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Foreword

How many times have you visited your favorite programming
forum or mailing list and been amazed at the sheer number 

of posts on terrain rendering algorithms that seem to fly at you from
every angle? Terrain rendering seems to be a favorite subject among
today’s hobbyist programmers; it serves as an excellent portal to more
demanding problems and their solutions. However, terrain rendering
is by no means a simple problem, and a particular solution can get
rather complex. People from all walks of “programming” life have
tried their hand at coming up with the next best solution for rendering
their idea of a perfect world. Some even dare say that there are as
many terrain rendering algorithms as there are people who write 
terrain engines. Most of these solutions are variations of more widely
accepted solutions. These solutions are generally accepted by people
as solutions that give good performance. Some of them have been
around for quite a while and have been modified over the years to
adapt to the ever-changing hardware they are meant to run on.

This book takes three of these generally accepted solutions and puts
them through their paces. I am very pleased to say that one of these
solutions came from my very own puddle of programming ideas 
I have popping up every now and again in a flash of enlightenment. 
As this book compares three terrain rendering solutions without any
prejudice or bias, I am not one to talk about them, obviously. I will
leave that to the author.

—Willem H. de Boer
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Letter from the 
Series Editor

Sooner or later it had to happen. Someone had to make a game
where you could actually go outside and do things other than run
around indoors. Don’t get me wrong; the age of darkness, the 
ultimate evil, and the hordes of gruesome creatures around each
corner is fun, but we all need some light! Focus On 3D Terrain
Programming is what that’s about. 

Everyone (even if you haven’t created your own first-person shooter
3D engine) at least has an idea that binary space partitions, octrees,
portals, and other similar techniques are usually used for these
types of indoor environments. However, the mystique surrounding
terrain programming and large-scale outdoor rendering of thou-
sands, hundreds of thousands, or even millions of polygons is still 
a well-kept trick. Sure, the trick is out there if you read de Boer’s
geomipmapping algorithm, Rottger’s quadtree algorithm, or
Duchaineau’s ROAM algorithm, but whitepapers with the word
abstract on them don’t appeal to me much. I need something a little
more down to earth that actually works in the real world and has
code that I can use. This was the motivation for this book.

Focus On 3D Terrain Programming is the first book ever written that
focuses on terrain programming 100 percent, and it’s the first book
that keeps it real and understandable for just about anyone.
Moreover, the book is small and cute, and you can buy thousands 
of copies to create a real 3D terrain if you wish! Seriously though,
this book is amazing. The author, Trent Polack, has without a doubt
implemented about a zillion terrain engines, and his knowledge,
failures, and successes are going to save you a lot of time. 

This book starts off assuming you know nothing about terrain pro-
gramming other than that a computer is going to be involved and
you are probably going to need vectors <BG>. Other than that,
Trent begins with a general overview of terrain programming and
then you start working on your first programs using OpenGL as the
API of choice. And don’t worry if you’re a Direct3D or software 3D
guy; OpenGL is like the C/C++ of 3D. It’s obvious what’s going on,
plus it makes all the Linux people happy, which, of course, keep vi 



sales going strong. In any case, after the introductions are made, the
book immediately moves into the various popular terrain algorithms
starting from brute force meshing to geomipmapping, quad trees,
and ROAM. I’ll let you figure out the acronym! 

Additionally, texture mapping techniques, lighting, and all the
other aspects of rendering the terrains are illustrated with working
demos (and there are lots of them). The book finishes up with spe-
cial effects such as water, mesh animation, particle system (such as
for rain), fogging, and bill boarding. 

I know I say this a lot, but this is one of my favorite books. What’s
cool about it is that you can know basically nothing about terrain
programming and then in a weekend know just about everything!
Plus, Trent’s code is some of the nicest I have seen. You can easily
follow his logic when concepts in the text are difficult to under-
stand. This is key for programming books because many authors
don’t have the pages they need to explain something, or it’s just a
hard subject to discuss. Thus, you are left with the code to bridge
the gap, but if the code is “hackeresk,” then it’s nearly impossible to
follow. Trent has gone out of his way to code cleanly, comment
often, and use reasonably efficient programming constructs that are
optimal but not impossible to understand.

In conclusion, once again, the Premier Game Development Series
has made another first with Focus On 3D Terrain Programming. I would
bet that in a little while, the Internet is going to be flooded with 
terrain-based 3D games rather than the usual running-around-in-the-
dark games, which would be a nice change. I highly recommend this
book for anyone who is interested in outdoor 3D rendering and
wants to save about 3–6 months with experimenting and learning what
has been compressed and filtered into this little jewel of a book.

Sincerely,

André LaMothe

Series Editor for the Premier Game Development Series



Introduction

Welcome to Focus On 3D Terrain Programming! This book will 
take you from a novice programmer with no terrain program-
ming knowledge at all to a fully informed terrain programmer
who can implement some of the most complex algorithms
around. What exactly is this book about? Well, I’ll you.

Focus On 3D Terrain Programming is your answer to 3D terrain 
programming. It provides comprehensive coverage of the most
popular algorithms around (and even one completely new one)
and discusses all of their concepts in an easygoing and fun-to-
read manner. All explanations are figure heavy for those who
like to see an explanation visually rather than try to understand
it from text, and explanations are also accompanied by several
demos, all of which can be found on the book’s companion CD.

Get ready to enter a jungle of terrain-programming goodness;
once you enter it, not even the biggest can of Mountain Dew
can draw you out. This book moves at a fast pace, but nothing
that any C/C++ experienced programmer with some slight
knowledge of basic 3D theory will have trouble understanding.
No matter how complex a discussion might get, there is always
fun to be had, whether it be with a cool new feature to implement
or a lame joke. So, without further ado, let’s begin the journey!
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Welcome to the wonderful world of 3D terrain programming!
I’ll be your guide through this fun-filled terrain book, and

together we’ll render the highest mountains, the lowest valleys, and
maybe even a blade of grass. Anyway, in this book, you’ll learn every-
thing cool there is to learn about terrain programming and its appli-
cations to game development. So, pack your bags with your necessities
(you know, music, caffeine, socks, and the little teddy bear that you
have hidden in the depths of your room) because we’re going to get
started!

“Terrain? No Thanks, 
I Already Ate.”
I know that the first question you’re going to have is this: “What is ter-
rain, anyway?” Well, I’ll answer that right off the bat. Terrain is land:
rocky mountains, grassy plains, rolling hills, all combining to form a
beautiful landscape. The terrain rendering field is concerned with
how to render all these magnificent natural features in real-time. After
you have the terrain worked out, you need to figure out how to ren-
der other features of nature, such as water, clouds, the sun, fog, and
other fun stuff. 

By the end of this book, you’ll fully understand how to create an
incredibly realistic outdoor scene that is highly detailed and efficient.
Let’s do a run-through of some general terrain information, starting
with terrain’s general (non-game-development based) applications.

General Applications
Before we get to the ultra-cool game-development applications of ter-
rain, let’s cover some of the other applications it has. I found a lot of this
information at the Virtual Terrain Project1 (http://www.vterrain.org),
which is a great site to find general information on the topic of 
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terrain and all of its applications. Some of the applications of terrain
are as follows: 

■ Virtual tourism (travel planning)
■ Visualization of weather and environmental topology
■ Real estate walkthroughs 
■ Military use, such as terrain in a flight simulator (for training

purposes)

These are just a few of the many uses for terrain. As you can see, 
terrain visualization and rendering is an important field of study for
several reasons. To truly make terrain rendering a useful tool for a
multitude of applications, it must be detailed enough and fast enough
to achieve a smooth frame rate. (Sluggish applications completely 
disturb the realism of any terrain scene, and realism is of the utmost
importance.) The information presented here is just the tip of the 
iceberg; if you’re interested in terrain but not game development,
check out the wonderful aforementioned site.

Terrain and Game Development
3D terrain has huge applications in game development, especially with
the advent of all these nifty, new continuous level of detail (CLOD)
algorithms. (The definition of CLOD algorithms is explained later in
Chapter 5, “Geomipmapping for the CLOD Impaired.”) 3D games
were previously impaired by the huge graphical scope of an outdoor-
based game. They had a tendency to take place indoors in small
rooms and tight hallways. (This was especially common for the first-
person shooter genre.)

In the past few years we, as gamers, have seen a series of great out-
door-based games spanning across various genres: strategy, action, and
first-person shooters. Games such as Black and White (see Figure 1.1)
and Starsiege: Tribes are two prime examples of outdoor-based games
that use terrain extensively.

Of all the outdoor games released in the past few years, one game in
particular can take responsibility for the general popularity of 3D 
terrain in games and as a general topic: Treadmarks.
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Treadmarks
Released in January 2000, Seamus McNally’s Treadmarks completely
revolutionized the way people think about terrain engines in games
and other applications. The game, shown in Figure 1.2, is based on
tank combat and racing around a ROAM-based terrain landscape (the
details of which will be discussed in Chapter 7, “Wherever You May
ROAM”) and involves lots of big explosions. The best part about the
game is that every shot that is fired affects the landscape. For instance,
a normal shell creates a small hole in the landscape, whereas larger
weapons have the potential to create a large crater.

Even now, with the game going on three years old, it is still the most
impressive display of terrain in any professionally produced game.
This is largely due to McNally’s implementation of the ROAM algo-
rithm, which displays some new ideas and changes to the algorithm to
make it more applicable to a fast-paced graphics application like
Treadmarks or any other game.
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Figure 1.1  A screenshot from Black and White Studio’s Black and White.



Unfortunately, Seamus McNally lost a three-year battle against
Hodgkin’s Lymphoma and died on March 30, 2000 at the age of 21.
Although I did not know Seamus or his family (the production crew
of Treadmarks), I’d like to thank him for his incredible ideas and
thoughts on terrain visualization and hope that he has found 
peace. A memorial for him was created at GameDev.net
(http://www.gamedev.net/community/memorial/seumas).

Because Treadmarks was such a huge milestone for the terrain 
programming world, I was able to include a demo (from
http://www.treadmarks.com) of the game on the book’s accompany-
ing CD (Demos/TM_16_Demo.exe). I strongly recommend that you
check it out now if at all possible. The game has some great terrain
effects, and it’s a great introduction to what we’ll be discussing
throughout this book. And it’s just such an addicting game!
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Figure 1.2  Seamus McNally’s Treadmarks, a tank combat game that revolution-
ized the way people viewed terrain in game development.



Demo Building Made Easy!
This book’s demos are divided into three groups: the main chapter
demos, alternate versions of the main chapter demos, and random
demos that various programmers volunteered to include with the
book. All of these and more can be found on the book’s excellent
accompanying CD. I will now go through compilation instructions for
the main and alternate book demos. The contributed demos will not
be covered; they will be left as a project for you to figure out.

The Main Demos
The main demos are the “official” accompanying demos for each
chapter in the book that are coded by yours truly. These demos use
OpenGL for the rendering API and custom Windows code, so you can
only run them on the Windows operating system. The main demos are
also coded in C++ using Microsoft Visual C++ 6.0. 

Each chapter’s code is
divided into two sections:
demo code and base code.
The demo code is where all
of the book’s theory and
content is implemented
into a demo, and the base
code contains application
initialization, camera rou-
tines, math ops, and so on.
All are put into a VC++
(Microsoft Visual C++)

workspace named
demoXX_YY.dsw, where XX is the chapter number and YY is the demo
number for the current chapter. When you open up the workspace in
VC++, you can just build the application, and it should compile
smoothly. Let’s implement this with a step by step for demo1_1, which
you can find on the accompanying CD under Code\Chapter 1\demo1_1.

First, open Microsoft Visual C++ and demo1_1.dsw (File, Open
Workspace). After you do that, the project toolbar should look like
Figure 1.3.

8 1. The Journey into the Great Outdoors

NOTE
It is important to note that although
this book’s accompanying demos
stick to a certain API, the actual text
is API and operating-system inde-
pendent.Whether you use OpenGL,
Direct3D, or any other API, you will
be able to understand this book’s
content.



From there, you can simply build (Build, Build demo1_1.exe) the
demo and then execute the EXE. The demo is almost an exact replica
of demo7_1 (Chapter 7’s first demo), so you can expect to see some-
thing similar later on in the book. For now though, a quick explana-
tion will do. The demo shows what a simple tessellation of the ROAM
algorithm looks like. Now that you’ve had that little teaser, just wait
until you get to the rather large Chapter 7! If you build demo1_1 cor-
rectly, it should look like Figure 1.4. Also take a look at the controls
for the demo in Table 1.1.
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Figure 1.3  Project toolbar for demo1_1 in Microsoft Visual C++ 6.0.



Isn’t that a beautiful screenshot? I think so. Anyway, that’s a lame
example of what we will be accomplishing in this book, but it works
for a little teaser!
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Table 1.1 Controls for demo1_1

Key Function

Escape / Q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

Figure 1.4  Screenshot of demo1_1.



The Book at 
an Itty-Bitty Glance
This book will be about terrain, terrain, terrain, and *gasp* even
MORE terrain! We’ll cover everything from fractal heightmap genera-
tion to three different CLOD algorithms. We’ll end with a tremen-
dously large chapter on special effects that can be used to increase 
the realism and detail of any 3D terrain scene. These effects consist of
such things as fog, cloud rendering, lens flares, and other various tips,
tricks, and effects. So, without further ado, let’s get to the summary.
We’ll take the book part-by-part instead of chapter-by-chapter.

Part One: Introduction
to Terrain Programming
This Part eases you into terrain programming. Chapter 2, “Terrain 101,”
discusses heightmap ops, such as loading and saving heightmaps, and
then continues on to discuss generating a heightmap. (A heightmap is a
2D image that defines the height for every vertex in a terrain engine.)
The heightmap generation section is really neat because it teaches you
how to create cool-looking heightmaps with little work.

Chapter 3, “Texturing Terrain,” starts off with stretching a single 
texture across a terrain mesh. From there, the chapter moves on to
discuss procedural texture generation, which produces much better-
looking results than stretching a single grass or dirt texture. The 
chapter then adds what is called a detail texture to the terrain, which
greatly improves the visual appearance of the landscape.

Chapter 4, “Lighting Terrain,” is the final chapter for Part One. It 
covers simplistic terrain lighting techniques. Starting off with the
incredibly simple height-based terrain lighting, the chapter then 
continues on to lightmapping terrain. The chapter closes with the
incredibly awesome slope-lighting technique, which provides great
lighting with a minimal amount of code.
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Part Two: Advanced
Terrain Programming
Chapters 5, “Geomipmapping for the CLOD Impaired,” 6, “Climbing
the Quadtree,” and 7, “Wherever You May ROAM,” deal with CLOD-
based terrain algorithms. A CLOD algorithm, in one sentence, is a
dynamic polygonal mesh that “gives” extra triangles to areas that
require more detail. That’s a simplistic explanation of the matter, 
but it will work until we get further into the book. Following are the
algorithms that are covered:

■ Willem H. de Boer’s geomipmapping algorithm
■ Stefan Roettger’s quadtree algorithm
■ Mark Duchaineau’s ROAM algorithm

What exactly these are will be explained in time, but briefly: They are
really cool! Each one is great in its own way, and each is completely dif-
ferent from the others, which makes for a rather varied coding experi-
ence later on.  Chapters 5, 6, and 7 are going to be a blast for you to
read through. We will then end the book with a wide variety of special
effects and tricks to “spice up” the previously mentioned implementa-
tions in Chapter 8, “Wrapping It Up: Special Effects and More.” In
that chapter, we will be covering cool effects such as fog, deformation,
and other “environmental” effects.

The Demos
I have programmed a demo for every major topic that is discussed
throughout this book. As we proceed through the book, it is impera-
tive that you keep in mind that the demos I provide are only to be
used as a stepping stone for your own implementation. My implemen-
tations are made to be a good teaching guide for you to base your
demos off of; don’t just copy and paste the demo code into your own
project. The demos provided are not highly optimized, do not provide
optimal detail, and do not implement all the bells and whistles of the
various techniques we will be discussing.

Because I’m such a nice guy, I decided to help you out a bit. Terrain is
a dynamic issue: The techniques that work one day might need to be
completely overhauled to be useful another day. Therefore, I have
dedicated most of my site (http://trent.codershq.com/) to terrain
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research and implementation, and I will be keeping a constant data-
base of my progress in the field of 3D terrain programming. I will
attempt to develop the most detailed and speediest implementations
that I can, and I will keep a constant log of the developments that I
make. If the demos that are provided on the book’s CD just aren’t
enough for you, be sure to check out my site for a series of demos and
information that will serve as an invaluable companion to this book.

Summary
This chapter covered the basics of terrain and its applications. It also
looked at how to compile and execute two different types of demos
and provided an overview of the entire book. Get ready: Your journey
through the wonderful world of terrain rendering is about to begin!
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CHAPTER 2

Terrain
101



Well, here it is—your first real introduction into the world of 3D
terrain programming! This chapter will cover all the aspects of

terrain rendering that you need to know before you start having fun
with texturing/lighting techniques, as well as various “hardcore” terrain
algorithms. In this chapter, you will learn the following key concepts:

■ What heightmaps are, how to create them, and how to load them
■ How to render terrain using a brute force algorithm
■ How to generate fractal terrain using two algorithms: fault 

formation and midpoint displacement

So, without further ado, let’s get started!

Heightmaps
Imagine that you have a regular grid of polygons that extends along
the X and Z axes. In case you don’t know what I’m talking about,
Figure 2.1 might refresh your memory.

Now that’s a pretty boring image! How exactly are we going to go
about making it more, well, terrain-ish? The answer is by using a
heightmap. A heightmap, in our case, is a series of unsigned char vari-
ables (which let us have values in the range of 0–255, which happens
to be the number of shades of gray in a grayscale image) that we will
be creating at run-time or in a paint program. This heightmap defines
the height values for our terrain, so if we have our grid along the X
and Z axes, the heightmap defines the values that will extend the grid
into the Y axis. For a quick example, check out the heightmap in
Figure 2.2. After we load it in and apply it to our terrain, the grid in
Figure 2.1 will transform into the beautiful terrain (although it is
extremely lacking in color and lighting) that you see in Figure 2.3.

Granted, the terrain in Figure 2.3 looks pretty boring without cool 
textures or lighting, but we need to start somewhere! As I was just
explaining, heightmaps give us the power to shape a boring grid of
vertices into a magnificent landscape. The question is, what exactly is
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a heightmap? Normally, a heightmap is a grayscale image in which
each pixel represents a height value. (In our case, the height ranges
from 0–255, the number of shades of gray in a grayscale image.) Dark
colors represent a lower elevation, and lighter colors represent a
higher elevation. Refer to Figures 2.2 and 2.3; notice how the 3D 
terrain (Figure 2.3) corresponds exactly to the heightmap in Figure
2.2, with everything from the peaks, to the valleys, and even the 
colors? That is what we want our heightmaps to do: Give us the power
to “mold” a grid of vertices to create the terrain that we want.

17Heightmaps

Figure 2.1  A grid of vertices with non-defined height values.

Figure 2.2  The 128 × 128 heightmap used to create Figure 2.3.



In our case, the file format for our heightmaps is going to be in the
RAW format. (Although most of the demos create heightmaps dynam-
ically, I included the option to save/load heightmaps using the RAW
format.) I chose this format simply because it is incredibly simple to
use. In addition, because the RAW format contains only pure data, it is
easier to load the heightmap in. (We also are loading in a grayscale
RAW image, which makes things even easier.) Before we load a RAW
image, we need to do a couple of things. First, we need to create a
simple data structure that can represent a heightmap. What we need
for this structure is a buffer of unsigned char variables (we need to be
able to allocate the memory dynamically) and a variable to keep track
of the heightmap’s size. Simple enough, eh? Well, here it is:

struct SHEIGHT_DATA

{

unsigned char* m_pucData; //the height data

int m_iSize;              //the height size (power of 2)

};

The Creation of a 
Base Terrain Class
We need to create a base class from which all of our specific terrain
engines (brute force, geomipmapping, and so on) will be derived. 
We do not want the user to actually create an instance of this class; 
we just want this class to be the common parent for our specific 
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Figure 2.3  Brute force terrain image created by 
using the heightmap in Figure 2.2.



implementations that we’ll develop later. See Figure 2.4 to get a visual
idea of what I have in mind.

So far, all that we need in
our base class is three 
variables: an instance of
SHEIGHT_DATA, a height scal-
ing variable (which will let
us dynamically scale the
heights of our terrain),
and a size variable (which
should be the same as 
the size member of
SHEIGHT_DATA). As far as
functions go, we need
some heightmap manipula-
tion functions and a func-
tion to set the height
scaling variable. Here’s
what I came up with:

class CTERRAIN

{

protected:

SHEIGHT_DATA m_heightData;  //the height data
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Figure 2.4  The relationship between CTERRAIN and the four terrain 
implementations.

NOTE
The CTERRAIN class is what us C++
junkies like to refer to as an abstract
class.An abstract class is a class that
functions as a common interface for
all of its children.Think of it this way:
A mother has red hair but has a bor-
ing personality.Although all of her
children have inherited the mother’s
red hair, each has a distinct personal-
ity that is incredibly entertaining.
The same applies to an abstract
class; although an abstract class is
“boring” by itself, its traits carry on
to its children, and those children
can define more “exciting” behavior
for themselves.



float m_fHeightScale;       //scaling variable

public:

int m_iSize;                //must be a power of two

virtual void Render( void )= 0;

bool LoadHeightMap( char* szFilename, int iSize );

bool SaveHeightMap( char* szFilename );

bool UnloadHeightMap( void );

//———————————————————————————————

// Name:          SetHeightScale - public

// Description:   Set the height scaling variable

// Arguments:     -fScale: how much to scale the terrain

// Return Value:  None

//———————————————————————————————

inline void SetHeightScale( float fScale )

{    m_fHeightScale= fScale;    }

//———————————————————————————————

// Name:          SetHeightAtPoint - public

// Description:   Set the true height value at the given point

// Arguments:     -ucHeight: the new height value for the point

//                -iX, iZ: which height value to retrieve

// Return Value: None

//———————————————————————————————

inline void SetHeightAtPoint( unsigned char ucHeight,

int iX, int iZ)

{    m_heightData.m_pucData[( iZ*m_iSize )+iX]= ucHeight;    }

//———————————————————————————————

// Name:          GetTrueHeightAtPoint - public

// Description:   A function to get the true height

//                value (0-255) at a point

// Arguments:     -iX, iZ: which height value to retrieve

// Return Value:  An unsigned char value: the true height at

//                the given point
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//———————————————————————————————

inline unsigned char GetTrueHeightAtPoint( int iX, int iZ )

{   return ( m_heightData.m_pucData[( iZ*m_iSize )+iX );    }

//———————————————————————————————

// Name:          GetScaledHeightAtPoint - public

// Description:   Retrieve the scaled height at a given point

// Arguments:     -iX, iZ: which height value to retrieve

// Return Value:  A float value: the scaled height at the given

//                point

//———————————————————————————————

inline float GetScaledHeightAtPoint( int iX, int iZ )

{ return ( ( m_heightData.m_pucData[( iZ*m_iSize )+iX]

)*m_fHeightScale ); }

CTERRAIN( void )

{   }

~CTERRAIN( void )

{   }

};

Not too shabby if I do say so myself! Well that’s our “parent” terrain
class! Every other implementation we develop derives from this class. 
I put quite a few heightmap manipulation functions in the class just to
make things easier both for us and for the users. I included two height
retrieval functions for a reason. Whereas we, as the developers, will use
the “true” function the most often, the user will be using the “scaled”
function the most often to perform collision detection (which we will
be doing in Chapter 8, “Wrapping It Up: Special Effects and More”).

Loading and Unloading 
a Heightmap
I’ve been talking about both of these routines for a while now, and it’s
about time that we finally dive straight into them. These routines are
simple, so don’t make them any harder than they should be. We are
just doing some simple C-Style File I/O.
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We need to talk about how
to load, save, and unload a
heightmap. The best place
to start is with the loading
routine because you can-
not unload something
without it being loaded.
We need two arguments
for the function: the file
name and the size of the
map. Inside the function,
we want to make a FILE
instance so that we can

load the requested
heightmap. Then we want to make sure that the class’s heightmap
instance is not already loaded with information; if it is, then we need
to call the unloading routine and continue about our business. Here
is the code for what we just discussed:

bool CTERRAIN::LoadHeightMap( char* szFilename, int iSize )

{

FILE* pFile;

//check to see if the data has been set

if( m_heightData.m_pucData )

UnloadHeightMap( );

Next, we need to open the file and allocate memory in our heightmap
instance’s data buffer (m_heightData.m_pucData). We need to make sure
that the memory was allocated correctly and that something didn’t go
horribly wrong. 

//allocate the memory for our height data

m_heightData.m_pucData= new unsigned char [iSize*iSize];

//check to see whether the memory was successfully allocated

if( m_heightData.m_pucData==NULL )

{

//the memory could not be allocated

//something is seriously wrong here

printf( “Could not allocate memory for%s\n”, szFilename );

22 2. Terrain 101

NOTE
I tend to stick with C-style I/O
because it is easier to read than
C++-style I/O. If you are really a true
C++ junkie, and absolutely loathe
the C way of doing things, then feel
free to change the routines to “true”
C++. On the other hand, I really like
C++-style memory operations, so, if
you’re a “true” C-junkie, change
those.



return false;

}

For the next-to-last step in our loading process, we are going to load
the actual data and place it in our heightmap instance’s data buffer.
Then we are going to close the file, set some of the class’s member
variables, and print a success message.

//read the heightmap into context

fread( m_heightData.m_pucData, 1, iSize*iSize, pFile );

//close the file

fclose( pFile );

//set the size data

m_heightData.m_iSize= iSize;

m_iSize             = m_heightData.m_iSize;

//Yahoo! The heightmap has been successfully loaded!

printf( “Loaded %s\n”, szFilename );

return true;

}

That’s it for the loading
routine. Let’s move on to
the unloading routine
before I lose your atten-
tion. The unloading proce-
dures are simple. We just
have to check whether the
memory has actually been
allocated, and if it has, we
need to delete it.

bool CTERRAIN::UnloadHeightMap( void )

{

//check to see if the data has been set

if( m_heightData.m_pucData )

{

//delete the data

delete[] m_heightData.m_pucData;
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The heightmap saving routine is
almost the same thing as the loading
routine. Basically, we just need to
replace fread with fwrite.That’s all
there is to it!



//reset the map dimensions, also

m_heightData.m_iSize= 0;

}

//the heightmap has been unloaded

printf( “Successfully unloaded the heightmap\n” );

return true;

}

I really do not need to check to see whether the data buffer is a NULL
pointer (delete internally checks whether the pointer is NULL), so my
check is a bit redundant. The check is a habit that I’ve gotten into,
however, so I’ll be doing it throughout this book. Just know that you
can call delete without checking for a NULL pointer first. Now it’s
about time that I showed you a simple way of rendering what we have
just been talking about.

The Brute Force
of the Matter
Rendering terrain using a brute force algorithm is incredibly simple,
and it provides the highest amount of detail possible. Unfortunately, it
is the slowest of all of the algorithms that this book presents. Basically,
if you have a heightmap of 64 × 64 pixels, then the terrain, when ren-
dered using brute force, consists of 64 × 64 vertices, in a regular
repeating pattern (see Figure 2.5).
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In case you didn’t immediately recognize it, we will be rendering each
row of vertices as a triangle strip because this is the most logical way to
render the vertices. You wouldn’t exactly want to render them as indi-
vidual triangles or as triangle fans with a structure like the one pre-
sented in Figure 2.5, would you?

For this chapter’s demo, I’m keeping things as simple as possible. The
color for the vertex will be based on its height, so all vertices will be
shades of gray. And that’s all there is to rendering terrain using brute
force. Here is a quick snippet using OpenGL to show how we will be
rendering the terrain:

void CBRUTE_FORCE::Render( void )

{

unsigned char ucColor;

int iZ;

int iX;

//loop through the Z axis of the terrain

for( iZ=0; iZ<m_iSize-1; iZ++ )

{

//begin a new triangle strip

glBegin( GL_TRIANGLE_STRIP );

//loop through the X axis of the terrain

//this is where the triangle strip is constructed

for( iX=0; iX<m_iSize-1; iX++ )

{

//Use height-based coloring. (High-points are

//light, and low points are dark.)

ucColor= GetTrueHeightAtPoint( iX, iZ );

//set the color with OpenGL, and render the point

glColor3ub( ucColor, ucColor, ucColor );

glVertex3f( iX, GetScaledHeightAtPoint( iX, iZ ), iZ );

//Use height-based coloring. (High-points are

//light, and low points are dark.)

ucColor= GetTrueHeightAtPoint( iX, iZ+1 );
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//set the color with OpenGL, and render the point

glColor3ub( ucColor, ucColor, ucColor );

glVertex3f( iX, 

GetScaledHeightAtPoint( iX, iZ+1 ),

iZ+1 );

}

//end the triangle strip

glEnd( );

}

}

It’s time for your first actual demo that you created! Check out
demo2_1 on the CD. Go to Code\Chapter 2\demo2_1, open up the
workspace in Microsoft Visual C++, and starting having fun! The demo
shows everything that we have just been discussing. Figure 2.6 shows a
screenshot of the demo, and Table 2.1 provides a description of the
controls for the demo. To move your viewpoint, just hold down the
left or right mouse button and drag the mouse.

Woohoo! Now, I said a while back that we were going to be creating
most of our heightmaps dynamically. You might be asking yourself,
“How do I do that?” Well, I’m glad you asked. (And even if you didn’t,
I’m still going to explain it!)  Now we are going to learn how to proce-
durally generate heightmaps using two fractal terrain generation tech-
niques. Get ready!
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Figure 2.6  A screenshot from demo2_1.



Fractal Terrain Generation
Fractal terrain generation is the process of algorithmically generating 
terrain, although in our case, we are simply generating a heightmap
to be used as the “blueprint” for our terrain. We will be going through
two algorithms here, the first of which is fault formation and the 
second of which is midpoint displacement. We will be using the fault
formation algorithm through most of the book because it does not
place a restriction on what dimensions must be used for the generated
heightmap, whereas midpoint displacement requires that the dimen-
sions be a power of two. (The dimensions must also be equal, so
although you can generate a heightmap of 1024 × 1024, you cannot
generate a heightmap of 512 × 1024.)  So, without further delay, let’s
get started with the fractal terrain generation algorithms!

Fault Formation
One method of fractal terrain generation is called fault formation.
Fault formation is the process of generating “faults” in terrain; for the
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Table 2.1 Controls for demo 2_1

Key Function

Escape / Q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

W Render in wireframe mode

S Render in solid/fill mode

+ / - Increase/decrease mouse sensitivity

] / [ Increase/decrease movement sensitivity



most part, it produces fairly smooth terrain. Basically, all we do is add
a random line to a blank height field, and then we add a random
height to one of the sides. See Figure 2.7 if you are having trouble
visualizing this or if you just want a confirmation that the image in
your head (or, if you’re like me, the voice in your head—I’m strange
like that) is correct.

That’s just the first step in the entire process, of course. There are still
some things you need to know about the algorithm before you reach
the advanced stages of it. First, the height value that I talked about
earlier needs to be decreased with every iteration. Why, you might
ask? Well, if you didn’t decrease the height after each pass, you’d end
up with a heightmap like Figure 2.8. See Figure 2.9 for examples of
what the heightmaps should look like.

Notice, in Figure 2.8, how the light/dark spots have no rhyme or rea-
son; they are just spread out all over the place. This would be fine for
chaotic terrain, but we want to create smooth, rolling hills. Have no
fear; fixing this problem is rather simple. We want to linearly decrease
the height value without having it drop to zero. To do this, we use the
following equation (taken from demo2_2):

iHeight= iMaxDelta - ( ( iMaxDelta-iMinDelta )*iCurrentIteration

)/iIterations;
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Figure 2.7  The first step in the 
fault-formation algorithm.



iMinDelta, iMaxDelta, and iIterations are all provided as function 
arguments. iMinDelta and iMaxDelta represent the lowest and highest
(respectively) values that you want for the height when forming new
faults. I tend to stick with a value of 0 for iMinDelta and a value of 255
for iMaxDelta. iIterations, as I said before, represents the number of
fault passes to make (how many different times the heightmap should
be divided). And last, but certainly not least, iCurrentIteration repre-
sents the current iteration number.

As I said earlier, we only want to elevate one side of the line, and we
want to raise the height value of every point on that side of the line.
Therefore, we’re going to have to loop through all of the height val-
ues for the entire heightmap. All of this is easy to accomplish; it just
involves some simple math. We have a vector that goes in the direc-
tion of our line (which is defined by the two random points that we
created earlier), and its direction is stored in (iDirX1, iDirZ1). The
next vector that we want to create is a vector from the initial random
point (iRandX1, iRandZ1) to the current point in the loop (x, z). After
that is done, we need to find the Z component of the cross product,
and if it is greater than zero, then we need to elevate the current
point in question. All of the previous explanation is shown next in
code from the demo.
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Figure 2.8  A map generated with completely 
random height values.



//iDirX1, iDirZ1 is a vector going the same direction as the line

iDirX1= iRandX2-iRandX1;

iDirZ1= iRandZ2-iRandZ1;

for( x=0; x<m_iSize; x++ )

{

for( z=0; z<m_iSize; z++ )

{

//iDirX2, iDirZ2 is a vector from iRandX1, iRandZ1 to the

//current point (in the loop).

iDirX2= x-iRandX1;

iDirZ2= z-iRandZ1;

//if the result of ( iDirX2*iDirZ1 - iDirX1*iDirZ2 ) is “up”

//(above 0), then raise this point by iHeight

if( ( iDirX2*iDirZ1 - iDirX1*iDirZ2 )>0 )

fTempBuffer[( z*m_iSize )+x]+= ( float )iHeight;

}

}

Check out Figure
2.9 to see several
heightmaps formed
using fault forma-
tion and a varying
number of fault-line
iterations.

As close as we are,
we are not finished
with this algorithm
yet! In case you 
didn’t notice, the
maps in the previ-
ous figure looked
non-terrainish (new
word). We need to
pass an erosion filter

over the entire map
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NOTE
While you’re looking at the fault formation
and midpoint displacement code in these
two segments and in demo2_2, you might
notice how I create a temporary buffer,
fTempBuffer, of floating point values to stick
all of the height values in. If you remember,
though, I talked about our heightmaps being
an array of unsigned char variables.Why
would I use floating-point variables in this
situation? I did this because the algorithm
needed a higher degree of accuracy than our
normal unsigned char height buffer.After we
have the entire heightmap created and nor-
malized, I transfer all of the information
from fTempBuffer to the height buffer in the
CTERRAIN class, m_heightData.



after we form a new fault to smooth out the values that we have. This
process is very much, if not exactly, like passing a blur filter over an
image in your favorite paint program. If it helps you to understand
the following explanation, just think of it like that.

What we are going to be doing is applying a simple FIR filter, as sug-
gested by Jason Shankel.1 This filter is meant to simulate terrain ero-
sion, which happens frequently in nature. (Have you ever seen a series
of mountains in nature that looked like the heightmaps in Figure
2.9?) We are going to be taking data in bands, rather than filtering the
whole heightmap at once. The filtering function looks like this:

void CTERRAIN::FilterHeightBand( float* fpBand, int iStride, 

int iCount, float fFilter )

{

float v= ucpBand[0];

int j  = iStride;

int i;

//Go through the height band and apply the erosion filter

for( i=0; i<iCount-1; i++ )

{

ucpBand[j]= fFilter*v + ( 1-fFilter )*ucpBand[j];

v = ucpBand[j];

j+= iStride;

}

}
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Figure 2.9  Examples of heightmaps created after several “fault formation” passes.



This function takes a single band of height values and goes through
them value by value, with iStride dictating how much to advance the
values by for each iteration in the loop. iStride also dictates which
direction to go because we’ll be filtering the entire height field from
top to bottom, bottom to top, left to right, and right to left. The most
important line of the entire function is this one:

ucpBand[j]= fFilter*v + ( 1-fFilter )*ucpBand[j];

This is the line that blurs/erodes. Various values for fFilter affect
blurring. 0.0f is no blurring at all, and 1.0f is a really strong blur.
Usually, we want values to be in the range of 0.3f to 0.6f, depending
on how smooth you want the terrain to be.  Now, for instance, let’s say
we had a filter value of 0.25f, and the current band value was 0.9f. The
previous equation would look like this:

ucpBand[j]= 0.25f*v + ( 1-0.25f )*0.9f;

After we perform the initial calculations, the previous equation would
simplify down to this:

ucpBand[j]= 0.25f*v + 0.675f;

0.675f is the new value for the heightmap pixel that we are blurring,
but now it needs to be interpolated with the pixel before it. (We’ll
give that pixel a value of 0.87f.) We apply the 0.25f blurring filter
value to that pixel and add it to the uninterpolated pixel value for the
pixel that we are trying to calculate:

ucpBand[j]= 0.25f*0.87f + 0.675f;

Doing the final calculations, we end up with a value of 0.8925f.  So,
you see, all we are really doing here is “mixing” a bit of the previous
pixel with the current pixel.  Check out Figure 2.10 to see how filter-
ing looks on a much larger scale than the per-pixel operations we
were previously talking about.

Play around with demo2_2 a bit. I made a new area of the menu for
heightmap manipulation, and now you can create new heightmaps
dynamically. If you find one you like, just select the Save Current
option, and the heightmap will be saved to the program’s directory.
When you select the Fault Formation option, a dialog box opens up
and prompts you to enter a value for detail. This value is an integer
value, so keep the numbers in the range of 0–100 for this. Now, it’s
time for some midpoint displacement fun!
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Midpoint Displacement
Fault formation works great for a nice little scene composed of some
small hills, but what if you want something more chaotic than that, such
as a mountain range? Well, look no further. Midpoint displacement2 is the
answer that you’re looking for! This algorithm is also known as the
plasma fractal and the diamond-square algorithm. However, midpoint
displacement sounds so much cooler, and it gives the reader (that’s you)
a better idea of what actually is going on in this whole process, so I’ll

stick to that term most of
the time.

All we are doing in this
algorithm, essentially, is tak-
ing a single line’s midpoint
and displacing it! Let me
give you a one-dimensional
run-through. If we had a
simple line, such as AB in
Figure 2.11, we’d take its
midpoint, represented as C
in the figure, and move it!
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Figure 2.10  Heightmaps that were generated using the 
fault-formation algorithm and the erosion filter. The top
image has a filter value of 0.0f, the middle image has a filter
value of 0.2f, and the bottom image has a filter value of 0.4f.

NOTE
It’s important to note that the mid-
point displacement algorithm has a
slight drawback to it:The algorithm
can only generate square
heightmaps, and the dimensions
have to be a power of two.This is
unlike the fault formation algorithm,
in which you can specify any dimen-
sion that you want.



Now, we’re going to displace the midpoint of that line by a height value,
which we’ll call fHeight (see Figure 2.12). We’ll make it equivalent to the
length of the line in question, and we’ll displace the midpoint by a
range of –fHeight/2 to fHeight/2. (We want to subdivide the line in two
each time, and we want to displace the height of the line somewhere in
that range.)

After the first pass, we need to decrease the value of fHeight to achieve
the roughness that we desire. To do this, we simply multiply fHeight by
2-fRoughness, in which fRoughness is a constant that represents the desired
roughness of the terrain. The user will specify the value for fRoughness,
so you need to know a bit about the various values you can put for it.
The value can, technically, be any floating-point value that your heart
desires, but the best results are from 0.25f to 1.5f. Check out Figure 2.13
for a visual indicator of what varying levels of roughness can do.

As you can see, the value you pass for fRoughness greatly influences the
look of the heightmap. Values that are lower than 1.0f create chaotic
terrain, values of 1.0f create a fairly “balanced” look, and values that

34 2. Terrain 101

Figure 2.11  A simple line, which is the first 
stage in the 1D version of the algorithm.

Figure 2.12  The line from Figure 2.11 after 
one displacement pass.



are greater than 1.0f create smooth terrain. Now, let’s kick this expla-
nation into the second dimension.

Keep the 1D explanation in your head constantly as we talk about
what to change for the 2D explanation because every concept you just
learned for that single line still applies. The exception is that, instead
of calculating the midpoint for a single line, we now have to calculate
the midpoints for four different lines, average them, and then add the
height value in the middle of the square. Figure 2.14 shows the blank
square (ABCD) that we start with.

As I said a second ago, we have to calculate the midpoint for all four
lines (AB, BD, DC, CA). The resulting point, E, should be directly in
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Figure 2.13  Varying values pass for fRoughness.

Figure 2.14  The first stage in the 2D version 
of the algorithm. (No displacement has occurred yet.)



the middle of the square. We then displace E by taking the average of
A, B, C, and D’s height values, and then we add a random value in the
range of –fHeight/2 to fHeight/2. This results in the image shown in
Figure 2.15.

That was only the first half of the first displacement stage. Now we
have to calculate the height values for each of the midpoints that we
found earlier. This is similar to what we did before, though; we just
average the height values of the surrounding vertices and add a ran-
dom height value in the range of –fHeight/2 to fHeight/2. You end up
with a square like that shown in Figure 2.16.

You then recourse down to the next set of rectangles and perform the
same process. If you understand the 1D explanation, however, you are
certain to understand the 2D explanation and the accompanying code,
demo2_2, found on the CD under Code\Chapter 2\demo2_2.
Compiling information, as usual, is supplied as a text file in the demo’s
directory. Go check out the demo. Controls are the same as the last
time (see Table 2.1 for a reminder), but this time, when you click
Midpoint Displacement for the Detail field, you want values in the
range of 0 (really chaotic terrain) to 150 (simple terrain). Have fun!
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Figure 2.15  The first-half displacement 
stage in the 2D version of the algorithm.



Summary
In this chapter, you received your introductory degree into terrain
programming. You learned all about heightmaps: what they are, how
to generate them, and how to load/unload them. Then you learned
how to render those heightmaps using brute force, the simplest (and
best looking) terrain algorithm on the market. Finally, you learned
two ways to procedurally generate a heightmap for the terrain. In the
next two chapters, we’ll learn all about “spicing up” our terrain with
cool texturing and lighting techniques.
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Figure 2.16  The final step in the first displacement stage.



CHAPTER 3

Texturing
Terrain



Now that you’ve had your introduction to making a simple terrain
mesh, you need to know how to add detail to that boring ol’

mesh using a texture map. I’m going to keep this discussion about
texturing simple and straight to the point so that we can get started
with the really fun stuff (the terrain algorithms). I’m going to quit
wasting space now and just tell you what you are going to be learning
in this chapter:

■ How to apply a large single-pattern texture map to a terrain
mesh

■ How to procedurally generate a complex texture map using 
various terrain “tiles”

■ How to add a detail texture to the terrain to add even more
detail to the previously generated textures

Simple Texture Mapping
We are going to start with some simple texture mapping. You will
learn how to “stretch” one texture over an entire terrain mesh. Most
of the time, this technique looks really bad unless, of course, you have
a really well-made texture map, which is what we are going to work on
in the next section. What counts right now is that you learn how to
stretch the texture without regard to what the end result will look like.

To stretch a single texture across the landscape, we are going to make
every vertex in the landscape fall within the range of 0.0f–1.0f (the
standard range for texture coordinates). Doing this is even easier than
it sounds. To start out, look at Figure 3.1.

As Figure 3.1 shows, the lower-left corner of the terrain mesh (for
example purposes, we’ll choose a heightmap resolution of 256 × 256),
(0,0) would have texture coordinates of (0.0f, 0.0f), and the upper-left
corner of the terrain (255, 255), would have texture coordinates of
(1.0f, 1.0f). Basically, all we need to do is find out which vertex we are
currently rendering and divide it by the heightmap resolution. (Doing
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so produces values in the range that we want, 0.0f–1.0f, without having
us step over our boundary. This is important to note because we do
want to step out of the previously mentioned range in a later section.)
Before we render each vertex, we need to calculate three things: tex-
ture values for x, z, and z+1, which I will call fTexLeft, fTexBottom, and
fTexTop, respectively. Here is how we calculate the values:

fTexLeft  = ( float )x/m_iSize;

fTexBottom= ( float )z/m_iSize;

fTexTop   = ( float )( z+1 )/m_iSize;

And to think you thought this was going to be hard! Anyway, we need
to do the previous calculations for each vertex that we render and
then send the texture coordinates to our rendering API. When we
render the vertex (x, z), we send (fTexLeft, fTexBottom) as our texture
coordinates, and when we render (x, z+1), we send (fTexLeft, fTexTop)
as our texture coordinates. Check out Figure 3.2 and demo3_1 on the
CD in Code\Chapter 3\demo3_1 to see the fruits of your labor.

The screenshot has more detail than our landscapes in Chapter 2,
“Terrain 101” (notice that I removed shading, however), but it’s hard
to discern the actual form of the landscape. Stretching a simple tex-
ture (see Figure 3.3), even if the texture used in demo3_1 is at a
rather high resolution, fails to capture the amount of detail that we
would like to have in our texture map.
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Figure 3.1  Texture coordinates over a terrain mesh.



We need more detail. We want a texture map similar to the one in
Figure 3.4, which was procedurally generated using a series of texture
“tiles” (dirt, grass, rock, and snow in this case).

See how much detail is shown in the texture of Figure 3.4? The textur-
ing of this figure helps distinguish tall mountainous areas from low
plain areas a lot better than the single grass texture shown in Figure
3.3. You need to know how to generate a really cool texture like the
one shown here. Read on!
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Figure 3.2  Screenshot from demo3_1.

Figure 3.3  The grass texture used in demo3_1.



Procedural Texture
Generation
Procedural texture generation is a cool and useful technique that is a great
addition to any terrain engine. After we finish our procedural texture
generator, we are going to have the user load a series of two to four tiles
of his choice. Then we are going to call our texture-generating function.
(All the user has to know is the size of the texture that he wants to be
created.) That’s it! How do we go about creating our texture-generation
function? First, you need to know what our actual goal is here. We are
going to be using the terrain’s heightmap to generate a texture that will
coincide with it. We will go through each pixel of our texture map, 
finding the height that corresponds to that pixel and figuring out each
texture tile’s presence at that pixel. (Each tile has a “region” structure
that defines its areas of influence.) Very rarely will a tile be 100% visible
at a pixel, so we need to “combine” that tile with the rest of the other
tiles (interpolating the RGB color values). The result will look something
like it does in Figure 3.5, where you can see what the interpolation would
look like between a grass and a rock tile.
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Figure 3.4  The type of texture that we want to use for our demos.



The Region System
To start coding the previously mentioned procedure, we need to start
by creating a structure to hold the region information for each tile. 
A region, as it applies here, is a series of three values that define a tile’s
presence over our height value range (0–255). This is the structure
that I created:

struct STRN_TEXTURE_REGIONS

{

int m_iLowHeight;      //lowest possible height (0%)

int m_iOptimalHeight;  //optimal height (100%)

int m_iHighHeight;     //highest possible height (0%)

};

An explanation of what each value does is best accomplished by
checking out Figure 3.6.

For the explanation, we will make m_iLowHeight equivalent to 63 and
m_iOptimalHeight equivalent to 128. Calculating the value for
m_iHighHeight requires some simple math. We want to subtract
m_iLowHeight from m_iOptimalHeight. Then we want to add
m_iOptimalHeight to the result of the previous operation. We have our
boundaries set (low: 63, optimal: 128, high: 193), so substitute those
boundary values in Figure 3.6. Now imagine that we are trying to 
figure out how much presence the current tile has at a height of, say,
150. Imagine where that value would be on the line in Figure 3.6, 
taking into account the boundaries that we created. To save you the
trouble of trying to figure it out, check out Figure 3.7. 
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Figure 3.5  A segment from the texture map in Figure 3.4, which shows the
interpolation between a rock and a grass tile.



As you can see by the image, the texture’s presence at that height
(150) is about 70 percent. Now that we know that much information,
what do we do with it? Well, we extract the RGB triplet from the tex-
ture’s image and multiply it by 0.7f. The result is how much of the tex-
ture we want at our current pixel.

We need to create a function that will calculate the region percentage
for us. This function is rather simple. It requires two trivial tests to see
whether the given height is actually in the boundaries for the region;
if it is not, exit the function. Next, we need to figure out where the
height is located in the region. Is it below the optimal value, above it,
or equivalent to the optimal value? The trivial case is if the height is
equivalent to the optimal value; if it is, then the current tile has a tex-
ture presence of 100 percent at the current pixel, and we don’t need
to worry about interpolation at all.

If the height is below the optimal value, we need to reduce the given
values to a simple fraction. To do this, we take the given height and
subtract it by the low boundary for the region. Then we take the opti-
mal boundary value and subtract it by the low boundary. We then
divide the result from the first calculation by the result from the 
second calculation, and BAM! We have our presence percentage!
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Figure 3.6  A “texture-presence” line.

Figure 3.7  Applying the “texture-presence” line.



Here is the code for what was just discussed:

//height is below the optimal height

if( ucHeight<m_tiles.m_regions[tileType].m_iOptimalHeight )

{

//calculate the texture percentage for the given tile’s region

fTemp1= ( float )m_tiles.m_regions[tileType].m_iLowHeight-

ucHeight;

fTemp2= ( float )m_tiles.m_regions[tileType].m_iOptimalHeight-

m_tiles.m_regions[tileType].m_iLowHeight;

return ( fTemp1/fTemp2 );

}

The final case is if the given height is above the optimal boundary.
The calculations for this case are a bit more complex than when the
height is below the boundary, but they still are not very hard. This
explanation is much easier to see in its code form than it is in text, 
so here is the code:

//height is above the optimal height

else if( ucHeight>m_tiles.m_regions[tileType].m_iOptimalHeight )

{

//calculate the texture percentage for the given tile’s region

fTemp1= ( float )m_tiles.m_regions[tileType].m_iHighHeight-

m_tiles.m_regions[tileType].m_iOptimalHeight;

return ( ( fTemp1-( ucHeight-

m_tiles.m_regions[tileType].m_iOptimalHeight ) )/fTemp1 );

}

The calculations, in theory, are basically the same that they were for
the lower-than-optimal-height case, except that we had to be able to
get the values down to a fraction that would make sense because 100
percent is lower than the height, instead of higher than the height.
That’s it!

The Tile System
Okay, now you know how to get the texture presence for one texture
tile and one texture pixel. Now you need to apply everything you just
learned to take all four texture tiles into account and create an entire
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texture map. This is a lot easier than it sounds, though, so don’t get
overwhelmed!

First, we need to create a texture tile structure that can manage all of
our texture tiles. We do not need much information for each tile; all
we need is a place to load the texture into and a region structure for
each tile. We will also want to keep track of the total number of tiles
that are loaded. With all of those requirements in mind, I created the
STRN_TEXTURE_TILES structure, which looks like this:

struct STRN_TEXTURE_TILES

{

STRN_TEXTURE_REGIONS m_regions[TRN_NUM_TILES];//texture regions

CIMAGE textureTiles[TRN_NUM_TILES];           //texture tiles

int iNumTiles;

};

Next, you need some texture tile management functions. I have func-
tions for loading and unloading a single tile, along with a function
that unloads all tiles at once. These functions are trivial to implement,
so I won’t show a snippet of them here. Just look in the code if you’re
interested. Other than that, you are ready to code the texture genera-
tion function!

To start the generation function, we need to figure out how many tiles
are actually loaded. (We want the user to be able to generate a texture
without all four tiles loaded.) After that is done, we need to reloop
through the tiles to figure out the region boundaries for each tile.
(We want the tile regions to be spaced out evenly across the 0–255
range). Here is how I went about doing this:

iLastHeight= -1;

for( i=0; i<TRN_NUM_TILES; i++ )

{

//we only want to perform these calculations if we

//actually have a tile loaded

if( m_tiles.textureTiles[i].IsLoaded( ) )

{

//calculate the three height boundaries

m_tiles.m_regions[i].m_iLowHeight= iLastHeight+1;

iLastHeight+= 255/m_tiles.iNumTiles;
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m_tiles.m_regions[i].m_iOptimalHeight= iLastHeight;

m_tiles.m_regions[i].m_iHighHeight= ( iLastHeight-

m_tiles.m_regions[i].m_iLowHeight )+iLastHeight;

}

}

The only thing that should look remotely odd here is the last segment
where we calculate m_iHighHeight, and even that should not look that
odd because we explained it earlier. (If it does look odd, refer back to
the beginning of this section where I explain the region boundaries.)

Creating the Texture Data
Now it is time to create the actual texture data. To do this, we need to
create three different for loops: one for the Z axis of the texture map,
one for the X axis, and one that goes through each tile. (This will be
the third tile loop in this function.) We also need to create three vari-
ables that will keep a running total of the current red, green, and blue
components for each pixel that we are calculating. This is what the
beginning of the actual texture generation should look like:

for( z=0; z<uiSize; z++ )

{

for( x=0; x<uiSize; x++ )

{

//set our total color counters to 0.0f

fTotalRed  = 0.0f;

fTotalGreen= 0.0f;

fTotalBlue = 0.0f;

//loop through the tiles

//for the third time in this function

for( i=0; i<TRN_NUM_TILES; i++ )

{

//if the tile is loaded, we can perform the calculations

if( m_tiles.textureTiles[i].IsLoaded( ) )

{

Next, we need to extract the RGB values from the texture (at the 
current pixel) into our temporary RGB unsigned char variables. Once
that is done, we need to figure out the current tile’s presence at the
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current pixel (using the function that we created earlier), multiply the
temporary RGB variables by the result, and add that to our total RGB
counters. Now we need to put the previous explanation into code:

//get the current color in the texture at the coordinates that we

//got in GetTexCoords

m_tiles.textureTiles[i].GetColor( uiTexX, uiTexZ,

&ucRed, &ucGreen, &ucBlue );

//get the current coordinate’s blending percentage for this tile

fBlend[i]=RegionPercent( i, InterpolateHeight( x, z, fMapRatio ) );

//calculate the RGB values that will be used

fTotalRed  += ucRed*fBlend[i];

fTotalGreen+= ucGreen*fBlend[i];

fTotalBlue += ucBlue*fBlend[i];

After we have looped through all four tiles, we then set the color for
the pixel in the texture that we are creating, and then redo the whole
thing for the next pixel. When we have completely finished generating
the color values for the texture, we create the texture for use with our
graphics API, and we’re set!

Improving the Texture Generator
Okay, I lied. We are not all set. Our texture generation function has a
couple of problems in its current form. These problems are as follows:

■ We can only create a texture with a resolution of, or below, our
heightmap.

■ If we fix that problem, then we can only create a texture with a
resolution of, or below, that of the smallest of our texture tiles.

Both of these problems are relatively easy to fix, however. Let’s start
with the heightmap resolution problem.

Getting Rid of the Heightmap
Resolution Dependency
We need to let the user choose any texture size that he wants. (Well,
almost any size. We want the dimensions to be a power of 2.) Early in
our texture generation function, before we enter the huge series of
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for loops, we need to figure out the heightmap to texture map pixel
ratio, which can be done like this:

fMapRatio= ( float )m_iSize/uiSize;

We then need to create a function that will interpolate the values that
we extract from the heightmap. We will divide this interpolation func-
tion into two parts: one for the X axis and one for the Z axis. We will
then get the average of the results for both parts, which is the value
for our interpolated height value. This might not be the best way to
go about things, but it works, and it works fast!

For this function, we need three arguments. The first two arguments
are the unscaled (x, z) coordinate that we are getting information for.
This will be rather high, and most likely, beyond the range of the
heightmap. The third argument is the variable that has our calculate
height to texture map pixel ratio (fMapRatio). Inside the function, we
will scale the given (x, z) coordinates by the ratio variable and will use
those for most of the function. To calculate the interpolation along
the X axis, we will do this:

//set the middle boundary

ucLow= GetTrueHeightAtPoint( ( int )fScaledX, ( int )fScaledZ );

//set the high boundary

if( ( fScaledX+1 )>m_iSize )

return ucLow;

else

ucHighX= GetTrueHeightAtPoint( ( int )fScaledX+1, 

( int )fScaledZ );

//calculate the interpolation (for the X axis)

fInterpolation= ( fScaledX-( int )fScaledX );

ucX           = ( ( ucHighX-ucLow )*fInterpolation )+ucLow;

As you can see, the first thing that we do is get the low height. Then
we check to see if the next height on the heightmap is even on the
heightmap. If it’s not, then we have to be content with the low value.
If the next height is on the heightmap, then we can get it and get
ready to interpolate the two values. We get the difference between 
the floating-point scaled x value and the unsigned char scaled x value. 
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(It will have a lower degree of accuracy, which will define the amount
of interpolation that we will use.) In the next calculation, we calculate
the interpolation along the X axis. We then do the same thing for the
Z axis, add the results from both calculations, and divide it by 2.
That’s all there is to it!

Getting Rid of the 
Tile Resolution Dependency
Okay, we’re almost there. We have just one more thing to figure out,
and that is how we can eliminate the tile-size boundary that is set
upon the user. The solution is so obvious that you might wonder,
“Why didn’t I think of that?” Well, trust me, it took me a long time to
figure out the solution, so don’t feel bad. All we need to do is repeat
the tile! I created a simple function that will give us the “new” texture
coordinates that will repeat our texture for us. Here is the function:

void CTERRAIN::GetTexCoords( CIMAGE texture, 

unsigned int* x, unsigned int* y )

{

unsigned int uiWidth = texture.GetWidth( );

unsigned int uiHeight= texture.GetHeight( );

int iRepeatX= -1;

int iRepeatY= -1;

int i= 0;

//loop until we figure out how many times the tile 

//has repeated (on the X axis)

while( iRepeatX==-1 )

{

i++;

//if x is less than the total width,

//then we found a winner!

if( *x<( uiWidth*i ) )

iRepeatX= i-1;

}

//prepare to figure out the repetition on the Y axis

i= 0;
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//loop until we figure out how many times the tile has repeated

//(on the Y axis)

while( iRepeatY==-1 )

{

i++;

//if y is less than the total height, then we have a bingo!

if( *y<( uiHeight*i ) )

iRepeatY= i-1;

}

//update the given texture coordinates

*x= *x-( uiWidth*iRepeatX );

*y= *y-( uiHeight*iRepeatY );

}

Most of this function consists of two while loops whose main goal is
just trying to figure out how many times the texture has repeated
before it reaches the coordinates that were given as arguments. After
that is figured out, we are just scaling down the given coordinates so
that they are back within the texture’s value-range. (We don’t want to
try to extract information that is completely out of the texture’s range.
That would cause an error, and errors are bad.)

That’s it! Our texture generation function is now complete! Check
out Figure 3.8. In the demo, you’ll notice a new field in the menu
called Texture Map. In this field, you can generate a new texture of a
higher resolution or save the current texture to the demo’s directory.
Speaking of a demo, you can see all of your hard work in demo3_2 on
the CD in Code\Chapter 3\demo3_2. Just open up the workspace for
the demo in Microsoft Visual C++ and start having some fun!

Using Detail Maps
1024 × 1024 is a rather large amount of data to achieve the amount 
of detail that we’d like to have in our texture. There must be another
way to achieve our desired detail without wasting resources. Well,
think no more! A cool way to add even more detail to your landscape
is by using a detail map. A detail map is a grayscale texture like the one
in Figure 3.9 that is repeated many times over a landscape and adds
cool nuances, such as cracks, bumps, rocks, and other fun things.
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Adding detail map-support to your terrain engine is a simple process.
Add some management functions for loading/unloading a detail
map, a function that allows the user to decide how many times he
wants the map to repeat across the landscape, and then all you have to
do is edit your rendering code a bit. The hardest decision is deciding
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Figure 3.8  The texture used in this screenshot from demo3_2 
has a resolution of 1024 × 1024.

Figure 3.9  An example of a detail map.



whether to hardware multitexturing or just make two separate render-
ing passes. Because terrain meshes can become rather large, your best
bet is to stick to hardware multitexturing. Implementing hardware
multitexturing is beyond the scope of this book, but if you don’t know
how to do it with your graphical API, it’s a simple thing to implement,
and you should learn it. In case you don’t know a good place to learn
an API, check out OpenGL Game Programming (Astle/Hawkins) or
Special Effects Game Programming with DirectX 8.0 (McCuskey), both 
published by Premier Press—a great publisher if I do so say myself!

To edit your rendering code, just set the base color texture (the one
we generated earlier, for instance) to the first texture unit, and then
set your detail texture to the second texture unit. Remember how the
texture coordinates for the color texture were calculated like this?

fTexLeft  = ( float )x/m_iSize;

fTexBottom= ( float )z/m_iSize;

fTexTop   = ( float )( z+1 )/m_iSize;

Well, we just have to make a slight modification to those calculations
to get the texture coordinates for our detail texture:

fTexLeft  = ( float )( x/m_iSize )*m_iRepeatDetailMap );

fTexBottom= ( float )( z/m_iSize )*m_iRepeatDetailMap );

fTexTop   = ( float )( ( z+1 )/m_iSize )*m_iRepeatDetailMap );

m_iRepeatDetailMap is how many times the user wants the detail map to
repeat across the landscape. The hardest part of detail mapping is set-
ting up multitexturing with your graphics API, but if you’re using
OpenGL, I set everything up for you. (Yeah, I know I’m a nice guy,
and my birthday is on March 11 if you feel the need to repay me!) To
see the effect that a detail map can have on your terrain, look at the
difference between a terrain that uses a 256 × 256 procedural texture
without a detail map (the left side of Figure 3.10) and terrain that uses
the same 256 × 256 texture, except with a detail map (the right side of
Figure 3.10).

See how much more detail the image on the right has? The best part
is that adding that extensive amount of detail is simple. Check out
demo3_3 on the CD in Code\Chapter 3\demo3_3, which shows the
new detail map code in action. The only changed controls from the
rest of the demos are that T turns off detail mapping and D turns
detail mapping back on. (Detail mapping is on by default.)
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Summary
We learned a lot about texturing terrain in this chapter. We started 
off with simple texturing (stretching a single texture across an entire
landscape), and then we kicked things into high gear with procedural
texture generation. We ended with a simple but cool technique called
detail mapping. In the next chapter, we will learn the next step in
making our terrain more realistic: lighting. If you happen to like 
texturing techniques, you might want to check out Tobias Franke’s 
article titled “Terrain Texture Generation”1 or Yordan Gyurchev’s arti-
cle titled “Generating Terrain Textures.”2 You also might be interested
in Jeff Lander’s article titled “Terrain Texturing,”3 which presents a
dynamic texture tiling solution.
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Figure 3.10  Comparison of two terrain images, one without a detail map
(left) and one with a detail map (right).



CHAPTER 4

Lighting
Terrain



Texturing terrain brought about a new level of detail into our 
terrain, and lighting terrain will bring a whole new level of realism.

The question is this: How do we light our terrain as quickly as possible
while still keeping a high level of realism? Well, all the techniques that
I will be teaching you are all fast (if rough) ways of lighting terrain. 
I will not be going into complicated global illumination algorithms
(although I will point you to some places where you can get informa-
tion on some of them) because realistic terrain lighting can probably
cover an entire book on its own. With that said, this is the agenda for
this chapter:

■ Height-based lighting
■ Hardware lighting
■ Applying a lightmap to terrain
■ The ultra-cool slope-lighting algorithm

I’ll keep this discussion of lighting decently short because I know that
you (or if you don’t, then I know I do) want to get started with the
cool terrain algorithms that I’ll be presenting in the next three chap-
ters. Let’s get going!

Height-Based Lighting
Height-based lighting is simple and unrealistic, but it is a type of light-
ing, so I figured I’d at least cover it briefly. We used height-based light-
ing in all of the demos in Chapter 2, “Terrain 101,” so you have used
it before even if you didn’t know it.

Height-based lighting is just that—lighting based off the height of a
vertex. High vertices (based on height data from the terrain patch’s
height data) are brighter than low vertices, and that’s all there is to it.
All that we need to do is use our GetTrueHeightAtPoint function (mem-
ber of the CTERRAIN class) to extract the brightness of the pixel at the
current (x, z) location (the value will be in the range of 0–255) from
the heightmap, and that is our brightness value. It’s that simple!
Figure 4.1 reinforces the concept.
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In the figure, vertex A would be almost black, vertex B would be a bit
brighter, and vertex C would be completely illuminated (white).
There you go—an entire explanation of height-based lighting in three
paragraphs and one figure!

Now you know what height-based lighting is, but how do you calculate
the lighting values inside your code? Well, it is rather simple, consider-
ing that you have a heightmap loaded. For example, say you are trying
to calculate the brightness for vertex (157, 227) in your terrain. Well,
the vertex’s brightness would simply be the height value that you
extract from the heightmap.

ucShade= GetTrueHeightAtPoint( 157, 227 );

ucShade is the variable that we store our lighting value in, and
GetTrueHeightAtPoint extracts information from our heightmap, at 
vertex (157, 227) in this case, in a range of 0 (dark) to 255 (bright).
Now, let’s add some color to our lighting!

Coloring the Light Source
We do not always want our lighting color to be grayscale (black to
white). Most of the time, we would like our lighting to be colored for
various situations. For instance, if it were a cloudless evening, the user
would be experiencing a nice sunset, so we’d want our lighting color
to be a shade of orange, pink, or purple. We need to create a vector
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Figure 4.1  A visual explanation of height-based lighting.



for our lighting color information and a simple function that will set
the color of the light. (We want the lighting values to be in the range
of 0.0f–1.0f. You’ll find out why in a second.) After we have that done,
we can take the lighting value that we retrieved earlier and multiply
that by each value in the RGB light color vector using this equation:

Intensity= shade*color

Now, using that equation, we can apply it to figure out the RGB color
components, and then send them to the rendering API:

ColorToAPI( ( unsigned char )( ucShade*m_vecLightColor[0] ),

( unsigned char )( ucShade*m_vecLightColor[1] ),

( unsigned char )( ucShade*m_vecLightColor[2] ) );

ucShade is the brightness value that we calculated earlier, and
vecLightColor is the color of our light. Now check out demo4_1 
(on the CD under Code\Chapter 4\demo4_1) and Figure 4.2. If you 
need a refresher on the demo’s controls, check out Table 4.1.

When you look at the figure, you notice that the lower areas of the 
terrain are rather dark and that the high areas of the terrain are bright.
This is exactly what height-based lighting does: High areas are bright,
and low areas are dark. What’s the problem with this algorithm? First,
it is incredibly unrealistic. This algorithm doesn’t take into account
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Figure 4.2  A screenshot from demo4_1.
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that it is possible for the sun to be shining directly at a “dip” in the
terrain (a low height area), which would make that area very bright.
This problem is shown in Figure 4.3.
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Table 4.1  Controls for demo 4_1

Key Function

Escape / Q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

T Toggle texture mapping

D Toggle detail mapping

W Render in wireframe mode

S Render in solid/fill mode

+ / - Increase/decrease mouse sensitivity

] / [ Increase/decrease movement sensitivity

Figure 4.3  One problem with height-based lighting.



You see, in Figure 4.3, the sun reaches both vertices A and B, but
according to the way we would be lighting the terrain with the height-
based lighting technique, vertex A would be bright and vertex B
would be dark, which is incorrect (as the figure shows).

The second problem with this technique is that it provides you with
very little freedom over the way you want your terrain’s lighting to
look. Now we need to proceed and discuss more versatile and realistic
ways of lighting terrain.

Hardware Lighting
This technique has two major problems. First, it is highly API depen-
dent, so I won’t be showing you code or giving you a demo of it.
Second, it is pretty useless for dynamic terrain meshes—the kind that
we will be working with for the next three chapters. Because of these
issues, I’ll just give you some basic implementation details here.

Hardware lighting requires you to calculate the surface normal for
every triangle that you render. The best time to do this is in the pre-
processing segment of your demo; that way, the calculations do not
bog down the program. After you calculate the normal, you just send
it to the API for the current triangle that you want to render, and
you’re done.
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CAUTION
Be sure that you have hardware lighting set up correctly with your
API before you do anything. Hardware lighting can be, at times, a
real pain to set up, so don’t be too surprised if your terrain isn’t lit or
is lit incorrectly the first time you try to implement it.You need to
make sure that you have a customized light source (with the correct
attenuation, diffuse/specular/ambient values, and so on). After you
have your light set up, be sure that you enabled the light source and
the lighting component of your API in general. Many people come to
me with questions about hardware lighting, and 75 percent of them
have forgotten to enable their light source! Don’t be a statistic.



This technique works great for static terrain meshes like the kind that
we have been using in the past two chapters and the one we are using
in this chapter. It makes dynamic lighting and day/night simulations a
breeze. However, because hardware lighting is mostly vertex based,
dynamic terrain meshes do not look good being hardware lit. (Dynamic
meshes have constantly shifting vertices.) That’s it for our discussion of
hardware lighting. Hope you didn’t blink.

Lightmapping
We will use lightmapping constantly throughout this book. A lightmap
is exactly like a heightmap (discussed in Chapter 2), except that
instead of having information for heights, the lightmap contains only
lighting information. All of the code for loading, saving, and unload-
ing a lightmap is the same as that of the corresponding procedures
for heightmaps (except that the lightmap manipulation functions deal
with different variables than the heightmap functions), so I won’t
waste your valuable time by going through each function again. Our
lightmap information is going to be stored in a grayscale RAW texture,
just like our heightmaps, except the information in the lightmap only
pertains to lighting. For instance, look at the heightmap and the
lightmap in Figure 4.4, and then look at the result that is achieved 
in Figure 4.5. See how a lightmap affects the terrain lighting?

See how the light in Figure 4.5 is in a spherical shape exactly like the
lightmap in Figure 4.4? That is why we use lightmaps: to define the exact
type of lighting that we want for a patch of terrain. And because you can
pre-create lightmaps, you can use various algorithms to generate them.
You can generate lightmaps in many ways. Some of these ways are 
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Figure 4.4  The heightmap (left) and the 
lightmap (right) for the terrain in Figure 4.5.



complicated—but good looking—global illumination techniques. I will
be showing you one such way to create a lightmap in the next section.

After you have a lightmap loaded in the same fashion that we loaded
the heightmap, you need to create a function that will extract the
brightness at a given pixel:

inline unsigned char GetBrightnessAtPoint( int x, int z )

{  return ( m_lightmap.m_ucpData[( z*m_lightmap.m_iSize )+x] );  }

Remember how we used GetTrueHeightAtPoint to get the brightness
information for height-based lighting in demo4_2? All we have to do
is replace that call with a call to GetBrightnessAtPoint and we’re set! See
how easy all of these lighting techniques are? Check out demo4_2 on
the CD under Code\Chapter 4\demo4_2, and try creating some of your
own little heightmaps and seeing how they turn out. I created an inter-
esting little lightmap in Figure 4.6, with the result shown in Figure 4.7.

As if it weren’t obvious before, I am suffering from an extreme combi-
nation of having too much time on my hands and having far too
much fun with this book! 

Lightmapping is of such critical importance in games that I feel the
urge to expand on some of its more advanced features. I covered
everything that you need to do to “paste” a lightmap onto terrain, but
the more advanced lightmapping concepts concentrate on the genera-
tion of a lightmap. (I’ll be showing you one such algorithm a bit later.)
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Figure 4.5  The terrain created from the heightmap 
and lightmap in Figure 4.4.



Many games, such as Max-Payne and Quake 2, use a method known as
radiosity. (Visit http://freespace.virgin.net/hugo.elias/radiosity/
radiosity.htm if you would like an explanation of the technique.)
Notice that the games I mentioned are both indoor-based games, and
terrain is an outdoor topic, which, as you might guess, means that we
have to find another technique to calculate our lightmaps. Luckily for
us, many different techniques are available (almost a bewildering
amount, in fact). I will be providing one such simple algorithm, but
let it be known that it is a simple algorithm, and not nearly as power-
ful as some of the other global illumination techniques in existence,
one of which I will refer to at the end of this chapter.
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Figure 4.6  The lightmap used to 
create the terrain in Figure 4.7.

Figure 4.7  The terrain created from the lightmap in Figure 4.6.



Slope Lighting
Let me get this out of my system right now: This is one of the coolest
algorithms that I’ve come across in a long time. It is incredibly simple
to use, and it provides sharp-looking results. Slope lighting 1 is a simple
lighting technique that shades vertices according to their height in
relation to a nearby vertex.

Okay, Slope Lighting Is Cool,
But How Is It Performed?
To slope light terrain, we are going to retrieve the height from the
vertex next to the current vertex (the direction will be dictated by the
light’s direction), and then subtract it by the current vertex’s height.
Basically, we are checking to see if the other vertex is going to be cast-
ing a shadow upon the current vertex.  I think this is the perfect time
for a real-life example. Say you were standing in front of a large build-
ing that was blocking the sun from your point of view. The building
would be casting a shadow over you, as in Figure 4.8. 

As you can see in the figure, the light source’s rays will not reach your
position due to the large building obstructing them. The end result is
that you will be standing in a shadowy area, making you appear darker
to the people who are receiving the light’s rays. This is the same con-
cept we are trying to achieve in slope lighting—shading vertices that
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Figure 4.8  The building analogy.



are having a light source’s rays blocked by the higher vertex before
them. This concept is further explained in Figure 4.9.

As you can see in the figure, the light source sends out all kinds of
light rays (a near infinite amount, actually) but, in this case, none of
them will reach vertex B because vertex A is blocking the light. Just
because vertex B receives no direct light rays does not mean it is 
completely dark; some of the light that the other vertices receive
“bleeds” out into the vertex, slightly illuminating it. A vertex is 
never completely dark.

There is a slight flaw in this algorithm, and that is when you set the
light’s direction, it must be in increments of 45 degrees. For instance,
the left side of Figure 4.10 is lit by a light with a direction of (1, 1). If
we wanted to move the light to the left, we would have to change the
light to a direction of (0, 1), which would cause the light to move 45
degree to the left instead of a smooth transition like a light movement
of 2–5 degrees at a time. 
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Figure 4.9  A visual example of slope lighting.

Figure 4.10  Terrain that is slope-lit with a light direction of (1, 1) (left) 
and a light direction of (0, 1) (right).



Now, if you’ll notice, there really is not a huge difference between
these images. Therefore, you can easily get away with changing the
light’s direction in real-time. Most users won’t notice the slight “jump”
in shading.

Creating a Slope-Lighting System
We need to add a few variables to our CTERRAIN class before we can start
writing the slope-lighting code. (If you think this class is getting filled
with a lot of extra features now, just wait until later!) We need to be
able to define the minimum/maximum brightness for our terrain
because, as I said earlier, rarely is a shadowed vertex ever completely
darkened. We also need variables for the light’s softness and the
light’s direction, both of which need to be used if we want to achieve
realistic results. In addition, we want a function that will easily let
users customize the slope lighting system’s parameters:

inline void CustomizeSlopeLighting( int iDirX, int iDirZ,

float fMinBrightness,

float fMaxBrightness,

float fSoftness )

{

//set the light direction

m_iDirectionX= iDirX;

m_iDirectionZ= iDirZ;

//set the minimum/maximum shading values

m_fMinBrightness= fMinBrightness;

m_fMaxBrightness= fMaxBrightness;

//set the light’s softness

m_fLightSoftness= fSoftness;

}

Dynamically Creating Lightmaps
Before we go any further, do you recall me saying that the most critical
lightmapping algorithms consist of lightmap generation? Well, now we
are going to create a function that will generate a lightmap for use by
our terrain. You can choose to calculate the lighting every frame (it is
not that slow of a process with the algorithms that I am presenting
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here), but it is much better to calculate once at the beginning of a
demo and then calculate the lighting again whenever it is needed.
Here is the first half of the function that I created to do this:

void CTERRAIN::CalculateLighting( void )

{

float fShade;

int x, z;

//a lightmap has already been provided, no need to create one

if( m_lightingType==LIGHTMAP )

return;

//allocate memory if it is needed

if( m_lightmap.m_iSize!=m_iSize || m_lightmap.m_ucpData==NULL )

{

//delete the memory for the old data

delete[] m_lightmap.m_ucpData;

//allocate memory for the new lightmap data buffer

m_lightmap.m_ucpData= new unsigned char [m_iSize*m_iSize];

m_lightmap.m_iSize= m_iSize;

}

//loop through all vertices

for( z=0; z<m_iSize; z++ )

{

for( x=0; x<m_iSize; x++ )

{

//using height-based lighting, trivial

if( m_lightingType==HEIGHT_BASED )

SetBrightnessAtPoint( x, z, 

GetTrueHeightAtPoint( x, z ) );

Up to this point, you should be able to comprehend everything. 
We start out by checking to see whether the user is using a premade
lightmap. If he is, then we don’t want to overwrite the information in
the lightmap. Then we need to see whether we need to allocate mem-
ory for the lightmap. After that, we start our loop through all of the
vertices—the lightmap needs to be the same size as our heightmap—
and check to see whether the user is using height-based lighting. If he
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is, then we set the current pixel to the same pixel that is in the
heightmap. The remainder of the function has to do with slope light-
ing, so I’ll describe it in two sections:

//using the slope-lighting technique

else if( m_lightingType==SLOPE_LIGHT )

{

//ensure that we won’t be stepping over array boundaries by

//doing this

if( z>=m_iDirectionZ && x>=m_iDirectionX )

{

//calculate the shading value using the “slope lighting”

//algorithm

fShade= 1.0f-( GetTrueHeightAtPoint( x-m_iDirectionX,

z-m_iDirectionZ ) -

GetTrueHeightAtPoint( x, z ) )/m_fLightSoftness;

}

This is where the bulk of the slope-lighting calculations take place. 
As you can see, we subtract the height of the vertex before the current
one—in the direction that the user specifies—by the current vertex.
We are trying to see how much of a shadow the previous vertex casts.
We then divide that value by the light softness and subtract 1.0f from
the value that we have after the division. I really haven’t talked about
how the light’s softness affects things, so check out Figure 4.11, where
I took a screenshot using three different levels of softness.

And now, the rest of the function:

//if we are stepping over a boundary, then just 

//return a very bright color value (white)

else

fShade= 1.0f;

//clamp the shading value to the minimum/maximum 

//brightness boundaries

if( fShade<m_fMinBrightness )

fShade= m_fMinBrightness;

if( fShade>m_fMaxBrightness )

fShade= m_fMaxBrightness;
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//set the new brightness for our lightmap

SetBrightnessAtPoint( x, z,

( unsigned char )( fShade*255 ) );

}

}

}

}

In this section, we clamp fShade to the minimum/maximum brightness
boundaries and then set the brightness at the current point in the
lightmap. In demo4_3 (on the CD under Code\Chapter 4\demo4_3), 
I added a cool new dialog box (see Figure 4.12) that lets you fully cus-
tomize the slope-lighting system dynamically. Have some fun with it!
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Figure 4.11  Varying levels of light softness: a value of 1 (left), 10 (center),
and 15 (right).

Figure 4.12  The Customize Slope Lighting dialog box in demo4_3.



Summary
This chapter has been a quick run-through of some simple lighting
techniques that can add a new level of realism to your terrain. We
talked about height-based lighting, hardware lighting, lightmapping,
and slope-lighting. Slope-lighting is probably your best bet for simple
terrain demos. I didn’t have time to mention one really cool global
illumination technique, which is Hoffman and Mitchell’s article
“Real-Time Photorealistic Terrain Lighting,” but if you’re interested
in terrain lighting, it is definitely worth a look. Anyway, you’d better
prepare yourself—you’re about to enter the hardcore terrain 
programming section, which contains all sorts of information on
advanced terrain algorithms.

References
1 Van Noland, Charlie. “Slope Lighting Terrain.” 2002.
http://www.gamedev.net/reference/articles/article1436.asp.
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Woohoo! You are now going to learn all about hardcore terrain
programming, which consists of incredibly difficult algorithms.

Actually, that’s a lie. The three algorithms I’m going to explain in this
chapter were chosen because of their simplicity and efficiency. And,
for once in this book, I’m going to spare you from a long drawn-out
introduction and simply tell you the agenda for this chapter:

■ An explanation of what Continuous Level of Detail means
■ The theory behind geomipmapping
■ The method for implementing geomipmapping

For simplicity, I broke the agenda into three parts. Despite this break-
down, this chapter is rather large. Don’t let the size of this chapter
intimidate you, however; the content will be presented, as always, in a
fun and simple manner. Note that I am changing the style of learning
a bit, though. Chapters 5, 6, and 7 focus more on algorithmic explana-
tions and pseudo-code than the earlier chapters do. In these later
chapters, I still provide you with demos and implementations of my
own, but the implementations are simple, and you should use them
only in conjunction with the text. With that said, let’s get started.

CLOD Terrain 101
You’ve heard the term Continuous Level of Detail (CLOD) several times
in this book, but it’s about time that I tell you what it actually is. A
CLOD algorithm, in one sentence, is a dynamic polygonal mesh that
“gives” extra triangles to areas that require more detail. That’s a sim-
ple statement, but you’ll understand a lot more about CLOD by the
end of this section, and you’ll understand even more by the end of
this chapter. Don’t fret if you don’t understand what CLOD is yet.

Why Bother with CLOD Terrain?
CLOD algorithms require more research, are harder to code, and take
up more CPU cycles than your average brute force implementation.
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With that in mind, why would you want to bother with a CLOD algorithm?
It’s simple really: to create a more realistic, more detailed and, most
importantly, a faster patch of terrain.

More Detail Is Added 
Where More Detail Is Needed
One of the basic ideas of CLOD is that we want to add more detail
(more triangles) where it is needed. For instance, if we had a rather
smooth patch of terrain (see Figure 5.1), we would want fewer triangles
on average than we would for a more chaotic patch (see Figure 5.2).
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Figure 5.1  Few triangles would be needed to render this smooth 
patch of terrain.

Figure 5.2  Many triangles would be needed to render this chaotic
patch of terrain.



However, not all algorithms worry about the distribution of triangles
to areas that require more detail. Geomipmapping doesn’t distribute
more triangles to areas that require more detail, but Rottger’s
Quadtree algorithm (in Chapter 6, “Climbing the Quadtree) does.
Therefore, saying that CLOD, as a whole, adds more detail to areas
that require it, is not always true, but for most cases, it is. Am I thor-
oughly confusing you yet? 

Cull Like You’ve Never Culled Before!
Another positive to CLOD-based algorithms is that they allow more
selective culling of polygons than brute force methods do. This means
that polygons that aren’t seen won’t be sent to the API. For instance,
the geomipmapping implementation that we are about to start work on
uses a series of landscape patches. If a patch isn’t visible, we eliminate a
potential 289 rendered vertices (for a 17 × 17 vertex patch) in one fell
swoop. This is a huge load off of the graphics card, and the culling isn’t
even CPU intensive. Using a simple method, we please both the GPU
and the CPU, making your motherboard happier as a whole.

Not Everything Is Happy 
in the Land of CLOD Terrain
Using CLOD terrain algorithms does have some drawbacks, though.
Oddly enough, the universe aided me in writing this section by plac-
ing the August issue of Game Developer Magazine in my mailbox earlier
today. The main drawback in most CLOD algorithms is the “book-
keeping” involved in updating the polygonal mesh every frame. 1

This “bookkeeping” drawback wasn’t nearly as prevalent when most of
these algorithms (geomipmapping, Rottger’s quadtree algorithm, and
ROAM) were designed. This is because the algorithms wanted to put
most of the workload on the CPU and send as little information as
necessary to the GPU. Since then, however, things have changed quite
a bit. Now we want to put a larger focus on the GPU than the CPU.

Wrapping Up Your 
Introduction to CLOD Terrain
Obviously, if the geomipmapping, quadtree, and ROAM algorithms
were out of date, you wouldn’t be reading about them right now,
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which means that someone, somewhere (heck, maybe even me) came
up with some optimizations for each algorithm that still make them
important to modern-day terrain rendering. With that in mind, I’ll
quit babbling about CLOD and start babbling about implementing
geomipmapping.

Geomipmapping Theory
for the Semi-CLOD
Impaired
Geomipmapping, developed by Willem H. de Boer, is a CLOD algo-
rithm that is GPU friendly. It is also a simple algorithm that is perfect
for your transition into the land of CLOD landscapes. As we go along,
you might want to refer to the actual geomipmapping whitepaper,
which I have placed on the accompanying CD-ROM for your conve-
nience. (It’s named Algorithm Whitepapers/geomipmapping.pdf.) 

Simply the Basics
If you are familiar with the texturing concept of mipmapping, then
geomipmapping should seem like familiar ground to you. The concepts
are the same, except that instead of dealing with textures, we’re 
dealing with vertices of a patch of terrain. The driving concept of
geomipmapping is that you have a set patch of terrain. For this expla-
nation, I’ll say it’s a patch with a size of 5 vertices (a 5 × 5 patch). That
5 × 5 patch is going to have several levels of detail, with level 0 being
the most detailed and, in this case, level 2 being the least detailed.
Look at Figure 5.3 if you need a visual explanation of what each patch
looks like at its various levels. In the figure, black vertices are not sent
to the rendering API, but the white ones are.

If you referred to the Willem de Boer’s geomipmapping whitepaper,
you might have noticed that the triangle arrangement shown in
Figure 5.3 is slightly different from the arrangement shown in the
whitepaper. The reason I did this will become clear to you a bit later,
but for now, just know that I did it for a reason.

It’s about time that we discussed geomipmapping a bit more. I gave
you the basics earlier, but now it’s time that you know everything…
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Well, almost everything. I might withhold some information for your
protection.

As I said earlier, geomipmapping is similar to texture mipmapping
except that we’re using land patches instead of texture patches. What
we need to do, starting from the user’s point in 3D space (the camera’s
eye position), is make all of the patches around the viewer be the
most detailed because those patches are what the user sees the most
of. At a certain distance away, we’ll switch to a lower level of patch
detail. And, at another distance away, we’ll switch to an even lower
level of detail. Figure 5.4 explains this visually.

As you can see in the figure, the patches in the immediate area of the
viewer’s position have a Level of Detail (LOD) of 0, which means that
those patches are of the highest level of detail. As the patches become
farther away, they change to a level of 1, which is the second highest
level of detail. And even farther away from the viewer, the patches have
a level of 2, which is the lowest level of detail presented in the image.

Triangle Arrangement Made Easy
Earlier, you might have noticed that the triangle arrangement I 
used in Figure 5.3 is quite different from the one presented in the
geomipmapping paper I referred you to (on the CD or on the
Internet at the URL presented at the end of this chapter). In case 
you don’t have access to that paper right now, look at Figure 5.5 to 
see what the paper’s suggested triangle arrangement looks like.
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Figure 5.3  Triangle arrangement for a patch of terrain, in which the most detailed
arrangement is on the left, and the least detailed arrangement is on the right.



This arrangement might seem like a better idea, and it is for the most
part. (Warning: I’m going to get slightly sidetracked right here.)
Triangle strips are definitely the way to go if you plan to use vertex
buffers to render the patches, which is my suggestion to you. However,
because implementing a vertex buffer rendering system is highly
dependent on API, I chose to use immediate mode rendering because
it is much easier to convert to another API’s syntax if needed. Using a
vertex buffer for rendering provides a huge speed increase for any ter-
rain implementation because it reduces the function overhead that is
present when you’re sending each vertex, texture coordinate, color,
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Figure 5.4  In the geomipmapping algorithm,
as a patch of terrain gets farther away from 
the viewer, it switches to a lower level of detail.

Figure 5.5  The triangle arrangement for patch rendering presented in the
geomipmapping whitepaper.



and so on to the API individually. In addition, most graphics cards
prefer vertex information being sent in the form of a vertex buffer. 
In the end, I recommend that you use vertex buffers for terrain ren-
dering. You’ll get a tremendous increase in speed, and that is always
worth the extra effort it takes to achieve it. If you’d like to see an
example of a geomipmapping-esque technique using Direct3D vertex
buffers, look at “Simplified Terrain Using Interlocking Tiles,” published
in Game Programming Gems, volume 2.

Anyway, it’s time to get back on topic. The arrangement shown in
Figure 5.3 is the way we will render our patches. This arrangement
provides us with one huge benefit: It allows us to easily skip rendering
a vertex when we need to, which is quite often. That brings me to our
next topic of discussion.

Hacks and Cracks, 
But Mostly Just Cracks
Often when you’re dealing with CLOD terrain algorithms, you must
deal with the subject of cracking. Cracking occurs, in the case of
geomipmapping, when a highly detailed patch resides next to a lower
detailed patch (see Figure 5.6).

As you can see from the figure, the patch on the left is of a higher
level of detail than the patch on the right. Our problem lies at points
A and B. The problem is that there is a higher level of detail on the
left side of point A than there is on point B. This means that the left
patch is rendering the exact height at point A, but the right patch is
just getting the average of the height above it and the height below it.
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Figure 5.6  Two patches, side by side, with different levels of detail.



This whole “cracking” thing might not seem like such a big deal, but
check out Figure 5.7, which shows a screenshot of my geomipmapping
implementation without noncracking measures taken.

It’s not exactly a smooth landscape, is it? Just look at all those gaping
holes in the scenery. Let’s fix it!

Crack-Proofing Your 
Geomipmapping Engine
Crack-proofing your geomipmapping engine is a lot easier than it
might sound. You have the added benefit of having someone (that
would be me) explain this concept to you, which makes the whole
process as easy as… well, something easy.

We have two possible ways of fixing the cracking problem. One way
is to add vertices to the patch with the lower amount of detail so 
that the vertices in question will be of the same height as the higher
detailed patch’s corresponding vertices. This solution could be ugly,
though, and it means that we’d have to do some rearranging of the
patch (add another triangle fan).

The other way of solving this problem is to omit vertices from the
more detailed patch. This solves the cracking problem seamlessly and
effortlessly. Check out Figure 5.8 to see how easy it is to simply omit a
vertex and fix the crack.
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Figure 5.7  A screenshot from a geomipmapping implementation,
which does not implement anti-cracking measures.



Where Art Thou Crack?
You know what causes cracks and how to fix them. The real question
is this: How do you know when to fix them? Basically, when you’re 
rendering the current patch, you need to test the patches around it
(see Figure 5.9) to see whether they are of a lower detail level. If they
are, you know you need to omit some vertices.

Testing each patch isn’t difficult. You just need to implement a series
of simple if-else statements. (Pseudo-code is shown next.)

If LeftPatch.LOD is less than CurrentPatch.LOD

RenderLeftVertex= true;

Else

RenderLeftVertex= false;

If RightPatch.LOD is less than CurrentPatch.LOD

RenderRightVertex= true;

Else
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Figure 5.8  Crack elimination by omitting rendering the vertex 
at points A and B.



RenderRightVertex = false;

If UpperPatch.LOD is less than CurrentPatch.LOD

RenderUpperVertex= true;

Else

RenderUpperVertex= false;

If LowerPatch.LOD is less than CurrentPatch.LOD

RenderLowerVertex= true;

Else

RenderLowerVertex = false;

See how simple it is? After the testing, while rendering your triangle
fan, you skip the vertices in the direction of the coarser patch. For
instance, if the right patch is of a coarser level of detail, and your 
current patch is of a high level of detail (multiple columns/rows of
triangle fans are rendered), then you only want to skip the vertices 
on the far right of the patch (see Figure 5.10).
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Figure 5.9  The neighbor patches that need to 
be tested to see whether they have a lower LOD.



And that is it for your 
simple geomipmapping
theory! Now it’s about 
time that we implemented
everything we just learned.
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CAUTION
Be careful that you omit only the
necessary vertices. Otherwise, you
could end up with a patch full of 
vertices that you didn’t mean to
omit. For instance, in Figure 5.10,
the patch consists of multiple
columns and rows of triangle fans.
You don’t want to omit the right
vertex for every fan; you just want to
omit the right vertex for the fans in
the right-most column.

Figure 5.10  A patch that needs to omit the right vertices
in the fans in the right-most column to prevent cracking 
with the patch to the right.



Implementing
Geomipmapping for the
Very Slightly CLOD Impaired
You know the theory behind the geomipmapping basics, but now we
need to implement it. This should not tax your brain too much. The
hard part is already over with, and as usual, we’ll be taking one step at
a time. Get some caffeine, lock your doors, and get some good music
going!

Patch It Up
Because geomipmapping is composed of a series of patches, it is prob-
ably a good idea to start off the implementation by creating the patch
data structure. The structure really does not need to contain much
information, and the less we need to include, the better. In fact, this
will be the smallest structure you will ever see created in this book.
Don’t get too accustomed to its nice size!

All the patch structure really needs is two variables. One variable will
keep track of the patch’s current level of detail, and one variable will
store the distance from the center of the patch to the camera’s posi-
tion. That’s all there is to it! That is the entire patch data structure.
Here it is, in code:

struct SGEOMM_PATCH

{

float m_fDistance;

int  m_iLOD;

};

It might look like a tiny structure, but remember: Big things come in
small packages. As small as that package is, we will be using it con-
stantly, so make sure you spend hours memorizing its members. 

Creating the Basic
Geomipmapping Implementation
Yeah, no more of this wimpy two-member data structure stuff. Now
we’re going to start work on the workhorse of the geomipmapping
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engine—the geomipmapping class. To start, we need a pointer to hold
our patch information, which will be dynamically allocated at some point
in our demo. Next, we need to figure out the patch size (in vertices) and

how many patches the terrain
will have per side. The
patch size is completely up
to the user, so we can let
him specify the patch size
he likes when he initializes
the class. (I tend to stick
with a patch size of about
17 × 17 vertices because it
provides a nice mix of
detail and speed. This
chapter’s explanations
assume a patch of that size.)

Geomipmapping Initialization
For initialization of the geomipmapping system, all we need from the
user is the patch size he desires. (I’ll reinstate my suggestion of 17 × 17
vertices.) After we have that, we can initialize the system.

First we need to calculate how many patches will be on each side of
the terrain. We figure this by taking the size of the height map and
dividing it by the size of an individual patch, as shown in Figure 5.11.

P represents the number of patches per side, h represents the size of
the heightmap, and s represents the size of an individual patch. With
that equation in mind, peek ahead to Figure 5.12 to see what variables
we are going to plug into the equation a bit later.

After we calculate the number of patches per side, we need to allocate
the terrain patch buffer by squaring the number of patches per side.
(This is the value that we just finished calculating.)

m_pPatches= new SGEOMM_PATCH [SQUARE( m_iNumPatchesPerSide )];

Next, although it is not a necessary part of initialization, I want to cal-
culate the maximum level of detail that a patch can achieve. Notice
that the maximum level of detail is the least detailed level, being that
the most detailed level is 0. As the level increases, detail decreases.
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tion is based on a 2N +1 pixel square
height map.This means that you
can’t use the midpoint displacement
fractal height map generator to 
generate heightmaps. Stick with the
fault formation generator for all of
your heightmaps.



Here are the calculations:

iDivisor= m_iPatchSize-1;

while( iDivisor>2 )

{

iDivisor= iDivisor>>1;

iLOD++;

}

All we are doing here is seeing how many loops it takes to get iDivisor
down to 2. When iDivisor reaches 2, we cannot go down any further,
and we have calculated the levels of detail we have at our disposal. 
For a 17 × 17 patch size, our maximum level of detail is 3, which
means that we have four different levels of detail (0, 1, 2, and 3) to
choose from for any single patch. That’s it for initialization! Now we
are going to move on to the tremendously large shutdown section.

Geomipmapping Shutdown
It’s simple and routine to shut down the geomipmapping system. All
we need to do is free the memory that we allocated for the patch
buffer and reset all of the class’s member variables.

Geomipmapping Maintenance
Unlike the terrain we’ve been working with for the past three chapters,
CLOD terrain algorithms need to be updated every frame (which is
why it’s called Continuous Level of Detail). Most CLOD-based algorithms
require a lot of maintenance work to be done during the update
phase, but geomipmapping is not one of those. The work we have to
do during our update function is quite minimal; it simply consists of
figuring out which LOD our patch should be.
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Figure 5.11  The equation for figuring out the
number of patches for each side of the terrain mesh.



For the update function of our geomipmapping implementation, we need
to update every patch; therefore, we need to make a pair of for loops:

for( z=0; z<m_iNumPatchesPerSide; z++ )

{

for( x=0; x<m_iNumPatchesPerSide; x++ )

{

The first thing that we need to do inside this loop is calculate the dis-
tance from the viewer’s location (the camera eye position) to the cen-
ter of the current patch. This calculation should look familiar from
your high school math classes, where they drilled the distance formula
into your head. Just in case you’re like me and you slept through all of
those classes, here it is again (see Figure 5.12):

With that equation in mind, check out Figure 5.13 to see what vari-
ables we are going to plug into the equation.
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Figure 5.12  The 3D distance formula.

Figure 5.13  The variables involved in the distance
calculation (from the viewer to the current patch’s center).



Here is the same distance calculation in code:

m_pPatches[iPatch].m_fDistance= sqrtf(

SQUARE( ( fX-camera.m_vecEyePos[0] ) )+

SQUARE( ( fY-camera.m_vecEyePos[1] ) )+

SQUARE( ( fZ-camera.m_vecEyePos[2] ) ) );

After we have calculated the distance from the viewer, we can figure
out what level of detail to give the patch. In the code, I figured out
the level by hard-coding the distances. (I did this in the code segment
a few paragraphs away; you might want to just skim ahead a bit to see
what I’m talking about.) For your engine, though, you’ll want a more
rigorous way to figure out what level of detail a patch should be. For
instance, in the geomipmapping whitepaper, Willem de Boer presents
a screen-pixel determination algorithm so that when a patch changes
its level of detail, too much popping won’t be present. 

Popping is when a polygonal object changes to a different level of
detail. This change might or might not be evident. For instance,
changing from a level 1 patch to a level 0 patch doesn’t induce much
popping because a level 1 patch is still decently detailed (for a 17 × 17
patch, at least). However, changing from a level 3 patch to a level 2
patch causes quite a bit of popping because you’re going from 8 trian-
gles to 32. Although that’s the same ratio of triangles added as in the
first patch, it is more evident in the level 3 to level 2 change. One of
the major goals in any CLOD algorithm is to reduce or even eliminate
popping completely. We will talk more about this a bit later.

Anyway, for my geomipmapping implementation for this book, I am
simply hard-coding the LOD distance changes. (I want to leave the
exercises open for you, the reader. Yes, I know I’m a nice guy.) Here 
is the LOD-changing code snippet:

if( m_pPatches[iPatch].m_fDistance<500 )

m_pPatches[iPatch].m_iLOD= 0;

else if( m_pPatches[iPatch].m_fDistance<1000 )

m_pPatches[iPatch].m_iLOD= 1;

else if( m_pPatches[iPatch].m_fDistance<2500 )

m_pPatches[iPatch].m_iLOD= 2;
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else if( m_pPatches[iPatch].m_fDistance>=2500 )

m_pPatches[iPatch].m_iLOD= 3;

These distances make for an effective combination of speed and
detail. If the demo is a bit sluggish on your video card, you might want
to change these distances, but don’t. We will make some speed opti-
mizations later in this chapter, so don’t despair! That’s all there is to
updating geomipmapping patches… for now, at least. Now it’s time to
get to the fun part of any terrain implementation: rendering it!

Geomipmapping Rendering
This is probably the hardest section you’ll come across in this chapter,
and it’s not too bad. It’s a bit complicated at times, but I’ll step you
through it.

Splitting Things Up a Bit
The easiest way to render everything that we need to render is by split-
ting up the individual rendering routines a bit so that the code doesn’t
become too bloated. This might increase function overhead a bit, but
as long as we do things smartly, it won’t be too bad.

The way I figure it, the geomipmapping class should have a high-level
rendering function, in addition to several lower-level ones, in succession.
For instance, the highest level rendering function is Render. Following
Render is RenderPatch and then RenderFan. RenderVertex comes in at the
lowest level. Using these functions, we increase function overhead a
bit, but we decrease the ugliness of our code significantly. The trade-
off is worth it. If you are having a hard time grasping the design I plan
to use, check out Figure 5.14. As for implementing our rendering 
system, let’s start low and work our way up.

The RenderVertex Function
The system’s vertex-rendering function isn’t anything special, but to be
fair, it’s a small function. We will call it often, which makes it a perfect
inline function. RenderVertex sets the vertex’s color, which is based on
the shading value that is extracted from the lightmap and multiplied
by the respective RGB value of the light’s color. Then RenderVertex
sends the texture coordinates to the rendering API (for detail mapping,
if needed, and for the color texture). After that, you simply need to
send the scaled vertex coordinate to the rendering API. That’s it!

92 5. Geomipmapping for the CLOD Impaired



The RenderFan Function
Each geomipmapping patch is broken down into several fans, whether
they are 1 patch or 256 patches. Using this function clears up much of
the code used in RenderPatch, which is discussed in the next section.

All the patch-rendering function is doing is rendering a single triangle
fan. Therefore, the function needs to be able to accept the fan’s center
as an argument and the size of one side of the fan so that the function
can render it. RendorFan also needs to obtain neighbor information
from the patch. Well, sort of. The neighbor information is for the indi-
vidual fan. If the patch needs to omit a vertex due to a coarser patch
on its right side, but the current fan is in the middle of the patch, then
the neighbor structure shows all neighbors as true. (Only fans on the
right edge of the patch need to worry about vertex omission.) If the
fan is being rendered, however, vertex omissions are needed. For
instance, if the fan were on the right edge of the patch, and the patch
to the right of the current patch was of a coarser LOD, then the 
current fan would need to omit the rendering of the right vertex.

The RenderPatch Function
The patch-rendering function is of critical importance to the whole
rendering system because without rendering a patch, you don’t see the
terrain. Most of the crack-prevention steps take place in this function,
with the rest (vertex omission) taking place in the RenderFan function.
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for the Geomipmapping class.



Remember the pseudo-code I showed you back in “Where Art Thou
Crack?” Well, this is where we need to implement it. We need to fill
out a “neighbor structure,” which is a simple data structure that con-
tains four boolean flags for whether the neighboring patches (left,
right, upper, and lower patches) are of a higher level of detail than
the current one. If the neighbor is marked as true, then we can render
as normal on that side of patch because we don’t need to take special
measures to prevent cracks. If it’s marked as false, then we do need to
take special measures.

After the crack-prevention
steps, we need to figure
out how to start rendering
the triangle-fans. This is a
slight bit more compli-
cated than it might sound,
but it’s not too difficult.
The hardest part about this
is trying to figure out the
distance between the cen-
ters of the triangle fans.
After that’s done, we’re
good as gold!

How do we figure out the distance between each fan center? Well, the
way I went about it, although it looks slightly odd, is by starting with
the individual patch size and trying to figure out what to divide that 
by to get the length between each fan’s center. I started out the divisor
the size of a patch and then did a while loop to figure out how much
to divide the total patch size by. For instance, if the patch were level 0,
we would divide the individual patch size by itself, which produces a
length of 1 unit between each fan that we render. (We do not want 
to scale vertices until we get down to the RenderVertex function.) For a
patch of level 1, the distance between each fan would be 2 units, for
level 2 would be 8 units, and so on. The code for the previous calcula-
tions looks like this:

fDivisor= ( float )m_iPatchSize;

fSize   = ( float )m_iPatchSize;

iLOD    = m_pPatches[iPatch].m_iLOD;
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of detail” in this chapter, we mean a
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Just don’t get confused when we talk
about high/low levels of detail.



//find out how many fan divisions we are going to have

while( iLOD—>=0 )

iDivisor= fDivisor/2.0f;

//the size between the center of each triangle fan

fSize/= fDivisor;

The calculations here aren’t entirely correct, though; when we use
them, they produce terrain that looks like Figure 5.15.

What went wrong with those calculations? Well, we did one simple
thing wrong. We want the divisor variable, fDivisor, to be a power of
two. Remember that when the divisor was equal to the patch size, the
distance between fans for a level 0 patch was 1 unit? Well, going from
center to center, we need at least a 2-unit interval (see Figure 5.16).

You see how the pair of fans on top in Figure 5.16 overlaps each other
(producing a rather ugly result) with a one-unit interval and how the
two fans on bottom fit together perfectly with the two-unit interval?
Well, we need to change the previous fan center interval calculations
so that the minimum interval between patches is 2 units. How do we
do this, you ask? It’s rather simple. We just set the initial divisor vari-
able to the patch size minus 1, which always makes the divisor variable
a power of two, thereby fixing all the problems we were previously
having. Check out the new code. (fDivisor turned into iDivisor so that
we could speed up the calculations a bit.)
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Figure 5.15  Oops! It looks like some wrong calculations were performed!



fSize   = ( float )m_iPatchSize;

iDivisor= m_iPatchSize-1;

iLOD    = m_pPatches[iPatch].m_iLOD;

//find out how many fan divisions we are going to have

while( iLOD—>=0 )

iDivisor= iDivisor>>1;

//the size between the center of each triangle fan

fSize/= iDivisor;

After that is done, rendering the patch’s triangle fans becomes trivial.
You just need to be sure that you start rendering at half of fSize
because that is where the first fan’s center will be. We need to check
whether each fan needs to omit vertices. That means we need to use
the patch neighbor structure’s information that we filled out earlier
and apply it to the fans being rendered on the edge of each patch, as
is shown next:
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Figure 5.16  A one-unit interval between fan centers
versus a two-unit interval between patch centers.



//if this fan is in the left row, we might need to

//adjust its rendering to prevent cracks

if( x==fHalfSize )

fanNeighbor.m_bLeft= patchNeighbor.m_bLeft;

else

fanNeighbor.m_bLeft= true;

//if this fan is in the bottom row, we might need to

//adjust its rendering to prevent cracks

if( z==fHalfSize )

fanNeighbor.m_bDown= patchNeighbor.m_bDown;

else

fanNeighbor.m_bDown= true;

//if this fan is in the right row, we might need to

//adjust its rendering to prevent cracks

if( x>=( m_iPatchSize-fHalfSize ) )

fanNeighbor.m_bRight= patchNeighbor.m_bRight;

else

fanNeighbor.m_bRight= true;

//if this fan is in the top row, we might need to 

//adjust its rendering to prevent cracks

if( z>=( m_iPatchSize-fHalfSize ) )

fanNeighbor.m_bUp= patchNeighbor.m_bUp;

else

fanNeighbor.m_bUp= true;

//render the triangle fan

RenderFan( ( PX*m_iPatchSize )+x, ( PZ*m_iPatchSize )+z,

fSize, fanNeighbor, bMultiTe x, bDetail );

By filling out a separate fan neighbor structure, we don’t have to keep
redoing the patch’s neighbor structure. The fan neighbor structure is
then sent to the fan-rendering function, where it is used to find out
whether any vertices need to be omitted from rendering. That is it for
all of the low-level rendering functions. Now we need to briefly discuss
the class’s high-level Render function, which is the one that users will
be using. We can unleash demo5_1 upon the world!
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The Render Function
Well, we’re just about finished with our simple geomipmapping imple-
mentation. Are you getting excited? I know I am!

In the high-level rendering function, we need to loop through all of
the patches and call the RenderPatch function, but we’re going to have
three different patch-rendering loops. Remember our brute force
implementation? We only need to make one rendering loop if the
user has multitexturing enabled; however, if the user does not have
multitexturing enabled, we might need to make a texture map pass
and a detail map pass. Two different rendering passes for a terrain
implementation is never a good thing, though, so one option is to
avoid the detail mapping pass if the user does not have multitexturing
support. You should already be familiar with this concept if you’ve
been reading this book’s chapters in succession from the beginning.
The only thing you have to do is loop through all the patches and use
the RenderPatch function to render them.

That’s it! We are finished making the basic geomipmapping imple-
mentation. Check out demo5_1 (on the CD under Code\Chapter
5\demo5_1) and look at a sample screenshot from that demo in
Figure 5.17. It shows the textured/detail-mapped image on the left
and the wireframe of that same image on the right. Notice in the 
wireframe half how the patches are more detailed near you and less
detailed farther away. That is the beauty of a CLOD algorithm!

Problems Exist to Be Fixed
Yeah, yeah, I know. There are some problems with the geomipmapping
implementation we just finished making. For instance, unless you’re on
a really high-end card, you probably experienced a horribly bad frame
rate on the previous demo. (I’m on a GeForce 4 TI4600, the best card
on the market at the time of writing, and I got a steady 45–50 frames
per second with the demo.) The demo also suffered from some pop-
ping when patches of terrain changed their level of detail. We will fix
all this and more in the upcoming sections, so don’t worry!

Adding a Bit of Juice to the Engine
First, I think we should speed up our implementation. Speeding
things up is easy. It simply involves doing some frustum culling. And
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because our terrain is split up into several patches, our best bet is to
just cull those patches against the view-frustum, which means that not
many tests will have to be done.

Cull Like You’ve Never Culled Before... Again
We’re going to be doing some basic frustum culling here. I added
some frustum calculation functionality to the CCAMERA class based on
some information in Mark Morley’s article “Frustum Culling in
OpenGL,” which I consider the best frustum culling tutorial I’ve seen
on the Internet. (You can find it at
http://www.markmorley.com/opengl/frustumculling.html.) Yes, 
I’ll admit it, my math knowledge isn’t too great (notice the lack of
complicated math throughout this book!), but that’s probably a good
thing—unless you’re a huge math junkie, in which case, I should
probably expect some hate mail.

Anyway, here are the basics of what we are going to be doing. We are
going to be culling a patch of terrain against the view frustum (Figure
5.18 in case you need a visual refresher) so that we eliminate any extra
CPU/GPU work that ends up going to waste. (If the viewer can’t see
it, there’s no point in rendering/updating it.)

We need to test a patch of terrain against that frustum. To do this, 
we make an Axis-Aligned Bounding Box (AABB) out of the patch.
(Actually, we make more along the lines of a cube.) Then we want to
test it against the view frustum. To calculate the patch’s dimensions,
we take the center and one scaled size variable (see Figure 5.19).
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Figure 5.17  A texture and detail mapped terrain screenshot (left) and its 
corresponding wireframe image (right), taken from demo5_1.



Because we’re dealing with only the patch center here, you need to
take half of the size passed as a function argument (to the Cube-
Frustum intersection) and figure out the corners of the cube based 
on that. We could also get a more precise box, but in my experiments
with culling, the extra “space buffer” is necessary so that a viewer 
doesn’t see inconsistencies in the terrain (such as a patch that is
slightly visible but ends up getting culled anyway).
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Figure 5.18  The view frustum.

Figure 5.19  Making a cube out of a 
geomipmapping patch to test against the view frustum.



Now that you know more about culling and its practical uses for terrain,
check out demo5_2 (on the CD under Code\Chapter 5\demo5_2) 
and witness for yourself how much faster things have gotten. For
instance, in Figure 5.20, out of about 910 patches, we see only 369.
For the demo, I was getting a steady frame rate (80–120fps), and this
was with a heightmap that was twice as large as the one in demo5_1.
Not too shabby!

Pop Today, Gone Tomorrow
The next problem we get to tackle is more complicated than the pre-
vious one. Our goal is to reduce or—even better—eliminate popping.
There are several ways to go about this, and I will present the theory
behind two of them. The actual implementation of these solutions is
up to you, though.

Morph It! And Morph It Good!
The first solution to the popping problem is called geomorphing.
Although that name sounds like something you’d expect to hear in an
anime about giant mechs, it has absolutely nothing to do with giant
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Figure 5.20  A screenshot from demo5_2.



multistory robots that are capable of mass destruction. Geomorphing is
actually the process of gradually morphing vertices in a set of polygons
(like our geomipmapping patch) that are changing their level of
detail. I personally think the mech thing sounded like more fun, 
but the actual meaning of geomorphing is far more useful.

Why is this useful, you ask? It is quite simple, actually. You see, when a
patch is of a low level of detail, it approximates the heights of several
areas (see Figure 5.21). And, in the figure, areas where the patch is
approximating values are marked with a black dot.

You see how many black dots are on the lower patch in the image? 
Well, that’s how many height values are being approximated by the
lower-detailed patch. The approximate values are close to the real value,
but not close enough. Therefore, when the level 3 patch subdivides into
the level 2 patch (or vice-versa), popping occurs; that’s because those
approximated values are being “replaced” by the true values (or the
true values are being replaced by the approximated values). 

Geomorphing fixes this problem by figuring out how far off the
approximated value is from the true value and interpolating it from
the approximated value to the true value over a series of about 255
steps. (Or vice versa… again. Okay, from here on out, I’m going to
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Figure 5.21  How a lower-level patch approximates
height values for several vertices of the lower level patch.



assume that we’re subdividing the patch. If you’re merging a patch,
just reverse all of the calculations.) To calculate the number of units
you need to move every step, just use this equation:

In the equation, “to” is the real value that you are going to, “from” is 
the approximate value that you are going from, and “numSteps” is the 
number of steps you want for the geomorphing to take place, which I
suggested to be 255. This whole process is explained visually in Figure 5.23.

Well, that’s it. Geomorphing is a simple concept, and you can implement
it in several different ways. (I didn’t want to limit your imagination,
which is why I didn’t implement it myself). Go have some fun with it,
but make sure that you come back and read the next section, which
helps reduce popping in your terrain implementation even more.

Should Lights Make a Popping Noise?
The answer is no, although that is not important right now. What is
important is that we reduce popping in our terrain implementation a
bit. Now, although it’s true that a majority of the popping that occurs
when changing LOD levels can be fixed by geomorphing, another
problem is that we’re using gouraud (per-vertex) lighting! Although
this might not sound like a big deal, it is. With every LOD switch, the
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Figure 5.22  Equation to calculate the geomorphing value.

Figure 5.23  Geomorphing explained.



lighting applied to a patch gets more/less detailed, which should not
happen. Fortunately, fixing this problem is trivial, and you can handle
it a few different ways.

One way of fixing the problem is to integrate the terrain’s lightmap
with the terrain’s texture map. This allows you to do lighting and textur-
ing in one rendering pass. Unfortunately, this means that you have to
make your lightmap and texture map the same resolution for optimal
results. Therefore, if you want to dynamically change lighting, you have
to dynamically change the texture map too, which is rather expensive.

Another way of fixing this problem is by making a separate lightmap tex-
ture pass. This treats the lightmap as a texture, eliminates the per-vertex
lighting, and allows you to dynamically update it without bothering with
the texture map. Unfortunately, this means that your users need at least
3 multitexturing units for this approach to be efficient. Furthermore,
even if your user has 2 texture units, doing 2 rendering passes is not
really a good idea. Multipass rendering is no big deal for small models,
but for huge polygonal sets of data, like a terrain mesh, it is a big deal.

The solution you go with is completely up to you. The first approach
is great if you don’t need to do dynamic slope-lighting or lightmapping,
and the second approach is great if you know your user has a graphics
card that supports 3 or more texture units. Use extra texture units
with caution.

Summary
Well, it’s been a long chapter, but you made it. Congratulations! In
this chapter, you learned all about general CLOD terrain, but you also
learned about the geomipmapping CLOD terrain algorithm. You
learned how to speed up geomipmapping and how to reduce popping
caused by a change in LOD. Keep all these techniques in mind as you
read the next couple of chapters. Brace yourself: Up next is a CLOD
algorithm based on a quadtree structure.
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CHAPTER 6

Climbing
the

Quadtree



We are one-third of the way through our CLOD algorithm cov-
erage in this book. In this chapter, you will learn about Stefan

Roettger’s quadtree terrain algorithm. This algorithm is very cool and
very fast. Now that you’ve read Chapter 5, “Geomipmapping for the
CLOD Impaired,” the quadtree terrain algorithm shouldn’t be too
hard to pick up. When you understand one CLOD algorithm, the dif-
ficulty of learning new CLOD algorithms is greatly reduced. 

The agenda for this chapter looks like this:

■ Explanation of what a quadtree is
■ Application of a typical quadtree structure to terrain
■ Implementation of the quadtree algorithm

So, without further ado… Wait a second—I already used that one.
Hmmm… Let’s just start the chapter.

Quads Do Grow on Trees
Whoever told you money doesn’t grow on trees was sadly mistaken. 
In contrast, quads do have a tendency to grow on trees. Those trees
are aptly named quadtrees, and that is what we’re going to be talking
about in the next section, and the section after that, and, well, this
whole chapter.

A quadtree is a 2D data structure, which makes it ideal for terrain. Yes,
I did say 2D and not 3D, which might make you start scratching your
head about why a 2D data structure is good for a 3D terrain engine.
Well, what you need to remember is that terrain is largely a 2D object.
Notice how the heightmaps that we load are not 3D data sets; rather,
they are 2D data sets, and our terrain runs off of those 2D data sets. 
A quadtree is perfect for managing the polygons of a terrain engine.

You might be asking yourself, “What is a quadtree exactly?” Well, it’s
simple, really. Picture a simple quad with a single point in it, as shown
in Figure 6.1.
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Now imagine that the quad is full of objects. All you want to do is
focus on that one little point; you could care less about anything else.
If that were the case, you wouldn’t want to group the point together
with all of the other objects. You’d want to get it into the smallest
group that you possibly could. So, you subdivide that little quad one
level, as shown in Figure 6.2.

That’s a little better, but now that we have 3/4 of the parent quad
eliminated, we need to focus a bit more in depth on the remaining
node. We want to subdivide only the upper-right node this time
around, as shown in Figure 6.3.

Now we’re getting somewhere! We could use one more subdivision,
though. Remember: The more detail the better, despite what any one
else ever told you. The final step in our little quad subdivision battle is
shown in Figure 6.4.
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Figure 6.1  A simple quad with a point in it.

Figure 6.2  A subdivided quad with a point in it.



That was nice and all, but what was the point? Well, the point is this:
You just subdivided a quad tree down to the necessary level of detail
that you need for that point. What we were just doing is what we will
be doing throughout this chapter. We’ll start with a simple quad, as in
Figure 6.1, and end with a fully triangulated terrain landscape. As we
talk about the quadtree structure as it relates to our terrain, don’t 
forget the simple explanation that I just gave you. It’s all the same
concept—just different applications!

Think Outside of the Quad!
Our quadtree explanation and implementation are based off of an
excellent paper written by Stefan Roettger, “Real-Time Generation of
Continuous Levels of Detail for Height Fields.1” The conference paper
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Figure 6.3  Now the quad is getting somewhere, with
a decent level of detail around the area that we want.

Figure 6.4  The final level of 
subdivision in our quest to… subdivide.



(which was published in the WSCG98 proceedings) is a detailed analysis
of Roettger’s algorithm, and it’s definitely a must-read. In fact, I suggest
you read it now either by checking the paper on the Web (the link is at
the end of this chapter) or by simply looking at the copy I placed on
this book’s accompanying CD (Algorithm Whitepapers\quadtree.pdf). 

Simply the Basics… Again
There is so much to discuss that it’s hard to know where to start. Well,
the beginning is always nice. I’m going to split this chapter into three
sections, the first of which, “Quads Don’t Grow on Trees,” has already
been covered. The next section is the one you are currently reading,
which is going to cover the theory behind the quadtree algorithm in
three different phases. Then the final section of the chapter will cover
implementation. With that said, let’s continue on with the basic theory
section.

Life in the Matrix…
The Quadtree Matrix
The quadtree algorithm is completely run off of an underlying
quadtree matrix. This matrix matches the size of the heightmap that it
is running off of and contains a boolean value for every possible node
in the quadtree. For instance, similar to the whitepaper, let’s base the
matrix off of a 9 × 9 heightmap, as shown in Figure 6.5.
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Figure 6.5  A sample boolean “quad matrix”
for use in the quadtree algorithm.



It’s a bunch of little 0s, 1s, and question marks, but what does it all
mean? Well, simply put, all these characters stand for node centers.
Each 0 and 1 represents whether a center is enabled (1) or disabled
(0). The question marks represent centers that aren’t in considera-
tion, which means that we haven’t subdivided far enough down into
the quadtree to “care” about those centers. I bet you’re asking your-
self, “What does that look like after it’s tessellated?” Well, let me show
you in Figure 6.6. And in case you weren’t asking yourself that question,
I’m just going to continue on pretending that you did.

As you can see from the figure, the tessellation corresponds exactly 
to the quadtree matrix. However, what the matrix doesn’t show is how
the polygons in the tessellated mesh need to adjust themselves to 
prevent cracking. We’ll get to that later. Anyway, with the previous
explanation in mind, let’s continue on.

Viewing the Matrix in an
Environmentally Safe Fashion
We will be rendering the quad matrix in a fashion that you might or
might not be familiar with. We need to start off by rendering the root
quad node. Then we are going to recursively render its children’s
nodes, and then those children nodes will render their children
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Figure 6.6  Sample tessellation from the 
quadtree matrix presented in Figure 6.5.



nodes. After we reach a leaf node (a quad node with no children), we
will render it as a full or partial triangle fan. Rendering is a redundant
function in that it will call itself numerous times. (It’s just a bit selfish
like that.) In Figure 6.7, we’ll examine the rendering process by pick-
ing apart Figure 6.6 and seeing how to render that mesh.

For rendering, we’d have to make seven calls to our node-rendering
function (we want to render one node at a time), once for each let-
tered node. To prevent cracking, we’re going to have to deal with the
famous vertex omission technique that we talked about in Chapter 5.
In fact, nothing really changes from Chapter 5 because we’re still deal-
ing with triangle fans, so when we need to prevent cracking, we just
omit rendering a single vertex and continue on with the fan.

Similar to the previous algorithm, we will always be checking to see
whether an adjacent node is of a lower level of detail than the current
node. If it is, we have some vertex omission to do. None of this should
seem too foreign to you, but it’s important to remember that this tech-
nique only works if the adjacent node’s level of detail does not differ
by more than one level.
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Figure 6.7  Picking apart the mesh from Figure 6.6 for our 
rendering purposes.



Gotta Keep ‘Em Generated!
For those who know the song “Gotta Keep ‘Em Separated” by the
Offspring, this section title works well. For those who don’t, well…
you’re missing out. Before a scene can be rendered, we need to gener-
ate the mesh. This algorithm, unlike the geomipmapping one discussed
in Chapter 5, requires more involved updating. In every frame, we
need to start high up on the quadtree (at the parent node) and work
our way down the tree, seeing if we need more detail, less detail, and
so on. This is called a top-down approach. Makes sense, doesn’t it?

What we’re going to do in our “refinement” step (we can’t really call it
“updating” because we start from scratch every frame) is test each node
to see if it can or cannot be subdivided. Then we store the result in the
quadtree matrix. If the node can be subdivided, and we have not yet
reached the maximum level of detail, then we want to recurse further
down the tree and do the same tests on all the node’s children.

We need to expand on this whole “subdivision test” thing a bit. We need
to discuss some requirements. First, like any good CLOD algorithm, we
want to make sure that our mesh’s detail decreases as the camera eye
gets further away from it. This is ensured by using the equation shown
in Figure 6.8, which is found in Roettger’s whitepaper:

In the equation, l is the distance from the center of the current node
to the camera eye, d is the length of the current node’s edge, and C 
is a constant to control the overall level of detail for the mesh. We’re
going to be measuring the distance from the node’s center to the
camera a bit differently from the way we did it in Chapter 5. This
time, we’re going to use something called the L1-Norm to calculate
the distance. It’s a faster version of the distance formula we used in
Chapter 5, but it’s linear rather than quadratic like the L2-Norm we
used before. See Figure 6.9.
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Figure 6.8  The Global Resolution Criteria 
equation, which ensures that the quadtree 
mesh is the right level of detail.



You see, it isn’t that much different from the distance equation from
Chapter 5. The only real difference is that we’re not bothering to square
the individual component calculations, and we’re saving ourselves the
trouble of a square root. Other than that, not much has changed.

Anyway, all that the previous equation does is balance the total
amount of visible detail across the entire terrain mesh. The constant 
C allows us control of the minimum resolution of the mesh. Roettger
advised, in the conference paper that we are basing our implementa-
tion off of, that this value be set to nine as a default. However, it’s
important to note that as C increases, the total number of vertices 
per frame grows quadratically.

After doing all of this, we need to calculate what the whitepaper calls
f, which is the final step in determining whether to subdivide a node.
The way we are going to be calculating f for the basic implementation
(demo6_1 later on) is a little different from the calculations for f for
the second “go” at an implementation (demo6_2.). So, for the basic
theory that we’re talking about right now, I’m going to focus on the
simplified calculations, shown in Figure 6.10.

You should already know what l, d, and C are, but you don’t know
what c is. Okay, I’ll tell you. c is related to C, but whereas C is the min-
imum global resolution constant, c is the desired resolution constant.

The real question, however, is what f has to do with anything. Well, f is
the final step in deciding whether we want to subdivide a node. After
you calculate the value for it, you have one simple thing to test for:

If f<1

Subdivide node
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Figure 6.9  The L1-Norm distance calculation equation.

Figure 6.10  Early equation for calculating f.



You then would store true in the quadtree matrix for the current node
and continue to refine the node’s children. That’s it for the basic
quadtree theory. Let’s move on to the next section.

Propagation Propaganda
This theory section is about how to improve the tessellation of your
quadtree implementation. In the previous section, we talked about
general tessellation. Although general tessellation works decently, a
quadtree implementation is capable of so much more than just “nor-
mal” tessellation. We’re going to discuss how we can add more detail
to our mesh in areas that require it. For instance, we might want a
spiky patch of terrain to have a lot more detail than just a regular flat
patch of land. Doing this requires a bit of extra work on our parts
though, so if you don’t think that the extra detail is needed, feel free
to skip ahead to the next section.

We are going to be preprocessing a value called d2 for every node.
We’ll then store a propagation value in the quad matrix, which we’ll
want to change to make each entry into a byte rather than simply a
boolean flag, for later use (during tessellation). We are going to be
calculating five d2 values for every node, and we’ll find the maximum
value of those five. Look at Figure 6.11 to see where the d2 values
need to be calculated. (An X is placed in those places.)
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Figure 6.11  An X marks the d2 calculation spot!



For any d2 calculation, all you need to do is calculate the average
between the two vertices that the X lies between (because that is the
current approximated height that the viewer sees). Then you need to
find the absolute difference between that value and the true height at
that point. That’s your d2 value.

Next, we need to take anticracking precautions. In this step, we want
to make sure that surrounding nodes do not differ by more than one
level of detail. To do this, we’re going to do things a bit differently
from the rest of the algorithm. Instead of taking a top-down approach,
we’re going to take a bottom-up approach and start at the lowest level
of detail and work our way up. We’ll be calculating the surface rough-
ness and d2 values for the lowest nodes, storing the information, and
propagating up the quadtree. 

By preprocessing the
quadtree in a bottom-up
fashion, the level of detail
difference between nodes
is kept to a range of less
than or equal to 1. This
makes sure that cracks can
be avoided just by skipping

necessary vertices. If there is
a difference in the level of detail that is greater than 1, the d2 values
of the coarser node can be simply adjusted to conform to the lower
detailed node.

Cull Like You’ve Never
Culled Before… Again
I promise that the section headings for the next chapter will be more
original. Anyway, this section will be rather short. You know the basics
of frustum culling, and the only change between the culling in the
previous algorithm and the culling in this algorithm is how we’re
going to handle things. You see, in the previous algorithm, we had 
to cull every patch every frame. When we cull one quadtree node, we
potentially eliminate a whole set of other nodes. For instance, check
out Figure 6.12.
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NOTE
The d2 propagation values should be
scaled to a range of [0, 1] and then
set to a more byte-friendly range of
[0, 255].



As you can see, the two large nodes to the left of the camera eye are
completely culled without even bothering to test their children. On a
large heightmap, this saves a lot of processing time. It allows the GPU
to take more information, which is ultimately what we want. Other
than the previous culling concept, however, everything is the same as
it was in the Chapter 5. This wraps up the theory section of the chap-
ter. It’s time to move on to implementation.

Hug the Quadtree, 
Love the Quadtree, 
Be the Quadtree
After spending the past few pages on the theory behind Roettger’s
quadtree algorithm, we are finally going to implement it. This section
is only about implementation, so theory will not be discussed. If you
forget why a certain piece of code works the way it does, refer back to
the theory section for the explanation.

Implementing the Basics
To start off with this implementation, it’s good to create the CQUADTREE
class. Let’s not waste time!
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Figure 6.12  Frustum culling of a sample quadtree terrain patch.



Get Some Class!
For the most part, the class is rather simple, consisting of “helper”
inline functions to keep the code clean, three member variables, and
five main functions. The class’s member variables consist of a boolean
buffer to hold the quadtree matrix, a variable to represent the mini-
mum global resolution, and desired global resolution variables.

As far as member functions go, we need the now-trademark Init,
Shutdown, Update, and Render functions, but we also need two node-
manipulation functions: RefineNode and RenderNode. Let’s get coding!

Quadtree Initialization and Shutdown
The initialization function is standard fare, nothing special. All we
really need to do is allocate memory for the quadtree buffer and set
all of its contents to true. That’s all there really is to the initialization
function. I told you it was nothing special. However, it is very impor-
tant that you remember to initialize the entire matrix to true; if you
don’t, you will get some nasty-looking results.

Shutdown of the quadtree system is also ridiculously simple. Just free
the memory that you allocated for the quadtree matrix and you’re set.

Quadtree Updating and Rendering
These high-level class functions are really simple. For the class’s Update
function, you’re just making a single call to RefineNode. Because the
function is recursive, you just have to start the thing off by refining the
parent node. Pass the parent’s center and its size, and you’re set!

The rendering function is similar to Chapter 5’s high-level rendering
function. The difference is that instead of looping through each patch
and rendering it, you just need to make one call to RenderNode. Similar
to its refined brother, this is also a recursive function, so by rendering
the parent node, you start off the recursion down the quadtree. All
the rendering function needs to do is send the right texture/detail
map information so that the low-level RenderVertex function (the same
function from Chapter 5) knows what to do.
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Refining a Quad Node
Now we’re talking! Here you will learn how to refine a single quad
node (although the function is recursive, so you’re actually refining
several quad nodes). You already know most of what you need to
about how to refine a quad node if you read the theory section earlier
in this chapter. You did read that section, didn’t you?

We’re going to start the refining process by figuring out the distance
between the node center and the camera eye position, using the L1-
Norm that we discussed earlier.

distance= ( float )( fabs( cameraEye[0]-x )+

( fabs(cameraEye [1]-GetQuadMatrixData( iX+1, iZ ) )+

( fabs(cameraEye [2]-z ) );

With that calculated, we can go on to calculate f as was shown earlier
in this chapter. When that is calculated, we can figure out if we can
subdivide the current node:

f= fViewDistance/( ( float )iEdgeLength*m_fMinResolution*

MAX( m_fDesiredResolution*GetQuadMatrixData( iX-1, iZ )/3,

1.0f ) );

We can find out about subdividing the current node by checking to
see if f is less than 1. If it is, then the current node can be subdivided;
if it’s not, it’s a leaf node.

if( f<1.0f )

bSubdivide= true;

else

bSubdivide= false;

//store whether or not the current node gets subdivided

m_bpQuadMtrx[GetMatrixIndex( iX, iZ )]= bSubdivide;

If the node is subdivided, it isn’t a leaf node (obviously), which means
it has children that need to be further refined. The exception to this
rule is if the current node has an edge length of three units. If it has
an edge length of three units, it is the lowest possible node on the
quadtree, and we cannot recurse any further down the tree.

if( bSubdivide )

{
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//else, we need to recurse down further into the quadtree

if( !iEdgeLength<=3 )

{

fChildOffset    = ( float )( ( iEdgeLength-1 ) >> 2 );

iChildEdgeLength= ( iEdgeLength+1 ) >> 1;

//refine the various child nodes

//lower left

RefineNode( x-fChildOffset, z-fChildOffset, 

iChildEdgeLength, camera );

//lower right

RefineNode( x+fChildOffset, z-fChildOffset,

iChildEdgeLength, camera );

//upper left

RefineNode( x-fChildOffset, z+fChildOffset,

iChildEdgeLength, camera );

//upper right

RefineNode( x+fChildOffset, z+fChildOffset,

iChildEdgeLength, camera );

}

}

That’s it for the node refine function. Basically, you’re just checking
for a subdivision and storing the result. If you need to subdivide, you
recurse further down the quadtree. Next on our list is the rendering
function.

Rendering a Quad Node
Rendering is a rather long and drawn-out process (not to mention
repetitive), but don’t let the daunting size of the rendering function
in demo6_1 (or the other demos for this chapter) fool you; rendering
is a lot simpler than it looks.

To start off the function, we’re going to check whether the current
node we are rendering is of the highest level of detail (edge length of 
3 units or less). If it is, we can just render it without special precautions.
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Just remember to check to see whether the surrounding nodes are of
a lower LOD; if they are, skip the vertex on that side of the fan.

If the current node is not of the highest level of detail, we have a 
bit more work to do. We’re going to calculate the rendering code to
figure out what kind of triangle fans to draw for the current node. 
To calculate this rendering code, we will be using the propagation 
values that are stored in our quadtree matrix, as shown next:

//calculate the bit-iFanCode for the fan

//arrangement (which fans need to be rendered)

//upper right

iFanCode = ( GetQuadMatrixData( iX+iChildOffset,

iZ+iChildOffset )!=0 )*8;

//upper left

iFanCode|= ( GetQuadMatrixData( iX-iChildOffset,

iZ+iChildOffset )!=0 )*4;

//lower left

iFanCode|= ( GetQuadMatrixData( iX-iChildOffset,

iZ-iChildOffset )!=0 )*2;

//lower right

iFanCode|= ( GetQuadMatrixData( iX+iChildOffset, 

iZ-iChildOffset )!=0 );

After we calculate the rendering code, we can decide which fans need
to be drawn. We’re going to start off by checking whether we need to
render a fan at all. This case would happen if all of the current node’s
children were to be rendered. Another trivial case is if only the lower-
left/upper-right fans or the lower-right/upper-left fans need to be
drawn. And the last trivial case is if we don’t need to render any of the
node’s children at all, and we can just render the current node as one
complete triangle fan.

There are other cases besides the trivial ones that we just mentioned.
These consist of partial fans that need to be rendered across the
quadtree. For instance, in Figure 6.13, a partial fan would need to 
render the bottom node, which consists of two disabled child nodes.
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The code for partial fan rendering is fairly routine, but it’s also highly
redundant and long. If you’d like to see it, check out the RenderNode
function in quadtree.cpp in demo6_1. It’s all there and heavily 
commented, so it will be self-explanatory.

After the partial fans are drawn, we need to figure out which children
of the current node we need to recurse down to. When that is done,
we’re good as gold! And that wraps it up for the basic quadtree imple-
mentation. Go check out demo6_1 and Figures 6.14 and 6.15. Also
check out Table 6.1 for a look at the demo’s controls.
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Figure 6.13  A quadtree node that requires special rendering attention.

Figure 6.14  Textured and detail mapped screenshot from demo6_1.
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Figure 6.15  Wireframe image of the terrain from Figure 6.14.

Table 6.1  Controls for demo6_1

Key Function

Escape / q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

T Toggle texture mapping

D Toggle detail mapping

W Render in wireframe mode

S Render in solid/fill mode

+ / - Increase/decrease mouse sensitivity

] / [ Increase/decrease movement sensitivity

1 / 2 Increase/decrease desired resolution

3 / 4 Increase/decrease minimum resolution



Complicating Things a Bit
Now it’s time to implement the roughness propagation that we were
talking about earlier. To do this, we need to increase the quadtree
matrix’s precision from a matrix of boolean values to a series of byte
(unsigned char) values. Other than that, however, we don’t need to
change that much of the code from the Chapter 5. We’re going to
add one function that you’ll want to add to your initialization proce-
dure: PropagateRoughness.

Remember that for propagation, we want to take a bottom-up approach,
which means that we want to start at the highest level of detail for the
tree—nodes with an edge length of three units. Then we want to loop
through all of the nodes and propagate their surface roughness.

//set the iEdgeLength to 3 (lowest length possible)

iEdgeLength= 3;

//start off at the lowest level of detail and traverse

//up to the highest node (lowest detail)

while( iEdgeLength<=m_iSize )

{

//offset of node edges (since all edges are the same length

iEdgeOffset= ( iEdgeLength-1 )>>1;

//offset of the node’s children’s edges

iChildOffset= ( iEdgeLength-1 )>>2;

for( z=iEdgeOffset; z<m_iSize; z+=( iEdgeLength-1 ) )

{

for( x=iEdgeOffset; x<m_iSize; x+=( iEdgeLength-1 ) )

{

With that being the basis for our loop, we can calculate the d2 value
for the current node. As I said earlier, all you need to do is get the
current approximation from two corner vertices and then subtract
that by the true height at the point. Here is sample code from the 
calculation for the upper-mid vertex of a node:

d2= ( int )ceil( abs( ( (

GetTrueHeightAtPoint( x-iEdgeOffset, z+iEdgeOffset )+

GetTrueHeightAtPoint( x+iEdgeOffset, z+iEdgeOffset ) )>>1 )-

GetTrueHeightAtPoint( x,             z+iEdgeOffset ) ) );
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After you calculate the different d2 values, you need to get the maximum
and make sure it is within the allowable boundary of 0–255. (That is
the maximum precision that an unsigned char can get. I don’t know
about you, but I don’t feel like spending more memory on making a
quadtree matrix of higher-precision values.)

We want to figure out the general surface roughness of the current
node instead of figuring out the approximate/real height. This is easy.
All you’re going to do is extract the height values from the current
node’s nine vertices. After you do that, you’ll want to store the d2
value that you calculated in the current node’s quadtree matrix entry.
Then you can use the maximum height and the d2 value to propagate
further up the quadtree.

The new quadtree value is applied in the RefineNode function when 
you are calculating f, so you really do not need to change much code
around. Simply editing the quadtree matrix causes all sorts of cool stuff
to happen with the code we were using from Chapter 5. Now go check
out demo6_2. The controls are the same as the previous demo except,
this time around, more detail is given to areas that are of a higher level
of roughness, as you can see from the wireframe in Figure 6.16.
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Figure 6.16  Wireframe screenshot from demo6_2 showing how surface propagation
affects the tessellated mesh.



Speeding Things Up a Bit
The final thing we are going to do is add frustum culling to our
implementation, which is a simple way to speed up our implementa-
tion. To add frustum culling, the only function we need to edit is
RefineNode. Our frustum test is the same thing as Chapter 5. We’re
going to make a “cube” out of the current node and then test it
against the viewport. If the node is in view, we’ll continue refining the
node. If it’s not in view, we’ll set the node’s quadtree matrix to 0 and
eliminate that node and all of its children from the updating and 
rendering queue.

//test the node’s bounding box against the view frustum

if( !m_pCamera->CubeFrustumTest( x*m_vecScale[0], 

GetScaledHeightAtPoint( x, z ),

z*m_vecScale[2], 

iEdgeLength*m_vecScale[0] ) )

{

//disable this node, and return (since the parent

//node is disabled, we don’t need to waste any CPU

//cycles by traversing down the tree even further)

m_ucpQuadMtrx[GetMatrixIndex( ( int )x, ( int )z )]= 0;

return;

}

With that, we end our coverage of the quadtree algorithm and imple-
mentation. Check out demo6_3 and witness the result of all of your
hard work. Good job!

Summary
It’s been a fun chapter, and we covered almost everything to do with
Stefan Roetgger’s quadtree algorithm. We talked about what a general
quadtree is and then discussed all the theory behind the quadtree
algorithm. From there, we implemented all the theory. We ended up
with a fast, flexible, and good-looking terrain implementation! We
have only one more terrain algorithm to cover, so let’s get to it!
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CHAPTER 7

Wherever
You May

ROAM



In the final segment of our CLOD terrain algorithm coverage, we are
going to cover the Real-Time Optimally Adapting Mesh (ROAM)

algorithm. ROAM has been synonymous with terrain for the past few
years, but it recently came under fire because it was widely considered
“too slow” for modern hardware. By the end of this chapter, you’ll be
shocked that anyone could ever consider it slow! For now, however, let’s
go over this chapter’s agenda:

■ Theory behind the ROAM algorithm
■ Seamus McNally’s ROAM improvements
■ ROAM for the new millennium
■ Implementing the new and improved ROAM

The agenda might seem fairly routine right now, but it is anything
but. We discuss ROAM—the old and new theories—in great lengths,
and we also take great care in implementing ROAM so that we can get
the most “band for our buck.” I’ll shut my mouth now so we can get
on with the chapter!

The ROAM Algorithm
The ROAM algorithm,1 developed by Mark Duchaineau, has been the
standard for terrain implementations over the past few years. ROAM’s
popularity skyrocketed with the release of Seamus McNally’s
TreadMarks, which implemented some new twists on the classic algo-
rithm’s ideas and made people rethink their ideas on what ROAM
was. All of this and more are discussed in the first section of this chap-
ter, so let’s get going!

Theory
The ROAM algorithm (the whitepaper of which can be found on the
CD, Algorithm Whitepapers\roam.pdf) consists of a series of unique
ideas that revolutionized terrain visualization. We’ll cover the ideas
presented in the paper, starting with the base data structure.
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The Binary Triangle Tree
The ROAM algorithm uses a unique structure called a binary triangle
tree to store polygonal information. This tree starts off with a coarse
root triangle (see Figure 7.1).

As trite and coarse as that triangle looks, just remember that it is the
first level of the tessellation—it’s not supposed to be impressive. To
traverse down the tree a bit, we want to subdivide the current triangle
(level 0 tessellation). To do this, we want to “draw” a straight line from
any of the triangle’s three vertices that bisects the line, opposite the
vertex, into two equal segments, thereby forming two triangles with
base angles of 90 degrees. This produces the level 1 tessellation, com-
posed of two triangles (see Figure 7.2).

Wow, an amazing two triangles! We need to make another “subdivision”
pass (using the same technique that we did for the previous subdivision).
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Figure 7.1  A level 0 tessellation of 
a Binary Triangle Tree node.

Figure 7.2  A level 1 tessellation 
of a Binary Triangle Tree node.



Doing so produces a level 2 tessellation, taking our triangle count up
to 4. (In case you’ve been sensing a pattern but aren’t quite certain
about the increase of triangles for every subdivision, I’ll just tell you:
The number of triangles doubles with each subdivision: 1 (Figure 7.1),
2 (Figure 7.2), 4 (Figure 7.3), 8 (Figure 7.4), 16 (Figure 7.5), and so on.)

Here’s another subdivision pass, which brings our total triangle count
up to 8.

With Figure 7.5, our total triangle count is up to 16. The subdivisions
do not have to stop here; they can continue up until the resolution 
of the engine’s underlying heightmap has been reached. Anyway, the
previous tessellation was just to show what a sample tessellation of a
single Binary Triangle Tree node would look like. However, contrary
to what you might think right now, the actual tree node does not
contain polygonal information. It simply contains pointers to its
neighbors and children, as you’ll see a bit later.
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Figure 7.3  A level 2 tessellation 
of a Binary Triangle Tree node.

Figure 7.4  A level 3 tessellation 
of a Binary Triangle Tree node.



Tessellating a Series of Binary
Triangle Tree Base Nodes
We are going to fill the terrain mesh with several “base nodes” that
will link together to form a continuous mesh. As usual, the cracking
monster will show its ugly face at one point or another. Therefore,
when tessellating (from a coarse level to a more detailed level, similar
to the top-down approach we took in Chapter 6, “Climbing the
Quadtree”), we might have to “force split” a node or two. Consider
the example shown in Figure 7.6.
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Figure 7.5  A level 4 tessellation 
of a Binary Triangle Tree node.

Figure 7.6  A cracking problem just 
waiting to happen.



In Figure 7.6, we want to subdivide triangle X. However, by doing so,
we cause a crack by creating a T-junction, which is when one triangle is
of a higher Level of Detail (LOD) than a neighbor triangle, which is
what would happen if we were to subdivide triangle X. (A T-junction
would be formed with triangle Y.) To prevent this outcome, we need
to force split by splitting the other triangles present in Figure 7.6 until
they are of a uniform detail level and no T-junctions are present, as
shown in Figure 7.7.

Splitting, Merging, and an Imaginary Cat
Okay, I’m really not sure how the imaginary cat fits into the equation
*throws Mittens off desk.* With the fictitious feline out of our way, we
can handle the next—and perhaps most complicated—part of the
ROAM whitepaper: splitting and merging. The ROAM paper suggests
that instead of starting from scratch every frame, we can base the 
current frame mesh off of the mesh from the previous frame and
add/subtract detail where it is needed. 

To accomplish this task, we need to split the triangle tree nodes into 
two priority queues: a split queue and a merge queue. These queues will
keep priorities for every triangle in the tessellated mesh, starting with 
the coarse tessellation, and then repeatedly force split, or merge, the 
triangle with the highest priority. It is also important to maintain the
requirement that a child node never have a higher priority than its parent.
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Figure 7.7  No crack, no T-junction, no problem!



This is the basic and bare-bones explanation of priority queues
because I don’t want to spend too much time discussing them at this
moment. Just know that priority queues exist and know what basic
purpose they serve. We’ll come back to them later.

Improvements to the
ROAM Algorithm
If you remember our discussion of Seamus McNally’s TreadMarks from
Chapter 1, “The Journey into the Great Outdoors,” you’ll remember
me saying how Seamus really boosted ROAM’s popularity with his
implementation used in TreadMarks. Well, now we’re going to get
down to the nitty-gritty details about what exactly he changed from
the traditional ROAM algorithm. These ideas are also summarized by
Bryan Turner in a paper he posted on Gamasutra.2 You can find the
paper and its accompanying demo on the CD in the “Algorithm
Whitepapers” directory. Both the demo and paper are compressed
into the ROAM_turner.zip file.

Seamus’s Changes
Seamus McNally made several highly notable changes to the ROAM
algorithm, which you can see in his game TreadMarks. The changes
that Seamus made sped up the algorithm by decreasing the CPU’s
workload and using a rather cool trick with the binary triangle tree
nodes, also making the algorithm more memory friendly. Following
are some of the changes Seamus made:

■ No data stored for drawn triangles
■ A simpler error metric 
■ No frame-to-frame coherence

Improving the Binary 
Triangle Tree Nodes
Instead of storing information for each rendered triangle node,
Seamus proposed that each triangle node needs little information to
accomplish its task. This information consists of five “links” to triangles
related to the current node (see Figure 7.8).
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As you can see, each triangle needs only five links: two links to its chil-
dren nodes (left and right children) and three to its neighbor nodes
(base, left, and right neighbors). Here is some simple pseudo-code for
what the structure would look like if you wanted to implement it:

Structure BinTriNode {

BinTriNode* leftChild;

BinTriNode* rightChild;

BinTriNode* leftNeighbor;

BinTriNode* rightNeighbor;

BinTriNode* baseNeighbor;

}

To actually put that structure to use, you can allocate a node pool at
initialization that the binary triangle tree can draw triangles from dur-
ing run-time. This almost eliminates run-time memory allocation for
the terrain, and it controls the terrain’s level of detail. The terrain
then calls upon this node pool for tessellation and rendering, which
we’ll discuss in more detail soon.

Simplifying the Error Metric
The error metric presented in the ROAM whitepaper consisted of a
series of complex mathematical routines (which is why it was not

134 7. Wherever You May Roam

Figure 7.8  The information that a single 
Binary Triangle Tree node must contain.



covered in our brief cover-
age of the whitepaper).
Seamus, however, pro-
posed a much simpler
error metric that can be
used for detail calcula-
tions. (The error metric is
used when you’re trying to
decide whether to split a
tri-node and how deeply it
should be split.)

The error metric we are
going to use consists of a
simple calculation and
“takes place” entirely on 
a triangle’s hypotenuse. 

(This calculation should seem
familiar to you if you read the geomorphing sections in Chapters 5,
“Geomipmapping for the CLOD Impaired,” and 6, “Climbing the
Quadtree.”) We’re just going to calculate the delta of the average
length and the true length. Consider the triangle in Figure 7.9.

For the calculation, we only need the height components from the
marked vertices. We’re going to calculate the difference between the
approximated values at cY and the actual value, which is cY, as shown
in Figure 7.10.
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NOTE
Pre-allocating a memory pool of
BinTriNodes isn’t too hard.You just
declare a pointer to a BinTriNode
buffer (signifying that we’ll allocate
the buffer later), like this:

BinTriNode* pTriPool;

Then, to allocate the entire buffer,
you use C++’s new operator, like this:

pTriPool= new BinTriNode[numTris];

That’s all there is to it! I just thought
I’d add that in case you had a ques-
tion about it.

Figure 7.9  An example triangle for use
with the error metric calculation explanation.



All we are really doing, as with the geomorphing calculations we dis-
cussed in Chapter 5, is trying to figure out how much popping will
occur if we subdivide the current triangle. We can determine the
amount of popping by first figuring out how large of a change in
height will occur if the triangle is subdivided, and then projecting that
change to screen pixels. (The latter requires some rather complicated
math, and it’s really not necessary. All that really needs to be done is
calculating the change in world space.)

The Split-Only Method
A few sections ago, we talked about the split/merge ideas presented in
the ROAM whitepaper. Seamus proposed that frame-to-frame coherence
(tessellating the mesh from the previous frame using the split/merge
priority queues) should be completely eliminated. Although adding
split/merge support (dual-priority queues) can increase the flexibility
and speed of your application, it is an advanced topic, and it has a 
tendency to bog down programmers at times.

What do you do if you don’t base the mesh off of the tessellated mesh
from the previous frame? Well, you start from a clean slate every
frame and implement what is called split-only tessellation, which starts 
at the coarse level 0 detail level and tessellates down to a suitable level
of detail. This technique is actually much easier to implement than 
it sounds.

I will now refer you to Bryan Turner’s demo and article on the accom-
panying CD. Bryan implements many of Seamus McNally’s improve-
ments in some easy-to-read code. The CD also includes Bryan’s
tutorial that his code is based off of. You can find all of this on the 
CD at Algorithm Whitepapers/ROAM_turner.zip. Check it out!
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Figure 7.10  The equation to calculate 
the error metric value for a triangle.



ROAM 2.0
Yes, that’s right: ROAM 2.0. I’ve been working closely with Mark
Duchaineau (creator of the ROAM algorithm) on this chapter so that
the text and code will teach you all about the intricacies of the new
algorithm which, at the time of writing, has not been published.

We will take this explanation step-by-step, mixing a little bit of theory
and implementation into each step. By the end of the steps, we’ll have
a full ROAM implementation running. Here are the steps we’ll take:

1. Implementing the basics

2. Adding frustum culling

3. Adding the backbone data structure

4. Adding split/merge priority queues

Step 1: Implementing the Basics
This step is really just like the title says: basic. We don’t cover anything
complex in this section; we just cover the basics of the ROAM imple-
mentation that we are going to code, such as the polygonal tessella-
tion and other fun stuff. Let’s get started!

As usual, we are going to split up the implementation into four high-
level functions that initialize, update, render, and shut down the
engine. For this first implementation, the update/shutdown functions
are going to be almost laughably small, consisting of one line each. To
stay consistent with previous chapters, let’s start with the initialization
function and work our way to the shutdown function. However, unlike
the previous chapters, I’m going to mix theory with implementation.

Initialization v0.25.0
During initialization, only a few tasks need to be completed. First, it’s
necessary to quickly describe some details of what the first couple of
demos will be like. We will be procedurally generating the terrain on
the fly (no heightmaps, no lighting, no cool-looking texture maps,
nothing) by using a version of the midpoint displacement algorithm
we discussed in Chapter 2, “Terrain 101.” This is a simplistic version of
midpoint displacement; it can be described in a single mathematical
equation, as shown in Figure 7.11.
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In the equation, l is the current level (in the loop), and levelMax and
md are where we store the scaled (scale) calculations for the current
level, l. For those who understand processes better in code form than
in mathematical form, here is the code-friendly version:

for( lev=0; lev<=levelMax; lev++ )

MD[lev]= scale/( ( float )sqrt( ( float )( 1<<lev ) ) );

We’ll be using that table throughout the first few steps of the ROAM
implementations, so you’d better start liking it. (CROAM’s instance of the
table is named m_fpLevelMDSize for the future code samples, just for
your information.)

The next segment of code in the book doesn’t really relate to the
actual ROAM implementation. It just procedurally creates a texture
that, when applied to triangles, produces a cool “wireframe-esque”
textured mesh.

Update v0.25.0
Okay, I’m not quite sure you can handle this huge function, but I’m
going to just tell you about it now and hope that your head won’t
explode from the immense size of the function when you look at
demo7_1’s code. The update function, in the case of my implementa-
tion, simply contains… an empty function body! Maybe we’ll have
more to update later on.

Render v0.25.0
The rendering function is split into a subrendering function used for
the recursive rendering of subnodes (similar to the RenderNode function
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Figure 7.11  The mathematical 
equation to calculate the maximum midpoint 
displacement values for each detail level.



in Chapter 6), so the question becomes this: Where do we start? Well,
I’ll make that question easy for you to answer. (Rather, I’ll provide the
answer, and you can pretend like you knew it all along.) We’ll start
with the high-level Render function.

Render
The high-level Render function is rather simple and routine, and it’s
similar to the high-level Render function from Chapter 6. Most of the
work in CROAM::Render is when we try to figure out the root node’s ver-
tex information, which consists of a lower-left, lower-right, upper-left,
and upper-right vertex. Once that is done, we just need to render the
two base triangles using the recursive RenderChild function:

RenderSub( 0, verts[0], verts[1], verts[3] );

RenderSub( 0, verts[3], verts[2], verts[0] );

You will understand what the arguments to the function mean in just a
second, but for now, all you need to know is that we’re sending the trian-
gle’s vertex information so that the function can either render the trian-
gle or recurse further down and repeat the process for the next triangle.

RenderChild
This function is slightly more involved than the previous functions
we’ve discussed so far, but it’s not nearly as complicated as it will be 
by the time we reach the final step of this implementation.

The function needs to take four arguments, three of which are vertex
information and the fourth of which is the current level that is being
rendered. (We need the level information so that we can dig into the
midpoint displacement table we created earlier.) At the start of the
function, we can store the maximum midpoint displacement value for
the current level in a local variable, fMD, to make things easier. Then
we can calculate the new vertex that was formed when we split the 
parent triangle (see Figure 7.12).

After this is done, we can do some tricky IEEE floating-point calcula-
tions. In a nutshell, IEEE floating-point operations are used to mini-
mize storage and maximize speed for certain variables and certain
calculations. In our case, we want to calculate a random perturbation
in the new vertex, which was formed from the current triangle’s 
parent’s split, height value (Y-component). To do this, we’re going to
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extract a few values from a hash table filled with random integer vari-
ables and fill a local unsigned short variable with that information:

pC= ( unsigned char* )fNewVert;

for( i=0, uiS=0; i<8; i++ )

uiS+= randtab[( i<<8 ) | pC[i]];

randtab is the random hash table, and pC is an unsigned char version of
the new vertex’s information.

After we fill the local unsigned short variable, uiS, with values from our
hash table, we need to convert those values to a floating-point value.
Using IEEE floating-point tricks to typecast an integer value to a float-
ing-point value is much faster than the typical typecasting convention:

fFloat= ( float )iInt;

However, using IEEE floating-point tricks to typecast an integer variable
to a floating-point variable, although faster, is quite a big uglier and
incredibly more cryptic to someone who doesn’t know what is going on.
So, for those who know what is going on, that’s great. However, if it con-
fuses you at all, check out the sidebar. (And, for a more rigorous intro-
duction to IEEE floating-point ops, look at gem 2.1 in Game
Programming Gems 2, which serves as a nice introduction to the topic.)

pInt= ( int* )( &fRandHash);

*pInt= 0x40000000+( uiS & 0x007fffff );

fRandHash-= 3.0f;
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from the current triangle’s parent’s split.



We want to apply the previous calculations to the new vertex’s height
value. To do this, we’ll use the equation in Figure 7.13.

As usual, following is the same equation as in Figure 7.13, except in
code form:

fNewVert[1]= ( ( fpVert1[1]+fpVert3[1] )/2.0f )+fRandHash*fMD;

We need to calculate the distance from the camera’s eye position to
the new vertex’s position. Perform all the steps of the normal distance
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NOTE
This previous IEEE floating point code sample takes the address 
of the float fRandHash and assigns it to the pointer pInt. If pInt is a 
32-bit integer, with 31 being the high bit and 0 the low bit, then we
set the 30th bit by assigning it 0x40000000, which gives it an expo-
nent of 128.Then we add the result of the ‘and operation’ on uiS and
0x007FFFFF.

The ‘and operation’ is done to mask out any bits that might intrude
upon the exponent bits. In the IEEE Floating point standard, the 
31st bit is the sign: 0 for positive, 1 for negative. Bits 30–22 are the
exponent, and bits 21–0 are the decimal value following the decimal
point. So, if uiS contained 0x000F0000 (983,040 in decimal), our 
floating-point number fRandHash would equal 2.23438, which we then
subtract 3 from to get ×1.23438, which in integer format would be
0x40400000.

Basically, all of this is done to speed up lengthy operations, such as
type-casting, by using some low-level bit shifting.That’s all that there
is to it! I hope this little tutorial helps you to understand what 
exactly is going on.

Figure 7.13  The equation to calculate 
the new vertex’s height value.



formula except for the square root step. Leave the value squared. This
saves us some valuable processing time by avoiding a call to sqrt. After
the distance is calculated, we need to decide whether we want to sub-
divide the current node. We must meet two requirements to subdivide
the node. First, we need to find out if subdividing to another node
requires going over the maximum detail level. If it does, then we can’t
subdivide; we just have to render the current triangle. Second, we
need to see if the viewer is close enough to bother with a subdivision.
If both of these requirements are met, we can recurse down to the
current triangle’s two children:

//see if we can subdivide the current node or not

if( iLevel<m_iMaxLevel && SQR( fMD )>fDistance*0.00002f )

{

//render the children

RenderChild( iLevel+1, fpVert1, fNewVert, fpVert2 );

RenderChild( iLevel+1, fpVert2, fNewVert, fpVert3 );

//the current node doesn’t need to be rendered

//because both of its children are

return;

}

Most of the vertex names should be self explanatory. As I said earlier,
if the requirements for subdivision are not met, we can just render the
current triangle using the three vertices that were passed as function
arguments. And that’s it for the function!

Shutdown v0.25.0
In the shutdown routine, all we need to do is free the memory that we
allocated for the midpoint displacement table. That’s all that the shut-
down routine requires. Hope you didn’t blink!

Demo v0.25.0
Well, we have reached the end of step 1. The end result is rather cool,
albeit a bit simplistic. We’ll more than make up for this simplicity in
the last couple of steps of the implementation, though. For now, go
check out demo7_1. The controls are listed in Table 7.1, and a screen-
shot of demo7_1 (on the CD under Code\Chapter 7\demo7_1) is
shown in Figure 7.14.

142 7. Wherever You May Roam



It’s time to remind you of something. The implementations I’m pro-
viding to you on this book’s accompanying CD are only to give you an
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Table 7.1 Controls for demo 7_1

Key Function

Escape / q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

+ Increase maximum mesh level

× Decrease maximum mesh level

Figure 7.14  A screenshot from demo7_1, step 1 of the ROAM implementation,
which shows the basics of the algorithm.



idea of how to implement a said technique. They are by no means 
perfect, highly optimized, or even as highly detailed as they could be.
Because the topic of terrain is far from static, the various ways you can
implement a certain algorithm can change greatly over time. For the
most highly optimized, best looking, and just plain cool implementa-
tion of an algorithm, check out my site at http://trent.codershq.com/,
where you should find exactly what you’re looking for. With that said,
let’s move on to the next section!

Step 2: Adding Frustum Culling
In this step, we are going to implement frustum culling, which we’ll do
a bit differently from the way we did it in earlier chapters. We are also
going to make the terrain run off of a heightmap (and use texture
maps), unlike the last demo. Let’s get to it!

Initialization v0.50.0
Initialization is almost the same as it was in Chapter 6 except that we
are going to get rid of the procedural grid texture generation. Instead,
we are simply going to generate the midpoint displacement size table
and then continue on.

Render v0.50.0
Things have changed a bit in the rendering function. Instead of gen-
erating vertices for the base triangles in the range of [-1, 1], we are
going to be generating them in a rage of [0, size-1], where size is the
size of the terrain’s underlying heightmap. This is the main step
needed to get the engine running off of a heightmap. When this is
done, we’ll go into our RenderChild routine like the last time.

RenderChild, Revisited
Okay, there have been some changes to this function that will greatly
improve the overall performance of our engine and the overall “look”
of the rendered mesh. First, let’s cover the performance upgrade.

Cull Like You’ve Never… Oh, Never Mind

When we add frustum culling to this engine, we are doing things a bit
differently from the previous two approaches. We are going to use a
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bounding sphere to describe the size of our triangle. Then we will test
that sphere against the view frustum for inclusion/exclusion. We need
to know two things for the bounding sphere: its center and its radius
(see Figure 7.15).

To apply this idea to our code, we need vertex information for the
current triangle. We need to know the three vertices that make up the
triangle. Then we need to calculate the center of the hypotenuse (the
center of the bounding sphere). We will then figure out which vertex
is the farthest from the center— that will be our radius. Here is the
code for one such calculation:

fSqrBoundTemp= SQR( ( fpVert2[0]-fNewVert[0] ) )+

SQR( ( fpVert2[1]-fNewVert[1] ) )+

SQR( ( fpVert2[2]-fNewVert[2] ) );

//check to see if this is the largest distance

//we’ve calculated so far

if( fSqrBoundTemp>fSqrBound )

fSqrBound= fSqrBoundTemp;

After we know that, we can easily test for the sphere’s inclusion in the
view frustum. If the sphere is included, we can continue on with the
rendering function. If it’s not, we can return immediately; if a parent
triangle is not visible, then none of its children, its children’s children,
or its children’s children’s children will be visible. Here is the code for
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Figure 7.15  A bounding sphere encasing a single triangle.



frustum culling that we’ll use for the remaining demos in this chapter.
As you can see, it is a bit different from the techniques we have been
using, but it is also a lot faster. In this code, we are going to test a
point against each frustum plane. The second we find out that the
point is not inside the frustum, we can quit testing. This technique
speeds up our application quite a bit.

if( iCull!=CULL_ALLIN )

{

float r;

int j, m;

//perform culling against the view frustum

for( j=0, m=1; j<6; j++, m<<= 1 )

{

if( !( iCull & m ) )

{

r= m_pCamera->m_viewFrustum[j][0]*fNewVert[0] +

m_pCamera->m_viewFrustum[j][1]*fNewVert[1] +

m_pCamera->m_viewFrustum[j][2]*fNewVert[2] +

m_pCamera->m_viewFrustum[j][3];

//check for frustum inclusion

if( SQR( r )>fSqrBound )

{

//check to see if the triangle is actually

//within the viewing frustum

if( r<0.0f )

return;

//triangle is within view

iCull|= m;

}

}

} 

}

As you have learned in previous chapters, frustum culling speeds up
any application, and things don’t change here. As a rule, adding frus-
tum culling gives a speed-boost to any application…unless you have a
really bloated culling routine.
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Texture-Mapping, Detail-Mapping, and a Heightmap

Adding the previously named components to the engine doesn’t take
much work because we converted the mesh’s coordinates to that of
the heightmap’s. We just need to render everything like we have been
in the past few chapters. Bind the textures in the high-level rendering
function and calculate the shading/height values for the current vertex.
All of this is in demo7_2, so if you’re a bit fuzzy on the texture-mapping
techniques from the past few chapters, feel free to check it out now. In
fact, check out demo7_2 (on the CD under Code\Chapter 7\demo7_2),
Table 7.2, and Figures 7.16 and 7.17 anyway.
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Table 7.2  Controls for demo 7_2

Key Function

Escape / q Quit the program

Up arrow Move forward

Down arrow Move backward

Right arrow Strafe right

Left arrow Strafe left

+ Increase maximum mesh level

× Decrease maximum mesh level

T Toggle texture mapping

D Toggle detail mapping

W Render in wireframe mode

S Render in solid/filled mode
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Figure 7.16  A texture-mapped and detail-mapped screenshot from demo7_2.

Figure 7.17  The wireframe version of Figure 7.16.



Step 3: Adding the 
Backbone Data Structure
The past few steps have been simple introductions to the fundamental
concepts of ROAM 2.0. Now we’re going to create the core backbone
of what is to come in future steps. Unlike the “old-fashioned” ROAM
algorithm, ROAM 2.0 relies on a diamond tree backbone. Although in
concept, this is similar to the Binary Triangle Tree that we discussed
earlier this chapter, implementing it is rather different. Let’s try it!

Diamonds Are a 
Programmer’s Best Friend
The base “unit” for the ROAM 2.0 implementation is called a diamond.
Each diamond in the tree consists of two right isosceles triangles
joined on a common base edge. Each triangle also consists of four
child triangles—but we’re getting ahead of ourselves a bit. Let’s just
analyze the base diamond in Figure 7.18.

See? Nothing special. We have a simple diamond composed of two 
triangles (Triangle 1 and Triangle 2). The diamond’s center vertex (C
in Figure 7.18) identifies each diamond. Each diamond also contains its
squared bounding sphere radius, as we discussed in the previous section,

149ROAM 2.0

Figure 7.18  A simple image of the base 
diamond to be used in the ROAM implementation.



an error metric, its level of resolution (how far down in the diamond
tree it is), and its frustum culling bit flag (which we won’t need to use
until step 4.). Each diamond also contains a series of links, as Figure
7.19 shows.

As Figure 7.19 shows, the triangle network starts with the same base
diamond as that of Figure 7.18, except that we show the two diamonds
below it (represented by dotted lines). First, let’s start with the chil-
dren. The children (c0, c1, c2, and c3) are all the children of the orig-
inal base diamond from Figure 7.18. We then analyze child c1 in more
detail, showing its parent links (p0, p1, p2, and p3). Parents p0 and
p1 are the left/right parents of the child, and parents p2 and p3 are
the up/down “ancestral” parents of the child. This whole diamond
concept becomes more obvious as you become more familiar with the
whole ROAM 2.0 “system.” You can only do that by digging right into
the implementation that we will be working on.

The base diamond structure is fairly routine. You already know all of
the components that comprise it, so the diamond structure pseudo-
code presented next shouldn’t come as too big of a surprise:

struct ROAMDiamond {

ROAMDiamond* pParent[4], pChild[4]

ROAMDiamond* pPrevPDmndnd, *pNextPDmndnd
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Figure 7.19  A diamond and its parent/child links.



float center[3];

float bound;

float error;

short PQIndex;

int8 childIndex[2];

int8 level;

uint8 cull;

uint8 flags;

uint8 lockCount;

int8 padding[4];

};

That’s simple enough isn’t it? Well, that is the basis for steps 3 and 4
of our ROAM 2.0 implementation, so you better get used to that 
structure!

Creating a Diamond
Ahhh, if only I could create my own diamonds… Talk about a money
maker! Anyway, we’re going to be going over some pseudo-code that
can “create” the information you need for a new diamond child. This
function we are going to discuss is the basis for step 3, so you’d better
pay attention!

In the diamond child creation function, the single most important
goal we have is for the function to generate the links for the diamond
child to keep the mesh consistent. Although step 3 does not provide
native crack-fixing support, it is still important to link the mesh’s dia-
monds together. (Link the child to its parents and vice versa.) That’s
our main goal for the creation function. We also, of course, want to
initialize the child’s information. After all, what’s the point of having a
child if it doesn’t know anything?

ROAMDiamond CreateChild( child, index ) {

// return if already there

if (child->pChild[index])

return child->pChild[index];

// allocate new one

k= allocate_diamond();
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// recursively create other parent to kid i

if (index<2) {

px= child->pParent[0];

ix= (child->childIndex[0]+( index ==0 ? 1 : -1 ) ) & 3;

} else {

px= child->pParent[1];

ix= (child->childIndex[1]+( index ==2 ? 1 : -1 ) ) & 3;

}

cx= CreateChild( px, ix );

//set the child’s links

child->pChild[i]= k;

ix= ( I & 1 )^1;

if (cx->pParent[1] == px)

ix|= 2;

cx->pChild[ix]= k;

if (index & 1) {

k->pParent[0]   = cx;

k->childIndex[0]= ix;

k->pParent[1]   = child;

k->childIndex[1]= index;

} else {

k->pParent[0]= child;

k->childIndex[0]= index;

k->pParent[1]   = cx;

k->childIndex[1]= ix;

}

k->pParent[2]= child->pParent[index>>1];

k->pParent[3]= child->pParent[( ( ( index + 1 ) & 2 )>>1 ) + 2];

ResetChildLinks( );

// compute kid level, vertex position

k->level = child->level + 1;

k->center= midpoint( k->pParent[2]->center,

k->pParent[3]->center );

CalculateBoundingRadius( );
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UpdateDmndCullFlags( ); 

return k;

}

Phew! That’s a lot of pseudo-code and a lot of ugly little bit
shifting/masking ops! Well, never fear. It’s all a lot simpler than it looks.
All of the bit shifting and masking is used to figure out a child’s orienta-
tion in relation to its parent. We could clean all this ugliness up a bit,
but by bit shifting instead of dividing/multiplying, we speed things up a
bit (not by much, but enough to make a difference in a common-used
function). Plus, all these bit ops should make you feel really cool. 

Molding the Backbone 
Diamond Tree Together
Okay, you know most of what you need to know to put step 3 together,
but the knowledge you have is slightly fragmented and needs to be
“put together.” That’s the goal of this section, so let’s get started!

The Diamond Pool
The diamond pool is a dynamically allocated buffer of diamond struc-
tures. This pool is what you “call upon” during run-time when you
need a new diamond for the mesh. After you allocate this pool, you
need a couple of functions to manage the diamonds that you want to
use. For instance, if you would like to create a new diamond, you need
to get it from the pool. While you’re using that diamond, you don’t
want to use that same diamond somewhere else in your code. It’s nec-
essary to create a couple of “security” functions: one function to lock a
diamond for use and another function to unlock a diamond from use. 

The locking function’s job is simply to remove an unlocked diamond
from the “free list” of diamonds (the diamond pool). To do this, we
need to find the most recently unlocked free diamond (which should
be provided as an argument for the locking function), take it for our
use, and then relink the old most “recently” unlocked diamond to a
different diamond for the next time we want to lock a diamond for
use. The unlock function uses a similar methodology, except, well, 
you do the opposite of what was done in the locking function.

We could use one more function to make our life easier, and that
would be a diamond creation function, which creates a level of
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abstraction over the diamond pool. The creation function simply
needs to get a pointer to the most recently freed diamond. If there is
no diamond to “grab,” then we have a slight problem on our hands…
Most of the time, though, we don’t have to take that into considera-
tion, so don’t worry about it too much. Then we want to find out if
the diamond has been used before. To do this, we can use one of the
diamond structure’s member variables as a “been used before” flag.
For this, we will use the bounding radius variable. At initialization, we
will set this variable to ×1 and, if the diamond is used, it will be set to a
different value somewhere along the line. (This value would, most def-
initely, be above 0—unless, of course, you’ve seen a sphere that has a
negative radius, thereby stretching it into the great unknowns of any
3D coordinate system.) Anyway, if the diamond we’re “grabbing” has
been used before, we need to reset its primary parent/child links and
be sure to unlock its parent diamonds from the pool. We can then
continue to lock the grabbed diamond and return the locked pointer
to a newly created diamond that we can toy with.

With these pool manipulation functions in place, we have a nice little
layer of abstraction over the diamond pool backbone of our ROAM 2.0
implementation. Now we can begin coding a working implementation in
step 3 instead of worrying about all this theory and pseudo-code. Hoorah!

Initialization v0.75.0
Step 3’s initialization function is quite a bit more complex than in step 2.
(Of course, step 2’s initialization function was quite simpler than the
one presented in step 1, so now you are paying for your “lucky break”
in initialization.) We have more “maintenance” to do to get the demo
up and running. We have to initialize the diamond pool, take care of
two levels’ worth of base diamonds (not to mention linking them all
together), and a whole bunch of other fun stuff that will boggle your
mind. Well… okay, maybe it won’t quite boggle your mind. In fact, I
think I’ll even try to make the whole thing easy to learn. Let’s go!

First, we need to initialize the memory for the diamond pool. That’s
not too hard, and I think you can handle it on your own. After that’s
done, we need to do some “pool cleaning,” which is where things
might get tricky. To start with, we want to loop through all of the pool
diamonds and set the previous/next links to the corresponding dia-
monds in relation to the current one. See Figure 7.20.
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After we’ve established the links, we can reloop through the pool and
initialize the “key” variables for each diamond. The key variables and
what needs to be done are as follows: 

1. The bounding radius must be set to ×1.0, which marks the 
diamond node as new. (You can actually use any other floating-
point value less than 0. You can even use  ×71650.034 if you feel
the need.)

2. The diamond’s lock count must be set to 0, also marking the
node as new and unused.

Next, we must initialize the base diamonds for the mesh. We have two
levels of diamonds to initialize: a 3 × 3 level 0 diamond base and a 4 × 4
level 1 diamond base. Both require slightly different computations to 
figure out the diamond’s center, and each requires a different linking
technique, but other than that, they basically require the same setup
procedure. The diamond’s center vertices will be initialized in the range
of [×3, 3], so it’s important to scale those values according to the size 
of the heightmap. We also need to calculate the level of the diamond,
which isn’t as simple as it seems. The base diamonds are rarely involved
in the actual rendering process of the mesh, so they actually take a nega-
tive level. The base diamonds are simply used as a “starting point” for
the rest of the mesh. Attempting to render the base diamonds will result
in unfortunate errors, and that’s never a good thing. After we’ve taken
care of the first part of the base diamond initialization, we need to set
the base diamond links, but all of that is fairly routine.

Render v0.75.0
The child-rendering function is almost the same as it was in the previ-
ous step, but instead of sending the vertex information for each triangle
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Figure 7.20  Setting up the diamond pool by linking 
each node to the previous/next nodes.



individually, we are going to send the diamond information and use the
vertices contained in the diamond (the diamond’s center vertex and
the center vertices of its previous and next diamond links). The high-
level rendering function has been made even simpler. Instead of calcu-
lating the vertices for the base triangles, we simply use the information
from the base triangles that we initialized in the initialization function:

//render the mesh

RenderChild( m_pLevel1Dmnd[1][2], 0 );

RenderChild( m_pLevel1Dmnd[2][1], 2 );

That’s all there is to rendering the mesh. We just take the middle two
diamonds from the level 1 base diamond set and render their base
children. That’s all there is to it! Go check out demo7_3 (on the CD
under Code\Chapter 7\demo7_3). You won’t see much of a visual dif-
ference from demo7_2 (as Figure 7.21 will show) because all we did
was change the “background” data structures that the engine runs off
of. You won’t even notice much of a change in speed for the program.
This step was mainly to set up the diamond tree backbone that the
next two steps will run off of. Anyway, enjoy the demo!

Step 4: Adding a 
Split/Merge Priority Queue
This is where our implementation gets a huge upgrade in speed and
infrastructure. Instead of retessellating the mesh after every frame, we
will be doing our main tessellation at the beginning of the program
and then basing the newly tessellated mesh off of the mesh from the
previous frame by splitting/merging diamonds where it is needed. It’s
important that you understand the diamond backbone structure that
we discussed in the previous section before reading this section
because this section uses that structure extensively.

The Point of a Priority Queue
You might remember this topic from earlier in the chapter, except
then we were talking about triangle binary trees instead of diamonds;
however, the basic concepts that we talked about are the same. The pri-
ority queue provides a “bucket” for splitting/merging a diamond. The
top diamond on the bucket is the diamond with the highest priority, so
it will receive the first split/merge treatment. Using these priority
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queues, we aren’t forced to reset and retessellate a new mesh for every
frame; therefore, we can keep a more rigid polygonal structure, a more
consistent framerate, and all sorts of other goodies.

We will implement a dual-priority queue for step 4: one merge queue
and one split queue. Splitting a diamond will result in a higher level
of detail, and merging a diamond will result in a lower level of detail.
By splitting the necessary split/merges into two separate queues, we
speed up the process by not having to sort through one mess of
split/merge priorities in a single bucket. Now that we know the point
of the split/merge priority queue structure, how exactly do we go
about implementing it? Well, now is a good time to discuss that!

Implementing the 
Split/Merge Priority Queue
To begin our split/merge queue implementation, we first need to cre-
ate two diamond pointer arrays—one array for the split queue and
one array for the merge queue. The queues hold diamond pointer
information rather than actual diamond data. The engine will use this
diamond pointer to access the diamond’s information to split or
merge it. We are going to give each diamond an index into either the
split or merge array to make our life a little bit easier.
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Figure 7.21  A screenshot from demo7_3, where we added the diamond backbone
to the ROAM implementation.



First, we’re going to need two functions that will update the dia-
mond’s priority or the diamond’s queue index. We’ll discuss the “pri-
ority update” function that takes a diamond and updates its priority
queue index based on the information for the current viewpoint.

The priority update function takes a diamond pointer and updates its
index based on viewpoint-related information (mostly the distance
from the diamond’s center to the viewpoint and the error metric in
relation to the diamond’s distance). We want to make sure that this
process has not already been done on the diamond by checking a flag
somewhere within the structure. Then, considering that this process
has not already been performed with the given diamond, we move on
to the distance/error calculations. The diamond’s error value should
have already been calculated when it was created, so that makes our
life a bit easier. However, then we need to calculate the diamond’s pri-
ority based on the projected error value in relation to the diamond’s
distance from the camera. After this, we need to call the next function
to update the priority queue with the diamond’s new index and
replace the diamond’s old index in the queue with its new one. Doing
this leads us into the discussion of the second function I was talking
about earlier.

The second function, which will be called “Enqueue,” is where we
update the diamond’s entry in its priority queue (either the split
queue or the merge queue) by replacing its old entry in the queue
with its new entry. (The new entry’s location in the priority queue is
defined as an argument to the Enqueue function.) As for which queue
the diamond is in, that information is provided by one of the flags
within the diamond structure, which makes the process even easier!
For the first part of this function, we are only concerned with removing
the diamond from its old position in the queue. When that is done
and all the necessary queue flags and links have been resolved, we
want to insert the diamond into its new place in the priority queue
and update the diamond’s flags with the new queue information. (We
might actually be moving the diamond from one queue to another, so
we might move a diamond that was previously in the split queue to the
merge queue, or vice versa.) And that’s it! Those two functions are the
main diamond manipulation functions to manage the priority queues.
The problem is that we are lacking two important functions when it’s
time to use the diamonds that are present in the split/merge queue:
the split function and the merge function.
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We will discuss the split function first because it’s quite simple. This
function takes a diamond pointer as an argument (the diamond pointer
is a pointer to the diamond that is to be split) and splits it if it hasn’t
already been split. To do this, look at the pseudo code that follows:

Split( ROAMDiamond* dmnd ) {

//recursively split parents

for( int i=0; i<2; i++ ) {

p= pDmnd->pParent[i];

Split( p );

//take p off of the merge queue if pDmnd is its first kid

if( !( p->splitflags & SPLIT_K ) )

Enqueue( p, ROAM_UNQ, p->queueIndex );

p->splitflags|= SPLIT_K0<<pDmnd->i[i];

}

//fetch kids, update cull/priority, and put on split queue

for( i=0; i<4; i++; ) {

k= GetChild( pDmnd, i );

UpdateCulling( k );

UpdatePriority( k );

//children of the newly split diamond go on the split queue

Enqueue( k, SPLITQ, k->iq );

s= ( k->p[1]==pDmnd ? 1 : 0 );

k->splitflags|= SPLIT_P0<<s;

Unlock( k );

UpdateTris( k );

}

}

//indicate diamond is split, update queueing, add to checklist

pDmnd->flags|= SPLIT;

//freshly split pDmnd goes on mergeq

Enqueue( pDmnd, MERGEQ, pDmnd->iq );

}

The merge function is the split function in reverse. If you understand the
split function, you should have no trouble with the merge function!
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And that takes care of most of the details of the split/merge priority
queue system!

The Triangle System
We are changing around the rendering system quite a bit in this step.
Because we aren’t completely retessellating the mesh from scratch
each frame, we really don’t need to update triangle information (the
triangles that will be sent to the API, that is) every frame either. We’re
going to implement a “triangle tree” to keep track of triangles that are
on the list to be rendered. This triangle tree is defined by a large
floating-point array that serves as a sort of vertex buffer for triangles to
be sent to the rendering API. We will store texture coordinates in this
array, too. However, to make things easier on us and to clean up the
code, we need to come up with manipulation functions to manage the
information. We are going to need a function for each of the follow-
ing tasks:

■ “Allocating” a new triangle and adding it to the list
■ “Freeing” an allocated triangle from the list
■ Adding a new triangle to the list
■ Removing a triangle from the list

Remember: We aren’t actually allocating/freeing memory in this system—
it just seems like we are! The allocation/freeing functions are the high-
level abstractions that call on the add/remove triangle functions. Let’s
focus on the low-level manipulation functions because the high-level
ones are pretty self explanatory.

The add/remove functions are fairly complementary to each other, so
if you understand the workings of one, you will understand the other.
(Is it just me, or are there a lot of “opposite” functions in this chapter?)
Let’s start by covering the triangle adding function. The first thing we
want to do in this function is find a free triangle in the array to write
to. (This is, essentially, a write-only vertex buffer because we are
putting the information in the array and simply sending it off to the
API.) After we have a free triangle at our disposal, we can fill its infor-
mation with the vertex information from the diamond that was passed
as an argument to the function. That’s all there is to it! We can now
move on to implementing step 4.
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Initialization v1.00.0
The initialization routine isn’t much different from the one in step 3,
and the major additions that were made to the function were already
talked about when we discussed the split/merge priority queue sys-
tem. The only other major addition to this procedure is that we must
put a top-level diamond on the split queue because all other dia-
monds come from and grab its triangles to start the triangle-rendering
process. To do this, we simply add this code to the end of the initial-
ization function:

pDmnd= m_pLevel1Dmnd[1][1];

Enqueue( pDmnd, SPLITQ, IQMAX-1 );

AllocateTri( pDmnd, 0 );

AllocateTri( pDmnd, 1 );

That’s all that really has been absent from our discussions up to this
point. You should have no trouble understanding the rest of the ini-
tialization procedure or coding your own from the information pre-
sented in this chapter so far.

Update v1.00.0
Gasp! Yes, we actually have an update function for this step! This func-
tion performs the frame-by-frame updates for the mesh. In this function,
we want to update the priority for all queued diamonds, and then we
want to do the actual splitting/merging of the diamonds in the prior-
ity queues until one of these cases is satisfied:

■ The target triangle count has been reached or an accuracy 
target has been reached.

■ We run out of time to split/merge. (We want to limit the
amount of splitting/merging done each frame.)

■ We run out of free/unlocked diamonds in our diamond pool.

Until one of those cases has been satisfied, we can split/merge to our
heart’s content! Although we do want to keep a nice level of mesh
coarseness, we do not want too coarse of a mesh. (This is defined by
checking “current values” against “maximum values,” such as checking
the current triangle count against the maximum triangle count.)
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Render v1.00.0
Step 4’s rendering function is simple. Using the vertex buffer we cre-
ated earlier, you can easily output all the vertices to be rendered using
a single call. The accompanying demo, for instance, outputs all the
vertices/texture coordinates as OpenGL dynamic vertex arrays. (For
simplicity’s sake, I am only using one texture in the demo on the CD
and not sending color information.) However, you can port the ren-
dering function to the API of your choice. With that said, demo7_4 is
now open for you to check out. You’ll notice the largest improvement
in this demo if you use a 4096 × 4096 heightmap. Considering that up
to this chapter, we’ve been using 512 × 512 heightmaps, I think it’s
safe to say that this algorithm is “fairly” powerful. Wouldn’t you agree?
Check out Figure 7.22 to see demo 7_4 in action (on the CD under
Code\Chapter 7\demo7_4).

If you experiment with demo7_4 a while, you are bound to find a glar-
ing flaw with the mesh (see Figure 7.23). This is because the engine
supports a much higher level of detail than our heightmap’s resolution
supports. So, if you can create a large heightmap (8192 × 8192 would
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Figure 7.22  A wireframe render of the mesh from demo7_4 (where we implement
dual-priority queues), mixed with a solid render of the mesh.



probably be a good size) or somehow fractally calculate height values
on the fly so that the engine is limited by its allowed LOD and not lim-
ited by the heightmap resolution, this “staircase effect” will disappear.

Summary
This was the last terrain algorithm chapter for the book… And wow,
was it a doozy! In this chapter, we covered lots of ROAM information,
starting from the original paper released a few years ago, up to the
“new” version of the algorithm. We implemented ROAM 2.0 (the 
new version of ROAM) in four steps, starting with simple polygonal
tessellation and ending with a full-blown and incredibly powerful
implementation. The next chapter will be a tremendous journey
through a wide variety of tips, speed-ups, and special effects. Get ready!

163Summary

Figure 7.23  The “staircase” polygon artifact experienced when the ROAM engine’s
supported detail level surpasses that of the heightmap’s.
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CHAPTER 8

Wrapping
It Up:

Special
Effects

and More



We are nearing the end of our journey through the outdoors, so
I thought we’d go out in style. In doing so, we’re going to do

an exhaustive run-through of some of the coolest special effects that
programmers have access to with modern hardware. To fit in all the
effects possible, I’m going to just give you the agenda for this chapter
and get it started. Here’s what we’ll be talking about:

■ Two alternatives for rendering water
■ Use of simple primitives to render a scene’s surrounding 

environment
■ Camera-terrain collision detection and response
■ Two alternatives for rendering fog
■ Particle engines and their uses with terrain

That’s quite a wide variety of topics we get to talk about. Well, I
promise you, each topic will be fun and will open up your options for
increasing the realism in an outdoor scene. We’ll never get around to
discussing them if I keep on talking, though, so let’s get going.

It’s All in the Water
Water rendering is an important component of any realistic outdoor
scene. Sure, some types of scenes—a desert scene, for instance—might
have no use for a patch of water, but for most scenes, a little patch of
water greatly adds to the mood of the scene. I’m sure the real question
on your mind right now is this: “What are we going to be doing?”
Well, I’ll tell you. We’re going to implement two different water algo-
rithms: one simple implementation and one slightly more complex,
but infinitely cooler, implementation. Without stalling any longer, 
let’s get started with the simple implementation.

Letting the Water Flow, Part 1
In our first implementation of a water-rendering system, we’re going to
be relying on a single texture spread across a quad and some simple
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animation with that texture. Actually, programming this is just about
as simple as it sounds, except for one “tricky” problem that will result
after we get the system set up right… But, I’m getting ahead of myself;
let’s take one step at a time.

Let’s start off by making a list about what we want our simple water
implementation to have:

■ The ability to load in a single texture to represent the water’s
surface

■ The ability to render a textured/colored (and alpha-blended)
quad

Yup, that’s a pretty small list, but don’t fear. We will be making lists
throughout this chapter, and there will be many larger ones (I know
how much you like large lists of requirements for you to comply with).
As you can see from the preceding list, we don’t have much work to
do to get this first demo up and running.

First, we need to discuss how we’re going to be rendering this quad
that I keep referring to. Look at Figure 8.1, where we have a simple
terrain mesh.
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Figure 8.1  A simple terrain mesh.



We’re going to choose a suitable spot (on the Y axis) for our water
patch to inhabit and “slice” a quad through the mesh, as is seen in
Figure 8.2.

That is our beautiful little quad that will soon be our water mesh. It’s
important to notice the amount of tearing present in Figure 8.2
because we’ll be dealing with it in a few paragraphs, but for now, just
notice its presence.

Rendering the quad is rather simple. All you need to do is have the
user set the center of the quad, get the size of the patch from the user
(in world units), and send the vertices to the rendering API. If you
seem to be having trouble with this, check out demo8_1/water.cpp on
the companion CD.

Our quad is now set up correctly; all we need to do now is add the
texture. The texture we’re using in the demo (see Figure 8.3) is fairly
simple, but after it’s applied to the quad and animated, it does its job
well.
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Figure 8.2  A simple terrain mesh with a large quad “slicing” it in half.



Spreading this single texture across the entire patch (especially
because the patch can end up being rather large—the patch in the
demo is 1024 × 1024 world units) would result in one ugly water
mesh. We want to repeat the texture several times over the mesh, simi-
lar to what we did with detail mapping. Next, we can add support for
alpha-blending to the mesh (I mean, really, when was the last time you
saw an opaque ocean?) to increase the amount of realism. Check out
Figure 8.4 to see where we currently stand on our implementation.
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Figure 8.3  The 256 × 256 water texture used in demo8_1.

Figure 8.4  The simple water implementation thus far (textured quad and alpha blending).



We need to add one last thing to our simple water implementation
before it is complete. We need to “animate” the texture to make it
appear a bit more realistic than a static textured quad. To do this “ani-
mating,” we are going to have a bit of fun with the texture coordinates
that we send to the rendering API. In the accompanying demo, all we
are going to do is increase the Y texture coordinate by 0.1f every
frame, creating a “flowing water” feel. Overall, it’s a pretty cheap way 
of rendering water, but if you’re under a polygon/speed budget, it’s a
great alternative. And that’s it for this simple water implementation.
Go check out demo 8_1 (on the CD under Code\Chapter 8\demo8_1),
and have some fun with it. Our next water implementation will blow
this one of the… well, the water!

Letting the Water Flow, Part 2
Our last water implementation used a total of one primitive composed
of two polygons for rendering an entire patch of water. In contrast,
the implementation we are about to discuss and implement will be a
bit more polygon intensive because our mesh will be made up of a
series of uniformly arranged polygons (similar to the polygon arrange-
ment used when we did brute force terrain rendering). By using many
polygons, we will be able to create more realistic water, which entails
adding waves and a reflection map, instead of the static texture map
we used in the previous implementation.

This implementation is a bit more complex than the previous one we
just discussed, so let’s make yet another list of the things this imple-
mentation needs to be able to do and some of the things we need to
keep in mind while coding it:

■ A vertex and normal buffer. Because the water mesh is dynamic,
we will want real-time hardware lighting acting on it to make it
look realistic.

■ Real-time updating of vertex normals. That way, realistic light-
ing (using the API’s hardware lighting) can be achieved to add
more “depth” to the water.

■ Vertex calculations to create a physically realistic series of waves
and ripples. (It’s not technically physically realistic, but it looks
that way.)
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■ Automatic texture-coordinate generation for the water’s reflection
map. That way, the water will look like it is “reflecting” the area
around it.

That’s the list for this demo. It’s twice as large as the previous demo’s
agenda, but it makes you think what the size of the list will be by the
time we reach the twelfth demo in this chapter. (Yes, there are 12
demos for this chapter.) In reality, though, the agendas will be rather
short for every demo, but, hey, I have to scare you a little bit!

So, the best place to start is… well, at the beginning. Specifically, we
are going to create a highly tessellated mesh of polygons, applying a
“reflection map” (see Figure 8.5) and manipulating the mesh’s ver-
tices to create a series of waves. While we do this, we want hardware
lighting to enhance the realism of the water, so we must dynamically
generate vertex normals for the mesh. I know that is all a lot to swal-
low, but we’ll take it step-by-step.

As you can see from Figure 8.5 (an example of a reflection map, and,
coincidentally enough, the same reflection map we will use in our demos
for this chapter), a reflection map really isn’t anything special. All that a
reflection map does is simulate water reflecting the environment around
it. This sounds simplistic, but you can do a lot of cool things with it. 
For instance, you can render your entire scene to a texture every frame 
(or, at least whenever the viewpoint changes) and use that image as the
reflection map for the water. That is just an idea, but it tends to turn out
well in implementation. We, however, will not be implementing this cool

171It’s All in the Water

Figure 8.5  A sample reflection map 
(also used in demo8_2).



technique in this book because it isn’t a practical real-time technique,
but it’s something to think about. (And hey, you might even find a demo
of it on my site, http://trent.codershq.com/, sometime!) Anyway, back
to the topic at hand…

Our vertex buffer will be set up similarly to the brute force terrain
engine we worked with in Chapters 2, “Terrain 101,” 3, “Texturing
Terrain,” and 4, “Lighting Terrain.” We will lay out the base vertices
along the X and Z axes, and we will use the Y axis for variable values
(the height values of the vertices). The X/Z values will remain con-
stant throughout the program, unless you want to do something odd,
such as stretch your water mesh. Other than that, the values remain
constant. To create the water ripples and such, we will be altering only
the Y values of the mesh, which leads us into our next topic: altering
the Y values of the vertex buffer to create realistic ripples and waves.

For our water mesh, we have several buffers. We’ve already discussed
two of these buffers: the vertex buffer and the normal buffer. However,
the one we are going to talk about now is the force buffer. The force
buffer contains all the information that represents the amount of
external forces acting upon a certain vertex in the vertex buffer. 
Check out Figure 8.6 for a visual example of what we’ll be doing.

Figure 8.6 shows how we calculate the force value for the current ver-
tex (Vc in the figure) by taking into account the amount of force that
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upon the current vertex Vc .



is acting upon the surrounding vertices. For instance, if a vertex V was
at rest, and a ripple was caused at a point R, the force of the ripple
would eventually meet V. (We want our water to continuously ripple
after an initial ripple has been created for our demos, so we are
assuming that one ripple will eventually affect every vertex in the
mesh.) This causes the vertices around V, especially those in the 
direction of the ripple, to affect V, and V to continue the ripple’s
force where the other vertices left off. This is all very fuzzy in text, 
I know. Figure 8.7 should help you understand.

Every frame we will be updating the “force buffer,” which stores the
amount of outside forces acting upon each of the water’s vertices.
And, for each vertex, we will take into account the force of every ver-
tex surrounding the center vertex (eight vertices). After we fill the
force buffer with values, we must apply the force to the vertex buffer
and then clear the force buffer for the next frame. (We don’t want
our forces to stack up frame-by-frame. That would look really odd.)
This is shown in the following code snippet:

for (x=0; x<m_iNumVertices; x++)

{

m_pVelArray[x]+= ( m_pForceArray[x]*fDelta );
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Figure 8.7  One ripple to bind all the vertices 
(lame Lord of the Rings rip-off).



m_pVertArray[x][1]+= m_pVelArray[x];

m_pForceArray[x]= 0.0f;

}

All we do in this snippet is add the current force (after the time-delta
is considered so that frame-rate independent movement can be imple-
mented) to a vertex velocity buffer (used for frame-to-frame vertex
speed coherence) and then add that to the vertex’s Y value, thereby
animating the water buffer. Woohoo! We now have a fully animated
water buffer, well, considering that we start an initial ripple some-
where in the mesh:

m_pVertArray[rand( )%( SQR( WATER_RESOLUTION ) )][1]= 25.0f;

That line starts off a ripple at a random location in the water mesh,
with a height of 25 world units. This single line begins all of the ani-
mation for our water mesh.

However, before you check out the demo, there is one other thing I
must tell you. Even though we have a fully animated water mesh, we
are lacking one thing: realistic lighting. We will want to calculate the
vertex normals throughout the mesh on a frame-by-frame basis, send
the normals to the rendering API, and have the rendering API use
those normals to add hardware lighting (per-vertex) into our mesh to
increase the realism of our water simulation. Calculating these nor-
mals is fairly simple as long as you know your basic 3D theory, but it is
of critical importance that you remember to update the normals every
frame; otherwise, you’ll end up with some really flat looking water.

That’s it for water! You can check out demo8_2 right now (on the CD
under Code\Chapter 8\demo8_2) and zone out witnessing the incredi-
ble beauty of our new water rendering system. Also, check out Figure
8.8 to see a static shot from the demo. (Because we’ve been working
on making the water look good in real-time, a static screenshot just
doesn’t do the effect justice.)

Primitive-Based
Environments 101
By now, I’m betting that you’re really sick of working on a new terrain
implementation, just to see the terrain rendered on top of a black
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background. How boring! Well, now we’re going to work on making
that black background into a simple environment that is both pretty
and speedy. The first type of environment that we will discuss is
achieved by using a sky-box. The second type, my personal favorite,
is achieved by using a sky-dome. Let’s get crackin’ on this code!

Thinking Outside of the Sky-Box
The best way to visualize a sky-box is to copy Figure 8.9, cut it out
(your copy, not the figure out of the book… you wouldn’t want to
miss what I have to say on the other side of this page now, would
you?), and try to make it into a cube. (You are allowed to use tape 
for this exercise.) Yep, exactly like you did in elementary school!

This is exactly what we are going to be doing in this section. We are going
to take six textures and make them into a single cube that will compose
the surrounding environment for our outdoor scene. It sounds odd, yes,
but it really works. And no, this is not some lame infomercial. Look at
Figure 8.9 again, and imagine what it would look like with a series of 
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textures that blend together seamlessly. (Like magic, I turned that image
in your head into Figure 8.10.) It’s the semi-perfect answer to the “black
screen environment problem” of the demos up to this point.
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Figure 8.9  A cutout pattern that can be used to 
make a simple paper cube.

Figure 8.10  The paper cube, with sky-box textures for use with demo8_3’s sky-box.



Hopefully you were able to construct a paper cube out of the cutout
that I provided to you. Now we need to put the sky-box together with
code, instead of our hands and tape. This is actually easier than it
sounds. We need to load the six textures into our program, construct
a simple cube out of six quads, and map our six textures in their 
corresponding pages.

In our implementation, we want the user to provide the center of the
sky-box and its minimum and maximum vertices. (That is all we need
to define the cube, as you can see in Figure 8.11.) Other than that,
our code can take care of the actual rendering. 

That is all for the sky-box explanation—simple and sweet! If you need
to see the specifics of the sky-box rendering, check out skybox.cpp in
the demo8_3 directory on the CD (which is under Code\Chapter 8\
demo8_3). Now, look at demo8_3 or Figure 8.12 to see what a sky-box
looks like in action. As I said, it’s a simple approach to rendering a
surrounding environment, but there are several disadvantages to it.
First of all, the scene looks slightly out of place unless the perfect tex-
tures are used for the sky-box. The second problem is that there isn’t
much room for randomization. Sky-box textures need to be pretty 
photorealistically accurate to be of much use, so fractal generation is
out of the question. In the end, the textures you provide for the sky-box
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Figure 8.11  Constructing the sky-box when given 
its center, a minimum vertex, and a maximum vertex.



are the ones that will be used every time the program runs. However,
in the next two sections, we will learn about a cool alternative to sky-
boxes: sky-domes. Let’s get to it!

Living Under the Sky-Dome
We will be using a sky-dome from this point on in our demos. The real
question is this: What is a sky dome? Well, a sky-dome, for our purposes,
is a procedurally generated sphere (sliced in half, so we have a half-
sphere). To start off, we must discuss how to generate the dome and
how to generate texture coordinates for it.

Dome Generation Made Simple
Dome generation is no easy task for someone without a solid math
background, so it tends to confuse a lot of people. If you are one of
those people, you might want to check out a good sky-dome generation
article1 and use it as a reference to this explanation (which is similar to
that of the article, for the theory explanation at least) if it confuses you.
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Figure 8.12  A screenshot showing a sky-box in action.



Anyway, to start off the generation discussion, I’ll introduce you to the
basic equation (see Figure 8.13) that describes a sphere, located at the
origin of a 3D coordinate system, with a radius of r.

We can derive a simpler
equation from the previous
one that is better suited to
our purpose, as shown in
Figure 8.14. This rewrite
allows us to calculate the
information for a point
located on the sphere.

However, calculating many points using that equation could prove to
be a bit complex. We want to turn our focus to a spherical coordinate
system rather than a Cartesian coordinate system, which we’ve been
using up to this point in the generation. With that in mind, we need
to rewrite the previous equation and use spherical coordinates, shown
in Figure 8.15.
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Figure 8.13  A simple equation that 
describes an origin-centered sphere for a 
3D coordinate system with a radius of r.

NOTE
To generate a dome, we need to 
use a lot of the same math that we
would use to generate a sphere.
(After all, we are basically generating
a sphere—just one half of one.)
Therefore, a lot of the information 
in this section will pertain to both
dome and sphere generation.

Figure 8.14  The equation from 8.13 rewritten 
so that calculating values for a given point (Pc ) is easier.



In the equation, phi (φ) and theta (θ) represent the point’s latitude
and longitude, respectively, on the sphere. In case you don’t remember
from your middle school days (I know I didn’t), latitude represents the
lines that run parallel to the earth’s equator (they go left/right around
a sphere), and longitude runs perpendicular to the equator (up/down).
With all of this in mind, we can come up with the final equation that
can define the values for any point on our sphere, which can be seen
in Figure 8.16.

That equation can be used to generate an entire sphere, but we only
need to generate half of a sphere. We’ll deal with that in a few
moments, though. Right now, we need to discuss how we are actually
going to use the previous equation in our code. First of all, there are a
ton of points that we can choose to have on a sphere—almost infinitely
many. In fact, there probably is an infinite amount of points that we
can choose to have on a sphere, but because we have no idea what
infinity really is, I tend to stay with the near-infinite answer. Sure, this
is a bit fuzzy, but it leaves us more room for being right! Anyway, as I
was saying, there is a near-infinite amount of points we can choose for
our sphere, so it is natural to assume we’re going to have to set up our
dome generation function with some sort of resolution boundary; 
otherwise, we’re going to have one really highly tessellated dome.

180 8.  Wrapping It Up: Special Effects and More

Figure 8.15  The equation from 8.14 rewritten for use with a spherical 
coordinate system.

Figure 8.16  The final equation that describes
any point on a 3D sphere (using a spherical coordinate system).



What exactly do we need to do to generate the sphere, and what do we
have to do to limit the sphere’s vertex resolution? Well, these two topics
go hand-in-hand, so let’s discuss them both at once. First, θ can vary
from 0 to 2π (which is in radians; in degrees, it can vary from 0° to
359°). In that range, we could find a semi-infinite amount of numbers,
so what we want to do is find a nice value to stride through the range.

For instance, let’s convert to
degrees. In the range of 0°
to 360°, we can choose a
stride value of 20° and
we’ll end up with 360°/20°
values, or 18 values vertices
per column. The smaller
stride you choose, the
more vertices you’ll end up
with. We can do the same
thing with the φ values.
Now we need to convert
the previous text into
code, which, surprisingly is
a lot easier to understand
than the text.

for( int phi= 0; phi <= ( 90-phiStride ); phi+= phiStride )

{

for( int theta= 0; theta <= ( 90-thetaStride ); theta+= thetaStride

)

{

//compute the vertex at phi, theta

vertexBuffer.x= radius*sin( phi )*cosf( theta );

vertexBuffer.y= radius*sin( phi )*sinf( theta );

vertexBuffer.z= radius*cos( phi );

}

}

See how simple that is? Well, that’s all you really need to do to generate
the vertices for the dome; however, now we need to organize those ver-
tices into a triangle strip. That means that during generation, we make
a triangle out of each individual vertex (by connecting that vertex to
two surrounding vertices) and then compute texture coordinates. 
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CAUTION
Be sure when you code your own
dome generation implementation
(and you are using degrees) that you
convert all of your measurements to
radians before you send them as
arguments to the sin and cos func-
tions because they use radian mea-
surements.This tends to be a huge
mistake that is commonly over-
looked. Remember: Friends don’t let
friends send arguments in degrees
to C/C++ trigonometric functions.



This is quite a bit simpler than it sounds. If you have a question or
two, take a look at the code in skydome.cpp in the demo8_4 directory
on the CD.

Rendering the Sky-Dome
Generating the sky-dome mesh is the hardest part. Now we just need to
sit back and send the vertex buffer to the rendering API. First, though,
I want to discuss what kind of texture we want to use to texture the 
sky-dome. The cool part about using a sky-dome is that you don’t need
a bunch of textures to make it look good; you simply need one! For
instance, in demo8_4, we use the texture that is shown Figure 8.17.

Now check out demo8_4 and take a look at the rendering code. It’s 
all simple; we just send the vertex and texture buffer to the render
API and they are rendered as our beautiful sky-dome. You can find
demo8_4 on the CD under Code\Chapter 8\demo8_3. Enjoy the demo
and the screenshot from that demo shown in Figure 8.18.

Fractally Generating a Cloud Texture
We don’t always have to use a static texture for our sky-domes; we can
also generate our own cloud texture fractally as a preprocessing step
for our program. This is a cool thing to do because it adds more ran-
domization to your program (which is always fun because people tend
to get sick of redundant textures). However, we will not be using the
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Figure 8.17  The texture that is 
used for the sky-dome in demo8_4.



fractal generation techniques that we discussed in Chapter 2; we will
be using a new algorithm for fractal generation. If you understood the
fractal generation algorithms presented in Chapter 2, this section
should be a breeze.

Fractal Brownian Motion Fractal Theory
In this section, we are going to discuss Fractal Brownian Motion (FBM)
fractals2. These are fractals that encase a combination of unique noise
functions. We will discuss two types of noise: white noise and pink
noise. White noise is random and sporadic, sort of like what you see
when you turn on your TV to a channel that your antenna/satellite
doesn’t receive, and you get that static screen with the annoying
sound. Pink noise is like “uniform noise”; it puts a limit on how the
values change from one point to another.

To create pink noise, you create a regular array of values, iterate
through the array, and store random values in every spot. After that is
done, reiterate through them and interpolate the values to smooth
them out; then make the noise a bit more coherent and smooth.
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Figure 8.18  A screenshot from demo8_4, where we implement a sky-dome
and apply a cloud texture to it.



There is also a value called frequency, which can be used to control 
the randomness of the noise. The higher the frequency, the more 
randomness that occurs. (It becomes more like white noise.) 

After you have created some pink noise, it is easy to start creating the
FBM fractal by combining or multiplying the results from other noise
functions. However, before we get much further, it is important to
note that you can use other values to control the noise that is gener-
ated. We have already mentioned frequency, but you can also use
octave, amplitude, and H parameters. The octave value sets how many
noise values are added or multiplied together. The amplitude value
adjusts how high the noise values are (or, if we are using the fractal
generation for a heightmap, it increases the average height of the gen-
erated values). And the H parameter controls how much the amplitude
changes for each octave. And that just about wraps up the theory for
this fractal generation algorithm. Now it’s time to implement it!
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Perlin Noise

Ken Perlin was the first person to use pink noise for com-
puter graphics when he created his now-infamous noise( )
function. He even won an Academy Award for it. This type
of noise is now called Perlin Noise.

Ken Perlin’s home page (http://mrl.nyu.edu/~perlin/) has
the following cool little code snippet, which you can paste
into your compiler and compile to create a nifty little con-
sole program:

main(k){float i,j,r,x,y=-16;while(puts(“”),y++<15)for(x

=0;x++<84;putchar(“ .:-;!/>)|&IH%*#”[k&15]))for(i=k=r=0;

j=r*r-i*i-2+x/25,i=2*r*i+y/10,j*j+i*i<11&&k++<111;r=j);}

Check it out. It’s a neat snippet, and it’s well worth the 2
minutes it takes to get the program running. 



Implementing Fractal Brownian
Motion for Cloud Generation
To start off, we’re going to create a function to get a random value in
a range of numbers, which we did in Chapter 2, “Terrain 101,” when
we did our two examples of fractal height map generation. This time,
however, we’re putting a slight twist on the function. Here it is:

float CSKYDOME::RangedRandom( int x, int y )

{

float fValue;

int n= x+y*57;

n= ( n<<13 )^n;

fValue= ( 1-( ( n*( n*n*15731+789221 )+1376312589 ) & 

2147483647 )/1073741824.0f );

return fValue;    

}

That is our ranged random function. All it does is find a random value
in a range of numbers; for instance, it will find a random value between 
1 and 77. That is the basis for our FBM implementation. We’re also going
to make a variation of that function, called RangedSmoothRandom, which 
creates a more uniform random value than the RangedRandom function.

We also need a function to interpolate two values after we’re given an
interpolation bias. This function is called CosineInterpolation, and we’ll
use it in conjunction with the RangedSmoothRandom function to form the
basis of our noise generation.

Now for the actual noise generation function. What we are going to
do is calculate a series of random values using the RangedSmoothRandom
function. Then we’ll interpolate them using the CosineInterpolation
function. Here is the function:

float CSKYDOME::Noise( float x, float y )

{

int iX= ( int )x;

int iY= ( int )y;

float f1, f2, f3, f4, fI1, fI2, fValue;

float fFracX= x-iX;

float fFracY= y-iY;
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//generate a random noise value

f1= RangedSmoothRandom( iX,   iY );

f2= RangedSmoothRandom( iX+1, iY );

f3= RangedSmoothRandom( iX,   iY+1 );

f4= RangedSmoothRandom( iX+1, iY+1 );

fI1= CosineInterpolation( f1, f2, fFracX );

fI2= CosineInterpolation( f3, f4, fFracX );

fValue= CosineInterpolation( fI1, fI2, fFracY );

return fValue;

}

As you can see, first we get the random value for the current point in
question; then we get values from three surrounding points. Next, we
want to interpolate the values from the first two random calculations,
interpolate the values from the third and fourth calculations, and
interpolate the two interpolate values. BAM! We have our noise value
for that point. This function on its own will not do much, so we need
to create a function to create an entire FBM fractal.

Creating an FBM fractal value, now that we have the necessary base
functions, is actually quite easy. The fractal creation function needs 
to take arguments for all of the values we discussed earlier: octaves,
amplitude, frequency, and H. We also want to take an (x, y) coordinate
set so that we can calculate the FBM value at a specific point. Here is
the FBM function:

float CSKYDOME::FBM( float x, float y, float fOctaves,

float fAmplitude, float fFrequency, float fH )

{

float fValue= 0;

//generate a fractal value using “fractal brownian motion”

for( int i=0; i<( fOctaves-1 ); i++ )

{

fValue+= ( Noise( x*fFrequency, y*fFrequency )*fAmplitude );

fAmplitude*= fH;

}

return fValue;

}
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See, I told you it wasn’t hard! That is our entire FBM generation system,
but it isn’t enough to actually create our cloud texture yet. Now we
need to work on the cloud generation function. The cloud generation
function still needs to obtain octave, amplitude, frequency, and h
information for fractal generation, but it also needs to take a size
argument (how big we want our cloud texture map to be), and a 
blur argument. (The generated fractal won’t be fuzzy enough to 
pass as a bunch of clouds, so we are going to want to blur it a bit.) 
To create the fractal data buffer, we need to do this:

for( y=0; y<size; y++ )

{

for( x=0; x<size; x++ )

fpData[( y*size )+x]= FBM( ( float )x, ( float )y, fOctaves,

fAmplitude, fFrequency, fH );

}

That will create the entire FBM fractal for us; however, we need to do
a bit more than that to create a decent cloud texture. The generated
fractal will contain a lot of noise, so we want to choose a cutoff height
and eliminate all the values that are below that height (thereby turn-
ing them black, instead of a shade of gray). We will then replace the
black with a blue and pass a blur filter over the entire field. Then we’ll
send the data to the rendering API and turn it into a texture. And
that’s it! We now have a fractally generated cloud texture! Check out
demo8_5 on the CD (under Code\Chapter 8\demo8_5) and Figure 8.19
to see a screenshot from that demo.

Camera-Terrain Collision
Detection and Simple
Response
Do not let the heading fool you; this section is actually incredibly 
simple and short, but I’m betting that you’re sick of having the camera
pass right through solid terrain, so we’re going to implement some
simple collision detection. Look at Figure 8.20 to see exactly what we
need to do.
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We must implement what the figure shows into our code. Doing this
takes about six lines of simple code. First, I want to add boundaries
around the terrain mesh so that the camera will not go outside of the
mesh’s area any more. We are going to clamp the camera’s position to
[0, size of terrain mesh] to accomplish that. Then we want to test the
camera’s Y coordinate against the terrain mesh’s height at the camera’s
(x, z) position.
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Figure 8.19  A screenshot from demo8_5, which implements a fractal cloud
texture generation system and uses the texture on a sky-dome.

Figure 8.20  Sample camera-terrain collision.
The camera, at its current spot, must be prevented 
from crossing the dotted line, which means that the 
camera will not pass through the terrain at its current point.



ucHeight= g_ROAM.GetTrueHeightAtPoint( g_camera.m_vecEyePos[0],  

g_camera.m_vecEyePos[2] );

if( g_camera.m_vecEyePos[1]<( ucHeight+5 ) )

g_camera.m_vecEyePos[1]= ucHeight+5;

That is the entire collision detection and response code. (I also gave
the camera a “free buffer” of about 5 pixels so that our near-clipping
plane doesn’t interfere with the terrain.) If our camera is lower than
the terrain’s height at that point, then we set the camera’s height to
the terrain’s, which prevents the camera from going any lower and
passing through the terrain. That’s it for this little tip. Check out
demo8_6 on the CD, under Code\Chapter 8\demo8_6.

Lost in the Fog
In this section, we’re going to implement two types of fog: distance-
based fog and vertex-based fog. Both of these types of fog have hardware
support, so it’s not really a complex topic. It’s more of a how-to guide for
using the fog correctly and showing some cool things that can be done
with it. Let’s get started with the distance-based fog explanation.

Distance-Based Fog
Distance-based fog is always based on the viewpoint. All you have to do
to use it is pass the starting depth and the ending depth to the hard-
ware API and then do anything else you want to customize the fog
(color, density, and so on). This is far from a complex discussion, but
getting the fog to look right takes a bit of understanding of the system;
otherwise, you’ll end up with some really screwy-looking fog in your
scene. Look at Figure 8.21 to see how the fog will work.

As the figure shows, the start depth controls the fog’s entry point into
the scene. Then the fog becomes progressively denser (based on the
density that you pass to the rendering API) until it reaches the end
depth, where it ceases to exist.

Distance-based fog is great for covering up LOD changes in the dis-
tance or for covering up a low LOD. It’s also effective if you want to
reduce the polygon count by eliminating objects in the distance and
you would like the fog to cover that up. This fog is also decent at setting
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the mood for the demo. For the most part, however, distance-based
fog isn’t the best alternative as far as fog implementations go.
Nonetheless, it’s a fairly cool and simple-to-implement effect; with that
said, check out demo8_7 on the CD under Code\Chapter 8\demo8_7
and the now-routine screenshot of the demo in Figure 8.22.
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Figure 8.21  How distance-based fog will work.
It starts at a start depth and gets progressively denser 
until it reaches the end depth.

Figure 8.22  A screenshot from demo8_7, where distance-based fog is implemented.



Vertex-Based Fog
Vertex-based fog is used completely differently from distance-based fog.
When you specify a starting/ending depth, it now applies to the Y axis
instead of the Z axis. You are also providing fog coordinates for the
current vertices that are being rendered. (By the way, all of this is
accessible via the OpenGL extension “GL_FOG_COORDINATE_EXT,”
which is what is used in this section’s accompanying demo.) Vertex-
based fog, sometimes called volumetric fog, is also not view-dependent.
After you provide coordinates and a starting/ending height, the fog stays
at that location throughout your program, which makes it ideal for a
couple of cool effects, such as creating mist rising from our water patch.

In fact, creating mist rising from our water patch sounds like a decent
idea, so let’s continue with the previous train of thought. What we
want to do is provide a decent starting/ending height so that our mist
will rise to an appropriate height level. You’ll want to check out the
source for this demo because a lot of the code is API-specific, but I
thought I’d give you an idea of what this effect can accomplish.

I provided two demos for this effect to show just what you can do with
it. The first demo, demo8_8a, shows some simple gray mist rising from
our water. (You can adjust how low/high the fog rises by using the +/-
keys.) The second demo, demo8_8b, is based on a dark scene and has
a blue mist rising from the water, making the water seem illuminated.
I think you’ll like both demos. Check them out, and take a look at
Figure 8.23.
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Figure 8.23  Screenshots from demo8_8a (left) and demo8_8b (right), which
show vertex-based fog.



Particle Engines and Their
Outdoor Applications
I know, I know. You must be asking yourself, “What do particle engines
have to do with an outdoor scene?” Well, actually, quite a lot. Particle
engines are great to use for rendering rain, snow, comets falling from
the sky, and gaping craters in the terrain surface. (You might find a
demo exactly like that on my site, if you know what I mean.) Before we
can get to the really cool stuff, though, we need to spend a few pages
on particle theory… mostly because I have an odd obsession with parti-
cle engines, but also because I think the theory will be useful for you.

Particle Engines: The Basics
In case you aren’t familiar with particles engines (in which case you
wouldn’t quite understand this section’s introduction, so you might
want to reread it after you understand what a particle engine is), I’ll
give you a quick intro. William T. Reeves developed particles engines
in 1982. Reeves was searching for a way to render “fuzzy” objects, such
as fire and explosions, dynamically. (Particle engines are a pyroma-
niac’s best friend.) Reeves came up with a list of requirements to
implement such a “fuzzy” rendering system:

■ New particles must be generated and placed into the current
particle engine.

■ Each new particle must be assigned its own unique attributes.
■ Any particles that have outlasted their lifespan must be declared

“dead.”
■ The current particles must be moved according to their scripts.
■ The current “alive” particles must be rendered.

I hope you were paying attention because we will be implementing
everything on that list! That doesn’t really help you to understand what
a particle engine is, though. Basically, a particle engine is a “manager” of
one or more particle systems. A particle system is a manager of several
individual particles (which can be points, lines, 3D models, or anything
else) that a particle emitter (which shares the properties of a base 
particle system) creates. See this relationship visually in Figure 8.24.
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Figure 8.24 represents what would be featured in a full, complex 
particle engine, but we’re going to stick to the basics for this section
because we don’t need all the advanced functionality. However, if 
you would like to see a complex particle engine, check out my site at
http://trent.codershq.com, where you can find the code for a rather
complex engine.

Anyway, here’s a quick little “particle timeline” for a single particle.
The particle is created by iterating through a statically allocated buffer
and looking for an “open spot” (marked by a “dead” flag) where we
can place the new particle. This particle will take on the default prop-
erties of the particle system, and the particle will follow a trajectory
until its life counter hits zero. Then the particle will be marked as
“dead,” and the whole process will start all over. That is the lifetime 
of a single particle. We’re likely to have about 10,000 of these flying
around the screen.

Of course, a particle is more than just a speck; it has quite a bit of
information that you can use to create almost any special effect imag-
inable. Here are the properties that a typical particle needs to have:

■ Life span. This is how long the particle will live.
■ Current Position. This is the particle’s current position in

2D/3D space.
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Figure 8.24  Visual explanation of the relationships in a particle engine.



■ Velocity. This is the particle’s direction and speed.
■ Mass. This is used to accurately model particle motion.
■ Color. This is the current color of the particle (RGB triplet).
■ Translucency. This is the current alpha value (transparency) 

of the particle.
■ Size. This is the particle’s visual size.
■ Air Resistance. This is the particle’s susceptibility to friction 

in the air.

With that in mind, we can create a simple particle structure for use with
our particle engine. Remember: We are greatly simplifying the whole
particle engine architecture discussed earlier by cutting out the particle
system and complex particle emitter middlemen. The particle structure
that follows looks similar to the one we’ll be using for our demos.

struct SPARTICLE

{

float m_fLife;

CVECTOR m_vecPosition;

CVECTOR m_vecVelocity;

float m_fMass;

float m_fSize;

CVECTOR m_vecColor;

float m_fTranslucency;

float m_fFriction;

};

As you can see, we implemented all of the requirements in our previous
particle-attribute list into our particle structure. How are we going to
use this? Well, I’ll show you, but first let me demonstrate the particle
engine class because it will be easier to understand everything if I show
you this first:

class CPARTICLE_ENGINE

{
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private:

SPARTICLE* m_pParticles;

int m_iNumParticles;

int m_iNumParticlesOnScreen;

//gravity

CVECTOR m_vecForces;

//base particle attributes

float m_fLife;

CVECTOR m_vecPosition;

float m_fMass;

float m_fSize;

CVECTOR m_vecColor;

float m_fFriction;

void CreateParticle( float fVelX, float fVelY, float fVelZ );

public:

CPARTICLE_ENGINE( void )

{ }

~CPARTICLE_ENGINE( void )

{ }

};

That is our engine structure as it stands now (minus the member 
customization functions, but those are all one line “Set____” functions
that you’ve seen before, namely in the CTERRAIN class). As you can see,
this structure has a lot of the same variables that our particle structure
has. These are the “parent” or the default values that we are going to
give each particle upon initialization. We also have a potential particle
buffer (which will be created in the initialization function, as is now a
routine aspect for our code). I want to concentrate on the CreateParticle
right now because it is an integral part of our engine.
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The CreateParticle function implements the “life of a particle” segment
that we talked about earlier. It loops through the engine’s entire 
particle buffer, finds a “dead” particle, and then uses that free space 
to create a new particle based on the default values that the engine
provides. It’s a pretty simple function, so you could probably code it
easily yourself. If you’re having a hard time, check out particle.cpp
under the demo8_9 directory on the CD.

The other function I want to discuss is the engine’s Update function.
Understanding its simplistic form is important if you want to under-
stand the more complex form of it in the third demo. This function
iterates through the entire particle buffer, moves the particle based 
on its current velocity, and reduces/increases the velocity due to air
resistance/friction and the external forces acting upon the particle
(gravity, wind, and so on). We also increase the translucency for the
particle as the particle ages and gets closer to death. You can see all
this in the code snippet that follows:

void CPARTICLE_ENGINE::Update( void )

{

CVECTOR vecMomentum;

int i;

//loop through the particles

for( i=0; i<m_iNumParticles; i++ )

{

//age the particle

m_pParticles[i].m_fLife-= 1;

//only update the particle if it’s alive

if( m_pParticles[i].m_fLife>0.0f )

{

vecMomentum= m_pParticles[i].m_vecVelocity * 

m_pParticles[i].m_fMass;

//update the particle’s position

m_pParticles[i].m_vecPosition+= vecMomentum;

//set the particle’s transparency (based on its age)

m_pParticles[i].m_fTranslucency= m_pParticles[i].m_fLife /

m_fLife;
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//now it’s time for the external forces to take their toll

m_pParticles[i].m_vecVelocity*= 1-

m_pParticles[i].m_fFriction;

m_pParticles[i].m_vecVelocity+= m_vecForces;

}

}

}

That about wraps it up for the first demo. All the initialization and 
shutdown functions are similar to what you’ve seen in previous demos,
so you should have no problems in understanding them. And the ren-
dering function is pretty simple right now. I wanted to stick to the basics
for the first demo, so the demo just renders simple alpha-blended pix-
els. Check out the demo, demo8_9 (on the CD under Code\Chapter 8\
demo8_9), and also look at the controls for the demo (see Table 8.1).
For what might be the first time in this entire book, I am not showing a
screenshot for this demo; viewing a screenshot of non-moving pixels is
not that interesting. However, the demo is pretty cool.

Taking Particles 
to a New Dimension
Well, we’re only sort of taking particles to a new dimension; in the 
previous demo, we were using pixels, and now we’ll be using a 2D 
texture. However, with using textures comes a rather serious, new
problem. We are doing particles in a 3D world, and because the 
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Table 8.1  Controls for demo8_9

Key Function

Escape / Q Quit the program

W Render in wireframe mode

S Render in solid/fill mode

E Create a particle explosion



particles are based off of a 2D texture, this means that one dimension
is not defined. Therefore, as a viewer walks around particles, he will
see the textures getting “flat.” This is unacceptable, so we need to
implement something called billboarding.

Billboarding
Billboarding is when you need to alter the orientation of a two-dimensional
object (such as a quad) so that it will face the user. To do this, you
need to extract the current matrix from the rendering API and find
the “up” and “right” vectors based on that matrix. That might not
mean much to you, so let me elaborate a bit. When you extract the
matrix from the API, you can put it in an array of 16-floating point 
values. (This is how OpenGL executes this for a 4 × 4 matrix). After
you have the array populated with values from the matrix, you can
extract the information for the up and right vectors, like what is
shown in Figure 8.25.

Now we need to apply that to our quad-rendering code:

QuadTopRight= ( ( RightVector+UpVector )   *

ParticleSize )+ParticlePosition;

QuadTopLeft= ( ( UpVector-RightVector )* 

ParticleSize )+ParticlePosition;

QuadBottomRight= ( ( RightVector-UpVector )   *

ParticleSize )+ParticlePosition;

QuadBottomLeft= ( ( RightVector+UpVector ) *

-ParticleSize )+ParticlePosition;
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Figure 8.25  How to extract the information
for the up and right vectors from a 4 × 4 matrix.



Then you send those vertices to the rendering API (with texture coor-
dinates, of course), and BAM! You now have billboarded particles!
Take a look at demo8_10 (on the CD under Code\Chapter 8\demo8_10),
and check out Figure 8.26. See how much texturing can add to the
simulation?

Adding Data Interpolation
The last main change we’re going to do to our particle engine is data
interpolation. This is a great addition to our particle engine because 
it allows us to make every effect we desire a lot more realistic than it
would’ve been using the engine in the previous section. Data interpola-
tion, as you know from the “Fractal Brownian Motion Fractal Theory”
section, is when we interpolate two pieces of data given a bias. For our
particle engine, we are going to use linear interpolation, but it is possi-
ble to add quadratic interpolation for an even cooler effect.

Our particle engine, instead of keeping track of a single default value
for a certain particle property, now keeps track of a default starting
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value and a default ending value. We’re also adding “interpolation
counters” for all of our particle properties. This counter is calculated
after a particle is created and will be used to increase/decrease the
values of a current particle property. Here is how we’ll calculate the
counter for, say, a particle’s size:

particles[i].m_vecSize= m_vecStartSize;

particles[i].m_vecSizeCounter= ( m_vecEndSize-particles[i].m_vecSize ) /

particles[i].m_fLife;

That is how we’d start off the particle and its data. Every frame, we’d
do this:

particles[i].m_vecSize+= particles[i].m_vecSizeCounter;

That’s all there is to it. Of course, you’d have to apply these concepts
to every particle property, but you get the jist of it. Feel free to check
out demo8_11 on the CD under Code\Chapter 8\demo8_11, which is
slightly different from the previous couple of particle demos, as you’ll
see in Figure 8.27.
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Figure 8.27  A screenshot from demo8_11.



Applying a Particle Engine
to an Outdoor Scene
Now, for the final demo in this chapter, we are going to apply a parti-
cle engine to an outdoor scene. To do this, we are going to create
rain. You have several options for doing this, but the way we are going
to do it is by creating an imaginary cube around the camera’s eye posi-
tion. Then we’ll populate that cube with raindrops at the max height,
at a random (x, z) coordinate.

You might be thinking that we need a special texture to create a rain
particle, but this is not the case. All we need to do is scale the X coordi-
nate of our particle size down a bit, which makes our old flare-texture
into something that resembles a raindrop (see Figure 8.28).

The only unrealistic part of our “rain cube” approach is that it does
not check for collision with the terrain, which tends to produce an
odd-looking effect when the camera is pressed up against a mountain;
yet the viewer can still see rain in the distance. This is fairly easily cured
by adding collision detection to the particle engine, but that is a task I
leave to you. Go treat yourself to this book’s final demo, demo8_12 on
the CD under Code\Chapter 8\demo8_12, as well as Figure 8.29, the
screenshot of that demo.
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Figure 8.28  Scaling the particle “flare” texture down on the 
X axis to create a raindrop-like texture.



Summary
This chapter was a vicious run-through of a large amount of special
effects and tips. We covered water, rendering of environments with sky-
boxes and sky-domes, camera-terrain collision detection, fog, and how
particle engines can be applied to outdoor scenes. This is also the final
chapter in the book, so unfortunately, it’s time to wrap everything up.

Epilogue
Wow! To think that this is already the end. Well, to tell you the truth,
it feels like the end, and I’m ready for a nice long break (a whole two
days or so). Although this book is rather small compared to a lot of
programming books on the market these days, let me tell you, a lot of
work went into this little guy. I did my best to make sure that all the
information in this book is completely correct, and I even had the
authors of the three main terrain algorithms (de Boer’s geomipmap-
ping algorithm, Rottger’s quadtree algorithm, and Duchaineau’s
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Figure 8.29  A screenshot of demo8_12, the book’s final demo, where a particle
engine is used to create real-time weather (rain).



ROAM algorithm) review the chapters to make sure that the informa-
tion was correct. It is my hope that you enjoyed the book, but before 
I say goodbye permanently, let me refer you, yet again, to some good
terrain information sites.

As I mentioned in Chapter 1, “The Journey into the Great Outdoors,”
the Virtual Terrain Project is one of the Internet’s leading sources of
terrain information, and it can be found at http://www.vterrain.org/.
GameDev.net (http://www.gamedev.net) has a couple good terrain
articles, but, more importantly, it has a good forum where you can
post any terrain issues/questions that you might have. Flipcode
(http://www.flipcode.com) also has some helpful terrain tutorials that
you can look up; after you get your “l337” terrain engine up and run-
ning, you can submit it as an “image of the day” to them!

And, with that, this book comes to an end. Be sure to check out the
accompanying CD (and the appendix, which covers it) as well as the
sites I listed previously. And, for my final note in this book, don’t let a
set implementation limit your imagination; always strive for innovation
over imitation. With that said, I’m out of here to get a few month’s
worth of sleep. Happy coding, everyone!
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APPENDIX

What’s
on the

CD



This book’s accompanying CD-ROM contains lots of cool stuff that
I encourage you to take a look at. I spent a few days compiling a

series of demos and algorithm whitepapers to put on this CD, so make
sure you look at everything.

The GUI
The CD-ROM’s Graphical User Interface (GUI) is HTML based. It
allows you to access the CD’s various items and features quickly and
easily. Most popular Web browsers can view this GUI, but your best 
bet is to view it with Netscape 4.0 (or later) or Internet Explorer 4.0
(or later). It’s a pretty neat GUI if I do say so myself, so check it out
and enjoy the pure GUI goodness that it presents.

System Requirements
The demos that accompany this CD are what I’m focusing my system
requirements on, so keep that in mind. These demos aren’t anything
that an old Pentium 1 75MHz can run, but they don’t require a state-
of-the-art computer, either. Here are the minimum requirements that
the demos on this book require:

■ CPU. A 450MHz processor is required.
■ RAM. A minimum of 64MB of RAM is required, but 128MB of

RAM is recommended.
■ Graphics card. A video card with at least 16MB of RAM is

needed to run these demos. I would strongly recommend a
32MB Geforce 2 (or equivalent) or greater, however.

■ CD-ROM, DVD-ROM, CD-R, CD-RW, or DVD-RW drive. Any
one of these is needed. (How else do you expect to get the CD
into the computer?)

■ Hard drive. To copy everything from the CD to your hard drive
would require a minimum of about 125MB of free space, but
this really isn’t needed. For users who just want to copy the algo-
rithm whitepapers and the book’s demo/code files, about 50MB
of free space is needed, plus more for any of the accompanying
demos that you would like to install.
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Installation
I figured I’d put this section before the nitty-gritty details of the 
CD are presented. That way, you can just skip over them if you feel
inclined to do so and simply check out the CD immediately.
Installation of this CD is quite easy. If you have Windows 95 or later
and you have the CD autorun feature enabled, the CD’s menu should
pop up right in front of your face, and you can get started exploring
the CD! If the menu does not pop up, then you’ll need to bring it up
manually. To do this, go to My Computer and double-click (or single-
click, depending on your computer’s settings) on the CD’s icon. If
that still doesn’t work, you need to get yourself to the CD’s directory
and double-click (or single-click) the start_here.htm file.

You should be able to navigate your way around the menu from this
point on. If you experience any other problems with the CD, feel free
to e-mail me at trent@codershq.com. 

The Structure
The CD contains three main folders from which you can access the
main components of the CD. These folders are as follows:

■ Algorithm Whitepapers. These are where you can find the official
documentation behind the three main terrain algorithms 
presented in this book. There is also a tutorial on texture gener-
ation and an in-depth analysis of the original ROAM algorithm.

■ Code. This is where you can find the demos and code from the
chapters in this book. All of the demos include a pre-built EXE,
all the necessary files, and a Microsoft Visual C++ 6.0 workspace
so that you can quickly load the demo into VC++ and compile it.

■ Demos. This directory contains five demos. Two of these demos
show off a terrain implementation of some kind (a voxel engine
and a chunked LOD engine). There are also three demos that
show how a terrain engine can be used in a game. One of these
games is the impressive TreadMarks. In addition, you’ll find a
demo of Paint Shop Pro 7, in case you don’t have a Paint program
on your computer that is capable of reading TGA and RAW
files. Do yourself a favor and check out these demos! 
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Index

Numbers
2D data structure, Roettger’s quadtree

algorithm, 106–108

3D distance formula, geomipmapping,

90–92

3D terrain, game development, 5–7

A
AABB (Axis-Aligned Bounding Box), 99–100

abstract class, defined, 19

Add/Remove function, 160

air resistance, particle property, 194

algorithms

brute force, 24–27

CLOD (continuous level of detail), 5

fault formation, 27–33

midpoint displacement, 33–37

ROAM, 6, 128–164

Roettger’s quadtree, 78, 106–126

screen-pixel determination, 91–92

Allocation function, 160

alpha blending, water rendering, 169

alternate demos, conventions used in

book, 8

animations, water rendering, 170

API, vertex buffer rendering 

advantages, 81–82

applications, terrain programming

uses, 4–5

arguments, interpolation function, 50

Axis-Aligned Bounding Box (AABB),

frustum culling, 99–100

B
backbone data structure, ROAM

algorithm, 149–156

base code, conventions used in book, 8–10

base nodes

improvements, 133–134

tessellating, 131–132

billboarding, particle engines, 198–199

binary triangle tree

merge queue, 132–133

node improvements, 133–134

ROAM algorithm, 129–132

split queue, 132–133

tessellation levels, 129–131

boundaries, tiles, 51–52

bounding sphere, frustum culling, 145–146

brute force algorithm, heightmaps, 24–27

buffers

BinTriNode structure, 134–135

data, 22–24

diamond pool, 153–154

temporary, 30

vertex, 81–82

water rendering, 172–174

C
C++-Style File I/O, versus C-Style File I/O,

21–22

camera-terrain collision detection, 187–189

CD-ROM

contents structure, 207

file path conventions, 8

GUI, 206

installation, 207

system requirements, 206



children nodes

binary triangle tree node links, 134

Roettger’s quadtree algorithm, 110–111

classes

abstract, 19

CQUADTREE, 116–117

CTERRAIN, 18–21

geomipmapping, 88

CLOD. See continuous level of detail

algorithms

cloud textures

Fractal Brownian Motion (FBM)

theory, 183–187

sky-dome, 182–187

code, conventions used in book, 8–10

collision detection

camera-terrain, 187–189

scaled function, 21

colors

elevation representation, 17–18

light source, 59–62

particle property, 194

RGB value extraction, 48–49

components, book sections, 11–13

continuous level of detail (CLOD)

algorithms

advantages, 77–78

cracking, 82–86

defined, 76

detail added where needed, 77–78

drawbacks, 78

game development, 5

geomipmapping maintenance, 89–92

geomipmapping theory, 79–86

polygon culling, 78

screen-pixel determination algorithm,

91–92

coordinates, texture (standard range),

40–41

CosineInterpolation function, 185–186

cracking

avoidance methods, 83–86

defined, 82

if-else statement testing, 84–85

CreateParticle function, 195–196

C-Style File I/O, author’s

recommendations, 21–22

current position, particle property, 193

D
data buffers

heightmap data loading, 23

heightmap memory allocation, 22

NULL pointer, 23–24

data interpolation, particle engines, 199–200

deBoer, Willem H., geomipmapping

developer, 79

demo code, conventions used in book, 8–10

demos

alternate, 8

CD-ROM, 206

groupings, 8

main, 8–10

random, 8

system requirements, 206

detail maps

defined, 52

hardware multitexturing, 54–55

ROAM algorithm, 147–148

diamond pool buffer, ROAM algorithm,

153–154

diamonds

base unit, 149

creation function, 151–153

Enqueue function, 158

merge function, 159

parent/child links, 150

priority update function, 158

ROAM algorithm, 149–154

split function, 158–159

split/merge priority queue, 156–160
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diamond-square algorithm

1D explanation, 34–35

2D explanation, 35–37

defined, 33

drawbacks, 33

Direct3D, vertex buffer use, 82

distance equations, Roettger’s quadtree

algorithm, 112–113

distance-based fog, 189–190

Duchaineau, Mark, ROAM algorithm

developer, 128

dynamic lightmaps

lighting calculations, 68–69

slope-lighting calculations, 69–71

E
elevations

color representations, 17–18

erosion filter, 30–31

fault formation algorithm, 28–30

Enqueue function, 158

environmental topology, terrain

application, 5

erosion filter, heightmaps, 30–31

error metric, ROAM algorithm, 134–136

F
fan centers, geomipmapping, 94–96

fault formation algorithm

defined, 27–28

elevations, 28–30

fractal terrain generation, 27–33

FBM (Fractal Brownian Motion) theory,

183–187

file paths, CD conventions, 8

filters

erosion, 30–31

FIR, 31–33

flight simulators, terrain application, 5

floating-point operations, IEEE, 139–141

floating-point variables, temporary 

buffers, 30

fog

distance-based, 189–190

vertex-based, 191

for loops, procedural texture generation,

48–49

force buffer, water rendering, 172–174

formulas, 3D distance, 90–92

Fractal Brownian Motion (FBM) theory,

cloud textures, 183–187

fractal terrain generation

defined, 27

erosion filter, 30–31

fault formation algorithm, 27–33

midpoint displacement algorithm, 33–37

frame-to-frame coherence, ROAM

algorithm, 136

frequency, defined, 184

frustum culling

bounding sphere, 145–146

geomipmapping, 98–101

ROAM algorithm, 144–148

Roettger’s quadtree algorithm,

115–116, 125

fTexBottom function, 41

fTexLeft function, 41

fTexTop function, 41

functions

Add/Remove, 160

Allocation, 160

brightness extraction, 64

CosineInterpolation, 185–186

CreateParticle, 195–196

diamond creation, 151–153

dynamic lightmaps, 68

Enqueue, 158

erosion filter, 31–33

freeing, 160

fTexBottom, 41

fTexLeft, 41

fTexTop, 41

GetBrightnessAtPoint, 64
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functions  (continued)

GetTrueHeightAtPoint, 58–59

height retrieval, 21

heightmap manipulation, 21

iCurrentIteration, 29

iIterations, 29

iMaxDelta, 29

iMinDelta, 29

Init, 117

interpolation, 50

merge, 159

node refine, 118–119

node-rendering, 111

Noise, 184

priority update, 158

PropagateRoughness, 123–124

ranged random, 185–186

RangedSmoothRandom, 185–186

RefineNode, 117, 124, 125

region percentage calculations, 45–46

RenderChild, 139–142, 144

RenderFan, 93

rendering, 119–121

RenderNode, 117

RenderVertex, 92–93, 117

repeating textures, 51–52

scaled, 21

Shutdown, 117

slope-lighting, 68–71

split, 158–159

tile generation, 47–48

tile management, 47–48

True, 21

Update, 90, 138, 161, 196–197

G
Game Developer Magazine, 78

game development, 3D terrain

application, 5–7

Game Programming Gems, 82

games

Black and White, 5–6

Max-Payne, 65

Quake 2, 65

Starseige: Tribes, 5

Treadmarks, 5–7

geomipmapping

3D distance formula, 90–92

Axis-Aligned Bounding Box 

(AABB), 99–100

CLOD algorithm, 79–86

cracking, 82–86

fan centers, 94–96

frustum culling, 98–101

geomorphing, 101–103

initialization, 88–89

Level of Detail (LOD), 80–81

maintenance, 89–92

mipmapping similarities, 79–80

neighbor structure, 94–97

patch rendering triangle arrangement,

80–81

patch structure variables, 87

popping, 91–92, 101–104

Render function, 92, 98

RenderFan function, 93

rendering functions, 92–98

RenderPatch function, 93–97

RenderVertex function, 92–93

screen-pixel determination algorithm,

91–92

shutdown, 89

vertex buffers, 81–82

geomorphing, popping reduction, 101–103

GetBrightnessAtPoint function, 64

GetTrueHeightAtPoint function, 58–59

Global Resolution Criteria equation,

Roettger’s quadtree algorithm, 112

gouraud lighting, popping elimination,

103–104
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graphics cards, vertex information

preferences, 82

grayscale images, heightmaps, 17

GUI (Graphical User Interface), 

CD-ROM, 206

H
hardware lighting, shortcomings, 62–63

hardware multitexturing, detail maps, 54–55

height-based lighting

defined, 58

GetTrueHeightAtPoint function, 58–59

light source coloring, 59–62

lighting value calculations, 59

shortcomings, 60–62

visual explanation, 59

heightmaps

brute force algorithm, 24–27

data buffers, 22–23

described, 16–18

elevation colors, 17–18

erosion filter, 30–31

fault formation algorithm, 27–33

grayscale images, 17

loading, 21–23

manipulation functions, 21

memory allocation, 22

midpoint displacement algorithm,

33–37

pixels, 17

quadtree matrix, 109–111

RAW format, 18

resolution dependency, 49–52

ROAM algorithm, 147–148

save routine, 23

temporary buffers, 30

unloading, 23–24

unsigned char variables, 16, 18

I
iCurrentIteration function, 29

IEEE floating-point operations, ROAM

uses, 139–141

iIterations function, 29

iMaxDelta function, 29

iMinDelta function, 29

Init function, 117

installation, CD-ROM, 207

interpolation, particle engines, 199–200

L
leaf node, Roettger’s quadtree algorithm,

111

Level of Detail (LOD)

crack mending, 83–86

geomipmapping, 80–81

life span, particle property, 193

light source, coloring, 59–62

lighting

dynamic lightmaps, 68–71

gouraud, 103–104

hardware, 62–63

height-based, 58–62

lightmapping, 63–65

slope, 66–68

water rendering, 174

lightmaps

brightness extraction, 64

defined, 63

dynamic, 68–71

generation methods, 63–64

GetBrightnessAtPoint function, 64

gouraud lighting, 103–104

loading, 64

links

binary triangle tree nodes, 133–134

diamonds, 150, 154–155

loops

procedural texture generation, 48–49

while, 51–52
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M
main demos, conventions used in book,

8–10

mass, particle property, 194

matrix, Roettger’s quadtree algorithm,

109–111

McNally, Seamus (Treadmarks), 5–7

McNally, Seamus, ROAM algorithm

improvements, 133

memory, heightmap allocation, 22

Merge function, 159

merge queue, ROAM algorithm, 132–133

Microsoft Visual C++, code conventions

used in book, 8–10

midpoint displacement algorithm

1D explanation, 34–35

2D explanation, 35–37

defined, 33

drawbacks, 33

military, terrain application, 5

mipmapping, geomipmapping similarities,

79–80

N
neighbor nodes, binary triangle tree node

links, 134

neighbor structure, geomipmapping, 94–97

noise

Perlin, 184

pink, 183–184

white, 183

Noise function, 184

normal buffer, water rendering, 172

NULL pointer, data buffers, 23–24

O
OpenGL API, main demo conventions, 8

OpenGL Game Programming

(Astle/Hawkins), 54

outdoor scenes, particle engine

application, 201–202

P
particle engines

air resistance, 194

billboarding, 198–199

color, 194

CreateParticle function, 195–196

current position, 193

data interpolation, 199–200

defined, 192

development history, 192

life span, 193

mass, 194

outdoor scene application, 201–202

outdoor uses, 192

relationships, 192–193

size, 194

structure elements, 194–195

translucency, 194

Update, 196–197

velocity, 194

particle system, defined, 192

patch rendering

3D distance formula, 90–92

Axis-Aligned Bounding Box (AABB),

99–100

geomipmapping triangle arrangement,

80–81

geomorphing, 101–103

if-else statement testing, 84–85

neighbor structure, 94–97

update function, 90

variables, 87

patches, crack mending methods, 83–86

Perlin Noise, 184

Perlin, Ken, Perlin Noise developer, 184

pink noise, defined, 183–184

pixels

brightness extraction, 64

heightmaps, 17

plasma fractal algorithm. See midpoint

displacement algorithm
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popping

defined, 91

geomorphing, 101–103

priority queues, ROAM, 156–160

procedural texture generation

defined, 43

for loops, 48–49

heightmap resolution dependency,

49–52

overcoming tile boundaries, 51–52

region system, 44–46

repeating textures, 51–52

texture data, 48–49

tile system, 46–48

PropagateRoughness function, 123–124

propagation, Roettger’s quadtree

algorithm, 123–124

Q
queues

merge, 132–133

split, 132–133

split/merge priority, 156–160

R
radiosity, lightmapping method, 65

random demos, conventions used in 

book, 8

RangedSmoothRandom function, 185–186

RAW format, heightmaps, 18

real estate walkthroughs, terrain

application, 5

Real-Time Optimally Adapting Mesh

(ROAM) algorithm

Add/Remove functions, 160

Allocation function, 160

backbone data structure, 149–156

binary triangle tree, 129–132

detail mapping, 147–148

diamond creation function, 151–153

diamond pool buffer, 153–154

diamonds, 149–154

Enqueue function, 158

error metric simplification, 134–136

frame-to-frame coherence, 136

Freeing function, 160

frustum culling, 144–148

heightmap, 147–148

IEEE floating-point operations, 139–141

merge function, 159

merge queue, 132–133

node improvements, 133–134

priority update function, 158

Render function, 138–139, 144,

155–156, 162–163

RenderChild function, 139–142, 144

shutdown routine, 142

Split function, 158–159

split queue, 132–133

split/merge priority queue, 156–160

split-only tessellation, 136

tessellating base nodes, 131–132

tessellation levels, 129–131

texture mapping, 147–148

T-junction, 131–132

Treadmarks, 6

triangle system, 160

Update function, 138, 161

v0.25.0, 137–144

v0.50.00, 144–154

v0.75.0, 154–160

v100.0, 161–163

Reeves, William T., particle engine

developer, 192

RefineNode function, 117, 124, 125

reflection maps, water rendering, 171–172

region system, procedural texture

generation, 44–46

region, defined, 44

RenderChild function, 139–142, 144

RenderFan function, 93

RenderNode function, 117

RenderVertex function, 92–93, 117
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resolution dependency, heightmaps, 49–52

ROAM. See Real-Time Optimally Adapting

Mesh algorithm

Roettger, Stefan, Roettger’s quadtree

algorithm, 106

Roettger’s quadtree algorithm

2D data structure, 106–108

bottom-up approach, 115

children nodes, 110–111

CQUADTREE class, 116–117

d2 calculations, 114–115

detail added where needed, 78

distance equations, 112–113

frustum culling, 115–116, 125

Global Resolution Criteria equation, 112

illustrated, 107–108

Init function, 117

initialization, 117

leaf node, 111

matrix, 109–111

node refine function, 118–119

node refining, 118–119

node-rendering function, 111

PropagateRoughness function, 123–124

propagation, 123–124

RefineNode function, 117, 124, 125

Render function, 117

rendering, 117

rendering function, 119–121

RenderNode function, 117

RenderVertex function, 117

root quad node rendering, 110–111

shutdown, 117

tessellation, 110

top-down approach, 112

updating, 117

upper-mid vertex node calculation,

123–124

root quad node, Roettger’s quadtree

algorithm, 110–111

S
screen-pixel determination algorithm,

popping avoidance, 91–92

Shankel, Jason, FIR filter suggestion, 31

Shutdown function, 117

size, particle property, 194

sky-box, special effects, 175–178

sky-dome

cloud textures, 182–187

CosineInterpolation function, 185–186

defined, 178

Fractal Brownian Motion (FBM)

theory, 183–187

generation discussion, 179–182

Perlin Noise, 184

ranged random function, 185–186

RangedSmoothRandom function,

185–186

rendering, 182

slope lighting

45 degree increments, 67

customization function, 68

defined, 66

dynamic lightmaps, 68–71

visual example, 67

special effects

camera-terrain collision detection,

187–189

distance-based fog, 189–190

particle engines, 192–202

Perlin Noise, 184

sky-box, 175–178

sky-dome, 178–187

vertex-based fog, 191

water rendering, 166–174

Special Effects Game Programming with 

DirectX 8.0 (McCuskey), 54

Split function, 158–159

split queue, ROAM algorithm, 132–133

split/merge priority queue, ROAM

algorithm, 156–160

216 Index



split-only tessellation, ROAM algorithm, 136

statements, if-else, 84–85

structures

BinTriNodes, 134–135

CD-ROM contents, 207

STRN_TEXTURE_REGIONS, 44

STRN_TEXTURE_TILES, 47

system requirements, CD-ROM, 206

T
temporary buffers, creating, 30

terrain, defined, 4

terrain programming

3D game development, 5–7

applications, 4–5

fractal terrain generation, 27–37

heightmaps, 16–18

tessellations

base nodes, 131–132

binary triangle tree, 129–132

d2 calculations, 114–115

merge queue, 132–133

quadtree matrix, 110

split queue, 132–133

split-only, 136

texture coordinates, standard range, 40–41

texture data, procedural texture

generation, 48–49

texture maps

detail maps, 52–54

heightmap resolution dependency, 49–51

procedural texture generation, 43–52

ROAM algorithm, 147–148

simple application, 40–43

texture-presence line, 44–45

tiles, 42–43

vertex rendering, 41

water rendering, 168–169

texture-presence line, texture 

mapping, 44–45

tile system, procedural texture 

generation, 46–48

tiles

overcoming boundaries, 51–52

region system, 44–46

texture maps, 42–43

tile system, 46–48

T-junction, tessellating binary triangle tree

base nodes, 131–132

translucency, particle property, 194

travel planning (virtual tourism), terrain

application, 5

Treadmarks, 3D terrain development

history, 6–7

triangle arrangement, geomipmapping

patch rendering, 80–81

triangle system, ROAM algorithm, 160

True function, 21

Turner, Bryan, ROAM tutorial, 136

U–V
Update function, 90, 138, 161, 196–197

variables

floating-point, 30

patch structure, 87

RGB value extraction, 48–49

ucShade, 59–60

uiS, 140–141

unsigned char, 16, 18

vecLightColor, 60

velocity, particle property, 194

vertex buffers

rendering advantages, 81–82

water rendering, 172

vertex-based fog, 191

vertexes, rendering, 41

vertices, crack mending method, 83–86

view frustum

bounding sphere testing, 145–146

geomipmapping, 98–101

virtual tourism (travel planning), terrain

application, 5
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water rendering

alpha blending, 169

force buffer, 172–174

lighting, 174

normal buffer, 172

quad setup, 167–168

reflection map, 171–172

texture addition, 168–169

texture animation, 170

vertex buffer, 172

weather visualization, terrain application, 5

Web sites

Algorithm Whitepapers, 79

author’s ROAM algorithm

implementation, 144

Flipcode, 203

GameDev.net, 7, 203

Ken Perlin, 184

Mark Morley’s Frustum Culling in

OpenGL, 99

radiosity technique, 65

Virtual Terrain Project, 4, 203

white noise, defined, 183

X–Z
X axis

for loops, 48–49

heightmaps, 16

interpolation calculation, 50–51

Y axis, heightmaps, 16

Z axis

for loops, 48–49

heightmaps, 16

interpolation calculation, 51

218 Index



“Game programming is without a doubt the most intellectually challenging field of
Computer Science in the world. However, we would be fooling ourselves if we said that
we are ‘serious’ people! Writing (and reading) a game programming book should be an
exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

Premier Press
A Division of Course Technology
www.premierpressbooks.com™





Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game
developers around the world create and publish their
games on the commercial market. Xtreme Games helps
younger developers break into the field of game pro-
gramming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of devel-
opers around the world. If you’re interested in becoming
one of them, then visit us at www.xgames3d.com.

www.xgames3d.com



License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of 
limited warranty, you cannot agree to the terms and conditions set forth, return the
unused book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the 
software disc. You are licensed to copy the software onto a single computer for use by
a single user and to a backup disc. You may not reproduce, make copies, or distribute
copies or rent or lease the software in whole or in part, except with written permission
of the copyright holder(s). You may transfer the enclosed disc only together with this
license, and only if you destroy all other copies of the software and the transferee
agrees to the terms of the license. You may not decompile, reverse assemble, or
reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase
of the book/disc combination. During the sixty-day term of the limited warranty,
Premier Press will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL 
CONSIST ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO
EVENT SHALL PREMIER PRESS OR THE AUTHORS BE LIABLE FOR ANY 
OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES
IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING
SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY
OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY
ARISE, EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN
NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR
FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION
OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without regard to
choice of law principles. The United Convention of Contracts for the International
Sale of Goods is specifically disclaimed. This Agreement constitutes the entire 
agreement between you and Premier Press regarding use of the software.




