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Preface

The field of microarray data analysis is less than a decade old, but it is already occupy-
ing the time and energies of a large and growing number of statisticians and others. It
appears clear to us that large-scale gene expression studies are not a passing fashion,
but are instead one aspect of a new mode of biological experimentation, one involving
large-scale, high throughput assays. Themes here include parallel approaches to the
collection of very large amounts of data (by biological standards), quite sophisticated
instrumentation that needs understanding by statisticians, data where the systematic
features are at least as important as the random ones, and a general sense that we are
dealing more with industrial scale than the traditional single-investigator lab research,
with data compiled in a notebook. Furthermore, this kind of research often involves
many different kinds of data, including clinical, genetic, and molecular, as well as the
basic assay data, and so topics of data integration and the use of databases readily arise.

Although the details of the technologies will undoubtedly change over time, the oppor-
tunities for serious statistical engagement will remain. We hope our readers will find
this field as interesting as we do, and join us. More than enough datasets and problems
are available to go around.
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CHAPTER 1

Model-based analysis of
oligonucleotide arrays and issues
in cDNA microarray analysis

Cheng Li, George C. Tseng, and Wing Hung Wong

Abstract. This chapter describes the model-based analysis of oligonucleotide arrays,
including expression index computation, outlier detection, and standard error appli-
cations, as well as issues in the analysis of cDNA array data such as normalization,
handling of replicate arrays and spots, and hierarchical modeling of the data in detect-
ing differentially expressed genes. Software implementing these analysis methods can
be found at http://biosun I.harvard.edu/complab/.

1.1 Model-based analysis of oligonucleotide arrays
1.1.1 Background

Oligonucleotide expression array technology (Lockhart et al., 1996) has recently
been adopted in many areas of biomedical research to measure the abundance of
messenger ribonucleic acid (mRNA) transcripts for many genes simultaneously. As
reviewed in (Lipshutz et al., 1999), 11 to 20 perfect match (PM) and mismatch (MM)
probe pairs are used to interrogate each gene (Figure 1.1), and the simple or robust
average of the PM—MM differences for all probe pairs in a probe set (called “Average
Difference” or “Signal” (Affymetrix Inc., 2001a,b)) is used as the expression index
for the target gene (We use the term “probe” to refer to the deoxyribonucleic acid
(DNA) sequence immobilized on the solid substrate/array, and the term “target” for
the DNA or RNA sequence from the sample being interrogated). Researchers rely on
the expression indexes as the starting point for “high-level analysis” such as self-
organizing maps (SOM) (Tamayo et al., 1999) or two-way clustering (Alon et al.,
1999). Besides the original publications by Affymetrix scientists (Lockhart et al., 1996;
Wodicka et al., 1997), researchers are also exploring alternative analysis approaches
on “low-level” issues such as feature extraction, normalization, and computation of
expression indexes (Irizarry et al., 2003; Schadt et al., 2001a,b).
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Figure 1.1 Short 25-basepair oligonucleotides are selected from the gene of interest and syn-
thesized directly onto the array. The intensities of perfect match (PM) and mismatch (MM)
probes are used to infer the mRNA abundance of the target gene in a sample.

The analysis of such experiments is nontrivial because of large data size and many
levels of variation introduced at different stages of the experiments. The analysis is
further complicated by the large differences that may exist among different probes
used to interrogate the same gene. We have found that, even after making use of the
control information provided by the MM probes, the information on expression level
provided by the different probes for the same gene is still highly variable. We use a
set of 21 Hu6800 arrays (Hofmann et al., 2002) to illustrate our discussion. This data
set is typical, in terms of quality and sample size, of a data set from a single-laboratory
experiment. We have applied the methodology to many sets of arrays from different
laboratories and obtained similar results. Each of these 21 arrays contains more than
250,000 probe features and 7129 probe sets.

Figure 1.2 and Figure 1.3 show data for one probe set in the first 6 arrays (probe-level
data is first normalized by the Invariant Set Normalization method (Li and Wong,
2001a)). This probe set (No. 6457) will be called probe set A hereafter. Considerable
differences exist in the expression levels of this gene in the samples being interrogated
because the between-array variation in PM—MM differences is substantial. More note-
worthy is the dramatic variation among the PM-MM differences of the 20 probes that
interrogate the transcript level. Analysis of variance of the PM-MM differences of
this probe set in these 21 arrays shows that the variation due to probe effects is larger
than the variation due to arrays. Specifically, mean square due to probes and arrays
are 38,751,018 and 17,347,098 respectively. This is a general phenomenon: for the
majority of the 7129 probe sets, the root mean square due to probes is five times or
more of that due to arrays. Thus, it is clear that proper treatment of probe effects is an
essential component of any approach to the analysis of such expression array data.

However, an attractive feature of high-density oligonucleotide arrays such as those
produced by photolithography and ink-jet technology is the standardization of chip
manufacturing and hybridization process. As a result, probe-specific biases, although
significant, are highly reproducible and predictable, and their adverse effect can be
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Figure 1.2 Black curves are the PM and MM data of gene A in the first six arrays. Light curves
are the fitted values of model (1.1). Probe pairs are labeled 1 to 20 on the x-axis.

reduced by proper modeling and analysis methods. Here, we propose a statistical
model for the probe-level data in order to account for probe-specific effects and
develop model-based gene expression indexes.

In addition, human inspection and manual masking of image artifacts is currently very
time-consuming and represents a limiting factor in large-scale expression profiling
projects. We show that the goodness of fit to our model can be used to construct
diagnostics for cross-hybridizing probes, contaminated array regions, and other image
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Figure 1.3 Black curves are the PM—-MM difference data of gene A in the first six arrays. Light
curves are the fitted values of model (1.3).
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artifacts. We use the diagnostics to develop automated procedures for detecting and
handling of all these artifacts. This method makes it possible to process and analyze a
large number of arrays in a speedy manner. We investigate the stability of the probe-
sensitivity index across different tissues types and the reproducibility of results in
replicate experiments. We also discuss the application of standard errors (SE) in the
downstream analysis, such as the confidence intervals of fold changes and assessment
of the impact of SE on clustering results. A software package known as DNA-Chip
Analyzer (dChip) is freely available at www.dchip.org for researchers to use these
analysis methods.

1.1.2 Statistical model for a probe set

Suppose that a number (I > 1) of samples have been profiled in an experiment. Then,
for any given gene, our task is to estimate the abundance level of its transcript in each
of the samples. The expression-level estimates are constructed from the 2 x I x 20
(assuming a probe set has 20 probe pairs) intensity values for the PM and MM probes
corresponding to this gene. The estimation procedure is based on a model of how
the probe intensity values respond to the changes of the gene expression level. Let us
denote the expression index for the gene in sample ¢ by 6; (model-based expression
index, MBEI). We assume that the intensity value of a probe will increase linearly as
6; increases, but that the rate of increase will be different for different probes. We also
assume that within the same probe pair, the PM intensity will increase at a higher rate
than the MM intensity. We then have the following simple model:

MM;; = v;+b;05+e¢
PM;; = vy +6i0;+6;05 +e€. (1.1)

Here, PM;; and M M;; denote the PM and MM intensity values for array ¢ and probe
pair j for this gene, v; is the baseline response of the probe pair j due to nonspecific
hybridization, «; is the rate of increase of the MM response of the probe pair 7, ¢; is
the additional rate of increase in the corresponding PM response, and ¢ is a generic
symbol for random error. The rates of increase are assumed to be nonnegative.

We fit Equation (1.1) to the 2 x I x 20 data matrix for probe set A and Figure 1.2
shows the observed and fitted PM and MM intensities for the first six arrays. The
model fits the data well. The residual sum of squares is only 1.03% of the sum of
squares of the original PM and MM intensities. Thus, this model is able to capture
the main relations between the observed intensities for different arrays and probes.

The model for individual probe responses implies an even simpler model for the
PM-MM differences:

Yij = PMi; — MM;; = 0,95 + €45 (1.2)
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In the rest of this section, our discussion will be focused on this PM-MM difference
model. Feedback from collaborating biologists have indicated that currently there
is a strong preference to base all computation directly on the differences between
the PM and MM responses in a probe pair. Early experiments using a murine array
with a large number of probes (more than 1000) per gene had shown that the average
difference is linear to the true expression level in a certain dynamic range (Lockhart
et al., 1996). There is also a computational advantage in reducing to differences first
because the fitting of the full data is a more difficult numerical task. Thus, in this
first attempt to implement model-based statistical inferences, we focus mainly on the
analysis of PM-MM differences directly. It should be noted that the MM responses
do contain information on the gene expression levels, and that this information can
be better recovered by analyzing the PM and MM responses separately.

Equation (1.2), the model for the PM-MM (differences, is identifiable only if we
constrain it in some way. Here, we simply make the sum squares of ¢’s to be J (the
number of probe pairs):

yij = PM” — MM” = 91¢] +€ij7 ng? = J, Eij ~ N (0,0'2). (13)

Least square estimates for the parameters are carried out by iteratively fitting the set
of #’s and ¢’s, regarding the other set as known. For comparison, we also perform
least square fitting using the more standard additive model:

y¢j=,u+9i+¢j +€7;j. (1.4)

FFigure 1.4 presents the plots of residuals versus fitted values for these two models. The
residuals of the additive model show a systematic pattern indicating lack of fit. The
magnitude of the o estimate of the multiplicative model (Equation 1.3) is much smaller
than that of the additive model (Equation 1.4) (1075 vs. 2705). The explained energy
(R?, the ratio of sum of squares of predicted values and sum of squares of original
data) is 98.08% and 87.85%, respectively, for the two models. The multiplicative
model (Equation 1.3), with 40 parameters, is able to capture the relations among
420 data points (Figure 1.3).
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Figure 1.4 Plot of residuals (y-axis) vs. fitted value (x-axis) for (a) additive model (Equation 1.4)
and (b) multiplicative model (Equation 1.3).
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1.1.3 Conditional mean and standard error

Suppose for gene A, the ¢’s have been learned from a large number of arrays. We
can then treat them as known constants and analyze the mean and variance of the
expression index estimate, For a single array, Equation (1.3) becomes:

Given the ¢’s, the linear least squares estimate for 6 is
g — Ej Y;ib; - Ej Y;i®;
= 5 =
Ej ¢j J

, with E(8) = 0 and Var(9) = o2/ J.

Hence, an approximate standard error for the least squares estimate can be computed:

Std Error(8) = /77, with6® = (Y ((fitted — observed)?) /(J - 1).

Similarly, when we regard the estimated 0’s as fixed, we can calculate standard errors
of ¢’s. These standard errors will play an important role in the outlier detection and
probe selection discussed later. We note that the previous calculation is conditional
in the sense that the ¢’s are regarded as known constants, This is valid if we have
a large number of arrays to estimate them accurately, otherwise, the uncertainty in
the estimation of these probe-specific parameters must be taken into account in the
standard error computation.

1.1.4 Probe selection and automatic outlier and artifact detection

Conceptually, we can extend Equation (1.3) to model the response of a probe set to
all genes in the sample:

gy = 00 400D 1 oD gE) g™ e (16

where ng) is the expression level of gene k in array ¢, ¢>§-k) is the sensitivity of probe
j to gene k, and n is the total number of different human genes (we do not consider
complications such as alternative splicing here). Ideally, we want a probe set to be

specific: If a probe set is intended to interrogate gene k, then only the ¢>§-k)’s should
be nonzero (thus sensitive) and all other ¢>§-k)’s should be 0 (thus specific). In this
case, the observed y;; are specific signals coming from the target gene and Equation
(1.6) is reduced to Equation (1.3), and the expression indexes ng) ’s can be correctly
estimated. We note that Equation (1.6) is formally a special case of the factor analysis
model that is widely used in social sciences (Press, 1972).

Although Affymetrix has developed prediction rules to guide the selection of probe
sequences with high specificity and sensitivity (Lockhart et al., 1996; Affymetrix Inc.,
2002), inevitably there remain some probes hybridizing to one or more nontarget
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genes. We expect most cross-hybridizing genes to have expression patterns (in a large
set of samples) different from that of the target gene, and different probes in a probe
set to cross-hybridize to different nontarget genes. For a nontarget interfering gene &,
the sensitivity indexes qb;-k) ’s are expected to be small except for one or two probes in
the probe set. The mixed response of a probe set to target and nontarget genes suggests
that probe selection (in the analysis stage) may enhance the specificity in estimating
the expression levels of the target gene.

In the standard analysis (Wodicka et al., 1997), the mean and standard deviation of the
PM-MM differences of a probe set in one array are computed after excluding the
maximum and the minimum. If the difference of a probe pair is more than 3 standard
deviations from the mean, the probe pair is marked as an outlier in this array and
discarded in calculating average differences of both the baseline and the experiment
array. One drawback to this approach is that a probe with a large response might
well be the most informative, but it may be consistently discarded. Furthermore, if
we want to compare many arrays at the same time, this method tends to exclude too
many probes.

We exploit our model to detect and handle cross-hybridizing probes, image contam-
ination and outliers from other causes. For a particular probe set, its 20 ¢ values
constitute its “probe response pattern,” and the model hypothesizes that the 20 dif-
ferences in an array should follow this pattern and are scaled by the target gene’s
expression index () in this array. The (conditional) standard error attached to a fitted
6 is a good measure of how the 20 differences in the corresponding array conform
to the probe response pattern. For example, in Figure 1.5b, array 4 is identified as an
“array-outlier” because the estimated 64 has large standard error. Close examination
of Figure 1.5a reveals that the probe responses in array 4 deviates from the consistent
patterns shown in the other arrays. This could be due to various reasons including
image artifacts (Figure 1.6). Because the probe responses in this array may affect the
fitting of the probe response pattern, we exclude outlier arrays (identified by large
standard errors) and use the remaining arrays to estimate the probe response pattern.
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Figure 1.5 (a)6 arrays of probe set 1248. (b) Plot of standard error (SE, y-axis) vs. 8. The probe

pattern (black curve) of array 4 is inconsistent with other arrays, leading to unsatisfactory fitted
curve (light) and large standard errors of 8,.
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Figure 1.6 (See color insert following page 114.) A long scratch contamination (indicated by
arrow) is alleviated by automatic outlier exclusion along this scratch. (b,c) Regional clustering
of array-outliers (white bars) indicates contaminated regions in the original images. These
outliers are automatically detected and accommodated in the analysis. Note that some probe
sets in the contaminated region are not marked as array-outlier; because the contamination
contributes additively to PM and MM in a similar magnitude and thus cancels in the PM-MM
differences, preserving the correct signals and probe response patterns.

For an outlier array, we still compute its expression index conditional on the esti-
mated probe response pattern, with the attached large standard error indicating poor
reliability of this expression index.

In Equation (1.3), the roles of 6 and ¢ are symmetric. Therefore we can use the
conditional standard errors of the estimated ¢;’s to identify problematic probes. In
Figure 1.7a, probe 17 (indicated by arrow in several arrays) has peculiar behavior
that is inconsistent with the rise and fall of other probes. This is probably due to
the cross-hybridization of this probe to nontarget genes. Figure 1.7b shows that this
nonspecific probe can be identified by the large standard error of ¢47. Finally, we must
also consider a “single-outlier” which might be an image spike in one array, affecting
justone PM-MM difference. Such a single-outlier (for example, y;; in the data matrix)
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Figure 1.7 (a) The probe 17 of probe set 1222 is not concordant with other probes (black
arrows); (b) probe 17 is numerically identified by the large standard error of ¢17.

may affect estimates of both 6; and ¢, and we can identify it by the large residual
for this data point. Once identified, single-outliers are regarded as “missing data” in
the model fitting; their values are imputed, so they do not affected the estimation of
0's and ¢'s.

Besides array, probe, and single-outliers, several other undesirable artifacts occur in
the data that we wish to handle. Figure 1.8a illustrates a responsive probe 12 amidst
other nonresponsive probes. Generally, if the target gene exists in the samples, we
expect more than one of the 20 probe pairs to respond at various sensitivities. In this
case, it is most likely that the target gene is not present in any samples, and that the
large response by probe 12 is due to cross-hybridization to nontarget genes. Although
the model fits well in this case (99.83% variance explained), it is prudent to exclude
this probe because of its unusually high leverage. Figure 1.8b shows that such a
probe can be automatically identified through its large ¢ value. We classify a probe as
“high-leverage” and exclude it during the fitting of the model, if it contributes more
than 80% to the sum of squares of the ¢;’s in the probe set. A similar procedure is
used to identify high-leverage arrays.

Figure 1.8 (a) Probe set 3562 has a single high-leverage probe 12, and the fitted light curves
almost coincide with the black data curve. (b) ¢12 is large compared to other ¢’s close-to-zero
value. Note that Affymetrix’s superscoring method works here by consistently excluding this
probe across arrays.

©2003 CRC Press LLC



To implement the preceding ideas, we iteratively identify array, probe, and single-
outliers. Specifically, we first fit the model to the data table (I arrays by J probes)
of one probe set, identifying 6’s (arrays) with large standard error (more than three
times as large as the median standard error of all §’s) or dominating magnitude (62 is
more than 80% of sum of squares of all 8’s), and mark these arrays as array-outliers.
Next, with these array-outliers excluded, we work on a data table with fewer rows
(discarding rows for the excluded arrays), and fit the model again. This time, we
inspect the standard errors and magnitudes of ¢’s to identify possible probe-outliers.
If a ¢ is negative, we also regard it as probe-outlier and exclude the corresponding
probe. In effect, the data table shrinks in columns and we fit the model again to this
new data table.

Note that, although some arrays and probes may not be used in fitting the model, we
still can regress the data in one array (excluding probes not used in model fitting)
against the estimated probe response pattern (¢’s) to get estimate of expression levels
(6’s) of the excluded arrays, and similar for the excluded probes. After probe-outliers
are excluded, we evaluate all arrays for outliers again, and compare them to the set
of array-outliers in the previous round to see if any change occurs. This procedure is
repeated until the set of probe-outliers and array-outliers do not change any more. (In
some cases, they may cycle between a small number of slightly different outlier sets.)
Along the iteration, we will also identify some single data point outliers with large
residuals and mark them as missing data when fitting the model. In general, five to
ten iterations will lead to a converged set of outliers.

1.1.5 Model-fitting summary

We apply this model-based analysis to all the 7129 probe sets of the 21 Hu6800 arrays.
As illustrated in Figure 1.6, image contamination can be handled automatically, by
reasonably marking array and single-outliers and excluding them from model fitting.
Such contamination would lead to incorrect expression and fold change calculation
if left unattended in the data. As a quality control step in the experiment and analysis,
arrays with a large number of array and single-outliers deserve further attention (for
example, check if images or samples have been contaminated). The model automat-
ically excludes these “outlier-arrays” from model fitting to avoid influence of these
arrays on good ones, and attaches large standard errors to the expression indexes of
contaminated probe sets.

Figure 1.9a demonstrates that, for 60.2% of the probe sets, we use more than half
of the probes to fit the model. Figure 1.9b demonstrates that the explained energy
is high (R? greater than 80%) for 63.3% of the probe sets. To investigate the reason
for the low probe usage and poor R? for some probe sets, we examine the relation
among probe usage, explained energy, and the presence percentage (percentage of
arrays where a probe set is called “Present” by GeneChip, Figure 1.9¢). Figure 1.10a
shows that high presence percentage usually leads to high probe usage. Figure 1.10b
demonstrates that when a gene is present in many arrays, the explained energy of
the corresponding probe set tends to be high. Clearly, when a gene is absent in most
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Figure 1.9 (a) Histograms of percent of probes used; (b) explained energy; and (c) presence
percentage for all 7129 probe sets. As observed in (c), most genes are only present in a few
arrays.

arrays, the variation in the observed data is mostly due to the noise term and one
should not expect the model to explain a large fraction of this variation. In this case,
the data does not include enough information to determine the ¢’s, but the 8’s are still
correctly estimated to be close to zero.

1.1.6 Probe-sensitivity indexes are stable across tissues types

In practice, a researcher hybridizes tissue or cell line samples corresponding to differ-
ent treatments or conditions to a batch of arrays. Ideally, the probe-sensitivity index
(¢) should be independent of the tissue type. This condition, however, may not hold for
those probes that have cross-hybridization affinity to nontarget genes. Nevertheless,
assuming that a nontarget gene cross-hybridizes only to a few probes of a probe set,
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Figure 1.10 Boxplots of probe usage (a) and explained energy (b) stratified by presence per-
centage (the number of presences of a gene in the 21 arrays and the subpopulation size for the
6 boxplots are: 0-3, 4365; 4-7, 817; 8-11, 567; 1215, 520; 16-19, 518; and 20-21, 342).
When presence percentage is high, the excluded probes tend to be cross-hybridizing probes;
when presence percentage is low, PM-MM differences fluctuating around zero may result in
many negative ¢ estimates and exclusion of the corresponding probes. As more arrays enter
the database, we may reuse these probes if they respond positively to target expressions. The
more arrays in which a target gene is present, the higher the explained energy.
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and its expression levels across arrays do not correlate with the target gene, the iter-
ative probe-excluding procedure may be able to exclude cross-hybridizing probes,
regardless of the tissue type hybridized. In addition, the relative probe sensitivity
indexes of the good probes called by the model are likely to be similar across array
sets hybridizing to different tissue samples.

Stability of probe-sensitivity index is studied using 226 HU6800 arrays. We apply
Equation (1.3) independently to six sets of HU6800 arrays (21 leukemia, lymphoma,
and mantle cell samples (Hofmann et al., 2002), 20 prostate cancer cell lines, 17 brain
tumor samples, 55 cancer cell lines (Staunton et al., 2001), 58 brain samples (Hakak
etal., 2001), and 55 lung tumor samples). Figure 1.11a shows the ¢’s fitted for probe
set A in the six array sets. The ¢ patterns resemble each other greatly, showing the
probe-sensitivity index is an inherent property of these non-cross-hybridizing probes
and can be consistently identified from different sets of arrays. Figure 1.11b depicts

RV T
3 ¥ ¥

Figure 1.11 ¢’s estimated for probe set 6457 (a), 1248 (b), and 6571 (c) in six array sets (shown
in six panels); ¢ values (constrained 1o have sum square equal 10 number of non-outlier probes
used in each array set) are on the y-axis, and probe pairs are labelled 1 to 20 on the x-axis. The
title of each panel indicates the proportion of arrays called “Present” for the target gene in the
array set. Large circles represent identified “probe-outliers” by negativity or large standard
error of ¢.
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the ¢ patterns for another probe set. Noteworthy is that the probe 11 in array set 5 is
likely to be cross-hybridizing, making its relative strength (here, MM is consistently
larger than PM and this leads to a negative ¢) dissimilar to the probe 11 in other array
sets. The model identifies this probe as a “probe-outlier” only for array set 5 and
excludes it when calculating model-based expression indexes (MBEI) for array set 5.

In Figure 1.11a and b, the target gene is present in most samples of all array sets. For
aprobe set where the target gene is mostly absent throughout samples (Figure 1.11c),
many probes are identified as “probe-outliers” because of their negative indexes. Here,
we cannot obtain correct probe sensitivity indexes because of the absence of the target
gene. Nevertheless, the PM—-MM values for these probes are random fluctuations
around zero, leading to correct expression index close to zero. If the target gene is
expressed in the samples hybridizing to a future array set, the correct probe sensitivity
indexes will be recovered and these probes will be used for expression calculation.

Occasionally, a responsive probe set may give rise to very different ¢ estimates in
two array sets. In Figure 1.11b, probe 8 and 13 have different relative responses in
array set 1 and 4 (indicated by arrows), leading to different probe response patterns.
This might be due to the possibility that the probes in this probe set are differentially
cross-hybridized in different array sets, or that the same probe in different batches of
arrays may systematically behave differently. Identification and flagging such probe
sets is desirable and essential if we want to compare arrays hybridized to different
tissue samples.

Figure 1.12 illustrates the boxplots of average pairwise correlations of ¢’s between
two array sets, stratified by average lower presence proportion in two array sets. In
general, when a gene is present in many samples of two array sets, the ¢ patterns
estimated from the two array sets are highly similar. This is because the target gene’s
presence in many arrays of an array set allows the probe-sensitivity indexes to be
estimated accurately.

1.1.7 MBEI reduces variability for low expression estimates

The array set 5 has 29 pairs of replicate arrays (Hakak et al., 2001). Each pair consists
of two arrays hybridizing to samples replicated at total mRNA level (the total mMRNA
sample is split and then amplified and labeled separately, and hybridized to two differ-
ent arrays). The differences between the expression values of the two replicate arrays
in a pair are due to the variation introduced in experimental steps after the split, the
array manufacturing difference, and analytical methods such as normalization and
expression calculation. This difference provides a lower bound of biological variation
that can be detected between two independently amplified samples and serves as a
good measure for comparing different analytical methods.
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Figure 1.12 Boxplots of average pairwise correlations of ¢’s between two array sets, stratified
by average lower presence proportion in two array sets (the presence proportion of a probe
set is the proportion of arrays in an array set where the target gene is called “Present” by
GeneChip’s algorithm). The average is taken over C(6, 2) = 15 pairwise comparisons of two
array sets for each probe set, and the correlation is calculated using probes that are not
identified as outlier in both array sets. The range of the average lower presence proportion for
the six boxplots are: (0, 0.17), (0.17,0.34), (0.34, 0.51), (0.51, 0.68), (0.68, 0.85), (0.85, 1). The
title of each boxplot is the number of probe sets used in this boxplot. Eleven probe sets with too
Jew non-outlier probes to calculate ¢ correlation for all the 15 comparisons are not included
in the boxplots. The average lower presence proportion and average pairwise correlation for
probe sets in Figure 1.11 are 1, 0.95 (a); 0.93, 0.94 (b); and 0, 0.86 (c).

The agreement of MBEI between two replicate arrays is shown in Figure 1.13a. For
comparison, we also use the method in (Wodicka et al., 1997) to calculate average
differences (AD) for all probe sets and plot them in Figure 1.13b (AD is based on
normalized probe values by the invariant set normalization method (Li and Wong,
2001b). Also, note that GeneChip software excludes probes whose PM-MM differ-
ence is outside 3 standard deviations of all probe differences in either of the two
comparing arrays in the comparison; here, because we are comparing multiple arrays
at the same time, when calculating ADs a probe is excluded if its difference is outlier
in the previous sense in any of the arrays, until a minimum of five probes is reached
where all five probes will be used. Both the MBEI and the AD method yield some
expression values differing by more than a factor of two, especially for genes at low
expression level. This might be explained by the relatively larger amplification varia-
tion for lowly expressed genes, given a constant success rate of amplifying a sequence
by a certain fold.

Researchers often use a “log ratio” between expression values of a gene in two arrays

as the criteria to identify differentially expressed genes. Between duplicate arrays,
we expect these “log ratios” of expression values based on a good expression index
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Figure 1.13 Log (base 10) expression indexes of a pair of replicate arrays (array 1 and 2 of
array set 5) for the MBEI method (a) and the AD method (b). Only 6695 (a) and 4696 (b) probe
sets with positive values in both arrays are used. The center line is y = x, and the flanking
lines indicate the difference of a factor of two.

(AD or MBEI) to be close to zero. Thus, for every probe set, we calculate its average
absolute log (base 10) ratio of 29 pairs of duplicates as a statistic to compare the
variation between duplicates by their expression levels using the AD or the MBEI
method. Figure 1.14 presents the result of the comparison. The average absolute log
ratio distribution of the MBEI method is significantly lower than that of the AD
method when expression level is low (thus, probe sets have low presence proportion
across arrays). As the expression level becomes higher (when target gene of a probe
set becomes present in more arrays), the AD method assumes a rapid performance
improvement, approaching the level of the MBEI method. The result suggests that the
MBEI method is able to extend the detection limit of reliable expressions to a lower
level of mMRNA concentration.
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Figure 1.14 Boxplots of average absolute log (base 10) ratios between replicate arrays strati-
fied by presence proportion for (a) MBEI method, (b) AD method. The number of presence calls
Jor a probe set in the 58 arrays for the 6 boxplots are: 0-9, 10-19, 20-29, 30-39, 40-49, 50-58.
The title of each boxplot is the number of probe sets used for the boxplot. The average is taken
over the 29 replicate pairs. Log ratios are not calculated for negative expression values or
expression values identified as “array-outlier” by MBEI method in either array of a replicate
pair, and are not used to calculate the average; 744 probe sets are not included because their
average absolute log ratios cannot be calculated for all the 29 pairs using either method.

1.1.8 Confidence interval for fold change

After obtaining expression indexes using AD or MBEI, fold changes can be calculated
between two arrays for every gene and be used to identify differentially expressed
genes. Usually, low or negative expressions are truncated to a small number before
calculating fold changes, and GeneChip also cautions against using fold changes when
baseline expression is absent.

The availability of standard errors for the model-based expression indexes allows
us to obtain confidence intervals for fold changes. Suppose 8, ~ N (6;, 62),
52 ~ N (82, 02), where 6; and 2 are the real expression levels in the two samples,
and 51 and 52 are the model-based estimates of expression levels. We substitute the

model-based standard errors for §; and ds. Letting » = 6, / 62 be the real fold change,
(8, -785)2

then the inference on r can be based on the quantity @ = Wiyl
1 2

It can be shown that @ has a y? distribution with one degree of freedom irrespective
of the values of 61 and 65 (Wallace, 1988). Thus, @ is a pivotal quantity involving r.
We can use ) to construct fixed-level tests and to invert them to obtain confidence
intervals (CI) for fold changes (Cox and Hinkley, 1974).

Table 1.1 presents the estimated expression indexes (with standard errors) in two arrays
and the 90% confidence intervals of the fold changes for 14 genes. Although all genes
have similar estimated fold changes, the confidence intervals are very different. For
example, gene 1 has fold change 2.47 and a tight confidence interval (2.07, 3.03). In
contrast, gene 11 has asimilar fold change of 2.49 but amuch wider confidence interval
(0.96, 18.18). Thus, the fold change around 2.5 for gene 11 is not as trustworthy as
that for gene 1. Further examination reveals that this is due to the large standard
errors relative to the expression indexes for gene 11. This agrees with the intuition
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Table 1.1 Using expression levels and associated standard errors to determine confidence
intervals of fold changes.

Fold Lower  Upper

Gene MBEI 1 SE 1 MBEI 2 SE2 change CB CB
1 860 42 348 36 247 2.07 3.03
2 406 31 164 44 247 1.67 4.49
3 284 29 115 18 248 1.84 3.48
4 46 64 19 85 248 0 00
5 225 57 91 36 248 1.18 7.49
6 247 51 100 20 248 1.51 4.02
7 50 22 20 24 248 0.49 o0
8 276 19 111 36 248 1.59 5.35
9 436 33 175 21 2.49 1.99 3.19

10 76 18 30 18 2.49 1.07 86.17

11 81 25 32 17 2.49 0.96 18.18

12 182 42 73 28 2.49 1.25 7.12

13 1122 100 450 63 2.49 1.92 3.35

14 168 41 67 30 2.49 1.18 9.82

that when one or both expression levels are close to zero for one gene, the fold change
cannot be estimated with much accuracy. In addition, when image contamination
results in unreliable expression values with large standard errors, the fold changes
calculated using these expression values are attached with wide CIs. In this manner,
the measurement accuracy of expression values propagates to the estimation of fold
changes. In practice, we find it useful to sort genes by the lower confidence bound
(“Lower CB” in Table 1.1), which is a conservative estimate of the fold change.

1.1.9 Standard errors help to assess clustering results

Clustering analysis is a popular method to analyze the data of a series of microar-
rays (Eisen et al., 1998; Tamayo et al., 1999). If two genes are co-regulated at the
transcription level, their expression values across samples are likely to be correlated.
Clustering algorithms use these correlations (or the monotone transformation of cor-
relations) to cluster co-regulated genes together; however, the correlation based on
the estimated expression levels may be different than that based on the real but unob-
served expression levels. Also the commonly used hierarchical clustering algorithm is
an irreversible process: Once two genes or nodes are merged, they will stay together,
even if later on there is good reason to adjust the previous clustering. Thus, the relia-
bility of clusters must be assessed.
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A global way of using standard error in hierarchical clustering is to resample or
bootstrap (Efron and Tibshirani, 1993; Kerr and Churchill, 2001a) the whole “gene
by sample” data matrix and redo the clustering, then investigate the overall proper-
ties emerging from this repertoire of clustering trees. In (Bittner et al., 2000), the
data matrix coming from complementary deoxyribonucleic acid (cDNA) microarray
experiments is resampled using the estimated variation derived from the median stan-
dard deviation of log-ratios for a gene across samples. Now we have standard errors
for all data points, therefore, we can resample each expression value from a normal
distribution with mean equal to the estimated expression value and standard deviation
equal to the attached standard error.

[
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Figure 1.15 (See color insert following page 114.) (a) 225 filtered genes are clustered based on
their expression profiles across the 20 samples. Each gene’s expression values are standardized
to have mean zero and standard deviation one across 20 samples. Blue represents lower expres-
sion level and red higher expression level. We may be particularly interested in the gene branch
colored in blue. (b) The clustering tree after a particular resampling. Although the original
“blue” genes are scattered to various places, we can still determine where the original cluster
is, using the criteria described in the text. (c) After resampling 30 times, the reliability of the
genes belonging to the original cluster is indicated by the vertical gray-scale bar on the right of
the clustering tree.
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Figure 1.15a depicts a hierarchical clustering tree of 225 selected genes with presence
proportion >0.5 and coefficient of variation (standard deviation/mean) > 0.7 across
the 20 samples in array set 2. In trying to interpret this tree, we may be interested in
the gene cluster colored in blue and the reliability of the gene members belonging
to this cluster. The whole data matrix is resampled, and the clustering is performed
again (Figure 1.15b). We notice that some “blue” genes (genes in the original cluster
are colored blue) are clustered with other non-blue genes, and some non-blue genes
are mixed into the main body of blue genes. After each resampling, we identify a
cluster that contains more than 80% of all the blue genes but as few non-blue genes
as possible (measured in percentage of all genes in this new cluster). This cluster
is considered to be the cluster that corresponds to the original one in Figure 1.15a.
In Figure 1.15b, the root node of the “corresponding cluster” is marked with small
horizontal line intersecting the vertical line representing the range of the cluster on
the right of the clustering picture. Then, for each of all the 225 genes, if it belongs to
this “corresponding cluster,” we increase its “in-cluster” count by 1. After resampling
30 times, the in-cluster counts are indicated in gray-scale on the right side of the
original clustering tree (Figure 1.15¢), with black color represent 30 and white color
representing 0. A high “in-cluster” count indicates a gene “remains” in the original
cluster in most of the resampled clustering trees.

We can see from Figure 1.15¢ that most genes in the original cluster are reliable
members, while a few genes at the bottom of the cluster are not (in fact they are
merged into the original cluster in the last step). Interestingly, some genes in the
upper part do not belong to the original cluster, but cluster with the “corresponding
clusters” during resampling many times and have gray “in-cluster” marks. These
genes may be related to the original cluster in some way. In summary, this method
can help us to distinguish reliable and unreliable gene members of a gene cluster,
as well as draw our attention to related genes originally clustered somewhere else
because of the accidental nature of the hierarchical clustering.

1.1.10 Conclusion

We have proposed a statistical model at the probe level to compute expression indexes
for oligonucleotide expression array data. Based on this model, we are able to address
several important analysis issues that are difficult to handle using previous approaches,
such as accounting for individual probe-specific effects, and automatic detection and
handling of outliers and image artifacts. A software package DNA-Chip Analyzer
(dChip) is available at www.dchip.org to perform normalization, calculation of MBEI,
computation of confidence intervals of fold changes, and hierarchical clustering with
resampling. Our experience is that more than ten arrays are appropriate for model
fitting, outlier detection, and MBEI calculation.

Researchers are actively exploring and comparing the different expression index com-
putation methods (Irizarry et al., 2003; Lemon et al., 2002; Holder et al., 2001; Naef
et al., 2001; Zhou and Abagyan, 2002; Affymetrix Inc., 2001b; Zhang et al., 2002).
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We believe as more validation data are available, these low-level analysis methods
will no doubt be improved to best utilize the great potential of the oligonucleotide
microarray.

1.2 Issues in cDNA microarray analysis
1.2.1 Background

Besides Affymetrix oligonucleotide expression array, cDNA microarray is another
popular high-throughput technology for the global monitoring of gene expressions.
As introduced in (Brown and Botstein, 1999), a library of thousands of distinct cDNA
clones were first spotted on a microarray slide. Then, mRNA samples of two tissues
were extracted, separately reverse transcribed into cDNA and labeled with differential
colors (Cy3 and Cy5). The mixture of labeled cDNA were co-hybridized onto the
microarray, competing to bind to their complementary ¢cDNA. Finally, the slide is
scanned at different wavelengths of a laser or by a charge-coupled device (CCD)
camera to obtain numerical intensities of each dye.

Suppose the dye Cy3 is used for reference sample. Statistical analysis usually relies
on the log-ratios of two dyes, log(Cy5/Cy3) (or sometimes the ratio, Cy5/Cy3) to
assess the expression levels. Some researchers use base 2 in the logarithm because the
intensities usually range from 0 to 2'6; other researchers use base 10 for the ease of
intuition. Using a different base, however, does not affect the conclusion of analysis.
Since the first application of this technology in 1995 (Schena et al., 1995), many
efforts have been made to address related statistical issues (Chen et al., 1997; Newton
et al., 2000; Dudoit et al., 2002b; Kerr et al., 2001; Tseng et al., 2001). The huge data
size and many variations introduced in different experimental stages complicate the
analysis. Different statistical models and approaches usually have their advantages
and drawbacks as well.

1.2.2 Issues in low level analysis

For convenience, we use the data set presented in Tseng et al. (2001) for illustration.
In the first group of experiments, each slide had 125 E. coli genes multiply spotted
(four spots per gene) on it while, in the second group, each slide had 4129 genes
singly spotted. The first and second group of experiments will be called the 125-gene
project and 4129-gene project, respectively, hereafter. In the 4129-gene project, two
calibration and two comparative experiments are performed on the E. coli genome to
address several important issues in the data analysis and the study design of microarray
experiments (Figure 1.16). In calibration experiments, the same sample is divided to
label with two dyes while, in comparative experiments, two different samples are
used for the two dyes. Different slides in the same experiment hybridize with the
same pool of labeled cDNA onto different slides, and different experiments in the
same project redo the whole experiment with the same pool of mRNA. We will use
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Figure 1.16 (See color insert following page 114.) In calibration experiments, same samples
are applied in the two dyes whereas, in comparative experiments, different samples are used
with the two dyes. Replications are performed in experiment and slide stage. The 125-gene
project has a similar design except for the quadruple spotting.

C, R, and S to denote the calibration experiment, comparative (real) experiment, and
slide, respectively, and the subsequent numbers to indicate sequence in both projects.
For example, C2S52 indicates slide 2 in the second calibration experiment, and R152
means slide 2 in the first comparative experiment. The 125-gene project also has a
similar experimental design.

In this data set, some calibration experiments used sample from E. coli grown in
acetate, while the others are grown in glucose. The comparative experiments labeled
mRNA from E. coli grown in acetate by Cy3 and mRNA from E. coli grown in glucose
by Cy5. See Table 1.2 for details.

Several levels of replications are embedded in the design of the calibration experi-
ments and the resulting data provide information on the relative importance of vari-
ations due to spots, labels, and slides. Based on this information, we formulate an
approach to the analysis of comparative experiments. The main components are as
follows:

1. Extract intensities from the scanned images of both dyes.

2. Detect and filter poor quality genes on a slide using measurement from multiple
spots. This procedure is not applicable in singly spotted designs.

3. Perform slide-dependent nonlinear normalization of the log-ratios of the two
channels.

4. Use hierarchical model-based analysis on normalized log-ratio scale, where assess-
ment of the significance of gene effects are aided by statistical information obtained
from calibration experiments, if they are available.
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Table 1.2 Experimental designs of 125-gene and 4129-gene project.

Slides in the Samplesin Samplesin ~ Denhardt’s

experiment Cy3 Cy5 solution
C1S1~C1S2  acetate acetate all slides

L C251~C2584  glucose glucose none

125 gene  calibration 357100382 glucose  glucose C381

project C4S1~C4S3 glucose glucose C4S1~C4S2

comparative R1S1~R182  acetate glucose all slides
R2S1~R282  acetate glucose all slides
calibration C1S1~C1S2  acetate acetate all slides
4129 gene C281~C2S2  glucose  glucose all slides
project comparative R1S1~R1S2  acetate glucose all slides
R2S1~R282  acetate glucose all slides

1.2.3 Image analysis

After hybridization and washing, slides are scanned by a laser or CCD scanner. The
scanner then produces green Cy3 and red Cy5 16-bit TIFF image files. The intensity
of each pixel in these images thus ranges from 0 to 21 —1(= 65, 535). Image analysis
in microarray experiments is a set of processes to extract meaningful intensities of
each spot from the raw image for further analysis. The major components usually
include:

1. Locating the spots. We need to first locate spot positions. Information like number
of spots and prior rough positions are known from the arrayer (spotting machine),
but an algorithm is needed to search for the exact location in the neighborhood.
Usually some manual adjustments are needed.

2. Segmentation. This consists of deciding the shape of the spots and identifying
foreground and background pixels. Some algorithms use only fixed diameters
and round spot regions for each spot, some allow flexible diameters but use only
round shapes, and some others allow both flexible diameters and irregular shapes.
Background and foreground regions are then determined.

3. Intensity extraction. Local background intensities of each spot are then estimated
and subtracted from the foreground intensities to account for cross-hybridization
of nontarget genes and fluorescence emitted from other chemicals. Various statis-
tics including mean intensities, median intensities, and standard deviation of the
background and foreground of each dye are reported. Some of the statistics are
used to provide intensity extraction, and others are used for quality control. The
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spot summary information is very useful for the automation of quality filtering and
further analysis.

Although the cDNA microarray experiment has been developed for several years,
its image analysis is still an active area of research (Chen et al., 1997; Yang et al.,,
2002a; Buhler et al., 2002). It has some major difficulties. First of all, each cDNA
clone usually contains several hundreds of pixels, and the locations and shapes of
these spots may vary depending on the quality of the experiment. No fully automated
algorithm can perfectly locate the spots and identify the regions on every slides, and
most current software provides easy interface for manually adjusting spots that are
wrongly identified by its algorithm. For some bad quality slides, these corrections
may require tremendous labor. Second, a fast algorithm is necessary to deal with
large datasets. Finally, many statistics are proposed to serve as quality indices. They
are very useful in the case of misidentifying spot locations, local slide contamination,
and poor spot quality. Some statistics are useful only to test some specific artifacts,
however, and a good method to combine these statistics for correctly filtering all kinds
of defect genes is not available yet.

Current available image analysis software include Array Worx, Dapple (Buhler, 2002),
GenePix, ImaGene, ScanAlyze by Michael Fisen’s lab (Eisen, 1999), Spot by Terry
Speed’s lab (Yang and Buckley, 2001), and UCSF Spot by Ajay Jain’s lab (Jain et al.,
2002). Some of them are free for academic use and others are commercial software.

1.2.4 Quality filtering

Quality filtering is usually implemented during the image analysis step using some
quality indexes such as pixel-wise intensity variation or background intensities. Here,
we discuss filtering using multiple spot replications.

Multiple spotting of target DNA on a slide provides a means to assess the quality
of data for a gene on that slide (Lee et al., 2000). Suppose each gene is spotted p
times on the slide (p = 4 in our 125-gene project). For each spot, a ratio of Cy3
and Cy5 intensity is first calculated as m = Cy5/Cy3. We denote by “CV” the
coefficient of variation (i.e., standard deviation divided by mean) of the set of ratios
mq, My, ..., My on the multiple spots. The quality of data on the expression level of
each gene is inversely related to its CV. Figure 1.17 illustrates the CV versus mean
intensity (average of Cy3 and CyS5 signals) on slides in the 125-gene project.

In Figure 1,17, we mark all genes having CV values larger than a threshold as poor
quality data by a windowing procedure. For each gene, we construct a windowing
subset by selecting 50 genes whose mean intensities are closest to this gene. If the
CV of this gene is within the top 10% among genes in its windowing subset, then
we regard the data on this gene as unreliable. The curves in Figure 1.17 depict the
thresholds used to filter unreliable data. Data from both calibration and comparative
experiments in the 125-gene project were filtered using this approach.
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Figure 1.17 Quality index (CV) vs. average intensity in 125-gene project. The curve indicates
the 10th upper percentile in the moving windows containing 50 nearest genes. Genes with
quality index (CV) larger than this curve will be filtered out. Only slides C1S2 and C2S1 are
shown here. Genes with low CV have high agreement in duplicated spots, hence representing
high experiment quality. Thus, slide C152 shows higher quality than slide C2S1.

Following the convention of Dudoit, et al. (2002b), we draw the so-called MA—plot
for initial investigation where M = log(Cy5/Cy3) representing log-ratio of two
dyes and A = (log(Cy5) + log(Cy3))/2 the averaged logarithmic intensity. The plot
is actually a 45-degree rotation and rescaling of log-intensity plot of Cy5 and Cy3.
MA-plots of the remaining data of one calibration and one comparative slide after
quality filtering are depicted in Figure 1.18.

Besides screening genes with unreliable data, the CV values can also be used to com-
pare the quality of different slides and different experiments. For example, we found
that C2S1~4 have much poorer quality as compared with R1S1~2, R2S1~2 and
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Figure 1.18 Two MA—plots in the 125-gene project where M represents the log-ratio of two dyes

and A represents the averaged logarithmic intensity. Only slides C1S1 and R1S1 are illustrated
here.
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C1S1~2 (Figure 1.17). Because Denhardt’s solution was used in both comparative
experiments and the first calibration experiment but not in the second calibration, we
suspected this might be an explanation. To verify this, we performed the third and
fourth calibration. It turned out that slides C3S1 and C4S1~2 (with Denhardt’s solu-
tion) have better quality compared with slides C3S2 and C4S3 (without Denhardt’s
solution) respectively in the same experiments (result not shown here). This confirms
that using Denhardt’s solution can greatly improve experiment quality. Thus, multiple
spotting can provide useful information on data quality. It allows us to perform quality
filtering (i.e., removing outlying spots, unreliable genes, or identifying problematic
slides).

1.2.5 Normalization
Normalization in calibration

The most commonly used fluorescent dyes, Cy3 and CyS5, are relatively unstable. In
addition, these dyes may differentially influence the incorporation efficiencies during
labeling, have different quantum efficiencies, and are detected by the scanner with
different efficiencies. The effect of these factors on intensity measurements is defined
as the label effect, which is accounted for by the normalization curve in the following
analysis.

To demonstrate the label effect, MA—plots in calibration experiments are illustrated
in Figure 1.19. Because the two cDNA solutions were from the same pool of RNA
in calibration, the scanner reading from the Cy3 channel should be identical to that
from the Cy5 channel, if the label effects are negligible. In this ideal case, the MA—
plot should scatter around the line M = 0. Figure 1.19 depicts the MA—plots after
quality filtering in C1S1~2 and C4S1~2 in 125-gene project. It demonstrates that
normalization is needed to account for the label effect. Another notable feature is that
the normalization is slide-dependent. When the same batches of labeled cDNA were
hybridized to a different slide, the MA—data showed a different correlation pattern
(Figure 1.19, x vs. 0). It suggests that no universal normalization curve exists. The
following normalization procedures basically follow Dudoit et al. (2002b). First, we
fitM = f (A) on each slide in calibration experiment. The fitting can be done by the
built-in “lowess” function in S-Plus (Venables and Ripley, 1998). Then, the normalized
log-ratio is computed by M = M — M.

Normalization in comparative experiments

In a comparative microarray experiment, two differentially expressed mRNA pools
are separately labeled with Cy3 or Cy5 and co-hybridized to the same slide. As dis-
cussed previously, the label normalization function is nonlinear and slide-dependent.
To perform label normalization in a comparative experiment, we have to identify on
each slide a sufficient number of nondifferentially expressed genes and use them to
construct a normalization curve.
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Figure 1.19 (See color insert following page 114.) MA—plots of two slides in the same cal-
ibration experiment. The upper plot illustrates a different pattern of MA-plot on C1SI(0)
and C152(x) in the 125-gene project. The lower MA—plot in calibration 4 also illustrates the
same situation. Thus, the normalization curve is slide-dependent and should be estimated and
applied within the same slide.

One solution to this problem is to apply a set of predetermined “housekeeping” genes,
which are biologically assumed to be nondifferentially expressed genes in the exper-
iments. Note that, if the number of predetermined “housekeeping” genes is small or
their intensities do not cover a range of different intensity levels, this approach may
not provide a good fitting for nonlinear normalization curve. Also, the expression
levels of “housekeeping” genes can exhibit natural variability.

Another approach is to use all the genes for the “lowess” curve fitting (Dudoit et al.,
2002b). It requires the assumption that up- and down-regulated genes with similar
average intensities (denoted A) roughly canceled out or otherwise most genes remain
unchanged. This assumption is usually true in large genome studies.

Here, a rank-invariant selection scheme (Schadt et al., 2001b; Tseng et al., 2001)
is introduced to improve the invariant gene selection. The ranks of Cy3 and Cy5
intensities of each gene on the slide are separately computed. For a given gene, if the
ranks of Cy3 and CyS5 intensities differ by less than a threshold value d and the rank
of the averaged intensity is not among the highest [ ranks or lowest [ ranks, this gene
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is classified as a nondifferentially expressed gene. In terms of a mathematical formula,
we select the rank-invariant set
S ={g: |Rank(Cy54) — Rank(Cy3,)| < d &
I < Rank((Cyb,+ Cy3,4)/2) < G — 1} (1.7

A threshold value of 5 for both d and [ was used in the 125-gene project. In the
4129-gene project, the larger number of genes allows us to use a more sophisticated
iterative selection scheme (Tseng et al., 2001). In each iteration, the threshold for rank
difference is determined by the number of selected genes (i.e., genes that have been
selected in the last stage) multiplied by a predetermined percentage p. The threshold
for rank averaged intensity [ is only applied in the first iteration. The iteration stops
when the remaining set of genes does not decrease after selection. We use p = 0.02
and [ = 25 for the 4129-gene project. The result indicates that the iteration procedure
helps to select a more conserved set of genes (result not shown here).

This method is based on the assumption that, if a gene is up-regulated, its intensity
rank among one channel, for example, Cy5, should be significantly higher than the
rank among the other and vice versa. This method may fail in some extreme cases
where a majority of genes are up- (or down-) regulated to the same extent; however,
if a large number of nondifferentially expressed genes exist, as in the case of most
c¢DNA microarray experiment, this method will work well.

After selecting nondifferentially expressed genes and fitting the normalization curve
as described previously, we extrapolate the normalization curve to normalize genes
with extremely high or low intensities. The extrapolation is based on the 50 genes with
highest and lowest averaged log-intensity rank in the selected set of nondifferentially
expressed genes. Figure 1.20 depicts the extrapolated lowess curve in MA—plots in
comparative experiments in 4129-gene project.

The within slide variation can also be large. Examples include areas of contamination,
high background, or uneven cDNA hybridized on the slide surface. In experiments
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Figure 1.20 (See color insert following page 114.) Normalization curves and MA—plots in com-

parative experiments in 4129-gene project. The darker points are genes of the rank-invariant
set selected in an iterative manner (p = 0.02).
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using multiple pins to immobilize probe DNA, the pin-to-pin variation can be notable.
We use a single pin in the 125-gene project and four pins in 4129-gene project. The
pin-to-pin variation appears to be negligible in this dataset but was reported notable
in Dudoit et al. (2002b). In that case, the normalization should be performed in a
pin-to-pin manner.

1.2.6 Some discussion about normalization

We note that the preceding normalization procedure is nonlinear. The need for non-
linear normalization is also noted in Affymetrix oligonucleotide microarray analysis
(Schadt et al., 2001). The normalized log-ratio M can be expressed as log(K 4 *
Cy5/Cy3), which shows the multiplicative nature of the intensity-specific scaling
factor. Many current softwares apply the ratio of mean or median logarithmic inten-
sity of Cy3 to that of Cy5 as the constant scaling factor K. As we have observed in
Figure 1.19, this is sometimes improper.

Another popular approach is to use the analysis of variance (ANOVA) model on
logarithmic intensity scale that accounts for variations at each stage (dye, spot, slide,
etc.) and their interaction terms at the same time. The model introduced in (Kerr et al.,
2000) is as follows:

log(yijkg) =u+A; + Dj + Vi + Gg + (AG)l'g + (VG)kg + €ijkg- (1.8)

Here, u is the overall average signal, A; represents the effect of the i** array, D;
represents the effect of the j** dye, Vi represents the effect of the k'™ variety, G,
represents the effect of the g gene, (AG);, represents a combination of array i
and gene g, and (V' G)y, represents the interaction between the k** variety and the
g"" gene. The error term €;5x, is assumed to be independent and identically dis-
tributed with mean zero. After estimating the coefficients, the gene-(sample)variety
term V' Gg is the parameter we want to infer. Note that this approach also assumes
linear normalization factors.

Some previous studies established probabilistic normal (Chen et al., 1997) or Gamma
(Newton et al., 2000) model on the intensities and performed normalization and
expression level assessment based on the model. Parametric approaches, however,
may suffer from model fitting problems when data generated in different labs do not
support the model.

Another possible systematic variation needed for consideration is gene-label inter-
action. For example, Cy3-dCTP may be preferentially incorporated into a specific
sequence, relative to Cy5-dCTP. If such interaction exists, certain genes will always
show higher intensity in one of the channels, even under nondifferential expression
conditions and after normalization. In such a case, the normalized log-ratios in dif-
ferent slides of calibration experiment will be correlated and these correlations can
be used to detect gene-label interactions. Table 1.3 demonstrates that, except for
C1S1~2 in 125-gene project, the residuals are poorly correlated between different
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Table 1.3 High correlation indicates the phenomenon of gene-label interactions.®

125-gene project 4129-gene project
C1S1 CI1S2 C3S1 C4S1 €482 C1S1 C1S2 (C281 (282

C1s1 1.00 084 012 031 -0.13 C1S1 1.00 0.21 0.20 0.12
C1s2 0.8 1.00 007 037 -0.17 C1S2 021 1.00 0.17 0.13
C3s1 012 007 100 0.17 =021 C2S1 0.20 0.17 100 031
c4S1 031 037 017 1.00 0.36 C252 0.12 0.13 031 1.00
Cc482 -0.13 -0.17 =021 036 1.00 — — — — —

2Except for C1S1 and C1S2 in the 125-gene project, the gene-label interactions are not significant.

slides in both 125-gene and 4129-gene projects. Theoretically, some degree of gene-
label interaction may exist; however, this interaction appears to be insignificant in
magnitude compared with other sources of variation in the present experiment.

1.2.7 Hierarchical linear model

When we have hierarchical data as illustrated in Figure 1.16, a Bayesian approach of
the hierarchical linear model can be used to incorporate prior knowledge generated
from calibration experiments as well as to account for variations introduced at different
experiment stages. In Bayesian analysis, the prior knowledge is first used to construct
prior distributions of unobserved parameters. The posterior distribution of the desired
parameters is then computed to represent the combined information on the parameters
from the observed data and the specified prior distributions. Finally, we can perform
analysis on the desired parameters based on the resulting posterior distribution.

1.2.8 Model formulation

Denote by x4,. the normalized log-ratios of gene g, slide s, calibration experiment e
and y,4s. the normalized log-ratios of gene g, slide s, comparative experiment e. We
recognize that y,. is affected by the slide-effect and uncontrollable variation between
the different bacteria cultures used in different experiments. For each experiment
(culture), ygs. is a sampling from a normal distribution of slide effect within the same
culture. Thus, ygse ~ N(pige,74%), where g is the mean among different slides
within this culture, and 7,2 is the variance of slide-effect distribution for gene g.
Furthermore, the within-experiment mean pi4, is, in turn, a sampling from a normal
distribution of culture variation. Thus, pge ~ N(8,,0,%) where 6, measures the true
log-fold-change of gene g and o,? is the variance between bacteria cultures. The
probability model of the hierarchical structure is

Ygse ™~ N(NgeyTQQ)y Hge ™~ N(ogyo'gQ)- (1.9
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Note that only y,, are observed data while 7,2, ,2, and 6, are unobserved param-
eters. Under this model, 8, is the unknown parameter of interest and the derived
posterior distribution of 6, will be used to assess the expression level of gene g. If
gene g is nondifferentially expressed, then the posterior of 6 is distributed around 0.
Intuitively, to declare a gene differentially expressed means that the y4,. deviate from
0 in the same direction and that the deviations are large compared to the magnitude
of the posterior distribution of 7,2 and ¢ ,2.

The information pooled across the calibration slides is then used to obtain a prior
distribution for the slide-effect variance and culture effect variance:

SRR I Ol T T3 (1.10)

Here, 7,% = ((S— 1)]_'*771,2 +74%)/(S—1)E+1is the weighted value of gene-specific
and overall sample variances obtained from calibration slides; 7,> = 3°, (@ gse —
ge)*/(S = 1E (€g.. = means(@gse)), 74 = 2 g,s,e(@gse — 2ge)?/ G(S—1)E

( the total number of genes, S the number of slides, £ the total number of calibration
experiments, and xx2 the chi-square distribution with degree of freedom & and k
an adjustable degree of freedom, similarly, 5,2 = (Ed,> 4+ 0a®)/(E + 1), 6,2 =
Sy Tge? /B A’ =Y, 342 /GE, x5? the chi-square distribution with degree of
freedom & and A an adjustable degree of freedom. We note that cfg2 is biased upward
as an estimate of agz. As a result, our procedure will tend to be conservative.

Because the posterior distributions of the parameters do not have closed form solu-
tion, a Markov chain Monte Carlo method (MCMC) (Gilks et al., 1995) is used to
simulate the desired posterior distributions. The full conditional distributions used in
the MCMC simulation (known as Gibbs sampling) is as follows:

1. Tnitialize (f1g¢)(?) = yg.e and (6,)© = (14) .
2. Generate (0,2)® from distribution 042 | (115¢) ") where

Do (fge — Ng~)2 + h(fgz
XE+h-12

092 | MHge ™~

3. Generate (8,)(®) from distribution 6, | (1ge) ", (04,2)(?) where

o 2
Oy | :U'gavo'gz ~N (Ng ) %) . (L.11)

4. Generate (7,2)® from distribution 7,2 | (ttge)®V, ygse Where
g g g g

E E (ygsa :U'ga)z + kfgz

ng | Mges Ygse ™~ e=les XS o . (112)
1+...+Sg+

S, is the number of slides in experiment e.
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5. Generate (ug.)® from distribution f1ge | Ygse, (7,2)@, (8,)@, (5,2)) where

Selgeq” + 7404 RS ) . (1.13)

Seog? + 142 Se04? 4 142

6. Repeat procedures 2 through 5 for N times. We found that N = 4000 is sufficient
for the mixing of the Markov Chain with a steady-state distribution that is the
desired posterior distribution.

2 2
Nge|ygseyTg 79gy0'g NN(

The preceding model can also be applied when calibration experiments are not
available to provide prior information. In such cases, we assume the same hierar-
chical model with prior distribution 7,2 ~ k#%/x? and ¢,% ~ h&?/xn? where
72 = 2 g,s,e(Ugse — Yge)?/G(S — 1)E and 6% = 2gege — Yg-)?/G(E — 1)
become non-gene-specific. When S and E are small relative to prior degree of free-
dom A and k, the posterior will tend to be non-gene-specific while if S and £ are
large, the posterior distributions are dominated by gene-specific observations.

The hierarchical model has several assumptions including common slide variation
in different experiments, a uniform prior on 6, and normality. The normal assump-
tion is validated by QQ-plot in (Tseng et al., 2001) and is generally expected to be a
proper assumption. The model can be improved by applying experiment-specific slide
variation, a reasonable center concentrated distribution on 6, or a more sophisticated
slide and experiment distribution. The improvement will, however, greatly slow down
the MCMC simulation. Because the simulations are needed for every gene indepen-
dently, it will require considerable time to analyze the whole genome. Currently, the
simulation converges quickly in 4000 simulations in contrast to tens of thousands of
simulations needed in other common hierarchical models due to the simple normal
assumption and the conjugate prior. But even in this simpler case, it takes about 20
minutes to run in C and several hours to run in R for ~4000 genes (Pentium III
866, 512MB RAM). Thus modifying the model may burden the computation to be
impracticable.

Figure 1.21 depicts the 95% posterior interval of 8, (i.e., intervals containing 95% of
the probability in the posterior distribution of 8,) on common genes in both the 125-
gene project and the 4129-gene project. We note that genes with stronger agreement
in normalized log-ratios across the two replicated comparative experiments have
shorter intervals, as expected. The 4129-gene project has generally larger intervals
than the 125-gene project, perhaps because the former is singly spotted and lacks
a quality filtering step.

The results of two projects show general agreement. According to the 95% posterior
interval, among 119 common genes of our two projects, there are 35 up-regulated,
30 down-regulated genes in the 125-gene project and 23 up-regulated, 19 down-
regulated genes in the 4129-gene project. Among them, there are 17 up-regulated
and 17 down-regulated genes that agree in both projects. The average length of 95%
intervals of normalized log-ratios are 0.27 and 0.43, respectively, in the 125-gene
and 4129-gene projects that correspond to 0.73- to 1.4- and 0.61- to 1.6-fold changes,
respectively. In the few strong disagreement genes of two projects, we found that most
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Figure 1.21 (See color insert following page 114.) The orange and green rectangles show the
95% posterior interval for the underlying expression level 6, of the 125-gene and 4129-gene
projects (green: 125-gene project; orange: 4129-gene project). Rectangles of gene 54 (aceA)
are below —1.0 and do not appear in the graph.

of them are grouped in some pathways, such as metE, metB, aroL, aroG, and aroF.
This suggests that these strong disagreements may reflect real biological variation
between the cultures used in the two different projects. We have not discussed how to
account for multiple comparisons (i.e., selecting apparently differentially expressed
genes from the large number of genes in the genome). Methods to account for multiple
comparisons are reviewed in Dudoit et al. (2002b) and in the next chapter.

1.2.9 Discussion of some experimental design issues
Reverse-labeling and calibration experiment

In a reverse-labeling design (Marton et al., 1998; Kerr et al., 2000), each of the
two samples (for example, A and B) to be compared is divided into two aliquots
and labeled with two different dyes (for example, Cy3 and Cy5) in separate steps.
Two hybridization experiments are then performed. In the first hybridization solution,
sample A is Cy3-labeled and sample B is Cy5-labeled. In the second hybridization
solution, the labeling is reversed. We can use our calibration experiments to assess
the usefulness of reverse-labeling by regarding the results of the two slides in a cali-
bration experiment, say C1S1 and C1S2, as arising from the two hybridizations of
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areverse-labeling experiment. This is valid because, in this case, all four labeling reac-
tions were performed on aliquots derived from the same sample. Thus, the calibration
experiment is a special case of reverse-labeling when the comparative samples A and
B are identical. The first two plots of Figure 1.22 give the scatter plot of the differ-
ence (log(Cy5) — log(Cy3)) vs. the average [log(Cy3) + log(Cy5)]/2. The systematic
trends that are evident in these plots are due to the inadequacy of linear normaliza-
tion. As a result, if an ordinary design were used, then low-expression genes in the
Cy5-labeled comparative sample are likely to be incorrectly identified as being down-
regulated; however, this problem is greatly alleviated by the reverse-labeling design.
The estimated gene effect (log(Cy5)-log(Cy3)) from these two slides (the third plot
of Figure 1.22) cluster tightly around the zero line and show no systematic trend,
just as it should be when the two comparative samples are identical. Thus, in this
example, reverse-labeling offers useful protection against the nonlinearity of label
normalization without the need to explicitly model the nonlinearity. The analysis in
(Tseng et al., 2001) shows that such protection is not guaranteed, but partial protec-
tion can be expected under the condition that the nonlinearity contributions of each
gene have the same sign in both slides. Another potential benefit of reverse-labeling
is the cancellation of gene-label interaction. Gene-label interaction can also be
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Figure 1.22 An increasing trend occurs in both the first and second plot. When applying
reverse labeling design, the trend is greatly canceled.
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handled through explicit modeling, but this has not been pursued because gene-label
interaction compared to the other sources of variation is not significant in most data.

Note that the reverse-labeling design has the advantage of simple computation; how-
ever, when we want to perform a series of experiments such as taking samples at
different time points, the design will be more cumbersome. Performing nonlinear
normalization and explicit modeling of gene-label interaction is a useful alternative.

Multiple spotting vs. multiple slides

Multiple spots and multiple slides are replications to help us assess variations due
to spots and slides. Normalization is slide-dependent, therefore, multiple slide infor-
mation cannot be used to assess experiment quality before normalization. Thus, the
normalization procedure itself is vulnerable to contamination by poor quality spots.
On the other hand, multiple spots within the same slide provide useful information
for filtering out contaminated spots, poor quality genes, or problematic slides in each
experiment. We also tried to apply a similar quality filtering procedure to normalized
log-ratios in singly spotted replicate arrays. This is less effective because the between
slide variation is typically much larger than between spot variation, thus reducing
the power for detection of outliers. In practical microarray applications, it may be
desirable to monitor as many genes as possible at the beginning and singly spotted
arrays are more effective at this stage. After narrowing down the number of target
genes, however, one may be interested in using a custom array to investigate these
genes further. The use of multiple spotting should be considered in the design of these
arrays.
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CHAPTER 2

Design and analysis of comparative
microarray experiments

Yee Hwa Yang and Terry Speed

2.1 Introduction

This chapter discusses the design and analysis of relatively simple comparative
experiments involving microarrays. Some of the discussion applies to all the most
widely used kinds of microarrays, that is, radiolabeled cDNA arrays on nylon mem-
branes, two-color, fluorescently labeled cDNA or long oligonucleotide arrays on
glass slides, or single color, fluorescently labeled, high-density short oligonucleotide
arrays on silicon chips. The main focus, however, is on two-color complementary
deoxyribonucleic acid (cDNA) or long oligonucleotide arrays on glass slides because
they present more challenging design and analysis problems than the other two kinds.

As subfields of statistics, the topics of design and analysis of microarray experiments
are still in their infancy. Entirely satisfactory solutions to many simple problems still
elude us, and the more complex problems will provide challenges to us for some time
to come. Much of what we present in this chapter could be described as first pass
attempts to deal with the deluge of data arriving at our doors. Questions come in a
volume and at a pace that demands answers; we simply do not have the luxury of
waiting until we have final solutions to problems before we get back to the biologists.
A major aim of this chapter is to stimulate other statisticians to work with their local
biologists on microarray experiments and to come up with better solutions to the
common problems than the ones we present here.

For software related to the topics discussed in this chapter, we refer to Parmigiani et al.
(2003) and the website http: //astor.som.jhmi.edu/nox/pgiz.html.

2.2 Experimental design
Statisticians do not need reminding that proper statistical design is essential to ensure

that the effects of interest to biologists in microarray experiments are accurately and
precisely measured. Much of our approach to the design (and analysis, see Section 2.3)
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of microarray experiments, takes as its starting point the idea that we are going to
measure and compare the expression levels of a single gene in two or more cell
populations. The fact that, with microarrays, we do this simultaneously for tens of
thousands of genes definitely has implications for the design of these experiments,
but initially we focus on a single gene.

In this section, some of the design issues that arise with the two-color cDNA or
long oligonucleotide microarray experiments are discussed. Designing experiments
with radiolabeled cDNA arrays on nylon membranes or for fluorescently labeled,
high-density short oligonucleotide arrays is less novel. Apart from the following brief
discussion about probe design, and a few other remarks in passing, we will not discuss
these two platforms in detail separately.

Any microarray experiment involves two main design aspects: the design of the array
itself, that is, deciding which DNA probes are to be printed on the solid substrate, be
it a membrane, glass slide or silicon chip, and where they are to be printed; and the
allocation of messenger ribonucleic acid (mRNA) samples to the microarrays, that
is, deciding how mRNA samples should be prepared for the hybridizations, how they
should be labeled, and the nature and number of the replicates to be done. We focus
on the second aspect, after making a few remarks about the first.

The choice of which DNA probes to print onto the solid substrate is usually made prior
to consulting a statistician; this choice is determined by the genes with expression
levels that the biologist wants to measure, or by the cDNA libraries (that is, the col-
lections of cDNA clones) available to them. With high-density short oligonucleotide
arrays, these decisions are generally made by the company (e.g., Affymetrix) pro-
ducing the chips, although opportunities exist for building customized arrays. Many
researchers purchase pre-spotted cDNA slides or membranes in the same way as they
do high-density short oligo arrays. With short (25 base pair) or long (6075 base pair)
oligonucleotide microarrays, the determination of the probe sequences to be printed
is an important and specialized bioinformatic task (see Hughes et al. (2001); Rouil-
lard et al. (2001); http://www.affymetrix.com/technology/design/
index.affx for adiscussion). Similarly, many issues need to be taken into account
with cDNA libraries of probes, and here we refer to Kawai et al. (2001).

Advice is sometimes sought from statisticians on the use of controls: negative controls
such as blank spots, spots with cDNA from very different species (e.g., bacteria
when the main spots are mammalian cDNA), or spots “printed” from buffer solution,
or positive controls such as so-called “housekeeping” genes that are ubiquitously
expressed at more or less constant levels, and genes that are known not to be in the
target samples, which are to be spiked into it. We note that commercially produced
chips (e.g., by Affymetrix) have a wide range of controls of these kinds built in.
The questions typically posed to statisticians concern the nature and number of such
controls, and the use to be made of signal from them in later analysis. Some controls
are there to reassure the experimenter that the hybridization was a success, or indicate
that it was a failure, as the case may be. Others are to facilitate special tasks such
as normalization (see Chapter 1) or to permit an assessment of the quality of the

©2003 CRC Press LLC



experimental results. Controls used with cDNA microarrays for normalization include
the so-called microarray sample pool (see Yang et al. (2002b) and the ScoreCard
system from Amersham Biosciences). At this stage we do not have enough experience
to offer general advice or conclusions in design for controls as the full use of such
control data in cDNA arrays is still in its early stages. Yet another cDNA spot design
issue on which statisticians might be consulted is the replicating of spots on the slide,
and we discuss this in Section 2.2.4.

2.2.1 Graphicalrepresentation

First, we introduce a method for graphical representation of microarray experimental
designs. One convenient way to represent microarray experiments is to use a multi-
digraph, which is a directed graph with multiple edges as illustrated in Figure 2.1(a).
In such a representation, vertices or nodes (e.g., A, B) correspond to target mRNA
samples and edges or arrows correspond to hybridizations between two mRNA sam-
ples. By convention, we place the green-labeled sample at the tail and the red-labeled
sample at the head of the arrow. For example, Figure 2.1(a) depicts an experiment
consisting of replicated hybridizations. Each slide involves labeling sample A with
green (e.g., Cy3) dye, sample B with red (e.g., Cy5) dye and hybridizing them together
on the same slide. The number “5” on the arrow indicates the number of replicated
hybridizations in this experiment. Similar graphical representations of this nature
have been used previously in experimental design, for instance, in the context of mea-
surement agreement comparisons (Youden, 1969). For the rest of this chapter, we
use this representation to illustrate different microarray designs. The structure of the
graph determines which effects can be estimated and the precision of the estimates.
For example, two target samples can be compared only if an undirected path joins
the corresponding two vertices. The precision of the estimated contrast then depends
on the number of paths joining the two vertices and is inversely related to the length
of the path. In the hypothetical experiment presented in Figure 2.1(b), which consists
of three sets of hybridizations, the number of paths joining the vertices A and B is

A

(a) (b)

Figure 2.1 Graphical representation of designs. In this representation, vertices correspond to
target mRNA samples and edges to hybridizations between two samples. By convention, we
place the green-labeled sample at the tail and the red-labeled sample at the head of the arrow.
The number 5 denotes the number of replicates of that hybridization.
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2; a path of length 1 runs directly between A and B; another path of length 2 joins
A and B via C. When we are estimating the relative abundance of target samples A
and B, the estimate of log,(A/B) from the path A to B is likely to be more precise
than the estimate of logy(A/B) by logs(A/C) — log,(B/C) from the path of length
2 joining A and B via C.

The preceding discussion assumes that the spot intensities in two-color experiments
are all reduced to ratios before further analysis; however, it is already the case that
some authors (Jin et al., 2001) are using single-channel data and not reducing to ratios.
In this case, two strata of information exist on the log scale: the usual log-ratios within
hybridizations, and log-ratios between hybridizations. Because of the novelty of this
analysis approach, and the absence so far of a thorough discussion of single channel
normalization, we concentrate our discussion of design and analysis to what in effect,
is the within-hybridization stratum (i.e., to analyses that depend on log-ratios within
slides).

2.2.2 Optimal designs

All measurements from two-color microarrays are paired comparisons, that is, mea-
surements of relative gene expression, with a microscope slide playing the role of the
block of two units. We begin by discussing design choices for simple experiments
comparing two samples 7" and C. These include experiments comparing treated and
untreated cells (e.g., drug treated and controls), cells from mutant (including knock-
out or transgenic), and from wild-type organisms (Callow et al., 2000), or cells from
two different tissues (e.g., tumor and normal). Suppose that we wish to compare the
expression level of a single gene in the samples 7" and C of cells. We could compare
them on the same slide (i.e., in the same hybridization) in which case a measure of
the gene’s differential expression could be log,(T'/C), where log, T and log, C' are
measures of the gene’s expression in samples 7" and C. We refer to this as a direct
estimate of differential expression — direct because the measurements come from the
same hybridization. Alternatively, log, 7" and log, C may be estimated in two differen:
hybridizations, with T being measured together with a third sample R and C' together
with another sample R’ of R, on two different slides. The log-ratio log, (T'/C) will
in this case be replaced by the difference log,(T'/ R) — logo(C/R'), and we call this
an indirect estimate of the gene’s differential expression because it is calculated with
values log, 1" and log, C from different hybridizations. Figure 2.2 presents the graph-
ical representation of these two designs.

The early microarray studies (DeRisi et al., 1996; Spellman et al., 1998; Perou et al.,
1999; and many others) performed their experiments using indirect designs. These
designs are also known as common reference designs in the microarray literature
because each mRINA sample of interest is hybridized together with a common ref-
erence sample on the same slide. The common reference samples could be tissues
from wild-type organisms, or control tissue, or it could be a pool of all the samples of
interest. Common references are frequently used to provide easy means of comparing
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Figure 2.2 Two possible designs comparing the gene expression in two samples T and C of
cells. (a) Indirect comparison: This design measures the expression levels of samples T and
C separately on two different slides (hybridizations) and estimates the log-ratio log,(T/C)
by the difference log,(T/R) — log,(C/R). (b) Direct comparison: This design measures the
gene’s differential expression in samples T and C directly on the same slide (hybridization).

many samples against one another. More recently, several studies (Jin et al., 2001;
Kerr et al., 2001; Lin et al., 2002) have performed experiments that provide direct esti-
mates of log-ratios. In such cases, fixed or random effect linear models and analysis of
variance (ANOVA) have been used to combine data from the different hybridizations.

To date, the main work on design of two-color microarray experiments is due to Kerr
and Churchill (2001), and Glonek and Solomon (2002), who have applied ideas from
optimal experimental design to suggest efficient designs for some of the common
¢DNA microarray experiments. Kerr and Churchill (2001) based their comparisons
of different designs on the A-optimality criterion. In addition, they introduced a novel
class of designs they called loop designs, and found that under A-optimality, loop
designs were more efficient than common reference designs.

Suppose we have a single factor experiment with K levels and the goal is to compare
all K treatments. The A-optimality criterion favors designs that minimize the average
variance of contrasts of interest; however, this criterion alone is often not enough to
single out one design; see Designs V and VIin table of Yang and Speed (2002). Just as
different microarray experiments will require different analyses, no best design class
suits all experiments. Frequently, the scientific questions and physical constraints will
drive the design choices.

Glonek and Solomon (2002) studied optimal designs for time course and factorial
experiments. Their article introduced classes of appropriate designs based on the
notion of admissibility. For the same number of hybridizations, a design is said to be
admissible if there exists no other design that has a smaller variance for all contrasts of
interest. Their idea is that an investigator should compare only the admissible designs
and then base their design selection on scientific interest. In Glonek and Solomon
(2002) and in other similar calculations in the literature, log-ratios from different
experiments are regarded as statistically independent. In Section 2.3.9, we revisit
these calculations assuming a more realistic covariance between replicates, and we
examine the implications for design optimality.
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2.2.3 Design choices

In preparing to design a cDNA microarray experiment, certain general issues need
to be addressed. These can be separated into scientific and logistic (practical). The
scientific issues include the aim of the experiment. It is most important to state the
primary focus of the experiment, which may be identifying differentially expressed
genes, searching for specific patterns, or identifying tumor subclasses. Results from
previous experiments or other prior knowledge may lead us to expect only a few, or
many genes differentially expressed. In addition, there may be multiple aims within a
single experiment, and it is important to specify the different questions and priorities
between them. Practical or logistic issues include information such as the types of the
mRNA samples, the amount of material and the number of slides (chips) available.
The source of mRNA (e.g., tissue samples or cell lines) will affect the amount of
mRNA available, and in turn the number of replicate slides possible.

Other information to keep in mind includes the experimental process prior to hybridiza-
tion such as sample isolation, mRNA extraction, amplification and labeling. These
and other technical matters are discussed in Schena (2000) and Bowtell and Sam-
brook (2002). Keeping track of all the different aspects of the experimental process
helps us better understand the different levels of variability affecting our microarray
data. Finally, consideration should be given to the verification method following the
experiments, such as Northern or Western blot analysis, real-time polymerase chain
reaction (PCR), or in-situ hybridization. The amount of verification to be carried out
can influence statistical methods used and the determination of sample size. All this
information helps us translate an experiment’s biological goals into the corresponding
statistical questions and then, following appropriate design choices, helps us obtain a
ready interpretation of the results.

We begin our discussion of the design of experiments when there is just one natural
design choice, when one design stands out as preferable to all others, given the nature
of the experiment and the material available. For example, suppose that we wish
to study mRNA from two or more populations of cells, each treated by a different
drug, and that the primary comparisons of interest are those of the treated cells versus
the untreated cells. In this case, the appropriate design is clear: the untreated cells
become a de facto reference, and all hybridizations involve one treated set of cells
and the untreated cells. Next, suppose that we have collected a large number of tumor
samples from patients. If the scientific focus of the experiment is on discovering tumor
subtypes (Alizadeh et al., 2000), then the design involving comparisons between all
the different tumor samples and a common reference RINA is a natural choice. In
both cases, the choice follows from the aim of the study, with statistical efficiency
considerations playing only a small role.

The statistical principles of experimental design are randomization, replication, and
local control; naturally, these all apply to two-color microarray experiments, espe-
cially the last two. We have so far found only limited opportunities for random-
ization, however, the development of appropriate ways of randomizing microarray
experiments would be a useful research project. In this and many similar laboratory
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contexts, the challenge is to balance the requirements of uniformity (e.g., of reagents,
techniques, technicians, perhaps even time of day for the experiment), which aim
to reduce unnecessary variation, with the statistical need to provide valid estimates
of experimental error. The situation recalls the discussion between R.A. Fisher and
W.S. Gosset (“Student™) in the 1930s concerning the relative merits of random and
systematic layouts for field experiments; see Pearson and Wishart (1958) and Bennett
(1971-1974) for the papers. A number of issues are highly specific to experimental
design in the microarray context, and we now turn to a brief discussion of some of
them. Parts of what follows will also be relevant to nylon membrane and high-density
oligonucleotide arrays.

2.2.4 Replication

As indicated earlier, and consistent with statistical tradition (Fisher, 1926), replication
is a key aspect of comparative experimentation, its purpose being to increase precision
and, more important, to provide a foundation for formal statistical inference. In the
microarray context, a number of different forms of replication occur. The differences
are all in the degree to which the replicate data may be regarded as independent, and in
the populations that experimental samples are seen to represent. Given that replicate
hybridizations are almost invariably carried out by the same person, using the same
equipment and protocols, and frequently at about the same time, it is inevitable that
replicate data will share many features. Most of the differences discussed next concern
the target mRINA samples.

Duplicate spots

Many groups print cDNA in duplicate on every slide, frequently in adjacent posi-
tions. At times, even greater within-slide replication is used, particularly with smaller
customized rather than the larger general clone sets. This practice provides valuable
quality information, as the degree of concordance between duplicate spot intensities
or relative intensities is an excellent quality indicator; however, because replicate
spots on the same slide, particularly adjacent spots, will share most if not all their
experimental conditions, the data from the pairs cannot be regarded as independent.
Although averaging log-ratios from duplicate spots is appropriate, their close asso-
ciation means that the information is less than that from pairs of truly independent
measurements. Typically, the overall degree of concordance between duplicate spots
is noticeably greater than that observed between the same spot across replicate slides,
although exceptions exist.

Technical replicates

This term is used to denote replicate hybridizations where the target mRNA is from
the same pool (i.e., from the same biological extraction). It has been observed that
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characteristic, repeatable features of extractions exist, and this leads us to conclude that
technical replicates generally involve a smaller degree of variation in measurements
than the biological replicates described next. Usually, the term technical replicate
includes the assumption that the mRINA sample is labeled independently for each
hybridization. A more extreme form of technical replication would be when a sample
from the one extraction and labeling is split, and replicate hybridizations done with
subsamples of this kind. We do not know of many labs now doing this, though some
did initially. Section 2.3.9 discusses in more detail how technical replicates affect
design decisions.

Biological replicates — type I

This term refers to hybridizations involving mRNA from different extractions, for
example, from different samples of cells from a particular cell line or from the same
tissue. In most cases, this will be the most convenient form of genuine replication.

Biological replicates — type I1

This term is used to denote replicate slides where the target mRINA comes from the
same tissue but from different individuals in the same species or inbred strain, or from
different versions of a cell line. This form of biological replication is different in nature
from the type I biological replicates described previously, and typically involves a
much greater degree of variation in measurements. For example, experiments with
inbred strains of mice have to deal with the inevitability of different mice having their
hormonal and immune systems in different states, the tissues exhibiting different
degrees of inflammatory activity, and so on. With noninbred individuals, the variation
will be greater still.

The type of replication to be used in a given experiment depends on the precision
and on the generalizability of the experimental results sought by the experimenter.
In general, an experimenter will want to use biological replicates to support the gen-
eralization of his or her conclusions, and perhaps technical replicates to reduce the
variability in these conclusions. Given that several possible forms of technical and
biological replication usually exist, judgment will need to be exercised on the question
of how much replication of a given kind is desirable, subject to experimental and cost
constraints. For example, if a conclusion applicable to all mice of a certain inbred
strain is sought, experiments involving multiple mice, preferably a random sample of
such mice, must be performed.

Note that we do not discuss sample size determination or power in this chapter. Despite
the existence of research showing how to determine sample size for microarray exper-
iments based on power considerations, we do not believe that this is possible. Our
reasons are outlined in Yang and Speed (2002).
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2.2.5 Dye-swaps

Most two-color microarray experiments suffer from systematic differences in the red
and green intensities which require correction. Details of normalization are discussed
in Chapter 1. In practice, it is very unlikely that normalization can be done perfectly for
every spot on every slide, leaving no residual color bias. To the extent that this occurs,
notusing dye-swap pairs will leave an experiment prone to a systematic color bias of an
unknown extent. When possible, we recommend using dye-swap pairs. Alternatively,
random dye assignments may be used, in effect including the bias in random error. A
theoretical analysis of the practice of dye-swapping has yet to be presented.

2.2.6 Extensibility

Often, experimenters want to compare essentially arbitrarily many sources of mRNA
over long periods of time. One method is to use a common reference design for
all experiments, with the common reference being a “universal” reference RNA
that is derived from a combination of cell lines and tissues. Some companies pro-
vide universal reference mRNA (seee.g., http: //www.stratagene.com/gc/
universal_mouse_reference_rna.html) while many individual labs cre-
ate their own common reference pool. Common references provide extensibility of
the series of experiments within and between laboratories. When an experimenter is
forced to turn to a new reference source, it may be difficult to compare new experi-
ments with previous ones that were performed based on a different reference source.
The ideal common reference, therefore, is widely accessible, available in unlimited
amounts, and provides a signal over a wide range of genes. In practice, these goals
can be difficult to achieve. When a universal reference RNA is no longer available, it
is necessary to carry out additional hybridizations, conducting what we term a linking
experiment to connect otherwise unrelated data. More generally, linking experiments
allow experimenters to connect previously unrelated experiments, with the number of
additional hybridizations depending on the precision of conclusions desired. Suppose
that in one series of experiments we used reference R;, and that in another series
we used reference Ra. The linking experiment compares R; and Ro, thus permitting
comparisons between two sources, one of which has been co-hybridized with R; and
the other with Rs; however, this ability comes at a price. Log-ratios for source A co-
hybridized with reference R; can be compared to ones from source Z co-hybridized
with reference R,, only by combining A — R; and Z — Rs together with Ry — R
through the identity log,(A/Z) = logo(A/R1) + log,(R1/R2) — log,(Z/Rs). In
other words, cross-reference comparisons involve combining three log-ratios, with
corresponding loss of precision, as the variance of logy(A/Z) here is three times that
of the individual log-ratios. Nevertheless, there will be times when cross-referencing
is worthwhile, particularly when one notices that the variance of the linking term
log,(R1/Rs) can bereduced to an extent thought desirable simply by replicating that
experiment. The linking term in the identity would be replaced by the average of all
such terms across replicates.
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2.2.7 Robustness

Loosely speaking, we call a design robust if the efficiency with which effects of
interest are estimated does not change much when small changes are made to the
design, such as those following from the loss of a small number of observations,
or a change in the correlation structure of the observations. It is not uncommon for
hybridization reactions to fail in microarray experiments; in a context where mRNA
is hard to obtain, an experiment may well have to proceed without repeating failed
hybridizations. In such cases, robustness is a highly desirable property of the design.
A situation to be avoided is one where key comparisons of interest are estimable
only when a particular hybridization is successful. It follows that heavy reliance on
direct comparisons is not so desirable. Preferable is the situation where all quantities
of interest are estimated by a mix of direct and indirect comparisons, that is, where
many different paths connect samples in the design graph.

A nonstandard way to improve the robustness of a design is to give careful thought
to the order in which the different hybridizations in the experiment are carried out.
More critical hybridizations could be done earlier, and full sets of hybridizations com-
pleted before further replicates are run, leaving the greatest opportunity for revising
the design in the case of failed hybridizations. Note that this practice is contrary to
the generally desirable practice of randomizing the order in which the parts of an
experiment (here hybridizations) are carried out. In this context, such randomization
is frequently achievable, but it is not popular with experimenters because it will often
require a greater number of preparatory steps and so an increased risk of failure.

As we will see later, the use of technical replicates introduces correlation between
measured intensities and relative intensities. The precise extent of this correlation is
typically difficult to measure. A design where the performance is more stable across
varying technical replicate correlations would usually be preferred to one that is more
efficient for one range of values of the unknown correlations, but less efficient for
another range of values. This is a different form of robustness.

2.2.8 Pooling

An issue arising frequently in microarray experiments is the pooling of mRNA from
different samples. At times pooling is necessary to obtain sufficient mRINA to carry out
a single hybridization. At other times, biologists wonder whether pooling improves
precision even when it is not necessary. Is this a good idea?

To sharpen the question, suppose that we wish to compare mRNA from source A
with that from source B, using three hybridizations. We could carry out three separate
extractions and labelings from each of the sources, arbitrarily pair A and B samples,
and do three competitive hybridizations, each a single A sample versus a single B
sample. We would then average the results; see Section 2.3 for further discussion.
Alternatively, we could pool the labeled mRNA samples, one pool for the A and
one for the B samples, then subdivide each pool into three technical replicates, and
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carry out three replicate competitive hybridizations of pooled A versus pooled B.
Again, the results of the 3 comparisons would be averaged. Which is better? An
analogous question can be posed with the single-color hybridizations (high-density
short-oligonucleotide arrays, and nylon membranes). An a priori argument can be
made for either approach. Pooling may well improve precision, that is, reduce the
variance of comparisons of interest. But does it do so at the price of permitting one
sample (or a few) to dominate the outcome, and so give misleading conclusions
overall? These are hard questions to answer.

We know of no experiment with two-color microarrays aimed at answering these
questions, but we have seen the results of such an experiment with the Affymetrix
technology (Han et al., 2002). There we saw that averaging pooled samples and then
comparing across the types described previously was slightly more precise than doing
the same thing with averaged results from single samples, and in that case there seemed
to be no obvious biases from individual samples. Our conclusion was that the gain
in precision arising from pooling probably does not justify the risks, and that it is
probably better to be able to see the between-sample variation, rather than lose the
ability to do so. It remains to be seen whether this conclusion will stand up over time,
and whether it applies to two-color microarrays.

2.2.9 Our design focus

With most experiments, a number of designs can be devised that appear suitable
for use, and we need some principles for choosing one from the set of possibilities.
The remainder of this chapter focuses on the question of identifying differentially
expressed genes, and discusses design in this context. The identification of differ-
entially expressed genes is a question that arises in a broad range of microarray
experiments (Callow et al., 2000; Friddle et al., 2000; Galitski et al., 1999; Golub
et al., 1999; Spellman et al., 1998). The types of experiments include: single-factor
cDNA microarray experiments, in which one compares transcript abundance (i.e.,
expression levels) in two or more types of mRNA samples hybridized to different
slides. Time-course experiments, in which transcript abundance is monitored over
time for processes such as the cell cycle, can be viewed as a special type of single-
factor experiment with time being the sole factor. We discuss them briefly from this
perspective. Factorial experiments, where two or more factors are varied across the
mRNA are also of interest, and we discuss their design and analysis as well.

2.3 Two-sample comparisons

The simplest type of microarray experiment is the two sample or binary comparison,
where we seek to identify genes that are differentially expressed between two sources
of RNA. Such comparisons might be between knock-out and wild-type, tumor and
normal, or treated and control cells. With “single color” systems, such as the nylon
membranes and high-density short oligonucleotide arrays, the comparisons can be
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between results from two arrays, or two sets of arrays. With the two-color cDNA
or long oligonucleotide arrays, the comparison can be within a single slide, across
each of a set of replicate slides involving direct comparisons, or involving indirect
comparisons between slides.

2.3.1 Case studies I and 11

We illustrate the ideas of this section with two sets of two sample comparisons.
These studies both aim to identify differentially expression between a mutant and a
wild-type organism, but they do it differently. Both studies are with two-color cDNA
microarrays. Case study I involves replicates of direct comparisons made within
a slide. By contrast, case study II involves indirect comparisons between samples
co-hybridized to a common reference mRNA.

In order to identify and remove systematic sources of variation in the measured expres-
sion levels and allow between-slide comparisons, the data for case studies I and IT (as
well as case studies IIT and IV introduced next) were normalized using the within-
slide spatial and intensity dependent normalization methods described in Yang et al.
(2002b). Normalization methods are discussed in more detail in Chapter 1, and we
make no further mention of the topic, apart from noting that it is a critical preprocess-
ing step with almost any microarray experiment.

Case study I: swirl zebrafish experiment

The results from the swirl zebrafish experiment were given to us by Katrin Wuennen-
berg-Stapleton from the Ngai Lab at University of California, Berkeley, while the
swirl embryos themselves were generously provided by David Kimelman and David
Raible from the University of Washington in Seattle. The experiment was carried out
using zebrafish to study early development in vertebrates. Swirl is a point mutation
in the BMP2 gene that causes defects in the organization of the developing embryo
along its dorsal-ventral body axis. This results in a reduction of cells showing ventral
cell fates (i.e., cell types that are normally formed only within the ventral aspect of the
embryo), such as blood cells are reduced, whereas dorsal structures such as somites
and notochord are expanded. A goal of this swirl experiment was to identify genes
with altered expression in the swirl mutant compared to the wild-type zebrafish. The
data are from four replicate slides: two sets of dye-swap pairs. For each of these slides,
target cDNA from the swirl mutant was labeled using one of the Cy3 or Cy5 dyes
and the target cDNA wild-type mutant was labeled using the other dye. Figure 2.3 is
the graphical representation of this experiment.

In this case study, target cDNA was hybridized to microarrays containing 8848 cDNA
probes. The microarrays were printed using 4 x 4 print-tips and are thus partitioned
into a 4 X 4 matrix of sub-arrays. Each sub-array consists of a 22 x 24 spot matrix
that was printed with a single print-tip. In this and the other studies discussed next,
we call the spotted cDNA sequences “genes,” whether or not they are actual genes,
ESTs (expressed sequence tags), or cDNA sequences from other sources.
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Figure 2.3 Case study I: The swirl experiments provided by Katrin Wuennenberg-Stapleton
Jrom the Ngai Lab at the University of California, Berkeley. This experiment consists of two sets
of dye swap experiments comparing gene expression between the mutant swirl and wild-type
(wt) zebrafish. The number on the arrow represents the number of replicated experiments.

Case study I1: scavenger receptor BI mouse experiment

The scavenger receptor BI (SR-BI) experiment was carried out as part of a study
of lipid metabolism and atherosclerosis susceptibility in mice, Callow et al. (2000).
The SR-BI gene is known to play a pivotal role in high-density lipoprotein (HDL)
metabolism. Transgenic mice with the SR-BI gene overexpressed have very low
HDL cholesterol levels, and the goal of the experiment was to identify genes with
altered expression in the livers of these mutant mice compared to “normal” FVB
mice. The treatment group consisted of eight SR-BI transgenic mice, and the con-
trol group consisted of eight normal FVB mice. For each of these 16 mice, tar-
get cDNA was obtained from mRNA by reverse transcription and labeled using
the red-fluorescent dye Cy5. The reference sample used in all 16 hybridizations
was prepared by pooling ¢cDNA from the eight control mice and was labeled with
the green-fluorescent dye Cy3. The design would have been better if the refer-
ence sample had come from a different set of control mice. In this experiment,
target cDNA was hybridized to microarrays containing 5548 ¢cDNA probes, includ-
ing 200 related to lipid metabolism. These microarrays were printed in a 4 X 4
matrix of sub-arrays, with each sub-array consisting of a 19 x 21 array of spots.
Figure 2.4 is the graphical representation of this experiment. The data are available
fromhttp://www.stat.Berkeley.EDU/users/terry/zarray/Html/
srbldata.html.

SR-BI

Figure 2.4 Case study II: The SR—BI experiments provided by Matt Callow from the Lawrence
Berkeley National Laboratory. This experiment consists of eight slides comparing gene expres-
sion between the transgenic SR—BI mice and the pooled control (WT*). Another eight slides
comparing gene expression between normal FVB (WT) mouse and pooled control. The number
on the arrow represents the number of replicated experiments.
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2.3.2 Single-slide methods

A number of methods have been suggested for the identification of differentially
expressed genes in single-slide, two-color microarray experiments. In such experi-
ments, the data for each gene (spot) consist of two fluorescence intensity measure-
ments, (R, G), representing the expression level of the gene in the red (Cy5) and green
(Cy3) labeled mRINA samples, respectively. (The most commonly used dyes are the
cyanine dyes, Cy3 and Cy5, however, other dyes such as fluorescein and X-rhodamine
may be used as well). We distinguish two main types of single-slide methods: those
which are based solely on the value of the expression ratio R/G and those that also
take into account overall transcript abundance measured by the product RG.

Early analyses of microarray data (DeRisi et al., 1996; Schena et al., 1995, 1996)
relied on fold increase/decrease cutoffs to identify differentially expressed genes.
For example, in their study of gene expression in the model plant Arabidopsis thaliana,
Schena et al. (1995) use spiked controls in the mRNA samples to normalize the
signals for the two fluorescent dyes (fluorescein and lissamine) and declare a gene
differentially expressed if its expression level differs by more than a factor of 5 in the
two mRNA samples. DeRisi et al. (1996) identify differentially expressed genes using
a £3 standard deviation cutoff for the log-ratios of the fluorescence intensities,
standardized with respect to the mean and standard deviation of the log ratios for
a panel of 90 “housekeeping” genes (i.e., genes believed not to be differentially
expressed between the two cell types of interest).

More recent methods have been based on statistical modeling of the (R, ) pairs
and differ mainly in the distributional assumptions they make for (R, &) in order to
derive a rule for deciding whether a particular gene is differentially expressed. Chen
et al. (1997) propose a data dependent rule for choosing cutoffs for the red and green
intensity ratio R/G. The rule is based on a number of distributional assumptions
for the intensities (R, (), including normality and constant coefficient of variation.
Sapir and Churchill (2000) suggest identifying differentially expressed genes using
posterior probabilities of change under a mixture model for the log expression ratio
log R/G (after a type of background correction, the orthogonal residuals from the
robust regression of log R versus log GG are essentially normalized log expression
ratios). A limitation of these two methods is that they both ignore the information
contained in the product RG. Recognizing this problem, Newton et al. (2001) con-
sider a hierarchical model (Gamma—Gamma-Bernoulli model) for (R, G) and suggest
identifying differentially expressed genes based on the posterior odds of change under
this hierarchical model. The odds are functions of R+ GG and RG and thus produce a
rule which takes into account overall transcript abundance. The approach of Hughes
et al. (2000b) (supplement) is based on assuming that R and GG are approximately
independently and normally distributed, with variance depending on the mean. It thus
also produces a rule which takes into account overall transcript abundance.

As a result, each of these methods produces a model dependent rule which amounts
to drawing two curves in the (log R, log G)-plane and calling a gene differentially
expressed if its (log R,log G)-falls outside the region between the two curves. We
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Figure 2.5 (See color insert following page 114.) Single-slide methods: An M A—plot showing
the contours for the methods of Newton et al. (2001) (orange, odds of change of 1:1, 10:1,
and 100:1), Chen et al. (1997) (purple, 95% and 99% “confidence”), and Sapir and Churchill
(2000) (cyan, 90%, 95%, and 99% posterior probability of differential expression). The points
corresponding to genes with adjusted p-value less than 0.05 (based on data from 16 slides) are
coloredin green (negative t-statistic) and red (positive t-statistic). The data are from transgenic
mouse 8.

apply Chen et al. (1997), Newton et al. (2001), and Churchill (2000)* single-slide
methods to one slide from the SR-BI experiment. The different methods are used to
identify genes with differential expression in mRNA samples from individual treat-
ment mice compared to pooled mRINA samples from control mice. Using an M A—plot,
Figure 2.5 displays the contours for the posterior odds of change in the Newton et al.
(2001) method, the upper and lower limits of the Chen et al. (1997) 95% and 99%
“confidence intervals” for M, and the contours for Sapir and Churchill’s 90%, 95%,
and 99% posterior probabilities of differential expression. The regions between the
contours for the Newton et al. (2001) method are wider for low and high intensities
A, this being a property of the Gamma distribution which is used in the hierarchi-
cal model. The genes identified as having differential expression between the SR-BI
transgenic and the wild-type on the basis of all 16 slides (Callow et al., 2000) are
highlighted in green (down-regulated) and red (up-regulated) in the figure. None of
the methods satisfactorily identify all 13 genes found using all of the data on this

* Note that we are not performing the orthogonal regression for the log transformed intensities (Part I of
the poster). The orthogonal residuals of Sapir and Churchill are essentially normalized log expression
ratios. We have simply implemented Part II of the poster and are applying the mixture model to our
already normalized log-ratios.
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slide, and the nature of their failure strongly suggests that these methods should not
be relied upon in general. In our view, the statistical assumptions the different meth-
ods make are just too strong, and inconsistent with the data, being unlikely to capture
the systematic and random variability inherent these data. Furthermore, it is hard to
see how a within-slide error model can capture between-slide variation, and error
probabilities relating to detection of differentially expressed genes should relate to
repeated hybridizations.

No single-slide or single-chip comparison exists for radiolabeled target hybridized to
¢DNA spots on nylon membranes or for high density short oligo arrays (i.e., for the
single color systems). In order to compare mRNA from two cell populations in these
cases, we need at least two nylon membranes or two chips, including at least one
with target mRNA from each of the populations of interest. Assuming that we have
exactly one membrane or chip from each of the cell samples, the problem becomes
formally quite similar to the single-slide, two-color problem just discussed, though
the details differ in important ways between nylon membranes and for high-density
short oligo chips. With exactly two nylon membranes the situation really is quite
similar to a single two-color slide, in that we have no more to go on than the two log
intensities for each spot. Thus, determining differentially expressed genes can be no
more than drawing lines in the associated plane, and the previous discussion applies,
though not all the methods mentioned have been advocated in the nylon filter context.
With high-density short oligo arrays, the situation is better; approximately 11 to
20 probes for each gene or EST. So there is information that permits us to estimate
a standard error for each estimated log-ratio, or to carry out a significance test. Details
of the Affymetrix methods for comparing two chips can be found at the following Web
site: http://www.affymetrix.com/products/software/specific/
mas . af£x. This approach works reasonably well in practice, though it is not clear
that the p-values can be given their usual interpretation.

2.3.3 Replicate slides: design

Before considering methods for identifying differentially expressed genes involving
replicate slides, let us briefly discuss the design question for the simple treatment-
control comparison with two-color arrays.

Consider the two designs described in Figure 2.2. The goal of both designs is to
compare two target samples 7" and C, and identify differentially expressed genes
between them. Suppose that we plan on doing two hybridizations, and that quantity
of RNA is not a limiting factor. For a typical gene on a slide, we denote the intensity
value for the two target samples by 7" and C'. The log base 2 transformation of these
values will be written log, 7" and log, C, respectively, and when reference samples R
and R’ are used, we will write log, R and log, R'. In addition, we denote the means of
the log-intensities across slides for a typical gene by o = Elog, T and § = Elog, C,
respectively. Then, for the gene under study, ¢ = o — 3 is the parameter representing
the differential expression between samples 7" and C, which we want to estimate.
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The variances and covariances of the log-intensities for a typical gene across slides
will be assumed to be the same for all samples, that is, we suppose that differential
gene expression is exhibited only through mean expression levels, and we always
view this on the log scale. In addition, we assume for the moment that the replicate
measurements on different slides are independent. For any particular gene, let us
assume that o2 is associated with the variance for one such measurement. (This may
vary from gene to gene.) It follows that the direct estimate of the differential expression
and its corresponding variance are:

F = 5 (1oga(T/C) +ogy(T'/C")) and var (¢p) = o2,

respectively. Alternatively, if we make use of a common reference R say, then from
our two hybridizations, the indirect estimate of log-ratio and its variance are:

¢r = logo(T/R) — log,(C/R') and var(¢r) = 202

The resulting relative efficiency of the indirect vs. the direct design for estimating
o — (3 is thus 4. This is the key difference between direct and indirect comparisons,
and the reason we recommend under many circumstances that direct comparisons
are to be preferred. The factor 4 depends critically on our independence assumption,
but we will see shortly that under very general assumptions, the direct comparison is
never less precise than the indirect one.

2.3.4 Replicate slides: direct comparisons

A number of approaches can be used here, and we briefly discuss each of them.

Classical

Suppose that we have n replicate hybridizations between mRNA samples A and B.
For each gene, we can compute the average M and the associated variance s? of the
n log-ratios M = log, A/B. In line with the early work summarized above, it would
be natural to identify differentially expressed genes by taking those whose values | M|
exceed some threshold, perhaps one determined by the spread of M values observed in
related self-self hybridizations. It would be equally natural to statisticians to calculate
the t-statistic t = \/nM /s, and make decisions on differential expression on the basis
of |t|. Both strategies are reasonable, the first implicitly assigning equal variability
to every gene, the second explicitly permitting gene-specific variances across slides;
however, neither strategy is entirely satisfactory on its own. Large values of M can
be driven by outliers, as the value of n is typically quite small (in our experience
= 2 to 8), and the technology is quite noisy. On the other hand, with tens of thousands
of |t| statistics, it is always the case that some are quite large in comparison with the
others because their denominators s are very small, even though their numerators
/1| M| may also be quite small, perhaps almost zero.
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Empirical Bayes

Several more or less equivalent solutions are available to the problem of very small
variances giving rise to large t-statistics, ones which lead to a compromise between
solely using ¢ and solely using M. One solution is to discount genes with a small M
whose standard errors are in the bottom 1%, for example. This leaves open the choice
of cutoffs on M and the standard error. More sophisticated solutions in effect stan-
dardizes M by something midway between a common and a gene-specific standard
error. For example, Efron et al. (2000) slightly tune the ¢-statistic by adding a suitable
constant to each standard deviation, using

o _ A

Ca+s’
One choice for a is the 90th percentile of standard deviations, while another mini-
mizes the coefficient of variation (see Efron et al., 2000; Tusher et al., 2001). This
solution recalls the empirical Bayes (EB) approach to inference, which is natural in the
microarray context where thousands of genes exist. A more explicitly EB approach,
which is almost equivalent to the preceding one, apart from the choice of a, is pre-
sented in Lonnstedt and Speed (2001); we illustrate it next. In addition to these two
just cited, there are other EB formulations of the problem of identifying differentially
expressed genes (see e.g., Efron et al., 2001; Long et al., 2001; Baldi and Long, 2001;
Efron and Tibshirani, 2002).

In Lonnstedt and Speed (2001), data from all the genes in a replicate set of experiments
are combined into estimates of parameters of a prior distribution. These parameter
estimates are then combined at the gene level with means and standard deviations to
form a statistic B, which is a Bayes log posterior odds for differential expression. B
can then be used to determine if differential expression has occurred. It avoids the
problems of the average M and the t-statistic just mentioned. In the same article,
a comparison is conducted between the B-statistic, the previous statistics t*, and
truncation of small standard errors. The differences are not great.

Note that the preceding analysis, and others like it, treats M values from different
genes as conditionally independent, given the shared parameters, which is very far
from the case, although it may not matter much at this point. Any attempt to provide a
semiformal analysis of replicated log-ratios may require this assumption, or something
very similar to it. By contrast, the permutation-based analyses described next do not
require this assumption, but they do not apply here.

Robustness

The EB solution to the problems outlined in the classical approach focus on smooth-
ing the empirical variances of the genes, thereby avoiding the situation where tiny
variances can create large t-statistics. A different approach is to replace M in the
numerator, in effect avoiding the problems which result from outliers coupled with
small sample sizes. The obvious solution is to use a robust method of estimation
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of the parameter ¢ wherever possible (Huber, 1981; Hampel et al., 1986; Marazzi,
1993). Alternatively, use could be made of a nonparametric testing procedure, for
example one based on ranks. The problem here is that the sample sizes are small, not
infrequently as low as two or three.

Letus note in passing that the use of robust estimates of location with sample sizes as
small as two or three is not without its problems. In such cases, estimates of standard
errors can hardly be relied upon, and instability in the associated “¢-statistics” is not
uncommon. Users of standard robust procedures such as r1m in R and SPlus should
take care and not simply rely upon default parameter settings in the algorithms. Tt is
to be hoped that the greatly increased use of robust methods stimulated by microarray
data will lead to further research on this topic.

Mixture models

Many approaches to identifying differentially expressed genes in this context use
mixture models, including the EB ones just discussed. Lee et al. (2000) use a two-
component normal mixture model for log-ratios in two-color arrays, one component
for differentially expressed genes and another for the remainder of the genes. They
estimate the parameters of their model by maximum likelihood and compute posterior
probabilities using the estimated parameters. In a sense, this is another EB model, but
not one with gene-specific variances, and so quite different in character from those
discussed previously. Efron et al. (2001) also have a two-component mixture model,
but it is for Affymetrix GeneChip data, and it is more general that the previous one.
Their mixture model is for the statistic t* instead of for log-ratios, and they make no
parametric assumptions about their mixture components. More recently, Pan (2002)
discussed a multicomponent normal mixture model, extending the analysis of Lee et al.
(2000) toward that of Efron et al. (2001).

Fixed and random effects linear models

One approach to the analysis of two-color microarray data and the determination of
differentially expressed genes makes use of linear models and the analysis of variance
(Kerr et al., 2000; Wolfinger et al., 2001; Jin et al., 2001). These authors model un-
normalized log intensities with linear models which include terms for slide, dye, gene
and treatment, a subset of the interactions between these effects, and a random error
term. Important differences exist between the approaches of Kerr et al. (2001) and the
other two papers in the way in which normalization is incorporated, in whether terms
are fixed or random, and in assumptions about the error variances. We illustrate the
approach of Kerr et al. (2001) next, and we begin by presenting their model for our
Case study 1. We label array effects (A) by ¢, dye effects (D) by j, treatment effects
(V) by k and gene effects (G) by g. Their model for the log of the intensity y;;x 4 is:

log(yijrg) = p+ Ai + Dj + Vi + Gy + (AG)ig + (VG)ig + €ijkg,

wherei=1,...,4,7=1,2,k=1,2,andg = 1,...,8848. In case study I, which
consists of a two sample comparision, the treatment effect V represents the mutant
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(V3) or wild-type (V1) samples. In this model, all terms are fixed apart from the random
error terms €. The term of interest here is (V' G)xg and the value (VG)zg — (VG)1y
estimates the level of differential expression between the mutant and the wild type
samples for gene g. This model can easily be extended to cover multiple samples
and factorial designs, although we do it differently in Section 2.4.3. Further discussion
of fixed and random effects linear model is given there.

Error models

Several groups have used more fully developed error models for measurements on
microarrays, and sought to identify differentially expressed genes by making use of
their error model. These include Roberts et al. (2000), Ideker et al. (2000), Rocke
and Durbin (2001), Theilhaber et al. (2001), and Baggerly et al. (2001). Ideker et al.
(2000) has made their software publicly available, so we illustrate this approach in
Case Study I. Their error model is for pairs 7" and C' of unnormalized unlogged
intensities for the same spot, namely,

T = pr+pure+é
C = pc+pce+7,

where (e, €) and (8, §') are independently bivariate normally distributed across
spots with means (0,0) and separate, general covariance matrices that are common
to all spots on the array. Thus, six parameters exist for the error model, in addition
to parameters determining the expected values. This model is close, but not quite
identical to a similar model for (log T, log C), one that permits the two components
to be correlated, with a correlation which is common to all the spots. Intensities from
distinct spots on the same slide, or spots on different slides are taken to be independent.
Roberts et al. (2000) and Rocke and Durbin (2001) use a similar model, but do not
allow the different channel intensities to be correlated.

In order to identify differentially expressed genes, Ideker et al. (2000) fit the model to
two or more slides by maximum likelihood. Differential expression is then determined
by carrying out a likelihood ratio test of the null hypothesis ur = ue for each gene
separately, resulting in a likelihood ratio test statistic A for each gene.

Other approaches

Working with Affymetrix GeneChip data, Thomas et al. (2001) use a variant on the
simple two-sample ¢-statistic which starts from a nonlinear model including sample-
specific additive and multiplicative terms. In the same GeneChip context, Theilhaber
et al. (2001) present a fully Bayesian analysis, building on a detailed error model for
such data. We refer readers to these articles for further details.
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2.3.5 Replicate slides: indirect comparisons

When the comparisons of log-ratios in a two-color experiment are all indirect, the
procedures just described need to be modified slightly. Typically, we would have
some number, n7, of slides on which the gene expression of sample 1" is compared to
that of a reference sample R, leading to ny log-ratios M = log, T'/R, and a similar
set of ne log-ratios log, C'/R’ from sample C. The analogues of the average and
t-statistics here are the differences between the means My — M and the two-sample
t-statistic is
My — Mc
sp/1/nr + 1/nc 7

where sy, is the pooled standard deviation.

t=

The problems with these two statistics are completely analogous to those described
in the previous secti_on witll M and ¢, and the solutions are similar: modify s, or use
robust variants of My — M and t.

We note in closing this brief review that some non-statisticians addressing these two-
sample problems in the microarray literature have devised novel approaches. Galitski
et al. (1999) and Golub et al. (1999) sought to identify single differentially expressed
genes by computing for each gene the correlation of its expression profile with a
reference expression profile, such as a vector of indicators for class membership. In
the case of two classes, this correlation coefficient is a type of t-statistic. Genes were
then ranked according to their correlation coefficients, with a cutoff derived from a
permutation distribution.

2.3.6 Illustrations using our case studies

We now describe the results of applying some of the methods just discussed to case
studies T and I1. Tt should be understood that we are not attempting to present thorough
analyses of these datasets, in part because of lack of space, and in part because
more effort always goes into the determination of differential expression than the
application of a single statistical analysis. Nevertheless, we hope that what follows
gives an indication of the potential of the methods we illustrate. We have certainly
found them useful in similar contexts, particularly the graphical displays.

Plots: averages, SDs, t-statistics and overall expression levels

Important features of the genes which might be differentially expressed can be found
by examining plots of t-statistics, their numerators M and denominators s, and the
corresponding overall expression levels. The overall expression level for a particular
gene is conveniently measured by the quantity A, the average of A = log, v/ RG over
all the slides in the experiment.
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Figure 2.6 (See color inserr following page 114.) Graphical illustration of case study I: swirl
experiment. (a) The color code that defines three groups of 250 genes consisting of largest
values of | M|, |t| and B values; (b) M A-plot; (c) t vs. A; (d) A vs. A.

Letus begin with the swirl experiment. In Figure 2.6b, Figure 2.6¢ and Figure 2.6d, we
have plotted the average log ratio M, the ¢-statistic and the log-likelihood ratio statistic
X from Ideker et al. (2000) against A. We began by defining three groups of 250 spots
each, being those having the largest values of | M|, |t| and B, respectively, and then
plotted the points according to the color code depicted in Figure 2.6a. Thus, points
corresponding to spots in all three groups are colored heavy black, while the very light
black spots, the overwhelming majority, are in none of the groups. Clearly, the heavy
black spots are the main candidates for differential expression. Spots belonging to the
large |¢t| group only are green, while those in the large |A/| and large B and not large
|t| groups are pink. The absence of points colored yellow is noteworthy: any spots
with large |t| and large | M| already have large B. This is not uncommon, and shows
that B is, in general, a useful compromise between t and M.

Tt is clear from these plots, and is not infrequently the case, that some points are
well separated from the cloud. The genes corresponding to these points are likely to
be differentially expressed, and we recommend this informal approach identifying
such genes. In many cases, this evidence is as solid as any we are able to obtain for
differential expression. Note the broad agreement on the black points in all three of
the panels. Figure 2.7a shows the nature of B rather clearly, while Figure 2.7b shows
the role of the standard deviation (SD) in determining whether a given M ends up
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Figure 2.7 (See color insert following page 114.) Case study I: swirl experiment. Plots of (a)
Log odds B vs. M and (b) t vs. log,(SD). Spots (genes) corresponding to large |M |, |t| and
B values highlighted according to color code shown in Figure 2.6a.

having a large [t| as well, with it being clear how large B related to the other two. The
green points are those with smaller SDs, in comparison with the solid black, pink,
and light blue spots. Of course, much of this is dependent on the cutoffs defining our
groups, which were determined after looking at the plots, but the message of these
plots is general.

Turning to the SR-BI experiment, Figure 2.8a shows a plot of M7 — M¢ against A,
while Figure 2.8b shows t against A. Here, we have given no analogue of B, though
one could be developed. In this case it is the yellow spots that should attract our
attention, and it should be clear that our choice here of 250 in the two groups is too
large. Looking at Figure 2.9a and 2.9b, we see that in general a large | M1 — M| is
more likely to go with a large |¢| if the SD is not too large and not too small, which

10

1] fby

Figure 2.8 (See color insert following page 114.) Case study I1I: SR-BI experiment: (a) MA-
plot; (b) tvs. A. Spots (genes) corresponding to large | M| and |t| values highlighted according
to color code shown in Figure 2.6a.
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Figure 2.9 (See color insert following page 114.) Case study II: SR—BI experiment. (a) t vs.

log,(SD); (b) log,(SD) vs. A

is roughly equivalent to having an A value that is not too small and not among the
largest ones. We see clearly from Figure 2.9b that larger A values go with smaller
values of the SD, and we remark that many plots of this kind would show a much
greater increase in SD for lower values of A. That is often quite evident in the M A-
plot (Figure 2.8a) as a ballooning in the low intensity ranges, a phenomenon we have
prevented by using a smaller and less variable background adjustment (see Yang et al.,
2002a).

How would we use these statistics to identify differentially expressed genes? It is
tempting to answer in the following way: Simply rank the genes on the basis of | M|, t
or B, and determine a cutoff in some sensible way. This is in effect what we have done
in producing the plots, without being careful about cutoffs; however, the plots also tell
us that a ranking based on just one of these statistics is not necessarily the best we can
do. The reason is this: A spot’s overall intensity value A can be a useful indicator of the
importance that can be attached to its M, t, or B value. Typically, considerably fewer
genes exist with large A values, and a spot can stand out from the cloud in the larger
A range with a smaller M, t, or B value than would be necessary to stand out in the
low A region. At times, the difference can be striking, although this is not the case
with our illustrative examples. Most methods of identifying differentially expressed
genes in the present context do not make explicit use of the overall intensity or any
related values, although approaches using fully specified error models in effect do so.
One problem with full error models is that they invariably assume that observations
on different slides are independent, which can be very far from the case, and this
vitiates their exact probability calculations.

In summary, we regard the determination of differentially expressed genes on the
basis of a small number of replicates as a problem for which more research is needed.
It is clear that the values of M, t, B (or their analogues) are highly relevant, but the
values of A and the SD should not be ignored. For the present moment, we feel that
determining cutoffs is best done informally, following visual inspection of plots like
the ones we have shown. Naturally, scientific considerations such as the expected
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number of differentially expressed genes and the number of follow-up experiments
that might be feasible, are also relevant in determining cutoffs, and we feel that A and
other similar statistics should also play a role.

Ranking genes by sets of statistics

Whether we use of | M|, t|, B, A or some similar statistic to provide aranking of genes
corresponding to the strength of evidence of differential expression, it is intuitively
clear that our preferred genes should rank highly on all these criteria. Hero and Fleury
(2002) describe a valuable method of selecting genes which are highly ranked in
a suitable multidimensional sense. They describe what they term Pareto fronts in
multicriterion scattergrams, which are points that are maximal in the componentwise
ordering (Pareto optimal) in the P-dimensional scatterplots of a desired set of P
criteria. As well as giving some modified versions of Pareto optimal genes, they
demonstrate that their ideas are applicable to a wide range of gene filtering tasks, not
just that of detecting differentially expressed genes. We refer to the paper Hero and
Fleury (2002) and also Fleury et al. (2002b) for a fuller discussion of the method.

2.3.7 Assessing significance

After ranking the genes based on a statistic, a natural next step is to choose suitable
cutoff values defining the genes that might be considered as significant or differentially
expressed. In this section, we consider the extent to which this can be done informally.
We focus on two types of plots.

Quantile—quantile plots

A simple graphical approach is to examine the quantile—quantile plots (Q-Q plots)
for certain statistics. Q—Q plots are a useful way to display the M or t-statistics for the
thousands of genes being studied in a typical microarray experiment. The standard
normal distribution is the natural reference, and the more replicates that enter into an
average or t-like statistic, the more we can expect the majority of the statistics to
look like a sample from a normal distribution. With just four replicates, which is
equivalently eight log intensities entering into our averages, we cannot expect and
do not get a very straight line against the standard normal; however, the plot can
have value in indicating the extent to which the extreme t-statistics diverge from the
majority. Q—Q plots informally correct for the large number of comparisons, and the
points which deviate markedly from an otherwise linear relationship are likely to
correspond to those genes whose expression levels differ between the two groups. At
times, we can tell where the outliers end and the bulk of the statistics begin (see e.g.,
Dudoit et al., 2001b), but unfortunately this is not the case with either of the present
examples.
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Figure 2.10 Quantile-quantile (Q—-Q) plot for (a) one-sample t-statistics from the swirl exper-
iment; (b) two-sample t-statistics from the SR—BI experiment.

Figure 2.10a is typical of many Q-Q plots which are not very helpful. The tails of
the distrubutions of these t-statistics are far from those of a normal (or t) distribtion.
The best we can hope for in such cases is that some points are obviously outliers with
respect to the nonnormal distribution, and this is true to some extent here, especially
for large negative ts.

The picture in Figure 2.10b is clearer. This is for the SR-BI experiment, and is per-
haps what we would expect, as there are 16 observations in each of these t-statistics.
We see about a dozen genes with “unusual” t-statistics, and these are obviously good
candidates for genes exhibiting differential expression (both up and down-regulation).
Some of these genes were verified to have the observed behavior in follow-up exper-
iments.

p-value vs. average M (volcano) plot

Another plot which allows outliers to reveal themselves among thousands of statistics
is the so-called volcano plot (Wolfinger et al., 2001), Figure 2.11. We have already
seen one plot like this in Figure 2,7a, where the log-odds corresponding to a given
value of the statistic B was plotted against M. More commonly, people plot the logs
of raw (i.e., model-based, unadjusted) p-values against the estimated fold change on a
log scale, M (Wolfinger et al., 2001). Whether the p-values are calculated assuming a
t or a normal distribution is not so important here. The color code indicates how these
plots capture some aspects of the plots we presented earlier in what is perhaps a more
convenient form; see especially the solid black points in Figure 2.114a and the yellow
points in Figure 2.11b.

So far, the approaches we have offered for identifying differential expression are all
informal. In many cases, this will be adequate. The number of genes that are selected
as possibly differentially expressed will in general depend on many things: the aims
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Figure 2.11 (See color inseri following page 114.) (a) Case study I: swirl experiment: —log p-
value vs. average log-fold change (M ). (b) Case study II: SR-BI experiment: —log p-value
vs. difference of log fold change My — M. Color code as in Figure 2.6a.

of the experiment, the number of genes expected to be differentially expressed, the
number of replicates, and the nature and extent of follow-up (validation). We cannot
expect a formal procedure to take all these factors into account.

In order to examine more formally whether the extreme t¢-statistics do indeed reflect
real differences between the control and transgenic mice we turn to adjusted p-values.
These cannot always be calculated in a reliable way, but when they can, we feel they
are worthwhile.

2.3.8 Multiple comparisons

A more formal approach to testing the null hypothesis of constant expression can
be obtained by calculating p-values (or posterior probabilities) under some model.
With a typical microarray dataset comprising thousands of genes, however, there
are at least two major impediments to doing this correctly. One immediate concern
for the validity of any single gene unadjusted p-values or posterior probabilities is
the underlying statistical model. As we suggested, in our discussion of single-slide
methods for identifying differentially expressed genes, parametric statistical models
generally have difficulty adequately capturing all the details of microarray data; this
is worst where it matters most for testing, namely, in the tails of the distributions
of statistics. For example, collections of single-slide log-ratios M are frequently
approximately normally distributed, but this breaks down in the tails. We might hope
for averages to behave more like normal random variables by virtue of the central
limit theorem, but this will only be true when all systematic effects have been removed
and the individual terms really do exhibit a high degree of independence. In certain
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cases, permutation-based methods can be used, but this is not as frequent as we might
like. As we will see, use of permutation methods can raise yet other problems.

The other major concern is the multiplicity issue: Carrying out thousands of signifi-
cance tests (or computing thousands of posterior probabilities) brings with it the need
to recognize and deal with the issues that arise when so many comparisons are made.

Two different approaches to the multiple comparisons problem have emerged in the
microrarray literature. One makes use of the traditional literature on the problem,
seeking to control family-wise type I error rates (see Dudoit et al., 2002b), who build
on the work of Westfall and Young (1993), while the other develops and extends
the notion of false discovery rate of Benjamini and Hochberg (1995) (see e.g., Efron
et al., 2000; Tusher et al., 2001). We summarize and illustrate both approaches and
refer to Dudoit et al. (2002a) and Storey et al. (2002) for fuller details and further
references. We also refer to Manduchi et al. (2000) for a contribution to this problem
which falls outside the approaches just mentioned.

Consider the problem of simultaneously testing m null hypotheses H;,7 =1,...,m,
and denote by R the number of rejected hypotheses. In the frequentist setting, the
situation can be summarized by the following table (Benjamini and Hochberg, 1995).
The m hypotheses are assumed to be known in advance, while the numbers mg and m,
of true and false null hypotheses are unknown parameters, R is an observable random
variable, and S, T, U, and V are unobservable random variables. In the microarray
context, a null hypotheses H; exists for each gene j, and rejection of H; corresponds
to declaring that gene j is differentially expressed. In general, we want to minimize
the number V of false positives, or type I errors, and the number T of false negatives,
or type Il errors. The standard approach is to prespecify an acceptable type I error rate
« and seek tests that minimize the type II error rate (i.e., maximize power), within
the class of tests with type I error rate c.

In terms of these random variables, we can define the main rates used in the present
context. The per-comparison error rate (PCER) is defined as the expected value of the
number of type I errors over the number of hypotheses (i.e., PCER = E(V') /m. The
Jamily-wise error rate (FWER) is the probability of at least one type I error, FW ER =
pr(V > 1). The false discovery rate (FDR) is the expected proportion of type I errors

No. not rejected  No. rejected

No. true null hyptheses ) v my
No. nontrue null hyptheses T S my
m-R R m
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among rejected hypotheses, FDR = E(V/R; R > 0) = E(V/R|R > 0)pr(R > 0),
in Benjamini and Hochberg (1995), while the positive false discovery rate (pFDR) in
Storey (2002) is the rate that discoveries are false, pF DR = E(V/R|R > 0).

It is important to note that the preceding expectations and probabilities are condi-
tional on which hypotheses are true or false (i.e., on which genes are differentially
expressed). We distinguish between strong and weak control of the type I error rate.
Strong control refers to control of the type I error rate under any combination of
true and false hypotheses (i.e., for any combination of differentially and constantly
expressed genes). In contrast, weak control refers to control of the type I error rate
only when none of the genes are differentially expressed (i.e., under the complete
null hypothesis HOC that all the null hypotheses are true). In general, weak control
without any other safeguards is unsatisfactory. In the microarray setting, where it is
very unlikely that none of the genes are differentially expressed, it seems particularly
important to have strong control of the type I error rate.

As we will see, a wide variety of multiple testing procedures are used. How should
we choose which to use? No simple answers are available here, but a procedure
might be judged according to a number of criteria. One criterion is interpretation:
Does the procedure answer a question that is relevant to the investigation? Another
is type of control: strong or weak? We have already suggested that strong control
is highly desirable in the microarray context. An important criterion is validity: Are
the assumptions under which the procedure applies clearly true, or perhaps plausibly
true, or are they unclear, or most probably not true? A fourth is computability: Are the
procedure’s calculations straightforward to carry out accurately? Or, is there perhaps
numerical or simulation error, or discreteness, which might cast doubt on the exactness
of the result?

Adjusted p-values

To account for multiple hypothesis testing, one may calculate adjusted p-values (West-
fall and Young, 1993). Given a test procedure, the adjusted p-value corresponding to
the test of a single hypothesis H; can be defined as the level of the entire test proce-
dure at which H; would just be rejected, given the values of all test statistics involved.
We can distinguish three ways of adjusting p-values: the single-step, step-down, and
step-up procedures. In single-step procedures, equivalent multiplicity adjustments are
performed for all hypotheses, regardless of the ordering of the test statistics or unad-
justed p-values. Improvement in power, while preserving type I error rate control,
may be achieved by stepwise procedures, in which rejection of a particular hypothe-
sis is based not only on the total number of hypotheses, but also on the outcome of
the tests of other hypotheses. Step-down procedures order the unadjusted p-values (or
test statistics) starting with the most significant, while step-up procedures start with
the least significant.

For strong control of the FWER at level «, the Bonferroni procedure rejects any
hypothesis H; with p-value less than or equal to o/m. The corresponding Bonferroni
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single-step adjusted p-values are thus given by $; = min(mp,, 1). While single-step
adjusted p-values are simple to calculate, they tend to be very conservative. Let the
ordered unadjusted p-values be denoted by p,, < p,, < ... < p, . Then, the Holm
step-down adjusted p-values are given by
Dr; = kgaxj {min((m —k+ l)ka,l) }
Holm’s procedure is less conservative than the standard Bonferroni procedure which
multiplies the p-values by m at each step. However, neither Holm’s method nor
Bonferroni (nor other single-step methods) take into account the dependence between
the test statistics, which can be quite strong for co-regulated genes. Westfall and Young
(1993) propose adjusted p-values which take into account quite general dependence,
and which are less conservative. Their step-down minP adjusted p-values are defined
by
Pr, = max'{pr( min P <p,, |HOC)},
k=1,....5 le{re,....,rm}

while their step-down maxT adjusted p-values are defined by

Ps; =  max {pr( max }|Tl| 2 [ts] |HOC)}7

=1,...,3 lE{Sk)...)Sm

where [ts,| > |ts,| > ... > |ts,,| denote the ordered test statistics.

These adjusted p-values lead to procedures which guarantee weak control of the
FWER in all cases, and strong control under the additional assumption of subset
pivotality, which applies in the example described next. See Dudoit et al. (2002a) for
fuller details, including details of permutation-based calculation of the p-values and
their step-down adjustments.

Turning now to a different kind of adjusted p-value, the following formula of Ben-
jamini and Hochberg (1995) gives a step-up adjustment which leads to strong control
of the FDR under the additional assumption of independence of the test statistics.
Even though this is not a realistic assumption with microarray data, we nevertheless
offer the formula

Pr, = min {min(mka /k, 1)}
k=i,....m

Recently, Benjamini and Yekutieli (2001a) showed that the preceding adjustment

is applicable when a particular form of dependence they term positive regression

dependency obtains between the test statistics, and gave a conservative modification

applicable quite generally. The latter formula is equivalent, for large m, to replacing

the factor m multiplying the unadjusted p-values by m log m.

The final multiple comparison method we discuss briefly is the pFDR of Storey
(2002). This novel approach does not seek to control the type I error or the false-
discovery rate, nor does it provide adjusted p-values. Instead, Storey (2002) takes
the view that conservatively estimating the FF'DR or pF DR for rejection regions
defined beforehand or by the actual statistics is a more appropriate task. In a separate
paper, Storey (2001) introduces the notion of g-value, which loosely speaking, is the
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minimum pF DR that can occur when rejecting a statistic equal to the observed one
for anested set of rejection regions. Space does not permit us to present full definitions
or explanations of this highly interesting theory, so we refer the reader to the articles
by Storey (2002, 2001). These articles are mainly concerned with the case where the
test statistics are independent and identically distributed, while Storey and Ribshirani
(2001) requires only identically distributed test statistics and an ergodicity condition.

Comparison of multiple testing procedures

We now apply the procedures to case study II, the SR—BI experiment, and display the
results in Figure 2.12. All p-values depicted there are for the two-sample t-statistics
introduced in the previous section for this example, and are calculated using all 12,870
assignments of 16 mice to two groups of 8, called “treatment” and “control.” For
example, the unadjusted (two-sided) p-value p; for gene ¢ will be 2/12,870 when
none of the assignments of the 16 mice to two groups of §, other than the true one,
leads to a t-statistic larger in absolute value than t;, the value observed with the true
assignment.

Figure 2.12 presents a variety of adjusted p-values for the genes with the 100 smallest
unadjusted p-values. As the solid line indicates, all of the latter are well below 0.01. The
Holm (and hence the Bonferroni) adjustment (dashes) is already far too conservative,
suggesting that none of the genes are differentially expressed, something we know
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Figure 2.12 (See color insert following page 114.) Comparisons of multiple testing proce-
dures. The plots concern the spots with the 100 smallest unadjusted p-values, scored 1 to 100
horizontally. The different adjusted p-values and the q-values are vertical; see insert for line
code.
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from follow-up studies to be false; but with over 6,000 genes and a smallest possi-
ble unadjusted p-value of roughly 1/6,000, this is not surprising. The minP adjust-
ment (short dash, long dash) is likewise too conservative, and the explanation is the
same. Even an observed t-statistic whose magnitude is not exceeded by that of any
of the other (false) assignments of treatment and control status to the mice, leads
to a minP adjusted p-value of 0.53, a value which is determined by the number of
permutations and not by the magnitude of the test statistic. The adjustment of Benjamin
and Yekutieli (2001b) (dot-dash) is similarly conservative. The one adjustment that
does lead to fairly small values is the maxT adjustment (curved dash), and here we
must point out that the permutation distributions of the 6000 t-statistics are not all
identical, and consequently not all tests contribute equally to the maxT adjusted p-
values, Westfall and Young (1993). In this example, the adjustment of Benjamini and
Hochberg (1995) (which assume independence) turns out to be very close to the g-
values of Storey (2001) (dots). While not giving values that are conventionally small
(e.g., less than 0.05), these adjustments do seem less conservative than the others
described previously.

In closing this brief discussion of multiple testing, we draw some tentative conclu-
sions. The well-established and generally applicable p-value adjustments such as
Bonferroni’s, Holm’s, and Westfall and Young’s minP do not seem to be helpful
in the microarray context. Although 12,870 permutations might seem rather few in
some contexts, 8 replicates of a treatment and 8 of a control are large numbers for a
microarray experiment: 2, 3, and occasionally 5 are more common numbers of repli-
cates. Also, it is not easy to argue that there should be more, simply to permit the use
of this multiple testing methodology. In many, perhaps most cases, 3-5 replicates will
be enough to reveal many differentially expressed genes. Thus, we are unlikely to see
many situations in which permutation based (and hence distribution-free) adjusted
p-values can be used. Westfall and Young’s maxT appears somewhat more useful.
Procedures based on controlling or estimating the FDR (or pFDR) appear to be the
most promising alternatives. When thousands of tests are being carried out, concern
about making one or more false positive decisions does seem misplaced. Instead,
permitting a small percentage of false positives among the rejected hypotheses seems
more reasonable. However, the theory for FDR and pFDR needs to be developed more
before it is generally applicable to microarray data. We need procedures controlling
FDR under fairly general dependence assumptions between the test statistics that are
less conservative than the one presented earlier. Also, the theory for pFDR needs to be
applicable beyond independent or identically distributed test statistics in a framework
that definitely covers microarray data.

2.3.9 Correlation and technical replicates
As explained in Section 2.3.3, an important decision with two-color microarray

experiments when choice is available is whether to use direct or indirect comparisons,
that is, whether to measure expression differences within slides or between slides.
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Most statisticians would immediately answer that direct comparisons are better, and
they are, but the situation is not quite as simple as it might look upon first examination.

In Section 2.2.4, we explained how biologists conducting simple gene expression
comparisons, such as between treated and control cells, will typically carry out repli-
cate experiments on different slides. These will frequently involve what we have
called technical replicates, where the target mRNA in each hybridization is from
the same RNA extraction, but is labeled independently for each hybridization. We
have noticed that estimates of differential gene expression based on technical repli-
cates tend to be positively correlated, whereas the same estimates based on replicates
involving different RNA extractions and labelings tend to be uncorrelated. When the
more extreme form of technical replication is used, that is, when a labeled sample is
split and used in replicate hybridizations, the correlation can be very strong. For scat-
ter plots illustrating these assertions, see Figure 7-5 of Bowtell and Sambrook (2002).
These observations suggest that we should reexamine the independence assumption
underlying the experimental design calculations presented in Section 2.2.3. When
variances are calculated for linear combinations log-ratios across replicate slides, it
appears desirable to use the most realistic covariance model for the measurements.
The discussion that follows is based on Speed and Yang (2002) to which we refer for
fuller details.

A more general covariance model

Let us re-examine comparisons between two target samples 7" and C. Following the
notation from Section 2.3.3, for a typical gene on the slide, we denote the means of the
log-signals across slides by a = Elog, T" and 8 = Elog, C, respectively. The vari-
ances and covariances of the log signals across slides will be assumed to be the same
for all samples. Our dispersion parameters are a common variance 72, a covariance
~1 between measurements on samples from the same hybridization, a covariance v,
between measurements on technical replicate samples from different hybridizations,
and a covariance 3 between measurements on samples which are neither technical
replicates nor in the same hybridization. These parameters will in general be different
for different genes, but we suppress this dependence in our notation. Later, we attempt
to estimate typical values for them.

Consider again the two different designs illustrated in Figure 2.2. Design I illustrates
an indirect comparison, where T" and C are each hybridized with a common reference
sample R. Design II involves two direct comparisons, where the samples 7" and C
are hybridized together on the same slide. We denote technical replicates of T°, C, and
Rby T, C', and R/, respectively and logs T, logs C etc. by t, ¢ etc. Note that both
designs involve two hybridizations, and we emphasize that in both cases, our aim is to
estimate the expression difference ¢ = o — 3 on the log scale. We now calculate the
variances of the obvious estimates of this quantity from each experiment. For Design
1, this is
v = var(t—r—c+7) = 477 =) — 22 — 73),
while for Design II, the estimate is one-half of y =t — ¢ + ¢’ — ¢/, and we have
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ve = var(y/2) = 77—y + 72— 7.

We next show that v is never greater than v;. To see this, consider the covariance
matrix for the four log intensities from Design II:

t T noe %

cov tc’ _ |7 ’)’g 72
Y2 Y3 TN

4 Y3 Y2 M1 T 2

It is easy to check that the eigenvalues of this matrix are A\; = 72 + 71 + v2 + 73,
=747 Y- A= -+ —ysand A =72 — 9 — Y2 + Vs,
corresponding to the eigenvectors (1,1,1,1), (1,1,-1,-1), (1,-1,1,—1) and
(1,—1,—1,1), respectively. In terms of these eigenvalues, we see that v; = A3 +3\4
and that vo = Ag. Thus, the relative efficiency of the indirect vs. the direct design for
estimating o« — 3 is

v 3/\4

(%] /\3 )

The direct design is evidently never less precise than the indirect one, and the extent
of its advantage depends on the values of 72,1, 2, and 3. Notice that when Ay = 0
(equivalently, 72—, = 5 —73), we see thatv; = vo. This shows that under our more
general model, the reference design could, in theory, be as efficient as the direct design.
This is very unlikely in practice, as these conditions are equivalent to the variance
var(t — ¢) of a log-ratio coinciding with the covariance cov(t — ¢,t’ — ¢’) between
two log-ratios derived from technical replicate samples. At the other extreme, when
9 = 73, that is when the covariance between measurements on technical replicates
coincides with that between any two unrelated samples, we have v; = 4wv,. This
is the conclusion which is obtained when log-ratios from different experiments are
supposed independent.

The preceding discussion focused on a single gene. It is not an easy task to obtain
estimates of these eigenvalues or of v; and v for single genes; however, in Speed and
Yang (2002), we presented an analysis based on the data from the swirl experiment,
which sought to obtain estimates of the average eigenvalues, and corresponding esti-
mates of averages for v; and v;. We found there that the relative efficiency va/v;
of the indirect to direct designs for estimating log, (swirl/wt) was 4 for dye-swap
set 1, consistent with independence, and 2.5 for dye-swap 2, suggesting a measure of
dependence.

When we average log-ratios, as we do in Design I, we want the terms to be as inde-
pendent as possible to minimize the relevant variance. In this case, it would be best if
we could avoid using technical replicates, and use truly independent samples. On the
other hand, when we take differences, as we do in Design II, we want the technical
replicate terms (R and R') to be as dependent as possible. This could be achieved
by using the same extraction and the same labeling (extreme technical replication)
for the common reference mRNA. Further, the results we have just described suggest
that, in some cases, the covariance due to technical replication needs to be considered.
We will revisit this discussion with a three-level factor in the next section.
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2.4 Single-factor experiments with more than two levels

A simple extension to two-sample comparisons is single-factor experiments where
we wish to compare the effects of K treatments, Tp, ..., Tk _1, on gene expression.
Examples of such experiments include comparing multiple drug treatments to a par-
ticular type of cell (Bedalov et al., 2001) or comparing different spatial regions of the
retina (Diaz et al., 2002b).

2.4.1 Case study 111: mouse olfactory bulb

To provide an illustration, we consider an experiment where comparisons were made
between different spatial regions of mouse olfactory bulb to screen for possible region
specific developmental cues (Lin et al., 2002). The target cDNA was hybridized to
glass microarrays containing 18,000 cDNA probes obtained from the Japanese Insti-
tute of Physical and Chemical Research (RIKEN) consortium. The olfactory bulb
is an oblong spherical structure, so in order to make a three-dimensional represen-
tation using binary comparisons, the bulb was dissected into three sections along
the three orthogonal axes, leading to six samples termed anterior (front), posterior
(back), medial (close to the axis of bilateral symmetry), lateral (away from the axis
of symmetry), dorsal (top), and ventral (bottom). In what follows, these cell samples
will be denoted by A, P, M, L, D, and V, respectively. Initially, comparisons were to
be made between regions that were maximally separated (A — P,M — L, D — V),
but later it was decided to make all possible comparisons. Figure 2.13 is a graphical
representation of some selected arrays of this experiment.

A —F
e

e N
Mar—— W

Figure 2.13 Case study I1I: The olfactory bulb experiment provided by Dave Lin from the Ngai
Lab at the University of California, Berkeley.
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2.4.2 Design

Let us begin our discussion on design with an example comparing three types of
mRNA samples (K = 3) and let us suppose that all pairwise comparisons are of
equal interest. An example of this type of experiment would arise in investigating
the differences in expression between different regions (1y, 17, T5) of the brain. The
scientific aim of this experiment would be to identify genes that are differentially
expressed between different regions of the brain; that is, to identify genes with dif-
ferential expression between Ty and 77, or between 77 and 7%, or between 75 and
Th. Figure 2.14 depicts two designs for such a three-level, single-factor experiment,
where R denotes a common reference source of mRINA.

For comparing the efficiency of different designs, we fit a linear model and exam-
ine the variance associated with the least squares estimates for the parameters of
interest. For example, let us consider the design depicted in Figure 2.14b. For any
particular gene, we denote the means of the log base 2 intensities across slides by
ag = Elog, Ty, a1 = Elog, 11 and o = Elog, To. As all measurements are paired
comparisons, only the differences between the effects are estimable and the contrasts
of interest are thus the pairwise differences. For estimation purposes, we can treat
Ty as a “pseudo” common reference. It follows that our parameters of interest are
1 = o1 — o and o = a9 — og. In another context, we might be more interested
in g — 1, and so wish to make that one of our parameters.

We fit the following linear model y = X¢ + € to the vector y of log-ratios y; =
logo(T1/T0), y2 = logy(To/T) and y3 = log, (T5/T3) from different slides:

1 0
X=| -1 1], ¢= <¢1) and ¥ = cov(y) = o°1.
0 =1 ¢2

We have used primes (e.g., R') to denote technical replicate material, as this would
almost always be the case in experiments like these. Nevertheless, we will begin by
assuming that the different log-ratios are independent. The least squares estimates
of the parameters are (X’X)~1 X’y and the corresponding variances of estimates
are given by the diagonal elements of the matrix ¢2(X'X)~1. Table 2.1 provides
comparisons for a few design choices, where for presentation, o2 is set to 1. The

R T,

(a) Design | (b) Design Il

Figure 2.14 Two designs for a 3-level, single-factor experiment.
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Table 2.1 Single factor experiment — variance of estimated effects for the three different
designs.*

Deasign Intrac! dasign Direct design
chinices
[E (b [l
T T T: Ti T T; To— =T
\ / L [ \ 4
\ /f 2 ‘< ,4/
\ i ‘.‘ l f{ 5 ,/‘
Wb/ Nt "/
= -] T
MNumber of slides N=3 N=8 N=2
Unitz of malerial T TieaTo=1 ToeTieTaa? TpeTi=To=?
Average elficency 2 \ 0.67

2

®For presentation, o~ was set to 1.

value in each cell of the table is the average variance associated with the three pairwise
comparisons of interest: var(¢s) + var(¢1) + var(ds — ¢1). This is the same as the
A-optimality criterion defined in Kerr and Churchill (2001). This criterion is suitable
here because all pairwise comparisons are of equal interest and the main scientific
constraint is that they are estimable.

Different design choices will be made depending on different physical constraints.
For example, if the experimenters have unlimited amounts of reference material, but
only one sample of mRNA from each of T, 17 and T, then Design I(a) is the only
possible choice out of these three. However, if the experimenters have two samples
of mRNA from each of the Tj, 17, and 15 regions, then both Designs I(b) and 1T
are feasible, with one using twice as many slides as the other. Direct comparison,
Design II, will lead to more precise comparisons between the different regions, and
in addition, save on the number of slides required.

In general, extending the designs in Table 2.1 to include K target samples, we con-
sidered the following two classes of designs:

(1) Indirect design. Perform each R — T}, hybridization as well as the corresponding
dye-swaps, T, — R,k =0,...,K — 1, for a total of 2K hybridizations.

(ii) Direct design. Perform each T} — T, hybridization, k£, =0,...,K — 1,k /4,
for a total of K (K — 1) hybridizations.

For direct designs, the comparison of two samples Ty and 77 can be done within
slides, while for indirect designs, the contrast vy — v are not estimated directly, but
instead across slides through the common reference R. It can be shown, using the
linear model that estimates of contrasts oy, — ¢ have variance 2 for indirect designs
and variance o2/ K for direct designs. Adjusting for the different number of slides,
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the relative efficiency ratio between indirect vs. direct designs (i.e., ratio of variances
for estimates of cx — oy using both designs) is

Yo _ i 2.1

U(ii) K-1
Therefore, for an equivalent number of slides, the limiting efficiency ratio, as the
number of treatments K increases, is 2, clearly illustrating the point that direct com-
parisons within slides yield more precise estimates than indirect ones between slides.
Whenever comparisons are made through a common reference R, which alone is
not of primary interest, every hybridization involving R is in some sense “wasted,”
roughly doubling the required number of hybridizations for a given level of precision.
As observed before, the relative efficiency is largest for K = 2 treatments: where
using direct comparisons gives a variance of 1/4 of that obtainable from an indirect
design involving the equivalent number of slides.

Moreover, to compare the two design classes for an equivalent number of target
samples, the relative efficiency of the indirect versus the direct design for estimating
o — O is
Yo _ L (2.2)
V(ig) K-1
As the number of treatments K increases, the limiting efficiency ratio is 1, and the
number of slides used in the indirect design will be twice as large as that used with
the direct design. Comparing this result with Equation 2.1, we see that the differences
inefficiency between the two designs are due largely to the amount of material involved

in the experiments.

Considering Table 2.1, itis evident that, when K becomes larger, the situation becomes
more complex. The analogues of Designs I(a) and I(b) are clear, they are the so-called
reference designs. The analogue of Design IT — which we call all-pairs design — is
unlikely to be feasible or desirable for a large number of comparisons. For example,
with 6 sources of mRNA, there are 15 pairwise comparisons requiring 5 units of each
target mRNA; for 7 there are 21, requiring 6 units, and so on. Alternative classes of
designs that involve far fewer slides include the loop designs of Kerr and Churchill
(2001), but these designs can suffer from having long path lengths between some of the
comparisons. In Figure 2.15, we offer two alternative designs for six sources of target
mRNA and six hybridizations. For Design I, the least squares estimates of contrasts
ax — oq have variance 202 for any pairwise comparisons, and hence an average
variance of 202, In contrast, the average efficiency for all pairwise least squares
estimates of contrasts in Design ITis 1.802, with some contrasts being relatively more
precise (e.g., var(dy — d2) = ¢2) and others that are relatively less precise (e.g.,
var(dy — dy) = 302). It should be clear from this example that, instead of regarding
the problem of choosing a design as a decision between classes of designs (reference,
loop, all-pairs), amore productive approach is to ask which comparisons are of greatest
interest and which are of lesser interest, and seek a design that gives higher precision
to the former and lower precision to the latter. Such a design then will involve a mix of
direct and indirect comparisons, tailored to the needs and constraints of the particular
context, including the robustness discussed in Section 2.2.7.
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Figure 2.15 Two possible designs comparing the gene expression between six target samples
To,...,Ts of cells. (a) Indirect comparison: this design compares the expression levels of
samples T}, and T, to the reference sample separately on two different slides, and estimates the
log-ratiolog, (T /Ti) by the difference log,(Ty / R) — log, (T, /R'), where samples R and R’
are reference samples. (b) Direct comparison: loop design. This design compares the gene’s
expression between certain samples T, and T, where k,l = 0,...,5;k /3 directly on the
same slide.

A more general covariance model

The preceding comparisons do not take into account the different types of replication.
Now, let us consider how the efficiencies of our designs change when the covariances
arising from the use of technical replicates are included in our analysis. We revisit the
designs for a three-level, single-factor experiment depicted in Table 2.1 using Design
11 first. As before, we denote by y = (y1,y2, y3) the log-ratios observed from slides
1, 2, and 3. To estimate the parameters of interest 3 = (¢1, p2) where ¢1 = o1 — g
and ¢2 = ag — g, we once again fit the linear model by least squares, but this time
using generalized least squares. The covariance matrix of the observations is given

by:
Y1 1 —p —p
cov | Y2 =g? —p 1 —p
Y3 -p —p 1

Here, 0 is the variance of a single log-ratio, which in the notation of Section 2.3.9 is
2(72—1), while the covariance between two log-ratios involving a common technical
replicate labeled with the same dye in the opposite position is —a2p = —(v2 — ¥3).
Analogous linear models and covariance matrices are used for the indirect Designs
I(a) and I(b) of Table 2.1. In these cases, we not only have terms in the covariance
matrix corresponding to log-ratios sharing a single technical replicate, in Design 1(b)
we also have terms 202 p corresponding to the covariances between log-ratios sharing
two technical replicates. We omit the straightforward details.

With these covariances we can calculate the average variances of the generalized least-
squares estimates of the contrasts of interest under the more general model. Because
the designs are symmetric, these will be the same functions of p as the variance
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Figure 2.16 Scaled variances of generalized least squares estimates of the contrast ¢, as a
Junction of p for the three experimental designs I(a), I(b) and II depicted in Table 2.1. The
vertical dotted line denotes the estimated p from the second swirl experiment described in
Section 2.3.1.

var(¢y) of the generalized least squares estimator ¢; of ¢;. Table 2.1 has the results
in the case where p = 0 (i.e. there is zero covariance between log-ratios derived from
technical replicate samples). Under the more general covariance model, the variance
of the indirect estimate of 431 from Design I(b) of Table 2.1 is just o2, independent
of p. By contrast, the estimator from Design II, which is a mix of direct and indirect
information, increases from % to 1 as p increases from 0 to 0.5. In fact, in this case
the generalized least squares estimator of ¢ coincides with its ordinary least squares
estimator. We conclude that the variance of the indirect estimate (Design I(b)) is 1.5
times that of the mix of direct and indirect (Design IT) at p = 0, but comes to equal it
at the other extreme p = 0.5. These observations and the results for Design I(a) can
be found in Figure 2.16.

2.4.3 Linear model analyses
General remarks

The approach we adopt to combining gene expression data from replicate experiments
to estimate gene expression differences between two types of samples was introduced
informally in Section 2.3.3 and Section 2.4.1. In its simplest form, the combination
is carried out by averaging observations from individual experiments (“treatment”
and “control”) and taking differences, to produce a combined estimate of the gene
expression effect that is a result of the treatment. This straightforward idea may be
extended to experiments such as Design II in Figure 2.14b by employing fixed effects
linear models, where we estimate certain quantities of interest (e.g., the 77 — T
difference) for each gene on our slide. Further, the idea applies much more generally,
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and will serve our purpose here, to provide least squares estimates of all estimable
contrasts such as the anterior-lateral difference in the bulb experiment of Figure 2.13.
As with all our earlier work, we focus on parameters that are, in effect, expectations
of log-ratios (e.g., of log(A/L)).

Some small but important differences occur between our use of linear models here
and those published in the microarray literature. Others, most notably Kerr et al.
(2000), use linear models and the analysis of variance (ANOVA) to estimate expression
differences and assess the variability of their estimates. As explained in Section 2,3.4
these writers typically assume a fixed effects linear model for the logged intensi-
ties, with terms for dye, slide, treatment, and gene main effects, as well as selected
interactions between these factors, and error terms having common variance across
genes. Differentially expressed genes are those that exhibit significant treatment x
gene interaction, while normalization is effected by the inclusion of dye terms in the
linear model. By contrast, our linear models are for log-ratios from experiments in
which normalization has been carried out separately for each slide, typically using
a decidedly nonlinear adjustment which could not be captured in a linear model.
Indeed, artifacts removed by our nonlinear normalization frequently correspond to
interactions assumed absent in the linear approach. We do not include different genes
in the same linear model, and so we do not assume a common error variance, and the
only terms we do include in the model relate to the mRNA samples and their treat-
ments. We find that our approach deals more satisfactorily with dye differences that
are nonlinearly intensity-dependent and spatially dependent in varying ways across a
set of slides. Also, our designs are usually not orthogonal, and so would not lead to
a unique analysis of variance.

In more recent research, Jin et al. (2001) and Wolfinger et al. (2001) use linear models
on a gene by gene basis, with a separate error for each gene, but still including
normalization as part of their linear modelling. Their linear models for normalized data
also include random effects for arrays. In a sense, these studies are quite ambitious,
as the authors took the bold step of treating the signals from the two channels of
their cDNA experiment as two separate sources of data, not passing to ratios or log-
ratios, but keeping both for their analysis. They have some effects estimated within
hybridizations (age), which are therefore based on ratios within hybridizations, and
others (sex and strain) that are not, but result from comparisons across hybridizations
not expressible as functions of within-hybridization ratios. In our view, this approach
can only be adopted following a very thorough multi-slide normalization of all of the
single channels, because many systematic nonadditive spatial and intensity-dependent
hybridization biases disappear when ratios are taken, but can remain otherwise. When
this is done, it would appear that the appropriate analysis should be a two-stratum
one, distinguishing the within-hybridization and the between-hybridization strata, for
in our experience, the variances in these two strata are likely to be quite different. In
brief, the appropriate analysis in this two-stratum context is likely to be significantly
more complex than the present one, and for this reason we do not pursue it further here.
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Application to case study II11

To define the notation used in our linear model, for a typical gene ¢, let us denote the
gene’s observed intensity value corresponding to the six different regions of the bulb
by 4;, FP;, D;, Vi, M;, and L;. Further, define the average values across hybridizations
of the log transformation of these quantities to be a; = Elog, A;, p; = Elog, F;,
d; = Elogy Dy, v; = Elogy V;, m; = Elog, M;, and [; = Elog, L;. To estimate
the spatial gene expression for gene 7, we fit the following linear model:

yi = X5 + €,

where y; is the vector of log-ratios from all the slides; X is the design matrix; e; is
a vector of the disturbance term; and g; is a vector of parameters. The five estimable
parameters we choose are given by agl) = a; — I, pz(-l) = p; — I, dz(-l) =d; — I,
vgl) = v;—[; and mgl) = m;—I;.In addition, we assume that the error terms associated
with the different slides are independent and identically distributed with E(e;) = 0 and
cov(e;) = o1, where I is the identity matrix. Note that in this experiment, some but
relatively little use was made of technical replicates. For simplicity, we ignore possible
correlations in our discussion. The design matrix and parameters corresponding to

the data of case study I1T is given next.

Y14 [ 1 0 0 0 0

Yoq 0 -1 0 0 1

Y3i -1 0 0 0 1

Yai 0 0 0 0 1

Ysi -1 1 0 0 0 )
Yo 0 0 -1 1 0 az('l)
Yri -1 0 1 0 0 i
ysi | = 0 -1 1 0 0 d | +e. (2.3)
Yoai 0 -1 0 1 0 U(Z)
Y104 0 0 0 1 0 n;(l)
Y114 1 0 0 -1 0 ¢
Y124 0 -1 0 0 0

Y13i 0 0 -1 0 0

Y14i 0 0 0 -1 1

Y154 | 0 0 1 0 —1 |

The parameter /3; can be estimated by 3; = (X’X)~'X’y; . In practice, we used
a robust linear model, so that our estimates are less affected by outliers. The data
are fitted to the linear model described previously by iteratively re-weighted least
squares (IWLS) procedure using the function r1m provided in the library MASS in
the statistical software package R. Details of the theory and implementation of the
“robust linear model” can be found in Venables and Ripley (1999).

Although we did not carry out the bulb study with a common reference mRNA source,
this was initially contemplated, and we would have used “whole bulb” mRNA, W.
Had we done so, we would have had seven mRNA samples and could then have
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estimated six parameters. The natural parameterization would then have been agw) =

Q; — Wy, Pl('w) = p; — Wi, dl(w) =d; —wy, Ufw) mz('w)
i)
k3

= v; — wy, = m; — w;, and
= [; — w,;, where w; = Elogy, W;, and the analysis would have begun with

robustly fitting a suitable linear model to estimate these parameters.

Returning to the parametrization we did use, what came next? It is clear from the
design matrix that all 15 pairwise comparisons of the form a; — [; are estimable, and
so our first summary description of a gene’s spatial pattern was the profile consisting
of the set of 15 parameter estimates of this form. Not surprisingly, profiles of this
kind were not as easy to interpret as we would have liked, having a high degree of
redundancy. Accordingly, we switched to the more economical profile consisting of
the estimates of the six parameters a;, p;, d;, v;,m; and [;, subject to the zero sum
constraint a; + p; + d; + v; + m; + [; = 0, that is, to estimates of the six parameters
a;— % (a;+p;+d;+v;+m;+1;), . . .. These profiles were much easier to visualize, and
so we worked with them in the subsequent analysis. We refer to Lin et al. (2002) for the
rest of the story, noting here that our main focus following the preceding linear model
analysis was the clustering of the spatial profiles. We restricted ourselves to profiles
which seemed to be real, that is, not noise, and we used Mahalanobis distance between
profiles based on (robust variant of) the variance-covariance matrix (X’ X)~! of
the parameter estimates.

Remarks on assessing paramelter estimales

Most of the issues we discussed in Section 2.3 have analogues in this more general
setting involving linear models for expectations of log-ratios. This includes the use
of estimated standard deviations for estimates of parameters in the linear models,
t-statistics (which are standardized parameter estimates here), modified t-statistics,
robust estimates, empirical Bayes statistics, and the use of Q—Q plots and more formal
tests of significance. Once we leave replicated treatment vs. control or multiple-
treatment experiments, few opportunities exist for permutation-based, distribution-
free methods, but the bootstrap appears to be a promising alternative. The techniques
just mentioned are still relatively unexplored in this context, no doubt because the use
of linear models with microarray data has so far been limited. As the use of linear
models increases, we can expect all the analogues of techniques effective in treatment
vs. control experiments to find their place in this more general setting.

2.4.4 Time-course experiments

This class of microarray experiments is among the most widely analyzed and reanal-
ysed in the literature, with a relatively large number of papers discussing one or more
of the cell-cycle datasets (Cho et al., 1998; Chu et al., 1998; Spellman et al., 1998).
We will not attempt to review all this literature, but instead comment briefly on the
general approaches and give references. A major drawback of this methods-based
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summary is the absence of any careful discussion of the biological motivation of the
methods, present in some but by no means all of the articles we mention.

Microarray time-course data differs from traditional time series data in that they tend
to be either short and irregularly spaced (e.g., 0, 1, 4, 12, and 24 hours after some
intervention), or longer and equally spaced, but still with relatively few time points,
typically only 10 to 20. The cell cycle data involved about 16 time points and included
just two full cycles, which is quite short by normal time series analysis standards. A
further common feature of such data (e.g., developmental time-courses) is that there
are few if any a priori expectations concerning the patterns of responses of genes,
apart from vague notions such as “may come on some time, stay on for a while, and
then go off,” or will be on “early” or “late” in the time period observed. Depending
on the time increments and the context, smoothness of a gene’s temporal response
may or may not be a reasonable expectation. All this suggests that the analysis of
microarray time-course data will offer many new challenges to statisticians, and that
it will frequently be more exploratory than model-based.

Bearing these remarks in mind, it is not surprising that initial approaches to analyzing
time-course data relied on simple mathematical modeling and cluster analysis (see
Chu et al., 1998; Cho et al., 1998; Spellman et al., 1998; and Chapter 4 of this
book). Indeed, clustering is still the most widely used technique with time-course
data, although regression and other model-based statistical methods are becoming
more common.

Design

A short time-course experiment may be viewed as a single factor experiment with
time being the factor. The additional information in this context is that there is a
natural ordering between the different target samples, in contrast with the experiment
described in Section 2.4, where no ordering existed between the different samples. The
ordering of the “levels” of the factor time will single out certain comparisons (e.g.,
each time with baseline, or between consecutive time points) and linear contrasts
(e.g., concerning linearity, concavity, or monotonicity) of interest to the researcher,
and so the design choice will definitely depend on the comparisons of particular
interest. Further, the best design can depend critically on the number of time points.

In a small study (e.g., with four time points), finding the design that is optimal in
some suitable sense can be done simply by enumerating all possibilities (see Table 2
in Yang and Speed (2002) for some simple examples). It is not feasible to enumerate
all possible designs for problems with a much larger number of time points, such as
the cell-cycle experiment. Developing algorithms for finding near-optimal designs is
a research topic of interest here.

Clustering time-course data

Noteworthy early research on large-scale gene expression was conducted by Wen et al.
(1998), an RT-PCR study of 112 genes, each measured on cervical spinal cord tissue in
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triplicate at nine different time points during the development of the rat central nervous
system. These authors clustered the temporal responses of the genes, and found five
main groups. Their approach is typical of that many other authors have taken since
then with microarray data. Tamayo et al. (1999) introduced self-organizing maps into
the microarray literature in the context of time-course data, illustrating them on the
yeast cell-cycle data and another dataset concerning hematopoietic differentiation in
four activated cell lines, each sampled at 4-5 times. Other research adopting a similar
approach include Saban et al. (2001) and Burton et al. (2002), both of which have
just 5 time points, with 4 and 2 replicates, respectively, at each time. Langmead et
al. (2002) provides a critique of the Fourier approach to short time-course data, and
offers a novel analysis incorporating autocorrelation and a new metric for clustering.
Their methods were applied to simulated data and the cell-cycle datasets.

Principal component, singular value decompositions, and related methods

It is worth separating this category of methods from the clustering, although in most
cases the aims are very similar. Chu et al. (1998) and Raychaudhuri et al. (2000) are
early examples of the application of principal component analysis (PCA) to microar-
ray time series data. Alter et al. (2000) address similar issues using singular value
decompositions (SVD), but go much further in creatively displaying the results. Ghosh
(2002) uses resampling methods to estimate the variability in SVD, and applies his
methods to the Cho et al. (1998) data. A dynamic model of gene expression is pre-
sented in Holter et al. (2001), who estimate the time-independent translation matrix
in a difference equation model for the “characteristic modes” (i.e., the eigenvectors of
the SVD of published time-course datasets), (Spellman et al., 1998; Chu et al., 1998;
Iyer et al., 1999), using 12, 7, and 13 time points, respectively.

Regression and related model-based approaches

In a series of articles, (Zhao et al., 2001; Thomas et al., 2001; Xu et al., 2002),
L. P. Zhao and colleagues promote the use of appropriately defined regession models
to analyze microarray data. The first and third of these articles discuss time-course
data (Zhao et al., 2001) and revisit the cell-cycle data. Perhaps the most interesting
of these papers is Xu et al. (2002), which analyzes parallel eight-time-point series
from both transgenic and control mice. This article presents an approach to the joint
analysis of related series which can be compared with the one discussed briefly in
Section 2.5.2.

Two articles that make very explicit use of the temporal pattern expected of (or sought
from) genes are Kato et al. (2000) and Sasik et al. (2002). Both invoke differential
equation models for mRNA concentrations, and solve them under special assumptions
to arrive at regression equations, which are then fitted to the data. Kato et al. (2000) is
the more ambitious of the two, attempting to infer genetic networks from the data using
multiple regression. They apply their method to an early yeast dataset from Derisi
et al. (1997) involving seven different times. By contrast, Sasik et al. (2002) model
genes in isolation. Their data were sampled every 2 hours for 24 hours during the
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developmental program of the slime mold Dictyostelium discoideum. These authors
begin their analysis by fitting to the data on each gene a simple nonlinear kinetic
model based on a first-order differential equation. The equation embodies a threshold
model for transcription, and focuses on genes which come on “sharply.” They then
assess the fit of this model to each gene, and go on to examine the temporal patterns
of the genes which fit the model satisfactorily.

Another noteworthy article essentially adopting a regression approach is Shedden and
Cooper (2002), which presents a critical analysis of the Cho et al. (1998) cell-cycle
data. In fact, their reanalysis suggests that “all apparent cyclicities in the expression
measurements may arise from chance fluctuations,” and that “there is an uncontrol-
lable source of experimental variation that is stronger than the innate variation of
gene expression in cells over time.” In light of the large number of reanalyses of the
cell-cycle data, this article is well worth reading.

The use of Bayesian networks is most appropriately noted under this heading (Fried-
man et al., 2000). This is an ambitious attempt to infer gene interactions from the
cell-cycle data of Spellman et al. (1998), one in which the role of time in the analysis
is by no means straightforward.

Aach and Church (2001) show how to align two time series when the time scales might
have become “warped” due to different time sampling procedures or the different rates
at which common biological processes evolve in related experiments. This notion is
also present in Bar-Joseph et al. (2002), who present a rather general model-based
approach to clustering, supposing that each gene’s time-series can be viewed as having
gene-specific and class-specific parameters multiplying spline basis functions, with
Gaussian noise added. The estimation is by maximum likelihood and a byproduct of
this is an assignment of genes to classes. Both of these articles illustrate their methods
on the yeast cell-cycle data of Spellman et al. (1998), while Bar-Joseph et al. (2002)
also analyze a later yeast dataset (Zhu et al., 2000).

Articles by Butte et al. (2002) and Filkov et al. (2002) focus on analytical issues
underlying the identification of pairs of genes that are co-regulated in time-course
experiments, and both illustrate their approach on the cell cycle datasets Cho et al.
(1998) and Spellman et al. (1998). Our final reference in this category is to Klevecz
(2000) and Klevecz and Dowse (2000) who also study the cell cycle data, this time
using wavelets. Their interesting analyses suggest some quite novel conclusions,
including the possible regulation of the yeast cell cycle by “an attractor whose fun-
damental period is an emergent property of dynamic interactions within the yeast
transcriptome.”

Contrasts

A simple and potentially powerful approach to extracting information from time-
course data makes use of linear combinations (or functionals) of the expression values
across times. Following standard statistical usage, we will call these contrasts, which
usually but do not always require that the coefficients sum to zero. The coefficients
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in contrasts can be tailored to the aims of the analysis, and they can be fixed a
priori, or determined by the data. An example of a data-driven contrast would be one
defined by the expression profile of a prespecified gene, something we might use in
seeking other genes with temporal patterns of expression match those of that gene. A
fixed set of coefficients might be one that estimates a linear trend. Another example
is the discrete Fourier transform, which can be viewed as a fixed set of constrasts
(corresponding to different frequencies) evaluated on an input series. Contrasts thus
generalize many familiar calculations, and as we shall see shortly, they also generalize
single variable regression modeling. When we have more than one contrast, it is not
uncommon to orthogonalize them sequentially, in the hope that, with approximately
normally distributed input data, the resulting estimated contrasts are approximately
independent. This is not necessary, however.

When ¢1, ¢o, .. . is a set of contrast coefficients corresponding to times 1,2, ..., and
E,, Es, ... are the corresponding expression time series for a given gene, the sum
< ¢, E > = ¥ Ey is the value of the contrast for that gene. If we normalized this
quantity by |c|? = ¢c?¢, supposing for simplicity that S¢c; = 0,then < ¢, E > /|c|?
would be the regression coefficient corresponding to the fit of expression values to the
temporal pattern (c;). As this normalizing quantity is the same for all genes, there is
no real need to include it in the fitting and assessing procedure. We note here that the
expression values E; may be “absolute,” as with Affymetrix chip data, or “relative”
as with two-color cDNA or long oligonucleotide data, and these will usually be on
the log scale.

Coefficients have many natural candidates (¢;), and we simply illustrate with a few that
we have found helpful. In a time-course experiment (Lonnstedt et al., 2002), where
mRNA from a cell line was sampled at 0.5, 1, 4, and 24 hours following stimulation
with a growth factor, we sought “early” and “late” responding genes. An ad hoc but
apparently useful working definition of these genes was as follows: those genes with
large values of < ¢, E > with ¢; = (t — 24.5)% were termed early, and those with
e = t2 (ie., with ¢ = (0.25,1,16, 576)) were termed late, respectively. It was an
easy matter to obtain candidates for these genes: we simply did a Q-Q plot of the
values < ¢, E' > and somewhat arbitrarily selected cutoffs determining genes with
unusually high or low values. More formal tests of significance are clearly possible,
just as they were with similar contrasts defining gene expression differences.

The theme of contrasts in the analysis of time-course data is prominent in Fleury et
al. (2002b), Fleury et al. (2002a), and Hero and Fleury (2002). In these articles, many
examples of the use of contrasts are given, and the procedure for selecting genes from
the various Pareto fronts is illustrated (refer to Section 2.3.6). In essence, Pareto fronts
and the variants presented in these articles all seek to identify genes that have large
values for all of a set of contrasts of interest. This ends our brief survey of models,
methods, and the literature on the analysis of time-course experiments.
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2.5 Factorial experiments

The previous examples have all been single-factor or one-way designs, where the
factor has two, three, or more levels. A more complex class of designs arises when
two or more factors are considered jointly, each factor having two or more levels.
These factorial experiments are used to study both the expression differences caused
by single factors alone, as well as those resulting from the joint effect of two or more
factors, especially when it differs from what might be predicted in the basis of the
factors separately, the phenomenon known as interaction. Factorial experiments were
introduced by R.A. Fisher in 1926, and studied extensively by his collaborator Yates
(1937). More recent references are Cox (1958) and Box et al. (1978).

2.5.1 Case study 1V: the weaver mouse mutant

This is a case study examining the development of certain neurons in wild-type (wt)
and weaver mutant (wv) mice, Diaz et al. (2002a). The weaver mutation affects
cerebellar granule neurons, the most numerous cell-type in the central nervous system.
In the near-absence of these cells, the mice have a weaving gait. The wv mutant
mouse strains were purchased from the Jackson Laboratory, and their genotypes were
determined by a restriction site-generating PCR protocol. In the mutant mice, granule
cells proliferate in the external granule cell layer, but terminally differentiated cells die
before they migrate to the internal granule cell layer. As a result, the weaver mutants
have greatly reduced numbers of cells in the internal granule cell layer, in comparison
with the wt mice of the same strain. Consequently, the expression of genes which
are specific to mature granule cells or expressed in response to granule cell-derived
signals is greatly reduced. Figure 2.17 is a graphical representation of four selected
slides from Diaz et al. (2002a) in a form convenient to illustrate the parametrization
of factorial experiments that we will use.

H £ Ofpl tP21 ut LY
M =i

willl w21

v = Elogs(we P11 utPl1) o t = Elog (wre P21 wt P21)

we 1l w21
ol o e g
t+uvt=E Oy 1o 21w P11

Figure 2.17 Case study IV: A portion of the weaver experiment provided by Elva Diaz from the
Ngai Lab at the University of California, Berkeley. One parametrization for this 2 x 2 factorial
experiment is indicated, see text for more explanation.
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2.5.2 Design and analysis of factorial experiments

In this 2 x 2 factorial experiment, gene expressions levels are compared between
the two strains wt and ww at the two postnatal times P11 and P21 (days). The four
possible mRNA samples are wt P11, wild-type at postnatal day 11, wv P11, weaver
at postnatal day 11, wtP21, wild-type at postnatal day 21, and wv P21, weaver at
postnatal day 21.

Figure 2.17 shows one parametrization for this experiment. Here, 1 is the expectation
of the log intensity logwtP11, u + t is the expectation of log wtP21, etc. for a
generic gene. Note that our parametrization is different from the symmetric ANOVA
parametrization used in most statistics text books. We do it this way because we
find the terms are more readily interpretable to biologists. Thus, the main mutant
effect v is the expectation Elog, (wvP11/wtP11) of the gene expression difference
(on the log scale) between wv and wt at P11. Similarly, the main time effect t =
Elog, (wtP21/wtP11) is the expected gene expression difference (on the log scale)
between days 21 and 11 for wt mouse. The mutant by time interaction is defined by
wvP21/wvP11

wtP21 /wtP11’

Genes with a nonzero interaction term can be interpreted as genes for which the
gene expression difference between wt P11 and wt P21 is different, on average, from
that between wv P11 and wvP21; equivalently, genes whose expression difference
between wtP11 and wv P11 are different, on average, from those between wtP21
and wv P21.

v.t = Elog,

How do we design 2 x 2 factorial experiments in this context? Four possible designs
for the weaver mutant case study, each involving six hybridizations, are represented
in Table 2.2, where here we follow Glonek and Solomon (2002). The designs head the
columns, and the table entries are the corresponding variances of the ordinary least
squares estimates of the main effect parameters v and ¢ and the interaction parameter
v.t. Suppose that our main goal is to identify genes with large interaction with six
hybridizations. Designs IT and TV give the smallest variance for the interaction term,
but the main effect for ¢ is not even estimable in Design IV. Design I, which many
biologists would use instinctively (perhaps without the dye-swaps), is by far the worst
for precision in estimating the interaction. The preferred design will depend on the
level of interest in the main effects in relation to the interaction, assuming all physical
constraints are satisfied. In general, Design II (or its complement, with dye-swaps
horizontally instead of vertically) will probably be the design of choice, offering
good precision for all comparisons, though more for one main effect than the other.

The preceding design options help us to make an important general design point,
namely, that in addition to experimental constraints, design decisions will be driven
by an awareness of which effects are of greater interest to the investigator, and which
are of lesser interest. More fully, the effects for which the greatest precision is required
should be estimated within slides to the greatest extent possible, while effects of lesser
interest can be measured less precisely, between slides. In extreme cases, where there
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Table 2.2 2 x 2 factorial experiment — variance of estimated effects for the four different

designs.*
- _In:;!i_recf design_ A balance of direct and indirect
Design l I 1l IV
choices
'IJPT1 1:‘|‘P21 -1"<‘P21 V(‘P11_>4fpg1 r’PT’ - rP21 1l .PP'T1 |"|321
N j;‘ 4 'Y
\ N//’ |l Tl lyT 12 d
7 LN | Y
'IF)11 wrP 11— P?1 |.’1‘P11-4—r:'|”lp21 w11 r:':PET
Main effect ¢ 0.5 0.67 0.5 NA
Main effect 0.5 0.43 05 0.3
Interaction «.f 1.5 .67 1 0.67
2For presentation, ¢ was set to 1.

is no interest at all in quantifying an effect, it need not even be estimable within slides
(vefer to Design IV in Table 2.2). Similar points were made by Kerr and Churchill
(2001), who recommended greater use of loop designs.

We now revisit the design problem just discussed when correlations between technical
replicate data are included. Figure 2.18 provides a representation of this 2 x 2 factorial
experiment (Design IT in Table 2.2) and the number next to the arrows in the diagram
is the slide number. Here, the parameters of interest are the main effect v, main effect
t, and the interaction effect v - ¢.

wifll SR - M. wit P21

1

wePl 1~ wr P21

()

Figure 2.18 Experimental Design Il of Table 2.2, with individual hybridizations numbered.
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For the observed log-ratios y = (y1, . .., ys), we fit the following linear model:

Y1 1 0 0

Y2 0 1 0 v
E Y3 _ 1 0 1 ¢

Yaq 0 -1 —1 vt ’

U5 -1 0 0 '

Yo -1 0 -1

and
(1 1 »p 0 p =2 0
Yo p 1 = 0 —p p
5 = cov | P3| = 52 0 —p 1 —p 0 -2

Ya p 0 —p 1 —p p
Ys =2p —p 0 —p 1 0
Yo 0 p =20 p 0 1

Here, as in Section 2.4.2, we denote the covariance between two log-ratios that share
a technical replicate term in the same position (numerator or denominator) by o2p,
with the signs being reversed if the shared term is in the opposite position, while the
covariance is 202 p or —202p between log-ratios with two technical replicate terms
in common. The diagonal elements of the matrix (X’'S~1X)~! provide the estimates
for var(v), var(t) and var(v - t), and similarly we can estimate these variances for
all four designs shown in Table 2.2.

Figure 2.19 compares the variances of the generalized least squares parameter esti-
mates for different values of p. As we have already remarked, the main effect ¢ is
not estimable for Design IV. In general, the variances increase as the correlation
among technical replicates increases, because we do not gain as much independent

Mamn et Main Effect | indermction, ./
- p—— W — G —
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i — N il — IV i - IV
B f . g™ 1
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= | ~ gt > l — d | ot -
- P = . = al. —
- e 5 -’—"’( £ -
o r - = -
Jeol =2 §ul— dof _~-
& e | | .
w
| | = i
= Q a
- e S — e f———— =y N S ——
ag o o2 4 04 &9 01 Q2 03 44 048 00 01 02 03 04 DS
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Figure 2.19 Comparing variances for a series of p values for parameter estimates from four
designs for a 2 x 2 factorial experiment (see Table 2.2). Plotted are scaled variances for (a)
main mutant effect v; (b) main time effect t; and (c) interaction effect v 1, for p ranging from
010 0.5. The vertical dashed line in all three panels denotes the estimated p from the second
swirl experiment described in Section 2.3.1.
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information while averaging, although this is not the case with the estimate of the inter-
action parameter in Design I. Perhaps the most striking conclusion from this figure is
that for high enough correlation between technical replicate Design I becomes com-
petitive for estimating the interaction parameter. Note also that the designs which lead
to estimates of parameters with equal variance when p = 0 (refer Table 2.2), specifi-
cally Designs I and ITI for the main effects ¢ and v, Designs ITand IV for the interaction
parameter, also lead to estimates with equal variances for these parameters for all p.

It is worth pointing out that by showing how to take covariances between target sam-
ples into account, our aim here is simply to help make more informed design decisions.
We do not advocate the use of technical replicates in place of biological replicates.
As explained in Section 2.2.4, the type of replication to be used in a given experi-
ment depends on the precision and on the generalizability of the experimental results
sought by the experimenter. In general, an experimenter will want to use biological
replicates to validate generalizations of conclusions. Often technical replicates are the
result of physical constraints on the amount of mRNA samples an investigator can
obtain. For example, in the Case Study III, the investigators were comparing small
regions of the brain from new born mice. In these experiments, the material is rare
and an amplification technique is used to generate more material. This technique will
inevitably introduce correlation between subsamples of the amplified material. Thus,
we see that at times the consideration of covariances between technical replicates is
a form of physical constraint that we need to recognize in making design decisions.
In summary, when making designs choices, investigators should consider the pat-
tern and approximate level of correlation between technical replicates, in addition to
identifying which effects are of greater and which are of lesser scientific interest.

2.5.3 Analysis of factorial experiments

We have already discussed the estimation of parameters in linear models for log-
ratios (see Section 2.4.3); it all applies to our main effects and interaction parameters
here. Figure 2.20 shows a plot of the estimates of the interaction parameter v - t
(vertical axis) against the average values A (horizontal axis) for the genes involved
in Case Study IV. We have retained the coloring convention of Figure 2.6, and we
observe that there appears to be a number of genes with quite large interactions by
all three of the measures (estimated effect size, standardized estimate of effect size,
and the Bayesian compromise between these two). We could conduct other analyses,
including Q-Q plots, but we are content with just this one illustrative plot.

Most of what we have discussed for 2 x 2 factorial experiments extends straight-
forwardly to 2 x 3, 2 x 4, 3 x 3, and more general two-way factorial experiments,
as well as to 2 X 2 x 2 and other higher-way factorial experiments. It should all be
quite clear how to proceed, but we need a special comment. We continue to regard
nonstandard parametrizations analogous to the one used previously as preferable to
the usual ANOVA-type ones from the viewpoint of the biological interpretability of
the parameters.
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Figure 2.20 (See color insert following page 114.) Estimated effect vt vs. A plot for the
interaction v.t between time and mutant.

2.5.4 Comparison of time series as factorial experiments

One area in which we have made considerable use of factorial experiments is worth
discussing further: comparing tissue from two (or more) different mouse strains
(e.g., wt and mutant) over several times (i.e., in extensions of studies such as IV
above to more than two times). In the microarray literature, as in many other places,
it is common to regard time as a covariate instead of a factor, as we are suggesting
here, and use a more traditional regression approach (see Section 2.4.4). We have
found that for a small number of times (e.g., 2 to 5), where there is no special spacing
or a priori expectation of particular patterns, particularly in developmental studies,
it is advantageous to treat time as a factor. When doing so, we find that particular
interest attaches to interactions of other factors with time, frequently focusing on just
the points of biological interest to the experimenter. The interaction in case study IV
is one such example.

2.6 Some topics for further research

A large number of problems occur in the design and analysis of microarray data,
on which further research is required. Some problems are implicit in the discussion
we presented earlier (e.g., on design, the analysis of comparative and time-course
experiments, where the incompleteness of our knowledge is abundantly clear). In
this short section, we touch on a few problems that were not discussed elsewhere in
this chapter.
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2.6.1 Involving A in ranking genes for differential expression

In Section 2.3.6, we discussed why we think it desirable to take notice of a gene’s
average intensity value A in determining whether it is differentially expressed. At
present, none of the measures M, t, or B that we have described, or the many variants
on them, do this in any direct way. To the extent that variability is frequently lower at
the higher end of the A-range, standardizing by SD goes part of the way toward this
end, but it does not fully incorporate the information we see in the plots of M (or its
analogues such as estimated linear model parameters) against A.

A first step that we have used with some satisfaction is the following simple approach.
We block the A-range into 20 intervals; within each, we calculate upper and lower
limits containing 95% of the values, and then smoothly join the values across the full
range. Ideally, we would like this for a number of percentages, such as 90%, 95%,
99%, 99.9%, etc., and then one could determine (to some extent) the total number
of points outside the range. What appears to be lacking is a formal approach to this
question, one that recognizes and deals with the failure of the log transformation to be
homoscedastic over the whole range of A, as well as the changing density of points
over this range.

Our last comment raises the question of transformations other than log-ratios of the
intensities measuring gene expression. Not surprisingly, a number of statisticians have
considered this topic, including Rocke and Durbin (2001), Durbin et al. (2002) and
Huber et al. (2002). In our view, it is highly desirable to work with log-ratios if at all
possible, as this is a simple and intuitive transformation for biologists, especially when
compared with differences of arcsinh. Although there considerable heteroscedacity
always exists in the distribution of untransformed intensities, it is usually greatly
reduced although not completely eliminated after taking logs. The authors just cited
use a mean-variance relationship which includes a dominant additive component of
variation at low intensities and a dominant multiplicative component at high intensi-
ties. One consequence of this is that the transformations they derive behave like log at
high intensities, despite a body of evidence that this is too severe a transformation in
that range. Further, we believe that the need for an additive component at low intensi-
ties can be reduced if not completely removed by better background adjustment, see
Yang et al. (2002a). In brief, we are not sure that the problem discussed here can be
solved by using a transformation of intensities other than the log-ratio.

2.6.2 Multiple gene analyses

Ttis not hard to see that, for the most part, the approaches to design and analysis offered
so far in this chapter can be described as a single gene approach. We summarize them
as follows:

1. Find appropriate ways of carrying out inference for single genes, and do this with
each gene separately.
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2. Deal with the special problems that arise (e.g., multiple testing, empirical Bayes)
because we have tens of thousands of genes.

In brief, we have outlined a one-gene-at-a-time approach. On the other hand, all the
many forms of cluster analysis used with microarray data (and discussed in Chapter
4) are explicitly all (or most or many) genes at a time, and for the most part do not
focus on single genes. It is clear to us that room exists for approaches to statistical
inference, that is, to answering biologists’ questions. These questions are, in a suitable
sense, midway between single gene and cluster analyses.

Here is a line of reasoning that leads naturally to multiple gene analyses. Suppose that
we seek pairs of genes that are jointly differentially expressed in a treatment-control
comparison. In many cases, these genes would be differentially expressed separately,
and therefore should show up in single gene analyses, but there may well be gene
pairs that are significantly affected jointly, but not much so separately. For example,
the association between two (or more) genes may be different under one condition
from that under another. Can we find the gene pairs so affected? One approach we have
tried, which failed miserably, was to go beyond the single gene one- or two-sample
t-tests outlined in Section 2.3 to one or two-sample bivariate Hotelling 7>-tests. With
an experiment similar to case study IT having eight treatment and eight control slides,
we found nothing useful: the millions of pairs of genes led to T"2-statistics that were
hardly distinguishable from noise. It became clear that a “head-on” approach was
doomed to failure because of the sheer number of pairs of genes.

The following question logically precedes the search for pairs of genes that are jointly
differentially expressed: Can we find pairs (more generally sets) of genes with tran-
scriptional levels that are associated in an experiment? Questions like this have been
the subject of a series of articles by S. Kim, E. Dougherty, and colleagues (Kim et
al., 2000a; Kim et al., 2000b; Dougherty et al., 2000). In these articles, two-channel
microarray data are reduced to ternary form (—1, 0, and +1 for downregulated, invari-
ant, and upregulated, respectively) and nonlinear systems, such as neural networks,
are used to determine when one gene’s transcriptional response can be predicted by
that of other genes. With thousands of genes, and thus millions of sets of predictors,
this is clearly a formidable task, and yet it is but a small beginning down the road
of true multiple gene analyses. We refer readers to these articles and commend the
general problem to them.

A final example of multiple gene analyses is the synthesis of classification and clus-
tering that leads to a more formal statistical treatment of clustering than is usually
the case. Here, we simply refer the reader to Fridlyand and Dudoit (2001) and refer-
ences therein.

2.6.3 Significance testing
We have already indicated that the theory for multiple testing in the microarray context

is not satisfactorily complete, even for simple problems such as identifying differen-
tially expressed genes. A number of other contexts exist that involve microarray data
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in which biologists would like to make statements concerning statistical significance
and where the multiple testing issue arises. Two such contexts are described next.

In the package GenMAPP (http://www.genmapp.org/about .asp) genes
belonging to a given biochemical pathway can be colored red or green or yellow
according to whether they are up- or down-regulated or unchanged, in some treatment
mRNA relative to mRNA from a reference condition. If the genes in a pathway are
in truth unaffected by the treatment, one would expect the pattern of red and green
coloring to be “random” in some suitable sense, whereas if that pathway is indeed
affected by the treatment intervention, one might expect more genes changing in
one direction or another than might occur “by chance.” Can these notions be made
rigorous and a test of significance developed for the null hypothesis that a specified
biochemical pathway is not affected by treatment intervention? For a first attempt at
addressing this question, see Doniger et al. (2002). What about the same question
when we do not specify the pathway in advance, but search over pathways after the
analysis?

A very similar question arises when biologists make use of the gene ontology (GO)
(http://www.geneontology.org/), whichisaframework for assigning genes
a molecular function, a biological process and a cellular location. Naturally, in most
cases, the assignments should be regarded simply as principal ones, for many, per-
haps most, genes will not have unique assignments to categories within these headings.
Nevertheless, the GO is extremely valuable to biologists seeking to interpret the results
of microarray experiments, and in this context another significance question arises.
Frequently, the immediate outcome of an analysis of a microarray experiment is a
long list of genes that have been doing something in the experiment; let us say that
they have large interaction in a 2 x 2 factorial experiment. The experimenter then
compares each gene on the list to the GO and finds that 15 of the genes are transcrip-
tion factors, or are concerned with locomotory behavior, or are located in the nucleus.
Is this number unusual, or could it have readily occurred “by chance?” A reference
set could be all genes on the microarray. Biologists are interested in the answers to
questions like this because they are looking for clues concerning the cellular processes
affected by the experimental intervention.

It may be that questions like the two just mentioned cannot be well-posed, but it would
be good to have a thorough discussion of the issues involved here.

2.6.4 Combining other data with microarray data

A class of problems of ever-increasing importance concerns the combining of microar-
ray data with clinical data. It is easy to envisage the time when an individual’s cancer
diagnosis, for example, will involve a wide variety of clinical observations — the
traditional diagnostic indicators — together with the absolute or relative expression
levels of tens of thousands of genes. Further, we can expect such data together with
clinical outcomes, such as survival data on patients. Early articles on this topic include
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Alizadeh et al. (2000), Bittner et al. (2000), and Sgrlie et al. (2001). It is hard to be
specific here, but the challenges and opportunities appear great.

One of the common outcomes of a microarray experiment is a number of lists (perhaps
clusters) of genes which are thought to be co-regulated, that is, to be acting in concert
in the biological processes underlying the experiment. A very natural question for a
biologist with access to the genome sequence of the organism under study is: Can we
find short regulatory sequences in the genome, upstream of any these sets of genes, that
might be responsible for their being co-regulated? In the jargon of molecular biology,
such regulatory sequences are termed cis-acting, in order to distinguish them from
trans-acting sequences, which are much more difficult to identify computationally.
For some early research on this problem, see Bussemaker et al. (2000), Hughes et al.
(2000a), Cohen et al. (2000), Bussemaker et al. (2001), Pilpel et al. (2001), Chiang et
al. (2001), and Keles et al. (2002). A related problem is discussed in Liu et al. (2002).
These articles, and others like them, are just the beginning of what will surely grow
into a significant body of research that is likely to require considerable statistical input:
the addressing of questions that involve both gene expression and genome sequence
data. This appears to be an appropriate theme on which to close our brief summary
of the design and analysis of gene expression experiments.
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CHAPTER 3

Classification in microarray
experiments

Sandrine Dudoit and Jane Fridlyand

Abstract. Deoxyribonucleic acid (DNA) microarrays are part of a new and promis-
ing class of biotechnologies that allow the simultaneous monitoring of expression
levels in cells for thousands of genes. Microarray experiments are increasingly being
performed in biological and medical research to address a wide range of problems. In
cancer research, microarrays are used to study the molecular variations among tumors,
with the aim of developing better diagnosis and treatment strategies for the disease.
Classification is an important question in microarray experiments, for purposes of
classifying biological samples and predicting clinical or other outcomes using gene
expression data. Although classification is by no means a new subject in the statis-
tical literature, the large and complex multivariate datasets generated by microarray
experiments raise new methodological and computational challenges.

This chapter addresses statistical issues arising in the classification of biological sam-
ples using gene expression data from DNA microarray experiments. It discusses
the statistical foundations of classification and provides an overview of different
classifiers, including linear discriminant analysis, nearest neighbor classifiers, clas-
sification trees, and support vector machines. Applications of resampling methods,
such as bagging and boosting, for improving classifier accuracy are described. The
important questions of feature selection and classifier performance assessment are
also addressed. The performance of five main types of classifiers is examined using
gene expression data from recently published cancer microarray studies of breast and
brain tumors.

3.1 Introduction
3.1.1 Motivation: tumor classification using gene expression data

An important problem in deoxyribonucleic acid (DNA) microarray experiments is the
classification of biological samples using gene expression data. To date, this problem
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has received the most attention in the context of cancer research; we thus begin this
article with a review of tumor classification using microarray gene expression data.
A reliable and precise classification of tumors is essential for successful diagnosis and
treatment of cancer. Current methods for classifying human malignancies rely on a
variety of clinical, morphological, and molecular variables. Despite recent progress,
uncertainties still exist in diagnosis. Also, it is likely that the existing classes are
heterogeneous and comprise diseases that are molecularly distinct and follow different
clinical courses. Complementary DNA (cDNA) microarrays and high-density oligo-
nucleotide chips are novel biotechnologies that are being used increasingly in cancer
research (Alizadeh et al., 2000; Alon et al., 1999; Beer et al., 2002; Bhattacharjee
et al., 2001; Bittner et al., 2000; Chen et al., 2002; Golub et al., 1999; Perou et
al., 1999; Pollack et al., 1999; Pomeroy et al., 2002; Ross et al., 2000; Sgrlie et al.,
2001). By allowing the monitoring of expression levels in cells for thousands of genes
simultaneously, microarray experiments may lead to a more complete understanding
of the molecular variations among tumors, and hence to better diagnosis and treatment
strategies for the disease.

Recent publications on cancer classification using gene expression data have mainly
focused on the cluster analysis of both tumor samples and genes, and include applica-
tions of hierarchical clustering (Alizadeh et al., 2000; Alon et al., 1999; Bhattacharjee
et al., 2001; Bittner et al., 2000; Chen et al., 2002; Perou et al., 1999; Pollack et al.,
1999; Pomeroy et al., 2002; Ross et al., 2000; Sgrlie et al., 2001; Tibshirani et al.,
1999) and partitioning methods such as self-organizing maps (Golub et al., 1999;
Pomeroy et al., 2002). Alizadeh et al. (2000) used cDNA microarray analysis of
lymphoma samples to identify two previously unrecognized and molecularly distinct
subclasses of diffuse large B-cell lymphomas corresponding to different stages of
B-cell differentiation. One type expressed genes characteristic of germinal center B-
cells (germinal center B-like DLBCL class), and the other expressed genes normally
induced during in vitro activation of peripheral blood B-cells (activated B-like DLBCL
class). They also demonstrated that patients with the two subclasses of tumors had dif-
ferent clinical prognoses. Average linkage hierarchical clustering was used to identify
the two tumor subclasses as well as to group genes with similar expression patterns
across the different samples. Similar approaches were applied by Bhattacharjee et
al. (2001) to identify lung adenocarcinoma subclasses with different patient outcome.
Ross et al. (2001) used cDNA microarrays to study gene expression in the 60 cell lines
from the National Cancer Institute’s anticancer drug screen (NCI 60). Hierarchical
clustering of the cell lines based on gene expression data revealed a correspondence
between gene expression and tissue of origin of the tumors. Hierarchical clustering
was also used to group genes with similar expression patterns across the cell lines.
Using acute leukemias as a test case, Golub et al. (1999) looked into both the clus-
ter analysis and the discriminant analysis of tumors using gene expression data. For
cluster analysis, or class discovery, self-organizing maps (SOMs) were applied to
the gene expression data, and the tumor groups revealed by this method were com-
pared to known classes. For class prediction, Golub et al. (1999) proposed a weighted
gene voting scheme that turned out to be a variant of a special case of linear dis-
criminant analysis, which is also known as naive Bayes classification. More recently,
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Pomeroy et al. (2002) used Affymetrix oligonucleotide chips to study gene expression
in embryonal tumors of the central nervous system (CNS). A range of unsupervised
and supervised learning methods were applied to investigate whether gene expression
data could be used to distinguish among new and existing CNS tumor classes and for
patient prognosis. Beer et al. (2002) used an approach based on the Cox proportional-
hazard model to identify marker genes for predicting the survival of patients with lung
adenocarcinoma.

The recent studies just cited are instances of a growing body of research in which
gene expression profiling is used to distinguish among known tumor classes, predict
clinical outcomes such as survival and response to treatment, and identify previously
unrecognized and clinically significant subclasses of tumors. Indeed, Golub et al.
(1999) conclude that: “This experience underscores the fact that leukemia diagnosis
remains imperfect and could benefit from a battery of expression-based predictors for
various cancers. Most important, the technique of class prediction can be applied to
distinctions relating to future clinical outcomes, such as drug response or survival.”
In the same vein, Alizadeh et al. (2000) “... anticipate that global surveys of gene
expression in cancer, such as we present here, will identify a small number of marker
genes that will be used to stratify patients into molecularly relevant categories which
will improve the precision and power of clinical trials.” The ability to successfully
distinguish among tumor classes (already known or yet to be discovered) and to
predict clinical outcomes on the basis of gene expression data is an important aspect
of this novel approach to cancer classification.

Microarray experiments in cancer research are not limited to monitoring transcript
or messenger ribonucleic acid (mRNA) levels. In comparative genomic hybridization
(CGH) experiments, DNA microarrays are used to measure DNA copy numbers across
the genome (Jain et al., 2001; Pollack et al., 1999; Wilhelm et al., 2002). The micro-
array technology can also be used to establish genome-wide DNA methylation maps.
DNA methylation refers to the addition of a methyl group or small “tag” to the DNA
molecule and can result in silencing the expression of the corresponding genes. This
regulation mechanism plays an important role in diseases such as cancer (Costello
et al., 2000). Similar classification questions arise in these types of microarray exper-
iments. In addition, cancer research is only one of the many areas of application of
the microarray technology. In immunology, microarrays have recently been used to
study the gene expression host response to infection by bacterial pathogens (Boldrick
et al., 2002). Clinical implications include improved diagnosis of bacterial infections
by gene expression profiling.

The preceding examples illustrate that class prediction is an important question in
microarray experiments, for purposes of classifying biological samples and predict-
ing clinical or other outcomes using gene expression data. A closely related issue
is that of feature or variable selection (i.e., the identification of marker genes that
characterize different tumor classes or have good predictive power for an outcome of
interest). Although classification and variable selection are by no means new subjects
in the statistical literature, the large and complex multivariate datasets generated by
microarray experiments raise new methodological and computational challenges.
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3.1.2 Outline

This chapter discusses statistical issues arising in the classification of biological sam-
ples using gene expression data from DNA microarray experiments. The remainder
of this section gives further background on classification and microarray experi-
ments. Section 3.2 discusses the statistical foundations of classification and provides
an overview of different classifiers, including linear discriminant analysis, nearest
neighbor classifiers, classification trees, and support vector machines. Section 3.3
discusses general issues in classification such as feature selection, standardization,
distance function, loss function, class representation, imputation of missing data,
and polychotomous classification. The important question of classifier performance
assessment is addressed in Section 3.4. Applications of resampling methods, such
as bagging and boosting, for improving classifier accuracy are discussed in Section
3.5. Section 3.6 describes recently published gene expression datasets from cancer
microarray studies of breast and brain tumors; these datasets were used to assess the
performance of the classifiers introduced in Section 3.2. The results of the comparison
study are reported in Section 3.7. Section 3.8 summarizes our findings and outlines
open questions. Finally, Section 3.9 describes software resources for classification.

The reader is referred to the texts by Hastie et al. (2001), Mardia et al. (1979), McLach-
lan (1992), and Ripley (1996) for general discussions of classification. The article by
Breiman (2001), with associated comments and rejoinder, addresses issues arising in
modern high-dimensional classification problems. Recent work on statistical aspects
of classification in the context of microarray experiments includes: Ambroise and
McLachlan (2002), Chow et al. (2001), Dettling and Buhlmann (2002), Dudoit et al.
(2002a), Golub et al. (1999), Moler et al. (2000), Pomeroy et al. (2002), Shieh et al.
(2002), Tibshirani et al. (2002), and West et al. (2001). These articles have mostly
focused on existing methods or variants thereof, and, in general, comparison stud-
ies have been limited and not always properly calibrated. Studies performed to date
suggest that simple methods, such as nearest neighbor or naive Bayes classification,
perform as well as more complex approaches, such as aggregated classification trees
or support vector machines. The specific classifiers considered in these references are
discussed in Section 3.2.

3.1.3 Background on classification
Unsupervised vs. supervised learning

In many situations, one is concerned with assigning objects to classes on the basis
of measurements made on these objects. Such problems have two main aspects: dis-
crimination and clustering, or supervised and unsupervised learning. In unsupervised
learning (also known as cluster analysis, class discovery, and unsupervised pattern
recognition), the classes are unknown a priori and need to be discovered from the data.
This involves estimating the number of classes (or clusters) and assigning objects to
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these classes. In contrast, in supervised learning (also known as classification, dis-
criminant analysis, class prediction, and supervised pattern recognition), the classes
are predefined and the task is to understand the basis for the classification from a set
of labeled objects (learning set). This information is used to build a classifier that
will then be applied to predict the class of future unlabeled observations. In many
situations, the two problems are related, because the classes that are discovered from
unsupervised learning are often used at a later time in a supervised learning setting.
Here, we focus on supervised learning and use the simpler term classification.

Classification

Classification is a prediction or learning problem in which the variable to be predicted
assumes one of K predefined and unordered values, {¢i, 2, . .., cx }, arbitrarily rela-
beled by the integers {1,2,...,K}or{0,1,...,K — 1}, and sometimes {—1,1} in
binary classification. The K values correspond to K predefined classes (e.g., tumor
class, bacteria type). Associated with each object are: a response or dependent vari-
able (class label), Y € {1,2,...,K}, and a set of G measurements that form the
Seature vector or vector of predictor variables, X = (X1, ..., X¢g). The feature vec-
tor X belongs to a feature space X (e.g., the real numbers ). The task is to classify
an object into one of the K classes on the basis of an observed measurement X = x
(i.e., predict Y from X).

A classifier or predictor for K classes is a mapping € from X into {1,2,...,K},
C:X — {1,2,...,K}, where C(x) denotes the predicted class for a feature vector
x. That is, a classifier C corresponds to a partition of the feature space X into K
disjoint and exhaustive subsets, Ay, ..., Ak, such that a sample with feature vector
x = (#1,...,2g) € Ay has predicted class § = k. Modifications can be made to
allow doubt or outlier classes (Ripley, 1996).

Classifiers are built or trained from past experience (i.e., from observations that are
known to belong to certain classes). Such observations comprise the learning set (LS),
L= {(x1,91),--,(Xn,yn)}. A classifier built from a learning set £ is denoted by
C(-;£). When the learning set is viewed as a collection of random variables, the
resulting classifier is also a random variable. Intuitively, for a fixed value of the
feature vector x, as the learning set varies, so will the predicted class C(x; £). It
is thus meaningful to consider distributional properties (e.g., bias and variance) of
classifiers when assessing or comparing the performance of different classifiers. Such
properties are discussed in Section 3.4.1.

Classification for gene expression data

In the case of gene expression data from cancer DNA microarray experiments, fea-
tures correspond to the expression measures of different genes and classes correspond
to different tumor types (e.g., nodal positive vs. negative breast tumors, or tumors with
good vs. bad prognosis). Three main types of statistical problems are associated with
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tumor classification: (i) identification of new tumor classes using gene expression pro-
files — unsupervised learning; (ii) classification of malignancies into known classes
— supervised learning; (iii) identification of marker genes that characterize the dif-
ferent tumor classes — feature selection. Unsupervised learning is the subject of
Chapter 4 of this volume; statistical inference issues related to the cluster analysis of
genes and samples are discussed in van der Laan and Bryan (2001) and Pollard and
van der Laan (2002). This chapter focuses primarily on the second statistical problem
discussed previously and briefly addresses the related issue of feature selection.

For our purposes, gene expression data on GG genes for n tumor mRNA samples may
be summarized by a G x n matrix X = (z4,), where x4, denotes the expression
measure of gene (variable) g in mRINA sample (observation) 7. (Note that this gene
expression data matrix is the transpose of the standard n x G design matrix. The
G x n representation was adopted in the microarray literature for display purposes,
because for very large G and small n it is easier to display a G x n matrix than an
n X G matrix.) The expression levels might be either absolute (e.g., oligonucleotide
arrays used to produce the breast and brain tumor datasets of Section 3.6) or relative
to the expression levels of a suitably defined common reference sample (e.g., cDNA
microarrays used in Alizadeh et al., 2000). When the mRINA samples belong to known
classes (e.g., ER positive or negative samples for breast tumors), the data for each
observation consist of a gene expression profile x; = (x1;, ...,z ¢g;) and a class label
y; (i.e., of predictor variables x; and response y;). For K tumor classes, the class
labels y; are defined to be integers ranging from 1 to K, and ny denotes the number
of learning set observations belonging to class k. Note that the expression measures
T4; are, in general, highly processed data: the raw data in a microarray experiment
consist of image files, and important preprocessing steps include image analysis of the
scanned images and normalization (Dudoit and Yang, 2003; Irizarry et al., 2002; Yang
et al., 2001, 2002). Preprocessing is also discussed in Chapter 1 of this book. Data
from these new types of experiments present a so-called “small n, large p” problem,
that is, a very large number of variables (genes) relative to the number of observations
(tumor samples). The publicly available datasets typically contain expression data on
5000-10,000 genes for less than 100 tumor samples. Both numbers are expected to
grow, with the number of genes reaching on the order of 30,000, which is an estimate
for the total number of genes in the human genome.

Many different approaches are available to build a classifier for tumor samples using
gene expression data; various methods are reviewed in Section 3,2, Different classifiers
will clearly have varying performance (i.e., different error rates). In addition, decisions
concerning, for example, the set of genes used to build the classifier (i.e., feature
selection) and the standardization of the expression data can have a large impact on
classifier performance (see Section 3.3). In the context of tumor classification, errors
could correspond to misdiagnosis and possibly assignment to improper treatment
protocol. Thus, an essential task is to assess the accuracy of the classifier. Distributional
properties of classifiers and performance assessment are discussed in Section 3.4.
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3.2 Overview of different classifiers
3.2.1 Classification and statistical decision theory

It is useful to view classification as a statistical decision theory problem. For each
object, a feature vector x is examined to decide to which of a fixed set of classes that
object belongs. Assume observations are independently and identically distributed
(i.i.d.) from an unknown multivariate distribution. Denote the class & prior, i.e., the
proportion of objects of class k in the population of interest, by m, = p(Y = k).
Objects in class k have feature vectors with class conditional density pi(x) =
p(x|Y = k). Define a loss function L, where L(h,l) elaborates the loss incurred
if a class A case is erroneously classified as belonging to class [ (see Section 3.3.3).
The risk function for a classifier C is the expected loss when C is used to classify,
that is,

R(C) = EIL(Y,C(X))] = > E[L(kCX)Y = klm

> / L(k,C(x))pr (x)medx. (3.1

Typically, L(h,h) = 0, and in many cases the loss is defined to be symmetric with
L(h,l) =1, h /4, i.e., making an error of one type is equivalent to making an error
of a different type. Then, the risk is simply the misclassification rate, p(C(X) /=) =
>k fc(x)/i pr(x)medx. Note that, here, the classifier is viewed as fixed; that is, if a
learning set £ is used to train the classifier, probabilities are conditional on £. When
(unrealistically) both 7 and px(x) are known, it is possible to define an optimal
classifier which minimizes the risk function. This situation gives an upper bound on
the performance of classifiers in the more realistic setting where these distributions
are unknown (see Bayes rule and Bayes risk discussed next).

The Bayes rule

In the unlikely situation that the class conditional densities px(x) = p(x|Y = k)
and class priors 7, are known, Bayes’ theorem may be used to express the posterior
probability p(k | x) of class k given feature vector x as

TkPk(X)

plkx) = 2mpi(x)’

The Bayes rule predicts the class of an observation x by that with highest posterior
probability
Cp(x) = argmax; p(k | x).

The class posterior probabilities reflect the confidence in predictions for individ-
ual observations; the closer they are to one, the greater the confidence. The Bayes
rule minimizes the risk function or misclassification rate under a symmetric loss
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function — Bayes risk. For a general loss function L, the classification rule which
minimizes the risk function is

K

Cp(x) = argmin; > L(h,D)p(h | x). (3.2)
h=1

In the special case when L(h,l) = LpI(h /=l), that is, the loss incurred from
misclassifying a class h observation is the same irrespective of the predicted class [,
the Bayes rule is

Cp(x) = argmax;, Lk p(k | x). (3.3)

Suitable adjustments can be made to accommodate the doubt and outlier classes (see
Ripley, 1996, p. 19).

Many classifiers can be viewed as versions of this general rule, with particular para-
metric or nonparametric estimators of p(k | x). Two general paradigms are used to
estimate the class posterior probabilities p(k | x): the density estimation and the direct
function estimation paradigms (Friedman, 1996b). In the density estimation approach,
class conditional densities px(x) = p(x|Y = k) (and priors 7y) are estimated sepa-
rately for each class and Bayes’ theorem is applied to obtain estimates of p(k | x).
Classification procedures employing density estimation include: Gaussian maximum
likelihood discriminant rules, also known as discriminant analysis (Chapter 3 in Rip-
ley, 1996 and Section 3.2.3 in this book); learning vector quantization (Section 6.3
in Ripley, 1996), and Bayesian belief networks (Chapter 8 in Ripley, 1996). Another
example is given by naive Bayes methods, which approximate class conditional den-
sities py (x) by the product of their marginal densities on each feature. In the direct
function estimation approach, class posterior probabilities p(k | x) are estimated
directly based on function estimation methodology such as regression. This paradigm
is used by popular classification procedures such as: logistic regression (Chapter 3 in
Ripley, 1996 and Section 3.2.4 in this book), neural networks (Chapter 5 in Ripley,
1996), classification trees (Breiman et al., 1984 and Section 3.2.6 in this book), pro-
jection pursuit (Section 6.1 in Ripley, 1996), and nearest neighbor classifiers (Section
6.2 in Ripley, 1996 and Section 3.2.5 in this book).

Maximum likelihood discriminant rules

The frequentist analogue of the Bayes rule is the maximum likelihood discriminant
rule. For known class conditional densities pr(x) = p(x|Y = k), the maximum
likelihood (ML) discriminant rule predicts the class of an observation x by that which
gives the largest likelihood to x: C(x) = argmax; px(x). In the case of equal class
priors 7, this amounts to maximizing the class posterior probabilities p(k|x), i.e.,
the Bayes rule. Otherwise, the ML rule is not optimal, in the sense that it does not
minimize the risk function.
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3.2.2 Fisher linear discriminant analysis

First applied by Barnard (1935) at the suggestion of Fisher (1936), Fisher linear
discriminant analysis (FLDA) is based on finding linear combinations xa of the
1 x G feature vectors x = (1, .. ., ) with large ratios of between-groups to within-
groups sums of squares (Mardia et al., 1979) for a detailed presentation of FLDA).
For a G x n learning set data matrix X, the linear combination a’ X of the rows of X
has ratio of between-groups to within-groups sums of squares given by a’Ba/a'Wa,
where B and W denote respectively the G x G matrices of between-groups and within-
groups sums of squares and cross-products. The extreme values of a’Ba/a'Wa are
obtained from the eigenvalues and eigenvectors of W~!B. The matrix W~'B has
at most s = min(K — 1,G) nonzero eigenvalues, \y > Ao > ... > A, with
corresponding linearly independent eigenvectors vi,vs,...,v,. The discriminant
variables are defined to be xv;, [ = 1,...,s, and, in particular, a = v; maximizes
a’'Ba/a'Wa.

For a feature vector x = (z1,...,2g), let di(x) = Y7, ((x — %x)v;)? denote its
(squared) Euclidean distance, in terms of the discriminant variables, from the 1 x G
vector of class k sample means X = (Zk1,...,Zrg) for the learning set £ (here,
Trg = 2, 1(ys = k)zgi/ni). The predicted class for feature vector x is the class
whose mean vector Xj is closest to x in the space of discriminant variables, i.e.,
C(x; L) = argming dk(x). Thus, the two main steps in FLDA are: a feature selec-
tion or dimensionality reduction step leading to the identification of s discriminant
variables; and a classification step per se, in which observations are classified in terms
of their distances from class means in the reduced space. FLDA is a non-parametric
method which also arises in a parametric setting. For K = 2 classes, FLDA yields the
same classifier as the sample maximum likelihood discriminant rule for multivariate
Gaussian class densities with the same covariance matrix (see Section 3.2.3, LDA for
K =2).

3.2.3 Linear and quadratic discriminant analysis

Linear and quadratic (in the features x) discriminant rules arise as Bayes rules or
maximum likelihood (ML) discriminant rules when features have Gaussian distri-
butions within each class. Specifically, let X|Y = k ~ N{(ug, k), where px =
(tk1, - - -, k) and Zy denote respectively the expected value and the G x G covari-
ance matrix of the feature vector in class k. The Bayes rule is

C(x) = argming, {(x — ) S (x — px)’ + log |Sk| — 2log i } . 3.4

In general, this is a quadratic discriminant rule — quadratic discriminant analysis
(QDA). The main quantity in the discriminant rule is (x — ,uk)Egl(x — i)', the
squared Mahalanobis distance from the observation x to the class £ mean vector
. Interesting special cases are described next for homogeneous priors (i.e., for mx
constant in k).
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Linear discriminant analysis (LDA)

When the class densities have the same covariance matrix, 3, = %, the discriminant
rule is based on the square of the Mahalanobis distance and is linear in x and given
by C(x) = argmin,, (x — px) S (% — px)’ = argming (ueS 7 pf — 2x57 1) ).

Diagonal quadratic discriminant analysis (DQDA)

When the class densities have diagonal covariance matrices, Ay = diag(c,, ..., 0%5),
the discriminant rule is given by additive quadratic contributions from each feature,

that is, C(x) = argmin,, 25:1 {(g”—g_’”‘%)z + log a,fg}.

akg
Diagonal linear discriminant analysis (DLDA)

When the class densities have the same diagonal covariance matrix A = diag(o?,.. .,

(xg—hrg)? .

0%), the discriminant rule is linear and given by C(x) = argminy, 25:1 >

Nearest centroid

In this simplest case, it is assumed that % = I, the G x G identity matrix. Obser-
vations are then classified on the basis of their Euclidean distance from class means.

DLDA and DQDA correspond to naive Bayes rules for Gaussian class conditional
densities. As with any classifier explicitly estimating the Bayes rule, class posterior
probabilities may be used to assess the confidence in predictions for individual obser-
vations. Note that, although LDA and QDA were introduced within a parametric
context as ML or Bayes rules for Gaussian class densities, these methods have much
wider applicability.

For the sample Bayes or ML discriminant rules, the population mean vectors and
covariance matrices are estimated from a learning set £, by the sample mean vectors
and covariance matrices, respectively: i = Xj; and Sk = S. For the constant
covariance matrix case, the pooled estimator of the common covariance matrix is
used: £ =5 =3, (nx — 1)Sx/(n — K).

The preceding simple rules may be modified easily to allow unequal class priors;
estimates of the priors may be obtained from the sample class proportions 7y = ng/n.
A compromise between LDA and QDA is regularized discriminant analysis, which
shrinks the covariance matrices Sy of QDA toward a common covariance matrix .S as
in LDA: Si(a) = @Sk + (1 — @) S, where the parameter « can be chosen to optimize
prediction accuracy, using, for example, cross-validation (see Section 3.4 in Ripley,
1996 and Section 4.3.1 in Hastie et al., 2001).
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Golub et al. weighted gene voting scheme

In one of the first applications of a classification method to gene expression data,
Golub et al. (1999) proposed a weighted gene voting scheme for binary classification.
This method turns out to be a variant of DLDA or naive Bayes classification. For two
classes, k = 1 and 2, the sample DLDA rule assigns a case with gene expression

profile x = (x4, .. ,.’Eg) to class 1 if and only if
)2
.’Ezg .’Elg
pPLEE Z 7
g=1
that is,

i (Z1g ;3_725;) (mg (& "2'529)> > 0.

g=1 9
The discriminant function can be rewritten as ) -, vg, where vy = ag4(z4 — by), ag =
(Z1g — Tog) /62, and by = (F14 + T24)/2. This is almost the same function as used in
Golub et al., except for a4 that Golub et al. (1999) define as ay = (T14 — T2g)/ (14 +
&24). The quantity &1 4+82,4 is an unusual estimator of the standard error of a difference
and having standard deviations instead of variances in the denominator of a4 produces
the wrong units for the discriminant function. For each prediction made by the classi-
fier, Golub et al. (1999) also define a prediction strength, PS, which indicates the “mar-
gin of victory”: PS = (max(V1, V) — min(V1, V2))/(max(V4, V2) + min(V1, V2)),
where V1 = 3 max(vg,0) and V2 =} max(—wvy, 0). Golub et al. (1999) choose
aconservative prediction strength threshold of .3 below which no predictions are made.
Note that as implemented in Golub et al. (1999), the weighted gene voting scheme
only allows binary classification. However, if viewed as a variant of DLDA described
previously it can be extended easily to polychotomous classification problems and to
accommodate different class prior probabilities.

3.2.4 Extensions of linear discriminant analysis

The linear discriminant rules described previously are classical and widely used clas-
sification tools. Features explaining their popularity include: (i) simple and intuitive
rule — the predicted class of a test case is the class with the closest mean (using
the Mahalanobis metric); (ii) estimated Bayes rule — LDA is based on the estimated
Bayes rule for Gaussian class conditional densities and homogeneous class priors;
(iii) easy to implement — the partition corresponding to the classifier has linear
boundaries; (iv) good performance in practice — despite a possibly high bias, the low
variance of the naive Bayes estimators of class posterior probabilities often results in
low classification error (Friedman, 1996b). However, LDA has a number of obvious
limitations that are due in part to its simplicity: (i) linear or even quadratic discriminant
boundaries may not be flexible enough; (ii) features may have mixture distributions
within classes (related to (i)); (iii) for a large number of features, performance may
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degrade rapidly due to over-parameterization and high variance parameter estimators.
Hastie et al. (2001) describe three main classes of extensions to LDA to address these
shortcomings. A modification of DLDA was recently considered by Tibshirani et al.
(2002) in the context of microarray data analysis.

Flexible discriminant analysis (FDA)

Viewing LDA as a linear regression problem, suggests considering more general non-
parametric forms of regression for building a more flexible classifier. FDA amounts
to performing LDA on transformed responses or features (Section 12.5 in Hastie
et al., 2001). Logistic discrimination is one such extension that can be motivated as
follows. For Gaussian class conditional densities with common covariance matrix
(and other models for the feature distributions), posterior probabilities p(k|x) satisfy
log p(k|x) —log p(1|x) = ay + x5%. This suggests modeling log p(k|x) — log p(1]x)
more generally by some parametric family of functions, say gx(x; 6) with g1 (x;6) =
0. Estimates of the class posterior probabilities are then given by

sk = _SPoRCs0)
Plkl) > expgi(x;0)

Classification is done by the (estimated) Bayes rule, i.e., C(x; £) = argmax;, p(k|x).
In the machine learning literature, the function exp ax/ ), exp a; is known as the
softmax function. In the earlier statistical literature, it is known as the multiple logit
function. In the linear case, one takes g (x; ) = o +x3%. Logistic regression models
are typically fit by maximum likelihood, using a Newton—Raphson algorithm known
as iteratively reweighted least squares (IRLS). Logistic discrimination provides a
more direct way of estimating posterior probabilities and is also easier to generalize
than classical linear discriminant analysis (LDA and QDA), as seen, for example,
with neural networks (Chapter 8 in Ripley, 1996).

Penalized discriminant analysis (PDA)

A penalized Mahalanobis distance is used to enforce smoothness of the within-class
covariance matrix of the features, possibly transformed as in FDA (Section 12.6 in
Hastie et al., 2001).

Mixture discriminant analysis (MDA)

Class conditional densities are modeled as mixtures of Gaussian densities, with dif-
ferent mean vectors but the same covariance matrices. The EM algorithm may be used

for maximum likelihood estimation of the parameters of the Gaussian components
(Section 12.7 in Hastie et al., 2001).
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Shrinkage methods

In a recent article, Tibshirani et al. (2002) propose an extension of the nearest cen-
troid classifier, which allows automatic feature selection for each class separately.
This approach is used to deal with the very large number of features in classification
problems involving microarray data. Nearest shrunken centroids is a modification of
nearest centroids described earlier with: shrunken class mean vectors, based on the
value of a t-like test statistic; addition of a positive constant s to the variance &3 of
each gene (cf. Equation (6) in Tibshirani et al., 2002). The parameter A controlling
the amount of shrinking is selected by tenfold cross-validation; the case A = 0 corre-
sponds to the nearest centroid classifier. Shrinking means (and covariance matrices) in
the context of discriminant analysis is also discussed in Section 3.4 of Ripley (1996).
Use of shrunken mean vectors allows for automatic selection of a subset of genes that
discriminate between the classes.

3.2.5 Nearest neighbor classifiers

Nearest neighbor methods are based on a distance function for pairs of observations,
such as the Euclidean distance or one minus the Pearson correlation of their feature
vectors (see Section 3.3.2 and Table 3.1 for a description of distance functions).
The basic k-nearest neighbor (k-NN) rule proceeds as follows to classify a new
observation on the basis of the learning set: find the & closest observations in the
learning set and predict the class by majority vote (i.e., choose the class that is most
common among those k neighbors). k-nearest neighbor classifiers suggest simple
estimates of the class posterior probabilities. More formally, let d;(x) = d(x,x;)
denote the distance between learning set observation x; and the test case x, and
denote the sorted distances (order statistics) by d(1)(x) < ... < d(,)(x). Then, class
posterior probability estimates p(l|x) for the standard k-nearest neighbor classifier
are given by the fraction of class [ observations among the & closest neighbors to the
test case

p(ljx) =

Z ) < dy (%) Iy =1).

?T‘I'—‘

The decision rule is then C(x; £) = argmax; p([|x); this can be viewed as direct
estimation of the Bayes rule. Note that when a large enough number of neighbors
k is used, the class posterior probability estimates p(|x) may be used to measure
confidence for individual predictions.

Nearest neighbor classifiers were initially proposed by Fix and Hodges (1951) as
consistent nonparametric estimators of maximum likelihood discriminant rules. Non-
parametric estimators of the class conditional densities px(x) are obtained by first
reducing the dimension of the feature space X' from G to one using a distance function.
The proportions of neighbors in each class are then used in place of the corresponding
class conditional densities in the maximum likelihood discriminant rule.
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Table 3.1 Distance functions

Name Formula
Euclidean metric de(xi,%5) = {3, wy (g — g5)}1/?
Unstandardized wy =1
Standardized by s.d. wy =1/5s2
(Karl Pearson metric)
Standardized by range wy = 1/R2
Mahalanobis metric da(xi,%5) = {(x — x3)87 (x5 — x;)'}1/?

= {2y g gy (@gi = @g5) (@gi — @g5) }'/?
where S = (s44) is any G x G positive
definite matrix, usually the sample covariance
matrix of the variables; when S = I, da;
reduces to the unstandardized Euclidean metric.
Manhattan metric dmn(Xi,X5) = D, wylTgi — 5]
Minkowski metric dak(xe,%5) = {3, wolwg: — zg; P }/A N> 1
A = 1: Manhattan metric
A = 2: Euclidean metric

Canberra metric de(x:.%5) = |Zgi—ag;]
: . C( v ]) Zg [Zgi+@ g5l
One-minus-Pearson-correlation  deorr (X;,X;)

=1— 2 (@gi=%.3) (x5 =% ;)

5, @oi = 215, (3g—3 52117

Note: A metric d satisfies the following five properties: (i) nonnegativity d(a,b) > 0; (ii) symmetry
d(a,b) = d(b,a); (iil) d(a,a) = 0; (iv) definiteness d(a,b) = 0 if and only if a = b; (v) triangle
inequality d(a,b) 4+ d(b,¢) > d(a,c). Here, the term distance refers to a function that is required to
satisfy the first three properties only. The formulae refer to distances between observations (arrays).

Immediate questions concerning k-NN classifiers are: How should we choose the
distance function d? Which features should we use? How should we choose the
number of neighbors £? How should we handle tied votes? Should we weight votes
based on distance? Should we require a minimum of consensus (e.g., at least [ out of &
votes for the winning class)? Some of these issues are discussed next, while others are
discussed in a more general context in Section 3.3. The reader is referred to Section
6.2 in Ripley (1996) and to Section 13.3 through Section 13.5 in Hastie et al. (2001)
for more detailed discussions of nearest neighbor methods.

Number of neighbors k

The &k = 1 nearest neighbor partition of the feature space X corresponds to the
Dirichlet tessellation of the learning set. Although classifiers with & = 1 are often
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quite successful, the number of neighbors & can have a large impact on the performance
of the classifier and should be chosen carefully. A common approach for selecting
the number of neighbors is leave-one-out cross-validation. Each observation in the
learning set is treated in turn as if its class were unknown: its distance to all of the other
learning set observations (except itself) is computed, and it is classified by the nearest
neighbor rule. The classification for each learning set observation is then compared
to the truth to produce the cross-validation error rate. This is done for a number of £’s
(e.g., k € {1,3,5,7}) and the k for which the cross-validation error rate is smallest
is retained.

The nearest neighbor rule can be refined and extended to deal with unequal class priors,
differential misclassification costs, and feature selection. Many of these modifications
involve some form of weighted voting for the neighbors, where weights reflect priors
and costs.

Class priors

If the class prior probabilities m; are known and the class sampling probabilities for
the learning set are different from the m;, votes may need to be weighted accord-
ing to neighbor class. That is, if n; denotes the learning set frequency of class [,
then the weights for class  neighbors may be chosen as w; = m;/n;. Another
approach is to weight the distance as in Brown and Koplowitz (1979) by (n; /m;)€ fora
G-dimensional feature space. See also Section 3.3.4.

Loss function

If differential misclassification costs occur, the minimum vote majority may be adjusted
based on the class to be called. This corresponds to weighted voting by the neigh-
bors, where weights are suggested by Equation (3.2). For example, when L(h,l) =
LpI(h /=), that is, the loss for misclassifying a class h observation is the same
irrespective of the predicted class, the weights are given by w; = L;.

Distance weights

The standard k-nearest neighbor rule equally weights all & neighbors, regardless of
their distance from the test case. A more sensitive rule may be obtained by assigning
weights to the neighbors that are inversely proportional to their distance from the test
case. However, distance-weighting the votes has proved controversial (see Ripley,
1996, p. 198). Pomeroy et al. (2002) applied weighted £-NN to brain tumor microarray
data.

Feature selection

One of the most important issues in k-nearest neighbor classification is the choice of
a distance function and the selection of relevant features. For instance, in the context
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of microarray experiments, a large number of genes are constantly expressed across
classes, thus resulting in a large number of irrelevant or noise variables. Inclusion of
features with little or no relevance can substantially degrade the performance of the
classifier. Feature selection may be implemented as part of the classification rule itself,
by, for example, modifying the distance function used in £-NN or using classifica-
tion trees. Friedman (1994) proposed a flexible metric nearest neighbor classification
approach, the machette, in which the relevance of each feature (or linear combina-
tion of features) is estimated locally for each test case. The machette is a hybrid
between classical nearest neighbor classifiers and tree-structured recursive partition-
ing techniques. Motivated by Friedman’s (1994) work, Hastie and Tibshirani (1996b)
suggested a discriminant adaptive nearest neighbor (DANN) procedure, in which the
distance function is based on local discriminant information. More recently, Buttrey
and Karo (2002) proposed a hybrid or composite classifier, k-NN-in-leaf, which par-
titions the feature space using a classification tree and classifies test set cases using
a standard k-nearest neighbor rule applied only to cases in the same leaf as the test
case. Each k-NN classifier may have a different number of neighbors k, a different
set of features, and a different choice of scaling. The k-NN-in-leaf classifier differs
from Friedman’s machette in that only one tree is ever grown.

k-NN classifiers are often criticized because of their heavy computing time and storage
requirements for large learning sets. Various data editing approaches, which retain
only a small portion of the learning set, have been suggested to improve computing
efficiency (see Ripley, 1996, p. 198).

3.2.6 Classification trees

Binary tree structured classifiers are constructed by repeated splits of subsets, or
nodes, of the feature space X’ into two descendant subsets, starting with X itself. Each
terminal subset is assigned a class label and the resulting partition of X’ corresponds
to the classifier. Tree construction consists of three main aspects:

1. Selection of the splits,
2. Decision to declare a node terminal or to continue splitting,
3. Assignment of each terminal node to a class.

Different tree classifiers use different approaches to deal with these three issues. Here,
we use CART — classification and regression trees — of Breiman et al. (1984). Other
tree classifiers are C4.5, QUEST, and FACT; an extensive comparison study is found
in Lim et al. (2000).

Splitting rule

Details about the splitting rule are presented in Chapter 2 and Chapter 4 of Breiman
et al. (1984). The simplest splits are based on the value of a single variable. The main
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idea is to split a node so that the data in each of the descendant subsets are purer than
the data in the parent subset. A number of definitions are needed in order to provide
a precise definition of a node splitting rule. An impurity function is a function ¢(-)
defined on the set of all K'-tuples p = (p1,...,px), withpy >0,k =1,..., K, and
> & P = L. It has the following properties:

1. ¢(p) is maximal if p is uniform (i.e., pr = 1/K for all k).
2. ¢(p) is zero if p is concentrated on one class (i.e., pr = 1 for some k).
3. ¢ is symmetric in p (i.e., invariant to permutations of the entries py).

Commonly used measures of impurity include the Gini index, ¢(p) = >, /PPl =
1 — 3, p3, and the entropy, ¢(p) = — 3., prlog pr (where 0log0 = 0). CART
uses the Gini criterion as a default to grow classification trees.

For a node t, let n(t) denote the total number of learning set cases in ¢ and ng(t)
the number of class & cases in t. For class priors 7, the resubstitution estimate
of the probability that a case belongs to class &£ and falls into node ¢ is given by
p(k,t) = meni(t) /nk. The resubstitution estimate %(t) of the probability that a case
falls into node ¢ is defined by p(t) = >, p(k, t), and the resubstitution estimate of the
conditional probability that a case at node t belongs to class k is p(k|t) = p(k, t) /H(t).
When data priors 7, = ng/n are used, p(k|t) is simply the relative proportion of class
k cases in node t, ng(t)/n(t). Define the impurity measure i(t) of node t by

i(t) = ¢((1[1), ..., p(K]D))-

Having defined node impurities, we are now in a position to define a splitting rule.
Suppose a split s of a parent node ¢ sends a proportion pg of the cases in ¢ to the right
daughter node tg and py, to the left daughter node ¢7,. Then, the goodness of split is
measured by the decrease in impurity

Ai(s,t) =i(t) — pri(tr) — pri(tr).

The split s that provides the largest improvement Ai(s,t) is used to split node ¢
and is called the primary split. Splits that are nearly as good as the primary split are
called competitor splits. Finally, surrogate splits are defined as splits that most closely
imitate the primary split. Informally, “imitation” means that if a surrogate split is used
instead of a primary split, the resulting daughter nodes will be very similar to the ones
defined by the primary split. The split that provides the best agreement of the two sets
of daughter nodes is called the first surrogate split. Surrogate splits are very useful
for handling missing data (see Section 3.3.5).

Split-stopping rule
Details about the split-stopping rule are presented in Chapter 3 of Breiman et al.

(1984). Briefly, the right-sized tree and accurate estimates of classification error can
be obtained as follows. A large tree is grown and selectively pruned upward, yielding
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a decreasing sequence of subtrees. Cross-validation is then used to identify the subtree
having the lowest estimated misclassification rate.

Class assignment rule

Details about the class assignment rule are presented in Chapter 2 of Breiman et al.
(1984). For each terminal node, choose the class that minimizes the resubstitution
estimate of the misclassification probability, given that a case falls into this node.
Note that given equal costs and priors, the resulting class is simply the majority class
in that node.

A number of refinements to the basic CART procedure are described next. These
include specification of two related quantities, the class priors 7 and loss function
L(h,1). Note thatthe CART notation in Chapter4 of Breimanetal. (1984)is L(h, ) =
C(l)h) for the cost of misclassifying a class h observation as a class [ observation.)
One can alter class priors and the loss function using the CART version 1.310 option
file. For the R rpart () function, this would be done by modifying the prior and
loss components of the argument parms.

Class priors

In some studies, the learning set may be very unbalanced between classes, or a rare
class may be proportionally over-represented to reduce estimation biases without
having a large learning set size n (see Section 3.3.4). Thus, it is often necessary to use
priors other than the sampling proportions of individual classes. In general, putting a
large prior on a class tends to decrease its misclassification rate. When sample class
proportions do not reflect population proportions, the population proportion of class &
within a node t may no longer be estimated by ng(t) /n, but by (nk(t)/n) X (nme /nk)
instead. Priors may be interpreted as weights, where each class &k case would be
counted wy o nmg/ny times.

Loss function

CART allows incorporation of variable and possibly non-symmetric misclassification
costs into the splitting rule via prior specification. Intuitively, in a two-class problem,
if misclassifying class 2 cases costs twice as much as misclassifying class 1 cases, then
class 2 cases can be viewed as counting twice; this is in effect equivalent to having
the class 2 prior twice as large as that on class 1. More precisely, let QQ({|k) denote
the proportion of class h cases in £ misclassified into class [, then the resubstitution
estimate for the expected misclassification cost for a tree 1" is

R(T) =Y L(h,DQUIR)mn.
h,l
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The overall cost R(T") remains the same for altered forms 7, and L'(k, [) of 7, and
L(h,1) such that

L'(h,l)m, = L(h, ).
If for each class h, there is a constant misclassification cost L(h,l) = LpI(h /=),
then the cost structure can be incorporated in tree building by altering the class & prior
as follows:

7r'h = Lhﬂ'h/ZLﬂrl.
{

One can then proceed with the redefined class priors 7, and a unit cost structure. In
general, when costs are variable within a given class, the adjusted priors should be
chosen so that the new costs L'(h, ) are as close as possible to unit cost.

Variable combinations

The simplest splits are based on the value of a single variable. This results in a partition
of the feature space X = R intorectangles, with class boundaries parallel to the axes.
CART also allows for consideration of other types of variable combinations including:
linear combinations and Boolean combinations (Section 5.2 of Breiman et al., 1984).
Boolean splits may be beneficial when a large number of categorical explanatory
variables are present. Implementation of these combinations is not straightforward and
involves search algorithms that may, in some cases, lead to local optima. In a recent
manuscript, Ruczinski et al. (2001) propose an adaptive regression methodology,
termed logic regression, that attempts to construct predictor variables as Boolean
combinations of binary covariates.

3.2.7 Support vector machines

Support vector machines (SVMs) were introduced in the 1970s by Vapnik (1979,
1998), but did not gain popularity until recently. SVMs are designed for binary classi-
fication (outcome coded as —1 and 1); however, they can be generalized to deal with
polychotomous outcomes by considering several binary problems simultaneously. It
is customary for SVMs to use the one-against-all approach (see Section 3.3.6). The
following discussion of SVMs is based mainly on Burges (1998) and concerns binary
classification only.

The main idea underlying SVMs is very intuitive: find the best hyperplane separating
the two classes in the learning set, where best is described by a constrained maximiza-
tion problem. Generally, one tries to maximize the so-called margin (i.e., the sum of the
distances from the hyperplane to the closest positive and negative correctly classified
observations, while penalizing for the number of misclassifications). One can search
for the hyperplane in the original space (linear SVMSs) or in a higher—dimensional
space (nonlinear SVMs). The linear case is discussed first.
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Linear support vector machines
Linear separable case

In the simplest application of SVMs, the two classes in the learning set can be com-
pletely separated by a hyperplane (i.e., the data are said to be linearly separable). This
special case was first considered at the end of the 1950s by Rosenblatt (1957) and
the resulting hyperplane is referred to as perceptron. The solution involves a linear
programming problem and is described next.

Suppose a certain hyperplane separates the positive (class 1) from the negative (class
—1) observations. The points x that lie on the hyperplane satisfy w-x+ b = 0, where
the GG-vector w is normal to the hyperplane and w - x denotes the inner product in
R, ie., scalar or dot product w - x = wx' = Ele wqx 4. Then, |b|/||w|| is the
perpendicular distance from the hyperplane to the origin, where ||w|| = (w - w)'/2
is the norm of the vector w. Define the margin of a separating hyperplane as the sum
of the distances from the hyperplane to the closest positive and negative observations.
For the linearly separable case, the separating hyperplane with the largest margin is
sought. The problem can be reformulated as follows. Because the data are linearly
separable, one can find a pair of hyperplanes H; : w-x+b = land Hp : w-x+b= —1

such that for all observations 4,7 =1,...,n,
Hy:w-x;+b>1, fory, =1,
Hy:w-x+0b< -1, for y; = —1.

Note that the two hyperplanes are parallel, with no learning set observation falling bet-
ween them. The two hyperplane inequalities can be combined into a single inequality

y(w-x;+b)—1>0, Vi (3.5)

Perpendicular distances of Hy and H; from the origin are |1 — b|/||w|| and | — 1 —
b|/||w||, respectively. Thus, the margin is 2/||w]|| and one seeks to minimize ||w]|?
subject to the constraint y;(w - x; + b) — 1 > 0, Vi. Note that the only points whose
removal would affect the solution are the ones for which equality for the constraint
in Equation (3.5) holds (i.e., the points lying on one of the two hyperplanes, H; and
H>). Those points are called support vectors.

It is beneficial to reformulate the problem in terms of Lagrangian multipliers. The
optimization problem becomes easier to solve and the learning data only appear in
the algorithm in the form of dot products between the feature vectors. The latter prop-
erty allows generalization of the procedure to the nonlinear case considered below.
Nonnegative Lagrangian multipliers c; are introduced for each of the preceding con-
straints. It can be shown that for the linear separable case, support vector training
amounts to maximizing the dual

1
Lp= Zai -3 Z Q0 YiYiXi - Xj
i 4,7
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with respect to the c;, subject to the constraints o;; > 0 and ), o;3; = O for all 4.
The solution is given by
W = Z aiyixi.
i

Only the points for which ¢; > 0 are the support vectors and these points lie on one
of the hyperplanes, H; or H,. The removal of the remaining points would not affect
the solution.

Linear nonseparable case

When the above algorithm is applied to nonseparable data, the objective function
becomes arbitrarily large and there is no feasible solution. One needs to relax the
constraints on the two hyperplanes while introducing a penalty for doing so. Cortes
and Vapnik (1995) introduced positive slack variables £; > 0 in the constraints which
then become

Hi: w-x+b>1-¢, fory; =1,
Hy: w-x+b<-144, for y; = —1.

Note that ), &; is an upper limit on the number of misclassifications in the learning
set and the new objective function to minimize becomes

w2+ (3 €)*

The scalar C'is a cost or penalty parameter chosen by the user, with higher C' assign-
ing a higher penalty to errors. Solving the minimization question above is a convex
programming problem for any value of the parameter £ > 0. When k = lor k = 2,
the problem reduces to quadratic programming. SVM implementations typically set
k =1, so that the slack variables and their Lagrange multipliers may be ignored. It is
then sufficient to solve the following quadratic programming optimization problem,
which involves maximizing the dual

1
Lp= Zai -3 Z Q0 YiYiXi - X;
i 1,3

subject to 0 < o; < C and ), o;; = O for all 2. The solution is given by

W = E QY X,

€S
where S is the set of support vectors. Hence, the only difference with the linear
separable case is that now the ; are bounded above by C.

Nonlinear support vector machines

In many situations, it is useful to consider nonlinear (in x) decision functions or
class boundaries. Mapping the data into higher dimensional spaces and then reducing
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the problem to the linear case leads to a simple solution. Recall again that after
reformulating the optimization problem in terms of Lagrangians, the feature vectors
x only appear in the optimization problem via dot products x; - x;. Thus, if the data are
mapped using ®(-) from, say, R to H, then the learning algorithm depends on the data
only through ®(x;) - ®(x;). If there is a kernel function K (x;,x;) = ®(x;) - ®(x5),
then one does not even need to know ®(-) explicitly. Widely used kernels are given
in the following table.

Classifier Kernel

Polynomial of degree p Kxy)=x-y+1)7
Gaussian radial basis function (RBF) K (x,y) = exp(—||x — y|?/20?)
Two-layer sigmoidal neural network  K(x,y) = arctan(kx -y — 9)

Note that raising the learning set into a higher and possibly infinite dimensional space
(as in RBF) does not make computations prohibitively expensive. Indeed, one need
not apply the mapping ® to individual observations, but simply use the kernel K in
place of the dot product of transformed observations. Mercer’s condition specifies for
which kernels K there exists a pair (#, ®) such that K (x,y) = &(x) - &(y).

Solution methods and user-defined parameters

The support vector optimization problem can be solved analytically only when the size
of the learning set is very small or for separable cases where it is known which of the
observations become support vectors. In general, the problem must be solved numer-
ically. While traditional optimization methods such as Newton and quasi-Newton
algorithms are not directly applicable for technical reasons, decomposition methods,
that use the above algorithms on appropriately selected subsets of the data, may be
applied. The LIBSVM software interfaced with R uses such an approach (Chang and
Lin, 2001).

Here, we consider the C-classification method for SVMs. The user-specified parame-
ters for this method are the kernel K, i.e., the nonlinear transformation of the original
data, and the cost parameter C for misclassifications when the learning data are
non-separable in the transformed space. Other types of SVMs include: v-classification,
where the parameter v provides an upper bound on the fraction of misclassified learn-
ing set observations and a lower bound on the fraction of support vectors (Chang and
Lin, 2001). Perhaps the largest limitation of SVMs lies in the difficulty for the user
to choose an appropriate kernel for a given problem.
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3.3 General issues in classification

This section discusses the following important topics in classification: feature selec-
tion, standardization, distance function, loss function, class representation, imputation
of missing data, and polychotomous classification. Decisions regarding these issues
can be made implicitly by choosing a certain classifier (e.g., distance function in LDA)
or explicitly (e.g., distance function in nearest neighbor classifiers). In addition, the
impact of these decisions depends on the classifier (e.g., trees tend to be less sensitive
to the feature selection scheme than nearest neighbor predictors). However, all these
choices are part of the classifier training process and should be taken into account in
performance assessment as described in Section 3.4,

3.3.1 Feature selection

Feature selection is one of the most important issues in classification; it is particularly
relevant in the context of microarray datasets with thousands of features, most of
which are likely to be uninformative. Some classifiers like CART perform automatic
feature selection and are relatively insensitive to the variable selection scheme. In
contrast, standard LDA and nearest neighbor classifiers do not perform feature selec-
tion; all variables, whether relevant or not, are used in building the classifier. Current
implementations of SVMs do not include automatic feature selection, and there is
some evidence that they do not perform well in the presence of a large number of
extraneous variables (Weston et al., 2001). For many classifiers, it is thus impor-
tant to perform some type of feature selection, otherwise performance could degrade
substantially with a large number of irrelevant features. Feature selection may be per-
formed explicitly, prior to building the classifier, or implicitly, as an inherent part of the
classifier building procedure, for example, using modified distance functions (see Sec-
tion 3.3.2). In the machine learning literature, these two approaches are referred to as
filter and wrapper methods, respectively.

Filter methods

The simplest gene screening procedures are one-gene-at-a-time approaches, in which
genes are ranked based on the value of univariate test statistics, such as: t- or F-
statistics (Dudoit et al., 2002a); ad hoc signal-to-noise statistics (Golub et al., 1999;
Pomeroy et al., 2002); nonparametric Wilcoxon statistics (Dettling and Biilmann,
2002; Park et al., 2001); p-values (Dudoit et al., 2002b). Possible meta-parameters for
feature selection include the number of genes G or a p-value cut-off. A formal choice
of these parameters may be achieved by cross-validation or bootstrap procedures.

More refined feature selection methods consider the joint distribution of the gene
expression measures. In a recent article, Bg and Jonassen (2002) investigate possible
advantages of subset selection procedures for screening gene pairs to be used in
classification. The authors show that bivariate approaches achieve better results with
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fewer variables compared to univariate ones. Other methods include ordering variables
according to their importance as defined in random forests (see Breiman, 1999 and
Section 3.5.3 in this book). There, all the features are considered simultaneously,
hence allowing the detection of genes with weak main effects but strong interactions.

Wrapper methods

Feature selection may also be performed implicitly by the classification rule itself. In
this case, different approaches to feature selection will be used by different classifiers.
In classification trees (e.g., CART, described in Section 3.2.6), features are selected at
each step based on reduction in impurity and the number of features used (or size of the
tree) is determined by pruning the tree using cross-validation. Thus, feature selection
is an inherent part of tree building and pruning deals with the issue of over-fitting. The
nearest shrunken centroid method is an extension of DLDA that performs automatic
feature selection by shrinking class mean vectors toward the overall mean vector based
on the value of t-like statistics (Section 3.2.4 in this book and Tibshirani et al., 2002).
Suitable modifications of the distance function in nearest neighbor classification allow
automatic feature selection (Section 3.2.5). In the context of Bayesian regression
models, West et al. (2001) use singular value decomposition of the expression matrix
X to derive supergenes, where the expression measures of the supergenes are linear
combinations of the expression measures of individual genes.

The importance of taking feature selection into account when assessing the perfor-
mance of a classifier cannot be stressed enough (Ambroise and McLachlan, 2002;
West et al., 2001). Feature selection is an aspect of classifier training, whether done
explicitly or implicitly. Thus, when using for example cross-validation to estimate
generalization error, feature selection should be done rot on the entire learning set,
but separately for each cross-validation sample used to build the classifier. Leaving
out feature selection from cross-validation or other resampling-based performance
assessment methods results in overly optimistic error rates (see Section 3.4).

3.3.2 Standardization and distance function
Standardizing observations and variables

The transformation of variables and/or observations (e.g., location and scale transfor-
mations) is an important issue in classification, as the choice of transformation can
affect the performance of the classifier. As noted next, the distance function and its
behavior in the context of classification are intimately related to the scale on which
measurements are made. The choice of a transformation and distance function should
thus be made jointly and in conjunction with the choice of a classifier. A common
type of transformation for continuous variables is standardization, so that each vari-
able has mean zero and unit variance across observations. For example, in the case of
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gene expression data, one might consider the following standardization of the gene
expression measures

:Egi =

where Z, and s, denote respectively the average and standard deviation of gene g’s
expression measures across the n arrays. Such a standardization in some sense puts
all genes on an equal footing and weighs them equally in the classification. One could
also use robust estimators of location and scale, like the median and median absolute
deviation (MAD).

In principle, one could envisage standardizing either variables or observations (i.e.,
rows or columns of the gene expression data matrix X). In many cases, however, vari-
ables are not directly comparable and cannot be meaningfully averaged or combined
within observations. In such situations, only the issue of variable standardization
arises (i.e., standardization of the rows). Consider, for example, a height variable
measured in meters and a weight variable measured in kg for 100 persons (observa-
tions). One may standardize both height and weight variables, so that they have mean
zero and variance one across individuals (and are unit-less). Combining the two raw
height and weight variables within individuals would not be meaningful before this
standardization as the measurement units of m and kg are not comparable.

Standardization for microarray data

Inmicroarray experiments, however, one could consider standardizing features (genes)
or observations (arrays), as the expression measures of each gene are fluorescence
intensities which are directly comparable. Standardization of observations or arrays
can be viewed as part of the normalization step. In the context of microarray exper-
iments, normalization refers to identifying and removing the effects of systematic
variation, other than differential expression, in the measured fluorescence intensi-
ties (e.g., different labeling efficiencies and scanning properties of the Cy3 and Cy5
dyes; different scanning parameters, such as PMT settings; print-tip, spatial, or plate
effects). It is necessary to normalize the fluorescence intensities before any analysis
that involves comparing expression measures within or between arrays, in order to
ensure that observed differences in fluorescence intensities are indeed reflecting dif-
ferential gene expression, and not some printing, hybridization, or scanning artifact.
Standardizing the microarray data so that arrays have mean zero and variance one
achieves a location and scale normalization of the different arrays. In a study of nor-
malization methods, we have found scale adjustment to be desirable in some cases,
in order to prevent the expression measures in one particular array from dominating
the average expression measures across arrays (Yang et al., 2001). Furthermore, this
standardization is consistent with the common practice in microarray experiments of
using the correlation between the gene expression profiles of two mRINA samples to
measure their similarity (Alizadeh et al., 2000; Perou et al., 1999; Ross et al., 2000).
In practice, however, we recommend general adaptive and robust normalization pro-
cedures which correct for intensity, spatial, and other types of dye biases using robust
local regression (Dudoit and Yang, 2003; Yang et al., 2001, 2002b).

©2003 CRC Press LLC



Table 3.2 Impact of standardization of observations and variables on distance function.

Distance between

observations Standardized variables Standardized observations
Euclidean, wg =1 Changed Changed
Euclidean, wy = 1/s2 Unchanged Changed
Mabhalanobis Changed, unless Changed
S diagonal
One-minus-Pearson Changed Unchanged
-correlation

Note: Recall that by standardizing variables and observations we mean, 7, (rgi—T4.)/sgand zy,
(zgs — T.5)/ s, respectively. Note the relationship between the Euclidean metric dg (-, -) and the one-
minus-Pearson-correlation distance between standardized observations: dg (x}, x}) = /2G(1 - ry;),
where r;; denotes the correlation between observations 7 and j.

Distance functions

In classification, observations are assigned to classes on the basis of their distance from
(or similarity to) objects known to be in the classes. The choice of a distance function
is most explicit in classifiers such as nearest neighbors. Examples of distance func-
tions are given in Table 3.1. It is often possible to incorporate standardization of the
variables as part of the distance function (e.g., general Euclidean distance or Maha-
lanobis distance). Table 3.2 summarizes the effects of variable (gene) and observation
(array) standardization on distances of the L? type (i.e., Euclidean and Mahalanobis
distances).

Feature selection using the distance function

As described in Section 3.2.3 and Section 3.2.5, appropriate modifications of the
distance function, which downweight irrelevant variables based on, for instance, t-
statistics, may be used for automatic feature selection.

Impact of standardization and distance function on classification

We noted previously that both the distance function and the scale the observations are
measured in can have a large impact on the performance of the classifier. This effect
varies depending on the classifier:

Linear and quadratic discriminant analysis. These classifiers are based on the
Mahalanobis distance of the observations from the class means. Thus, the classifiers
are invariant to standardization of the variables (genes), but not the observations
(normalization in the microarray context).
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Nearest neighbor classifiers. One must explicitly decide on an appropriate standard-
ization and distance function for the problem under consideration. These classifiers
are in general affected by standardization of both features and observations. For
example, when using the Euclidean distance between mRNA samples, it might
be desirable to scale gene expression measures by their standard deviations (i.e.,
standardize genes) to prevent genes with large variances from dominating in the
classification.

Classification trees. Trees are invariant under monotone transformations of indi-
vidual features (e.g., gene standardizations introduced previously). They are not
invariant to standardization of the observations.

Support vector machines (SVMs). SVMs are based on the Euclidean distance bet-
ween individual observations (possibly transformed as in the nonlinear case) and a
separating hyperplane (margin), they are thus affected by standardization of both
features and observations.

3.3.3 Loss function

Inmany diagnosis settings, the loss incurred from misclassifying a diseased (d) person
as healthy (h) far outweighs the loss incurred by making the error of classifying
a healthy person as diseased. These differential misclassification costs should be
reflected in the loss function. Suppose the loss from the first error is e > 1 times
higher than that from the second. For classifiers which can be viewed as estimating
the Bayes or maximum likelihood discriminant rules, one could modify posterior
probability or likelihood cutoffs accordingly. For example, in the case of the Bayes
rule, one could classify a patient as diseased if p(d|x) > ¢ = 1/(1 + €). Such a
classifier would minimize the risk for the loss function L(d, h) = eL(h, d).

The Bayes rule for general loss functions is given in Equation (3.2) in Section 3.2.1.
A common situation is when L(h,l) = LpI(h /=), that is, the loss incurred from
misclassifying a class h observation is the same irrespective of the predicted class [.
Then, the Bayes rule has the form Cp(x) = argmax, L p(k|x). Any estimator of
the class posterior probabilities could be substituted in this equation, and the weights
Ly could also be used for ML classifiers, which approximate the Bayes rule for equal
priors. The preceding arguments provide a motivation for using weighted votes in
nearest neighbor classifiers to reflect differential costs (see Section 3.2.5). A discus-
sion of loss functions for classification trees is given in Section 3.2.6. Some SVM
implementations allow specification of class weights to deal with asymmetric class
sizes or loss functions (e.g., class.weight argument in the svm function of the
e1071 R package).

3.3.4 Class representation
Although this may not be immediately obvious, the issues of differential misclassifi-

cation costs and class priors are closely related (see also Section 3.2.6). In particular,
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dealing with both issues amounts to imposing different weights or cutoffs for the class
posterior probabilities in the Bayes rule or approximations thereof.

Unequal sample class frequencies

In many situations, such as medical diagnosis, the representation of the classes in
the learning set does not reflect their importance in the problem. For example, in a
binary classification problem with a rare disease class (d) and a common healthy class
(h), a learning set obtained by random sampling from the population would contain
a vast majority of healthy cases. Unequal class sample sizes could possibly lead to
serious biases in the estimation of posterior probabilities p(d|x) and p(h|x). Consider
the case of linear discriminant analysis which assumes a common covariance matrix
estimated using both samples (see Section 3.2.3). The pooled estimator of variance
will be dominated by the more abundant sample. This is fine if the covariance matrix is
really the same for both classes. However, in the case of unequal covariance matrices,
the bias in the class posterior probabilities p(k|x) is more severe when the classes are
unequally represented in the learning set.

The following approaches might help to alleviate estimation biases arising from
unequal class representation in the learning set. Bias could be reduced by subsampling
the abundant population, so that both classes are on an equal footing in the parameter
estimation; however, this would be wasteful of training data when the biased learning
set is obtained from a larger learning set. A better approach might be to downweight
cases from the abundant class so that the sum of the weights is equal to the number
of cases in the less abundant class.

Biased sampling of the classes

Downweighting and subsampling are helpful in dealing with the estimation bias for
the class conditional densities px(x); however, these approaches effectively make
the sample proportions differ from the population proportions and can in turn lead
to biased estimators of the class posterior probabilities p(k|x). To see this, let ny
denote the number of class & cases in the learning set. The plug-in estimators of class
posterior probabilities are in fact estimating quantities proportional to p(k|x)nk /7.
Adjustment is thus required to ensure that estimators of the class posterior probabilities
p(k[x) are approximately unbiased. This can be done by specifying appropriate priors
for DA and CART, and by using weighted voting for nearest neighbors.

3.3.5 Imputation of missing data

Some classifiers are able to handle missing values by performing automatic imputation
(e.g., trees), while others either ignore missing data or require imputed data (e.g., LDA,
nearest neighbors).
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Classification trees can readily handle missing values through the use of surrogate
splits, i.e., splits that are most similar to the best split at a particular node (see Sec-
tion 3.2.6). This is very useful in the analysis of microarray data, where features tend
to be highly correlated and a significant proportion of observations are missing. Two
goals are accomplished simultaneously by surrogate splits: (i) the tree can be con-
structed while making use of all the variables, including the ones with missing values;
and (ii) a new case can be classified even though some variables are missing. In (i),
the goodness of split for a given variable is computed using only observations with
no missing values for that variable. In (ii), if the primary split at a node is not defined
for a new case, then one looks for the best surrogate variable and uses a splitting rule
based on this variable.

For procedures requiring complete data, imputation of missing values must be per-
formed prior to building the classifier. For a detailed study of imputation methods in
microarray experiments, the reader is referred to the recent work of Troyanskaya et al.
(2001), which suggests that a simple weighted nearest neighbor procedure provides
accurate and robust estimates of missing values. In this approach, the neighbors are the
genes and the distance between neighbors could be based on the Pearson correlation
or Euclidean distance between their gene expression measures across arrays. With
k-nearest neighbor imputation, for each gene with missing data: (i) compute its dis-
tance to the other G — 1 genes; (ii) for each missing array, identify the & nearest genes
having data for this array and impute the missing entry by the weighted average of the
corresponding entries for the k neighbors (here, genes are weighted inversely to their
distance from the gene with missing entries). Imputation results were found to be stable
and accurate for £ = 10 — 20 neighbors. Software for k-nearest neighbor imputation
isavailable at smi-web.stanford.edu/projects/helix/pubs/impute
and in the R package EMV.

3.3.6 Polychotomous classification

A number of approaches have been suggested for converting a polychotomous or
K-class classification problem into a series of binary or two-class problems. Con-
sideration of binary problems may be advantageous in the case of a large number of
classes with unequal representation in the learning set (e.g., lymphoma and NCI 60
datasets in Dettling and Biilmann, 2002).

All (}2{ ) pairwise binary classification problems

Friedman (1996a) casts the K-class problem into a series of (%) two-class prob-
lems, corresponding to all pairwise class comparisons. In each problem, a separate
classification rule is obtained to discriminate between the two classes and to assign
an unlabeled test observation to one of the two classes. The final K-class decision
rule is obtained by voting: the individual class that is selected most often as the
predicted class, or winner, in the (g ) decisions is taken to be the predicted class

of the test case. A motivation for such a rule is provided by the simple identity
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argmax; cp<x Gk = argmax;j<j Efil I(ay, > a;), for any set of distinct real
numbers a1, . .., ax. Friedman (1996a) shows that the Bayes rule may be reexpressed
as

- (k| x) pll | x)
Cp(x) = argmax; «p«x 1 P > .
e 3 (; )

(k%) +p( %)~ plk|x)+p(]%)

Each term in this sum represents an optimal Bayes two-class decision rule. The max-
imization selects the class with the most winning two-class decisions as the overall
prediction at x. Let £*) = p(Y = k|x,Y € {k,1}) = p(k | x)/(p(k | x) + p(l |
x))=1- fl(kl). Then, the previous argument suggests the following general proce-
dure:

K
C(x; £) = argmax; <<k Z I( A,Ekl) > fl(kl)),

=1
in which each individual two-class rule is estimated as accurately as possible using
A,Ekl), for example, by applying model selection techniques. As demonstrated by
Friedman (1996a), decomposition of the K-class problem into a series of binary
classification rules can lead to substantial gains in accuracy over a K-class rule.
Hastie and Tibshirani (1996a) suggest a modification of Friedman’s (1996a) rule,
pairwise coupling, in which the pairwise class probability estimates are combined
into a joint probability estimate for all K classes.

K one-against-all binary classification problems

In arecent article, Dettling and Biilmann (2002) reduce the K -class problem to a series
of K binary classification problems of one class against all other classes. Such one-
against-all approaches are very popular in the machine learning community, where
many classifiers are designed only for binary problems (e.g., SVMs). Application of

K binary rules to a test case x yields estimates f,ﬁ“ of class posterior probabilities

,Ek) = p(Y = k|x), which may be normalized for the K-class problem: p(k|x) =
f,gk) /30 fl(l). The final K -class decision rule selects the class with largest estimated
posterior probability f,ﬁ’”.

3.4 Performance assessment

Different classifiers clearly have different accuracies (i.e., different misclassification
rates). In certain medical applications, errors in classification could have serious con-
sequences. For example, when using gene expression data to classify tumor samples,
errors could correspond to misdiagnosis and assignment to improper treatment proto-
col. In this context it is thus essential to obtain reliable estimates of the classification
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error p(C(X) /=Y or of other measures of performance. More generally, risk esti-
mation is needed for two main purposes: (i) training the classifier, e.g., selecting an
appropriate subset of predictor variables; and (ii) estimating the generalization error
of the classifier, i.e., the error rate for a new sample. Different approaches are reviewed
next. For a more detailed discussion of performance assessment and of the bias and
variance properties of classifiers, the reader is referred to Section 2.7 in Ripley (1996),
Friedman (1996b), Breiman (1998a), and Chapter 7 in Hastie et al. (2001).

3.4.1 Bias, variance, and error rates

The random nature of the learning set £ implies that for any realization x of the feature
vector, the predicted class C(x; L) is a random variable. Intuitively, for a fixed value
of the feature vector x, as the learning set varies, so will the predicted class C(x; £).
It is thus meaningful and instructive to consider distributional properties (e.g., bias
and variance) of classifiers when assessing and comparing their performances. For
simplicity, consider binary classification (i.e., K = 2and Y € {-1,1}), and let
F(x) = p(ljx) = p(Y = 1|X = x) denote the posterior probability for class 1.
Consider predicted classes C(x; £) based on estimators f(x; £) of the class posterior
probabilities f(x). Denote the mean and variance of the estimators f(x; £) by

[f(x; £)]

P
[(f(x;.£) = px)?].

2
x

E
E

a

The mean squared estimation error, averaged over learning sets £, is

MSEy = E[(f(x; £) = f(x))*] = 0% + (kx — f(x))* = Variance + Bias®. (3.6)

Recall that here x is fixed and the randomness comes from the learning set £. Now
consider the effect of 1 and o2 on classification error (Friedman, 1996b). The Bayes
rule is fixed and independent of £, and for binary classification problems it is given by

1, it 212
Co(x) = {—1, if f(x) < 1/2.

Thus, the classification error for X = x is
pC(xL) /& |X=x) = pC(xL)=—1)p(Y =1|X=x)+p(C(x;L)=1)
p(Y =—1]X=x)
= pC(xL)=—-1)f(x)+p(C(x;L)=1)(1-f(x))

= [2f(x)=1lp(C(x;L) /€B(x) +p(Y /€5 (x)|X=x)
= [Estimation error+ Bayes error rate.

Following Friedman (1996b), use a normal approximation for the distribution of f .
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Then,
p(C(x: L) /=Ep(x)) = (sign( Fo) = 1/2) M2 ) |

X

where ®(-) is the standard Gaussian cumulative distribution function.

Hence, the classification error rate is

pC(x; L) /X =x)=2f(x) - 1| @ <sign(f(x) _1yg) M2 “x)

Ox
+p(Y /£p(x)[X =x%). (3.7

Comparison of Equation (3.6) and Equation (3.7) shows that moments y,. and o2 of
the distribution of f(x; £) have a very different impact on estimation error (for f(x))
and on classification error. In other words, the bias-variance tradeoffis very different
for these two types of error: for estimation error, the dependence on bias and variance
is additive; for classification error, a strong interaction effect occurs. In particular,
variance tends to dominate bias for classification error. This suggests that certain
methods that have high bias for function estimation may nonetheless perform well for
classification because of their low variance. The bias-variance argument provides an
explanation for the competitiveness of naive Bayes methods (i.e., DLDA) and nearest
neighbor classifiers (Friedman, 1996b).

3.4.2 Resubstitution estimation

In this naive approach, known as resubstitution error rate estimation or (raining
error rate estimation, the same dataset is used to build the classifier and to assess
its performance. That is, the classifier is trained using the entire learning set £, and
an estimate of the classification error is obtained by running the same learning set
L through the classifier and recording the number of observations with discordant
predicted and actual class labels. Although this is a simple approach, the resubstitution
error rate can be severely biased downward. Consider the trivial and extreme case
when the feature space is partitioned into n sets, each containing a single observation.
In this extreme over-fitting situation, the resubstitution error rate is zero; however
such a classifier is unlikely to generalize well. That is, the classification error rate
as estimated from an independent test set is likely to be high. In general, as the
complexity of the classifier increases (i.e., the number of training cycles or epochs
increases), the resubstitution error decreases. In contrast, the true generalization error
initially decreases but subsequently increases due to over-fitting.

3.4.3 Monte Carlo cross-validation
Suppose a test set of labeled observations sampled independently from the same

population as the learning set is available. In such a case, an unbiased estimator of the
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classification error rate may be obtained by running the test set observations through
the classifier built from the learning set and recording the proportion of test cases with
discordant predicted and actual class labels.

In the absence of a genuine test set, cases in the learning set £ may be divided into two
sets, a training set L1 and a validation set L. The classifier is built using £, and the
error rate is computed for L. It is important to ensure that observations in £, and £o
can be viewed as i.i.d. samples from the population of interest. This can be achieved in
practice by randomly dividing the original learning set into two subsets. In addition, to
reduce variability in the estimated error rates, this procedure may be repeated a number
of times (e.g., 50) and error rates averaged (Breiman, 1998a). A general limitation
of this approach is that it reduces effective sample size for training purposes. This
is a problem for microarray datasets that have a limited number of observations. No
widely accepted guidelines are available for choosing therelative size of these artificial
training and validation sets. A possible choice is to leave out a randomly selected 10%
of the observations to use as a validation set; however, for comparing the error rates of
different classifiers, validation sets containing only 10% of the data are often not large
enough to provide adequate discrimination. Increasing validation set size to one-third
of the data provides better discrimination in the microarray context.

3.4.4 Fold cross-validation

In V-fold cross-validation (CV), cases in the learning set £ are randomly divided into
Vsets £L,,v=1,...,V, of as nearly equal size as possible. Classifiers are built on
training sets L — L,,, error rates are computed for the validation sets L,,, and averaged
over v. A bias-variance tradeoff occurs in the selection of V': small V's typically give
a larger bias but a smaller variance.

A commonly used form of CV is leave-one-out cross-validation (LOOCYV), where
V' = n.LOOCYV often results in low bias but high variance estimators of classification
error; however, for stable (low variance) classifiers such as £-NN, LOOCYV provides
good estimators of generalization error (Breiman, 1996b). For large learning sets,
LOOCYV carries a high computational burden because it requires n applications of the
training procedure.

3.4.5 Bootstrap estimation

Leave-one-out bootstrap

A number of bootstrap procedures for estimating classification error are reviewed in
Ambroise and McLachlan (2002). In the leave-one-out bootstrap B1, the error rate for
learning set case x; is obtained from bootstrap samples that do not contain this obser-

vation. Bootstrap estimators are typically less variable than LOOCYV estimators, and,
in particular, the B1 estimator can be viewed as a smoothed version of the LOOCV
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estimator. Because B1 is based on a fraction of the original learning set, however, it
is upwardly biased (=2.632n observations are included in each bootstrap sample). A
common correction is implemented in the .632 estimate: B.632 = 368 RE +.632B1,
where RE is the downwardly biased resubstitution estimate. More general correc-
tions are given by the .632 + estimate: B.632+ = (1 — w)RE + wB1, where the
weights w are based on the magnitude of the difference B1 — RE.

Out-of-bag estimation

Please refer to Section 3.5.3.

3.4.6 Honest performance assessment

Virtually every application of classification methods to microarray data includes some
discussion of classifier performance. In such studies, classification error rates, or
related measures, are usually reported to: compare different classifiers; select the
value of a classifier parameter (e.g., the number of neighbors & in £-NN or the kernel
in SVMs); and support statements such as “clinical outcome X for cancer Y can be
predicted accurately based on gene expression measures.” The use of cross-validation
(or any other estimation method) is intended to provide accurate estimates of clas-
sification error rates. It is important to note that these estimates relate only to the
experiment that was cross-validated. A common practice in microarray classification
is to conduct feature selection by using all of the learning set and then apply cross-
validation only to the classifier building portion of the process. In that case, inference
can only be applied to the latter part of the process. However, the important genes
are usually unknown and the intended inference includes feature selection. Then, the
previous CV estimates are downwardly biased and inference is not warranted.

Feature selection is an aspect of classifier training, whether done using filter or wrapper
methods, and should thus be taken into account in performance assessment. Error
estimation procedures should be applied externally to the feature selection process,
and not internally as is commonly done in the microarray literature. When using for
example cross-validation to estimate generalization error, features should be selected
not on the entire learning set, but separately for each CV training set £ — £,,.

The preceding discussion applies to any error rate estimation procedure and to other
aspects of the classifier training process. Examples of classifier parameters that should
be included in cross-validation are: the number of predictor variables G; the number
of neighbors & and distance function for k-nearest neighbor classifiers; the shrinkage
parameter A for the nearest shrunken centroid method (Tibshirani et al., 2002); the
kernel K and cost parameter C' in SVMs. When CV is used to estimate parameters
such as the number of genes or the number of neighbors & in k-NN, two rounds of CV
may be needed to estimate the generalization error of the classifier. The importance of
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honest cross-validation is demonstrated in Section 3.7 and also discussed in Ambroise
and McLachlan (2002) and West et al. (2001).

The approaches described previously can be extended to reflect differential misclassi-
fication costs; in such situations, performance is assessed based on the general defini-
tion of risk in Equation (3.1). In the case of unequal representation of the classes, some
form of stratified sampling may be needed to ensure balance across important classes
in all subsamples. In addition, for complex experimental designs, such as factorial or
time-course designs, the resampling mechanisms used for computational inference
should reflect the design of the experiment.

Finally, note that in the machine learning literature, a frequently employed alternative
to risk-based performance measures is the lift. For a given classifier C, the lift of a
class k is defined as,

P(Y =k|C(z) = k)

lifte = P(Y = k)

The overall lift is obtained by averaging the lifts of individual classes. In general, the
greater the lift, the better the classifier.

3.4.7 Confidence in individual predictions

Estimated class posterior probabilities for classifiers based on the Bayes rule may be
used toreflect the confidence in predictions for individual observations. Cases with low
class posterior probabilities are in general harder to predict and may require follow-up
in the form of new laboratory analyses. When estimated class posterior probabilities
are not returned explicitly by the classification procedure, one may use derived quan-
tities such as votes for the winning class for k-NN and aggregated predictors using
bagging and boosting (see prediction votes and vote margins in Section 3.5.3).

3.5 Aggregating predictors

Breiman (1996a, 1998a) found that gains in accuracy could be obtained by aggregating
predictors built from perturbed versions of the learning set. In classification, the
multiple versions of the predictor are aggregated by voting. Let C(+; L) denote the
classifier built from the bth perturbed learning set £ and let w; denote the weight
given to predictions made by this classifier. The predicted class for an observation x
is given by

C_(X; ﬁ) = argmaxy z Wy I(C(X; ﬁb) = k)
b
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The prediction vote (PV) for a feature vector x is defined to be

PV(x) = (maxg Y _wpd(C(x;L) = k))/ (D ws), and PV € [0, 1].
b b

When the perturbed learning sets are given equal weights (i.e., wy = 1), the prediction
vote is simply the proportion of votes for the winning class. Prediction votes may be
used to assess the strength of predictions for individual observations.

The key to improved accuracy is the possible instability of a prediction method, i.e.,
whether small changes in the learning set result in large changes in the predictor
(Breiman, 1998a). Voting is a form of averaging, therefore, unstable procedures tend
to benefit the most from aggregation. Classification trees tend to be unstable while,
for example, nearest neighbor classifiers or DLDA tend to have high bias but low
variance. Thus, mainly trees are aggregated in practice. Generally, when trees are
combined to create an aggregated classifier, pruning becomes unnecessary and maxi-
mal exploratory trees are grown until each terminal node contains observations from
only one class (Breiman, 1996a, 1998a). Two main classes of methods for generating
perturbed versions of the learning set, bagging and boosting, are described next.

3.5.1 Bagging
Standard bagging

In the simplest form of bagging — bootstrap aggregating — the perturbed learning
sets are nonparametric bootstrap replicates of the learning set (i.e., n observations are
drawn at random with replacement from the learning set). Predictors are built for each
perturbed dataset and aggregated by plurality voting (w, = 1). A general problem
of the nonparametric bootstrap for small datasets is the discreteness of the sampling
space. Two methods, described next, get around this problem by sampling from a
parametric distribution and by considering convex combinations of the learning set,
respectively.

Parametric bootstrap

Perturbed learning sets may be generated from a parametric distribution, for example,
according to a mixture of multivariate Gaussian distributions. The mixing probabilities,
the mean vectors, and covariance matrices for the class densities may be estimated
from the learning set by the corresponding sample quantities.

Convex pseudo-data
Given a learning set £ = {(x1,¥1), ..., (Xn, Yn)}, Breiman (1998b) suggests cre-

ating perturbed learning sets based on convex pseudo-data (CPD). Each perturbed
learning set Ly is generated by repeating the following n times:

©2003 CRC Press LLC



1. Select two instances (x,y) and (%', y') at random from the learning set L.
2. Select at random a number v from the interval [0,d],0 < d < 1,andletu = 1 —wv.
3. The new instance is (x”,y"), where ¢ = y and x" = ux + vx’.

As in standard bagging, a classifier is built for each perturbed learning set £; and
classifiers are aggregated by plurality voting (ws = 1). Note that when the parameter
d is 0, CPD reduces to standard bagging. The larger d, the greater the amount of
smoothing. In practice, d could be chosen by cross-validation.

3.5.2 Random forests

The term random forest refers to a collection of tree classifiers, where each tree
depends on the value of a random vector, i.i.d. for all trees in the forest (Breiman,
1999). In random forests, the following sources of randomness are used to generate
new predictors:

Random learning set (bagging). Each tree is formed from a bootstrap sample of the
learning set — the random vector consists of the outcomes of n draws at random
with replacement from {1,...,n}

Random features. For a fixed parameter Gg << G (e.g., Gg = V@), Gy features
are randomly selected at each node and only these are searched through for the
best split — the random vector consists of the outcomes of Gy draws at random
without replacement from {1,...,G}.

A maximal exploratory tree is grown (pure terminal nodes) for each bootstrap learning
set, and the forest obtains a classification by plurality voting. Note that the main ideas
in random forests are applicable to other types of classifiers than trees.

3.5.3 Byproducts from bagging
Out-of-bag estimation of error rate

For each bootstrap sample, about one-third ((1 — 1/n)™ =~ e~! =~ .368) of the cases
are left out and not used in the construction of the tree. These could be used as test
set observations for performance assessment purposes. For the bth bootstrap sample,
put the out-of-bag cases down the bth tree to get a test set classification. For each
observation in the learning set, let the final classification of the forest be the class
having the most votes for the bootstrap samples in which that observation was out-
of-bag. Compare this classification to the class labels of the learning set to get the
out-of-bag estimator of the error rate. An unbiased estimator of the misclassification
rate for bagged trees is thus obtained automatically as a byproduct of the bootstrap,
without the need for subsequent cross-validation or test set estimation (Breiman,
1996¢, 1999).
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Note that the out-of-bag estimators described previously do not take into account
feature selection or other forms of training done prior to aggregating the classification
trees. If feature selection is performed beforehand, the out-of-bag estimators of error
rates will in general be downwardly biased.

Case-wise information

Other useful byproducts of the bagging procedure are the prediction votes and vote
margins:

Prediction votes. The proportions of votes for each class (€ [0, 1]) can be viewed as
estimates of the class posterior probabilities. The prediction vote for the winning
class gives a measure of confidence for the prediction of individual observations.
Low prediction votes generally correspond to cases that are hard to predict and
may require follow-up.

Vote margins. The vote margin for a given observation is defined as the proportion of
votes for the true class minus the maximum of the proportions of votes for each of
the other classes (€ [—1, 1]). The lower the vote margin, the poorer the performance
of the classifier. Low vote margins may indicate that the corresponding cases are
hard to predict or, in some cases, they may reflect mislabeled learning set cases.

Variable importance statistics

In the context of random forests, variable importance is defined in terms of the
contribution to predictive accuracy (i.e., predictive power). For each tree, randomly
permute the values of the gth variable for the out-of-bag cases, put these new covariates
down the tree, and get new classifications for the forest. The importance of the gth
variable can be defined in a number of ways:

Importance measure 1: the difference between the out-of-bag error rate for ran-
domly permuted gth variable and the original out-of-bag error rate.

Importance measure 2: the average across all cases of the differences between the
margins for the randomly permuted gth variable and for the original data.

Importance measure 3: the number of lowered margins minus the number of raised
margins.

Importance measure 4: the sum of all decreases in impurity in the forest due to a
given variable, normalized by the number of trees.
3.5.4 Boosting
In boosting, first proposed by Freund and Schapire (1997), the data are resampled

adaptively so that the weights in the resampling are increased for those cases most
often misclassified. The aggregation of predictors is done by weighted voting. Bagging
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turns out to be a special case of boosting, when the sampling probabilities are uniform
at each step and the perturbed predictors are given equal weight in the voting.

In boosting, three elements need to be specified: (i) the type of classifier; (ii) the
resampling probabilities and aggregation weights; and (iii) the number of boosting
iterations. Any classifier could be used in principle, but unstable classifiers such
as classification trees tend to benefit the most from boosting. Boosting procedures
generally do not over-fit and are not sensitive to the precise number of iterations in
(iii) as long as this number is fairly large, say B = 50 — 100. Two popular boosting
algorithms, AdaBoost and LogitBoost, are described next.

AdaBoost

We consider an adaptation of Freund and Schapire’s AdaBoost algorithm, which is
described fully in Breiman (1998a) and referred to as Arc-fs.

1. Initialization. The resampling probabilities {p§°>, e, p%o)} are initialized to be

equal (i.e.,pgo) =1/n).
2. AdaBoost iterations. The bth step, 1 < b < B, of the algorithm is as follows:

(a) Using the current resampling probabilities {pgb_l), ce pﬁf’_l)}, sample with
replacement from £ to get a learning set L, of size n.

(b) Build a classifier C(-; L) based on L.

(c) Run the learning set £ through the classifier C(-; £3) and let d; = 1 if the ith
case is classified incorrectly and d; = 0 otherwise.

(d) Define

€ = sz(-b_l)di and Gy =(1—¢€)/es,
i
and update the resampling probabilities for the (b + 1)st step by

b—1) nd;
O s,
4 b—1) od;
2 pz(' )ﬂg

(e) In the event that e, > 1/2 or €, = 0, the resampling probabilities are reset to
be equal.
3. Final classification. After B steps, the classifiers C(+; £1), ...,C(+; Lp) are aggre-
gated by weighted voting, with C(-; L) having weight w, = log(3).

LogitBoost

The LogitBoost algorithm was proposed by Friedman et al. (2000) on theoretical
grounds, to explain the good performance of boosting-based algorithms. Consider
binary classification, with Y € {—1,1}. At each stage, the aggregated classifier can
be viewed as an estimate of half the log-odds ratio, (1/2)log(f(x)/(1 — f(x))),
where f(x) = p(1|x) denotes the posterior probability for class 1. LogitBoost fits an
additive logistic model by stage-wise optimization of the binomial log-likelihood.
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1. Initialization. The weights are initialized to be equal (i.e., vi(o) = 1/n). For
observation x;, 1 < i < n, the initial committee function £(© (x;) is set to 0 and
the initial probability estimate for class 1 is set to f(0(x;) = 1/2.

2. LogitBoost iterations. The bth step, 1 < b < B, of the algorithm is as follows:
(a) Building the classifier.

i. Compute weights and working responses for each observation: = 1,...,n
b (b— (b—
v = FOI )L - O (x),

® v — (X))
Zi = —(b) .
Yy
ii. Compute the class predictions g)i(b) by weighted least squares fitting of sz)
to x;. For example, in the case of tree stumps C (Dettling and Biilmann,

2002)
n
(b . b) (b
y7,( ) = argMiNge(stymps} sz( )(ZE - C(X’H E))z
i=1
(b) Updating
- 1.
FOG) = FO )+ 50",
COx;;L) = sign(FP(xy)),
FOk) = (1+exp(=2F® (x)) ™"
3. Final classification. The predicted class for the composite classifier is C(x;; £) =
CB) (xy; L).

The LogitBoost algorithm is in general more robust than AdaBoost in the presence
of mislabeled observations and inhomogeneities in the learning sample. Dettling and
Biilmann (2002) applied the LogitBoost procedure to gene expression data using tree
stumps as the weak classifier (i.e., classification trees with only two terminal nodes).

3.6 Datasets
3.6.1 Breast cancer dataset: ER status and lymph node status

This dataset comes from a study of gene expression in breast tumors (West et al., 2001)
andis available atwww.genetics .mec.duke , edu/microarray/Published
%$20work.htm. Gene expression levels were measured for n = 49 breast tumor
mRNA samples using Affymetrix high-density oligonucleotide chips containing 7129
human probe sequences (HuGeneFL chips). Two outcomes were measured for each
tumor sample: estrogen receptor status, ER+4 (25 samples) vs. ER— (24 samples); and
lymph node status, affected node present or node+ (25 samples) vs. affected node
absent or node — (24 samples). It is believed that different biological mechanisms
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are involved in the development of breast cancer depending on the ER status of a
patient. Gene expression analysis may help to identify those mechanisms by bringing
the differences between the ER positive and negative patients to light. Nodal status
is an important prognostic factor; patients with no positive nodes generally have bet-
ter survival. Hence, uncovering the differences between nodal positive and negative
patients, and predicting nodal status based on gene expression profiles, may carry
important implications for understanding and predicting cancer survival.

Intensity data are available on the Web site and were preprocessed as in Dettling
and Biilmann (2002), p.7: (i) thresholding, with a floor of 100 and ceiling of 16,000;
(ii) base-10 logarithmic transformation; and (iii) standardization of arrays to have
mean zero and unit variance. The data are then summarized by a 7129 x 49 matrix
X = (zg4), where x4; denotes the expression measure for gene ¢ in breast tumor
sample 1.

3.6.2 Brain cancer dataset: medulloblastoma class and survival status

Pomeroy et al. (2002) used Affymetrix oligonucleotide chips to study gene expres-
sion in embryonal tumors of the central nervous system (CNS). The data are available
atwww-genome.wi.mit.edu/mpr/CNS; experimental and analysis procedures
are described in detail in the “Supplementary Information” document available on
the Web site. The authors were interested in distinguishing between different types
of brain tumors and predicting survival for patients with medulloblastoma (MD).
Although many types of brain tumors are easily distinguished by neurobiologists
using histological properties, tumor class assignment still remains somewhat subjec-
tive. In particular, the differences between two classes of medulloblastoma, classic
and desmoplastic, are subtle and not fully understood. In addition, no accurate markers
exist for determining the prognostic status of a patient. Identification of marker genes
for predicting survival using expression data would constitute a major achievement in
the field of neurobiology. In Pomeroy et al. (2002), gene expression levels were mea-
sured for MD tumor mRNA samples using Affymetrix high-density oligonucleotide
chips containing a total of 7129 human probe sequences, including 5920 known human
gene sequences and 897 ESTs (HuGeneFL chips). Two of the datasets in Pomeroy
et al. (2002) are described next.

Dataset B— MD classic vs. desmoplastic

This dataset is based on n = 34 medulloblastoma samples, 9 of which are desmo-
plastic and 25 classic. The data were pre-processed as described in the Supplement,
p.69: (i) thresholding, with a floor of 20 and ceiling of 16,000; (ii) filtering, with
exclusion of genes with max / min < 3 or (max —min) < 100, where max and
min refer respectively to the maximum and minimum intensities for a particular gene
across the 34 mRINA samples; and (iii) base-10 logarithmic transformation. The gene
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expression data were also standardized so that the observations (arrays) have mean 0
and variance 1 across variables (genes). The expression data are then summarized by
a 5893 x 34 matrix X = (x4;), where x4; denotes the expression measure for gene
¢ in MD sample <.

Dataset C — MD survival

This dataset contains n = 60 medulloblastoma samples, corresponding to 39 survivors
and 21 nonsurvivors. The data were preprocessed as described in the Supplement,
p.82: (i) thresholding, with a floor of 100 and ceiling of 16,000; (ii) filtering, with
exclusion of genes with max / min < 5 or (max — min) < 500, where max and
min refer respectively to the maximum and minimum intensities for a particular gene
across the 60 mRINA samples; and (iii) base-10 logarithmic transformation. The gene
expression data were also standardized so that the observations (arrays) have mean 0
and variance 1 across variables (genes). The expression data are then summarized by
a 4459 x 60 matrix X = (x4,), where x4, denotes the expression measure for gene
¢ in MD sample <.

3.7 Results
3.7.1 Study design

We have evaluated the performance of different classifiers for predicting tumor class
using gene expression data. Classifiers were compared using DNA microarray data
from two studies of gene expression in human tumors: the breast cancer study described
in West et al. (2001) and the medulloblastoma study of Pomeroy et al. (2002) (details
in Section 3.6). For each dataset and each binary outcome of interest, genes were
screened according to a two-sample t-statistic (with pooled variance estimator) or a
Wilcoxon rank statistic comparing expression measures in each of the two classes.
(The Wilcoxon rank statistic is a t-statistic computed using the ranks of the obser-
vations in place of their actual values. For more than two classes, one could use an
F-statistic; one would also note that, for K = 2, this is simply the square of a two-
sample t-statistic with pooled estimator of variance. The non-parametric rank analog
of the F-statistic is the Kruskal-Wallis statistic.)

In the main comparison (Table 3.3 to Table 3.6, Figure 3.5), error rates were estimated
using leave-one-out cross-validation for the following classifiers:

k-nearest neighbor classifiers (k-NN, k = 1, 3, 5, Euclidean distance);

Naive Bayes classifiers (diagonal linear discriminant analysis, DLDA, and diagonal
quadratic discriminant analysis, DQDA);

LogitBoost (B = 50, 100);
Random forests (G = VG, VG/2);
Support vector machines (SVM, linear and radial kernel, cost C' = 1 and 100).
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Classifiers were built using the G genes with the largest absolute ¢-statistics or
Wilcoxon statistics, G = 10, 50, 100, 500, 1000, and all. Gene screening was done
separately for each cross-validation training set of n — 1 observations, and was thus
taken into account when assessing the performance of the classifiers. This main com-
parison allows us to assess the relative merits of different types of classifiers (e.g.,
k-NN vs. SVMs) and study the sensitivity of the classifiers to the number of features
G and classifier parameters (e.g., k for k-NN). In addition, we considered various
byproducts of aggregation for random forests, such as out-of-bag error rates, predic-
tion votes, and variable importance statistics.

Finally, we performed a full (or double) cross-validation study to obtain honest esti-
mates of classification error when the training set is used to select classifier parameters
such as the number of features G and the number of neighbors & for k-NN. Recall
that any training involving parameters that are not specified a priori should be taken
into account when assessing the performance of the classifier, i.e., should be cross-
validated (see Section 3.4). In this full CV study, we only considered k-NN and
naive Bayes (DLDA and DQDA) classifiers. Parameters that were part of the cross-
validation study for £-NN include the number of genes G = 10, 50, 100, 500, 1000,
and the number of neighbors & = 1, 3, 5. For naive Bayes classifiers, we con-
sidered the number of genes G = 10, 50, 100, 500, 1000, and DLDA vs. DQDA
(i.e., pooled vs. unpooled variance estimators). For each training (leave-one-out) set,
a second round of LOOCYV was performed in order to determine the combination
of parameters that leads to the smallest classification error on that set. The predictor
was built using the cross-validated parameters and applied to the observation that
was left out at the first level of the LOOCV. The procedure was repeated for each of
the n observations and the resulting misclassification rate was recorded, as well as
the distribution of classifier parameters such as number of neighbors, type of variance
estimator, and number of variables.

3.7.2 Results
Plots of classifier partitions

To get a sense for the types of partitions produced by different classifiers, we con-
sidered the two genes with the largest absolute t-statistics for the brain tumor MD
survival dataset and built classifiers using only these two genes. Figure 3.1 to Fig-
ure 3.4 display the partitions produced by applying linear discriminant analysis (LDA,
R 1da function), quadratic discriminant analysis (QDA, R gda function), k-nearest
neighbors (R knn function, £ = 1, 3, 5, 11), and CART (R rpart function, tenfold
CV) to the entire learning set of n = 60 tumor samples. In this simple application,
the class boundary for QDA is almost linear and the resulting partition is very similar
to that of LDA. For k-NN, the boundaries are as expected very irregular with a small
number of neighbors & and become smoother as & increases. The CART partition of
the two-dimensional feature space is based on two splits only; boundaries are linear
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Figure 3.1 (See color insert following page 114.) Brain tumor MD survival dataset, LDA.
Partition produced by linear discriminant analysis (LDA) applied to the two genes with the
largest absolute 1-statistics. Predicted responses “survivor” and “nonsurvivor” are indicated
by shades of red and blue, respectively. The entire learning set of n = 60 samples was used
to build the classifier; the resubstitution error rate is shown below the plot. Learning set
observations are plotted individually using the color for their true class.

and parallel to the two axes (splits are based on individual variables in the default
CART implementation).

Results of the main comparison and other analyses are described next.
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Figure 3.2 (See color insernt following page 114.) Brain tumor MD survival dataset, QDA.
Partition produced by quadratic discriminant analysis (QDA) applied to the two genes with the
largest absolute -statistics. Predicted responses “survivor” and “nonsurvivor” are indicated
by shades of red and blue, respectively. The entire learning set of n = 60 samples was used
to build the classifier; the resubstitution error rate is shown below the plot. Learning set
observations are plotted individually using the color for their true class.
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Figure 3.3 (See color insert following page 114.) Brain tumor MD survival dataset, k-NN.
Partitions produced by k-nearest neighbor classification (k = 1, 3, 5, 11) applied to the two
genes with the largest absolute t-statistics. Predicted responses “survivor” and “nonsurvivor”
are indicated by shades of red and blue, respectively. The entire learning set of n = 60 samples
was used to build the classifier; the resubstitution error rate is shown below the plots. Learning
set observations are plotted individually using the color for their true class.

Good performance of simple classifiers

Diagonal linear discriminant analysis (DLDA), also known as naive Bayes classifica-
tion, was found to be accurate and robust in the comparison study. A rough minimax
argument, in which the best classifier for each dataset is defined to have the smallest
maximum error rate, shows that DLDA and k-NN performed very well compared
to more sophisticated classifiers (Table 3.3 to Table 3.6, Figure 3.5). The discussion
of classification error in terms of bias and variance in Friedman (1996b) provides a
more formal explanation for the competitiveness of naive Bayes methods and nearest
neighbor classifiers. Although no classifier is uniformly best, it is clearly advanta-
geous to use simple methods, which are intuitive and require little training, unless a
more complicated method is demonstrated to be better. As a benchmark, note that the
simplest rule would be to predict the class of all observations by the majority class
(i.e., the class with the largest representation in the learning set). This is related to
the Bayes rule when responses Y and feature variables X are independent (i.e., class
posterior probabilities p(k|x) are equal to the priors 7y, and 7 are estimated by the
sample proportions). The Bayes risk in this case is 1 — maxg 7, and the resubsti-
tution error for the learning set is 1 — max n /m. One can see that for all but the
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Figure 3.4 (See color insert following page 114.) Brain tumor MD survival dataset, CART.
Partition produced by CART (tenfold CV) applied to the two genes with the largest absolute
t-statistics. Predicted responses “survivor” and “nonsurvivor” are indicated by shades of
red and blue, respectively. The entire learning set of n = 60 samples was used to build the
classifier; the resubstitution error rate is shown below the plot. Learning set observations are
plotted individually using the color for their true class.

brain tumor survival dataset, the LOOCV classification error tended to be lower than
the benchmark error. In addition, for all but the estrogen dataset, the worst error for
any of the classifiers exceeded or approached the benchmark error for the majority
rule. Finally, note that random forests had difficulties with unbalanced class sizes
and almost always predicted the majority class when unable to build a good predic-
tor. Thus, with the small learning sets currently available in microarray experiments,
simple predictors with few tuning parameters are advisable.

Sensitivity to number of features

Feature selection is, in general, a very important issue in classification problems
because the choice of features can have a large impact on the performance of the
classifiers. Some classifiers, such as trees, perform automatic feature selection and
are relatively insensitive to the feature selection scheme. In contrast, standard LDA
and nearest neighbor classifiers do not perform feature selection; all variables whether
relevant or not are used in building the classifier. Because microarray datasets comprise
thousands of features, most of which are likely to be irrelevant for classification
purposes, we expected the performance of naive Bayes and k-NN to be very sensitive
to the set of genes retained for building the classifier. The results in Table 3.3 to
Table 3.6 and Figure 3.5 show only limited changes in performance when varying
the number of genes G. The largest effects are observed for the breast tumor nodal
dataset, where the smallest number of genes, G = 10, yielded the best results for all
classifiers. Similar findings are reported in Dettling and Biilmann (2002). To further
study the impact of gene screening, we examined the distance matrices used by k-NN
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Table 3.3 Breast tumor estrogen dataset — estimates of classification error using leave-one-out
cross-validation.

Classifier G=10 G=50 G=100 G=500 G=1000 G'="7129
(all)
k-NN
Euclidean distance
k =1, t-stat 3 6 6 8 8
k=1, W-stat 2 9] 7 9] 9] 8
k =3, t-stat 5 5 4 5 6
k = 3, W-stat 5 5 4 6] 5 [6]
k = 5, t-stat 5 [6] 5 3 4 5
k = 5, W-stat 4 4 4 4 [5] [5]
DLDA
t-stat E 3 4 4 E
W-stat 6 4 4 4 4 6
DQDA
t-stat 5 4 6 6 7
W-stat 6 4 4 6 7
LogitBoost
B = 50, t-stat 4] 2 2 3 3 2
B = 50, W-stat 4] 2 3 [4] 3 2
B =100, t-stat 41 2 3 5] 3
B = 100, W-stat [4] 3 2 3 4] 3
Random forest
Go = VG/2, t-stat 3 3 4 4
Go=vG/2,W-stat 3 4 5] 5] E
Go = VG, t-stat 3 3 5 5 4
Go = VG, W-stat 2 3 4 5] 5] 4
SVM
linear, C' = 1, t-stat 5 4 4 7] 6 6
linear, C = 1, W-stat 3 3 7] 6 6
linear, C' = 100, t-stat 5 4 4 l 6 6
linear, C' = 100, W-stat 3 3 7] 6 6
radial, C = 1, t-stat 6] 5 [6] 5 5 4
radial, C = 1, W-stat 5 |E| 5 E 4 4
radial, C = 100, t-stat 6 5 5 l 6 6
radial, C = 100, W-stat 5 [6] 3 6] [6] [6]

Note: The G genes with the largest absolute ¢- and Wilcoxon statistics for comparing expression measures
in ER+ and ER— patients were selected separately for each CV training set of size n — 1 = 48. The
majority rule benchmark resubstitution error is 24. The maximum error for each predictor (row of the table)
is enclosed in a box.
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Table 3.4 Breast tumor nodal dataset — estimates of classification error using leave-one-out
cross-validation.

Classifier G =10 G=50 G=100 G'=500 G=1000 G?%%
a
k-NN
Euclidean distance
k =1, t-stat 8 21 19 19
k=1, W-stat 10 16 14 21
k = 3, t-stat 8 22 19 19 22
k = 3, W-stat 10 16 18 19 21
k = 5, t-stat 8 22 18 22 19
k = 5, W-stat 10 13 19 19 21
DLDA
t-stat 8 14 17 15 17
W-stat 10 10 15 16
DQDA
t-stat 117 18 22 24
W-stat 12 13 22 22 20
LogitBoost
B = 50, t-stat 9 17 16 15 13
B = 50, W-stat 9 12 12 8 13
B = 100, t-stat 9 18 14 14 12
B =100, W-stat 9 13 11 11 12
Random forest
Go = VG/2, t-stat 6 13 15 18 16
Go = VG/2, W-stat 9 9 17 16 15
Go = VG, t-stat 713 14 15 17
Go = VG, W-stat 8 9 15 17 17
SVM
linear, C' = 1, t-stat 7 14 12 15
linear, C' = 1, W-stat 9 17 16 14 14
linear, C' = 100, t-stat 9 14 12 15
linear, C = 100, W-stat 11 18 16 14 14
radial, C = 1, t-stat 8 16 18 15 16
radial, C' = 1, W-stat 7 12 15 14 17
radial, C = 100, t-stat 8 16 19 15 14
radial, C = 100, W -stat 9 16 14 14 15

Note: The G genes with the largest absolute ¢- and Wilcoxon statistics for comparing expression measures
in nodal4 and nodal— patients were selected separately for each CV training set of size n — 1 = 48.
The majority rule benchmark resubstitution error is 24. The maximum error for each predictor (row of the

table) is enclosed in a box.
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Table 3.5 Brain tumor classic vs. desmoplastic MD dataset — estimates of classification error
using leave-one-out cross-validation.

Classifier G=10 G=50 G=100 G= 500 G'=1000 G'=5893
(all)
k-NN
Euclidean distance
k =1, t-stat 6 6 5 4 3 10
k=1, W-stat 4 6 4 4 4 10
k = 3, t-stat 5 5 3 4 5 8
k=3, W-stat 4 4 3 4 4 8
k = 5, t-stat 6 3 3 3 5 8
k=5, W-stat 5 4 4 4 6 8
DLDA
t-stat [6] 4 5 4 4 5
W-stat 4 [5] [5] 4 4 [5]
DQDA
t-stat 6 6 8 8 9]
W -stat 5 6 5 5 [9] 9]
LogitBoost
B = 50, t-stat 10 8 6 6 7
B = 50, W-stat 5 3 6 8
B = 100, t-stat 7 8 7 7 9
B = 100, W-stat 6 7 8 [9] [9]

Random forest

Gy = VG /2, t-stat 5 6 6 8 B B

Go = VG /2, W-stat 4 7 7 8 9] 9]

Go = VG, t-stat 6 6 6 8 9] 9]

Go = VG, W-stat 5 7 7 [9] 9] 9]
SVM

linear, C' = 1, t-stat 5
linear, C' = 1, W-stat .
linear, C' = 100, t-stat 4
linear, C' = 100, W-stat  [9]
5
4
6
5

radial, C = 1, t-stat
radial, C = 1, W-stat
radial, C = 100, t-stat
radial, C = 100, W-stat

S[E)e » <[ E

[« NV, e S Y I« Y B«
O\O\m@O‘\O\O\

[ e Y e = e R =2

UIH-BJ;\I\]\]\]

Note: The G genes with the largest absolute ¢- and Wilcoxon statistics for comparing expression measures
in classic vs. desmoplastic MD patients were selected separately for each CV training set of sizen—1 = 33.
The majority rule benchmark resubstitution error is 9. The maximum error for each predictor (row of the

table) is enclosed in a box.
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Table 3.6 Brain tumor MD survival dataset — estimates of classification error using leave-
one-out cross-validation.

Classifier G=10 G=50 G=100 G=500 G=1000 G'=4459
(all)
k-NN
Euclidean distance
k =1, t-stat 20 29 25 26 28
k=1, W-stat 18 24 24 25
k = 3, t-stat 20 22 20 19 23
k=3, W-stat 16 22 19 18 21
k = 5, t-stat 21 22 22 18 23
k =5, W-stat 19 22 19 20 2
DLDA
t-stat 19 25 23 24 24
W-stat 17 21 24 25
DQDA
t-stat 2 24 23 23 23
W -stat 17 22 26 23
LogitBoost
B = 50, t-stat 2 21 21 21 18
B = 50, W-stat 17 23 20 17 18
B = 100, t-stat 19 19 16 16 16
B = 100, W-stat 21 24 19 15 16

Random forest

Go = VG/2, t-stat 17 20 19

Go = VG /2, W-stat 16 20 20 20
Go = VG, t-stat 18 21 20 19 20
Go = VG, W-stat 17 20 18 19 20
SVM o
linear, C' = 1, t-stat 17 |29 22 22 19
linear, C' = 1, W-stat 16 2_9 25 24 24 19
linear, C' = 100, t-stat 19 |29 22 22 19
linear, C' = 100, W-stat 21 128 | 25 24 24 19
radial, C' = 1, t-stat 20 20 20 17 21
radial, C =1, W-stat 14 21 16 18 21
radial, C' = 100, t-stat 20 [25] 22 21 20
radial, C' = 100, W-stat 21 127 | 23 24 23 20

Note: The G genes with the largest absolute ¢- and Wilcoxon statistics for comparing expression measures
in MD survivors vs. nonsurvivors were selected separately for each CV training set of size n — 1 = 59.
The majority rule benchmark resubstitution error is 21. The maximum error for each predictor (row of the

table) is enclosed in a box.
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Figure 3.5 (See color insert following page 114.) Comparison of classification error rates.
Classification error rates were estimated for each classifier using leave-one-out cross-
validation as in Table 3.3 to Table 3.6. For each family of classifiers and given number of
genes G, median error rates were computed over the parameter values considered in Table 3.3
to Table 3.6. The median error rates are plotted vs. the number of genes G (on log-scale) for
each family of classifiers.

(color images in Figure 3.6 and Figure 3.7). Increasing the number of genes G clearly
attenuates between class differences, especially for the estrogen dataset; however, the
most similar samples are still found within classes. Thus, k-NN classifiers with a small
number of neighbors & had areasonable performance even with the full complement of
genes. (We chose to display Pearson correlation matrices and not Euclidean distance
matrices because the former are easier to compare across datasets. In addition, for
standardized arrays, classification results based on Euclidean distance and correlation
matrices are very similar and identical for G = all.) Random forests and LogitBoost
were, as expected, not very sensitive to the number of features GG. Although classifier
performance does not always deteriorate with an increasing number of features, some
screening of the genes down to, for example, G = 10 — 100, seems advisable.

Feature selection procedure
In the main comparison, genes were Screened using a t- or Wilcoxon statistic and the

G genes with the largest absolute test statistics were retained to build the classifier.
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Figure 3.6 (See color insert following page 114.) Breast tumor estrogen dataset. Images of
the correlation matrix for the 49 breast tumor mRNA samples based on expression profiles
Jor: (a) all G = 7129 genes; (b) the G = 500 genes with the largest absolute t-statistics;
(c) the G = 100 genes with the largest absolute t-statistics; (d) the G = 10 genes with the
largest absolute t-statistics. The mRNA samples are ordered by class: first ER positive, then ER
negative. Increasingly positive correlations are represented with yellows of increasing intensity,
and increasingly negative correlations are represented with blues of increasing intensity. The
color bar below the images may be used for calibration purposes.

In general, gene screening based on robust Wilcoxon statistics did not seem to con-
sistently increase or decrease error rates compared to using t-statistics. The largest
effects were seen for the breast nodal dataset. Naive one-gene-at-a-time approaches
do not account for the joint effects of genes on class distinction and can produce
groups of highly correlated genes providing redundant information on classification.
In contrast, variable importance statistics derived from random forests account for the
joint action of genes and could be used in principle to detect genes with weak main
effects but strong interactions.

We thus compared ¢-statistics and Wilcoxon statistics to two of the importance statis-
tics described in Section 3.5.3. The R function RanForests, for Random Forests
version 1, only returns measures 1 and 4. Importance measure 1 is very discrete (it
refers to numbers of observations) and hardly provides any discrimination between
genes. Measure 4 provides better discrimination and qualitatively matches the ¢- and
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Figure 3.7 (See color insert following page 114.) Breast tumor nodal dataset. Images of the
correlation matrix for the 49 breast tumor mRNA samples based on expression profiles for:
(a) all G = 7129 genes; (b) the G = 500 genes with the largest absolute t-statistics; (c) the
G = 100 genes with the largest absolute t-statistics; (d) the G = 10 genes with the largest
absolute t-statistics. The mRNA samples are ordered by class: first nodal positive, then nodal
negative. Increasingly positive correlations are represented with yellows of increasing intensity,
and increasingly negative correlations are represented with blues of increasing intensity. The
color bar below the images may be used for calibration purposes.

Wilcoxon statistics for high values (Figure 3.8 to Figure 3.11). In other applications of
random forests, we have found that measure 2 is similar to measure 4, while measure
3 is similar to measure 1.

Sensitivity to classifier parameters

Tn addition to the number of genes G, most classifiers in this study have a number
of tuning parameters with values that affect classification error. In a previous article,
we found that nearest neighbor classifiers performed best with a small number of
neighbors, £ = 1 — 5 (Dudoit et al., 2002a). Furthermore, considering a much larger
number of neighbors is often infeasible in microarray experiments due to small sample
sizes. In the present study, we considered only small &£’s between 1 and 5, and found
that, within this range, classifier performance was fairly robust to the choice of k.
For SVMs, no single kernel was found to be best across datasets and number of
genes (. The performance of SVMs was fairly insensitive to the cost parameter or
penalty C. Random forests were robust to the parameter GG for the number of random
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Figure 3.8 Breast tumor estrogen dataset. Comparison of two-sample t-statistics, Wilcoxon
statistics, and random forests imporiance measures 1 and 4 (Gy = V'G). Test statistics were
computed using the entire learning set of n = 49 observations. Plot of importance measure
1 vs. absolute t-statistic (top left); plot of square-root of importance measure 4 vs. absolute
t-statistic (top right); plot of importance measure 1 vs. absolute Wilcoxon statistic (bottom left);
plot of square root of importance measure 4 vs. absolute Wilcoxon statistic (bottom right).

features considered at each node. The number of boosting iterations B for LogitBoost
classifiers did not have a strong effect on classification error; B = 50 or 100 appears
to be a good choice. This observation is consistent with the results of Dettling and
Biilmann (2002), who concluded that the advantages of a more refined procedure for
selecting B based on LOOCV were limited. It is very important to note that only
gene screening was cross-validated in the main comparison, and not the selection of
other parameters, such as the number of neighbors in k-NN. Although the error rates
in Table 3.3 to Table 3.6 are meaningful for comparison purposes, they are not good
estimates of generalization error, as discussed in Section 3.4 and next. For accurate
estimates of generalization error, one would need to make all training decisions on
the training set only (i.e., on each set of n — 1 training observations for LOOCV).

Impact of aggregation
As expected, bagging improved the performance of unstable classifiers such as trees,

but appears to have very little effect on stable classifiers such as k-NN and naive
Bayes (data not shown).
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Figure 3.9 Breast tumor nodal dataset. Comparison of two-sample t-statistics, Wilcoxon statis-
tics, and random forests importance measures 1 and 4 (Gy = V'G). Test statistics were com-
puted using the entire learning set of n = 49 observations. Plot of importance measure 1 vs.
absolute t-statistic (top left); plot of square-root of importance measure 4 vs. absolute t-statistic
(top right); plot of importance measure 1 vs. absolute Wilcoxon statistic (bottom left); plot of
square root of importance measure 4 vs. absolute Wilcoxon statistic (bottom right).

Prediction votes

Predictions votes, reflecting the confidence of predictions for individual observations,
are returned as byproducts of aggregated classifiers (random forests). The boxplots
of prediction votes for correct and incorrect predictions in Figure 3.12 indicate that
larger votes tend to be associated with correct predictions. The breast tumor nodal
and brain survival datasets tended to have high classification error rates. The low
confidence in the predictions for random forests is reflected in low prediction votes
for both correct and incorrect classifications (around the minimum value of 0.5 for
binary classification). Thus, as suggested in our earlier study (Dudoit et al., 2002a),
low prediction votes tend to correspond to cases which are hard to predict and may
require follow-up.

Out-of-bag error rate

Another useful byproduct of bagged classifiers is the out-of-bag estimate of classi-
fication error. We found this error rate to be very similar to the LOOCV estimate
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Figure 3.10 Brain tumor classic vs. desmoplastic MD dataset. Comparison of two-sample t-
statistics, Wilcoxon statistics, and random forests importance measures 1 and 4 (Gy = VG ).
Test statistics were computed using the entire learning set of n = 34 observations. Plot of
importance measure 1 vs. absolute t-statistic (top left); plot of square-root of importance
measure 4 vs. absolute t-statistic (top right); plot of importance measure 1 vs. absolute Wilcoxon
statistic (bottom left); plot of square-root of importance measure 4 vs. absolute Wilcoxon
statistic (bottom right).

for classifiers built using the entire set of genes (Table 3.7). Out-of-bag estimation
is attractive because it is part of the classifier building process and does not require
a separate test set; however, it does not take into account feature selection or other
forms of training done prior to aggregating the classifier. If feature selection is per-
formed beforehand, the out-of-bag estimates of error rates will in general be biased
downward (Dudoit et al., 2002a). Incorporating some form of feature selection as part
of the bagging process could prove useful.

Honest estimates of error rates

Last but not least, konest classifier performance assessment is a very important notion
that has been ignored to a large extent in microarray data analysis. It is common
practice in microarray classification to screen genes and fine-tune classifier parameters
(e.g., number of neighbors & in nearest neighbor classification) using all of the learning
set and then perform cross-validation only on the classifier building portion of the
process. The resulting estimates of generalization error are generally biased downward
and thus overly optimistic. The importance of taking into account gene screening
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Figure3.11 Braintumor MD survival dataset. Comparison of two-sample t-statistics, Wilcoxon
statistics, and random forests imporiance measures 1 and 4 (Gy = VG). Test statistics were
computed using the entire learning set of n = 60 observations. Plot of importance measure
1 vs. absolute t-statistic (top left); plot of square-root of importance measure 4 vs. absolute
t-statistic (top right); plot of importance measure 1 vs. absolute Wilcoxon statistic (bottom left);
plot of square-root of importance measure 4 vs. absolute Wilcoxon statistic (bottom right).

and other training decisions in error rate estimation procedures was also stressed by
Ambroise and McLachlan (2002) and West et al. (2001).

The results in Table 3.8 to Table 3.11 contrast LOOCYV estimates of classification error
for genes selected using the entire learning set £ and for genes selected separately for
each CV training set of size n — 1. The later estimates are generally much higher and
more realistic estimates of generalization error. The difference is particularly striking
for the breast tumor nodal and brain tumor survival datasets. Figure 3.13 compares
the classification error estimates of 1-NN and DLDA, for three different estimation
procedures applied to the breast tumor nodal dataset:

1. Resubstitution estimation, where the entire learning set is used to perform feature
selection, build the classifier, and estimate classification error.

2. Internal LOOCV, where feature selection is done on the entire learning set and
LOOCYV is applied only to the classifier building process.

3. External LOOCV, where LOOCYV is applied to the feature selection and the clas-
sifier building process.
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Figure 3.12 Prediction votes and vote margins. The boxplots summarize prediction votes and
absolute vote margins obtained by applying random forests to the entire learning set for each
of the four datasets (i.e., all genes and all samples), Go = v/G. Prediction votes and margins
are stratified according to the correctness of the prediction. The widths of the boxplots are
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proportional to the square root of the number of observations in each of the groups.

This analysis again demonstrates the large downward biases resulting from improper

cross-validation.

In order to obtain honest estimates of generalization error, one should perform a full
cross-validation of gene screening and other parameter training. The results of a full

Table 3.7 Out-of-bag error rates. ®

Dataset Out-of-bag error rate  LOOCV
Breast: Estrogen 5/49 5/49
Breast: Nodal 19/49 20/49
Brain: MD classic vs. desmoplastic 9/34 9/34
Brain: MD survival 20/60 21/60

& Qut-of-bag error rates from random forests built using the entire learning set for each of the four datasets

(i.e., all genes and all samples), Go = V/G.
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Table 3.8 Breast tumor estrogen dataset — estimates of classification error using leave-one-
out cross-validation, with gene screening by t-statistic performed on the entire learning set
or separately for each CV training set.®

G=10 G=50 G=100 G=500 G =1000

k-NN, k=1
Euclidean distance
Internal 3 6 6 6 7
External 3 6 6 8 11
DLDA
Internal 2 1 2 2 3
External 6 3 4 4 4
Random forest
Go =VG/2
Internal 2 2 2 5 3
External 3 3 5 4 4

2 Internal LOOCYV, n = 49 cases used for feature selection.
b External LOOCYV, n — 1 = 48 cases used for feature selection.

Table 3.9 Breast tumor nodal dataset — estimates of classification error using leave-one-out
cross-validation, with gene screening by t-statistic performed on the entire learning set® or
separately for each CV training set.®

G=10 G=50 G=100 G=500 G =1000

k-NN, k=1
Euclidean distance
Internal 6 6 12 14 15
External 8 25 21 19 19
DLDA
Internal 5 6 5 5 6
External 8 14 19 17 15

Random forest

Go =VG/2
Internal 5 6 6 7 10
External 6 13 15 18 16

2 Internal LOOCYV, n = 49 cases used for feature selection.
b External LOOCV, n — 1 = 48 cases used for feature selection.
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Table 3.10 Brain tumor classic vs. desmoplastic MD dataset — estimates of classification error
using leave-one-out cross-validation, with gene screening by t-statistic performed on the entire
learning set ® or separately for each CV training set.®

G=10 G=30 G=100 G=500 G=1000

kE-NN, k=1
Euclidean distance
Internal 3 2 2 2 1
External 6 6 5 4
DLDA
Internal 2 2 2 2 3
External 6 4 5 4 4
Random forest
Go =VG/2
Internal 2 2 3 5 5
External 5 6 6 8 9

2 Internal LOOCYV, n = 34 cases used for feature selection.
b External LOOCV, n — 1 = 33 cases used for feature selection.

Table 3.11 Brain tumor MD survival dataset — estimates of classification error using leave-
one-out cross-validation, with gene screening by t-statistic performed on the entire learning
set® or separately for each CV training set.”

G=10 G=50 G=100 G=500 G=1000

kE-NN, k=1
Euclidean distance
Internal 17 10 16 18 19
External 20 29 32 25 26
DLDA
Internal 9 7 6 12 14
External 19 25 23 24 24

Random forest

Go =VG/2
Internal 7 11 13 12 16
External 17 21 20 19 21

2Internal LOOCYV, n = 60 cases used for feature selection.
bExternal LOOCV, nn — 1 = 59 cases used for feature selection.
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Figure 3.13 (see color insert following page 114.) Breast tumor nodal dataset. Comparison
of classification error estimation procedures: (solid lines) resubstitution estimation, where
the entire learning set is used to perform feature selection, build the classifier, and estimate
classification error; (dashed lines) internal LOOCYV, where feature selection is done on the
entire learning set and LOOCYV is applied only to the classifier building process; (dotted lines)
external LOOCV, where LOOCYV is applied to the feature selection and the classifier building
process. Error rates are plotted vs. the number of genes G (on log-scale) for (a) DLDA and (b)
1-NN.

cross-validation study are reported for k-NN and naive Bayes classifiers in Table 3.12.
These errorrates are higher than those in Table 3.3 to Table 3.6. In addition, parameters
estimated by LOOCYV (inner LOOCV) tended to vary substantially, as observed with
k for k-NN and the variance estimator for naive Bayes classified. LOOCV most often
selected pooled variance estimators for naive Bayes classifiers and a small number of
neighbors £ = 1 or 3 for k-NN. Estimates of the number of genes were very variable
for all but the nodal dataset, where G was always estimated as 10. For the two brain
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Table 3.12 Full cross-validation — estimates of classification error for k-NN and naive Bayes,
using leave-one-out cross-validation to select classifier parameters and to estimate the overall
error rate (i.e., double CV).

Breast tumor dataset Brain tumor dataset
Estrogen Nodal MD classic vs. MD survival
desmoplastic
k-NN
Euclidean distance
Error rate 6/49 9/49 5/34 25/60
Number of 1 (60%) 1 (47%) 3 (70%) 3 (70%)
neighbors, k
Number of 10 (71%) 10 (100%) 100 (56%) 500 (37%)
genes, G
Naive Bayes
Error rate 6/49 9/49 7/34 24/60
Variance pooled (65%) pooled (91%) pooled (80%) pooled (56%)
estimator
Number of 50 (57%) 10 (100%) 50 (56%) 10 (55%)
genes, G

Note: For k-NN, the number of genes G = 10, 50, 100, 500, 1000 and the number of neighbors k =
1, 3, 5 were selected by LOOCYV. For naive Bayes, the number of genes G = 10, 50, 100, 500, 1000
and the type of variance estimator (pooled vs. unpooled, or DLDA vs. DQDA) were selected by LOOCV.
The entries in parentheses indicate the percentage of the CV steps (out of nn for LOOCV) for which the

corresponding parameter values were selected. Variables were selected using a two-sample ¢-statistic.

tumor datasets, G was generally smaller for naive Bayes classifiers than for k-NN,
while for the estrogen data G was generally smaller for k-NN.

3.8 Discussion

Classification is an important question in microarray experiments, for purposes of
classifying biological samples and predicting clinical or other outcomes using gene
expression data. Although classification is by no means a new subject in the statis-
tical literature, the large and complex multivariate datasets generated by microarray
experiments raise new methodological and computational challenges. These include
building accurate classifiers in a “small n, large p ” situation and obtaining honest esti-
mates of classifier performance. A number of recent articles have addressed statistical
issues related to classification in the context of microarray experiments: Ambroise
and McLachlan (2002); Chow et al. (2001); Dettling and Bililmann (2002); Dudoit
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et al. (2002a); Golub et al. (1999); Moler et al. (2000); Pomeroy et al. (2002); Shieh
et al. (2002); Tibshirani et al. (2002); West et al. (2001). These have mostly focused
on existing methods or variants thereof, and, in general, comparison studies have been
limited. So far, most articles on tumor classification have applied a single technique
to a single gene expression dataset. Furthermore, comparison studies have not always
been properly calibrated and, as reported by Ambroise and McLachlan (2002) and
West et al. (2001), performance assessment procedures have often been inaccurate,
due to the common practice of omitting gene screening from the validation process.

This chapter introduced the statistical foundations of classification and reviewed a
number of commonly used classifiers. The important issues of feature selection and
honest classifier performance assessment were discussed. A broad range of classi-
fiers for predicting tumor class were evaluated using gene expression measures from
studies of brain and breast cancer. The results confirmed earlier findings that simple
methods, such as nearest neighbor and naive Bayes classification, are competitive
with more complex approaches, such as aggregated classification trees or support
vector machines (Dudoit et al., 2002a). These basic methods are intuitive and require
little training; they are thus advisable and safer for inexperienced users. As learning
sets increase in size, we may see, however, an improvement in the performance of
more complex classifiers such as random forests. These methods may also be used
to gain a better understanding of the predictive structure of the data and in particular
gene interactions which may be related to class distinction. Other useful byproducts
of random forests are vote margins and out-of-bag error rates. Although classifier
performance did not always deteriorate with an increasing number of irrelevant fea-
tures, some screening of the genes down to, for example, G = 10 — 100, appears
to be advisable. Finally, we have demonstrated the importance of honest classifier
performance assessment, which takes into account gene screening and other training
decisions in error rate estimation procedures such as cross-validation.

Decisions that could affect classifier performance and were not examined here are
the choices of class priors and loss function. In addition, we did not consider poly-
chotomous vs. binary classification. These questions are most important in situations
where the learning set comprises several unbalanced classes. The results of Dudoit
et al. (2002a) for 3- and 8-class microarray datasets are consistent with those of the
present chapter; however, a more complete study, considering class priors and loss
function, is still needed. A number of other issues which were only briefly addressed
here deserve further study. Similar to most articles published to date, we have focused
on the prediction of polychotomous responses. However, in many important appli-
cations of microarray experiments, such as clinical trials, the outcome of interest
may be quantitative (e.g., blood pressure, lipid level) or censored (e.g., censored sur-
vival time). In addition, more accurate predictions may be obtained by inclusion of
other predictor variables such as age or sex. For the purpose of comparing classifiers,
we have relied on naive one-gene-at-a-time screening procedures. Such univariate
approaches have obvious limitations. The selected gene subsets may include a large
number of genes with highly correlated expression measures, which provide redun-
dant information on classification and may mask important genes with smaller main
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effects. In addition, such methods do not allow the detection of genes with weak main
effects but strong interactions. Use of multivariate feature selection procedures may
improve classifier performance and, more important, yield insight into the predictive
structure of the data (i.e., identify individual genes and sets of interacting genes that are
related to class distinction). Further investigation of the resulting genes may improve
our understanding of the biological mechanisms underlying class distinction, and may
eventually lead to the identification of marker genes to be used in a clinical setting for
predicting outcomes such as survival and response to treatment. Although we have
stressed the importance of accurate estimation of classification error and presented a
number of different resampling procedures for estimating these error rates, the com-
parison study for the brain and breast tumor datasets relied primarily on leave-one-out
cross-validation. A thorough study of the distributional properties of different error
rate estimators is needed.

The clinical application of microarrays to cancer diagnosis and treatment requires the
development of accurate classifiers, which provide confidence measures for individual
predictions and are based on a subset of well-studied marker genes and clinical covari-
ates. Much more complete studies of predictor performance and biological validation
are needed before such an approach can be recommended. For microarray-based
prediction methods to ever become useful and reliable tools in the clinic, it will
be necessary to assemble comprehensive databases of tumor samples diagnosed by
traditional means and with associated gene expression profiles and relevant clinical
covariates. Designing clinical studies for this purpose will require the close collabo-
ration of clinicians, biologists, and statisticians. The number of test samples needed
to truly assess the clinical performance of any of the classifiers described in this
chapter is much larger than what is currently available. Furthermore, these samples
should come from diverse and well-defined sources (hospitals, labs), and should rep-
resent a variety of patients with different characteristics such as age, sex, race, type
of tumor, etc.

The microarray classification studies performed to date have been based on small
sample sizes and can be viewed only as preliminary and limited indications of the
feasibility of microarray-based diagnosis and treatment. The following points can be
made:

1. Ttis possible to use microarray expression measures to distinguish among different
biological outcomes, such as tumor class. Due to limited sample sizes, however, it
is not clear how accurately microarray expression measures can distinguish among
different outcomes, especially those that reflect subtle biological differences.

2. None of the studies performed thus far have provided evidence in favor of a single
best classifier.

3. With the currently available datasets, complex classifiers do not appear to improve
upon simple ones.

4. The tumor classification error rates reported in the literature are generally biased
downward, i.e., overestimate the accuracy with which biological and clinical out-
comes can be predicted based on expression measures. Any realistic estimate of
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generalization error (i.e., of the error rate for a new sample) should be based on
large and representative test sets and should take into account all classifier train-
ing decisions (e.g., number of genes, classifier parameters such as the number of
neighbors k in k-NN).

5. Tracking classifier parameter values in a full (double) cross-validation study can
reveal important aspects of the data. Therefore, cross-validation should not only
be viewed as an error rate estimation procedure, but also as an exploratory analysis
tool.

In conclusion, before patients can benefit directly from the use of microarrays in
cancer research, well-designed studies are needed to develop and refine accurate
microarray-based predictors of clinical outcomes.

3.9 Software and datasets

Most classification procedures considered in this chapter are implemented in open
source R packages (Thaka and Gentleman, 1996), which may be downloaded from the
Comprehensive R Archive Network (cran. r-project. org)orthe Bioconductor
Web site (www . bioconductor .org).

Linear and quadratic discriminant analysis. Linear and quadratic discriminant anal-
yses are implemented in the 1da and gda functions from the MASS package.
DLDA and DQDA are implemented in the stat .diag.da function from the
sma package. Mixture and flexible discriminant analysis procedures are imple-
mented in the mda package.

Nearest neighbor classifiers. The knn function from the class package can be
used for k-nearest neighbor classification.

Classtfication trees. CART of Breiman et al. (1984) are implemented in the commer-
cial software package CART version 1.310 (California Statistical Software, Inc.)
or the more recent CART 4.0 PRO (Salford Systems). They are also implemented
in the R package rpart.

Bagging. The R package ipred implements direct and indirect bootstrap aggrega-
tion in classification and regression, and provides resampling-based estimators of
prediction error.

Random forests. Fortran code and R interface for Random Forests version 1 may
be downloaded from oz . berkeley.edu/users/breiman. Random forests
are also implemented in the R package randomForest.

LogitBoost. The R package LogitBoost provides an implementation of the Log-
itBoost algorithm for tree stumps described in Dettling and Biilmann (2002).

Support vector machines. An implementation of SVMs is available in the svm func-
tion from the R package e1071.
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The following Web sites provide access to a large number of microarray datasets: Stan-
ford Genomic Resources (genome -www . stanford.edu) and Whitehead Insti-
tute, Center for Genome Research (www-genome .wi .mit.edu/cancer).
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CHAPTER 4

Clustering microarray data

Hugh Chipman, Trevor J. Hastie, and Robert Tibshirani

4.1 An example

We begin with an example that will be used throughout the chapter. The data come from
Sgrlie et al. (2001). The goal of that article was to “classify breast carcinomas based
on variations in gene expression derived from complementary deoxyribonucleic acid
(cDNA) microarrays and to correlate tumor characteristics to clinical outcome.” The
data consist of log fluorescence values for 456 cDNA clones measured on 85 tissue
samples. Of the 85 samples, 4 are normal tissue samples, 78 are carcinomas, and 3 are
fibroadenomas. Three of the four normal tissue samples were pooled normal breast
samples from multiple individuals. Sgrlie et al. (2001) selected the 456 genes from
an initial set of 8102 genes so as to optimally identify the intrinsic characteristics
of breast tumors. In Figure 4.1 and Figure 4.2, the data are plotted as heat maps.* This
representation assigns a color for every matrix entry, with negative (underexpressed)
values being green, and positive (overexpressed) values red. The data presented in
this plot were preprocessed by Serlie et al. (2001), adjusting rows and columns to
have median zero. This preprocessing was applied before selection of the subset of
456 genes, so the column (i.e., sample) medians are not precisely zero.

Heat maps are used to look for similarities between genes and between samples. They
are most effective if rows and columns are ordered so as to allow these patterns to
be identified. Clustering is often used to give this ordering, by identifying groups of
samples (genes) and then arranging the groups so that the closest groups are adjacent.
This is illustrated in Figure 4.1, where rows and columns are arranged according to
separate hierarchical clusterings. Sgrlie et al. (2001) used a similar graphic to identify
interesting groups of genes and tumor subtypes. In Figure 4.2, five interesting gene
subgroups are given. These are similar to those identified by Sgrlie et al. (2001).
These gene groups were selected because of unusually high or low expression levels
among some of the tumors (columns). The gene groups highlighted in Figure 4.2 are
used to characterize the different tumor subtypes. The six tumor subtypes (indicated
by color from left to right of the dendogram in Figure 4.2) are Basal-like (red),

* These plots were generated using Michael Eisen’s Cluster and Treeview packages.
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Figure 4.1 (See color insert following page 114.) Heat map of the microarray data, with rows
and columns arranged according to a hierarchical clustering method. Grey pixels represent
missing data. Letters A—E and corresponding grey bars represent groups of genes displayed in
greater detail in Figure 4.2.

ERBB2 + (pink), Normal Breast-like (green), Luminal Subtypes C, B, and A (light
blue, orange, dark blue). For example, the Basal-like subgroup (red) is characterized
by high expression levels of genes in group C, and low levels in group E. The high
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Figure4.2 (Seecolorinsertfollowing page 114.) Enlarged segments of the heat map. Interesting
groups of genes (rows) have been selected from Figure 4.1, as indicated by the letters A—E.
Tumor subtypes corresponding to clusters of columns are indicated by color bars on the upper
dendogram. See text for discussion.

levels in group C include keratin 17, laminin, and fatty acid binding protein 7. Within
the Normal Breast-like tumor group are all “Benign” and “Normal” samples. The four
Normal samples are characterized by “the highest expression of many genes known
to be expressed by adipose tissue and other nonepithelial genes” (group D).

Clustering methods are of interest beyond their applications to heat maps. Research-
ers wish to identify groups of samples that have similar expression level patterns, and
genes that are similar across samples. Clustering may also be used for “supervised”
learning tasks, looking at the association between clusters and some medical outcome.
Although this is termed supervised learning, the outcome is not used in construction
of the clusters.

In the remainder of this chapter, discussion of general methods is phrased in terms
of clustering “objects.” For microarray data, these objects could be either samples or
genes. Most of our examples emphasize the clustering of samples.
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The rest of the chapter is organized as follows: Section 4,2 discusses measures of
dissimilarity and issues relating to missing data and imputation. An introduction to
clustering methods is given in Section 4.3. Partitioning methods such as K'-means,
K-medoids, and self-organizing maps are discussed in Section 4.4, Section 4.5 covers
a variety of hierarchical methods, including bottom-up and top-down algorithms.
Two-way clustering methods are discussed in Section 4.6, and methods relating to
principal components and the singular value decomposition are discussed in Section
4.7. Section 4.8 mentions other work in clustering microarray data, and software is
discussed in Section 4.9.

4.2 Dissimilarity

Fundamental to clustering is a measure of similarity (or dissimilarity) of the objects
being clustered. Clustering seeks to group together those objects which are most
similar (or least dissimilar). The within-cluster dissimilarity can form the basis for
a loss function that clustering seeks to minimize, in much the same way that linear
regression seeks to minimize the sum of squared distances between observed and
fitted values.

Common measures of dissimilarity for continuous data include Euclidean distance,

P

e —yll = | D (@ —9:)?, 4.1
=1
or its square,
P
e —yll* = (@ —w)*. 42)
=1

Here, z and y are p-vectors of measurements on the objects to be clustered. Also used
are L; (Manhattan) distance,

P
oy = Y |os = wil, 43)
=1

and the “1 — correlation” distance,

/4 . . 37
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Note that the sums are over the p variables in & and y. The 1 — correlation distance
is bounded in [0, 2] (objects with correlations 1.0 and —1.0, respectively). This dis-
similarity is invariant to changes in location or scale of either « or y. Variations on
this distance include an uncentered version (replacing z and i with 0) and a version
that uses the absolute value of correlation, giving 1 — |pg,|.

©2003 CRC Press LLC



The 1 — correlation dissimilarity can be related to the more familiar Euclidean
distance. If

= i and Yy y_ Y

> (@ —7)%/p S —9)*/p’

then

||& — gHQ =2p(1 - sz)'

That is, squared Euclidean distance for standardized objects is proportional to the
correlation of the original objects.

The choice of a dissimilarity measure is best motivated by subject matter consid-
erations, and microarray data are no exception. The location/scale invariance of the
1 — correlation dissimilarity makes it a popular choice for microarray data. Changes
in the average measurement level or range of measurement from one sample to the
next are effectively removed by this dissimilarity.

For the breast carcinoma data, we plot in Figure 4.3 the 456 expression values for the
most and least similar pairs of samples. The least similar (right) have a correlation
of —.396, while the most similar have a correlation of .850. The two most similar
samples (NormBrst1, NormBrst2) are two of the three composites of normal breast
tissues included in the study. Because expressed genes were selected to emphasize
carcinoma, it appears plausible that regular tissue samples would appear more similar
to each other.

To aid comparison of different clustering algorithms in the breast carcinoma example,
we elect to use squared Euclidean distance applied to scaled variables (i.e., || —7||%).

correlation = -0,396 correlation =0.85

expressions for sample Benign Stf.11
expressions for sample NormBrst2
0

o 4
N Nt
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@w w0~
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Figure 4.3 Expression levels for the least (left) and most (right) similar pairs of tissue samples,
according to the 1-correlation dissimilarity. Correlation values are given above each plot.
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4.2.1 Missing data and imputation

Missing data are quite common in microarray data. In the breast carcinoma example,
almost 6% of values are missing. This missingness is not uniform across samples:
some samples have no missing values, while others have up to one-third missing.

Two strategies for dealing with missing values are either to modify clustering methods
so that they can deal with missing values, or impute a “complete” dataset before
clustering. Each of these strategies are described below. The examples in this chapter
will use imputed data. This decision was made because of the comparative aspect
of this chapter. In practice, if methods that were robust to missing values were to be
used, imputation would be unnecessary.

We first describe modification of methods to deal with incomplete data. The easiest
modifications are for clustering methods that use only a dissimilarity matrix. These
include K-medoids, bottom-up clustering and some forms of top-down clustering,
described in Section 4.5.1 and Section 4.5.2. To calculate a dissimilarity between two
objects with some missing values, a pairwise deletion strategy is often used. Such
pairwise deletion is illustrated for a subset of the data, given in Table 4.1 (10 genes,
4 samples). To calculate the dissimilarity between samples BC48.0 and BC119A.BE,
genes 1, 3, 8, and 9 would be excluded because they have one or more missing values
in these samples. For comparing samples BC48.0 and BC205B.AF, genes 1, 8, and
9 would be excluded. Dissimilarity measures such as Euclidean (Equation 4.1) or
Manhattan (Equation 4.3) that are proportional to the number of terms in the summa-
tion, require adjustment for the varying number of complete terms used. If ¢ of the p

Table 4.1 A subsection of the expression data (used in the text to illustrate treatment of missing
values).

Sample

Gene BC790 BC43.0 BCI119ABE BC205B.AF

1 —-0.34 — 0.01 0.79
2 023 -0.88 —1.49 —0.59
3 -049 -0.32 — -0.03
4 0.05 3.05 —-1.01 —-1.17
5 0.38 3.20 —-2.74 —2.65
6 0.70 2.91 —4.67 —4.55
7 0.56 3.02 —1.55 —-2.08
8 0.75 — —-1.65 —
9 —0.56 — —0.40 -0.75
10 —0.69 1.33 —-221 0.44
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measurements are complete for both z and y, then a multiplier p/c¢ should be included
inside the summation. Such an adjustment is not required for the 1 — correlation
dissimilarity because it would cancel out of the numerator and denominator.

Missing values may also affect the equivalence of 1 — correlation and squared
Euclidean distance, depending on how these quantities are calculated. Pairwise dele-
tion appears to be the most natural way to calculate a correlation. For a squared
Euclidean distance, the data would typically be scaled once before calculating Eucli-
dean distance; pairwise deletion would be used only when calculating distance between
the scaled data points. The scaling implicit in correlation uses different subsets, while
the scaling for Euclidean distance always uses the same subsets. For moderate amounts
of missing data, this difference can be minor, as indicated by a plot of squared scaled
Euclidean distance against 1 — correlation distance for the breast carcinoma data
in Figure 4.4,

Clustering algorithms that do not rely only on distances need further modification
for missing values. Some methods, such as the bottom-up clustering of Eisen et al.
(1998), have particular ways of dealing with missing values. These are discussed in
Section 4.5.1.

Imputation is a commonly used method for dealing with incomplete data, especially
in conjunction with some methods (e.g., K-means) that are not as easily adapted
to missing values. The simplest method of imputation replaces missing values with
the mean level for that gene. Better results can be obtained by using dependencies
between different genes. For example, in Table 4.1, to replace the missing values
for genes 1, 8, and 9 of BC48.0, a predictive model with BC48.0 as the response
and the other three variables as predictors could be trained using observations 27,
and 10. This model is then used to predict the missing values in BC48.0. Depending
on the type of predictive model, complete data may also be required on the predictor
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Figure 4.4 Comparison of pairwise dissimilarities, using correlation distance and squared
Euclidean distance applied to scaled samples.
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variables (here, BC790, BC119A.BE, and BC205B.AF), which would mean that only
rows 2, 4-7, and 10 could be used to train the model. The large size of the data matrix
in microarray applications means that there may be very few complete rows of data.
In the breast carcinoma data, 84% of rows (genes) are incomplete.

Three training methods that are able to deal with incomplete data in the predictor
variables are described in Troyanskaya et al. (2001) and Hastie et al. (1999). In the
first, which uses a singular value decomposition (SVD), initial guesses are made for
missing values, and then a reduced-rank SVD of the data is calculated. This SVD is
used to generate new guesses of the missing values, and another SVD is calculated.
This continues until a steady-state is reached. Although convergence is not guaranteed,
this algorithm does have as a fixed point a solution to a least squares prediction problem
for the missing data. The second approach uses K-nearest neighbors to impute missing
data. Missing values among the predictors are not used in determining the nearest
neighbors. The third strategy is to iteratively predict missing values for each variable
using a regression model in which all other variables are predictors. In principle, any
regression model (linear regression, K -nearest neighbors, trees, etc.) might be used.
The iterative nature of this procedure arises because the most recently imputed values
of predictors are used to fill in the missing values of the response.

Typically, a tuning parameter is used in all the imputation strategies mentioned previ-
ously (the rank of SVD used, the number of neighbors, etc.). Troyanskaya et al. (2001)
and Hastie et al. (1999) examine how performance varies with these parameters, and
suggest using about ten nearest neighbors, and rank 7 or less for the SVD. These
recommendations are based on experiments where additional values were deleted so
that predictions could be compared to actual values.

An additional technique for determining accuracy of different methods is to compute
distances for the imputed data and compare these to robust distances calculated with
the unmodified data matrix. This comparison could be made either among genes or
among samples. In Figure 4.5, we plot imputed versus robust distances between genes
(top row) and samples (bottom row). These plots are made for both the SVD method
(with rank 7) and a knn-based regression strategy (with K = 10). We see that the
knn strategy comes much closer to the robust distances, and consequently will use
knn-imputed data in the remainder of the chapter.

4.3 Clustering methods

Clustering algorithms seek to assign N observations in p-space labeled 21, 22, .. ., zn
to one of K groups. This assignment operation can be characterized as a many to one
mapping from observations to clusters, with an encoder function C. That is, obser-
vation ¢ is mapped to cluster C (7). Clustering algorithms seek to identify an optimal
encoder C*. For example, an encoder that minimizes total with-cluster dissimilarity
might be desired. Most methods assume that each point belongs to one and only one
cluster. Underlying probability models for the data are often ignored, although we
will note connections to probability models in subsequent sections.
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Figure 4.5 Each scatterplot is of pairwise distances based on imputed data against correspond-
ing robust distances based on original data. The top row corresponds to distances between
genes, the bottom between samples. Left and right plots correspond to two different imputation
schemes.

Many clustering methods can be broadly divided into two classes: partitioning meth-
ods, which seek to optimally divide objects into a fixed number of clusters, and
hierarchical methods, which produce a nested sequence of clusters.

Before pursuing details, we give a simple example to illustrate concepts and contrast
hierarchical and partitioning methods. On the left of Figure 4.6, six points are plotted
in two dimensions. The polygons surrounding them indicate a hierarchical clustering,
which is also illustrated with a dendogram on the right side of the figure. In this
case, a bottom-up algorithm was used to merge successive observations, starting with
the two closest points 1 and 6. Nearest clusters are merged until all points are in one
cluster. Once points are joined, they are never subdivided, giving a nested hierarchical
clustering.

Figure 4.7 plots different partitions of the same data into 2, 3, 4, and 5 clusters by
K-means, a partitioning algorithm. For 4 or 5 clusters, the points are grouped in the
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Figure 4.6 Hierarchical clustering example. Points in two-dimensional space are illustrated
on the left, and the corresponding hierarchical clustering is depicted on the right.
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Figure 4.7 K-means clustering example, with k = 2 — 3 clusters. Cluster membership is
indicated by plotting symbol.

same way as with hierarchical clustering. For 3 clusters, however, the two points in
the center of the plot that were joined in the 4-cluster case are now separated again:
successive clusterings are not nested.

Details of the preceding clustering methods are given in the next two sections.

4.4 Partitioning methods

Partitioning methods seek to minimize some measure of within-group dissimilarity
for a fixed number (K) of groups. This is a combinatorial optimization problem,
meaning that in most problems the global optimum will not be found, and one of
possibly many local optima will be instead identified.
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4.4.1 K-means

The most popular partitioning method, K-means, begins with K initial centers fij,
[a, ..., fix, and alternates between mapping observations to the nearest center, and
then averaging points within clusters to update centers. Algorithm 1 gives details.
This method seeks to minimize the sum of squared distances from each observation
to its cluster center jig,

K
WSS=>" > [l — full*- 4.5)

k=1C(1)=k

Algorithm 1 K-means clustering.

1. For a given cluster assignment C, the total cluster variance (Equation 4.5) is
minimized with respect to {fi1, ..., fix} yielding the means of the currently
assigned clusters.

2. Given a current set of means {fi1, ..., fix }, (Equation 4.5) is minimized by
assigning each observation to the closest (current) cluster mean. That is,

Ci) = afgmin1gkg}<||$i - ﬂk||2-

3. Steps 1 and 2 are iterated until the assignments do not change.

For complete data, a modified form of Equation (4.5) is related to the sum of squared
distances between points in each cluster,

K K
Se 3 - alf =33 Y Y w46

k=1  C(i)=k k=1 C(i)=k C'(i)=Fk
Here, cluster £ has ny points.

Different solutions will be achieved for different starting values; as a consequence, it is
good practice to use multiple runs of the algorithm. In the breast carcinoma examples,
ten restarts were used for each value of K in K-means and tree structured vector
quantization (TSVQ) (TSVQ is an algorithm built upon K -means; see Section 4.5.2).
Also, Algorithm 1 does not guarantee a optimal local minimum, as it may be possible
to reassign points to different clusters and further reduce sums of squares. Hartigan
and Wong (1979) give a more complicated algorithm which ensures that there is
no single switch of an observation from one group to another group that decreases
(Equation 4.5).

The K-means algorithm is fast, as it never evaluates all N (N —1)/2 pairwise dissimi-
larities. At each iteration, K' N dissimilarities are evaluated, and K centroids updated.
This speed makes K-means a popular algorithm, allowing it to cluster thousands of
objects.

In principle, the K'-means algorithm should have little difficulty with missing data
because mean updates and distance calculations (steps 1 and 2 in Algorithm 1) can be
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performed with some missing values. In practice, fast update formulas in
K-means and in related algorithms such as that of Hartigan and Wong are more
difficult to modify for missing values. For this algorithm, it will be easier to use
imputed data.

In addition to being robust to missing values, clustering algorithms may be affected by
outliers. Because K-means minimizes a sum of squared Euclidean distances, it may
be more sensitive to large distances than methods that minimize Euclidean distance.
Such methods are described in the next section.

A connection exists between the K-means algorithm and mixture models for multi-
variate normal distributions. Minimizing within-cluster squared distance to a centroid
is equivalent to maximizing the likelihood for a mixture of normals with spherical
covariance structure. The K-means algorithm is also a close analogue of the expecta-
tion maximization (EM) algorithm used to estimate mixture models. Thus, mixtures
of normals can be thought of as a “soft” version of K-means, with membership prob-
abilities replacing the “hard” encoder function C. With identity covariance, mixtures
of normals and K'-means agree closely. One advantage of mixture models is that the
probability models can be used in criteria to choose an appropriate number of clusters.
Results become substantially different (and mixture modeling much more interesting)
when the covariance structure of the multivariate normal distributions composing the
mixture is relaxed. Estimation of such covariance structure is only possible for large
numbers of points in small to moderate-dimensional spaces. Consequently, mixture
models might be more appealing for clustering genes than samples. Indeed, Yeung et
al. (2001) use mixture models to cluster genes. An important issue is appropriate data
transformations to achieve normality of the data. The article also reviews theory and
methods in mixture model clustering methods.

An important practical issue for partitioning methods is how to choose an appropriate
number of clusters. Typically, a partitioning method is run repeatedly for different K,
and a loss measure plotted against the number of clusters. These loss measures are not
usually motivated by inferential considerations, due to the lack of explicit probability
models for the data.

Figure 4.8 illustrates one loss measure—the within-cluster sum of squared Euclidean

distance
K K

S Y =Y X -3l

k=1C(:)=k C(5)=k k=1C(i)=k
This measure is plotted against cluster size for K-means and a variety of methods
discussed later. To accentuate differences, the right plot gives the value above the
minimum for each cluster size. K-means has the smallest within-group distance,
for K < 50, so it is, in some sense, finding the “best” clusters. As the number of
clusters (K) increases, the algorithm may get trapped in more local optima. All the
other methods are more constrained than K -means in one way or another, such as
producing nested sequences of clusters or requiring that each cluster center be an
observed data point.
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Figure 4.8 Comparison of within-group dissimilarities (left) for various clustering methods,
as functions of cluster size. The right plot gives difference from the minimum.

A plot of within-cluster sum of distances, such as Figure 4.8, can be used to select
a number of clusters, by looking for an “elbow.” Tibshirani et al. (2001) refine this
idea with the gap test, making a comparison between the change in within-cluster
dispersion and an expected change under an appropriate reference null distribution.
See Section 4.7.3, for details.

For illustrative purposes here, we select K = 5 clusters, the same number used
in Sgrlie et al. (2001). Various summaries of each cluster are possible, such as a
heatmap with cluster centroids replacing samples, or numeric and graphical sum-
maries of the clusters. In the breast carcinoma data, each sample has additional
information, such as the age of the patient, survival time in months, survival sta-
tus, etc. In Figure 4.9, a scatterplot of age against survival time is overlaid with the
median age and survival time within each of the five clusters, for K-means and K-
medoids (discussed in Section 4.4.2). The within-cluster medians for X -means are
represented by diamonds. Three distinct groups are evident: one group of two clusters
with a short survival time (<20 months), and two groups with longer survival times
(=40 months). The longer survival time groups have median ages of around 55 (two
clusters) and 65 (one cluster). Of course, the variables plotted were not used in the
clustering. Instead of explaining why the clusters are separate, such a plot provides
additional information about the identified clusters. The K -medoids groups in this
plot are discussed in Section 4.4.2.

Clustering or classification?

As described previously, the approach of looking at auxiliary measures within each
cluster can be extended to accomplish classification and regression. If a clinical
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Figure 4.9 Within-cluster medians of age and months of survival for six clustering methods
explored in the chapter, and also for the clustering identified in Sgrlie et al.

outcome is to be predicted, sometimes clusters identified without knowledge of the
outcome are used to predict the outcome. Whether or not this produces good predic-
tions will depend on the extent to which the variables used in the clustering correspond
to different outcome values. One possible advantage of such an approach is that it
should be more resistant to overfitting because the response variable is not used in
training (i.e., in constructing clusters). It does appear unlikely, however, to outperform
an intelligently used classification or regression model.

4.4.2 K-medoids

The K-means algorithm takes averages of points assigned to each cluster to define
cluster centroids. Such a centroid may have little interpretative value in some prob-
lems, such as when some variables are categorical or discrete. In these situations, it
may be more meaningful for each cluster centroid to be a representative object (i.e.,
one of the observed data points). The medoid of a cluster of points is the point with
smallest average dissimilarity to all other points. Thus, the K-medoid algorithm is
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obtained by modifying step 1 of Algorithm 1 so that the medoid of each cluster is cal-
culated instead of the mean, and step 2 is modified so that distance instead of squared
Euclidean distance is used. This calculation is more expensive, requiring all pairwise
dissimilarities within each cluster. With this modification, the K-medoids algorithm
uses only the dissimilarity matrix and not the original data.

K-medoids can be robust to missing values and outliers. Use of the dissimilarity
matrix instead of data matrix means only a dissimilarity measure that deals with
missing values is required. Use of a medoid instead of a mean is more robust to
outliers in a similar way that a univariate median is more robust than a mean.

A variety of other combinatorial algorithms have been proposed to solve the same
problem as K-medoids. Kaufman and Rousseeuw (1990) propose a partitioning
around medoids (PAM) algorithm with a similar flavor to that of Hartigan and Wong
(1979). The algorithm first finds an initial set of medoids and then swaps points so
that no single switch of an observation with a medoid will decrease the objective.

When applied to the breast carcinoma data (using squared Euclidean distance),
K-medoids finds somewhat similar solutions to K -means. Figure 4.8 indicates that
the within-clusterdissimilarities are slightly larger than K-means for most values of
K. This may be due to the more constrained nature of the centroids.

For a choice five clusters, as in the K-means example earlier, the within-cluster
medians of age and survival time are plotted in Figure 4.9, Three of the five clusters
have age/survival medians moderately close to K -means clusters, with the remaining
two K -medoids clusters differing most in terms of age.

4.4.3 Self-organizing maps (SOMs)

SOMs (Kohonen, 1990) are partitioning algorithms that are constrained so that clusters
may be represented in a regular, low-dimensional structure, such as a grid. This facil-
itates graphical display: clusters that are close to one another appear in adjacent cells
of the grid. Each of K clusters is represented by a prototype object M, i =1,... K.
The prototypes are points in the same space as the data, but the estimation algorithm
constrains the prototypes to a low-dimensional, grid-like structure.

An example is given in Figure 4.10, with five clusters in two dimensions and cor-
responding prototypes arranged in a one-dimensional grid. The data are plotted on
the left along with the prototypes; the grid layout of prototypes is on the right. The
prototype coordinates in data space are like a distortion of the grid space so that the
prototypes lie close to the clusters, while retaining a grid structure. Typically, SOMs
would be used to reduce high dimensional data to a one or two-dimensional grid of
clusters.

The SOM clustering algorithm is quite similar to K-means, but with a constraint
reflecting prototype configuration. Algorithm 2 gives an online version of this clus-
tering algorithm for the case of a two-dimensional grid. For two dimensions, a double
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Figure 4.10 Self-organizing map example. Points in two-dimensional space are clustered with
a SOM configured to have five clusters on a one-dimensional grid. The ordering of clusters
along the grid is indicated by the connected circles. The grid structure is indicated on the right.

indexing scheme of prototypes in the grid space (by row and column) is convenient.
Each step of the algorithm adjusts prototype coordinates using only one of the data
points. The grid constraint is enforced by updates that move not just one prototype
toward a data point, but also neighbors (in the grid space) of the nearest prototype.
Such an algorithm would typically be run for several thousand iterations. Initial values
of the grid radius r would depend on the number of clusters, but might be chosen so
that about a third of all prototypes belong to the same neighborhood.

This algorithm is quite similar to K'-means. In fact, if the grid radius r is small enough
that only one prototype is updated in step (4¢), then the SOM algorithm is equivalent
to an online version of K-means. Use of such a small value of » means that all spatial
constraints on the prototypes are lost.

The appeal of this algorithm is that the arrangements of prototypes on a grid allow
neighboring clusters to be interpreted as being more similar. Tamayo et al. (1999)
use this idea in the context of microarray data, with a two-dimensional grid. They
present a grid-structured summary of the cluster represented by each prototype. Each
summary is typically a plot of expression levels of a prototype gene across the different
(time-ordered) experiments.
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Algorithm 2 SOM clustering (two-dimensional rectangular grid).

1. Select the number of rows (g1) and columns (g=) in the grid. Then there will be
K = q1q5 clusters.

2. Initialize step size & = 1 and grid radius » = 2 (for example).

3. Initialize prototype vectors Mj,j € (1,...,¢1) x (1,...,¢2) by assigning
points to prototypes. This assignment might be based on a partitioning of the
data after projection onto principal components.

4. Loop over the entire dataset
e Loop over each data point z;

(a) Identify the index vector j* of the prototype Mj nearest to ;.
(b) Identify a set .S of neighboring prototypes of AM;., i.e.,

S = {j : distance(j,j*) < r}.

The distance might be Euclidean or some other metric.
(c) Update each element of S by moving the corresponding prototype toward
T
MJ(—M-I-CX((IIl—M) VjES
e Decrease the values of o and » by some predetermined amount. Typically
a = 0,7 = 1 upon completion of the outer loop.

One-dimensional SOMs also have interesting uses for microarray data. For example,
Eisen’s (1998) Cluster package can use a SOM with a one-dimensional grid of
prototypes to aid the ordering of a hierarchical clustering dendogram. An algorithm is
used to make the ordering of nodes of the dendogram resemble as closely as possible
the one-dimensional SOM. The issue of reordering nodes of a dendogram is further
discussed in Section 4.5.4.

4.5 Hierarchical methods

The nested sequence of clusters produced by hierarchical methods makes them appeal-
ing when different levels of detail are of interest because small clusters are nested
inside larger ones. In microarray applications, interest may focus on both small groups
of similar observations and a few large clusters. The former might occur when indi-
viduals provide multiple samples or a few samples have special meaning, such as the
four samples in the breast carcinoma example that are normal tissue. The latter would
occur when larger groups exist, such as samples from two different sources, or differ-
ent stages of carcinoma, or from different experiments (the yeast data in Section 4.6.3
has this property).
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Many hierarchical clustering methods have an appealing property that the nested
sequence of clusters can be graphically represented with a tree, called a dendogram
(e.g., Figure 4.6). Usually, each join in a dendogram is plotted at a height equal to the
dissimilarity between the two clusters which are joined. Selection of K clusters from a
hierarchical clustering corresponds to cutting the dendogram with a horizontal line at
an appropriate height. Each branch cut by the horizontal line corresponds to a cluster.
In some applications, clusters are identified that correspond to no horizontal cut. For
example, in Sgrlie et al. (2001) and Figure 4.2, the six tumor subgroups (clusters)
indicated by color across the top of the plot do not correspond to a precise horizontal
cut.

Although highly interpretable, dendograms can mislead. Figure 4.6 suggests that the
(reasonably close) observations 2 and 4 are quite distant because they are not joined
until the top of the dendogram. The hierarchical structure represented in a dendogram
is imposed on the data by the clustering algorithm and will reflect actual patterns in
the data only to the extent that these patterns are of a hierarchical nature.

To give a sense of the variety of dendograms produced by different clustering algo-
rithms, small, unlabeled dendograms are plotted in Figure 4.11. Their appearances are
affected by differing measures of within- and between-cluster dissimilarity, as seen
in the vertical axes. More detailed descriptions of the trees are given in subsequent
sections.

4.5.1 Bottom-up methods

The most common hierarchical methods are bottom-up, starting with each object
forming a cluster of size 1. At each step, the closest two clusters are joined until all
objects are in a single cluster, as in Figure 4.6. The measure of “closeness” has many
possible definitions when clusters are not singleton points. These include:

Single linkage, which uses the minimum distance between points in different clusters
Complete linkage, which uses the maximum distance

Mean linkage, which uses the average of all distances between points in the two
clusters

Distance between centroids, which represents each cluster by a centroid and mea-
sures inter-cluster distances using centroids

These are illustrated in Figure 4.12. Single linkage tends to produce long chains of
clusters. It also is a solution to the minimum spanning tree problem. Complete linkage
tends to produce compact, spherical clusters, and mean linkage is a compromise
between the two. Other variations also exist, such as trying to minimize within-cluster
variance, in a manner similar to K-means. This latter approach minimizes a total
instead of a mean, so clusters with fewer observations are likely to be joined first. Mean
linkage does not depend on the number of observations in each cluster. Dendograms
labeled “Eisen” and “hclust” in Figure 4.11 use distance between centroids and mean
linkage, respectively.
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Figure 4.11 Trees representing four different clustering algorithms. Differences in vertical
scale and appearance are due to the use of different criteria. Eisen and hclust algorithms are
bottom-up. TSVQ and diana are top-downs.

Dendograms for the bottom-up methods using single, complete, and mean linkage pos-
sess a monotonicity property: the dissimilarity between clusters is monotone increas-
ing with successive joins.
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Figure 4.12 Single linkage, complete linkage (left plot), mean linkage (middle plot), and
distance between centroids (right plot) for two clusters A and B.
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Hierarchical clustering operates on the dissimilarity matrix instead of directly on
observations. It is computationally expensive for data with many observations (large
N), requiring O(N?) calculations.

Eisen et al. (1998) propose a variation on bottom-up, mean linkage clustering, instead
using distance between centroids. They define centroids as within-cluster means.
Centroids may have missing values for some variables if all observations in a cluster
are missing those variables. Missing values are omitted in a pairwise fashion when
calculating dissimilarities, and when updating a mean, all complete observations are
used in each variable. In the current implementation (Eisen, 1998), the updating algo-
rithm for centroids treats missing values in an unexpected manner. When two clusters
are merged, the new centroid is calculated as a weighted average of the two cluster
centers. If different variables have differing numbers of incomplete observations, this
will not give the same center as recalculating the mean using all original observations.
Although this algorithm usually gives similar results to average-linkage clustering,
results can differ. Also, the resultant dendogram may be non-monotone, due to chang-
ing cluster centroids. In the breast carcinoma example, this problem occurs at 13 of
the 84 distinct joins of the tree. The Cluster software implementation (Eisen, 1998)
adjusts the dendogram heights so that they form a nondecreasing sequence. The den-
dogram (Figure 4.11, upper left) also makes the clusters look better separated than they
actually are because the within cluster variation is masked by using cluster centroids.
All results reported for the Eisen clustering in this chapter are based on complete data.
In fact, use of imputed data in the Eisen algorithm makes its results much more like
those of other bottom-up methods.

Figure 4.13 and Figure 4.14 give dendograms for bottom-up mean linkage clustering
and Eisen’s clustering. They agree on some data features, such as the grouping of
the normal breast tissues together. Some disagreements occur, such as the samples
norway.H4 and norway.43, which are put close together by Eisen, but not joined until
the top node by mean linkage. Additional methods for comparing dendograms are
introduced in Section 4.5.3.
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Figure 4.13 Bottom-up FEisen clustering.
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4.5.2 Top-down methods

To understand why top-down methods are of interest, it is useful to consider weak-
nesses of bottom-up methods. Bottom-up methods can poorly reflect structure near
the top of the tree because many joins have been made at this stage. Each join depends
on all previous joins, so if some questionable joins are made early on, they cannot
be later undone. In the bottom-up method applied in Figure 4.6, observations 2 and 4
are not joined until the very top of the tree, yet the corresponding points are quite
close. The partitioning presented in Figure 4.7 for k = 2 clusters is (arguably) supe-
rior. If interest focuses on identifying a few clusters, then top-down algorithms which
successively divide observations are likely to produce more sensible partitions. Of
course, these methods are less likely to give good groupings after many splits are
made. This suggests that hybrids that combine the best of top-down and bottom-up
methods may be useful.

There are several variations on top-down clustering, each offering a different approach
to the combinatorial problem of subdividing a group of objects into two subgroups.
Unlike the bottom-up case, where the best join can be identified at each step, the best
partition cannot usually be found and methods attempt to find a local optimum. In the
next two sections, we explore two such methods: tree structured vector quantization,
which is based on K-means, and an algorithm developed by Macnaughton-Smith
et al. (1965).

Tree structured vector quantization

The fact that 2-means produced a more sensible partition of the data in Figure 4.7
suggests that the 2-means algorithm might be used to recursively partition the data into
clusters. That is, run 2-means on the full dataset, and then recursively run 2-means in
each sub-cluster, until each point is its own cluster. This approach has been explored in
the engineering literature (Gersho and Gray, 1992), and termed tree structured vector
quantization. K-means is commonly referred to as vector quantization in this field.
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Figure 4.15 Top-down TSVQ clustering.

Dendograms based on this algorithm do not necessarily possess the monotonicity
property of bottom-up methods. This algorithm is fast, requiring O(nlogy n) cal-
culations (worst-case O(n?)). As with K-means, we use imputed data to deal with
missing values.

Methods such as K-medoids described earlier could also be applied to this problem.

For the breast carcinomadata, adendogramrepresenting TSVQ s givenin Figure 4.15.
The most striking difference is the large distances near the top of the tree. The 2-means
algorithm used to subdivide each node uses a sum of distances from the centroid
instead of a mean distance. Thus, the vertical axis is a sum of distances instead of a
mean distance. At early stages, the large number of points in each cluster means that
improvements in subdividing are larger.

Macnaughton-Smith

Another approach to the binary partitioning problem is proposed by Macnaughton-
Smith et al. (1965). In this, a “splinter group” is formed by selecting the point with
greatest mean dissimilarity to all other points. Objects that are closer to the splinter
group are swapped to that group one at a time until no observation in the original
group is closer (in average dissimilarity) to the splinter group.

This binary partitioning is recursively carried out until each observation is separated.
This top-down method produces a dendogram that obeys the monotonicity property.

Macnaughton-Smith is likely to be slower than TSVQ. Because it operates on dis-
similarities instead of original data, it is easy to deal with missing values. It is also
more robust to outliers because distance is used instead of squared distance.

In the breast carcinoma example, we used the Kaufman and Rousseeuw (1990) imple-
mentation of the Macnaughton-Smith algorithm, called “diana.” The dendogram for
the breast carcinoma data is given in Figure 4.16. The clustering is quite similar
to bottom-up mean linkage clustering, although the ordering of nodes in the plot is
different.
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Figure 4.16 Top-down Macnaughton-Smith clustering.

4.5.3 Comparing the dendograms

Having described such a variety of tree-growing methods, it may be of interest to
compare these trees. One such method is to look at how the trees partition up the
observations into clusters for fixed cluster sizes. Suppose that we cut two trees 77 and
T5 so each divides the data into K clusters. One measure of the dissimilarity between
two trees is the proportion of all pairs of observations that are grouped together in one
tree and separately in another tree. This can be calculated as follows: Let I; (4,4’) be
1if Ty places observations 7 and ¢’ in the same node and zero otherwise. One measure
of similarity between trees is then

Ez’>i’ 11 (i:i/) — 12(i:i/)|
— .
(3)

This was suggested in Chipman et al. (1998) in the context of classification and

regression trees. The factor (%) scales the dissimilarity to the range (0,1) with 0

indicating perfect agreement. This quantity would be calculated for all pairs of trees

of interest for varying values of K. Such a comparison can be made for any clustering,
and not just hierarchical ones.

ATy, Ty) = 4.7

In the breast carcinoma example, we compare a number of different clusterings,
including the four hierarchical methods described in Section 4.5 (including several
variations on bottom-up clustering), and the partitioning methods in Section 4.4. We
present an informative subset of the large number of possible pairwise comparisons,
starting with three variations on bottom-up clustering: single, complete, and mean
linkage. Figure 4.17 shows a comparison for 2 to 20 clusters. We see that average
and complete linkage result in quite similar clusterings, disagreeing on 5 to 20% of
pairwise groupings. Both are quite different from single linkage clustering, which
is to be expected, because single linkage can produce long chain-shaped clusters.
Differences between single linkage and other methods will eventually diminish as
the number of clusters approaches the sample size N. We shall not consider single
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Figure 4.17 Comparison of partitions from bottom-up hierarchical methods: single, average,
and complete linkage.

linkage further here, although the dramatic difference from other bottom-up methods
suggests that in some cases it might give an alternate clustering of points.

Similar comparisons (not shown) between the Macnaughton-Smith algorithm and
bottom-up mean linkage indicated very similar clusterings.

Figure 4.18 compares three hierarchical methods (Eisen, bottom-up mean linkage,
TSVQ) and K-means. Although considerable disagreement exists among most meth-
ods for five or less clusters, the differences become more moderate as the number of
clusters increases. The clustering produced by the Eisen algorithm is less similar to
the other three. This difference between Eisen and the other three methods was more
pronounced when data with missing values were used, perhaps reflecting the unusual
treatment of missing values mentioned in Section 4.5.1. The similarity between
K-means and TSVQ for moderate numbers of clusters is perhaps not surprising because
TSVQ can be viewed as a hierarchically constrained version of K-means.

Comparisons between K-means and the PAM implementation of K-medoids (not
shown) indicate large differences between two clusters. For more than five clusters,
the differences are minor.

Comparisons among the hierarchical methods could be made for additional variables
not used in clustering, as in Figure 4.9. In this section we omit such plots.
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Figure 4.18 Comparison of partitions from various methods: k-means, bottom-up (mean link-
age, Eisen), and top-down (TSVQ).

4.5.4 Post-processing of dendograms

When plotting a dendogram, the left and right children of any branch can be flipped
while remaining true to the sequence of hierarchical clustering operations. In the
analysis of microarray data, this reordering is key because the heat map is rearranged
according to the hierarchical clustering. Visual inspection of the heatmap relies on a
reasonable adjacency pattern of objects.

It is infeasible to evaluate all 2/¥~2 possible reorderings, but several heuristics have
been proposed. One strategy (the default in S-Plus and R) is to order joins so that the
tightest cluster (i.e., the cluster joined first) is on the left. Such an ordering is given
by the dendogram in Figure 4.6. Evidently, better clusterings are possible because,
with this ordering, point 2 is much closer to clusters (3,4) and (1,6) and to point
5. Sherlock’s (1999) XCluster software package employs the following bottom-up
reordering strategy: When two nodes are about to be joined, they are both rotated so
that two most similar outermost objects in the two groups being joined are placed
adjacent to each other. For example, in Figure 4.6, one reordering would be to flip the
top branch so points 2 and 4 are adjacent. Here, similarity is measured in terms of only
the outermost objects, ignoring interior objects. An alternative would be to calculate
an average similarity between all observations in two sub-branches, instead of just
using outermost objects. Further possible solutions might be to use one-dimensional
multidimensional scaling or self-organizing maps (see Section 4.4.3).

The effect of reordering is illustrated in Figure 4.19. In the top two panels, trees
with the default (tightest to left) and “average similarity” ordering (as mentioned
previously) are plotted. The corresponding rearranged distance matrices are plotted
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Figure 4.19 Two orderings of the bottom-up mean linkage clustering, with corresponding
dissimilarity matrices (unsquared distance is used to better highlight close clusters).

in the bottom panels. We see that, in this case, the different arranging makes little
difference. One difference is that the mean similarity ordering identifies a large group
of objects in the center of the distance matrix that appear somewhat similar. Except
for a few tight clusters, the overwhelming feature of this data is that the clusters
found are not well separated. This can be seen in the lack of a strong block diagonal
structure. This reinforces patterns seen earlier in Figure 4.8, where the decrease in
sum of squares is not dramatic as the number of clusters is increased.

4.6 Two-way clustering

So far, we have discussed one-way clustering of microarray data: the samples are
clustered independently of the genes, and vice versa. Typically these two operations
are both used, and the rows and columns of data matrix are rearranged accordingly.

Two-way clustering methods is our name for methods that use both samples and genes
simultaneously to extract joint information about both of them. For example, it may be
useful to consider more than one grouping of the samples, based on different subsets
of the genes. The overall clustering of the samples may be dominated by a set of genes
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involved say in cell proliferation, and this may mask another interesting grouping that
is supported by a different set of genes.

We use the term “two-way clustering” to loosely describe methods for this problem.
These methods are not yet well-developed, and are not yet in widespread use, so our
discussion will be brief.

4.6.1 Coupled two-way clustering

A major difficulty with methods for clustering microarray samples is that the clustering
results can depend strongly on the set of genes used. For example, use of all available
genes or genes that vary at least twofold over some number of samples can produce
very different hierarchical clusterings of the samples. One can either experiment with
different gene lists or try to systematically undercover multiple sample clusterings
based on different sets of genes. The latter approach is discussed next.

Getz et al. (2000) propose a two-way clustering method that aims to finds subsets
of the genes that result in stable clusterings of a subset of the samples. That is, they
find pairs (O, Fi),k = 1,2,... K where Oy, is a subset of the genes and Fj is a
subset of the samples, so that when genes Oy are used to cluster samples Fy, the
clustering yields stable and significant partitions. This can be especially useful when
the overall clustering of the samples based on all genes is dominated by some subset
of the genes, for example genes related to the profileration of the cells. By identifying
and removing this first pair (Oy, F} ), other more subtle clusterings can emerge.

One could develop such an algorithm for this problem using as a building block
the hierarchical cluster procedures described in this chapter. The authors in Getz
etal. (2000), however, instead use an algorithm called “superparamagnetic clustering,”
based on a model of magnetic fields, and combine this with a complicated two-
way clustering scheme. Hence, it is difficult to assess their results, and compare
them to those from more standard hierarchical clustering; but their results do appear
promising, and their stated goal—to find stable clustering pairs (O, Fx)—is one
worthy of future research.

4.6.2 Block clustering

This is a top-down, row-and-column clustering of a data matrix. It reorders the rows
and columns to produce a matrix with homogeneous blocks of the outcome (here,
gene expression). Block clustering also produces hierarchical clustering trees for the
rows and columns. The basic algorithm for forward block splitting is due to Hartigan
(1972), who also reviews earlier work on two-way clustering, citing Good (1965) and
Tryon and Bailey (1970). Hartigan called his approach “direct clustering,” but it has
become known as block clustering (e.g., Duffy and Quiroz, 1991).
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Here is an outline of the block clustering procedure (see also Figure 4.20):

e Begin with the entire data in one block.

e At each stage, find the row or column split of all existing blocks into two pieces,
choosing the one that produces the largest reduction in the total within block
variance.

e Use only allowable splits: if there are existing row splits that intersect the block,
one of these must be used for the rows, called a “fixed split.” The same is done for
columns. Otherwise all split points are tried.

e The splitting is continued until a large number of blocks are obtained, and then
some block are recombined until the optimal number of blocks is obtained (see
discussion of this point next).

To find the best split into two groups, one can show that it is sufficient to sort the
rows (or columns) by row (or column) mean, and then seek a split in that order.
A drawback of block clustering when applied to median centered data (which is the
case here) is that at the start, all row and columns means are approximately zero.
Hence, the procedure has difficulty getting started.

Restricting the choice to fixed splits ensures that:

1. The overall partition can be displayed as a contiguous representation, with a com-
mon reordering for the rows and columns.

2. The partitions of each of the rows and columns can be described by a hierarchical
tree that has been cut at an appropriate level.

An alternative strategy would be to use tree-structured classification (CART;
Breiman et al., 1984). Treating the rows and columns as unordered categorical vari-
ables, CART would find partitions of genes and samples that have nearly constant
expression levels. However, CART does not give an overall partition that could be
displayed as a contiguous representation, with a common reordering for the rows and
columns, as does block clustering.

Figure 4,20 provides a simple example for illustration. It consists of 5 genes and
3 samples, labeled A—E and 1-3, respectively. The first (vertical) split separates sample
3 from 1 and 2. The second (horizontal) split separates genes B and C from A,D,E
Now consider splitting the rightmost box. The split that separates genes A and B
from C,D,E in the right box would not allow a single contiguous representation of the
entire data matrix, and hence is not permitted. The split that separates gene B from
A,C,D,E violates the hierarchical tree property (2) and is also not permitted. The only
permissible horizontal split of the rightmost box is the one that separates genes B and
C from A,D,E continuing the horizontal line segment in the left box all the way to the
right.

We have experimented with block clustering for microarray data, and it has some
potential. However, it has one major limitation: It provides only one reorganization
of samples and genes, and hence cannot discover multiple groupings (as discussed
previously).
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Figure 4.20 Simple example to illustrate the block clustering rules. The first (vertical) split
separates sample 3 from 1 and 2. The second (horizontal) split separates genes B and C from
A,D,E. If the rightmost box is split horizontally, it must be split between genes B,C and A,D,F.

4.6.3 Plaid models

In some sense, plaid models (Lazzeroni and Owen, 2002) generalize both block clus-
tering and gene shaving (described in Section 4.7). Suppose Y;; is the gene expression
level for gene ¢ in sample 7, for: =1,2,...pand j = 1,2,...n. The simplest plaid
model has the form
K
Yij =~ po + z HEPikFijk- 4.8)
k=1

Here, & indexes each of the blocks or layers in the model. Each layer is rectangular,
consisting of a subset of the genes and samples: p;x = 1 if gene ¢ is in layer k& and
zero otherwise; x5 = 1 if sample j is in layer k and zero otherwise. Within the layer,
the expression level is the constant .

Note that different layers may overlap, that is, the same gene or sample may appear
in more that one layer. A more general plaid model allows the expression to vary
systematically within a layer:
K
Yi; = po + Z(,uk + ik + Bik) pikkjk- 4.9)
k=1

The presence of the terms oy and ;. can lead to a striped pattern in the layer, and
hence the name “plaid.”

Estimation of the model in Equation 4.9 proceeds in a forward stagewise manner, alter-
natively estimating the indicator parameters p;;, and & ;x, and the structural parameters
Hi, ik, B3k. A permutation distribution is used to help decide when to stop adding
layers (i.e., the value of K).
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Figure 4.21 illustrates yeast expression data from DeRisi et al. (1997). The description
of the data and plaid analyses are taken from Lazzeroni and Owen (2002). The data
are available at http://rana.stanford.edu/clustering. The columns
represent time points within each of ten experimental series.

The columns in this data correspond to ten different experiments and are denoted by
the following prefixes: alpha (columns 1-18), Elu (19-32), cde (33—47), spo (48—
53), spo5 (54-56), spo- (57-58), heat (59-64), dtt (65-68), cold (69-72), diau (73—
79). Experiments 1-3 examine the mitotic cell cycle. Experiments 4—6 track different
strains of yeast during sporulation. Experiments 7-9 track expression following expo-
sure to different types of shocks. Experiment 10 studies the diauxic shift. The rows are
ordered according to the results of the hierarchical clustering algorithm to illustrate
the relationships revealed by that approach.

Yeast expression data

Figure 4.21 (See color insert following page 114.) Yeast expression data.
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The authors fit a model of the form (Equation 4.9), with a total of 34 layers. They
reported that no significant improvement occurred after that. The complete model is
shown in Figure 4.22 and contained 5568 parameters, fewer than 3% of the number of
observations. The model recovers much of the structure in the original data. Table 4.2
summarizes the gene and sample memberships.

The plaid model consistently puts columns from the same experimental series together
within layers: Table 4.3 gives information about the experiments in the first 6 layers.
Table 4.4 shows the genes that appear in two chosen layers, 1 and 3. These layers
contain the same seven samples and share no genes in common. Layer 1 includes many
genes involved in the cell cycle. Layer 3 includes many genes involved in glycolysis.
In Lazzeroni and Owen (2002), the authors give details of biological insights that can
be gleaned from this model.

Fitted model for yeast data

-
e

Figure 4.22 (See color insert following page 114.) Fitted plaid model for yeast expression data.
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Table 4.2 Yeast summary showing the numbers of genes, samples, and observations appearing
in zero, one, or more layers.

No. of Layers Genes Samples Observations

0 703 22 170,703

1 1031 5 22,872

2 579 2 1307

3 142 11 11
4—-18 12 39 0
Total 2467 79 194,893

4.7 Principal components, the SVD, and gene shaving

Principal components are derived linear combinations of a group of variables that
represent them well. They are often useful when one has a large, correlated set of
variables and would like to reduce them to a manageable few. Their ability to represent
the original data can be measured in terms of the percent of total variation that they
explain.

Some of their earliest applications of principal components where in psychometric
tests and questionnaires, where many of the questions were measuring the same under-
lying trait, such as intelligence, but in different and correlated ways. Likewise, in gene
expression arrays we have many correlated genes being co-expressed (under or over),
often in response to the same biological phenomenon.

The SVD, or singular value decomposition, is an algorithm for computing the prin-
cipal component analysis (PCA) of a data matrix, and the two terms are often used
synonymously.

Gene shaving is an adaptation of PCA that looks for small subsets of genes that behave
very similarly, and account for large variances across samples.

4.7.1 Principal Components

We describe principal components first for a set of real valued random variables
X1,...,Xp. We seek asingle, derived variable Z; = a1 X1 +anXo+- -+ ap; Xy
such that var(Z,) is maximized. Here the a;; are real-valued coefficients. If left
uncontrolled, we can make the variance of Z; arbitrarily large. So we constrain
a1 = (aq) to have unit Euclidean norm, ||a;|| = 1. This largest principal com-
ponent attempts to capture the common variation in a set of variables via a
single, derived variable. Often one is not enough, so we then look for a second
derived variable, Z5, uncorrelated with the first, with the largest variance, and so on.
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Table 4.3

Sample effects (12 4 (3;) in first six layers.®

Sample 1 2 3 4 5 6

19Elu 0 — — — 0714 — —

39 cdc 130 — — — — — 044
40 cdc 150 — — — — — 029
41 cdc 170 — — — — — —

42 cdc 190 — — — — — 052
43 cdc 210 — — — — — 046
44 cdc 230 — — — — — 053
45 cdc 250 — — — — — 082
46 cdc 270 — — — — —  0.64
47 cdc 290 — — — — —  0.89
49 spo 2 072 -118 -0.81 — — —

50 spo 5 1.10 -1.18 -121 — — —

51spo7 136 -132 -1.12 — — 093
52spo9 1.08 -0.75 -133 — — 099
53 spo 11 1.06 — -1.12 — — 092
55 spo5 7 — — — — — 094
56 spo5 11 — — — — — 0.76

57 spo-early 1.19 -2.14 -1.03 — — —
58 spo-mid 141 -2.19 -143 — — —

60 heat 10 — =119 — 1.57 -1.06 —
61 heat 20 — =170 — 1.10 -115 —
62 heat 40 — =123 — 061 -1.00 —
63 heat 80 —  =0.70 — 053 -055 —
64 heat 160 —  -0.80 — — 065 —
66 dtt 30 — — — — — 0.55
67 dtt 60 — — — — — —
68 dtt 120 — — — 047 -031 —
71 cold 40 — — — — 059 —
72 cold 160 — =090 — — — —
77 diau e — — — 0.55 — —
78 diau f — =120 — 1.30 -0.64 —
79 diau g —  -1.60 — 142 -087 048

#The rows of the table are the column effects for the first six layers of the yeast expression data. Column
effects that do not appear in these layers are omitted, unless they fall between two timepoints included in

a single layer.
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Table 4.4 Top 12 genes of layers 1 and 3.

pw=113 Layer 1

o7 Gene, known function

334 ECM11, cell wall biogenesis

2.77 LEUI, leucine biosynthesis, 3-isopropylmalate dehydratase

2.65 PDSI1, cell cycle, anaphase inhibitor (putative)

2.35 CDCS5, cell cycle, G2-M protein kinase

2.02 CIK1, cytoskeleton, spindle pole body associated protein

1.77 CLBS, cell cycle, G1-S cyclin

1.64 PCH?2, meiosis, checkpoint

1.56 STU2, cytoskelton, spindle pole body component

1.56 BAT1, branched chain amino acid, transaminase

1.53 ORC3, DNA replication, origin recognition complex

1.56 APCA4, cell cycle, anaphase-promoting complex subunit

1.51 MIP6, MRNA export, putative, RNA-binding proteinlization
©#=-—120 Layer3

o7 Gene, known function

=2.11 TDH]1, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 1
-2.02 TKLI1, pentose phosphate cycle, transketolase

-1.99 PGK1, glycolysis, phosphoglycerate kinase

-1.97 ENO2, glycolysis, enolase 11

-1.86 TDH2, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 2
-1.79 YGP1, diauxic shift, response to nutrient limitation

-1.70 TDH3, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 3
-1.68 TPI1, glycolysis, triophosphate isomerase

-1.59 FBAI, glycolysis, aldolase

-1.52 BUD?7, bud site selection

-1.49 GPM]1, glycolysis, phosphoglycerate mutase

-142 ALDG, ethanol utilization, acetaldehyde dehydrogenase

This recipe gets translated directly for a set of data, which for us will be an expression
array ;;, with ¢ indexing one of the p genes (variables), and j as one of the n samples.
The largest sample principal component z; ; is defined to be that linear combination

p
215 = Zaﬂmij, ||(Z1|| = 1, (410)

=1

having largest sample variance.
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Suppose that S is the p X p covariance matrix of the genes, with hith entry

Sh; = (@hy — Zn) (@5 — Zg), (4.11)

1

1
n—14%

n
]:
where Zj, and Z; are the sample means for genes h and ¢ respectively. Then it is
easy to show that the loading-vector for the first sample principal component a4 is
the largest eigenvector of S. The second largest eigenvector az defines the second

principal component, and so on.
Suppose A is the p X k matrix consisting of the first & eigenvectors of S; that is,
SA = AA, (4.12)

where the diagonal matrix A contains the eigenvalues Ay > Ao > -+ > Ap > 0.
Then Z = ATX is the k x n matrix consisting of the first & principal components
of the genes, also known as eigengenes. Figure 4.23 depicts some eigengenes for an
expression array for investigating subclasses of small, round, blue-cell tumors (Khan
etal., 2001; SRBCT). A total of 63 samples or arrays occur, based on either a cell-line
or tissue sample, and 2308 genes. In addition the samples are classified into four
subclasses labeled “EWS,” “RMS,” “NB,” or “BL.” Note that the class labels were
not used in the production of the eigengenes.
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Figure 4.23 The first three eigengenes for an expression array. Each of the samples corresponds
to a cell-line or tissue sample from a small, round, blue-cell tumor, for which four subclasses are
defined. The eigengenes are each sorted, and the subclass labels indicate some class grouping,
especially for the first and third eigengene.
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4.7.2 Computations and the singular value decomposition

The matrix S is typically huge, with dimensions equal to the number of genes p, so
the approach as stated is computationally unattractive. Fortunately there is a shortcut,
when n < p, as is typically the case with expression arrays.

Denote by X the expression array centered so that each row (gene) has sample mean
zero. We construct its SVD B
X =UDVT, 4.13)

where U is p X n orthogonal, V is n X n orthogonal, and D is an n X n diagonal
matrix of ordered nonnegative, singular values. Because of the centering of X, there
will be, at most, n — 1 nonzero singular values. Now,

1

S = XXT (4.14)
n—1

= LUDQUT, (4.15)
n—1

hence, the SVD of X also delivers the eigen-decomposition of S. Note that since
XTX = VD?VT, and XV = UD, we can compute the SVD through the eigen-
decomposition of an n X n matrix. The columns of U are identical to the columns
of A in Eq. 4.12, and (n — 1))\; = d?. From the preceding, we also note that there
can be at most n — 1 eigengenes with positive variance, and typically the first six to
ten are the most useful. The columns of U are sometimes called eigenarrays (Alter
et al., 2000), and the entries give an indication of which genes play a leading role in
the construction of the corresponding eigengene; see Figure 4.24,

A reduced-rank SVD can be interpreted as a sparse reconstruction of the (centered)
expression array

X ~U,D,V]; (4.16)
here the subscript indicates that we have used only the first ¢ columns of U, D, and
V. The idea is that most of the action in the expression array can be approximated by
the activity of the first ¢ eigengenes. Each of the genes is then approximated by its
regression onto this set of eigengenes.

Figure 4.25 depicts the variances of the eigengenes for the SRBCT cancer data; there
is evidence that about the first ten eigengenes play a leading role in explaining the
variation in the data.

4.7.3 Gene Shaving

Each eigenarray in Figure 4.24 involves all the genes, each with its own weight. This
is not too helpful in forming informative subsets of the genes. Because genes tend to
be activated in pathways, we expect to find groups of genes co-expressing in response
to the same biological phenomenon. Gene-shaving specifically looks for subsets of
genes that are strongly correlated and where the average has a large variance. These
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Figure 4.24 The first three eigenarrays for the cancer data. The genes are in the order produced
by a hierarchical clustering. This explains the patterns in the eigenarrays and aids in their

interpretation.
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Figure 4.25 Variances of the eigengenes. The kink in the curve suggests that about the first ten
eigengenes might explain the important activity in the data.
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averages or supergenes are similar to eigengenes in that they are linear combinations
(averages) of all the genes; however, most of their loadings are zero, and those genes
in the subset have loadings of equal value.

Next, we give an idea of how the gene-shaving algorithm works; details and extensions
can be found in Hastie et al. (2000a) and Hastie et al. (2000b). The gene-shaving
algorithm given in the following table is iterative and makes heavy use of the SVD.

Algorithm 3 Gene shaving algorithm.
1. Initialize, setting supergene so equal to the n-vector of ones.
2. Loop for 5 = 1 to J, the number of desired supergenes.
a. Orthogong] ize the rows of the expression array X with respectto s,. . .,5;_1,
yielding X.
b. Compute the SVD of X, and extract the largest left, singular vector u.

c. Order the elements of u in absolute value, and remove the rows of X corre-
sponding to the fraction o of smallest such values.

d. Repeat steps 2b. and 2c. until X has only one row.

e. From the sequence of submatrices, select the one, as well as its signed row
average s;, using the gap test (see the following paragraphs).

Genes can remain in a subset if their SVD loadings in u are large in absolute value. We
hence assign a sign to each gene in the subset, and apply the sign before computing
an average.

The gap test for gene shaving compares the variances for each subset in the shaving
sequence to a similar sequence obtained from randomized data. Specifically, each
row of the expression array is randomly permuted, and the gene shaving algorithm
is applied. Figure 4.26 illustrates the idea; the gap test is described in more detail in
Hastie et al. (2000b).

The orthogonalization in step 2a. is implicitly performed in principal components as
well, and guarantees that our supergenes will be different from each other. Figure 4,27
shows the first three shaves produced by this algorithm. Above each plot is the variance
of the cluster average or supergene. Also reported is the fraction of the total variance
of the genes in the cluster explained by the cluster average; a value close to 1 indicates
a very tight cluster.

These data are accompanied by an additional label for each sample, classifying it into
one of four cancer subclasses. Figure 4.28 shows that supergenes 1 and 3 separate
the subclass labels well, even though they were not used to produce the shaves. The
eigengenes of Figure 4.23 do not achieve comparable separation. The second shave is
not associated with the class labels, but is a very tight cluster with an abrupt change
from red to green. We examined other attributes that accompany these data, but were
unable to find an explanation for the behavior of this group of genes.
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Figure 4.26 The gap test is used to select the subset sizes in gene shaving. For each sequence of
shaves, we compare the variance to that obtained by shaving a matrix with randomly permuted
rows (top panels). In the lower panels, the differences or “gaps” between these curves indicate
the point of largest discrepancy.

We have simply numbered the genes in each shave here; in practice, we have available
the most current information on each gene, and since the shaves are of a
manageable size, the individual genes can be examined more closely and compared.

4.8 Other approaches

A great deal of research has been conducted in clustering, particularly as it is applies
to microarrays. This work originates from a wide variety of fields, including statistics,
biology, engineering, computer science, and physics. We have focused on some of the
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Figure 4.27 (See color insert following page 114.) The first three shaves for the SRBCT cancer
data. In each panel, we see the cluster of genes ordered according to their supergene (their
signed average); columns (samples) are ordered by mean expression within each shave; the
cancer subclass labels are indicated below each panel. The “+” and “—"” signs in the third
shave indicate that some genes had their signs flipped in the averaging.

more widely used methods, especially on techniques that have been proposed in the
statistical literature. It would be impossible to discuss most or all of the methods that
have been proposed, and it is still an evolving area. The following is a list of some
recent articles; they contain references to further work:
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Figure 4.28 The samples plotted in the two-dimensional subspace defined by Supergenes 1 and
3. These nwo derived subgroups separate the training data perfectly.

o Mixture models: Heydebreck et al. (2002), McLachlan et al. (2002), and
Pan et al. (2002)

o Graph-theoretic: Sahran and Shamir (2000)
o Two-way: Tang et al. (2001)
o Comparative study: Goldstein et al. (2002)

4.9 Software

In practice, the choice of clustering algorithm depends to a large extent on avail-
able software. Most computations in this chapter were done in R and S-Plus, two
implementations of the S programming language. All R packages are available at
http: /www.r-project.org/. Specific algorithms include:

cluster package, S original by Struyf et al. (1997), ported to R by Kurt Hornik
and Martin Maechler. This package includes K-medoids (pam), Macnaughton-

Smith algorithm (diana), and a distance function able to deal with missing values
(daisy).

hclust function, part of the S-Plus package, R code part of the mva package.
The hclust function performs bottom-up hierarchical clustering with single,
complete, mean, and other linkages. The “hclust” function in R is based on Fortran
code contributed to STATLIB by F. Murtagh.
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k-means function, part of the S-Plus package, R code part of the mva package.
This is the Hartigan and Wong (1979) algorithm.

SOMs: Tamayo et al.’s (1999) GENECLUSTER software is available in 1.0 and 2.0
versions; see http: /fwww-genome.wi.mit.edu/cancer/
software/software.html for details. An R library GeneSOM, written by
Jun Yan, is available from the R site.

Plaid models: Software is available at http: fwww-stat.stanford.edu/”
owen/plaid/.

Custom code was developed in S-Plus and R for TSVQ, Eisen’s bottom-up clustering,
heatmaps, and the imputation of missing values. This code is available from the
authors on request.

Michael Eisen’s bottom-up clustering is available as a Windows software pack-
age (Cluster), along with Treeview, a microarray visualization package. See
Eisen (1998) and http: /rana.lbl.gov/EisenSoftware htm.
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