definition. 

Figure 3.3
Interconnections between 
modules Ulayer and Vlayer 
of the Maximum Selector
model.
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Ulayer
u1

Vlayer
v1

sin

uin

vin

uf vf

out

in

MaxSelector Figure 3.4 
Maximum Selector model 
architecture contains a 
MaxSelector module with 
two interconnected modules 
Ulayer and Vlayer. 

The NSLM specification for figure 3.4 is given in code segment 3.7. the 
MaxSelector module definition incorporates Ulayer and Vlayer instantiations—u1 and 
v1 are the corresponding instance variables—together with port in and out instantiations. 
Note that we have made the instantiations of Ulayer and Vlayer private variables. Again 
this is for encapsulation, or in other words, to protect these module instances from being 
modified accidentally. 

nslModule MaxSelector (int size) 

{

 public NslDinDouble1 in(size); 

 public NslDoutDouble1 out(size); 

 private Ulayer u1(size);

 private Vlayer v1(size);

 public void makeConn(){ 

  nslRelabel(in,u1.sin); 

nslConnect(v1.vf,u1.vin);

  nslConnect(u1.uf,v1.uin); 

  nslRelabel(u1.uf,out);  

 } 

}

In terms of behavior, the MaxSelector module includes the predefined makeConn
method, analogous to the initRun method, for specifying port interconnections. (Note 
that module interconnections are carried out in the parent—higher level—MaxSelector
module, with Ulayer and Vlayer considered the children—lower level—modules.) Con-
nections and relabels between ports are specified as follows: 

� nslConnect connects an output port (first argument) to an input port (second argu-
ment). In this example we connect output port vf in v1 to input port vin in u1. The 
second connect statement connects output port uf in u1 to input port uin in v1. 

� nslRelabel relabels an input port at a higher module level with an input port at a 
lower module level, or changing the order, an output port at a lower level with an 
output port at a higher level. In the example, we relabel input port in in MaxSelector 
to input port sin belonging to u1 and output port uf belonging to u1 to output port out 
in MaxSelector.

Code Segment 3.7
���������	
 top-level 
module definition. 
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MaxSelectorMaxSelector
Stimulus

MaxSelectorModel

MaxSelector
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din

Figure 3.5 
MaxSelectorModel  
architecture contains the 
MaxSelectorStimulus, 
MaxSelector, and 
MaxSelectorOutput 
interconnected module. 

Note in the previous examples that specifying connections and relabels is carried out 
from outside the participating modules—the modules having the actual port to be con-
nected. This way we can design modules independently and without priori knowledge of 
how they are going to be interconnected promoting module reuse applying them in a 
number of model architectures. 

Models 
There is a special module, known as the model, which should be present in any model 
architecture. The model is somewhat analogous to a main procedure in programming 
languages in that it is responsible for instantiating the rest of the application. The model 
contains the complete set of modules defining the particular model architecture. For 
example, the MaxSelectorModel is shown in figure 3.5, which includes two additional 
modules, MaxSelectorStimulus responsible for generating model input, MaxSelector-
Output, for the processing of module output. These two additional modules may be quite 
simple, as the case in our example, or may provide sophisticated functionality as probing 
MaxSelector module correctness, or make use of the output as part of further processing. 
The MaxSelectorModel definition is described in code segment 3.8.  

nslModel MaxSelectorModel () 

{

private MaxSelector maxselector(10); 

private MaxSelectorStimulus stimulus(10); 

private MaxSelectorOutput output(); 

public void makeConn() { 

  nslConnect(stimulus.sout,maxselector.in); 

  nslConnect(stimulus.sout,output.sin); 

  nslConnect(maxselector.out, output.uin); 

 } 

}

The header specification is similar to the module with the exception that we use the 
nslModel keyword instead of nslModule. The model may define both attributes and 
behavior as part of its body similar to a module. Note how we specify the network sizes 
and pass them to the two modules. The only restriction is that there may not be more than 
one model in the application. The Maximum Selector model is further described in the 
Maximum Selector section in this chapter. However, before we can describe the complete 
model, we need to discuss additional issues such as scheduling of modules and buffering 
of data. 

Scheduling and Buffering  
Before we get into the detailed implementation of modules we should understand two 
special aspects in processing models: scheduling and buffering. Scheduling specifies the 

Code Segment 3.8 
MaxSelectorModel model. 
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order in which modules and their corresponding methods are executed while buffering 
specifies how often ports read and write data in and out of the module. NSL uses a multi-
clock-scheduling algorithm where each module clock may have a different time step 
although synchronizing between modules during similar time steps. During each cycle, 
NSL executes the corresponding simulation methods implemented by the user. We will 
expand upon this later in the chapter and give complete details in the NSLM chapter. 

In NSL, buffering relates to the way output ports handle communication. Since mod-
els may simulate concurrency, such as with neural network processing, we have provided 
immediate (no buffer) and buffered port modes. In the immediate mode (sequential 
simulation), output ports immediately send their data to the connecting modules. In the 
buffered mode (pseudo-concurrent simulation), output ports do not send their data to the 
connecting modules until the following clock cycle. In buffered mode, output ports are 
double buffered. One buffer contains the data that can be seen by the connecting modules 
during the current clock cycle, while the other buffer contains the data being currently 
generated that will only be seen by the connected modules during the next clock cycle. 
By default NSL uses the non-buffered mode, although the user may change this. Most of 
the models presented in the book make use of the immediate buffering mode. Full details 
on scheduling and buffering are given in the NSLM chapter. 

Neural Networks  
As discussed in the Introduction, NSL favors model architectures where modules are 
implemented by neural networks. A module defines the structure and behavior of the 
neural network. The neural network structure consists of a set of neurons and their 
interconnections, whereas the neural network behavior is defined in terms of non-linear 
dynamics with connection weights subject to a number of learning rules.  

Neurons  
Without precluding the importance of other neural models, we focus here on the leaky 
integrator neuron model. As we described in chapter 1, Neural Networks section, the 
leaky integrator’s internal state is described by its membrane potential or neural activity 
mp and by its output or firing mf, specified by some nonlinear function, as shown in fig-
ure 3.6 (drawn again from figure 1.6). 

mp mfsm

input neuron output

In NSL two data structures are required to represent such a neuron in addition to its 
inputs. One data structure corresponds to the membrane potential and the other one to its 
firing rate. Different NSLM data types may be used for these structures, for example, 
NslFloat0 or NslDouble0 depending on the numerical type desired.  

private NslDouble0 mf();

Notice the two variables are set to private with a scalar type such as NslDouble0.
(In many cases we may want the value of mf to be communicated to other modules. If 
such is the case, the declaration for mf should be modified from a private variable to a 
public port.) 

public NslDoutDouble0 mf(); 

Figure 3.6 
Single compartment neural 
model represented by a 
value mp corresponding to 
its membrane potential, and 
a value mf corresponding to 
its firing, the only output 
from the neuron. sm
represents the set of inputs 
to the neuron. 
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In addition to the membrane potential and firing rate we need to define variable sm
holding a weighted spatial summation of all input to the neuron  

private NslDouble0 sm(); 

We may also need to declare the “unweighted” input to the neuron. In general, input 
may be specified as internal to a module or obtained from another module. In the latter 
case we define input sin as a public input port. Note that if sin is a vector, then sm is a 
scalar holding the sum of all values in the input vector. 

public NslDinDouble1 sin(size); 

The leaky integrator model defines the membrane potential mp with a first-order 
differential equation with dependence on its previous history and input sm given by equa-
tion 3.1 (combining together equations 1.1 and 1.2 and omitting the t parameter from 
both) 

smmp
dt

dmp
+�=� (3.1)

While neural networks are continuous in their nature, their simulated state is approxi-
mated by discrete time computations. For this reason we must specify an integration or 
approximation method to generate as faithfully as possible the corresponding neural state. 
The dynamics for mp are described by the following statement in NSLM 

mp=nslDiff(mp,tau,-mp+sm);

nslDiff defines a first-degree differential equation equal to “-mp+ sm” as described by the 
leaky integrator model. Different approximation methods can be used to approximate the 
differential equation. The choice of this method may affect both the computation time 
and its precision. For example, NSL provides Euler and Runge-Kutta II approximation 
methods. The selection of which method to use is specified during simulation and not as 
part of the model architecture. We provide further explanation on approximation methods 
in chapter 6. 

mf

mp

� ramp
mf

mp

� step

mf

mp

� saturation
mf

mp

� sigmoid

Figure 3.7
Common Threshold 
Functions. 
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The average firing rate or output of the neuron mf is obtained by applying some 
“threshold function” to the neuron’s membrane potential as shown in equation 3.2 (taking 
out the t parameter from previous equation 1.3), 

( )mpmf �= (3.2)

where � usually is described by a non-linear function. For example, if � is set to a step
threshold function, the NSLM equation for the firing rate mf would be described by 

mf = nslStep(mp); 

where nslStep is the corresponding NSLM step threshold function. Some of the threshold 
functions defined in NSL are step, ramp, saturation and sigmoid, whose behaviors are 
plotted in figure 3.7 and described in detail in chapter 6, the NSLM language. 

Neural network dynamics are generally specified inside the simRun method, as 
described code segment 3.9. 

public void simRun() 

{

 sm=nslSum(sin); 

 mp = nslDiff(mp,tau,-mp+sm);

 mf = nslStep(mp); 

}

While initRun is executed once prior to the “run,” simRun gets executed via multiple 
iterations during the “run.” A “run” is defined as execution over multiple clock cycles 
(simulation time steps) from time equal zero to the runEndTime. Similar to initRun, the 
simRun method must also be specified as public in order for NSL to be able to process it. 

Interconnections  
The previous definition specifies a single neuron without any interconnections. An actual 
neural network is made of a number of interconnected neurons where the output of one 
neuron serves as input to other neurons. In the leaky integrator neural model, inter-
connections are very simple structures. On the other hand, synapses, the links among 
neurons, are—in biological systems—complex electrochemical systems and may be 
modeled in exquisite detail. However, many models have succeeded with a very simple 
synaptic model: with each synapse carrying a connection weight that describes how neu-
rons affect each other. The most common formula for the input to a neuron is given by 
equation 3.3 (omitting the t parameter from previous equation 1.4), 

�
�

=

=
1

0

n

i
iijj ufwsv (3.3)

where ufi is the firing of neuron ui whose output is connected to the jth input line of neu-
ron vj, and wij is the weight for that link, as shown in figure 3.8 (up and vp are analogous 
to mp, while uf and vf are analogous to mf).

Code Segment 3.9
Leaky Integrator 
neuron 
implementation.
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Expanding the summation, input to neuron vj (identified by its corresponding mem-
brane potential vpj) is given by svj defined by equation 3.4 

svj = w0juf0 + w1juf1 + w2juf2 + ... + wn-1, jufn-1 (3.4)

While module interconnections are specified in NSLM via a nslConnect method 
call, doing this with neurons would in general be prohibitively expensive considering that 
there may be thousands or millions of neurons in a single neural network. Instead we use 
mathematical expressions similar to those used for their representation. For example, the 
input to neuron vj, represented by svj, would be the sum for all outputs of neuron ufi mul-
tiplied (using the ‘*’ operator) by connection weight wij, correspondingly. 

svj = w0j*uf0 + w1j*uf1 + w2j*uf2 + ...; 

Note that there exist m such equations in the network shown in figure 3.8. We could 
describe each neuron’s membrane potential and firing rate individually or else we could 
make all ui and vj neuron vector structures. The first approach would be very long, ineffi-
cient, and prone to typing errors; thus we present the second approach and describe it in 
the following section. 

upj-1 upj+1

sj+1

ufj+1ufj-1

wk-1 wk+1

wk

ufj

upj

vpj

vfj

sjsj-1 Figure 3.9
Mask connectivity. 

Figure 3.8 
Neurons vpj receive input 
from neuron firings, 
uf0,...,ufn-1, multiplied by 
weights wj0,...,wjn-1,
respectively. 
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Arrays and Masks 
Instead of describing neurons and links on a one by one basis, we extend the basic neuron 
abstraction into neuron arrays and connection masks describing spatial arrangements 
among homogeneous neurons and their connections, respectively. We consider ufj the 
output from a single neuron in an array of neurons and svj the input to a single neuron in 
another array of neurons. If mask wk (for -d�k�d) represents the synaptic weights, as 
shown in figure 3.9, from the ufj+k (for -d�k�d) elements to svj, for each j, we then have 

�
�=

+=
d

dk
kjkj ufwsv (3.5)

where the same mask w is applied to the output of each neuron ufj+k to obtain input svj. In 
NSLM, the convolution operation is described by a single symbol “@”.

sv = w@uf; 

This kind of representation results in great conciseness, an important concern when 
working with a large number of interconnected neurons. Note that this is possible as long 
as connections are regular. Otherwise, single neurons would still need to be connected 
separately on a one by one basis. This also suggests that the operation is best defined 
when the number of v and u neurons is the same, although a non-matching number of 
units can be processed using a more complex notation. 

To support arrays and masks, a NslDouble1 or higher dimensional array structure is 
used, as was demonstrated in chapter 2, using the Hopfield model. In the Hopfield model 
neurons are organized as two-dimensional neuron arrays—instead of one dimensional—
and weights result in four dimensional arrays—instead of two dimensional. For 
simplification, both neural arrays and connection masks are represented in NSLM with 
similar array types. The simRun method describing dynamics for neuron v would be as 
shown in code segment 3.10. 

public void simRun() 

{

sv = w@uf; 

vp = nslDiff(vp,tau,-vp+sv);

 vf = nslStep(vp); 

}

There are special considerations with convolutions regarding edge effects—a mask 
centered on an element at the edge of the arrays extends beyond the edge of the array—
depending on how out of bound array elements are treated. The most important alterna-
tives are to treat edges as zero, wrap around array elements such as if the array was 
continuous at the edges, or replicate boundary array elements. We will explain this in 
more detail in chapter 6, The NSLM Language. 

3.2 Visualizing Model Architectures with SCS 
There are two ways to develop a model architecture: by direct programming in NSLM as 
previously explained or by using the Schematic Capture System (SCS). SCS is a visual 
programming interface to NSLM that serves both as a browser as well as a tool for creat-
ing new model architectures as discussed in the Simulation chapter. While SCS does not 
provide the full programming functionality of NSLM, it provides visual support in 
designing modules and their interconnections. We will show in this section how to visu-
alize already created model architectures with SCS. Extended details on how to created 
new model architectures will be overviewed in chapter 4, the Schematic Capture System.

Code Segment 3.10
Leaky-Integrator ������

method implementation. 
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To start executing the Schematic Capture System we invoke (see Appendix IV for 
platform particulars):  

prompt> scs 

The system initially presents the Schematic Editor (SE) window (shown in figure 
3.10).  

Figure 3.10 
Select “Open” from the “File”
menu to bring a listing of 
schematics available in the 
library of models. 

To open the schematic of an existing model from the library of models we select 
“Open” from the “File” menu, as shown in figure 3.10. SCS presents a list of models, 
where we select for example the MaxSelectorModel, as shown in figure 3.11.  

Figure 3.11 
Select the MaxSelectorModel 
Schematic.  

Once the model has been selected it is shown in the canvas section of the window, as 
shown in figure 3.12.  

Figure 3.12 
MaxSelectorModel 
Schematic. (The “descend”
selection requires us to first 
select the module that we are 
to display.) 
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By “double clicking” on the MaxSelector module we will descend one level down 
the module hierarchy, and the schematics shown in figure 3.13 will be displayed.  

Figure 3.13
MaxSelector module from 
the MaxSelectorModel. 

We can then return one level up by selecting “Ascend” from the “Hierarchy” menu, 
as shown in figure 3.14. The rest of the SCS interface is described in chapter 4.  

Figure 3.14 
Select “ascend” from the 
“Hierarchy” Menu to go one 
level up the module 
hierarchy. 

3.3 Maximum Selector 
We presented an introduction to Maximum Selector model in chapter 2. We now describe 
its complete model architecture.  
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Model Implementation 
As we have seen, the MaxSelectorModel is composed of five instances of modules: u1, 
v1, maxSelector, stimulus, and output of corresponding module types Ulayer, Vlayer,
MaxSelector, MaxSelectorStimulus, and MaxSelectorOutput, as shown again in fig-
ure 3.15. Given an input vector in of array size size, the maxSelector module generates 
as output a similarly sized vector pattern out in which the only active unit (or neuron) 
corresponds—under suitable conditions—to the largest of the n vector inputs. These 
modules were introduced throughout the chapter so we will quickly recall and extend 
their description.  

Ulayer
For simplicity we have kept only the minimum structure for the model (weights in this 
module have “1” as their value) described in code segment 3.11.  

nslModule Ulayer (int size) 

{

 public NslDinDouble1 sin(size);

 public NslDinDouble0 vin(); 

 public NslDoutDouble1 uf(size); 

 private NslDouble1 up(size); 

 private NslDouble0 hu(); 

 private NslDouble0 tau(); 

 public void initRun() {

up =0; 

  uf = 0; 

  hu = 0.1; 

  tau =1.0; 

 } 

public void simRun() {

  up = nslDiff(up, tau, -up + uf - vin – hu + sin);

  uf = nslStep(up,0.1,0.1.0); 

 } 

}

Note that sin, up, and uf are vector arrays, while vin, tau and hu are scalar. The mod-
ule behavior is described by the two equations introduced in chapter 2, with slight modi-
fications for better correspondence with the module structure: 

sinhuvinufup
dt

dup
tau +��+�= (3.6)

Figure 3.15 
The MaxSelectorModel 
contains the MaxSelector 
module incorporating an 
input port in used as input 
to the network and an 
output port out represents 
network output, and two 
module instances of type 
Ulayer and Vlayer, 
respectively. Additionally, 
the MaxSelectorStimulus 
module generates stimulus 
for the model and 
MaxSelectorOutput 
displays the output results. 

Code Segment 3.11 
Ulayer module definition. 
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�
�
�

�
>

=
0if0

0if1

up

up
uf (3.7)

There are two separate initializations: the first, initModule gives script access to the 
hu offset variable; the second, initRun resets the neuron activity values—the values 
being computed during the simulation—restarting the network with a new initial state. 
The simRun method contains the above expressions to be repeatedly executed during the 
simulation process. Note that the two statements for up and uf, respectively, require vec-
tor array return types since both structures are vectors. When adding or subtracting a 
vector with a scalar, such as “uf—vin” in the nslDiff expression, vin is subtracted from 
every element to uf as if vin were a vector with all elements having the same value.  

Vlayer
Again, for simplicity we have kept only the minimum structure for the module without 
the weight terms, described in code segment 3.12. Note that uin is a vector array, while 
vp, vf, tau and hv are scalars.  

nslModule Vlayer(int size) 

{

 public NslDinDouble1 uin(size); 

 public NslDoutDouble0 vf(); 

 private NslDouble0 vp(); 

 private NslDouble0 hv(); 

 private NslDouble0 tau(); 

 public void initRun() {

vp =0; 

  vf = 0; 

  hv=0.5; 

  tau=1.0; 

 } 

 public void simRun() {

vp = nslDiff(vp,tau, -vp + nslSum(uin) – hv);

  vf = nslRamp(vp); 

 } 

}

The module behavior is described by the two equations introduced in chapter 2, with 
slight modifications for better correspondence with the module structure 

hvuinvp
dt

dvp
tau

n

�+�= � (3.8)

�
�
�

�
>

=
0if0

0if

vp

vpvp
vf (3.9)

These equations are implemented in the simRun method above. Note that the two 
statements for vp and vf, respectively, require this time a scalar return type since both 
structures are scalars. For this reason we apply nslSum() to all array element values from 
uin, the output received from uf, to obtain a single scalar value. nslRamp is a ramp
threshold function.  

Code Segment 3.12 
MaxSelector‘s Vlayer module 
definition.



M O D E L I N G  I N  N S L   5 5

MaxSelector 
The MaxSelector module instantiates both Ulayer and Vlayer, as well as defining two 
external ports, in and out, as shown in code segment 3.13. Port interconnections are made 
inside the makeConn method, two connections and two relabels. 

nslModule MaxSelector (int size) 

{

 public Ulayer u1(size);

 public Vlayer v1(size);

 public NslDinDouble1 in(size); 

 public NslDoutDouble1 out(size); 

 public void makeConn(){ 

nslConnect(v1.vf,u1.vin);

  nslConnect(u1.uf,v1.uin); 

  nslRelabel(in,u1.sin); 

  nslRelabel(u1.uf,out); 

 } 

}

MaxSelectorStimulus 
The MaxSelectorStimulus generates the visual stimulus sent to the MaxSelector mod-
ule. The module is described in code segment 3.14. The actual stimulus can be set 
directly as part of the module definition, or as we discussed in the previous chapter, 
interactively assigned by the user through the visual interface or through the NSLS shell 
window. If done directly in the module definition, the initRun method would contain for 
example the corresponding stimulus specification. 

nslModule MaxSelectorStimulus (int size) 

{

 public NslDoutDouble1 sout(size);

 public void initRun(){ 

  sout=0; 

sout[1]=1.0;

  sout[3]=0.5; 

  } 

}

MaxSelectorOutput 
The MaxSelectorOutput receives input from both MaxSelectorStimulus and 
MaxSelector modules and generates the canvases/graphs shown in the chapter 2, figure 
2.8. For the sake of simplicity we leave the detailed description of this module until 
chapter 5, The User Interface and Graphical windows.  

MaxSelectorModel 
The MaxSelectorModel instantiates both the MaxSelectorStimulus, MaxSelector, and 
MaxSelectorOutput as shown again in code segment 3.15. 

Code Segment 3.13 
MaxSelector module. 

Code Segment 3.14 
MaxSelectorStimulus 
module.
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nslModel MaxSelectorModel() 

{

 public MaxSelectorStimulus stimulus(size); 

 public MaxSelector maxselector(size); 

 public MaxSelectorOutput output(size); 

 private int size = 10; 

 public void initSys() { 

  system.setRunEndTime(10.0); 

  system.setRunStepSize(0.1); 

 } 

 public void makeConn(){ 

nslConnect(stimulus.sout,maxselector.in);

nslConnect(stimulus.sout,output.sin);

nslConnect(maxselector.out,output.uf);

 } 

}

As an exercise the user may want to add the different weight parameters specified by 
the original equations and change their value to see their effect on the model. Additionally, 
the network could be modeled with different neuron array sizes to see how this affects 
overall behavior. 

3.4 Hopfield 
Recall from the Simulation chapter the Hopfield model description. We now describe the 
model architecture.  

Hopfield
Hopfield

Input

HopfieldModel

Hopfield
Outputout inpat mf

Model Implementation 
The Hopfield model contains three module instances hopfield, in, and out of the corre-
sponding module types Hopfield, HopfieldInput and HopfieldOutput as shown in 
figure 3.16. Input port pat in Hopfield receives a number of initial patterns from output 
port out during training to adjust the network’s connection weights. During model execu-
tion pat receives from out a single input pattern to be associated to the one that it best 
approximates.  

Hopfield 
The Hopfield module implements the neural network dynamics. In our example both pat
and mf are set to two- dimensional arrays associating letter images to be tested (although 
both could have been implemented by vectors). In our example, both input and output 
ports have the same size for both dimensions. The structure is shown in code segment 
3.16. 

Code Segment 3.15 
MaxSelectorModel model 
definition.

Figure 3.16 
The Hopfield Model. The 
Hopfield module contains an 
input port pat used as input 
to the network, and an output 
port mf representing network 
output. The HopfieldInput 
module contains a single 
output port out while the 
HopfieldOutput module 
contains a single input port 
in.
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nslModule Hopfield (int size) 

{

public NslDinInt2 pat(size,size);   

public NslDoutInt2 mf(size,size);   

private NslInt2 mp(size,size);    

private NslInt2 pmf(size,size);    

private NslInt4 w(size,size,size,size);

private NslInt0 energy();   

private NslInt0 change();

}

Notice that we are describing a binary Hopfield network, thus we implement all 
types as integers. Two additional two-dimensional arrays are defined, mp storing the 
activity and output of neurons and pmf storing previous output. We also define a four-
dimensional connection matrix w, and two parameters, energy and change. We define a 
connection matrix w instead of a connection mask due to the varying weight values for all 
connections. We lose a bit on efficiency due to the higher dimension arrays but we add 
the ability to better map units to images. The last attribute defined is invisible to the user, 
but thrown in by the pre-parser. It is a primitive-type integer size storing the size passed 
to the module. This variable is later used in the module methods to avoid having to obtain 
the size each time. 

During the training phase, model weights are initialized according to equation 2.7 
from chapter 2 and in correspondence to our particular Hopfield network application at 
hand, 

��

�
�
� ==

= � otherwise

,0

m
mijmklklij patpat

jlik
w (3.10)

Besides the initRun and simRun methods, the model also requires making use of 
the initTrain and simTrain methods for network training. Inside the initTrain method, 
weights are set by going over all n input patterns and applying the above equation. Each 
iteration of the initTrain method adds a new pattern to the weight computation. Thus, the 
initTrain method has to be executed for as many times as patterns exist.  

for (int k=0; k<size; k++) 

 for (int l=0; l<size; l++)  

  for (int i=0; i<size; i++) 

   for (int j=0; j<size; j++)  

    if (k==l && l==i && i==j) 

     w[k][l][i][j]=0; 

    else 

 w[k][l][i][j]=w[k][l][i][j]+pat[k][l]*pat[i][j]; 

Notice that NSLM enables the user to write his/her own matrix manipulation func-
tions when necessary, such as in the above example. 

After weights have been set, the network executes according to equations 2.4 and 2.5 
from chapter 2 

� �=
i j

ijklijkl mfwmp (3.11)

Code Segment 3.16 
Hopfield module definition. 
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The initRun method initializes neuron activity to the input pattern. One important 
aspect previously mentioned in the Simulation chapter is that the network gets updated 
asynchronously, with neurons randomly chosen for update. Thus, we compute the output 
for each neuron immediately after computing its activity, so it can be used as input by the 
next neuron chosen for update. The neuron activity mp and the neuron output mf are 
computed according to the above equations. The simulation proceeds as described in the 
simRun method. Since it contains a number of interesting expressions, we explain each 
one separately. 

We first obtain two random integer values, k and l, used as indices in selecting the 
next neuron to be updated. Recall that all neurons are stored in a two-dimensional array 
and thus the need for the two indices. 

int k = nslRandom(0,(size-1)); 

int l = nslRandom(0,(size-1)); 

The method nslRandom is one of a number of NSL library methods (described in 
more detail in the NSLM chapter) for numerical computations, in this case to obtain an 
integer random number between 0 and “size-1.” Since array indices start at 0 we do not 
want numbers that are equal to or larger than the size of the arrays. We then apply a 
summation over all inputs to the randomly selected neuron multiplied by the respective 
connection weights—we use the “^” operator for pointwise array multiplication, i.e., 
multiplication between corresponding array elements.  

mp[k][l] = nslSum(w[k][l]^mf);

Note that “w[k][l]” generates a matrix array, resulting in a valid operation. Once we 
get the activity for the neuron we compute its firing with a step function with outputs set 
to either -1 or 1, as specified by the last two parameters of the following nslStep
expression. (The zero term specifies the threshold.) 

mf[k][l] = nslStep(mp[k][l],0,-1,1); 

We then check if the error is zero, corresponding to the output of all neurons 
generating exactly the same values as in the previous computation—previous values are 
stored in pmf. This is done by first subtracting mf from pmf, and then transforming the 
result to its absolute value to make sure all differences are positive. Finally, we add the 
resulting absolute values together to generate the change, as shown next, 

change = nslSum(nslAbs(pmf-mf)); 

If change is zero, convergence has occurred, we print out a “Convergence”
message—we use the nslPrintln printing method—and we break the simulation cycle 
effectively stopping execution by using the system.breakCycles method as follows 

if (change == 0) 

 nslPrintln(“Convergence“);

system.breakCycles();

}

The module conditional ending is very common in many neural networks, especially 
those involving training, as will also be seen in the Backpropagation model. 
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The last expression in the simRun method sets the new mf value to the previous pmf
value for the next simulation iteration. 

pmf[k][l] = mf[k][l]; 

Additionally, we compute the energy in the network, described by equation 2.6 from 
chapter 2, 

� � � ��=
k l i j

ijklklij mpmpwE
2

1
(3.13)

This equation is implemented as follows 

energy = 0; 

for (int k=0; k<size; k++) 

 for (int l=0; l<size; l++)  

  for (int i=0; i<size; i++) 

   for (int j=0; j<size; j++)  

    energy=energy+w[k][l][i][j]*mp[k][l]*mp[i][j]; 

energy = -0.5*energy; 

Again we need to do our own element by element multiplication. 

HopfieldModel 
The HopfieldModel instantiates the Hopfield, HopfieldInput and HopfieldOutput
modules. Both the HopfieldInput and HopfieldOutput modules are quite simple, 
analogous to the MaxSelectorModel, and we leave their description until chapter 5, The 
User Interface and Graphical Windows. Model input can be set directly as part of the 
module definition or, as we discussed in the previous chapter, interactively assigned by 
the user via the script or menu interface. We pass the network size to the two modules, in 
this case “10.” Module connections are made inside the makeConn method as described 
in code segment 3.17. 

As an exercise the user may want to change network size as well as extend the model 
to make use of two different sizes for array rows and columns, respectively, instead of a 
single one. If you have a different problem at hand, such as the “Traveling Salesman,”
you may want to modify the equation for weights as well as the energy function. The rest 
of the computation should be the same. 

nslModel HopfieldModel ()

{

private int size = 10; 

public Hopfield hopfield(size);

public HopfieldInput in(size);

public HopfieldOutput out(size);

 public void makeConn(){ 

nslConnect(in.out,hopfield.pat);

nslConnect(hopfield.mf,out.in);

 } 

}

Code Segment 3.17 
HopefieldModel model 
definition.
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3.5 Backpropagation 
Recall from Section 2.6 the Backpropagation model description. We now describe the 
model architecture.  

BPForward
fh

BPForward
fo

BPBackwardError
be

BackPropModel

TrainManager

BackProp

BPBackward
bh

BPBackwardProp
bo

eOutput

w

dw dw

dwdw

dh dh

dhdh

ww

fInput fInput

fInput fInput

bInput

bInput

dInput

dOutput

bOutput

desired
desired

in

out

mf

mf

mf

mf

mf

Figure 3.17 
Backpropagation model 
architecture. The 
BackPropModel is 
decomposed into the 
TrainManager module where 
training data is read feeding 
training signals into the 
BackPropLayers module where 
actual neural dynamics are 
described. The 
BackPropLayers module is 
further decomposed into two 
BPForward modules, and the 
BPBackward, BPBackwardProp 
and BPBackwardError 
modules.

Model Implementation 
The model architecture is shown in figure 3.17. The BackPropModel is decomposed into 
a TrainManager module and a BackPropLayers module. The TrainManager module 
reads training data and sends it one cycle at a time to the BackPropLayers module. The 
BackPropLayers module communicates with to BPForward, BPBackward,
BPBackwardProp and BPBackwardProp modules to implement neural behavior. Note 
that there could be more modules if there were additional hidden layers in the network. 
Also note that we do not model the input layer as a separate module since this layer 
simply reads training or simulation data without any additional processing. Thus, the 
input layer can be directly mapped to the input port of the BackPropLayers module. All 
ports in the network are set to a one-dimensional array or vector of similar size. 

The network is processed in two modes, training and simulation. Training proceeds 
itself in two modes: 

� A feedforward mode where an input is selected and processed by the network in 
order to generate an output vector.  

� A backpropagation mode where the error is computed as the difference between the 
current output vector and the desired or target output vector. The backward pass then 
adjusts the synaptic weights of the output layer neurons and then the hidden layer 
neurons, in that particular order.  

As a result of this continual “wearing away” of the synaptic weights, the network 
will, in general, come to provide outputs that better and better approximate the target 
values.  

Once the network has been completely trained, a process that finishes depending on 
the error produced simulation, the simulation run proceeds in a single mode: 
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A feedforward mode where an input vector is processed by the network to generate 
an output vector. The forward pass is executed a single time with the desired input 
pattern. 

It is the job of the BackPropLayers module (and BPForward, BPBackward,
BPBackwardProp and BPBackwardProp submodules) to conduct the forward pass and 
backward pass after being supplied by the TrainManager module with the training pair. 
It is the job of the TrainManager to take a whole training set and cycle through calling 
BackPropLayers for each pair.  

We next describe the different modules top-down: TrainManager, BackPropLayers,
BPForward, BPBackward, BPBackwardProp, BPBackwardProp and finally 
BackPropModel.

nslModule TrainManager (int nPats, int inSize, int outSize) 

{

public NslDoutFloat1 dInput(inSize); 

public NslDoutFloat1 dOutput(outSize); 

private NslFloat2 pInput(nPats, inSize); 

private NslFloat2 pOutput(nPats, outSize);  

private int counter = 0; 

private int numPats = nPats; 

}

TrainManager  
The TrainManager module reads training data from a training file and sends them one 
cycle at a time to the BackPropLayers module. The module structure is described in 
code segment 3.18. 

The model structure includes two output ports sending both input and desired output 
data, dInput and dOutput, respectively. To simplify the example, we directly assign the 
training data into two-dimensional variables pInput and pOuput. This is quite efficient 
when having small training sets such as in this case. With very large data sets this would 
not be possible since data files may be too large to store in memory and it will be more 
efficient to load them from a file as needed. We include two additional parameters, 
counter and numPats. Variable counter is used to control the particular data being sent 
during the training cycle as will be explained next. Variable numPats stores the number 
of patterns being used for training. The actual layer sizes are passed into the module 
during module instantiation.  

The module’s main responsibility is to provide with training data to the rest of the 
model. Recall the training set format from table 3.1.  

<num_patterns>

<input1> ... <inputN> <output1> ... <outputM> 

<input1> ... <inputN> <output1> ... <outputM> 

:

<input1> ... <inputN> <output1> ... <outputM> 

During model training, the simTrain method sends out the data. This is achieved by 
grabbing the next (input, desired output) pair in the given order, as shown in code 
segment 3.19. 

Code Segment 3.18
TrainManager attribute 
definition.

Table 3.1 
TrainManager input file 
format. 
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public void simTrain()

{

 counter++; 

 int pat = counter%numPats;  

 dInput = pInput[pat]; 

 dOutput = pOutput[pat]; 

}

Note how we control this by doing a “mod”—operator %—of the current cycle 
counter over the number of total patterns in numPats. Although the training procedure is 
in the given order or sequential, where the total number of training steps is set equal to 
the total number of patterns, it does not have to be always that way. There are many other 
approaches, e.g., having the training given as a random choice of next (input, desired 
output) pair. 

BackPropLayers  
The BackPropLayers module is responsible for controlling the detailed training cycle. It 
defines data structures and simulation methods for the network necessary to execute the 
feedforward (activation) mode and backpropagation (adaptation) mode. The module 
instantiates five modules, two BPForward modules and single BPBackward,
BPBackwardProp, and BPBackwardError modules. The module also defines two 
input ports and two output ports to receive and send information from and to the 
TrainManager module, respectively. The module definition is described in code 
segment 3.20.  

nslModule BackPropLayers (int inSize, int hidSize, int outSize) 

 { 

public BPForward fh(inSize,hidSize); 

public BPForward fo(hidSize,outSize); 

public BPBackwardError be(outSize); 

public BPBackwardProp bo(hidSize,outSize); 

public BPBackward bh(inSize,hidSize); 

public NslDinFloat1 in(inSize);

public NslDinFloat1 desired(outSize);

public NslDoutFloat1 out(outSize);

}

Two input ports in and desired receive their data from the TrainManager and are 
relabeled to fInput and desired in the respective submodules. fInput represents the input 
layer feeding data into the hidden layer corresponding to both the first BPForward and 
the BPBackward modules. On the other hand desired is used to compute the backward 
error in the BPBackwardError module. In terms of BackPropLayers output ports, out
is relabeled from the output mf of the second BPForward module representing the 
feedforward mode output. Note the specific order in specifying the five submodules. 
Since we are using immediate mode buffering this order is significant and results in the 
following: 

Code Segment 3.19
TrainManager simTrain 
method.

Code Segment 3.20 
BackPropLayers module 
attributes. 
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1. Process fh BPForward module. 

2. Process fo BPForward module. 

3. Process be BPBackwardError module. 

4. Process bo BPBackwardProp module. 

5. Process bh BPBackward module. 

Remember that two processing modes are involved in the model. It is crucial that the 
feedforward mode for both hidden and output layer be completed before the backpro-
pagation mode on both layers. After each training epoch—a complete pass through all the 
training patterns—the network should have learned something and can use the new 
weights to estimate better and fine-tune itself. The network requires many epochs for 
training. While BPForward modules are processed in both modes, the last three modules 
are only involved in the backpropagation mode as will be seen in the rest of the section.  

BPForward  
The BPForward module implements both the hidden and output layers in the “forward”
computations. The module attributes, three input ports, fInput, dw and dh, two output 
ports mf and w, and two internal variables mp and h, as shown in code segment 3.21.  

nslModule BPForward (int inSize, int hidSize) 

{

  public NslDinFloat1 fInput(inSize); 

public NslDinFloat1 dh(hidSize);     

public NslDinFloat2 dw(inSize, hidSize); 

public NslDoutFloat1 mf(hidSize); 

public NslDoutFloat2 w(inSize, hidSize);

private NslFloat1 mp(hidSize); 

private NslFloat1 h(hidSize);     

}

This module is involved in both feedforward and backpropagation modes. Since 
backpropagation mode is processed before the feedforward mode let us start describing 
first the module’s behavior during the backpropagation mode. 

Backpropagation mode 
The module first initializes network thresholds and weights to random values inside the 
initSys method that gets executed every time the complete model gets reinitialized, as 
shown in code segment 3.22.  

public void initSys() 

{

 nslRandom(h,-1.0, 1.0); 

 nslRandom(w,- 1.0, 1.0); 

 dw = 0.0; 

 dh = 0.0; 

}

The nslRandom function sets the variables, h and w, to random values between the 
two limits, -0.5 and 0.5, in this case. The model also sets the two “deltas,” dw and dh to 0. 

We then define a “forward” computation (used in both the backpropagation and 
feedforward modes) calculating the activity mp by doing a weight matrix multiplication 
with over input vector fInput. This input is received from the previous stage, i.e. hidden 

Code Segment 3.21 
BPForward module 
attributes. 

Code Segment 3.22 
BPForward initSys method. 
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layer receives input from the input layer and the output layer receives input from the 
hidden layer output. The output mf is computed by applying a sigmoid threshold function 
over the activity. This output will then be fed into the next BPForward module in the 
case of the hidden layer, or to the BPBackwardError module in the case of the output 
layer.

The two equations (for every i) are as follows, 

( ) ( ) ( )�=
j

ijii tfInputtwtmp (3.14)

( ) ( ) ( )( ) ( ) ( )( )thtmpiii
iie

thtmpftmf
+�+

=+=
1

1
(3.15)

Since we define a single BPForward module to define both the hidden layer and 
output layer “forward” dynamics, we use a single set of equations for the two, using the 
indices i and j instead of s, p, and q as originally used in Section 2.6 for the two layers. 
These two statements are stored in the forward method shown in code segment 3.23.  

public void forward() 

{

 mp = w*fInput; 

 mf = nslSigmoid(mp + h); 

}

Notice that fInputi corresponds to ins (we use fInput instead of the original in to be 
consistent with the rest of the modules here to distinguish between forward and backward 
input), while nslSigmoid is a NSL library function computing the sigmoid transfer 
function in the above equation. 

In the backpropagation mode the thresholds and weights get updated by adding in 
new “deltas,” dh and dw (for every i) computed from the previous backpropagation cycle.  

hi(t+1) = hi(t) + �hi(t) (3.16)

wji(t+1) = wji(t) + �wji(t) (3.17)

The backpropagation mode is stored in the simTrain method as described in code 
segment 3.24. It consists of the two updates with the “deltas” and the “forward”
computation.

public void simTrain() 

{

 w = w + dw; 

 h = h + dh; 

 forward(); 

}

Feedforward mode 
During the feedforward mode the simRun method is executed as described in code 
segment 3.25. It simply calls the “forward” computation.

public void simRun() 

{

 forward(); 

}

Code Segment 3.23 
BPForward forward 
method.

Code Segment 3.24
BPForward simTrain 
method.

Code Segment 3.25 
BPForward simRun 
method.



M O D E L I N G  I N  N S L   6 5

BPBackwardError  
The BPBackwardError module does only backpropagation mode computation. The 
module includes two input ports mf and desired, an output port eOutput and three local 
parameters change, tss and pss, as shown in code segment 3.26. 

nslModule BPBackwardError (int outSize)

{

  public NslDinFloat1 mf(outSize);    

  public NslDinFloat1 desired(outSize);    

 public NslDoutFloat1 eOutput(outSize);    

 private NslFloat1 stopError();    

 private NslFloat0 pss();  

 private NslFloat0 tss(); 

 public void initModule() { 

   stopError.nslSetAccess(‘W’);

 } 

}

The module receives the output mf from the fo BPForward output layer and 
compares its value against the desired value being forwarded from the TrainManager as 
follows 

eOutput(t) = desired(t) - mf(t) (3.18)

The network stops its training when a small enough error tss has been reached. The 
error calculation is as follows, 

( )�=
t

teOutputtss 2 (3.19)

The computation is implemented in the simTrain method as shown in code segment 
3.27. In order to compute the epoch error tss we compute first a train cycle error pss
being accumulated through the epoch. 

public void simTrain() 

{

 eOutput = desired - mf; 

 pss = pss + nslSum(eOutput ^ eOutput); 

}

To stop training we compare the tss value against a previously set change value—
telling the model when to stop learning—as given in the endTrain method, a method 
called at the end of every epoch completion, shown in code segment 3.28. 

public void endTrain() 

{

  tss = pss; 

  if (tss < change) { 

    nslPrintln(“Convergence“);

system.breakEpochs();

    return;  

 } 

}

Code Segment 3.26 
BPBackwardError module 
attributes. 

Code Segment 3.27
BPBackwardError simTrain 
method.

Code Segment 3.28
BPBackwardError endTrain 
method.
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We first print a message (“Convergence”) telling the user that we have completed the 
training cycle. This completion is actually achieved through the system.breakEpochs
method specifying that epoch processing should be interrupted (as opposed to a 
system.breakCycles method for breaking a single training cycle). The interruption is 
only processed internally by NSL after the return statement. 

BPBackwardProp  
The BPBackwardProp module is only involved in the backpropagation mode. The 
module is defined in code segment 3.29 and it contains four input ports, fInput, bInput, mf
and w, three output ports, bOutput, dw and dh, and two variables, delta and lrate.

nslModule BPBackwardProp (int hidSize, int outSize) 

{

public NslDinFloat1 bInput(outSize); 

public NslDinFloat1 fInput(hidSize); 

public NslDinFloat1 mf(outSize); 

public NslDinFloat2 w(hidSize, outSize);

public NslDoutFloat1 dh(outSize);     

public NslDoutFloat2 dw(hidSize, outSize); 

public NslDoutFloat1 bOutput(hidSize); 

private NslFloat1 delta(outSize); 

private NslFloat0 lrate(); 

}

The module receives the BPBackwardError output layer error eOuput in bInput
using it to compute output layer “deltas.” The computation is as follows (� represents the 
learning rate lrate),

� q(t) = mfq(t) ��(1- mfq(t))� bInpute(t) (3.20)

�hq(t) = ��q(t) (3.21)

�wpq(t) = ��q(t) ��fInputp(t) (3.22)

( ) ( ) ( )�=
q

qqpp ttwtbOutput � (3.23)

The simTrain method computes output the deltas, �, dh and dw, and the output 
bOutput sent to the hidden layer as shown in code segment 3.30. 

public void simTrain() 

{

  delta = (mf * (1.0 - mf)) * bInput; 

  dw = lrate * delta * fInput;  

 dh = lrate * delta;  

 bOutput = w*delta; //this is the product of a matrix  

   times a vector 

}

BPBackward  
The BPBackward module is similar to BPBackwardProp module except that it does not 
compute the additional bOutput (unless additional hidden layers are present). The module 
is defined in code segment 3.31 and it contains three input ports, fInput, bInput, and mf,
two output ports, dw and dh, and two variables, delta and lrate.

Code Segment 3.29
BPBackwardProp module 
attributes. 

Code Segment 3.30
BPBackwardProp simTrain 
method.
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nslModule BPBackward (int inSize, int hidSize) 

{

public NslDinFloat1 bInput(hidSize); 

public NslDinFloat1 fInput(inSize); 

public NslDinFloat1 mf(hidSize); 

public NslDoutFloat1 dh(hidSize);     

public NslDoutFloat2 dw(inSize, hidSize); 

private NslFloat1 delta(hidSize); 

private NslFloat0 lrate(); 

}

The computation is as follows, 

( ) ( ) ( ) qpp bInputmftmft ���= 1� (3.24)�

�hp(t) = ��p(t) (3.25)

�wsp(t) = ��p(t) ��fInputp(t) (3.26)

The simTrain method computes output the deltas, �, dh and dw, as shown in code 
segment 3.32. 

public void backwardPass() 

{

 delta = mf * (1.0-mf) * bInput; 

 dw = lrate * delta * fInput;  

 dh = lrate * delta;  

}

BackPropModel  
The BackPropModel is responsible for instantiating its two submodules, BackProp-
Layers and TrainManager, as well as initializing the appropriate layer sizes and the 
number of patterns to be stored. The code is shown in code segment 3.33. 

nslModel BackPropModel () 

{

 int inSize = 2; 

 int hidSize = 2; 

 int outSize = 1; 

 int nPats = 4; 

 public TrainManager train(nPats,inSize,outSize); 

 public BackPropAllLayers layers(inSize,hidSize,outSize); 

}

There are a number of exercises that can be done on this model. In particular, since 
Backpropagation is a gradient descent algorithm, there are concerns that the slope of the 
error surface could contain local minima that the network could become stuck in. An 
additional training parameter known as momentum (identified by �) could be defined in 
the BPBackwardProp module. The momentum variable is quite useful in order to keep 
the network from becoming stuck in local minima. In such a way, the error computation 
equations would be modified to contain both the training rate and momentum terms as 
follows, for the hidden layer 

Code Segment 3.31
BPBackward module attributes. 

Code Segment 3.32
BPBackward simTrain 
method.

Code Segment 3.33
BackPropModel model 
attributes. 
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��hp(t+1) = ��p + ����hp(t) (3.27)

� wsp(t+1) = ��p ��fInputp + ��� wsp(t) (3.28)

and for the output layer 

��hq(t+1) = ��q + ����hq(t) (3.29)

� wpq(t+1) = ��q ��fInputq + ��� wpq(t) (3.30)�

Parameter �, the momentum constant, is commonly set to around 0.9. 
An additional common modification to the algorithm is to update thresholds and 

weights at the end of each epoch instead of every training cycle. You can modify this and 
see the effect on model training as well. 

On a different perspective, most of the modifications on the Backpropagation model 
are usually in terms of layer sizes and input file structure. We invite the user to make the 
layer sizes parameters of the model instead of constant. The actual values could then be 
interactively assigned or read from a NSLS script file. The model would require the use 
of dynamic memory allocation (the nslMemAlloc method handling dynamic memory 
allocation described in the NSLM chapter). 

Another possible modification is to take advantage of NSL object-oriented pro-
gramming, in particular inheritance. Inheritance is quite useful in avoiding class 
definition duplication. For example, BPBackward and BPBackwardProp are quite 
similar. We could make BPBackwardProp definition inherit from BPBackward where 
we would only need to add the backward output port bOutput to the BPBackwardProp
definition while the rest gets inherited. Again, we invite the user to exercise this but only 
after having read the NSLM chapter.  

3.6 Summary 
We have shown how modeling of neural architectures is done following the module 
approach in NSL. The three models described in this chapter, Maximum Selector,
Hopfield and Backpropagation, use different features of NSL although keeping a very 
consistent organization based on the NSL module architecture. 

Notes 

1. The complete syntax for NSLM as well as further descriptions is found in chapter 6. 

2. At the moment NSL supports up to 4-dimensional array ports and in general numerical 
type arrays. 



4 Schematic Capture System  

The Schematic Capture System (SCS) provides graphical tools to build hierarchical neu-
ral models either by a top-down or bottom-up approach. SCS consists of the Schematic 
Editor, Icon Editor, NSLM Editor, Library Path Editor, Consistency Checker, Library 
Manager, NSLM Code Generator, and NSLM Viewer. SCS allows one to build a model 
graphically by connecting icons together into what we call a schematic. Each icon can 
then be decomposed further into a schematic of its own. In addition, SCS also provides 
an interface to the USC Brain Project, Brain Models on the Web database (BMW)  

The Schematic Capture System (SCS) is an important component of the NSL system. 
SCS is primarily used to generate NSL models as shown in figure 4.1.1 (This chapter 
covers the latest version of the software found in NSL3_0_n., database version 4.) 

Simulation
System

BMW

sif files

modfiles

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 4.1 
NSL System Diagram. 

4.1 SCS Tools 
The Schematic Capture System consists of many subsystems—the Schematic Editor, the 
Icon Editor, the NSLM Editor, the Library Path Editor, the Library Manager, the Consis-
tency Checker, the NSLM Generator, and the NSLM Viewer. 

Schematic Editor (SE) 
The Schematic Editor is responsible for building the structure of the model. It is also 
serves as the control window for the Schematic Capture System. From the Schematic 
Editor window we can start any of the other SCS tools, load a model or module into the 
Schematic Editor, or descend/ascend into a schematic. When selecting icons to use in the 
schematic, SE allows the user to pick which version of a module to use: the user can 
choose a floating version that can change at any time or a fixed version, which cannot 
change.

When opening other tools from the Schematic Editor it is import to note that each 
new tool pops up in its own window and we can have as many open as we would like. 
However, there is always one and only one Schematic Editor Window open at any time. 

Icon Editor (IE) 
The Icon Editor allows the user to build the graphical appearance of the individual icons 
(modules).  
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NSLM Editor (NE) 
The NSLM Editor allows the user to add NSLM code to the code that SCS has generated. 
This is particularly important for “leaf” level modules since they contain most of the 
functionality of the module.  

Library Path Editor (LPE) 
The Library Path Editor allows the user to modify the list of libraries in use. 

Library Manager (LM) 
The Library Manager allows the user to access and create new libraries of models and 
modules within the file system, move module from one library to another, and edit mod-
ule attributes. 

Consistency Checker (CC) 
The Consistency Checker is responsible for keeping track of the versions of the modules 
that the model contains and checking that the ports from one level match those of the next 
level. The Consistency Checker is called automatically when a model is generated 
(NSLM Generator) or when a module is saved using Schematic, Icon, or NSLM editors. 

NSLM Generator (NG) 
The NSLM Generator generates the code from the schematic structure of the model. It 
also calls the Consistency Checker  

NSLM Viewer (NV) 
The NSLM Viewer displays the code generated by the NSLM Generator. 

4.2 An Example Using SCS 
We start by invoking the Schematic Capture System with scs. 

The Schematic Editor window is shown in figure 4.2.  

Figure 4.2 
The Schematic Editor 
Window.

There are a number of steps to follow in creating a new schematic: (1) Create a 
library to save your work in; (2) Create the icons or borrow existing ones; (3) Place the 
icons in the schematics(4) Connect the icons together; (5) Save the schematic back to one 
of the libraries; and (6) Generate the NSLM file. 

Create a Library 
From the Schematic Editor window choose the Tools menu and then select the Library 
Manager option. (We will abbreviate this to: “Tools�Library Manager” in the future.) 
The system opens the window shown in figure 4.3. 



S C H E M A T I C  C A P T U R E  S Y S T E M    7 1

Verify that the first library is “<somepath>/nsl3_0/BookLib” (the “/” directory sym-
bol in UNIX corresponds to a “\” symbol in a PC) where somepath is where your 
administrator installed the basic SCS library. Create another library in which to save your 
schematics by selecting Library�New Library. A popup will appear as shown in figure 
4.4. 

Figure 4.4 
New Library Path Prompy 

Enter the path where you wish to create your library, in our case it is 
f:/usc/ns/NSL3_0_m/nsl3_0/FirstLib. Then select OK. When you are finished, select 
Close from the Library Management Window. 

Create Icons 
To create a schematic, we first need to verify that the icons we want exist. In this exam-
ple, we will start from scratch and create icons for the Ulayer and Vlayer modules we 
wrote earlier. First open the Icon Editor where individual icons/modules are edited. This 
is achieved by Tools�IconEditor from the Schematic Editor Window. A pop-up win-
dow will appear as shown in figure 4.5. 

Figure 4.5 
The picture shows the layout of 
the Icon Editor Window. The top 
row of menu options allows us 
to create new icons, edit old 
ones, and change the graphical 
options. The left tool bar is in 
charge of the graphical editing 
commands.

Since we want to create a new icon we select File�New from the top menu bar. In 
response to this option we get the window shown in figure 4.6. 

Figure 4.3 
The SCS Library Manager 
Window
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Figure 4.6 
New Icon Prompt 

In figure 4.6 we note that the first thing in the Icon Prompt Window is the library 
name. By default the last library we enter is the first library on the list. Next, we type in 
the name Ulayer as the icon or module name (the icon is just one view of the mod-
ule). We also note here that the first letter of Ulayer is capitalized since it is a module 
and not an instance of one. Next we specify the version number of the module or icon we 
are creating. We will take the default 1_1_1. Next we specify the icon type corresponding 
to the type of template that we want to specify. At this point we choose NslModule since 
we are about to specify a module (see table 4.1), and we would like the buffering to be 
“false” for non-double buffering (see table 4.2). Next we select the option of “float all 
submodules” which allows specify the default option to apply to submodule of this mod-
ule (see table 4.3). This will be explained in more detail later. Finally, we specify the 
arguments for this module/icon, and there is only one “int size”.

Module Types Description 

NslModule  leaf and middle level modules 

NslModel  top level module 

NslClass  user defined class 

NslInModule  stimuli 

NslOutModule  output displays 

Buffering Choices Description 

true double buffering of output ports—this option is for 
simulated parallel processing  

false no buffering—this option is for sequential 
processing (default) 

Get Newest Version of Submodules Description 

true Specify a default that submodule versions 
may change 

false Specify a default that submodule versions 
may not change. 

When we are finished we select “OK”. You should see a figure similar to that shown 
in figure 4.7. 

Table 4.1 
Module Types  

Table 4.2 
Buffering Choices 

Table 4.3 
“Get Newest Version of 
Submodules” Choices 
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Figure 4.7 
Icon Editor Window after 
������ Module just created. 

Figure 4.8 
The Ulayer’s Icon without 
Ports.

We then go back to the Icon Editor Window where we press the rectangle button. 
To get the rectangle icon in the canvas we first move the mouse to the canvas window 
and then drag the mouse across the screen until the rectangle is the desired size. The out-
put of this is shown in figure 4.8. 
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Specifying the Ports on the Icon 
Now we want to add two input ports, v_in and s_in, and one output port, uf, to the icon. 
This is done by selecting “InPort” and then selecting “OutPort”. A popup window will 
appear similar to the one in figure 4.9. 

In this window we first type the name, s_in. Then a window which looks like that in 
figure 4.10 will appear. We specify what kind of data structure the port will hold, mainly 
NslDinInt, NslDinFloat or NslDinDouble. In this case we choose NslDinDouble. Next 
we specify the Dimension X where X represents the dimension: 0, 1, 2, 3, 4, or higher-
Dim. Nsl currently only handles dimension of 4 or less but you can create your own user 
defined type with more than 4 dimensions. In this example, we choose “1” as the dimen-
sion. Direction indicates the direction the user would like the port to point “left� right”,
“right� left”, “up� down”, or “down� up”. We choose “left� right”. The “Signal Type”
indicates whether the port has an excitatory or inhibitory affect on the module. We 
choose the signal type to be “excitatory”, and the parameters to be just the “size” of the 
array used. The parameters correspond to the same parameters we would provide in the 
NSLM language. (s_in has 10 elements which will be defined through the “size”
parameter.) When done entering, select “OK” from the bottom of the window. See figure 
4.10. 

Figure 4.9 
Input�Port Name s_in on the 
Ulayer module. 

Figure 4.10 
Input Port information for s_in 
on the Ulayer module 

Once entered, you will need to specify the position of the pin or port. For conven-
ience, select any spot on the Icon Canvas where you would like the end point of the pin to 
go. We have selected a location such that it looks like the input is going into the rectan-
gle. See figure 4.11. 
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Figure 4.11 
Input�Port s_in on the Ulayer 
module

For input port v_in, we choose type NslDinDouble0, and we choose “left� right” as 
the direction. We choose the “excitatory” signal type, and there are no parameters. When 
done entering, select “OK” from the bottom. See figure 4.12. 

Figure 4.12 
Input Port Information for v_in

The resulting port is shown in figure 4.13. 
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Figure 4.13 
Input Port picture for v_in.

For port uf, we select the “OutPort” button, and type the name uf, choose the option 
“NslDoutDouble1”, with direction “left� right”, and parameter “size”. When done enter-
ing select “OK” from the bottom as shown in figure 4.14. 

Figure 4.14 
Output Port Information for uf.

We next save the icon by selecting the File�Save menu option from the Icon Editor 
window. We have now completed the icon creation process and should have an icon with 
port entries as shown in figure 4.15. 
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Figure 4.15 
Output Port picture for uf. 

Now it is time to create the second icon, Vlayer. Vlayer is created in exactly the 
same manner as Ulayer, except that its input port is u_in (with dimension 1 and parame-
ter “size” without the quotes) and its output port is vf (with no dimension). After 
completing it, we are ready to move on to creating the schematic of the MaxSelector
module itself. 

Creating the Schematic 
To create a schematic from the Schematic Editor Window select the Module�New
Module menu option. A window should appear similar to the one below. Type in the 
name “MaxSelector” and version number “1_1_1”. Specify the library as the 
c:\users\me\nsl3_0\FirstLib or whatever library you are using. Since this module is go-
ing to be a middle level module, we will declare it to be of type “NslModule”. When you 
are finished select “OK” as shown in figure 4.16. 

Figure 4.16 
New Module Creation Window 
for MaxSelector. 

Now we are going to add the two icons we just created and then connect them. First 
select the Insert�Icon menu option. A popup window will appear, similar to figure 
4.17. We type in the instance name of u1.  
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Figure 4.17 
Submodule instance name 
popup dialog. 

Next, a popup window similar to the one in figure 4.18 appears. We fill in the 
instance information: which is the instance name and the instance parameters. In this 
case, u1 and size. Instead of typing in the name of the library, module, and version, we 
simple select the “Or Choose File” option and select the Ulayer icon from the library as 
shown in figure 4.19.  

Figure 4.18 
Choose submodule or icon 
popup window.  

In figure 4.19 if we click on the library name we want (in this case the first line), 
then we will see a list of modules to choose from. If we click on the Ulayer module, we 
will see the different versions of this module as shown. For this exercise, we will version 
“1_1_1”.

Figure 4.19 
Selection of the Ulayer module 
from the Declaration Dialog 
“Choose File” popup. 

Finally, we return to the Declaration Dialog box, and the fields for library, module 
and version are filled in for us as show in figure 4.20. The “Let Version Float” option 
allows us to specify that we want to take the most recent version of the module or icon—
always. This means that even if someone else changes a submodule, we want the latest 
updates. If we do not want the changes to the submodule, say Ulayer, to affect our sche-
matic, then we should set the option to “Let Version Float” to false. Finally, we select 
“OK” as shown in figure 4.20. 
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Figure 4.20 
Filled in Open Module Dialog 
Box.

The Ulayer icon with an instance name of u1 will appear on the Schematic Canvas. 
You will need to take your mouse and select the icon and move it to where you would 
like it to be located. See where we put it in figure 4.21. 

Figure 4.21 
Icon placed on schematic. 

Next select the “Insert� Icon” command, and use the Choose File button to find the 
Vlayer icon template name we just created. Give it an instance name of v1. And again, 
you will need to move v1 to where you would like it to be located. See figure 4.22. 
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Figure 4.22 
The u1 instance and v1 instance 
placed in a schematic. 

Next we must add input and output ports to the MaxSelector schematic. We select 
the “Insert� Inport” menu option and a pop-up window appears. The name is “in”, the 
type is “NslDinDouble1”, the direction is “left� right”, the signal type is excitatory, and 
the parameter is size. See figure 4.23. 

Figure 4.23 
MaxSelector input port 
specification. 

Again, move the input port icon into position as shown in figure 4.24. (We some-
times call these ports “inports”.)
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Figure 4.24 
MaxSelector input port 
specification. 

We also must add an output port to this schematic. Add an output port by selecting 
“Insert� Outport” from the menu. The name of this port should be “out”, the type is 
“NslDoutDouble0”, the direction is “left-� right”, the buffering is set to true, and the 
parameter is “size”. See figure 4.25. 

Figure 4.25 
MaxSelector output port 
specification. 

You should now see the picture in figure 4.26. 
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Figure 4.26 
All icons placed in the 
MaxSelector module. 

Finally, with all of the icons in place we are ready to add the “interconnect”. Select 
insert� connection from the Schematic Editor menu. (But before doing so make sure 
you do not have anything else selected. You can unselect an object by click on the right 
mouse button.) You can tell that you are in “connection” mode by the status window at 
the bottom. It should say “Insert Connection”. Let us connect the icons moving from left 
to right. First, place your mouse over the output pin of the input port “in”. Push the 
mouse button down. Next, drag the mouse to the upper input pin on the “u1” icon. 
Release the mouse about in the middle of the pin. You should see a picture similar to 
figure 4.27. 

Figure 4.27 
First line of interconnect 
between “in” and “u1”.

Next, place your mouse over the output port of the “u1” instance. (First, a little flag 
with the name of the pin should appear.) Push the mouse down and drag the mouse to the 
inport of the v1 instance and release the mouse button. Next, place your mouse over the 
outport of the v1 instance, push the mouse down, and drag the mouse to the right by 
about one half inch, release the mouse. With the mouse in the same place, press the 
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mouse down and drag it downward one inch. Release the mouse. With the mouse in the 
same place, press the mouse down and drag it to the left until it is just past the “u1” input 
pins. Release the mouse. With the mouse in the same place, press the mouse down and drag 
it to the lower input pin of the “u1” icon. You should then see the picture in figure 4.28. 

Figure 4.28 
Connection between the 
output port of v1 and the input 
port of u1. 

The last connection we need to make is from the “u1” output port to the output port 
of the MaxSelector schematic itself. Move the mouse over the output pin of the icon “u1”
and push down. Next drag the mouse up about three-quarters of an inch, and release the 
mouse. With the mouse in the same position, drag it to the input side of the “out” output 
port icon, and release the mouse.  

At this point, we have just completed our first schematic. The result is shown in 
figure 4.29. 

Figure 4.29 
Finished Schematic of 
MaxSelector module. 
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Mouse Action Commands 
Before we move on, we would also like to describe some of the mouse action commands that 
SCS provides. We have already mentioned the “unselect” option, and here are three more. 
� Select one object—The user clicks on any object in the schematic canvas and that 

object will be highlighted, indicating that it is selected. If the user keeps pressing the 
Shift key down, then the selected objects will be this newly selected one plus previ-
ous selected ones.  

� Unselect object—When an object is in a selected mode, then clicking with the right 
mouse button again will make it unselected. 

� Move object—The user can move any object (individual or group object) in the 
canvas by first clicking on it and then dragging the mouse. 

� Descend—In current schematic page, if the user double clicks on a module, then the 
detailed layer corresponding to that module will be shown in the canvas.  

Automatic Generation of Code 
After completing the schematic we can see the NSLM code that it generates by selecting 
Tools�View NSLM from the Schematic Editor window. Next, select File�Open from 
the NSLM Viewer window and open the MaxSelector module we just created, as shown 
in figure 4.30. 

Figure 4.30 
NSLM Viewer with MaxSelector 
module.

We notice that SCS has generated the definition of the module, the ports and the 
variables for us. It has also generated the “makeConn”, but not methods such as 
“initModule”, “initTrain”, and “initRun” which are still needed. The we need to fill in 
these other methods using the NSLM editor. We will examine how to use the NSLM 
Editor next. 
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Manual Generation of Leaf Level Code 
Although a lot of the code has been automatically generated, we still need to fill in the 
code for both the Ulayer and Vlayer modules. We do this with the NSLM editor. Select 
Tools�NSLM Editor from the Schematic Editor window. Next select File�Open,
from the NSLM Editor window and then select Ulayer version “1_1_1” from the list. An 
editor similar to the following should appear. Notice how template oriented this editor 
is, as shown in figure 4.31. 

Figure 4.31 
The First Half of the NSLM 
Editor Window showing the 
Name, Arguments, and Flags. 

Figure 4.32 
Second half of the NSLM Editor 
Window showing the variables 
and the Methods Editor. 
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Now we just need to add the internal variables up, and h1. Add these variables and 
give them the same data types and parameters as in the figure 4.33 and figure 4.34 

Figure 4.33 
Adding the Equation 
Variable h1 to the Ulayer. 

Figure 4.34 
Adding Ulayer’s potential 
layer up

We note that the output port variables are already declared but not initialized; thus 
we will initialize them in the initModule and initRun methods within the Methods Win-
dow. See figure 4.35. 
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Figure 4.35 
The Ulayer NSLM code. 

Next, add the initRun method and the simRun method as shown in the figure 4.34. 
And then select File�Save. Now do the same for Vlayer using the code in figure 4.36. 

Figure 4.36 
The Vlayer NSLM code. 

Generating NSLM Code 
We can generate the NSLM code for our modules at any point in the development. For 
the MaxSelectorModel we need to generate the top level module called the model—
MaxSelectorModel (A popup window will appear similar to figure 4.16). We also need to 
create the modules “MaxSelectorStimulus” and “MaxSelectorOutput”, see figure (3.12) 
and code segements 3.13, 3.14, and 3.15. 
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To generate the NSLM (mod or module) files for both the NSLJ System and the 
NSLC System, the Schematic Editor menu select “Tools-� Generate NSLM”. The pro-
gram performs automatic checks to make sure that the icons used in the schematic match 
what is contained in the NSLM View, it then generates the NSLM code. Once the icons, 
schematics, and leaf level modules have been created we are ready to make a Makefile
and executable code.  

Compiling and Generating the Executable File 
To generate the Makefile and executable code, select “Tools� Build Java Version” or 
select “Tools� Build C++ Version”. (When building the executable code, the system 
checks to see that all of the “mod” files are created and the proper time stamps are on the 
files. Thus, we can actually skip the “Generate NSLM Code” step if we plan to make an 
executable file anyway.) We provide both generate options so that we can execute both 
systems if we desire. Both commands will prompt for the name of the model executable 
to be built. (This window is the same as that in figure 4.19) The Makefile and the execu-
table file will be generated for your particular platform that you are running on and the 
particular operating system that you are using. These files can be found in the subdirec-
tory “exe” directory below the version directory. Additionally, models can be compiled 
from a system shell writing ‘nsljc model’ for Java and ‘nslcc model’ for C++. For addi-
tional compilation and execution details see Appendix V where web site links are speci-
fied”.

Reusing Modules and Models 
To re-use an existing module, simply select it from one of the libraries and include it the 
schematic for your new module. To reuse a model, you must rename it. If you add ports 
to an existing model, it them becomes a module, and you must specify the type as such 
when you go to save your new module. 

Copying Existing Modules and Models 
As mentioned above we can copy modules, modify them, and give them new names. To 
copy a module, simply open the existing module in any editor and save it under a new 
name (you can also save it under the same name but a different version number).  

4.3 Summary 
We have introduced the different tools available in the Schematic Capture System in 
helping the user with model creation. In particular, we have shown how to visually build 
modules and automatically generate code. Some of the tools we covered where the Sche-
matic Editor, the Icon Editor, the NSLM Editor, the Library Path Editor, and the Library 
Manager. We also showed how to create a library, an icon, and a schematic.2

Notes 

1. The NSL Schematic Capture System version is based on Sun Microsystem’s Java 1.2 
programming language and virtual machine. SCS can only be executed as an appli-
cation and not as an applet since applets put security restrictions on generating output 
files. We assume that the user has a two-button mouse attached to the computer.  

2. Since SCS is one of our newer applications, we encourage the reader to review the 
latest documentation and technical reports on the NSL web site. See Appendix V for 
details. 



5 User Interface and Graphical Windows 

The NSL graphical user interface provides interactive simulation control by means of the 
NSL Executive Window and different types of input and output displays customized for 
every model. Each model may include a number of protocols corresponding to different 
experiments involving different sets of input, parameters and graphics displays. In a well-
written model, every model experiment should correspond to one of these protocols. Some-
times, however, models only come with scripts that must be read via the Script Window 
and sometimes they only come with “README” files that describe the proper script com-
mand sequences that should be issued to get the different results. (The script language is 
described in chapter 7.) The NSL graphical user interface is designed to provide an environ-
ment that protects as much as possible the novice model user from having to type too many 
commands. At the same time, the graphical interface provides flexibility for the advanced 
model builder to experiment with multiple simulation options in analyzing model results.  

Ideally every model executes with just selecting one of the protocols from the Proto-
col menu, and then selecting the Simulation, TrainAndRunAll menu item. 

5.1 NSL Executive User Interface 
When NSL is first invoked, the NSL Executive Window is displayed as shown in figure 
5.1. From the Executive window the user controls the simulation and brings up other dis-
play windows or frames.  

Executive Menu Bar 

Script Window 

Window Control 
Figure 5.1 
The NSL Executive Window 
controls model simulation. It 
includes menu options as well 
as a script window for written 
commands. 

The top portion of the NSL executive window corresponds to the “Window Control” 
section containing a title and three buttons for window control. Underneath the “Window 
Control” the “Executive Menu Bar” contains five menu buttons: System, Edit, Protocol, 
Simulation, Train, Run, Display, and Help, discussed in the following sections. The 
bottom portion of the window corresponds to the “Script Window” allowing the user to 
interactively type commands. Any command that can be selected from one of the menu 
pull-downs can also be typed in the Script Window as well as stored in files for later 
retrieval. Script commands are discussed more thoroughly in chapter 7. 

System Menu 
The System menu contains commands related to general system aspects. In particular, the 
menu contains the following items: 

� Source—to read NSLS model scripts. 
� Set—to read or modify system parameter values. 
� Exit—to stop the simulation, close all windows, and exit. 

Edit Menu 
The Edit menu allows the user to select text from the script window, copy text from the 
script window into the clipboard or paste text into the script window from the clipboard. 
These commands are quite handy when importing commands to the script window or 
saving script commands into another file. The menu contains the following items: 
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� Select—select text from the script window. 
� Copy—copy text from the script window into the clipboard. 
� Paste—paste text from clipboard into the script window. 

Protocol Menu 
The Protocol menu specifies the protocols or experiments included with each model. 
Protocols are model driven, i.e. the modeler decides which protocols should be placed in 
the menu. The default “manual” protocol is always provided allowing the user to write 
script commands to set up stimuli and parameters for the simulation. Protocols are an 
easy way for the model builder to setup customized input and output windows to handle 
model input and output respectively. This customization takes place directly in NSLM. 
The protocol menu contains the following items: 

� Manual—default user specified input by means of scripts. 
� Additional Protocols—Modeler define additional protocols (none by default). 

Simulation Menu 
The Simulation menu contains different options to control the general aspects of the 
simulation, such as setting up system variables and global initialization of the modules 
(see chapter 6, The NSLM Language). The following menu options exist: 

� The InitSys menu item executes the initSys method for every module.  
� The InitModule menu item executes the initModule method for every module.  
� The TrainAndRunAll menu item executes the initialization of the training epochs, 

all of the epochs for the training phase of simulation as well as the initialization of 
the run epochs and all of the epochs for the run phase of simulation. 

� The EndModule menu item executes the EndModule method of every module.  
� The EndSys menu item executes the EndSys method of every module.  

Train Menu 
The Train menu item executes all the methods necessary to train the model. The menu 
contains the following options: 

� The InitTrainEpochs menu item executes all of the “initTrainEpochs” methods for 
all modules. 

� The InitTrain menu item executes all of the “initTrain” methods for all modules. 
� The SimTrain menu item executes all of the “simTrain” methods over and over again 

until “system.trainEndTime” is reached. The system.trainEndTime is the system variable 
that specifies how long the training process should last. Based on the training delta used, 
the system.trainEndTime is used to calculate the number of cycles for each epoch. 

� The EndTrain menu item executes all of the “endTrain” methods. 
� The EndTrainEpochs menu item executes all of the “endTrainEpochs” methods. 
� The Train menu item executes one epoch that includes the execution of initTrain, 

simTrain for the number of cycles or steps specified, and finally endTrain. 
� The DoTrainEpochTimes menu item executes the initTrainEpochs method for all 

modules, then executes the initTrain, simTrain (repeated for n cycles), and endTrain 
methods for however many training epochs have been specified with 
system.numTrainEpochs. And finally, it executes the endTrainEpochs method for all 
modules. 

� We can execute the Break command to stop the simulation between cycles. We can 
then use the “continue” menu option to continue the simulation. 

� We can execute the BreakModules command to stop the simulation between modules.  
� We can execute the BreakCycles command to stop the simulation between cycles. 
� We can execute the BreakEpochs command to stop the simulation between epochs. 
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� The Continue menu item continues the simulation from the last break point. It 
then executes all of the “simTrain” methods over and over again until 
“system.trainEndTime” is reached. 

� The ContinueModule menu item continues the simulation from the last break point. 
If the last break was with BreakModules, then it continues with the next module in 
the scheduler. It then executes all of the “simTrain” methods over and over again 
until the last module in the scheduler is executed. 

� The ContinueCycle menu item continues the simulation from the last break 
point. If the last break was with BreakCycles, then it continues with the next 
cycle. It then executes all of the “simTrain” methods over and over again until 
“system.trainEndTime” is reached. 

� The ContinueEpoch menu item continues the simulation from the last break point. 
If the last break was with BreakEpochs, then it continues with the next epoch. It then 
executes all of the epochs over and over again until numTrainEpochs is reached. 

� The StepModule menu item executes the “simTrain” method of the next module in 
the scheduler. 

� The StepCycle menu item executes all of the “simTrain” method once for each mod-
ule in the scheduler. 

� The StepEpoch menu item executes one epoch that includes the initTrain method, 
the simTrain methods for however many cycles are specified, and the endTrain 
method. 

Run Menu 
The Run menu item executes all the methods necessary to run the model. The menu con-
tains the following options: 

� The InitRunEpochs menu item executes all of the “initRunEpochs” methods for all 
of the modules 

� The InitRun menu item executes all of the “initRun” methods for all of the modules 
� The SimRun menu item executes all of the “simRun” methods over and over again 

until “system.runEndTime” is reached. The system.runEndTime is the system vari-
able that specifies how long the Running process should last. Based on the Run delta 
used, the system.runEndTime is used to calculate the number of cycles for each 
epoch. 

� The EndRun menu item executes all of the “endRun” methods. 
� The EndRunEpochs menu item executes all of the “endRunEpochs” methods. 
� The Run menu item executes one epoch that includes the execution of initRun, sim-

Run for the number of cycles or steps specified, and finally endRun. 
� The DoRunEpochTimes menu item executes the initRunEpochs method for all 

modules, then executes the initRun, simRun (repeated for n cycles), and endRun 
methods for however many training epochs have been specified with system.num-
RunEpochs. And finally, it executes the endRunEpochs method for all modules. 

� We can execute the Break command to stop the simulation between cycles. We can 
then use the “continue” menu option to continue the simulation. 

� We can execute the BreakModules command to stop the simulation between modules.  
� We can execute the BreakCycles command to stop the simulation between cycles. 
� We can execute the BreakEpochs command to stop the simulation between epochs. 
� The Continue menu item continues the simulation from the last break point. It then 

executes all of the “simRun” methods over and over again until “system.RunEndTime”
is reached. 

� The ContinueModule menu item continues the simulation from the last break point. 
If the last break was with BreakModules, then it continues with the next module in 
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the scheduler. It then executes all of the “simRun” methods over and over again until 
the last module in the scheduler is executed. 

� The ContinueCycle menu item continues the simulation from the last break point. If 
the last break was with BreakCycles, then it continues with the next cycle. It then 
executes all of the “simRun” methods over and over again until “system.RunEndTime”
is reached. 

� The ContinueEpoch menu item continues the simulation from the last break point. 
If the last break was with BreakEpochs, then it continues with the next epoch. It then 
executes all of the epochs over and over again until numRunEpochs is reached. 

� The StepModule menu item executes the “simRun” method of the next module in 
the scheduler. 

� The StepCycle menu item executes all of the “simRun” method once for each mod-
ule in the scheduler. 

� The StepEpoch menu item executes one epoch that includes the initRun method, the 
simRun methods for however many cycles are specified, and the endRun method. 

Display Menu 
The Display menu contains commands to control output and input display window crea-
tion. The display options in the menu are, 

� NslOutFrame used to create a frame to display results of model variables, 
� NslInFrame used to create a frame to control input stimulus and model parameters.  

The two frame types are described in the following sections. 

Help menu 
The Help menu retrieves help on any command. It contains three types of help: “How 
To”, “Command Help”, and “Setup”.

5.2 NslOutFrames 
Upon selection of a new NslOutFrame from the executive window, a NslOutFrame will 
appear with a long name in the form of “.nsl.frameNameX” where the “.nsl” comes from 
the fact that all windows are actually subwindows of the NslExecutiveWindow associ-
ated with “.nsl” prefix. The frameName is set to “OutModule” when selecting an output 
frame (“InModule” when selecting an input frame). The X is assigned to an incremental 
integer number resulting in names such as “.nsl.OutModule2”. A popup window will ap-
pear first requesting a protocol name to be associated with the new NslOutFrame, as 
seen in figure 5.2. Note that if no protocols exist for the model then only the “manual”
option on the right hand side will appear. 

Figure 5.2 
Popup Window for Adding a 
New NslOutFrame 
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Once the OutputFrame or more appropriately, the OutputModule has registered for 
certain protocols, a new window is instantiated as shown in figure 5.3. At the top is the 
title or frame name. Underneath the frame’s title is the frame’s menu bar. In this menu 
bar we have the Frame, Canvas, and Help menus, as follows, 

� Frame—The Frame menu items are responsible for changing the items and attrib-
utes of the frame.

� Canvas—The Canvas menu items are responsible for changing the items and attrib-
utes of a selected canvas. 

� Help—The Help menu displays information on any command. 

In the middle of the frame is the drawing area or the place where canvases can be 
placed. And at the bottom of the frame is the status bar.

Status Bar

NslOutFrame’s
Area For
Canvas

NslOutFrame
Menu Bar

Figure 5.3 
The NslOutFrame without any 
canvases 

The NslOutFrame’s Frame Menu 
A NslOutFrame is basically a container for NslOutCanvases displays of NSL variables. 
All NSL variables that have been declared to have either “Read” or “Write” visibility can 
be displayed in a NslOutFrame. The NslOutFrame contains a menu bar for adding new 
canvases/variables and for manipulating the canvases, as shown in figure 5.4.  

Figure 5.4 
NslOutFrame’s Menu 
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The Frame menu contains commands necessary to change the contents and attrib-
utes of the frame. These commands are New Canvas, Remove Canvas, Columns, 
Frame Options, Frame Print, and Close. The following describes these commands. 

Create a New Canvas Containing a Plot of a NSL Variable 
To add a variable display to an existing NslOutFrame, you go to the NslOutFrame’s
menu bar and select “Frame� New Canvas” as shown in figure 5.4. A popup window as 
shown in figure 5.5 will appear. 

Add a New Canvas
or Replace an
Existing Canvas

Can type variable name

Can select plot type

Figure 5.5 
Add New or Change Current 
Canvas-Popup Window 

At the top of the window, we have the choice of typing a full path variable name, or 
we can select the variable by tracing down the hierarchy tree in the lower gray area of the 
window. In this example, we will select the variable from the hierarchy tree. To do this, 
we first click on the little “plus sign” icon next to the word “MaxSelectorModel”. Next 
we click on the “plus sign” icon next to the word “stimulus”, and then the plus of s_out.
At this point the tree should look like that in figure 5.6. 

Figure 5.6 
New Canvas or Change Current 
Canvas Popup Window with 
selection of �����

To add the selection to the NslOutFrame, we select the Next button at the bottom of 
the window. We repeat the process again this time selecting a different type of plot. In the 
“Graph Type Selector” we change the graph or plot type to “Temporal”. (The plot types 
are Area, Bar, Dot, Spatial, String, Temporal, AreaColor, MultiTemporal and XY
being described in the section titled “Output Graph Types”.) This time we expand the 
plus sign next to the maxselector module, then u1, then up. The window should look like 
that in figure 5.7. 
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Figure 5.7 
New Canvas or Change Current 
Canvas Popup Window with 
selection of ��.

We select the Next button to add up to the NslOutFrame, and then we add uf. To add uf,
we change the graph type back to Area and select the NSL variable “maxselector.u1.uf”.
After we have done this, we select the “Next” button at the bottom of the window. The 
resulting canvases are shown in figure 5.8. 

Figure 5.8 
An example of a NslOutFrame 
that contains a menu bar, 
drawing area, and three 
NslOutCanvases corresponding 
to the variables stimulus.s_out, 
maxselector.u1.up, and 
maxselector.u1.uf. 

Selecting and Deselecting a Canvas from a Frame 
We can select a specific canvas in a frame by moving the mouse to the desired canvas 
and then clicking the left mouse button on it. The canvas will become highlighted in the 
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default highlighting color. Once selected there are a number of operations that can be 
applied to the canvas as will be seen later on such as changing the type of graph or vari-
able being displayed. To deselect the canvas either click the mouse’s right button or 
select another canvas. 

Deleting a Canvas from a Frame 
To delete a canvas from a frame, first select the canvas and then choose “Frame� Delete 
Canvas” from the Frame’s menu. 

Modifying the Number of Rows and Columns in a NslOutFrame 
To modify the number of rows or columns NslOutFrame displays, select 
“Frame� Columns” and then the number of columns desired. This will also affect the 
number of rows displayed since if we display 8 canvases, we can display them in 1 row 
with 8 columns, or 2 rows with 4 columns, or 4 rows and 2 columns, etc. 

Positioning and Resizing a Canvas 
To change the position of a canvas, you need to delete it first and then re-add it in the 
desired location. To resize a canvas we can only make the frame larger or smaller. Cur-
rently all canvas sizes are the same in every frame as seen in figure 5.8. 

Changing Options that Effect All Canvases 
To change the update time, the starting graph time, ending graph time, the vertical mini-
mum, vertical maximum, the default colors (background, grid color, drawing color) in 
every canvas currently displayed or later instantiated in this frame, select the 
“Frame� Frame Options” menu item. This will cause the popup window shown in figure 
5.9. to appear. The “Apply to Future” button causes the canvases that are created in the 
future to have these default properties. The “Apply to All” button causes all of the current 
and future canvas to have these properties. And the “Cancel” button takes no action. 

Figure 5.9 
The NslOutFrame’s Options for 
Properties Popup Menu 

Printing a Frame  
To print a NslOutFrame or to save an image of a NslOutFrame in any of the supported 
formats1 select the NslOutFrame’s “Frame� Frame Print” menu item. To print one of 
the NslOutCanvases, first select that canvas and then select the “Frame� Print option”.
A print popup window will appear. The look of this window varies depending on the 
environment. 

Closing a NslOutFrame  
To close a NslOutFrame, simply select the “Frame� Close” option. This will close the 
frame, but will leave the simulation still executing. To exit the NSL System, select 
“System� Exit” from the Executive window. 

The NslOutFrame’s Canvas Menu 
All of the Frame’s Canvas Menu items pertain to changing the properties of a particular 
canvas. A canvas must first be selected with the mouse. Once selected the canvas will 
become highlighted in the default highlighting color, as shown in figure 5.10 where the 
“maxselector.u1.up” graph has been selected. 
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Figure 5.10 
The NslOutFrame’s Canvas 
Menu only appears when one of 
the canvases is selected. In this 
case, the canvas selected is 
“maxselector.u1.up” as indi-
cated by the shaded area or 
highlighted area. 

Change Type of Graph in Canvas 
To change the type of graph displayed within the canvas, select “Canvas� Change 
Type”. A submenu will appear with the following graph type options: Area, Bar, Dot, 
Spatial, String, Temporal, AreaColor, ImageColor, MultiTemporal and XY. All of 
these graph types are described in the section titled “Output Graph Types”.

Zoom Canvas 
To see the labels on the axis and tick marks, first select the canvas, and then select 
“Canvas� Zoom”. A separate Zoom window will appear, as shown in figure 5.11. Once 
the window appears, drag the mouse over the area of interest starting in one corner and 
holding down the mouse button, drag mouse to the opposite corner. Then select 
“ZoomIn”, and the window should now magnify the area selected. (In figure 5.11, we 
have actually executed the model before selecting the graph, and then we selected zoom.) 

Figure 5.11 
Zoom Window Pop-up 
Displaying the Zoomed 
Temporal Graph 
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Options for a Canvas 
To change the property options of a selected canvas, choose “Canvas� Canvas Options”
from the NslOutFrame menu bar. A Properties popup window based on the graph type 
displayed will appear. figure 5.12 displays the options for the “Area Level Graph”.

Figure 5.12 
Canvas Options—Change Area 
Level Graph Plot Properties  

The Canvas or Plot Properties that can be changed are the y minimum, y maximum 
values, the style of the box, and the color of the box. 

Print a Canvas 
To print a canvas in any of the predetermined formats, first select the canvas and then the 
“Canvas� Canvas Print” menu item. A popup window should appear that looks exactly 
like that of the “Frame� Frame Print” menu. 

Exporting the Data from a Canvas Window to a File 
To export the data from a Canvas Window in one of the specified binary formats first 
select the canvas and then select “Canvas� Export Data”. A pop-up window will appear 
as explained in more detail in Appendix II.  

NSL Output Graph Types 
NSL canvases can display different graph types, as either a basic intensity plot (shows 
variable’s values at the current time) or a temporal plot (shows a variable’s values over a 
certain time period). This list of graph types will grow as more and more modelers add 
their custom output widgets or graph types to the standard set of Nsl Output Widgets or 
Graphs. Thus it is recommended that you consult the NSL web site for new widgets and 
graphs that have been added (see Appendix II). The graph types are the following: 

� Area—The window is divided into small rectangular boxes each representing the 
activity of an element of the variable during one cycle. Negative values are drawn 
with an open box while positive values are shaded. The shaded boxes are centered in 
the middle of the element and the stronger the element value, the larger the box. The 
graph is updated every Display Delta increment. figure 5.13 shows two such can-
vases, the one on the left (s_out) and the one on the right (uf).  
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Figure 5.13 
Examples of ���� Level and 
�������	
Graph Types 

� Bar—The bar graph is similar to the area plot. Instead of drawing a box representing 
the value of the element, a bar is drawn instead. The bottom of the box represents the 
y minimum value and the top of the box the y maximum value. Positive values 
display a filled in bar while negative values display an open bar. The graph is 
updated every Display Delta increment. 

� Dot—The dot plot is most similar to the area plot, however, instead of plotting each 
element as a box, a small “dot” is drawn instead and no grid is displayed. Typically, 
the dot plot is only applied to two-dimensional matrices and the location of the dot 
represents x and y coordinates. If a value is zero or negative, it is not drawn. The 
graph is updated every Display Delta increment. The graph on the right-hand side of 
figure 5.14 contains a dot plot. 

Figure 5.14 
Example of ����� and ���
Plots

� Spatial—The Spatial plot is similar to the Area plot, however, instead of shading the 
boxes, a point is drawn on the y-axis representing the activity of the variable. 
Negative values are drawn below the zero line. Positive values are drawn above the 
zero line. Once all elements are plotted, a line is drawn connecting the points. For 
two-dimensional data, the plot is draw in three dimensions. The graph is updated 
every Display Delta increment. figure 5.15 shows a canvas containing a three dimen-
sion spatial plot. 
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Figure 5.15 
Example of ������� Graph or 
Three Dimensional graph. 

� String—The String plot is similar to the Dot plot, however, the dots are much 
smaller and a line is draw between consecutive dots (time wise). The graph is 
updated every Display Delta increment. The graph on the left-hand side of figure 
5.14 contains a String plot. 

� Temporal—The Temporal graph represents Time along the horizontal axis and the 
value of the element of the variable along the vertical axis. In the current version, 
only 1000 cycles can be viewed at any given time. If a variable has several elements, 
as in one and two-dimensional arrays, each element will be displayed in its own 
temporal plot. The middle graph shown in figure 5.13 contains a temporal plot  

� AreaColor—For the area-level graph in color is just like the area level graph except 
that it uses both size denote the value of the element represented by the box and 
color to represent the data type of the element within the box. Each different color 
can represent a different type of data, such as a special type of neuron. The graph is 
updated every Display Delta increment. 

� ImageColor—The color scale map represents each element of a color array as a 
pixel. The greater the value of the element the warmer the color. 

� MultiTemporal—The Multi-variable Temporal graph is just like the regular temp-
oral plot, only instead of plotting one variable it can plot up to ten variables each in 
its own color and line style. 

� XY—The x axis represents one variable and the y axis represents another variable. 

5.3 NslInFrames 
NslInFrame is a container for one or more NslInCanvases that contain widgets that con-
trol the input to NSL variables. Just like the NslOutFrames, NslInFrames have a stan-
dard menu system.  

The NslInFrame’s Menu 
The Frame menu contains all of the commands necessary to change the contents and 
attributes of the frame. These commands are New Canvas, Remove Canvas, Columns, 
Frame Options, Frame Print, and Close. These commands have already been described 
in section 5.2 except for the types of input widgets that can be placed on the frame when 
a “New Canvas” command is selected, as shown in figure 5.16. 
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Figure 5.16 
Input Widget Types that can be 
selected at Run-time and placed 
on a NslInFrame. 

The NslInFrame’s Canvas Menu 
All of the Frame’s Canvas Menu items pertain to changing the properties of a particular 
canvas. The canvas menu options are the same as they are in section 5.3 for the 
NslOutFrame.  

NSL Input Graph Types 
The input graph type options currently supported are: 

� NumericEditor—The NumericEditor graph displays a one-dimensional or a two-
dimensional grid containing the values of the elements. It is unique in that the values 
shown can also be modified for input to the simulation. figure 5.17 shows three can-
vases containing a numeric editor each. 

Figure 5.17 
Example of the Three 
��������	�
���Canvases. The 
first canvas shows the variable 
�����, and the single value it 
contains as well as an Apply 
button. The second canvas 
shows the variable �����, and 
the four values it contains as 
well as an Apply button. The 
third canvas shows the variable 
��
���, and the nine values it 
contains as well as an Apply 
button. The values are updated 
every Display Delta increment. 
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� InputImage—InputImage graphs divides a canvas into small boxes; each box 
represents the absolute value of an element of the variable during one cycle. If the 
box is not selected the variable will take wymin value, otherwise it will be wymax.
figure 5.18 shows two canvases containing the second one an image editor. 

Figure 5.18 
The Hopfield Example (chapter 
3) of an input image editor. 

5.4 Summary 
In this chapter we have demonstrated the NSL user interface. We showed how the NSL 
Executive window is used to control the complete simulation as well as to display new 
windows via pull-down menus. (Users more comfortable with scripts can use the script-
ing language within the NSL Script window to accomplish the same tasks as explained in 
chapter 7.) We have also demonstrated how users can use the built-in graph types to dis-
play the results of their simulation, or as input to the simulation.  

Notes 

1. Different formats depending on the particular environment are PostScript (PS), Graph-
ics Interchange Format (GIF), or Joint Picture Extraction Group (JPEG). 



6 The Modeling Language NSLM 

In this chapter we describe the NSLM modeling language. NSLM is a high-level 
programming language designed to support the construction of model architectures in 
NSL. For efficiency and extensibility reasons, the NSLM language is translated into 
either C++ or Java, depending on the chosen environment. While NSLM is a self-
contained programming language supporting a complete set of types and expressions—
the user may take advantage of the full power of C++ and Java when necessary. Yet, we 
strongly recommend avoiding as much as possible writing “direct” Java or C++ code but 
try to follow NSLM modeling philosophy and expressions as much as possible. This will 
result in more consistent and extensible code. In general terms, NSLM is actually a super-
set of either language in that it provides a set of types and expressions common to both 
languages together with a library of classes useful in constructing and simulating models 
in NSL. NSLM syntax has been kept as close as possible to Java with slight variations to 
simplify the task of building model architecture while at the same time supporting C++ 
translation as well. Once translated into either Java or C++, an appropriate compiler 
should process the resulting code (refer to Appendix II for supported compilers). If you 
are already familiar with either C++ or Java you will find much of the material discussed 
in this chapter quite familiar, with some aspects such as modules and ports going beyond 
the semantics provided by either C++ or Java. If you are not familiar with either of the 
two languages, we recommend getting acquainted with the basic concepts found in 
object-oriented programming. We recommend reading one of the introductory texts such 
as The C++ Programming Language by Stroustrup (1997) or Core Java by Cay 
Horstmann and Gary Cornell (1999), among others. 

This chapter is given more as a reference for the NSLM Language than a tutorial. It 
and the NSLM Methods Appendix I reviews more structures and expressions found in the 
language. We start by giving an overview of general aspects followed by a description of 
the different language components. 

6.1 Overview  
There are a number of general aspects in NSLM that we will overview in this section. 

General Conventions 
We shall be using throughout this chapter a number of general conventions used in 
NSLM: 

� Comments are denoted by “/*” at the beginning and “*/” at the end. Single line com-
ments are denoted with “//” at the beginning of the comment.  

� All statements end with a semicolon “;”. 

� We consider object types, object classes or simply classes as equivalent terms (some 
programming languages distinguish between the concept of class and type). In gen-
eral, objects represent instances of classes.

� We consider module objects as instances of module classes. Similarly, model objects
represent instances of model classes. We treat module classes and model classes as 
special kinds of object classes in the programming language sense, where module 
objects and model objects become special kinds of objects. 

� Classes—model classes, module classes and any other object classes—begin their 
names with an uppercase alphabetic character, e.g. MaxSelectorModel or MaxSelectorStimulus.
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� Objects—model objects, module objects and objects in general—together with vari-
ables and function begin their names with a lowercase alphabetic character, e.g. 
maxSelectorModel, maxSelectorStimulus or var.

� File names storing NSLM model definitions should have a “.mod” suffix (analogous 
to “.C” and “.java” suffixes generated by the NSLM compiler translation). 

Types 
NSLM is a typed-language, similar to C++ and Java, supporting different types of struc-
tures. In particular, NSLM supports the following general types:  

� The primitive or native data type corresponds to the basic types available in most 
languages, such as C and Pascal, as well as in object-oriented languages such as C++ 
and Java. These types always start with a lowercase letter and consist of the ubiqui-
tous: int, float, double, char and void (the null type). NSLM adds two more types to 
this short list: charString and boolean. The charString type translates into “String”
in Java and “char*” in C++. The boolean type translates into “boolean” in Java and 
into an enumerated type in C++ containing 1 (true) and 0 (false). 

� The general object class data type corresponds to the basic types available only in 
object-oriented languages, such as C++ and Java. As opposed to the limited set of 
predefined native or primitive types, object types represent an extensible family of 
classes, either specified by the user or provided by the language in the form of 
libraries. The classes included in the NSLM class library are an essential component 
of the system and includes types, such as the scalar NslFloat0 or the input port vec-
tor NslDinDouble1, used in describing neural elements, data ports or any other 
structure.

� The module class and model class data types corresponds to the unique family of 
NSLM types, distinguishing it from other object-oriented languages, such as C++ 
and Java. While module classes and model classes are object-oriented structures in 
their nature, they go beyond the basic semantics of an object class. Module classes
and model classes incorporate semantics for input and output port based communica-
tion, something not found in “regular” object classes. 

Variables, Attributes and Methods 
Variables are the most basic entity in a programming language. Variables provide dual 
function-ality, they are used to hold either values (e.g. 0.5) or references (i.e., a virtual 
memory address indirectly specifying where to find the actual values in memory). As in 
most object-oriented languages, NSLM variables may not exist as independent global 
entities but only within an object, module or model class—being called class attributes.
This is also the case with functions that may only be defined within an object, module or 
model class as well—being called class methods. Since NSLM is a typed language, every 
variable or attribute must first be declared according to an existing type. 

� When a variable refers to a native primitive type, the variable will store a value.
These types will be defined in section 6.2, Primitives Types.

� When a variable refers to a module, model or class type, the variable will store a 
reference to the particular object instead of holding a simple value. This is quite 
common, since objects are more complex than primitive types and thus require more 
sophisticated handling. (As a general comment to those users familiar with the con-
cept of pointers—pointers exist in C++ but not in Java—NSLM does not include any 
pointer computation, only references.) Note that variables never refer to a class but 
to an object instantiated from that class. These types will be defined in sections 6.4 
and 6.6, Creation of Module Types and Creation of Class Types respectively.  
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Attribute Reference Hierarchies 
Since attributes belong to classes and attributes may provide references to other objects, 
we end up with attribute reference hierarchies or simply Attribute Trees. By providing the 
starting point of a tree—the root—we can access any attribute by knowing all references 
in its path. When NSL is running, there are two different trees present in the system:  

� The system tree for storing NSL specific attributes, and  

� The model tree for storing user defined attributes.  

Actually, every model and module has its own attribute reference tree. If we examine 
one of these attribute reference trees we see that attributes of a primitive type (to be dis-
cussed below)—can only be leaves in the tree while attributes holding references are con-
sidered nodes of the tree. For example, the model attribute reference tree for the 
Maximum Selector model (as we saw in chapter 3), is shown in figure 6.1. The instance 
maxSelectorModel is the root. 

maxSelectorModel

stimulus maxSelector output

sout

u1 sin uf v1

sin up

tv hv uin vphu sin vin up uf

uf

vftu

Note that every entry in the tree corresponds to a variable referencing an object and 
not the name of a class. 

To refer to any variable we use the “dot” notation, i.e. var1.var2. There exist two 
ways of referencing a variable in the tree: absolute and relative referencing format. 

� The absolute reference notation starts from the root of the tree specifying the com-
plete path from there. For example, in the Maximum Selector model to refer to vari-
able vp we must use 

maxSelectorModel.maxSelector.v1.vp 

All references for the model tree start with the name of the model.

� The relative reference notation starts from a particular node in the tree and 
continues on from there. For the previous example, if we currently reference 
maxSelectorModel.maxSelector, we would then refer to vp by 

v1.vp 

Note that referencing a variable requires specifying its visibility as public (described 
in section 6.2) effectively breaking up the module encapsulation (where variables are 
defined as private instead). (We will also describe a similar concept called accessibility in 

Figure 6.1 
Reference tree of the 
Maximum Selector model. 
Note all instances of objects, 
or references to objects, are 
in lowercase, where 
���������	
�	��� is the 
root of the hierarchy. The 
model object is implicitly 
instantiated by NSL when 
simulating it  (see chapter 3). 
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section 6.3.) These concepts are analogous to how directories are made readable or not in 
a file system.  

Class Reference Hierarchies 
A different reference hierarchy also exists in all object-oriented languages. This hierarchy 
or tree defines references between classes as opposed to objects and it is known as the 
Class Tree. Since classes primarily exist to help define object instances, class trees are 
used to organize the different class definitions. The goal behind this hierarchical organi-
zation is to avoid duplicate attributes and methods by specifying common ones in the 
base class or super class (the class where common attributes and functions are first 
defined) while having other classes, known as subclasses, inherit these common attrib-
utes and methods from the super class. Class Inheritance Specification is quite useful in 
building systems and NSL takes advantage of this mechanism both internally and in let-
ting the user build classes in general. We introduce in this section the main class hierar-
chy in NSL while describing how to build user-defined class trees in section 6.4 and 6.6. 
(Please see the NSL web site for the complete NSL Class Hierarchy details.) 

Predefined Reference Variables 
NSLM includes a number of pre-defined reference variables: 

� nslName represents a charString type variable referencing the name of a particular 
object. For example, nslName within the maxSelector module object would refer to 
“maxSelector”.

� nslParent provides a reference from any object back to where it was instantiated. 
For example, any reference within the Vlayer module instance would refer back to 
the maxSelector module instance where Vlayer was instantiated. 

� this provides a reference to the current object. this is particularly important as a 
return reference inside functions as well as passing it as argument to another func-
tion.  

� super provides a reference from any class back to its base class, in other words, the 
class from which it inherits. The super reference is used to retrieve attributes or 
methods defined in the base class, used in conjunction with inheritance. For example, 
a reference such as super.method()would call the function method() defined in its 
base class. In general, unless specified otherwise super refers to the NslModule base 
module class since all modules by default inherit from it. (We will discuss this in 
more detail in section 6.3.). 

� null represents the null or invalid reference. It is primarily used within expressions 
that check the validity of a reference variable. 

Importing Libraries  
NSLM lets the user call external libraries within a model description by using the 
nslImport statement. As in most programming languages, NSLM requires all definitions 
to be present during compilation. Since the user may call externally defined classes, it is 
necessary to include an import statement specifying what additional definitions are 
needed and where they should be found. For example a class defined in a file called 
moreobjects.class in Java or moreobjects.h in C++ would be imported using the follow-
ing format, 

nslImport moreobjects;
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Since Java and C++ use different syntax for defining a path to an imported file, the 
NSL verbatim statement allows us to block off a section of and make it a purely Java code 
or C++ code. We will discuss verbatim in more detail in section 6.2. 

Verbatim
NSLM includes a verbatim keyword telling the compiler that part of the code contains 
C++ or Java specific statements, as opposed to NSLM general statements, that should not 
be parsed by the NSLM compiler but left intact for direct C++ or Java compiler process-
ing. For example, if the user needs more complex import statements than the ones offered 
in the previous section, then the verbatim keyword could be used. We mark verbatim
sections in the following way: 

C++-only sections of code use the notation: 

verbatim_NSLC;

and Java-only sections of code use the notation: 

verbatim_NSLJ;

To end the C++ or Java section of code use: 

verbatim_off;

While the use of verbatim should be avoided, we do offer such an option when there 
is no appropriate NSLM construct. Note that if you use a verbatim section, the NSL pre-
parser will not preprocess that section of code and many of the NSL constructs will need 
to be manually expanded to their Java or C++ correct forms. For instance all NSL library 
module and object instantiations actually take two extra parameters, a charString name
and NslModule parent,

NslDouble2 someobj(“someobj”,this,4,5); 

SomeModule somemod(“somemod”,this,..otherparams..);

We thus recommend being extremely careful when adding verbatim sections.1

6.2 Primitive Types 
As previously mentioned, native or primitive data types store values.2

Defined Types 
The primitive types in NSLM are shown in table 6.1. They include numeric, string, boo-
lean and void types. 

Type Description Initial Value 

int integer type 0 

float single precision floating point number 0 

double double precision floating point number 0 

boolean true or false false 

char single character null 

charString string of characters null 

void non type  

Table 6.1 
Native or Primitive types in 
NSLM with their initial 
default value. 
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It is a good practice to always set the initial value of a variable in one of the initiali-
zation methods, as will be discussed in section 6.3. It should also be noted that void is not 
actually a type but a non-type. It represents the lack of a type and it is used, for example, 
when a method returns nothing.  

Declarations 
Specifying the type of a variable is known as a declaration. In NSLM variables are 
declared and defined (assigning automatic space for storing values) as follows: 

VisibilitySpec PrimitiveType varName; 

The VisibilitySpec is discussed in the next section. PrimitiveType is the correspond-
ing type, such as int; varName is the name of the variable storing values according to the 
associated type.  

An example of a primitive type variable declaration with the optional initialization is 
as:

private double x = 1.0; 

Note that we also include a private visibility specification in front of the declaration 
of x (described in the next section). The variable initialization is given by “=” followed 
by a numerical value in this case “1.0”.

Visibility 
Visibility specifies attributes (variables) and methods can be seen from outside a class or 
module. This is a very important aspect in object-oriented programming since it is the 
basis for encapsulation. Three levels of visibility are supported by NSLM, private, pro-
tected and public. (This is similar to visibility levels available in both C++ and Java.) The 
three levels are defined as follows,  

� private—attributes and methods are local to every object instantiated from the 
particular class, 

� protected—attributes and methods are local to every object instantiated from the 
particular class or from any of its subclasses, 

� publi—attributes and methods are both local and external to every object instantiated 
from any class. 

In general all attributes should be defined as private for encapsulation reasons. The 
exception to this rule is the declaration of the ports (to be described below) and external 
methods. Ports need to be available for external referencing, as do some external meth-
ods. Methods that are only used within the class should be defined as private. (You 
should be careful if omitting visibility specifications since the defaults are inconsistent 
between C++ and Java: C++ considers the default to be private, while Java considers the 
default to be public to classes defined in the same directory.) Also, the above rules only 
apply to attributes and methods; the visibility specification is not need if variables are 
declared within a method. The same visibility rules apply to object and modules types. 

Arrays
NSLM supports multiple dimension arrays on all primitive types with the exception of 
void. For example a single dimension array of integers is defined as 

private int alpha[10];
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where the array alpha consists of 10 integers accessed each by its index,

alpha[index];

an integer going from 0 to the array size minus one, in this case 9. 
For example, a two-dimension array or matrix is defined as 

private float beta[10][5];

where the array beta consists of 10 by 5 float number accessed each by its row and col,

private beta[row][col]; 

an integer going from 0 to the array size minus one, in this case up to 9 for the row num-
ber and an integer going from 0, in this case up to 4, for the col number.3

Constants
The nslConstant keyword can be used to specify certain variables of primitive types to be 
constants, in other words variables that will not change over the course of the execution 
of the program. The syntax to do this is: 

nslConstant VisibilitySpec type var = value;

For example a public constant would be specified as follows, 

nslConstant public float pi = 3.14; 

Expressions 
NSLM supports primitive type expressions mainly in the form of operators similar to 
those common to Java and C++. Primitive expressions may be part of independent state-
ments, passed as parameters to a method, or even as part of a return statement.  

Numeric 
Arithmetic operators can only be applied to numerical types—int, float or double—as 
shown in table 6.2. (Note that “unary” operators take a single argument, e.g. “-alpha,”
while “binary” operators take two arguments, e.g. “beta-alpha.”)

Operator Usage Description 

++ ++a or a++ pre-or-post increment (unary) 

-- --b or b-- pre-or-post decrement (unary) 

+ +b or a+b positive (unary ) or addition (binary) 

- -b or a-b negative (unary ) or subtraction (binary) 

* a*b multiplication 

/ a/b division for doubles and floats, or modulus for integer values 

% a%b remainder 

= a=b assignment  

*= a*=b a=a*b 

/= a/=b a=a/b 

+= a+=b a=a+b 

-= a-=b a=a-b 

Table 6.2 
Operators that may be 
applied to numerical type 
variables, i.e.,����,������,
and 	�
���.
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For example, the assignment operator “=” assigns one number to a variable:  

int x;

x = 5; 

The first line defines the variable x to be of integer type, while the second line 
assigns a value of 5 to the variable. The two can be combined into a single statement as 
follows (this is known as initialization),

int x = 5; 

Other operators are used in a similar fashion. 
Logical operators compare numerical—int, float or double—values to obtain a boo-

lean type value—either true or false—as shown in the table 6.3.  

Operator Usage Description 

< a < b less than 

> a > b greater than 

<= a <= b less than or equal  

>= a >= b greater than or equal 

== a == b equal  

!= a!= b not equal  

Boolean 
Boolean operators are usually seen in control statements (described in the next section): 
if, while, for, and switch. Operators that can be applied to boolean types are shown in 
table 6.4.  

Operator Usage Description 

= a=b Assignment among boolean values 

== a == b Return true if the two boolean values are equal  

!= a!= b Return true if the two boolean values are not equal  

&& a && b Logical AND 

| | a | | b Logical OR 

! !a Logical NOT 

String
Operators that can be applied to charString types are shown in table 6.5.  

Operator Usage Description 

= a=b Copy one string to the other one 

+ a+b String concatenation 

== a == b Return true if the two string values are equal  

!= a!= b Return true if the two string values are not equal  

Control Statements 
Control statements control the flow of execution by incorporating conditions on state-
ments. The while, do and for statements allows the execution flow to loop over one sec-

Table 6.3 
Logical operators that may 
be applied to numerical type 
variables, i.e., ���, �����, and 
��	
��. Returns ��	� or 
����.

Table 6.4.  
Assignment and logical 
operators that may be 
applied on boolean types. 

Table 6.5.  
Assignment, concatenation 
and logical operators that 
may be applied on string 
types. 
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tion of code several times until a particular condition is met. The if and switch statements 
execute a certain section of code once if a certain condition is met. NSLM includes the 
standard control statements shown in table 6.6. (square brackets represent optional con-
trol expressions). 

Statement Usage Example Description 

if (condition) { statements } 
[else if (condition)
{ statements }] 
[else { statements }] 

if (a>b) { a = 2; } 
else if (a>c) { a = 1; } 
else { a = 0; } 

if-else statement with optional 
intermediate else-if expressions and 
a final optional else expression. 
When condition is true the corre-
sponding statements are processed. 

while (condition) { statements } while (a<b) { a ++; c= a *2; } while statement. While condition is 
true process statements.

do { statements } 
while (condition); 

do { a ++; c = a *2; } 
while (a<b);

do-while statement. Process state-
ments until condition becomes 
false.

for (initial-expression; continua-
tion-condition; continuation-
expression)
{ statements } 

for (a =0; a< b; a ++)  
{ c = a *2; } 

for statement. Execute initial-
expression; then execute statements
while continuation-condition is
true. After each successful con-
tinuation execute continuation-
expression.

switch (variable) { 
case value: statements break;
[case value: statements break; ] 
[ default: statements ] 
}

switch (a) { 
case 0: c = 0; break;
case 1: c = 2; break;
default: c = a;
}

switch statement. Choose from the 
appropriate variable value the 
equivalent value case statement (as 
many as cases as necessary); then 
execute the corresponding state-
ments, with an optional default
when no matching value is found. 
This is equivalent to an if-else
statement with multiple sections. At 
the end of each switch section a 
break statement is added. 

condition?statement-
true:statement-false

c>d?a:b if condition, then statement-true
else statement-false

In general, all control statements can include both a break and continue statement 
used to either break or stop processing the control statement or continue with the next 
cycle in the control statement without completing the current one. Both the break and 
continue statements search for the closest loop (while, do, for) to escape from when many 
nested control statements exist. 

Conversions, Casting, and Promotions 
As in most languages, expression return a type that can be deduced from the structure of 
the expression and the types of the literals or operands involved (numbers, characters, 
etc.). Variables may not be used in expressions where their type does not match the 
expected one. However, in some cases such restrictions are loosened. For example, in a 
method requiring an argument of type double, it would not be appropriate to supply a 
parameter of int type. However, languages such as C++ and Java, perform an implicit 

Table 6.6 
Control statements: if, while,
do, for and switch.
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conversion from the deduced expression type to a type acceptable for its surrounding 
context, such as implicitly converting an int type to a double. In general, NSLM supports 
all conversions permitted by both C++ and Java on primitives, such as assignment con-
version, method parameter conversion, and numeric promotion (or casting).  

An assignment conversion between an integer and a float would involve an implicit 
cast or conversion:

private int x = 5; 

private float y;

y = x;

where y stores the float version of x, in other words, 5.0.  
A method invocation conversion between an integer and a float for a method defined 

as

private void func(float x) { ... } 

would involve an implicit cast:

private int x = 5; 

func(x);

converting x into a float when passed as an argument to the function. 
Numeric promotion between an integer and a float would involve an explicit cast or 

conversion: 

 private int x = 5; 

 private float y;

y = (float) x;

where x gets promoted to a float before doing the assignment. 

6.3 Object Types 
NSLM object types or classes are analogous to those found in object-oriented languages, 
having both attributes (data) with corresponding methods (functions) to manipulate them. 
NSLM lets the user define new object classes as well as instantiate from a number of 
predefined ones, organized as numeric, string, and boolean classes.

Defined Types 
We describe these structures followed by operators and expressions that can be applied to 
them.  

Numeric 
NSLM defines set of numeric object types varying in their dimension particularly useful 
for arithmetic computations. These classes vary according to the underlying numeric 
attribute type, int, float or double, and its corresponding dimension (0-4), as shown in 
table 6.7. 
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Dimension
Type 

0 1 2 3 4

float NslFloat0 NslFloat1 NslFloat2 NslFloat3 NslFloat4 

double NslDouble0 NslDouble1 NslDouble2 NslDouble3 NslDouble4 

int NslInt0 NslInt1 NslInt2 NslInt3 NslInt4 

The reason for providing these special types is that by encapsulating the dimension 
within the object, NSLM is able to overload a number of operators that the user would 
otherwise have to explicitly define. For example, additions may be specified in a single 
“+” statement avoiding the use of multiple “for” loops going through one primitive 
numeric element addition one at a time. Additionally, NSL protects the user from accessing
undefined index elements (overflows), a major headache when doing direct array 
manipulations at the primitive level.  

Boolean 
NSL defines several boolean object types with varying dimensions as shown in table 6.8. 

Dimension
Type 

0 1 2 3 4

boolean NslBoolean0 NslBoolean1 NslBoolean2 NslBoolean3 NslBoolean4 

As with the primitive boolean types the values any element of a NslBoolean array 
can hold is either true or false. NslBoolean object methods are discussed in more detail 
in the Appendix.4

String
NSL defines a charString object type useful in storing single strings of characters5 as 
shown in table 6.9.  

Dimension
Type 

0 1 2 3 4

charString NslString0     

The NslString0 type, together with charString, are introduced in NSLM to over-
come the different handling of strings in C++ and Java as well as enable the user to use 
strings as parameters. The methods that apply to NslString0 types are discussed in 
Appendix I, NSLM Methods.

Ports
Ports are special object types that by linking them together enable data communication 
between modules—as opposed to simply storing private data within objects or modules. 
Ports have all the functionality defined of analogous “non-port” object types, and as such 
they can be used in any expression having been previously defined. Port specific expres-
sions are described in the following sections. Ports are organized in two categories 
according to their semantics, output ports (Dout) and input ports (Din). We describe 
them according to their underlying object type.  

Numeric 
The numeric output and input port types are shown in table 6.10. 

Table 6.8  
Boolean object types defined 
in NSL. The types are 
classified accord-ing to the 
corresponding dimensions, 
represented by the last 
number in the type. 

Table 6.9 
String object types defined in 
NSL. The types are classified 
according to the 
corresponding dimensions, 
represented by the last 
number in the type. 

Table 6.7  
Numeric object types defined 
in NSL. The types are 
classified according to the 
corresponding dimensions, 
represented by the last 
number in the type. 
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Dimension
Type 

0 1 2 3 4

NslDoutFloat0 NslDoutFloat1 NslDoutFloat2 NslDoutFloat3 NslDoutFloat4 float 

NslDinFloat0 NslDinFloat1 NslDinFloat2 NslDinFloat3 NslDinFloat4 

NslDoutDouble0 NslDoutDouble1 NslDoutDouble2 NslDoutDouble3 NslDoutDouble4 double 

NslDinDouble0 NslDinDouble1 NslDinDouble2 NslDinDouble3 NslDinDouble4 

NslDoutInt0 NslDoutInt1 NslDoutInt2 NslDoutInt3 NslDoutInt4 int

NslDinInt0 NslDinInt1 NslDinInt2 NslDinInt3 NslDinInt4 

Boolean 
The boolean output and input port types are shown in table 6.11. 

Dimension
Type 

0 1 2 3 4

NslDoutBoolean0 NslDoutBoolean1 NslDoutBoolean2 NslDoutBoolean3 NslDoutBoolean4 boolean

NslDinBoolean0 NslDinBoolean1 NslDinBoolean2 NslDinBoolean3 NslDinBoolean4 

String
The string output and input port types are shown in table 6.12. 

Dimension
Type 

0 1 2 3 4

NslDoutString0     charString

NslDinString0     

Declarations and Instantiations 
While classes define types, actual objects are required to exist for a program to do any-
thing meaningful. In NSLM as in typed languages such as C++ or Java, objects are 
identified through variables referencing them. Specifying the type of a variable is known 
as a declaration, while actually defining the objects to which the variable refers is known 
as instantiation—creating the object for the first time. In NSLM variables are declared 
and have their referred object instantiated together in a single expression as follows: 

VisibilitySpec ObjectType varName(paramList); 

The VisibilitySpec is similar to that of primitive types as discussed in the next section.
ObjectType is the corresponding object type, such as NslInt0, varName is the name of the 
variable storing the reference to the new instantiated object, and paramList is a list of 
instantiation parameters that vary depending on the associated type.  

Instantiation Parameters 
While declarations and instantiations are similar for any NSLM or user defined types, 
instantiation parameters (paramList) vary depending on the specific type. In particular, 
NSLM defines certain types with a corresponding dimension suffix as shown in table 
6.13. 

Table 6.10  
Numeric output and input port 
types. 

Table 6.11  
Boolean output and input port 
types. 

Table 6.12  
String output and input port 
types. (Only “0” dimension 
string ports are currently 
defined.) 
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ObjectType paramList 

NslType0

NslType1 size

NslType2 row , col 

NslType3 dim, row , col 

NslType4 dim1 , dim2 , row , col 

For example: 

private NslInt0 x();

declares and instantiates an object of type NslInt0 referenced by variable x. Note that 
NSLM automatically creates the C++ or Java code needed to allocate memory space for 
the new variable x.6 Examples of object instantiations for different dimensions and types 
are,

private NslDouble1 y(10);    

private NslFloat2 z(10,5);   

where 10 is the size of object y and 10 by 5 is the size (row,col) of object z.
In the case of ports, the syntax to declare and instantiate a port type is similar to that 

used for normal NSL numeric types, namely: 

public NslDinInt0 xp();

declares and instantiates an object of type NslDinInt0 referenced by variable xp. Exam-
ples of object instantiations for different dimensions and types are, 

public NslDinDouble1 yp(10);    

public NslDoutFloat2 zp(10,5);   

where 10 is the size of object yp and 10 by 5 is the size (row,col) of object zp. Also note 
that we always include the visibility declaration of “public” since other modules need to 
be able to connect to these ports. Ports should only be defined as attributes and not within 
methods.  

There is an alternative option for defining objects without fully assigning its internal 
size during instantiation. This is particularly useful when providing array sizes in a 
dynamic way. The format is as follows: 

private NslDouble1 r();    

private NslFloat2 s();

where no specific values are given for the r or s corresponding dimensions. The dimen-
sions are set at a later time using the var.nslMemAlloc(sizeList) method (see Appendix I 
for further details) where sizeList represents the corresponding sizes from the original 
paramList in one of the constructor or initialization methods discussed in section 6.3. 
Defining objects this way provides great flexibility since models may have their internal 
sizes dynamically assigned during model execution avoiding recompilation such as in the 
extensions mentioned for the Backpropagation model described at the end of chapter 3.  

Table 6.13  
Instantiation parameters for 
the different object types in 
NSLM according to their 
dimension and 
corresponding suffix (0, 1, 2, 
3 and 4). In the current NSL 
version, ���� corresponds to 
either����,������, 	�
���, or 
������ with dimensions 
between 0 and 4, and ������
for dimension 0 only. When 
dealing with ports, ����
would include either 	�� or 
	�
� together with the actual 
numeric type. Parameters 
size, row, col, dim, dim1 and 
dim2 are integer values 
specifying the object internal 
size in correspondence to the 
object dimension. 
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Arrays
Array usage with object types varies from that of primitive types. In the current NSLM 
version the user may define arrays of primitive types but they may not define object type 
arrays. This is because of the differences of array handling in Java and C++. Yet, the 
NSL C++ version does support C++ arrays of NSL types as described in Appendix III 
(NSLC extensions). On the other hand, since NSL predefined object types already 
include up to four dimensions, NSL includes array-style data accessing in those types. 

In general, accessing data from an object is done through method invocations or in 
the case of NSL dimensional objects, it varies depending on the particular dimension 
objects may have. To access an element within an object, NSLM provides array indexing 
using the conventional bracket pair “[ ]” according to the following considerations (note 
that all array indices start at zero). 

� Zero: A zero-dimensional type stores a single primitive type value or scalar. For 
example NslFloat0 type stores a float type. 

� One: A one-dimensional type stores a one-dimensional primitive type array (consid-
ered a row vector). For example NslFloat1 type stores a float type array. In a one-
dimensional object m, m[j] returns the j+1-th element in m, where j must be a posi-
tive integer value (or an expression returning a positive integer value). 

� Two: A two-dimensional type stores a two-dimensional primitive type array (consid-
ered a matrix). For example NslFloat2 type stores a float type two-dimensional 
array. The first dimension of the array represents the rows while the second dimen-
sion represents the column. In a two-dimensional object m, m[i] returns the i+1-th 
row of the array, which is a one-dimensional array. m[i][j] returns the element at the 
i+1-th row and j+1-th column of the array.  

� Three: A three-dimensional type stores a three-dimensional primitive type array 
(considered a vector of matrices). For example NslFloat3 type stores a float type 
vector containing two-dimensional arrays. The left-most dimension identifies the 
vector while the other two represent the rows and columns of the matrix, respec-
tively. In a three-dimensional object m, m[h] returns the h+1-th two-dimensional 
array. m[h][i][j] returns the element at the h+1-th array, i+1-th row and j+1-th col-
umn of the two-dimensional array.  

� Four: A four-dimensional type stores a four-dimensional primitive type array 
(considered a vector of three-dimensional matrices). For example NslFloat4 type 
stores a float type array of a float type array that stores a two-dimensional arrays. In 
a four-dimensional object m, m[g] returns the g+1-th three-dimensional array, 
m[g][h] returns the g+1-th and h+1-th two-dimensional array. m[g][h][i] returns the 
g+1-th, h+1-th, i+1-th vector. m[g][h][i][j] returns the g+1-th, h+1-th, i+1-th , j+1-th 
element of the array.  

(A number of methods manipulation objects with different dimensions are described 
in Appendix I.) table 6.14 summarizes array indexing and partial indexing. 
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ObjectType Indexing ResultType 

NslType1 var[index] type 

var[row] NslType1NslType2  

var[row] [col] type 

var[index1] NslType2

var[index1] [row] NslType1

NslType3  

var[index1] [row] [col] type

var[index1] NslType3

var[index1] [index2] NslType2

var[index1] [index2] [row] NslType1

NslType4  

var[index1] [index2] [row] [col] type

Constants
Similar to primitive types, the nslConstant keyword can be used in conjunction with 
object types in order to for them to be constants, in other words variables that will not 
change over the course of the execution of the program. The syntax to do this is: 

nslConstant visibilitySpec objectType varName(paramList) =

value;

For example a public constant would be specified as follows, 

nslConstant public NslFloat0 pi = 3.14; 

Expressions 
NSLM supports a number of expressions on the different defined types. We will 
described them according to numeric, boolean, string and port types. 

Numeric 
NSLM supports most numeric operators to those defined for primitive numeric types (this 
applies to both numeric and numeric port types). The supported arithmetic expressions 
are shown in the table 6.15. 

Operator Usage Description 

= a=b Assignment 

+ +b or a+b Unary Positive or Two Parameter Addition 

- -b or a-b Unary Negative or Two Parameter Subtraction 

/ a/b Pointwise Division  

^ a^b Pointwise Multiplication 

* a*b Scalar Multiplication or Vector/Matrix Product 

@ a@ b Vector/Matrix Convolution (see Appendix II) 

For instance, a NSL NslFloat0 object would have its value assigned as follows: 

private NslFloat0 x();

x = 5.0; 

Table 6.14  
Indexing for dimensional object 
types. ���� corresponds to 
either ���, �����, ��	
���

������ or String for their 
correspondingly defined 
dimensions (similarly with port 
types). Again, index, row, col,
index1 and index2 are integer 
values specifying the 
corresponding index number. 
type would correspond to a 
primitve type either����,������,
��	
��, 
������ or ����������
respectively. 

Table 6.15  
Arithmetic operators for object 
numeric types. Typically, 
operands required on each side 
of the operator (except in the 
case of the unary operators) 
must be of a similar type and 
dimension although in some 
cases parameter may be of 
different dimension. More 
details on valid operands are 
described in Appendix II. 
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If the assignment takes place on the same line as the declaration and instantiation 
then it is known as initialization:

private NslFloat0 x() = 5.0; 

A NSL NslFloat2 object would have one of its elements assigned a value as follows: 

private NslFloat2 y(2,3);

y[0][1] = 5.0; 

or all its elements as follows, 

y = 5.0; 

where 5.0 is assigned to every element in y.
Note that assignment copies values from one object to another one. This is not a 

copy of references (as opposed to Java handling of object to object assignment). For 
example

private NslFloat2 z(2,3);

z = y;

assigns every element value in y to every element value in z, where y and z must be 
equally sized. 

Also note that numeric objects on the left-hand side of an assignment statement may 
be assigned with primitive types returned on the right-hand side. For example, the follow-
ing code works without having to add an explicit cast. (Explicit cast is covered in this 
section on Conversions, Casting, and Promotions.)  

private NslFloat1 phi(5); 

private NslFloat0 force(); 

private float mu;

phi=22;

mu=phi[0];

force=phi[0];

The previous to last equation copies the content of phi[0] into mu, while the last 
statement copies phi[0] to force.

NSLM also provides logical operators for numeric port types. The logical operators 
are shown in table 6.16. 

Operator Usage Description 

< a < b less than 

> a > b greater than 

<= a <= b less than or equal  

>= a >= b greater than or equal 

== a == b equal  

!= a!= b not equal  

All logical operators are applied as pointwise to arrays and return an array of similar 
size. If the arrays are of different dimension or size, an error will occur.  

Table 6.16  
Logical operators for object 
numeric types. 
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Boolean 
Boolean types are mainly used as resulting values from statement conditions. For exam-
ple all expressions in table 6.15 return a boolean value. Since boolean values can only be 
true or false, the only expression that can be applied to this values are the ones shown in 
table 6.17. 

Operator Usage Description 

= a=b Assignment among boolean values 

== a == b Return true if the two boolean values are equal  

!= a!= b Return true if the two boolean values are not equal  

&& a && b Logical AND 

| | a | | b Logical OR 

! ! a Logical NOT 

String 
String type expressions are shown in table 6.18. 

Operator Usage Description 

= a=b Copy one string to the other one 

+ a + b String concatenation 

== a == b Return true if the two string values are equal  

!= a!= b Return true if the two string values are not equal  

For example, to declare as well as initialize a variable of type NslString0 we type: 

private NslString0 protocol()= “Protocol”;

Ports
In general all “non-port” expressions apply to port types, i.e., numeric type expressions 
apply to numeric port types, similarly with booleans and strings. There a number of addi-
tional expressions, in the form of methods particular to port types defined for specifying 
connections and relabels between them. When connecting or relabeling ports the type 
and dimension of the ports must match or a compilation error will occur, the only excep-
tion is connecting among different numeric port types. In order to illustrate these expres-
sions in more detail we present in figure 6.2 a comprehensive diagram of the Maximum 
Selector model previously described in chapter 3. 

Table 6.17  
Logical operators that may be 
applied on boolean 
expressions. 

Table 6.18
Logical operators that may 
be applied on boolean 
expressions. 
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in

uin

sin

sout din

uin

out

vfvin uf

Children Module Level

Parent Module Level

Vlayer
v1

Ulayer
u1

MaxSelector
maxSelector

MaxSelectorStimulus
stimulus

MaxSelectorOutput
output

Connections
NSL provides the user with a special function nslConnect to make connections between 
ports. Connections are always specified from output ports to input ports as follows, 

nslConnect (m1.dout,m2.din);

where output port dout in module m1 is connected to input port din in module m2. This 
statement, specified within the makeConn method, shows how to specify port connec-
tions between modules and should be specified at the parent module level, that is inside 
the module that actually instantiated both m1 and m2. For example, at the parent module 
level the following three connections are made in figure 6.2, 

nslConnect(stimulus.sout,maxselector.in);

nslConnect(stimulus.sout,output.sin);

nslConnect(maxselector.out, output.uin); 

At the children module level the following two connections are made in figure 6.2, 

nslConnect(v1.vf,u1.vin);

nslConnect(u1.uf,v1.uin);

As an additional consideration, in order to refer to a port it must have been defined 
with visibility public, otherwise the above connection statement would cause a compila-
tion error.  

Relabels 
Besides connections NSL provides a special connectivity function nslRelabel to forward 
data between ports belonging to modules at different levels in the module tree hierarchy. 
Recall that connections are done between an output port and an input port belonging to 
different modules at the same decomposition level. On the other hand, relabeling is speci-
fied between a parent module input port and a child module input port or between a child
module output port and a parent module output port, respectively. Relabeling plays an 
important role when building module compositions or assemblages. For example, the 

Figure 6.2  
Complete diagram 
representation for the 
Maximum Selector presented 
in chapter 3. The model 
contains a top-level (Parent 
Module Level) consisting of 
the the ���������	r module 
and both the 
���������	
������ and 
���������	
����

modules. The ���������	


module is decomposed at the 
bottom-level (Children 
Module Level) into the 
�����
 and �����
 modules. 
Connections are made 
between modules at the top-
level or bottom-level, 
respectively. Relabels are 
made across modules in the 
top-level and bottom-level. 



T H E  M O D E L I N G  L A N G U A G E  N S L M     1 2 1

following statements would relabel an input port din at the parent module level to din in 
m1 and an output port dout in m1 to din at the parent module level,  

nslRelabel(din,m1.din);

nslRelabel(m1.dout,dout);

For example, the following two relabels are made in figure 6.2, 

nslRelabel(in,u1.sin);

nslRelabel(u1.uf,out);

Note that we do not need a module reference in the first argument since the reference 
is the actual module where the relabel is taking place—the “this” module. 

Control Statements 
Previously defined control statements (see “Primitive Types” section) support the use of 
object types as long as the corresponding expressions allow it. For example, boolean 
conditions permit the use of object type expressions returning boolean types. More gen-
erally, statement accept any object type defined expressions. 

Conversions, Casting, and Promotions 
Analogous to primitive types, object type variables may not be used in expressions where 
their type does not match the expected one. However, in some cases such restrictions are 
also loosened. For example, in a method requiring an argument of type NslDouble0 a 
NslInt0 type would be accepted as well. This applies between all numeric types as long 
as their dimension corresponds. In particular port types can be used whenever “non-port”
types correspond. (The opposite is not true since “non-port” types cannot be connected 
among themselves.) No conversions, castings or promotions may be applied between 
primitive and object types. 

6.4 Creation of New Object Types 
NSLM allows for the creation of new object-oriented style classes (creation of new mod-
ule and model types is described in section 6.5 and 6.6 respectively). As will be seen 
later, the major differences between modules and classes is their lack of ports and any 
control from the NSL scheduler. Defining a new class involves defining attributes and 
methods common to all its objects. New objects may be instantiated only if there exists a 
previously defined corresponding class as in most object-oriented languages. The class 
definition format is somewhat similar to that in C++ or Java. (The user can also define 
native C++ or Java classes with the use of the verbatim modifiers.) 

Template 
To define a new class we use the special nslClass keyword in the class definition header, 
as shown in code segment 6.1. 

nslClass class-name ( class-instantiation-spec ) class- 

inheritance-spec

{

class-attribute-spec

 class-method-spec 

}

Code Segment 6.1 
�������� definition 
template. 



1 2 2    C H A P T E R  6  

The code section outside the curly brackets corresponds to the class header, consist-
ing of the following: 

� class-name represents the name identifying the class. 

� class-instantiation-spec defines instantiation arguments (type-name pairs separated 
by commas) that must be passed when instantiating a new object. (This corresponds 
to the header of the object constructor in either C++ or Java.) 

� class-template-inheritance-spec defines the inheritance specification for the class. 

� The code section that appears inside the curly brackets defines the actual structure 
and functionality of the class: 

� class-attribute-spec defines the structure of the class in terms of its attributes, primi-
tive and object type variables. 

� class-method-spec defines the behavior of the class in terms of local function or 
method definitions. 

Header
The basic class header includes the nslClass keyword, the class-name, and the class-
instantiation-spec. For example, code segment 6.2 describes the main header section for a 
MemoryCalc class. 

nslClass MemoryCalc (int size) class-inheritance-spec

{

class-attribute-spec

 class-method-spec 

}

The class-instantiation-spec defines a single instantiation parameter size passed to 
class MemoryCalc.

Inheritance
Every class definition in NSLM requires a class-inheritance-spec. Inheritance is an 
important feature present in all truly object-oriented languages permitting the definition 
of new classes as extensions to already existing ones. The inheritance scheme provides 
the new class with all the attributes and methods (except for the private ones) of the 
superclass or baseclass, where the new class is known as the subclass. Inheritance is also 
the basis for code reuse in an application. As an aside for those users familiar with the 
concept, NSL supports only single inheritance—as opposed to multiple inheritance. In 
order to show how the class-inheritance-spec is used, we will create another class called 
MovementCalc that inherits from MemoryCalc as shown in code segment 6.3. 

nslClass MovementCalc (int size) extends MemoryCalc (size) 

{

class-attribute-spec

 class-method-spec 

}

We define MovementCalc as a subclass of MemoryCalc. Recall that MemoryCalc
requires an instantiation argument. Thus, we must pass size to MemoryCalc as shown in 
the inheritance specification to avoid an error. Note the difference between the instantia-
tion argument specification containing the type of the argument—int for size—and the 
parameter passed to the base class containing only the parameter name and not its type. 

Code Segment 6.2
Class header specification. 

Code Segment 6.3
���������	
� class 
header with inheritance from 
MemoryCalc. 
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Also note that MovementCalc can use all of the public and protected attributes and 
methods from MemoryCalc class. 

NSLM provides a default empty inheritance specification on the previous 
MemoryCalc class definition as shown in code segment 6.4. In this case, the NSLM 
compiler generates the default inheritance specification “extends NslClass(charString
nslName, NslModule nslParent)” when none is provided. NslClass is directly or indi-
rectly the highest superclass for all class objects. 

nslClass MemoryCalc (int size)

{

class-attribute-spec

 class-method-spec

}

Attributes
Attributes define the structure of the class. Attributes may be either primitive or object 
types. For example, in code segment 6.5 we add a private object to the MovementCalc
class.

nslClass MovementCalc (int size) extends MemoryCalc (size) 

{

private NslInt1 vector1(size); 

 class-method-spec 

}

The attribute section consists of a private NslInt1 type object referenced by variable 
named vector1, with instantiation argument size corresponding to the vector size. Vari-
able size is part of the instantiation arguments. Note that we should not name attributes 
the same as instantiation arguments since that will cause a compilation error. Further-
more, since we also have a base class containing its own attributes and methods, we must 
avoid conflicts with attributes with similar names in base classes.  

Methods 
Methods or functions define the behavior of the class. Methods correspond to functions in 
structured languages such as C and directly correspond to those defined in object-oriented 
languages. Methods must always be defined within a class corresponding to the class-
method-spec section. The body of a method—its implementation—supports expres-sions 
and statements similar to those used in C++ or Java, involving both primitive and object 
types. Methods can take any number of parameters and may or may not have a return 
type. Both arguments and the return type may be either objects or primitive types. As an 
example, we add a print method to the MemoryCalc example as shown in code segment 
6.6. 

nslClass MovementCalc (int size) extends MemoryCalc (size) 

{

private NslInt1 vector1(size); 

public int print() {

  nslPrint(“vector1:”,vector1);

 } 

}

Code Segment 6.4
Class header with empty 
inheritance specification. 

Code Segment 6.5  
Example of a class variable 
attribute. 

Code Segment 6.6  
Example of a class method. 
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This simple print method prints the values stored in vector1. To actually call the 
method we use the “dot” notation. For example, if we want to call the print method from 
within this or other class we would do the following: 

MemoryCalc m();

m.print();

Similar to the nslPrint method NSLM also provides a wide number of methods for 
arithmetic calculations, file manipulation and other functionality as described in 
Appendix II. 

Static Modifier 
NSLM offers an additional static modifier affecting both attributes and methods. The 
modifier makes the previously defined object attributes and object methods become what 
is known as class attributes and class methods respectively. The difference between the 
two lies in that object attributes and methods are designed to be accessed by an object 
reference where every object from a particular class refer to different data (with similar or 
different values) for the same attribute. On the other hand, class attributes and methods 
are designed to be accessed by a class reference where all objects from a particular class 
refer to a common data with a unique value for the same attribute. In other words a class 
attribute is an attribute whose value is always the same to all objects instantiated from 
that class, i.e. each object does not have its own private copy of the attribute but a shared 
one with all other objects. For example, in code segment 6.7, we show how to define a 
class attribute and a class method for MemoryCalc.

nslClass MemoryCalc (int size) { 

private static int version;

public static int print() {

  nslPrint(“MemoryCalc“);

 } 

}

The method print is used to print the name of the class as opposed to the name of an 
object instance. The method is called using the class name as its reference 

MemoryCalc.print();

This is quite useful in defining libraries that perform transformations dependent 
exclusively on data passed to it, such as with numerical functions. In this case no objects 
need to be instantiated from that class in order to execute the function. (In general objects 
are instantiated to store data for future use. In the case of simple transformation no 
“memory” is required and functions perform direct transformations based exclusively on 
arguments currently passed to it.) 

6.5 Creation of New Module Types 
Modules are the basis for processing and simulation in NSL. Modules are the most 
important NSL structure, distinguishing NSL from being “just another” object-oriented 
language. Modules are concurrent or active entities with the potential to be distributed7

based on communication ports for sending and receiving data between modules. This is 
in addition to traditional object-oriented message passing between objects in the form of 
method invocations. Thus, modules are distinguished from object classes in that module 
methods are executed by the NSLM scheduler, whereas object methods have to be explic-
itly called by the user.  

Code Segment 6.7 
Example of the use of the 
������ keyword 
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Template 
The process of defining new modules is similar to that of object classes. A module tem-
plate is defined having module attributes and methods similar to those defined for an 
object class in addition to specific module port attributes and simulation methods. In 
terms of syntax, modules use the special nslModule keyword instead of nslClass. The 
module definition template is shown in code segment 6.8. 

nslModule module-name ( module-instantiation-spec ) module- 

inheritance-spec

{

module-attribute-spec

 module-method-spec 

}

The template section that appears outside the curly brackets corresponds to the mod-
ule header, consisting of the following 

� module-name is the name identifying the module. 

� module-instantiation-spec defines instantiation arguments that must be passed when 
creating a new module instance. 

� module-inheritance-spec defines class inheritance aspects for the module. 

The template section that appears inside the curly brackets defines the actual struc-
ture and functionality of the module: 

� module-attribute-spec defines the structure of the module in terms of primitive, 
object and module type variables, including ports necessary for external communica-
tion. 

� module-method-spec defines the behavior of the module in terms of local functions 
or methods definitions, including simulation methods. 

Header  
The module-instantiation-spec within the header defines arguments that must be passed 
when instantiating a new module similar to class templates in NSLM. The specification is 
made of a list of type-name pairs separated by commas that may also be empty. For 
example, code segment 6.9 shows two instantiation parameters in BasicModule.8

nslModule BasicModule (int size, NslString0 c) module- 

inheritance-spec

{

module-attribute-spec

 module-method-spec 

}

Inheritance
The module-inheritance-spec allows the module to inherit attributes and methods from a 
base module class or super module. Module inheritance is similar to that in regular 
classes except that all modules must inherit directly or indirectly from NslModule in 
order for modules to be correctly managed. If we want to define a new module type that 
inherits from one already created, then we must pass the required parameters to the super 
module class as shown in code segment 6.10. Since BasicModule requires both size and 
c, we pass them as parameters from ExtendedModule.

Code Segment 6.8  
nslModule definition 
template. 

Code Segment 6.9 
��������	
� header 
specification. 
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nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

module-attribute-spec

 module-method-spec 

}

If inheritance is not specified, as in code segment 6.11, the NSLM compiler 
automatically appends the code “extends NslModule(charString nslName, NslModule
nslParent)” to the header.  

nslModule BasicModule (int size, NslString0 c)

{

module-attribute-spec

 module-method-spec 

}

Also note that all modules inherit directly or indirectly from a class called 
NslModule in order to take advantage of attributes and methods such as getting the vari-
able's name, getting the variable’s parent, setting the script access to the variable, and 
printing the variable. Similar to class, NSL supports only single inheritance for modules. 

Attributes
Attributes define the structure of the module. As in object classes, attributes may be 
either primitive, object or module types. For example, we add single input and output 
port to the ExtendedModule module structure, as shown in code segment 6.12. 

nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

public NslDinFloat1 din(size); 

 public NslDoutFloat1 dout(size); 

module-method-spec

}

The attribute section consists of, 

� public NslDinFloat1 input port named din, with instantiation parameter size since it 
corresponds to a numeric vector. 

� public NslDoutFloat1 output port named dout, with instantiation parameter size
since it corresponds to a numeric vector. 

Methods 
Modules are different from objects in their incorporation of simulation methods in addi-
tion to object type style methods. In this section we describe simulation methods fol-
lowed by differential equation methods, of particular importance to modules. 

Simulation
Simulation methods are executed during system runtime according to control parameters 
specified by the user from the script or window interpreter. Simulation methods, in addi-
tion to class methods, are inserted into module-method-spec section. In code segment 
6.13, we define one protected method and three public methods. Two of these methods 
override two NSLM's predefined simulation methods, initRun and simRun, respectively. 

Code Segment 6.10 
�����������	
� module 
header with inheritance from 
�������	
�.

Code Segment 6.11 
�������	
� header with 
empty inheritance 
specification. 

Code Segment 6.12  
Example of module port 
attributes. 
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(The initRun and simRun are discussed below; however, for a complete list of 
NslModule methods please see Appendix I, NSLM Methods.)  

nslModule ExtendedModule (int size, NslString0 c, char ptype)

extends BasicModule(size,c)

{

 public NslDinFloat1 din(size); 

 public NslDoutFloat1 dout(size); 

public double getVelocity(int deltax, int deltay) {

  //more code 

}

 public void initRun() {

  dout=0; 

}

 public void simRun(){

  //more code 

}

 protected NslDouble2 eyeMoveSpecial(int deltax, int deltay)  

{

  //more code 

}

}

All simulation methods are defined in the class NslModule and are overridden by 
the user through similarly named methods in the new module. Note that many of these 
methods were given in chapter 3 together with examples. The following tables describe 
the available methods for overriding (all methods return a void type and have no argu-
ments passed to them). table 6.19 shows the connection method. 

Connection Method Description 

makeConn All connections and relabels between modules should be specified 
within this method.  

Table 6.20 shows the system methods called once throughout the execution of the 
complete system. 

System Methods Description 

initSys This method should contain any initializations required for the com-
plete system (one per module). This usually involves system variable 
initialziations.

endSys It is the last method called before the end of the complete system 
simulation, for example to execute any summary type calculations. 

Code Segment 6.13  
Example of modules 
methods.

Table 6.19  
Connection method. 

Table 6.20.  
System methods. 
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Table 6.21 shows the module methods called once during a complete module simu-
lation. 

Module Methods Description 

initModule Initializes a module during every simulation, both training and run phases. 
For example, the number of simulation epochs or cycles per epoch may be 
set here.  

endModule Ends the complete simulation, both training and run phases. Performs any 
simulation post-processing. 

Table 6.22 shows the train methods called in relation to training aspects of the 
simulation. 

Train Methods Description 

initTrainEpochs Initializes variables that are needed for all train epochs. 

endTrainEpochs Summarizes the results from all train epochs. 

initTrain Initializes the training phase for all train cycles and is executed once per train 
epoch. Training variables are reset in this method. 

simTrain Contains training dynamics. Simulates the training phase for as many steps as 
specified or until reaching trainEndTime divided by trainDelta.

endTrain Executes at the end of the training phase for a single step when the time step 
corresponds to trainEndTime. Usually used for compiling statistics and print-
ing results after each train epoch.  

Table 6.23 shows the run methods called in relation to running aspects of the simu-
lation. 

Run Methods Description 

initRunEpochs Initializes the variables that are needed for all run epochs. 

endRunEpochs Summarizes the results from all run epochs. 

initRun Initializes the run phase for al run cycles and is executed once per run epoch. 
Variables for the run are reset in this method. 

simRun Contains running dynamics. Simulates the run cycle for as many steps as speci-
fied or until reaching runEndTime divided by runDelta.

endRun Executes at the end of the run phase for a single step when the time step corre-
sponds to runEndTime. Usually used for compiling statistics from each run 
and printing some kind of results. It may include modifications on the simula-
tion parameters. 

Table 6.21 Module methods. 

Table 6.22 Train methods. 

Table 6.23 Run methods.  
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Note that it is not mandatory to redefine or override any of these methods. When not 
overridden, the default method within the direct superclass (or NslModule by default) 
will be called. Also, the simulation time in a simTrain phase or a simRun phase starts 
with time equal zero and changes by time equal trainDelta or runDelta after each cycle 
or step. The number of cycles and the number of epochs both start at one when time 
equals zero.  

Since NSLM controls the scheduling of module methods, these should not be 
directly called from user-defined expressions or control statements. 

Differential Equations 
Differential equations are quite important in modeling neural networks. Simulation of 
neural networks as introduced in chapter 1 is based in NSL on the leaky integrator neural 
model specified by a first-order differential equation of the form 

( )t
t mptf

dt

dmp
,=� (6.1)

This first-order differential equation requires the use of numerical approximations to 
solve it. NSLM provides a general method for first-order differential equations defined as 
follows: 

nslDiff(mp,�,f(t,mp));

or

mp = nslDiff(mp,�,f(t,mp));

where f(t,mp) represents any mathematical expression, for example 

f(t,mp) = -mp+s;

corresponds to the leaky integrator model where s represents to the neuron input. � is a 
time constant having default value 1.0, and dt is the time delta. Since dt is not specified, 
its value is given from the script command interpreter. 

While different numerical methods may be used to solve the equation, NSLM 
defines it in such a way that the actual neural network architecture and connections do 
not change when changing the aproximation method used. Different numerical methods 
may be more or less appropriate according to the desired numerical precision and the 
processing power of the computing machine. NSLM includes two approximation 
methods, Euler and 2nd order Runge-Kutta, specified by

setApproxMethod(method);

where method can be either the string Euler or RungeKutta2.

� The difference equation specified by the Euler approximation method is: 

( ) ( )t
ttt mptf

t

mpmp
,=

�
��+�

(6.2)

and is modified to 

( ) ( )ttttttt smp
dt

mpmptf
dt
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�
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, (6.3)
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or expanding the equation for the leaky integrator, 

tttt s
t

mp
t

mp
��
�

+�
�
�

�
�
� �
�=�+ 1 (6.4)

� The difference equation specified by the Runge-Kutta2 approximation method is 
expanded into:

�
t

h
�

= (6.5)

k1 = hf(t,mpt,)(6.6)

�
�
�

�
�
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2kmpmp ttt +=�+ (6.8)

or expanding the equation again,  
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Scheduling 
NSL provides a multi-clock scheduler for each module during simulation. Every train 
cycle executes the simTrain method trainDelta times for as many cycles as specified by 
numTrainEpochs. Similarly, every run cycle executes the simRun method runDelta
times for as many cycles as specified by numRunEpochs. The detailed order of execu-
tion including initializations is as follows: 

1. For all modules execute initSys.

2. For all modules execute makeConn.

3. For all modules execute initModule.

4. Execute simulation cycles for as many epochs as specified, both train and run. 

5. For all modules execute endModule.

6. For all modules execute endSys.

The controls these cycles by using either the menu commands from the NSL Execu-
tive window or the NSLS script commands in the script window (see chapter 5). How-
ever, initSys, makeConn, and initModule will all be called before the NSL Executive 
window and the script window appear. Figure 6.3 shows in more detail a flowchart corre-
sponding to step 4: the train and run phases. (Usually the train phase is executed before 
the run phase.) 
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initTrainEpochs initRunEpochs

no no

yes yes

yes yes

no no

initTrain initRun

simTrain simRun

t>trainEndTime? t>runEndTime?

endTrain endRun

trainEpochs>
numTrainEpochs?

runEpochs>
numRunEpochs?

endTrainEpochs endRunEpochs

The scheduling described above is applied sequentially to all modules. In other 
words no module will execute a simTrain method unless all modules have previously 
executed an initTrain method. If a module does not define a particular method (say 
initRun), then that module will simply be skipped when its turn comes up for that phase 
of execution. The order in which modules are processed for a single method pass is 
preorder starting with the main model in the attribute reference tree hierarchy, as 
exemplified in figure 6.4. The simulation sequence is generated by going over all mod-
ules according to their initial instantiation specification, i.e. as soon a module is 
instantiated it is immediately put into the scheduling list. In figure 6.4, the scheduler 
would start from the top module ModuleA followed by its first child ModuleB. Since 
ModuleB has children, then the scheduling list continues with ModuleC and son on. The 
complete execution order in this example is alphabetical, i.e. ModuleC followed by 
ModuleD then followed by ModuleE and so on.9 Note that the tree is implicitly built by 
NSL following the order of module instantiations by the user. 

Figure 6.3  
Flowchart showing train and 
run processing phases. Note 
that the outer loop is referred 
to as the “epoch” and the 
inner loop is referred to as 
the “cycle”.
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ModuleA

ModuleB

ModuleC ModuleD ModuleF ModuleG

ModuleE

The actual code to generate the tree shown in figure 6.14 is as follows (note the exact 
declaration order with the modules. The order of module definition templates is 
unimportant). 

nslModule ModuleA ()

{

 ModuleB b(); 

 ModuleE e(); 

}

nslModule ModuleB ()

{

 ModuleC c(); 

 ModuleD d(); 

}

nslModule ModuleE ()

{

 ModuleF f(); 

 ModuleG g(); 

}

Buffering
To simulate concurrency in module execution NSL offers buffered ports as well as non-
buffered (default) ports. In the default mode, ports are non-buffered and processing 
becomes sequential processing where new values from output ports are immediately sent 
to all ports connected to it. In this form, ports operate as a numeric object keeping values 
for internal and external use always the same. Concurrency is only simulated with buff-
ered ports making processing order unimportant since all communication becomes 
buffered and output values are not immediately sent out from a module’s output ports. 
With buffered ports, the buffer keeps temporary internal port values. After each simula-
tion cycle the system copies the all buffered values into a second buffer used for 
communications with other modules. Since the default mode is set to non-buffered ports, 
the user may change a particular port to the buffering mode with the following command: 

Figure 6.4  
Dashed arrows in the frame 
specify instantiation order, 
starting with the top module 
in preorder and depth first 
fashion, in other words, 
following names “alphabet-
wise.”

Code Segment 6.14  
Module code definitions 
generating the hierarchy tree 
shown in figure 6.4. Note 
however, that each module 
must be declared in its own 
file. Thus the above example 
would take three files. 
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port.nslSetBuffering(true);

If instead of true the argument is false then the port becomes non-buffered. Addition-
ally, NSL offers the following command to set all ports in a module to the buffered state: 

module.nslSetBuffering(true);

To make all ports in all modules buffered the user may use the following command 
(again a false would reset this mode): 

system.nslSetBuffering(true);

When dealing with buffered ports, the system internally executes a method named 
nslUpdateBuffers after each simulation cycle to update port buffers. 

To get the current buffer setting we can call one of the following methods returning a 
fg boolean value: 

fg=system.nslGetbuffering();

fg=module.nslGetBuffering();

fg=port.nslGetBuffering();

6.6 Creation of New Model Types 
A model defines a complete program or application. Instead of having a “main” function 
as required in most programming languages, NSL applications require the existence of a 
model where execution begins. This model is unique to every NSL application. Its defini-
tion is somewhat similar to module definitions except in the use of the nslModel key-
word (instead of nslModule) as shown in code segment 6.16. Note that NSLM does not 
allow any instantiation parameters nor a inheritiance specification for models.10

nslModel model-name ()

{

 model-attribute-spec 

 model-method-spec 

}

The template section that appears outside the curly brackets corresponds to the 
model header, consisting of the following 

� model-name is the name identifying the model. This name is internally used by 
NSLM to implicitly instantiate the complete model.  

The template section that appears inside the curly brackets defines the actual struc-
ture and functionality of the model: 

� model-attribute-spec defines the structure of the model in terms of primitive, object 
and module type variables. With the exception of not having any port instantiations, 
this section is similar to that in modules. 

� model-method-spec defines the behavior of the model in terms of local functions or 
methods definitions, including simulation methods.  

Code Segment 6.15 
nslModel Definition 
Template.
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For example, the ExtendedModel instantiates the ExtendedModule module as 
shown in code segment 6.17.  

nslModel ExtendedModel ()

{

public ExtendedModule em(10,”p1”,’H’);

}

ExtendedModel is implicitly instantiated by NSL in order to execute the model. 

6.7 Summary 
In this chapter we have presented the key concepts and constructs needed to build a NSL 
model. Since NSLM is built on top of C++ and Java, we discussed the parts of the NSLM 
language that is shared with these two native languages. We also discussed the basic 
NSLM types and how to build NSLM modules and models. Finally, we presented a sec-
tion on how to build your own NSLM classes and what restrictions one might encounter 
when doing this. Although this chapter described the NSL modeling language in more 
detail than that presented in chapter 3, to fully grasp the language we recommend that 
Appendix I, The NSLM Methods be reviewed. 

Notes 

1. We explain how to expand many of the NSLM constructs in the NSLM Parser Guide 
for Java and C++ technical report that can be found on the NSL web site. These 
expansions usually vary between Java and C++.  

2. We use the terms primitive and native interchangeably in this document, although 
many languages make a distinction between these two terms. Native types in NSLM 
reflect the native types present in both C++ and Java except for charString and boo-
lean which are special cases. We also refer to all other types as NSLM types. 

3. Indexing in similar to C++ array indexing except for the fact that no pointer arithme-
tic is allowed. Additionally, Java allows one array to be assigned to another, in which 
case the reference of the array is copied between the two variables and not the ele-
ments. If we were to assign one native array to another native array, we would need 
to use the verbatim keyword described below. 

4. A boolean array can be converted to an int, float, or double array. 

5. In the current NSL version only 0 dimension NslString objects are supported 
although future NSL version will include additional dimension types. 

6. We avoid the use of the new operator as in C++ or Java since C++ returns a pointer 
and Java returns a reference. 

7. See some of our current work on distributed simulation discussed Appendix III— 
NSLC Extensions. 

8. In addition to these two arguments, the NSLM compiler generates two more: 
“charString nslName” and “NslModule nslParent,” where nslName is the name of 
the instance being instantiated and nslParent is the instance of the parent module 
instantiating this module instance. The parser adds these parameters when the mod-
ule is instantiated as well. 

9. Currently the order of execution of modules defaults to their hierarchical order and 
the order in which they were defined in the module. However, we expect to offer 
more control in the scheduling order in the future. 

10. We expect to provide in the future instantiation parameters for models, analogous to 
the args parameters in Java.  

Code Segment 6.16 
nslModel example. 



7 The Scripting Language NSLS 

In order to simulate a model created with NSLM it is necessary to specify the simulation 
interaction consisting of simulation control, model parameters, and visualization control. 
This can be done either by hard-coding the parameters within the model using NSLM, 
selecting the commands via the menu system, typing them in the Executive/Script win-
dow, or providing a script/batch file. While the NSLM language provides great expressive-ness, 
crucial for describing model architectures—and produces efficient code it requires the 
user to compile the models. To avoid re-compiling we provide the NSL script language 
known as NSLS which also provides a dynamic user control environment. With NSLS 
the user can interact very efficiently with a model during its simulation. Moreover, NSLS 
can be used to create a script/batch files to be executed over and over again. This is handy 
when the user is only interested in final results after a large number of iterations such as 
in the Backpropagation model (see chapter 3). NSLS contributes the following 
functionality: 

� model parameter assignment 

� input specification 

� simulation control 

� file control 

� graphics control 

Additionally, the NSL script interpreter interacts with the well-known scripting 
language TCL, the Tool Command Language (Ousterhout 1994) and Jacl, the Java Com-
mand Language extension to TCL (Scriptics 1999), thus providing NSL and TCL func-
tionality. We refer to the combined language as NSLS and to individual commands as 
belonging to TCL or to NSL. An important characteristic of NSLS is that TCL and NSL 
commands may be combined as part of single more powerful commands, one of the 
advantages of having the two. In particular, NSLS commands may be applied to TCL 
primitive types and NSLM object types (NslFloat0, etc.) but unfortunately we cannot 
access the NSLM primitive types (float, etc.) from the Script Language. NSLS com-
mands include assigning and retrieving NSLM object values as well as instantiating new 
NSLM objects from NSLS. 

As introduced in chapter 2, when NSL is originally launched from the operating 
system, it brings up the NSL Executive window.1 The top part of this window, the execu-
tive panel, contains menu buttons that let the user execute many of the NSLS control 
commands. The bottom part of the executive window, the script window, is where NSLS 
commands can be interactively typed. 
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Figure 7.1
The NSL Executive Window 

In the rest of this chapter we describe how parameters, simulation control, and visu-
alization control are interactively specified using the NSLS language.  

7.1 Overview 
We give an overview of general aspects to NSLS.  

General Conventions 
There are a number of general conventions we shall be using throughout this chapter: 

� Bold letters indicate key words or commands and italics indicate variables or 
parameters to be provided by the user. 

� Names for classes, modules and models start with upper case letters, e.g., ModuleX.

� Names for objects, module instances, model instances, and methods start with lower 
case letters, e.g., moduleX.

� Names of files storing NSLS simulation scripts should end with a “.nsl” extension.  

� The script (interpreter) window provides a main prompt of “nsls%” and a secondary 
prompt of “>”. The secondary prompt is used when a command is unfinished and 
continued on the next line. 

� Either a carriage return or a semicolon marks the end of line in NSLS.  

� A hash sign ‘#’ precedes comments. If there is a comment at the end of a line, then a 
semi-colon must appear before the comment, i.e. “;#”.

� To continue a command on more than one line a backslash “\” must be used at the 
end of every line except the last one. No characters may appear after the backslash, 
including empty spaces. The only exception is a statement involving an open bracket 
being closed on a different line. 

� Spaces are very significant in NSLS (as in TCL). For example, m(1,1) is not the 
same as m(1, 1) (the latter has a space and generates two separate expressions instead 
of one).  

� TCL commands do not have any particular prefix, they follow directly with the 
command,

nsls% command

� All NSL commands must have a nsl prefix followed by the actual command,

nsls% nsl command

� Variable names must begin with an alphabetic character either upper, lower case or 
an underscore.  
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� In terms of graphics, all frame and canvas names should start with a lower case 
letter.

Help
NSL provides extensive on-line information from the NSL web page at http://www-
hbp.usc.edu or http://cannes.rhon.itam.mx. NSLS script related information is also 
available by typing one of the following commands in the Executive/Script window:  

nsls% nsl help 

or specific information on a command can be retrieved by typing: 

nsls% nsl help command

Exit 
To terminate the script interpreter and close all windows, type the following command in 
the Executive/Script window: 

nsls% nsl exit 

Note that the TCL exit command can also be used, but does not handle the termina-
tion as nicely as nsl exit. The nsl exit command calls endModule and endSystem as well 
as closing all files before exiting. 

7.2 TCL Primitives Types 
We briefly describe some of the more important commands on primitive types in TCL 
with relation to NSLS (for a complete language description please refer to Ousterhout 
(1994)). TCL primitive types are made primarily of numbers and characters and do not 
have any relation with primitive types defined in NSLM. In general, TCL is considered a 
non-typed language since variables do not involve an explicit type declaration but instead 
have their type implicitly specified according to initial value assignment. While there is 
some TCL support for objects types, such as with TK graphic objects, we will concen-
trate only in TCL basics, primarily variables, arrays, expressions, control statements and 
procedures. 

Variables 
TCL variables may be assigned values directly from TCL or indirectly from NSLM 
objects. TCL variables are assigned values as they are initialized using the set command 
as follows 

set var value 

For example, to set the value of i to 0 we would do 

set i 0 

TCL variable values can be obtained by preceding the variable name with a “$” sign, 
e.g. $var. For example, to set the value of a new variable j to the value of i:

set j $i 

The values of TCL variables may then be used to set values to other TCL variables 
or NSLM objects attributes, the latter being of particular interest in NSLS. 
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Arrays
Arrays in TCL are somewhat different in both semantics and syntax from traditional pro-
gramming language arrays. Arrays in TCL are actually associative arrays, in that ele-
ments are associated with a particular element name instead of index number. Arrays are 
only single sized but multiple dimensions can be simulated with names containing multi-
ple commas. Arrays are defined using the set command together with parenthesis group-
ing elements. For example: 

set vararray(one) 1 

Multiple dimension arrays are simulated as follows, 

set vararray(1,1) 30 

set vararray(1,2) 99 

set vararray(1,3) 7 

where vararray(1,1) simulates the first row and column. Note that vararray is not really 
double sized in TCL but instead each vector element is associated with a “x,y” style 
name. Thus, you should be careful not to add additional letters to the element name such 
as spaces, since “x, y” (extra space character) would specify a different string and thus a 
different element name. 

Expressions and Control Statements 
TCL supports a number of expressions on numerical and character variables. These 
include numerical operators as well as commands and functions applied to both numeric 
and character sets. Brackets are quite particular in TCL in that they separate all kinds of 
expressions. In terms of control statements, TCL provides with the following (note the 
space between bracket sections): 

� for control statement. For example 

for {set x 0} {$x<10} {incr x} {

puts “x is $x” 

}

where curly brackets separate sections in the for loop, incr increments x while puts,
which can also print to a file, prints to the screen. 

� while control statement. For example 

set x 0 

while {$x<10} {

puts “x is $x” 

incr x

}

which performs the same computation as the previous for loop. 

� if-else-then control statement. For example 

if { x > 0 } {

set y 1 

} elseif { x = 0 } { 

set y 0 } 

} else { set y -1 } 



T H E  S C R I P T I N G  L A N G U A G E  N S L S    1 3 9

where there may be any number of elseif sections and both the elseif and else section are 
optional. 

� switch control statement. For example 

switch $x { 

 abc {set b $y }  

 hij {set b $z}  

 default {set b $v} 

}

where x is a string being compared to the different string options. If the string matches 
one of the options, then the corresponding execution statements within the curly brackets 
are executed. 

Procedures
TCL procedures are helpful in reusing script code. For example, we define a 
testHopfiledNet procedure to run the Hopfield model with different input sets (the nsl set 
and run commands are described in section 7.3), 

proc testHopfiledNet { input {distortion 0} } {

puts “Testing with distortion $distorion”

 nsl set hopfieldModel.distortion $distortion 

 nsl set hopfieldModel.in.pat $input 

 nsl train 

}

The procedure receives two parameters, input and distortion, the latter with default 
of 0. We can then generate a variable a set to simulate a double array of positive or nega-
tive ones. Note how array elements are specified in different (brackets) sections in 
variable a.

set a {

{ -1 -1 1 1 -1 -1 } 

{ -1 1 -1 -1 1 -1 }

{ -1 1 1 1 1 -1 }

{ -1 1 1 1 1 -1 } 

{ -1 1 -1 -1 1 -1 } 

{ -1 1 -1 -1 1 -1 } 

}

We call the procedure with a and 10 and obtain back the “puts” string. 

testHopfieldNet $a 10

Testing with distortion equal 10, we call all call the procedure with only a single 
parameter, obtaining back the default value of 0 in this case. 

testHopfieldNet $a

Testing with distortion equal 0. 
Note that procedure parameters are always local to that procedure and are passed by 

value. If we want to pass variables by reference, we should use the TCL command 
upvar. If we want to use a non-local variable, we will have to let the procedure know the 
global variables by using the TCL global command. 
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System Commands 
TCL offers a number of commands to interact with the external system environment. Of 
particular interest are the following commands, 

cd

that changes the current relative directory to a new one. This is particularly important 
when the user wants to load script files from that directory and even more important 
when script files themsleves load additional files from that directory. Without doing a 
“cd” these latter files would not be found. Another useful command is, 

pwd

checking the current working directory. 

7.3 NSL Objects, Modules and Model Types
Besides TCL primitive type, NSLS can process object, module and model type variables 
as defined in NSLM. Sharing of variables between NSLM and NSLS is quite important 
since without it the user would not be able to have a good control over the model during 
its simulation. In general there are some limitations on how much can be accessed from 
NSLM in NSLS. For example, NSLM variables can be accessed from NSLS but the other 
way around is not possible. In the following sections we describe in more detail this 
sharing and how it is achieved. 

Access
Accessing NSLM variables from NSLS is exclusively done by variable name and as long 
as the corresponding NSLM protection allows. Protections are set within NSLM via the 
nslSetAccess method where three options can be specified: “N” for no access, “R” for 
read access and “W” for write (and read) access, with the default being “W”. (We hope to 
change the default access to “R” in a future version.) 

public void initModule() { 

 hv.nslSetAcccess(’W’);

}

Recall that initModule is the method where module variables are initialized. In 
chapter 2 we showed how to modify the offset, hu, from the scripting window. To do 
this, hu, must have write access which can be set with nslSetAccess. Since variables are 
not global in NSLM but local within some branch of a particular model hierarchy tree, to 
access a particular variable we must know its exact location within the tree, similar to 
referencing variables within NSLM. 

Reference Tree for Model Variables 
Variables are referenced using the “dot” notation similar to that in NSLM. The exception 
is that visibility for accessing NSLM objects is controlled by name and not by the vari-
able’s visibility modifier, i.e. public, protected or private. Referencing can be either 
absolute or relative as in NSLM referencing. 

Absolute referencing starts always from system when accessing system variables or 
from a particular model name when accessing model variables. For example, the absolute 
reference to an object named obj111 would be as follows 

model.obj1.obj11.obj111
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Relative referencing starts from a current location in the tree hierarchy using the path 
variable. For example, we could set the special variable called varpath that acts as a 
“bookmark” of where we are: 

nsl set varpath model.obj1.obj11

Once this is set, we can use relative referencing from then on. The relative reference 
for obj111 would simply be: 

obj111

Expressions 
NSLS provides two basic methods, set and get, to access NSLM attribute variables. 

Set
Objects can be assigned data values using the set command, analogous to the assignment
operator in NSLM.  

To assign data, 

nsl set object-name value

where object-name is the name of an existing object and value corresponds to a matching 
attribute type value.  

For example, to set the value of “1” to a scalar object found in model.obj1.obj11
would be use: 

nsl set model.obj1.obj11 1 

In general, the number of elements typed in value will correspond to the dimension 
defined for the object. The exception is to set all of the values in an object to a unique 
value corresponding to a single element. According to the object type and corresponding 
dimension NSL uses the following format: 

� For NslType0 corresponding to single elements, for example, we set a scalar as 

nsl set tu 1.0 

assigning 1.0 to a zero dimension tu object.

� For NslType1 corresponding to a list or vector, for example, we set a 9-element 
vector as 

nsl set s { 0 0 0 0 1 0 2 0 0 }

The expression assigns the nine integer values to a one dimension s object: 1 to s[4] 
and 2 to s[6], and the rest 0. (Remember that indices start with 0 and spaces must be left 
between brackets and other characters.) Objects can be assigned single element values by 
using parenthesis around element indices. For example: 

nsl set s 0 

nsl set s(4) 1

nsl set s(6) 2 

is equivalent to the initial example. 
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� For NslType2 corresponding to a two-dimensional list or matrix, we set the values of 
a 2x9 matrix using: 

nsl set s {{ 0 0 0 0 1 0 2 0 0 } 

   { 3 0 0 0 0 0 0 0 0 }} 

The expression assigns integer values to a two dimensional s object: 1 to s(0,4) 2 to 
s(0,6), 3 to s(0,1) and the rest 0. We can also type the above all on one line. (Notice that 
if an interactively specified command is incomplete then the “>” prompt will appear. 
When the command is complete the prompt will change back to “nsls%”.) 

Matrices can be assigned single element values by using parenthesis around element 
indices. For example 

nsl set s 0 

nsl set s(0,4) 1

nsl set s(0,6) 2 

nsl set s(1,0) 3 

is equivalent to the initial example. 

� For NslType3 corresponding to a three-dimensional list or vector of matrices, we set 
the values of a 2x2x9 array using: 

nsl set s {{{ 0 0 0 0 1 0 2 0 0 } { 3 0 0 0 0 0 0 0 0 }} 

  {{ 0 0 0 0 4 0 5 0 0 } { 6 0 0 0 0 0 0 0 0 }}} 

The expression assigns integer values to a three dimension s object: 1 to s(0,0,4) 2 to 
s(0,0,6), 3 to s(0,0,1), 4 to s(1,0,4) 5 to s(1,0,6), 6 to s(1,0,1) and the rest 0. Again we can 
assign single element values by using parenthesis around element indices. For example 

nsl set s 0 

nsl set s(0,0,4) 1

and so forth. 

� For NslType4 corresponding to a four-dimensional list or a vector of three-
dimensional matrices, for example, we set a 2x2x2x9 array as 

nsl set s {{{{ 0 0 0 0 1 0 2 0 0 }{ 3 0 0 0 0 0 0 0 0 }} 

 {{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}} 

 {{{ 0 0 0 0 7 0 8 0 0 }{ 9 0 0 0 0 0 0 0 0 }} 

 {{ 0 0 0 0 10 0 11 0 0 }{ 12 0 0 0 0 0 0 0 0 }}}} 

The expression assigns integer values to a four dimensional s object: 1 to s(0,0,0,4) 2 
to s(0,0,0,6), 3 to s(0,0,0,1) and so forth. Again we can assign single element values by 
using parenthesis around element indices. For example 

nsl set s 0 

nsl set s(0,0,0,4) 1

and so forth. 

Get 
The get command is somewhat similar to the set command. The main difference lies in 
that it retrieves the value instead of setting it. Since NSLS does not let the user create new 
NSLM variables, the result from a get command must be stored into a TCL variable. We 
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use the following TCL substitution format to retrieve values with the NSLS get command 
into a TCL variable command (notice the brackets below): 

set tclvar [nsl get object-name] 

where tclvar is the name of the TCL variable storing the resulting value, object-name is
the name of an existing object. For example, 

set s [nsl get model.obj1.obj11]

Since TCL expressions always return a string, the “[nsl get object-name]” will return 
a string as well, setting the value of s to the corresponding return value. For example, if 
“model.obj1.obj11” was a two dimensional 2x2 matrix containing integer values, then 
“model.obj1.obj11” might return the string “{{ 9 5 }{7 4 }}”.

If the user tries the “nsl get object-name” command without assigning the returning 
string to a variable, a TCL script error will occur. TCL would not know how to interpret 
the resultant string and would print an “invalid command name” message. 

According to the object type and corresponding dimension NSL uses the following 
format: 

� For NslType0 corresponding to single elements, for example, we get a scalar as 

nsl get tu

would return the value stored in tu, for example 1.0. 

� For NslType1 corresponding to a list or vector, for example, we get a 9-element 
vector as 

nsl get s

The expression returns a one dimension vector, for example { 0 0 0 0 1 0 2 0 0 }. 
Using parenthesis around element indices can retrieve single values. For example 

nsl get s(4)

would return 1. 

� For NslType2 corresponding to a two-dimensional list or matrix, for example, we get 
a 2x9 matrix as 

nsl get s

The expression returns a two dimension matrix, for example {{ 0 0 0 0 1 0 2 0 0 }{ 3 
0 0 0 0 0 0 0 0 }}. Using parenthesis around element indices can retrieve single values. 
For example 

nsl get s(0,4)

would return 1. 

� For NslType3 corresponding to a three-dimensional list or array of matrices, for 
example, we get a 2x2x9 array as 

nsl get s
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The expression returns a three dimension array, for example {{{ 0 0 0 0 1 0 2 0 0 }{ 
3 0 0 0 0 0 0 0 0 }}{{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}}. Using parenthesis around 
element indices can retrieve single values. For example 

nsl get s(0,0,4)

would return 1. 

� For NslType4 corresponding to a four-dimensional list or two-dimensional array of 
matrices, for example, we get a 2x2x2x9 array as 

nsl get s

The expression returns a four dimensional array, for example {{{{ 0 0 0 0 1 0 2 0 0 
}{ 3 0 0 0 0 0 0 0 0 }}{{ 0 0 0 0 4 0 5 0 0 }{ 6 0 0 0 0 0 0 0 0 }}}{{ 0 0 0 0 7 0 8 0 0 }{ 9 
0 0 0 0 0 0 0 0 }}}{{ 0 0 0 0 10 0 11 0 0 }{ 12 0 0 0 0 0 0 0 0 }}}}. Using parenthesis 
around element indices can retrieve single values. For example 

nsl get s(0,0,0,4)

would return 1. 
Another useful function is the -dim option. We can use -dim to get the sizes of the 

dimensions from a NSL type object: 

nsl get s -dim 

returns {2 2 2 9} for the four dimensional array mentioned above. 

Simulation Methods 
NSLS enables the user to call all NSLM simulation methods described in chapter 6 

in controlling the overall simulation sequence. Starting with table 7.1 we describe simu-
lation methods that may be called from NSLS as control commands together with addi-
tional one. These commands may involve optional parameters and most of these 
commands can be called from the executive window menus as well (see chapter 5), all 
requiring the “nsl” prefix in the script. table 7.1 shows the connection command called 
once throughout the execution of the complete system. 

Connection Command Optional Parameters Description

makeConn none Execute the makeConn simulation method for all modules 
in the model.  

Table 7.2 shows the system commands called once throughout the execution of the 
complete system. 

System Command Optional Parameters Description

initSys none Execute the initSys simulation method for all modules in the 
model. 

endSys none Execute the endSys simulation method for all modules in the 
model. 

Table 7.1 Connection command. 

Table 7.2 System commands. 
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Table 7.3 shows the module commands called once during a complete module 
simulation. 

Module Command Optional Parameters Description

initModule none Execute the initModule simulation method for all modules 
in the model. 

endModule none Execute the endModule simulation method for all modules 
in the model. 

Table 7.4 shows the basic train commands called in relation to training aspects of 
the simulation. 

Train Command Optional Parameters Description

initTrainEpochs none Execute the initTrainEpochs simulation method for all modules in 
the model. 

endTrainEpochs none Execute the endTrainEpochs simulation method for all modules in 
the model. 

initTrain none Execute the initTrain simulation method for all modules in the 
model. 

simTrain trainEndTime Execute the simTrain simulation method for all modules in the 
model. Simulation starts at t=0 until trainEndTime (a real number) or 
until system.trainEndTime is reached. The actual number of steps is 
specified by trainEndTime divided by trainDelta.

endTrain none Execute the endTrain simulation method for all modules in the model. 

Table 7.5 shows additional train commands called in relation to training aspects of 
the simulation. 

Train Command Optional Parameters Description

train trainEndTime Execute initTrain once, followed by simTrain starting at t=0 until 
reaching trainEndTime or system.trainEndTime followed by 
endTrain at the end. Simulation takes place for all specified epochs.  

doTrainEpochTimes numTrainEpochs Execute the previous train command for numTrainEpochs times.  

breakEpochs none Stop the simulation in between two epochs. 

stepEpochs numTrainEpochs According to the current state of the simulation, execute either the 
train phase or run phase for all modules in the model 
numTrainEpochs, or once if not specified. If a breakEpochs was 
previously called then start from the next epoch. 

contEpochs lastTrainEpoch According to the current state of the simulation, execute either the train 
phase or run phase for all modules in the model until lastTrainEpoch or 
until all epochs have been processed. If a breakTrainEpochs was 
previously called then start from the next epoch. 

breakCycles none Stop the simulation in between two cycles. 

Table 7.3 Module commands. 

Table 7.4 Basic ������commands.

Table 7.5 Additional ������commands. 
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Table 7.5 (continued)

Train Command Optional Parameters Description

contCycles trainEndTime Execute simTrain method starting at t=trainTime (current training 
time) until reaching trainEndTime (a real number) or 
system.trainEndTime if not specified. 

stepCycles numTrainCycles Execute the simTrain method for numTrainCycles (an integer). If 
numTrainCycles is not specified, it steps one cycle only.

breakModules none Stop the simulation in between modules. 

stepModules numTrainModules According to the current state of the simulation, execute the simTrain
method for all modules in a model numTrainModule times, or once if 
not specified. If a breakModule was previously called then start from 
the next module. 

contModules lastTrainModule According to the current state of the simulation, execute the simTrain
for all modules in the model until numTrainModule, or until all 
modules have been processed. If a breakModule was previously 
called then start from the next module. 

Table 7.6 shows the basic run commands called in relation to running aspects of the 
simulation. 

Run Command Optional Parameters Description 

initRunEpochs none Execute the initRunEpochs simulation method for all modules 
in the model. 

endRunEpochs none Execute the endRunEpochs simulation method for all modules 
in the model. 

initRun none Execute the initRunsimulation method for all modules in the 
model.

simRun runEndTime Execute the simRun simulation method for all modules in the 
model. Simulation starts at t=0 until runEndTime (a real num-
ber) or until system.runEndTime is reached. The actual number 
of steps is specified by runEndTime divided by runDelta.

endRun none Execute the endRun simulation method for all modules in the 
model.

Table 7.6
Basic ��� commands. 

Table 7.5 
Additional ����� commands. 
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Table 7.7 describes additional run commands called in relation to running aspects of 
the simulation. 

Command Optional Parameters Description

run runEndTime Execute initRun once, followed by simRun starting at t=0
until reaching runEndTime or system.runEndTime followed 
by endRun at the end. Simulation takes place for all 
specified epochs.  

doRunEpochTimes numRunEpochs Execute the previous run command for numRunEpochs
times.  

breakEpochs none Stop the simulation in between two epochs for all modules 
in the model. 

stepEpochs numRunEpochs According to the current state of the simulation, execute 
either the train phase or run phase for all modules in the 
model numRunEpochs, or once if not specified. If a 
breakEpochs was previously called then start from the next 
epoch.

contEpochs lastRunEpoch According to the current state of the simulation, execute 
either the train phase or run phase for all modules in the 
model until lastRunEpoch or until all epochs have been 
processed. If a breakEpochs was previously called then 
start from the next epoch. 

breakCycles none Stop the simulation in between two cycles. 

contCycles runEndTime Execute simRun method starting at t=runTime (current run 
time) until reaching runEndTime (a real number) or 
system.runEndTime if not specified. 

stepCycles numRunCycles Execute the simRun method for numRunCycles (an
integer). If numRunCycles is not specified, it steps one 
cycle only.

breakModules none Stop the simulation in between modules. 

stepModules numRunModules According to the current state of the simulation, execute the 
simRun method for all modules in a model numRunModule
times, or once if not specified. If a breakModules was 
previously called, then start from the next module. 

contModules lastRunModule According to the current state of the simulation, execute the 
simRun for all modules in the model until numRunModule,
or until all modules have been processed. If a 
breakModules was previously called, then start from the 
next module. 

Simulation Parameters 
There are a number of simulation parameters that can be specified affecting the overall 
simulation. These values can be overriden by paremeters passed to the simulation meth-
ods as described in the previous section. These parameters are applied to all modules at 
once when setting them at the system level as follows, 

nsl set system.parameter value

where parameter is the corresponding system parameter. 

Table 7.7 
Additional NSL ���
commands 
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These attributes may also be set by module by specifying the following 

nsl set module.parameter value

These parameters will be described in terms of “train”, “run” and “integration”
parameters.  

Train
The system train parameters are described in table 7.8.  

Parameter Default Value Description

trainDelta 1.0 Training delta (step size) for the entire system. 

trainEndTime 1.0 Training end time for the entire system. 

numTrainEpochs 1 Training epochs for the entire system. 

For example, to set the value to 5.0 of trainEndTime for all modules in the system 
do the following: 

nsl set system.trainEndTime 5.0 

Run
The system run parameters are described in table 7.9. 

Parameter  Default Value Description 

runDelta 1.0 Run delta (step size) of the entire system. 

runEndTime 1.0 Run end time of the entire system. 

numRunEpochs 1 Number of runs (analogous to epochs) for the entire system 

For example, to set the value to 5.0 of runEndTime for all modules in the system do 
the following: 

nsl set system.runEndTime 5.0 

Integration Approximation Methods 
As discussed in chapter 6, NSL provides numerical methods for integration. The involved 
parameters may be set at the system level or per module. The parameters are described in 
the following statements, and they are set as follows, 

nsl set system.approximation.parameter value

or for a particular module, 

nsl set module.approximation.parameter value

where parameter represents the corresponding integration parameter as shown in table 
7.10. 

Parameter Default Value Description

method Euler NSL offers the following two numerical method options: Euler or 
RungeKutta2.

delta 1.0 The user specifies the approximation step or delta for the complete system. 

Table 7.8 
System Train Parameters 

Table 7.9 
System Run Parameters 

Table 7.10 
System Approximation 
Parameters 
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7.4 Input Output 
There are a number of input and output commands dealing with script and data files. 

Script Files 
Script files store NSLS style command files. These files may be loaded to avoid writing 
single commands at a time. Additionally, the user may store a complete window interac-
tion (a “log”) to be loaded at a alter time without having to duplicate it again. In general, 
multiple script files can be associated with a single model. 

Source
Script files are loaded into the simulator with following command: 

nsl source file-name

(File names must be either relative to the current directory or require an absolute 
path to the desire file. Additionally, NSL uses the file “SCS_LIBRARY_PATHS”
located in at the user’s home directory to also search for these files. 

Data Files 
Besides script files, NSLS also supports reading and writing data as “open format” ascii 
text—text that would need to be read or written in a specific format for the particular 
model—from/to files or the screen (“standard output”). In particular, it is quite useful to 
read and store data generated by the simulation into files. Data stored in files can be used 
as input to new simulations, such as when saving training weights as with 
Backpropagation, or simply as a means of analyzing the simulation output later on in 
numerical detail. Note that for simplicity these files may actually follow the NSLS script 
format although NSL gives the user this “open format” added flexibility. Note also that 
script files are usually loaded (read) all at once while data files are read line by line since 
only the user knows its particular format. For this reason NSL provides with a number of 
commands to manipulate files. 

Open  
Opens a file using a particular access type: read (r), write (w) and append (a) having as 
default read.  

open file-name file-access

If the file is successfully opened, the command will return a file descriptor that can 
be saved into a TCL variable using for example 

set f [open input.dat r]

Gets
The gets command retrieves the next line from the file associated with the file descriptor 
passed as an argument. If the file has reached its end, it returns the empty string. For 
example 

nsl set hopfieldModel.in.pat [gets $f] 

Puts
The puts command passes a string as argument to the file associated with the file descrip-
tor. It adds a new line character at the end of the string, for example 

puts $f [nsl get hopfieldModel.hopfield.weights]
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Eof 
The eof command tells you if the file associated with the file descriptor has reached its 
end. If this is true, it returns 1, otherwise 0. 

while {![eof $f]} { 

 nsl set hopfieldModel.in.pat [gets $f] 

 nsl run 

}

Close 
The close command closes the file associated with the file descriptor passed as an argu-
ment. 

close $f 

Monitor 
The monitor command is similar to the “puts” command; however, it continuously “puts”
the value of the variable being monitored into the file or screen until specified otherwise 
and returns a monitor descriptor. To enable an object specified by name to be written into 
a file do: 

nsl monitor object-name –file file-descriptor

If file-descriptor is not specified, then “standard output” is taken as the output file 
name, which sends the data to the script window, (or where the standard output was redi-
rected):

nsl monitor object-name

Additional parameters may be included in the monitor command.  

nsl monitor -parameter value

These parameters are given in table 7.11. 

parameter default description 

start Current time Start time in the user’s specified units of time (usec, msec, seconds, etc). 

stop End time Stop time in the user’s specified units of time. 

freq Delta Frequency is the number of cycles until the next reporting period. One means 
report every cycle, two means report every other cycle, etc. 

All visible NSL objects in a module may be enabled for monitoring by using an 
asterisk, “*”, for example 

nsl monitor model.module.*

In the case of NSL types of 0 dimension, the object data will be written in a single 
line. In the case of NSL array types, the object data will be written in row major format. 

To “unmonitor” a particular variable we can type: 

nsl unmonitor object-name

Table 7.11 
Parameters for the Monitor 
Command—start parameter, 
stop parameter, freq 
parameter. 
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7.5 Graphics Displays 
Another important functionality of NSLS is to support interactive graphical display 
generation. This is achieved both using the script window and script files. In chapter 5 we 
discussed how to build the window interface and graphical displays using the NSLM lan-
guage and how to interact with them from the menu interface. In this chapter we will dis-
cuss how to interact using the NSLS language. 

Reference Tree for Canvases 
In NSLS as in TCL, all windows spring from one parent window—the root window—
denoted by “.nsl”. In addition to varpath (section 7.3), NSLS also provide the displaypath 
variable that acts just like varpath but is used to reduce the amount of typing when speci-
fying a display path, for example 

nsl set displaypath .nsl.frame1.canvas12

Create and Configure 
NSLS uses a general format in creating new windows and configuring already created 
ones. Window properties or attributes can be set during their creation or modified after-
wards. 

To create a new window where initial attributes are specified using the “-attribute
value” format, 

nsl create window window-name -attribute value

To configure an already created window with attributes specified by the “-attribute
value” format, 

nsl configure window window-name -attribute value

Note many any attributes may be changed in a single command using multiple  
“-attribute value” pairs in the same line. 

NslExecutiveWindow 
The first window in the graphics interface is always the NSL Executive/Script instanti-
ated by the system and window shown in figure 7.1. This is the root window or console 
in the NSL window hierarchy and denoted by “.nsl”. Each additional window/frame 
added to the screen should append its name to this executive window name. Since the 
executive window is already instantiated, we can only modify its attribute values shown 
in table 7.12. 

parameter type default description 

width int 100 width in pixels 

height int 100 height in pixels 

x0 int 0 left position in x in pixels 

y0 int 0 top position in y in pixels 

For example, we could change the size of the NslExecutiveWindow window by 
specifying the following 

nsl configure .nsl -width 400 -height 200 

Table 7.12 
Executive Window 
Parameters—width 
parameter, height parameter, 
x0 parameter, y0 parameter. 
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NslOutFrame  
The user may instantiate multiple NslOutFrames representing independent windows on 
the screen, analogous to the NslExecutiveWindow. NslOutFrames are used to display 
NslOutCanvas (to be described in the next section) holding actual graphical output. To 
create a new NslOutFrame we can type 

nsl create NslOutFrame .nsl.frame-name

where frame-name is used to reference the newly instantiated frame object. This name 
can then be used for further configuration. The NslOutFrame attribute list is shown in 
table 7.13 

parameter type default description 

display charString frame name 

title charString display name any string name to appear in the frame label 

rows int 1 the number of rows  

column int 1 the number of columns 

x0 int 0 position in x direction in pixels 

y0 int 0 position in y direction in pixels 

width int 100 frame width in pixels 

height int 100 frame height in pixels 

font charString font used 

background charString background color 

foreground charString foreground color 

freq int 1 graphics update frequency in relation to simulation step. 
Default is 1 corresponding to simulation step 

Note that NSL can display the output data with frequencies different to those used by 
the simulator in performing the actual variable updates. Since displaying data may 
become very slow, modifying this frequency can significantly speed up the overall time 
or “wall clock time” of the simulation. The only restriction on frequency is that all the 
variables within an output frame must have the same output display frequency. 

To create an output frame named diddayOut with width 100 and height 200, we 
would type: 

nsl create NslOutFrame .nsl.diddayOut -width 100 -height 200 

For example, if we later want to change the foreground color to white we would 
type: 

nsl configure .nsl.diddayOut –foreground white 

NslOutCanvas  
NSL can instantiate multiple NslOutCanvas inside a single independent NslOutFrame
window. Canvases are not independent windows on the screen, but are always part of a 
NslOutFrame. To instantiate a new NslOutCanvas the user has to specify besides a 
canvas-name a variable name “–var var-name” specifying the particular variable being 

Table 7.13 
NslOutFrame Attributes. 
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output in addition to attribute values. For example, the following line instantiates a new 
canvas in an existing frame, 

nsl create NslOutCanvas .nsl.frame-name.canvas-name \ 

–var var-name –attributes value

Note that the variable name is a required parameter. The NslOutCanvas parameter 
list is given in table 7.14. 

parameter type default description 

display charString frame name 

title charString display name canvas label 

var Object type NSL object to be display in the canvas. Required. 

graph charString graph type—see table 5.2. 

position charString position in output frame: first, next, previous, and last. 

wymin float
double

low variable value in y direction 

wymax float
double

high variable value in y direction 

wxmin float
double

low value in the x direction—for temporal plots this is 
time zero. 

wxmax float
double

high value in the x direction—for temporal plots this is 
the max time. 

freq int the frequency or time step used for collecting data from 
the simulation thread 

drawcolor charString draw color 

drawstyle charString draw style 

xlabel charString label placed along x axis 

ylabel charString label placed along y axis 

option charString re-scale or shift 

grid boolean true grid is drawn 

As a general example, to create a display canvas s inside an output frame named 
maxSelector with an area level graph displaying the values between -1 and 2 for layer
variable “s” we would type 

nsl create NslOutCanvas .nsl.maxSelector.s -var didday.s \ 

 -wymin -1 -wymax 2 -graph Area 

When can change for example the NslOutCanvas minimum and maximum values as 
follows: 

nsl configure .nsl.maxSelector.s -wymin -10 -wymax 20 

Note that the order in specifying parameters is irrelevant. 

Table 7.14 
NslOutCanvas Parameters. 
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NslInFrame  
The user may instantiate multiple NslInFrames, similar to the NslOutFrames.
NslInFrames are used to display NslInCanvases where the user may interact with the 
simulation by providing input or by changing values as the simulation is running. To 
isntantiate a new NslInFrame we type 

nsl create NslInFrame .nsl.frame-name

where frame-name is used for referencing the newly created frame. The NslInFrame 
attribute list is shown in table 7.15 

parameter type default description 

display charString frame name 

title charString display name any string name to appear in the frame label 

rows int 1 the number of rows  

column int 1 the number of columns 

x0 int 0 position in x direction in pixels 

y0 int 0 position in y direction in pixels 

width int 100 frame width in pixels 

height int 100 frame height in pixels 

font charString font used 

background charString background color 

foreground charString foreground color 

freq charString 1 graphics update frequency in relation to simulation step. 
Default is 1 corresponding to simulation step 

To create an input frame named diddayIn with width 100 and height 200, we would 
type: 

nsl create NslInFrame .nsl.diddayIn -width 100 -height 200 

For example, to change the foreground color to white we would do 

nsl configure .nsl.diddayIn –foreground white 

NslInCanvas  
NSL can instantiate multiple NslInCanvases inside a NslInFrame in order to generate 
graphical input from the simulation. Similar to NslOutCanvases, NslInCanvases are not
independent windows on the screen, but are always part of a NslInFrame. To instantiate 
a new NslInCanvas the user has to specify besides a canvas-name a variable name “–var
var-name” specifying the particular variable being used for input in addition to attribute 
values. 

nsl create NslInCanvas .nsl.frame-name.canvas-name \ 

–var var-name –attributes value

Note that the variable name is a required parameter. The parameter list is shown in 
table 7.16 

Table 7.15 
NslInFrame Attributes. 
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parameter type default description 

display charString frame name 

title charString display name canvas label 

var Object Type NSL object to be display in the canvas. Required. 

graph charString graph type—see specified list below 

position charString position in output frame: first, next, previous, and last. 

wymin float double low variable value in y direction 

wymax float double high variable value in y direction 

wxmin float double low value in the x direction—for temporal plots this is 
time zero. 

wxmax float double high value in the x direction—for temporal plots this is 
the max time. 

freq float
double

the frequency or time step used for collecting data from 
the simulation thread 

drawcolor charString draw color 

drawstyle charString draw style 

xlabel charString label placed along x axis 

ylabel charString label placed along y axis 

option charString rescale or shift 

grid boolean true grid is drawn 

Input graph types may be specified with one of the following strings: InputImage 
and NumericEditor as described in chapter 5. 

As a general example, to create a display canvas s inside an output frame named 
maxSelector with an inputImage graph displaying the values between 0 and 1 for layer
variable “s” we would type 

nsl create NslInCanvas .nsl.didday.s -var maxSelector.s \ 

-wymin 0 -wymax 1 –graph inputImage 

When can change for example the NslInCanvas minimum and maximum values as 
follows: 

nsl configure .nsl.maxSelector.s -wymin -10 -wymax 20 

Print
The user can print graphical windows to a file using the PostScript format. The command 
to do this is: 

nsl print -name displayname -filename -filename 

Note that the name parameter can be either a whole frame or a single canvas. The 
parameters for the print command are given in table 7.17. 

Table 7.16 
NslInCavas Attributes. 
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Parameter type default description 

name charString Display name: either “screen”, “.ex”, fully extended frame 
name, or fully extended canvas name 

size int, int 8.5” by 11” width and height in pixels 

position int, int centered x and y position in pixels 

orientation charString portrait landscape or portrait 

7.6 Summary 
The NSLS scripting language is a very powerful language whereas we have only 
described its basics. We showed how to use TCL commands to manipulate values of 
NSLM variables and how to provide control structure to scripts (if, while, for, and 
switch). We also saw how to get data from NSLM variables and store the information in 
NSLS variables. A very popular use of the NSLS language is in controlling the simulation 
with commands such as “nsl trainAndRunAll”, “nsl stepTrain”, “nslBreakCycle”, etc. Finally, 
we documented how to create new NslOutFrames and NslInFrames, as well as how to 
add NslOutCanvases and NslInCanvases to them.  

Notes 

1. Note that NSL can be executed in noDisplay mode in which case no executive win-
dow is brought up. 

Table 7.17 
Print Command Parameters. 



8 Adaptive Resonance Theory 
T. Tanaka and A. Weitzenfeld1

8.1 Introduction 
The adaptive resonance theory (ART) has been developed to avoid the stability-plasticity 
dilemma in competitive networks learning. The stability-plasticity dilemma addresses 
how a learning system can preserve its previously learned knowledge while keeping its 
ability to learn new patterns. ART architecture models can self-organize in real time pro-
ducing stable recognition while getting input patterns beyond those originally stored. 

ART is a family of different neural architectures. The first and most basic architec-
ture is ART1 (Carpenter and Grossberg, 1987). ART1 can learn and recognize binary 
patterns. ART2 (Carpenter and Grossberg, 1987) is a class of architectures categorizing 
arbitrary sequences of analog input patterns. ART is used in modeling such as invariant 
visual pattern recognition (Carpenter et al 1989) where biological equivalence is dis-
cussed (Carpenter and Grossberg 1990). 

An ART system consists of two subsystems, an attentional subsystem and an orient-
ing subsystem. The stabilization of learning and activation occurs in the attentional sub-
system by matching bottom-up input activation and top-down expectation. The orienting 
subsystem controls the attentional subsystem when a mismatch occurs in the attentional 
subsystem. In other words, the orienting subsystem works like a novelty detector.  

An ART system has four basic properties. The first is the self-scaling computational 
units. The attentional subsystem is based on competitive learning enhancing pattern fea-
tures but suppressing noise. The second is self-adjusting memory search. The system can 
search memory in parallel and adaptively change its search order. Third, already learned 
patterns directly access their corresponding category. Finally, the system can adaptively 
modulate attentional vigilance using the environment as a teacher. If the environment 
disapproves the current recognition of the system, it changes this parameter to be more 
vigilant.  

There are two models of ART1, a slow-learning and a fast-learning one. The slow 
learning model is described by in terms of differential equations while the fast learning 
model uses the results of convergence in the slow learning model. In this chapter we will 
not show a full implementation on ART1, instead an implementation of the fast learning 
model will be more efficient and sufficient to show the ART1 architecture behavior. 

8.2 Model Description 
ART1 is the simplest ART learning model specifically designed for recognizing binary 
patterns. The ART1 system consists of an attentional subsystem and an orienting subsys-
tem as shown in figure 8.1.  
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Figure 8.1 �
ART1 consists of an atten-
tional subsystem and an 
orienting subsystem. The 
attentional subsystem has two 
short term memory (STM) 
stages, F1 and F2. Long term 
memory (LTM) traces 
between F1 and F2 multiply 
the signal in these pathways. 
Gain control signals enable 
F1 and F2 to distinguish 
current stages of a running 
cycle. STM reset wave inhib-
its active F2 cells when mis-
matches between bottom-up 
and top-down signals occur 
at F1.

The attentional subsystem consists of two competitive networks, the comparison 
layer F1 and the recognition layer F2, and two control gains, Gain 1 and Gain 2. The ori-
enting subsystem contains the reset layer for controlling the attentional subsystem overall 
dynamics. 

The comparison layer receives the binary external input passing it to the recognition 
layer responsible for matching it to a classification category. This result is passed back to 
the comparison layer to find out if the category matches that of the input vector. If there 
is a match a new input vector is read and the cycle starts again. If there is a mismatch the 
orienting system is in charge of inhibiting the previous category in order to get a new 
category match in the recognition layer. The two gains control the activity of the recog-
nition and comparison layer, respectively. 

A processing element x1i in layer F1 is shown in figure 8.2.  

Unit x1i

From F2
To F2

To Orient

From Gain1

X1i

Ii

V1i

G1

Figure 8.2 �
A processing unit x1i in F1
receives input from: pattern Ii,
gain control signal G1 and V1i

equivalent to output X2j from 
F2 multiplied by interconnec-
tion weight E21ij. The local 
activity serving also as unit 
output is X1i.

The excitatory input to x1i in layer F1 comes from three sources: (1) the external 
input vector Ii, (2) the control gain G1and (3) the internal network input V1i made of the 
output from F2 multiplied appropriate connections weights. There is no inhibitory input 
to the neuron. The output of the neuron is fed to the F2 layer as well as the orient sub-
system. 
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A processing element x2j in layer F2 is shown in figure 8.3.  

Unit x2 j

From F1

From Orient

X2 j

V2 j

From Gain2

G2

To all F2: WTA Figure 8.3��

A processing element x2j in
F2 receives input from: gain 
control signal G2 and V2j

equivalent to output X1i from 
F1 multiplied by intercon-
nection weight W12ji. The 
local activity is also the unit 
output X2j.

The excitatory input to x2j in F2 comes from three sources: (1) the orient subsystem, 
(2) the control gain G2 and (3) the internal network input V2j made of the output from F1
multiplied appropriate connections weights. There is no inhibitory input to the neuron. 
The output of the neuron is fed to the F1 layer as well as the Gain 1 control. 

The original dynamic equations (Carpenter and Grossberg 1987) handle both binary 
and analog computations. We shall concentrate here on the binary model. Processing in 
ART1 can be divided into four phases, (1) recognition, (2) comparison, (3) search, and 
(4) learning.  

Recognition 
Initially, in the recognition or bottom-up activation, no input vector I is applied disabling 
all recognition in F2 and making the two control gains, G1 and G2, equal to zero. This 
causes all F2 elements to be set to zero, giving them an equal chance to win the subse-
quent recognition competition. When an input vector is applied one or more of its compo-
nents must be set to one thereby making both G1 and G2 equal to one.  

Thus, the control gain G1 depends on both the input vector I and the output X2 from 
F2,

�
�
� =�

=
otherwise0

0and0if1 2
1

XI
G (8.1)

In other words, if there is an input vector I and F2 is not actively producing output, 
then G1 = 1. Any other combination of activity on I and F2 would inhibit the gain control 
from exciting units on F1.

On the other hand, the output G2 of the gain control module depends only on the 
input vector I,

�
�
� �

=
otherwise0

0if1
2

I
G (8.2)

In other words, if there exists an input vector then G2 = 1 and recognition in F2 is 
allowed.  

Each node in F1 receiving a nonzero input value generates an STM pattern activity 
greater than zero and the node’s output is an exact duplicate of input vector. Since both 
X1i and Ii are binary, their values would be either 1 or 0,  

X1 = I, if G1 = 1  (8.3)
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Each node in F1 whose activity is beyond the threshold sends excitatory outputs to 
the F2 nodes. The F1 output pattern X1 is multiplied by the LTM traces W12 connecting 
from F1 to F2. Each node in F2 sums up all its LTM gated signals 

�=
i

jiij WXV 1212 (8.4)

These connections represent the input pattern classification categories, where each 
weight stores one category. The output X2j is defined so that the element that receives the 
largest input should be clearly enhanced. As such, the competitive network F2 works as a 
winner-take-all network described by.  

{ }
�
�
� �=�=

=
otherwise0

kmax1if1 22j2
2

k
kj

VVG
X (8.5)

The F2 unit receiving the largest F1 output is the one that best matches the input 
vector category, thus winning the competition. The F2 winner node fires, having its value 
set to one, inhibiting all other nodes in the layer resulting in all other nodes being set to 
zero.

Comparison 
In the comparison or top-down template matching, the STM activation pattern X2 on F2
generates a top-down template on F1. This pattern is multiplied by the LTM traces W12

connecting from F2 to F1. Each node in F1 sums up all its LTM gated signals 

�=
j

ijji WXV 2121 (8.6)

The most active recognition unit from F2 passes a one back to the comparison layer 
F1. Since the recognition layer is now active, G1 is inhibited and its output is set to zero.  

In accordance with the “2/3” rule, stating that from three different input sources at 
least two are required to be active in order to generate an excitatory output, the only com-
parison units that will fire are those that receive simultaneous ones from the input vector 
and the recognition layer. Units not receiving a top down signal from F2 must be inactive 
even if they receive input from below. This is summarized as follows 

�
�
� =�

=
otherwise0

11 1
1

ii
i

VI
X  (8.7)

If there is a good match between the top-down template and the input vector, the sys-
tem becomes stable and learning may occur.  

If there is a mismatch between the input vector and the activity coming from the rec-
ognition layer, this indicates that the pattern being returned is not the one desired and the 
recognition layer should be inhibited.  

Search
The reset layer in the orienting subsystem measures the similarity between the input 
vector and the recognition layer output pattern. If a mismatch between them, the reset 
layer inhibits the F2 layer activity. The orienting systems compares the input vector to 
the F1 layer output and causes a reset signal if their degree of similarity is less than the 
vigilance level, where � is the vigilance parameter set as 0 < � � 1. 

The input pattern mismatch occurs if the following inequality is true, 

I

X1<� � (8.8)



A D A P T I V E  R E S O N A N C E  T H E O R Y     1 6 1

If the two patterns differ by more than the vigilance parameter, a reset signal is sent 
to disable the firing unit in the recognition layer F2. The effect of the reset is to force the 
output of the recognition layer back to zero, disabling it for the duration of the current 
classification in order to search for a better match.  

The parameter � determines how large a mismatch is tolerated. A large vigilance 
parameter makes the system to search for new categories in response to small difference 
between I and X2 learning to classify input patterns into a large number of finer catego-
ries. Having a small vigilance parameter allows for larger differences and more input 
patterns are classified into the same category. 

When a mismatch occurs, the total inhibitory signal from F1 to the orienting subsys-
tem is increased. If the inhibition is sufficient, the orienting subsystem fires and sends a 
reset signal. The activated signal affects the F2 nodes in a state-dependent fashion. If an 
F2 node is active, the signal through a mechanism known as gated dipole field causes a 
long-lasting inhibition.  

When the active F2 node is suppressed, the top-down output pattern X2 and the top-
down template V1 are removed and the former F1 activation pattern X1 is generated again. 
The newly generated pattern X1 causes the orienting subsystem to cancel the reset signal 
and bottom-up activation starts again. Since F2 nodes having fired receive the long-
lasting inhibition, a different F2 unit will win in the recognition layer and a different 
stored pattern is fed back to the comparison layer. If the pattern once again does not 
match the input, the whole process gets repeated. . 

If no reset signal is generated this time, the match is adequate and the classification 
is finished. 

The above three stages, that is, recognition, comparison, and search, are repeated 
until the input pattern matches a top-down template X1. Otherwise a F2 node that has not 
learned any patterns yet is activated. In the latter case, the chosen F2 node becomes a 
learned new input pattern recognition category.  

Learning 
The above three stages take place very quickly relative to the time constants of the learn-
ing equations of the LTM traces between F1 and F2. Thus, we can assume that the 
learning occurs only when the STM reset and search process end and all STM patterns on 
F1 and F2 are stable.  

The LTM traces from F1 to F2 follow the equation  

( ) ( )

�
�

�
�

� ���
=

inactiveisonlyif0

activeisonlyif-

activeareandif11

1

1121

1111212
12

1

j

jij

jiijij
ij

V

VWX

VVXWLW

dt

dW
� (8.9)

where �1 is the time constant and L is a parameter with a value greater than one. Because 
time constant � is sufficiently larger than the STM activation and smaller than the input 
pattern presentation, the above is a slow learning equation that converges in the fast 
learning equation 

�
�

�

�
�

�

�
+�

=
inactiveisonlyifchangeno

activeisonlyif0

activeareandif
1

1

1

11
1

12
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W  (8.10)
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The initial values for W12ij must be randomly chosen while satisfying the inequality 

0 < W12ij < 
ML

L

+�1
 (8.11)

where M is the input pattern dimension equal to the number of nodes in F1.

The LTM traces from F2 to F1 follows the equation, 

( )ijij
ji

XWX
dt

dW
1212

21
2 +�=� (8.12)

where �2 is the time constant and the equation is defined to converge during a presenta-
tion of an input pattern. Thus, the fast learning equation of the for W21ji is 

�
�
�

=
inactiveisonlyif0

activeareandif1

1

11
21

i

ji
ji V

VV
W  (8.13)

The initial value for W21ji must be randomly chosen to satisfy the inequality 

1 � W21ji(0) > C  (8.14)

where C is decided by the slow learning equation parameters. However, all W21ji(0) may 
be set 1 in the fast learning case. 

Theorems
The theorems describing ART1 behavior are described next with proofs given in Carpen-
ter and Grossberg (1987). These theorems hold in the fast learning case with initial LTM 
traces satisfying constraints (10) and (14). If parameters are properly set, however, the 
following results also hold in the slow learning case. 

(Theorem 1) Direct Access of Learned Patterns 
If an F2 node has already learned input pattern I as its template, then input pattern I acti-
vates the F2 node at once. 

The theorem states that a pattern that has been perfectly memorized by an F2 node 
activates the node immediately. 

(Theorem 2) Stable Category Learning 
This theorem guarantees that the LTM traces W12ij and W21ji become stable after a finite 
number of learning trials in response to an arbitrary list of binary input patterns. The V1j

template corresponding to the jth F2 node remains constant after at most M-1 times.  
In stable states, the LTM traces W12ij become L/(L-1+M) if the ith element of the top-

down template corresponding to the jth F2 node is one. Otherwise, it is zero. The LTM 
traces W21ji become one if the ith element of the template of corresponding to the jth F2
node is one. Otherwise, it is zero. 

However, theorem 2 doesn’t guarantee that a perfectly coded input pattern by an F2
node will be coded by the same F2 node after presentation. The F2 node may forget the 
input pattern in successive learning, though the template of the F2 node continues to be a 
subset of the input pattern. 

(Theorem 3) Direct Access after Learning Stabilizes 
After learning has stabilized in response to an arbitrary list of binary input patterns, each 
input pattern I either directly activates the F2 node which possesses the largest subset 
template with respect to I, or I cannot activate any F2 node. In the latter case, F2 contains 
no uncommitted nodes. 
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This theorem guarantees that a memorized pattern activates an F2 node at once after 
learning and that all F2 nodes have been already committed if any input patterns cannot 
be coded. If an input pattern list contains many different input patterns and F2 contains 
fewer nodes, all input patterns cannot be coded with � close to 1. 

However, the theorem doesn’t guarantee that an input pattern having activated an F2
node during learning should have been coded. If there are many input patterns with 
respect to the number of F2 nodes, input patterns which have smaller |X1| tend to be 
coded while input patterns with larger | X1| tend to be coded by their subsets or not coded 
at all after learning.

8.3 Model Implementation 
The complete model incorporates the Attentional and Orient Subsystem into a single Art
module, as shown in figure 8.4, together with the ArtModel instantiating the Art module 
with the appropriate sizes for its layers. 

Recognition
f2

Comparison
f1

Art

s

matI

matX

in

in

s

x

x

Figure 8.4��

ART module containing the F2 
and F2 submodules incorpo-
rating the functionality of both 
the Attentional and Orienting 
subsystems. 

Art Module 
Due to the limited process complexity of some of the components of the model only two 
submodules F1 and F2 are defined within the Art module. These two submodules corre-
spond to layers F1 and F2 in the Attentional subsystem and include their respective 
gains. Also considering the simplicity of the orienting subsystem structures, it is incorpo-
rated directly into module F1. 

Every simulation run initialization, corresponding to the beginning of a new epoch, a 
new input pattern is sent to the F1 and F2 input vector ports in. Since the input ports in 
is a vector and matI is a matrix we do a corresponding conversion between the two. 

public void initRun() { 

 matrixToVector(matI,in);  

}

After completing a simulation run the endRun method is called, in this case we want 
to update the matX array in order to display to the user the letter output in a visually 
appropriate form. 

public void endRun() { 

  vectorToMatrix(x,matX); 

}
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Comparison Module 
The Comparison module contains the corresponding data structure for the F1 layer 
including gain 1. Input layer s and activity layer x are both initialized to 0 while weights 
are initialized 1.0. This is all done in the initModule method. The initTrain method 
resets the active elements. Simulation processing is specified in the simTrain method as 
follows 

public void simTrain() { 

 if (resetActive == 1) { // input vector G1 condition, eq  

(8.1)

          resetActive = 0; 

      active = -1; 

   x = in; 

    } 

    else { // eq (8.7) 

  if (s.nslMax() > 0) 

      s.nslMax(active);    

         v = w*s; // eq (8.6) 

// this is a step function: x=nslStep(in+s,1.99) 

  for (int i = 0;i < in.getSize();i++) { 

       if (in[i] + v[i] >= 1.99)  

        x[i] = 1.0; 

       else 

        x[i] = 0.0; 

       } 

    } 

}

This module executes the bottom-up activation, the top-down template matching, and the 
STM reset and search. The activation cycle is repeated until matching is complete.  

After running a complete simulation for a single pattern the endTrain method gets 
called. The module changes the LTM traces F12 and F21 after the system reaches stable 
responding to an input pattern. This modifies bottom-up and top-down traces F12 and 
F21 by the fast learning equations. The LTM learning module may be turned off when 
learning is unnecessary. 

public void endTrain() { 

 s.nslMax(active); // eq. (8.9) 

 for (int i = 0;i < w.getRows();i++) { 

  if (x[i] == 1.0)  

       w[i][active] = 1.0; 

  else 

       w[i][active] = 0.0; 

   }

}

Recognition Module 
The Recognition module contains the corresponding data structures for the F2 layer. 
Simulation variables are initialized in the initModule method as follows: 
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public void initModule() { 

// initialization of all LTM weights // eq (8.10) 

     float max_value = l.getData()/(l.getData() - 1.0 +  

 in.getSize()); 

     for (int xi = 0; xi < w.getRows(); xi++) { 

  for (int yi = 0; yi < w.getCols(); yi++) { 

       w[xi][yi] = uniformRandom(float(0.0),max_value); 

  } 

    } 

}

The initTrain method resets the active elements. Simulation processing is specified 
in the simTrain method where LTM traces are multiplied to the input from F1 and F2 
activation x is computed. The F2 unit that receives the biggest input from F1 that has not 
been reset is activated while the other units are deactivated. 

public void simTrain() { 

 if (s.nslSum() / in.nslSum() < rho.getData()) { // eq (8.8) 

   resetY[active] = -1.0; 

   active = -1; 

 } 

     if (active >= 0) { 

   nslPrintln(“Matching is passed”); 

   system.breakCycle(); 

   return; 

 } 

 v = w*s; // eq (8.6) 

 num_type maxvalue; 

 int  i; 

 active = -1; 

 x = 0.0; 

 float BIG_MINUS = -1.0; // the smallest value in this  

 program  

 // To exclude units which have been already reset 

 for (i = 0;i < resetY.getSize();i++) { 

  if (resetY[i] == -1.0) { 

       v[i] = BIG_MINUS; 

  } 

 } 

 // search for the unit which receives maximum input 

 maxvalue = v.nslMax(); 

 // In the case that there is no available unit 

 if (maxvalue == BIG_MINUS) { 

  active = -1; 

  nslPrint(“An error has occured”); 

  system.breakCycle(); 

  return; 

 } 
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 // To find the maximum input // eq (8.5) 

 for (i = 0;i < v.getSize();i++) { 

  if (v[i] == maxvalue) { 

    x[i] = 1.0; 

    active = i; 

    break; 

  } 

 } 

 // For the error 

 if (i >= v.getSize()) { 

   nslPrintln(“An error has occured”);

   system.breakCycle(); 

   return; 

 } 

 if (active < 0) { 

   nslPrintln(“There are no available units”);

   system.breakCycle(); 

   return; 

 } 

}

After running a complete simulation for a single pattern the endTrain method gets 
called.

public void endTrain() { 

 nslPrintln(“Top-Down Template Unit:” ,active); 

 if (active < 0) { 

   nslPrintln(“There are no units for this input”);

  system.breakCycle(); 

  return; 

 } 

 float val = l.getData() / (l.getData() - 1.0 + s.sum()); // 

 eq (8.11) 

 for (int i = 0; i < w.getCols(); i++) { 

  if (s[i] == 1.0) 

   w[active][i] = val; 

  else  

   w[active][i] = 0.0; 

 } 

}

8.4 Simulation and Results2

The ART1 model simulation will be illustrated with character recognition example 
(Carpenter and Grossberg, 1987). The NSLS command file ART1.nsls contains NSL 
command to set parameters and prepare graphics. The parameters to be set are only the 
vigilance parameter and the weight initialization parameter besides the usual simulation 
steps specification. 

nsl set art.f2.rho 0.7 

nsl set art.f2.l 2.0  

The system may run without learning by setting the epoch steps to 0. 
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A window frame with two windows inside corresponding to the input vector and F1
activation pattern X, both shown as a square pattern, are opened in the simulation. A sec-
ond frame with a single window shows the F2 activation pattern X. The latter layer is 
shown as a vector representing a group of classified categories. 

Execution  
A typical ART1 simulation session is as follows; 

1. Loading ArtModel.nsl: “nsl source artModel.nsl.”

2. Initialization: Execute the NSL command “nsl init.” This initializes LTM traces and 
variables. 

3. Setting character: Characters may be interactively fed by the user or read from a 
script file. For example read the “nsl source patI1.nsl” file for a single letter. 

4. Activation and Learning: Type “nsl train” to train a single cycle of the Art model. 
After either the maximum number of simulation steps are executed or X2 stabilizes, 
endTrain is executed. Learning may be disabled, only by setting the epoch step 
number to 1. 

Input

1

2

3

4

5

6

7

I2 I3 I4 V1

V1

V1

V1

V1

V2

V2

V2

V2

I1 Active
Figure 8.5�

Four two-dimensional 5 by 5 
(I1, I2, I3 and I4) patterns are 
presented to the ART1 system. 
The correct output is specified 
by the active V element. 

Output  
We give a simple simulation example in this section. Four input patterns are presented to 
the model for a total of seven times. The input patterns, the F2 nodes activated by them, 
and top-down template of the activated F2 nodes are shown in figure 8.5. 

5. An input pattern I1 is given in the first presentation. Because no patterns have been 
memorized yet, the input pattern is completely learned by an F2 node n1 and the top-
down template of n1 is I1 after learning.  

6. An input pattern I2 is then given. Because I2 is a subset of I1, I2 directly activates the 
same F2 node n1, and I2 becomes a new template of n1.
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7. The input pattern I1 is presented again in the third trial. The F2 node n1 is activated at 
first, but it is reset because its template pattern I2 and the input pattern I1 are very 
different. Thus, another F2 node n2 is activated and I1 becomes its template.  

8. An input pattern I3 is given in the fourth presentation. Though I3 looks closer to I1

than I2, I3 directly accesses n1 and the activated pattern on F1 is I2. The top-down 
template of n1 doesn’t change and it is still I2.

9. The next input pattern I4 activates n1 because I4 is a subset of the current template I2

of n1. Then, the template of n1 becomes I4 instead of I2.

10. Next, the input pattern I3 is given again. It activates n1 at first, but it is reset because 
its current template I4 and I3 are very different. Thus, I3 activates the F2 node n2 at 
the second search, and it becomes the template of the node.  

11. Finally, the input pattern I1 is given again. It directly activates the F2 node n2 and the 
activated pattern on F1 is I3.

The NSL simulation displays for the V elements are shown in figure 8.6. 

Figure 8.6 
V elements in the recognition 
module of the ART1 system. 

The NSL simulation displays comparing the letter input to the corresponding output 
is shown in figure 8.7. The above example illustrates some of the features of the model:  

� An F2 node that memorizes an input pattern will not necessarily keep memorizing it. 
Though the F2 node n1 first memorizes the input pattern I1 in the above simulation, 
for example, the node doesn’t respond to I1 in the final presentation. This means that 
the final stable state of the model may be largely different from early stages. 

� Simpler patterns which have smaller |I|’s tend to be learned. Thus, when the number 
of the F2 nodes are limited, complex patterns may not be learned. Skilled adjustment 
of a vigilance parameter is indispensable for balanced learning. 

� The criterion to classify input patterns is not intuitive. For example, the input pattern 
I3 is judged closer to I2 than I1. 

� The previous top-down template n presented as an input pattern is not necessarily the 
final activation pattern on F1. This means that the model cannot restore pixels erased 
by noise though it can remove pixels added by noise. 

� These features may be flaws of the model, but they can be taken also as good points. 

8.5 Summary 
Though we chose a simplified way to simulate ART1 on NSL, some interesting features 
of ART1 have been made clear. Different extensions can be made to the NSL implemen-
tation of ART1:  

� The first extension would be a full implementation of ART1 original dynamic equa-
tions, in particular the inclusion of membrane potential equations of F1 and F2 nodes 
and the slow learning equations. 

� The second extension would be to improve ART1. Some features present in our 
simulation are not desirable for many applications. We believe some improvements 
of the learning equations and matching rules would extend to further applications 
while keeping the basic structure of ART. 
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The third extension would be the implementation of other ART models. ART is a 
theory applying to many models, such as ART2, FUZZY-ART (Carpenter et al 1991), 
besides various practical applications. 

A good exercise here would be to use the Maximum Selector model instead of the 
simple WTA used in ART. 

Figure 8.7�

Sample letter input and output 
in the ART1 system. 

Notes 

1. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by T. Tanaka as well as contributed Section 8.3 and part of 
Section 8.4 to this chapter. 

2. The Art model was implemented and tested under NSLC. 



9 Depth Perception 
A. Weitzenfeld and M. Arbib 

9.1 Introduction 
Depth Perception enables us to see the world in terms of objects located at various dis-
tances from us. From a single eye at a single time we can determine the direction in space 
of various features of the world. Different techniques are available to locate where the 
feature is in depth along the given direction (see Arbib 1989 for further details): 

� Stereopsis uses cues provided by correlating visual input to two spatially separated 
eyes.

� Optic flow uses the information provided to the eye at different times. 

� Accommodation works by determining what focal length will best bring an object into 
focus. 

� Convergence is based on how the eyes must turn to fixate the object in question. 

A three dimensional scene presented to the left eye differs from that presented to the 
right eye. A single point projection on each retina corresponds to a whole ray of points in 
space, but points on two retinae determine a single point in space, the intersection of the 
corresponding rays (figure 9.1). 

C OA

L R

+qmax

+qmax–qmax

–qmax

qL

qLC

qRC

qR

q0 q0

OA Figure 9.1 
Points on a single ray 
(projector) match to a single 
point on each retina. The 
inter-section of two rays, a 
ray for each retina, deter-
mines a single point in space. 
In this example, C projects to 
qRC on the right retina and qLC

on the left retina, respec-
tively. OA defines the optic
axis.

In stereopsis, depth computation is based on the disparity or displacement between 
the projection of corresponding points on the two retinae. For example, from figure 9.1, 
the disparity generated by the projection of point C in the two retinae is defined as the 
spatial displacement between qRC and qLC. This is calculated by (qRC–q0) – (qLC–q0) = qRC

–qLC.
In order to visualize the relationship between disparity d and retinal angle q, the 

mapping of the right eye coordinate system onto a Cartesian grid is shown in figure 9.2. 
Radial lines are at equal angular increments q and arcs are lines of constant disparity d
spaced at equal increments of disparity. Disparity increases as the arcs get closer to the 
retina, where depth resolution becomes finer for closer objects. 
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–q3

–q2

q2

q4

q5

–q2 q0 q1 q2

–q4

–q5

d1

d2

d3

d4
d5

Figure 9.2 
Mapping of the right eyed coordi-
nate system onto a Cartesian grid. 
The two disks under the grid 
represent the two eyes. Arcs cor-
respond to disparity d, increasing 
as objects get closer to the 
retinae. Disparity resolution 
increases as well, as the arcs get 
closer to the eyes. Angular 
position q corresponds to the rays 
emanating from the retina at 
constant angular increments. 

An problem arising from stereopsis is the ambiguity created by pairs of points gener-
ating similar retinal projections (figure 9.3), 

 qRA = qRD, qLA = qLC, qRB = qRC, qLB = qLD

The generated disparities are: 

 dA = qRA - qLA, dB = qRB - qLB, dC = qRC - qLA, dD = qRD - qLD

giving rise to the following ambiguity: 

 dA + dB = dC + dD

where one pair of points would be the be correct one, while the second pair corresponds 
to “ghost” points emerging from the disparity maps. In this situation there is no way of 
knowing which pair is the “true” pair of points. 

C

D

A
B

OA OA

L R

+qmax q0

qR

qRB, qRC

qRA, qRD

-qmaxq0

qLA, qLC

qLB, qLD

qL

+qmax -qmax

Figure 9.3 
There is an ambiguity gener-
ated by projections of pairs of 
points. Stimuli B and C project 
to the same point on the right 
retina, similarly A and D. The 
same happens on the left ret-
ina, where A and C match to 
the same point, similarly to B
and D. While one of the pairs 
may be the true pair, there is 
no way to distinguish it from 
the second ghost pair since 
their projection is exactly the 
same.
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Two depth perception models resolving this ambiguity are described here: (1) The 
disparity model by Dev (1975), based exclusively on disparity cues, and (2) the disparity 
and accommodation model by House (1985), using accommodation cues cooperatively 
with disparity cues to improve depth estimates. 

9.2 Model Description: Disparity 
To remove the ambiguity problem Dev (1975) developed a cooperative computational 
model for building the depth map “guided by the plausible hypothesis that our visual 
world is made up of relatively few connected regions.” This model used neurons whose 
firing level represented a degree of confidence that a point was located at a corresponding 
position in three-dimensional space. The neurons were so connected via inhibitory 
interneurons that cells that coded for nearby directions in space and similar depths should 
excite each other, whereas cells that corresponded to nearby directions in space and dis-
similar depths should inhibit each other. The model is shown in figure 9.4: (1) an excita-
tory manifold M indexed by retina position q and disparity d, where nearby cells excite 
each other, and cells for a given q and differing d inhibit each other via (2) an inhibitory 
interneuron U indexed only by retinal position q. Competition along the d dimension 
ensures that for each q, a cell (q,d) will be active for at most one d; cooperation along the 
q dimension encourages groups of active cells for a nearby q to have similar d, thus 
yielding a segmentation of the image. (See Amari and Arbib 1977 for more detail). 

inhibotory fieldU (q )

q  (retinal position)

q  (retinal position)

excitatory field
d (disparity)

M (q,d) Figure 9.4 
The Dev disparity model incor-
porates an excitatory manifold 
M indexed by retina position q
and disparity d, and an inhibi-
tory interneuron U indexed 
only by retinal position q.

The model contains a Dev disparity module (figure 9.5): 

sp mp
data in data out

Dev

Figure 9.5 
The ��� disparity module 
contains an input port �� that 
receives external data and an 
output port �� that generates 
output data. 

The Dev module is implemented by a neural network described by the following 
equations, where m corresponds to the excitatory field, u corresponds to the inhibitory 
field and s corresponds to the input from the retina (figure 9.6): 

( ) ( ) ijmjuijmij
ij

m shugwmfwm
t

m
+����+�=

�

�
� (9.1)
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( ) u
i

ijj
j

u hmfu
t

u
�+�=

�

�
�� (9.2)

( ) ( )kmstepmf ijij ,= (9.3)

( ) ( )jj urampug = (9.4)

Input s is computed by calculating disparity between left  rL and right rR retina map-
pings. rL(q) is set to 1 if some object projects to point q on the left retina, rL(q) is set to 0 
otherwise; and similarly for rR(q). Stereo input is then defined as 

sd(q) = RL(q) RR(q+d)  (9.5)

which is 1 only if there is an object at position q on the left retina as well as at q+d on the 
right retina, and is otherwise 0. In the present section, we simply present the computed s-
array to the Dev module; in the second half of the chapter we will present a Retina mod-
ule that explicitly computes the s-array (and an accommodation array) from the activity 
on the 2 retinas. (Note that a more subtle version of the model would require similar local 
features, rather than mere presence of an object, at qL and (q+d)R. However, the modular 
design of NSL would come to the rescue here, since the input s, rather than being com-
puted by the above formula, would then be supplied by a module computing feature-
based disparities instead.) 

u

m

s

Figure 9.6 
The ��� module consists 
of layers m corresponding 
to the excitatory field and u
corresponding to the 
inhibitory field and s to the 
input from the retina. 

9.3 Model Implementation: Disparity 
There exist a number of possible different designs when building the model in NSLM. 
Different neural layers may be assigned to different modules, or a number of them may 
be part of a single module. In the design presented here, the second approach is taken, 
where the Dev and DevModel implementation in NSLM are as shown below: 



D E P T H  P E R C E P T I O N    1 7 5

Dev
The Dev module has the following definition: 

nslModule Dev (int sizeX, int sizeY) { 

Input layer s(d,q), corresponds to the s layer. The excitatory layer m(d,q) and inhibi-
tory layer u(q) are each defined by a membrane potential array (mp and up) and a firing 
array (mf and uf).

private NslDinFloat2 s(sizeX, sizeY);     

private NslDoutFloat2 mf (sizeX, sizeY);   

private NslFloat2 mp(sizeX, sizeY);    

private NslFloat1 up (sizeY);   

private NslFloat1 uf(sizeY);    

Following, constants are declared. tm and tu are time constants, hm and hu are 
threshold constants. ksm, kmu, and kum are connectivity constants; k is used as a step 
function parameter; and wm is used as an excitatory convolution mask. 

The initRun procedure reinitializes all layers for each simulation run: 

public void initRun () { 

 mp = 0; 

 mf = 0; 

 up = 0; 

 uf = 0; 

}

The simRun procedure defines the dynamic equations: 

public void simRun () {

 mp  = nslDiff(mp, tm, -mp + ks*s –  

kum*nslExpandRows(uf,mp.getRows())+ wm@mf + hm); 

 mf = nslStep(mp, k); 

 up  = nslDiff(up,tu, -up + kmu*nslReduceRows(mf) + hu);    

 uf = nslRamp(up); 

}

DepthModel 
The DepthModel module is used to instantiate the Dev module. No connections are 
required between the two modules since no information is passed. The Dev module pro-
duces output but does not receive input from other modules. (Input port sp is actually not 
used, but is defined for future extensibility.) 

nslModel DepthModel () { 

Constant sizes for arrays are: 

private int sizeX = 10; 

private int sizeY = 8; 

The assemblage consists of the following module: 

private Dev dev(sizeX, sizeY); 
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9.4 Simulation and Results: Disparity 
The NSLS script for the Dev model contains system simulation parameter assignments. 
Three of these parameters are time step, simulation end time, and the approximation 
method: 

nsl set system.simDelta 0.1 

nsl set system.simEndTime 10.0 

nsl set system.diff.approximation euler 

The Dev module parameters are then assigned. Connectivity constants are assigned 
to 1.0. tm and tu need a common value, as well as hm and hu. wm is assigned five ele-
ments between 0 and 1.0. (These constants could have been assigned values directly in 
NSLM, but can be overridden by the script language.): 

The parameters within the Dev module are set as follows: 

nsl set devModel.kum 1.0 

nsl set devModel.kmu 1.0 

nsl set devModel.ks 2.0 

nsl set devModel.wm 0.4 0.6 1.0 0.6 0.4 

nsl set devModel.tm 1.0 

nsl set devModel.tu 1.0 

nsl set devModel.hm -1.2 

nsl set devModel.hu -0.7 

nsl set devModel.k 0.75 

Input data is directly generated into s, mapping real points as well as “ghosts” (points 
with value 1). In the present example, we have followed the scenario of figure 9.3 where 
2 “real” points generate a set of disparities that is also consistent with 2 “ghost” points, 
yielding a total of 4 “initial candidates” in the array below. 

nsl set devModel.s { 

{ 0 0 0 0 0 0 0 0 } 

{ 0 0 0 0 0 0 0 0 }

{ 0 0 0 0 1 0 0 0 } 

{ 0 0 0 0 0 0 0 0 } 

{ 0 0 1 0 1 0 0 0 } 

{ 0 0 0 0 0 0 0 0 } 

{ 0 0 1 0 0 0 0 0 } 

{ 0 0 0 0 0 0 0 0 } 

{ 0 0 0 0 0 0 0 0 } 

{ 0 0 0 0 0 0 0 0 }} 

Graphics is specified by first creating a frame to contain the desired display win-
dows: 

nsl create DisplayFrame .depth

In each frame we reproduce three windows containing a layer activity each: on top the 
input s staying the same throughout the simulation, in the middle the main layer activity mp
and in the bottom the main layer activation mf. The three display windows are created using 
the default layout where each new window is added beneath the previous one: 
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 nsl create DisplayWindow  s -width 500 -height 200  

  -graph areaLevel -wymin -1.0 -wymax 2.0 

 nsl create DisplayWindow mp -width 500 -height 200  

  -graph areaLevel -wymin -3.0 -wymax 3.0 

 nsl create DisplayWindow mf -width 500 -height 200  

  -graph areaLevel -wymin 0.0 -wymax 1.0 

Simulation results during time steps 0 and 2, corresponding to the network building 
up internal values, are shown in figure 9.7. 

Simulation results during time steps 4 and 6, corresponding to the network complet-
ing building up internal values and solving the ambiguity, are shown in figure 9.8. 

Figure 9.7
The Dev model simulation 
steps 0 and 2.  
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Figure 9.8
The Dev model simulation 
steps 4 and 6. 

Returning to the situation shown in figure 9.3, the reader will note that the Dev 
model favors targets A and B as the “real” targets, and exorcises C and D as “ghost tar-
gets”, even though we had noted that the retinal data were neutral as to the choice of 
(A,B) versus (C, D). This is because the design of the Dev model meets the constraint that 
the world is made up of surfaces, and thus favors a choice consistent with nearby points 
of similar disparity over other choices. We now turn to an architecture which exploits 
accommodation as well as disparity cues. Although we do not show this explicitly, the 
reader can check that if C and D are the “real” inputs, then the new model will verify this, 
whereas the Dev model will not. 

9.5 Model Description: Disparity and Accommodation 
In many cases, depth perception models depending entirely on disparity cues will con-
verge to an adequate depth segmentation of the image. However, such a system may need 
extra cues. The ambiguity resulting from matching a number of points in space to the 
same retina coordinate can be reduced by the use of vergence information to give the 
system an initial depth estimate. Another method is to use accommodation information to 
provide the initial bias for a depth perception system. It is the latter approach that we 
adopt here. 

The cue interaction model (House 1985) uses two systems, each based on Dev’s 
stereopsis model, to build a depth map. One is driven by disparity cues, the other by 
accommodation cues, while corresponding points in the two maps have excitatory cross-
coupling. The model is sketched in figure 9.9. M is an accommodation driven field; it 
receives information about accommodation and—left to its own devices—sharpens up 
that information to yield depth estimates. S is the disparity driven-field, corresponding to 
Dev’s original system: it receives disparity information and suppresses (what may be) 
ghost targets. Moreover, the systems are intercoupled so that a point in the accommoda-
tion field M excites the corresponding point in the disparity field S, and viceversa. Thus, a 
high confidence in a particular (direction, depth) coordinate in one layer will bias activity 
in the other layer accordingly. The model is so tuned that binocular depth cues predomi-
nate where available, but monocular accommodative cues remain sufficient to determine 
depth in the absence of binocular cues. 
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Accommodation
depth inference
system

Monocular
accommodation
driven field

Stereoscopic
disparity
driven field

Disparity
depth inference
system

Efferent
depth
estimates

A

M

S

D

+

+

Figure 9.9
The cue interaction model 
for depth mapping uses 
cross-coupling between an 
accommodation-driven 
system and a disparity-
driven system. 

The model is composed of the following modules (figure 9.10): 

� Dev2: There are two instances of an extended Dev module, now called Dev2, one 
processing disparity information and the other accommodation information. Each 
consists of an input port a, receiving data from the Retina, a second input port s,
receiving input from the other Dev2 module, and an output port mf, delegating its 
output back to Stereo. 

� Retina: The Retina module processes retina information. It contains an input port in,
delegated from Stereo, and two output ports, d and a, for disparity and accommoda-
tion, respectively.  

� Stereo: The Stereo assemblage provides composition and encapsulation for the 
entire model. It delegates its processing to the Retina and two Dev2 modules. The 
Stereo module consists of two external ports, input port in and output port out.

� Visin: The Visin module generates the external stimuli. It contains an out output port 
connected to the Stereo module. 

in

a

a

s

s
d

in

out out

mfmf

a

Dev2 m

Dev2 s

Retina r

Stereo stereo

Stereo assemblage

Visin visin

Figure 9.10 
Disparity and Accommodation 
model modules: A Visin input 
module, a Stereo assemblage, 
a Retina module, and two 
Dev2 modules. 
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Note, the two Dev2 modules are implemented by neural networks similar to those 
defined in the original Dev module. These equations are extended to enable cross-
coupling between Dev modules, where m and s correspond to the excitatory fields, u and 
v to the inhibitory fields and a and d are the input from the retina (figure 9.11). Consistent 
with the definition of Stereo below, you must make the Dev2 modules identical—we 
have 2 instances of the same module, and we will show how we connect them to yield 
their differential function. The variables internal to each instance must be identical, only 
connections and relabelings distinguish them: 

� Disparity (Dev2 s):

( ) ( ) ( ) ijsjvijtijsij
ij

s dhvgwtfwsfws
t

s
+����+�+�=

�

�
� (9.6)

( ) v
i

ijj
j

v hsfv
t

v
�+�=

�

�
�� (9.7)

( ) ( )ijij ssigmasf = (9.8)

( ) ( )jj vrampvg =  (9.9) 

� Accommodation (Dev2 m):

( ) ( ) ( ) ijmjuijtijmij
ij

m ahugwtfwmfwm
t

m
+����+�+�=

�

�
� (9.10)

( ) u
i

ijj
j

u hmfu
t

u
�+�=

�

�
�� (9.11)

( ) ( )ijij msigmamf = (9.12)

( ) ( )jj urampug = (9.13)

u

m

a

u

d

s

Figure 9.11
Two ��� neural networks 
consisting of m and s corre-
sponding to the excitatory 
fields, u and v to the inhibi-
tory fields, and a and d are 
the input from the retina. 
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9.6 Model Implementation: Disparity and Accommodation1

The model is composed of the following modules: Dev2, Retina, Stereo, and Visin:

Dev2 
The Dev2 module is defined as before: 

nslModule Dev2 (int sizeX, int sizeY) { 

Input layer s(d,q), corresponds to the s layer. An additional layer t is used for cross-
coupling between Dev2 modules. 

public NslDinFloat2 a(sizeX,sizeY);    

public NslDinFloat2 s(sizeX,sizeY);    

public NslDoutFloat2 mf(sizeX,sizeY);   

private NslFloat2 mp(sizeX,sizeY);    

private NslFloat1 up(sizeY);    

private NslFloat1 uf(sizeY);    

Following, constants are declared similar to the original Dev module. wm is the con-
volution mask, with size 3, and instead of a step function, a saturation function is used; 
thus instead of k, x1 and x2 are used as parameters.  

private NslFloat0 ksm(); 

private NslFloat0 kmu();  

private NslFloat0 kum(); 

private NslFloat0 ktm(); 

private NslFloat1 wm(3); 

private NslFloat0 tm();

private NslFloat0 tu(); 

private NslFloat0 hm(); 

private NslFloat0 hu(); 

private NslFloat0 x1(); 

private NslFloat0 x2(); 

The initRun procedure reinitializes all layers to 0 for each simulation run: 

public void initRun () { 

 mp = 0; 

 mf = 0; 

 up = 0; 

 uf = 0; 

}

The simRun procedure defines the dynamic equations. They are similar to the Dev 
equations except for the addition of t in the expression: 

public void simRun () {

 mp = nslDiff(mp, tm, -mp + ksm*s –  

kum*nslExpandRows(uf,mp.getRows())+ ktm*t + wm@mf + hm); 

 mf = nslSigmoid(mp,x1,x2);  

 up = nslDiff(up,tu, -up + kmu*nslReduceRows(mf) + hu);    

 uf = nslRamp(up); 

}
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Retina 
The Retina module is defined as follows (detailed processing for this assemblage is 
described in House (1985)): 

nslModule Retina (int sizeX, int sizeY, int sizeR) { 

The external data arrays are: world input in and output retina vector r:

private NslDinFloat2 in(sizeX, sizeY); // world input  

private NslDoutFloat2 a(sizeX, sizeY); // accommodation layer 

private NslDoutFloat2 d(sizeX, sizeY); // disparity layer 

private NslFloat1 rr(sizeR);   // right retina 

private NslFloat1 rl(sizeR);   // left retina 

Following, constants are declared: 

private NslFloat0 w(); // 1/2 of interpupillary distance (cm) 

private NslFloat0 yf(); // intersection of optical axes

 (0,yf) (cm) 

private NslFloat0 l(); // interpupillary line distance from  

 origin (cm) 

private NslFloat0 dmax(); // maximum disparity 

private NslFloat0 sigma(); // spread parameter 

The initRun procedure produces the retina mapping (since images are static, there is 
no need for a simRun procedure): 

public void initRun() 

{

 view_to_right_retina(rr,in,w,yf,l); 

 view_to_left_retina(rl,in,w,yf,l); 

 retina_to_accommodation(a,in,rr,w,yf,l,dmax,sigma); 

 retina_to_disparity(d,rr,rl); 

}

Stereo 
The Stereo assemblage is defined as follows: 

nslModule Stereo (int sizeX, int sizeY, int sizeR) { 

The assemblage consists of the following modules: 

private Retina r(sizeX, sizeY, sizeR); 

private Dev2 m(sizeX, sizeY), s(sizeX, sizeY); 

Input and output ports are defined as follows: 

public NslDinFloat2 in(sizeX, sizeY); 

public NslDoutFloat2 out(sizeX, sizeY); 
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Connections and relabels are as follows: 

public void makeConn () { 

 nslConnect (r.a,m.a); 

 nslConnect (r.d,s.a); 

 nslConnect (m.mf,s.s); 

 nslConnect (s.mf,m.s); 

 nslRelabel (in,retina.in); 

 nslRelabel (s.mf,mf); 

}

Visin 
The Visin module is defined as follows: 

nslModule Visin (int sizeX, int sizeY) { 

The external data array is: world input in:

private NslDoutFloat2 out(sizeX, sizeY); 

DepthModel 
The DepthModel model instantiates the Visin and Stereo modules. A connection is 
made between ports in these two modules. 

nslModel DepthModel () { 

Constant sizes for arrays are: 

private int sizeX = 11; // 81; 

private int sizeY = 11; // 81; 

private int sizeR = 21; // 161; 

The assemblage consists of the following modules: 

private Visin visin(sizeX, sizeY);  

private Stereo stereo(sizeX, sizeY,sizeR); 

Connections and relabels are as follows: 

public void makeConn () { 

 nslConnect (visin.out, stereo.in); 

}

9.7 Simulation and Results: Disparity and Accommodation2

The NSLS code for the House model involves system simulation parameter assignments, 
including time steps, simulation end time, and the integration method to be used by all 
differential equations: 

nsl set system.simDelta 0.05 

nsl set system.simEndTime 2.0 

nsl set system.diff.approximation euler 

nsl set system.diff.delta 0.05 



1 8 4    C H A P T E R  9     

Retina parameters, 

nsl set DepthModel.stereo.r.w 3.0 

nsl set DepthModel.stereo.r.yf -10.0

nsl set DepthModel.stereo.r.l 22.0 

nsl set DepthModel.stereo.r.dmax 0.25

nsl set DepthModel.stereo.r.sigma 0.25

Dev2 disparity parameters, 

nsl set DepthModel.stereo.s.tu 0.1 

nsl set DepthModel.stereo.s.tm 0.3 

nsl set DepthModel.stereo.s.hu 0.0 

nsl set DepthModel.stereo.s.hm 0.0 

nsl set DepthModel.stereo.s.x1 0.1 

nsl set DepthModel.stereo.s.x2 1.1 

nsl set DepthModel.stereo.s.wm 0.25 0.68 0.25

nsl set DepthModel.stereo.s.kmu 1.0 

nsl set DepthModel.stereo.s.kam 0.5 

nsl set DepthModel.stereo.s.kum 0.6 

nsl set DepthModel.stereo.s.ks 0.8 

Dev2 accommodation parameters, 

nsl set DepthModel.stereo.m.tu 0.1 

nsl set DepthModel.stereo.m.tm 0.3 

nsl set DepthModel.stereo.s.hu 0.0 

nsl set DepthModel.stereo.s.hm 0.0 

nsl set DepthModel.stereo.m.x1 0.1 

nsl set DepthModel.stereo.m.x2 1.1 

nsl set DepthModel.stereo.m.wm 0.25 0.68 0.25

nsl set DepthModel.stereo.m.kmu 1.0 

nsl set DepthModel.stereo.m.kam 0.5 

nsl set DepthModel.stereo.m.kum 0.6 

nsl set DepthModel.stereo.m.ks 0.8 

Input to the model, Visin module, is 

nsl set DepthModel.visin.out{35,41} 1.0 

nsl set DepthModel.visin.out{45,55} 1.0 

Graphics is specified as follows: 

nsl create DisplayFrame .fw0 

nsl create DisplayWindow vis.out -width 450 -height 600 -graph

areaLevel \-wymin 0.0 -wymax 1.0 

nsl create DisplayFrame .fw1 

nsl create DisplayWindow st.m.mf -width 450 -height 300 -graph

spatial3 \ -wymin -1.0 -wymax 1.0 -x0 20 -x1 80 -y0 35  

–y1 50 -sz 100 nsl create DisplayWindow st.s.mf -width 450

-height 300 -graph spatial3 \ 

 -wymin -1.0 -wymax 1.0 -x0 20 -x1 80 -y0 35 -y1 50 -sz 100 
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Simulation input (time step 0) is shown in figure 9.12. Input array in and output 
arrays a and d, all read from the Retina.

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.13, during time 0.25. 

Figure 9.13
Disparity s and accommoda-
tion m corresponding to the 
two ���� modules, during 
time 0.25. 

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.14, during time 0.50. 

Figure 9.14
Disparity s and accommo-
dation m corresponding to 
the two ���� modules, 
during time 0.50. 

Simulation for disparity s and accommodation m corresponding to the two Dev2
modules, is shown in figure 9.15, during time 0.75. 

Figure 9.12
World input for processing: 
Input array in and output 
arrays a and d, from the 
�����	.
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Figure 9.15
Disparity s and accommo-
dation m corresponding to 
the two ��� modules, 
during time 0.75. 

9.8 Summary 
We have shown how to take advantage of the features in NSLM to modularly extend the 
original Dev disparity model into the House depth perception model. The ability to 
extend models makes NSL a very powerful simulation language. There are other modular 
decompositions alternative to the one presented in this model. When to choose one 
decomposition versus another one, depends on the complexity of the model and how 
much extensibility is desired. For example, we could further decomposing the retina 
module into an assemblage made of a left and right retina and disparity and accommoda-
tion components as shown in figure 9.16. This would require further refinement of the 
model equations and would be useful as far as we can actually assign separate code to 
each box. We leave this to the user as an exercise. 
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Additional depth model 
decomposition by making 
the Retina module a 
RetinaMap assemblage 
composed of two retina 
submodule (left and right) 
and separate accommoda-
tion and disparity 
submodules. 

Notes 

1.  The Depth Perception model was implemented and tested under NSLC. 

2.  The Depth Perception model was implemented and tested under NSLC. 



10 Retina1

F. J. Corbacho and A. Weitzenfeld2

10.1 Introduction 
Teeters and Arbib (1991) (Teeters and Arbib 1991) presented a model of the anuran 
retina which qualitatively accounts for the characteristic response properties used to 
distinguish ganglion cell types in anurans. Teeters et al. (1993) tested the model’s ability 
to reproduce quantitatively tabulated data on the dependency on stimulus shape and size, 
with a new implementation of the model in the neural simulation language NSL. Data of 
Ewert & Hock (1972) relating toad R2, R3, and R4 ganglion cell responses to moving 
worm, antiworm, and square-shaped stimuli of various edge lengths are used to test 
stimulus shape and size dependency. Gaillard et al. (1998) submitted the model to the 
whole battery of physiological experiments to validate the performance under different 
stimulation conditions. We stress here the importance of a populational approach to the 
models. We place more emphasis on the variation of response properties in a population 
of neurons of the same class, rather than questing for the neuron of a given type.  

10.2 Model Description 
The anuran retina model of Teeters et al. (1993) accounts for the qualitative characteristic 
response properties used to classify anuran ganglion cell types as well as for the quantita-
tively determined ganglion cell responses dependent on stimulus size and shape. The 
structure of the model is shown in figure 10.1.  

Ganglion Cells

Rectification

OPL processing

IPL processing

HIgh-pass
filter

pdb
on-S

adt
on-T

ath
off-T

pbh
off-S

HC

DBC HBC

R
Figure 10.1 �
Overview of model structure. Cell 
types are: R - Receptors; HC - 
Horizontal cells, DBC and HBC - 
Depolarizing and Hyperpolarizing 
bipolar cells; PBD and PBH - 
positive part of bipolar cell poten-
tials; ATD and ATH - transient 
amacrine cells from DBC and HBC 
channel; OPL - outer plexiform 
layer. IPL - inner plexiform layer. 

The top part shows the layers of cells that feed all the ganglion cells, while the bot-
tom part shows the specific inputs for each ganglion cell type. Each single cell in these 
diagrams represents a layer of cells in the formal model. We summarize the different 
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layers of the model in table 10.1 and the equations for the model in table 10.2. We will 
present possible improvements as the exposition progresses.  

Abbreviation Description

R   
H (HC)  
R0 - R4   
HBC   
DBC   
PBH   
PBD   
ATH   
ATD   
ERF   
IRF   

Receptor cell 
Horizontal Cell 
Retinal ganglion cell types: classes 0 to 4 
Hyperpolarizing Bipolar Cell 
Depolarizing Bipolar Cell 
Positive component of the Hyperpolarizing Bipolar Cell 
Positive component of the Depolarizing Bipolar Cell 
Hyperpolarizing Transient Amacrine 
Depolarizing Transient Amacrine 
Excitatory Receptive Field 
Inhibitory Receptive Field 

Neuron
Layer

Equations

Receptor R = 1 - I (10.1)

Horizontal �H dH/dt= H0 - H, H0 = 0 ambient light, 1 ambient dark; �H = 0.1 (10.2) 

 Off channel  On channel  

Bipolars HBC = R - H 
PBH = max(HBC, 0) 

(10.3)
(10.5)

DBC = H - R
PBD = max(DBC, 0) 

(10.4)
(10.6)

Amacrines �a dHBX/dt = HBC - HBX, �a = 0.3 
ATHt = max 
(HBC-HBX, ATHt-1 e

-t/�a)

(10.7)

(10.8)

�a dDBX/dt = DBC - DBX  
ATDt = max 
(DBC-DBX, ATDt-1 e

-t/�a)

(10.9)

(10.10)

R0 Cells R0 = k0*ATD - k1 * ((3 . ATH) + ATD)
with k0 = mask(4, 1.8, 1), k1 = mask(15.5, 3.7, 0.8) 

(10.11)

R1 Cells R1 = k0 * (PBD+PBH+ATD+ATH) - k1 * (ATD+ATH)
with k0 = mask(3, 2.3, 1), k1 = mask(19.5, 4.6, 3) 

(10.12)

R2 Cells R2 = g . ((k0*PBH) + tc)
where tc = k0*ATH - k1 * (ATH+ATD),
and g = pos(tc)  where pos(x) = 1 if x > 0, 0 otherwise 
with k0 = mask(4, 2.4, 1), k1 = mask(19.5, 4.6, 3) 

(10.13)

R3 Cells R3 = k0*a - (k1*a)delayed
where a = p . ATD + ATH
with p = 0.4, k0 = mask(8, 2.4, 1), k1 = mask(19.5, 4.6, 1.4) 
while (s)delayed = signal s delayed by 40 milliseconds. 

(10.14)

R4 Cells R4 = k0 * (ATH - x . ATD)
with x = 1, k0 = mask(15.5, 3.5, 1). 

(10.15)

Receptors (R) convert light energy into neural potentials. The hyperpolarizing 
response to light is modeled by setting the receptor potential to the inverse of light inten-
sity (I) that ranges from 0 (dark) to 1 (light). Adaptation and other complexities are not 
included in the model. Note that in the case of R2, the model uses two temporary 

Table 10.1
Neural layers. 

Table 10.2�

Algorithms for receptors 
through ganglion cells in the 
model.
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variables tc and g where tc is the total transient input to the cell and g is a gate which is 
set to 1 if the net transient excitation is larger than the inhibition. 

Horizontal cells (H) form the surround receptive field of both bipolar cell types. 
They are modeled so that they are only sensitive to the background illumination of the 
surround (H0 in table 10.2) and are spatially invariant (uniform potential model) through 
the infinite spread of the activation within the cells. This simple interpretation of hori-
zontal cell function ignores the effect of presentation of a local stimulus and suggests that 
their main function is to bias the bipolar cells so they operate in their region of maximal 
sensitivity.  

Bipolar cells (HBC, DBC) are computed as a difference between receptor and hori-
zontal cell activity. Hyperpolarizing bipolar cells (HBC) hyperpolarize in response to 
light, depolarizing bipolar cells (DBC) depolarize in response to light. PBH and PBD are 
the positive components of the HBC and DBC responses. 

Transient Amacrine Cells (ATH, ATD) convert the sustained bipolar outputs into 
transient signals. The transient amacrines are modeled as pseudo differentiators which 
operate by subtracting the leaky-integrated bipolar potential from the sustained bipolar 
potential, and then amplifying the difference if it is above threshold. We modeled the 
Bipolars and Amacrines to have one-to-one connections from the preceding layers based 
on the following assumptions: (i) horizontal cells in this model have a uniform potential 
which in effect makes the spatial connection properties mostly irrelevant, and (ii) den-
dritic tree diameters of the Bipolars and Amacrines are smaller than those of the ganglion 
cells.

The model input to the ganglion cells (receptors through bipolar and amacrine) 
ignores optics, different receptor types, light adaptation, and distinctions between other 
subtypes of horizontal, bipolar, and amacrine cells. It is not our claim that this simplifica-
tion exhausts the functionality of these cells. Rather, we seek to emphasize that only 
those properties analyzed in this paper are essential for understanding the range of 
ganglion cell properties described here. In fact, the Teeters and Arbib (1991) implemen-
tation of the horizontal and bipolar cells does not really affect the outcome of the stim-
ulus shape and size discrimination tasks. Nevertheless we need the horizontal and bipolar 
cells to account for other phenomena caused by changes in whole field illumination. 

Ganglion cells (R0 – R4) receive input from bipolar and amacrine cells. Unlike the 
bipolar and amacrine cells which have one-to-one connections to their preceding layers, 
each ganglion cell input is composed of a central ERF (Excitatory Receptive Field), and 
a wider IRF (Inhibitory Receptive Field). The spatial properties of the ERF and IRF are 
specified as two-dimensional Gaussians. The notation “mask(dia, sig, wgt)” in table 10.2 
denotes a 2-dimensional Gaussian with standard deviation sig (in visual degrees) which 
is truncated with diameter dia (so that the Gaussian values are replaced by 0 for points 
more distant than dia/2, also in visual degrees, from the center), and which is normalized 
so that the sum of all elements is equal to wgt (for a more detailed description see 
Appendix I). The ERF extent is modeled as arising from ganglion cell dendritic tree 
topology that is narrowly spread, whereas the IRF arises from a more widely spread 
topology. The corresponding diagrams are shown in figure 10.2. 
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Figure 10.2�

Ganglion cells R0 through R4. The 
receptive field for ganglion cells 
type R0 through R3 is composed of 
a small excitatory receptive field 
(ERF) and an overlapping larger 
inhibitory receptive field (IRF). The 
ERF and IRF in the R4 model are the 
same size. Input to both ERF and 
IRF are from bipolar and amacrine 
cells (pbd, phb, ath, atd). Spatial 
connections and other details of the 
algorithms are not shown here but 
are given in the text. (From Teeters 
and Arbib 1991.) 

Stimulus Shape and Size Dependency 
In general, the average response of anuran ganglion cells to a moving stimulus depends 
on stimulus configuration, size, and velocity—a long thin bar moving in the direction of 
its long axis (a “worm” stimulus) will normally give a different response than the same 
sized stimulus moving perpendicular to its long axis (“antiworm”). Likewise, a square 
shaped stimulus will often generate a different response than do worm or antiworm 
stimuli. The response dependence on the edge length of moving worm, antiworm, and 
square-shaped stimuli has been determined in the toad (Ewert and Hock, 1972; Ewert, 
1976) and in the frog (Schürg-Pfeiffer and Ewert, 1981). The data sets are quite different 
even though the same anuran cell types are recorded. In the frog data, only the R3 cell 
shows a distinct difference in response to worm, antiworm, and square stimuli. Although 
Teeters and Arbib (1991) mainly tuned the ganglion cell models to frog data, this paper 
will use the toad data because toad ganglion cells show a much better ability to 
differentiate between stimulus types.   

Ewert (personal communication) only used a cell’s response to the leading edge of 
the stimulus to calculate the average response (nevertheless, our temporal graphs show 
both the leading and the trailing edge). In accordance to this methodology, we relied on 
the leading edge response to calculate the average response—in all the cases the leading 
edge responses are clearly discernible from the residual responses. Our ability to match 
these data (and those analyzed by Teeters and Arbib (1991)) suggests that the model is 
indeed robust enough to serve as a valid “front end” for Rana computatrix (Arbib, 1987).  

A brief qualitative analysis of the model responses to various stimulus shapes and 
sizes could offer some useful guidelines for further tuning of the base model. An 
instantaneous response of a ganglion cell is the result of summation of ERF induced 
excitatory response and the IRF induced inhibitory response. The inputs to ERF and IRF 
could be of different combinations of channels (PBH, PBD, ATH, ATD) depending on 
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the ganglion cell types. For instance, R2 receives PBH and ATH channels for its ERF, 
ATH and ATD channels for its IRF. However, sustained bipolar channel (PBH, PBD) 
responses and transient amacrine channel (ATH,ATD) responses present different spatial 
characteristics. For example, the PBH bipolar channel layer forms an activation profile 
identical to the size and shape of the dark stimulus. The Teeters and Arbib (1991) model 
uses a high pass filter to represent the amacrine cells as they convert sustained bipolar 
signals into transients. The resulting amacrine cell layer forms an exponentially decaying 
surface starting from the edges of the moving stimulus: the ATH layer forms such a 
surface starting from the leading edge of a dark moving surface, and the ATD layer from 
the trailing edge.  

If the shapes of the stimulus classes are restricted to rectangles and if each bipolar 
and amacrine cell has maximum instantaneous firing rate of 1, overall activities of PBH 
and ATH on their layers are: 

PBHsum = lh  (10.15)

�
=

�=
1

0x

vx
sum dxehATH � (10.16)

where x is the distance between the amacrines corresponding to the leading edge and the 
position of amacrines the stimulus has passed over. Obviously, PBHsum is a function of 
both stimulus length (l) and height (h) while ATHsum is only dependent on height of the 
stimulus for given velocity (v) and time constant (�). Thus, while the activation pattern on 
the PBH layer directly reflects stimulus shape and size, ATH layer activation pattern pro-
duces identical firing patterns for worm, antiworm and square so long as they have the 
same height. These different spatial firing patterns of bipolars and amacrines will form 
the basis of the shape dependence of ganglion cells.  

The average response of anuran ganglion cells usually increases with stimulus size 
smaller than the ERF. Assuming that response durations are about equal for a given 
velocity, the increase in ganglion cell response in our model stems from the fact that as 
stimulus size increases, it excites a larger area of receptors and thus bipolars and 
amacrines. This increases the instantaneous ganglion cell response that is proportional to 
the sum of activation of amacrines and/or bipolars within the ERF. However, bipolar and 
amacrine contributions to the response growth will be different in that bipolar channel 
contributions will increase proportional to the stimulus area but the amacrine channel 
contribution will increase proportional to the height. As the stimulus size increases 
beyond the ERF and into the IRF region, the IRF-contributed inhibition takes effect and 
reduces the total response.  

Due to size limitations, in this chapter we will focus on R3 cells for a detailed analy-
sis. A similar analysis is provided in Teeters et al. (1993) for the rest of the ganglion 
cells.

10.3 Model Implementation 
The model implementation consists at the top level of a RetinaModel and a Retina mod-
ule. The Retina module contains a Visin module for generating synthetic visual input, 
the Receptors, Horizontal Cells, Bipolar Cells, Amacrine Cells and Ganglion Cells, R2, 
R3 and R4, each organized into its own module, as shown in figure 10.3.  
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Figure 10.3 �
Retina module consisting of the 
following submodules intercon-
nected between them: Stimulus, 
Receptors, Horizontal Cells, 
Bipolar Cells (on and off 
channel), Amacrine Cells (on and 
off channels) and ganglion cells 
R2, R3 and R4 

Note that we use the same module definition for both on and off channel bipolars 
and Amacrines.  

Visin 
The Visin module uses a special input structure to simulate visual input (see Appendix III 
for details). Different kinds of moving (or static) stimuli may be defined interactively. In 
the simRun function the model simply needs to specify the in.run() function call for 
the actual computation to take place. Note that we initialize in to 0 previously to reset the 
visual input. 

public void simRun() 

{

 in = 0; // need to reset all values first 

 in.run(); // compute stimulus position according to pars  

  set in file 

 out = in; // export 

}

Receptor
The Receptor module contains an input port in receiving visual input, while an output 
port r sends output to the following modules in the data path. The initRun method ini-
tializes r to 0. The simRun method sets the receptor r value to the input stimulus while 
time is less than 7.0 in order to stop it in the ERF. After that its value is sustained from its 
last value staying constant. 
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public void simRun() 

{

if (system.getSimTime() <= 7.0) 

  r = in; 

}

Horizontal Cells 
The horizontal cells get their input from the ambient light through hLevel. The Horizon-
tal module has only a single output port hor. The initRun method initializes hor to 0. 
The simRun method computes a differential equation corresponding to a leaky integrator 
model for the horizontal cells 

public void simRun() 

{

 nslDiff(hor,tm,hLevel - hor); 

}

Bipolars 
Bipolar cells receive input from both the receptors and the horizontal cells. We describe a 
single Bipolar module for both the on and off channel cells. The distinction is made in 
terms of an on_off instantiation parameter. If “1” the cells are considered 
Hyperpolarizing Bipolars and if “-1” they are considered Depolarizing Bipolars. The 
initRun method initializes bc and pb to 0. The simRun method computes the bipolar cell 
activity bc as a difference between the values of the receptors and horizontal cells, with 
its sign depending on whether they are on or off channel cells. An additional output to 
the module is pb corresponding rectified value from the cell activity. 

public void simRun() 

{

 bc = on_off*(r - hor); 

 pb = nslMax(bc,0); 

}

Amacrines
Amacrine cells receive input from the bipolar cells. We describe a single Amacrine mod-
ule for both the on and off channel cells. The distinction is made this time in terms of 
whether it receives input from an on or off channel bipolar cell. The initRun method 
initializes all variables to 0 and gets the value of the system delta to be used for 
numerical approximation (dt = system.getRunDelta()). The simRun method computes 
the amacrine cell activity at through an average exact method instead of the leaky inte-
grator method. 

public void simRun() 

{

 // nslDiff(ax,tm, bc - ax);  // Euler method. 

   ax = diff_ae(ax,bc,old_bc,tm); // Average Exact Method.  

 at1 = 5*(bc - ax); 

 at2 = nslExp(-dt/tm.getData())*at;  // compute from  

  previous at value 

 at = nslMax(at1,at2); 

 old_bc = bc;    // keep old bc 

}
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The following average exact approximation method is used, 

private NslFloat2 diff_ae(NslFloat2 v,NslFloat2 s,NslFloat2

  prev,NslFloat0 tm) 

{

  float dt,tc,temp; 

   int vmax = v.getRows();  // Size of the matrices. 

 NslFloat2 term1(vmax,vmax); 

 NslFloat2 term2(vmax,vmax); 

 dt = system.getSimDelta(); 

 tc = tm.getData(); 

 if (dt != 0 && tc != 0){ 

  temp = exp(-dt/tc); 

  term1 = (NslFloat2) ((1 - temp) * s + temp * v); 

  term2 = (NslFloat2) ((s - prev) * (temp * (tc + dt) –  

   tc) / dt);  

 } 

 return (term1 + term2); 

}

Ganglion Cell R2 
We model only ganglion cells R2, R3 and R4. All of them receive input from both the on 
and off channel amacrine cells. R2 in particular also receives input from the rectification 
of the on channel bipolar cell. The R2 module thus includes three input ports without any 
output port. It includes both an excitatory receptive field (ERF) and an inhibitory recep-
tive field (IRF). The initRun method initializes the cell activity to 0. It also calculates the 
excitatory and inhibitory receptive fields through a Gaussian function. R2 in particular 
calculates the difference of gaussians (DOG) between erf and irf in rf.

public void initRun() 

{

 r2 = 0; r2f = 0;  

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF  

kernel

 nslGaussian(irf,irf_dia,irf_sig,irf_wgt); // Gaussian IRF  

  kernel 

 rf = erf - irf;         // DOG for the r2 ganglion cells 

}

The simRun method computes a sustained erf (sust_erf) and irf (sust_irf) values 
from the erf and irf rectified bipolar cell input convolution, respectively. The cell activity 
r2 is computed from a convolution of r2 with the amacrine cell input. The output r2f is 
computed by a ramp function. 
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public void simRun() 

{

   sust_erf = newconv(erf, pbh_erf * pbh); // sustained erf  

  input 

 sust_irf = newconv(irf, pbh_irf * pbh); // sustained irf  

  input 

 sust = sust_erf - sust_irf;   // sustained  

  input 

 temp = ath + trailing * atd; // trailing is the effect of  

  the trailing 

         // edge set to 0 to get Ewert’s data 

 r2 = newconv(rf, temp) + sust; // New convolution and No  

  Leaky Integ. 

 r2f = k*nslRamp(r2); 

}

The following convolution method returning a 2d matrix of different size (in this 
example 1x1) is used: 

private NslFloat2 newconv(NslFloat2& a, NslFloat2& b) 

// a is the Mask and b is the input layer. 

{

  int saimax = a.getRows(); 

  int sajmax = a.getCols(); 

  int sbimax = b.getRows(); 

  int sbjmax = b.getCols(); 

  int leftbound = 1;    // 32; for the 72x72 

  NslFloat2 c(1,1); // Make this variable size // c(8,8) for

 72x72 

  for (int i = 0; i < leftbound; i = i+4) { 

    for (int j = 0; j < leftbound; j = j+4){

     float val = 0.0; 

     for (int m = 0; m < saimax; m++) 

       for (int n = 0; n < sajmax; n++) 

        val = val + a[m][n] * b[i+m][j+n]; 

     c[i/4][j/4] = val; 

    } 

 } 

  return c; 

}

Ganglion Cell R3 
The ganglion cells R3 are similar to R2 in that they receive input from both the on and 
off channel amacrine cells. The R3 module includes two input ports without any output 
port. It includes both an excitatory receptive field (ERF) and an inhibitory receptive field 
(IRF). The initRun method initializes the cell activity to 0. It also calculates the excita-
tory and inhibitory receptive fields through a Gaussian function.
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public void initRun() 

{

 r3 = 0; r3f = 0;  

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF  

  kernel 

 nslGaussian(irf,irf_dia,irf_sig,irf_wgt); // Gaussian IRF  

  kernel 

}

The simRun method computes an all input value from both amacrine cells for its erf
while storing old values for its irf. The cell activity r3 is computed from a convolution of 
r3 with the amacrine cell input from all by its erf and old for its irf. The output r3f is 
computed by a ramp function. 

public void simRun() 

{

 all = p * atd + ath; 

 old = p * old_atd + old_ath; 

 r3 = newconv(erf, all) - newconv(irf, old); 

 r3f = k*nslRamp(r3); 

}

Ganglion Cell R4 
The ganglion cells R4 are similar to R2 and R3 in that they receive input from both the 
on and off channel amacrine cells. The R4 module includes two input ports without any 
output port. It includes only an excitatory receptive field (ERF). The initRun method 
reinitializes the cell activity to 0. It also calculates the excitatory receptive field through a 
Gaussian function.  

public void initRun() 

{

 r3 = 0; r3t = 0; r3f = 0;  

 nslGaussian(erf,erf_dia,erf_sig,erf_wgt); // Gaussian ERF  

  kernel 

}

The simRun method computes the cell activity r4 by a convolution with the 
amacrine cell input difference by its erf. The output r4f is computed by a squashing 
function on r4t computed as a ramp function on r4.

public void simRun() 

{

r4 = newconv(erf, (ath - atd));

 r4t = nslRamp(r4); 

 r4f = k*r4t/(r4t+0.2); // Squashing function 

}

10.4 Simulation and Results3

As previously mentioned, we do quantitative modeling of Anuran retina responses for 
stimulus shape and size dependency. In this simulations we test the model’s ability to 
reproduce quantitatively tabulated data on the dependency on stimulus shape and size 
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(Ewert 1976). The goal has been to match Ewert’s quantitative data on the Toad’s retinal 
ganglion cells. Input to the model is Light on the receptors (40X40 to simulate the recep-
tive field of a single ganglion cell of each type). The model also simulates “simple” 
Horizontal and Bipolar cells. The output of the model represents the temporal firing rate 
of a Ganglion cell of each type (R2, R3, R4). Note that there is no trailing-edge effect 
since Ewert computed his data with only the response to the leading edge. Furthermore, 
no Leaky Integrators we used for the Ganglion Cells.  

Simulation Parameters 
The simulation parameters include the delta and endTime

nsl set system.runDelta 0.066 ;# Simulation Time Step = 66

 msec. 

nsl set system.runEndTime 7.0 ;# Total simulation time = 7 sec 

Model Parameters 
Model parameters are set for the different modules. 

Horizontal Cell parameters: 

nsl set retinaModel.retina.hor.tm 0.1

nsl set retinaModel.retina.hor.hlevel 0  ;# Uniform horizontal

 cell potential 

    ;# 0 if the background is bright, 1 if dark. 

Amacrine Cell parameters: 

nsl set retinaModel.retina.ath.tm 0.3

nsl set retinaModel.retina.atd.tm 0.3

Ganglion Cell R2 parameters: 

nsl set retinaModel.retina.r2.pbh_erf 0.3 

nsl set retinaModel.retina.r2.pbh_irf 0 

nsl set retinaModel.retina.r2.trailing 0 ;# Effect of trailing

 edge on R2. 

nsl set retinaModel.retina.r2.k 43.8 ;# Scaling Factors for

 ganglion cells. 

nsl set retinaModel.retina.r2.erf_dia 4.0 ;# R2 ERF diameter. 

nsl set retinaModel.retina.r2.irf_dia 19.5 

nsl set retinaModel.retina.r2.erf_sig 2.4 ;# R2 ERF sigmoid

 (for the Gaussian) 

nsl set retinaModel.retina.r2.irf_sig 4.0 

nsl set retinaModel.retina.r2.erf_wgt 1.0 ;# R2 ERF weight 

nsl set retinaModel.retina.r2.irf_wgt 2.3     
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Ganglion Cell R3 parameters: 

nsl set retinaModel.retina.r3.p 0.5  ;# Effect of trailing  

 edge on R3 

nsl set retinaModel.retina.r3.k 44.0 

nsl set retinaModel.retina.r3.erf_dia 8.0 

nsl set retinaModel.retina.r3.irf_dia 19.5 

nsl set retinaModel.retina.r3.erf_sig 2.0   

nsl set retinaModel.retina.r3.irf_sig 10.0 

nsl set retinaModel.retina.r3.erf_wgt 1.15 

nsl set retinaModel.retina.r3.irf_wgt 2.38

Ganglion Cell R4 parameters: 

nsl set retinaModel.retina.r4.k 37.5 

nsl set retinaModel.retina.r4.erf_dia 15.5

nsl set retinaModel.retina.r4.erf_sig 3.5 

nsl set retinaModel.retina.r4.erf_wgt 1.0 

Input Stimulus 
Visual input stimulus plays an important role in the Retina model. To simulate this input 
the model uses the NSL input library which generates arbitrary sized 2D rectangles mov-
ing on the visual field as explained in Appendix III. To be able to incorporate this input 
the modeler needs to specify mapping parameters between the input and the receptor 
layer.

In the Retina model, the user has to choose among different types of stimuli. There 
are 15 options among Worms, Antiworms and Squares of 2, 4, 8, 16 and 32 visual 
degrees. These sizes are used in order to reproduce Ewert’s data on presentation of 
Squares, Worms and Antiworms from 2 to 32 visual degrees. A particular concern on 
stimulus presentation relates to single cone receptors in the retina. While they have a 
density of about 5 to 30 cells per visual degree depending on their location (Carey, 1975) 
simulation tests have shown that a density of only 2 cells per visual degree allows suffi-
cient accuracy for modeling responses to the stimuli considered here. When the stimulus 
edge partially covers a receptor, we set the receptor inputs to values proportional to the 
area covered by the actual (analytical/continuous) stimulus. The error from the edge 
effect is then about 4% relative to the analytical solution (Teeters, 1989).  

We allow an arbitrary size and shape bitmap to represent our stimulus. In the simula-
tions for the size and shape dependence of the ganglion cells, the velocity of the stimulus 
was set to 7.6°/sec so that the stimulus moves approximately 15 pixels in the grid each 
simulated second.  

The following code in the “retina.nsl” file contains specification parameters for the 
visual input. The first values to be set are the distance between adjacent array elements in 
the receptor in mapping to the visual input coordinates (dx and dy) together with the 
origin of the coordinate system (xz and yz). Instead of 0.5°/cell we specify here 2°/cell for 
visualization purposes. This will affect the sizes of stimuli chosen in that we will make 
them 4 times as big to compensate for the enlargement. 

nsl set retinaModel.retina.visin.input.dx 2

nsl set retinaModel.retina.visin.input.dy 2

nsl set retinaModel.retina.visin.input.xz 0

nsl set retinaModel.retina.visin.input.yz 20
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For each stimulus we want to simulate on the visual field we choose its size and ini-
tial position. In the retina model, the user will choose among three types of stimuli with 
varying sizes, consisting of 5 sizes starting with 2 degrees. In table 10.3 we show three 
different experiments for the Retina model. 

Stimulus Initial Center 
Location (xc,yc)

Size (dx,dy) Speed (vx,vy)

Antiworm (-1,0) (2,16) (7.6,0)

Worm (-8,0) (16,2) (7.6,0)

Square (-8,0) (16,16) (7.6,0)

Since we will be scaling values, as previously explained, by 4, we provide a cor-
responding scale variable as follows,  

set scale 4 

For a WORM stimulus we load the “worm.nsl” file: 

set dx [expr 16*$scale]  ;# Size, 2 4 8 16 32

set dy [expr 2*$scale]  ;# CTE

set vx [expr 7.6*$scale] ;# Speed, number of squares per

 second, 7.6 deg/sec. 

nsl create BlockStim stim -layer retinaModel.retina.visin.in \ 

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy – 

  vx $vx 

Note how we create a rectangle or “BlockStim” whose size is given by “dx” and 
“dy”, its speed by “vx”, all scaled by the scale factor, and whose initial center position is 
given by “-xc” and “-yc”. The resulting temporal output for the three ganglion cells for a 
16x2 worm is shown in figure 10.4. 

Figure 10.4�

These graphs display cell activity 
(top level) and firing rate (bottom 
level) versus time in seconds for a 
16x2 moving worm. Columns 
specify different types of ganglion 
cells, R2, R3 and R4. 

Table 10.3
Algorithms for the model of 
ganglion cells 
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For ANTIWORM as the stimulus we need to load the “antiworm.nsl” file: 

set dx [expr 2*$scale]

set dy [expr 16*$scale]  ;# Size, 2 4 8 16 32

set vx [expr 7.6*$scale] ;# Speed, number of squares per 

  second, 7.6 deg/sec. 

nsl create BlockStim stim -layer retinaModel.retina.visin.in \ 

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy - 

 vx $vx 

Again we create a rectangle or “BlockStim” whose size is given by “dx” and “dy”, 
its speed by “vx”, all scaled by the scale factor, and whose initial center position is given 
by “-xc” and “-yc”. The resulting temporal output for the three ganglion cells for a 2x16 
antiworm is shown in figure 10.5. 

Figure 10.5�

These graphs display cell activity 
(top level) and firing rate (bottom 
level) versus time in seconds for a 
2x16 moving antiworm. Columns 
specify different types of ganglion 
cells, R2, R3 and R4.

For a SQUARE as the stimulus we need to load the “square.nsl” file: 

set dx [expr 16*$scale]  ;# Size, 2 4 8 16 32

set dy [expr 16*$scale]  ;# Size, 2 4 8 16 32

set vx [expr 7.6*$scale] ;# Speed, number of squares per

 second, 7.6 deg/sec. 

nsl create BlockStim stim -layer retinaModel.retina.visin.in \ 

 -spec_type center -xc [expr -$dx/2] -yc 0 -dx $dx -dy $dy – 

  vx $vx 

The resulting temporal output for the three ganglion cells for a 16x16 square is 
shown in figure 10.6. 
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Figure 10.6�

These graphs display activity (top 
level) and firing rate (bottom level) 
versus time in seconds for a 16x16 
moving square. Columns specify 
different types of ganglion cells, R2, 
R3 and R4. 

To allow comparison between the model behavior and tabulated data, the temporal 
responses of the ganglion cells generated by the model are converted to an average 
response that is then scaled. The average response is calculated as the area under the 
above threshold curve divided by the time from first to last above threshold response to 
the leading edge of the stimulus (or, in other cases, from the beginning of the leading 
edge response to the end of the trailing edge response):

�
= �

0

0 0

)(T

Tt n TT

tR
(10.17)

where T0 is the time for the first such response and Tn is the time for the last. If the 
response decays in an exponential manner and is not actively abolished, the response 
duration will be infinitely long. For that reason the threshold used is not zero but a small 
positive number (0.001).  

The analogous experimental average is equal to the total number of spikes divided 
by the time from first to last spike during this period. Scaling is achieved by multiplying 
all calculated average responses by a “scaling constant” so that the scaled average 
response to a 2x2 square moving at 7.6°/second matches that found experimentally by 
Ewert (1976). 

10.5 Summary 
The essential features of the models presented in this paper enabling a close match to the 
stimulus shape and size dependency data were also used by several earlier models that 
attempted to explain those properties in anurans.  

For example, the DOG center-surround structure was used to account for response in 
the R2 and R3 cells by an der Heiden & Roth (1987, 1989), Ewert & von Seelen (1974, 
also reported in Ewert 1976), and by Grüsser & Grüsser-Cornehls (1973). Variations in 
the temporal filter characteristics of retinal elements have been used by Eckmiller (1975), 
Grüsser (1967) and Grüsser et al. (1968) to account for variations in the velocity expo-
nent. However, where the previous models were specialized to account for only 
particular phenomena, the models in this paper are not only able to account for the 
dependence on stimulus shape and size, but also able to account for the generation of 
characteristic ganglion cell response properties despite additional constraints applied to 
the ganglion cell models developed by Teeters and Arbib (1991). For the R2, R3 and R4 



2 0 4     C H A P T E R  1 0     

cell models given in Teeters and Arbib (1991), the response dependence on stimulus 
shape and size was tested in two parts. First, the original unmodified model was tested. 
Second, parameter adjustments and in some cases algorithm modifications, were made in 
an attempt to “tune” the model to attain a closer match to the experimental data on 
stimulus shape and size dependence. While the original untuned models did not quanti-
tatively match the data, they were qualitatively correct.   

Stimulus Size Dependence of R3 Cells 
The Teeters and Arbib (1991) model does not match the data very well because the 
response to worms decreases with increasing edge length and there is a separation of the 
square and antiworm responses for large stimuli. Both of these effects are due to the 
inclusion of the slight trailing edge response generated by the model to long square and 
worm stimuli when calculating the average response. 

Only minor changes are needed to tune the model. Excluding the trailing edge (and 
relying only on the leading edge) response for the calculation of the average responses 
(Ewert, personal communication) allows a good match to the data, although the response 
to the 32° square and antiworm is too large. Further, increasing the weight and the stan-
dard deviation of the IRF Gaussian mask and a little decrease in standard deviation of 
ERF mask allows a better match. This suggests that the IRF receptive field is essentially 
like a plateau, with a very small decay with distance, while the ERF receptive field is like 
a sharp peak. Comparison with the R2 temporal responses (Teeters et al., 1993) reveals 
that the main differences lie in (i) R2 responses show a sustained component for the long 
worm and a sustained rebound for the large square stimuli, while (ii) R3 responses show 
transient responses for both the leading and the trailing edges of the long worm and large 
square stimuli. The simulated temporal responses of R2 and R3 for the different stimuli 
approximate observed experimental data (Gaillard, personal communication) fairly well. 

Predictions Based on the Modified Model Behavior 
We now consider two important questions in detail: how do the changes made to the 
models here affect their ability to account for characteristics addressed by Teeters and 
Arbib (1991), and what predictions result from the changes?   

� R2 cell: Characteristic R2 responses as identified by Maturana, Lettvin, McCulloch 
& Pitts (1960), and Grüsser & Grüsser-Cornehls (1976) are a lack of response to a 
diffuse light change, a lack of response to a moving antiworm longer than 10°, a 
prolonged response to a moving stimulus that stops in the ERF, a sensitivity to 
movement, a cessation of sustained response following a transient off of the general 
illumination, and a stronger response to small objects than to large objects.  All of 
these characteristic responses but one are found in the toad R2 cells studied by Ewert 
& Hock—toad R2’s respond to antiworm stimuli up to 16° in length. The tuning per-
formed in this paper does not destroy the ability of the R2 model to account for these 
properties. Specifically, reduction in the IRF weighting to the R2 model will not 
allow response to full field flashes because the total IRF weighting is still larger than 
that of the ERF.  Sensitivity to movement is preserved because the modified R2 cell 
receives input from transient amacrine cells that respond only to change.  However, 
inclusion of PBH input to IRF leads to: 

� Prediction 1: For R2 cells tested by Ewert & Hock (1972), while the average 
response to squares and antiworms of the same height may be almost identical, the 
temporal responses (spike trains) will be different as shown in figure 10.4.
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Future Refinements of the Retina Model 
The shape/size tuned retinal model could be tested against other qualitative and quan-
titative data such as the average response as a function of velocity, adaptive state, etc. 
(Grüsser & Grüsser-Cornehls, 1976). In order to account for these data, we should proba-
bly incorporate more detailed physiological and morphological facts.  Some of the most 
obvious ingredients could be: 

1. A more detailed Horizontal cell model that is sensitive to the presentation of local 
stimuli. 

2. Feedback loops among some layers (e.g., feedback from the amacrines to the 
bipolars). 

3. Multi-compartmental dendritic processing and axonal transmission properties. 

Also we have to note that the modeling of transient amacrine cells was based on phe-
nomenological observations rather than on detailed physiological data on these cells. It 
might be possible to express the comparatively more responsive synaptic transfer process 
of R3s by, for instance, decreasing the amacrine time constant.  

Teeters (1989) comments that the high-pass filter transient amacrine is unsuitable for 
the R4 cell model.  This points out the need for an improved transient generating mecha-
nism in the R4 cell. In retrospect, this is not surprising, because other properties of R4 
cells, such as rhythmical bursting and delayed response to illumination decreases also 
cannot be accounted for easily by the high pass filter mechanism used in the model.  
Rhythmical bursting also occurs in some R3 cells (Maturana et al., 1960), suggesting that 
a high pass filter may also be inadequate to explain all of their response properties. Some 
type of negative feedback, with time delays or voltage dependent activation, is an 
obvious candidate mechanism that could generate oscillations in the neural potentials 
leading to bursting type response patterns. Further simulations will be needed to 
determine if such a mechanism can be made to simultaneously account for the 
characteristic R4 properties, the velocity exponent, rhythmic bursting, and the long 
response duration to a decrease in illumination. However, some of the characteristic R4 
properties such as prolonged response to a stationary dark object and to the general 
illumination decrease can be achieved by incorporating the off channel bipolar inputs.  In 
fact, Lee (1986) uses the sustained amacrine channel, PBH in our model, as the sole input 
to his R4 cells. It may also be possible to model the R4’s large time constant for a 
moving object with the proper formulation of spatially sensitive horizontal cells.  

Providing a Flexible Framework for Modeling Anuran Retina 
In summary, our current retina model cannot match all the experimental data, but does 
show how a relatively simple model can explain a wide range of ganglion cell properties. 
It also makes clear how, by changing parameter values of different inputs to the ganglion 
cells, the response properties of the ganglion cells will in turn change. For instance, when 
the weight of the input from the PBH to the IRF of R2 cells is increased, the previously 
described average response of the cell will diminish as well as the strength of the sus-
tained response. 

We should also note that retinal ganglion cells of the “same” type show a population 
of responses, as is elegantly shown in Gaillard’s (personal communication, 1991) experi-
ment on R3 type cells. Gaillard’s result shows surprisingly large variances in ERF size, 
temporal activation patterns, etc., among the R3 cells. Similarly, we can expect that bipo-
lars and amacrines will also form statistical distributions of responses. It may be that 
during embryogenesis a connection pattern from amacrines to a ganglion cell will be 
basically homogeneous, but that during postnatal development certain connections are 
strengthened while some are weakened thus giving the diversity among ganglion cells of 
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the same type. The fact that reciprocal connections exist between the bipolar cells and 
amacrines gives some hope that a similar connectivity may exist between amacrines and 
ganglion cells, which could provide information paths for selective strengthening and 
weakening required for diversity.  

In our current model the amacrine population is represented by a layer of cells that 
share exactly the same properties. This has proven enough to match the experimental 
data described in this paper. But it is certain that the real retina contains several kinds of 
amacrine cells showing different properties, and this could promote higher variability in 
the response profiles of the ganglion population whose response depend on amacrine 
input.  For instance, in our preliminary studies on the velocity dependence of ganglion 
cells we found it beneficial to decrease the high pass filter (amacrine) time constant from 
300ms to 50ms for the R3 and R4 ganglion cells to yield a better fit to the quantitative 
data. This suggests that the amacrine time constant may be better represented as forming 
a statistical distribution such as a normal distribution centered at a “typical” value and 
that the amacrines feeding into the R3 consists mostly of the values in the lower 
spectrum. The populational approach could also be applied to the ganglion cells. Thus, 
we are led to place more emphasis on the variation of response properties in a population 
of neurons of the “same” class, rather than questing for “the” neuron of a given type. 

One question that could arise when considering the populational approach is whether 
there exists an ill-defined boundary or just a “continuum” between different classes of 
ganglion cells. Should we construct a model so that it is possible for one category of cells 
to jump to another simply by, for instance, adjusting the “power” of a sustained input or 
the transient input? Gaillard (personal communication) has found “R3-like” units whose 
characteristic responses are similar to R3 units but whose velocity dependence is closer 
to that found in R2 ganglion cells. Their response profiles are stronger in intensity and 
temporally more extended than those of typical R3 units. R3s differ from R2s in that (i) 
their ERFs are larger, (ii) their ERFs receive no sustained input channel, and (iii) they 
have delayed IRF-inhibition. We believe the significance of these differences increases in 
the order listed above. We also think the more important a characteristic is, the less 
flexible are the parameters that make the characteristic. Notice that the “discrimination 
curves” of R2 and R3 cells to different stimuli are surprisingly similar. The main 
difference lies in a shift of the optimal length of the square (S) and the antiworm (A) 
from 4° (R2 units) to 8° (R3 units) and consequently in a shift of the crossing point 
between Worm (W), S, and A curves. This difference can be accounted for by a simple 
difference in the R3’s ERF size and therefore we may predict that some R3 cells may 
have smaller ERFs so that their responses to dynamic visual stimuli are similar to R2 
responses.

Notes

1. Preparation of this paper was supported in part by award number IBN-9411503 for 
Collaborative Research (M.A. Arbib and A. Weerasuriya, co-Principal Investigat-
ors) from the National Science Foundation. 

2. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by F. Corbacho as well as contributed Section 10.3 and part of 
section 10.4 to this chapter. 

3. The Retina model was implemented and tested under NSLC. 
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F. Morán, J. C. Chacón, M. A. Andrade and A. Weitzenfeld 

11.1 Introduction 
The visual nervous system in higher mammals shows a high degree of organization in 
which different selectivity properties are found. However, the necessary quantity of 
information for specifying that connectivity is much higher than the information stored in 
the genetic code (von der Malsburg 1987). Some organizing processes have been found 
which could explain this fact. 

In an early stage of the development of the mammal embryo, the nervous fibers com-
ing from the ganglion cells grow from retina to brain establishing connections into the 
visual cortex. Once a primary gross connection is reached, a self-organizing process, 
dependent on neural activity, takes place and the connections are pruned, which gives 
functional characteristics to the visual system (Linsker 1990; Singer 1987; Stryker 1986; 
von der Malsburg and Singer 1988). This mechanism permits several superposed map-
pings to appear in the visual cortex (Fregnac and Imbert 1984; Orban 1984; Tootell et al 
1981).

The receptive field is a characteristic organization of the visual system (Hubel and 
Wiesel 1963; Orban 1984). A receptive field of a neuron is the compact region of the 
visual space that affects the activity of that neuron. A well-known example is the on-off 
or Mexican-hat shaped receptive field, with circular symmetry. If the center area is 
stimulated, an activatory response is produced in the target neuron, whereas the stimula-
tion in the neighborhood produces inhibition. 

Based on neurophysiological knowledge, some models that explain visual cortex 
organization during development have been proposed (Erwin et al 1995). Most of them 
use neural network architectures and activity dependent rules (Linsker 1986; Miller et al 
1989; von der Malsburg 1990). 

The self-organizing network presented in this chapter shows how diffusion of 
synaptic activity, competitive synaptic growth and synaptic evolution can explain the 
development of variable sized on-off receptive fields in a developmental stage of a 
mammal embryo prior to visual experience. Synaptic activity is driven by either activity 
correlation or activity anti-correlation (i.e., Hebbian (Hebb 1949) or anti-Hebbian 
(Carlson 1990; Földiak 1990) learning rules, respectively). 

11.2 Model Description 
The model presented in this chapter is based on the classical work of von der Malsburg 
(Häussler and von der Malsburg 1983), that has been previously proposed elsewhere 
(Andrade and Moran 1996). The architecture of the network is schematically represented 
in figure 11.1.  
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Figure 11.1�

The model consists of two neuron layers: (1) an input layer a
(corresponding to LGN - Lateral Geniculate Nucleus) and (2) an output 
layer b (corresponding to Primary Visual Cortex). These two layers are 
fully interconnected by excitatory connections, Wij > 0 (i = 1,...,n ; j = 
1,...,m), while the output layer is fully interconnected by lateral 
inhibitory connections, Qjk > 0, (j,k = 1,...,m). 
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The evolution of the system connectivity starts with an initial random state that will 
converge into a final state by processing the following differential equations: 
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where � is a positive constant that accounts for the generation of new synaptic connec-
tions, and parameter � accounts for the rate of change of the established connections. 

The terms, )()( tFtW a
ijij and )()( tFtQ b

jkjk , represent a growth factor whose value 
depends on the temporal correlation of the signals connecting the neurons. The growth 
factor describes the increase (or decrease) of a particular synapse depending on the 
global state of all the network synapses. a

ijF  and b
jkF  are the growth factors of synaptic 

weights W and Q, respectively. Growth factor a
ijF uses a Hebbian rule, since it increases 

the value of an excitatory connection when correlation grows, as described in previous 
models for the development of retinotopic connectivity (Häussler and von der Malsburg 
1983) and ocular domains (Andrade and Moran 1996). However, growth factor b

jkF  one 
uses an anti-Hebbian rule (Carlson 1990; Földiak 1990), since the inhibitory connection 
is increased. 

The decaying terms Wij(t)��W2
ij(t) and Qjk(t)� Q2

jk(t) are cubic weight terms multi-
plied by a constant � controlling their respective contribution. These terms account for 
the individual growth restrictions for each synaptic connection. 

The growth factors are a function of the neurons activity correlation (Andrade and 
Moran 1997; Häussler and von der Malsburg 1983): 
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where )(tAa
i

 represents the activity of the input layer neurons a
iN  (for i = 1,...,n), and 

)(tAb
j  represents the activity of the output layer neurons b

jN  (for j = 1,...,m).  
Initially, the only source of activity is spontaneous activity from the photoreceptors 

(layer a in this model), since the visual system does not receive any coherent visual sig-
nal from the environment. Therefore, the spontaneous and non-correlated activity fi(t)
will be the only source of activity in layer a. Moreover, due to the lateral propagation of 
activity in that layer, the resulting neuron output will depend on its own activity as well 
as on its neighboring neurons, modulated by a cushioning diffusion term,  

( )jiGD aa
ij �=  (11.3)

where Ga is a function of the distance between the neurons assumed to be Gaussian: 
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where sa and sb are positive constants describing the Gaussian width, and ha and hb indi-
cate the surface under the curve, with x i j= � .

In other words, the output activity of the neuron is given by: 
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This activity is transmitted to the output layer by means of the excitatory connections 
Wij. In output layer b, the signal received by each neuron is modified by two different 
effects: lateral excitatory diffusion of the signal and lateral inhibitory transmission of the 
signal, Qjk. The two combined effects lead to the following expression describing activity 
in the output neurons: 
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Since the input layer activity is spontaneous, there is no correlation between the 
activity of two neurons, that is to say: 
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Or what amounts to: 

ijji ttftf �=>< )(),( (11.8)

where � is Kronecker’s delta. Taking this into account, we can rewrite expression (11.1) 
as follows (for a more detailed description see (Andrade and Moran 1997)): 
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where
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It should be noted that a side effect of these correlation functions is that all sponta-
neous activity has been explicitly eliminated from the two equations. Among other con-
siderations, this results in a much easier numeric integration. 

11.3 Model Architecture 
The model is implemented by a Recfield instantiated by the RecfieldModel at the top 
level. The Recfield module contains four modules, LayerA, LayerB, ConnectW and 
ConnectQ as shown in figure 11.2.  
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The Recfield module instantiates its four submodules as follows (note the different 
parameters passed to each), 

Figure 11.2 �
The �������� module is 
composed of �	
���
module sending data d to 
the excitatory connection 
module ������� and 
�	
��� module send data 
d to inhibitory connection 
module �������.
Module ConnectW send 
data e to ConnectQ.
ConnectQ module sends 
data p to ConnectW.
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nslModule Recfield (int x1, int y1, int x2, int y2)

{

 private LayerA a(x1, y1);    

 private LayerB b(x2, y2);    

 private ConnectW w(x1, y1, x2, y2);    

 private ConnectQ q(x1, y1, x2, y2);    

}

In our model all parameters passed to Recfield, x1, y1, x2 and y2, have a size of 5. 

LayerA Module 
LayerA module defines the diffused activation da with the help of a gaussian distribu-
tion function, 

nslModule LayerA (int x1, int y1) 

{

 public NslDoutFloat4 d(x1, y1, x1, y1);  // (da), to w 

 private NslFloat0 s(); // gaussian spread (sa) 

 private NslFloat0 h(); // gaussian height (ha) 

}

The initRun method computes d value. Note that a user defined external function is 
applied, 

public void initRun()

{

 nslGaussian(d,h,s); 

}

The gaussian function is defined as a library (it will also be used by LayerB).

private void nslGaussian(NslFloat4 g, NslFloat0 h, NslFloat0 s) 

{

 int      i, j, k, l; // loops  

 float    dist,dx,dy; 

   int x1 = g.getRows(); 

   int y1 = g.getCols(); 

 for (i = 0; i < x1; i++) 

   for (j = 0; j < y1; j++) 

     for (k = 0; k < x1; k++) 

       for (l = 0; l < y1; l++) { 

 dx = nslAbs(i - k); 

 if (dx > (x1 / 2)) 

 dx = x1 - dx;  

 dy = nslAbs(j - l); 

 if (dy > (y1 / 2)) 

 dy = y1 - dy; 

 dist = nslSqrt (dx*dx + dy*dy); 

 g[i][j][k][l] = (h/s)*nslExp(-nslPow((dist/s),2)/2) ;  

       } 

}
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ConnectW Module 
The excitatory connection module ConnectW is defined as follows 

nslModule ConnectW (int x1, int y1, int x2, int y2) { 

 public NslDinFloat4 d(x1, y1, x1, y1);  // from a 

 public NslDinFloat4 p(x2, y2, x2, y2);  // from q 

 public NslDoutFloat4 e(x1, x2, y1, y2); // to q 

 private NslFloat4 w(x1, x2, y1, y2);   

 private NslFloat0 maxinitval(); // max weight val 

 private NslFloat0 seed();  // random seed 

 private NslFloat0 alpha();// get weights out from zero 

 private NslFloat0 beta();// integration parameter for act 

 private NslFloat0 gamma();// cubic decay term for w 

}

Parameters x1, y1, x2 and y2 are assigned to local attributes so they can later be used by 
local methods cycling on every array element. Weights are initialized by a random function 

public void initWeights(float randa) 

{

 int   i, j, k, l;  // loops  

 for (i = 0; i < _x1; i++) 

   for (j = 0; j < _x2; j++) 

     for (k = 0; k < _y1; k++) 

       for (l = 0; l < _y2; l++) 

   w[j][i][l][k] = maxinitval*randa; 

}

Function nslNormRand() is shown as follows 

private int nslNormRand(NslFloat0 seed) 

{

 // calculation of the random maximum value 

 int j, max_rand = 0; 

 for (int i = 0; i < 1000; i++) { // max number of iterations ? 

   j = nslRand(); 

   if (j > max_rand) 

     max_rand = j; 

 } 

 // random seed  

 nslRand(seed); 

 return nslRand()/max_rand; // normalization to 1 

}

The initRun method simply initializes the weights by a normalized random function 

public void initRun()

{

 int randa = nslNormRand(seed); 

 initWeights(randa); 

}
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Function convGauss() is shown as follows 

private void convGauss() 

{

 int             i, j, k, l, m, n, o, p;  /* loops */ 

 float           sum, sum2; 

 /* convolutions gaussian 1 w pp (from L2) */ 

 for (i = 0; i < x1; i++) 

   for (j = 0; j < y1; j++) 

     for (k = 0; k < x2; k++) 

       for (l = 0; l < y2; l++) { 

   sum = 0; 

  for (m = 0; m < x1; m++)  

     for (n = 0; n < y1; n++) { 

  sum2 = 0; 

  for (o = 0; o < x2; o++)  

  for (p = 0; p < y2; p++)  

  sum2=sum2+w[o][m][p][n]*pp[o][p][k][l]; 

   sum = sum + d[i][j][m][n] * sum2; 

     } 

   e[k][i][l][j] = sum; 

       } 

}

Function modifyWeights() is shown as follows 

private void modifyWeights() 

{

 int             i, j, k, l, m, n, o, p;  // loops  

 float           sum, sum2; 

 // weight modification  

 for (i = 0; i < x1; i++) 

   for (j = 0; j < y1; j++) 

     for (k = 0; k < x2; k++) 

       for (l = 0; l < y2; l++) { 

   sum = 0; 

  for (m = 0; m < x1; m++) 

     for (n = 0; n < y1; n++) 

  sum = sum + d[m][n][i][j] * e[k][m][l][n]; 

   w[k][i][l][j] = alpha + w[k][i][l][j] * 

  (1 + beta*(sum - gamma * w[k][i][l][j]  

  * w[k][i][l][j])); 

  if (w[k][i][l][j] < 0) 

     nslPrint(“no”); 

       } 

}



R E C E P T I V E  F I E L D S    2 1 3

The simRun method processes the differential equation defining the weight activity 

public void simRun() 

{

 // convGauss()   

 e = d * (w * p); 

 // modifyWeights()  

 nslDiff(w,1.0,alpha + beta*w(d*e - gamma*(w^w)); // eq  

  (11.9) 

}

LayerB Module 
LayerB module defines only diffused activation db with the help of a gaussian distribu-
tion function, 

nslModule LayerB (int x2, int y2)

{

 public NslDoutFloat4 d(x2, y2, x2, y2); // (db) to Q 

 private NslFloat0 s();  // gaussian spread (sb) 

 private NslFloat0 h();  // gaussian height (hb) 

}

The initRun method computes d value. Note that a user defined external function is 
applied, 

public void initRun()

{

 nslGaussian(d,delta,sp); 

}

ConnectQ Module 
The inhibitory connection module ConnectQ is defined as follows 

nslModule LayerB (int x1, int y1, int x2, int y2)

{

 public NslDinFloat4 e(x1, x2, y1, y2);  // from w 

 public NslDinFloat4 d(x2, y2, x2, y2);  // from b (db) 

 public NslDoutFloat4 p(x2, y2, x2, y2); // to w 

 private NslFloat4 q(x1, y1, x2, y2);//x2*y2,x2*y2 inhib(q) 

 private NslFloat0 alpha(); // get weights out from zero 

 private NslFloat0 beta();// integration parameter for act 

 private NslFloat0 gamma();  // cubic decay term for w 

}

The initRun method simply initializes the weights to zero 

public void initRun()

{

 q = 0; 

}
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Function convGauss() is shown as follows 

private void convGauss() 

{

 int             i, j, k, l, m, n, o, p;  // loops 

 float           sum, sum2; 

 // convolutions q gaussian 2  

 for (i = 0; i < x2; i++) 

   for (j = 0; j < y2; j++) 

     for (k = 0; k < x2; k++)  

       for (l = 0; l < y2; l++) { 

  sum = 0; 

  for (m = 0; m < x2; m++) 

     for (n = 0; n < y2; n++) 

 sum = sum + d[i][j][m][n] * q[m][n][k][l]; 

  p[i][j][k][l] = d[i][j][k][l] - sum; 

       } 

}

Function modifyWeights() is shown as follows 

private void modifyWeights() 

{

 int             i, j, k, l, m, n, o, p;  // loops  

 float           sum, sum2; 

 // weight modification  

 for (i = 0; i < x2; i++) 

   for (j = 0; j < y2; j++) 

     for (k = 0; k < x2; k++)  

       for (l = 0; l < y2; l++) { 

  sum = 0; 

  for (m = 0; m < x1; m++)  

     for (n = 0; n < y1; n++)  

  sum = sum + e[i][m][j][n] * e[k][m][l][n]; 

  w[i][j][k][l] = alpha + w[i][j][k][l] * (1 + beta * 

    (sum - gamma*q[i][j][k][l] * q[i][j][k][l])); 

  if (q[i][j][k][l] < 0)   

     nslPrint(“no”);

       } 

}

The simRun method processes the differential equation defining the weight activity 

public void simRun() 

{

 // convGauss()   

 p = d - (d * q);   

 // modifyWeights()  

 nslDiff(q,1.0,alpha + beta*q(e*e - ga*(q^q)); // eq (11.9)  

}
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11.4 Simulation and Results1

The simulation control file contains parameter value assignment. Note how we can assign 
common values to different module parameters (alpha, beta and gamma)

Figure 11.3��

Excitatory connection weight w in ��������
module.
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nsl set system.simDelta 0.1 

nsl set system.simEndTime 50 

set alpha 0.00005 

set beta 0.001 

set gamma 1e4 

nsl set recfield.w.alpha $alpha 

nsl set recfield.w.beta $beta 

nsl set recfield.w.gamma $gamma 

nsl set recfield.q.alpha $alpha 

nsl set recfield.q.beta $beta 

nsl set recfield.q.gamma $gamma 

nsl set recfield.a.seed 77 

nsl set recfield.a.maxinitval 0.001 

nsl set recfield.a.sp 1 

nsl set recfield.a.delta 4 

nsl set recfield.b.sp 1 

nsl set recfield.b.delta 4 

To simulate the model load “recfield.nsl” and then run it. Three display frames are 
created containing a display canvas each, for w, q and e respectively. The connection 
matrices w and q and the resulting matrix e are shown in the figures 11.3 to 11.5. Matrix 
e represents the excitatory/inhibition effect produced on each output layer neuron when 
the input layer neuron is activated and the signal is transmitted through the network. 
Therefore, it represents the set of receptive fields corresponding to the cortex neurons. 

Figure 11.4��

Inhibitory connection weight q
in �������� module. 
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In figure 11.3, the variations in geometry of the receptive fields can be noted, while 
in figure 11.4 the inhibitory weights show a more homogeneous shape, that is, each neu-
ron is connected to its neighbors in a circular manner. These differences are more rele-
vant if larger number of neurons are used (i.e., a layer of 8x8 neurons presents neurons 
with highly different oriented receptive fields) 

The result of the joint action of the two weight matrices and the intra-layer lateral 
diffusion of signal become apparent in the receptive field values showed in figure 11.5. 
Thus, different receptive fields consist of a compact activation area placed in different 
positions, and the form of this area is also variable, showing oriented symmetries and 
different orientations. The size of the receptive fields is variable, too. When observed in 
detail, there is a spatial continuity between the receptive fields. So, closer neurons tend to 
coincide in the situation of its positive-area and to have similar geometry, either in ori-
entations or sizes. 

11.5 Summary 
Through the simulation of this model, the essential characteristics of self-organization 
have been demonstrated. The kind of resulting connectivity let us to explain how the 
nervous system in general, and the visual system in particular, can obtain their specific 
connectivity through self-organizing process based in the system activity and a reduced 
number of local rules, easily justifiable from a physiological point of view. 

Figure 11.5�Receptive
field e in ��������
module.
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2. The Receptive Fields model was implemented and tested under NSLC. 
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12 The Associative Search Network:  
  Landmark Learning and Hill Climbing  

M. Bota and A. Guazzelli 

12.1 Introduction 
In 1981, Barto and Sutton showed how a simple network could be used to model land-
mark learning. Their work was based on a previous paper by Barto et al. (1981) which 
defined the associative search problem and presented the associative search network the-
ory. The associative network described by Barto and Sutton (1981) controls locomotion 
in a spatial environment composed of distinct olfactory gradients, which are produced by 
landmarks. In this chapter, we show how this simple network and associated task can be 
easily implemented in NSL. Further discussion of this example is provided in Barto and 
Sutton (1981). 

Figure 12.1 shows a NSL window, which was used to depict the network and its 
environment. For didactic reasons, from now on, we assume that a simple robot, which 
contains an associative search network is actually the agent in the environment. The 
robot’s only task it to move from its current position to a tree located at the center. Four 
additional landmarks, located at the cardinal points exist in this rather simple and 
imaginary world.  

Figure 12.1 �
A window representing the 
robot’s environment (40 x 40 
small rectangles). Three con-
secutive filled rectangles 
located at the cardinal points 
represent the four landmarks: 
North, South, West, and East. 
The one filled rectangle on the 
Southeast quadrant represents 
the initial position of the robot. 
The four filled rectangles in the 
middle represent the tree. 

Not only the tree, but also the landmarks emit each a distinctive odor, whose 
strengths decay with distance. However, only the odor emitted by the tree is attractive to 
the robot. The odors emitted by the landmarks can only be used as a cue to location in 
space.

12.2 Model Description 
It can be shown that by using a hill-climbing algorithm, the robot can find its way 
towards the tree, even without an associative network or landmarks. If we imagine that 
the tree is located on the top of a hill, we can use a measure, a payoff function z, that tells 
the robot how high up in the hill it is each time it moves one step. Since the goal is to get 
to the tree, the higher the robot climbs, the closer it will get to its goal. In this case, the 
payoff function reaches its maximum at the goal, i.e. the top of the hill, and decreases 
smoothly with increasing distance from the tree. Note that the robot itself does not know 
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how far it is from the goal. Its only concern is to maximize the value of the payoff 
function. In formal terms, at time t the robot takes one step in direction d(t), moving from 
a position with payoff z(t) to a new position with payoff z(t+1). If z(t+1) > z(t), then the 
robot will continue to move in the same direction, d(t+1) = d(t), with a high probability. 
However, if z(t+1) < z(t), then d(t+1) is chosen randomly. This is like a goal-seeking 
strategy used by simple organisms, like the bacterial chemotaxis strategy used by several 
types of bacteria. 

While this hill-climbing strategy alone can give the robot the capacity of eventually 
getting to the top of the hill, its trajectory, as we can imagine, will look rather clumsy and 
inefficient. Nevertheless, we can improve the robot’s goal-seeking behavior by using 
Barto and Sutton’s associative search network (figure 12.2). The network is composed of 
four input and four output units. Each input unit i, where i = North, South, East, and
West, receives an input xi(t) from their respective landmark. Moreover, each input unit is 
fully connected with all four output units j, where j = North, South, East, and West. This 
allows each input unit to adapt four connection weights wji(t) in the connection matrix.
Each weight encodes a degree of confidence that, when the robot is near landmark i, it 
should proceed in direction j to get closer to the tree. An extra input unit (depicted in fig-
ure 12.2 as a triangle), represents the specialized payoff pathway z, which has no associ-
ated weights. The payoff function can also be seen as a reinforcement signal. 
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Figure 12.2��

The associative search network. The tree and the four 
additional landmarks are labeled vertically on the left. 
Each landmark releases an odor. The five distinct odors 
give rise to five different input pathways (input units are 
depicted as filled circles and as a triangle). At the 
bottom of the network, four distinct actions (representing
the direction to be taken at the next step) give rise to 
four output pathways (output units are depicted as filled 
hexagons). Adaptable weights are depicted as 
rectangles: bigger weights are represented as bigger 
rectangles (negative weights are depicted as hollow 
rectangles; positive weights as filled rectangles). See 
text for more details. 

When the robot is at a particular location in its environment, it is able to sense its 
distance from each of the landmarks. The degree of confidence sj(t) for a move in direc-
tion j is determined by the sum of the products of the current weights and the current sig-
nals received from the four landmarks: 

sj(t) = w0j(t) + �i wji(t) xi(t) (12.1)

where w0j(t) can be seen as a bias term to be further described below. If we assume that 
the connection matrix contains appropriate weights, we can also assume that the chosen 
direction j is also appropriate. If, for example, our robot is close to the Northern land-
mark, the output unit South will be activated and the robot’s next step will be towards 
South. Moreover, if the robot is in the Southwest quadrant, output units North and East
will be activated and the robot’s next step will be towards Northeast.



T H E  A S S O C I A T I V E  S E A R C H  N E T W O R K :  L A N D M A R K  L E A R N I N G  A N D  H I L L  C L I M B I N G 2 2 1

However, since it is still too early for us to assume that the network contains suitable 
weights, a noise term is added to sj(t), setting the output of unit j at time t to be 

yj(t) = 1 if sj(t) + NOISEj(t) > 0, else 0 (12.2)

where each NOISEj(t) is a normally distributed random variable with zero mean. If sj(t) is 
bigger than 0 when noise is added, the robot’s next step will be towards direction j. If, on 
the other hand, sj(t) is smaller than 0, a random direction is chosen.  

At this point, however, the biggest challenge for the robot is to learn appropriate 
weights. For this reason, a learning rule has to be implemented. This follows the follow-
ing equation: 

wji(t+1) = wji(t) + c[z(t) – z(t-1)] yj(t-1) xi(t-1) (12.3)

where c is a positive constant determining the learning rate. In the simulations depicted 
below, c = 0.25. According to this rule, a connection weight wji will only change if a 
movement towards direction j is performed (yj(t-1) > 0) and if the robot is near an i-land-
mark (xi(t-1) > 0). If we return to the view of z(t) as height on a hill, we can see that wji

will increase if z increases, which implies that direction j moves the robot uphill. In this 
situation, a j-movement will be more likely to happen again. If, on the other hand, wji

decreases, z decreases, which implies the robot is moving downhill. In this case, a j-
movement will be less likely to occur. 

12.3 Model Implementation 
In NSL, this learning rule is implemented by the following code: 

NslDouble2 W(4,4);   // weight matrix 

NslDouble1 Y(4);     // output vector 

NslDouble1 X(4);     // input vector 

double     tmp; 

double     z; 

double     z1; 

…

tmp = 0.25 * (z1 - z); 

W=W+tmp*Y*X;

for (i = 0; i < 4; i++){ 

  for (j = 0; j < 4; j++) { 

      if ((W[i][j] >= (0.5)) 

         W[i][j] = 0.5; 

      if (W[i][j]<= (-0.5)) 

         W[i][j] = -0.5; 

   } 

}

where z1 = z(t) and z = z(t-1). As it can be seen above, in the computations we per-
formed, the weights are bounded inside the interval [-0.5, 0.5].  

The weights w0j (formerly described as biases) are updated as follows: 

w0j(t+1) = f[w0j(t) + c0[z(t) – z(t-1)] yj(t-1)], (12.4)

where f(x) = BOUND if x > BOUND, 0 if x < 0, x otherwise (this will bound each w0j to 
the interval [0, BOUND]), c0 = 0.5, and BOUND = 0.005. Moreover, this learning rule is 
necessary only to permit the robot to climb the hill in the absence of landmark input 
information xi.
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12.4 Simulation and Results 
By providing our robot with an associative search network and the appropriate values for 
its connection weights, we are giving the robot the chance of conducting hill climbing in 
weight space, instead of physical space. The simulations below try to show this newly 
acquired capacity. Figure 12.3a shows a NSL window containing the histogram of places 
occupied by the robot in its first attempt to get to the goal (training phase). Figure 12.3b 
shows the histogram of the robot’s second attempt to get to the tree (testing phase), this 
time starting from a different position. If we compare (a) and (b), we can clearly see that 
there is a major improvement in the trajectory taken by the robot, since in 3b, it is using 
its long-term store acquired during the training phase. Both histograms are depicted over 
the environment as shown in figure 12.1. 

Figure 12.3��

Two NSL windows containing the histogram of places occupied by the robot while in search of the tree during 
(a) the training phase and (b) the testing phase. In the test phase, the robot starts its trajectory from a different 
position than the one used for the training phase. Empty rectangles with a bold contour mean that the robot did 
not entered at that position. Empty rectangles with a light contour mean that the robot entered at that position at 
most one time. Each window displays a total of 400 steps for each phase. 

This landmark-guided hill-climbing example illustrates how the results of explicit 
searches can be transferred to an associative long-term store so that in future encounters 
with similar (but not identical) situations the system need only access the store to find out 
what to do. As pointed out by Arbib (1989), the associative search network shows how 
all of this can be accomplished without centralized control. It is thus an improvement 
over a non-learning search method, and it also has the important property that the optimal 
responses need not be known a priori by the environment, the system, or the system’s
designer. 

The NSL environment built to illustrate the robot’s search for the tree is also com-
posed by additional windows than the ones showed above. Figure 12.4 depicts a typical 
run. The main window is composed of six small windows. From left to right and top to 
bottom, the first window (x) shows the distance on the horizontal plane from the robot to 
the tree during the training phase. The second window (y) shows the distance on the 
vertical plane during the training phase. One can see that during the search, both 
distances are converging to 0. This is reflected in the third window (D), which shows the 
computed Euclidean distance between the robot and the tree during the training phase. 
The fourth window (Dtest) shows the computed Euclidean distance during the testing 
phase. The fifth window (Weight) shows the connection weights in the same way as 
shown in figure 12.2. The magnitude of the rectangles reflect the weights obtained at the 
end of the training phase. The next two windows (histtrain and histtest) show the 
histograms for the training and testing phases as in figure 12.3. In the present case, 
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however, the robot started its trajectory from the same position in both phases. The last 
two windows (pathtest and pathtrain) show the trajectories of the robot on its path from 
the initial position to the goal. Each window displays a total of 400 steps. 

Figure 12.4 �
The NSL interface window used to 
simulate Barto & Sutton’s (1981) 
landmark learning task. See text 
for details. 

12.5 Summary 
With this model we have shown how the hill-climbing strategy can give a robot the capa-
bility of getting to the top of a hill.  However, we have also shown how to make the algo-
rithm more efficient by improving the robot’s goal-seeking behavior by using Barto and 
Sutton’s associative search network (figure 12.2). Also, by using the NSL 3.0 simulation 
system we were able to easily encapsulated some of our more complex mathematical 
computation, and we were able to easily debug the model.  We also used the NSL “Train
and Run” feature to separate out the learning phase from the execution phase of the 
model. Finally, we were able to use NSL dynamic plot capability to plot the variables we 
were interested in and print the results for this book. 

Notes

1.  The Associative Search Network model was implemented and tested under NSLJ. 
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13 A Model of Primate Visual-Motor Conditional 
  Learning1

A. H. Fagg and A. Weitzenfeld 2

13.1 Introduction 
Mitz, Godshalk and Wise (Mitz, Godshalk, and Wise, 1991) examine learning-dependent 
activity in the premotor cortex of two rhesus monkeys required to move a lever in a par-
ticular direction in response to a specific visual stimulus. Figure 13.1 shows the protocol 
and expected response for one such trial. The monkey is initially given a ready signal, 
which is followed by a visual stimulus (instruction stimulus, IS). The monkey is then 
expected to wait for a flash in the visual stimulus (trigger stimulus, TS), and then produce 
the appropriate motor response. The four possible motor responses are: move the handle 
left, right, down, or no movement. When a correct response is produced, the subject is 
rewarded with a squirt of juice and a stimulus is picked randomly for the next trial. On 
the other hand, when an incorrect response is produced, no reward is given and the same 
stimulus is kept for the next trial. 

Figure 13.1��

Top row: visual stimulus as 
seen on the video screen. 
Second row: temporal trace of 
the visual stimulus. Third and 
fourth rows: Primary events 
and periods of the experimental 
trial. Fifth row: expected motor 
response. (From Mitz et al., 
Figure 1; reprinted by permis-
sion of the Journal of 
Neuroscience.) 

During the initial training phase, the two subjects were trained to perform the task 
with a fixed set of visual stimuli. This phase taught the protocol to the subjects, including 
the four appropriate motor responses. Through the second phase of learning, which we 
model here, the subjects were presented with novel stimuli and were expected to produce 
one of the four previously-learned motor responses. It was during this phase that single-
unit recordings were taken from neurons in the primary- and pre-motor cortices. 

Figure 13.2 demonstrates the results of a typical set of second-phase experiments. 
The left-hand column shows the correct response, and each row of the right-hand column 
shows the monkey’s response over time. Two features of this figure are particularly inter-
esting. First, there are a number of cases in which the monkey exhibits an incorrect 
response, and even though it does not receive the positive feedback, it will continue to 
output the same response for several additional trials. In most of these cases, the no-go 
response is given, which appears to be the “default” response. The second interesting 



2 2 6    C H A P T E R  1 3  

feature, demonstrated in almost half of these response traces, is that once the monkey 
exhibits the correct response, it may give one or more improper responses before pro-
ducing the correct response consistently.  

Figure 13.2��

Samples of responses to novel 
stimuli given example specific 
expected motor responses. 
Each row represents only those 
trials from an experiment that 
corresponds to a specific 
desired motor response. 
Correct answers are indicated 
with a ‘+’. (From Mitz et al., 
table 1; reprinted by permis-
sion of the Journal of 
Neuroscience.) 

This behavior may be captured at a high level by considering a separate decision box
for each stimulus (A more formal treatment of these computing elements (stochasitic 
learning automata) may be found in Bush (1958) and Williams (1988)). A box maintains 
a measure of confidence that each motor output is correct, given its particular input 
stimulus. When the system is presented with a stimulus, the appropriate box is chosen, 
and a motor output is selected based upon the confidence vector. When the monkey 
exhibits an incorrect response, positive reinforcement is not given. Therefore, the likeli-
hood of the last response should be reduced slightly, while the probability of picking one 
of the other motor responses increases. When a correct response is given, the confidence 
value for the exhibited response is rewarded by a slight increase. Our challenge is to 
construct a neural implementation that is both distributed in nature and is capable of 
identifying novel stimuli as they are presented. The following data gives some hint as to 
how the implementation might look. 

Mitz et al. recorded primarily from cells in the premotor cortex. A variety of cell 
types were identified. Anticipatory cells tend to fire between the ready signal and the IS. 
Signal cells respond to the presentation of a relevant stimulus, whereas set-related cells 
fire after the IS, in preparation for a particular motor response. Movement-related cells 
respond to the presentation of the TS and in some cases stay on for the duration of the 
movement. Most cells exhibit multiple response properties (e.g., combined set- and 
movement-related responses). Signal- , set-, and movement-related cells typically fired in 
correlation with a particular motor response. Thus, for any particular visual stimulus, 
only a small subset of cells fired significantly during the execution of the corresponding 
motor program. As learning progressed, some cells were seen to increase in their 
response activity towards a stimulus, while others decreased in their response. 

Figure 13.3 shows normalized activity and performance curves for one experiment 
plotted against the trial number. The normalized activity is computed for a particular 
stimulus by looking at the activity of the ensemble of units that show an increase in 
activity over the course of learning. The performance curve is computed as a sliding win-
dow over a set range of trials. It is important to note that the performance curve precedes 
the activity curve in its sudden increase.  
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Figure 13.3 �
Normalized activity and per-
formance curve plotted as a 
function of trial for the pres-
entation of a novel stimulus. 
The rise in overall perform-
ance precedes that of cellular 
activity by about 3 trials. 
(From Mitz, figure 3; 
reprinted by permission of the 
Journal of Neuroscience.) 

Mitz et al. (1991) identified a number of key features of learning-dependent activity 
in these experiments: 

a. The increase in cell activity (for those cells that increased their activity over the 
learning period) was closely correlated with, but was preceded by, the improvement 
in performance. Similar relations were seen in signal-, set-, and movement-related 
units. 

b. Activity of a particular unit for correct responses was, in most cases, higher than that 
during incorrect responses in the same movement direction.  

c. Activity for correct responses during times of good performance exceeded that at 
times of poor performance. 

d. When multiple sets of novel stimuli were presented to the monkey, similar learning-
dependent responses of the signal-, set-, and movement-related cells were observed 
for stimuli that yielded the same motor response. 

e. The activity pattern resulting from a familiar stimulus closely correlated with the 
activity due to novel stimuli (after learning), although this correlation was not a per-
fect one. This and previous point (d) demonstrate that a similar set of premotor neu-
rons are involved in responding to all stimuli mapping to the same motor output. 
From this, we can conclude that the pattern discrimination is probably not happening 
within the premotor cortex. If this were the case, one would expect separate groups 
of cells to respond to different stimuli, even if these stimuli mapped to the same 
motor output. 

This set of experimental results presents a set of modeling challenges. We here list 
both those that we meet in the present model, and those that pose challenges for future 
research. 

1. Our neural model is capable of learning the stimulus/motor response mapping, 
producing qualitatively similar response traces to those of figure 13.2: 

a. The appropriate number of trials that are required to learn the mapping. 

b. Incorrect responses are sometimes given on several repeated trials. 

c. Correct responses are sometimes followed by a block of incorrect responses. 

The model can generate the variety of response traces, with the network starting conditions 
determining the actual behavior. 
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2. The model produces realistic normalized activity/performance curves (figure 13.3). 
The performance curve leads the activity curve by a number of learning trials. 

3. A complete model will also reproduce the temporal activity of various neurons in the 
premotor cortex, including: anticipatory units, signal-related units, set-related units, 
and movement-related units. 

13.2 Model Description 
Much of neural network research has concentrated upon supervised learning techniques, 
such as the generalized delta rule or backpropagation (Rumelhart, Hinton and Williams, 
1986). In our modeling efforts, we have chosen to explore other algorithms within an 
architecture that can be related (at least at a high level) to the biological architecture, 
while perhaps also offering greater computational capability. 

Backpropagation with sigmoidal units suffers from the problem of global representa-
tion—in general, every unit in the network, and thus every weight, participates in a single 
input-output mapping. As a result, the gradient in weight space due to a single pattern 
will contain a component for almost every weight, and therefore learning can become 
rather slow. A related problem is that, in order to maintain an older memory for at least 
some amount of time, the learning of a new memory cannot alter the older memory to all 
but a very small degree. This is difficult to accomplish if all units are participating in 
every mapping and all weights are altered as a result of learning a single pattern. 

With these problems in mind, we have sought distributed representations in which a 
single pattern (or task) is coded by a small subset of the units in the network. Although 
different subsets of units are allowed to overlap to a certain degree, interference between 
two patterns is minimized by the non-overlapping components. Inspired by the cell 
activities observed by Mitz et al., we see a unit that has not learned to participate in a 
motor program as being able to respond to a wide range of different inputs. As learning 
progresses for this unit, its response increases significantly for some stimuli, while it 
decreases for the remainder. 

Network Dynamics 
The primary computational unit in the proposed model is the motor selection column,
each consisting of two neurons: the feature detector unit and the voting unit (figure 13.4). 
The overall network is composed of a large number of these columns, each performing a 
small portion of the stimulus-to-motor program mapping.  

Threshold
Modulator

Feature
Detector

Voting
Unit

Noise

Threshold

Stimulus
Pattern

Motor OutputsMotor Program

Figure 13.4 �
The motor selection column 
model. The feature detector 
detects specific events from the 
sensory input. The voting unit 
produces a vote for an appropriate 
set of motor programs. This unit, 
along with the noise and the 
threshold modulator, implements 
a search mechanism. 
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The feature detector recognizes small patterns (microfeatures) in the input stimulus. 
Due to the distributed construction of the circuit, a particular signal unit is not restricted 
to recognize patterns from a single stimulus, but may be excited by multiple patterns, 
even if these patterns code for different responses. A particular signal unit is physically 
connected to only a small subset of the input units. This enforces the constraint that only 
a small subset of the columns will participate in the recognition of a particular pattern. As 
will be discussed later, this reduces the interference between patterns during learning.  

The state of the feature detector units are described by the equations: 

InputsWThresholdFeature
dt

Featured
featureinfmem

mem
f *,+��=� (13.1)

( )memFeaturerampFeature =

where:  

� �f is the time constant (scalar) of membrane potential change. 

� Thresholdf is the internal threshold of the feature detector units (a scalar). 

� Featuremem is a vector of membrane potentials for the set of feature detector units. 
The initial condition (at the beginning of a trial) is Featuremem = - Thresholdf for all 
elements of the vector. 

� Win,feature is the weight matrix between the input stimulus and the feature detector 
units. These weights are updated by learning. 

� Inputs is the vector of stimulus inputs. 

� Feature is the vector of firing rates of the feature detector units. 

The voting unit receives input from its corresponding feature detector, as well as 
from a noise process and the threshold modulator. Based upon the resulting activity, the 
voting unit instantiates its votes for one or more motor programs. The strength of this 
vote depends upon the firing rate of this neuron and the strength of the connection 
between the voting unit and the motor program selector units.  

The behavior of the voting units is governed by the equations: 

( ) NoiseFeaturetThresholdVoting
dt

Votingd
vmem

mem ++��=� (13.2)�
( )memVotingsaturationVoting = �

where : 

� �v is the time constant of the voting units. 

� Votingmem is the membrane potential of the voting units (vector). The initial condi-
tions are Votingmem = -Thresholdv(t) for all units.

� Thresholdv(t) is the time-dependent threshold determined by the threshold modulator 
(a scalar). 

� Feature is the vector of firing rates. Each voting unit receives input only from its 
corresponding feature unit. 

� Noise is a low-amplitude noise process that changes slowly relative to �v (vector). 

� Voting is the firing rate vector. 

As shown in figure 13.5, the votes from each column are collected by the motor pro-
gram selection units, labeled “Left”, “Right”, “Down”, and “No-Go”. The final activity of 
these units determines whether or not a particular motor program is activated, and thus 
executed.  
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Sensory Input

Threshold
Modulator

No-
go Left Right Down

s

Motor Output

WTA

Motor Program
Selection Units

Figure 13.5��

The motor program selection 
units label corresponds to the 
four action circles (no-go, left, 
right, down). A set of motor 
selection columns votes for the 
motor responses. The votes are 
collected by units representing 
the activity of the schemas for 
each of the legal motor 
responses. The winner-take-all 
circuit ensures that only one 
motor program is selected. 

Depending upon the state of the voting units, the motor program selection units/ 
winner- take-all circuit attempts to choose a single motor program to activate. This selec-
tion process is governed by the following equations: 

NoiseMotorMotorSVotingWThresholdMotor
dt

Motord
motorvotemmem

mem
m _*, ++�+��=�

(13.3)

where : 

� �m is the motor selection unit time constant. 

� Motormem is the membrane potential of the motor selection units (a vector). The ini-
tial conditions are Motormem = -Thresholdm for all elements in the vector. 

� Thresholdm is the scalar threshold of the motor selection units.

� Wvote,motor is the weight matrix representing the projection from the voting units to the 
motor selection units. 

� S is the firing rate of the inhibitory neuron. The initial condition of this neuron is  
S = 0. 

� Motor is the firing rate vector. Initially, Motor = 0 for all elements. 

� Motor_noise is a low-amplitude noise process, that changes slowly relative to �m

(a vector). 

� The winner-take-all circuit (Didday 1976) ensures that at most one motor program 
will be activated at any one time. This is accomplished through the inhibitory neuron 
(S).

[ ]�
=

+��=
N

i
Smem

mem
S iMotorThresholdS

dt

Sd

1

� (13.4)

( )memSrampS =
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� Smem is the membrane potential of the inhibitory neuron (a scalar, since there is only 
one). The initial condition for this neuron is Smem = -Thresholds. Thresholds is the 
threshold of the inhibitory neuron. 

When more than one motor program selection unit becomes active, this unit sends an 
inhibitory signal to the array of motor program selection units. The result is that all of the 
units will begin turning off, until only one is left (the unit receiving the largest total of 
votes from the motor columns; Amari and Arbib 1977). At this point, the one active unit 
will cue the execution of its motor program. 

The reception of the trigger stimulus (TS) causes the execution of the selected motor 
program. Although only a single motor program selection unit will typically be active 
when the TS is received, two other cases are possible: none active, and more than one 
active. In both cases, the No-Go response is executed, irrespective of the state of the No-
Go motor program selection unit. Thus, the No-Go response may be issued for one of two 
reasons: explicit selection of the response, or when the system is unsure as to an appro-
priate response by the time the TS is received.  

The global threshold modulator and the local noise processes play an important role 
in the search for the appropriate motor program to activate. When a new visual stimulus 
is presented to the system, the feature detector units will often not respond significantly 
enough to bring the voting units above threshold. As a result, no voting information is 
passed on to the motor program selection units. The threshold modulator responds to this 
situation by slowly lowering the threshold of all of the voting units. Given time (before 
the TS), at least a few voting units are activated to contribute some votes to the motor 
program units. In this case, a response is forced, even though the system is very unsure as 
to what that response should be. 

Noise processes have been used as an active element of several neural models. Noise 
is used in Boltzmann machines as a device for escaping local minima and as a way of 
breaking symmetry between two possible solution paths (Hinton & Sejnowski, 1986). 
Although the problem of local minima is not a concern in this work, the problem of 
choosing between two equally desirable solutions is a considerable one. By injecting a 
small amount of noise into the network, we randomly bias solutions so that a choice is 
forced within the winner-take-all (WTA) circuit. There are some cases in which two 
motor program selection units receive almost the same amount of activity. Due to the 
implementation of the winner-take-all circuit, this situation may send the system into 
oscillations, where it is not able to make a decision. The added noise coming into the 
voting units helps to bias one of the motor programs, to the point where a decision can be 
made quickly. Moreover, rather than always selecting the motor program that has the 
highest incoming feature support, the system is enabled by the noise to choose other pos-
sibilities. This keeps the system from prematurely committing to an incorrect solution, 
maintaining diversity during the search process (Barto, Sutton, & Anderson, 1983). Thus, 
the amount of time dedicated to the search process can be significantly decreased. 

Learning Dynamics 
Learning in this model is reinforcement-based, and is implemented by modifying two sets 
of synapses: the sensory input to feature detector mapping and the voting unit to motor 
program selection unit mapping, i.e., the weight matrices Win,feature and Wvote,motor corres-
ponding to the fan-in and fan-out of figure 13.4, respectively. Only those columns that 
participate in the current computation adjust their weights. In the experimental setup, 
positive reinforcement is given when the monkey exhibits a correct response, but not 
otherwise. Similarly, in the model, a scalar quantity called reinforcement is set by the 
teacher to +1 if the selected motor program is correct, and to -1 otherwise. 
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However, a special case occurs when the system is unable to make a decision within 
the allotted time (causing the “No-Go” response to be selected). Two possible situations 
have occurred: no motor program selection units are active, or more than one are active. 
In the first case, the reinforcement term is set to +1 by the system itself, regardless of the 
teacher feedback. Therefore, the currently active columns are rewarded, ensuring that the 
next time the pattern is presented, these columns will yield a greater response. Thus, they 
will have a greater chance of activating one of the motor program selection units. With-
out this additional term, negative reinforcement from the teacher is disastrous. The nega-
tive reinforcement further decreases the response of the already poorly responding 
columns, further decreasing their response. The result is a self-reinforcing situation that 
can never discover the correct response. 

In the second situation, where more than one motor program selection unit becomes 
active at one time, the reinforcement term is set by the system to -1. This decreases the 
response of all columns involved, adjusting the input to the two (or more) motor program 
selection units until one is able to achieve threshold significantly before the other(s). It is 
at this point that the symmetry between the two is broken. 

When positive reinforcement is given, the weights leading into the feature detector 
units are adjusted such that the feature detector better recognizes the current sensory 
input. In the case of negative reinforcement, the weights are adjusted in the opposite 
direction, such that the current input is recognized by the feature detector unit to an even 
lesser degree. Note that this reinforcement depends on whether or not the overall system 
response was correct, not on the output of any individual motor selection column. We 
thus have: 

�
�
� <

=
otherwise

entreinforcemffactornegative
lgain

1

0if__

( )( )maskfeatureinWVotingInputlratelgainentreinforcemW T
ffeaturein ___^***, �=� (13.5)

where: 

� lratef is the learning rate coefficient for the stimulus-to-feature mapping 

� Input�VotingT is the outer product of the Input and Movement vectors.  

� lgain scales the effect of negative reinforcement relative to positive reinforcement.  

� � is a point/wise multiplication operator. 

� W_in_feature_mask is a binary matrix indicating the existence of a synapse. 

In this case, the effect of negative reinforcement on the weights is intended to be less 
than that of positive reinforcement. This is done because negative reinforcement can be 
very devastating to columns that are just beginning to learn an appropriate mapping. 

To simultaneously weaken those weights that are not strengthened by reinforcement, 
we then set: 

( )featureinfeatureinfeaturein WWNormalizeW ,,, �+=
(13.6)

where:  

� Normalize() is a function that L1-normalizes the vector of weights leading into each 
feature detector unit to length 1, given by 

�
=

j
j

i
i

X

X
Y (13.7)

� W_in_feature_mask is a matrix of ones and zeros that determines the existence of a 
weight between the corresponding voting and motor program selection units. The 
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elements of this matrix are point-wise multiplied with those of �Win,feature to mask out 
weight deltas for weights that do not exist. 

Equation (13.2) produces a competition between the weights associated with a 
particular unit. Thus, the weights are self-regulating, forcing unneeded or undesirable 
weights to a value near zero. If a column continues to receive negative reinforcement (as 
a result of being involved in an incorrect response), then it becomes insensitive to the 
current stimulus, and is reallocated to recognize other stimuli.  

The voting unit to motor selection mapping is adjusted similarly. Positive reinforce-
ment increases the weight of the synapse to the correct motor program. When negative 
reinforcement is given, the synapse is weakened, allowing the other synapses from the 
voting unit to strengthen slightly through normalization. Thus, more voting power is allo-
cated to the other alternatives: 

( )( )maskmotorvoteWMotorVotinglrateentreinforcemW T
vmotorvote ___^**, �=� (13.8)

( )motorvotemotorvotemotorvote WWNormalizeW ,,, �+= (13.9)

where: 

� lratev is the learning rate coefficient for the voting-to-motor response mapping. 

� W_vote_motor_mask is a weight matrix mask similar to the mask that appears in 
(13.2). 

A similar type of reinforcement learning is utilized in Barto et al. (1983, see later 
discussion).  

Win,feature and Wvote,motor are initially selected at random. When a response is generated, 
learning is applied to each of the columns that are currently participating in the computa-
tion. The learning objective of an individual column is to recognize particular patterns (or 
subpatterns) and to identify which of the possible motor programs deserve its votes given 
its view of the sensory input. Equation (13.1) attempts to create feature detectors that are 
specific to the incoming patterns. As these feature detectors begin to better recognize the 
correct patterns, the activity of the signal units will grow, thus giving the column a larger 
voting power. The feature detecting algorithm is related to the competitive learning of 
von der Malsburg (1973) and Grossberg (1976) (discussed further in Rumelhart and 
Zipser 1986). Individual columns learn to become feature detectors for specific subpat-
terns of the visual stimulus. However, a column does not recognize a pattern to the exclu-
sion of other patterns. Instead, several columns participate in the recognition at once. In 
addition, a column is responsible for directly generating an appropriate motor output. 
Therefore, the update of the feature detector weights not only depends upon recognition 
of the pattern (as in competitive learning), but also upon whether or not the network gen-
erates the correct motor output. In the case of a correct response, the feature detector 
weights become better tuned towards the incoming stimulus, as in the von der Malsburg 
formulation. For an incorrect response, the weights are adjusted in the opposite direction, 
such that recognition is lessened for the current input. 

Note that in this scheme, all of the columns that participate in the voting are pun-
ished or rewarded as a whole, depending upon the strength of their activity. Thus, a col-
umn that votes for an incorrect choice may still be rewarded as long as the entire set of 
votes chose the correct motor program. This method works, in general, because this 
“incorrect column” will always be active in conjunction with several other columns that 
do vote appropriately and are always able to overrule its vote. This scheme is similar to 
that used by Barto et al. (1983) in that one or more elements may correct for errors made 
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by another element. In their case, however, the correction is made sequentially through 
time, rather than in parallel. 

It should be noted that there is a tradeoff in this algorithm between the speed of 
learning and the sensitivity to noise. Because this protocol always gives the correct feed-
back and the possible motor outputs are finite and discrete, this tradeoff is not quite as 
evident. Imagine the case where learning is very fast and the reinforcement function 
occasionally makes a mistake (as can easily be imagined in real-world situations). If the 
system has discovered the correct response, but is then given no positive reinforcement 
for the correct response, extremely rapid learning would cause this response to lose favor 
completely. Likewise, if an incorrect behavioral response is positively rewarded, a high 
learning rate would cause the incorrect response to rise quickly above the alternatives. 

13.3 Model Implementation 
The model is implemented by three top level models, CondLearn module, TrainFile
module and CondLearnModel as shown in figure 13.6. 

CondLearn

CondLearnModel

TrainFile
output

new_read

input

Figure 13.6 �
Conditional Learning model 
modules. ��������� module 
where dynamics are described, 
	��
��
�� module where  
training data are read, and 
������������� which 
instantiates and connects the 
modules.

Model 
The complete model is described in CondLearnModel. It is responsible for instantiating 
two modules, the CondLearn and TrainFile modules.  

nslModel CondLearnModel () 

{

 private TrainFile tf(); 

  private CondLearn cl(); 

}

The initModule methods perform model initialization by reading training data and 
instantiating the number of layer elements dynamically specified.  

public void initModule() 

{

 tf.readFile();  

 NslInt0 inSize = tf.getValue(“inSize”);    

 cl.memAlloc(inSize.getValue(), 

 num_columns.getValue(),num_choices.getValue()); 

}

Note in this instantiation how we obtain the number of patterns from the TrainFile mod-
ule as it reads this value from the training data file, and only then do we pass it to the 
CondLearn module to be used to instantiate data arrays. While the number of columns 
and number of choices are directly specified by the user, the input size is read from the 
training file. These sizes are then used to call all memAlloc methods in the model.  
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Train Module 
The TrainFile module contains input and output ports for interconnections with the 
CondLearn module. It stores training data in memory similar to the BackProp Train
module. 

nslModule TrainFile() 

{

 public NslDinInt0 new_read();  

 public NslDoutInt1 input();    

 public NslDoutInt0 output();    

          

 private NslFloat2 pInput(); 

 private NslFloat1 pOutput();   

}

The readFile method reads the training data while the intTrain picks a new random 
pattern during each new epoch 

public void initTrain() 

{

 int pat = nslIntRand(numPats);  

 input = pInput[pat]; 

 output = pOutput[pat]; 

}

CondLearn Module 
The CondLearn module contains a number of submodules, Feature, Vote, Motor,
Threshold and WTA (winner take all) modules, as shown in figure 13.7. 
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Figure 13.7 �
CondLearn module 
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The neural computational model for these modules are implemented using the leaky-
integrator model (e.g., Arbib 1989), in which each neuron is represented by a membrane 
potential and a firing frequency. In the following set of equations, neural states are 
represented as vectors. Two vectors are connected through a set of weights through either 
a one-to-one connection scheme, or a fully-connected scheme (all neurons of the input 
layer are connected to each of the neurons of the output layer). The first case is repre-
sented by a vector addition, while the second case is represented by multiplying the 
vector I with a “mask” of synaptic weights W to yield W@I. The network is initialized by 
randomizing the input-to-feature and voting-to-motor projections and prepares the model 
to begin execution. 

nslModule CondLearn() 

{

  private Feature feature(); 

  private Threshold threshold(); 

  private Vote vote(); 

  private Motor motor(); 

  private WTA wta(); 

 public NslDinInt1 input();     

 public NslDinInt0 output();  

 public NslDoutInt0 new_read();  

 public NslDoutInt0 factor(); 

 public NslDinInt0 above_thresh_num();    

 public NslDinInt0 stable_num();   

 public NslDinInt0 winner();    

}

The simTrain method detects four termination conditions, computes the appropriate 
reinforcement, updates the weight matrices and prepares the network for the next trial. 

public void simTrain() 

{

 if(above_thresh_num.getData() == 1 && (stable_num.getData()  

  == _num_choices || first_pole_mode.getData() != 0.0)) 

   { 

    timer_flag = 1;  

  punish_reward_func(winner.getData());  

  system.breakCycles(); 

 } 

}

The state of the motor program selection units is checked to determine whether or 
not the system is itself ready to generate an output. The model is ready to output a motor 
response in one of two cases, depending upon the state of the first_pole_mode flag. 
When this flag is FALSE, this indicates that the standard WTA is being used as the 
competition mechanism. This mechanism requires that exactly one motor program be 
selected and that all motor program selection units have reached equilibrium. When the 
flag is TRUE, first-past-the-pole WTA is used, which relaxes the constraint that the 
motor program selection units be in an equilibrium state.  
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public void endTrain() // Timeout: NO-GO case 

{

 if (timer_flag == 1) 

  return; 

   if(above_thresh_num.getData() == 0) 

  timer_flag = -1;   

   else 

timer_flag = 1; 

 punish_reward_func(NO_GO_CASE); 

}

The trial is terminated and timer_flag is set to 1. Termination of the current trial 
may also be forced if the go signal has arrived. As stated earlier, two cases are possible: 
no motor program selection units active or more than one active. In either case, the trial is 
terminated and the weight matrices are updated. The reinforcement is set to 1 if the 
timer_flag = -1, meaning no winner has been found yet. Reward and punishment are the 
reinforcement signals used to update the weight matrices if there is at least one winner. 
Weights are modified in the feature and vote modules, respectively. 

The punish_reward_func() routine selects a new input pattern to present to the 
system in preparation for the next trial.  

public void punish_reward_func(int win) 

 { 

 factor = 1; 

  if(output.getData() == win) 

  new_read = 1; 

 else 

   { 

    new_read = 0; 

    if (timer_flag != -1) 

    factor = -1; 

 }  

}

Feature Module 
The Feature module computes the membrane potential feature_mem, the firing rate 
feature of the feature detector units and the feature detector weights, most important ones 
are w_in_feature, w_in_feature_mask, and dw_in_feature. It receives input pInput
and the voting_contribution for learning, while its output is feature
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nslModule Feature ()

{

 public NslDinFloat1 inputs(); 

 public NslDinFloat1 voting_contribution(); 

 public NslDinFloat0 threshold_v(); 

 public NslDinInt0 factor(); 

 public NslDoutFloat1 feature();    

 private NslFloat1 feature_mem();  

 private NslFloat2 w_in_feature(); 

 private NslFloat2 dw_in_feature(); 

 private NslFloat2 w_in_feature_mask(); 

 private NslFloat0 negative_factor_f();  

}

The initModule method initializes the feature detector weights. Initially, the module 
configures the input-to-feature weight matrix w_in_feature.

public void initModule() 

{     

 nslRandom(w_in_feature);       

 select_random(w_in_feature_mask,w_in_feature_probability. 

  getData()); 

 w_in_feature = (w_in_feature/2.0 + 0.5 + input_weight_bias)  

    ^ W_in_feature_mask;       

 normal_col(w_in_feature);       

}

A random value is selected for each of the individual weights (uniform distribution 
in the interval [0,1]). Then existing physically connections are found. The call to 
select_random() initializes w_in_feature_mask with a set of 0’s and 1’s (0 = no 
connection; 1 = connection). The probability that each element is set to 1 is determined 
by w_in_feature_probability. The w_in_feature_mask weight mask is applied to 
w_in_feature, after a linear transformation is applied to the weights. After this operation, 
w_in_feature will consist of elements that are either 0 (when no connection exists), or 
selected from the distribution [0.5+input_weight_bias, 1.0+input_weight_bias]. The 
linear transform of the weight elements guarantees that those that exist take on significant 
initial values. The random trimming out of connections from the weight matrix is impor-
tant for giving us a wide diversity of feature detectors to begin with. This will play an 
important role both in the initial behavior of the network, as well as in limiting the inter-
ference during learning. 

A normalization is applied to w_in_feature weight matrix. The call to normal_col()
L1-normalizes the columns of w_in_Feature. This ensures that the total output weight 
from any single input unit is 1 (presynaptic normalization). As these weights change 
during learning, this condition will continue to hold, thus implementing a form of com-
petition between the connections leading from the input unit. 
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The simTrain method processes the dynamics of the feature detector, 

public void simTrain() 

{

  nslDiff(feature_mem, u_feature, -feature_mem - threshold_f  

     + w_in_feature * inputs); 

 if (LIMITED_ACTIVITY_FLAG == true) 

   feature = nslSat(feature_mem, 0, 1, 0, 1); 

 else 

   feature = nslRamp(feature_mem); 

}

where feature_mem depends upon the threshold_f, and the matrix product of weight 
matrix w_in_feature by column vector pInput, this returns a vector containing the net 
input to the feature detector units. 

The firing rate of the feature detector unit is limited to the range [0..1]. 
The endTrain() routine is responsible for the internal modulation of the reinforce-

ment signal and the update of the weight matrices. As discussed earlier, if the system was 
unable to make a decision in the allotted time and no motor program selection units were 
active, then the reinforcement signal is set to 1. This will cause all of the currently active 
feature detector units to become a little more active the next time the same input is 
presented, improving the chances that a motor program selection unit will be activated. 
Note for the other degenerate case, where more than one motor program selection unit is 
active at the completion of the trial, factor has already been set to -1 (passed in to 
endTrain()).

public void endTrain() 

{

  float f_factor; 

 if(factor.getData() < 0.0) 

    f_factor = factor.getData() * negative_factor_f.  

   getData(); 

  else 

    f_factor = factor.getData(); 

  dw_in_feature = f_factor * lrate_f *      

  vec_mult_vec_trans(voting_contribution,inputs) ^  

 w_in_feature_mask); 

 w_in_feature = nslRamp(w_in_feature + dw_in_feature); 

 normal_col(w_in_feature,L1_norm_mode.getData()); 

}

In the feature detector, the information content of a negative reinforcement is much 
less than that of positive reinforcement. This is the case because positive reinforcement 
indicates the exact answer that is expected, whereas negative reinforcement only tells the 
system that the selected action was not the correct one. Because this is the case, the con-
nection strength adjustment due to negative reinforcement should be smaller than in the 
positive reinforcement case. This is implemented here by discounting the negative rein-
forcement signal, and leaving the positive reinforcement signal intact  
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voting_contribution identifies those columns that are currently participating in the 
computation and the degree to which they are participating. Only those connections 
which carry signals into or out of the active columns will change in strength. The update 
to the input-to-feature mapping is computed in. The call to vec_mult_vec_trans() com-
putes the outer product of the two vectors, returning a matrix of elements which indicate 
coactivity of input unit and column pairs (Hebbian component). W_in_feature_mask
filters out all elements of the resulting matrix except for those pairs between which a 
connection exists. lrate_f is the learning rate, and f_factor modulates the update based 
upon the incoming reinforcement signal. This update matrix is then combined into the 
weight matrix (the call to nslRamp() ensures that all connection strengths are always 
positive), and the weights are normalized.  

The call to normal_col() L1-normalizes the columns of the weight matrix. This con-
tinues to maintain the constraint that the total output weight from any single input unit is 
1 (presynaptic normalization). In other words, each input unit has a fixed amount of sup-
port that it can distribute between the feature detector units. When positive reinforcement 
is received, more of this support is allocated to the currently active columns at the 
expense of those columns that are not active. Likewise, when negative reinforcement is 
received, the support for the active columns is reduced, to the benefit of the remaining 
columns (driving the search for a more appropriate group of columns). 

Noise Module 
The Noise module computes the next noise signals that are to be injected into the voting 
units and the motor selection units. What is implemented here are noise processes that 
change value on occasional time-steps. This slow change of injected noise is important 
for the behavior of the network. As will be seen in the next two modules, the voting units 
and the motor selection units are also implemented as leaky-integrator neurons, which 
implement a low-pass filter on the inputs coming into them. If the injected noise changed 
drastically on every time-step, this high-frequency noise would for the most part be fil-
tered out. By forcing the noise process to change more slowly, the neurons are given an 
opportunity to respond in a significant manner. 

nslModule Noise ()

{

 private Noise noise(); 

}

Noise initialization. 

public void initExec() 

{

  randomize(noise);       

  noise = noise_gain * noise; 

}
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In the noise vector is initialized. 
Noise is modified if necessary in the simExec method 

public void simExec() 

{

 if(random_value2() < noise_change_probability.getData()) 

   { 

  randomize(noise);       

noise = noise_gain * noise; 

   } 

}

In the frequency at which a new noise vector (noise) is selected is determined by the 
parameter noise_change_probability.

If it is time to update the noise vector, a completely new vector is generated, and 
then scaled by the noise_gain parameter.  

Vote Module 
The Vote module computes the state of the voting units. 

nslModule Vote ()

{

 private Noise noise(); 

 public NslDinFloat0 threshold_v(); 

 public NslDinFloat1 feature(); 

 public NslDoutFloat1 voting(); 

public NslDoutFloat1 voting_contribution(); 

 private NslFloat1 voting_mem(); 

 private NslFloat0 voting_contribution_mode();  

 private NslFloat0 voting_contribution_scale();  

 private NslFloat1 voting_participation();  

}
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The simTrain method specifies local processing 

public void simTrain() 

{

 noise.simExec(); 

  nslDiff(voting_mem, u_voting, -voting_mem - threshold_v +  

   feature + noise.noise); 

 if (LIMITED_VOTING_ACTIVITY_FLAG == true) 

   voting = nslSat(voting_mem, 0, 1, 0, 1); 

 else 

 voting = nslRamp(voting_mem); 

 voting_participation = nslStep(voting); 

 if (voting_contribution_mode.getData() == LINEAR) 

    voting_contribution = voting; 

  else if (voting_contribution_mode.getData() == BINARY) 

  voting_contribution = voting_participation; 

   else if (voting_contribution_mode.getData() ==  

  COMPRESSED_LINEAR) 

   voting_contribution = nslSat(voting,0.0, 

   voting_contribution_scale.getData(),0.0, 1.0); 

 else if (voting_contribution_mode.getData() == JUMP_LINEAR) 

  voting_contribution = nslSat( 

   nslRamp(voting, 0.0,  

 0.0,voting_contribution_scale.getData())); 

 else 

    nslPrintln(“Unknown voting_contribution_mode:“,

  voting_contribution_scale.getData()); 

}

The membrane potential of these units (voting_mem) is determined by the firing rate 
of the corresponding feature detector units, a noise signal, and the signal from the thresh-
old modulator. When a visual stimulus is initially presented, the inhibitory signal from 
the threshold modulator is at a high level. If the stimulus is relatively unfamiliar, the 
input from the feature detector unit will typically not be above this threshold. As a result, 
no decision will be immediately made. However, the threshold modulator will begin to 
slowly drop this threshold, ultimately forcing several voting units to fire, causing a deci-
sion to be made at the motor selection unit level. 

The noise process plays an important role in the search for the correct input/output 
mapping. At this level, the noise causes different columns to participate in the mapping 
from trial to trial. Over time, this allows the system to consider many combinations of 
sets of columns until an appropriate set can be found.  

The firing rate of the voting units requires a membrane potential above some thresh-
old.  

The vector voting_participation is used to display to the user which columns are 
participating within any particular computation. 

Threshold Module 
The Threshold module implements the dynamics of the threshold modulator. 
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nslModule Threshold ()

{

 public NslDinFloat0 s(); 

 public NslDoutFloat0 threshold_v(); 

}

The simTrain method updates the threshold 

public void simTrain() 

{

  if(s <= 0.0)         

  nslDiff(threshold_v,u_threshold_v, -threshold_v);  

}

The threshold level, threshold, is initially set at the beginning of the trial to the 
parameter init_threshold. This value then decays exponentially. However, this decay 
only happens as long as no motor selection units have begun to fire (as measured by the 
activity level of the inhibitory unit). In order for this event to occur, several voting units 
must have begun to fire giving the system the ability to make some sort of decision. 

Motor Module 
The motor selection unit dynamics are described within the Motor module. 

nslModule Motor ()

{

 private Noise noise(); 

  public NslDinFloat1 voting(); 

  public NslDinFloat1 voting_contribution(); 

  public NslDinFloat0 s(); 

 public NslDinInt0 factor(); 

 public NslDoutFloat1 motor(); 

 public NslDoutInt0 above_thresh_num();   

 public NslDoutInt0 stable_num();    

 public NslDoutInt0 winner();    

 private NslFloat1 dmotor_mem(); 

 private NslFloat1 motor_mem(); 

 private NslFloat1 motor_inputs(); 

 private NslFloat2 w_vote_motor(); 

 private NslFloat2 dw_vote_motor(); 

 private NslFloat2 w_vote_motor_mask(); 

 private NslFloat0 voting_weight_bias(); 

 private NslFloat0 w_vote_motor_probability(); 

 private NslFloat0 voting_factor();  

 private NslFloat0 normalize_input_mode();  

 private NslFloat0 stable_detect_threshold();  

}
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The initModule method initializes the voting weights 

public void initModule() 

{     

 noise.initExec(); 

    winner = 0; 

   randomize(w_vote_motor); 

   select_random(w_vote_motor_mask, w_vote_motor_probability. 

  getData()); 

   w_vote_motor = (w_vote_motor/2.0 + 0.5 +  

  voting_weight_bias) ^  

 w_vote_motor_mask; 

 if (normalize_input_mode.elem() == 1.0) 

    normal_col(w_vote_motor,L1_norm_mode.getData()); 

  else 

    normal_row(w_vote_motor,L1_norm_mode.getData()); 

}

The vote-to-motor weights w_vote_motor are initialized in a similar manner. How-
ever, normalization may be done one of two ways, depending upon the flag 
normalize_input_mode. Presynaptic normalization (normalize_input_mode = 1) is as 
above, maintaining the condition that the weights leading from the voting unit sum to 1. 
For postsynaptic normalization (normalize_input_mode = 0), the sum of the weights 
leading to the motor selection units would sum to 1. For the simulations results reported 
in this chapter, normalize_input_mode = 1 (presynaptic normalization). 

The motor selection unit dynamics are determined within the simTrain method. 

public void simTrain() 

{

 noise.simExec(); 

   motor_inputs = mat_mult_col_vec(w_vote_motor,  

  voting)/_num_columns; 

   dmotor_mem = -motor_mem - threshold_m + 

    voting_factor * motor_inputs - s + motor + noise.noise; 

  nslDiff(motor_mem, u_motor,dmotor_mem); 

  motor = nslStep(motor_mem); 

 above_thresh_num = 0; 

 stable_num = 0; 

 for (int i = 0; i < _num_choices; ++i) 

   { 

 if (motor(i) > 0.0) // Above threshold 

  { 

    above_thresh_num = above_thresh_num + 1; 

    winner = i; 

  } 

  if(fabs(dmotor_mem[i]) <  

   stable_detect_threshold.getData()) 

   stable_num = stable_num + 1; 

  } 

}
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The membrane potential of these units is a function of the votes from the feature 
detector units (motor_inputs), the inhibitory signal from the WTA (Winner-Take-All) 
inhibitory unit s, and an injected noise signal (motor_noise). The inhibitory unit ensures 
that when the system has reached an equilibrium point, at most one motor program has 
become selected. This style of distributed Winner-Take-All computation is due to Amari 
& Arbib (1977). 

The noise signal is important at this point for providing a diversity in the search for 
the correct mapping. In addition, it helps to prevent the system from becoming stuck onto 
a saddle point, where it cannot decide between one of two equally-active motor selection 
units. 

The motor selection cells fire maximally whenever the membrane potential exceeds 
the cell’s threshold. We consider that a selection has been made only when one motor 
program selection unit is firing. 

The endTrain() routine is responsible for the internal modulation of the reinforce-
ment signal and the update of the weight matrices. As discussed earlier, if the system was 
unable to make a decision in the allotted time and no motor program selection units were 
active, then the reinforcement signal is set to 1. This will cause all of the currently active 
feature detector units to become a little more active the next time the same input is pre-
sented, improving the chances that a motor program selection unit will be activated. Note 
for the other degenerate case, where more than one motor program selection unit is active 
at the completion of the trial, factor has already been set to -1 (passed in to endTrain()).  

public void endTrain() 

{

  dw_vote_motor = factor * lrate_v * 

   (vec_mult_vec_trans(motor, voting_contribution) ^  

  w_vote_motor_mask); 

 w_vote_motor = nslRamp(w_vote_motor + dw_vote_motor); 

 if(normalize_input_mode.getData() == 1.0) 

    normal_col(w_vote_motor,L1_norm_mode.getData()); 

  else 

    normal_row(w_vote_motor,L1_norm_mode.getData()); 

}

A similar learning rule to that of the input-to-feature mapping is applied to the 
voting-to-motor mapping. The change in weights is a function of the co-activity of voting 
columns and the motor program selection units, modulated by the learning rate (lrate_v)
and the reinforcement signal. These delta values are then added into the weight matrix, 
and normalized. For this mapping, the type of normalization is selectable as either pre-
synaptic or postsynaptic. For the results reported in this chapter, presynaptic normaliza-
tion is used, implementing a competition between the different motor program selection 
units for support from the columns.  

WTA Module 
The WTA module implements the dynamics of the winner-take-all inhibitory unit. 
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nslModule WTA () 

{

 public NslDinFloat1 motor(); 

  public NslDoutFloat0 s(); 

 private NslFloat0 s_mem(); 

}

The simTrain method executes the wta dynamics 

public void simTrain() 

{

 nslDiff(s_mem, u_s, - s_mem - threshold_s + nslSum(motor)); 

  s = nslRamp(s_mem); 

}

The membrane potential of this unit is driven to a level that is essentially propor-
tional to the number of motor selection units that have become active (these units either 
have an activity level of 0 or 1). The firing rate of this unit also reflects the number of 
currently active motor selection units. 

13.4 Simulation and Results3

Simulation 

Parameters 
The set of parameters used to produce the results presented in this paper are described 
next. Table 13.1 to 13.9 show the complete list of parameters and the values used in the 
simulation. 

Network Parameters Value Description 

num_columns 30 Number of columns in the middle layer. 

num_inputs 14 Number of inputs into the columns. 

num_choices 4 Number of motor program selection units  
(no-go, left, right, down) 

Simulation Parameters Value Description 

delta 0.01 Integration step 

Weight Initialization Value Description 

voting_weight_bias 4.0 

w_vote_motor_probability 1.0 

normalize_input_mode 1 Determines whether postsynaptic or presynap-
tic normalization is used for this set of weights 
(0 = postsynaptic; 1 = presynaptic). 

input_weight_bias 1.0 Constant added to random weight value (see 
weight initialization) 

w_in_feature_probability 0.3 Probability that a particular weight will exist. 

Table 13.1 
Network Parameters 

Table 13.2 
Simulation Parameters 

Table 13.3 
Weight Initialization 
Parameters 
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Feature detector parameters Value Description 

threshold_f 0.1 Threshold 

u_feature 0.05 Time constant 

Threshold Modulator Value Description 

init_threshold_v 0.2 Initial threshold (threshold is determined by 
the threshold modulator). 

u_threshold_v 4.0 Time constant of threshold modulator for 
voting units. 

Voting Unit Value Description 

u_voting 0.05 Time constant 

gain 0.045 Injected noise to voting units. 

change_probability 0.01 Determines how often the injected noise term 
changes value. 

Motor Program Selecion 
Unit 

Value Description 

u_motor 2.0 Time constant  

gain 0.05 Injected noise to motor units 

change_probability 0.01 Determines how often the injected noise term 
changes value. 

threshold_m 0.035 Motor program unit threshold. 

Analysis Parameters Value Description 

� 0.8 Used to compute average performance. 

Simulation Parameters Value Description 

display_participation_mode 0 1 indicates that the participation vector is 
printed to the screen at the end of each trial. 

collect_mode 0 If 1, collecting statistics. 

1 If no MPSUs are active at time of punishment, 
then reward to get voting activity up. 

A number of parameters play a crucial role in the behavior of the network. These are 
further discussed here: 

w_in_feature_probability determines how likely that a connection exists between 
an input unit and a feature unit. For this work, it was important to keep this parameter at a 
low value (0.3). This serves to minimize the number of columns that will respond at all to 
an input stimulus, thus minimizing the interference between columns. If set too low, not 
enough columns will react to a particular input.  

Table 13.4 
Feature Detector Parameters 

Table 13.5
Threshold Modulator 
Parameters 

Table 13.6
Voting Unit Parameters 

Table 13.7
Motor Program Selection 
Unit Parameters 

Table 13.8
Analysis Parameters 

Table 13.9
Simulation Parameters 
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input_weight_bias determines the distribution of weight values for those weights 
that do exist. A high value forces the existing weights synapsing on a particular feature to 
be very similar. On the other hand, a low value causes the weights to be more randomly 
distributed. In the case of our simulation, this value is set to 1.0 (a low value), yielding a 
reasonable distribution that allows different columns to respond differently to an individ-
ual stimulus. Thus, the weight initialization procedure biases the symmetry breaking 
between stimuli that goes on during the learning process. 

noise_gain determines the magnitude of noise injected into the voting units. It is im-
portant that this value is significantly less than init_threshold_v. Otherwise, the voting 
unit may fire spontaneously (without feature unit support) before the threshold is low-
ered.

noise_change_probability is set such that the noise value changes slowly relative to 
the time constant of the voting unit (u_voting). When the noise changes at this time 
scale, on average, the effects of the noise are allowed to propagate through the system 
before the noise value changes again. Thus, in the early stages of learning, different 
groups of voting units may fire given the same input stimulus, allowing the system to 
experiment with what the appropriate set of voting units might be. If the noise changes 
too quickly, then the average effect will be very little noise injected into the system. 
Therefore, all eligible columns will fire together, and not in different subsets. 

WTA (Inhibitory Unit) Value Description 

u_s 0.5 Time constant of membrane potential. 

threshold_s 0.1 Unit threshold. 

Learning Parameters Value Description 

lrate_v 0.035 Voting/motor program selection unit lrate 

lrate_f 0.4 Input/feature detector unit lrate 

negative_factor_f 0.25 Input/feature factor for negative reinforcement 

L1_norm_mode 1 1 indicates L1-normalization is used (0 indicates 
L2-normalization). 

Protocol Parameters Value Description 

first_pole_mode 1 1 indicates first-passed-the-pole mode is turned 
on. 

repeat_mode 1 1 indicates stimuli are repeated when an 
incorrect response is generated by the system. 

max_time_counter 200 Maximum number of time steps alotted to the 
system for making a decision. 

The constraints on motor.noise_gain and threshold_m are similar. 
lrate_f determines how much effect that one trial will have on the weight matrix that 

maps from the input units to the feature units (the value used in these simulations was 
0.4). When set too low, the slope of the overall activity curve begins to decrease and the 
system will take longer before it achieves perfect performance. On the other hand, setting 
this parameter too high will amplify the interference between the various weights (this is 

Table 13.10
WTA parameters. 

Table 13.11
Learning parameters. 

Table 13.12
Protocol parameters. 
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critical during the early stages of learning). Thus, the learning of one pattern may erase 
(in one trial) the information associated with another pattern. 

lrate_v is the learning constant for the vote-to-motor weight matrix (the value used 
was 0.035). Setting this constant too high will cause the system to very quickly commit 
columns to particular motor responses. The result is that the network is able to learn the 
mapping much quicker than in the cases discussed in this paper. Although it appears to be 
advantageous to use a higher parameter value, we would move away from the behavioral 
results seen in the Mitz experiments. In addition, the network may become more sensitive 
to interference, a problem that will show itself as the task difficulty is increased.

negative_factor_f scales the effect of negative reinforcement on the network. When 
this value approaches 1, the effect of a negative signal can be devastating to the network 
(see discussion of learning dynamics). In general, we found that too high of a value will 
decrease the slope of the overall activity curve (evident when the network begins to pro-
duce the correct answer, but then tries other responses). 

Training Patterns 
The patterns shown in table 13.13 were used to train the network for most of the above 
experiments. The right-hand column denotes the expected motor response. For this case, 
the input patterns are orthogonal. Other training sets that were used for the comparison 
with backpropagation included overlapping patterns. One such training set is shown in 
table 13.14. 

Training Pattern Expected Response 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go 

0 0 0 0 0 0 0 0 0 0 1 1 1 0 Left

0 0 0 0 1 1 1 0 0 0 0 0 0 0 Right 

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down 

Training Pattern Expected Response 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 No-Go 

1 0 0 0 0 0 1 0 0 1 0 0 0 0 Left

0 0 0 1 0 1 1 0 0 0 0 0 0 0 Right 

0 0 0 1 0 0 0 1 0 1 0 0 0 0 Down 

Simulation Results 
Once NSL has been compiled for the model, the simulation is started by loading the 
startup script, which loads in the standard set of parameters (CondLearn.nsl) together 
with graphics (CondGraphics.nsl):  

nsl% source startup.nsl 

The system parameters involve 100 epochs of 200 training cycles each: 

nsl set system.epochSteps 100 

nsl set system.trainDelta 1 

nsl set system.trainEndTime 200

Table 13.13
Input patterns and expected 
motor responses. 

Table 13.14
Input patterns and expected 
motor responses (more 
difficult case). Each of the 
patterns overlaps at least one 
other pattern. 
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The seed is used to configure the random number generator (useful for forcing the 
same conditions for multiple experiments): 

nsl set condLearnModel.condLearn.seed 10  

The pattern file contains a list of input patterns and the corresponding desired out-
puts.  

nsl set condLearnModel.trainFile.pName a1.dat  

For example, the “a1.dat” train file looks as follows: 

4

1

24

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1 

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  2 

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  3 

The first line specifies the number of train patterns in the file, “4” in this example. 
The second line specifies the number of elements in the output pattern, while the third 
line specifies the number of elements in the input pattern, “1” and “24” respectively. 
Finally, each additional line specifies the actual train pattern consisting of the input pat-
tern followed by its corresponding desired output. 

Once configuration is complete, begin execution as follows:  

nsl% nsl train  

In this configuration, at the end of each trial the system reports if it is unable to make 
a decision by the time the trigger stimulus is received: 

No-pick no-go!  

On the following line, the number of time steps (equivalent to train steps) required to 
obtain a decision is printed (in this case, 200 is the maximum number of time steps).  

200

On the next line, the system prints the current trial (followed by a “:”), presented 
pattern number (“p”), expected motor output (“s”), selected motor output (“w”), indica-
tion of correctness (+/-), and a measure of total activity of the voting units.  

0 : p0 s0 w0 + 0.022166   

Next the system prints the participation vector, which indicates those columns that 
were active at the end of the trial.  

voting_participation

1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0   

To perform an entire experiment, the simulation continues executing until the system 
has learned the mapping completely. A good indication of this is that all mapping have 
been learned, and all decisions are made in a very short amount of time (for the given 
parameters, 50 time steps should be sufficient). 



A  M O D E L  O F  P R I M A T E  V I S U A L - M O T O R  C O N D I T I O N A L  L E A R N I N G   2 5 1

32

50 : p3 s3 w3 + 0.123120

voting_participation

0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0

77

51 : p0 s0 w0 + 0.057379

voting_participation

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

55

52 : p1 s1 w1 + 0.094080

voting_participation

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

.

.

.

68

58 : p2 s2 w2 + 0.069137

nsl set voting_participation 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0

In figure 13.8 we show a sample graphical display as the system has already learned. 

Figure 13.8��

The top portion of the display, 
“.columns.input”, represents the 
train pattern input, in this case 
corresponding to the third input 
pattern with corresponding 
desired output “2”. The display in 
the middle represents the corre-
sponding “.columns.feature”
pattern while the bottom display 
represents the “.columns.voting”
pattern. The more correspon-
dence between the two bottom 
displays the better the learning. 
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Results 
The following experiment utilized a variant of the winner-take-all (WTA) algorithm in 
the simulation, referred to as first-past-the-pole WTA. Rather than requiring that the net-
work settle down into a stable state, the first unit that achieves a membrane potential 
above the threshold is declared the winner. In the case that more than one unit activated 
at the same instant, the standard winner-take-all circuit is used to squelch the activity of 
all but one. Using this particular algorithm allows for a faster simulation, since more time 
is required if the units must settle down to equilibrium.  

During the testing/learning trials, a pattern is randomly presented to the system. The 
overall control system waits until a single selection is made (after the TS is presented), 
before moving on to the next trial. When the network produces an incorrect answer, the 
same pattern is presented on the next trial (as in the primate experiments). This protocol 
allows for much quicker learning, as opposed to a completely random sequence of 
stimulus/response pairs. 

Primary Experiments 
Next we show the behavioral traces resulting from a single experiment. In two of the 
three traces, the network produces a correct answer, and then attempts other choices 
(given the identical pattern). This happens due to the fact that the voting strengths are 
influenced by the noise process. Even though a correct answer has been given, there is 
still a probability that another answer will be output at a later time. Eventually, however, 
the learning biases the correct motor program to a level sufficiently above the noise. 
After this point, the correct motor program is always chosen. The behavioral responses of 
one experiment broken into sequences corresponding to a particular stimulus/motor 
output pair. +’s indicate correct responses, letters indicate an incorrect response of a 
particular type. 

N : + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

L : N + R + + + + + + + + + + + + + + + + + + + + + + + + + + +

R : N + L D L N + + + + + + + + + + + + + + + + + + + + + + + +

D : L L N N + + + + + + + + + + + + + + + + + + + + + + + + + +

For the same experiment, the pattern of activity for a particular motor response and 
the behavioral performance were compared to those of the monkey. The overall activity 
of the resulting voting unit response is measured by using the final voting unit activity 
pattern (i.e. after learning) as a reference. The overall activity is defined as the dot prod-
uct between this reference and the voting unit activity pattern from every trial in the 
learning sequence. As in the results reported by Mitz et al., the normalized activity and 
performance curves for a single motor response are plotted together. The performance is 
computed by low-pass filtering the performance value (where 0 corresponds to an incor-
rect response and 1 corresponds to a correct response). 

Figure 13.9 shows the resulting set of curves for one such experiment. The solid 
curve corresponds to the activity measure and the dotted line is the behavioral perform-
ance of the subject. These values are plotted over the number of trials. In this, as in sev-
eral other experiments, the performance begins its steady increase 3 to 4 trials before the 
activity measure becomes significant.  
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Figure 13.9��

Overall activity (solid) curve and 
performance (dotted) curve 
plotted against trial for the (A) 
“Right” and (B) “Left” responses. 
As in the experimental curves, 
the performance curve begins to 
increase prior to the increase in 
the activity curve. Note that the 
trial axis represents only those 
trials for which the “Right” and 
“Left” responses are expected, 
respectively. 

When a naive network is first tested, the presentation of a pattern causes some ran-
dom set of columns to be active, as determined by the initial weight values from the input 
units to the feature detector units. Based on the strength of the pattern match, the corre-
sponding voting units may not immediately become active, but instead have to wait for 
the Threshold Modulator to lower the threshold to an appropriate level. Given time, this 
function forces the system to vote for some response, even though it is not very sure 
about what the correct response might be.  

With respect to identifying the correct response, positive reinforcement gives the 
system more information than does negative reinforcement. For the case of positive rein-
forcement, we are telling the system what the correct response is (specific feedback), but 
negative reinforcement only tells the system that the correct response is one of three 
choices (nonspecific feedback). 

Because the system is essentially guessing on these initial trials, the performance is 
very poor at first. Therefore, the system is primarily receiving negative reinforcement, 
keeping the overall response activity at a low level. An occasional correct response, in 
combination with the negative feedback for other choices, begins to bias the voting unit 
output towards the correct motor program selection unit. In turn, this effect begins to 
increase the probability of selecting the correct motor response.  

Once the performance of a set of columns begins to increase, the positive feedback 
becomes significant enough to reward the correctly responding feature detector units on 
average, thus switching over from nonspecific to specific feedback information (in the 
weight update equations, the reinforcement term becomes +1 for the most cases). In 
figure 13.10, as in other experiments, the overall activity does not begin to rise signifi-
cantly until the performance passes the 0.5 mark. This also appears to be the case in most 
of the graphs provided by Mitz et al. (1991). Once the performance is correct on average, 
the activity of the feature detector units belonging to the “correct” set of columns 
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increases. This increase comes from the fine-tuning of the feature detector weights to-
wards the incoming pattern.  

Figure 13.10 �
(A) Activity of a single voting unit 
plotted against trial number. The 
four curves represent responses to 
each of the four input stimuli 
(solid = no-go, long dash = left, 
dotted = right, and short dash = 
down). Note that trial number N
corresponds to the Nth occurrence 
of each of the four stimuli, and 
does not necessarily correspond 
to the same moment in time. (B) 
Evolution of the voting strength of 
the same unit. The four curves 
(designated as above) represent 
the voting strength to each of the 
four motor program selection 
units. Note that in this graph, the 
trial axis represents all trials. 

As a result, we see an overall increase in activity in response to the learned stimulus, 
and, most importantly, we see this increase after the increase in performance. 

In addition to looking at the overall activity of the network, it is also possible to 
examine an individual column’s response to input stimuli as learning progresses. Figure 
13.10A shows the response activity of one voting unit from the same experiment. In this 
particular case, the unit initially responds equally well to two different stimuli. As 
learning progresses, however, the response to one stimulus grows to a significant level. 
Ultimately, this unit becomes allocated to the recognition of the stimulus pattern that 
maps to the Left response. 

Figure 13.10B represents the same unit’s orientation towards a particular motor 
program, as measured by the weight from the unit to the motor program selection unit. 
Initially, the unit supports the four motor program selection units almost equally, but 
within 12 trials, the weight corresponding to the Leftward motor unit begins increase 
above the others possibilities. After learning has completed, this weight completely 
dominates the others. 

Changes in Protocol  
In initially examining the protocol described by Mitz et al. (1991), we found it interesting 
that when the monkey responded incorrectly to a particular stimulus, the same stimulus 
was presented for the next trial. This repetition was continued until the monkey produced 
the correct response. The question that came immediately to mind was why a totally 
random presentation sequence was not used. We presented this question to our model 
through a simple modification of the protocol. The results shown in figure 13.11 repre-
sent a typical behavioral trace under this new protocol. In this case, the system requires 
almost twice as many trials before it begins to perform the task perfectly. This is espe-
cially evident in the Rightward response. 
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Figure 13.11��

The behavioral responses of one 
experiment with a completely 
random sequence of stimulus 
presentations. Under these condi-
tions, the task requires more trials 
of learning. 

This effect can best be explained by looking at the competition between the different 
stimuli. The degree of competition is determined by the amount of overlap between the 
sets of columns that are activated by each of the stimuli. In addition, certain stimuli may 
activate their set of columns more strongly than other stimuli, due to the initial random 
selection of weights. This activity difference can give the stronger stimulus a slight 
advantage in the learning process, since a weight update is related to the degree of acti-
vation of the voting unit. Therefore, given that a significant overlap exists between 
groups of columns, as well as an activity bias towards one or more stimuli, the learning 
induced by the stronger patterns can often cancel out any learning caused by the weaker 
stimulus. In the original protocol, this interference is not as much of a problem, since 
incorrectly mapped stimuli are allocated a larger number of consecutive trials. Within the 
new protocol, the probability of a favorable set of trials is relatively low. 

Figure 13.11 shows the overall activity curve corresponding to the Right response in 
the above experiment. It is interesting to note that the activity curve increases prior to the 
performance curve. This can be explained by looking closer at the individual unit partici-
pation for the Rightward mapping. In this case, only a single column takes on the task of 
performing this particular mapping. During the early stages of learning, the network 
quickly learns the other three mappings. This particular column initially responds to both 
the Rightward and Downward stimuli (figure 13.12 A). When the Rightward stimulus is 
presented, the support to the columns is so weak that the system does not make a decision 
in the allotted time. Therefore, the input/feature weights are adjusted to maintain recog-
nition of the Rightward stimulus. As shown in figure 13.12B, the system finally discovers 
the correct motor program to output at about trial 95. At this point, though, it still signifi-
cantly supports the Downward response, but not enough to make incorrect decisions.  
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Figure 13.12��

(A) Activity of the one voting unit 
that learned to perform the map-
ping plotted against trial number. 
Because this is the only unit that 
learns the mapping, it determines 
the curve of figure 13.10. (B) 
Evolution of the voting strength of 
the same unit. Only towards the 
end of the experiment (95th trial) 
does the unit discover the correct 
motor program selection unit. 

Reversal Experiments 
Another set of experiments performed on the model asked about the system’s behavioral 
and neural responses after a reversal takes place. In this experiment the network is pre-
sented with the standard set of four novel stimuli. After a given number of trials, the 
teaching system switches the mapping of two responses. In this case, the stimulus that 
originally mapped to the No-Go motor response, now maps to the Down motor response, 
and vice versa. In looking at this experiment, we are interested in seeing how quickly the 
network is able to recover from the change in mapping and in understanding the under-
lying neural basis for this change. Next we show the behavioral results of one such 
experiment. After 26 trials, the visual/motor mapping had been learned perfectly for all 
cases. The first few responses that are generated after the reversal correspond to the 
original mapping. The system requires only a few trials of negative reinforcement to the 
Left and Right responses before the original mappings lose their dominance. At this 
point, the system continues its search as in the other experiments. Behavioral response 
during a reversal task. The break in the strings indicates the point at which the reversal 
(between the No-Go and Down responses) takes place. 

N : + +      D D D D D D R + + + + + + + + + + + + + + 

L : N + R + + + +   + + + + + + + + + + + + + + + + + + + + + 

R : N + L D L N  + +  + + + + + + + + + + + + + + + + + + + + + 

D : L L N N + + + + +  N N R + + + + + + + + + + + + + + + + + + 
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Figure 13.13��

Graph displays�activity/performance curve for the reversal case (“Down” motor mapping). The solid (activity) 
curve corresponds to the overall activity in response to the stimulus that maps to the “Down” motor response, 
which switches between the 9th and 10th trials. The drastic change in overall activity after the reversal indicates 
that two separate sets of columns are being used to process the two different stimuli (recall that overall activity 
is measured by comparing the current activity pattern of the voting units to their activity pattern after learning is 
complete, in this case, trial 40). This also shows that the column continues responding to the same input before 
and after the reversal. 

The activity/performance curve for the Left response is shown in figure 13.13. Recall 
that the activity curve is computed by taking the dot product between current activity of 
the voting unit vector and the same vector of activity after the learning is complete. The 
sudden jump in the activity curve indicates the point at which the reversal takes place. 
This jump happens because although the column continues to respond to the same 
stimulus, the stimulus is now supposed to map to the No-Go response (which has also 
been plotted). This and figure 13.14 A demonstrate that the column maintains its map-
ping to the specific stimulus. Figure 13.14 B (the output weights from the same column) 
demonstrates that it is these weights that are adjusted to deal with the new mapping. Note 
in this figure, the reversal takes place over just a few trials (both in the reduction of the 
Downward weight and the increase of the No-Go weight. 

Figure 13.14��

(A) A single unit’s response 
to the various input stimuli 
over time. The solid curve 
represents the unit’s
response to the Nth 
occurrence of the stimulus 
that maps to the “No-Go”
response. Likewise, the 
dashed curve represents the 
unit’s response to the Nth 
occurrence of the stimulus 
that maps to the “Down”
response. The drastic 
increase of the solid curve 
and decrease of the dashed 
curve indicate the point of 
reversal (after the 2nd 
occurrence of the stimulus 
that maps to “No-Go”, and 
the 9th occurrence of the 
stimulus that maps to “Down,
respectively). Note that the 
unit continues to respond to 
the same stimulus after the 
reversal, although the 
stimulus now maps to a 
different motor program. 
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13.5 Summary 
Our model has primarily addressed the computational issues involved in learning appro-
priate stimulus/motor program mappings. However, we believe that the functional role of 
voting units within our network may be related to that of set units within the premotor 
cortex. The actual visual/motor mapping is considered to be taking place further upstream 
from premotor cortex (within the Win,feature weights in our model). We believe this to 
be the case, due to the fact the Mitz et al. (1991) observed similar set unit activity pat-
terns in response to different visual stimuli that mapped to the same motor response. 

The motor programs, themselves, are most likely stored in regions further down-
stream from premotor cortex, as is the circuitry that chooses a single motor program to 
execute (motor program selection units and the winner-take-all circuit of our model).  

This model was successful in meeting a number of the challenges set forth earlier It 
produces a behavior similar to that which was seen in the monkey experiments (goals 1a–
c), and also produces normalized activity/performance curves that are qualitatively simi-
lar to the experimental data. Although neither of these two challenges (goal 2) were 
explicitly designed into the neural algorithm, the two features resulted from the original 
formulation of the model. Finally, the model produces neuronal activity phenomena that 
are representative of those observed by Mitz et al. (Mitz challenges a–c).

The primary computation within the model was performed using distributed coding 
of the information, thus demonstrating that not all of the relevant information need be 
present at a single location to perform a complex task. Rather, a distributed set of com-
puters, each acting with a limited set of information, is capable of producing a global 
decision through a voting mechanism. However, in this model, votes were cast in a more 
centralized manner than is appropriate for a more faithful model of the brain’s circuitry. 

The concept of the column served to bind together a minimal set of computational 
capabilities needed to perform the local computation. This structure was then replicated 
to solve the more global computation. The claim here is not that a cortical column in the 
neurophysiological sense consists strictly of feature detector and voting units, but that a 
local organization is sufficient to perform a significant part of the computation. Allowing 
all neurons to connect to all other neurons is not practical from a hardware standpoint, 
and may impede the learning process. 

The learning algorithm was a local one. Except for the reinforcement signal, the 
update of a particular weight only used the information available locally (the activation of 
the presynaptic and postsynaptic neurons, and the surrounding weights that shared com-
mon dendritic tree). This feature adds to the biological plausibility of the process, and 
may also have important consequences such as easy implementation in VLSI. In addition, 
the learned function was stored in a local manner (any particular column was active for 
only a subset of the inputs). This type of representation can limit the amount of interfer-
ence between different input patterns, and thus the learning may be faster and more effec-
tive in achieving its goal. 

The model, however, does not attempt to account for the different types of units 
observed within the premotor cortex (goal 3). In particular, Mitz challenges d and e are 
not in general satisfied by the model (multiple stimulus patterns that map to the same 
motor response do not necessarily activate the same set of columns). This is due to the 
normalization operation that is performed on the input to the feature detector units. 
Again, in the premotor cortex of monkey, one would expect a set unit to continue partici-
pating in the same motor program after a reversal has taken place, rather than responding 
continually to the same input stimulus. This would be due in part to the fact that the mon-
key has already created and solidified its motor programs in memory (during the first 
stage of learning). Because the mapping from visual stimulus to motor program is trans-
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ient, the synaptic changes are more likely taking place in regions upstream from premotor 
cortex.  

Finally, the behavior of the model under different experimental conditions may yield 
some predictions as to the monkey‘s behavior under similar conditions. As discussed 
earlier, the use of a completely random sequence of stimuli (as opposed to repeating trials 
in which the incorrect response was given) significantly hindered the system’s ability to 
learn the visual-motor mapping. From this observation, we would like to posit that the 
monkey would suffer a similar fate given the completely random trial presentation. This 
is not meant to say that the monkey would necessarily be unable to learn the task, but that 
the learning would at least be significantly more difficult. The degree to which this is true 
can ultimately feed back to future work on this model, since it would tell us something 
about the degree of interference between the different mappings. 
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14 The Modular Design of the Oculomotor System  
in Monkeys 

P. Dominey, M. Arbib, and A. Alexander 

14.1 Introduction 
In this model we examine the modular design methodology as it applies to the design of 
both cortical and subcortical regions in the monkey. We will examine the topographic 
relations between the Posterior Parietal Cortex (PP), the Frontal-Eye Field (FEF), the 
Basal Ganglia (BG), the Superior Colliculus (SC), and the Mediodorsal thalamus (MD) 
as they work together to control the oculomotor regions of the brainstem (BS). We will 
also describe several experiments that can be performed on the model that demonstrate 
the modulation of eye movement “motor error maps”, sustained potentiation (memory), 
and dynamic remapping of spatial targets within the “motor error maps”. Although, the 
experiments were originally documented in Cerebral Cortex in 1992 (Dominey and 
Arbib), we have modified the model to make it easier to understand and to take advantage 
of the new features in NSL.  

This work was initially motivated by data on the double saccade by Mays and 
Sparks, 1980 and 1983. In their testing, they found that monkeys could perform the dou-
ble saccade task (as described below), though their accuracy was considerably affected 
by the delay between the retinal error input and the representation of eye position. Also, 
single unit recording studies of the Frontal-Eye Field, the Superior Colliculus, and the 
Lateral Inter Parietal (LIP) during visual and memory guided saccades indicate that cells 
in these regions code saccades in terms of direction and amplitude rather than head-
centric spatial locations (Sparks 1986, Segraves and Goldberg 1987, Anderson et al. 
1990, and Barash et al. 1991). We will attempt to duplicate their findings by examining 
two saccade paradigms in which retinotopic coding alone is inadequate to explain the 
spatial accuracy of the saccade. The five catagories of saccade experiments that we will 
be looking at are the simple saccade task, the double saccade task, the memory guided 
saccade task, the lesioning of FEF or SC, and the compensatory (or stimulated) saccade 
task.  

14.2 Model Description 
In the simple saccade task, a monkey is seated in a primate chair with its head fixed and 
eyes free to move. An illuminated point appears in the center of a grid of lights in front of 
him. We call this the fixation point. The fixation point disappears and a single light is 
illuminated. To get his reward, the monkey must saccade to this target. The timing dia-
gram of these sequences and the resultant saccade are shown in figure 14.1. 
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Figure 14.1��

Timing Diagram for Simple 
Saccade Experiment. 
“visinP3M3” is the stimulus 
for the first target, “fixation” is 
the fixation timing, 
“verticalTheta” is the vertical 
eye movement response, and 
“horizontalTheta” is the 
horizontal eye movement 
response. Notice that the eyes 
do not move until the 
“posteriorParietalCenter” goes 
low.

After performing several simple saccade experiments, it became clear that the longer 
the saccade, the more likely the error in acquiring the target became. 

In the double saccade task, an illuminated point appears in the center of a grid of 
lights in front of him (figure 14.2). The illumination point disappears and two different 
lights are illuminated in rapid succession. To get his reward, the monkey must saccade to 
the first target and then to the second. The total duration of the two targets presentation is 
less than the time it takes to saccade to the first target. Because there are two targets, the 
representation of the second target, visinM3P3, in the motor error map would move as 
visinM3P3 itself would move across the retina during the saccade to the first target, 
visinM3P0.  

Figure 14.2
Timing Diagram for the Double 
Saccade Experiment I. 
“visinM3P0” is the stimulus for 
the first target and “visinM3P3” 
is the stimulus for the second 
target. “fixation” is the fixation 
timing., “verticalThet” is the 
vertical eye movement response, 
and “horizontalTheta” is the 
horizontal eye movement 
response. 

In the single, memory saccade task, an illuminated fixation point appears, then a tar-
get is while the fixation point is still illuminated (figure 14.3.) Once the fixation point is 
un-illuminated, the monkey is free to move his eye to the target. Thus, he has to remem-
ber where this target was to saccade to it.  
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Figure 14.3
Timing Diagram for Single, 
Memory Saccade Experiment. 
“visinM2P2” is the stimulus for 
the first target “fixation” is the 
fixation timing, “verticalTheta” is 
the vertical eye movement 
response, and “horizontalTheta”
is the horizontal eye movement 
response. 

In the lesioning experiments we simply disable the output of the FEF (actually the 
fefsac variable) when we lesion FEF, and when we lesion SC we disable the output of the 
SC (actually the “supcol” variable). The lesioning experiments we describe here are dif-
ferent than the lesioning experiments we will talk about later where we combine the 
lesioning with stimulation. In these experiments the Long Lead Burst Neurons (LLBN) 
are strengthened due to the lesioning; however, it is not the case when we combine 
lesioning with the stimulation. 

Figure 14.4
Timing Diagram for Lesioning of 
SC Experiment.”sisinP3M3” is 
the stimulus for the first target , 
“fixation” is the fixation timing, 
“verticalTheta” is the vertical eye 
movement response, and 
“horizontalTheta” is the horizon-
tal eye movement response. 

In the compensatory experiments we first describe two experiments where we stimu-
late the SC, and then we describe two experiments where we stimulated the FEF. Finally 
we describe an experiment where we stimulate the SC but lesion the FEF, and then 
describe an experiment where we stimulate the FEF but lesion the SC. When performing 
the stimulate and lesion experiment (Schiller and Sandell, 1983; Keating and Gooley, 
1988 ) a visual target is briefly presented and removed before a saccade can begin. Before 
the visual saccade can begin, an electrical stimulus is applied to either the FEF or SC. 
The monkey will first saccade to the stimulated location and then to the real target 
(Dassaonville, Schlag, Schlag-Rey, 1990) even though timewise the real target appeared 
first. This is due to the fact that the visual signal takes much longer to get from the retina 
to either the FEF or SC. After performing either of these experiments we will see that 
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when either the FEF or SC is externally stimulated during an ongoing saccade that the 
brain compensates for different components of the ongoing movement.  

Figure 14.5
Compensatory Saccade: 
Stimulation of FEF with 
Lesioning of SC 

The simple saccade experiment allows us to study the topographic relations between 
sensory and motor areas, including inhibitory projections that manage motor field activi-
ties during the saccade. The double saccade experiment allows us to study the dynamic 
remapping of the target representation to compensate for intervening movement. The 
memory saccade experiment allows us to study the cortical and subcortical activity that 
sustains spatial memory. The lesioning experiments allow us to study the affects of 
lesioning. And the compensatory experiments allow us to study both the affects of 
stimulation to the FEF and of stimulation to the SC. 

In the model, (figure 14.6) we have tried to localize the mechanisms that allow the 
monkey to accurately attain its target when an intervening saccade takes the eyes away 
from the location where the target was illuminated. The problem is that in many oculo-
motor structures, saccades are coded as a displacement from a given eye position, rather 
than as a final location. This means that the displacement code is only valid if it is 
updated almost continuously to account for the intervening changes in eye position, or if 
the saccade begins from the eye position at which the target was specified. Some experi-
mental results indicate that the updating of the displacement code occurs before the signal 
reaches the FEF while other experiments indicate that this transformation occurs down-
stream from the FEF. In our model, we have chosen to represent this remapping in the 
lateral intra parietal (LIP) (part of the PP) before the signal reaches the FEF.  Gnadt and 
Andersen (1988) found cells in the LIP that appear to code for future eye movement and 
show quasi-visual (QV) cell behavior. In a double saccade task they found cells that code 
for the second eye movement, though a visual target never falls in these cells’ receptive 
fields. They proposed that PP might receive corollary feedback activity from saccades, 
suggesting that PP has access to eye position information that could be used to generate 
the QV shift. And since PP projects to both FEF and SC, it is likely that the PP is the 
origin of the QV activity seen in those two areas.  

Looking at figure 14.6 we see that the dynamic re-mapping of spatial information 
contributes to the second saccade via multiple routes: 

 LIP/PP to SC to the Brain Stem  
 LIP/PP to FEF to the Brain Stem 
 LIP/PP to FEF to SC to the Brain Stem  

These multiple routes also contribute to the monkey‘s ability to saccade to the a tar-
get even though the SC or the FEF has been lesioned. 
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14.3 Model Implementation 
The eye movement or saccade model as portrayed in figure 14.5 has been a useful system 
for studying how spatial information is transformed in the brain from a retinotopic 
coordinate system to the appropriate temporal discharge pattern of the motor plant. In this 
schematic we see the images transmitted to the Retina, and then to the Visual Cortex. 
From the Visual Cortex the image is transferred to the Posterior Parietal Cortex (PP) and 
specifically the Lateral Intra Parietal (LIP) within the PP. The Quasi Visual (QV) cells of 
the LIP/PP project to the intermediate layers of the SC (Lynch et al. 1985) and to the FEF 
(Petrides and Pandya 1984). Lesion studies have demonstrated that either the frontal eye 
field (FEF) or the superior colliculus (SC) is sufficient for commanding the execution of 
saccades. (Schiller and Sandell 1983; Keating and Gooley 1988). Also in figure 14.5, we 
see the basic mechanisms for calculating spatial accuracy. Mechanism A performs a 
dynamic memory remapping that updates motor error via an efferent velocity signal that 
is approximated by the damped change in eye position (DCEP). 

Retina,
VisCx
Delay
(d1)

Mechanism A

7a/LIP/PP

FEF

SC

LLBN,
MLBN

EBN MNTN

PN RI

Brain Stem – Saccade Burst Generator

trig

DCEP

velocity

dimension

Figure 14.6�

Spacial Accuracy within the 
Saccade Model. DCEP-Damped 
Change in Eye Position, 7a/LIP-
Oculomotor Region of Posterior 
Parietal Cortex, FEF-Frontal Eye 
Field,SCd-Deep, Motor Layer in 
Superior Colliculus, LLBN-Long 
Lead Burst Neurons, MLBN-
Medium Lead Burst Neurons, 
EBN-Excitatory Burst 
Neurons,PN-Omni-Pause 
Neurons, RI-Resettable 
Integrator, TN-Tonic Neurons, 
MN-Oculomotor Neurons 

Also in figure 14.6 we see the Saccade Burst Generator. The saccade burst generator 
(SBG) performs the spatiotemporal transformation from the motor error maps of the SC 
and FEF to generate eye movements as a function of activity in tonic position cells and 
excitatory burst neurons (Robinson 1970, 1972).  

The two neural areas we do not see in the figure 14.6 but which are included in our 
model in figure 14.7 are the mediodorsal thalamus (THAL) and the basal ganglia (BG). 
The thalamus with the FEF provides a reciprocal connection that implements the spatial 
memory loop. The basal ganglia (BG), on the other hand, provides a mechanism for the 
initiation of cortico-thalamic interactions via the removal of inhibition from the basal 
ganglia’s substantia nigra pars reticulata (Snr) on the mediodorsal thalamus. The BG also 
plays a role in the disinhibition of SC and THAL for saccades requiring spatial memory 
(Fuster and Alexander 1973; Hikosaka and Wurtz 1983; Ilinsky et al 1985; Goldman-
Rakic 1987).  

The computer model emulates the above system as closely as possible. In figure 14.7 
below, we see the exact schematic that is used to generate the code for the top level of the 
model, DomineyTop. DomineyTop contains many of the same components as in figure 
14.6 above; however, we have encapsulated the Burst Saccade Generator (BSG) as part 
of the brainstem into one module. We have also changed the names of the neural areas to 
conform to the NSLM naming conventions (names begin with lower case letters for 
instances of objects). 
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Figure 14.7
DomineyModel or 
CorticalSaccade Schematic 

In figure 14.7, we see the complete Dominey Model for all of the saccade experi-
ments we will be performing. The external world is represented by a 27 by 27 neural ele-
ment array, called visualinput. The fixation point and targets are specified on this array 
via the user interface or by using the default parameters. The visual input is remapped on 
to the retina, in retinotopic coordinates and then the visual image travels through the 
Visual Cortex (viscortex) to the Posterior Parietal. At this point, we connect the PP to 
both the FEF and to the Lateral Inter Parietal within the Posterior Parietal (ppqv1). In 
PPQV, we have implemented a variation of the Dynamic Memory algorithm by Droulez 
and Berthoz, 1991, for shifting targets on a motor error map, (what we called Mechanism 
A in figure 14.6.) This algorithm for the dynamic shifting of targets is called from PPQV 
but located in a library class we call DomineyLib. By providing special functions in 
library classes instead of buried in the model, we make it easier for other modelers to 
reuse these functions. This library is also used in the case of the Superior Colliculus, SC, 
which uses the “WinnerTakeAll” algrorithm to compute the tonic quasi-visual property 



T H E  M O D U L A R  D E S I G N  O F  T H E  O C U L O M O T O R  S Y S T E M  I N  M O N K E Y S   2 6 7

seen in the superior colliculus (Mays and Sparks 1980). We call the variable that repre-
sents these cells scqv. SC also contains cells that receive direct input from the retinal 
ganglion cells, and are active in generating reflexive saccades to visual targets. We call 
these cells scsup. If a fixation target is not present, then these cells will drive SC, gener-
ating short latency saccades (Braun and Breitmeyer 1988) via the transcollicular pathway 
(Sparks 1986). Note that since scsup cells are connected to both the retinal input and the 
fovea on cells, FOn, these cells will not fire until the FOn turns off. Also SC contains 
cells that generate presaccadic bursts before voluntary saccades. We call these cells scsac. 
Experimental data indicates that SC receives an excitatory topographic projection from 
presaccadic cells in FEF (Segraves and Goldberg 1987). This is accomplished via fefsac 
in our model. 

The FEF module has three classes of saccadic cells. Visual cells (fefvis) respond to 
all visual stimulus (Bruce and Goldberg 1984). We have grouped these with our Quasi-
visual like cells.  Coding for the second saccade in the double saccade, these QV cells 
demonstrate the right movement field and the wrong receptive field responses, character-
istic of QV cells, and are referred to as right-MF/wrong-RF cells (Goldberg and Bruce 
1990) or fefvis within our model. Memory cells (fefmem) sustain activity during the 
delay period in memory experiments (Funahashi et all 1989) while movement cells, fef-
sac, discharge before all voluntary saccades corresponding to the cell’s preferred 
dimensions (Segraves and Goldberg 1987). 

In figure 14.7 , we see the FON module which contains cells distinguished in the 
FEF that have an on or off response to visual stimulation in the fovea. These foveal cells 
are not localized to a particular location of the topographic map of FEF, and they project 
to a wide range of locations within the SC (Seagraves and Goldberg 1987).  We model 
the Foveal On cells, FOn, projecting the center element of the PP layer (the fovea) to a 
standard size array, that is used to provide inhibition to the elements of the caudate (CD 
in BG).  In each of the following experiments we note that the removal of the illumina-
tion of the fixation point signals the monkey that he is free to move his eyes; thus, when 
FOn is off, the monkey is free to perform the saccades.  

Also in figure 14.7 we see several darkened modules. These are the input modules 
where the user can change the defaults. The visual input module is used for specifying the 
targets and fixation point. The stimulation modules are used to provide stimulus to the 
FEF or SC in the compensatory saccade cases. The user is also free to dynamically 
change these NSL type variables at run-time using the NSLS scripting language. 
(However, note that variables must be writable to change them from the scripting 
language. Currently we have declared the variables “visualinput1/visualinput”,
“stimfef1/stimFEF”, “stimsc1/stimSC”, “brainstem1/llbn1/llbnPot_k1”, “brainstem1-
/llbn1/llbnPot_k3”, “fef1/fefmemPot_k2”, ”fef1/fefsac”, ”supcol1/supcol”, “supcol1/supcol_k3”,
and “ppqv1/qvMask_k1” as writable variables since their values change depending on the 
protocol used.) 
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Figure 14.8
Saccade Burst Generator or 
BrainStem Schematic 

As stated in the earlier, the saccade burst generator (SBG) or the BrainStem Saccade 
Burst Generator (figure 14.8) performs the spatiotemporal transformations from the 
motor error maps of the SC and FEF (Robinson 1970, 1972). This SBG is based on one 
by Scudder (1988). Two of the properties of this model are that it will yield a saccade 
with the topographically coded metrics in response to either FEF or SC stimulation or 
both, and it accurately emulates the FEF and SC in that increased firing at a given point 
will increase the velocity and decrease the latency without changing the metrics of the 
saccade.

Also in figure 14.8 we see the Tonic Neuron modules. The tonic neurons (TN) pro-
vide corollary discharge signals lefttn, righttn, uptn, downtn, which, together with a 
delayed version of these signals, provide the input used by our model of the PP for the 
dynamic remapping function which underlies successful completion of the double sac-
cade task (Mechanism A).  

The main module in the BrainStem is the Motor Schema shown and described in 
figure 14.9. 
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Figure 14.9
The Motor Module’s
Schematic 

In figure 14.9 we see the Motor Schema. This schematic represents the bulk of the 
Saccade Burst Generator (SBG). We can compare this to the schematic given by 
Dominey and Arbib 1992 describing the shared and cooperating spatial accuracy mecha-
nisms.  (See figure 14.6.) The Medium Lead Burst Neurons (mlbn) provide input to the 
Excitatory Burst Neurons (ebn). And the ebn neurons provide inputs to the tonic neurons, 
the resetable integrator within the Pause module, and the motor neurons, MN. The Pause 
module contains the resetable integrator, trigger cells, and the Omni-Pause Neurons. The 
TNDelta module gates the tonic neuron response. The oculer motor neurons (MN) move 
the eyes, and the STM module calculates spatio temporal transformations. 
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Figure 14.10
Basal Ganglia Schematic 

In figure 14.10, we see two inhibitory nuclei of the basal ganglia (BG), caudate (CD) 
and substantia nigra pars reticulata (SNr). They provide an additional, indirect link 
between FEF and SC (Chevalier et al 1985). This link allows FEF to selectively modulate 
the tonic inhibition of the SNr on the SC and the thalamus (Deniau and Chevalier, 1985; 
Alexander et al. 1986) through the caudate nucleus. 

Originally this model was written in NSL2.1 as a series of functions which were exe-
cuted sequentially. We have re-written the model to make it more object-oriented and 
modular. The first thing we did was to stop representing neural areas as functions and 
start representing them as classes. This allowed us the ability to set the initialization 
parameters in each class/neural area as well as provide other functionality that was local 
to the neural area.   

Next, we instantiated those classes where practical in the model. For instance, in the 
Saccade Burst Generator (figure 14.5) we instantiate the Motor Schema module four 
times: once for each direction (left, right, up, down). This of course reduced the amount 
of code we needed to write for the saccade burst generator in the brain stem: we only had 
to write MLBN, EBN, Pause, TNDelta, and MN once, instead of four times: one for each 
direction of right, left, up, and down. 

We also made the model hierarchical, grouping together neural areas by schema. 
Thus the MLBN, EBN, Pause, RI, TN, and MN are all part of Motor which is part of the 
Brainstem which is part of the top level model. Other schemas include the Memory 
System, and the Vision System.  
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Once we had grouped the modules together, and added ports to connect the different 
modules, it was clear that we had created the same circuit as that documented in Dominey 
and Arbib (1992) (see figure 14.6). Since the model was now in the Schematic Capture 
System (SCS), we could automatically generates the structural part of the model code 
(see figure 14.7). 

Another aspect of the new model, is ability to change the dimension of the internal layer 
sizes (arrays) by changing just one variable. In the original model, we needed to improve the 
spatial resolution and thus changed the model from using a visual input layer of 27 by 27 neu-
rons to 57 by 57 neurons (Dominey 1991); which meant that the retina and the rest of the 
neural arrays were 19 by 19. Since there are over 80 of these structures, being able to change 
80 structures by changing just one variable is a big improvement over the old model. 

 Some of the more interesting uses of the NSLM code appeared in the SC and FEF 
modules. In both modules we have called custom routines from the library we created 
called “DomineyLib”. Code Segment 14.1 shows the code for the SC, and code segment 
14.2 shows the code for the FEF. 

public void simRun() { 

 scsupPot=nslDiff(scsupPot,scsupPot_tm, - scsupPot - 

   scsupPot_k1*fon + scsupPot_k2*retina); 

 ppqv_winner = DomineyLib.winnerTakeAll  

  (ppqv,nWTAThreshold.get(),stdsz); 

 scqvPot=nslDiff(scqvPot,scqvPot_tm,-scqvPot + ppqv_winner); 

 scsacPot=nslDiff(scsacPot,scsacPot_tm, -scsacPot  

  +scsacPot_k1*fefsac -  

  scsacPot_k2*snrsac); 

 supcolPot=nslDiff(supcolPot,supcolPot_tm, -supcolPot +  

  supcolPot_k2*scsac +  

  supcolPot_k3*scqv - 

  supcolPot_k4*fon +  

  supcolPot_k6*scsup -  

  supcolPot_k1*scDelay); // this is zero. 

 supcolPot[center][center] = 0; // no saccades to where we  

  already are!  

 sc_winner = DomineyLib.winnerTakeAll(supcolPot, 

 nWTAThreshold.get(),stdsz); 

 scsup = nslSigmoid  

  (scsupPot,scsup_x1,scsup_x2,scsup_y1,scsup_y2); 

 scqv = (saccademask^scqvPot); 

 scsac = nslSigmoid  

  (scsacPot,scsac_x1,scsac_x2,scsac_y1,scsac_y2); 

 //aa: from the 92 paper equation 15 is set to zero if  

  lesioning SC 

 if ((protocolNum==6)|| (protocolNum==13)) { // lesion SC 

  supcol=0; 

 } else { 

   supcol = nslSigmoid(sc_winner,supcol_ 

   x1,supcol_x2,supcol_y1,supcol_y2);   

   supcol = supcol + (supcol_k3*stimulation); 

 } 

 scDelay=nslDiff(scDelay,scDelay_tm, -scDelay + supcol); 

}

Code Segment 14.1�

Code Segment from SC 
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public void simRun() { 

 fefvisPot=nslDiff(fefvisPot,fefvisPot_tm,  

  (- fefvisPot + ppqv)); 

 fefmemPot=nslDiff(fefmemPot,fefmemPot_tm,(- fefmemPot + 

  fefmemPot_k4*thmem + fefmemPot_k2*fefvis – 

   fefmemPot_k1*fon)); 

 fefsacPot=nslDiff(fefsacPot,fefsacPot_tm,( - fefsacPot +  

  fefsacPot_k1*fefvis +fefsacPot_k2*fefmem -  

   fefsacPot_k3*fon)); 

 fefsacPot[center][center] = 0; 

 fefvis = nslSigmoid  

  (fefvisPot,fefvis_x1,fefvis_x2,fefvis_y1,fefvis_y2); 

 fefmem = nslSigmoid  

  (fefmemPot,fefmem_x1,fefmem_x2,fefmem_y1,fefmem_y2); 

 fefsactmp = nslSigmoid(fefsacPot, 

  fefsac_x1,fefsac_x2,fefsac_y1,fefsac_y2);  

 fefsac = fefsactmp + (fefsac_k1*stimulation); 

 if ((protocolNum==7)||(protocolNum==14)) {//lesion fef 

  fefsac=0;  

 } 

}

14.4 Simulation Results1

We now report the simulation results. We note that the neural populations we model 
carry information in terms of their discharge frequencies, the durations of discharge, and 
the latencies both between stimulus and firing, and between neural events in connected 
regions. All of the experiments can be found on line at our website, at http://www-
hbp.usc.edu/~nsl/unprotected. The World Wide Web applet for this model and these 
experiments can also be found at the same location, as well as, example experimental 
results. We will note here that the run delta was set to 0.005, or 5 milli seconds and the 
run end-time was set to 0.7 seconds for each of the following 15 experiments/protocols. 

The Single Location Saccade Experiment  
In the single saccade experiment a light illuminates the fixation point which for the 
monkey is in the center of a screen, but for us is in the center of an array called 
visualinput. After .02 seconds the light goes away and a target appears someplace on the 
screen. For the monkey to get his reward he must saccade to the target location. 

Protocol 1: single saccade 
 Fixation 0-0.02 at [(i=center,j=center)] 
 Target A 0.02-0.07 at [(i=center+3,j=(center-3)]  

Code Segment 14.2�

Code Segment from FEF 
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Figure 14.11 displays the system at time equal 0.16 seconds. 

Figure 14.11
Single Saccade Protocol 1 at 
time t=0.16 seconds. 

At 0.16 seconds the saccade is under way and we can see activity in several of the 
major brain areas. After the fixation has been removed and the target appears, the center 
of the Posterior Parietal (PP) is off, and the FOn signal is off, which releases the inhibi-
tion on the caudate. The caudate after receiving the fovea off signal and the target 
information from the FEF, then projects an inhibitory signal to the SNR which releases 
the inhibition on the SC which contains the information of where the target is. Target 
information contained in SC and FEF output drive the brainstem to reposition the eye 
such that the target is in the center of the fovea. If the target is still lit, then this causes the 
center element of the PP to be on. If the target is not still lit, then the center of PP will be 
off, as in figure 14.12. 

Figure 14.12
The final results of the 
simple saccade protocol at 
time=0.7.
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Figure 14.13
The final values for 
horizontalTheta for the 
simple saccade protocol at 
time=0.7.

The Single Location Saccade Experiments Using Memory  
The memory saccade experiment requires the thalamus to store spatial locations in 
memories via a reciprocal excitatory connections with FEF. When the target disappears, 
it is held in FEF memory (fefmem) by the reciprocal excitatory connection between MD 
of the thalamus and FEF. The removal of the fixation point causes the FOn signal to be 
reduced which allows the fefsac to fire and removes a source of inhibition from the SC. 
The combination of these events allows the stored spatial memory to command a saccade. 
The effect of the spatial memory is to keep the target position in the FEF active after it is 
extinguished. 

Protocol 2: memorySingleI saccade. 
 Fixation 0-0.28 at [(i=center),(center)] 
 Target A & fixation 0.02 - 0.07 at [(i=center-2),(j=center+2)] 
 Note: Fixation off at off at 0.28 

Protocol 3: memorySingleI saccade. 
 Fixation 0-0.28 at [(i=center),(center)] 
 Target A & fixation 0.02 - 0.07 at [(i=center-2),(j=center-3)] 
 Note: Fixation off at off at 0.28 
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Figure 14.14
Single Memory I Saccade 
Protocol 2 at time=0.2 
seconds. 

In figure 14.14, we see that at time equal 0.21 seconds no saccade has happened yet, 
but we can see that the location of the saccade is stored in the Thalmus (thmem) and the 
FEF (fefmem). As long as the fixation point remains on, the Thalamus and FEF will 
maintain the memory loop. 

The Double Location Saccade Experiments  
 When performing the double saccade task, the motor error representation of the second 
target is dynamically remapped to com-pensate for the intervening movement. By using 
the ppqv layer as input to the fefvis layer, the FEF can contribute to the correct specifica-
tion of both saccades in the double step task. 

Protocol 4. doubleI saccade. 
 Fixation 0-0.02 at [(i=center),(j=center)] 
 Target A 0.02 - 0.07 at [(i=center-3),j=(center)] 
 Target B 0.09 - 0.13 at [(i=center-3),j=(center+3)] 

Protocol 4. doubleII saccade. 
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec 
 Fixation 0-0.02 at [(i=center),(j=center)] 
 Target A 0.02 - 0.07 at [(i=center),j=(center-2)] 
 Target B 0.085 - 0.125 at [(i=center-3),j=(center)] 
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Figure 14.15
Double Saccade Experiment 
- Protocol 4 at time=.15 
seconds. 

Figure 14.16
Double Saccade Experiment 
- Protocol 4 at time=.18 
seconds 

In figure 14.15 we see the activity in the ppqv before the dynamic remapping of the 
target takes place. The quasi-visual (QV) convolution mask (qvmask) is generated from 
the temporal offset of the horizontal and vertical eye position. When convolved with 
ppqv, the qvmask represents interactions thought to implement the quasi-visual shifting 
seen in the parietal cortex. The initial upward saccade along with the qvmask causes the 
cells on the upper part of ppqv to be excited, while the cells on the bottom part of ppqv 
are in inhibited, which causes the second target contained within ppqv to be shifted three 
cells down (the opposite direction). Or in otherwords, as the first target moves into the 
fovea or center of ppqv, the distance between the first and second target must be main-
tained, and thus it looks like the second target is moving away from its original location 
(see figure 14.16).  

The Lesioning of SC or FEF Experiments 
In the lesioning experiments either the SC or the FEF is lesioned. The protocol is the 
same as that for the simple saccade experiment except for the lesion. 

Protocol 6 - lesionSC saccade. 
 Fixation 0-0.02 at [(i=center,j=center)] 
 Target A 0.02-0.4 at [(i=center+3,j=(center-3)]  

Protocol 7 - lesionFEF saccade. 
 Fixation 0-0.02 at [(i=center,j=center)] 
 Target A 0.02-0.4 at [(i=center+3,j=(center-3)]  



T H E  M O D U L A R  D E S I G N  O F  T H E  O C U L O M O T O R  S Y S T E M  I N  M O N K E Y S   2 7 7

Figure 14.17
Lesion SC experiment - 
Protocol 6 at time=0.25 
seconds 

Figure 14.18
Lesion FEF experiment - 
Protocol 7 at time=0.16 

Figure 14.19
Lesion SC experiment - 
Protocol 6 at time=0.4 
seconds 
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Figure 14.20
Lesion FEF experiment - 
Protocol 7 at time=0.4 

Note that in figure 14.17 we see that when we lesion the SC, there is no activity in 
“supcol”. In figure 14.18 we see that when we lesion FEF, there is no activity in “fefsac”.
In figure 14.19 we see that lesioning the SC causes about a 0.34 second delay (.167-.133) 
and shortens the amplitude by a small amount when compared to the simple saccade of 
figure 14.12. In figure 14.20 we see that lesioning the FEF causes a 0.19 second delay in 
the saccade when compared to the simple saccade of figure 14.12. and shortens the am-
plitude by a small amount but then tries to correct for the mistake. When the amplitude of 
the saccade is reduced, the eyes do not move as far, and it can take several saccades to 
acquire the target in the center of the fovea. 

The Double Location Memory Saccade Experiments 
In the double location memory saccade experiments the quasi-visual field shifting is used 
to reposition the location of the second target in “ppqv” as the eyes moves to the first 
location. In addition, when the first target location goes on again, fixation re-occurs and 
the memory elements within the FEF and Thalamus are activated, causing the location of 
the second target to be stored until the fixation (or in this case the illumination of the first 
target) goes off. Thus this experiment combines attributes of the double saccade experi-
ment with the memory saccade experiment. The timing on these types of experiments is 
very critical. If the second saccade happens too late it will not be shifted in ppqv. If the 
second saccade happens too early, the location will not get stored in the FEF and Thala-
mus memory loop. 

Protocol 8 - memoryDouble saccade 
 Fixation 0-0.02 at [(i=center),(j=center)] 
 Target A 0.02 - 0.05 at [(i=center-3),(j=center)] 
 Target B 0.095 - 0.11 at [(i=center-3),(j=center+3)] 
 Target A 0.165 - 0.5 at [(i=center-3),(j=center)] 
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Protocol 15 - memoryDouble2 saccade 
 Fixation 0-0.02 at [(i=center),(j=center)] 
 Target A 0.02 - 0.07 at [(i=center),(j=center-2)] 
 Target B 0.09 - 0.105 at [(i=center-3),(j=center)] 
 Target A 0.17 - 0.5 at [(i=center),(j=center-2)] 

Figure 14.21
The First Memory Double 
Saccade Experiment - 
Protocol 8 at time =0.55 

Just as in the single memory saccade we can see in figure 14.21 some activity in 
fefmem and thmem for storing memory. Also, we see that the remapped location of the 
second target is off by a couple of degrees. This is probably due to the fact that the sac-
cade falls short of the target and thus retains some of the information needed to acquire 
the first target. However, the second double memory saccade experiment (protocol 15) 
does not have this problem since it acquires the first target without overshooting. Its first 
saccade is also a shorter saccade than protocol 8’s first saccade. 

The Compensatory Saccade Experiments 
In the first four compensatory saccade experiments, no lesioning is involved. Only 
stimulation of the indicated areas.  

Protocol 9 - stimulated SC CompensatoryI saccade. 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)] 
 Stimulation 0.07 - .11 at [(i=center-3),(j=center)] 
 Note: Reduced target error due to location - only going 1 direction 

Protocol 10 - stimulated SC CompensatoryII saccade. 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center)] 
 Stimulation 0.07 - 0.11 at [(i=center),(j=center-2)] 
 Note: Increased target error due to location - must go two directions 

Protocol 11 - stimulated FEF CompensatoryI saccade. 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)] 
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)] 
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Protocol 12. stimulated FEF Compensatory II saccade. 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center)] 
 Stimulation 0.07 - 0.11 at [(i=center),(j=center-2)] 

Figure 14.22
The First Compensatory 
Saccade Experiment - 
Stimulate SC - Protocol 9 
at time =0.7 

As can be seen in the figure 14.22, the activity within “ppqv” is very similar to that 
as shown for the double saccade experiment. However, we can also see that the stimu-
lated target is acquired first even though the stimulus was applied after the visual input 
cue was illuminated. Again this is due to the long path between the retina and the SC. 

In the compensatory saccade experiment with lesioning simulated the electrical 
stimulation of both FEF and SC (figure 14.6), as described in Schiller and Sandell (1983) 
in which one of the two neural area was lesioned and the other was stimulated. For FEF 
stimulation we set the k1 parameter to 1.58, and applied electrical stimulation at 175 Hz 
for 40ms to fefsac. For SC stimulation we set the k1 parameter to 2.9, and applied electri-
cal stimulation at 175 Hz for 40 ms to various locations in SC. The timing and movement 
data for these trials are summarized below and the results for protocol 14 are shown in 
figure 14.21.  

Protocol 13 - stimulated FEF LesionSC I saccade. - no SC 
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)] 
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)] 

Protocol 14 - stimulated SC LesionFEF I saccade. no FEF 
 Setup: delta = 0.005 = 5 msec; end-time 0.7 = .7 sec 
 Fixation 0-0.02 at [(i=center,center)] 
 Target A 0.02 - 0.07 at [(i=center-3),(j=center+3)] 
 Stimulation 0.07 - 0.11 at [(i=center-3),(j=center)] 
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Figure 14.23
Lesioning FEF and 
Stimulating SC experiment 
- protocol 14 at time=.7 

As can be seen in figure 14.23, the stimulation of the SC causes the second target to 
be acquired first; while the lesioning of FEF causes some delay in making the saccade. 
However, in this group of experiments we also increase the strength of the projections 
from either the SC or the FEF (which ever was not lesioned) to the long lead burst neu-
rons. The changes corresponding to the postoperative adaptation of the system reported 
by Schiller and Sandell (1983). 

14.5 Summary 
We have discussed the basis of our computer model and how NSL 3.0 has made it easier 
to represent and understand.  In 1992 Dominey compared his simulated results as far as 
timing and output amplitude with the corresponding literature and found that they com-
pared well. The original model demonstrates that: 

1. The inhibitory projection from BG to SC allows selective cortical control of remem-
bered target locations. 

2. The topographic position codes in motor error maps of future saccades can be 
dynamically updated to account for ongoing eye movement (ppqv). 

3. Saccades can be driven by memory that is hosted in reciprocal connections between 
FEF and the Thalamus.  

4. Either the projection from SCS to the LLBNs or the projection from FEF to the 
LLBNs can trigger a saccade but in degraded mode. 

This new model demonstrates the same concepts but at the same time does it in a 
more user friendly fashion. We have demonstrated that with the new NSL 3.0, one can 
represent neural areas in a more natural fashion, treating neural areas as objects or classes 
incorporating all of the features of one neural area into one section of the code instead of 
strewn about the code. We have added the “protocol” interface which allows us to switch 
from one protocol to another without leaving the simulator or loading a nsl script file.  
We have also added the ability to see the temporal plots with their X and Y markings 
within the Zoom Window. We have also added the ability to add new plots dynamically 
at run time for debugging the model dynamically. Also, not shown here, but another plot 
feature that can be used is color for encapsulating more information in one plot. Finally, 
we would like to offer that the ability to see the structure of the model before performing 
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an experimentis a very valuable tool since it allows the experimenter to better understand 
the model so that he/she does not waste time before performing possibly computer inten-
sive and time consuming experiments with the model.  

Notes 

1.  The Oculomotor model was implemented and tested under NSLJ. 



15 Crowley-Arbib Saccade Model 
M. Crowley, E. Oztop, and S. Mármol 

15.1 Introduction 
The visual system provides the primary sensory input to human brains. Nearly every 
activity we undertake first requires some information to be obtained from the visual sys-
tem, whether it is identifying a face, or locating an object for manipulation. To obtain this 
information, the visual system must first move the eyes so that the region of interest falls 
upon the fovea, the most sensitive part of the eye. Additionally, moving objects must be 
tracked once they are foveated. These two aspects of “target” acquisition illustrate the 
two types of movements the oculomotor system are capable of producing. The former is 
called as saccades, which are quick eye movements to bring an object into the fovea. The 
latter is referred as smooth pursuit eye movements which are for tracking moving 
objects. 

Crowley-Arbib model is a saccade model with an emphasis on the functional role of 
the Basal Ganglia (BG) in production of saccadic eye movements. It is based on the 
hypothesis that the BG has two primary roles the first being the inhibition of a planned 
voluntary saccade until a GO signal is established by the prefrontal cortex and the second 
being the provision a remapping signal to parietal and prefrontal cortex, through thalamic 
projections, that is a learned estimate of the future sensory state based upon the execution 
of the planned motor command. 

The hypothesis that one of the basal ganglia roles is to inhibit a planned motor com-
mand prior to its execution was also used by Dominey and Arbib (1992) but is different 
than the action selection proposed by Dominey, Arbib, and Joseph and by Berns and 
Sejnowski (1995). However, both ideas require the involvement in the BG in motor pre-
paratory activity. The issue is whether this preparatory activity assists cortical areas in 
selecting an action, or whether it instead is involved in “freezing” the execution of the 
motor command until the planning cortical areas, e.g., prefrontal cortex, execute a go sig-
nal. We suggest that nearly all motor planning occurs in cortical areas and that these 
areas use subcortical regions to provide specific information to aid in the motor planning. 

15.2 Model Description   
This model includes a number of cortical and subcortical areas known to be involved in 
saccadic eye movements: Lateral Intraparietal Cortex (LIP), Thalamus (Thal), Prefrontal 
Cortex (PFC), Superior Colliculus (SC), Frontal Eye Field (FEF), Basal Ganglia (BG), 
Brainstem (BS). For each of these areas we will arrange one or more modules depending 
on their individual functionality (i.e., for each of the two main roles of the BG described 
above we are going to create two different modules: Lateral Basal Ganglia (Lat) and 
Medial Basal Ganglia (Med)). In addition each module could be an assemblage of more 
submodules, creating with this a hierarchy where the leaves implement the details of the 
neurons involved. figure 1 shows the top level modules and how they are interconnected, 
as implemented by means of the Schematic Editor. We will discuss more about each 
module in the next paragraphs.  
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Figure 15.1
Top Level of the Crowley and 
Arbib Model 

Lateral Intraparietal Cortex (LIP) 

Figure 15.2 
Lateral Inter Parietal Cortex l 

LIP provides the retinotopic location of saccade targets through excitatory connec-
tions form its memory related neurons to SC, FEF and BG. It also exhibits the result of 
the remapping of saccade targets.  

This module is modeled as composed of two types of cells due to the data from 
Gnadt and Andersen (1988). They found cells in area LIP that responded to a visual cue 
that did not last through the delay period in a delay saccade task. They also found sus-
tained response cells whose firing was turned off by the eye movement. We will model 
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the first class of neurons as visually responsive neurons (LIPvis) and the second class as 
memory-responsive neurons (LIPmem). 

Visual Response Cells (LIPvis) only respond to visual stimuli. These neurons are 
modeled as receiving visual input from primary visual centers. In order to obtain saccade 
latencies that match experimental data we have included a chain of primary visual cortex 
regions that simply pass the visual signal to the next layer with a slight delay. 

Memory Response Cells (LIPmem) fire continuously during the delay portion of a 
delay saccade task. These cells would fire even if the stimulus never entered their recep-
tive field when second saccade was arranged so that it matched the cell’s movement or 
receptive field. We propose that a memory loop is established between these cells in LIP 
and mediodorsal thalamus. The connection strength between LIP and thalamus were cho-
sen so that the memory of saccade targets would remain without the target. Also the 
strength had to be not too strong to disable BG’s power to eliminate memory traces. 

Thalamus (Thal) 

Figure 15.3
Thalamus

The thalamus relays sensory input to the primary sensory areas of the cerebral 
cortex, as well as information about motor behavior to the motor areas of the cortex. 
Based on the experimental data discussed below, we will consider only the mediodorsal 
nucleus and ventral anterior thalamic areas in our model. Additionally, these two areas 
will be implemented as a single layer within the model as the afferent and efferent 
connections are very similar between these two areas. In the model three types of cells in 
the thalamus and reticular nucleus are used as described next. 

Thalamic Relay Cells (THrelay) have reciprocal connections with specific cortical 
areas. These are further divided into different sets for LIP, FEF, and PFC. These 
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reciprocal loops maintain neuronal activity during delay periods of memory tasks essen-
tially forming a memory loop. 

Thalamic Local Circuit Cells (THlcn) fire continuously providing inhibition to the 
relay cells. But they are controlled by the inhibitory actions of the thalamic reticular 
nucleus (RNinh) neurons. When inhibition upon these LCN neurons drops below a 
threshold, their increased inhibition puts the thalamic relay neurons into a bursting mode 
until the corresponding cortical cells begin firing and inhibitory activity of the SNr 
returns to its normal levels. 

Reticular Inhibitory Cells (RNinh) are tonically firing neurons receiving inhibition 
from SNr. They provide inhibition of the thalamic local circuit neurons. 

Prefrontal Cortex (PFC) 

Figure 15.4
Prefrontal Cortex 

It has been fairly well agreed that PFC is crucial for the process of working memory 
(Boussaoud and Wise 1993; Goldman-Rakic 1987; Kojima and Goldman-Rakic 1984; 
Sawaguchi and Goldman-Rakic 1994; Sawaguchi and Goldman-Rakic 1991). Lesions of 
this area render monkeys unable to perform spatial memory tasks even when the delay 
period is only a few seconds. We introduce the following layers in our model. 

Visual Memory Cells (PFCmem) simulate the spatial working memory cells found 
in prefrontal cortex. These cells maintain a memory loop with the thalamus, as well FEF 
and LIP. We use the go signal (PFCgo) to inhibit the activation letting the remapped tar-
get information to be created. This mimics a memory state change from a current state to 
a future state. The connection strength was chosen to be strong enough to form target 
memory but not strong enough to disable BG from washing out the memory traces.  

Go Cells (PFCgo) pass the trigger signal to FEF and the BG. This trigger will 
increase the receiving layers’ activation for the selected target to cause the activation 
through to the superior colliculus to effect the saccade selected by prefrontal cortex. They 
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receive visual memory information from LIP (LIPmem), the next saccade target location 
(PFCseq) and a cortical fixation signal (PFCfixation). 

Fixation Cells (PFCfixation) provide a fixation signal as FEFfovea cells. The dif-
ference is that these cells have a large time constant. Thus it takes longer time to activate 
and deactivate the PFCfixation cells.This allows for the maintenance of fixation without 
a foveal signal. 

Sequence Memory Cells (PFCseq) maintain a representation of the order in which 
the saccades are to be performed. The target locations are channeled via PFCmem. 

Saccade Selector Cells (PFCsel) select the next saccade to be performed. We use 
refractory period to control when saccades can occur. This is a decaying value that must 
be overridden by the level of excitation in the visual memory calls (PFCmem). These 
cells select the target memory in PFCmem that has the highest activation and project this 
signal to the go cells (PFCgo) to assist in the activation of a saccade. 

Superior Colliculus (SC) 

Figure 15.5
 Superior Colliculus 

The superior colliculus can be divided into two regions (Mason and Kandel 1991): 
the superficial layers and the intermediate and deep layers. The 3 superficial layers of SC 
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receive both direct input from the retina and a projection from striate cortex for the entire 
contralateral visual hemifield. Neurons in the superficial SC have specific visual 
receptive fields: Half of the neurons have a higher frequency discharge in response to a 
visual stimulus when a monkey is going to make a saccade to that stimulus. If the 
monkey attends to the stimulus without making a saccade to it, for example by making a 
hand movement in response to a brightness change, these neurons do not give an 
enhanced response. 

Cells in the two intermediate and deep layers are primarily related to the oculomotor 
system. These cells receive visual inputs from prestriate, middle temporal, and parietal 
cortices, and motor input from FEF. In addition, there is also representation of the body 
surface and of the locations of sound in space. All of these maps are in register with the 
visual maps. Among the various saccade generation and control by superior colliculus 
hypothesis we are using the relatively recent one due to (Munoz and Wurtz 1993; 
Optican 1994). This revised theory proposes that the activity of one class of saccade-
related burst neurons (SRBN) declines sharply during saccades, but the spatial location 
of this activity remains fixed on the collicular motor map. The spatial activity profile in 
another class of saccade-related cells, called buildup neurons, expands as a forward 
progression in the location of its rostralmost edge during the saccade. Eventually the 
expanding activity reaches fixation neurons in the rostral pole of the colliculus, which 
become reactivated when the balance between the declining activity of the SRBNs and 
the fixation cells again tips in favor of the fixation cells. Reactivation of these fixation 
neurons, which have been hypothesized to inhibit more caudally located burst neurons in 
the rest of the colliculus in turn functions to terminate the saccade. Buildup neurons may 
also be located in the intermediate layers, but are more ventrally situated with respect to 
SRBNs.

Since the superficial SC layer does not project directly to the intermediate/deep 
layer, we will only model the intermediate/deep layer. We also will not use the FOn cells 
in FEF to directly inhibit the SC, instead we will use rostral SC as the inhibitory 
mechanism. Thus, saccades will be inhibited when there is fixation on the fovea and 
saccades will be terminated when the buildup neuron activity reaches the rostral pole of 
the SC. Target locations for the SRBNs will be mapped as quasi-visual cells receiving 
their input from LIP. The model implement SC as composed of four types of neurons. 

Quasi-Visual Cells (SCqv) are visually responsive neurons and receive topographi-
cally organized output from the LIP (LIPvis). They project to saccade related burst neu-
rons (SCsac), passing the visual information they have received from LIP. 

Saccade Response Cells (SCsac) are the SRBN neurons responsible for the initia-
tion of saccades by their projection to the long-lead burst neurons in the brainstem. These 
cells receive inhibitory afferents from the substantia nigra pars reticulata (SNr) and 
excitatory input from the SCqv cells, they also receive excitatory input from the FEF sac-
cade-related neurons. 

Buildup Cells (SCbu) are retinotopically organized, but the activity that arises at the 
beginning of a saccade acts as a moving hill towards the central element of this array 
which represents the fixation cells described below (SCfixation). Corollary feedback 
from the eye movement cells (BSGEyeMove) provide the information needed as to how 
far the eye is being moved. This controls the rate of progression of activity in these 
neurons towards the fixation cells, determining when the saccade is to be terminated. 

Fixation Cells (SCfixation) represent the rostral pole of SC. Once the locus of 
activity in the buildup cells (SCbu) reaches the central element of this array, an inhibitory 
signal is propagated to the burst neurons (SCsac) in SC and the brainstem (BSGsac) to 
terminate the saccade. 
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Frontal Eye Field (FEF) 

Figure 15.6
Frontal Eye Field 

In FEF layer we model two types of saccade-related cells in FEF and a third type of 
cell relating to saccade inhibition (when a target is foveated) 

Memory Response Cells (FEFmem) fire continuously during the delay portion of a 
delay saccade task. It has been found that there are neurons in FEF, in a double saccade 
task that would begin firing after the first saccade and continued firing until the second 
saccade (Goldberg and Bruce 1990). The cell would fire even if the stimulus never 
entered their receptive field when the second saccade was arranged so that it matched the 
cell’s movement or receptive field. In the model a memory loop is established between 
these cells in FEF and mediodorsal thalamus (McEntee, Biber et al. 1976; Squire and 
Moore 1979; Fuster 1973). This memory loop is modulated by the inhibitory activity of 
BG upon the thalamus relay cells. The remapping of saccade targets performed by the 
BG is sent to thalamus. The connection strength between FEF and thalamus is chosen so 
that it is not strong enough to block BG from washing out the memory traces but strong 
enough to form a memory for the saccade targets. 

Saccade Cells (FEFsac) are presaccadic movement neurons that respond to both 
visually and memory-guided saccades. These cells code for particular saccades. 

Foveal Response Cells (FEFfovea) respond to visual stimuli falling on the fovea. 
They receive this input from LIP (LIPvis neurons) and project this information to BG 
and to the fixation neurons in SC (SCfixation neurons). 

Basal Ganglia  
The basal ganglia consist of five subcortical nuclei: the caudate nucleus (CD), putamen, 
globus pallidus, subthalamic nucleus, and substantia nigra. The neostriatum, or striatum, 
consists of both the caudate nucleus and putamen as they develop from the same telen-
cephalic structure. The striatum receives nearly all of the input to the basal ganglia, 
receiving afferents from all four lobes of the cerebral cortex, including sensory, motor, 
association, and limbic areas. However, it only projects back to frontal cortex through the 
thalamus. This cortical input is topographically organized (Alexander, Crutcher et al. 
1990; Alexander, R et al. 1986; Gerfen 1992; Parent, Mackey et al. 1983). There is also 
significant topographically organized input from the intralaminar nuclei of the thalamus 
(Cote and Crutcher 1991; Kitai, Kocsis et al. 1976; Sadikot, Parent et al. 1992; Wilson, 
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Chang et al. 1983): the centromedian nucleus projects to the putamen and the para-
fascicular nucleus projects to the caudate nucleus. 

The model deals specifically with the saccadic oculomotor system within the brain. 
For this reason, the internal globus pallidus and the putamen in the model is not included 
in the model since they are more involved in motor control.  

In terms of saccadic eye movement control the model proposes the purpose of the 
basal ganglia to be twofold: 

• A lateral circuit that inhibits saccadic motor commands from execution until a 
trigger signal is received from higher motor centers, e.g., the prefrontal cortex. 

• A medial circuit that estimates the next sensory state of the animal through an asso-
ciative network for the execution of voluntary motor commands. This network 
receives as input the current sensory state, from LIP, and the currently planned 
motor command, from FEF, and outputs the next sensory state to limbic cortex and 
prefrontal cortex. 

Lateral Basal Ganglia  

Figure 15.7
Lateral Basal Ganglia 

The lateral basal ganglia circuit inhibits saccadic motor commands from execution 
until a trigger signal is received from higher motor centers, e.g., the prefrontal cortex. 
The lateral circuit is modeled as different set of cell groups. The following describes 
these cell groups. 

Caudate Burst Cells (CDlatburst) are typically quiet and are tonically inhibited by 
the TAN interneurons.  They receive excitatory input from cortex and the thalamus. 
These cells project to lateral SNr and GPe. They also receive afferents from the SNc 
dopaminergic cells. 

Caudate Tonically Active Cells (CDlattan) are interneurons that fire continuously 
except when a go signal is received from prefrontal cortex. They are inhibited by the 
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non-dopaminergic interneurons in the caudate. These cells also receive inhibitory input 
from the SNc dopaminergic neurons. 

Caudate Non-dopaminergic Interneuron Cells (CDlatinh) are normally quiet.  In 
the lateral circuit, these neurons receive the motor command from FEF and a go signal 
from PFC. When this input exceeds a certain threshold, these cells will fire and inhibit 
the tonically active interneurons (CDlattan). 

GPe Burst Cells (GPElatburst) are tonically active and receive inhibition from the 
caudate burst cells. These cells project to the STN burst cells. 

STN Burst Cells (STNlatburst) receive tonic inhibition from the GPe burst cells. 
These excitatory cells project to the SNr topographically, but with a wider projection area 
than that of the direct part from the striatum to SNr. 

SNc Dopaminergic Cells (SNCdop) project to the burst cells and tonically active 
cells in the caudate. They receive excitatory afferents from limbic cortex about primary 
reward related events. 

SNr Burst Cells (SNRlatburst) are tonically active and receive inhibition from the 
caudate burst cells and excitation from the STN burst cells. These cells project to the 
thalamus and SC and are responsible for inhibiting the execution of a saccade motor 
command until deactivated by a corticostriatal “go” signal. 

Medial Basal Ganglia  

Figure 15.8
Medial Basal Ganglia 

As in the lateral case the medial basal ganglia circuit is modeled as different set of 
cell groups. The following describes these cell groups that are modeled. 

Caudate Burst Cells (CDmedburst) are typically quiet and are tonically inhibited 
by the TAN interneurons. They receive excitatory input from cortex and the thalamus. 
These cells project to medial SNr and GPe. They also receive afferents from the SNc 
dopaminergic cells. 

Caudate Tonically Active Cells (CDmedtan) are interneurons that fire continu-
ously except when a behaviorally significant, i.e., primary reward, signal is received 
from SNc through an increase in dopamine. They are inhibited by the non-dopaminergic 
interneurons in the caudate. 

Caudate Non-dopaminergic Interneuron Cells (CDmedinh) are normally quiet. 
In the medial circuit, these neurons receive the motor command from FEF and the 



2 9 2      C H A P T E R  1 5  

possible saccade targets from LIP. When this input exceeds a certain threshold, these 
cells will fire and inhibit the tonically active interneurons (CDmedtan). 

GPe Burst Cells (GPEmedburst) are tonically active and receive inhibition from 
the caudate burst cells. These cells project to the STN burst cells. 

STN Burst Cells (STNmedburst) are typically quiet and receive tonic inhibition 
from the GPe burst cells. These excitatory cells project to the SNr topographically, but 
with a wider projection area than that of the direct part from the striatum to SNr. 

SNc Dopaminergic Cells (SNCdop) project to the burst cells and tonically active 
cells in the caudate. They receive excitatory afferents from limbic cortex about primary 
reward related events. These are the same cells as in the lateral circuit. 

SNr Burst Cells (SNRmedburst) are tonically active and receive inhibition from 
the caudate burst cells and excitation from the STN burst cells. These cells project to the 
thalamus and thalamic reticular nucleus and are responsible for inhibiting the thalamic 
activity for the current sensory state and facilitating the growth of activation for the next 
sensory state. 

Brain Stem Saccade Generator 

Figure 15.9
Brain Stem Saccade Generator l 

Once the PFC issues a ‘GO’ signal the combination of increasing activity from PFC 
and decreased inhibition from BG allow activation to grow in the SC. This activation is 
projected to the brainstem where motor neurons are excited and cause the eye muscles to 
move the eyes to the new target location. 

Brainstem Saccade Generator generates the saccade depending on the outputs of SC, 
where SCbu acts as inhibitory and SCsac excitatory. Once a saccade started SCbu neu-
rons' activity start to grow and the activity of SCsac neurons start to decrease. Eventually 
the saccade ends (Note this is implemented in BSG). The BSG module is modeled as two 
types of cells: 

BSG Saccade Generating Cells (BSGsac) are a composite of the burst, tonic and 
omnipause neurons in the brainstem. This layer receives the saccade command from 
SCsac and generates the saccade velocity and amplitude. They project to the 
BSGEyeMove layer. They also receive inhibitory feedback from SC buildup cells which 
inhibits saccades from occurring. 
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BSG Eye Movement Cells (BSGEyeMove) are equivalent to the brainstem motor 
neurons that actually drive the eye muscles. Corollary discharge from these neurons is 
received by SC buildup neurons (SCbu) to control the progression of their activity 
toward the rostral pole of SC. These neurons also receive activity from the SC buildup 
neurons (from the rostral pole only). This specific SC activity terminates an ongoing 
saccade.

15.3 Model Implementation  
The complexity of this model in terms of the high number of brain areas and cell types 
involved, as well as the number of experiments implemented results in a wide use of the 
NSLM language functionality. Since the code is very long, we will focus on the special 
features that this model makes use of, like for example buffered ports to make processing 
order unimportant. The multiple experiments studied lead us to define new protocols and 
canvases. The protocols allow us to easily select and control the experiment to be simu-
lated. The canvas offers an interactive way to collect and display experiment related 
information intuitively. Finally, we will explain how to extend NSLM to provide 
additional functionality not directly available in the language. 

As always we need to define the top most module in the hierarchy, where we declare 
the model’s constants, global variables, children modules, input and output modules and 
simulation methods such as initSys, initModule and makeConn. The top most module has 
to be defined with the reserved keyword nslModel. The children modules are those we 
previously saw in figure 1: Lateral Intraparietal Cortex (LIP), Thalamus (Thal), Basal 
Ganglia (Med, Lat, SNC), Prefrontal Cortex (PFC), Superior Colliculus (SC), Frontal 
Eye Field (FEF) and Brain Stem (BSG). To show the activity of the different cells we 
take advantage of the standard output interface (CrowleyOut). However, since we have 
different experiments we will extend the standard input interface with two canvases to 
collect the data for each of them (DoubleSaccadeInterface, GapSaccadeInterface). 

At the instantiation of the model, the method initSys is called. Within this method 
we assign the values of the simulation parameters: simulation end time, step length and 
port buffering type. Once all the modules have been created, the scheduler executes the 
initModule method. Here we declare the protocols associated with each experiment using 
the method nslDeclareProtocol that adds new entries to the protocol menu (see figure 
10). We will latter need to define which module will be part of which protocol. For that 
purpose we call the nslAddProtocolToAll function that add all modules to a particular 
protocol. Finally the method makeConn communicates the different modules by 
connecting their input and output ports. To connect siblings we use the nslConnect call, 
whereas nslRelabel allows a children module to inherit ports of their parents. 
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nslModelCrowleyTop()

{

 nslConst int CorticalArraySize = 9;  

  nslConst int StriatalArraySize = 90; 

 private int half_CorticalArraySize; 

 public NslInt0 FOVEAX(half_CorticalArraySize); 

 public NslInt0 FOVEAY(half_CorticalArraySize); 

 // input modules that hold single output matrices 

 VISINPUT visinput(CorticalArraySize); 

 LC lc(CorticalArraySize); 

 // LIP and Thalamus 

 LIP lip(CorticalArraySize); 

 Thal thal(CorticalArraySize); 

 // Medial circuit 

 Med med(CorticalArraySize, StriatalArraySize); 

 // Lateral Circuit 

 Lat lat(CorticalArraySize); 

 SNC snc(CorticalArraySize); 

 // Others 

 PFC pfc(CorticalArraySize); 

 SC  sc(CorticalArraySize);   

 FEF fef(CorticalArraySize); 

 BSG bsg(CorticalArraySize); 

 // Graphic interfaces 

 private   CrowleyOut  

  crowout(CorticalArraySize,StriatalArraySize); 

 private   DoubleSaccadeInterface doubleSaccade(); 

 private   GapSaccadeInterface gapSaccade(); 

 public void initSys(){ 

  system.setEndTime(0.55); 

  system.nslSetRunDelta(0.001); 

 //all output ports will be double buffered 

  system.nslSetBuffering(true);   

  half_CorticalArraySize = CorticalArraySize / 2; 

 } 

 public void initModule(){ 

  nslDeclareProtocol(“gap”, “Gap Saccade”); 

  nslDeclareProtocol(“double”, “Double Saccade”); 

  system.addProtocolToAll(“gap”); 

  system.addProtocolToAll(“double”); 

 } 

 public void makeConn() { 

  // LIP inputs 

  nslConnect(visinput.visinput_out , lip.SLIPvis_in); 

  nslConnect(thal.ThLIPmem_out     , lip.ThLIPmem_in); 

 …  

 } 

}
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Figure 15.10
Standard executive interface 
extended with new protocols. 

As we mentioned before we utilize the standard output interface to graphically dis-
play the neural activity of the model. For that purpose we create a nslOutModule which 
includes all the functionality of a normal nslModule, but it incorporates a NslFrame, a 
window where graphs are displayed. Commonly this module contains the definition of 
input ports where the information will arrive. If we want this data to be displayed, we 
have to create a canvas and associate it with a particular input port. We do this with the 
nslAddCanvas methods family (e.g. nslAddAreaCanvas and nslAddSpatialCanvas). 

nslOutModule CrowleyOut

 (int CorticalArraySize, int StriatalArraySize) { 

 //input ports 

 public NslDinFloat2  

  visinput(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  pfcGo(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  lipMem(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  thna(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  fefsac(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  scsac(CorticalArraySize, CorticalArraySize); 

 public NslDinFloat2  

  scbu(CorticalArraySize ,CorticalArraySize); 

 public void initModule() { 

  nslAddAreaCanvas(visinput,0,100); 

  nslAddAreaCanvas(lipMem,0,100); 

  nslAddAreaCanvas(thna,0,10); 

  nslAddAreaCanvas(fefsac,0,100); 

  nslAddAreaCanvas(scsac,0,100); 

  nslAddSpatialCanvas(scbu,0,10); 

 } 

}

In order to build the new input user interface, two steps are required. The first one is 
the definition of a NslInModule. Within this module we associate an instance of the new 
canvas with an output port, where the information collected by the interface will be sent. 
For this purpose we use the nslAddUserCanvas method, which  takes as parameters an 
outputPort and the name of the nslClass that implements the new canvas. In addition we 
call nslRemoveFromLocalProtocols function to remove this module and its window 
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from the “manual” and “gap” protocols. This ensures that this interface will only be 
available when the “double” protocol is selected. 

nslInModule DoubleSaccadeInterface() { 

 NslDoutDouble1 params(8); 

 public void initModule(){ 

  nslAddUserCanvas(params,”DoubleSaccade”); 

  nslRemoveFromLocalProtocols(“manual”); 

  nslRemoveFromLocalProtocols(“gap”); 

 } 

}

In the second step is the implementation of nslClass that defines the new canvas. 
This has to be a subclass of NslInCanvas from which it inherits methods to handle input 
events and display graphics. As a NslInCanvas subclass it has to take two parameter, the 
first of them being the NslFrame where the canvas will be displayed and second a 
wrapping object that contains the port given by the parent NslInModule. 

Every time the canvas has to be repainted, the nslRefresh method is called. Within 
this method we can draw lines, shapes, strings, change colors, etc. Every simulation step, 
the nslCollect function is executed, allowing input data to be gathered and sent to all the 
involved modules. 

nslClass DoubleSaccade (NslFrame frame, NslVariableInfo vi)

 extends NslInCanvas(frame,vi) { 

 public void nslInitCanvas() {    

  nslClearDisplay(); 

 } 

 public void nslRefresh() { 

  drawSaccadeTargetLocations(); 

  drawSaccadeTargetDurations(); 

  … 

 } 

 public void drawSaccadeTargetDurations() { 

  int gx0, gx1, gy0, gy1, h, w; 

  int x0, x1, y0, y1; 

  float fix_start, fix_end;  

  float t1_start, t1_end, t2_start, t2_end; 

  NslString0 xTicks(); 

  int i; 

  fix_start = (float) 0.; 

   fix_end   = (float) 0.2; 

  t1_start  = (float) 0.05; 

  t1_end    = (float) 0.1; 

  t2_start  = (float) 0.1; 

  t2_end    = (float) 0.15; 

  h = nslGetHeight(); 

  w = nslGetWidth();   

  // Draw grid 

  gx0 = w / 10; 
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  gx1 = w - gx0; 

  gy0 = h / 5; 

  gy1 = h - gy0; 

  nslDrawLine(gx0,gy1,gx1,gy1,”black”); // X-axis 

  // X-ticks 

  y0 = gy1 - 5; 

  y1 = gy1 + 5; 

  for(i=0;i<=12;i++){ 

    x0 = x1 = gx0 + ((gx1 - gx0) * i)/12; 

    nslDrawLine(x0,y0,x1,y1,”black”); 

    xTicks.set(i*5./100.); 

    if(i%2 == 0) 

     nslDrawString(xTicks.get(),x0-5,y1+15); 

   } 

  // Draw time bars 

  y1 = gy0/2; 

  // Fixation 

  y0 = gy0; 

  x0 = gx0 + (int)((fix_start/.6)*(gx1-gx0)); 

  x1 = (int) (((fix_end-fix_start)/.6)*(gx1-gx0)); 

  if (x1<=0) 

    x1 = 1; 

  nslFillRect(x0,y0,x1,y1,”red”); 

  // T1 

  y0 = gy0*2; 

  x0 = gx0 + (int)((t1_start/.6)*(gx1-gx0)); 

  x1 = (int)(((t1_end-t1_start)/.6)*(gx1-gx0)); 

  if(x1<=0) 

    x1 = 1; 

  nslFillRect(x0,y0,x1,y1,”green”); 

  // T2 

  y0 = gy0*3; 

  x0 = gx0 + (int)((t2_start/.6)*(gx1-gx0)); 

  x1 = (int)(((t2_end-t2_start)/.6)*(gx1-gx0)); 

  if(x1<=0) 

    x1 = 1; 

  nslFillRect(x0,y0,x1,y1,”blue”); 

  } 

  public void nslCollect() { 

   NslNumeric1 params = (NslNumeric1)vi.getNslVar(); 

  params[0] = getXFixValue(); 

  params[1] = getYFixValue(); 

  … 

  }  

  … 

}

To provide the continuous remmaping capability we utilized in the buildup neurons 
in the superior colliculus, we had to create a mechanism to keep track of the location of 
the centroid of the “moving hill”, as we did not have enough neurons to allow the activity 
to propagate “naturally”. We created a NSLM class called Target that had x and y coordi-
nates as well as a variable to support a list of Target objects. We created a member 
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function called Move that accepted a two-element vector of an x, y delta to be moved. 
This function applied the movement to the current location of the Target. A separate 
function applied to the new location of the buildup neuron targets onto the buildup neu-
rons to simulate the continuous movement across the buildup cells. 

nslClass Target() { 

 // This class provides for a linked list of target objects  

 // that all have the size of a single array element.   

 // The contents of this class are the x,y coordinates 

 // of the corner closest to array element 0,0, and a pointer 

 // to the next Target in the list.  The x-coordinate is the 

 // first sort. 

 private double  xcor, ycor; 

 private Target  next; 

 initTarget() {  

  xcor = 0; ycor = 0; next = nslNull;  

 } 

 … 

 void Move( NslDouble1 invec ){ 

 // This method applies the input movement vector to all of  

  the  

 // Targets in the linked list. The x,y-coordinates of each  

 // Target have the input movement vector subtracted from  

  their  

 // corner coordinates as the motion of the Targets across  

  the  

 // visual space is in the opposite direction to the movement  

 // of the eyes. 

 Target cur; 

 // Do the first target as it always exists 

  xcor = xcor – invec[0]; 

  ycor = ycor – invec[1]; 

  cur = next;  //get pointer to next Target 

  // The do-while will “move” the second and higher  

  // Targets if they exist 

  while ( cur != nslNull )      { 

   cur.xcor = cur.xcor – invec[0]; 

   cur.ycor = cur.ycor – invec[1]; 

   cur = cur.next; 

  } 

 } 

 … 

 double X() {return xcor;} 

 double Y() {return ycor;} 

 Target Next() {return next;} 

}

Our most comprehensive extension to NSLM was the ability to map arbitrary 
neurons in one layer onto a larger layer. This was the basis of out remapping algorithm 
between the cortex and the basal ganglia. Specifically, we created a linked list 



C R O W L E Y - A R B I B  S A C C A D E  M O D E L     2 9 9

mechanism for each element in the input layer (FEF, LIP and PFC) for our model that 
pointed to all neurons to which they project (striatum in or case). Thus, for any given 
input neuron, you only need to read the linked list out to determine its projections. We 
used the same mechanism to establish the remapping from striatum to SNr. In this case, 
however, there were multiple connections onto SNr from striatum, but the same principle 
applies. You can find out which striatal neurons talk to a specific SNr neuron by just 
indexing the linked list for that neuron. This “bi-directional” mapping made the teaching 
of the weights between cortex, striatum and SNr very simple, since we specified the 
cortical inputs and knew what SNr outputs we wanted. It was simple to match the linked 
lists that both pointed back to the striatum and then modify the weight matrix for the 
striatum. Summing the SNr inputs during runtime was also simplified as we accessed the 
linked list for each SNr neuron and summed the inputs for that neuron by reading the list 
only once per time step. 

nslClass Element() { 

 int x, y, xo, yo; 

 Element next; 

 nslConst int FOVEAX = 4; 

 nslConst int FOVEAY = 4; 

 … 

 public void initElement() { 

  x = y = x0 = y0 = -1;  

  next = nslNull; 

 } 

 … 

 public void Remap(int max, Element elem) { 

  // This function “remaps” the calling Element and  

   returns an  

  // Element containing the remapped location. 

  int xt, yt, xot, yot; 

  xt = FOVEAX - x; yt = FOVEAY - y; 

  xot = xt + xo;   yot = yt + yo; 

  elem.x = FOVEAX; elem.y = FOVEAY; 

  if ( ( xot > -1 ) && ( xot < max ) ) 

   elem.xo = xot; 

  else 

   elem.xo = -1; 

  if ( ( yot > -1 ) && ( yot < max ) ) 

   elem.yo = yot; 

  else 

   elem.yo = -1; 

  }   

  public Element Next() { return next; } 

  public int X() { return x; } 

  public int Y() { return y; } 

  public int XO() { return xo; } 

  public int YO() { return yo; } 

 } 

 nslModule Med (int CorticalArraySize, int StriatalArraySize) 

  extends Func (CorticalArraySize) { 

  private nslConst int MaxConnections   = 50; 
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  private nslConst int NumberIterations = 10; 

  // Output ports 

  public NslDoutInt3  

 FEFxmap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  public NslDoutInt3  

 FEFymap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  public NslDoutInt3  

 LIPxmap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  public NslDoutInt3  

 LIPymap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  public NslDoutInt3  

 PFCxmap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  public NslDoutInt3  

 PFCymap(CorticalArraySize,CorticalArraySize,MaxConnections); 

  // See MappingParameters 

  private int FEFPatchCount; 

  private int LIPPatchCount; 

  private int PFCPatchCount; 

  private Element LearnedElements(); 

  private Element UnlearnedElements(); 

  private Element Teacher(); 

  public void initRun () { 

   MakeMapping(); 

   … 

   LearnNewElements(); 

  } 

  … 

  public void MakeMapping() { 

   int MapSize = StriatalArraySize/3; 

   … 

   // Establish the direct path mapping from CD to SNr 

   SNRMapping(FEFxmap, FEFymap, FEFPatchCount, MapSize); 

   SNRMapping(LIPxmap, LIPymap, LIPPatchCount, MapSize); 

   SNRMapping(PFCxmap, PFCymap, PFCPatchCount, MapSize); 

   … 

  } 

  public void learnNewElements() { 

   LearnConnections(UnlearnedElements); 

   LearnedElements.Merge(UnlearnedElements); 

   UnlearnedElements.Remove(); 

  } 

  public void LearnConnections(Element elem) { 

   Element curelem(elem); 

   while ( curelem != null ) {  

   for (int ii=0; ii<NumberIterations; ii++ ) {       

    //# of iterations 

    // Set cortical excitation 

    … 

    // Determine correct remappings for non-neural  

     Teacher 

    curelem.Remap((int)CorticalArraySize, Teacher); 

    MapToFovea(curelem.X(), curelem.Y()); 

    // Time to map the nonsaccade target as well 
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    … 

    // increment weights between active CD neurons 

    // and remapped location 

    MapToOffset(curelem.X(), curelem.Y(),  

     curelem.XO(), curelem.YO()); 

    } 

    curelem = curelem.Next(); 

   } 

  } 

}

nslModule SNRmedburst (int CorticalArraySize,

  int StriatalArraySize) { 

 public NslDinDouble3 SNRweights(CorticalArraySize,  

  CorticalArraySize, CorticalArraySize); 

 public NslDinInt3 SNRxmap(CorticalArraySize,  

  CorticalArraySize, CorticalArraySize); 

 public NslDinInt3 SNRymap(CorticalArraySize,  

  CorticalArraySize, CorticalArraySize); 

 public NslDinDouble2  

  CDdirmedburst_in (StriatalArraySize, StriatalArraySize); 

 private NslDouble2 SNRcdinput  

  (CorticalArraySize, CorticalArraySize); 

  … 

 public void SumCDtoSNR (NslDouble2 CD, NslDouble2 SNR) { 

  // This function sums the activity in the medial CD  

  // circuit onto the medial SNR circuit through  

  // SNRweights, SNRxmap and SNRymap. 

  int i, j, k, xmaploc, ymaploc; 

  SNR = 0;  // Ensure new mapping only 

  for (i = 0; i < CorticalArraySize; i ++) { 

   for (j = 0; j < CorticalArraySize; j ++) { 

    for (k = 0; k < SNRMapCount [i][j]; k ++) { 

     xmaploc = SNRxmap [i][j][k]; 

     ymaploc = SNRymap [i][j][k]; 

       SNR [i][j] = SNR[i][j] 

        + CD [xmaploc][ymaploc] *  

        SNRweights [i][j][k]; 

     } 

    } 

  } 

 } 

 …  

 public void simRun () { 

  SumCDtoSNR (CDdirmedburst_in, SNRcdinput); 

  … 

 } 

}
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15.4 Simulation and Results1

The Crowley model can be tailored to test various experimental saccade paradigms. The 
current version of the model has two built-in paradigms: gap saccade and double saccade. 
The latter is more subtle. So we are going to go over the double saccade paradigm and 
show how the model can reproduce real world experimental results. 

The double saccade can be briefly described as the following. The subject is pre-
sented a fixation point which he must maintain a fixation until the stimuli is there. After 
some certain time delay first target is flashed somewhere in the visual field of the subject. 
It is followed by a second flash of target which may or may not overlap with the first 
stimuli. While the targets are being shown the subject must still maintain his fixation. 
Only after the fixation goes off the subject can make the saccades. The saccades he 
makes must follow the right temporal order. That is the first saccade to the first target and 
the second saccade to the second target. 

In order to enable user to modify certain paradigm specific parameters in a conven-
ient way a custom user interface is designed for Crowley Model. The user can bring 
either of the paradigms’ user interface by using via experiment menu. The double 
saccade user interface gives user the convenience of setting up experiment parameters by 
dragging and clicking. Figure 15.11 shows how the double saccade interface looks like: 

Figure 15.11
Double saccade experiment 
interface window 

The upper part of the window is used to specify the location of the targets and the 
fixation point. The user needs simply to click on one of the buttons for fixation, target1 
or target2 and point the position of the stimulus on the grid. Fixation point is denoted by 
blue, target 1 is by green and target 2 by red color. Once the user specifies the position of 
the stimuli then he/she has the opportunity to modify the timing of the stimuli by simply 
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dragging the gauges on the lower level of the interface window. For example on the sam-
ple interface window the visual events that occur can be described as follows. At time 0.0 
the fixation stimuli appears. At time 0.5 first target appears. At time 0.1 first target disap-
pears and target two appears. At time 0.15 target two disappears. Finally the fixation 
stimulus goes away at time 0.2. Once the spatial and temporal characteristics of the dou-
ble saccade paradigm is specified user has to click on Apply button to load the settings 
into the simulator. Then the double saccade experiment can be simulated by clicking the 
Start button. The simulator will, then, create the visual events defined by the user and 
simulate the model. NSL display window can be used to display the model variables as 
usual. The Crowley Model comes with a NSL display window with 8 graphic displays as 
shown in the below figure. The visual events specified occurs in the top left graph. Other 
graphs show the various model variables. For example the CrowleyTop.lip.LIPmem_out 
labeled graph shows the NSL variable LIPmem_out which is defined in lip module. In 
regard to model semantics this layers keeps the memory of the visual stimuli. 

The activity of the buildup neurons in SC can be used to track the saccades that the 
model executes. The moving activity towards to center following by a decay at the center 
in SCbu1 layer corresponds to a saccade that the model executes. Thus a double saccade 
would mean two consecutive buildup neuron activity. The SCbu1 layer is retinotopically 
organized so the start of the activity corresponds to the target stimulus for the saccade. 
However the second target is remapped with anticipation of the first saccade. So the sec-
ond saccade activity seen in buildup neurons are based on the remapped location.  

Figure 15.12
First saccade in progress 

The buildup neuron activity is shown using a 3d graph (figures 15.12 and 15.13). 
The targets in this simulation run were horizontally aligned and above the fixation point. 
The first target were also aligned with the fixation point. The system was expected to 
make a vertical (upward) saccade then a horizontal (rightward) saccade to the second 
target. If there were no remapping the second saccade would not be horizontal but it 
would be an up-right one. The prediction for the buildup neuron activity was to have two 
perpen-dicular activities decaying at the center. The following two figures demonstrate 
the expected result. First figure shows the simulator display window during first saccade. 
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The second figure shows the expected second saccade (Note that the direction of the 
saccades are towards the center so they are perpendicular).

Figure 15.13
Second saccade in progress 

15.5 Summary 
We have developed a neural network model of the saccadic motor control system that 
includes a number of cortical and subcortical systems known to be involved in saccadic 
eye movements. One primary thesis of our model is that the basal ganglia has two 
primary roles in saccadic motor control: (1) inhibition of voluntary saccadic eye 
movements until cortical centers provide a go signal and (2) provide for the sensory 
remapping of potential saccade targets based upon an impeding saccade command. 
Additionally, we have implemented a mechanism simulating the effects of dopamine 
deficit in saccadic eye movements. Lastly, we have implemented a model that places the 
superior colliculus within a feedback control loop responsible for terminating saccades. 

We have made use of the NSLM language functionality showing how buffered ports 
can be utilized to make the order in which modules are executed unimportant. We have 
explained the creation of standard and custom user interfaces. We reviewed how proto-
cols are declared to simulate different experiments for the same model. We provided an 
example of how to extend NSLM to obtain additional functionality not directly available 
in the language. We ended showing how the NSL simulation environment can be used to 
run the implemented model for the double saccade experiment. 

Notes

1.  The Saccade model was implemented and tested under NSLJ. 



16 A Cerebellar Model of Sensorimotor Adaptation 
J. Spoelstra 

16.1 Introduction 
This chapter describes a neural network model of adaptation, based on the Martin et al.
(1995) study of normal subjects and cerebellar patients throwing at a target after donning 
30° prisms. The prisms caused subjects to miss the target by an angle corresponding to 
the prism deflection angle. With subsequent throws, however, normal subjects adjusted 
until they were once again throwing on target. After doffing the glasses the prism gaze-
throw calibration remained and subjects made corresponding errors in the opposite direc-
tion. A cartoon sketch of the experiment is shown in figure 16.1. 

Figure 16.1
The experiment done by 
Martin et al. (1995). Subjects 
throw at a visual target while 
wearing prism glasses. 
Donning the glasses cause 
subjects to miss the target, 
but normal subjects adjust 
until they once again throw 
on target. After doffing the 
prism glasses, subjects make 
errors in the opposite 
direction and have to readjust 
their normal throwing. 

From a modeling perspective, three results were particularly interesting: 

� The calibration was throw-strategy specific: What was learned was not a general 
sensorimotor transformation; over- and under-hand throwing required independent 
adaptation.

� After a number of weeks of training subjects acquired the ability to throw accurately 
from the first throw, both with and without the prism glasses. 

� Patients with lesions in the intermediate and medial cerebellum could not learn to 
throw accurately while wearing prisms, implicating the part of the cerebellum pro-
jecting “downstream” to the brainstem and spinal cord. 

16.2 Model Description 
Ito (1984) defined the basic building block of the cerebellar cortex and underlying nuclei 
as the microcomplex, shown in figure 16.2. Inputs arrive via mossy fibers (MF) to the 
granule cells (GC) whose axons bifurcate to form parallel fibers (PF) in the cerebellar 
cortex. Each Purkinje cell (PC) receives input from a large number of parallel fibers and 
one climbing fiber originating in the inferior olive (IO). Purkinje cells are the sole output 
from the cortex and inhibit the nuclear cells (NUC). Nuclear cell axons connect the cere-
bellum to the rest of the motor system, but have also been shown to produce an inhibitory 
effect on the same inferior olive cells that project to the overlying Purkinje cells to com-
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plete the loop. Learning occurs as long term depression (LTD) of parallel fiber-Purkinje 
dendrites after coactivation of parallel- and climbing fibers (Marr 1969; Albus 1971). 

Figure 16.2
The major cell types and 
circuitry of the cerebellar 
cortex, also showing the loop 
made with the underlying 
nuclear cells and the inferior 
olive. 

16.3 Model Implementation 
Figure 16.3 shows the overall structure of the NSL implementation, including modules, 
submodules and input/output ports. The naming convention is that modules representing 
neuron populations are named xxx_layer, whereas high-level modules and other model 
systems “boxes” are named xxx_module. 

Figure 16.3
A box diagram of the NSL 
simulation code showing the 
different NSL modules with 
their inputs and outputs. 

Neuron Populations 
All neurons are modeled as having firing rate f computed from the membrane potential p
using the sigmoid function: 
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with Fmax  the maximum firing rate, �  determining the slope and �  the offset of the sig-
moid. The membrane potential is simply the weighted sum of the inputs to the neuron 

�
�

=
Aj

jIp (16.2)

with Ij the current synaptic input from neuron j and A denoting the set of projecting neu-
rons. 

PP_layer 
The cerebellar granule cell layer receives input from two other layers, both containing a 
coarse coding of physical variables. The first input, putatively called posterior parietal 
(PP), is a 10x10 array with coordinates ranging from (0,0) to (9,9) and codes the arm con-
figuration at the end of the throw. Because we are only interested in the horizontal throw 
direction, only the arm yaw angle relative to the head direction is represented. We also 
want to distinguish between over- and underhand throwing, so the PP layer arbitrarily 
codes both aiming angle (where the target appears visually) and throw strategy (over-
/underhand). 

A group of cells in a circular region with diameter of roughly 6 grid units were acti-
vated simultaneously, with activity maximal in the center and tapering off from there. As 
displayed by the NSL system, throw direction was coded on the Y-axis, with strategy on 
the X-axis. Using our coding convention, planning an overhand throw at a target centered 
in the visual field would cause a bump of activity centered at (3,4.5). If an underhand 
throw is planned the activity would be centered at (7,4.5).  

The NSL code for generating this input is shown below. The parameter pp_sep de-
termines the separation between the activity bumps for overarm and underarm throwing 
respectively, while pp_noise determines what portion of the signal will be generated by 
random to simulate noise. The inputs s_in and a_in represent throw strategy (0 for over-
arm, 1 for underarm) and aim direction respectively. 

public void simRun(){ 

 int i,j; 

 double mx, my; 

 double dx,dy; 

 if(s_in < .5)   // throw = over 

  my = 4.5 - pp_sep/2.; 

 else            // throw = under 

  my = 4.5 + pp_sep/2.; 

 mx = 4.5 + 4.5*a_in/30.; // Fit [-30:30] in [0:9] 

 for(i=0;i<10;i++){ 

  dx = mx - i; 

  for(j=0;j<10;j++){ 

   dy = my - j; 

   pp_out[i][j] = pp_noise * nslRandom() +  

     (1. – pp_noise) *  

   nslExp(-1.*(dx*dx/sx2 + dy*dy/sy2)); 

  } 

 } 

}
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FCX_layer 
The second input layer contains a population code indicating an awareness of wearing 
prism glasses. Given enough time subjects could learn to throw accurately both with and 
without the prism glasses, indicating that the cerebellum received some information, 
possibly from the frontal cortex (FCX), telling it whether this was a prism-on or prism-
off trial. In the model a 10x4 array was used with the Gaussian bump of activity centered 
around (2.5,2) normally, and at (2.5,7) when prism glasses were worn. 

In the NSL code below p_in is the prism angle while the parameter fcx_noise deter-
mines the noise level as for the PP input. 

public void simRun(){ 

 int i,j; 

 double mx, my, dx, dy; 

 mx = 1. + 9.*p_in/50.; // Fit [0:50] in [1:10] 

 my = 1.5; 

 for(i=0;i<10;i++){ 

  dx = mx-i; 

  for(j=0;j<4;j++){ 

    dy = my - j; 

    fcx_out[i][j] = fcx_noise*nslRandom() +  

    (1.-fcx_noise)*nslExp(-1.*(dx*dx/sx2 +  

     dy*dy/sy2)); 

  } 

 } 

}

GC_layer 
Input arrives at the cerebellum via mossy fibers from the two input regions PP and FCX. 
Granule cells provide the input to the cerebellar cortex and are represented by a 30x30 
array. In the real cerebellum each granule cell synapses with on average four mossy 
fibers—in the model four inputs were randomly selected with varying probability from 
the two input regions. The result is that the granule cell layer in a sense acts as the hidden 
layer in a multi-layer perceptron artificial neural network by providing nonlinear 
combinations of the raw inputs. 

In order to produce this random mapping from the two input matrices onto the 30x30 
GC grid, 5 arrays were set up in the initModule procedure: For each of the 3600 synapses 
(30x30x4) an input is selected randomly from the two input matrices. Vectors Xo and Yo 
record the coordinates on the input matrix; Xd and Yd record the coordinates on the GC 
matrix; and src records which of the two inputs was chosen. 

During execution of the model the simRun method uses these vectors to map ele-
ments of the input matrices onto the GC inputs. The model is sensitive to GC parameters, 
so a number were made a available to the user for experimentation: The number of inputs 
each granule cell receives is determined by gc_nd; gc_dist determines the fraction of PP 
inputs versus FCX inputs chosen; gc_offset and gc_slope determine cell properties as 
described above.  
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public void initModule(){ 
 int gx,gy,i,x,y; 
 double td; 
 w = 1./((double)gc_nd); 
 // Create mapping function 
 NC = 0; 
 for(gx=0;gx<30;gx++){ 
  for(gy=0;gy<30;gy++){ 
  for(i=0;i<gc_nd;i++){ 
   Xd[NC] = gx; 
   Yd[NC] = gy; 
   if(NslRandom() < gc_dist){ // PP input 
    src[NC] = 0; 
    td = (NslRandom()*5. + 3.); 
    Xo[NC] = (int)td; 
    td = (NslRandom()*10.); 
    Yo[NC] = (int)td; 
   } else { // FCX input 
     src[NC] = 1; 
     td = (NslRandom()*10.); 
     Xo[NC] = (int)td; 
     td = (NslRandom()*2. + 1); 
     Yo[NC] = (int)td; 
    } 
    NC++; 
   } 
  } 
 } 
}

public void simRun(){ 
 int i,j; 
 int mx,my,ix,iy; 

 // Map inputs onto 30x30 array using mapping function 
 gc_mp = 0.; 
 for(i=0;i<NC;i++){ 
  mx = Xd[i]; 
  my = Yd[i]; 
  ix = Xo[i]; 
  iy = Yo[i]; 
  if(src[i]==0) 
   gc_mp[mx][my] = gc_mp[mx][my] + pp_in[ix][iy]; 
  else 
   gc_mp[mx][my] = gc_mp[mx][my] + fcx_in[ix][iy]; 
 } 

 gc_mp = w * gc_mp; 
 for(i=0;i<30;i++){ 
  for(j=0;j<30;j++){ 
   gc_out[i][j] =  
    f_max/(1.+nslExp(gc_slope*(gc_offset- 
     gc_mp[i][j]))); 
  } 
 } 
}
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PC_layer 
Granule cell axons bifurcate to give rise to the parallel fibers in the cortex that synapse 
with the Purkinje cell (PC) dendrites. The PCs are modeled as a 2x5 array. Parallel fibers 
run parallel to the X-direction and are modeled to span the entire width of the cerebellar 
patch modeled. Thus, if a PC receives input from one granule cell in a row, it receives 
input from all the granule cells in that row. The synaptic weights are excitatory and 
modifiable. 

The section of NSL code below, taken from the simRun method shows how GC 
inputs are mapped onto the PC layer so that each PC receives input from a beam of GCs 
comprising one third of the total GC population. All the weights are stored in a single 
large vector. 

// GC inputs 

 pc_mp = 0.; 

 wc = 0; 

 for(px=0;px<2;px++){ 

  for(py=0;py<5;py++){ 

   beam_start = py*30/5; 

   for(gx=0;gx<30;gx++){ 

    for(y=0;y<10;y++){ 

     gy = (beam_start + y)%30; 

     pc_mp[px][py] = pc_mp[px][py]  

      + w[wc] * gc_in[gx][gy]; 

     wc++; 

    } 

   } 

  } 

 } 

We follow the current thinking that learning in the cerebellum occurs at the parallel 
fiber-Purkinje synapses and specifically that long term depression (LTD) of synaptic 
weights occur with simultaneous granule (pre synaptic), Purkinje (post synaptic) and 
climbing fiber activity. In order to prevent all weights systematically decreasing to zero, 
it is postulated that long term potentiation (LTP) will occur if pre- and post-synaptic 
activity is paired without climbing fiber activity.  

Climbing fibers originate in the inferior olive (IO) and project topographically to the 
Purkinje layer: Each PC receives only one climbing fiber from the IO (Ito 1984). In this 
model we do not address the real-time role of climbing fiber activity on the firing rate of 
PCs; the inputs from the inferior olive (IO) are used solely as training signals. 

The learning rule can be formalized as: 

( )back
ioiopg FFFFw ��=� � (16.3)

with w the synaptic efficacy at one of the parallel fiber-Purkinje synapses, � some con-
stant, Fg the firing rate of the granule cell, Fp the firing rate of the Purkinje cell, Fio the 
climbing fiber activity and Fio

back  the tonic activity rate of the IO cells. IO activity below 
the tonic rate will result in LTP while any activity higher than the tonic rate will cause 
LTD.

In the NSL implementation below the same loop structure is used as above to make 
clear which PC, GC and IO cells are used when updating a specific weight. The test 
against getCurTime is made to ensure that all the inputs have filtered through the various 
stages of the process. 
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// Learning 

if(system.getCurTime()>.055){ // give others time to settle

 (dart to fly) 

 wc = 0; 

 for(px=0;px<2;px++){ 

  for(py=0;py<5;py++){ 

   beam_start = py*30/5; 

   for(gx=0;gx<30;gx++){ 

    for(y=0;y<10;y++){ 

     gy = (beam_start + y)%30; 

     w[wc] = w[wc] 

      + alpha * (gc_in[gx][gy]*.01) *  

       (io_in[px] - 2.); 

     if(w[wc] < 0.) 

      w[wc] = 0.; 

     else if(w[wc] > 1.) 

      w[wc] = 1.; 

     wc++; 

    } 

   } 

  } 

 } 

}

Purkinje cells inhibit nuclear cells which in turn inhibit IO cells, producing a stable 
system: Any activity (disturbance) in the IO higher than Fio

back  will cause a decrease in the 
PC firing, leading to an increase in nuclear cell activity which inhibits the IO cell. Stabil-
ity is reached when nuclear activity is such that inhibition has all IO cells firing at Fio

back .
One could think of the nuclear cells providing an expectation of the disturbance. 

NUC_layer 
The PC layer projects topographically onto the 20x1 nuclear layer. Each nuclear cell syn-
apses with all the PCs in its column. These synapses are fixed and inhibitory. Nuclear 
cells also receive topographical projections with fixed weights from PP. Each nuclear cell 
receives input from a column of PP cells (coding aim direction) so that without PC inter-
vention (no adaptation) normal throws go in the aim direction. In order to facilitate 
nuclear cell activity through PC disinhibition, the offset and slope parameters for the 
nuclear cells are set so that the cells are tonically active at about 10% of their maximum 
firing rate. 
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public void simRun(){ 

 int i,j; 

 int ix; 

 double td; 

 // Map PP and PC inputs onto 2x1 array 

 nuc_mp = 0.; 

 for(i=0;i<10;i++){ 

  ix = i/5; 

  for(j=0;j<10;j++){ 

    nuc_mp[ix] = nuc_mp[ix]+ 2.*pp_in[i][j]; 

  } 

 } 

 for(i=0;i<2;i++){ 

  for(j=0;j<5;j++){ 

    nuc_mp[i] = nuc_mp[i] - .2 * pc_in[i][j]; 

  } 

 } 

 for(i=0;i<2;i++){ 

  nuc_out[i] = f_max/(1.+NslExp(slope*(offset- 

   nuc_mp[i]))); 

 } 

}

IO_layer 
As discussed above, each IO cell receives inhibitory projections from the nuclear cells 
and an excitatory connection from a sensory layer that indicates an error in performance. 
An interesting aspect is that the IO cells receive inhibition not only from the correspond-
ing nuclear cell (which closes the negative-feedback learning loop), but also from the 
other (opposing) nuclear cell. The reason for this is that the output of the nuclear cells 
drive the direction of the eventual throw in a push-pull manner. In such a system, if the 
slightest disparity exists between LTD and LTP, small random errors will eventually 
drive the system to saturate with all weights at either their maximum or minimum values. 
By adding inhibition from the opposing side, however, any coactivation suppresses IO 
activity (which would increase NUC activity by decreasing PC weights) and steers the 
system towards reciprocal nuclear cell activation. 

public void simRun(){ 

 int i; 

 double nuc_act; 

 nuc_act = nuc_in[0] + nuc_in[1]; 

 io_mp = sens_in - .01*nuc_act; 

 for(i=0;i<2;i++){ 

  io_out[i] = f_max/(1.+NslExp(slope*(offset-io_mp[i]))); 

 } 

}

SENS_layer 
We postulate that a system (also PP) codes the perceived error in the final arm configura-
tion or dart flight direction. This system then projects onto the IO layer where it is com-
bined with inhibition from the nuclear cells to generate the cerebellar training signal. 



A  C E R E B E L L A R  M O D E L  O F  S E N S O R I M O T O R  A D A P T A T I O N     3 1 3

Each of two cells are proportionally receptive to either a leftward or rightward throw 
error. The module takes as input both the throw direction and the prism angle. 

public void simRun(){ 

 double Derror; 

 Derror = p_in - t_in; 

 if(Derror < 0.){ /* go leftward */ 

  sens_out[0] = .1-Derror/10.; 

  sens_out[1] = 0.1; 

 } else { /* go right */ 

  sens_out[0] = 0.1; 

  sens_out[1] = .1+Derror/10.; 

 } 

}

High-level modules 

CEREB_module 
This module is simply a convenient abstraction of the cell layers comprising the cerebel-
lar part of the model. It does not do any processing, but simply instantiate its child mod-
ules and pass on inputs and outputs. 

THROW_module 
The output of the model is the yaw direction of the throw, derived from the activity of the 
two nuclear cells. Gilbert and Thach (1977) reported that cerebellar nuclear cells firing is 
related to arm yaw angle at the end of a trial. Following the hypothesis that cerebellar 
output influence brainstem motor pattern generators, it is assumed that each synergy cell 
will activate a combination of spring-like muscles to pull the final arm position to a side 
in a push-pull configuration. In a simplified model, the throw direction can be computed 
as the ratio of the activity of one cell to the total activity in both cells as shown below. 
The formula used gives a range of [-100:100] for the throw direction. 

public void simRun(){ 

 throw_out = (.5 - (1.+nuc_in[0])/(2.+nuc_in[1] +  

  nuc_in[0]))*100.; 

}

DART_top 
This module acts as a controller, automating the execution of specific experiments by 
executing a predetermined sequence of trials. A trial consists of setting up the inputs, then 
letting the simulation run for 6 steps at the end of which the throw direction is computed 
and the cerebellar weights adapted. An example of an experiment would be to execute a 
number of warm-up throws, followed by 20 throws while wearing prisms and 20 throws 
after doffing the prism glasses.  

DART_UI_module 
Although NSL provides an interface for displaying model variables and setting parame-
ters, this module incorporates Java code for a model-specific user interface. It uses the 
standard NSL ports and facilities for hierarchical variables to communicate with the 
model, but is designed to present the experimenter with a more intuitive interface for dis-
playing results and facilitate access to the model parameters. 
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Figure 16.4�

The custom user interface 
window for setting model 
parameters. 

The custom interface window, shown in figure 16.5, pops up alongside the two NSL 
windows. The center panel indicates where consecutive throws hit the target, color-coded 
to indicate whether prisms were worn and differentiate between overarm and underarm 
throwing. From the menu bar users may select between three experiments or choose to 
set parameter values (shown in figure 16.4). 

Figure 16.5
Simple adaptation 
experiment. 30° prism on at 
trial number 20, prism off at 
trial number 40 

16.4 Simulation and Results1

There are three basic experiments: Simple adaptation to wearing prisms and readaptation 
to overcome the aftereffect; transfer between over- and underarm throwing; and the 
acquisition of two gaze-throw calibrations. To reproduce the data presented by Martin et
al. (1995) and Kitazawa et al. (1995) it has to be shown that parameters exist to simulta-
neously satisfy 4 constraints: 

1. Rate of adaptation: Approximately 30 throws are required to adapt to the prisms, 
slightly less to readapt. In both cases errors decrease exponentially, with readaptation 
occurring at a higher rate. 

2. Magnitude of aftereffect: There is some variation, but the first throw after doffing the 
prisms usually misses by about 80% of the prism angle. 
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3. Transfer between over- and underarm throwing: Different levels of transfer should 
be possible. 

4. Acquisition of two calibrations: This should take a large number of prism-on/prism-
off adaptation trials. The initial error after donning or doffing the prisms should 
decrease exponentially. 

After Effect of Prism Adaptation 
Figure 16.5 depicts results of the basic experiment. A subject throws at a target, then dons 
30° wedge prism glasses causing him to throw 30° off target. With repeated throws he 
improves until he once again throws on target. When the prisms are removed the subject 
misses by almost 30° on the opposite side and has to readjust his aim. 

The activity of cells after adaptation to throwing with prisms as displayed by the 
NSL system is shown in figure 16.6. It can be seen how a depression in Purkinje cell 
activity (pc_out) leads to an increase in nuclear cell activity (nuc_out) that drives the 
direction of throwing. 

Figure 16.6
NSL output display of model 
variables after adaptation to 
prisms is complete. Note the 
depression in the activity of cells 
in the Purkinje layer and 
corresponding higher activity 
levels in the corresponding 
nuclear cells. 

Transfer between Over- and Underhand Throwing 
Martin reported that some patients showed no transfer, i.e., the first underhand throw 
without prisms after adapting overhand throwing with prisms was on target, while others 
showed partial transfer. He also noted that for patients that showed partial transfer, the 
first overhand throw after readjusting underhand throwing was closer to target by an 
amount roughly equal to the amount adjusted during underarm adaptation. In simulation 
we can replicated this phenomenon by adjusting the separation between over- and under-
hand in PP (parameter pp_sep). Due to the Gaussian shape of the activity bump in PP, a 
separation of 6.0 leads to almost no overlap, while a separation of 1.5 leads to substantial 
overlap in representation. The results shown in figure 16.7 were obtained with the default 
setting of 4.0 and produces only limited transfer. 
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Figure 16.7
Transfer between over- and underhand throwing. At trial 20 30° prisms were donned while throwing overhand. 
At trial 40 the prisms were taken off but throwing was underhand. From trial 60 throwing is overhand again. In 
cases where the separation is large (solid line), the adaptation is independent—underhand throwing does not 
show the prism aftereffect. Where the separation is smaller, overhand adaptation affects underhand throwing and 
the overhand aftereffect is reduced proportional to the amount of adaptation that was required for underhand 
throwing.

Relating this result to human studies we would predict that the cortical representa-
tions for under- and overhand throwing could differ between subjects in terms of the 
amount of overlap. One interpretation could be that those who show partial overlap 
acquired underhand throwing as a variation of the overhand strategy, while those who 
showed no transfer learned two separate skills. 

Relation to Other Models 
The model shares many features with the AST model (Arbib, Schweighofer and Thach, 
1994). In both models the cerebellar nuclear cells represent a population code of horizon-
tal direction. However, in the AST model this direction is “added” as a rotation to the 
gaze angle in premotor cortex, whereas the current model does not need the complicated 
rotation computation and posits that the cerebellar nuclear neurons contain a direct code 
of the throw direction. 

The AST model further required an artificial error detection system in register with 
the shoulder position that would activate an array of binary “leftward” and “rightward” 
cells in the inferior olive depending on where the throw went. While the current model 
does not yet offer a full explanation of the inferior olive, the error signal is generated in 
the IO through a combination of excitatory projections from PP and inhibitory projections 
from cerebellar nuclei to provide realistic IO firing rates and a stable learning system. 

The learning circuitry based on inhibitory feedback from the cerebellar nuclear cells 
to the inferior olive has previously been suggested in models of cerebellar function in 
classical conditioning by Moore et al. [1989] and again by Bartha and Thompson (1995). 

Martin et al. (1995) proposed a model where pairs of Purkinje cells, via disinhibition 
of nuclear cells, control eye, head and shoulder direction. The inputs are the current val-
ues of the controlled variables plus again the required “prism detector” input. However, 
no modeling results were published, so direct comparisons might not be appropriate. 
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16.5 Summary 
The model described in this chapter shows how observed behavior could be generated in 
a cerebellar-like structure. In this context we offer explanations to the following ques-
tions: 

What influences partial vs. zero transfer between over- and underhand throwing?
The model can replicate the behavior by varying a single parameter that controls repre-
sentations in (possibly) posterior parietal cortex. 

What is the function of the known inhibitory projections from cerebellar nuclei to the 
inferior olive? The model demonstrates that when combined with a plausible cerebellar 
learning mechanism that incorporates both LTD and LTP, the loop results in a stable 
learning system that will adapt to provide the correct output and encourage reciprocal 
activation.

Notes 

1.  The Cerebellar model was implemented and tested under NSLJ. 
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17 Learning to Detour1

F. J. Corbacho and A. Weitzenfeld 2

17.1 Introduction 
Anurans (frogs and toads) show quite flexible behavior when confronted with stationary 
objects on their way to prey or when escaping from a threat. Rana computatrix (Arbib, 
1987), an evolving computer model of anuran visuomotor coordination, models complex 
behaviors such as detouring around a stationary barrier to get to prey on the basis of an 
understanding of anuran prey and barrier recognition, depth perception, and appropriate 
motor pattern generation mechanisms based on sensory perception. This chapter presents 
a model of detour in Rana computatrix with an extension to learning of new schemas 
“How are schemas combined to form new schema assemblages acquired for the system to 
become more efficient?” We describe the construction mechanisms and interactions with 
the environment necessary to achieve higher levels of detour performance. This chapter 
describes a model that includes all these phenomena implemented in NSL. More details 
on some of the model components can be found in (Corbacho and Arbib, 1995) whereas 
Corbacho et al. (1996) present more behavioral data. This is a specific model in Schema-
based Learning (SBL) but it serves to exemplify some of the general points and mecha-
nisms included in the general framework of SBL. For the general framework we refer the 
reader to (Corbacho, 1998). 

In this chapter we present a Schema-based model of learning to detour including dif-
ferent schemas implemented in some cases as functional units and in other cases as neural 
networks. The motivation for the study of Learning to Detour in frogs as our case study 
in Schema-based learning (SBL) is three-fold: 

1. SBL is constrained by data on a neuro-ethologycally sound system -both the task, the 
environment and the agent. 

2. The study of Rana Computatrix allows for horizontal integration (across many inte-
grated functionalities) and not just vertical integration (action-perception within one 
central functionality, e.g., saccadic eye movements). 

3. Learning to Detour has proved to be a very adaptive process relaying on important 
processes of learning (Corbacho et al., 1996). 

Problem Background 
Ingle (1983) and Collett (1983), to cite some examples, have observed that a frog/toad’s 
approach to a prey or avoidance from a threat are also determined by the stationary ob-
jects in the animal’s surround. A frog or toad, viewing a vertical paling fence barrier 
through which it can see a worm, may either approach directly to snap at the worm, or 
detour around the barrier. However, if no worm is visible, the animal does not move. 
Thus, it is the worm that triggers the animal’s response but, when the barrier is present, 
the animal’s trajectory to the worm changes in a way that reflects the relative spatial 
configuration of the worm and the barrier. Corbacho and Arbib (1995) modeled the dif-
ferent behavioral responses to different barrier configurations, as well as the learning 
involved in the behavioral transitions. The present section is based on behavioral studies 
of frogs, Rana pipiens (Corbacho et al., 1996). Here we sample a few of our observations 
of the main capabilities of frogs for detour behavior that set challenges for our learning 
model. 
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Experiment I: Barrier 10 cm Wide 
Frogs that started from a long enough distance (15–25 cm) in front of a 10cm wide 
barrier (and with the worm 10 cm behind the barrier) showed (in 95% of the trials) 
reliable detour behaviors from the first interaction with the 10 cm barrier. They produced 
an immediate approach movement towards one of the edges of the barrier (see 17.1A). 
This experiment shows that an adult frog has the capability without training to perform 
detours when the barrier is narrow enough (10 cm long) and the frog is at a far enough 
distance (15-20 cm) from the barrier.  

Experiment II: Barrier 20 cm wide 
From now on we will refer to a frog which has not been exposed to the barrier paradigm 
as naive. If the chopsticks are placed the same distance apart, so that the gaps have the 
same width, and the barrier is 20 cm wide, then the naive frog tends to go for the gap in 
the direction of the prey (this was the case for 88% of the trials). The frog starts out ap-
proaching the fence trying to make its way through the gaps. During the first trials with 
the 20 cm barrier the frog goes straight towards the prey thus bumping into the barrier. 
When the frog is not able to go through a gap towards the prey it backs-up about 2 cm 
and then reorients towards one of the neighboring gaps (see figure 17.1B). 

Observation: After 2 (43%) or 3 (57%) trials, the frog is already detouring around the 
barrier without bumping into the barrier (see figure 17.1C). The behavior involves a 
synergy of both forward and lateral body (sidestep) movements in a very smooth and 
continuous single movement. 
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Figure 17.1�

���Approach to prey with 
single 10 cm barrier 
interposed. ���Approach to 
prey with single 20 cm barrier 
interposed: first trial with frog 
in front of 20 cm barrier 
(numbers indicate the 
succession of the 
movements). ���Approach to 
prey with single 20 cm barrier 
interposed: after 3 trials with 
frog in front of 20 cm barrier. 
Arrowheads indicate the 
position and orientation of 
the frog following a single 
continuous movement after 
which the frog pauses. 

17.2 Model Description 
We start by defining the environment and the agent (frog in this case). The environment 
provides the agent with an interaction space. Ultimately the behavior of any agent is very 
dependent on its environment so that the behavior can only be understood in relation to 
the synergy agent-environment. In order to define the structure of the agent we start by 
defining the spaces of interaction/communication with the environment and then follow 
with the functional units that constitute the agent.  

Definition. An Environment is a space that includes a collection of entities and their 
relations (interactions). A particular instance configuration at time t will be denoted as 
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Environment(t). Environment is a 150x150 grid where different entities e.g., frog(xf,yf), 
barrier(xb,yb,wh,g). The simulation system contains simplified Environment functions 
designed to allow for an adequate interaction between the simulated agent and its envi-
ronment, for instance the simulation system performs simple “shifts” of the agent’s visual 
field as it moves in the environment and its coordinates change. The environmental func-
tions will be described in more detail in the Model Architecture section. 

Basically, the visual field of the agent corresponds to a sector of the Environment,
and the coordinates of this sector are updated as the agent moves around. This 2D sector 
corresponding to the agent’s visual field is projected upon the retina of the agent, which 
is the front-end visual perception system. The agent may also perform several actions that 
may cause environmental and agent parameters to change. 

Component Schemas: Architecture  
The detour model incorporates schemas (functional units) and neural modules (structural 
units) described in table 17.1 and shown in figure 17.2.  

Function Schema Level Modules Neural Level Modules 

Perceptual Visual, Depth, Tactile, PreyRec, SoRec Retina, T5_2layer, TH10layer 

Sensorimotor PreyApproach, SoAvoid Motor Heading Map (MHM) 

Motor Forward, Orient, Sidestep, Backup 

R4

Visual

R1-R2

R3

Retina

T5_2 layer

TH10 layer
Motor

Heading
Map

Static Object
Recognizer

Prey
Recognizer

TH10

T5_2

Static Object
Avoidance

Prey Approach

Forward

Orient

Sidestep

BackwardTactile Schema Level

Neural Level

Figure 17.2
Schema Architecture for Detour 
Model consisting of two levels: a 
schema level and a neural 
networks level. The schema level 
consists of Perceptual Schemas: 
Visual and Tactile, Prey 
Recognition, Static Object 
Recognition (SOR); 
Sensorimotor Schemas: Prey 
Approach and Static Object 
Avoidance; and Motor Schemas 
Orient, Forward, Sidestep and 
Backup. The neural level 
consists of four modules: Retina, 
T5_2layer, TH10layer and the 
Motor Heading Map (MHM). 

Perceptual Schemas 
Perceptual schemas involve both sensors and recognizers based on these sensors.  

Visual 
The Visual schema simulates a visual sensor discriminating among different objects in 
the visual field, mainly prey and barrier in this model.  

Depth 
The Depth schema generates a depth map for the objects of interest, primarily barrier in 
order to avoid hitting it and generating appropriate responses according to how close the 
frog is to it.  

Table 17.1
Frog schemas according to 
their functional (schema 
level) and structural 
organization (neural level). 
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Tactile 
When the frog hits an object, in the current case the barrier, the Tactile schema gets trig-
gered. The simulation environment checks when the frog comes level with the barrier 
(equal y-coordinates), and then checks whether there is a passable opening (we have 
chosen 3 cm wide or more for our simulations—this would change as the frog grows) at 
the frog’s current x-coordinate. If the gap is not passable then the Tactile schema gets 
triggered: 



 =

=
otherwise0

 wise3cm than lessisclosest to theandif1 xyy fbf
Tactile

(17.1)

where (fx,fy) are the (x,y) coordinates of the “snout” of the simulated frog in the 2D 
world, and by is the “depth” coordinate of the barrier. 

Prey Recognizer 
Cervantes-Perez et al. (1985) presented a detailed neural network implementation for 
prey recognition. Here we present a schema (PreyRec) that approximates this neural 
network mapping. The presence of prey within the visual field of the animal produces a 
2D pattern of activity in the prey recognition system, while absence of prey leaves the 
system at rest. This is here implemented by simplified feature detectors but it is open to 
more detailed implementations. 

Ewert (1971) found in toad’s pretectum near the ventral part of the pct (postero-
central thalamic nucleus), units that give continued discharge in the presence of a large 
dark stationary object. This occurred even when the stationary object was revealed by 
turning on the room lights without prior motion: Class th10 neurons—with an ERF of 
about 30–90°— exhibit prolonged discharge to large contrast stimuli that are stationary in 
their ERF.  

Static Object Recognizer 
A model of Stationary Object Recognition in anurans was proposed by Lee (1994) based 
on these findings. In this paper we provide a schema (SorRec) that approximates this 
model providing the output through the th10 cells map. 

Sensorimotor Schemas 
Sensorimotor schemas integrate between sensory perception and motor action.  

Prey Approach 
Epstein (1977) introduced, and Arbib & House (1987) refined, the notion of prey attrac-
tant field. A prey sets up a symmetric attractant field whose strength decays gradually 
with distance from the prey. Arbib & House (1987) described the mask for prey objects 
as projecting very broadly in the lateral direction and somewhat less broadly in the for-
ward direction This “prey-attractant-field” represents the location of the stimulus accu-
rately as the center of mass of the representation. It also provides the system with 
neighbor positions available as targets were the accurate position impossible to reach, 
thus providing the system with a coarse representation of prey location. 

PreyApproach projects this excitatory field onto the MHM (motor heading map) 
explained below. We hypothesize the projection of activity giving rise to coarse coding of 
prey location. 

prey(i,j,t)@kp(i,j) (17.2)

where i and j are indices for 2D arrays of neurons, t is time, kp is a kernel, and @ denotes 
spatial convolution. In general, each kernel in the present model will be a truncated Gaus-
sian of the general form 
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where R is the receptive field size. 

Static Object Avoid 
Analogously, the model also includes a repellent vector field associated with each fence 
post. Its effect is more localized to its point of origin than is that of the prey field. 

th10(i,j,t)@ks(i,j,t) (17.4)

We hypothesize the inhibitory pattern of connectivity to be also Gaussian shaped. 

Bump Avoid 
The BumpAvoid schema produces a reorientation that triggers the projection of an activ-
ity pattern (with quite large eccentricity) to the MHM. This field gives rise to excitation 
on the neighbor regions thus encoding the reorientation under bumping. It takes the form 
of

reorient(i,t) (17.5)

Motor Heading Map 
Cobas and Arbib (1992) propose that a motor heading map (MHM) determines the direc-
tion to jump: i.e., prey-catching and predator avoidance systems share a common map for 
the heading of the responding movements (coded in body coordinates), as distinct from a 
common tectal map for the direction of the stimulus. Note that the direction of prey and 
the direction of prey catching are the same, but the directions of a predator and the escape 
are different. Thus, in the latter case, the sensory map and the motor map must be distin-
guished. Projections to the MHM must differ depending on whether a visual stimulus is 
identified as prey, predator or obstacle. 

In our model, the outputs of the previously defined schemas (th10 and prey(T5_2)
respectively) are projected to MHM through kernels.  

In the current study the “neural field” generated in the MHM will be 1D (vs. 2D prey
and th10 maps) - we restrict here to the eccentricity component since the elevation com-
ponent is not important for the problem at hand. That is, the height of each fence-post (for 
fences high enough that the frog could not jump over them) does not affect the detour 
behavior. The eccentricity component which actually represents the target heading angle 
in the MHM will be the key “feature” in determining the sidestep to detour around the 
barrier. 

In our model, then, the total input Iin to MHM becomes 

),(*),,(),,(*),,(10),( jiktjipreytjiktjithtiI P
j

s
j

in ∑∑ += (17.6)

Thus the total input to MHM when including reorientation due to bumping becomes  

),(),(*),,(),,(*),,(10),( tireorientjiktjipreytjiktjithtiI P
j

s
j

in ++= ∑∑ (17.7)

Winner-take-all dynamics over MHM assure the selection of the strongest target 
angle, upon which a transformation from retinotopic to motor coordinates takes place. 
This is the input (besides different gating signals from the sensory apparatus) to the dif-
ferent motor schemas. The motor schemas are then selected based upon competition and 
cooperation dynamics. Corbacho and Arbib (1995) present a winner-take-all model 
(Amari & Arbib, 1977; Didday, 1976) which uses a competition mechanism to obtain a 
single winner in the network. 
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Heading Transform 
The Heading Map in Cobas and Arbib (1992) is differentially connected with the Orient 
schema depending on the region represented. The more lateral the stimulus is, the more 
strongly the Orient schema will be activated. The central portion of the heading map has 
a very light projection onto the oriented schema, and thus a prey falling into that region 
will only elicit a weak activation and consequently a very small turning movement or 
perhaps no turn at all.  

We have implemented the transformation from spatially coded to population coded 
in a similar manner. The output of the sensory motor transformation codes for the ampli-
tude of the target-heading angle. To perform the transformation we use a gradient of 
weights with a “V” shape. The highest value corresponding to the highest eccentricity. 

]),([)^()( ∑ Θ=
i

tiIigradienttangle (17.8)

where “^” is a pointwise vector multiplication, and implements a thresholding function to 
avoid producing an orienting response until the motor heading map “settles down” on a 
target position. Before the winner-take-all dynamics settle down on a “winner” target 
heading angle several clusters of activity may coexist in MHM corresponding to the 
representation of several barrier gaps in MHM. We use (Eq. 17.8) so that during the win-
ner-take-all dynamics, the cluster of activity with higher amplitude will reach this thresh-
old first as it is growing faster than any of the other clusters of activity. This enables the 
model to avoid computing a heading angle that could be a linear combination of several 
clusters of activity in MHM.

Motor Schemas 
In the current model, motor schemas are implemented as functional units/black boxes 
schematizing the neural interactions underlying behavior. The intrinsic motor patterns or 
muscle activations are not simulated. When active they simply change the coordinates of 
the agent (and/or environmental parameters) appropriately. 

We postulate that each component of the behavior (sidestep, orient, approach, snap, 
etc.) is governed by a specific motor schema. We then see detour behavior as an example 
of the coordination of motor schemas. Ingle (1980, 1983) has offered some clues as to the 
possible neural correlates of the various schemas. Apparently, thalamic and tectal visual 
mechanism can operate somewhat independently (Ingle, 1973). Monocular frogs without 
a contralateral optic tectum can quite accurately localize barriers, and while visual input 
to the pretectal region of the caudal thalamus mediates barrier avoidance behavior, caudal 
thalamic lesions produce an inability to sidestep stationary barriers set in the frog’s path 
during pursuit of prey. 

Among other motor schemas we provide the system with forward movement and lat-
eral (sidestep) movement. The forward schema when active produces a movement in the 
direction of the midsagittal axis of the body with frontal direction. The lateral sidestep 
movement is a movement orthogonal to the sagittal midline. Backup movement is similar 
to forward but in the opposite direction.  

Cobas and Arbib (1992) proposed a general mechanism of motor pattern selection 
through the interaction of motor schemas. MHM contains target location but motor 
schema selection is the result of competition of many maps. Each of the motor schemas 
has a threshold so that its action on the controlled musculature is only enabled when its 
internal level of activation reaches or surpasses that threshold. 

Schema Dynamics 
Schemas consist of schema behavioral mappings and schema activity variables. The full 
formalization is beyond the scope of this chapter; here simply mention that schemas 
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correspond formally to port automata with activity variables indicating the degree of 
confidence. The schema activity dynamics is described by the leaky integrator. The equa-
tion describing the dynamics of the schema activity variables is 

( ) ( ) ( ) ( )∑ ⋅+−=
j

jiji
i

i tRtSts
dt

tds
,τ (17.9)

where S is the result of a saturation by a sigmoid transfer function that guarantees that the 
activity variables remain within the interval [-1, 1], 

( ))()( tstS ii Θ= (17.10)

R is the matrix of support. It indicates how the activation of a schema supports the 
activation of another schema. The leaky integrators time constants may be different for 
different schema activation variables since some schemas may have a faster dynamics 
e.g. Tactile must reset quickly and with it BumpAvoid. 

Schema Assertion 
Schema assertion takes place when the schema activity variable surpasses certain thresh-
old hence indicating enough confidence on the application of that particular schema to 
the particular context. Once asserted the schema mapping output is produced, this pattern 
may in turn become the input for other schema mapping output. For many schemas once 
they are asserted they must be reset to avoid successive unrealistic activations. For 
instance once a motor schema has been asserted its activity variable is reset to 0. 

Schema Interactions 
There are some “reflex” dynamics corresponding to fast pathways e.g. Tactile activates 
Backup in one step (instantiation and activation). Also Tactile must reset quickly and 
with it BumpAvoid. Tactile momentarily inhibits Forward since otherwise Forward 
would be too active and lower down Backup activity variable to the point where Backup 
could not get activated. In general many schemas will be simultaneously active interact-
ing with each other, for instance Sidestep and Forward schemas are simultaneously active 
when “detouring” after learning. 

17.3 Model Implementation 
The Detour model is composed of the World module—a 3D input stimulus library, Prey
and Frog modules, as shown in figure 17.3. The static objects, in this case the Barrier,
are interactively specified from the scripting language as opposed to the other two. 

Detour

World

Frog

xfwangle

xwxw

xwxfwanglexb_init

worldXZ

worldXZ

xb_init

xb_end

xb_end yf

ywyw

ywyfyb

yb zf zwzw

zwzfzb

zb

Prey

Figure 17.3
Schema Architecture showing 
the top-level world topology. 
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Figure 17.4
Schema Architecture showing 
the frog schemas topology. 

World
We have provided for simple interactions with the World module. We simulate a simpli-
fied 3D environment by defining two different 2D projections or views: worldXY corre-
sponding to the top down view only available to the user, and worldXZ corresponding to 
the view of an agent immersed in the environment. The worldXZ view is used as visual 
input to the frog. 

The model takes advantage of the input layer components (see Appendix III for 
details) in generating external visual stimuli. A NslInputFloat3 3d input layer of 
sizex1xsizex2 in the x-direction and sizez1xsizez2 in the z-direction is instantiated by the 
World module as follows, 



L E A R N I N G  T O  D E T O U R    3 2 7

private NslInputFloat3 in(sizex1,sizex2,sizez1,sizez2); 

Note that a the NslInputFloat3 input layer actually involves two NslInputFloat2
layers: an xy-matrix and a xz-matrix corresponding two the two different views in the 3d 
space. Input processing takes places as follows, 

public void simRun(){ 

 ... 

 in.run(); 

 worldXZ = in.get_xzview(); 

}

The in object is processed by applying a the run method to it. This generates a new 
xy-matrix together with a new xz-matrix assigned to worldXZ for further processing in the 
model. 

Prey
The prey (worm in this case) is a static entity (although movement can be added to it, 
such as twiggling). In the current version the prey is described by its location and size. 

Barrier
The obstacle (barrier in this case) is also a static entity composed of multiple posts sepa-
rated by gaps, wide enough to let the frog see the prey behind it. The barrier gaps don’t
let the frog pass through it and are tall enough so the Frog won’t jump over it. The size 
and gaps between barrier posts can be modified interactively as will be seen later on. 

Frog  
The agent (frog in this model) is the heart to the detour model. The frog model includes a 
number of perceptual, sensorimotor and motor schemas instantiated within the frog, as 
shown in figure 17.4, and described each in the following sections. 

Perceptual Schemas 
Perception for the frog in the model is based on Visual and Tactile sensors, where also 
Depth is computed. In particular, the frog perceives the prey, PreyRec (Prey 
Recognizer), and the barrier, SoRec (Static Object Recognizer). 

Visual 
The visual input to the frog correspond to 2D image projections of the virtual 3D world 
reflected on the eyes (or camera) of the agent. The model computes a visualField corre-
sponding to the section of worldXZ that the frog can see at each time step. As the frog 
moves - frog coordinates xf, yf change - the visualField needs to be recomputed.  

The simRun methods computes the new visualField from the complete worldXZ
view depending on the size of its receptor field recsize

public void simRun() 

{

 int recsize = visualField.getRows(); 

 int isize = worldXZ.getRows(); 

 int jsize = worldXZ.getCols(); 

 visualField = worldXZ.getSector(isize-recsize,isize-1, 

  jsize/2-recsize/2,jsize/2+recsize/2-1); 

}

The getSector method obtains the portion of the worldXZ view perceived by visual-
Field.
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Depth 
The Depth module computes the distance in both x (depthX) and y (depthY) to the barrier 
or prey depending on the Frog’s current position in the world. This information is passed 
to the static object recognition and bump avoidance modules as well as the Forward 
module in avoiding hitting the barrier. The module output ps is a confidence level 
describing when depthY is greater than safeDistance, where safeDistance corresponds to 
the minimum distance the Frog should be to avoid hitting the barrier. 

The simRun method computes the dynamic location of the frog, and then calculates 
through simple subtractions the depth of the barrier and finally the ps confidence level 
that the frog is not too close to the barrier as output to other modules. 

public void simRun() 

{

...

if (depthY > safeDistance || depthX > safeDistance)

  ps = 2.0;   // Go up fast 

 else  

  ps = 0.0;  

}

Tactile 
The Tactile module simulates the frog hitting the barrier from its current position to the 
barrier computed by Depth.

The simRun method computes the output confidence level ps depending on whether 
the frog is close enough, both x and y, to the barrier.  

public void simRun() 

{

 if (depthY > 0 && depthY <= safeDistance && 

  depthX <= safeDistance)    

  ps = 2;  // Go up fast 

 else  

  ps = 0.0;   

 ps = nslSigma(ps, -1.0, 1.0, -1.0, 1.0); 

}

Prey Recognizer 
The Prey Recognizer (PreyRec) module recognizes and localizes prey stimuli within the 
visual field of the frog. The Prey is defined as a set of features. In this particular 
implementation we have simplified this perceptual schema a great deal (see Corbacho 
and Arbib 1995 for a more detailed implementation). The module receives visualField
input from the frog visual module and generates both an output confidence level and 
simulates the behavior of the t5_2 neural cells. 
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The simRun method computes the prey recognizer output in terms of filtering the 
visualField for a prey stimulus. 

public void simRun() 

{

 t5_2 = DetourLib.filter(visualField,2); 

 if (nslSum(t5_2) >= 1)  

  ps=0.9;  

 else  

  ps=0; 

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  

 if (ps > th)  

  t5_2f = nslRamp(t5_2);    

 else 

  t5_2f = 0; 

}

In particular

t5_2 = DetourLib.filter(visualField, 2); (17.11)

defines a prey in terms of a feature “2” corresponding to preys. The function filters 
out all elements in the matrix that do not have a corresponding value, in this case “2”.
This filtering function can be made more realistic including color, spatial frequency, 
complex shape filters, etc. 

The output t5_2 is still a 2D map representing the retinotopic position of the prey 
(vs. allocentric prey coordinates). 

Since this is a “seed” perceptual schema it must also provide “seed support” for its 
schema activation variable ps.



 >=

=
otherwise0

1)2_5nslSum(if9.0 t
ps (17.12)

Then, once the schema is asserted, ps > th,

t5_2f = nslRamp(t5_2); (17.13)

corresponding to the activation of the output port. 

Static Object Recognizer 
The Static Object Recognizer (SoRec) module recognizes and localizes static objects 
within the visual field of the frog. The Static Object is defined as a set of features. The 
module receives visualField input from the frog visual module and generates both an 
output confidence level and simulates the behavior of the th10 neural cells. 

The simRun method computes the prey recognizer output in terms of filtering the 
visualField for a barrier. 
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public void simRun() 

{

 th10 = DetourLib.filter(visualField, 1);   

 if (nslSum(th10) >= 1)  

  ps=0.9; 

 else  

  ps=0;  

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  

 if (ps > th)  

  th10f = nslRamp(th10);  

 else 

  th10f = 0; 

}

Similarly to the Prey Recognizer, the stationary object recognition filter stationary 
objects,

th10 = DetourLib.filter(visualField, 1); (17.14)

corresponding to feature “1” defining stationary objects. 
Then, once the schema is asserted, ps > th,

th10f = nslRamp(th10); (17.15)

corresponding to the activation of the output port. 

Sensorimotor Schemas 
The frog model incorporates a number of sensorimotor schemas: PreyApproach,
SoAvoid, BumpAvoid, Motor Heading Map (MHM) and Heading Transform (Xform).

Prey Approach 
The PreyApproach module integrates the horizontal projection of t5_2 cells generating a 
1D representation (parcellation), since it is more efficient to make the 1D projection 
before convolving with the gaussian kernel. preyHor corresponds to the eccentricity 
component of the prey attractant field (horizontal component).  

The initSys method reinitializes variables to 0, sets the confidence level input weight 
rs to 1, and initializes the excitatory gaussian kernel t5_2_erf,

public void initSys() 

{

 preyHor = 0;  

 preyHorf = 0;  

 rsfo = 1.0; // Prey & Prey Approach. 

 ps = 0; 

 DetourLib.gauss2D(t5_2_erf,t5_2_erf_sig); 

 t5_2_rf = t5_2_erf_wgt * t5_2_erf; 

}
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The simRun method computes the module activity, 

public void simRun() 
{
 preyF = t5_2_rf * t5_2f;   
 preyHor = nslReduceRow(preyF); // Parcellation:  
  horizontal comp 
 ps = rsfo*psfo;  
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
 if (ps > th) { 
  float mx = nslMax(prey_hor);  
  if (mx != 0.0) 
   prey_hor_f = prey_hor/mx; // Normalize. 
 } 
 else 
  prey_hor_f = 0; 
}

Once the schema is asserted, PreyHor contains the field (normalized by the maxi-
mum value) to be projected to the other modules (e.g. MHM).

Static Object Avoid 
The SorAvoid schema is implemented in a similar manner. IT integrates th10Hor as the 
1D horizontal component corresponding to a parcellated representation (C&A95). Gaps
corresponds to the inhibitory obstacle repellent field. Once the schema is asserted, gapsf,
which is normalized by the maximum value, is projected to the other schemas (e.g. 
MHM).  

The initSys method reinitializes variables to 0, sets the confidence level input weight 
rs to 1, and initializes the inhibitory gaussian kernel tm_irf and the final resulting kernel 
tm_rf

public void initSys() 
{
 rsso = 1.0; // Obstacle & Obstacle Avoid 
 ps = 0; 
 DetourLib.gauss1D(tm_irf,tm_irf_sig); 
 tm_rf = - tm_irf_wgt * tm_irf; 
}

The simRun method computes the schema activity, 

public void simRun() 
{
 th10Hor = nslReduceRow(th10f); // Parcellation (from 2D to 1D) 
 gaps = tm_rf * th10Hor;  // Convolve with kernel  
 ps = rsso*psso;  
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
 if (ps > th) { 
  float mx = nslMax(gaps*-1);  
  if (mx != 0.0) 
  gapsf = gaps/mx; 
 } 
 else  
  gapsf = 0; 
}
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Bump Avoid 
The BumpAvoid schema contains two components: field projection baf for reorientation 
(avoid keeping bumping on the same point) and, tuning of the SorAvoid module. 

The simRun method computes the activity as follows 

public void simRun() 
{
 if (depthY <= safeDistance && depthX <= safeDistance)  
  //Bumping ps = 0; 
 else 
  ps = -1.0; // Go down fast: -2.0 
 if (tune_tm < 1.5)  // saturate tune_tm. 
   tune_tm = tune_tm + tune_tm_base; 
 tune_tm_layer = tune_tm; 
 tune_tm_layer = tune_tm_layer ^ nslStep(-gaps);  
 gaps = gaps - tune_tm_layer;  
 gapsf = gaps; 
 ps = ps + rsta*psta; 
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
 if (ps > th){ 
  field_center = field_center + 2; 
  baf[field_center.getValue()] = field_A;  
 } 
 else 
  baf = 0; 
}

The function modulates the kernel. Every time it bumps it increases tune_tm until it 
reaches a saturation point. It tunes the bump avoid field by increasing eccentricity, modu-
lating only already active neurons. Every bump it increases tune_tm until it reaches a 
saturation point. 

Motor Heading Map 
The Motor Heading Map (MHM) schema then integrates the different fields preyHorf, 
gapsf and, baf. Another input to MHM, in, contains further modulating fields learned by 
the system. In particular, it will contain fields generated by newly constructed schemas 
(e.g. detour schema, at the moment the only one in the model).  

The simRun method computes the schema activity, 

public void simRun() 
{
 if (d_mhm > d_norm && gapsf ! = 0) 
 {     
  baf[field_center.getValue()] = field_A; 
  in = baf; // New Field “inserted” 
 } 
 else 
  in = 0; // reset input (cf. antidromic 
 mhm_hat = mhm;  

 // Predictive MHM. 
 mhm = gapsf + preyHorF + baf + in; 
 // Fields over MHM. 
 d_mhm = 0.03 * DetourLib.dist(mhm, mhm_hat); 
 ps = ps + rspa*pspa + rsoa*psoa; 
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
}
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The above code computes the dynamics of Motor Heading Map (MHM), integrating 
several fields, while new fields can also be added while learning. The “if” section com-
putes learning dynamics. It detects an incoherence and hence a trigger for a new schema. 

Heading Transform 
The winner take all selects a single target where maxim returns the vector normalized 
(subtraction) by its maximum, where only the maximum is above threshold (by 0.01). 

public void simRun() 

{   

 wta_mhm = DetourLib.maxim(mhm);  

}

Heading Transform 
The Xform schema transforms from retinotopic (vector) to population code (scalar) the 
representation of the target.  

The simRun method computes the schema activity, 

public void simRun() 
{
 int i = nslAvgMaxValue(wta_mhm);  
 angle = 0; 
 if (i != 0) 
  angle = i - wta_mhm.getRows()/2;  
 ps = ps + rspa*pspa + rsoa*psoa; 
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
}

The method computes the transformation to population coding corresponding to

angle = nslSum(gradient ^ wtaMhm); (17.16)

coding the heading angle as a scalar (cf. population coding). 

Motor Schemas 
We have included three motor schemas as explained in the Model Description section, 
forward, sidestep and backup.

Forward 
The Forward motor schema receives confidence contributions from other schemas as 
well as depth information to avoid hitting the barrier. step is a scalar coding the amplitude 
of forward movement. The simRun method computes the motor schema activity, 

public void simRun() 
{
 ps = ps + rsfo*psfo + rsta*psta + rsdp*psdp +  
 rsmhm*psmhm + rsbk*psbk; 
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  
 if (ps > th) { 
  ps = -1.0; // Reset     
  out = step; 
 } 
 else 
  out = 0; 
}
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Sidestep
The Sidestep motor schema receives confidence contributions from other schemas. angle
is a scalar coding the amplitude of the sidesteps. The simRun method computes the mo-
tor schema activity, 

public void simRun() 

{

 ps = ps + rsso*psso + rsta*psta + rsba*psba + rsmhm*psmhm +  

 rsx*psx; 

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  

 out = angle; 

 if (ps > th) { 

  ps = 0; // -1.0; // Reset 

 } 

}

Backup 
The Backup motor schema receives confidence contributions from other schemas. step is 
a scalar coding the amplitude of the backup movement (we omit the sign). The simRun
method computes the motor schema activity, 

public void simRun() 

{

 ps = ps + rsta*psta + rsba*psba + rsfw*psfw; 

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);  

 if (ps > th) { 

  ps = -1.0; // Reset 

  out = step; 

 } 

 else 

  out = 0; 

}

Learning Dynamics 
Schema dynamics previously presented are a simplification of Relaxation Labeling 
(Hummel & Zucker, 1983). Additionally, we provide a broad description of some of the 
learning mechanisms involved in both constructing a new schema and in tuning a existing 
schema. For the overall Schema-Based Learning (SBL) framework please refer to (Cor-
bacho, 1998).  

Schema Learning  
We explain how a “new” field of activity over mhm is able to reproduce a previously 
successful pattern of interaction. Concretely the field of activity projected over mhm that 
caused the frog to reach the edge of the barrier. 

Learning of a new schema is triggered when incoherence is detected. In this case the 
unexpected interaction when the frog gets to the edge of the barrier is reflected internally 
as incoherence in mhm. For every field projecting to mhm the predictive response is 
calculated by simply storing the previous value corresponding to the result of activating 
that field. 

mhm_hat(t+1) = mhm(t) (17.17)

The incoherence is measured as the distance between the current and the expected 
result,
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d_mhm(t+1) = Detour_lib.dist(mhm(t+1), mhm_hat(t+1)) (17.18)

when the incoherence is larger than a threshold it indicates “unexpected”. In this case the 
“culprit” is the field of activity baf (triggered by the BumpAvoid schema in the first 
place), and hence this field is internally stored so that it can be “played back” in future 
interactions with the barrier. 

if (d_mhm > d_norm)  (17.19)

in = baf

On second presentation of the barrier in (reflecting a pattern of activity similar to 
baf) projects a field of activity over mhm which in turn gives rise to a large value in angle
hence activating the Sidestep motor schema and detouring around the barrier. 

Schema Tuning  
In terms of schema tuning, the kernel for SorAvoid is tuned every time the BumpAvoid
schema is asserted. 

if (tune_tm < 1.5) (17.20)

tune_tm = tune_tm + tune_tm_base

Additionally in tuningField 

tune_tm_layer = tune_tm ^ nslStep(-gapsf) (17.21)

gapsf = gapsf - tune_tm_layer (17.22)

updates the field obstacle avoidance field (gapsf) by subtracting the modulation compo-
nent. 

17.4 Simulation and Results1

Different experiments were carried varying the barrier size (10cm and 20cm) as well as 
applying learning to the 20cm barrier experiment. The main simulation files are described 
in table 17.2: 

File Description 

detour.nsl contains all the model parameters 

detour_sti.nsl contains all the model stimulus specifications 

detour_fields.nsl displays different fields 

detour_env.nsl displays a top down and visual view of the environment 

To execute the model do: 

nsl source detour

nsl run

The stimuli specifications are done using the NSL input library described in Appen-
dix III. The detour_sti.nsl file includes parameters for the input layer as follows, 

nsl set detour.world.in.dx 1

nsl set detour.world.in.dy 1

nsl set detour.world.in.dz 1

nsl set detour.world.in.xz 0

nsl set detour.world.in.yz 0

nsl set detour.world.in.zz 0

Table 17.2
NSLS script files needed 
to run the different 
simulations.
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The worm specification is given by an input stimulus defined from the NSL input 
library as follows, 

nsl create BlockStim prey -layer detour.world.in -val 2 \ 

 -xc $xw -yc $yw -zc $zw -dx 1 -dy 1 -dz 1 -spec_type center 

Note that all variables preceded by the “$” symbol corresponds to variable values 
from Tcl (see the NSLS scripting language description in chapter 7). The values for these 
variables are chosen according to the particular experiment selected through variables 
learning and trial as will be described next. 

The frog specification is given similarly by an input stimulus defined from the NSL 
input library as follows, 

nsl create BlockStim frog -layer detour.world.in -val 1 \ 

 -xc $xf -yc $yf -zc $zf -dx 3 -dy 3 -dz 3 -spec_type center 

The barrier (or fence) specification is a little more involved given this time by a set 
of input stimuli defined from the NSL input library as follows, 

for {set xb $xb_init} {$xb <= $xb_end} {incr xb $gap} { 

 nsl create BlockStim fence -layer detour.world.in -val 1 \ 

  -x0 $xb -y0 $yb -z0 $zb -dx 1 -dy 1 -dz 100 -spec_type  

   corner 

}

Note that in the above specification the notation and expressions correspond to the 
NSLS scripting language extended from Tcl as described in chapter 7. 

Experiment I 
For experiment I (barrier 10 cm wide) set the following variable in detour_sti.nsl

set learning 0 

set trial 10 

After executing “nsl run” the system displays on one of the windows the different 
module fields as shown in figure 17.5.  
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Figure 17.5
Different activity fields for the 10cm barrier 
experiment due to visual_field processing in the frog 
with the exception of the bottom one processed after 
the tactile field. The top display (gaps) shows the 
repulsive field generated from the barrier (note that it 
is negative). The next display down (prey_hor)
represents the attraction field generated from the 
prey (note that it is positive). The next display down 
(mhm) represents the combined gaps and prey_hor
fields. The next display down (wta) represents the 
winner-take-all element from the above mhm field. 
This winning element results in the heading or frog’s 
orientation when moving forwards. The last display 
(baf) is currently empty and represents activity due 
to bumping against the barrier. 

The most important factor in the frog movement direction results from the wta field, 
resulting itself from the combination of the prey attraction and barrier repulsion fields. In 
this experiment the direction of movement is towards the side of the barrier, heading 
towards the right since the frog was positioned just a bit to the right from the axis joining 
the center of the prey and barrier. The resulting path motion is shown in figure 17.6. 

Figure 17.6
Rana Computatrix interacting with the 10 cm wide 
barrier. Note how the frog heads itself towards the side 
of the barrier. 
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Experiment II 
For experiment II (barrier 20 cm wide) set the following variable in detour_sti.nsl

set learning 0 

set trial 20 

After executing “nsl run” the system displays on one of the windows the different 
module fields as shown in figure 17.7.  

Figure 17.7
Different activity fields for the 20cm barrier experiment 
before bumping due to visual_field processing in the 
frog with the exception of the bottom one processed 
after the tactile field. The top display (gaps) shows the 
repulsive field generated from the barrier (note that it is 
negative). The next display down (prey_hor) represents 
the attraction field generated from the prey (note that it 
is positive). The next display down (mhm) represents 
the combined gaps and prey_hor fields. The next 
display down (wta) represents the winner-take-all 
element from the above mhm field. This winning 
element results in the heading or frog’s orientation 
when moving forwards. The last display (baf) is 
currently empty and represents activity due to bumping 
against the barrier. 

Again, the most important factor in the frog movement direction results from the wta
field, resulting itself from the combination of the prey attraction and barrier repulsion 
fields. In this experiment the direction of movement before bumping into the barrier is 
towards the middle of the barrier. Once the frog hits the barrier a bumping (baf) field is 
generated. The purpose of this field is to redirect the movement towards a different 
heading. Before that occurs the frog will backup. The resulting field after bumping is 
shown in figure 17.8. 
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Figure 17.8
Different activity fields for the 20cm barrier 
experiment after bumping due to visual_field
processing in the frog with the exception of the 
bottom one processed after the tactile field. The top 
display (gaps) shows the repulsive field generated 
from the barrier (note that it is negative). The next 
display down (prey_hor) represents the attraction 
field generated from the prey (note that it is 
positive). The next display down (mhm) represents 
the combined gaps and prey_hor fields. The next 
display down (wta) represents the winner-take-all 
element from the above mhm field. This winning 
element results in the heading or frog’s orientation 
when moving forwards. The last display (baf) is 
represents activity due to bumping against the 
barrier. 

The resulting path motion after hitting the barrier several times is shown in figure 
17.9.

�
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� � �

� �
	


		

Figure 17.9
Rana Computatrix interacting with the 20 cm barrier 
before learning. We have added numbers 
corresponding to the frog’s position in time. In this 
experiment the frog hits the barrier three times before 
perceiving the side of the barrier. 
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Experiment III 
For experiment III (barrier 20 cm wide with learning) set the following variable in 

detour_sti.nsl

set learning 1 

set trial 20 

We change the threshold of d_norm to simulate that after one interaction with the 
20cm barrier the frog would have learned and from then on it would detour when pre-
sented with the 20 cm barrier. The resulting behavior is shown in figure 17.10. 

Figure 17.10
Different activity fields for the 20cm barrier 
experiment after learning due to visual_field
processing in the frog with the exception of the 
bottom one processed after the tactile field. The top 
display (gaps) shows the repulsive field generated 
from the barrier (note that it is negative). The next 
display down (prey_hor) represents the attraction 
field generated from the prey (note that it is 
positive). The next display down (mhm) represents 
the combined gaps and prey_hor fields. The next 
display down (wta) represents the winner-take-all 
element from the above mhm field. This winning 
element results in the heading or frog’s orientation 
when moving forwards. The last display (baf) is 
currently empty and represents activity due to 
bumping against the barrier. 

Note that although no bumping occurs, the mhm field involves a similar integration 
where heading is explicitly generated, in this case by learning. The resulting behavior is 
shown in figure 17.11. 
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Figure 17.11
Rana Computatrix interacting with 
the 20 cm wide barrier after 
learning.

17.5 Summary 
The model explains basic facts about detour behavior. If the retinotopic representation of 
the edge of the barrier in SorRec falls within the prey-attractant-field spread, then the 
summation of activity from the prey-attractant-field and from the SOR-repellent map on 
MHM at the retinotopic position just beyond the barrier’s edge is stronger then the sum-
mation at the “center” of the barrier where the prey is located. Hence, the winner-take-all 
dynamics will select the cluster of activity corresponding to the retinotopic position of the 
edge of the barrier, thus predicting that frogs would detour around narrow barriers. On 
the other hand, for wide barriers the prey-attractant-field extent falls within a much wider 
barrier field. Hence, at the MHM retinotopic position corresponding to the barrier’s edge 
there will be no input activity from the prey map. On the other hand, there will be a great 
projection of activity on MHM at the retinotopic position of the prey; and this in turn will 
trigger approach to a point within the barrier map, so long as the peak of prey attraction 
exceeds the trough of barrier inhibition. Thus, the model predicts that the naive frog 
would approach wide barriers rather than detour around them. 

Notes 

1. Preparation of this paper was supported in part by award number IBN-9411503 for 
Collaborative Research (M.A. Arbib and A. Weerasuriya, co-Principal Investigators) 
from the National Science Foundation. 

2. A. Weitzenfeld developed the NSL3.0 version and extended the original NSL2.1 
model implementation written by F. Corbacho as well as contributed Section 17.3 
and part of 17.4 to this chapter. 

3. The Detour model was implemented and tested under NSLC. 
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18 Face Recognition by Dynamic Link Matching1

L. Wiskott, C. von der Malsburg and A. Weitzenfeld2

We present here a biologically motivated system for invariant and robust recognition of 
objects from camera images. It originally arose from a homework assignment for a course 
of neural network self-organization at USC, and in a way it can be seen as a serious test 
of NSL’s maturity as a (neural) simulation tool. Formulated as a large system of coupled 
non-linear differential equations comprising altogether approximately 3 million variables, 
its development required extensive series of experiments and continuous graphical 
monitoring of large sets of variables. Not only did NSL support this process, requiring 
just minor extensions, but it now makes our system directly accessible to students and 
colleagues for close inspection and for further development.  

Our model is based on the principles of temporal feature binding and dynamic link 
matching. Objects are stored in the form of two-dimensional aspects. These are competi-
tively matched against current images. During the matching process, complete matrices 
of dynamic links between the image and all models are refined by a process of rapid self-
organization, the final state connecting only corresponding points in image and object 
models. As a data format for representing images we use local sets (“jets”) of Gabor-
based wavelets. We have tested the performance of our system by having it recognize 
human faces against databases of more than one hundred images. The system is invariant 
with respect to retinal position, and it is robust with respect to head rotation, scale, facial 
deformation, and illumination.  

18.1 Introduction  
For the theoretical biologist, the greatest challenge posed by the brain is its tremendous 
power to generalize from one situation to others. This ability is probably most concretely 
epitomized in terms of invariant object recognition—the capability of the visual system to 
pick up the image of an object and recognize that object later in spite of variations in 
retinal location (as well as other important changes such as size, orientation, changed 
perspective and background, deformation, illumination, and noise). This capability has 
been demonstrated by flashing the image of novel objects briefly at one foveal position, 
upon which subjects were able to recognize the objects in a different foveal position (and 
under rotation in depth) (B & Gerhardstein 1993).  

The conceptual grandfather of many of the neural models of invariant object recog-
nition is Rosenblatt’s four-layer perceptron (Rosenblatt 1961). Its first layer is the sen-
sory or retinal surface. Its second layer contains detectors of local features (that is, small 
patterns) in the input layers. Each one of these is characterized by a feature type and a 
position x. The third layer contains position-invariant feature detectors, each of which is 
characterized by a feature type and is to respond to the appearance of its feature type 
anywhere on the input layer. It is enabled to do so by a full set of connections from all of 
the cells of the same feature type in the second layer. Thus, the appearance of a pattern in 
any position of the input layer leads to the activation of the same set of cells in the third 
layer. Layer four now contains linear decision units which detect the appearance of cer-
tain sets of active cells in the third layer and thus of certain objects imaged into the input 
layer. A decision unit contains an implicit model of an object in the form of a weighted 
list of third-layer features to be present or absent.  

The four-layer perceptron has to contend with the difficulty that a set of feature types 
has to be found on the basis of which the presence or absence of a given pattern becomes 
linearly separable on the basis of the un-ordered feature lists displayed by the third layer. 
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If the feature types employed are too indistinct, there is the danger that different patterns 
lead to identical third-layer activity, just because the only difference between the patterns 
is a different spatial arrangement of their features. The danger can be reduced or avoided 
with the help of feature types of sufficient complexity. However, this is a problematic 
route itself, since highly complex features are either very numerous (and therefore costly 
to install) or they are very specific to a given pattern domain (and have to be laboriously 
trained or hand-designed into the system and limit the system’s applicability to the pat-
tern domain). The difficulty arises from the fact that on the way from layer two to layer 
three position information is discarded for each feature individually (as is required by the 
condition of position invariance), so that also information on relative position of the fea-
tures is lost (which creates the potential confusion).  

In the study presented here we are solving the indicated problem using a double 
strategy. Firstly, we employ highly complex features which are constructed during pres-
entation of individual patterns (and which are stored individually for each pattern later to 
be recognized), and secondly, we employ a data format and a pattern matching procedure 
(between our equivalent of Rosenblatt’s layers two and three) which represent and pre-
serve relative position information for features.  

The features we employ are constructed from image data in a two-step process. First, 
elementary features in the form of Gabor-based wavelets of a number of scales and a 
number of orientations are extracted from the image (Daugman 1988), giving a set of 
response values for each point of the image, then the vector of those response values for a 
given point are treated as a complex feature, which we call a jet. Jets are extracted from 
an array of sample points in the image (the approach is described in detail in (Lades et al. 
1993)).  

Our system is explicit in its representation of analogs for layers two and three, which 
we call “image domain” and “model domain”, respectively. The image domain is an 
array of (16x17) nodes, each node being labeled by a jet when an image is presented. The 
model domain is actually a composite of a large number (more than one hundred in some 
of our simulations) of layers (“models”) composed of arrays of (10x10) nodes. To store 
the image of an object (e.g., a human face) a new model is created in the model domain 
and its nodes are labeled by copying an array of jets from the appropriate part of the im-
age domain.  

To recognize an object, the system attempts to competitively match all stored object 
models against the jet array in the image domain, a process which we call “Dynamic Link 
Matching.” The winning model is identified as the object recognized. The two domains 
are coupled by a full matrix of connections between nodes, which is initialized with 
similarity values between image jets and model jets. (This can be seen as our version of 
Rosenblatt’s feature-preserving connections.) The matching process is formulated in 
terms of dynamical activity variables for the image and model layers (forming localized 
blobs of activity in both domains), for the momentary strengths of connections between 
the domains (we assume that synaptic weights change rapidly and reversibly during the 
recognition process), and for the relative recognition status of each model. The matching 
process enforces the condition that neighboring nodes in the image layer link up with 
neighboring nodes in a model layer. In this way the system suppresses the feature rear-
rangement ambiguity of the Rosenblatt scheme.  

Our model cannot be implemented (at least not in any obvious way) in conventional 
neural networks. Its implementation is, however, easily possible if two particular features 
are assumed to be realized in the nervous system, temporal feature binding and rapid 
reversible synaptic plasticity. Both features have been proposed as fundamental compo-
nents of neural architecture in (von der Malsburg 1981). Temporal feature binding has in 
the mean time been widely discussed in the neuroscience literature and has received some 
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experimental basis (König and Engel 1995). Although rapid synaptic weight changes 
have been discussed (Crick 1982) and reported in the literature (Zucker 1989), the quasi-
Hebbian control and the time course for rapid reversible plasticity which is implied and 
required here must still wait for experimental validation.  

18.2 Model Description 

Principle of Dynamic Link Matching  
In Dynamic Link Matching (DLM), the image and all models are represented by layers of 
neurons, which are labeled by jets as local features (see figure 18.1). Jets are vectors of 
Gabor wavelet components (see Lades et al. 1993; Wiskott et al. 1997) and a robust 
description of the local gray value distribution. The initial connectivity is all-to-all with 
synaptic weights depending on the similarities between the jets. In each layer, neural 
activity dynamics generates one small moving blob of activity (the blob can be inter-
preted as covert attention scanning the image or model). If a model is similar in feature 
distribution to the image, its initial connectivity matrix contains a strong regular compo-
nent, connecting corresponding points (which by definition have high feature similarity), 
plus noise in the form of accidental similarities. Hence the blobs in the image and that 
model tend to align and synchronize in the sense of simultaneously activating, and thus 
generating correlations, between corresponding regions. These correlations are used, in a 
process of rapid reversible synaptic plasticity, to restructure the connectivity matrix. The 
mapping implicit in the signal correlations is more regularly structured than the connec-
tivity itself, and correlation-controlled plasticity thus improves the connectivity matrix. 
Iteration of this game rapidly leads to a neighborhood preserving one-to-one mapping 
connecting neurons with similar features, thus providing translation invariance as well as 
robustness against distortions.  

For recognition purposes, DLM has to be applied in parallel to many models. The 
best fitting model, i.e. the model most similar to the image, will finally have the strongest 

Figure 18.1
DLM between image and model. The 
nodes are indicated by black dots, 
and their local features are 
symbolized by different textures. The 
synaptic weights of the initial all-to-
all connectivity are indicated by 
arrows of different line widths. The 
net displays below show how 
correlations and connectivity co-
develop in time. The image layer 
serves as a canvas on which the 
model layer is drawn as a net. Each 
node corresponds to a model 
neuron, neighboring neurons are 
connected by an edge. The nodes are 
located at the centers of gravity of 
the projective field of the model 
neurons, considering synaptic 
weights as physical mass. In order to 
favor strong links, the masses are 
taken to the power of three. The 
correlations are displayed in the 
same way, using averaged 
correlations instead of synaptic 
weights. It can be seen that the 
correlations develop faster and are 
cleaner than the connectivity. The 
rotation in depth causes a typical 
distortion pattern; the mapping is 
stretched on one side and 
compressed on the other. 
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connections to the image and will have attracted the greatest share of blob activity. A 
simple integrating winner-take-all mechanism detects the correct model (see figure 18.2).  

Figure 18.2
Architecture of the DLM face 
recognition system. Image and 
models are represented as 
neural layers of local features, as 
indicated by the black dots. DLM 
establishes a regular one-to-one 
mapping between the initially 
all-to-all connected layers, 
connecting corresponding 
neurons. Thus, DLM provides 
translation invariance and 
robustness against distortion. 
Once the correct mappings are 
found, a simple winner-take-all 
mechanism can detect the model 
that is most active and most 
similar to the image. 

The equations of the system are given in table 18.1; the respective symbols are listed 
in table 18.2. In the following sections we will explain the system step by step: blob 
formation, blob mobilization, interaction between two layers, link dynamics, attention 
dynamics, and recognition dynamics.  



F A C E  R E C O G N I T I O N  B Y  D Y N A M I C  L I N K  M A T C H I N G    3 4 7
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Attention dynamics:
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Link dynamics:
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Recognition dynamics:
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Table 18.1
Formulas of the DLM face 
recognition system 
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Variables: 
h internal state of layer neurons 

s delayed self-inhibition  

a attention  

W synaptic weights between neurons of two layers 

r Recognition variable 

F total activity of each neuron (fitness) 

Indices:
(p;p’ ; q;q’) layer indices, -1 indicates image layer, 1,...,M indicate model layers  

=(-1; -1; 1,...,M; 1,...,M) if equations describe image layer dynamics  

=(1,...,M; 1,...,M; -1; -1) if equations describe model layer dynamics  

(i; i’; j; j’) two-dimensional indices for individual neurons in layers (p; p’; q; q’)
   respectively 

Functions: 
gi-i’ Gaussian interaction kernel 

�(h)� nonlinear squashing function 

� (·)� heavy side function 

S�(J,J’)� similarity between feature jets J and J’

Parameters: 

�h = 0.2 strength of global inhibition  

�a = 0.02 attention blob global inhibition strength  

�ac = 1 global inhibition strength compensating for attention blob 

���= �  model supression global inhibition strength 

�hs = 1 self inhibition strength  

�hh = 1.2 image and model layers interaction strength 

�ha = 0.7 attention blob effect on running blob 

�ah = 3 running blob effect on attention blob 

�� delayed self-inhibition decay constant 

= �+�= 0.2 if h-s > 0 

= ���= 0.004 if h-s � 0 

�a = 0.3 attention dynamics time constant 

�W = 0.05 link dynamics time constant 

�r = 0.02 recognition dynamics time constant 

�N = 0.1 attention blob initialization constant 

�S = 0.1 minimal weight 

��= 2 squashing function slope radius 

�g = 1 excitatory interaction kernel Gauss width 

r��= 0.5 model suppression threshold 

Table 18.2
Variables and parameters of the DLM face recognition system. 
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Blob Formation  
Blob formation on a layer of neurons can easily be achieved by local excitation and 
global inhibition (consider equations 18.1, 18.3, and 18.4 with �hs = �hh = �ha = �� = 0; cf. 
also Amari 1977). Local excitation is conveyed by the Gaussian interaction kernel g and 
generates clusters of activity. Global inhibition, controlled by �h, lets the clusters com-
pete against each other. The strongest one will finally suppress all others and grow to an 
equilibrium size determined by the strength of global inhibition.  

Blob Mobilization  
Generating a running blob can be achieved by delayed self-inhibition s, which drives the 
blob away from its current location to a neighboring one, where the blob generates new 
self-inhibition. This mechanism produces a continuously moving blob (consider equa-
tions 18.1 and 18.2 with �hh = �ha = �� = 0; see also figure 18.3). In addition, the self-
inhibition serves as a memory and repels the blob from regions recently visited. The 
driving force and the recollection time as to where the blob has been can be independ-
ently controlled by the time constants �+ and �-, respectively.  

Layer Interaction and Synchronization  
In the same way as the running blob is repelled by its self-inhibitory tail, it can also be 
attracted by excitatory input from another layer, as conveyed by the connection matrix W
(consider equation 18.1 with �ha = �� = 0). Imagine two layers of the same size mutually 
connected by the identity matrix, i.e. each neuron in one layer is connected only with the 
one corresponding neuron in the other layer having the same index value. The input then 
is a copy of the blob of the other layer. This favors alignment between the blobs, because 
then they can cooperate and stabilize each other. This synchronization principle hold also 
in the presence of the noisy connection matrices generated by real image data (see figure 
18.4). (The reason why we use the maximum function instead of the usual sum will be 
discussed later on)  

Figure 18.3�

A sequence of layer states. 
The activity blob h shown in 
the middle row has a size of 
approximately six active 
nodes and moves 
continuously over the whole 
layer. Its course is shown in 
the upper diagram. The 
delayed self-inhibition s, 
shown in the bottom row, 
follows the running blob and 
drives it forward. One can see 
the self-inhibitory tail, which 
repels the blob from regions 
just visited. Sometimes the 
blob runs into a trap (cf. 
column three) and has no 
way to escape from the self-
inhibition. It then disappears 
and reappears again 
somewhere else on the layer. 
(The temporal increment 
between two successive 
frames is 20 time units.) 
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Link Dynamics  
Links are initialized by the similarity S� between the jets J of connected nodes (see 
Wiskott 1995), with a guaranteed minimal synaptic weight of �S Then, they become 
cleaned up and structured on the basis of correlations between pairs of neurons (consider 
equation 18.6; see also figure 18.1). The correlations, defined as ( ) ( )q

j
p

i hh �� , result 
from the layer synchronization described in the previous section. The link dynamics typi-
cally consists of a growth term and a normalization term. The former lets the weights 
grow according to the correlation between the connected neurons. The latter prevents the 
links from growing infinitely and induces competition such that only one link per neuron 
survives, suppressing all others.  

Attention Dynamics  
The alignment between the running blobs depends very much on the constraints, i.e. on 
the size and format of the layer on which they are running. This causes a problem, since 
the image and the models have different sizes. We have therefore introduced an attention 
blob a which restricts the movement of the running blob on the image layer to a region of 
about the same size as that of the model layers (consider equations 18.1 and 18.5 with ��
= 0). The basic dynamics of the attention blob is the same as for the running blob, except 
there is no self-inhibition. The model layers also have the same attention blob to keep the 
conditions for their running blobs similar to that in the image layer (only one attention 
blob is effectively used for all models for computational efficiency). This is important for 
the alignment. The attention blob restricts the region for the running blob via the term  

( )( )ac
p
iha a ��� � (18.8)

with the excitatory blob  

( )p
ia� (18.9)

compensating the constant inhibition �ac. The attention blob on the other hand gets exci-
tatory input  

( )( )p
iha h�� (18.10)

from the running blob and can thus be shifted into a region where input is especially large 
and favors activity. The attention blob therefore automatically aligns with the actual face 
position (see figure 18.5). The attention blob layer could be initialized based on pre-
attentive segmentation cues, such as texture or color. However, we use a flat initialization 
and leave the alignment of the attention blob to an initial synchronization phase based 
purely on the similarity values of the image jets with the model jets in the gallery.  

Figure 18.4
 Synchronization between two 
running blobs. Layer input as 
well as the internal layer state h
is shown at an early stage, in 
which the blobs of two layers 
are not yet aligned, left, and at a 
later state, right, when they are 
aligned. The two layers are of 
different size, and the region in 
Layer 1 which correctly maps to 
Layer 2 is indicated by a square 
defined by the dashed line. In 
the early non-aligned case one 
can see that the blobs are 
smaller and not at the location 
of maximal input. The locations 
of maximal input indicate where 
the actual corresponding 
neurons of the blob of the other 
layer are. In the aligned case the 
blobs are larger and at the 
locations of high layer input. 
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Figure 18.5
Function of the attention 
blob, using an extreme exam-
ple of an initial attention blob 
manually misplaced for dem-
onstration. At t=150 the two 
running blobs ran synchro-
nously for a while, and the 
attention blob has a long tail. 
The blobs then lost alignment 
again. From t=500 on, the 
running blobs remained 
synchronous, and eventually 
the attention blob aligned 
with the correct face position, 
indicated by a square made of 
dashed lines. The attention 
blob moves slowly compared 
to the small running blob, as 
it is not driven by self-
inhibition. Without an 
attention blob the two running 
blobs may synchronize 
sooner, but the alignment will 
never become stable. 

Recognition Dynamics  
We have derived a winner-take-all mechanism from Eigen’s (1978) evolution equation 
and applied it to detect the best model and suppress all others (See equations 18.1 and 
18.7). Each model cooperates with the image depending on its similarity. The most simi-
lar model cooperates most successfully and is the most active one. We consider the total 
activity of the model layer p as fitness Fp. The layer with the highest fitness suppresses 
all others (as can easily be seen if the Fp are assumed to be constant in time and the rec-
ognition variables rp are initialized to 1). When a recognition variable rp drops below the 
suppression threshold r�, the activity of layer p is suppressed by the term  

( )prr ��� ��� (18.11)

Bidirectional Connections  
The connectivity between two layers is bidirectional and not unidirectional as in the 
previous system (Konen and Vorbrüggen 1993). This is necessary for two reasons: 
Firstly, by this means the running blobs of the two connected layers can more easily 
align. With unidirectional connections one blob would systematically run behind the 
other. Secondly, connections in both directions are necessary for a recognition system. 
The connections from model to image layer are necessary to allow the models to move 
the attention blob in the image into a region which fits the models well. The connections 
from the image to the model layers are necessary to provide a discrimination cue as to 
which model best fits the image. Otherwise, each model would exhibit the same level of 
activity.  
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Blob Alignment in the Model Domain  
Since faces have a common general structure, it is advantageous to align the blobs in the 
model domain to insure that they are always at the same position in the faces, either all at 
the left eye or all at the chin etc. This is achieved by connections between the layers, 
expressed by the term  

( )� �
�
����+

i
p

ipii hg �max (18.12)

instead of  

( )� � ���+
i

p
iii hg � (18.13)

in equation 18.1. If the model blobs were to run independently, the image layer would get 
input from all face parts at the same time, and the blob there would have a hard time to 
align with a model blob, and it would be uncertain whether it would be the correct one. 
The cooperation between the models and the image would depend more on accidental 
alignment than on the similarity between the models and the image, and it would then be 
likely that the wrong model was picked up as the recognition result. One alternative is to 
let the models inhibit each other such that only one model would have a blob at a time. 
The models then would share time to match onto the image, and the best fitting one 
would get most of the time. This would probably be the appropriate setup if the models 
were of different structure, as is the case for arbitrary objects.  

Maximum Versus Sum Neurons  
The model neurons used here use the maximum over all input signals instead of their 
sum. The reason is that the sum would mix up many different signals, while only one can 
be correct, i.e. the total input would be the result of one correct signal mixed with many 
distractions. Hence the signal-to-noise ratio would be low. We have observed an example 
where even a model identical to the image was not picked as the correct one, because the 
sum over all the accidental input signals favored a completely different-looking person. 
For that reason we introduced the maximum input function, which is reasonable since the 
correct signal is likely to be the strongest one. The maximum rule has the additional 
advantage that the dynamic range of the input into a single cell does not vary much when 
the connectivity develops, whereas the signal sum would decrease significantly during 
synaptic re-organization and let the blobs loose their alignment.  

18.3 Model Implementation 
The DlmModel is made of a top level Dlm module as shown in figure 18.6. These sub-
modules are related to the image/object domain (layer 1), model domain (layer 2) or their 
interconnection. 
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DlmSimilarity
similarity

sim[]

sim[]

sim[]

Image/
Object Model

hInput hInput sh[] sh[]

sh2[]

sh

sh

sh1

sh

hInput[] hInput[]

sa

sa

shMax

sh

sa

sa correlSum[]

correlSum[]

correlSum[]

DlmAttention
a1

DlmAttention
a2

DlmCorrelation
correlation

DlmW21
w21

DlmW12
w12

DlmRecognition
recognition

shSum[]

shSum[]

DlmH1
h1

DlmH2
h2

Dlm Figure 18.6
The ��� module includes image 
or object domain modules  
(layer 1) and model domain 
(layer 2). The object domain 
comprises h1 and a1 modules, 
the model domain comprises h2,
a2, recognition and similarity,
while the interconnection 
modules are implemented by 
w12, w21 and correlation
modules. Note that some ports 
in the submodules have a “[]” 
(brackets) ending; these 
represent port arrays instead of 
the usual single value ports. The 
connections between such ports 
are actually multiple ones. 

An important concern of this model is how to implement the fact that the model layer 
manipulates multiple faces, the ones stored in the database, as opposed to the image/ 
object layer representing a single one to be compared against. We had the choice to create 
multiple model, recognition, attention, connection and correlation modules corresponding 
each to a single face transformation. This would have incremented the total number of 
modules in the system together with its complexity. Instead, we chose to have single 
model layer modules representing each multiple face transformations. To make this pos-
sible we implemented port arrays instead of single ports in each of these modules when 
appropriate (see the “[]” (brackets) port array notation in the figure). For example, the sim
input port array in many of the modules, such as in w12, is defined as a NslDinFloat4
array of size gallerySizeMax to make it really a 5-dimensional array, 

public NslDinFloat4 sim()[gallerySizeMax]; 

Note that in this case we use dynamic memory allocation since no instantiation 
parameters were given above. For example, in the w12 module, the sim port array is 
assigned memory space as follows (see Appendix I for further details), 

for (int i=0; i<gallerySizeMax;i++) 

 sim[i].nslMemAlloc(i2max,j2max,i1Rmax,j1Rmax); 
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Thus, module interconnections for port array interconnections require a “for loop”
style format as follows, 

for (int i=0; i<gallerySizeMax; i++) 

 nslConnect(similarity.sim[i],w12.sim[i]); 

Note that gallerySizeMax represents the maximum number of gallery faces used 
from the database for comparison purposes. 

Similarity Module 
The Similarity module performs the initial DLM model processing. The DLM database, 
implemented as special text and binary files (see Appendix I for a detailed description of 
text file manipulation and Appendix III for NSLC extensions to binary files), consists of 
objects and models in the form of stored graphs with the precomputed Gabor-wavelet 
transform coefficients. For the models they are taken from a grid of 10 x 10 nodes cen-
tered on the faces. For the objects the grids cover the whole image plane with 16 x 17 
nodes. From these stored graphs a subgraph can be selected. From the 16 x 17 graph for 
example a 12 x 12 subgraph will automatically be selected if the size of layer 1 is 12 x 
12. In addition one can choose the location of the subgraph by Si1offset and Sj2offset off-
sets given as integer numbers behind the model names in the gallery files.  

Since the object and model layers vary in size a mapping must be created to match 
elements in both. This is achieved by using a connection patch in layer 1 corresponding 
to a single cell in layer 2, as shown in figure 18.7. 

connection patch

layer 1

layer 2

0 j1max-1

i1
m

ax
-1

i1
0

j1

0 j1R j1Rmax-1

0 j2 j2max-1

0
i1

R
i1

R
m

ax
-1

0
i2

i2
m

ax
-1

Figure 18.7
Matrix representation of 
layers 1 and 2, and the 
connectivity patch from a cell 
in layer 2 to layer 1. 

The size of the patches in layer 1 is always i1Rmax x j1Rmax, but their position 
depends on the position of the corresponding cell in layer 2 (layer 2 can be as large as 
layer 1). If we consider only one dimension, for example the i1-index, the patches would 
have i1max-i1Rmax+1 different offsets varying in range from 0 to i1max-i1Rmax). These 
offsets should be equally distributed depending on the different positions in range from 0 
to i2max-1 in layer 2. Since i2/(i2max-1) lies in the range [0..1], (i1max-
i1Rmax)*i2/(i2max-1) covers the correct range [0,..,(i1max-i1Rmax)]. In order to round it 
to the closest integer we define an index function named i1Index returning (i1max-
i1Rmax)*i2/(i2max-1)+0.5. For example, given a layer 1 of size 7 and a patch size of 4, 
there are 4 different offsets, from 0 to 3.  

In terms of actual computation, the initSys method initializes the sim array (order of 
five) corresponding to the module’s output by computing the similarity between the 
original DlmGImage and the different DlmGModel library images, both read from exter-
nal files (not shown here). For all models taken from the gallery (1 to gallerySize), for 
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every element (i2, j2) in layer 2 (i2max and j2max are the 2-dimension sizes of the model 
layer), for every element (i1R, j1R) in the connection patch and for every offset element 
(i1, j1) in layer 1 (i1Rmax and j1Rmax represent the 2-dimension sizes of the patch while 
i1max and j1max represent the 2-dimension sizes of the object layer), compute the simi-
larity as follows,  

for (int model=1; model<=gallerySize; model++) { 

  for (int i2=0; i2<i2max; i2++) 

     for (int j2=0; j2<j2max; j2++) 

      for (int i1R=0,int i1=i1Index 

        (i2,0,frame,i1max,i1Rmax,i2max);

          i1R<i1Rmax; i1R++, i1++) 

             for (int j1R=0,int j1=j1Index 

              (j2,0,frame,j1max,j1Rmax,j2max);

                j1R<j1Rmax; j1R++, j1++) { 

                   sim[model][i2][j2][i1R][j1R] = 

                    nslMax(alpha_s, 

                      similarity(DlmGImage,i1,j1,DlmGModel, 

                        i2,j2)); 

        } 

}

(Note that model=0 represents the average face model.) There are a few aspects to 
note in the above code. The i1Index (and j2Index) functions include a frame variable. The 
frame, whose elements are not connected to layers 2, is put around layer 1, the object 
layer, in order to give the attention blob space to move around the border of layer 1. If 
i1max and j1max are equal in size as i2max and j2max then no attention blob is required 
and the frame not necessary. The actual i1Index function (analogous to the j2Index func-
tion) is as follows, 

int i1Index(int i2, int i1R, int frame,int i1max,int i1Rmax, 

 int i2max){ 

  return i1R + frame + (i1max-2*frame-i1Rmax)*i2/ 

   (i2max-1)+0.5; 

}

Note also in the similarity equation, that the value of sim, for each model, is assigned 
as the maximum value between parameter alpha_s and the resulting similarity value. This 
is done to restrict minimum values in sim.

Once the similarity computation has been completed, the average layer values 
(model=0) are set the maximum of all models. 

for (int i2=0; i2<i2max; i2++) 

  for (int j2=0; j2<j2max; j2++) 

   for (int i1R=0; i1R<i1Rmax; i1R++) 

    for (int j1R=0; j1R<j1Rmax; j1R++) { 

      float s = 0; 

      for (int model=1; model<=gallerySize; model++) 

    s = nslMax(s,sim[model][i2][j2][i1R][j1R]); 

   sim[0][i2][j2][i1R][j1R] = s; 

  } 



3 5 6     C H A P T E R  1 8  

H Module 
To take advantage of common functionality between the image and layer models, a su-
permodule H is defined containing aspects common to both H1 and H2. At the structure 
level the two submodules H1 and H2 share a number of variables having the exact same 
dimension, corresponding to previously defined equation symbols, as shown in table 18.3 
(we omit all scalar parameters from the table). 

Symbol Variable Name Variable Type Description 

( )( )p
i

p
i

ii
p

i hgG �
���

���= �max hTransE NslFloat2 Gaussian lateral interaction  

( )p
ia� sa NslDinFloat2 Input received from the attention 

module  

p
i

p
i sh � d NslFloat2 Delayed self inhibition argument  

Additionally, the following method implements equation (18.3) and is used to 
initialize the Gaussian variable g used in both submodules, 

protected void initGauss(){ 

 for (int k = 0; k < gSize; k++) {  

  float x = (float) (k-gSigma/2); 

  g[k] = nslExp(-x*x/(2*gSigma*gSigma); 

 } 

}

Additionally, the following method performs the convolution described in the second 
hand side element of equation (18.1) performed by both submodules, 

protected NslFloat2 gaussConvolved(NslFloat1 g,NslFloat2 sh){ 

 return nslConvZero(nslFillRows(g,1),nslConvZero 

  (nslFillCols(g,1),sh));  

}

The above function generates a two dimensional array as result from this convolu-
tion. It first convolves sh against a matrix whose columns are replications (nslFillCols) of 
the gaussian vector g. The result of this convolution is applied to a matrix whose rows are 
replications (nslFillRows) of the gaussian vector g. We use a convolution function treat-
ing elements beyond the matrix border as zeroes (nslConvZero). 

H1 Module 
The image layer implementation defines a number of variables corresponding to previ-
ously defined equation symbols, as shown in table 18.4. 

Symbol Variable Name Variable Type Description 

( )( )q
j

pq
ij

qj

p
i hWI �max= hInput NslDinFloat2 Input received from hInput from w12 layer  

( )p
ih� sh NslDoutFloat2 Layer output  

p
ih h NslFloat2 Layer activity  
p
is s NslFloat2 Delayed self inhibition  

Table 18.3
Symbol and variable 
relationship defined in �
and common to both �� and 
�� in dimension. 

Table 18.4
Symbol and variable 
relationship defined in ��.
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The simRun main computation, describing layer dynamics on h and s in module h1,
is as follows: 

1. Calculate the Gaussian lateral interaction hTransE in the image layer, 

( )( )p
ip

i
ii

p
i hgG �

���
���= �max (18.14)

corresponding to the second term of the right hand size of equation (18.1) where g has 
been computed in the initRun method during initialization,

hTransE = gaussConvolved(g,sh); 

The maximum operation is not necessary since there is only one image layer p.

2. Integrate the differential equation for the image layer in correspondence to equation 
(18.1), 

( )( ) ( )��
�

�
�
���

�� ��+�=
i

p
ihs

p
ih

p
i

p
i

ii
p

i
p

i shhghh ����max�

      ( )( ) ( )( ) ( )p
ac

p
iha

q
j

pq
ij

qj
hh rrahW ����++ �������� max

The equation is implemented as follows,

nslDiff(h,1.,- h + hTransE - beta_h*nslSum(sh) - kappa_hs*s 

 + kappa_hh*hInput + kappa_ha*(sa-beta_ac)); 

Note that nslSum(sh) corresponds to the following expression,

( )�
�

�
i

p
ih�

Additionally notice that the strong inhibition term  

( )qrr ��� ���

is ineffective in the image layer since there are no competing image layers.

3. Compute the image layer output sh from current activity h as given by equation 
(18.4), 

computeOutputFunc(sh,h,rho);

4. Integrate the differential equation (equation 18.2) given by, 

( )p
i

p
i

p
i shs �= ���

with lambda depending on the sign of the difference of h and s,

d = h - s; 

for (i1=0; i1<i1max; i1++) 

 for (j1=0; j1<j1max; j1++) 

  if (d[i1][j1]>0) 

   d[i1][j1] = d[i1][j1]*lambda_p; 

  else 

   d[i1][j1] = d[i1][j1]*lambda_m; 

nslDiff(s,1.,d);

H2 Module 
The image layer implementation defines a number of variables corresponding to previ-
ously defined equation symbols, as shown in table 18.5. Notice that these variables differ 
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from those defined in module H1 in that an additional dimension has been added in the 
form of an array (having its size correspond gallerySizeMax).

Symbol Variable Name Variable Type Description 

( )( )p
i

qp
ji

pi

q
j hWI �max= hInput NslDinFloat2[] Input received from hInput from 

w12 layer

( )q
jh� sh NslDoutFloat2[] Layer output  

( )�
�

�
j

q
jh� shSum NslDoutFloat0[] Sum over sh

( )( )q
j

q
h �

�
�max shMax NslDoutFloat2[] Maximum activity of layer 2  

q
jh h NslFloat2[] Layer activity  

q
js s NslFloat2[] Delayed self inhibition  

The simRun main computation describing layer dynamics on h and s in module h2,
is quite similar to module h1, being as follows: 

5. Calculate the Gaussian lateral interaction hTransE in the model layer,  

( )( )q
j

q
j

jj
q
j hgG �

���
���= �max

Since the maximum operation is equal for all models it needs to be calculated only 
once. 

hTransE = gaussConvolved(g,shMax,rho); 

Notice that we have an additional variable shMax in H2.

6. Integrate the differential equation for the model layer in correspondence to equation 
(18.1),  

( )( ) ( )��
�

��
�
���

�� ��+�=
j

q
jhs

q
jh

q
j

q
j

jj
q
j

q
j shhghh ����max�

( )( ) ( )( ) ( )q
ac

q
jha

p
i

qp
ji

pi
hh rrahW ����++ �������� max

The equation is implemented as follows and applied to each model,

nslDiff(h[model],1.0, - h[model] + hTransE 

 - beta_h*shSum[model] - kappa_hs*s[model] 

 + kappa_hh*hInput[model] + kappa_ha*(sa-beta_ac)); 

Notice that the strong inhibition term  

( )qrr ��� ���

is simulated simply by skipping over those layers that have too low recognition values rq

(skip statement in the source code), else continue processing the model layer.
Also notice that the output sum shSum is computed for each model as follows, 

shSum[model] = nslSum(sh[model]); 

Table 18.5
Symbol and variable 
relationship defined in ��.
Notice that all types have an 
additional dimension 
specified by the “[]” array 
symbol.



F A C E  R E C O G N I T I O N  B Y  D Y N A M I C  L I N K  M A T C H I N G    3 5 9

7. Compute for each model layer output sh from current activity h as described in 
equation (18.4),

computeOutputFunc(sh[model],h[model],rho);

8. Integrate for each model the differential equation (equation 18.2) given by, 

( )q
j

q
j

q
j shs �= ���

with lambda depending on the sign of the difference of h and s,

d = h[model] - s[model]; 

for (i2=0; i2<i2max; i2++) 

 for (j2=0; j2<j2max; j2++) 

  if (d[i2][j2]>0) 

   d[i2][j2] = d[i2][j2]*lambda_p; 

  else 

   d[i2][j2] = d[i2][j2]*lambda_m; 

nslDiff(s[model],1.,d);

9. Compute the model layer output shMax

( )( )q
j

q
h �

�
�max

implemented by, 

for (i2=0; i2<i2max; i2++) 

 for (j2=0; j2<j2max; j2++) { 

  shMax[i2][j2] = 0; 

  for (int model=1; model<=gallerSizeMax; model++) 

   shMax[i2][j2] = nslMax(shMax[i2][j2],sh[model]  

    [i2][j2]); 

 } 

Attention Module  
We take advantage of the similarity between the attention modules for image and model 
layers to define a single one instantiated twice, respectively. The Attention module 
defines equation symbols and variable names, as shown in table 18.5. 

Symbol Variable Name Variable Type Description 

p
ia a NslFloat2 Attention layer activity 

( )p
ia� sa NslDoutFloat2 Attention layer output 

( )p
i

i
ii

p
i agA �

�
���= � aTransE NslFloat2 Gaussian lateral interaction 

( )p
ih�  or ( )( )p

i
p

h �

�
�max sh NslDinFloat2 Layer input received from the image or 

model (max) layer, respectively. 

Attention modules compute only if attention is set. The initRun method initializes 
the attention layer (a1 and a2) as follows, 

a = alpha_N; 

sa = computeOutputFunc(a);

Table 18.5
Symbol and variable 
relationship. 
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The simRun method describes the attention dynamics for the two layers, 

10. Calculate the Gaussian lateral interaction aTransE from its previous output sa,

( )p
i

i
ii

p
i agA �

�
���= � (18.15)

The implementation is as follows, 

aTransE = gaussConvolved(g,sa); 

Due to the maximum operation there is effectively only one attention layer for all 
models, 

11. Integrate differential equation for the attention layer as described in equation (18.5) 
by obtaining inputs from the image or model layer outputs, respectively, 

( ) ( ) ( )��
�

�
�
�
�

�
��+�= ��

�
��

�
��

i

p
iah

p
ia

p
i

i
ii

p
ia

p
i haagaa �������

The equation is implemented as follows,

nslDiff(a,1.,lambda_a*(-a+aTransE-beta_a*nslSum(sa)+

 kappa_ah*sh)); 

12. Compute the output function 

( )p
ia�

The equation is implemented as follows,

computeOutputFunc(sa,a,rho);

W Module 
To take advantage of common functionality between the image and layer model connec-
tivity, a supermodule W is defined containing aspects common to both W12 and W21. At 
the structure level the two submodules W12 and W21 share a number of variables having 
the exact same dimension, corresponding to previously defined equation symbols, as 
shown in table 18.6 (we omit all scalar parameters from the table). 

Symbol Variable Name Variable Type Description 

pq
ijW w NslFloat4[] Connection weights 

( ) ( )q
j

p
i

qp
ij hhC ��= correlSum NslDinFloat4[] Input from Correlation module  

qp
ijS sim NslDinFloat4[] Input from Similarity module 

Notice that since the link dynamics for both connection layers is simulated only after 
every loops iterations.  

W12 Module 
The connectivity layer from the model layer to the image layer is defined by module 
W12. The symbols particular to this layer are shown in table 18.7. In addition this layer 
inherits all symbols defined in supermodule W.

Table 18.6
Symbol and variable 
relationship defined in � and 
common to both ��� and 
��� in dimension. Notice 
that all types have an 
additional dimension 
specified by the “[]” array 
symbol.



F A C E  R E C O G N I T I O N  B Y  D Y N A M I C  L I N K  M A T C H I N G    3 6 1

Symbol Variable Name Variable Type Description 

( )( )q
j

pq
ji

qj

p
i hWI �max= hInput NslDoutFloat2 Output to image layer 

( )q
jh� sh NslDinFloat2[] Input from model layer 

{ }pq
ji

qp
ij

qj

p
i WSN ,1min= normFactor NslFloat2 Normalization matrix 

The initRun method computes the initialization values for the connection module 
given by the following equation (equation 18.6), 

( ) ( )( )Sq
j

p
i

qp
ij

pq
ji JJSStW �� ,,max0 ==

Taking out the nested “for” loops, the equation is implemented as follows, 

w[model][i1R][j1R][i2][j2] = sim[model][i2][j2][i1R][j1R]; 

Notice how we switch subscripts since W12 connects layer 2 elements to layer 1 
patch elements. Also, the max function has already been applied in the similarity module. 
Additionally, the initRun method computes maximum values for the average layer 
(model=0).

float stmp = 0; 

for (model=1; model<=gallerySize; model++) 

 stmp = nslMax(stmp,sim[model][i2][j2][i1R][j1R]); 

w[0][i1R][j1R][i2][j2] = stmp; 

The simRun method describes connection dynamics on W12. Computation is as fol-
lows: 

13. Calculate growth of the weight matrix w from model layers to image layer according 
to the first term in differential equation equation (18.6) based on the accumulated 
correlations and according to the equation 

( ) pq
ji

qp
ijW

pq
ji WCtW �=� (18.16)

Since this integration switches scripts around we perform the integration directly as 
follows,  

tWCWW pq
ji

qp
ijW

pq
ji

pq
ji �+= �

The latter is implemented by the following code,  

w[model][i1R][j1R][i2][j2] += nslSystem.getSimDelta() 

  *w[model][i1R][j1R][i2][j2]*lambda_W 

 *correlSum[model][i2][j2][i1R][j1R]; 

Note the “+=” expression directly adding the left hand side variable to the right hand 
side. The “nslSystem.getSimDelta()” expression returns the system’s “delta”.

14. Although link dynamics is not simulated as a differential equation but by strict 
normalization, the outcome is the same. The normalization rule corresponding to the 
second term in equation (18.6) becomes an explicit and separate normalization rule 
in the program. The normalization factors by which the weights converging on the 
image layer need to be multiplied is 

Table 18.7
Symbol and variable 
relationship defined in ���.
Notice the types having an 
additional dimension 
specified by the “[]” array 
symbol.
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{ }pq
ji

qp
ij

qj

p
i WSN ,1min=

Notice that sim is symmetric and can be used for both directions. The variable norm-
Factor is initialized to 1. Also notice that each model layer needs its own set of normali-
zation factors for w21 but not for w12 (although we end up computing one for each 
anyway).

if (w[model][i1R][j1R][i2][j2]>sim[model][i2][j2][i1R][j1R]) 

  normFactor[i1][j1] = minimum(normFactor[i1][j1], 

    sim[model][i2][j2][i1R][j1R]/w[model][i1R][j1R][i2][j2]); 

15. Normalize the weights going from each model layer to the image layer by the 
normalization factors, 

pq
ji

p
i

pq
ji WNW =

w[model][i1R][j1R][i2][j2] *= normFactor[i1][j1]; 

Note the “*=” expression directly multiplying the left hand side variable with the 
right hand side. 

16. Skip computation if inhibition in model layer sh is too strong. (There is no competi-
tion between links going to different models while there is competition between links 
converging to the image layer from different models.) 

17. Calculate the output hInput sent to the image layer calculated as the maximum of the 
input sh from the model layer multiplied by the connection w as described in 
equation (18.1),  

( )( )p
i

pq
ji

pi
hW �max

The implementation is as follows,  

hInput[i1][j1] = nslMax(hInput[i1][j1], 

 w[model][i1R][j1R][i2][j2]*sh[model][i2][j2]); 

W21 Module 
The connectivity layer from the image layer to the model layer is defined by module 
W21. The symbols particular to this layer are shown in table 18.8. In addition this layer 
inherits all symbols defined in supermodule W.

Symbol Variable Name Variable Type Description 

( )( )p
i

qp
ij

pi

q
j hWI �max= hInput NslDoutFloat2[] Output to model layer 

( )p
ih� sh NslDinFloat2 Input from image layer 

{ }qp
ij

qp
ij

pi

q
j WSN ,1min= normFactor NslFloat2[] Normalization matrix 

Table 18.8
Symbol and variable relationship defined in ���.
Notice the types having an additional dimension 
specified by the “[]” array symbol, exactly the 
opposite from those specified in ���.
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The initRun method computes the initialization values for the connection module 
given by the following equation (equation 18.6), 

( ) ( )( )S
q
j

p
i

qp
ij

qp
ij JJSStW �� ,,max0 ==

An important consideration here is that subscripts correspond to those in the similar-
ity output. Taking out the nested “for loops” the equation is implemented as follows, 

w[model] = sim[model] 

Notice how we switch subscripts since W21 connects layer 1 patch elements to layer 
1 elements. Also, the max function has already been applied in the similarity module. 
Additionally, the initRun method computes maximum values for the average layer 
(model=0).

float stmp = 0; 

for (model=1; model<=gallerySize; model++) 

 stmp = nslMax(stmp,sim[model]); 

w[0] = stmp; 

The simRun method describes connection dynamics on W21. Computation is as fol-
lows: 

18. Calculate growth of the weight matrix w from model layers to image layer according 
to the first term in differential equation equation (18.6) based on the accumulated 
correlations and according to the equation 

( ) qp
ji

qp
ijW

qp
ij WCtW �=�

Since this integration switches scripts around we perform the integration directly as 
follows,  

tWCWW qp
ij

qp
ijW

qp
ij

qp
ij �+= �

The latter is implemented by the following code,  

w[model] += nslSystem.getSimDelta() 

 *w[model][i2][j2]*lambda_W*correlSum[model]; 

Note the “+=” expression directly adding the left hand side variable to the right hand 
side. The “nslSystem.getSimDelta()” expression returns the system’s “delta”.

19. Although link dynamics is not simulated as a differential equation but by strict 
normalization, the outcome is the same. The normalization rule corresponding to the 
second term in equation (18.6) becomes an explicit and separate normalization rule 
in the program. The normalization factors by which the weights converging on the 
image layer need to be multiplied is 

{ }qp
ij

qp
ij

pi

q
j WSN ,1min=

Notice that sim is symmetric and can be used for both directions. The variable norm-
Factor is initialized to 1. Also notice that each model layer needs its own set of normali-
zation factors for w21 but not for w12 (although we end up computing one for each 
anyway).
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if (w[model][i2][j2][i1R][j1R]>sim[model][i2][j2][i1R][j1R]) 

  normFactor[i1][j1] = minimum(normFactor[i1][j1], 

    sim[model][i2][j2][i1R][j1R]/w[model][i2][j2][i1R][j1R]); 

20. Normalize the weights going from each model layer to the image layer by the 
normalization factors, 

qp
ij

q
j

qp
ij WNW =

w[model][i2][j2][i1R][j1R] *= normFactor[i1][j1]; 

Note the “*=” expression directly multiplying the left hand side variable with the 
right hand side. 

21. Skip computation if inhibition in model layer sh is too strong. (There is no competi-
tion between links going to different models while there is competition between links 
converging to the image layer from different models.) 

Calculate the output hInput sent to the image layer calculated as the maximum of the 
input sh from the model layer multiplied by the connection w as described in equation 
(18.1),  

( )( )q
j

qp
ij

qj
hW �max

The implementation is as follows,  

hInput[i1][j1] = nslMax(hInput[i1][j1], 

 w[model][i2][j2][i1R][j1R]*sh[model][i2][j2]); 

Correlation Module 
The correlation module between image-model connections and model-layer connections. 
The correlation symbols and variable names are shown in table 18.9. 

Symbol Variable Name Variable Name Description 

( )p
ih� Sh1 NslDinFloat2 Image layer input 

( )q
jh� Sh2 NslDinFloat2[] Model layer input 

qp
ijC correlSum NslDoutFloat4[] Accumulated correlation 

The initRun method initializes variables to zero. The simRun method computes the 
link dynamics on the correlation module.  

22. Calculate the input received from the image layer output sh1 and from the model 
layer output sh2 multiplied to compute correlSum as described in the following 
equation,

( ) ( )q
j

p
i

qp
ij hhC ��= (18.17)

Notice that since the link dynamics is simulated only after every loops iterations, the 
correlations are accumulated over time, leading to the += operator. The correlations are 
symmetric and can be used for the weight matrices from image layer to model layers and 
vice versa.  

correlSum[model][i2][j2][i1R][j1R] +=

 sh1[i1][j1]*sh2[model][i2][j2]; 

Table 18.9
Symbol and variable 
relationship. 
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23. After the weights have been changed the accumulated correlations need to be reset to 
zero.

correlSum[model] = 0; 

Recognition Module 
The recognition module describes the recognition dynamics. If the recognition variable 
of a model drops below r_theta, the model becomes ruled out by a strong inhibition term. 
In the simulation it is just skipped in order to save cpu-time. The variables and symbols 
are shown in table 18.10. 

Symbol Variable Name Variable Type Description 

rp rec NslFloat0[] Recognition activity 

Fp shSum NslDinFloat0[] Recognition sum value from model layers 

( )pp

p
FrR ��

�
= max recShSumMax float Recognition maximum sum value for the 

model layers 

The initRun method initializes the recognition layer (winner-take-all mechanism). 
The simRun method processes the recognition layer (winner-take-all mechanism). 
Recognition dynamics are 

24. Calculate terms shSum and recShSumMax from equation (18.7), 

( )pp

p
FrR ��

�
= max

The implementation is as follows,  

float recShSumMax = 0; 

for (model=1; model<=gallerySize; model++) 

 recShSumMax = nslMax(recShSumMax,rec[model]*shSum[model]); 

25. Integrate the recognition dynamics as described in equation (18.7), 

( ) ( )�
�
�

�
�
� �= ��

�

pp

p

pp
r

p FrFrtr max��

The implementation is as follows,  

nslDiff(rec[model],1.,lambda_r*rec[model]^(shSum[model] –

 recshSumMax)); 

26. Compute which models to skip. This information is propagated back to other mod-
ules requiring this information through port interconnections not shown here. 

if (model>0 && rec[model] <= r_theta)

 skipModel[model] = 1; 

Table 18.10
Symbol and variable 
relationship. 
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18.4 Simulation and Results3

Different experiments were carried out using different combinations of layer and patch 
sizes as shown in table 18.11. 

Experiment Layer and Patch 
Flags 

frame i1max j1max i2max j2max i1Rmax j1Rmax

Blob, layer and 
link dynamics 

small_layer = 1 
small_patch = 0 

0 10 10 10 10 10 10

Attention 
dynamics 

small_layer = 0 
small_patch = 0 

2 17+4 16+4 10 10 17 16

Recognition 
dynamics 

small_layer = 0 
small_patch = 1 

2 17+4 16+4 10 10 8 8

The first four experiments: Blob formation, blob mobilization, layer interaction and 
synchronization and link dynamics use the first combination where flags are set as 
small_layer = 1 and small_patch = 0. All modifications are made to the source file. 

Blob Formation 
Load the simulation file (gallerySize = 0, attention = 0) 

nsl source DLMB

nsl init 

nsl run

and observe how a blob arises.  
Restart the simulation with different initial conditions 
[Ctrl-C; nsl init; mouse clicks with left button on layer h1; nsl cont].
Vary also �h, originally set to 0.2 e.g. [Ctrl-C; nsl set dlm.h1.beta_h 

0.1; nsl set dlm.h2.beta_h 0.1; nsl cont].
What is a reasonable range for �h?

Blob Mobilization 
Load the simulation file (gallerySize = 0, attention = 0) 

nsl source DLMR 

nsl init 

nsl run

and observe how a blob arises and moves over the layer.  
Vary �+, �-, and �hs (lambda_p, lambda_m, kappa_hs), originally set to 0.2, 0.004, 

and 1, respectively, to e.g. [Ctrl-C; nsl set dlm.h1.lambda_m 0.001; nsl 
set dlm.h2.lambda_m 0.001; nsl cont]. 

Why should �- be larger for smaller layers? Is the shape of the blob speed-
dependent?  

Layer Interaction and Synchronization  
Load the simulation file (gallerySize = 1, attention = 0, workOnAverage = 0) 

nsl source DLMS 

nsl init

nsl run

Table 18.11
Size combinations for layers 
and patches for the different 
experiments. 
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observe how the two blobs synchronize and align with each other. Try different runs (for 
each run a new object is selected randomly and some synchronize easier than others) and 
use different object galleries [edit the file DLMobjects and exchange the *pose1 (= 15 
degrees rotated faces) block with the *pose2 (= 30 degrees rotated faces) or *pose3 (= 
different facial expression) block]. Vary �hh (kappa_hh), originally set to 1.2. What hap-
pens if �hh is too large or too small?  

Link Dynamics  
Load the simulation file (gallerySize = 1, attention = 0, workOnAverage = 0) 

nsl source DLMM 

nsl init 

nsl run 

observe how the connectivity develops in time.  
Vary �w (lambda_W). What happens if �w is too large?  

Attention Dynamics  
Load the simulation file (gallerySize = 1, attention = 1, workOnAverage = 0) 

nsl source DLMR

nsl source DLMA 

nsl init 

nsl run

observe how an attention blob arises and restricts the region in which the small blob is 
allowed to move.  

Vary �ah and �ha (kappa_ah, kappa_ha), originally set to 3 and 0.7, respectively.  
Now restart the simulation with  

nsl source DLMS 

nsl init 

nsl run 

and see whether the two blobs on the layers of different size can synchronize without an 
attention blob.  

Then add the attention blob [Ctrl-C; nsl load DLMA; nsl init; nsl run]  
and see how the alignment between the blobs can become more stable (notice that 

for each run a new object is selected randomly, which can be suppressed by  

[nsl set dlm.similarity.ObjectSelectionMode 1] in which case always 
the object indicated by preferredObject is used; with [nsl set dlm.similarity. 
ObjectSelectionMode 3] objects are selected randomly again).  

You can also experiment with the attention blob misplaced in the beginning [Ctrl-C; 
nsl init; mouse clicks with the left button near the border on layer a1; nsl cont]. Vary �ah

and �ha.

Recognition Dynamics  
Load the simulation file (gallerySize = 5, attention = 1, workOnAverage = 1) 

nsl source DLMG 

nsl source DLMA 

nsl init 

nsl run 
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observe the recognition process. In the first 1000 time units only the average layer with 
index 0 is simulated. The correct model has index 1. Shown are, for all models, the total 
layer activity, the recognition variable, and the sum over all synaptic weights (cf. also 
figure). The connectivity and the layer 2 internal state as well as its input is shown only 
for the currently most active layer. The time, the index of the most active layer, and the 
values of the recognition parameters are given as usual output. Asterisks indicate layers 
that have been ruled out. 

Data Base  
As face database we used galleries of 111 different persons. For most persons there is one 
neutral frontal view, one frontal view of different facial expression, and two views 
rotated in depth by 15 and 30 degrees respectively. The neutral frontal views serve as 
model gallery, and the other three are used as test images for recognition. The models, i.e. 
the neutral frontal views, are represented by layers of size 10X10. Though the grids are 
rectangular and regular, i.e. the spacing between the nodes is constant within each dimen-
sion, the graphs are scaled horizontally and vertically and are aligned manually: The left 
eye is always represented by the node in the fourth column from the left and the third row 
from the top, the mouth lies on the fourth row from the bottom, etc. The x- (that is, hori-
zontal) spacing ranges from 6.6 to 9.3 pixels with a mean value of 8.2 and a standard 
deviation of 0.5. The y-spacing ranges from 5.5 to 8.8 pixels with a mean value of 7.3 and 
a standard deviation of 0.6. An input image of a face to be recognized is represented by a 
16X17 layer with an x-spacing of 8 pixels and a y-spacing of 7 pixels. The image graphs 
are not aligned, since that would already require recognition. The variations of up to a 
factor of 1.5 in the x- and y-spacings must be compensated for by the DLM process.  

Technical Aspects  
DLM in the form presented here is computationally expensive. We have performed single 
recognition tasks with the complete system, but for the experiments referred to in 
table 18.12 we have modified the system in several respects to achieve a reasonable 
speed. We split up the simulation into two phases. The only purpose of the first phase is 
to let the attention blob become aligned with the face in the input image. No modification 
of the connectivity was applied in this phase, and only one average model was simulated. 
Its connectivity was derived by taking the maximum synaptic weight over all real models 
for each link:  

( ) ( )00 max tWtW pq
mn

pq

a
mn =

This attention period takes 1000 time steps. Then the complete system, including the 
attention blob, is simulated, and the individual connection matrices are subjected to 
DLM. Neurons in the model layers are not connected to all neurons in the image layer, 
but only to an 8X8 patch. These patches are evenly distributed over the image layer with 
the same spatial arrangement as the model neurons themselves. This still preserves full 
translation invariance. Full rotation invariance is lost, but the jets used are not rotation 
invariant in any case. The link dynamics is not simulated at each time step, but only after 
200 simulation steps or 100 time units. During this time a running blob moves about once 
over all of its layer, and the correlation is integrated continuously. The simulation of the 
link dynamics is then based on these integrated correlations, and since the blobs have 
moved over all of the layers, all synaptic weights are modified. For further increase in 
speed, models which are ruled out by the winner-take-all mechanism are no longer simu-
lated; they are just set to zero and ignored from then on (�� = � ). The CPU time needed 
for the recognition of one face against a gallery of 111 models is approximately 10-15 
minutes on a Sun SPARCstation 10-512 with a 50 MHz processor.  
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In order to avoid border effects, the image layer has a frame with a width of 2 neu-
rons without any features or connections to the model layers. The additional frame of 
neurons helps the attention blob to move to the border of the image layer. Otherwise, it 
would have a tendency to stay in the center.  

Results  
Figure 18.8 shows a sample recognition process using a test face strongly differing in 
expression from the model. The gallery contains five models. Due to the tight connec-
tions between the models, the layer activities show the same variations and differ only 
little in intensity. This small difference is averaged over time and amplified by the recog-
nition dynamics, which rules out one model after the other until the correct one survives. 
The example was monitored for 2000 units of simulation time. An attention phase of 
1000 time units had been applied before, but is not shown here. We selected a sample run 
which had exceptional difficulty to decide between models. The sum over the links of the 
connectivity matrices was even higher for the fourth model than for the correct one. This 
is a case where the DLM is actually required to stabilize the running blob alignment and 
recognize the correct model. In some other cases the correct face can be recognized with-
out modifying the connectivity matrix. 

Recognition rates for galleries of 20, 50, and 111 models are given in table 8.12. As 
is already known from previous work (Lades et al. 1993), recognition of depth-rotated 
faces is in general less reliable than, for instance, recognition of faces with an altered 
expression. It is interesting to consider recognition times (measured in arbitrary units). 
Although they vary significantly, a general tendency is noticeable: Firstly, more difficult 
tasks take more time, i.e. recognition time is correlated with error rate. This is also known 
from psychophysical experiments (see for example Bruce et al. 1987; Kalocsai et al. 
1994). Secondly, incorrect recognition takes much more time than correct recognition. 
Recognition time does not depend very much on the size of the gallery.  

Figure 18.8
DLM recognition: A sample 
run. The test image is shown on 
the left, with 16X17 neurons 
indicated as black dots. The 
models have 10X10 neurons 
and are aligned with each other. 
The corresponding total layer 
activities, i.e. the sum over all 
neurons of one model, are 
shown in the upper graph. The 
most similar model is usually 
slightly more active than the 
others. On that basis the 
models compete against each 
other, and eventually the 
correct one survives, as 
indicated by the recognition 
variable. The sum over all links 
of each connection matrix is 
shown in the lower graphs. It 
gives an impression of the 
extent to which the matrices 
self-organize before the 
recognition decision is made. 
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Correct Recognition Rate Recognition Time 
Gallery Size Test Images 

# % Correct 
Recognition 

Incorrect 
Recognition 

20 111 rotated faces (15 degrees) 
110 rotated faces (30 degrees) 
109 frontal views (grimace) 

106 
93
100 

95.5 
84.5 
91.7 

320�490 
990�1900 
290�530 

4110�2860 
2480�2580 
5610�7480 

50 111 rotated faces (15 degrees) 
110 rotated faces (30 degrees) 
109 frontal views (grimace) 

104 
83
95

93.7 
75.5 
87.2 

390�500 
930�1010 
440�1290 

3770�2120 
2080�1440 
4480�6190 

111 111 rotated faces (15 degrees) 
110 rotated faces (30 degrees) 
109 frontal views (grimace) 

101 
69
92

91.0 
62.7 
84.4 

420�460 
1350�3017 
380�410 

3770�3130 
4600�3720 
3380�4820 

18.5 Summary 
We routinely use NSL for homework assignments in class as well as for our own 
research, and we found it appropriate for both. It is very easy to get started with NSL. It 
provides a reasonable set of basic structures and functions to create a neural model with 
just a few lines of code. Moreover, when a more complex model requires more than this 
basic functionality, additional functions and data structures can conveniently be added. 
As a matter of fact, the model presented here used very little of the NSL-specific algo-
rithms and functions and profited mainly from NSL’s graphic display facilities and inter-
active control structures.

The model presented here deviates in some very fundamental ways from other bio-
logical and neural models of vision or of the brain. Foremost among these is its extensive 
exploitation of rapid reversible synaptic plasticity and temporal feature binding. Since 
these features, although first presented a decade and a half ago (von der Malsburg 1981), 
have not received wide acceptance in the community yet, we have expended great effort 
to demonstrate the functional superiority of the dynamic link architecture over more con-
ventional neural models by using it to solve a real-world problem, object recognition. We 
are presenting here our best achievement so far in this venture.  

The model presented here is closely related to a more technically oriented system 
(the “algorithmic system” in contrast to the “dynamical system” described here). It has 
also been developed in our group and is described in (Lades et al. 1993; Wiskott et al. 
1997). Essential features are common to the two systems, among them the use of jets 
composed of Gabor-based wavelet features, and of dynamic links to establish a mapping 
between the image domain and individual models.  

Our model for object recognition is successful in emulating the performance and 
operational characteristics of our visual system in some important aspects. As in the 
biological case, the flexible recognition of new objects can be installed simply by 
showing them once. Our system works with a type of standard feature detector, wavelets, 
which dominates much of the early visual cortical areae (Jones & Palmer 1987). The 
sensitivity of our system to changes in the stimulus, as for instance head rotation and 
change in facial expression, is strongly correlated with that of human subjects (Kalocsai 
et al. 1994; this study involved a version of our algorithmic system). And, above all, our 
model is superior in its object discrimination ability to all biologically motivated models 
known to us, and is at least one of the top competitors among technical systems for face 
recognition (in a blind test of face recognition against large galleries, performed by the 
American Army Research Lab, our algorithmic system came out as one of the top 

Table 18.12
Recognition results against a 
gallery of 20, 50, and 111 
neutral frontal views. 
Recognition time (with two 
iterations of the differential 
equations per time unit) is the 
time required until all but one 
models are ruled out by the 
winner-take-all mechanism. 
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competitors). Moreover, our system goes beyond mere recognition of objects, providing 
the basis for a detailed back-labeling of the image with interpretations in terms of explicit 
object or pattern models which are linked to the image by dynamic links and temporal 
feature binding.  

In spite of this success, there are still some difficulties and discrepancies. One con-
cern is processing time. The reorganization of the connectivity matrix between the image 
domain and the model domain requires that the two domains be covered at least twice by 
the running blob. The speed of this blob is limited by the time taken by signal transmis-
sion between the domains and by the temporal resolution with which signal coincidence 
can be evaluated by dendritic membranes and rapidly plastic synapses. Assuming a char-
acteristic time of a few milliseconds we estimate that our model would need at least one 
second to create a synaptic mapping. This is much too long compared to the adult’s speed 
of pattern recognition (Subramaniam et al. 1995). We therefore see our system as a model 
for processes that require the establishment of mappings between the image and object 
models. This is often the case whenever the absolute or relative placement of parts within 
a figure is important, and is very likely to be also required when a model for a new object 
is to be laid down in memory. The actual inspection times required by subjects in such 
cases are much longer than those required for mere object recognition and can easily be 
accommodated by our model. We believe that mere recognition can be speeded up by 
short-cuts. Potential for this we see in two directions, a reduction of the ambiguity of 
spatial feature arrangement with the help of trained combination-coding features, and a 
more efficient way (than our running activity blobs) of installing topographically struc-
tured synaptic mappings between the image domain and the model domain. A possible 
scheme for this would be the switching of whole arrays of synapses with the help of spe-
cialized control neurons and presynaptic terminals (Anderson & van Essen 1987).  

Another as yet weak point of our model is the internal organization of the model 
domain and the still semi-manual mode in which models are laid down. It is unrealistic to 
assume completely disjoint models, for several reasons, not the least of which economy 
in terms of numbers of neurons required. Also, it is unrealistic to see the recognition 
process as a competition between the dozens of thousands of objects that an adult human 
may be able to distinguish. Rather, pattern similarities within large object classes should 
be exploited to give the recognition process hierarchical structure and to support gener-
alization to new objects with familiar traits. The existence of such hierarchies is well 
supported by neurological observations (Damasio & Damasio 1992) and is implicit in 
psychophysical results (Biederman 1987) showing that many objects are recognized as 
simple arrays of shape primitives which are universally applicable. In a system closely 
related to the one presented here (von der Malsburg & Reiser 1995), a model domain was 
dynamically constructed as one comprehensive fusion graph containing as sub-graphs 
models for different objects, and in fact for different aspects of these objects, with differ-
ent models sharing many nodes. Further research is required in this direction.  

Another limitation of the present system is its inability to deal with alterations of size 
and orientation of the object image beyond a few percent and beyond a few degrees. For 
this it would be necessary that the connections between the image domain and the model 
domain linked also features of different size and orientation. Size and orientation invari-
ance has been successfully demonstrated in the context of the algorithmic system 
(Buhmann et al. 1990; Lades 1995). Direct implementation in the present model would, 
however, make the DLM process slower and much more difficult or perhaps even impos-
sible, because the system would have to start with a connectivity matrix with many more 
non-zero entries. The problem may have to be solved with the help of a two-step DLM 
process, the first step installing an expectation as to size and orientation of the image, 
specializing the dynamic links accordingly, the second step organizing the match as 
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described here. In many cases, estimates of size and orientation of an object’s image can 
be derived from available cues, one of which being the object’s outline as found by a 
segmentation mechanism.  

In the set of simulations presented here we simplified the recognition problem by 
presenting the objects to be recognized against a homogeneous background. More diffi-
cult scenes may require separate segmentation mechanisms which first identify an image 
region or regions as candidates for recognition (although a version of the algorithmic 
system was able to recognize known objects in spite of a dense background of other 
objects and of partial occlusion (Wiskott & von der Malsburg 1993)). Our model is 
ideally suited to implement image segmentation mechanisms based on temporal feature 
binding, as proposed in (von der Malsburg 1981), implemented in (von der Malsburg & 
Buhmann 1992; Vorbrüggen 1995) and supported by experimental data as reviewed in 
(König & Engel 1995). According to that idea, all neurons activated by a given object 
synchronize their temporally structured signals to express the fact that they are part of 
one segment. This coherent signal, suitably identified with our attention variable ai

p,
equation (5), could focus the recognition process on segments.  

In summary, we feel that in spite of some remaining difficulties and discrepancies 
we may have, with our model, a foot in the door to understanding important functional 
aspects of the human visual system. The environment provided by NSL has proved to be 
of great help in the development of our system, and we are extremely pleased that with 
NSL’s help we can share our system with students and research groups, both for didactic 
purposes and as a cutting-edge research tool.  

Notes 

1. This work has been funded by grants from the German Federal Ministry of Science 
and Technology (413-5839-01 IN 101 B/9), from AFOSR (F49620-93-1-0109), from 
the EU (ERBCHRX-CT-930097), and a grant by the Human Frontier Science 
Program. 

2. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model 
implementation written by L. Wiskott and he contributed Section 18.3 to this 
chapter. 

3. The DLM model was implemented and tested under NSLC. 



Appendix I – NSLM Methods 

We describe in this appendix a number of library methods in addition to those already 
introduced in chapter 6.   

A.I.1 System Methods 
NSLM provides a number of system methods for getting and setting the NSL system 
variables and for manipulating the simulation. These methods are accessed using the 
“system” prefix as follows: 

system.methodCall();

We mention the most important system methods in the following sections. Note that 
chapter 7 commands that begin with the “nsl” prefix all have an equivalent method call in 
NSLM. 

In general, setting parameter values at the system level may be overridden by each 
module, i.e. system method calls to set parameter value are used as a default, such as set-
ting the value for a “delta” for the complete system while each module may assign its 
own particular value.  

Data Access 
The nslSetAccess method sets the default NSL access of the entire system: 

system.nslSetAccess(’W’);

This is an important statement since all model variables get their default access from 
the system, similarly all module variables get their default access from either the model 
or their corresponding parent modules and so on. The nslSetAccess method takes a single 
character as argument, either ‘W’, ‘R’ or ‘N’ for write/read, read, and no-access, respec-
tively. The system default setting is ‘W’. (We hope to change the default access to ‘R’ in 
a future version.) The nslGetAccess method will retrieve the default access value for the 
system, 

char cur_access = system.nslGetAccess();

Simulation Parameters 
Simulation parameters are usually set from a model’s initSys method. It is important to 
remember that simulation time starts at 0, cycles start at 1, and epochs start at 1. Code 
segment A.I.1. shows the most important simulation parameters that may be set at the 
system level, 

system.setTrainEndTime(dval);

system.setRunEndTime(dval);

system.setTrainDelta(dval);

system.setRunDelta(dval);

system.setNumTrainEpochs(ival);

system.setNumRunEpochs(ival);

Code Segment A.I.1: Methods for setting simulation parameter values for the entire 
system where dval corresponds to a double value and ival corresponds to an int (integer) 
value. 
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Getting the simulation parameters with a double or int type var as shown in the fol-
lowing methods in code segment A.I.2. 

dval = system.getTrainEndTime();

dval = system.getRunEndTime();

dval = system.getTrainDelta(); 

dval = system.getRunDelta();

ival = system.getNumRunEpochs(); 

ival = system.getNumTrainEpochs(); 

ival = system.getCurrentTime(); 

ival = system.getCurrentCycle();

ival = system.getCurrentEpoch();

ival = system.getTrainEpoch();

ival = system.getRunEpoch();

Code Segment A.I.2: Methods for getting simulation parameter values from the 
entire system where dval corresponds to a double value and ival corresponds to an int
(integer) value. 

Incrementing, Breaking and Continuing 
This section describes methods for incrementing, breaking and continuing with system 
defined loops. Note that unless otherwise specified, the method can be applied in either 
the training phase or the run phase. Methods that increment counters are: 

system.incCycle();    

system.incRunEpoch();   

system.incTrainEpoch();   

system.incTime();    

Methods that break the simulation between modules, cycles, or epochs are:  

system.breakModules();

system.breakCycles();

system.breakEpochs();

Methods continuing with the next module, cycle, or epoch after a break are: 

system.continueModule();

system.continueCycle();

system.continueEpoch();

Model Variables 
NSL lets the user set and get a number of parameters from existing model variables.  

To set the name of an object instance we use: 

obj.nslSetName(charString);

To get the NSL instance name of an module or class object we use: 

charString name=obj.nslGetName();

The user may obtain or assign values to and from arbitrary variables in a model using 
the nslSetValue and nslGetValue methods, respectively. Note that all value setting and 
getting using these functions requires a corresponding data access similar to NSLS script 
data accessing. To set the value of a variable var1 to a variable var2 the user may use the 
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following functions (cast represents a NSLM object type where variables, var1 and var2,
are object types as well), 

var1=(cast)system.nslGetValue(“var1”);

system.nslSetValue(“var2”, var1);

Note that in the above methods the user must know each variable’s absolute name 
starting at the tree hierarchy root, i.e. the model name. For example, if we wanted to get 
the value of a variable named w1 located in module m1 of model modelA and assign it to 
a variable foo, we would type, 

NslFloat1 foo(10);

foo=(NslFloat1)system.nslGetValue(“modelA.m1.w1”);

or

NslFloat1 foo(10);

system.nslSetValue(“modelA.m1.w1”, foo);

In some cases the user may want to convert some of the above object type values 
into primitive types. This is accomplished using the nslGetValue method applied directly 
to an object type. This applies only to scalar object types using an appropriate cast. For 
example for a scalar NslFloat0 w0 object we could do the following, 

NslFloat0 doo;

doo=(NslFloat0)system.nslGetValue(“modelA.m1.w0”);

double d;

d=(double)doo.nslGetValue();

Note that simple assignment wouldn’t work since a primitive type cannot be directly 
assigned from an object type unless such method is present.  

There are a number of methods that obtain values from objects of higher dimensions. 
The getDimensions method returns an integer specifying whether the object has 0, 1, 2, 
3, or 4 dimensions. 

int dim=obj.getDimensions();

The getSizes method obtains the different dimensions of an object where obj1 is of 
dimension 1, obj2 is of dimension 2 and so on: 

obj1.getSizes(int);

obj2.getSizes(int,int);

obj3.getSizes(int,int,int);

obj4.getSizes(int,int,int,int);

We can also get the size of each dimension individually.   

int size1=obj1.getSize1();

int size2=obj2.getSize2();

int size3=obj3.getSize3();

int size4=obj4.getSize4();

One more note about the different getSizes methods is that they can be used to con-
trol the looping for say initialization of a variable.  For example, to assign a value to each 
element in the two-dimensional NSL object we could use the for control statement as 
follows, 



3 7 6      A P P E N D I X  I  

NslFloat2 y(2,3);

int i,j; 

for (i=0; i<y.getSize1(); i++)

 for (j=0; j<y.getSize2(); j++)

y[i][j] = i+j;

where the functions y.getSize1() and y.getSize2() get the rows and columns sizes, respec-
tively. 

We include as well the following methods returning different sectors of multidimen-
sional objects. For example, to get the jth column (1 dimensional object) of a 2 dimen-
sional object we would do: 

obj2.nslGetColumn(j);

(Recall that a row is simply obtained using squared brackets, e.g. obj[i].) To obtain a 
2 dimensional sector from a 2 dimensional object we would do   

obj2.nslGetSector(start1, start2, end1, end2);

Similarly, for 3 dimensional objects we would do:  

obj3.nslGetSector(start1, start2, start3, end1, end2, end3);

For a 4 dimensional object we would do:  

Obj4.nslGetSector(start1, start2, start3, start4,

 end1, end2, end3, end4); 

Dynamic Memory Allocation 
As introduced in chapter 6 NSL lets the user set the size of an object in a dynamic fash-
ion. This applies to other than scalar types having dimensions higher than 1. The user 
first instantiates the variable as follows without specifying its actual size: 

VisibilitySpec ObjectType obj(); 

Then a call to the dynamic memory allocation routine is done where sizeList depends 
on the particular ObjectType chosen: 

obj.nslMemAlloc(sizeList);

For example, in chapter 18, the “Face Recognition by Dynamic Link Architecture”
model defines almost all the variables in such a way as NormFactor:

private NslFloat2 normFactor(); 

Since the dimensions of the variable type is 2 then two arguments are passed to the 
memory allocation routine: 

normFactor.nslMemAlloc(i1max,j1max);

Printing
Printing data in NSL takes the form of nslPrint and nslPrintln (print on a new line) for 
output of any string or variable.  Note that we do not preface them with “system”. For 
example, to print the value of a variable we would do (note the use of the “+” string con-
catenation operator), 
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nslPrint(“x=“+ x);

The above represents an implicit conversion from any variable type into a string 
equivalent to the explicit form: 

nslPrint(“x=“+ x.toString());

Additionally, to print the name of an object we type: 

nslPrint(“x=“+ x.getName());

Since every class should have a “toString” method, we provide one for the “sys-
tem”. The system toString method returns the current model name if it is set and an error 
string if it is not set: 

nslPrintln(system.toString());

Another useful method is nslPrintAllVariables.  This method prints out the name 
and value of all variables in the system; however, this method is very time consuming 
and we recommend using it sparingly. 

system.nslPrintAllVariables();

Also the nslPrintStatistics is very useful, printing the current model name, the cur-
rent phase (initialization, train, run, or end), the current epoch, the current time and the 
current cycle. 

system.nslPrintStatistics();

File Manipulation 
NSL supports reading and writing into external files.1 NSLM defines a NslFile object 
class for doing the corresponding input and output manipulations. For example, to access 
a file named “file.dat” (suffix is not relevant), the user must first define an object holding 
the reference to the file as follows, 

NslFile file(“file.dat”);

To open a file we use the following function specifying the type of interaction we 
want to use: ‘R’ for read only, ‘A’ (all) for both read and write or ‘W’ for write only. For 
example, to opening “file.dat” for both read and write,  

file.open(‘A’);

To close the file we simply do, 

file.close();

Also since the text files we use are buffered, we provide the flush command to 
immediately flush the buffer: 

file.flush();

To write string values into the file one line at a time, we use the method puts just as 
in the NSL script language that is based on TCL. Note that the puts method write one 
line at a time, and will convert numerical objects to strings of characters: 

file.puts(obj);
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To read a value into a charString object named obj, we would use the method gets
which gets one line of text and puts the whole line into obj:

file.gets(obj);

To write string values into the file one lexeme at a time, we use the method write.
Note values are separated by white-space (space, tab, carriage return, linefeed). The 
method write will also convert numerical objects to strings of characters: 

file.write(obj);

To write a value into the file with a new line at the end, 

file.writeln(obj);

To read a value into a charString object named obj, we would use the method read , 
which gets one lexeme of text and puts the whole lexeme into obj:

file.read(obj);

In addition, what we have defined as white-space, may not be what the user desires; 
thus we provide two more methods that allow the user to define what white-space is, 
where char1 specifies one character to put between lexemes and array10 specifies a 
native array of 10 characters defining white-space 

file.write(obj,char1);

file.read(obj,array10);

For example, the Backpropagation model of chapter three uses the readFile method 
described in the code segment A.1.3 to read training data from a file. 

public int readFile(CharString fname,NslInt1 nPats,

NslFloat2 pInput, NslFloat2 pOutput, int iSize, int oSize)

{

   int pat=0; 

   int i,j =0; 

   status=-1; 

   NslFile file(fname); 

    

   if (file.open(‘R’) <0) { 

      nslPrintln(“Bad File Name: “+fname);

      return(status); 

   } else { 

      file.gets(nPats); 

     for (pat = 0; pat < nPats; pat++) {  

        for (i = 0; i < iSize; i++) { 

          file.read(pInput[pat][i]);

       } 

       for (j = 0; j < oSize; j++) { 

          file.read(pOutput[pat][j]);  

       } 

       file.close(); 

  }

}

Code Segment A.1.3
Example of the readFile method 
within the Backpropagation 
mode.
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Display Step  
The following display and protocol methods are provided for manipulation of the dis-
plays and creation and selection of the protocols. The value of a variable t representing 
the display delta or update time can be set or get as follows, 

system.setDisplayDelta(t);

double var = system.getDisplayDelta();

A.I.2 Mathematical Methods 
Numerical methods/functions supported by NSLM can be applied to any numerical 
object of any dimension (NslInt, NslFloat, NslDouble, dimensions 0,1,2,3,4 unless 
otherwise specified) or primitive type (int, float, double). They consist of arithmetic,
threshold, differential approximation methods as well as some additional miscellaneous 
functions. Some of these functions have a corresponding operator, see section 6.2. There 
are two general formats for methods, the first one where the resultant is passed as return 
value and the second where the resultant is passed as the first parameter to the method as 
shown next, 

z = method(x,y); 

method(z,x,y);

While the first style is more elegant the second one is more efficient since a return 
value requires additional memory allocation, a relatively slow operation that should be 
avoided if possible. In particular, this becomes critical when dealing with higher level 
object dimensions.

Basic Arithmetic Methods and Operators 
NSLM provides a number of numerical functions taking either a single or two arguments 
and returning a value. 

� The arithmetic functions shown in table A.I.1 are defined for x, y and z of similar 
NSL type and dimensions 

Operator Expression Method Expression Description 

z = x + y z = nslAdd(x,y) element by element addition 

z = x - y z = nslSub(x,y) element by element subtraction 

z = x ^ y z = nslElemMult(x,y) element by element multiplication 

z = x / y z = nslElemDiv(x,y) element by element division 

If both operands are of the same dimension, the operation will apply to correspond-
ing object elements. For example, in the case of 2D arrays if x and y are 4-by-4 matrices, 
the expression “z=x+y” will add elements x[i][j] with y[i][j] and store the resulting 
x[i][j]+y[i][j] into z[i][j], for 0�i,j<4. Additionally, if one argument of the operation is an 
array and the other one is a scalar, the operation will apply to every object element with 
the scalar number. For example, if x is a scalar, y is 4-by-4 matrix, the expression 
“z=x+y” will add element y[i][j] with x and store the resulting x+y[i][j] into z[i][j], for 
0�i,j<4. 

� The “*” product operator works for scalars, a vector and a scalar, a scalar and a vec-
tor, a vector and a vector, a vector and a two dimensional matrix, and two, two 
dimensional matrices. In the case where a scalar is involved, the “*” operator will 
call nslElemMult. In the case of two vectors, then the “*” operator will call 

Table A.I.1
Basic arithmetic operators 
and methods. 
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nslElemMult as well. In the case where two matrices are involved, then the “*”
operator will call nslProduct and return a matrix.

In table A.I.2 nslProduct assumes x is a matrix and y is matrix having the same 
number of rows as the number of columns in x.  The size and dimension of resultant, z, is 
constructed from the number of rows in x and the number of columns in y.

Operator Expression Method Expression Description 

z = x * y z = nslProduct(x,y) vector/matrix product 

In the case where x is a matrix or a vector and y is a vector, we should use the 
nslTrans vector transpose method (see following sections) on the vector to make it a 
column vector.

The convolutions operators and methods shown in table A.I.3 are defined for both 
vectors and matrices of two dimensions. The type and dimension of z corresponds to that 
of y.

Operator Expression Method Expression Description 

z = x @ y z = nslConv(x,y) zero-edge convolution 

z = nslConvW(x,y) wrap-edge convolution 

z = nslConvC(x,y) copy-edge convolution 

For example, for the zero-edge effect and two matrices x, and y we have: 

�
�

�
�

�
=

111

121

111

y

�
�
�

�

��
�

�

�

=

08421

88421

44421

22221

11111

x

will result in “z = x@y”as follows: 

� First a larger matrix is created with 0 values for the edges (the size of the new matrix 
depends on both the size of the mask and the convolved matrix; for example for a 
(2d+1)x(2d+1) mask, the border of zeroes must be d-deep): 

�
�
�
�

�

�
�
�
�

�

�

=

0000000

0084210

0884210

0444210

0222210

0111110

0000000

xc

� Second we overlap y on the left top corner of xc with y [0,0] on top of xc[0,0] so the 
first convolution will be given by: 

z[0,0] = (0*1 + 0*1 + 0*1) + (0*1 + 1*2 + 1*1) + 

 ( 0*1 + 1*1 + 2*1) = 6 

and so on for the other elements. For the wrap around edge effect and copy edge effect 
please see the website. 

Table A.I.2�

Multiplication method. 

Table A.I.3
Multiplication method. 
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Additional Arithmetic Methods 
NSL offers a number of additional arithmetic functions. We describe the most important 
of these in table A.I.4. 

Method Expression Description 

z=nslAbs(x); absolute value 

z=nslDistance(x,y); calculates the distance to a point x,y. 

z=nslGaussian(x,mean,stddev); guassian distribution for x with defaults of mean 0, and standard deviation 1. 

z=nslRandom(x,lower, upper); Calculates a random value for every element of var9 between the bounds of 
lower and upper. The defaults for lower and upper are 0 and 1. 

z=nslRint(x); rounds every element of x to an integer value but returns the values in the same 
native type of array as x. The variable z must be of the same native primitive 
type as the value stored by x (int, float, double). 

z=nslExp(x); calculates e to the power x.

z=nslLog(x); calculates the log of x.

z=nslPow(x,n); calculates x to the power of n.  The variable n must be of the same native 
primitive type as the value stored by x (int, float, double). 

z= nslSqrt(x); calculates the square root of x.

For example, the nslDistance function calculates the distance to a point x,y using the 
following formula:  

z=sqrt(pow(x,2)+pow(y,2));

In table A.I.5 we include different forms of the maximum and minimum methods.  

Method Expression Description 

z=nslMaxValue(x); finds the element with the maximum value throughout all of x and returns it in 
z. Variable z must be of the same native primitive type as the values of x.

z=nslMinValue(x); finds the element with the minimum value throughout all of x and returns it in 
z. Variable z must be of the same native primitive type as the values of x.

nslMaxElem(nj,x); finds the maximum value in a vector x returning the index of the element 

nslMinElem(nj,x); finds the minimum value in a vector x returning the index of the element 

nslMaxElem(ni,nj,x); finds the maximum value in a matrix x returning the index of the element 

nslMinElem(ni,nj,x); finds the minimum value in a matrix x returning the index of the element 

nslMaxElem(,nh,ni,nj,x); finds the maximum value in a 3d array x returning the index of the element 

nslMinElem(nh,ni,nj,x); finds the minimum value in a 3d array x returning the index of the element 

nslMaxElem(ng,nh,ni,nj,x); finds the maximum value in a 4d array x returning the index of the element 

nslMinElem(ng,nh,ni,nj,x); finds the minimum value in a 4d array x returning the index of the element 

z=nslMaxMerge(x,y); Calculates the maximum between the two elements of x and y returning it in z.

z=nslMinMerge(x,y); Calculates the minimum between the two elements of x and y returning it in z.

Table A.I.4�

Abs,Distance,Gaussian,Rand
om,Rint,Exp,Log,Pow, and 
Sqrt methods. 

Table A.I.5�

Maximum and minimum methods. 
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Since we have up to four dimensions, the nslMaxElem method is overloaded and 
can have 2, 3, 4, or 5 parameters.  For example, in the case where x is a four-dimensional 
object we use the return variables ng, nh, ni, and nj which are indexes of type NslInt0
and are returned as well as the element they point to which is z. z must be of the same 
native primitive type as the values of x. We perform a similar task for function 
nslMinElem.

In table A.I.6 we include different forms of the sum methods.  

Method Expression Description 

z= nslSum(x); sums all of the values in x and returns it in z.  Variable z must be of the same 
native primitive type as the values of x.

z= nslSumColumns(x); sums the columns of matrix x and returns a native vector of the same type as 
the values of x and returns it in z.  Variable z must be of the same native primi-
tive type as the values of x.

z= nslSumRows(x); sums the rows of matrix x and returns a native vector of the same type as the 
values of x and returns it in z. Variable z must be of the same native primitive 
type as the values of x.

In table A.I.7 we include different forms of the fill method.  

Method Expression Description 

z = nslFillColumns(x,y); the method takes a y vector and fills every column of matrix x with it.  The 
length of y and the number of rows in x must match.  Also the values of x and 
y should be of similar types, and z should all be of the same type as x.

z = nslFillRows(x,y); the method takes a y vector and fills every row of matrix x with it. The length 
of y and the number of columns in x must match.  Also the values of x and y
should be of similar types, and z should all be of the same type as x.

Table A.I.6�

Sum methods. 

Table A.I.7�

Fill methods. 
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In table A.I.8 we include different forms of the set and get method.  

Method Expression Description 

z= nslGetColumn(x,n); the method takes a matrix x and returns a vector z made of the n-th column 
of x The length of z and the number of rows in x must match.  Also the val-
ues of x and z should be of similar types. 

z= nslGetRow(x,n); the method takes a matrix x and returns a vector z made of the n-th row of x.
The length of z and the number of columns in x must match.  Also the values 
of x and z should be of similar types. 

z= nslGetSector(x,start1,start2, 
end1,end2);

returns the specified sector of matrix x. Variables start1 through end2 should 
be int or NslInt0.

z= nslGetSector(x,start1,start2, 
start3, end1,end2,end3);

returns the specified sector of 3d array x. Variables start1 through end3
should be int or NslInt0.

z= nslGetSector(x,start1,start2, 
start3,start4,end1,end2, 
end3,end4);

returns the specified sector of 4d array x. Variables start1 through end4
should be int or NslInt0.

nslSetColumn(z,x,n); set a vector z with a vector made of the n-th column of x  The length of z and 
the number of rows in x must match.  Also the values of x and z should be of 
similar types. 

nslSetRow(z,x,n); set a vector z with a vector made of the n-th row of x. The length of z and 
the number of columns in x must match.  Also the values of x and z should 
be of similar types. 

nslSetSector(z,x,start1,start2 
,end1,end2);

sets the specified sector of z with a matrix x. Variables start1 through end4
should be int or NslInt0.

nslSetSector(z,x,start1,start2, 
start3,end1,end2, end3);

sets the specified sector of z with a 3d array x. Variables start1 through end4
should be int or NslInt0.

nslSetSector(z,x,start1,start2, 
start3,start4,end1,end2, 
end3,end4);

sets the specified sector of z with a 4d array x. Variables start1 through end4
should be int or NslInt0.

In table A.I.9 we include matrix transformation methods.  

Method Expression Description 

z= nslTrans(x); the method transposes a vector or matrix x into z.

z= nslInverse(x); the method computes the inverse of a matrix x into z.

Table A.I.8�

Set and Get methods. 

Table A.I.9�

Fill methods. 
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Trigonometric Methods 
In table A.I.10 we include a number of trigonometry methods.  

Method Expression Description 

z= nslCos (x); compute cosine of the values in x and returns it in z.

z= nslSin (x); compute sine of the values in x and returns it in z.

z= nslTan (x); compute tangent of the values in x and returns it in z.

z= nslArcCos (x); compute arc cosine of the values in x and returns it in z.

z= nslArcSin (x); compute arc sine of the values in x and returns it in z.   

z= nslArcTan (x); compute arc tangent of the values in x and returns it in z.   

Threshold Methods 
NSLM provides with a number of threshold functions: ramp, step, saturation, bound, and 
sigmoid, as shown in figure A.I.1. All these functions are considered pointwise opera-
tions similar to addition, being applied to corresponding elements in the object independ-
ent of dimension. 
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The functions are defined as follows:   

� Step function is defined for x and y of similar NSL type and dimensions 

y = nslStep(x,k
x1
,k

y1
,k

y2
)

Table A.I.10�

Trigonometry methods. 

Figure A.1.2�

Common Threshold 
Functions. 
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corresponding to the pointwise application of 
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with defaults kx1 = 0, ky1 = 0, and ky2 = 1. 

� Ramp function is defined for x and y of similar NSL type and dimensions 

y = nslRamp(x,k
x1
,k

y1
,k

y2
)

corresponding to the pointwise application of 
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with defaults kx1 = 0, ky1 = 0, and ky2 = 0. 

� Saturation function is defined for x and y of similar NSL type and dimensions 

y = nslSaturation(x,k
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corresponding to the pointwise application of 
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with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1. 

� Bound function is defined for x and y of similar NSL type and dimensions 

y = nslBound(x,k
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corresponding to the pointwise application of 
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with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1. 

� Sigmoid function is defined for x and y of similar NSL type and dimensions 

y = nslSigmoid(x,slope,offeset)

corresponding to the pointwise application of 
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with defaults x= 1, slope = 1, and offset=0, and 
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y = nslSigmoid(x,k
x1
,k

x2
,k

y1
,k

y2,inverseErrorConst);

corresponding to the pointwise application of the above function but with the following 
substitutions: 

offset=(kx1+kx2)/2;

slope=(inverseErrorConst /(kx2-kx1)); 

result=nslSigmoid(x,slope,offset) * (ky2-ky1) + ky1; 

with defaults kx1 = 0, kx2 = 1, ky1 = 0, and ky2 = 1, error_const=10.  

Notes 

1. In the current version only ascii (text) files are supported. The NSLC system supports 
extensions to binary files as exemplified in chapter 18 with the DLM model.



Appendix II – NSLJ Extensions  

This section describes the features of the NSLJ simulation environment that are not pre-
sent in the standard system. We expect that these extensions will be incorporated into 
NSL3_0 in the future. 

A.II.1 Additional NslModule Types 
The NslOutModules and NslInModules are import within the NSLJ system since they 
allow for the special processing of display data and are a core part of the user interface. It 
is important to note that NslInModules and NslOutModules are scheduled by the sched-
uler while NslInFrames and NslOutFrames are not. NslInFrames and NslOutFrames are 
just one variable within a NslInModule or a NslOutModule. The NslOutModule is used 
to control the output going to a NslOutFrame. Every NslOutModule has one and only one 
NslOutFrame. (The frame’s title is generated from the NslOutModule’s instance name.) 
Every NslOutModule has one and only one NslOutFrame. (The frame’s title is generated 
from the NslOutModule’s.) Each NslOutModule must specify to which protocols it 
belongs and all NslOutModule are assumed to belong to the “manual” protocol unless 
specifically removed. If a NslOutModule is enabled by selection of a protocol, it is exe-
cuted by the scheduler at the frame’s specified DisplayDelta times. The same holds true 
for NslInModules as well: the module has one and only one NslInFrame, each NslInMod-
ule must specify to which protocols it belongs, and it executes at the frame’s specified 
DisplayDelta time.  

To define a module of type NslOutModule, type the following: 

nslOutModule Foo (int size) { 

 public void initModule() { 

nslAddProtocolRecursiveUp(“Jumping”);

nslAddAreaCanvas(outpu,-1,1);

nslAddTemporalCanvas(energy,-1-,10);

 } 

}

In the code above, we have declared the nslOutModule “Foo” and have subscribed to 
the protocol “Jumping”. In addtion, we have also declared that two plots shall appear on 
this NslOutModule’s NslOutFrame—namely one Area graph and one temporal graph. All 
standard output plots can be added in this way. 

To define a module of type NslInModule, type the following: 

nslInModule Moo (int size) { 

 public void initModule() { 

   nslAddProtocolRecursiveUp(“Learn”);

nslAddPanel(“controlBar”);

nslAddButton(“clear”,”Clear image”,”controlBar”);

 //stuff 

 } 

public void clearPushed() {//the name “clear” came from

nslAddButton

 //stuff 

 } 

}
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In the NslInModule we have added a few of the NSLJ widget types. For a complete 
list of these, please see our website at http://www-hbp.usc.edu/Projects/nsl.htm. Here are 
the ones we used above. 

NslAddPanel is used to add a blank panel to the canvas 

public void nslAddPanel(charString name){} 

where name is the variable name of the panel. The size of the panel will grow with each 
new button added to the panel.  

NslAddButton is used to add a button to the panel. 

public void nslAddButton(charString name, charString label,

charString panel name){} 

where name is the name of the button. A corresponding method must be written in the 
user’s code with the name “buttonnamePushed” (“buttonname” concatenated with 
“Pushed”.). The label name is the name that will appear on the button, and the panel 
name is the name of the panel in which to place the button.  

nslAddInputImageCanvas looks like that shown in figure 5.18. NslInputImage-
Canvas is placed directly on NslInFrames. Clicking the box of the element desired within 
the grid will cause that box to become shaded and take on the ymax value. All boxes not 
selected will have the ymin value. 

public void nslAddInputImageCanvas(NslNumeric variable, int 

ymin, int ymax){} 

where the NslNumeric can have one or two dimensions; ymin is the lower bound on y; 
and ymax is the upper bound on y.  

NslAddNumericEditorCanvas allows the user to see the values of a zero, one, or 
two-dimensional array displayed in a grid like fashion. 

public void nslAddNumericEditorCanvas(NslNumeric variable, int

ymin, int ymax){} 

where the NslNumeric can have zero, one or two dimensions; ymin is the lower bound on 
y, and ymax is the upper bound on y. For an example of the NumericEditor widget please 
see figure 5.17. In that example we add three NumericEditor Widgets to one frame. The 
NumericEditor widget can be used both as an input widget and an output widget. If used 
as an output widget, the values are updated every Display Delta increment. 

A.II.2 NSLM Extensions 

Additional System Methods 
Two convenient methods in neural simulation are “nslGetValue” and “nslSetValue.”
These methods can act as probes (system.nslGetValue, system.nslSetValue-(foo,
“modelA.m1.w1”) and as injectors (system.nslSetValue(“modelA.m1.w1”, foo)). We 
can use them in a NslModule or a NslClass without having to put the “system” in front 
of the method name. Thus we would just type: 

foo=(NslFloat1)nslGetValue( “modela.m1.w1”);

The method nslGetModelRef is also convenient for manipulating the model instance 
by returning a reference to a variable of type NslModel. The syntax is: 

var1=system.nslGetModelRef();
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The nslGetRefOfModuleOrClass method is similar to the getModelRef method. It 
returns a reference to a NslHierarchy class object, thus you will need to cast it to the 
appropriate type: 

var2=(NslModule)system.nslGetRefOfModuleOrClass

(“modelA.m1”,’R’);

var3=(NslClass)system.nslGetRefOfModuleOrClass

(“modelA.c1”,’R’);

Note that “modelA.m1” is m1’s long-name or real-name. long-names or real-names
start with the model instance names and each child module or class instance is appended 
from there. 

Differential Approximation 
To add a new approximation method we type: 

system.addApproximationMethod(NslDiff);

To set or get the system approximation method we use: 

system.setApproximationMethod(NslDiff);

NslDiff diffObj;

diffObj=system.getApproximationMethod();

Currently only NslDiffEuler and NslDiffRungeKutta2 are available as parameters 
to the setApproximationMethod. The default approximation method is Euler. 

To set or get the current approximation delta we type:  

system.setApproximationDelta(double);

double var=system.getApproximationDelta();

The default delta is 0.1. 
To set or get the current approximation time constant we type:  

system.setApproximationTimeConstant (double);

double var=system.getApproximationTimeConstant();

The default time constant is 1.0. 

DisplayDelta 
To set or get t5 as a double representing the display delta or update time. The current 
default display delta is set to every cycle.  

system.setDisplayDelta(t5); );

double var = system.getDisplayDelta();

Additional NslBase Methods 
The NslBase class is the most primitive class in the NSL class hierarchy tree. Every NSL 
object inherits this class (except for system) and thus can use these methods. Since these 
classes could be subclassed, we prefix their names with “nsl” so that the model builder 
does not override our methods accidentally. 

To set the parent of an object instance we can use: 

obj.nslSetParent(NslHierarchy parent);
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To get the parent objects reference we can type: 

NslHierarchy objParent; 

 objParent = objChild.nslGetParent();

To get the parent objects reference of type NslModule we can type: 

NslModule objParent; 

 objParent = objChild.nslGetParentModule();

To get the parent objects reference of type NslClass we can type: 

NslClass objParent; 

 objParent = objChild.nslGetParentClass();

Additional NslData Methods 
The NslData class provides the backbone for the classes NslNumeric, NslString and 
NslBoolean. Half of the methods are abstract or virtual meaning that they must be over-
ridden in all of the subclasses. In all of the following examples we assume that objX is of 
some NslData type, such as NslBoolean0, NslString0, NslDouble0, NslDinDouble0, or 
NslDoutDouble0.

The first method we will discuss is duplicateData. This method is abstract/virtual, 
and it copies or clones the value of obj1 and places it in the parameter. 

NslFloat2 obj1(4,4); 

NslFloat2 obj2(4,4); 

obj1.duplicateData(obj2);

The duplicateThis method is abstract/virtual, and it returns a copy of itself. 

obj2=(NslFloat2)obj1.duplicateThis();

where obj2 is of type and will probably need to be cast to the same type that obj1 is. 
The next method is also abstract and called setReference. This method sets the ref-

erence pointer of this object to the data value of the parameter. (It is similar to two point-
ers pointing to a same object in C/C++.) Whenever the data value of one side is changed, 
the other side is changed as well. It is used only in NslPorts. 

obj3.setReference(obj1);

The isDataSet method is also used within the NSL system. This method checks 
whether the object value is null or not. (This method is also abstract/virtual.) A NslData’s
value can be null if the NslData object was created without instantiations, and the user 
was planning to use nslMemAlloc to allocate the space for the value. 

obj4.isDataSet();

The next method is a complement to isDataSet. It is called resetData. It sets the ob-
jects value back to null. (This method is also abstract/virtual.) 

obj5.resetData();

The methods which are not abstract/virtual but which can be overridden are: 

int sizes[4]; 

sizes=obj8.getSizes();
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The last statement returns the sizes for all dimensions. If obj8 is a scalar, then the 
sizes array will contain all zeros. If obj8 is a vector (dimension1), then sizes[0] will con-
tain the length of the vector, etc. 

Additional NslNumeric Methods 
The numeric methods involve the following classes: NslNumeric (only abstract /virtual), 
NslNumericX (mostly abstract/virtual), NslDoubleX, NslFloatX, NslIntX, NslDinDou-
bleX, NslDinFloatX, NslDinIntX, NslDoutDoubleX, NslDoutFloatX, NslDoutIntX
where X represents 0, 1, 2, 3, or 4. The class hierarchy of the NslDinDouble4 class is 
shown in figure A.1.1. 

Since there are so many NslNumeric associated classes, we will just mention two of 
them here: NslNumeric0, and NslDouble2. We feel that this will give most readers an 
overview of the methods they are interested in and if the user would like more informa-
tion, he/she can see our website for the full details on each class. 

Additional NslNumeric0 Methods 
In this section we will not reiterate the methods that were covered in NslBase and 
NslData, we will just assume that the abstract methods mentioned in those classes were 
implemented correctly in this class or in one of its subclass. In addition to the 
abstract/virtual type methods, this class also contains pseudo templates for several meth-
ods that return a different type based on the type of object the method is associated with. 
We do this since Java does not let us return different types when a method is declared 
abstract. In all of the following we assume obj0 is of some NslNumeric type such as 
NslDouble0, NslDinDouble0, or NslDoutDouble0.

The first of these pseudo abstract methods is get, returning a native primitive value 
or native primitive array reference. 

var1=obj0.get();

The next set of methods are all abstract/virtual, meaning they are all overridden in 
one of the subclasses NslDouble0, NslFloat0, or NslInt0. 

doubleVar= obj0.getdouble() ;

floatVar = obj0.getfloat() ;

intVar = obj0.getint() ;

NslDouble0 var = obj0.getNslDouble0() ;

NslFloat0 var = obj0.getNslFloat0() ;

NslInt0 var = obj0.getNslInt0() ;

In the next statement value is a either double, float, int, or NslNumeric0; notice the 
set method is overloaded

obj0.set(value);

This last method is not abstract/virtual. It is called getSize and is only implemented 
in NslNumeric0, NslNumeric1, NslBoolean0, and NslBoolean1.

int someint=obj0.getSize();

where obj0 is either a NslNumeric0, NslNumeric1, NslBoolean0, and NslBoolean1
type. 

Figure A.II.1�

Class Hierarchy of the 
NslDinDouble4 Class using 
UML notation. 
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Additional NslNumeric2 Methods  
Note that in this class we do not declare any abstract/virtual methods since this is a leaf 
class. However, the methods within the NslDinDouble2 and NslDoutDouble2 classes 
can override these methods. And again we will not repeat the methods covered in 
NslBase or NslNumeric. In the following examples, obj2 is of type NslDouble2 return-
ing either a reference to the original object’s value in the case where no casting is needed, 
and returning a reference to an object of the appropriate type where casting is indicated. 

double[][] somedouble2d=obj2.get();

double[] somedouble1d=obj2.get(int);

double somedouble=obj2.get(int,int);

double[][] somedouble2d=obj2.getdouble2();

float[][] somefloat2d=obj2.getfloat2();

int[][] someint2d=obj2.getint2();

double[] somedouble1d=obj2.getdouble1(int);

float[] somefloat1d=obj2.getfloat1(int);

int[] someint1d=obj2.getint1(int);

double somedouble=obj2.getdouble(int,int);

float somefloat=obj2.getfloat(int,int);

int someint=obj2.getint(int,int);

NslDouble2 someNslDouble2(4,4);

NslFloat2 someNslFloat2(4,4); 

NslInt2d someNslInt2(4,4); 

someNslDouble2=obj2.getNslDouble2();

someNslFloat2=obj2.getNslFloat2();

someNslInt2d=obj2.getNslInt2();

Next we have the set methods. All set methods copy the value passed in before 
assigning to the value of the object. The set methods are overloaded so that they can take 
a variety of parameters. The first method is: 

obj2.set(value);

where value is a native double, float, int array of dimension 2 or NslNumeric2; obj2 is 
NslDouble2. The next method is: 

obj2.set(int,int,value);

where value is of type double, float, int, or NslNumeric0. This method sets a particular 
element within the array. The next method is: 

obj2.set(value);

where value is of type double, float, int or NslNumeric0. This method sets all of the 
elements of the matrix to the value specified. 

Finally, we need to mention the memAlloc method. We use this method when we 
want to dynamically allocate the size of a matrix sometime later on in the simulation. A 
typical use is to set the dimensions of a variable from a script file or from the NSLS script 
window. The Backpropagation model from chapter 3 set the sizes of some of its NSL 
objects this way. While a NSL numeric object must be initially specified with an 
appropriate dimension type, the user may delay specifying the corresponding dimension 
sizes. For example, a two-dimensional object may have its corresponding sizes specified 
during object instantiation as follows, 

Code Segment A.II.5�

NslDouble2 Methods Using 
Get.
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NslDouble2 a(size1,size2);

or could be specified in two steps using the memAlloc function as follows 

NslDouble2 a();

a.memAlloc(size1,size2);

The above memory allocation expression can take place anywhere in the program. 
Just beware that if the object is used before doing the memory allocation call, errors may 
result in the program. In addition, NSL port types can only use the memAlloc method 
within the callFromConstructorBottom method, or the top of the makeConn method. 
This is due to the fact that makeConn wants to make sure the ports are well defined 
before it connects them to other modules. Remember the dimensions and the sizes of the 
dimensions on the port types must match to make a connection. If the sizes are not know, 
then makeConn cannot make a connection. 

Additional NslBoolean Methods  
The NslBoolean class inherits from NslData and NslBase; thus we will not cover the 
methods from those classes again. However, NslBoolean and NslBooleanN have some 
methods unique to the boolean class. For this example we will look at the NslBoolean2
class.

In all examples obj2 is of type NslBoolean2. Also the methods that convert from 
boolean to native primitive types, convert true to the value 1 or 1.0, and false to 0 or 0.0. 

boolean[][] someboolean2d=obj2.get();

boolean[] someboolean1d=obj2.get(int);

boolean someboolean=obj2.get(int,int);

boolean[][] someboolean2d=obj2.getboolean2();

boolean[] someboolean1d=obj2.getboolean1(int);

boolean someboolean=obj2.getboolean(int,int);

NslBoolean2 someNslBoolean2(4,4); 

someNslBoolean2=obj2.getNslBoolean2();

Next we have the set methods. All set methods copy the value passed in before 
assigning to the value of the object. The set methods are overloaded so that they can take 
a variety of parameters where value is a native double, float, int array of dimension 2 or 
NslNumeric2; obj2 is NslBoolean2.

obj2.set(value);

In the following statement value is of type double, float, int, NslNumeric0 or 
NslBoolean0.

obj2.set(int,int,value);

In the following statement value is of type double[], float[], int[], NslNumeric1, or 
NslNumeric1.

obj2.set(int, value); 

Finally we have the memAlloc method, and just as in the NslDouble2 case above, 
we can dynamically set the sizes of the dimensions of the arrays at run time in any 
method. However, NSL port types and their dimensions sizes must be defined before the 
first nslConnect statement is made using one of these ports. 
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 NslBoolean2 b();

b.memAlloc(size1,size2);

Additional NslString0 Methods  
The NslString or the NslString0 class was covered somewhat in section 6.2. However, 
we will describe its unique method in more detail here. Again note, that since NslString
is a subclass of NslData and NslBase we will not cover those methods here. 

In all of the following examples, the obj0 is of type NslString0.

charString somestring=obj0.get();

charString somestring= obj0.getstring() ; 

NslString0 someNslString0();

someNslString0 = obj0.getNslString0() ;

In the following statement value is either a double, float, int, boolean, charString,
NslNumeric0, NslBoolean0, or NslString0; notice the set method is overloaded

obj0.set(value);

In the following statement obj0 is of type NslString0. getLength is only imple-
mented in NslString0 and it returns the length of the string. 

int someint=obj0.getLength();

Additional NslHierarchy Methods 
The NSLJ class NslHierarchy is the parent class for NslModule and NslClass. Its original 
name was NslThingsWithChildren but we felt the name was too long. Many of the 
NslHierarchy methods have already been discussed in the NslSystem methods earlier in 
this appendix. We will mention some of them here but will refer you to the NslSystem
section for a more in depth description of these functions. When the set methods are used 
in relation to a NslModule or NslClass object, the setting of a value only change the 
value of the current module or class and not the entire system. When the get methods are 
used in relation to a NslModule or NslClass object, the getting of a value only returns the 
default for that module or class, and not the system default. 

The methods that are also in NslSystem are:  

value=(cast)mod1.nslGetValue(name);

mod1.nslSetValue(target,data);

where target is a charString and data is of type NslData

mod1.nslSetValue(target, num);

where target is of type NslData and num is a charString.

mod1.nslSetAccessRecursive(char1);

where char1 is either ‘R’, ‘W’, or ‘N’.
The NslHierarchy class also contains the following methods (note that all of these 

methods begin with “nsl” to avoid accidental overrides by subclasses). The following 
gets the long-name or real-name of the module or class, 

somestring=mod1.nslGetRealName();
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To print the name of the current module/class and the name of its parent module

charString=nslGetNameAndParent();

To print the name of the current module/class and all ancestors 

charString=nslGetNameAndParentRecursive();

This method gets a reference to the variable with the specified name. This method 
works as long as the named variable has NSL read access; otherwise it returns null. Note: 
only NSL types are stored as data variables. 

var2=nslGetDataVar(name);

where name is of type charString and var2 is of type NslData. And also 

var2=nslGetDataVar(name,’R’);

where name is of type charString and var2 is of type NslData. This method gets a refer-
ence to the variable with the specified name. This method works as long as the named 
variable has the specified NSL access; otherwise it returns null. Additional methods, 
where name is charString and status is boolean are given below: 

status=nslHasChildClass(name);//true if has instance of

 NslClass 

nslPrintChildClasses();// prints all child classes 

Additional NslModule Methods 
All NSL modules inherit from this class. This class contains many methods that we 
manipulate internally to NSL, and it also contains many classes for the flow of execution, 
such as the initSys, initModule, initRun, simRun, and endRun methods that were cov-
ered in chapter 6. Since this class is meant to be subclassed we begin all method names 
with “nsl” and all public attribute variables with underscore. (The exceptions to this rule 
are the simulation control methods, the setting and getting of delta values, and the getting 
and setting of the buffering flag.) Also, these methods are typically called from within a 
NslModule and thus we do not need to put the module instance name in front of the 
method name. However, if we were to call one of these methods from a different 
NslModule or NslClass, then we would need to use the syntax:   

somemodule.method(param1);.

The first set of methods we would like to discuss are the methods that augment the 
automatic constructor “makeInst”. These methods are meant to be built by the model 
builder and are described in table A.II.1. 
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Constructor Methods Description 

callFromConstructorTop 
Allows the user to instantiate special objects before the NSL types are 
instantiated in makeInst. callFromConstructorTop is called immediately upon 
instantiating a new module; right after any parent attributes are instantiated.  

callFromConstructorBottom 
Allows the user to instantiate special objects before makeConn called. The 
callFromConstructorBottom is called immediately after instantiating a new 
module.  

makeInst 

makeInst is not overridable and is not callable from the user’s code. We use 
makeInst to instantiate all NSL type parameters and native arrays that were 
declared in the attribute section of the code. In object-oriented programming 
terms, makeInst is the heart of the constructor for the module. We could have 
called it callFromConstrutorMiddle but did not.  

There are no arguments to callFromConstructorTop or callFromConstructor-
Bottom method. Also, NSL type variables defined in the attribute section of the 
NslModule, are instantiated after callFromConstructorTop and before callFrom-
ConstructorBottom. Thus, if you need to manipulate one of these attributes, it is best to 
put the code in callFromConstructorBottom. For example, in code segment A.II.1 the 
callFromConstructorBottom method will print the name stored for the object as well as 
the size parameter passed to the class during instantiation. This will be done for every 
new object created of type MemoryCalc.

public void callFromConstructorBottom() 

{

 nslPrint(“MemoryCalc instance name: “, nslName); 

 nslPrint(“MemoryCalc size: “, size); 

}

The next method adds a child NslModule to the list: 

nslAddToModuleChildren(child1);

The next method gets a reference to the named child module where name is of type 
charString:

NslModule foo; 

foo=nslGetModuleRef(name);

To set the access for module and all below it where char1 is ‘R,’ ‘W,’ or ‘N’ we use: 

nslSetAccessRecursive(char1);

nslHasChildModule will tell you if a module has submodules. Note status is of type 
boolean and name is of type charString.

status=nslHasChildModule(name);

nslPrintChildModules prints all of the submodules. 

nslPrintChildModules();

nslGetPort will retrieve the reference to the named port. 

Table A.II.1�

Module constructor methods.

Code Segment A.II.1�

callFromConstructorBottom 
for NslClasses. 
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NslDinFloat2 port1(5,5); 

port1=nslGetPort(name);

The getDelta method returns the current simulation delta either Train or Run for this 
module. 

double d1=getDelta();

double d1=getTrainDelta(); 

double d1=getRunDelta(); 

The setTrainDelta method sets the current simulation train delta for this module 
where d1 is of type double. And the getRunDelta method gets the runDelta value. 

setTrainDelta(d1);

double var1=getRunDelta(d1);

The next methods reset the train delta to the system train delta or the system run 
delta for all modules :

nslResetTrainDelta();

nslResetRunDelta();

In the next method, flag indicates whether the current module is in the schedule for 
the training or running phase. We provide this method since sometimes protocols leave 
out certain modules. 

boolean status=nslGetTrainEnableFlag();

boolean status=nslGetRunEnableFlag(); 

The next methods sets or gets the currently set approximation delta or methods used 
in the nslDiff methods for this module. 

double d2=getApproximationDelta();

setApproximationDelta(d2);

NslDiff m2=nslGetApproximationMethod();

nslSetApproximationMethod(m2);

Buffering was discussed in chapter 6. However, there are some additional methods. 
The next method resets the buffering to the system buffering default for all modules 
below this one. 

nslResetBuffering (); 

To add the following protocol name to the system list of protocols and add this name 
to the module’s list of protocols, and add this name to all of the protocol lists within the 
child.

nslAddProtocolRecursiveDown(name);

To add the following protocol name to the system list of protocols and add this name 
to the module’s list of protocols, and add this name to all of the protocol lists of the 
ancestors of this module. This is the method typically used by users. 

nslAddProtocolRecursiveUp(name);
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To remove the following name from the modules protocol list. 

nslRemoveFromLocalProtocols(name);

To add the name to the system list of protocols and add it also to the NSL Executive 
list of protocol names. 

nslDeclareProtocol(name,label);

The following methods return the value of the named variable within the parent 
module. This method is not encouraged since the variable should have been passed to the 
child.

NslData var1; 

var1=nslValParent(name);

Additional NslClass Methods 
NslClass exists because NslClasses cannot contain NslModules. It inherits from 
NslHierarchy and NslBase. Thus, all of the methods available from NslClass have 
already been discussed.  

The following method is generated by the preparser and initializes the invisible tem-
porary variables the NSL system uses to in mathematics expressions. It initializes the 
variables in the specified methods so that it does not have to reinitialized them every 
cycle.

initTempClass();

Logical Methods 
The following logical methods can be applied pointwise to the variables of either 
NslNumeric, NslBoolean or native primitive variables and arrays/matrices.  

If var1 and var2 are of equal value, the method returns true; else false. 

nslEqu(var1,var2);

If var1 is greater than or equal to var2, the method returns true; else false. 

nslGeq(var1,var2);

If var1 is greater than to var2, the method returns true; else false. 

nslGtr(var1,var2);

If var1 is less than or equal to var2, the method returns true; else false. 

nslLeq(var1,var2);

If var1 is less than var2, the method returns true; else false. 

nslLes(var1,var2);

If var1 is not equal to var2, the method returns true; else false. 

nslNeq(var1,var2);

The following logical methods can be applied to the variables of type NslBoolean or 
native primitive variables and arrays/matrices of type boolean. All logical methods are 
applied pointwise except for nslAll, nslNone and nslSome.
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If var1 and var2 are both true, the method returns true, else false. 

nslAnd(var1,var2);

If none of the values in var1 are true, then returns true, else false. 

nslNone(var1);

The following function returns the opposite boolean value as that stored in var1.

nslNot(var1);

If var1 or var2 is true, the method returns true, else false. 

nslOr(var1,var2);

If all of the values in var1 are true, then return true, else false. 

nslAll(var1,);

If some of the values in var1 are true, then return true, else false. 

nslSome(var1);

A.II.3 Displays and Protocols 

NSL Protocols 
As mentioned in chapter 5 protocols provide an easy way for the model builder to set up 
predetermined parameters and windows for a particular protocol. We make the distinction 
between experiment and protocol in that many experiments can be executed for one 
protocol. For instance if the model builder has a random number generator in the model, 
then the results of the “run” will be different each time the protocol is executed. The 
default protocol is “manual” which means that the model does not have any particular 
protocols. All modules and the script window subscribe to the manual protocol initially.  

Adding Protocols 
The user is free to add new protocols via on of the following statements: 

system.addProtocolToAll(“protocolName”)

nslAddProtocolRecursiveUp(“protocolName”)

The first statement will subscribe all known modules to the specified protocol; the 
second will only subscribe the current module and all its ancestors to the protocol. Both 
statements will add the protocol name to the Executive’s menu list of protocols as well as 
the systems internal list of protocols. The addition of protocols should occur as early as 
possible in the model creation process; thus we recommend that they be placed in the top 
module’s initModule method although they can be placed in any of the initialization 
methods other than initSys. Also to change the name of protocol in the Executive win-
dows menu, we can use:  

nslDeclareProtocol(“protocolName”, “protocolLabel”)

where only the protocol label will appear in the menu. 

Removing Protocols 
It is also important to note that a module can remove itself from a particular protocol 
within an any of the initialization methods (other than initSys) via one of the statements 
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nslRemoveFromLocalProtocols(“protocolName”)

nslRemoveProtocolRecursiveUp(“protocolName”)

The difference between the two statements is that the first will unsubscribe only that 
module from the protocol; the second will unsubscribe the current module and all of it 
ancestors (even the model module) from the protocol. For instance, in code segments 5.1 
and 5.2 we see that these display windows or frames should not appear if the protocol is 
the default “manual”. If we do not want a particular NslInFrame or NslOutFrame to 
appear when the NSL system is first started, then we should add a nslRemoveFrom-
LocalProtocols(“manual”) statement or a nslRemoveProtocolRecur-siveUp(“name”)
statement to the NslOutModule’s or NslInModule’s initModule method. 

Setting the Default Protocol 
To set the model up with a particular protocol on start up we can add the statement  

system.setProtocol(“protocolName”)

to any of the initialization methods (other than the initSys) but should be added after all 
the other protocol statements (if any) have been issued. The statement system.set-
Protocol(“protocolName”) first disables any module not subscribed to the protocol, and 
then enables any module that is subscribed to the protocol. Next it reconnects all of the 
subscribed modules. Since this is a very expensive operation, we recommend that it be 
use sparingly and that it only be called from initModule. Also we should note that the 
setting of the protocol name would only happen after the completion of the initialization 
cycle or epoch that the statement appears in. 

Menu Selection of a Protocol 
From the Executive menu we can select a particular protocol that the model builder has 
provided for us. The new protocol may or may not bring up a new NslInFrame or 
NslOutFrame (to be discussed below); however, it will almost certainly set different 
parameter inputs to the model. This is demonstrated in Dominey’s model in chapter 14 
and by Jacob Spoelstra’s model in chapter 16.

Getting the Schedule Associated with a Protocol 
If curious, the modeler can also query the NSL system to retrieve the schedule of NSL 
modules that will run under the selected protocol. The call to do this is:  

nslShowSchedule(“protocolName”);

This statement should only be executed only after a protocol has been selected either 
via the menu system, or via the “system.setProtocol” statement. 

Protocol Associated Methods 
We can also declare methods associated with the protocol in the same module file that the 
protocol was declared in. If a protocol is selected, then its associated protocol method 
will also be called. These methods are not necessary but are a convenient for printing 
status messages or setting certain variables. Associated protocol methods should be 
declared in the following way: 

public void procolnameProtocol() { 

  //code 

}
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As can be seen above, the associated protocol method should have a name such as 
“protocolnameProtocol” where protocol name matches one of the protocols declared con-
catenated with the word “Prococol”.

The following protocol methods are provided for manipulation of the displays and 
creation and selection of the protocols. We note here that all of the following commands 
usually are placed in the initModule method of the model. 

To check if the following protocol exists in the any module use: 

system.protocolExist(charString);

To set or get the current protocol specified by the string name use: 

system.setProtocol(name);

charString var = system.getProtocol();

Another useful method for adding the protocol name to the Executive’s menu is:  

NslDeclareProtocol(“name”);

defined within the NslModule class. 

A.II.4 Command Line Parameters 
The following methods where designed to get some of the values of the parameters that 
can be passed into the main model at execution time from the shell window. 

Set or get the flag stating whether debug is set or not; default=0. This method can 
take any integer value and it is up to the user as to its interpretation; debug=0 means no 
debug. 

Command line: nslj ModelA –debug int 

system.setDebug(int);

int var=system.getDebug();

Set or get the flag indicating whether the any graphics should be displayed. If no 
graphics are to be displayed, the operating system shell window is used as the script win-
dow. The default is false. The noDisplay option is nice when your are running from a 
remote machine. 

Command line: nslj ModelA -noDisplay 

system.setNoDisplay(true);

boolean var=system.getNoDisplay();

Redirect standard input and output to the console or script window and retrieve 
whether the stdio is to going either the console or script window. 

Command line: nslj ModelA –stdio script 

system.setStdio(charString);

charString var = system.getStdio();

Redirect standard error to the console or script window and retrieve whether the 
stderr is going to either the console or script window. 

Command line: nslj ModelA –stderr console 

system.setStderr(charString);

charString var = system.getStderr();
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Set or get the flag indicating this is a batch job—meaning no graphics and a default 
script should be provided. The default is false. Batch jobs are convenient for timing a 
simulation. 

Command line: nslj ModelA –batch fileName 

system.setBatch(boolean);

boolean var=system.getBatch() ;

A.II.5 The Interactive System 
One of the features left out of chapter 5 was NSLJ’s ability to save temporal plot data in 
the Mathworks Matlab format. To export the data from a Canvas Window first select the 
canvas and then select “Canvas� Export Data”. A pop-up window will appear that looks 
like that in figure A.II.3. The only plot output currently supported is Matlab from Math-
Works. The file specified by the user should end with the “.m” extension. The other files 
needed to view the NSL data in Matlab are available in NSLJ’s “copyme/matlab” direc-
tory. 

A.II.2 Figure�

The Export Data Popup 
Window



Appendix III – NSLC Extensions 

The NSL C++ (NSLC) version includes a number of extensions not included at the 
moment in NSLM, the common language to both C++ and Java versions. We expect that 
these extensions will be incorporated into NSLM in the future. 

A.III.1 Object Type Extensions 
NSLC adds a number of extensions to NSLM object types. Among these the most 
important ones are the addition of object type arrays, new object types and a number of 
extensions on module connectivity. 

Arrays
NSLC adds a dimSpec array specification to any object type definition as follows: 

VisiblitySpec ObjectType varName(paramList)dimSpec; 

For example a single dimension 10 element private array of ObjX named x can be 
defined as follows: 

private ObjX x()[10]; 

where no instantiation parameters are provided in this example. Additional dimensions 
are provided by simply adding new brackets with their corresponding element number 
specification. An extended example of array usage is shown in the “Face Recognition by 
Dynamic Link Matching” model in chapter 18. 

Defined Types 
NSLC adds additional defined types besides those described in chapter 6.

String
NSL defines two additional charString object types as shown in table A.III.1.  

Dimension Type 0 1 2 3 4

charString NslString1 NslString2 

Ports
NSLC defines additional charString port object types as shown in table A.III.2. 

Dimension Type 0 1 2 3 4

NslDoutString1 NslDoutString2 charString

NslDinString1 NslDinString2 

Convolution 
NSLC adds two additional convolutions methods as shown in table A.III.3 defined for 
both vectors and matrices of two dimensions. The type and dimension of z corresponds to 
that of y.

Table A.III.1
Additional charString object 
types defined in NSLC. 

Table A.III.2
Additional charString port 
object types defined in NSLC.



4 0 4     A P P E N D I X  I I I  

Method Expression Description 

z = nslConvW(x,y) wrap-edge convolution 

z = nslConvC(x,y) copy-edge convolution 

Connect
NSLC provides additional nslConnect statements enabling fan-out and fan-in
connections between multiple ports at once (NSLM as described in chapter 6 permits 
single port interconnections). Fan-out enables the output of a particular port to be sent 
out to a number of input ports at the same time using the following format, 

nslConnect (port-out, port-in-list);

where port-out specifies an output port and port-in-list specifies a list of input ports 
separated by commas. Each input port is connected to the same output port. Analogous, 
fan-in enables the output of a list of port to be sent out to a particular input port using the 
following format, 

nslConnect (port-out-list, port-in);

where port-out-list specifies a list of output ports separated by commas and port-in
specifies a particular input port. Each output port is connected to the same input port. 
Note that in this case the input port would queue data from the different output ports 
according to the order in which they are received. 

More generally, a list of output ports may be connected to a list of input ports using 
the following format, 

nslConnect (port-out-list, port-in-list);

where port-out-list specifies a list of output ports and port-in specifies a list of input ports 
port both separated by commas. 

Disconnect
NSLC provides an additional construct, nslDisconnect, to delete existing connections. 
The basic format is as follows, 

nslDisconnect (port-out, port-in);

where port-out specifies an output port and port-in specifies an input port. 
Similarly to connections, NSLC provides fan-out, fan-in and the more general dis-

connection formats as follows, 

nslDisconnect (port-out, port-in-list); 

nslDisconnect (port-out-list, port-in); 

nslDisconnect (port-out-list, port-in-list); 

Relabel 
NSLC provides additional nslRelabel statements enabling fan-out and fan-in relabels 
between multiple ports at once (NSLM as described in chapter 6 permits single port 
relabels). Fan-out enables either a particular output or input port to be relabeled to a 
number of output or input ports at the same time, respectively. We use either of the 
following formats, 

Table A.III.3
Multiplication method. 
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nslRelabel (port-out, port-out-list);

nslRelabel (port-in, port-in-list);

Analogous, fan-in enables either a list of output or input ports to be relabeled to a 
particular output or input port at the same time, respectively. We use either of the follow-
ing formats, 

nslRelabel (port-out-list, port-out);

nslRelabel (port-in-list, port-in);

More generally, a list of either output or input ports may be relabeled to a list of out-
put or input ports, respectively, using the following formats, 

nslRelabel (port-out1-list, port-out2-list); 

nslRelabel (port-in1-list, port-in2-list); 

Delabel 
Analogous to nslDisconnect NSLC supports a delabeling (deleting a relabel) construct 
nslDelabel. The basic formats are as follows, 

nslDelabel (port-out1, port-out2); 

nslDelabel (port-in1, port-in2);

where port-out1 and port-out2 specify output port and port-in specifies an input port. 
Similarly to disconnections, NSLC provides fan-out, fan-in and the more general 

delabel formats as follows, 

nslDelabel (port-out, port-out-list); 

nslDelabel (port-in, port-in-list); 

nslDelabel (port-out-list, port-out); 

nslDelabel (port-in-list, port-in); 

nslDelabel (port-out1-list, port-out2-list); 

nslDelabel (port-in1-list, port-in2-list); 

File Manipulation 
As described in Appendix I NSL supports reading and writing into external text files. 
NSLC additionally  supports reading and writing into binary files as shown in chapter 18 
with the “Face Recognition with Dynamic Link Architecture” model.  

NSLC uses the same basic file manipulation methods described in Appendix I with 
an additional optional second argument in the open method describing the type of file 
(file-type) being manipulated, text or binary, as shown next: 

file.open(interaction-spec,file-type);

As previously discussed in Appendix I interaction-type corresponds to any of the 
following: ‘R’ for read only, ‘A’ (all) for both read and write or ‘W’ for write only. Note 
that binary files do not separate values with spaces thus the user must read each byte or 
character at a time such as in the model described in chapter 18. Since NSLC is based on 
C++ the user may take advantage of char and unsigned char types when reading binary 
files.
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A.III.2 Script Extensions 
NSLC adds the following script extensions. 

Logs 
Log files contain the history of previous user model interaction. This is quite useful in 
generating a previous interaction that has not been stored. Scripts can be logged and 
saved automatically at the end of the simulation (however, the default is logging false). 

nsl set system.log true

There is one default log for the complete simulation. The log file name corresponds 
to the model name followed by a dot and a numeric suffix corresponding to the log 
version followed by a “log” and it may be specified with a different name by the user. For 
example,  

nsl set system.logfile maxSelectorModel.1.log

Besides being able to review the log file, it is possible to reload it and execute it as 
any other NSLS script. 

A.III.3 Input Facility 
NSLC includes predefined object classes for the generation of temporal visual stimuli. 
These types are usually instantiated inside a special visual input module such as the Visin
module used in the “Retina” model (chapter 10) and the World module used in the 
“Learning to Detour” model (chapter 17). Using these object types different stimuli may 
be set, with constrains on their location and time when they should appear and disappear. 
In the following sections we explain these in more detail. 

Object Types
Input object types extend their basic semantics from NSLM numeric types while adding 
special functionality for processing visual stimuli. These types vary according to their 
dimension and types as shown in table A.III.4.  

Dimension Type 0 1 2 3

float NslInputFloat0  NslInputFloat1  NslInputFloat2  NslInputFloat3  

double NslInputDouble0  NslInputDouble1  NslInputDouble2  NslInputDouble3  

int NslInputInt0  NslInputInt1  NslInputInt2  NslInputInt3  

Since the input layer object types are derived from the regular numeric layer types 
have the same instantiation parameters as regular layers. The only exception is the 3-
dimensional input array taking four instead of three instantiation arguments. This differ-
ence corresponds to the fact that a 3-dimensional input layer is actually a combination of 
two 2-dimensional input layers corresponding to the xy and xz space views (see the 
“Learning to Detour” model in chapter 17 as an example of its usage). Thus input layers 
may be added with regular layers, and so on. On the other hand the input layer is able to 
map visual stimulus objects onto the layer. For example, figure A.III.1 shows an 
AreaLevel graph view of a NslInputFloat2 input layer made of 40x40 elements, 
containing an object of size 8x4. This example is taken from the Visin module in the 
Retina model in chapter 10. 

Table A.III.4
Input layer object types 
defined in NSLC. 



N S L C  E X T E N S T I O N S    4 0 7

Figure A.III.1�

A ��������	�
��� input layer 
of 40x40 elements containing 
a 8x4 stimulus. 

Figure A.III.2 shows a Temporal graph view of a NslInputFloat0 input layer, 
containing an stimulus appearing at two different time intervals. 

Figure A.III.2
A ��������	�
��� with a time 
varying stimulus. 

Input Processing
Actual input layer processing involves “running” the stimuli specified for the particular 
layer. We show how to interactively specify stimuli in the next section. Input layer 
processing is achieved by including the following statement inside a module, 

input_layer = 0; 

input_layer.run();

where input_layer specifies the name of the layer, and run is the method processing any 
existing stimuli specification. For example, in the “Retina” model the visual input in is 
processed in the Visin module as follows, 

in = 0;   

in.run();

Note that the input layer is first reset to “0”. This is optional since in some case the 
user may want to leave a trail or history of previous stimuli locations as in the “Learning
to Detour” model in chapter 17. 

Input Specification
In the current NSLC version all input and stimuli specification takes place interactively 
using the NSLS script interpreter. Before being able to specify any stimuli one must 
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understand the coordinate system used in the input layer and stimuli, shown in figure 
A.III.3. 

(input.xz,input.yz)

input.dx

input.dy

stim.dx

stim.dy

stim.xc
stim.yc

x

y

j j+1j-1

i

i-1

i+1

j+2

stim.x1
stim.y1

stim.x0

stim.y0

x,y origin
Figure A.III.3�

Input layer and stimulus 
specification details. 

There are two aspects to input specification. First the coordinate system in the input 
layer must be specified. This involves specifying the origin of the coordinate system, 
(input.xz,input.yz) and the distance among adjacent elements in the input layer, 
(input.dx,input.dy) as shown in figure A.III.3.  

These parameters are specified as follows where input in this figure represents the 
input_layer name, 

nsl set input_layer.par-name par-value

where the different alternatives for par-name with their corresponding par-value types 
and descriptions are given in table A.III.5. Note that the input library supports up to 3-
dimensional specifications. 

Parameter Type Description 

xz int coordinate system x-axis origin element 

yz int coordinate system y-axis origin element 

zz int coordinate system z-axis origin element 

dx numeric distance among adjacent elements in the x-axis 

dy numeric distance among adjacent elements in the y-axis 

dz numeric distance among adjacent elements in the z-axis 

For example, in the “Retina” model the input layer coordinate system is specified as 
follows, 

nsl set retinaModel.retina.visin.input.xz 0

nsl set retinaModel.retina.visin.input.yz 20

nsl set retinaModel.retina.visin.input.dx 2.0

nsl set retinaModel.retina.visin.input.dy 2.0

Table A.III.5
Input layer parameter 
options.
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Once the input layer coordinate system has been specified it is necessary to add 
stimuli specifications. The general stimulus specification format is as follows, 

nsl create stim-type stim-name -layer input-name -val val \ 

 [-x0 x0 -y0 y0 -z0 z0] [-xc xc -yc yc -zc zc] \ 

-dx dx -dy dy -dz dz -vx vx -vy vy -vz vz -spec_type spec-type 

These parameters are those shown in figure A.III.3 and specified in more detail in 
table A.III.6. In the current NSLC version stim-type can only be set as BlockStim, while 
stime-name and input-name are the names of the stimulus and input layer, respectively. 

Parameter Type Description 

val numeric value taken for the complete stimulus 

spec_type string specification format: center [xc,yc] or corner [x0,y0] 

x0 numeric stimulus upper left corner x-coordinate  

y0 numeric stimulus upper left corner y-coordinate  

z0 numeric stimulus upper left corner z-coordinate  

xc numeric stimulus center x-coordinate 

yc numeric stimulus center y-coordinate 

zc numeric stimulus center z-coordinate 

dx numeric stimulus width in x-direction 

dy numeric stimulus depth in y-direction 

dz numeric stimulus height in z-direction 

vx numeric stimulus speed in x-direction 

vy numeric stimulus speed in y-direction 

vz numeric stimulus speed in z-direction 

The location of the stimulus may be specified either by setting spec_type to either 
corner or center and specifying [x0,y0,z0] or [xc,yc,zc], respectively. For example, the 
stimulus shown in figure A.III.1 was specified with the following script,  

nsl create BlockStim stim -layer retinaModel.retina.visin.in –

val 1.0 \ 

 -spec_type center -xc 2.0 -yc 0.0 -dx 4.0 -dy 4.0 -vx 7.6 

Note that the actual figure shows the stimulus situated in a new location according to 
its initial position, current speed and simulation time elapsed. 

Additionally, NSL lets the user define time intervals when a stimulus should appear 
using the following format, 

nsl create TimeInterval -stim stim-name -t0 t0 -t1 t1

Table A.III.6
Stimulus parameter options. 
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Table A.III.7 describes the two parameters in more detail. 

Parameter Type Description 

t0 numeric interval starting time 

tz numeric Interval ending time 

For example, the stimulus shown in figure A.III.2 was created using the following 
script:

nsl create BlockStim stim1 -layer tectum11Model.tectum.in 

nsl create TimeInterval -stim stim1 -t0 0.0 -t1 0.3 

nsl create TimeInterval -stim stim1 -t0 3.0 -t1 3.3 

This creates a time interval between 0.0 and 0.3 and a second one for the same 
stimulus between 3.0 and 3.3. Notice that in this example the input layer was actually a 
scalar thus no other stimulus parameters were given, including stimulus size or location). 

A.III.4 Distribution  
One additional extension to the NSLC system currently in development is the distributed 
execution environment to make processing more efficient. See the NSLC web site 
(http://www.cannes.itam.mx/) for the latest developments.

Table A.III.7
Time interval parameter 
options.



Appendix IV – NSLJ and NSLC Differences 

There are several small differences between the NSLC and NSLJ implementations.  

A.IV.1 Ports 
One such difference is the way in which the input and output ports are implemented on a 
module. In the NSLJ version, output ports allocate memory whereas input ports do not.  
In the NSLC version both input and output ports allocate memory. 

A.IV.2 Read/Write Script Access 
Another difference, is the fact that the NSLJ system actually implements the 
“nslSetAccess” methods and thus variables that do not have a ‘W’ access associated with 
them are not manipulatable from the scripting environment nor from the other modules. 
The current NSLC version does not implement “nslSetAccess,” thus providing a default 
'W' access for all variables. 

A.IV.3 Frames and Modules 
Another difference is the fact that in NSLJ all NslOutFrames and NslInFrames
automatically create a NslOutModule or NslInModule respectively.  This is due to the 
fact that the modules are the objects that actually get scheduled by the scheduler and not 
the frames.   

A.IV.4 NslBoolean 
Another difference is the NslBoolean class. NSLJ allows boolean arrays from dimension 
0 to 4 and provides a number of methods to manipulate and compare boolean arrays. 
NSLC treats the NslBoolean class as NslInt. 

A.IV.5 Methods 
One important thing to note about the NSLJ mathematical methods is that since it is not 
possible to provide every combination of parameters when parameters can be one of six 
different types, it was decided to implement the most “logical” combinations. Typically 
this means that if the method takes more than one parameter, the parameters and result 
should be of all the same base type (int, float, double, NslInt, NslFloat, NslDouble). 
NSLC implements the different combintations as templates. 
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Appendix V – NSLJ and NSLC Installation Instructions

All installation instructions and extensions can be found at 
www.neuralsimulationlanguage.org, the official NSL web site. At the time of book 
impression, different NSL locations exist, one for NSLJ and the other for NSLC.  

A.V.1 NSLJ Version 
The NSL Java Version can be download from the following site:  

http://www-hbp.usc.edu/Projects/nsl.htm 

A.V.2 NSLC Version 
The NSL C++ Version can be download from the following site:  

http://www.cannes.itam.mx/English/Simulators/Nsl.htm 
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