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INTRODUCTION

The World Of Risk Management is a collection of extremely high quality papers previously
published in the journal Of Investment Management (JOIM). JOIM is a fully refereed
publication, which serves the practitioner, academic and student by bridging the theory
and practice of investment management.

This book brings together authors who are the thought leaders from both academia
and the practice of investment management to provide a rigorous and insightful analysis
of various topics in risk management. For those interested in the broad landscape of
risk management as well as specific details of implementation, this book will serve as a
useful resource.

The first paper “Design of Financial Systems: Towards a Synthesis of Function and
Structure”, by Merton and Bodie describes a unifying framework for financial systems
and products. Ho then puts in context the use of asset/liability management for an
insurance company in “Asset/Liability Management and Enterprise Risk Management
ofan Insurer”. A pathbreaking paper, “It’s 11 pm—Do You Know Where Your Liquidity
Is? The Mean—Variance-Liquidity Frontier” by Lo, Petrovand Wierzbicki addresses one
of the most challenging and not well researched areas of risk management. A legend
in his own time, Treynor provides important insights in his “Time Diversification”
paper on the topic of risk management by diversification. Michaud in “A Practical
Framework for Portfolio Choice” covers a number of points with regard to portfolio
optimization. An improved methodology for both pricing and risk analysis using Monte
Carlo techniques is covered in “A Markov Chain Monte Carlo Method for Derivative
Pricing and Risk Assessment” by Das and Sinclair. Measuring the nature of active risk
is discussed by Qian and Hua in “Active Risk and Information Ratio”. Griffiths and
Winters test a year end effect for risk and liquidity in “The Year-End Price of Risk in a
Market for Liquidity.” Markowitz and Usmen in their “Resampled Frontiers vs. Diffuse
Bayes: An Experiment” test two alternatives in the use of mean-variance optimization.
Last but not least, Stutzer in “Fund Managers May Cause Their Benchmarks to be
Priced ‘Risks’” asserts a problem in using a benchmark for risk analysis.

vii
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PRACTITIONER’S DIGEST

The “Practitioner’s Digest” emphasizes the practical significance of manuscripts fea-
tured in this book. Readers who are interested in extracting the practical value of an
article, or who are simply looking for a summary, may look to this section.

DESIGN OF FINANCIAL SYSTEMS: TOWARDS A SYNTHESIS OF
FUNCTION AND STRUCTURE PAGE 1
Robert C. Merton and Zvi Bodie

This paper explores a functional approach to financial system design in which financial
functions instead of institutions are the “anchors” of such systems and the institutional
structure of each system and its changes are determined within the theory. It offers a
rudimentary synthesis of the neoclassical, neoinstitutional, and behavioral perspectives
on finance to describe a process for driving changes in the institutional structures of
financial systems over time and to explain their differences across geopolitical borders.

The theory holds that within an existing institutional structure, when transaction
costs or dysfunctional financial behavioral patterns cause equilibrium asset prices and
risk allocations to depart significantly from those in the “frictionless,” rational-behavior
neoclassical model, new financial institutions, financial markets, and supporting infras-
tructure such as regulatory and accounting rules evolve that tend to offset the resulting
inefficiencies. Thus, market frictions and behavioral finance predictions, along with
technological progress, are central in explaining financial system design and predicting
its future evolution. However, in the longer-run equilibrium, after offsetting institu-
tional structures have had time to develop, the predictions of the neoclassical model,
albeit as a reduced form, will be approximately valid for asset prices and resource
allocations.

The paper lays out the principles behind the theory and illustrates its application
using many examples, several drawn from the field of investment management. The
analysis offers insights on the development of the asset management industry in the
past as well as direct implications for its future evolution. Whether or not it holds as
a descriptive theory, the analytical framework offers a useful prescriptive approach to
the design of new investment products.

ASSET/LIABILITY MANAGEMENT AND ENTERPRISE
RISK MANAGEMENT OF AN INSURER PAGE 29
Thomas S. Y. Ho

The purpose of this paper is to provide an overview of some of the risk management
techniques used currently. And the paper then proposes the corporate model approach

ix



X PRACTITIONER’S DIGEST

to manage enterprise risks of the firm. Section 1 reviews the current practices, which
are considered most effective in risk management for the life insurers. In a similar
fashion, Section 2 describes the practices for the property/casualty insurance. Section 3
discusses the challenges that these current practices face in our current environment
and describes the corporate model approach to deal with these challenges. Finally,
Section 4 contains the conclusions.

IT’S 11 PM—DO YOU KNOW WHERE YOUR LIQUIDITY IS?
THE MEAN-VARIANCE-LIQUIDITY FRONTIER PAGE 47
Andrew W, Lo, Constantin Peirov and Martin Wierzbick:

Although liquidity has long been recognized as one of the most significant drivers of
financial innovation, the collapse of several high-profile hedge funds such as Askin
Capital Management in 1994 and Long Term Capital Management in 1998 has
refocused the financial industry on the importance of liquidity in the investment
management progress. Many studies—both in academic journals and more applied
forums—have made considerable process in defining liquidity, measuring the cost
of immediacy and price impact, deriving optimal portfolio rules in the presence
of transactions costs, investigating the relationship between liquidity and arbitrage,
and estimating liquidity risk premia in the context of various partial general equilib-
rium asset-pricing models. However, relatively little attention has been paid to the
more practical problem of integrating liquidity directly into the portfolio construction
process.

In this paper, we attempt to remedy this state of affairs by modeling liquidity using
simple measures such as trading volume and percentage bid/offer spreads, and then
introducing these measures into the standard mean—variance portfolio optimization
process to yield optimal mean—variance-liquidity portfolios. We begin by proposing
several measures of the liquidity of an individual security, from which we define the
liquidity of a portfolio as the weighted average of the individual securities’ liquidities.
Using these liquidity metrics, we can construct three types of “liquidity-optimized”
portfolios: (1) a mean—variance efficient portfolio subject to a liquidity filter that
each security in the portfolio have a minimum level of liquidity; (2) a mean—variance
efficient portfoilio subject to a constraint that the portfolio have a minimum level
of liquidity; and (3) a mean—variance-liquidity efficient portfolio, where the opti-
mization problem has three terms in its objective function: mean, variance, and
liquidity.

Using three different definitions of liquidity—turnover, percentage bid/offer spread,
and a nonlinear function of market capitalization and trade size—we show empirically
that liquidity-optimized portfolios have some very attractive properties, and that even
simple forms of liquidity optimization can yield significant benefits in terms of reducing
a portfolio’s liquidity-risk exposure without sacrificing a great deal of expected return
per unity risk. Our framework adds an important new dimension—literally as well
as figuratively—to the toolkit of quantitative portfolio managers. In particular, with
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three dimensions to consider, portfolio management can no longer operate within a
purely numerical paradigm, and three- and four-dimensional visualization techniques
will become increasingly central to industrial applications of portfolio optimization.

TIME DIVERSIFICATION PAGE 93
Jack L. Treynor

The risk surrounding the market’s rate of return—change in dollar value, divided by
initial dollar value—is roughly stationary across time. To maintain constant dollar risk,
investors concerned with their terminal wealth must sell when the stock market rises
and buy when it falls. The frequent trading is probably the reason why few investors
have tried to time diversify.

Consider an asset whose dollar gains and losses are in one-to-one correspondence
with the stock market’s rate of return: if the risk surrounding the latter is indeed sta-
tionary across time, then the risk surrounding the former will also be stationary. Using
this principle and elementary calculus, we derive the asset.

Although an asset with constant dollar risk does not exist in nature, it can be
approximated with actual investment positions. The key to the approximation is the
fact that a diversified asset’s beta expresses a power relation between its value and the
market level.

A PRACTICAL FRAMEWORK FOR PORTFOLIO CHOICE PAGE 111
Richard O. Michaud

Optimal portfolio choice is the central problem of equity portfolio management, asset
allocation, and financial planning. Common optimality criteria such as the long-term
geometric mean, utility function estimation, and return probability objectives have
important theoretical or practical limitations. A portfolio choice framework consisting
of resampled efficient portfolios and geometric mean analysis is a practical alternative
for many situations of investment interest. Mean—variance optimization, the typical
framework for defining an efficient portfolio set in practice, is estimation error sensitive
and exhibits poor out-of-sample performance characteristics. Resampled efficiency, a
generalization of mean—variance efficiency, improves out-of-sample performance on
average and has important additional practical benefits. Geometric mean analysis gives
the distribution of the multiperiod financial consequences of single-period efficient
investments to clearly visualize the tradeoffs between risk and return and for assessing
an appropriate level of risk. While Monte Carlo financial planning is a more flexible
framework, geometric mean analysis may be less error prone, theoretically justifiable
and convenient. Controversies that have limited geometric mean analysis applications
are resolvable by improved understanding of distributional properties and rational
decision-making issues. The special case of asset allocation for defined benefit pension
plans is addressed. Geometric mean analysis is also useful in rationalizing a number of
interesting investment paradoxes.
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A MARKOV CHAIN MONTE CARLO METHOD FOR DERIVATIVE
PRICING AND RISK ASSESSMENT PAGE 131
Sanjiv R. Das and Alistair Sinclair

This paper explores a novel algorithm for the pricing of derivative securities. There are
now hundreds of different types of derivative securities, each with their own peculiar
characteristics. Yet, no single approach works for every type of contract and, indeed,
the literature in finance is replete with a vast number of different pricing models.

The goal in this paper is to propose a novel pricing model that is tailored to some
derivatives of more recent interest, for which dominant models do not as yet exist. The
algorithm is based on a Markov chain Monte Carlo approach, developed in a different
context by Sinclair and Jerrum (1989). While the use of Monte Carlo methods is
well established for pricing derivatives, our approach differs in several respects: it
uses backtracking to prevent the accumulation of errors in importance sampling; it
has rigorously provable error bounds; and it is, in principle, applicable to derivative
pricing on any nonrecombining lattice. In addition to describing the algorithm, we
also present some initial experimental results that illustrate its application to a simple
barrier option pricing problem.

ACTIVE RISK AND INFORMATION RATIO PAGE 151
Edward Qian and Ronald Hua

Many practitioners are bewildered by the fact that ex post active risks of their portfolios
are often significantly higher than ex ante tracking errors estimated by risk models.
Why do risk models tend to underestimate active risk? The answer to this question
has important implications to active management, in the areas of risk management,
information ratio estimation, and manager selections.

We present an answer to this puzzle. We show there is an additional source of
active risk that is unique to each strategy. It is unique because its contribution to
active risk depends on the variability of the strategy’s information coefficient through
time. We name this risk the strategy risk. Consequently, the true active risk must
consist of both the strategy risk and the risk-model tracking error; and, the active risk
is often different from, and in many cases, significantly higher than the risk-model
tracking error. Based on this result, we further show that a consistent estimation of
information ratio is the ratio of average information coefhicient to the standard deviation
of information coefficient. We provide corroborating empirical evidence in support of
our analysis and demonstrate the practicality of our findings. Specifically, we show how
the understanding of strategy risk leads to more accurate ex ante forecasts of active risk
and information ratio.

THE YEAR-END PRICE OF RISK IN A MARKET FOR
LIQUIDITY PAGE 169
Mark D. Griffiths and Drew B. Winters

Money markets (Kidwell, Peterson and Blackwell, 1997) are generally described
as short-term markets for liquidity where the lenders that provide the liquidity
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demand debt securities with low default risk and high marketability. Recent evi-
dence shows both repo rates (Griffiths and Winters, 1997) and commercial paper
rates (Musto, 1997) increase dramatically prior to the year-end and that the iden-
tified changes are consistent with a preferred habitat for liquidity at the year-end.
Musto (1997) suggests that the price of risk in commercial paper may increase at the
year-end.

Using daily rates on 7-day, 15-day, and 30-day nonfinancial commercial paper from
two different risk classes (AA and A2/P2), we find, across all terms and for both risk
classes, that rates increase when a security begins to mature in the new-year and that
rates decline across the year-end with the decline beginning a few days before the end
of the year. These changes are consistent with the hypothesis of a year-end preferred
habitat for liquidity. In addition, we find that the spread between the two risk classes,
across all terms, increases at the same time indicating that the price of risk also increases
at the year-end. In other words, when the lenders in the commercial paper market need
their cash at the year-end they increase the rate charged for commercial paper across
all borrowers, but they increase the rate more for higher risk borrowers.

Odur results provide additional support for the Chicago Mercantile Exchange’s intro-
duction of an interest rate futures contract designed to address the turn effect in interest
rates which has been attributed (Burghardtand Kirshner, 1994) to the pressures applied
to year-end financing rates caused by the demand for cash.

RESAMPLED FRONTIERS VERSUS DIFFUSE BAYES:
AN EXPERIMENT PAGE 183
Harry M. Markowitz and Nilufer Usmen

This paper reports an experiment that tests two proposals for handling the fact that
historical means, variances, and covariances, sometimes used as inputs to MPT port-
folio analyses, are themselves noisy. One method is that of Michaud (1998). The other
is an implementation of the diffuse Bayes approach widely discussed in texts and tracts
on Bayesian inference.

The experiment contains a simulated referee and two simulated players, namely
a Michaud player and a Bayes player. The referee selects a “true” probability dis-
tribution of returns on eight asset classes. Given this probability distribution, the
referee generates 217 monthly observations for the eight asset classes. These obser-
vations are handed to each player who then proceeds in its prescribed manner. The
object of each player is to pick a portfolio which maximizes a specified function of
portfolio mean and variance. This process is repeated for three different objective
functions, for 100 historical samples drawn from a given truth, and for 10 truths.
One of the investor objectives is long run growth. The others are two other “utility
functions.”

The two players, and therefore their methodologies, are evaluated in terms of
their ability to provide portfolios which give greatest value to the objective function,
and their ability to estimate how well they have done. The results of the experiment
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have implications for the relative merits of the two methodologies, and for probable
weaknesses in other methods of estimating the inputs to an MPT portfolio analysis.

FUND MANAGERS MAY CAUSE THEIR BENCHMARKS
TO BE PRICED “RISKS” PAGE 203
Michael Stutzer

Fund managers now commonly try to beat specific benchmarks (e.g., the S&P 500), and
the widespread dissemination of return statistics on both index and actively managed
funds makes it plausible that some individual investors may also be trying to do so.
Academics now commonly evaluate fund performance by the size of the “alpha” from
a multifactor generalization of the familiar Capital Asset Pricing Model, i.e. the size of
the intercept in a linear regression of the fund’s returns on the returns of a broad based
market index and other “factor” portfolios (e.g., those proposed in the influential work
of Eugene Fama and Kenneth French).

This paper theoretically and empirically argues that these two seemingly disparate
facts may be closely connected. Specifically, the attempt of fund managers and/or indi-
vidual investors to beat benchmark portfolios may cause those benchmarks (or proxies
for them) to appear in the multifactor performance evaluation models advocated by
academics. This casts additional doubt on the currently problematic academic pre-
sumption that the non-market factors proxy for predictors of fundamental risks that
can affect future investment opportunities. Instead, the non-market factors in the Fama
and French equity fund performance evaluation model may proxy for growth-oriented
index portfolios, which some try to beat, and value-oriented index portfolios, which
others try to beat.
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DESIGN OF FINANCIAL SYSTEMS: TOWARDS
A SYNTHESIS OF FUNCTION AND STRUCTURE*

Robert C. Merton® and Zvi Bodie®

This paper proposes a functional approach ro designing and managing the financial
systems of countries, regions, firms, households, and other entities. It is a synthesis of
the neoclassical, neo-institutional, and behavioral perspectives. Neoclassical theory is

an ideal driver to link science and global practice in finance because its prescriptions

are robust across time and geopolitical borders. By itself, however, neoclassical the-

ory provides little prescription or prediction of the institutional structure of financial
systems—that is, the specific kinds of financial intermediaries, markets, and regularory

bodies thar will or should evolve in response o underlying changes in technology, politics,

demographics, and cultural norms. The neoclassical model therefore offers impor-

tant, but incomplete, guidance to decision makers seeking to understand and manage
the process of institutional change. In accomplishing this task, the neo-institutional
and bebavioral perspectives can be very useful. In this proposed synthesis of the three
approaches, functional and structural finance (FSE), institutional structure is endoge-

nous. When particular transaction costs or behavioral patterns produce large departures

[rom the predictions of the ideal frictionless neoclassical equilibrium for a given insti-

tutional structure, new institutions tend to develop that partially offser the resulting
inefficiencies. In the longer run, after institutional structures have had time ro fully

develop, the predictions of the neoclassical model will be approximately valid for asset
prices and resource allocations. Through a series of examples, the paper sets out the
reasoning behind the FSF synthesis and illustrates its application.

1 Introduction

This paper explores a functional approach to the design of a financial system in which
financial functions are the “anchors” or “givens” of such systems and the institutional
structure of each system and its changes are determined within the theory.! The term
“Institutional structure,” as used here, includes financial institutions, financial markets,
products, services, organization of operations, and supporting infrastructure such as
regulatory rules and the accounting system. The financial functions may be provided by
private-sector, governmental, and family institutions. The proposed framework can be

2Harvard Business School, Soldiers Field, Boston, MA 02163, USA.
bBoston University School of Management, 595 Commonwealth Avenue, Boston, MA 02215, USA.

*First presented orally by the first author as a keynote lecture at the European Finance Association Annual Meeting,
Barcelona, Spain, August 2001. The first written version with the same title circulated as Harvard Business School

Working Paper #02-074, May 2002.



2 ROBERT C. MERTON AND ZVI BODIE

applied both as a descriptive theory to predict the design structure of existing financial
systems and as a prescriptive one to explore how such systems should be designed.

For nearly three decades, the science of finance, largely based on neoclassical finance
with its assumptions of frictionless markets and rational behavior, has had a significant
impact on the global practice of finance, as highlighted in Section 2. Prospectively, we
see that influence continuing and indeed expanding into a broader domain of appli-
cations. However, as outlined in Section 3, the neoclassical paradigm, as an effective
abstraction from complex reality, is being challenged by two alternative paradigms, the
new institutional (or neo-institutional) finance and behavioral finance.

Instead of examining each as competing alternatives, our central methodological
thesis for implementing a functional theory of financial institutions is a synthesis of the
neoclassical, the new institutional, and the behavioral perspectives on finance. We call
this attempt to synthesize these three perspectives, Functional and Structural Finance
(ESF). Section 4 frames that functional synthesis by offering a number of examples
to illustrate the basic approach. Section 5 offers an overview of the key elements of
ESE The concluding section of the paper discusses the significant influence of a well-
functioning financial system on long-term economic growth as further motivation for
the systematic examination of financial system design.

Although the manifest purpose of the paper is to explore the design of the financial
system and the synthesis of behavioral and transaction cost finance with traditional
neoclassic finance, the analysis has direct implications for the process of investment
management and for prospective evolution of the asset management industry. Indeed,
several of the finance examples used to illustrate this approach to a functional synthesis
are drawn from investment management.

The attempt at synthesis offered here is surely far from a complete and axiomatic
development of FSE Nonetheless, we harbor the hope that this first pass will stimulate
further thought along these lines.

2 On the Impact of Finance Science on Finance Practice

New financial product and market designs, improved computer and telecommunica-
tions technology, and advances in the theory of finance over the last generation have
led to dramatic and rapid changes in the structure of global financial markets and
institutions. The scientific breakthroughs in finance theory in this period both shaped
and were shaped by the extraordinary innovations in finance practice that coincided
with these revolutionary changes in the structure of world financial markets and insti-
tutions. The cumulative impact has significantly affected all of us—as users, producers,
or overseers of the financial system.

Finance science has informed practice across a wide spectrum of finance appli-
cations, with powerful prescriptions for valuation, asset allocation, performance
measurement, risk management, and corporate financial decision-making. Surely the
prime exemplifying case is the development, refinement, and broad-based adoption of
derivative securities such as futures, options, swaps, and other contractual agreements.
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Practitioner innovations in financial-contracting technology have improved efficiency
by expanding opportunities for risk sharing, lowering transaction costs, and reducing
information and agency costs. Those innovations would not have been possible without
the Black—Scholes option-pricing methodology, which was developed entirely within
the academic research community.?

Indeed, in providing the means for pricing and risk measurement of derivative
securities, finance science has contributed fundamentally to the remarkable rate of
globalization of the financial system. Inspection of the diverse financial systems of
individual nation-states would lead one to question how much effective integration
across geopolitical borders could have taken place, since those systems are rarely com-
patible in institutional forms, regulations, laws, tax structures, and business practices.
Still, significant integration did take place.

Derivative securities designed to function as adapters among otherwise incompat-
ible domestic systems were important contributors to effective integration. In general,
the flexibility created by the widespread use of derivatives as well as specialized institu-
tional designs provided an effective offset to dysfunctional country-specific institutional
rigidities. Furthermore, derivative-security technologies provide efficient means for
creating cross-border interfaces without imposing invasive, widespread changes within
each system.

An analogy may prove helpful here. Imagine two countries that want to integrate
their pipelines for transporting oil, gas, water, or anything else. Country A has a
pipeline that is square, while country B’s pipeline is triangular. Country A’s plan for
integrating the pipelines is to suggest to B that it replace its triangular pipeline with a
square one. This, of course, will require a very large and disruptive investment by B.
Decision makers in country B, not surprisingly, have an alternative—country A should
tear up its square pipeline and replace it with a triangular one.

But rarely would either of those two plans make sense. Almost always, the better
solution is to design an efficient adapter that connects the two existing pipelines with
minimum impediments to the flow across borders.

This pipeline analogy captures much of what has been happening during the past
twenty years in the international financial system. Financial engineers have been design-
ing and implementing derivative contracts to function as efficient adapters that allow
the flow of funds and the sharing of risks among diverse national systems with different
institutional shapes and sizes.

More generally, financial innovation has been a central force driving the financial
system toward greater economic efficiency. Both scholarly research and practitioner
experience over that period have led to vast improvements in our understanding of
how to use the new financial technologies to manage risk.

As we all know, there have been financial “incidents,” and even crises, that cause
some to raise questions about innovations and the scientific soundness of the financial
theories used to engineer them. There have surely been individual cases of faulty engi-
neering designs and faulty implementations of those designs in finance just as there have
been in building bridges, airplanes, and silicon chips. Indeed, learning from (sometimes

even tragic) mistakes is an integral part of the process of technical progress.?
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However, on addressing the overall soundness of applying the tools of financial
engineering, it is enough to note here the judgment of financial institutions around
the world as measured by their practice. Today no major financial institution in the
world, including central banks, can function without the computer-based mathemat-
ical models of modern financial science. Furthermore, the specific models that these
institutions depend on to conduct their global derivative pricing and risk-management
activities are based typically on the Black—Scholes option pricing methodology.

So much for the past: What about the impending future?

With its agnosticism regarding institutional structure, neoclassical finance theory
is an ideal driver to link science and global practice because its prescriptions are robust
across time and geopolitical borders. Future development of derivative-security tech-
nologies and markets within smaller and emerging-market countries could help form
important gateways of access to world capital markets and global risk sharing. Financial
engineering is likely to contribute significantly in the developed countries as well; as
for instance in the major transitions required for restructuring financial institutions
both in Europe and in Japan.*

But will the same intense interaction between the science and practice of finance
continue with respect to the new directions of scientific inquiry?

3 The Challenge to Neoclassical Finance

With its foundation based on frictionless and efficient markets populated with atomistic
and rational agents, the practical applicability of the neoclassical modeling approach is
now challenged by at least two alternative theoretical paradigms. One, New Institutional
Economics, focuses explicitly on transaction costs, taxes, computational limitations,
and other frictions.” The other, Behavioral Economics, introduces non-rational and
systematically uninformed behavior by agents.® In contrast to the robustness of the
neoclassical model, the prescriptions and predictions of these alternatives are manifestly
sensitive to the specific market frictions and posited behavioral deviations of agents.”
Perhaps more latent is the strong sensitivity of these predictions to the institutional
structure in which they are embedded.

There is a considerable ongoing debate, sometimes expressed in polar form, between
the proponents of these competing paradigms. Those who attack the traditional neo-
classical approach assert that the overwhelming accumulation of evidence of anomalies
flatly rejects it.3 They see a major paradigm shift to one of the new alternatives as
essential for progress. Defenders of the neoclassical paradigm respond that the alleged
empirical anomalies are either not there, or that they can be explained within the neo-
classical framework, and that in either case, the proposed alternatives do not offer a
better resolution.” That debate so framed is best left to proceed anomaly by anomaly
and we say no more about it here.

Instead, we take a different approach. Rather than choose among the three compet-
ing theoretical perspectives, we believe that each, although not yet of the same historical
significance, can make distinctive contributions to our understanding and each has its
distinctive limitations.
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In neoclassical theory, institutions “do not matter” in the sense that equilibrium
prices and the allocation of resources are unaffected by specific institutional structures.
As long as markets are efficient and frictionless, one can use almost any convenient
financial system in a model for analyzing asset demands and the derived equilibrium
asset prices and risk allocations will be the same as in models with more realistic and
more complex financial systems.

In criticizing neoclassical theory, proponents of both neo-institutional and behav-
ioral finance often posit the same simple financial institutional structure in their models,
and then proceed to show how the introduction of market frictions and deviations
from rationality can cause significant changes in equilibrium allocations and asset price
behavior. But this is not a valid argument. Unlike the frictionless and rational neoclas-
sical case, there is no longer the invariance of optimal asset demands to institutional
specifications. Hence, proper assessments, theoretical and empirical, of market allo-
cational and informational efficiency and interpretations of apparent distortions on
capital asset pricing from behavioral and transactional dysfunctions cannot be under-
taken without explicit reference to a realistic modeling of the institutional environment.
Thus, as major changes take place in the institutional structure for trading financial
assets and allocating risks, one would expect that the impact of such frictions on asset
prices would change. Indeed, from the FSF perspective, the particular institutions
and organizational forms that arise within the financial system are an endogenous
response to minimize the costs of transaction frictions and behavioral distortions in
executing the financial functions common to every economy.'® As a consequence, in
well-functioning financial systems, high transaction costs and dysfunctional cogni-
tive dissonance among individuals may not have a material influence on equilibrium
asset prices and risk allocations. Therefore, from this perspective, market-friction and
behavioral predictions may not provide reliable insights about observed asset prices and
resource allocations, but they will be centrally important—along with technological
progress—in explaining the actual institutional structure of the financial system and
the dynamics of its change.

4 The Functional Synthesis

The central conclusion of FSF is that in well-developed financial systems, predictions
of the neoclassical theory of finance will be approximately correct for asset prices
and resource allocations, after the endogenous changes in institutional structure have
taken place.!! Furthermore, FSF can be used to predict likely changes in institutional
structure and to identify targeted changes in that structure that might lead to more
efficient allocations.

Many of the issues facing decision makers around the world today are about insti-
tutional change. In China, for example, decentralization and privatization of large
parts of the economy during the past decade have produced remarkable improvements
in standards of living. Public officials and business leaders now see an urgent need
to create a financial infrastructure to support continued economic development. In
Japan, officials are considering fundamental changes in the structure of their banking
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system to overcome economic stagnation. And in Europe and the United States, pen-
sion and Social Security reform has become a top priority. A critical issue everywhere
is controlling the risk of default by financial institutions.

Neoclassical theory generally serves as a good starting point in addressing such
policy issues. It can identify properties of an efficient equilibrium resulting from the
assumptions of rational optimizing behavior and perfect competition. In the posited
frictionless environment of neoclassical models, however, multiple alternative insti-
tutional structures are possible to support the same equilibrium asset prices and risk
allocations.!?

For example, the celebrated Coase theorem shows that in the absence of transaction
costs, a variety of organizational structures can result in optimal resource allocation.!3
In such an environment there would be no reason for firms to exist, since the simpler
neoclassical structure of atomistic agents interacting directly in competitive markets
would work just as well. As Coase shows, however, when transaction costs are brought
into the analysis, then organizational structure matters. Some economic activities are
best undertaken in large hierarchical firms, while other activities are best organized
through atomistic markets.

Another well-known example of neoclassical assumptions leading to indeterminacy
in structural form is the celebrated M&M Propositions regarding the capital structure
of firms.'* Modigliani and Miller prove that in the absence of transaction costs, agency
costs, and taxes, firms would be indifferent with respect to their financing mix between
debt and equity. When these frictions are taken into account, however, a firm’s capital
structure can matter a great deal.!

In both examples—the Coase Theorem and the M&M Propositions—the neoclas-
sical model serves as a starting point for analysis of institutional structure. However,
the neoclassical model alone cannot in general identify the most efficient structure.
The new institutional and behavioral theories can be used to help identify features
of the environment that may make one structure superior to another in a particular
setting at a particular time.

Thus, the neoclassical model by itself offers some limited guidance to decision
makers seeking to understand and manage the process of institutional change. In
ESE, neoclassical, institutional, and behavioral theories are complementary rather than
competing approaches to analyzing and managing the evolution of financial systems. By
employing all three modes of analysis, FSF can perhaps help policy analysts to choose
among competing structural solutions to real-world problems.

Instead of attempting a highly formal development of FSE which is still quite
tentative, we frame its synthesis of the different schools of thought using a series of
illustrative examples.

The two fundamental tenets of FSF are:

e Neoclassical theory is approximately valid for determining asset prices and resource
allocations (albeit as a reduced-form model), but offers little to explain which orga-
nizational structures for production and performing various financial functions and
which particular market instruments and financial intermediaries will evolve.
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e Neo-institutional and behavioral theories are centrally important in analyzing the
evolution of institutions including market instruments and financial intermediaries,
but are unlikely to provide significant and stable explanations of asset prices and

resource allocations. 1

4.1  Example 1. Transaction Costs and Option Pricing

A quarter century ago, Hakansson (1979) wrote about the “Catch 22” of the option
pricing model. His point was that i the conditions for Black—Scholes pricing are
satisfied, then the option is a redundant security with no social purpose; and if the
conditions are 7o satisfied, then the pricing model is wrong.!” The seeming paradox
can be resolved, however, by considering transaction costs.

In reality most investors face substantial transactions costs and cannot trade even
approximately continuously. But in a modern, well-developed financial system, the
lowest-cost transactors may have marginal trading costs close to zero, and can trade
almost continuously. Thus, the lowest-cost producers of options can approximate
reasonably well the dynamic trading strategy, and their cost of replicating the payofts
to the option is approximately the Black—Scholes price.!8

As in any competitive-equilibrium environment, price equals marginal cost. As
is typical in analyses of other industries, the equilibrium prices of financial products
and services are more closely linked to the costs of efficient actual producers than to
inefficient potential ones. The result in this context is that high-trading-cost individuals
can become customers of low-trading-cost financial intermediaries and buy options at
nearly the same price as #f those individuals could trade continuously without cost.

The underlying force driving the development of efficient institutional structures
is Adam Smith’s “invisible hand”—firms seeking to maximize their profits in com-
petitive product markets. Potential customers have a demand for the contingent
payoffs associated with options, and profit-seeking financial firms compete to supply
the options using the lowest-cost technology available to them. As marginal trading
costs for the financial firms approach zero, equilibrium option prices approach the
Black—Scholes dynamic-replication cost. Thus, we should find that with an efficient,
well-developed financial system, over time, the neoclassical model gives the “correct”
pricing as a reduced form, but options and other derivative financial instruments and

the institutions that produce them are certainly not redundant.'?

4.2 Example 2. Continuous-1Time Portfolio Theory

Our second example is closely related to the first one, but carries it a step further.
Consider the Intertemporal CAPM and the assumptions of frictionless markets and
continuous trading used in deriving it.2? It is well known that by introducing transac-
tion costs into a model with an institutional structure in which individuals all trade for
themselves directly in the markets, one can get very different portfolio demand func-
tions and thus very different equilibrium prices.?! But in the presence of substantial
information and transaction costs it is not realistic to posit that the only process for



8 ROBERT C. MERTON AND ZVI BODIE

individuals to establish their optimal portfolios is to trade each separate security for
themselves directly in the markets. Instead, individuals are likely to turn to financial
organizations such as mutual and pension funds that can provide pooled portfolio
management services at a much lower cost than individuals can provide for themselves.
Equilibrium asset prices will, therefore, reflect the lower marginal transaction costs of
those financial-service firms and not the higher transaction costs of the individuals.

Neoclassical portfolio theory also offers some guidance in identifying the likely
nature of the services to be provided by financial intermediaries. The theory of port-
folio selection tells us that in the absence of transaction costs and with homogeneous
expectations, individuals would be indifferent between choosing individually among
all assets and choosing among a small number of optimized portfolios. This is the
classic “separation” theorem of portfolio theory.?? But in the presence of significant
information and transaction costs, the separation theorem turns into an elementary
theory of financial intermediation through mutual funds.

Mutual funds are the investment intermediaries that specialize in producing opti-
mized portfolios by gathering the information needed (expected returns, standard
deviations, and correlations among the full set of risky assets) and combining them in
the right proportions (the efficient portfolio frontier). Because of economies of scale in
gathering information, processing it, and trading securities, the transaction costs for
mutual funds will be significantly lower than for individuals, so individuals will tend
to hold mutual funds rather than trade in the individual securities themselves.

This view also addresses the issue of heterogeneous expectations in the Capital
Asset Pricing Model by offering a justifying interpretation for its standard assumption
of homogeneous beliefs: namely, investors in mutual funds in effect “agree to agree”
with the return-distribution estimates of the professionals who manage those funds.
Furthermore, since professional investors tend to use similar data sets and methods
of statistical analysis, their estimates may be more homogeneous than would other-
wise be the case if individuals were gathering data and making forecasts directly for
themselves.??

In more realistically complete models of lifetime portfolio selection, individuals
may have complex optimal dynamic strategies. Here too, neoclassical theory offers a
useful starting point for a theory of financial structure. As shown in Merton (1989), for
every dynamic trading strategy there exists an equivalent contingent contract or derivative
security. Black, Merton, and Scholes derived the option pricing model by showing that
there is a dynamic trading strategy that replicates the payoffs from a call option. That
same approach applies to any derivative security.”* The contingent-claim-equivalence
to dynamic portfolio strategies can be derived by running the option-pricing derivation
“in reverse.”?

From contingent-claim-equivalence it follows that a low-transaction-cost financial
intermediary can sell to high-transaction-cost customers fully hedged (“immunized”)
contracts that have the contingent payoffs associated with an optimized portfolio strat-
egy. The intermediary pursues the dynamic trading strategy at its lower transaction

costs and provides the specified contractual payoffs to its customers.?¢
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Note that under this view of the process of financial intermediation, the products
traditionally provided by investment management firms tend to merge with the long-
term contracts traditionally produced by the life insurance industry. This convergence
transformation has been going on for many years in the market for variable annuities in
the United States, although it has largely been motivated by the tax-deferral advantages
of annuities.

If this view is correct, then as transaction costs continue to decline, financial inter-
mediaries will produce more complicated-to-produce products that combine features
of investments and insurance. They will be customized to provide easy-to-understand,
seamless solutions to complex life-cycle risk management needs of households.

Households today are called upon to make a wide range of important and detailed
financial decisions that they did not have to in the past. For example, in the United
States, there is a strong trend away from defined-benefit corporate pension plans that
require no management decisions by the employee toward defined-contribution plans
that do. There are more than 9000 mutual funds and a vast array of other investment
products. Along with insurance products and liquidity assets, the household faces a
daunting task to assemble these various components into a coherent effective lifetime
financial plan.

Some see this trend continuing with existing products such as mutual funds being
transported into technologically less-developed financial systems. Perhaps this is so,
especially in the more immediate future, with the widespread growth of relatively inex-
pensive Internet access to financial “advice engines.” However, the creation of all these
alternatives combined with the deregulation that made them possible has consequences:
deep and wide-ranging disaggregation has left households with the responsibility for
making important and technically complex micro-financial decisions involving risk—
such as detailed asset allocation and estimates of the optimal level of life-cycle saving
for retirement—decisions that they had nor had to make in the past, are not trained
to make in the present, and are unlikely to execute efficiently in the future, even with
attempts at education.

The availability of financial advice over the Internet at low cost may help to
address some of the information-asymmetry problems for households with respect
to commodity-like products for which the quality of performance promised is easily
verified. However, the Internet does not solve the “principal-agent” problem with
respect to more fundamental financial advice dispensed by an agent. That is why we
believe that the future trend will shift toward more integrated financial products and
services, which are easier to understand, more tailored toward individual profiles, and
permit much more effective risk selection and control.?’

Production of the new brand of integrated, customized financial instruments will
be made economically feasible by applying already existing financial pricing and hedg-
ing technologies that permit the construction of custom products at “assembly-line”
levels of cost. Paradoxically, making the products more user-friendly and simpler to
understand for customers will create considerably more complexity for their producers.
The good news for the producers is that this greater complexity will also make reverse
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engineering and “product knockoffs” by second-movers more difficult and thereby,
protect margins and create franchise values for innovating firms. Hence, financial-
engineering creativity and the technological and transactional bases to implement
that creativity, reliably and cost-effectively, are likely to become a central competitive
element in the industry.

These developments will significantly change the role of the mutual fund from a
direct retail product to an intermediate or “building block” product embedded in the
more integrated products used to implement the consumer’s financial plan. The “fund
of funds” is an early, crude example. The position and function of the fund in the
future will be much like that of individual traded firms today, with portfolio managers,
like today’s CEOs, selling their stories of superior performance to professional fund
analysts, who then make recommendations to “assemblers” of integrated retail financial
products.

4.3 Example 3. Irrational Pessimism/Optimism

Having given two examples of how transaction costs can endogenously determine
financial structure and the production process while neoclassical models remain valid
as reduced-form predictors of equilibrium asset prices and allocations, we now offer
an example of how behavioral factors can have similar effects. As we know from the
empirical studies done by Kahneman, Tversky, and other behavioral scientists, peo-
ple’s financial behavior can differ systematically from the neoclassical assumptions of
rationality. In particular, it has been shown that when individual choices depend on
probabilities, subjective estimates of these probabilities are often subject to large biases.
It does not necessarily follow, however, that the market prices of products whose
demand depends on probability estimates—products such as insurance—will reflect
those biases. To see why, consider the market for life insurance.

Suppose that people systematically underestimate their life expectancies. Then, if
they are risk-averse (or even risk-neutral) the price they will be willing to pay for life
insurance will be “too high” relative to the actuarially fair price. For example, suppose
that the actuarially fair annual price is $20 per $10,000 of insurance, but people would
be willing to pay $40 as their “reservation” price. What would be the likely institutional
dynamics of price formation in this market?

Life insurance firms that enter this market early might earn large profits because
they can charge the reservation price of $40 while their underwriting cost will be the
$20 expected loss. But others will examine the mortality data, calculate the spread
between price charged and the objective costs of supplying life insurance, and soon
discover the profit opportunity available. If there are no effective barriers to the entry
of new firms, price competition will drive the price to the zero excess-profit point.?8

Thus, in the long-run, competitive equilibrium, life insurance prices will reflect the
rational unbiased probabilities of mortality, even though every buyer of life insurance
has biased estimates of these probabilities. The institutional structure of providers of
this risk-intermediating function and its dynamics of evolution may be greatly affected
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by this behavioral aberration even though asymptotically it has no effect on equilibrium

price and once again neoclassical pricing obtains, as a reduced form.?

4.4 Example 4. Home Bias

Now consider the well-documented “home-bias” effect in portfolio selection.?? Several
rational explanations for this effect have been proposed in the economics and finance
literature—for example, higher information costs for foreign vs. domestic shares.?!
But suppose that the reason is indeed an #rrational bias against investing abroad. Thus,
US residents prefer to invest in the shares of US corporations just because they are
domiciled in the United States. They, therefore, invest far /ess abroad than is optimal
according to the neoclassical model of optimal diversification.

Does the posited behavioral “aberration” result in an equilibrium allocation different
from the neoclassical prediction?

Not necessarily. If US corporations were to invest only in US capital projects,
then with investor home bias the equilibrium cost of capital and expected return on
shares for US companies would be lower than in the neoclassical equilibrium, and
higher for non-US projects and firms. However, with value-maximizing managers and
absent legislative restrictions on investment, this equilibrium is not sustainable. With
the lower cost of capital for the shares of US corporations, US firms will find that
direct investments abroad will have higher net present value than domestic ones.>?
Asymptotically in the limiting case of no other imperfections except investor home
bias, US corporations would end up issuing shares in the United States and investing
overseas until they reach an asset allocation and cost of capital that is the same as
predicted in a neoclassical no-home-bias equilibrium.

Thus, the final equilibrium asset prices and allocations will be as predicted by neo-
classical finance theory. However, the institutional structure in which specific financial
functions are executed may be materially determined by investor home bias. Of all
possible institutional structures that are consistent with the neoclassical equilibrium,
ESF looks for the one that most effectively mitigates the distortionary effects of home
bias. Thus, instead of mutual funds and other investment intermediaries exclusively
serving the function of international diversification on behalf of US residents, home
bias may cause domestically based manufacturing and service companies to perform
this diversification function through direct investment.

Much the same story would be true at a more micro-level for regional biases within
a country’s borders. For example, Huberman (1999) reports that people invest dispro-
portionately in the shares of their /ocal Bell Operating Systems. Again, we argue that
this behavior does not necessarily lead to a distortion in equilibrium prices of shares
relative to the neoclassical prediction. However, this behavior would lead one to pre-
dict that Bell operating companies located in more investor-rich regions might branch
out and invest directly in operating companies in other less wealthy regions. Cross-
regional diversification would thus be performed by the operating telephone companies
themselves rather than by mutual funds and other “pure” financial intermediaries.
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Note the operation here of the “invisible hand.” Each individual investor retains
his/her home-biased behavior, and firm actions are driven by the motive of maximizing
net present value, without requiring any explicit awareness of that behavior.

Recognition that endogenous institutional changes may affect the influence of
home bias on asset prices, if that bias is behaviorally driven, suggests some interesting
time series tests which compare the amounts of stock of companies held directly by
“locals” who are not managers of the firms in the 1950s, 1970s, and 1990s. One might
expect that the much larger institutional holdings of stocks in the latter periods would
mitigate the home bias effect.’®> Much the same tests could be applied to investments in
local mutual fund groups that over time have moved into investing in shares of foreign
companies.

4.5 Example 5. RegretAversions34

Now consider another example from investing to illustrate how institutions might
respond to an irrational behavior pattern by creating new financial instruments. Sup-
pose that people do indeed have an aversion to feeling sorry after-the-fact for earlier
investment decisions they made. If this behavioral trait is widespread, then we might
expect to find a demand in the market for “look-back” options. A look-back call option
gives its owner the right to buy an underlying security at the lowest price at which it
traded during the term of the option. Similarly, a look-back put option gives its owner
the right to sell the underlying security at the highest price at which it traded during
the term of the option.?> Thus, by paying a fixed insurance-like premium, the investor
is assured of no regret from his investment decisions during the subsequent period
covered by the option, because he will buy the stock at the lowest price (or sell it at
the highest price) possible. There is of course a prospect for regret from paying for the
option itself, if the ex post gain from the option does not exceed its cost. However, such
regret, if any, may well be minimal because the premium is fixed in advance (bounding
the amount of regret) and the “base” price for comparison (if the investor had sold or
bought at some point instead of purchasing the option) is likely to be “fuzzy.” Further-
more, if the marketing of the option frames it psychologically as “regret insurance,”
then investors may be no more at risk of realizing regret from paying the premium
than from the purchase of other standard forms of insurance, such as fire and theft
protection on a house or car.

Those regret-averse investors who would otherwise hold sub-optimal portfolio
strategies because of strong regret aversion may well be willing to pay a premium price
for such an option. The theory laying out the production technology and production
cost for an intermediary to create look-back options first appeared in the scientific
literature more than two decades ago.3° Today, look-back options are available widely
over-the-counter from investment and commercial banks.

The point of this example is to suggest that if regret aversion is indeed a significant
behavioral phenomenon, then FSF theory predicts an institutional response in the form
of creating products like look-back options. If regret is so widespread that it affects
equilibrium prices, then at a given point in time, one investor’s regret concern about
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selling a security is likely to mirror another investor’s regret concern about buying that
security. If so, a properly designed institution or market may be able to “pair off”
these offsetting demands and neutralize the regret effect on asset demands. Thus, the
theoretically predicted incremental effect that this behavioral phenomenon might have
had on equilibrium asset prices and allocations in an institutional environment without
look-back options or another functionally equivalent institution can be mitigated or

eliminated entirely with their inclusion by institutionally rational intermediaries.?”

4.6 Example 6. Organizational Design

In this example, we move from financial products to consider how organizational design
itself might offset dysfunctional individual behavior and produce an end result that is in
line with neoclassical predictions. For example, suppose that when making investment
decisions individually, analysts tend to be optimistic and overconfident in their forecasts
for the securities they study.®® Let us suppose further that when individual analysts,
each of whom has studied a different security, are brought together in a group and
asked to form a group consensus regarding all of the securities, the bias is mitigated or
altogether eliminared.?

ESF theory would predict a strong tendency for asset-management and other
financial-service firms to organize investment selections as a group process includ-
ing creating investment committees to evaluate the recommendations of individual
security analysts and portfolio managers. The committees would have the effect of
mitigating the bias of the individual analysts. Consequently, there would be little or
no impact of this individual bias on actual investment choices and equilibrium asset
market prices.

4.7 Example 7. Dont Change Behavior; Solve with Institutions

Now suppose it were possible to change the behavior of individuals to make them
less optimistic and overconfident when analyzing individual securities. Although such
a change in behavior would eliminate the bias, it might be better not to tinker with
the behavior of individuals. The reason is that although optimism and overconfidence
are dysfunctional in the domain of security analysis, they may be functional in other
domains vital to individual success. That is, there can be unintended and unanticipated
consequences of this action. By eliminating a person’s optimism and overconfidence
in general, we may therefore do more harm than good. Thus, it may be considerably
better to rely on investment committees as a means of offsetting the individual bias
caused by overconfidence than to attempt to alter the behavior of the individual analyst.

4.8 Example 8. Sociological Elements of Behavioral Finance*®

The preceding examples of behavioral distortions of efficient risk allocation and asset
pricing all involve cognitive dissonance of individual agents. However, there is another
dimension of potential behavioral effects that is sociological in nature in that it derives
from the social structure of the financial system. Sociological behavior is neither under
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the control of individuals within that social structure nor a direct consequence of simple
aggregation of individual cognitive dysfunctions. A classic instance within finance is
the Self-Fulfilling Prophecy (SFP),4! applied for instance to bank runs: a bank would
remain solvent provided that a majority of its depositors do not try to take their money
out at the same time. However, as a consequence of a public prophesy that the bank is
going to fail, each depositor attempts to withdraw his funds and in the process of the
resulting liquidity crisis, the bank does indeed fail. Each individual can be fully rational
and understand that if a “run on the bank” does not occur, it will indeed be solvent.
Nevertheless, as a consequence of the public prophesy, each depositor decides rationally
to attempt to withdraw his savings and the prophecy of bank failure is fulfilled. As we
know, one institutional design used to offset this dysfunctional collective behavior is
deposit insurance. There are of course others.

“Performativity” or Performing Theory has been employed as a mode of analysis
with respect to the accuracy of the Black—Scholes option pricing model in predicting
market prices of options, exploring whether the model’s widespread public dissemina-
tion and use by option traders may have actually caused market pricing to change so as
to make the model’s predictions become more accurate.*? Other recent work applying
sociological analysis to finance issues includes studies of the sociology of arbitrage and
understanding the development of derivative and other financial markets.%>

5 Elements of Functional and Structural Finance

In this section we review the main analytical elements of FSF as exemplified by the
cases of the preceding section.

5.1 Functions are the “Anchors”

When studying the dynamics of financial systems, it is best to adopt an analytical
framework that treats fiznctions rather than institutions as the conceptual anchors.* In
this analytical framework the functions are exogenous, and the institutional forms are

endogenously determined.

5.2 The Point of Departure is the Neoclassical Paradigm

When analyzing changes in parts of the financial system, a useful point of departure is
the neoclassical paradigm of rational agents operating opportunistically in an environ-
ment of frictionless markets. If existing prices and allocations fail to conform to the
neoclassical paradigm, it is helpful to focus on why this is so. The possible causes of
such a failure might be:

e Existing institutional rigidities, in which case we might consider applying institu-
tional design techniques to circumvent their unintended and dysfunctional aspects
or abolish them directly, if the institutional sources are no longer needed.

e Technological inadequacies, which may disappear over time as a result of innovation.

e Dysfunctional behavioral patterns that cannot be offset by institutional changes.
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5.3 Theory as a Predictor of Practice

As technology progresses and transaction costs continue to fall, finance theory is likely
to provide increasingly more accurate predictions and prescriptions for future product
innovations. Combining behavioral theory with neoclassical theory, together with
existing theory within New Institutional Economics, should produce better predictions

and prescriptions for the kinds of #nstitutional changes to expect.®

5.4 Institutional Rationality Versus Individual Irrationality

Even when individuals behave in ways that are irrational, institutions may evolve
to offset this behavior and produce a net result that is “as if” the individuals were
behaving rationally. This is a version of Adam Smith’s “invisible hand.” Structural
models that include transactions costs, irrational behavior, or other “imperfections”
may give distorted predictions when framed in a neoclassical “minimalist” institutional
setting of atomistic agents interacting directly in markets. It is, therefore, essential to
include the endogenous institutional response. Studies of the impact of transactions
costs or irrational behavior patterns would be greatly enhanced if as a matter of format,
they included a section on institutional designs that have the potential to mitigate the
effects of these patterns on prices and allocations. The resulting institutional design, if
not already in place, can be seen as providing either a prediction about the dynamics
of future institutional change or as a normative prescription for innovation.

5.5  Synthesis of Public and Private Finance

The FSF approach has no ideological bias in selecting the best mix of institutions to
use in performing financial functions. It treats all institutions, whether governmen-
tal, private-enterprise or family based, as potential solutions. The same techniques of
financial engineering apply whether the financial system is dominated by governmental
institutions or by private-sector ones or by a balanced mix of the two. FSF seeks to find
the best way to perform the financial functions for a given place at a given time.

For example, consider alternative systems for financing retirement. In recent years,
there has been great interest around the world on this subject, and big changes are
occurring in the institutional means for providing this essential financial function.
In some countries where the economy is primarily based on traditional agriculture,
retirement income is provided almost entirely by the retiree’s family. In other countries
it is provided by government, or by a mix of government and private-sector pension
plans.

This is not by accident. The best institutional structure for providing income to
the retiree population varies from country to country, and within a single country it
changes over time. That best structure depends on a country’s demographics, its social
and family structure, its history and traditions, and its stage of economic development.
And it changes with changes in technology.

These changes in retirement systems are sometimes treated as exogenous events or
framed as the result of policy mistakes of the past. Instead, we propose that they be
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viewed systematically as part of a dynamic process of institutional change that can be
analyzed and improved using the latest financial technology.

5.6 The Financial Innovation Spiral 47

The evolution of retirement systems, and indeed the financial system as a whole, can be
viewed as an innovation spiral, in which organized markets and intermediaries compete
with each other in a static sense and complement each other in a dynamic sense. That
intermediaries and markets compete to be the providers of financial products is widely
recognized. Improving technology and a decline in transactions costs has added to the
intensity of that competition. Inspection of Finnerty’s (1988, 1992) extensive histories
of innovative financial products suggests a pattern in which products offered initially
by intermediaries ultimately move to markets. For example:

e The development of liquid markets for money instruments such as commercial
paper allowed money-market mutual funds to compete with banks and thrifts for
household savings.

e The creation of “high-yield” and medium-term note markets, which made it possible
for mutual funds, pension funds, and individual investors to service those corporate
issuers who had historically depended on banks as their source of debt financing,.

e The creation of a national mortgage market allowed mutual funds and pension funds
to become major funding alternatives to thrift institutions for residential mortgages.

e Creation of these funding markets also made it possible for investment banks and
mortgage brokers to compete with the thrift institutions for the origination and
servicing fees on loans and mortgages.

e Securitization of auto loans, credit-card receivables, and leases on consumer and
producer durables, has intensified the competition between banks and finance
companies as sources of funds for these purposes.

This pattern may seem to imply that successful new products will inevitably migrate
from intermediaries to markets. That is, once a successful product becomes familiar, and
perhaps after some incentive problems are resolved, it will become a commodity traded
in a market. Some see this process as destroying the value of intermediaries. However,
this “systematic” loss of successful products is a consequence of the functional role
of intermediaries and is not dysfunctional. Just as venture-capital firms that provide
financing for start-up businesses expect to lose their successful creations to capital
market sources of funding, so do the intermediaries that create new financial products
expect to lose their successful and scalable ones to markets. Intermediaries continue
to prosper by finding new successful products and the institutional means to perform
financial functions more effectively than the existing ones, all made possible by the
commodization of existing products and services.

Thus, exclusive focus on the time path of individual products can be misleading, not
only with respect to the seemingly secular decline in the importance of intermediation,
but with respect to understanding the functional relations between financial markets
and intermediaries. Financial markets tend to be efficient institutional alternatives to
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intermediaries when the products have standardized terms, can serve a large number of
customers, and are well-enough understood for transactors to be comfortable in assess-
ing their prices. Intermediaries are better suited for low-volume customized products.
As products such as futures, options, swaps, and securitized loans become standardized
and move from intermediaries to markets, the proliferation of new trading markets in
those instruments makes feasible the creation of new custom-designed financial prod-
ucts that improve “market completeness,” to hedge their exposures on those products,
the producers (typically, financial intermediaries) trade in these new markets and vol-
ume expands; increased volume reduces marginal transaction costs and thereby makes
possible further implementation of more new products and trading strategies by inter-
mediaries, which in turn leads to still more volume. Success of these trading markets
and custom products encourages investment in creating additional markets and prod-
ucts, and so on it goes, spiraling toward the theoretically limiting case of zero marginal
transactions costs and dynamically complete markets.

Consider, for example, the Eurodollar futures market that provides organized trad-
ing in standardized LIBOR (London Interbank Offered Rate) deposits at various dates
in the future. The opportunity to trade in this futures market provides financial inter-
mediaries with a way to hedge more efficiently custom-contracted interest-rate swaps
based on a floating rate linked to LIBOR. A LIBOR rather than a US Treasury rate-
based swap is better suited to the needs of many intermediaries’ customers because their
cash-market borrowing rate is typically linked to LIBOR and not to Treasury rates.

At the same time, the huge volume generated by intermediaries hedging their
swaps has helped make the Eurodollar futures market a great financial success for its
organizers. Furthermore, swaps with relatively standardized terms have recently begun
to move from being custom contracts to ones traded in markets. The trading of these
so-called “pure vanilla” swaps in a market further expands the opportunity structure
for intermediaries to hedge and thereby enables them to create more-customized swaps
and related financial products more efficiently.

As an example, consider the following issue faced by smaller countries with funded
pension plans sponsored by either the government or by private institutions. Currently,
these pension funds invest almost entirely in domestic securities—debt and equity
issued by local firms, municipalities, and other entities. Although there would appear
to be significant potential benefits from international risk-sharing by pension funds,
this has not yet happened to any significant extent.

One way for such international risk-sharing to occur is for the small-country pen-
sion funds to invest abroad and for foreign financial institutions to offset this flow
of funds by investing in the small country. However, there are significant barriers to
such international flows of investment funds. Small country governments fear that the
outflows will not be matched by inflows of funds, and therefore impose restrictions
on the amount that pension funds can invest abroad. At the same time, investors in
large countries are reluctant to invest in smaller countries for fear of manipulation and
expropriation of their investments.

To circumvent many of these obstacles and obtain better international diversifica-
tion, pension funds may rely increasingly on international swap contracts.*® A swap
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contract consists of two parties exchanging (or “swapping”) a series of payments at
specified intervals (say, every 6 months) over a specified period of time (say, 10 years).
The payments are based upon an agreed principal amount (called the “notional”
amount), and there is no immediate payment of money between the parties. Thus,
as in forward and futures contracts, the swap contract itself provides no new funds to
either party. The size of each swap payment is the difference between the actual value
of the item specified in the contract (e.g., an exchange rate or an interest rate) and the
value specified in advance in the contract. International pension swaps would enable
a small country to diversify internationally without violating restrictions on investing
capital abroad.*’

Swap contracts provide an excellent example to illustrate the importance of insti-
tutional details that are routinely ignored in neoclassical analysis. As mentioned earlier
in this paper, the neoclassical theory of derivatives focuses on the equivalences among
various combinations of derivatives and the underlying assets. Thus, in a frictionless
perfect-market environment, leveraged cash market positions, swaps, forward con-
tracts, and futures contracts all perform fundamentally the same economic function of
risk-transfer, and their prices are all linked to each other by a pricing relation that rules
out arbitrage profits. In this limited sense, given cash or forward or futures contracts,
swaps are “redundant.”

But in the actual world of contemporary international finance, small differences in
the institutional details can have material implications for the speed of implementation.
Futures contracts are multilateral-party exchange-traded instruments, whereas swap
contracts are bilateral and are almost never traded on an exchange. To introduce a new
type of futures contract requires a formal process of approval by the governing body of
the exchange, representing a consensus of the exchange members, which can number
in the hundreds. In sharp contrast, to introduce a new type of swap contract requires
only consensus between the two counterparts to the contract. This difference makes it
possible to innovate and execute new types of swap contracts in a fraction of the time
required to introduce a new futures contract.

Today’s swap contracts also differ from a series of back-to-back loans or forward
contracts. Like swaps, forward contracts are flexible bilateral instruments, but they
lack a uniform standard. Modern swap contracts follow a standard format developed
during the early 1980s by the International Swap Dealers Association (ISDA). The
ISDA’s standard contract has been tested in a variety of jurisdictions around the world.
Opver the years the document has been amended and has evolved to meet legal and
regulatory requirements virtually everywhere.

Now that the legal infrastructure has been thoroughly tested and practitioners and
regulators have developed confidence in it, the pace of swap innovation is likely to pro-
ceed at a much faster rate and with much lower transaction costs.”® With the infrastruc-
ture in place, the cost of implementing new types of swaps involving other underlying
securities, commodities, economic indexes, and the like, will be relatively low.

A well-established legal and transactional infrastructure for swaps together with the
enormous scale of such contracts outstanding’! set conditions for the prospective use
of swaps and other contractual agreements to manage the economic risks of whole



THE DESIGN OF FINANCIAL SYSTEMS 19

countries in a non-invasive and reversible fashion.>? Thus, countries can modify their
risk exposures separately from physical investment decisions and trade and capital flow
policies. This application of financial technology offers the potential for a country
to mitigate or even eliminate the traditional economic tradeoff between pursuing its
comparative advantages, which by necessity requires it to focus on a relatively few
related activities and achieving efficient risk diversification, which requires it to pursue
many relatively unrelated activities.

6 Conclusion: Finance and Economic Growth

We have framed and illustrated by examples the FSF approach to the design of financial
systems. We conclude here with some observations connecting the design and imple-
mentation of a well-functioning financial system with the broader economic issues of
promoting long-term economic growth.

Nearly a half century ago, Robert Solow’s fundamental work on the long-run
determinants of economic growth concluded that it was technological progress, not
high rates of saving or population growth, that account for the vast bulk of growth.
Subsequent studies have tried to reduce the unexplained residual by adding other
measurable inputs. A large body of recent research work suggests that well-functioning
financial institutions promote economic growth. These conclusions emerge from cross-

54

country comparisons,53 firm-level studies,’® time-series research,’® and econometric

investigations that use panel techniques.56 And in their historical research, North
(1990), Levine (2002), Neal (1990), and Rousseau and Sylla (2003) have all concluded
that those regions—be they cities, countries, or states—that developed the relatively
more sophisticated and well-functioning financial systems were the ones that were the
subsequent leaders in economic development of their times.

An integrated picture of these findings suggests that in the absence of a financial
system that can provide the means for transforming technical innovation into broad
enough implementation, technological progress will not have a significant/substantial
impact on the economic development and growth of the economy. Therefore, countries
like China or even Japan, that need to undertake restructuring of their financial systems,
should consider not only their short-run monetary and fiscal policies, and not only
the impact of these policies on national saving and capital formation, but also how
changes in their financial institutions will affect their prospects for long-term economic
development.

But substantial changes and adaptations in the institutional implementation will be
necessary in different countries. There are at least two reasons: (1) national differences
in history, culture, politics, and legal infrastructure, and (2) opportunities for a country
that is in the midst of restructuring its financial system to “leap frog” the current best
practices of existing systems by incorporating the latest financial technology in ways
that can only be done with “a clean sheet.”

There is not likely to be “one best way” of providing financial and other eco-
nomic functions. And even if there were, how does one figure out which one is best
without assuming an all-knowing benevolent ruler or international agency? One must
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take care to avoid placing the implementation of all economic development into one
institutionally defined financial channel.

Fortunately, innovations in telecommunications, information technology, and
financial engineering offer the practical prospect for multiple channels for the financ-
ing of economic growth. Multiple channels for capital raising are a good idea in terms
of greater assurance of supply at competitive prices. They also offer the prospective
benefits of competition to be the best one in a given environment at a given point
in time.

Much of the traditional discussion of economic policy focuses on its monetary,
fiscal, currency management aspects and on monitoring capital and trade flows. These
are important in the short run, and thus also in the long run, in the sense that one
does not get to the long run without surviving the short run. However, if financial
innovation is stifled for fear that it will reduce the effectiveness of short-run monetary
and fiscal policies (or will drain foreign currency reserves), the consequences could be a
much slower pace of technological progress. Furthermore, long-run policies that focus
on domestic saving and capital formation as key determinants of economic growth do
not appear to be effective. Policies designed to stimulate innovation in the financial
system would thus appear to be more important for long-term economic development.

Notes

! That s, in this theory, financial functions are exogenous factors and the institutional structure

is endogenous.

For an overview of the impact of option pricing on finance theory and practice, see Merton

(1998) and Scholes (1998).

For a detailed exposition of this view see Petrosky (1992). See also Draghi ez al. (2003,

pp- 27-35) for application of financial science and technology to anticipating and managing

macro-financial crises.

For early applications of the FSF approach to bank reform and pension reform, see Merton

and Bodie (1993) and Bodie and Merton (1993), respectively.

See International Society for New Institutional Economics, www.isnie.org. Transac-

tion Cost Economics is a central part of the paradigm; see Williamson (1998).

Behavioral Economics has its intellectual roots in the work of Kahneman ez 4/ (1982).

Barbaris and Thaler (2003) provide a recentand comprehensive survey on behavioral finance.

A very different approach to behavioral finance is to study the relations between emotions

and rational financial decision-making by measuring physiological characteristics. See, for

example, Lo and Repin (2002).

Intersecting Transactions Cost Finance and Behavioral Finance is Experimental Finance,

which takes explicit account of learning by market participants and its effects on financial

market price paths and derives and tests behavior in laboratory experiments; cf. Bossaerts

(2002) and Bossaerts and Plott (forthcoming) and the Caltech Laboratory for Experimental

Finance, www.hss.caltech.edu/~pbs/LabFinance.html.

8 See the papers by Hall (2001), Hirshleifer (2001), Lamont and Thaler (2003), Shiller
(1999), Shleifer (2000), and Thaler (1993, 2000).

9 See Fama (1998), Ross (2002, 2004), Rubinstein (2001), Schwert (2003), and Weitzman
(2004).
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Fama (1980), Fama and Jensen (1983a,b), Jensen and Meckling (1976) and Ross (1973)
also provide a theory of endogenous determination of organization design and institutions,
driven by minimizing agency costs.

That approximation becomes precise asymptotically as the underlying system approaches a
complete market functionally.

Thus, since the actual institutional environment does not matter with respect to its predic-
tions about asset prices and resource allocations, the frictionless neoclassical model should
be treated as a reduced-form model, not a structural one. As noted earlier in the text,
that same institutional robustness does not apply to predictions of asset price behavior in
transaction-cost and behavioral models.

See Coase (1937, 1960).

See Modigliani and Miller (1958).

In offering their proposition, Modigliani and Miller did not assert that capital structure
“doesn’t matter” in the real world. Instead, by identifying sufficient conditions, they isolate
where to look to explain why it does matter.

Gilson and Kraakman (2003) reach a similar conclusion on relative importance with respect
to behavioral finance from a different analytical framework.

The formal derivation of the Black—Scholes model assumes that all agents can trade contin-
uously without cost. Under some further restrictions on asset price dynamics, there exists a
dynamic trading strategy in the underlying stock and the risk-free asset that would exactly
replicate the payoffs to the option. Hence, by ruling out arbitrage, the option price is
determined.

The case is further strengthened by taking into account the fact that such intermediaries
only need to dynamically hedge their nez exposures after offsetting them within the firm;
see Merton (1989) and footnote #26 here.

For further discussion, see Merton (1989, pp. 251-254, 1992, pp. 466-467) on “quasi-
dichotomy.”

Merton (1973, 1992).

Constantinides (1986).

Cass and Stiglitz (1970), Markowitz (1952), Tobin (1958), and Merton (1971, 1973, 1992).
As evidence for this convergence in data sources, consider the ubiquitous CRSP data or
COMPUSTAT. Sharpe (2004) provides a simulation-based model which computes equi-
librium optimal portfolio allocations for investors with heterogeneous beliefs and compares
those optimal portfolios to the CAPM-predicted ones.

See Merton (1992, Chapter 13).

This type of procedure is developed in Haugh and Lo (2001) and in Merton (1989,
pp- 250-254, 1992, pp. 450-464). See also Merton (1995, pp. 477-479, 2002,
pp. 62-63) for its application to central bank open-market operations.

A more accurate assessment of the real-world impact should also take into account other
risk-management tools that intermediaries have to reduce transaction costs. For instance, as
developed in analytical detail in Merton (1992, pp. 450-457), intermediaries need only use
dynamic trading to hedge their zer derivative-security exposures to various underlying assets.
For a real-world intermediary with a large book of various derivative products, netting can
vastly reduce the size and even the frequency of the hedging transactions necessary. Beyond
this, as part of their optimal risk management, intermediaries can “shade” their bid and
offer prices among their various products to encourage more or less customer activity in
different products to help manage their exposures. The limiting case when the net positions
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of customer exposures leaves the intermediary with no market exposure is called a “matched
book.”

For more detailed discussions, see Aaron (1999), Bodie (2003), Bodie ez a/. (2001) and
Merton (2002, 2003).

In the realm of investing, see Coval and Thaker (forthcoming) for a prime demonstration
with a formal model of the role of institutionally rational intermediaries in bridging the dys-
functional behavior between irrationally optimistic individual entrepreneurs and irrationally
pessimistic individual investors. Cohen, Gompers, and Vuolteenaho (2002) provide empir-
ical evidence that institutional investors tend not to make cognitive errors of under-reaction
to corporate cash-flow new that individual investors appear to do.

Benink and Bossaerts (2001) and Benink ez /. (2004) present an alternative, “Neo-Austrian”
view of the dynamic adjustment process in which asset prices tend to move foward an efficient
and stable equilibrium but never reach that equilibrium and thus, are always inefficient and
inconsistent with neoclassical pricing.

See, for examples, Coval and Moskowitz (1999), Crongvist and Thaler (2004), Hong,
Kubik, and Stein (2004), Huberman (1999), Lewis (1998) and Portes and Rey
(forthcoming).

More generally, see Merton (1987) for a portfolio and asset pricing model in which passive
indexing investment strategies are permitted but active investors trade only in firms they
know about, and the cost of information limits the number of firms an active investor knows
about.

For some preliminary evidence that can be used to support this view, see Baker, Foley and
Wurgler (2004).

Although a time series test has not yet been undertaken, the findings of Hong ez a/. (2004)
appear to support this view in a cross-sectional analysis of firms.

Regret aversion is the tendency to avoid taking any action due to a fear that in retrospect it
will turn out to be less than optimal.

Look-back options are a particular version of exotic options, a major financial industry line
of products.

Goldman ez al. (1979); see more recently, Shepp and Shiryaev (1993).

A similar approach could be taken for mitigating other types of psychological factors that
may also influence investment decisions dysfunctionally. For a convenient listing of those
factors affecting investing, see http://www. altruistfa.com/behavioralinvestingpitfalls.htm.
Thaler and Benartzi (2004) provide a real-world example of correcting the economic impact
of cognitive errors with a product designed to use pre-commitment to offset the dysfunc-
tional behavior affecting individual retirement saving. Another example is found in Miller
(2002) who shows how collective non-cooperative behavior in markets can learn to avoid
bubbles.

Thaler (2000) writes: “We all tend to be optimistic about the future. On the first day of my
MBA class on decision-making at the University of Chicago, every single student expects
to get an above-the-median grade, yet half are inevitably disappointed.”

Scherbina (2004) finds evidence that the presence of institutional investors in equity
markets tends to exert corrective pressure on share prices against the distorting information-
processing errors of individual investors. Cohen (2003) finds that individuals reduce their
equity exposures more than institutions after a market decline and increase their exposures
more than institutions after a market rise, which could be the result of greater risk aversion
for individuals or price-change-sensitive optimism or pessimism. It would be interesting to



40

41
42

43
44

45

46
47

48
49
50

51

52

53
54
55
56

THE DESIGN OF FINANCIAL SYSTEMS 23

explore whether this difference between institutional and individaul investing behavior is
related to greater use of group decision-making by institutions.

See Smelser and Swedberg (1994) and Swedberg (2003) for an overview of economic
sociology.

See R.K. Merton (1948, 1957).

See MacKenzie (2004a, b, forthcoming) and Mackenzie and Millo (2003). The distinction
between Performativity and a SFP is subtle but significant. Performativity implies that
the widespread belief in the model causes pricing in the market to change toward greater
conformity with the model than before. The concept of a SEP applies only if the prophesized
event—in this case the model-predicted option pricing—would not have occurred in the
absence of its public proclamation, usually suggesting that the proclamation (the model) was
dysfunctionally “unjustified.” Hence, even if widespread public knowledge of the model’s
adoption leads others to use it, it is not a SFP if the model is economically valid or would
be justified, even in the absence of its public proclamation. See Merton (1992, p. 471).
See MacKenzie (2000, 2003, 2004a, b, forthcoming).

See Merton (1993) on the functional perspective. The functional analytical framework pre-
sented here is developed in Crane ez a/. (1995). Financial functions for financial institutions
are also used in a different analytic framework that originates from the important work of
Diamond and Dybvig (1986).

As discussed in Footnote 42 for pricing models, Performativity can apply as well to the
evolution of institutional change. Ifa better theory of institutional dynamics starts to become
more widely adopted, its predictions about those dynamics will become more accurate as
its adoption spreads and more players use it to make decisions about institutional changes.
Bodie (2000).

See Merton (1993, pp. 27-33). The description here draws heavily on Merton and Bodie
(1995).

Bodie and Merton (2002).

This swap innovation, including with capital controls, is set forth in Merton (1990).

The cost of doing a standard interest-rate swap is today about 1/2 of a basis point—
that is only $5000 on a notional amount of $100 million!

It has been estimated that the notional amount of derivative contracts outstanding globally
is $216 trillion. Some large banking institutions have several trillion dollars each on their
balance sheets.

See Draghi ez al. (2003, pp. 37-44) and Merton (1999, 2002, pp. 64-67, 2004) for
development of this idea.

See King and Levine (1993a, b) and Demirguc-Kunt and Levine (2001).

See Demirguc-Kunt and Maksimovic (1998, 1999).

See Rousseau and Wachtel (1998, 2000).

See Levine et al. (2000).
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ASSET/LIABILITY MANAGEMENT AND ENTERPRISE
RISK MANAGEMENT OF AN INSURER

Thomas S. Y. Ho*

Risk management techniques used in banks and trading floors are generally not appli-
cable to insurance companies. Risk measures and risk monitoring approaches must be
developed to respond to the challenges to the insurance industry. This paper describes
the current risk management practices for both life and general insurance businesses,
and proposes the corporate model approach thar extends the present approaches to pro-
vide corporate management solutions, enterprise risk management in particular, for
insurers.

Recently, perhaps one of the most active areas of financial research is risk management.
Extensive research has led to new risk management methods. For example, introduc-
tions of value-at-risk (VaR), earnings-at-risk, and risk adjusted performance measures
are some of many innovations adopted in practice. However, the research tends to
focus on risk management for trading floors or commercial banks. Few solutions apply
to the insurers.

Trading floors and commercial banks share many similar characteristics in their risk
management. Both businesses hold relatively short-term instruments on their balance
sheets. And these instruments are often traded in the marketplace with reasonable
liquidity or have acceptable model risk. Further, their gains and losses can be realized
over a relatively short-term horizon and therefore the model assumptions can be verified
by market reality. These attributes of their balance sheet items enable the trading floors
and commercial banks to protect their capital (or equity), as measured by the assets
net of the liabilities in present value terms, and use risk measures like VaR in their risk
management.

However, the insurers cannot adopt these risk management methods directly,
because their challenges in risk management are different. One main difference arises
from the insurer’s liabilities. They are in general long dated and illiquid or with no
secondary markets at all. Another difference is that their risks, like mortality risk, are
not market related and therefore their risks cannot be replicated or hedged. As a result,
the management of the liabilities tends to be based on book value, avoiding the use
of fair valuation, which may be difficult to determine. And, the management perfor-
mance metrics are not based on marking-to-market value, but on a performance over a
much longer time horizon. For these reasons, “enhancing the equity or increasing the
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shareholders” value” based on marking-to-market can no longer be used as the perfor-
mance metric. The VaR approach has to be adapted to the management of insurance
liability before it can be useful. To date, managing the VaR risk of the “equity” of an
insurer’s balance sheet is often not considered relevant in practice.

Determining an appropriate risk management approach for insurance companies is
clearly an important issue for a broad range of market participants. For reasons similar
to the trading floors and banks, developing a practical and effective risk management
process is a concern to the practitioners in the insurance industry. Beyond the insurance
industry, an understanding of the risk management process of an insurer can enable the
capital market participants to better appreciate the insurers’ demand for investment
products. Since insurance companies are the major suppliers of funds of long-term
investments, this understanding is important to develop an efficient capital market.
The regulators and the securities analysts are also concerned with these issues, since the
insurance industry is an integral part of the capital market.

The purpose of this paper is to first provide an overview of some of the risk man-
agement techniques used currently and then propose the corporate model approach to
manage enterprise risks of the firm. Section 1 reviews the current practices, which are
considered most effective in risk management for the life insurers. In a similar fashion,
Section 2 describes the practices for property/casualty insurance. Section 3 discusses the
challenges that these current practices face in our current environment and describes
the corporate model approach to deal with these challenges. Finally, Section 4 contains
the conclusions.

1 Risk Management Practice for Life Companies

There is no one standard approach to risk management for life companies in practice.
Different insurers have their own methodologies and procedures in managing risks.
On the one hand, there is regulation in place to ensure that insurers comply with the
adequacy of their assets in supporting their liabilities. This regulation is called cash flow
testing. On the other hand, some insurers have a risk management practice that deals
with their positions in fair value basis. This practice is called the total return approach.
We will describe these two approaches as examples to many risk management methods
that are actually used and are often comprised of aspects of these two approaches.

1.1 Cash Flow Iesting

To ensure the soundness of the life insurance industry in covering the potential losses of
the insurance products, insurers are required to provide evidence of their financial ability
to cover the liabilities. They must fulfill requirements of the solvency test annually. This
test is mandated by Regulation 126 and is called cash flow testing. The rules can be
summarized briefly as follows.

In the cash flow testing method, liabilities are grouped into segments by the product
types that have similar characteristics. Then, some of the assets of the investment
portfolio are assigned to each segment. These assets have to be qualified to support the
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liabilities. The value of the assets should not be less than the liability value, as measured
by the reserve number, calculated by actuarial methods.

The cash flow testing method assumes that there are no new sales of the liability.
The test requires the insurer to demonstrate that the assets are sufficient to cover the
expected payouts. The insurer has to first determine the cash flows of both the assets
and liabilities as a run-off business. And cash inflows or outflows are then re-invested
or borrowed based on the assumptions made by the insurance companies. At the end
of the horizon, say 30 years, the remaining asset value, after paying out all the liability
cash flows, is determined. This is repeated under different market scenarios, where
interest rates are assume to rise, fall, or rise and fall.

The insurer seeks to have net positive assets at the end of the time horizon under
all the stochastic scenarios. In general, many insurers cannot achieve positive values in
all the scenarios and regulators have to evaluate the solvency of the insurers based on
the cash flow testing results.

This approach is reasonable for insurance companies because the method does not
assume the insurance companies selling any assets to meet meeting the liability needs.
And, therefore, it does not require any market valuation of the liabilities.

However, the cash flow testing methods require many assumptions on the asset
returns. For example, the losses due to asset default have to be assumed. They also
allow for a wide range of re-investment strategies. Often, these re-investment strategies
are hypothetical, not implemented in practice. As a result, the method is a good
measure of showing whether the assets are sufficient to support the liabilities under a
set of theoretical scenarios, but not a tool for managing risks in a more active basis.

1.2 Total Return Approach

The total return approach has been described elsewhere (see Ho ez al., 1995). For the
completeness of discussion, we will describe it briefly here. The total return approach
can be used as an extension of the cash flow testing methods. The approach also uses the
liability models to determine the cash flow of each product under different scenarios.
The main difference between the two analyses is the use of present value measure in the
total return approach versus the use of future value in the cash flow testing. By using the
present value concept, the analytical results do not depend on the future re-investment
strategies. This is because when assets are fairly priced, future investment strategies
(buying or selling of the assets) would not affect the portfolio value today. And the
present value measure for the liabilities is consistent with the market valuation of assets.
Therefore, the total return approach can analyze assets and liabilities in one consistent
framework. These two properties are useful to asset and liability management. The
total return approach has four steps: (a) fair valuation of liabilities; (b) determination
of the liability benchmark; (c) determination of the asset benchmarks; (d) establishing
the return attribution process. We now describe them in turn.

1.2.1 Fair valuation of liabilities

Fair valuation of liabilities begins with the determination of a pricing curve. The pricing
curve is the time value of money curve that is used to discount the liability cash flows.
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The curve can be the Treasury curve or the swap curve. The cash flows of the liabilities
are discounted by this curve to determine the present value of the cash flows. In the
cases where the liabilities have embedded options, we use an arbitrage-free interest
rate model to determine the interest rate scenarios and we determine the present value
of the cash flows. In essence, the method uses the arbitrage-free valuation approach
to determine the fair value of the liabilities. As a result, the liability cash flows are
valued relative to those of the capital markets. Assets and liabilities are evaluated in
one consistent framework. This method has been discussed extensively in other papers
(Ho et al., 1995; Ho, 2000; Ho and Lee, 2004).

As mentioned in the previous section, the liabilities have characteristics that are
difficult to be treated like capital market assets. For example, some liabilities have a
time to termination of over 30 years, beyond most of the capital market bonds. In
these cases, one approach may be to assume that the yield curve is flat beyond a certain
maturity to determine the fair value of these liabilities. Therefore, the assumptions of
the modeling of liability have to be specified, in general.

1.2.2  Liability benchmark
When the liability is first sold to the policyholder, a constant spread is added to the

pricing curve such that the present value of the liability is assured to equal the price of
the liability sold. This spread is the option adjusted spread of the liability and is called
the required option adjust spread (see Ho ez al., 1995).

The financial model of the liability becomes a representation of the actual liability. In
particular, the liability model captures the simulated projected cash flow of the liability
under different market scenarios. And the market scenarios are consistent with the
observed interest rate levels, the interest rate volatilities, and other market parameters.

Using the liability model, we then decompose the liability to basic building blocks.
For example, we can represent the liability as a portfolio of cash flows with options.
These options can be caps and floors. Or they can be swaptions. Such a decomposition
may allow management to manage the derivatives separately from the cash flows. This
decomposition has been explained in Ho and Chen (1996). For example, Wallace
(2000) describes the construction of the liability benchmark in the management of
a block of business, which can be decomposed into a portfolio of cash flows and a
portfolio of interest rate derivatives.

The liability benchmark captures the salient features of the liabilities in terms of
their capital market risks. As a result, the method provides a systematic way to sep-
arate the market risks and the product risks, like mortality risk. The separation of
these two types of risks enable us to use the capital market instruments to manage
the capital market risks embedded in the liabilities and to use actuarial methods to
manage the product risks. In sum, the liability benchmark may be a liability finan-
cial model or a set of financial models represented by specific cash flows and market
derivatives like caps and floors. This liability benchmark replicates the liability in their
projected cash flows under a broad range of scenarios. The effectiveness of the liability
benchmark depends on its ability in capturing the liability cash flows under stochastic
scenarios.
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An insurance company may have a multiple of products and product segments.
Therefore, the insurers may correspondingly have multiple liability benchmarks. These
benchmarks have to be revised periodically since the actual liabilities’ characteristics
may change over time and the benchmarks may become less accurate in replicating
the behavior of the liabilities. This revision should be conducted when the liabilities
undergo significant changes.

1.2.3 Asset benchmarks

The asset benchmarks are derived from the liability benchmark. There are two types of
asset benchmarks: an asset portfolio benchmark and a sector benchmark. The procedure
to determine the asset benchmarks for a particular liability benchmark may follow
three steps: (1) specify the investment guidelines; (2) construct the asset benchmark;
(3) construct the sector benchmarks.

1.2.3.1 Investment guidelines

The procedure begins with the senior management laying out some specific guidelines
about the appropriate risk that the company is willing to take. These guidelines may
reflect the preferences the management and the constraints imposed on the company
from outside constituents. A typical guideline may address four characteristics of an
asset portfolio.

Interest rate risk exposure limit can be set by stating the maximum allowable dura-
tion mismatch, or key rate duration mismatch, between the liability benchmark and
the portfolio benchmark. Further, there may be a maximum exposure of negatively
convex assets that may be allowed in the benchmark.

Credit risk exposure limit may be set by the maximum allowable percentage of
assets that are categorized as high yield assets. There can also be a minimum percentage
of assets that are rated as “A” and above.

Liquidity in the asset portfolio is assured by the maximum allowable percentage of
assets that are considered less liquid (or one could state them as illiquid assets). Assets
that fall in this category, for example, are private placement bonds and commercial
mortgages.

The senior management of some companies may also place overall broad guide-
lines on asset allocation—in the form of maximum or minimum allocation to certain
specified classes of asset sectors.

Several other factors also affect the overall guidelines. For example, the insurance
companies may incorporate the rating agencies’ measures of risk, mimic the asset
allocation of peer group companies, and taking the desired level of capital of the
company into account.

1.2.3.2 Constructing the asset benchmark

The asset benchmark comprises several sector benchmarks (which are described below)
with appropriate weights to each asset class (which is often referred to as the asset alloca-
tion). It represents the mix of asset classes and their weights that will meet the desired
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needs of the liabilities while catering to the restrictions imposed by the investment
guidelines.

The design takes into account the liquidity needs, the duration (or key rate dura-
tions) and convexity profile, the interest crediting strategy, minimum guarantees,
required spread over the crediting rates, and other product features. All of these
attributes are not always identifiable through the liability benchmarks. And, there-
fore, it is important that the design incorporates the senior management’s perspective
on the allowable risk that the company is willing to take. The risk is defined to include
the model risks as well as the market, credit, and product risks.

The portfolio managers then add specificity to the benchmark by reviewing the
requirement/behavior of the liabilities, the desired minimum spread, and the guidelines
specified by the senior management.

The process of refining the benchmark balances the asset allocation and the duration
distribution of the assets within each asset class. The latter defines the duration of the
benchmark and consequentially the targeted duration mismatch between the assets and
the liabilities.

Therefore, the asset benchmark is an asset portfolio that satisfies all the constraints
determined from the analysis of the liability benchmark, the investment guideline, and
the asset portfolio management preferences.

1.2.3.3 The sector benchmark

The sector benchmark is specific to an asset sector or class of an asset (like investment
grade domestic corporate bonds, collateralized mortgage backed securities, high yield
securities, asset backed securities). The portfolio manager of each market sector manages
the portfolio using the sector benchmark to measure the relative risks and returns
of the portfolio. The manager’s performances are then analyzed based on the sector
benchmarks.

Thus far, we have described an asset benchmark that replicates the characteristics of
the liability benchmark. However, if the asset and liability management process does
not require immunizing the market risks, then the asset benchmark can be constructed
with mismatching the asset and liability market risks. For example, some life insurers
use a mean variance framework to determine their strategic asset portfolio positions.
Other insurers use the distribution of the present value of the cash flows of assets net
of liabilities to determine their optimal assets portfolio.

1.2.4 Return attribution

Return attribution is concerned with calculating the total returns of the assets and the
liabilities and determining the components of the returns. The purpose of breaking
down the returns into its components is to detect the sources of the risks and attribut-
ing the returns to decisions made in the asset and liability management process. In
identifying the impact of the decisions on the insurer’s asset and liability combined
total return, the procedure includes a feedback effect to the management process.
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The return attributions can be calculated as follows. Over a certain time horizon,
say 1 month, we can determine the portfolio total return and the liability total return.
The total return of an asset follows the conventional definition, and that is the change
in the unrealized profit and loss plus the cash flow (dividends, coupons, and actual
gain/loss from the disposition of the assets) to the insurer’s portfolio over that period.
The liability total return is defined analogously. It is defined as the change in the fair
value of the liability plus the cash outflows of the liability over the holding period.

Both the total returns of the assets or the liabilities can be decomposed into the basic
components. These components are the risk-free returns, the option adjusted spreads,
the key rate duration returns, transactions, and the cheap/rich changes. Specifically,
the total return of the asset portfolio is given by

Ary = (r + OAS)At — > krdp () Ar(3) + ea (1)
and the liability portfolio total return is given by
Ar. = (r + ROAS)At = Y krdy () Ar(i) + 1 2)

where 7 is the risk-free rate. OAS is the option adjusted spread of the asset portfolio.
ROAS is the required returns of the liability portfolio. 47da (7) and krdy (i) are the key
rate durations of the assets and the liabilities, respectively. Ar(7) is the shift of the
ith key rate relative to the forward yield curve. Finally, ¢y and ¢ are the residuals
of the asset total returns and the liability total returns equations, respectively. There
may be other basic components depending on the asset and liability types. For clarity
of exposition, I only describe some of the components here. Details are provides in
Ho et al., 1995.

Product risks are priced by the margins, which are the spreads incorporated in
the required option adjusted spreads. And each of the product risk is measured from
the historical experience. Therefore, while the asset benchmark has not incorporated the
product risks explicitly, it has taken the margins for the product risks into account. The
margins can then be compared with the experience of the product risks to determine
the risk and return tradeoff in the pricing of the products.

Returns attribution process is becoming more important in asset management.
The process relates separate departments requiring the departments to coordinate.
Stabbert (1995) describes how such a coordination can be organized. Risk management
considers the asset and liability management as a process in which we can measure the
risks and the performance of each phase, and risk/return tradeoff analysis is conducted
for each phase of the process. A more detail description of an investment cycle can be
found in Ho (1995) where the management of the organization is discussed.

2 Risk Management Practice for General Insurance Companies:
Dynamic Financial Analysis

General insurance is distinct from life insurance in a number of aspects. Therefore,
in practice, it implements different asset liability management techniques. First, in
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life insurance, when the insurance is sold, the insurer knows precisely the coverage
amount. When the insured dies, the death benefit is specified in the contract. It is
not so with general insurance. Often, the coverage is determined after the incident has
incurred. In many cases, the determination of the coverage can take many years, along
with costly litigation. Therefore, the liability is often uncertain even after the incident
has incurred. A related issue is the size of the payment, often called the severity risk,
where it is possible that the payment can be very large. To cover these uncertainties,
the assets have to be quite liquid to ensure that the insurer has the liquidity to cover
the insurance losses.

Another aspect is the short-term aspect of the contract, even though the potential
liability is long tail. The insurance contract is more like the 1-year term life insurance.
The major part of risk in managing the liability is embedded in the persistency assump-
tion. The end result is that the insurer tends to think in terms of all the future sales and
the liabilities associated with the future insurance premiums, in their asset and liability
management. In short, it is more like managing the firm’s business than managing the
assets and liabilities on the balance sheet, as in life insurance business. For this reason,
the “asset-liability” management is more like “managing a firm as a going concern.”
By way of contrast, we have seen that that life insurance companies tend to view their
assets and liabilities as a “run-off business,” ignoring all future new sales.

One approach of managing the risk of a general insurance company is called
dynamic financial analysis (DFA). DFA is a financial planning model that is designed
to address a broad range of corporate issues. It is not only confined to managing the
assets and liabilities on the balance sheet, but it can also incorporate future new sales,
which may be the renewals resulting from persistency or sales to new customers. DFA
may be used to estimate the profitability of the firm over a time horizon, to determine
the likelihood of meeting the earnings target, or to manage the risk sources, which are
often called the risk drivers to avoid missing the earnings target. As a result, the firm
can determine its optimal actions to achieve its financial goals by means of DFA. These
actions can be the change of asset allocation in its investment portfolio, the change of
its sales distributions, or the change of its product pricing strategies.

DFA may be used to analyze the liquidity adequacy of the firm. When the firm may
need to provide significant cash outlays under certain scenarios, DFA may be used to
evaluate the ability of the firm to raise the needed cash in those scenarios. In relation
to liquidity issues, DFA may be used to study the impact of adverse scenarios on the
firm’s credit worthiness and its debt rating. Using DFA, the firm may then simulate the
business or market risks to determine a corporate financial strategy to deal with these
problems.

DFA uses financial projection models to assist in the firm’s financial planning. These
models begin with the ability to simulate future financial statements. These proforma
financial statements are based on the assumptions on the firm’s future businesses and
business decisions. These assumptions are provided by the users of the models. Using
these assumptions, DFA entails simulating the business scenarios on the sales, expenses,
business growth, and financial performance measures. At the same time, the analysis
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also includes simulating the interest rate, equity, and other market risks that may affect
the business.

Beyond the simulations, DFA must have a tax model. While the tax codes tend to
be complex with many details, a DFA approach captures the essence of these rules with
a tax model to simulate the tax liabilities. Finally, DFA seeks to determine the optimal
business decisions such that the firm’s objective is maximized. The objective and the
constraints on the decisions may depend on the simulated financial statements and the
desired performance.

The inputs to the dynamic financial analysis are the initial financial statements of the
firm and the business strategies that the firm contemplates in the coming years. Given
this information, DFA outputs the projected financial statements at the horizon period,
which may be the next quarter or several quarters hence, under multiple scenarios that
reflect the market risks and the business risks. The outputs are the distributions of the
performance measures of the firm.

For example, via the distributions of the earnings over a year, the system can identify
the likelihood of missing the earnings forecast over a time horizon, given the market
risks and business risks. Further, alternative corporate strategies can be used to see if
other corporate decisions can provide a better solution.

To determine optimal decisions, objective functions have to be specified. There
are alternative objective functions to meet earnings forecasts. Listed below are some
examples of what firms may do:

1. Benchmarking to the industry leader
One approach is to use an industry leader in the same market segment of the firm
as a benchmark. The corporate management strategies are adjusted to attain the
performance measures of the leading firm in the market segment. This approach
may not lead to optimal corporate management strategies but it is one way for
the investment community to compare the firms and determine the valuation. For
example, the industry leader may have no debt, and using a zero debt ratio as a
benchmark may lead its competitors to use less debt in financing their project.

2. Average financial ratios and performance measures as the base line for comparison
The firm may use the industry average of financial ratios and performance measures
as the base line. Then, the firm would use financial planning to ensure that the firm
can outperform the industry average.

3. Balancing the importance of the performance measures
Since the firm’s financial performance cannot be measured by only one number,
for example, the earnings number, the firm can select a number of performance
measures and seek to maximize weighted performance measures with different
weights.

The approach is an effective decision support tool, as it provides intuitive understanding
of complex problems. The senior management can use the DFA approach to forecast the
possible outcomes and suggest solutions, using their own assumptions on the business
risks and market risk. However, DFA is a tool, a way to link the senior management
assumptions to the outcomes, where the links are defined by accounting and tax rules,
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but often, not by financial theories, such as those, like the arbitrage-free pricing models,
that are developed in financial research. Their objective functions in the optimization,
as described above, may not be consistent with enhancing the shareholders’ wealth. To
the extent that some DFAs do not incorporate financial models, they have a number
of limitations. More specifically, I provide three limitations below.

1. Defining the corporate objective
If we take “maximizing shareholders’ value” as the corporate objective, then the
corporate strategies in managing earnings may not be consistent with this funda-
mental goal. DFA can suggest how new strategies may affect the future earnings, or
benchmark the industry leaders, but also how should the senior management seek
shareholders’ value maximizing strategies?
Maximizing the earnings for 1 year or over 2 years is not the same as maximizing
the shareholders” value, because the shareholders’ value depends on all the future
corporate actions in different states of the world. The shareholders’ value is a present
value concept. The simulations of future outcomes do not relate to the present
shareholders’ value unless we know how the market discounts the future values. The
determination of the appropriate market discount rate requires the understanding
of the market pricing of risks and how payments are made for different outcomes.
Only financial theories regarding capital markets can be used to deal with this issue.

2. Defining optimal strategies
DFA can provide insights into the formulation of optimal strategies because it shows
how each of the assumptions of the senior management affects the performance mea-
sure. However, the approach cannot determine the optimal strategy. All decisions
are related and the optimal strategies include all future and present actions. Gener-
ally, simulating forward using some rule-based strategies are not optimal strategies
that often depend on the state of the world and time in relation to the planning
horizon.
Users of DFA tend to choose the “best solution” out of a specified set of simulations.
The solution does not show how the optimal strategy should be revised as the state
has changed or how to discount the payoffs. As a result, DFA often fails to quantify
the present value of the real option appropriately by not incorporating financial
modeling.

3. Linkages of corporate finance and capital markets
Corporate finance does not operate in isolation from capital markets. Corporations
seek funding from capital markets, and the financing may be in the form of deriva-
tives and other option embedded bonds. Corporations also invest in instruments
that are market contingent claims. The values of these assets and liabilities must be
determined by the principles of market valuation and not by the senior manage-
ment’s subjective view of how the securities would be priced, to maintain a coherent
and objective analysis.

Financial models that have been described in the fair valuation section on the total
return approach can provide these linkages. For example, we can determine the cost
of borrowing by the corporate bond valuation model taking the credit risk of the firm
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into account. Therefore, we can appropriately incorporate the change in the firm risk
to calculate the cost of borrowing.

3 The Corporate Model

Thus far, we have discussed the current practices and their natural extensions in manag-
ing the life and general insurance businesses. However, these approaches are now being
challenged to be more effective and relevant to the changing market environment. The
challenges arise from the changing market environment, regulatory pressure, and the
competitive nature of the business.

As insurers seek to gain the economy of scale, they become holding companies of
both life and general insurance companies, and they sell a broad spectrum of products.
In practice, no longer can we dichotomize the world into life insurance and general
insurance. Insurers can have both life and general businesses.

Further, new products are introduced that do not fall into the usual genre of a spread
product, where the product risk is less significant or can be managed by controlling
the market risk, or a going concern business, where the product risks are significant.
For example, the long-term heath care insurance in life insurance is more like the
general insurance where the potential product liability is significant and difficult to
estimate.

Another challenge is to relate the risk management to the shareholders’ value. For
the shareholders’ value, lowering the risks of the asset and liability return may not be
desirable. There is no direct relationship between managing the total returns of the
assets and liabilities to the shareholders value, the capitalization of the firm. Therefore,
in both the total return approach and the DFA approach, we do not have a well-
specified objective function in formulating the strategies to the shareholders’ value.
Certainly, there is no specific reason to justify the optimization.

All these questions suggest that we need to combine the total return approach and
the DFA approach in one consistent framework. On the one hand, we need to extend
the total return approach to incorporate the new sales and product pricing strategies.
On the other hand, the DFA approach should incorporate the appropriate valuation
models of the financial products to determine the fair market valuation of the assets
and liabilities.

The model that brings the two approaches together in one consistent framework
is called the corporate model. The corporate model is described in more detail in Ho
and Lee (2004). In the corporate model approach, we determine all the assets and
liabilities by arbitrage-free relative valuation models. We calibrate all the assets and
liabilities to the observed securities prices. We then specify the model of the new sales.
From these models, we can determine the free cash flow generated by the product sales
and the asset and liability management. The present value of the free cash flow is then
related to the market capitalization via relative valuation approaches. The optimal risk
management is determined to maximize the market capitalization of the insurer subject
to the market constraints, like the rating agencies’ measure of credit risks, the stock
analysts’ demand on the performance metrics.
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The extension of the approach based on incorporating the following features of
modeling:

3.1 The Sales Volume

Similar to the DFA approach, we use the stochastic distributions of the sales volume as
inputs to the model. Financial models of new sales are used to determine the projected
free cash flows and the reported gross earnings. Specifically, the sales projections are
estimated from the budgeting process and the uncertainties of the sales volume are
determined using historical data. The sales model for the next quarter is given by

Upt1 = gUp + v,0Z + oW 3)

where v is the sales volume measured in $ of the face value of the product and g is
the growth rate of the product. The term v,0Z represents the multiplicative ran-
dom walk process and Z is the unit normal distribution. The term o1 W represents
the transient uncertainty of the sales. For example, in auto insurance, ¢ may be tied
to the growth of the population of drivers and the inflation rate. For term insur-
ance, the growth rate may be the change in demographics and the inflation. o is the
standard deviation of a unit of sales. This model suggests that the sales follow a par-
ticular trend in growth, but the sales are uncertain. The uncertainties are modeled by
the random walk process and the transient uncertain movements from one period to
another.

Sales projections are important to risk management in a number of ways. First,
the risk of future sales and the risk of the inforce business are often highly related.
For example, when a product experience shows that the product has been significantly
adversely mispriced, the industry tends to improve the profit margin of the product
in future sales. Therefore, the losses on the balance sheet tend to be mitigated by the
increased profits of the future sales. The converse is also true. When insurers’ products
are shown to be profitable, then the competitive pressure would decrease the profit
margin. Via market competitive forces, there is a natural time diversification of the
risks of sales and the risk of the inforce business.

Notice also that the stochastic process of the sales is different to that of the stock.
Sales tend to fluctuate around a fundamental market trend, while equity takes on
a random walk. In GAAP accounting, profits are released over time, using reserve
accounting. This approach in essence allows for time diversification of the sales risks.
Therefore, while there is significant sales uncertainty from one quarter to another,
the risk is often diversified over the life of the product, leading to a more stable
income.

The corporate model should capture these effects, not only for the general insurance
products but also for the life insurance products. While the life insurance products may
have significant embedded options with market risks, such distinctive features should
not affect the concept of incorporating a model of new sales and the modeling of the
reserves of these products.
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3.2 Asset Economic Value and the GAAP Balance Sheet Statements

Insurance products by and large are reported in book value in the GAAP financial
statements. The values are reported as a form of amortization of the historical cost,
not affected by the changes in the market realities, like the changes in the interest rate
levels. However, for the insurance assets, most insurers choose to categorize their assets
as “ready for sales.” Therefore, the assets are marked to market, and the unrealized
gains and losses are reported. The fair valuation of the asset portfolio should therefore
be consistent with the book value accounting for the most part, other than those assets
classified under “hold till maturity” where the fair values are not reported.

Given the relationship between the fair value accounting and the book value
accounting of the assets, we can now determine the reconciliation of the total returns
of the assets and the net investment income of the assets in the income statements.
Specifically, based on the asset portfolio, we can determine the interest and dividend
incomes. Further, we can develop a model of the realized gain, and therefore we can
determine the reported net investment income. The residuals between the total returns
of the assets and the net investment income can be reconciled with the items in the
comprehensive income of the income statement.

Specifically, let A, and F), be the asset fair value and the face value, respectively,
at time 7 reported in the financial statements. For simplicity assume that there is no
change in the face value from period 7 to 7+ 1. Then according to GAAP accounting,

ArgA, = AG, + R, + 1, 4)

where AG,, is the change of the unrealized gain/loss and from period 7 to 7+ 1. R, X,
and 7, are the realized gain/loss and the net cash inflows and outflows to the asset
portfolio, and the interests income respectively. ArgA, is the total return, according
to Eq. (1).

Now allowing for inflow and outflows to the asset portfolio, we have

An—l—l — A, = Argd, — X, 5)

Finally, by definition of the net investment income (NII) in the income statement,
we have

NI, =R, + 1, (6)

These equations relate the financial statement numbers to the fair valuation of the
assets.

In this modeling, we can show the impact of the embedded options in the invest-
ment portfolio on the reported income of the firm. To the extent that the market risk
may affect the insurance product sales, this model relates the futures sales to the fair
value of the assets and the reported investment income. For example, variable annuities
sales are found to be significantly related to the equity market performance, and the
fixed annuities sales are related to both the equity market performance and the interest
rate level. Since the fair values of the assets are also related to these market risks, this
model enables us to extend our asset and liability management decisions to incorporate
the sales volume.
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We have discussed extensively above in using the fair value of liabilities to manage
the asset and liabilities in the total return approach. The corporate model can then
extend this asset and liability concept to that for an ongoing concern.

3.3 Modeling the Discount Rate of the Businesses

We have discussed the use of the arbitrage-free model and the required option adjusted
spread to determine the fair value of the liabilities. In maximizing the shareholders’
value, we cannot just focus on the value of the inforce business but must also take the
future sales and the franchise value of the going concern of a block of business into
account. Therefore, we need to evaluate the value of a block of business as a contingent
claim on the sales opportunities of the business. Ho and Lee (2004) have shown that
the block of business can be modeled as a real option on the business risk. This real
option can incorporate the growth options of the business and can also determine the
appropriate discount rate of the free cash flows, where the discount rate can be inferred
from the businesses of the other firms.

Our corporate model approach differs from the traditional discounting free cashflow
in the following ways: (1) We separate the risks of the inforce business from the business
risks of the future sales and operations. The present value of the cash flows from the
inforce business are captured by the fair value models. Our model recognizes that the
risks of the future sales and other operational risks require a discount rate appropriately
determined, not derived from the cost of capital of the firm nor from that used for
the inforce business. (2) The value of a block of business can be valued as an option
modeling the uncertainties of the future opportunities, enabling us to incorporate the
franchise value in our risk management process.

Valuation of a block of business begins with the valuation of the liability for $1 face
value, assuming the required option adjusted spread (ROAS) to be zero as described in
Section 2.1. Now we can define the gain-on-sale () to be the premium or present value
of all future premiums net of the present value of the liability based on zero ROAS.
2 is, therefore, the present value of the profits. Instead of releasing the profit over time,
we capture the profit at the time of sale. This number varies from one product to
another. It follows that the total dollar profit is vp. Given the volume stochastic process
of Eq. (7), we now have a stochastic process of the future gain-on-sale.

Ho and Lee (2004) then show that the present value of the gain-on-sale can be
modeled as an “underlying security” where we can model the growth option in acquiring
more inforce business. The same framework can also model the fixed costs and expenses
incurred in managing the business. Using this option pricing framework, we can then
determine the value of the block of business. We now have a model of the value of the
business:

V' = V(pv, growth options, expenses) (7)

3.4 The Objective of Risk Management

The corporate model provides us the quantification of the goal of risk management.
Risk management is not simply minimizing risks nor does risk management focuses
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only on measuring and monitoring risks. Risk management is a quality control process,
ensuring that functioning of the businesses is consistent with the design of the business
model. Indeed, enterprise risk management has the responsibility to assure that the
business processes are functioning as expected and can detect any flaws in the design of
the business model. In so doing, the action of the enterprise risk management always
enhances the shareholders’ value.

We have shown how we determine the economic or fair value of the assets and
liabilities. Further, corporate model relates the fair value measures to the financial
statements. Finally, the corporate model assigns the values to the block of businesses
taking the franchise value into consideration.

In sum, we need to determine the maximal value by changing the investment
strategies, product sales strategies, and other corporate choice variables:

Max V (vp, growth options, expenses) (8)

subject to constraints that may be related to the target net income and the risk of net
income in a multiperiod context. The projected net income can be modeled using
the sales stochastic process, Eq. (3), and net investment income of Eq. (6), and the
financial statement identities.

Enterprise risk management can monitor the inputs to the corporate model which
are the observed changes in the market parameters, the sales volume, the expenses,
and the reported insurance losses. We can also observe the output of the corporate
model, which are the financial statements and the economic values of the assets and
liabilities. Therefore, the corporate model can be tested for its validity over time.
Further, the model can detect any changes in the input data and the output data that
are not consistent with the model. These deviations can then alert the management
of the enterprise risk management process. The end result is that the enterprise risk
management can detect defects in the business model when the defects are small and
we can remedy the problems ahead of time.

This approach has many applications. Perhaps, the most relevant application for
the senior management is the specification of the quality of the reported net income
number. The model shows precisely how the business risks are transformed to the risk
of the net income. The sales risks are transformed by diversification across businesses
and by the inforce businesses. Also, the reported sales risks are diversified over time.
The risk of the total returns of the asset and liability portfolio is diversified by the sales
of different products. But some fair value risks may not be properly accounted for by
GAAP accounting. For example, the embedded options in assets and liabilities, and
some equity risks in structured investments are often reported not in a way consistent
with the fair valuation approach. But by specifying the quality of the net income
numbers and depicting the business processes responsible for the risk transform, we
can identify the strategies in managing the enterprise risks.

These strategies enable insurers to offer more transparency of the business model to
investors, regulators, and rating agencies alike. As a result, enterprise risk management
enables the firm to maximize the market capitalization of the insurer subject to the



44 THOMAS S. Y. HO

market constraints, like the rating agencies’ measure of credit risks, the stock analysts’
demand on the performance metrics.

4 Conclusions

While all insurance companies are engaged in selling insurance products, they differ
significantly in their approaches in managing their assets and liabilities and in managing
their risks. Indeed, asset liability management and risk management in practice is in
fact quite fragmented within the industry. The methods used depend on the product
within the company or depend on the business units. The approach is clearly different
between the life companies and the general insurance companies and from one company
to another within the same sector.

We have shown that the life insurance companies’ risk management practice focuses
on the inforce business. They seek to manage the assets and the liabilities on their
balance sheets. By way of contrast the general insurance companies tend to manage the
assets and liabilities as a going concern, taking future sales and pricing strategies into
account.

The fragmentation limits the usefulness of the asset/liability and the risk man-
agement processes. As a result, insurer’s risk management practice may be limited to
determine whether a product’s risk can be appropriately managed or a business unit
satisfies a solvency test. But we cannot determine how each business unit should be
optimally managed. Methodologies have been proposed to answer these questions.

We describe the corporate model as one solution to the problem. In essence, the
corporate model combines the DFA model and the total return approach. Further, we
develop a valuation model of a block of business. Using a consistent framework tying
the financial statements and the fair value accounting, we can develop an enterprise
risk management process that can analyze the risk prospectively and retrospectively.
The proposed method therefore enables us to monitor and manage enterprise risks.
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IT’S 11 PM—DO YOU KNOW WHERE YOUR LIQUIDITY
IS? THE MEAN-VARIANCE-LIQUIDITY FRONTIER

Andrew W, Lo®, Constantin Petrot®, and Martin Wierzbicki

We introduce liquidity into the standard mean—variance portfolio optimization frame-
work by defining several measures of liquidity and then constructing three-dimensional
mean—variance—liquidity frontiers in three ways: liquidity filtering, liquidity con-
straints, and a mean—variance—liquidity objective function. We show that portfolios
close to each other on the traditional mean—variance efficient frontier can differ substan-
tially in their liquidity characteristics. In a simple empirical example, the liquidity
exposure of mean—variance efficient portfolios changes dramatically from month ro
month, and even simple forms of liquidity optimization can yield significant bene-
Jits in reducing a portfolios liquidity-visk exposure withour sacrificing a great deal of

expected return per unit risk.

1 Introduction

Liquidity has long been recognized as one of the most significant drivers of financial
innovation, and the collapse of several high-profile hedge funds such as Askin Capital
Management in 1994 and Long Term Capital Management in 1998 has only intensified
the financial industry’s focus on the role of liquidity in the investment management
process. Many studies—in both academic journals and more applied forums—have
made considerable progress in defining liquidity, measuring the cost of immediacy and
price impact, deriving optimal portfolio rules in the presence of transactions costs,
investigating the relationship between liquidity and arbitrage, and estimating liquidity
risk premia in the context of various partial and general equilibrium asset-pricing
models.! However, relatively little attention has been paid to the more practical problem
of integrating liquidity directly into the portfolio construction process.>

In this paper, we attempt to remedy this state of affairs by modeling liquidity using
simple measures such as trading volume and percentage bid/offer spreads, and then
introducing these measures into the standard mean—variance portfolio optimization
process to yield optimal mean—variance-liquidity portfolios. We begin by proposing
several measures of the liquidity £; of an individual security, from which we define the
liquidity £, of a portfolio @, = [@y1@p2 - - - Wp,]" as the weighted average ) ; £;w,,; of
the individual securities’ liquidities. Using these liquidity measures, we can construct
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three types of “liquidity-optimized” portfolios: (a) a mean—variance-efficient portfolio
subject to a liquidity filter that each security in the portfolio have a minimum level
of liquidity £g; (b) a mean—variance-efficient portfolio subject to a constraint that the
portfolio have a minimum level of liquidity £¢; and (c) a mean—variance-liquidity-
efficient portfolio, where the optimization problem has three terms in its objective
function: mean, variance, and liquidity. Using three different definitions of liquidity—
turnover, percentage bid/offer spread, and a nonlinear function of market capitalization
and trade size—we show empirically that liquidity-optimized portfolios have some very
attractive properties, and that even simple forms of liquidity optimization can yield
significant benefits in terms of reducing a portfolio’s liquidity-risk exposure without
sacrificing a great deal of expected return per unit risk.

In Section 2, we describe our simple measures of liquidity, and we define our
three liquidity-optimized portfolios in Section 3. We provide an empirical example
of liquidity-optimized portfolios in Section 4 for a sample of 50 US stocks using
monthly, daily, and transactions data from January 2, 1997 to December 31, 2001,
and we conclude in Section 5.

2 Liquidity Metrics

The natural starting point of any attempt to integrate liquidity into the portfolio
optimization process is to develop a quantitative measure of liquidity, i.e., a liquidity
metric. Liquidity is a multi-faceted concept, involving at least three distinct attributes
of the trading process—price, time, and size—hence a liquid security is one that can
be traded quickly, with little price impact, and in large quantities. Therefore, we are
unlikely to find a single statistic that summarizes all of these attributes. To represent
these distinct features, we start with the following five quantities on which our final
liquidity metrics will be based:

Trading volume = Total number of shares traded at time (1)

Logarithm of trading volume = log (Trading volume) ()

Tradi |
Turnover = —— 8 > U0¢ ©)

Shares outstanding

Ask —Bid
Percentage bid/ask spread = m (4)
Loeb price impact function = £ (Trade size, Market cap) (5)
where the first three variables measure the amount of trading and the last two measure

the cost.?

Perhaps the most common measure of the liquidity of a security is its trading
volume. It is almost tautological to say that a security is more liquid if it is traded
more frequently and in greater quantities. Both trading volume and turnover capture
this aspect of liquidity, and because these two variables are so highly correlated (see
Tables 3 and 4), we will use only one of the three measures of trading activity (1)—(3)
in our empirical analysis. Given Lo and Wang’s (2000) motivation for turnover in the
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context of modern asset-pricing models such as the Capital Asset Pricing Model and the
Arbitrage Pricing Theory, we shall adopt turnover (3) as our measure of trading activity.

Another popular measure of the liquidity of a security is the cost of transacting in
it, either as buyer or seller, hence the bid/ask spread is a natural candidate. Smaller
bid/ask spreads imply lower costs of trading, whereas larger bid/ask spreads are partly
attributable to a liquidity premium demanded by market-makers for making markets
in illiquid securities.*

Finally, market capitalization—the market value of total outstanding equity—has
also been proposed as an important proxy for liquidity. Larger amounts of outstanding
equity tend to be traded more frequently, and at a lower cost because there will be a
larger market for the stock. Of course, even a large amount of outstanding equity can
be distributed among a small number of major shareholders, yielding little liquidity
for the stock, but this seems to be the exception rather than the rule. We adopt the
specification proposed by Loeb (1983) in which he provides estimates of the percentage
round-trip total trading cost including: (a) the market-maker’s spread; (b) the price
concession; and (c) the brokerage commission. The total trading cost is an array with
nine capitalization categories and nine block sizes (see Table II in Loeb, 1983). This
matrix provides a good approximation for liquidity, but to account for the continuous
nature of market capitalization and block sizes beyond his original specification, we
interpolate and extrapolate Loeb’s table using a two-dimensional spline.” Figure 1
contains a graphical representation of our parametrization of Loeb’s specification, and
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Figure 1 Loeb’s (1983) price impact function which gives the percentage total cost as a function of
block size and market capitalization, with spline interpolation and linear extrapolation.
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our Matlab sourcecode is provided in Appendix A.I. To minimize the impact of ad hoc
extrapolation procedures such as the one we use to extend Loeb (1983) (see footnote 5),
we assumed a fixed block size of $250,000 in all our calculations involving Loeb’s
liquidity metric, and for this size, the extrapolation/capping of the trading cost is used
rather infrequently.

2.1 Liquidity Metrics for Individual Securities

To construct liquidity metrics, we begin by computing (1)—(5) with daily data and then
aggregating the daily measures to yield monthly quantities. Monthly trading volume
is defined as the sum of the daily trading volume for all the days within the month,
and monthly log-volume is simply the natural logarithm of monthly trading volume.
Monthly turnover is defined as the sum of daily turnover for all the days within the
month (see Lo and Wang, 2000 for further discussion). The monthly bid/ask spread
measure is defined as a mean of the daily bid/ask spreads for all the days within the
month. And finally, the average monthly Loeb price impact measure is defined as a
mean of the corresponding daily measures for all days within the month.

Having defined monthly counterparts to the daily variables (1)—(5), we renormalize
the five monthly measures to yield quantities that are of comparable scale. Let £, repre-
sent one of our five liquidity variables for security 7 in month z. Then the corresponding
liquidity metric £}, is defined as:

Lir — min/e,‘tgk‘[
Zz't

()

max €y — ming o€,
where the maximum and minimum in (6) are computed over all stocks 4 and all
dates in the sample so that each of the five normalized measures—which we now refer
to as a liquidity metric to distinguish it from the unnormalized variable—takes on
values strictly between 0 and 1. Therefore, if the turnover-based liquidity metric for
a given security is 0.50 in a particular month, this implies that the level of turnover
exceeds the minimum turnover by 50% of the difference between the maximum and
minimum turnover for all securities and across all months in our sample. Note that for
consistency, we use the reciprocal of the monthly bid/ask spread measure in defining
£;, for bid/ask spreads so that larger numerical values imply more liquidity, as do the
other four measures.

2.2 Liquidity Metrics for Portfolios

Now consider a portfolio p of securities defined by the vector of portfolio weights
wy = [Wp1wp2 - - - @py] Where a)}t =1land ¢ =[1---1]. Assume for the moment
that this is a long-only portfolio so that w, > 0. Then a natural definition of the
liquidity £,; of this portfolio is simply:

Ept = Z wpiez‘r @)
i=1

which is a weighted average of the liquidities of the securities in the portfolio.
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For portfolios that allow short positions, (7) is not appropriate because short posi-
tions in illiquid securities may cancel out long positions in equally illiquid securities,
yielding a very misleading picture of the overall liquidity of the portfolio. To address
this concern, we propose the following definition for the liquidity metric of a portfolio
with short positions, along the lines of Lo and Wang’s (2000) definition of portfolio

turnover:
ey
¢ Z ®)
pt
T 2=

1 |“)PJ|

In the absence of short positions, (8) reduces to (7), but when short positions are
present, their liquidity metrics are given positive weight as with the long positions, and
then all the weights are renormalized by the sum of the absolute values of the weights.

2.3 Qualifications

Although the liquidity metrics described in Sections 2.1 and 2.2 are convenient defi-
nitions for purposes of mean—variance portfolio optimization, they have a number of
limitations that should be kept in mind. First, (7) implicitly assumes that there are no
interactions or cross-effects in liquidity among securities, which need not be the case.
For example, two securities in the same industry might have similar liquidity metrics
individually, but may become somewhat more difficult to trade when combined in a
portfolio because they are considered close substitutes by investors. This assumption
can be relaxed by specifying a more complex “liquidity matrix” in which £;; are the
diagonal entries but where interaction terms £;;; are specified in the off-diagonal entries.
In that case, the liquidity metric for the portfolio p is simply the quadratic form:

b =) Y wpiwyiliy ©)

i=1 j=1

The off-diagonal liquidity metrics are likely to involve subtleties of the market
microstructure of securities in the portfolio as well as more fundamental economic
links among the securities, hence for our current purposes, we assume that they
are zero.

Second, because (7) is a function only of the portfolio weights and not of the
dollar value of the portfolio, £,; is scale independent. While this also holds true for
mean—variance analysis as a whole, the very nature of liquidity is dependent on scale
to some degree. Consider the case where IBM comprises 10% of two portfolios p and
g. According to (7), the contribution of IBM to the liquidity of the overall portfolio
would be the same in these two cases: 10% times the liquidity metric of IBM. How-
ever, suppose that the dollar value of portfolio p is $100,000 and the dollar value of
portfolio ¢ is $100 million—is a $10,000 position in IBM identical to a $10 million
position in terms of liquidity?

At issue is the fact that, except for Loeb’s measure of price impact, the liquidity
metrics defined by the variables (1)—(4) are not functions of trade size, hence are
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scale-independent. Of course, this is easily remedied by reparametrizing the liquidity
metric €;; so that it varies with trade size, much like Loeb’s price impact function, but
this creates at least three additional challenges: (a) there is little empirical evidence to
determine the appropriate functional specification®; (b) trade size may not be the only
variable that affects liquidity; and (c) making €;; a function of trade size complicates
the portfolio optimization problem considerably, rendering virtually all of the standard
mean—variance results scale-dependent. For these reasons, we shall continue to assume
scale-independence for £;; throughout this study (even for Loeb’s price impact function,
for which we fix the trade size at $250,000), and leave the more challenging case for
future research.

More generally, the liquidity variables (1)—(5) are rather simple proxies for liquidity,
and do not represent liquidity premia derived from dynamic equilibrium models of
trading behavior.” Therefore, these variables may not be stable through time and over
very different market regimes. However, given their role in influencing the price,
time, and size of transactions in equity markets, the five liquidity metrics defined by
(1)—(5) are likely to be highly correlated with equilibrium liquidity premia under most
circumstances and should serve as reasonable local approximations to the liquidity of
a portfolio.

Finally, because our liquidity metrics are ad hoc and not the by-product of expected
utility maximization, they have no objective interpretation and must be calibrated to
suit each individual application. Of course, we might simply assert that liquidity is
a sufficiently distinct characteristic of a financial security that investors will exhibit
specific preferences along this dimension, much like for a security’s mean and variance.
However, unlike mean and variance, it is difficult to identify plausible preference
rankings for securities of varying liquidity levels. Moreover, there are approximation
theorems that derive mean—variance preferences from expected utility theory (see, e.g.,
Levy and Markowitz, 1979), and corresponding results for our liquidity metrics have
yet to be developed.

Nevertheless, liquidity is now recognized to be such a significant factor in invest-
ment management that despite the qualifications described above, there is considerable
practical value in incorporating even ad hoc measures of liquidity into standard
mean—variance portfolio theory. We turn to this challenge in Section 3.

3 Liquidity-Optimized Portfolios

Armed with quantitative liquidity metrics {£;;} for individual securities and portfolios,
we can now incorporate liquidity directly into the portfolio construction process. There
are at least three methods for doing so: (a) imposing a liquidity “filter” for securities
to be included in a portfolio optimization program; (b) constraining the portfolio
optimization program to yield a mean—variance efficient portfolio with a minimum
level of liquidity; and (c) adding the liquidity metric into the mean—variance objective
function directly. We describe each of these methods in more detail in Sections 3.1-3.3,
and refer to portfolios obtained from these procedures as “mean—variance-liquidity

(MVL) optimal” portfolios.
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3.1 Liquidity Filters

In this formulation, the portfolio optimization process is applied only to those securities
with liquidity metrics greater than some threshold level £¢. Denote by U the universe of
all securities to be considered in the portfolio optimization process, and let Uy denote
the subset of securities in U for which £;, > £;:

Uy={ieU:¥; > Ly} (10)

The standard mean—variance optimization process can now be applied to the securities
in Uy to yield mean—variance-efficient liquidity-filtered portfolios:

1
min —® Tow subject to (11a)
{w}
1y = o' o (11b)
1 =o't (11¢)

where 1 is the vector of expected returns of securities in Ug, X is the return covariance
matrix of securities in U, and as 11, is varied, the set of w; that solve (11) yields the
£o-liquidity-filtered mean—variance efficient frontier.

3.2 Liquidity Constraints

An alternative to imposing a liquidity filter is to impose an additional constraint in the
mean—variance optimization problem:

1
min —w' X subject to (12a)
{w}
Hp=0'pt (12b)
't ifo>0
EO = ; . (12C)
- %Eﬁ otherwise
1 =0t (12d)

where @ is the vector of expected returns of securities in the unconstrained universe
U, T is the return covariance matrix of securities in U, £, = [£1; - - - £,+] is the vector
of liquidity metrics for securities in U, and as p, is varied, the set of @w* that solve
(12) yields the £o-liquidity-constrained mean—variance-efficient frontier. Note that
the liquidity constraint (12¢) is in two parts, depending on whether w is long-only or
long-short. For simplicity, we impose a non-negativity restriction on w in our empirical
example so that the constraint reduces to £y = w'¢,.

3.3 Mean—Variance—Liquidity Objective Function

Perhaps the most direct method of incorporating liquidity into the mean—variance
portfolio optimization process is to include the liquidity metric in the objective
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function:’

A
max o' ) — —0'Tw + pw'l, (13a)
{w} 2

subject to 1 = 1,0 < w (13b)

where A is the risk tolerance parameter, ¢ determines the weight placed on liquidity,
and we have constrained @ to be non-negative so as to simplify the expression for the
liquidity of the portfolio.

4 An Empirical Example

To illustrate the practical relevance of liquidity metrics for investment management, we
construct the three types of liquidity-optimized portfolios described in Section 3 using
historical data for 50 US stocks selected from the University of Chicago’s Center for
Research in Securities Prices (CRSP) and the New York Stock Exchange’s Trades and
Quotes (TAQ) database for the sample period from January 2, 1997 to December 31,
2001. These 50 stocks are listed in Table 1, and were drawn randomly from 10 market
capitalization brackets, based on December 31, 1996 closing prices. These stocks
were chosen to provide a representative portfolio with sufficiently diverse liquidity
characteristics, and Appendix A.2 provides a more detailed description of our sampling
procedure. !

In Section 4.1 we review the basic empirical characteristics of our sample of stocks
and define the mean and covariance estimators that are the inputs to the liquidity-
optimized portfolios described in Sections 3.1-3.3. Section 4.2 contains results for
liquidity-filtered portfolios, Section 4.3 contains corresponding results for liquidity-
constrained portfolios, and Section 4.4 contains results for portfolios obtained by
optimizing a mean—variance-liquidity objective function.

4.1 Data Summary

Table 2 reports summary statistics for the daily prices, returns, turnovers, volume,
bid/ask spreads and Loeb measures for the 50 stocks listed in Table 1. Table 2 shows
that the average price generally increases with market capitalization, and the minimum
and maximum average prices of $1.72 and $72.72 correspond to stocks in the first
and tenth brackets, respectively. Average daily returns were generally positive, with the
exception of a small negative return for GOT. The lower-bracket stocks exhibit very
high historical average returns and volatilities, while the top-bracket stocks displayed
the opposite characteristics. For example, the average daily returns and volatilities of
the stocks in the first and tenth brackets were 0.27% and 7.13%, and 0.06% and 2.4%,
respectively.

The relation between daily turnover and market capitalization is less clear due to the
fact that turnover is volume normalized by shares outstanding. In general, the mid-tier
stocks exhibited the highest turnover, up to 2.13% a day, whereas the daily turnover
of bottom-tier and top-tier stocks were only 0.3%-0.4%. However, a clearer pattern
emerges from the raw volume numbers. From the first to the fifth bracket, average
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Table 1 50 US stocks selected randomly within 10 market capitalization brackets, based on
December 31, 1996 closing prices. For comparison, market capitalizations based on December 31,
2002 closing prices are also reported.

1996 2001
Market Cap ~ Marker Cap ~ Marker Cap
Ticker Name ($MM) ($MM) Bracket
MANA MANATRON INC 4.30 13.37 1
SPIR SPIRE CORP 6.80 21.48 1
WTRS WATES INSTRUMENTS INC 7.13 12.57 1
CTE CARDIOTECH INTERNATIONAL INC 9.02 15.38 1
NCEB NORTH COAST ENERGY INC 9.09 51.86 1
ALDV ALLIED DEVICES CORP 12.11 4.85 2
RVEE HOLIDAY RV SUPERSTORES INC 12.32 10.36 2
DAKT DAKTRONICS INC 16.76 153.23 2
ANIK ANIKA RESEARCH INC 18.49 9.93 2
GMCR GREEN MOUNTAIN COFFEE INC 20.93 183.21 2
EQTY EQUITY OIL CO 39.05 22.84 3
STMI ST M WIRELESS INC 40.94 10.14 3
LTUS GARDEN FRESH RESTAURANT CORP 42.07 37.60 3
DISK IMAGE ENTERTAINMENT INC 45.18 37.99 3
ISKO ISCO INC 48.17 56.91 3
DWCH DATAWATCH CORP 52.33 3.33 4
LASE LASERSIGHT INC 53.85 16.39 4
KVHI KV H INDUSTRIES INC 54.20 65.00 4
GOT GOTTSCHALKS INC 54.98 32.87 4
MIMS MIM CORP 60.21 382.31 4
URS U RS CORP NEW 77.43 490.28 5
AEOS AMERICAN EAGLE OUTFITTERS INC 77.99 1,881.07 5
DSPG D § P GROUP INC 81.09 623.53 5
QDEL QUIDEL CORP 98.21 218.47 5
EFCX ELECTRIC FUEL CORP 99.30 42.60 5
AEIS ADVANCED ENERGY INDUSTRIES INC 114.32 847.71 6
ADVS ADVENT SOFTWARE INC 223.07 1,689.06 6
MOND ROBERT MONDAVI CORP THE 269.15 348.92 6
NABI NABI 302.87 39291 6
LAMR LAMAR ADVERTISING CO 427.07 3,496.69 6
HNCS H N C SOFTWARE INC 597.69 727.84 7
ART APTARGROUP INC 632.42 1,255.76 7
GGC GEORGIC GULF CORP 928.16 586.73 7
CMVT COMVERSE TECHNOLOGY INC 935.52 4,163.84 7
AHG APRIA HEALTHCARE GROUP INC 959.10 1,361.88 7
BEC BECKMAN INSTRUMENTS INC NEW 1,113.07 2,699.91 8
ATG A G L RESOURCES INC 1,173.01 1,270.66 8
ACXM ACXIOM CORP 1,229.33 1,518.49 8
EAT BRINKER INTERNATIONAL INC 1,236.62 2,922.79 8
XRAY DENTSPLY INTERNATIONAL INC NEW 1,277.75 2,605.33 8
BCR BARD CRINC 1,596.78 3,296.27 9
HIB HIBERNIA CORP 1,621.76 2,829.27 9
CTL CENTURY TELEPHONE ENTRPRS INC 1,846.76 4,628.18 9
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Table 1 (Continued)

1996 2001
Market Cap Marker Cap Marker Cap
Ticker Name ($MM) ($MM) Bracket
NI NIPSCOINDUSTRIES INC 2,399.93 4,768.67 9
LIZ LIZ CLAIBORNE INC 2,759.02 2,617.30 9
ATML ATMEL CORP 3,271.16 3,431.05 10
EMN EASTMAN CHEMICAL CO 4,292.65 3,008.64 10
CLX CLOROX CO 5,181.06 9,198.42 10
AEP AMERICAN ELECTRIC POWER INC 7,708.26 14,026.89 10
GIS GENERAL MILLS INC 9,970.67 18,947.03 10

daily trading volume is typically less than 100 million shares, but a discrete shift occurs
starting in the fifth bracket, where daily volume jumps to 300 million shares or more
and generally remains at these higher levels for the higher market-cap brackets.

The opposite pattern is observed with the distribution of the percentage bid/ask
spread. For small-cap stocks, the average bid/ask spread varies between 1% and 8%.
High bid/ask spreads are observed between the first and fifth brackets, but starting
with the fifth bracket, the spread falls rapidly to values as low as 0.19%. For mid- and
top-tier stocks, differences in bid/ask spreads are very small. Loeb’s (1983) liquidity
metric exhibits the same general patterns—for small-cap stocks, the metric is as high
as 28%, but by the fourth bracket, the metric stabilizes between 3% and 1.3%. The
standard deviation of this metric for the top-tier stocks is close to zero.

Table 3 contains correlation matrices for the average price, market capitalization,
return, turnover, volume and Loeb’s metric using daily data from January 2, 1997
to December 31, 2001. The three sub-panels correspond to correlation matrices for
the combined portfolio of 50 stocks, the large-cap sub-portfolio (the 26th to 50th
stocks in Table 1), and the small-cap subportfolio (the 1st to 25th stocks in Table 1),
respectively.!! Some of the correlations in Table 3 are unusually high by construction
and need not concern us. For example, since turnover is defined as the ratio of volume
to shares outstanding, where the latter is generally a slowly varying function through
time, the correlation between the volume and the turnover is higher than 90% in each
of the three correlation matrices in Table 3. The same is true for the high negative
correlation between Loeb’s metric and market capitalization.

The correlations between market capitalization, price, and turnover are more sig-
nificant, confirming the general trends observed in Table 2. In each subportfolio,
higher market capitalization corresponds to higher average prices, and higher turnover
and volume. The correlations are the strongest in the small-cap subportfolio where
the gradients of all the underlying variables are the highest. For example, the corre-
lations between the market capitalization and the turnover in the combined, large-
and small-cap subportfolios are 11.94%, 4.01% and 19.87%, respectively. At 90%,
the correlation between the market capitalization and average price in the small-cap
subportfolio is particularly strong. The relationship between turnover, volume, and
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Table 2 Summary statistics for daily prices, returns, turnover, volume bid/ask spreads, and Loeb
measures for 50 US stocks selected randomly within 10 market capitalization brackets. Statisics for
prices, returns, turnover, volume, and the Loeb measure are based on daily data from January 2,
1997 to December 31, 2001. Statistics for bid/ask spreads are based on tick data from January 3,
2000 to December 31, 2001. Trading volume is measured in units of millions of shares per day, and
the Loeb measure is computed for a fixed block size of $250,000.

Return (%) Turnover (%) Volume Bid/Ask (%) Loeb (%)
Average

Stock Price ($) Mean SD Mean SD Mean SD Mean SD Mean SD

MANA 4.43 0.26 6.33 0.29 0.57 9 18  4.98 291 24.17 5.56
SPIR 6.44 0.39 8.28 0.53 1.90 19 63 5.15 3.66 19.29 5.06
WTRS 5.38 0.20 5.69 0.31 1.41 5 21 5.13 238 2811 244
CTE 1.73 0.29 8.27 0.44 1.43 28 95  6.63 3.57 26.67 4.62
NCEB 2.30 0.23 7.07 0.13 0.49 13 32 8.29 8.07 1857 7.18
ALDV 2.17 0.15 6.85 0.32 0.68 15 32 5.50 290 2584 4.14
RVEE 3.04 0.11  5.36 0.20 0.36 15 27 5.57 396 1944 3.29
DAKT 10.92 0.28 4.74 0.43 0.69 36 79  1.63 1.03 9.90 6.64
ANIK 5.68 0.09 5.88 0.73 1.91 62 177 5.30 3.01 14.09 7.48
GMCR  13.56 0.28 4.65 0.56 0.86 25 45  1.48 1.07 13.76 6.72
EQTY 2.35 0.11 5.58 0.27 0.39 34 50 3.97 3.25 16.93 3.83
STMI 6.25 0.17 8.05 0.82 2.52 57 177  3.74 2.25 14.19 6.42
LTUS 12.62 0.02 325 0.51 0.83 26 43 2.21 1.28 826 3.73
DISK 4.60 0.13 597 0.57 1.01 84 141  2.50 1.56 8.07 3.59
ISKO 6.74 0.14 5.06 0.10 0.18 5 10 5.34 279 14.19 3.48
DWCH 1.92 0.18 9.96 1.09 4.97 100 457  6.32 5.02 2322 6.27
LASE 5.46 0.05 7.00 1.07 1.44 158 228 272 1.80 9.01 4.99
KVHI 5.08 0.19 6.73 0.34 0.95 25 69 2.85 1.70 14.15 6.47
GOT 6.57 —-0.01 2.88 0.14 0.32 16 40 2.12 1.19 6.41  3.40
MIMS 5.14 0.33  6.95 1.02 1.80 186 361  3.20 2.75 8.24 4.51
URS 17.75 0.13 2.84 0.27 0.29 41 47  0.81 0.50 3.22  0.30
AEOS 34.97 035 4.54 213 1.96 931 1,225 0.31 0.17 2.16  0.97
DSPG 29.62 0.26 496 2.04 2.43 300 328 0.52 0.24 297 0.55
QDEL 4.35 0.17 5.17 0.50 0.70 121 169 194 1.16 4.87 2.23
EFCX 5.01 0.18 8.11 1.35 4.10 236 648  1.40 0.71 8.53 5.49
AEIS 27.22 0.28 5.47 1.02 1.51 280 450  0.45 0.22 2.74  0.58
ADVS 46.29 0.24 4.80 1.02 1.08 208 331 0.52 0.36 249  0.81
MOND  38.98 0.04 2.69 0.97 1.28 79 104 0.51 0.28 3.15 0.01
NABI 5.40 0.19  6.09 0.66 0.91 236 321 1.57 0.88 3.30  0.62
LAMR 37.91 0.13 3.30 0.68 0.84 340 425  0.34 0.18 1.90 0.77
HNCS 37.57 0.25 5.46 1.55 1.76 404 448  0.54 0.31 2.63 0.54
ATR 35.80 0.09 2.38 0.24 0.23 74 71 0,51 0.28 2.62  0.24
GGC 21.11 0.01 2.74 0.47 0.54 148 169  0.49 0.23 294 0.18
CMVT 68.65 0.15 4.45 2.01 1.78 2,065 3,095 0.15 0.07 1.61 0.52
AHG 16.16 0.10 3.99 0.61 0.72 318 376 0.55 0.36 2.66 0.52
BEC 49.48 0.09 1.93 0.48 0.34 170 130  0.25 0.11 1.56 0.34
ATG 19.76 0.04 1.46 0.21 0.17 117 93 0.47 0.23 239  0.24
ACXM 22.29 0.07 4.27 093 1.17 719 1,005 0.35 0.14 1.89 0.63
EAT 23.90 0.12 2.64 0.60 0.60 451 493 0.33 0.15 1.66 0.54
XRAY 34.75 0.08 2.09 0.52 0.54 256 275  0.37 0.19 1.55 0.30
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Table 2 (Continued)

Return (%) Turnover (%) Volume Bid/Ask (%) Loeb (%)
Average

Stock Price (§) Mean SD Mean SD Mean SD Mean SD Mean SD

BCR 43.38 0.10 2.11 0.60 0.81 314 418  0.22 0.11 1.30  0.00
HIB 14.91 0.06 223 0.30 0.24 449 381 0.51 0.30 1.30  0.02
CTL 39.95 0.09 2.11 0.37 0.34 428 459  0.31 0.13 1.30  0.00
NI 29.05 0.04 1.61 0.39 0.54 503 692 0.33 0.18 1.30  0.00
LIZ 42.34 0.05 236 0.64 0.48 385 282  0.23 0.12 1.30  0.00
ATML 2294 0.11 486 2.13 142 4,177 3,514 0.28 0.15 1.41 0.35
EMN 50.82 0.01 2.05 0.40 0.28 313 220 0.23 0.12 1.30  0.00
CLX 72.72 0.07 237 0.42 0.34 708 690 0.23 0.11 1.30  0.00
AEP 42.15 0.04 1.43  0.26 0.18 595 454 0.19 0.10 1.30  0.00
GIS 58.42 0.06 1.29 0.35 0.27 791 781 0.22 0.11 1.30  0.00

Table3 Correlation matrices (in %) for average price, market capitalization, average return, turnover,
volume, and the Loeb measure for the combined sample of 50 randomly selected securities (five from
each of 10 market capitalization brackets), and large- and small-capitalization subportfolios (the 25
largest and 25 smallest market capitalization securities, respectively, of the 50), using daily data from
January 2, 1997 to December 31, 2001. The Loeb measure is computed for a fixed block size of

$250,000.
Price Market Cap Return Turnover Volume Loeb
Combined Sample
Price 100.0 79.1 6.0 10.5 6.4 —63.1
Market Cap 79.1 100.0 4.8 11.9 19.0 —70.4
Return 6.0 4.8 100.0 7.4 6.2 —4.1
Turnover 10.5 11.9 7.4 100.0 95.0 —8.8
Volume 6.4 19.0 6.2 95.0 100.0 —12.4
Loeb —63.1 —70.4 —4.1 —8.8 —12.4 100.0
Large Capitalization Stocks
Price 100.0 67.5 5.5 0.1 —6.8 —43.3
Market Cap 67.5 100.0 4.1 4.0 14.3 —52.4
Return 5.5 4.1 100.0 —0.4 -1.6 -2.9
Turnover 0.1 4.0 —0.4 100.0 92.9 —2.8
Volume —6.8 14.3 -1.6 92.9 100.0 ~7.4
Loeb —43.3 —52.4 -2.9 —-2.8 —7.4 100.0
Small Capitalization Stocks

Price 100.0 90.7 6.5 20.8 19.6 —82.9
Market Cap 90.7 100.0 5.5 19.9 23.7 —88.4
Return 6.5 5.5 100.0 15.3 13.9 -53
Turnover 20.8 19.9 15.3 100.0 97.1 —14.9
Volume 19.6 23.7 13.9 97.1 100.0 —17.4
Loeb —82.9 —88.4 -5.3 14.9 —17.4 100.0
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Loeb’s metric is particularly important because each metric represents an alternate
measure of liquidity. With the notable exception of the correlation between Loeb’s
metric and turnover in the large-cap subportfolio, all correlations have the correct signs
and are statistically significant at a 5% level. For example, for the combined portfolio,
the turnover-Loeb and volume-Loeb correlations are —8.83% and —12.40%, respec-
tively. The corresponding correlations for the small-cap subportfolio are —14.91% and
—17.37%, respectively. The weak correlation between turnover and Loeb’s metric for
the large-cap subportfolio can be explained by the lack of variation in Loeb’s metric at
higher capitalization levels, a feature evident in Table 2. High positive return-volume
and return-turnover correlations in the small-cap subportfolio—13.92% and 15.29%,
respectively—are also noteworthy, and is not observed in the large-cap subportfolio.
Table 4 is similar to Table 3 except for the addition of another liquidity metric, the
percentage bid/ask spread. Because our source of bid/ask spread data was available only

Table4 Correlation matrices (in %) for average price, market capitalization, average return, turnover,
volume, the Loeb measure, and bid/ask spreads for the combined sample of 50 randomly selected
securities (five from each of 10 market capitalization brackets), and large- and small-capitalization
subportfolios (the 25 largest and 25 smallest market capitalization securities, respectively, of the 50),
using daily data from January 3, 2000 to December 31, 2001. The Loeb measure is computed for a
fixed block size of $250,000, and bid/ask spreads are daily averages based on intradaily tick data.

Price Market Cap Return Turnover Volume Loeb Bid/ask
Combined Sample
Price 100.0 87.9 7.9 14.3 10.2 —60.6 —-31.0
Market Cap 87.9 100.0 7.0 11.0 12.6 —66.7 37.9
Return 7.9 7.0 100.0 6.6 6.0 =5.0 —-0.4
Turnover 14.3 11.0 6.6 100.0 97.7 —8.6 —8.6
Volume 10.2 12.6 6.0 97.7 100.0 -9.2 —10.6
Loeb —60.6 —66.7 =5.0 —8.6 -9.2 100.0 27.5
Bid/ask —-31.0 -37.9 —0.4 —8.6 —10.6 27.5 100.0
Large Capitalization Stock
Price 100.0 84.4 7.2 2.0 —4.1 —39.6 —26.0
Market Cap 84.4 100.0 6.6 —1.1 0.9 —44.4 —34.8
Return 7.2 6.6 100.0 0.1 -0.5 -3.5 -1.0
Turnover 2.0 -1.1 0.1 100.0 96.8 0.7 —5.4
Volume —4.1 0.9 —0.5 96.8 100.0 0.6 —8.1
Loeb —39.6 —44.4 -3.5 0.7 0.6 100.0 14.7
Bid/ask —26.0 —34.8 -1.0 —5.4 —8.1 14.7 100.0
Small Capitalization Stocks
Price 100.0 91.4 8.7 26.7 24.5 —81.6 —36.0
Market Cap 91.4 100.0 7.4 23.0 24.2 —89.1 —41.0
Return 8.7 7.4 100.0 13.1 12.6 —6.6 0.2
Turnover 26.7 23.0 13.1 100.0 98.6 —18.0 —11.8
Volume 24.5 24.2 12.6 98.6 100.0 —19.0 —13.2
Loeb —81.6 —89.1 —6.6 —18.0 —19.0 100.0 40.3

Bid/ask —36.0 —41.0 0.2 —11.8 —13.2 40.3 100.0
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starting on January 3, 2000, all the correlations were re-estimated with the more recent
two-year sample from January 3, 2000 to December 31, 2001.12 The patterns in Table 4
are similar to those in Table 3. Market capitalization is positively correlated with average
price, turnover, and volume, and is negatively correlated with Loeb’s metric and the
bid/ask spread. For the combined portfolio, the turnover-Loeb and the volume-Loeb
correlations as well as the turnover-bid/ask and the volume-bid/ask correlations are of
the order of —10%, that is, they have the correct sign and are statistically significant.
For the large-cap subportfolio, turnover-Loeb, volume-Loeb, turnover-bid/ask, and
volume-bid/ask correlations are all statistically insignificant. For the combined port-
folio, and large- and small-cap subportfolios, the bid/ask-Loeb correlations are strong
and equal to 27.48%, 14.68% and 40.29%, respectively.

Tables 3 and 4 confirm that the correlations between the various liquidity
measures—turnover, volume, Loeb’s metric, and the bid/ask spread—are generally
consistent with each other, yet are not all perfectly correlated, hence each measure
seems to capture certain aspects of liquidity not reflected in the others. The single
exception is volume and turnover, which are extremely highly correlated, so we elim-
inate volume and log-volume from consideration and confine our attention to the
following three liquidity measures in our empirical analysis: turnover, bid/ask spreads,
and Loeb’s metric.

To compute mean—variance-liquidity frontiers, we require estimates of the expected
return 4 and covariance matrix X of the 50 stocks in our sample. Using daily returns
data from January 2, 1997 to December 31, 2001, we compute the following standard

estimators:
1 T
/2 = 7 § R, (14a)
t=1
1 T
o A AN/
= 1 ;_1 Ry — )Ry — 1) (14b)

where R, = [Ry; - - - Rso,]’ is the vector of date-# returns of the 50 stocks in our sample.
We convert these estimates to a monthly frequency by multiplying by 21, the number
of trading days per month. Liquidity-optimized portfolios may then be constructed
with these estimates and any one of the liquidity metrics defined in Section 2.

To underscore the fact that liquidity can vary considerably from one month to
the next, in Sections 4.2—4.4 we will construct liquidity-optimized portfolios for the
months listed in Table 5, which include the start and end of our sample as controls, as
well as months that contain significant liquidity events such as the default of Russian
government debt in August 1998 and the terrorist attacks of September 11, 2001.

4.2 The Liquidity-Filtered Frontier

Given estimates L and X of the mean and covariance matrix of the 50 stocks in our sam-
ple, we can readily extract the filtered counterparts 119 and X with which to construct
the liquidity-filtered mean—variance frontier according to Section 3.1. For expositional
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Table 5 Significant months during the sample period from
December 1996 to December 2001 for which liquidity-
optimized portfolios are constructed.

Date Event

December 1996 Beginning of sample

August 1998 Russian default/LTCM
October 1998 Fall of 1998

March 2000 First peak of S&P 500
July 2000 Second peak of S&P 500
April 2001 First bottom of S&P 500

September 2001 9/11 terrorist attacks, second bottom of S&P 500
December 2001 End of sample

convenience, we focus only on one of the three liquidity metrics—turnover—in this
section, and will consider the other two liquidity metrics in Section 4.3.13

In Table 6 we report the means and standard deviations of two benchmark
portfolios—the global minimum-variance portfolio, and the tangency portfolio—and
the Sharpe ratio of the tangency portfolio for various levels of the liquidity filter for
each of the months listed in Table 5.14 For each set of portfolios of a given month,
the first row—with “Liquidity Metric” set to 0.00—corresponds to portfolios with
no liquidity filters imposed, hence these refer to the usual mean—variance benchmark
portfolios. Subsequent rows of a given month correspond to portfolios with increas-
ingly stricter liquidity filters imposed at fixed increments until the liquidity filter yields
too few securities to construct a meaningful efficient frontier (four securities or less).

Consider the first group of rows in Table 6, for December 1996, the start of our
sample period. Without any liquidity filtering, the tangency portfolio has an expected
monthly return of 4.13% and a monthly return standard deviation of 5.72%, implying
a monthly Sharpe ratio of 0.65.'> However, with a liquidity filter of 2.29 imposed—
only stocks with liquidity metrics greater than or equal to 2.29 are included in the
portfolio—the tangency portfolio changes to one with an expected return of 4.23%, a
standard deviation of 8.20%, and a Sharpe ratio of 0.46. Although the expected return
increases, the standard deviation increases more than proportionally so as to yield a
Sharpe ratio that is only 71% of the unfiltered portfolio’s Sharpe ratio. As the liquidity
filter threshold € in (10) is increased, the Sharpe ratio of the tangency portfolio will
continue to decrease since it represents the best risk/reward trade-off available for a
given set of securities, and portfolios with lower values of £ include all the securities
of portfolios with higher values of £y but not vice-versa. For the month of December
1996, a liquidity filter of 9.15 yields a Sharpe ratio for the tangency portfolio of 0.39,
almost half the value of the unfiltered portfolio’s Sharpe ratio.

However, the trade-off between liquidity and the risk/reward profile of the efficient
frontier is quite different during March 2000, the height of the bull market when the
first peak of the S&P 500 is attained. For the same level of liquidity, 2.29, the Sharpe
ratio of the tangency portfolio is 0.64, virtually identical to that of the unfiltered
portfolio.'® In contrast to December 1996, liquidity seems to be less problematic in
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Table 6 Monthly means and standard deviations of tangency and minimum-variance portfolios of
liquidity-filtered MVL-efficient frontiers for 50 randomly selected stocks (five from each of 10 market
capitalization brackets), based on a monthly normalized turnover liquidity metric for the months
of December 1196, August 1998, October 1998, March 2000, July 2000, April 2001, September
2001, and December 2001. Expected returns and covariances of the 50 individual securities are
estimated with daily returns data from January 2, 1997 to December 31, 2001 and do not vary from
month to month.

Liquidity Tangency Min Var
Date Metric Mean SD Mean SD Sharpe
1996-12 0.00 4.13 5.72 1.53 3.37 0.65
1996-12 2.29 4.23 8.20 1.49 4.91 0.46
1996-12 4.57 5.72 13.04 2.49 8.58 0.40
1996-12 6.86 6.32 15.10 2.51 9.71 0.39
1996-12 9.15 6.41 15.36 5.29 14.14 0.39
1998-08 0.00 4.13 5.72 1.53 3.37 0.65
1998-08 2.29 4.22 6.94 1.60 4.29 0.55
1998-08 4.57 5.96 13.69 1.84 7.69 0.40
1998-08 6.86 6.36 15.28 2.47 9.61 0.39
1998-08 9.15 6.36 16.21 4.06 12.77 0.37
1998-10 0.00 4.13 5.72 1.53 3.37 0.65
1998-10 2.29 3.53 6.52 1.48 3.86 0.48
1998-10 4.57 4.13 8.59 1.79 5.38 0.43
1998-10 6.86 6.07 13.96 2.42 9.27 0.40
1998-10 9.15 6.07 13.96 2.80 9.60 0.40
1998-10 11.43 6.18 14.75 2.70 9.68 0.39
2000-03 0.00 4.13 5.72 1.53 3.37 0.65
2000-03 2.29 4.25 6.02 1.60 3.57 0.64
2000-03 4.57 431 6.90 1.69 4.20 0.56
2000-03 6.86 4.98 8.86 2.44 6.36 0.51
2000-03 9.15 5.71 10.63 4.25 9.41 0.50
2000-03 11.43 5.69 10.61 4.53 9.58 0.50
2000-03 13.72 6.01 11.54 5.07 10.72 0.48
2000-03 16.00 6.09 12.60 4.92 11.41 0.45
2000-03 18.29 6.11 12.64 5.13 11.69 0.45
2000-03 20.58 6.14 14.44 4.86 12.80 0.40
2000-03 22.86 6.14 14.44 4.86 12.80 0.40
2000-03 25.15 4.32 16.00 3.68 14.62 0.24
2000-07 0.00 4.13 5.72 1.53 3.37 0.65
2000-07 2.29 3.88 6.43 1.53 3.79 0.54
2000-07 4.57 4.98 10.55 2.33 7.50 0.43
2000-07 6.86 5.94 13.17 3.90 11.14 0.42
2000-07 9.15 6.34 15.69 4.85 13.80 0.38
2001-04 0.00 4.13 5.72 1.53 3.37 0.65
2001-04 2.29 4.40 6.88 1.52 3.90 0.58
2001-04 4.57 6.45 11.67 2.47 7.70 0.52
2001-04 6.86 6.36 13.61 2.73 9.54 0.44
2001-04 9.15 6.46 15.33 4.19 12.84 0.39
2001-04 11.43 6.68 16.79 3.97 13.26 0.37
2001-09 0.00 4.13 5.72 1.53 3.37 0.65

2001-09 2.29 4.27 6.84 1.70 4.19 0.56
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Table 6 (Continued)

Liquidity Tangency Min Var
Date Metric Mean SD Mean SD Sharpe
2001-09 4.57 5.34 11.02 1.54 6.39 0.44
2001-09 6.86 5.30 11.09 2.32 7.22 0.44
2001-09 9.15 6.50 14.49 5.55 13.41 0.41
2001-12 0.00 4.13 5.72 1.53 3.37 0.65
2001-12 2.29 3.84 6.46 1.47 3.75 0.53
2001-12 4.57 5.04 10.17 1.50 5.94 0.45
2001-12 6.86 5.37 11.53 2.26 8.30 0.43
2001-12 9.15 6.50 14.51 4.43 12.40 0.42

March 2000, with little or no material impact of liquidity filtering on the Sharpe ratio.
In fact, even in the extreme case of a filter of 9.15, the resulting Sharpe ratio is 0.50
in March 2000, which is higher than the Sharpe ratio of the December 1996 filtered
tangency portfolio with a filter of 2.29. In fact, a filter level of 22.86 is required in
March 2000 to yield a Sharpe of 0.40, which is approximately the risk/reward profile of
the portfolio with the most extreme liquidity filter in December 1996, a filter of 9.15.

The results in Table 6 are more readily appreciated via graphical representation
since we have now expanded the focus from two dimensions (mean and variance)
to three (mean, variance, and liquidity). Figures 2 and 3 display liquidity-filtered
mean—variance-liquidity (MVL) efficient frontiers for each of the dates in Table 5.
At the “ground level” of each of the three-dimensional coordinate cubes in Figures 2
and 3, we have the familiar expected-return and standard-deviation axes. The liquidity
threshold £y of (10) is measured along the vertical axis. In the plane of ground level,
the liquidity level is zero hence the efficient frontier is the standard Markowitz mean—
variance efficient frontier, and this frontier will be identical across all the months in our
sample since the estimated mean [t and covariance matrix 3 are based on the entire
sample of daily data from January 2, 1997 to December 31, 2001 and do not vary
over time. However, as the liquidity metric is used to filter the set of securities to be
included in constructing the mean—variance-efficient frontier, the risk/reward profile
of the frontier will change, as depicted by the color of the surface. By construction,
the liquidity of a filtered portfolio is always greater than or equal to the liquidity
threshold £, and since the normalization of all liquidity metrics is performed cross-
sectionally as well as through time, the color and the height of the frontiers at different
dates have the same meaning and can be compared to one another.

Figures 2 and 3 show that as the liquidity filter is imposed, the frontier located at
ground level rises steeply—implying relatively little impact on the risk/reward trade-
off—until the liquidity threshold reaches the level of the least liquid stock in the
portfolio. When the threshold £ is incremented further, some of the illiquid stocks
fail to satisfy the liquidity filter and are eliminated from the filtered portfolio. As the
number of stocks in the portfolio is reduced in this fashion, the MVL frontier becomes
less efficient and the frontier surface shifts inward, in the north-east direction.!” For
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Figure 2 Liquidity-filtered MVL-efficient frontiers for 50 randomly selected stocks (five from each
of 10 market capitalization brackets), based on a monthly normalized turnover liquidity metric for
the months of December 1996, August 1998, October 1998, and March 2000. Expected returns
and covariances of the 50 individual securities are estimated with daily returns data from January 2,
1997 to December 31, 2001 and do not vary from month to month. Color strips to the right of
each figure provide the correspondence between liquidity levels and the spectrum.

sufficiently high liquidity thresholds, too few securities satisfy the filter and it becomes
impossible to compute a non-degenerate MVL frontier, hence the graph ends beyond
these levels.!8

The evolution of the MVL-efficient frontier is highly dependent on the underly-
ing trends in the liquidity distribution. During our 5-year sample period, the average
monthly turnover of our randomly selected portfolio of 50 stocks grew steadily from
0.56% in 1997 to 0.90% in 2000, along with the level of the market. In 2001, the
market declined dramatically and the average turnover decreased to 0.70%. The higher
moments of turnover—the standard deviation, skewness, and kurtosis—followed sim-
ilar but somewhat more dramatic trends. At 0.17% and 0.16% in 1997 and 1998,
respectively, the standard deviation of turnover was almost unchanged as the market
rallied. In 2000, when average turnover peaked at 0.90%, the standard deviation of
turnover also peaked at 0.42%, i.e., the distribution of turnover expanded. At the
same time, extremely high skewness and kurtosis during the boom years of 1999
and 2000 indicated that a small number of stocks enjoyed very active trading. As
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Figure 3 Liquidity-filtered MVL-efficient frontiers for 50 randomly selected stocks (five from each
of 10 market capitalization brackets), based on a monthly normalized turnover liquidity metric for
the months of July 2000, April 2001, September 2001, and December 2001. Expected returns and
covariances are estimated with daily returns data from January 2, 1997 to December 31, 2001.
Color strips to the right of each figure provide the correspondence between liquidity levels and the
spectrum.

markets declined in 2001, the moments of the distribution of turnover returned to
their 1997 levels.

These patterns are borne out by the graphs in Figures 2 and 3. The upper left
subplot in Figure 2 shows the MVL-efficient frontier calculated using turnover in
December 1996. At this point in time, the turnover distribution was quite com-
pressed by historical standards and its mean was relatively low. When the liquidity
filter is raised, the frontier shifts to the northeast and its risk/return profile deteriorates.
Similar patterns are observed in the upper right and lower left subplots in Figure 2,
corresponding to August 1998 and October 1998, respectively. Although the levels of
the S&P 500 in both months were similar, the liquidity conditions were apparently
more favorable in October 1998, which is depicted by a brighter color and steeper
MVL surface in the latter case. In March 2000 (lower right subplot of Figure 2), the
market reached its peak. During that time, the mean and standard deviation of turnover
were both very high, making the liquidity filter almost irrelevant up to a very high lig-
uidity threshold. However, during the bear market of late 2000 and 2001 (Figure 3),
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liquidity deteriorated considerably and the MVL-efficient frontier flattens out to levels
comparable with 1996.

An alternative to describing the evolution of the MVL surface is to select a small
number of characteristic points on this surface and to plot the trajectories of these points
in mean—standard deviation-liquidity space through time. For any mean—variance-
efficient frontier, the most relevant point is, of course, the tangency portfolio. In
Figures 4 and 5, the trajectories of the tangency portfolio are plotted for various levels
of the liquidity filter and over time. Each point along the trajectory corresponds to
the tangency portfolio of the efficient frontier for a given liquidity threshold £y. The
numerical value of the threshold (in %) is displayed next to the tangency point, and
the position of each point is projected onto the ground-level plane for visual clarity.
In addition, two sets of lines are drawn on the ground-level plane: a straight line con-
necting the riskless portfolio to each tangency portfolio (whose slope is the Sharpe
ratio of the tangency portfolio), and curved lines which are MVL frontiers for vari-
ous levels of the liquidity filter. For each figure, the trajectory of the tangency point
starts at the same location on the ground-level plane. In the absence of any liquidity
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Figure 4 Trajectories of the tangency portfolio for liquidity-filtered MVL-efficient frontiers for
50 randomly selected stocks (five from each of 10 market capitalization brackets), based on a monthly
normalized turnover liquidity metric for the months of December 1996, August 1998, October 1998,
and March 2000. Expected returns and covariances of the 50 individual securities are estimated with
daily returns data from January 2, 1997 to December 31, 2001 and do not vary from month to
month.
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Figure 5 Trajectories of the tangency portfolio for liquidity-filtered MVL-efficient frontiers for
50 randomly selected stocks (five from each of 10 market capitalization brackets), based on a monthly
normalized turnover liquidity metric for the months of July 2000, April 2001, September 2001,
and December 2001. Expected returns and covariances of the 50 individual securities are estimated
with daily returns data from January 2, 1997 to December 31, 2001 and do not vary from month
to month.

effects, the trajectory of the tangency portfolio would be vertical and its projection
onto the ground-level plane would coincide with its starting point, but because the
liquidity filter does have an impact in filtering out certain securities, as the thresh-
old increases, the trajectory of the tangency portfolio moves eastward and away from
the viewer. The ground-level projection of the tangency trajectory moves initially in
the east/northeast direction but always yielding less desirable Sharpe ratios. In some
cases, as the liquidity threshold increases, the ground-level projection of the tangency
portfolio turns southeast, yielding tangency portfolios with higher volatility and lower
expected return, but with higher levels of liquidity (see, for example, the lower right
subplot, for March 2000, in Figure 4). At some point, when it becomes impossible for
any of the 50 randomly selected securities to satisfy the liquidity filter, the trajectory
terminates. The dynamics of the trajectory of the tangency portfolio is a qualitative
alternative to assessing the impact of liquidity on the characteristics of a mean—variance
optimal portfolio.

The graphs in Figures 4 and 5 show that for successively higher liquidity filters, the
risk/reward profile of the efficient frontier—as measured by the tangency portfolio—
worsens, but at different rates for different months. Figure 6 depicts the time variation
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Figure 6 Sharpe ratio trajectories of tangency portfolios of liquidity-filtered MVL-efficient frontiers
for 50 randomly selected stocks (five from each of 10 market capitalization brackets), based on a
monthly normalized turnover liquidity metric, as a function of the liquidity filter, for the months
of December 1996, August 1998, October 1998, March 2000, July 2000, April 2001, September
2001, and December 2001. Expected returns and covariances of the 50 individual securities are
estimated with daily returns data from January 2, 1997 to December 31, 2001 and do not vary from
month to month. Thicker lines represent trajectories from more recent months.

of this trade-off more explicitly by graphing the trajectories of Sharpe ratios as a func-
tion of the liquidity filter for each of the months in Table 5. This two-dimensional
representation of a three-dimensional object is a simple way to highlight the trade-off
between liquidity and investment performance. When the level of liquidity is high
(March 2000), the Sharpe ratio declines rather slowly in response to rising levels of lig-
uidity filtering, but when liquidity conditions are poor (September 2001), the Sharpe
ratio falls precipitously as the liquidity threshold is increased. For liquidity-filtered
portfolios, the decline in performance takes the form of discrete jumps because the
liquidity threshold changes the composition of the portfolio by filtering out illiquid

stocks. We shall see in Section 4.3 that imposing liquidity constraints can smooth out
these jumps.

4.3 The Liquidity-Constrained Frontier

The liquidity-filtered portfolios described in Section 4.2 illustrate the potential value of
incorporating simple notions of liquidity into the portfolio construction process, but a
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more direct approach is to impose liquidity constraints directly into the optimization
problem as described in Section 3.2. Table 7 summarizes the characteristics of liquidity-
constrained portfolios for the same 50 stocks considered in Section 4.2 using the same
liquidity metric, monthly normalized turnover.

In contrast to the liquidity-filtered portfolios of Table 6, the results in Table 7
show that the performance of liquidity-constrained portfolios is considerably more
attractive, with generally higher Sharpe ratios for the same liquidity thresholds and
smoother transitions as the threshold is increased. For example, for the month of
December 1996, an increase in the liquidity threshold from 0.00 to 2.29 yields a drop
in the Sharpe atio from 0.65 to 0.46 for the liquidity-filtered portfolios in Table 6, but
Table 7 shows no decline in the Sharpe ratio for the liquidity-constrained portfolios. In
fact, for every month in Table 5, imposing a liquidity constraint of 2.29 has virtually no
impact on the Sharpe ratio, and in some months, e.g., March 2000, the threshold can be
increased well beyond 2.29 without any loss in performance for the tangency portfolio.

The intuition for these improvements lies in the fact that in contrast to liquidity
filtering—which eliminates securities that fall below the liquidity threshold—liquidity-
constrained portfolios generally contain all 50 securities and the portfolio weights are
adjusted accordingly so as to achieve the desired liquidity threshold. Rather than simply
dropping securities that fall below the liquidity threshold, the liquidity-constrained
portfolios underweight them and overweight the more liquid securities, yielding Sharpe
ratios that are larger than those of liquidity-filtered portfolios for the same liquidity
threshold, and smoother functions of the liquidity threshold.

The intuition for the advantages of liquidity constraints over liquidity filtering is
not tied to the turnover liquidity metric, but carries over to the other two metrics as
well. Table 8 summarizes the characteristics of liquidity-constrained portfolios for all
three liquidity metrics—turnover, Loeb, and bid/ask spread—during March 2000 and
December 2001. For all three metrics, and during both months, it is clear that the
Sharpe ratios of the tangency portfolio are generally unaffected by the first few levels
of liquidity constraints, in contrast to the behavior of the liquidity-filtered portfolios
of Table 6.2 However, Table 8 does show that the three metrics behave somewhat dif-
ferently as market conditions change. During the height of the market in March 2000,
the turnover and Loeb metrics yield a larger number of feasible liquidity-constrained
efficient portfolios than the bid/ask metric, but in the midst of the bear market in
December 2001, it is the Loeb and bid/ask metrics that yield more feasible efficient
portfolios. While this may seem to suggest that the Loeb metric is the most robust
of the three, the comparison is not completely fair since we have fixed the block size
for the Loeb metric at $250,000, and the price impact of such a transaction is likely
to be quite different between March 2000 and December 2001.2° The three liquidity
metrics capture distinct—albeit overlapping—aspects of liquidity, and which metric is
most useful depends intimately on the nature of the application at hand.

A graphical representation of the turnover-constrained MVL frontier renders an
even clearer illustration of the difference between liquidity-filtered and liquidity-
constrained portfolios. Figures 7 and 8 contain the liquidity-constrained counterparts



70 ANDREW W. LO ET AL.

Table 7 Monthly means and standard deviations of tangency and minimum-variance portfolios
of liquidity-constrained MVL-efficient frontiers for 50 randomly selected stocks, (five from each
of 10 market capitalization brackets), based on a monthly normalized turnover liquidity metric
for the months of December 1996, August 1998, October 1998, March 2000, July 2000, April
2001, September 2001, and December 2001. Expected returns and covariances of the 50 individual
securities are estimated with daily returns data from January 2, 1997 to December 31, 2001 and do
not vary from month to month.

Liquidity Tangency Min Var
Date Threshold Mean SD Mean SD Sharpe
1996-12 0.00 4.13 5.72 1.53 3.37 0.65
1996-12 2.29 4.13 5.72 1.53 3.39 0.65
1996-12 4.57 4.99 7.36 1.69 4.15 0.62
1996-12 6.86 5.71 9.53 1.98 5.69 0.55
1996-12 9.15 5.78 11.18 2.26 7.66 0.48
1996-12 11.43 5.65 13.03 2.61 9.88 0.40
1996-12 13.72 5.28 14.86 2.83 12.39 0.33
1998-08 0.00 4.13 5.72 1.53 3.37 0.65
1998-08 2.29 4.13 5.72 1.53 3.38 0.65
1998-08 4.57 4.81 6.93 1.76 4.09 0.63
1998-08 6.86 5.90 9.44 2.14 5.57 0.58
1998-08 9.15 6.11 10.97 2.60 7.56 0.52
1998-08 11.43 6.12 12.69 3.16 9.84 0.45
1998-08 13.72 6.13 14.95 3.81 12.38 0.38
1998-10 0.00 4.13 5.72 1.53 3.37 0.65
1998-10 2.29 4.13 5.72 1.53 3.37 0.65
1998-10 4.57 4.13 5.72 1.55 3.42 0.65
1998-10 6.86 4.46 6.33 1.66 3.75 0.64
1998-10 9.15 4.98 7.42 1.76 4.33 0.61
1998-10 11.43 5.52 8.69 1.90 5.09 0.59
1998-10 13.72 5.62 9.38 2.02 5.98 0.55
1998-10 16.00 5.66 10.10 2.25 6.98 0.52
1998-10 18.29 5.63 10.85 2.45 8.03 0.48
1998-10 20.58 5.56 11.67 2.65 9.13 0.44
1998-10 22.86 5.51 12.62 2.84 10.27 0.40
1998-10 25.15 5.37 13.51 3.02 11.46 0.37
1998-10 27.44 4.96 13.97 3.17 12.70 0.32
2000-03 0.00 4.13 5.72 1.53 3.37 0.65
2000-03 2.29 4.13 5.72 1.53 3.37 0.65
2000-03 4.57 4.13 5.72 1.53 3.37 0.65
2000-03 6.86 4.13 5.72 1.73 3.48 0.65
2000-03 9.15 4.12 5.70 1.97 3.82 0.65
2000-03 11.43 4.54 6.41 2.24 4.33 0.64
2000-03 13.72 5.06 7.38 2.52 4.98 0.63
2000-03 16.00 5.61 8.47 2.79 5.73 0.61
2000-03 18.29 5.77 9.04 3.06 6.55 0.59
2000-03 20.58 5.87 9.64 3.33 7.43 0.57
2000-03 22.86 5.93 10.26 3.60 8.35 0.54

2000-03 25.15 5.96 10.95 3.87 9.31 0.51
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Table 7 (Continued)
Liquidity Tangency Min Var
Date Threshold Mean SD Mean SD Sharpe

2000-03 27.44 5.98 11.74 4.14 10.29 0.47
2000-03 29.72 6.00 12.64 4.42 11.31 0.44
2000-03 32.01 6.01 13.62 4.67 12.36 0.41
2000-03 34.29 6.01 14.74 4.84 13.44 0.38
2000-03 36.58 6.03 16.08 4.84 14.66 0.35
2000-03 38.87 6.03 17.61 4.86 16.08 0.32
2000-03 41.15 6.00 19.33 4.85 17.70 0.29
2000-03 43.44 5.83 20.85 4.76 19.45 0.26
2000-07 0.00 4.13 5.72 1.53 3.37 0.65
2000-07 2.29 4.13 5.72 1.53 3.37 0.65
2000-07 4.57 4.12 5.70 1.73 3.62 0.65
2000-07 6.86 4.96 7.23 1.97 4.42 0.63
2000-07 9.15 5.92 9.38 2.33 5.61 0.59
2000-07 11.43 6.14 10.61 2.70 7.06 0.54
2000-07 13.72 6.17 11.78 3.09 8.67 0.49
2000-07 16.00 6.24 13.25 3.50 10.37 0.44
2000-07 18.29 6.36 15.08 3.91 12.15 0.39
2000-07 20.58 6.51 17.26 4.32 14.00 0.35
2001-04 0.00 4.13 5.72 1.53 3.37 0.65
2001-04 2.29 4.13 5.72 1.53 3.37 0.65
2001-04 4.57 4.16 5.77 1.63 3.66 0.65
2001-04 6.86 5.33 7.95 1.69 4.45 0.61
2001-04 9.15 5.90 9.53 1.94 5.59 0.57
2001-04 11.43 5.92 10.45 2.09 6.95 0.53
2001-04 13.72 5.80 11.48 2.31 8.48 0.47
2001-04 16.00 5.55 12.63 2.55 10.10 0.40
2001-04 18.29 5.28 14.19 2.78 11.80 0.34
2001-09 0.00 4.13 5.72 1.53 3.37 0.65
2001-09 2.29 4.13 5.72 1.53 3.37 0.65
2001-09 4.57 4.13 5.72 1.79 3.65 0.65
2001-09 6.86 4.63 6.57 2.10 4.42 0.64
2001-09 9.15 5.49 8.23 2.50 5.52 0.61
2001-09 11.43 6.05 9.65 292 6.86 0.58
2001-09 13.48 6.34 10.87 3.40 8.36 0.54
2001-09 16.00 6.44 11.99 4.04 10.01 0.50
2001-09 18.29 6.55 13.48 4.75 11.83 0.45
2001-12 0.00 4.13 5.72 1.53 3.37 0.65
2001-12 2.29 4.13 5.72 1.53 3.37 0.65
2001-12 4.57 4.11 5.70 1.67 3.64 0.65
2001-12 6.86 4.96 7.19 1.91 4.52 0.63
2001-12 9.15 5.88 9.14 2.33 5.81 0.59
2001-12 11.43 6.35 10.68 2.87 7.35 0.55
2001-12 13.72 6.55 12.02 3.47 9.06 0.51
2001-12 16.00 6.69 13.49 4.24 10.97 0.46
2001-12 18.29 6.80 15.13 5.07 13.11 0.42
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Table 8 Monthly means and standard deviations of tangency and minimum-variance portfolios
of liquidity-constrained MVL-efficient frontiers for 50 randomly selected strocks (five from each
of 10 market capitalization brackets), for three liquidity metrices—turnover, Loeb’s (1983) price
impact measure, and bid/ask spread—for March 2000 and December 2001. Expected returns and
covariances for the 50 individual securities are estimated with daily returns data from January 2,
1997 to December 31, 2001 and do not vary from month to month.

Liquidity Tangency Min Var
Threshold Mean SD Mean SD Sharpe
March 2000
Turnover-Constrained Portfolios

0.00 4.13 5.72 1.53 3.37 0.65

2.29 4.13 5.72 1.53 3.37 0.65

4.57 4.13 5.72 1.53 3.37 0.65

6.86 4.13 5.72 1.73 3.48 0.65

9.15 4.12 5.70 1.97 3.82 0.65
11.43 4.54 6.41 2.24 4.33 0.64
13.72 5.06 7.38 2.52 4.98 0.63
16.00 5.61 8.47 2.79 5.73 0.61
18.29 5.77 9.04 3.06 6.55 0.59
20.58 5.87 9.64 3.33 7.43 0.57
22.86 5.93 10.26 3.60 8.35 0.54
25.15 5.96 10.95 3.87 9.31 0.51
27.44 5.98 11.74 4.14 10.29 0.47
29.72 6.00 12.64 4.42 11.31 0.44
32.01 6.01 13.62 4.67 12.36 0.41
34.29 6.01 14.74 4.84 13.44 0.38
36.58 6.03 16.08 4.84 14.66 0.35
38.87 6.03 17.61 4.86 16.08 0.32
41.15 6.00 19.33 4.85 17.70 0.29
43.44 5.83 20.85 4.76 19.45 0.26

Loeb-Constrained Portfolios

0.00 4.13 5.72 1.53 3.37 0.65

4.95 4.13 5.72 1.53 3.37 0.65

9.90 4.13 5.72 1.53 3.37 0.65
14.85 4.13 5.72 1.53 3.37 0.65
19.81 4.13 5.72 1.53 3.37 0.65
24.76 4.13 5.72 1.53 3.37 0.65
29.71 4.13 5.72 1.53 3.37 0.65
34.66 4.13 5.72 1.53 3.37 0.65
39.61 4.13 5.72 1.53 3.37 0.65
44.56 4.13 5.72 1.53 3.37 0.65
49.51 4.15 5.75 1.53 3.37 0.65
54.46 4.06 5.62 1.54 3.37 0.65
59.42 3.88 5.36 1.54 3.37 0.64
64.37 3.73 5.18 1.54 3.37 0.64
69.32 3.60 5.06 1.54 3.37 0.63
74.27 3.49 5.01 1.53 3.38 0.01
79.22 3.38 4.99 1.49 3.42 0.59

84.17 3.29 5.09 1.45 3.48 0.56
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Table 8 (Continued)
Liquidity Tangency
Threshold Mean SD Mean SD Sharpe
89.12 3.22 5.28 1.42 3.58 0.53
94.08 3.18 5.63 1.39 3.71 0.49
Bid [Ask-Constrained Portfolios
0.00 4.13 5.72 1.53 3.37 0.65
2.46 4.13 5.72 1.53 3.37 0.65
491 4.13 5.72 1.53 3.37 0.65
7.37 4.13 5.72 1.53 3.37 0.65
9.82 3.94 5.45 1.54 3.37 0.64
12.28 3.60 5.09 1.54 3.37 0.62
14.73 3.29 5.01 1.45 3.47 0.57
17.19 3.10 5.45 1.35 3.75 0.49
19.65 3.24 7.06 1.36 4.16 0.40
22.10 3.98 11.23 1.24 5.20 0.32
December 2001
Turnover-Constrained Portfolios
0.00 4.13 5.72 1.53 3.37 0.65
2.29 4.13 5.72 1.53 3.37 0.65
4.57 4.11 5.70 1.67 3.64 0.65
6.86 4.96 7.19 1.91 4.52 0.63
9.15 5.88 9.14 2.33 5.81 0.59
11.43 6.35 10.68 2.87 7.35 0.55
13.72 6.55 12.02 3.47 9.06 0.51
16.00 6.69 13.49 4.24 10.97 0.46
18.29 6.80 15.13 5.07 13.11 0.42
Loeb-Constrained Portfolios
0.00 4.13 5.72 1.53 3.37 0.65
4.95 4.13 5.72 1.53 3.37 0.65
9.90 4.13 5.72 1.53 3.37 0.65
14.85 4.13 5.72 1.53 3.37 0.65
19.81 4.13 5.72 1.53 3.37 0.65
24.76 4.13 5.72 1.53 3.37 0.65
29.71 4.13 5.72 1.53 3.37 0.65
34.66 4.13 5.72 1.53 3.37 0.65
39.61 4.13 5.72 1.53 3.37 0.65
44.56 4.13 5.72 1.53 3.37 0.65
49.51 4.13 5.72 1.53 3.37 0.65
54.46 4.12 5.71 1.54 3.37 0.65
59.42 4.00 5.53 1.54 3.37 0.65
64.37 3.81 5.27 1.53 3.37 0.64
69.32 3.64 5.08 1.54 3.37 0.63
74.27 3.52 5.00 1.54 3.38 0.62
79.22 3.38 4.95 1.52 3.41 0.59
84.17 3.27 5.00 1.46 3.48 0.57
89.12 3.17 5.16 1.42 3.57 0.53
94.08 3.07 5.44 1.39 3.70 0.48
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Table 8 (Continued)

Liquidity Tangency Min Var
Threshold Mean SD Mean SD Sharpe
Bid /Ask-Constrained Portfolios

0.00 4.13 5.72 1.53 3.37 0.65

2.46 4.13 5.72 1.53 3.37 0.65

491 4.13 5.72 1.53 3.37 0.65

7.37 4.13 5.72 1.53 3.37 0.65

9.82 4.13 5.72 1.53 3.37 0.65
12.28 4.13 5.72 1.53 3.37 0.65
14.73 4.13 5.72 1.53 3.37 0.65
17.19 4.13 5.72 1.53 3.37 0.65
19.65 4.12 5.71 1.54 3.37 0.65
22.10 4.13 5.73 1.54 3.37 0.65
24.56 4.17 5.78 1.547 3.37 0.65
27.01 4.08 5.64 1.54 3.37 0.65
29.47 3.97 5.48 1.54 3.37 0.65
31.92 3.84 5.30 1.54 3.37 0.64
34.38 3.72 5.16 1.54 3.37 0.64
36.84 3.60 5.01 1.54 3.37 0.63
39.29 3.49 491 1.54 3.37 0.62
41.75 3.38 4.83 1.53 3.37 0.61
44.20 3.29 4.79 1.51 3.38 0.60
46.66 3.19 4.77 1.46 3.40 0.58

to Figures 2 and 3. In the upper left subplot of Figure 7, which contains the MVL
frontier for December 1996, the period when the distribution of average turnover
was at its historically low mean and standard deviation, the sail-like surface is rather
flat and covers relatively little surface area. The infeasibility of the constrained portfo-
lio optimization problem at higher liquidity thresholds is responsible for the tattered
edges of the surface starting at the fourth liquidity level (note that the size of the lig-
uidity increments is identical across all months and all the axes have the same scale).
At the highest levels of liquidity, only the most liquid segments of the MVL frontier
appear in Figure 7. Because of the generally positive correlation between liquidity and
market capitalization, and the fact that the large-cap stocks in our sample have mod-
est expected returns and volatilities as compared to the smaller-cap stocks, at higher
liquidity threshold levels portfolios on the MVL frontier consist mostly of defensive
large-cap equities.

In the upper right sub-plot of Figure 7 (August 1998), liquidity conditions have
improved—the MVL frontier rises up from the ground-level plane almost vertically,
and up to the third liquidity threshold, the shape of the frontier remains almost unaf-
fected by the liquidity constraint. In the lower left sub-plot of Figure 7 we observe a
dramatic increase in liquidity—the MVL frontier is twice as tall as the December 1996
frontier, and the level of liquidity at which the surface starts bending to the right is
significantly higher than in the previous figures. In the lower right subplot of Figure 7,
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Figure 7 Liquidity-constrained MVL-efficient frontiers for 50 randomly selected stocks (five from
each of 10 market capitalization brackets), based on a monthly normalized turnover liquidity metric
for the months of December 1996, August 1998, October 1998, and March 2000. Expected returns
and covariances of the 50 individual securities are estimated with daily returns data from January 2,
1997 to December 31, 2001 and do not vary from month to month. Color strips to the right of
each figure provide the correspondence between liquidity levels and the spectrum.

corresponding to the first peak in the S&P 500 (March 2000), the MVL frontier is at
its tallest and it is apparent that the liquidity constraint is irrelevant up to a very high
liquidity threshold.

Figure 8 tells a very different story. The shape and height of the MVL frontier
change dramatically starting with the upper left subplot for July 2000 (the second peak
of the S&P 500) and moving clockwise to April 2001 (the first bottom of the S&P 500),
September 2001 (the terrorist attacks on 9/11) and December 2001 (the last month
of the simulation). In the face of the bear market of 2000-2001, liquidity conditions
have clearly deteriorated, and Figure 8 provides a detailed roadmap of the dynamics of
this trend.

The dynamics of liquidity-constrained MVL frontiers can also be seen through the
trajectories of the tangency portfolio, contained in Figures 9-11. As with the liquidity-
filtered trajectories in Figures 46, the trajectories in Figures 9 and 10 originate at the
same point on the ground-level plane because the lowest-level frontier is unaffected
by the liquidity constraint, and the trajectories remain vertical until the first liquidity
threshold, at which point they begin to move initially in the northeast direction and,
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Figure 8 Liquidity-constrained MVL-efficient frontiers for 50 randomly selected stocks (five from
each of 10 market capitalization brackets), based on a monthly normalized turnover liquidity metric
for the months of July 2000, April 2001, September 2001, and December 2001. Expected returns
and covariances are estimated with daily returns data from January 2, 1997 to December 31, 2001.
Color strips to the right of each figure provide the correspondence between liquidity levels and the
spectrum.

in some cases, eventually turning towards the southeast direction, until they reach a
sufficiently high liquidity threshold where the tangency portfolios no longer exist.

Figure 11 summarizes the trajectories of Figures 9 and 10 by plotting the Sharpe ratio
as a function of the liquidity threshold for each of the months in Table 5. In contrast
to the liquidity-filtered trajectories of Figure 6, the liquidity-constrained trajectories of
Figure 11 are all concave, and each trajectory is comprised of three distinct segments.
The first segment—Dbeginning at the left boundary of the graph—is parallel to the
liquidity axis, indicating that liquidity constraints have no effect on the tangency
portfolio’s Sharpe ratio. The second segment is decreasing and concave, implying Sharpe
ratios that decline at increasingly faster rates as the liquidity threshold is increased.
The third segment is decreasing but linear, implying Sharpe ratios that decline with
increasing liquidity thresholds, but at a constant rate.

Intuitively, an optimal MVL portfolio—one that balances all three characteristics
in some fashion—should be located somewhere along the second segments of the
Sharpe ratio curves in Figure 11. It is along these segments that marginal increases
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Figure 9 Trajectories of the tangency portfolio for liquidity-constrained MVL-efficient frontiers
for 50 randomly selected stocks (five from each of 10 market capitalization brackets), based on a
monthly normalized turnover liquidity metric for the months of December 1996, August 1998,
October 1998, and March 2000. Expected returns and covariances of the 50 individual securities
are estimated with daily returns data from January 2, 1997 to December 31, 2001 and do not vary
from month to month.

in the liquidity threshold yield increasingly higher costs in terms of poorer Sharpe
ratios, hence there should be some liquidity threshold along this segment that bal-
ances an investor’s preference for liquidity and the risk/reward profile of the tangency
portfolio. Of course, turning this heuristic argument into a formal procedure for con-
struction MVL-optimal portfolios requires the specification of preferences for mean,
variance, and liquidity, which is precisely the approach developed in Section 3.3 and
implemented in Section 4.4.

4.4 The Mean—Variance—Liquidity Frontier

Although the most direct method for incorporating liquidity into the portfolio con-
struction process is to specify an objective function that includes liquidity as in
Section 3.3, this assumes that investors are able to articulate their preferences for liquid-
ity. This may not be true given that liquidity has only recently become an explicit factor
in the investment process of many individual and institutional investors. However, by
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Figure 10 Trajectories of the tangency portfolio for liquidity-constrained MVL-efficient frontiers
for 50 randomly selected stocks (five from each of 10 market capitalization brackets), based on a
monthly normalized turnover liquidity metric for the months of July 2000, April 2001, September
2001, and December 2001. Expected returns and covariances of the 50 individual securities are
estimated with daily returns data from January 2, 1997 to December 31, 2001 and do not vary from
month to month.

providing various calibrations of the MVL objective function (13) and their empir-
ical implications for our sample of 50 stocks, we hope to develop a more formal
understanding of liquidity preferences in the mean—variance context.

Recall from (13) of Section 3.3 that the MVL objective function is given by:

/ )\' / /
max o' i — —w Xw + pw'l;
{w} 2

subjectto 1 =i, 0<w

where ¢ represents the weight placed on liquidity. Figure 12 contains four graphs—
the expected return, standard deviation, liquidity, and Sharpe ratio of the optimal
portfolio—each as a function of the risk aversion parameter A, and for various values
of the liquidity parameter ¢ where the liquidity metric used is monthly normalized
turnover. When ¢ = 0, (13) reduces to the standard Markowitz—Tobin mean—variance
portfolio optimization problem. As the risk aversion parameter A increases along the
horizontal axis in Figure 12, both the expected return and the standard deviation of
the optimal portfolio decline as the investor places increasingly higher penalties on the
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Figure 11  Sharpe-ratio trajectories of tangency portfolios of liquidity-constrained MVL-efficient
frontiers for 50 randomly selected stocks (five from each of 10 market capitalization brackets),
based on a monthly normalized turnover liquidity metric, as a function of the liquidity threshold,
for the months of December 1996, August 1998, October 1998, March 2000, July 2000, April
2001, September 2001, and December 2001. Expected returns and covariances of the 50 individual
securities are estimated with daily returns data from January 2, 1997 to December 31, 2001 and do
not vary from month to month. Thicker lines represent trajectories from more recent months.

portfolio’s risk. Up to A = 10, the standard deviation declines faster than the expected
return, leading to a rising Sharpe ratio curve. After reaching its peak at A = 10, the
Sharpe ratio begins to decline.

Once liquidity is allowed to enter the objective function, i.e., ¢ > 0, the dynamics
of the optimal portfolio become more complex. For expositional convenience, we
focus our comments exclusively on the Sharpe ratio of the optimal portfolio. The
interaction between the penalty for risk and the payoft for liquidity in (13) depends on
the interaction between the cross-sectional distributions of liquidity and volatility in
our sample. Typically, a security’s liquidity metric and volatility are both correlated with
market capitalization, e.g., large-cap stocks usually exhibit lower volatility and higher
liquidity than smaller-cap counterparts. In this case, when a MVL objective function is
optimized, the risk and liquidity components act in the same direction—an increment
in either A or ¢, apart from differences in scale, has the same qualitative impact on the
optimal portfolio’s characteristics. On the other hand, if the correlations between the
liquidity metric and volatility are weak, then the interactions between the second and
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Figure 12 Properties of optimal MVL portfolios using a monthly normalized turnover liquidity
metric for 50 randomly selected stocks (five from each of 10 market capitalization brackets), for the
month of March 2000. Expected returns and covariances of the 50 individual securities are estimated
with daily returns data from January 2, 1997 to December 31, 2001, and “phi” denotes the liquidity
parameter where a value of 0.00 implies that liquidity is not included in the portfolio optimization
problem.

third terms in the objective function (13) are more complicated. Figure 13 plots daily
cross-sectional correlations between raw turnover and rolling 20-day return standard
deviations for the sample of 50 stocks, and with the notable exception of the year 2000,
the correlation between liquidity and volatility is weak, hence there are indeed three
distinct components in optimizing (13): expected return, risk, and liquidity. This is
confirmed in Figure 12 for cases where ¢ > 0. The addition of liquidity in the mean—
variance objective function results in lower Sharpe ratios for all values of A, and ¢, and
risk aversion and liquidity act as countervailing forces in the objective function.

It should be emphasized that the specific interactions between A and ¢ are quite
sensitive to the liquidity metric used. For example, Figure 14 displays the same relations
as in Figure 12 but using the bid/ask spread as the liquidity metric instead of turnover.
A comparison of the two figures shows some significant differences in the dynamics of
the Sharpe ratio for the MVL-optimal portfolio. With the bid/ask liquidity metric, the
tightening of both risk aversion and liquidity thresholds shifts the optimal portfolio
qualitatively in the same direction—towards larger-cap, less risky stocks. An increase
in the liquidity preference parameter ¢ accelerates the migration of portfolio toward
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Figure 13 Daily cross-sectional correlations between raw turnover and rolling 20-day standard
deviations for 50 randomly selected stocks (five from each of 10 market capitalization brackets) from
January 2, 1997 to December 31, 2001.

larger-cap stocks driven by an increase in the risk aversion parameter, A. This is due
to the fact that during our sample period, the cross-sectional correlation between
individual bid/ask spreads and volatilities is quite high and positive, and since liquidity is
inversely proportional to bid/ask spread, the correlation between liquidity and volatility
in this case is strong and negative.

5 Conclusions

In this paper, we have proposed several measures of liquidity for individual securities
and their portfolios, and have developed the implications of these measures for standard
mean—variance portfolio analysis. In particular, there are at least three ways to inte-
grate liquidity into the investment process once a liquidity metric is defined—through
liquidity filtering, liquidity constraints, and a direct optimization of a mean—variance—
liquidity objective function. In a simple empirical example of 50 randomly selected
securities, we have shown that in many cases, even the simplest liquidity-based portfolio
optimization procedures can yield mean—variance-efficient portfolios that are consider-
ably more liquid than their standard counterparts. More importantly, because liquidity
varies so much over time, the mean—variance-liquidity landscape is a highly dynamic
surface that contains pitfalls and opportunities, and which should be managed carefully
and purposefully.
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Figure 14 Properties of optimal MVL portfolios using a monthly normalized bid/ask spread lig-
uidity metric for 50 randomly selected stocks (five from each of 10 market capitalization brackets),
for the month of March 2000. Expected returns and covariances of the 50 individual securities are
estimated with daily returns data from January 2, 1997 to December 31, 2001, and “phi” denotes
the liquidity parameter where a value of 0.00 implies that liquidity is not included in the portfolio
optimization problem.

Because the integration of liquidity directly into portfolio management processes
has not yet become standard practice, many aspects of our analysis can be improved
upon and extended. Our liquidity metrics are clearly simplistic and not based on any
equilibrium considerations, and our definition of portfolio liquidity as the weighted
average of individual securities’ liquidity measures may not be the best definition in
all contexts. Better methods of measuring liquidity will obviously lead to better MVL
portfolios.?! The dynamics of liquidity should also be modeled explicitly, in which
case static mean—variance optimization may no longer be appropriate but should be
replaced by dynamic optimization methods such as stochastic dynamic programming,.
Preferences for liquidity must be investigated in more detail—do such preferences exist,
and if so, are they stable and how should they best be parametrized? Finally, we have
ignored estimation error in the portfolio construction process, and just as sampling
variation affects mean and covariance matrix estimators, liquidity estimators will also
be subject to sampling variation and this may have significant impact on the empirical
properties of MVL portfolios.??

We believe we have only begun to explore the many practical implications of
liquidity for investment management, and our framework adds an important new
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dimension—Iliterally as well as figuratively—to the toolkit of quantitative portfolio
managers. In particular, with three dimensions to consider, portfolio management can
no longer operate within a purely numerical paradigm, and three- and four-dimensional
visualization techniques will become increasingly central to industrial applications of
portfolio optimization. We plan to explore these issues in ongoing and future research,
and hope to have provided sufficient “proof-of-concept” in this paper for the benefits
of incorporating liquidity into the investment process.

Appendix A

In this appendix we provide Matlab sourcecode for our extension of Loeb’s (1983) price
impact function in A.l, and the details of our sample selection procedure in A.2.

A.1 Matlab Loeb Function tloeb

function tloeb
% the default value for the Loeb (1983)
spread/price cost b = 50;

% cap range

xi = [ 0.01 10 25 50 75 100 500 1000 1500 3000 ];

% block size range, in $1,000’s

yi = [ 0.01 5 25 250 500 1000 2500 5000 10000 20000 ]

% original Loeb (1983) measure of liquidity
% (Table II)

|

173 173 27.3 43.8 NaN NaN NaN NaN NaN NaN ;
89 89 120 238 334 NaN NaN NaN NaN NaN ;
50 50 7.6 188 259 30.0 NaN NaN NaN NaN ;
43 43 58 96 169 254 315 NaN NaN NaN ;
28 28 39 59 81 115 157 257 NaN NaN ;
18 18 21 32 44 56 79 110 162 NaN ;
19 19 20 31 40 56 77 104 143 200 ;
19 19 19 27 33 46 62 89 136 181 ;
11 11 12 13 17 21 28 41 59 8.0

11 11 12 13 17 21 28 41 5.9 8.0] ;
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nx = size(xi,2); ny = size(yi,2);

% array of indices of last non-NaN points in Zi
matrix along mcap dimension nonnan = [ 4 4 56 6 7
89 1;

% deal with NaN’s in zi matrix

% loop over rows
for i = 1: size(xi,2) -3

% last non-nan point

f = nonnan(i);

for j=f+1:1:ny
% Loeb cost based on simple linear extra-
% polation starting from the end points
zi(i,3) = zi(i,£)+(zi(i,£)-zi(£-1))*(yi(j)-
yi(£))/(yi(f) - y(£-1));

% cap the cost zi by b =
if zi(i,j) > 50; zi(i,j)
end;

50% if cost >50%;
=b;

% If trade size > 20% of market cap (not
% T. Loeb’s original 5% ), zi is still NaN
if (yi(3)/1000) > 0.2%xi(i); zi(i,j) = Nal;
end;

end
end
zi

% produce arrays acceptable by MATLAB for 3D
% graphics
for i = 1:ny
for j = 1:nx
x(i,j) = (xi(§));
y(E,3) = (yi(i));
z(i,j) = zi(j,1);
end
end
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% determine max-min for interpolation
maxx = max(xi); minx = min(xi); maxy = max(yi);
miny = min(yi);

% the number of nodes in each direction
N = 40; dx = (maxx - minx)/N;

dy = (maxy - miny)/N;

% interpolated arrays

for i=1:N
for j=1:N
x1(i,j)=x1i(1)+dx*j;
y1(i,j)=yi(1)+dy+i;
end
end

% plot extended Loeb function

mesh((x1), (y1), interp2(x, y, z, x1, yi,
’linear’) ) view(30,50); colormap(jet); grid on;
xlabel(’Cap [$1,000,000]°, ’Fontsize’, 8);
ylabel(’Block [$1000]°, ’Fontsize, 8)

zlabel (’Spread/Price Cost [%]1°);

% title (’Loeb (1983) Total Spread/ Price Cost’);

print -depsc p:\\msl\\tloeb.eps

A.2  Sampling Procedure

The process by which we selected our sample of 50 stocks and constructed our dataset
for the empirical example consisted of the following five steps:

1. Using CRSP, we selected all ordinary common stocks having CRSP share code,
SHRCD, equal to 11 or 10 for December 1996, the last pre-sample month,
and for December 2001, the last in-sample month. ADRs, SBIs, units, certifi-
cates, closed-end funds and REITs were excluded. From these two sets of stocks,
one for December 1996 and one for December 2001, we selected a common
subset.

2. From this common subset we selected stocks with valid daily returns which have
never been delisted during the in-sample period. For each stock, we calculated the
initial market capitalization as of the last trading day, December 31, 1996, of the
pre-sample period.
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Table A.1 Data items extracted from CRSP Daily Master File.

Variable Definition

CUSIP CUSIP identifier

PERMNO CRSP permanent number

PERMCO CRSP permanent company number

TICKER Exchange ticker symbol

COMNAM Company name

SHRCD Share code

SICCD Standard industrial classification code

DATE Trading date

BIDLO Bid or low price

ASKHI Ask or high price

PRC Actual close (positive number) or the average between BIDLO and ASHKI (negative
number)

VOL Trading volume, units of one share

RET Daily total return, including dividends

SHROUT Number of shares outstanding, in thousands

3. We split the final subset of stocks into 10 capitalization categories, in millions US

dollars (see Loeb, 1983):
0.1 10255075 100500 1,000 1,500 3,000 > 3,000

The filtering is concluded by random selection of five stocks from each capitalization
category.

4. For each stock in our randomly selected portfolio, we downloaded the data items
listed in Table A.1 from the daily CRSP database, and calculated the daily mar-
ket capitalization, in thousands of dollars, by multiplying the absolute value of
price, |PRC|, by number of shares outstanding, SHROUT, and daily turnover,
TURN, by dividing the daily trading volume, VOL, by the current number of
shares outstanding, SHROUT.

5. For each randomly selected stock, using the CRSP TICKER symbol as the key, we
downloaded from the TAQ database the tick-by-tick BID and ASK prices, calculated
tick-by-tick bid/ask spreads, averaged the spreads for each day, and combined them
with the remaining CRSP data set. The TAQ data, which are used exclusively
for bid/ask spread calculations, start in January 2000, while the CRSP data start in
January 1997. Missing daily bid/ask spreads in the 2000-2001 period (this problem
is particularly acute for small cap stocks) were backfilled with valid ex-post values.
For example, if a valid bid/ask spread at # is s(#1), and the bid/ask spreads at

and 73 are missing because there were no quotes in the TAQ database, then we assign
s(t2) = s(t3) = s(t1).
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Notes

! See, for example, Acharya and Pedersen (2002), Aiyagari and Gertler (1991), Atkinson
and Wilmott (1995), Amihud and Mendelson (1986b), Bertsimas and Lo (1998), Boyle
and Vorst (1992), Chordia, Roll and Subrahmanyam (2000, 2001a,b, 2002), Chordia,
Subrahmanyam, and Anshuman (2001), Cohen et a/. (1981), Constandnides (1986), Davis
and Norman (1991), Dumas and Luciano (1991), Epps (1976), Garman and Ohlson (1981),
Gromb and Vayanos (2002), Grossman and Laroque (1990), Grossman and Vila (1992),
Heaton and Lucas (1994, 1995), Hodges and Neuberger (1989), Holmstrom and Tirole
(2001), Huang (2002), Litzenberger and Rolfo (1984), Leland (1985), Liu and Longstaff
(2000), Lo, Mamaysky, and Wang (2001), Magill and Constandnides (1976), Morton and
Pliska (1995), Pastor and Stambaugh (2002), Sadka (2003), Shleifer and Vishny (1997),
Tuckman and Vila (1992), Vayanos (1998), Vayanos and Vila (1999), and Willard and
Dybvig (1999).

Of course, many studies have considered the practical significance of trading costs or “slip-
page” in investment management, e.g., Arnott and Wagner (1990), Bertsimas and Lo (1998),
Bodurtha and Quinn (1990), Brinson, Hood, and Beebower (1986, 1991), Chan and
Lakonishok (1993, 1995), Collins and Fabozzi (1991), Cuneo and Wagner (1975), Gammill
and Pérold (1989), Hasbrouck and Schwartz (1988), Keim and Madhavan (1997), Leinweber
(1993, 1994), Loeb (1983), Pérold (1988), Schwartz and Whitcomb (1988), Stoll (1993),
Treynor (1981), Wagner and Banks (1992), Wagner and Edwards (1993), and the papers in
Sherrerd (1993). None of these studies focuses squarely on the quantitative trade-off between
expected return, risk, and liquidity. However, Michaud (1989) observes that standard mean—
variance portfolio optimization does not take liquidity into account, and proposes liquidity
constraints and quadratic penalty functions in a mean—variance framework in Michaud
(1998, Chapter 12).

The third dimension of liquidity—time to completion of a purchase or sale—is obviously
missing from this list, but only because of lack of data. With access to time-stamped orders of
a large institutional trading desk, time-based measures of liquidity can easily be constructed
as well.

4 See, for, example, Amihud and Mendelson (1986a,b), Glosten and Milgrom (1985), Lo,
Mamaysky, and Wang (2001), Tini¢ (1972), and Vayanos (1998).

Loeb’s original matrix does not allow for a block sizes in excess of 5% of a stock’s total market
capitalization which, in our sample, would imply a maximum block size of 5% x $2.84 MM =
$0.142 MM, a relatively small number. To relax this restriction, we extrapolate the total
cost function to allow for block sizes of up to 20% of market capitalization, where the
extrapolation is performed linearly by fixing the capitalization level and using the last two
available data points along the block-size dimension. The maximum total cost is capped
at 50%, an arbitrary large number. For example, for the $0—10 MM capitalization sector
(see Table II in Loeb, 1983) and block sizes of $5,000, $25,000 and $250,000 the total
spread/price costs are 17.3%, 27.3% and 43.8%, respectively. The cost at the next block size
of $500,000 is computed as:

min [50%, 43.8% + ($500,000 — $250,000)(43.8%
—27.3%)/($50,000 — $25,000)] = 50%
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However, see Bertsimas and Lo (1998), Chan and Lakon-ishok (1993, 1995), Hausman,
Lo, and MacKinlay (1992), Kraus and Stoll (1972), Lillo, Farmer, and Mantegna (2003),
and Loeb (1983) for various approximations in a number of contexts.

This literature is vast, and overlaps with the literature on financial asset-pricing models with
transactions costs. Some of the more relevant examples include Amihud and Mendelson
(1986b), Bagehot (1971), Constantinides (1986), Demsetz (1968), Gromb and Vayanos
(2002), Lo, Mamaysky and Wang (2001), Tini¢ (1972), Vayanos (1998), and Vayanos
and Vila (1999). For a more complete list of citations, see the references contained in Lo,
Mamaysky and Wang (2001).

For expositional convenience, all of our tables and graphs use standard deviations in place
of variances as risk measures. Nevertheless, we shall continue to refer to graphs of effi-
cient frontiers as “mean—variance-liquidity efficient frontiers” despite the fact that standard
deviation is the x-axis, not variance. We follow this convention because the objective func-
tion on which our efficient frontiers are based are mean—variance objective functions, and
because “mean—standard deviation-liquidity” is simply too cumbersome a phrase to use more
than once.

See, for example, Michaud (1998, Chapter 12).

For comparison, Table 1 also reports market capitalizations based on December 31, 2001
prices. From December 31, 1996 to December 31, 2001, the average portfolio market
capitalization increased twofold, with mid-tier market-capitalization stocks—those in the
5th, 6th and 7th brackets—experiencing the biggest gains. The market capitalization of the
top-tier stocks increased less dramatically. By the end of the sample, the original capitalization-
based ranking was generally well preserved—the correlation between the 1996 and 2001
year-end market capitalizations was over 95%.

Since 1,256 observations were used to calculate the correlation coefficients, the 95%
confidence interval under the null hypothesis of zero correlation is [—5.6%, 5.6%].

For this 2-year sample, the 95% confidence interval under the null hypothesis of zero
correlation is [—8.9%, 8.9%].

Results for the Loeb and bid/ask metrics are qualitatively identical to those for turnover,
hence we omit them to conserve space. However, they are available upon request.
Throughout this study, we assume a fixed value of 0.4308% per month for the riskless
return Ry.

These values may seem rather high, especially in the context of current market conditions.
There are two explanations: (a) our sample period includes the tail end of the remarkable bull
market of the 1990s, and contains some fairly spectacular high-flyers such as North Coast
Energy (571% 5-year return from 1996 to 2001), Daktronics (914% 5-year return), and
Green Mountain Coffee (875% 5-year return); (b) we are using a relatively small sample of
50 stocks, which is considerably less well-diversified than other well-known portfolios such
as the S&P 500 or the Russell 2000, and the lack of diversification will tend to yield higher
expected returns (especially given the small-cap component in our portfolio) and higher
standard deviations.

Recall that the only difference between the December 1996 and March 2000 portfolio inputs
is the liquidity metrics for each stock; the estimated means and covariance matrix are the
same for both months, i.e., the values obtained by applying (14) to the entire sample of daily
returns from January 2, 1997 to December 31, 2001.

Within each liquidity plane (planes that are parallel to ground level), portfolios to the north
have higher expected return, and portfolios to the east have higher standard deviation.
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18
19

We refrain from computing MVL frontiers when the number of securities falls below 5.
Recall that each of the liquidity metrics has been normalized to take on values strictly between
0 and 1, hence liquidity thresholds are comparable across metrics and are denominated in
units of percent of the range of the original liquidity measure.

20 In fact, this observation suggests that the Loeb function—as well as any other realistic

measure of price impact—varies with market conditions, and such dependencies should

be incorporated directly into the specification of the price impact function, i.e., through the
inclusion of “state variables” that capture the salient features of the market environment at
the time of the transactions. See Bertsimas and Lo (1998) and Bertsimas, Hummel, and Lo

(2000) for examples of such specifications.

21 See, for example, Chordia, Roll, and Subrahmanyam (2000, 2001, 2002), Getmansky, Lo,
and Makarov (2003), Glosten and Harris (1988), Lillo, Farmer, and Mantegna (2003), Lo,
Mamaysky, and Wang (2001), Pastor and Stambaugh (2002), and Sadka (2003) for alternate
measures of liquidity.

22 See, for example, Jobson and Korkie (1980, 1981), Klein and Bawa (1976, 1977), and

Michaud (1998).
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TIME DIVERSIFICATION
Jack L. Treynor®

To maintain constant dollar risk, an investor concerned with his terminal wealth must
sell when the stock market rises and buy when it falls. Although an asset with constant
dollar risk doesn’t exist in nature, it can be approximated with actual investment
positions.

Many investors are primarily concerned with their wealth at the end of their careers.
y y

Yet most of our theory is concerned with the current year’s investment choices. How

y y
does each year’s investment result affect the investor’s terminal wealth? How do the
y

gains and losses from the early years interact with the gains and losses from the later
years? In particular, do they add or multiply?

1 A Parable

Suppose you personally had the following experience:
At the beginning of a 50-year investment career, you borrowed $1.00 and invested
it. Fifty years later, you pay off the loan. Assume the riskless rate of return is zero.
Over 50 years, the borrowed dollar appreciated to $117.39. So the accounting at
the end of your career is

Gross wealth $117.39
Pay of loan $1.00

Net wealth $116.39

Now, suppose that instead of borrowing, you received a $1.00 bequest from your
late, lamented Aunt Matilda. Then, you could account for the terminal impact of the
bequest as follows:

Net wealth with own dollar $117.39
Net wealth with borrowed dollar $116.39

Terminal impact of inheritance $1.00

If you took the same dollar investment risk with or without the bequest, your
terminal wealth differed by the original dollar, appreciated at the riskless rate of zero. Was
the dollar worth $117.39 50 years later? Or merely $1? If the latter, then the remaining
$116.39 was the reward for taking 50 years of risk.

#Treynor Capital Management, Inc., Palos Verdes Estates, California, USA.
93



94 Jack L. TREYNOR

As the parable suggests, it is not obvious how their wealth and risk-taking interact
to determine the investors’ wealth at retirement.

Let

u = market’s rate of return

v = investor’s rate of return

r = riskless rate

h = dollars currently invested

w = initial wealth

B = level of relative (systematic) risk

hB = level of dollar (systematic) risk

If # and v are rates of return, then # — » and v — 7 are rates of excess return—rates
of return to risk taking. For a perfectly diversified asset, beta (B) is of course the ratio
of its excess return to the market’s excess return. In other words

v—r

13=

u—r
Transposing, we have the so-called “market model”:
v—r=pBu—r)
v=PBu—7r)+r
The dollar gain or loss to an investor who invests an amount 4 in the risky asset is
hv = hB(u—r)+ hr
If he had wealth w, then his dollar investment in the riskless asset was
w—h

for a riskless gain of

r(w — h)
and a total dollar gain/loss of
hB(u—r)+ hr+wr—hr = hBu—r)+ wr
We see that the investor’s dollar gain or loss consists of two terms: one that does not

depend on his risk and one that does not depend on his wealth.

2 The Buy-and-Hold Investor

Many finance scholars (Ibbotson-Sinquefield; Cornell; Dimson, Marsh and Staunton)
believe the risk in the US stock market’s rate of return is roughly stationary across time.
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At the end of this paper, we offer some evidence. But of course if the risk in rate of
return is stationary, then the dollar risk is proportional to the market level.

Now consider a buy-and-hold investor, who invests his/her wealth in the stock
marketand then lets it ride as the market level fluctuates: he/she will experience constant
relative risk. But this means that the do/lar risk—the risk of his/her dollar gain or loss
from the market’s excess return—will fluctuate with his/her wealth.

Buy-and-hold investors do not lever. If they did, they would be constantly buying
and selling in order to offset the effects of market fluctuations on their desired leverage.
But when the market level fluctuates, the beta of a diversified asset does not change. So,
for buy-and-hold investors, the only thing that changes is the value of their portfolio.
Opver a short time period (a year, say) the market model holds: investors get the riskless
return on their current wealth, plus a risky excess return equal to their constant beta
times their current wealth times the excess return on the market. Restating the model
in terms of the investor’s wealth at times # and # — 1 we have

W, — W1 = htﬁt(ut —7)+ W1
W, = /]tﬁt(ut - 7’) + (1 + 7’)%71

Under constant relative risk, each period’s exposure to stock market risk is proportional
to that period’s beginning wealth. We then have

W, =W,1Buy —r)+ 1+ )W,
W, =W, 1lBlu, —r) + (1 +1)]

Letting
q¢=,3(ut—7)+(1+7)

we have
‘/Vr = VVt—lq,’ VVt—l = %—Zq,_l
Wi = 91941 Wir—2, Wr =qrqr—1---q1Wo

Under buy-and-hold investing, the growth factors for the individual years multiply. So
a bad year—a 40% loss, say, in any one year—means a 40% loss in terminal wealth.

When the market level is high investors, being richer, feel more able to bear the
higher dollar risk. So, they may feel comfortable focusing on relative risk. But this
special case tends to obscure the more general truth that terminal wealth depends on
the dollar gains and losses in the individual years of the investor’s career.

3 Time Diversification

We had for the general case
Wy — W1 = ht,Br(ur - 7’) + W1

Gains or losses from past risk-taking affect this year’s beginning wealth. But it
appreciates at the riskless rate. This year’s reward to risk depends only on this year’s risk.
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Let the dollar gain or loss from risk taking in year 7 be

Zy = /71‘/3;:(74;: - 7’)
Then, the investor’s wealth Wy satisfies

W, = W1 =2 +rW
"Vt=zt+(1+7)‘vt—l
Wiei=z1+0+rnW,—2

Wi=z14+0+nW

The terminal wealth W7 equals
zr + (L e+ 1+ 0 era+--+ (140" W

Let Z; be the gain or loss in year # on investing $1.00 in the stock market. Then,
we have

Zr = ht ﬂtZt

Unless he plans to market time, the investor will want each of the individual years to
have the same potential impact on his terminal wealth “portfolio.” Optimal balance
requires

T T
Wr—Wo(l+n" =Y "0+n""hpz =) 7
0 0

In order to have the same dollar impact on terminal wealth, each year’s Z must have the
same weight. But, unless the riskless rate of return 7 is zero, the terminal impact of one
year’s gain or loss depends on the time lag separating it from the terminal year. In order
for each of the Z;, with presumably equal risks, to have the same potential impact on
the risky portion of the investor’s terminal wealth (the expression on right-hand side),
the current-dollar risk 4; B, must vary enough over time to offset this effect. So, we have

hiBs =147

S
Note that, if the effective riskless rate is positive, the investor’s dollar risk 4,8; should
actually increase as he ages.!

We have seen that for the buy-and-hold investor there is no such thing as time
diversification. Bug, if investors make whatever trades are necessary to sever next year’s
bet from last year’s outcome, then, their gains and losses from each individual year
add (algebraically) rather than multiply. Impacts from the individual years on their
terminal wealth are

1. cross sectionally diversified, so that all their risk bearing is fully compensated (under
the CAPM);

2. mutually uncorrelated.
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Unless investors are rash enough to predict that the prospects for next year are
different from the prospects for last year, they should be making roughly the same
dollar bet on both years. In order to do so, however, they will need to sell every time
the market rises and buy every time it falls. They will need to do a lot of buying and
selling.

On the one hand, the potential for time diversification is there, even if the buy-
and-hold investor cannot realize it. On the other, the cost of trading back to a constant
level of dollar risk every time the stock market rises or falls may be daunting. Is this
why hardly anyone has tried time diversification?

4 Risk and Reward

Consider one year’s rate of return on the US stock market. It has a certain distribution,
with a certain standard deviation and a certain mean. Even if that distribution is indeed
roughly stationary across time, we can measure only the actual rates of return for past
years. The investors’ probability of terminal loss—of arriving at the end of their career
with less wealth than they started out with—depends on both the market risk and
the market premium, the expected reward for taking this risk. Because its error can be
reduced by subdividing the time sample more finely, estimating the standard deviation is
nota problem. Dimson and his co-authors of 7he Millenium Book? estimate real annual
rates of return on the market at 20.3% and 20.1% for the US and UK, respectively.
But sample error is a potential problem for estimates of the mean. Take the authors’

100 year sample: the standard deviation of the sample mean is

0.20 0.20 0.02

J1o 10
The Central Limit Theorem applies to the dispersion of means of randomly drawn
samples. There is roughly one chance in three that when a normally distributed sample
mean is 0.06 (6%), the true universe mean is less than 0.04 or more than 0.08. Although
they can benefit greatly from reflecting on Dimson’s numbers, we think investors have
to make their own judgment about the market premium. Accordingly, we include in
Table 1 a range of market premiums, as well as a range of possible career lengths.

5 Terminal Dollars

The terminal impact of the dollar gains and losses of particular years depends on the
riskless interest rate. Unless investors’ riskless rates are zero, a current dollar corresponds
to a different number of terminal dollars, depending on their age. But if they are time
diversifying, then they want their potential gains and losses at different ages to have
the same terminal impact. So it is useful for them to measure their current risk in
terms of what it represents for their terminal wealth—to measure their current risk
in terminal dollars. Then, they can time diversify by maintaining a fixed number of
“terminal dollars” worth of current risk. In Table 1, for example, the expected gains
and associated risks are expressed in terms of one dollar of terminal risk.
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Table 1 Terminal reward versus terminal risk.

Expected dollar gain over career for a lifetime risk equivalent to one “terminal” dollar.

Market premium per year
Career length 0.04 0.05 0.06 0.07
16 0.64 0.80 0.96 1.12
25 1.00 1.25 1.50 1.75
36 1.44 1.80 2.16 2.52
49 1.96 2.45 2.94 3.43
64 2.56 3.20 3.84 4.48

Standard deviation of terminal wealth

Career length 0.04 0.05 0.06 0.07
16 0.80 0.80 0.80 0.80
25 1.00 1.00 1.00 1.00
36 1.20 1.20 1.20 1.20
49 1.40 1.40 1.40 1.40
64 1.60 1.60 1.60 1.60

Expected career gain/standard deviation of terminal risk

Career length 0.04 0.05 0.06 0.07
16 0.80 1.00 1.20 1.40
25 1.00 1.25 1.50 1.75
36 1.20 1.50 1.80 2.10
49 1.40 1.75 2.10 2.45
64 1.60 2.00 2.40 2.80

The first two panels in Table 1 sum up market premium and market risk across
investment careers varying from 16 to 64 years. Then, the third panel computes ratios
of terminal reward to terminal risk. This is done for a range of assumptions about the
hard-to-measure market premium.

The risk that investors will be worse off at the end of their career for having taken
stock market risk depends on this ratio. If terminal risks are normally distributed, for
example, that probability is 0.0036—three chances in 1000—for the most favorable
case (a 64 year career length and a 7% risk premium).

Dimson estimates the real riskless rate at 1.2% per annum for the century
1900-2000. It is curious that this number is in the range of what many mutual funds
charge shareholders. The effective rate for the time-diversifying investor should also allow
for trading costs and taxes. But we defer further discussion until we get to inflation.

6 Constant Dollar Risk

Is there such a thing as a financial asset with constant dollar risk? Such an asset would
permit the investor who owned it to achieve time diversification without trading.
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Figure 1 Rate of return on US market 1971-2000.

All commercial risk measurement services focus on relative risk—surprise in an
asset’s value, divided by its beginning value. The only justification for such commercial
measures is that the probability distribution of the ratio is stationary (see Figure 1).
But, then, dispersion of the asset’s dollar risk—surprise in its dollar value—fluctuates
with fluctuations in the asset’s value.

These comments apply to both individual common stocks and portfolios, including
portfolios intended to proxy the value of the whole stock market. Let the stock market
level—the value of the market portfolio—be x and the value of an asset with constant
dollar risk be y, and let dx and dy represent dollar surprise in x and y, respectively. If
both assets are completely diversified, then, the market level x determines the value of
y. Let the relation between the two values be

y=fx)

We ask: What functional dependence of y on x translates the constant relative risk of
x into the desired constant dollar risk of y?

When the functional relation between y and x is such that, for all market levels,
we have

The right-hand side is of course the rate of return on the market. As noted, many
finance scholars believe its risk is stationary. The left-hand side and the righthand side
being equal, they will necessarily have the same probability distribution. In particular,
if the right-hand side—the relative return on the stock market—is stationary across
time, the left-hand side will also be stationary. But, whereas the right-hand side is the
relative change in x—dx divided by the level x—the left-hand side dy is the dollar
change in y. So if, as the market level x fluctuates, its relative risk is truly stationary,
then the dollar risk in y is also stationary.
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If we take indefinite integrals of both sides, we have
y=Inx+ Ink
where In 4 is a constant of integration, or
y = Inkx

The asset with constant dollar risk is the asset whose value varies with the logarithm of
the market level.

7 Inflation

We do not have the option of investing in the real market level. The values of the
market and our log approximation are nominal values. But the risk we want to maintain
constant over time—as the price level changes—is the rea/ risk. If, as we have argued,
the risk in nominal market return is stationary, then the risk of nominal dollar gains
and losses in the log portfolio is also stationary. But this means that if, for example, the
price level is rising, then the risk of real dollar gains and losses is falling.

Let x be the nominal market level and y be the nominal value of a portfolio that
varies with the logarithm of the market level, and let the respective real values be x’

and ', where the price level is p. We have

= oy
? ?
For investment surprises we have
d d
dx’ = —x, dy' _—
? v
The logarithmic portfolio is defined by a relation between nominals
dx
dy=—
7T
Substituting, we have
dx’  d«
b Y
p .y px/ x/

We see that, if surprise in the rate of return on the real market level is stationary, surprise
in the nominal rate of return will also be stationary.? But if surprise in the nominal
value of the logarithmic portfolio is stationary, surprise in its real value

d}/=d—y
?

will not be. This means that if, for example, the price level is rising over the investors’
career, the real risk in their logarithmic portfolio is falling.
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Consider, first, the case where the real riskless rate of interest is zero. To offset the
effect of inflation, investment positions in recent years in the investor’s career should
be rescaled relative to early years, with the rescaling from year to year equaling that
year’s inflation rate.

Then, consider the case where inflation is not a problem but the riskless interest
rate is positive rather than zero. Then, investment positions in recent years should be
rescaled relative to early years, with the rescaling from year to year being equal to the
riskless interest rate.

We see that inflation causes the late nominal gain/loss to have less impact than
an early gain/loss and the same is true for the real riskless rate. On the other hand,
management fees, trading costs and taxes cause an early gain/loss to have less impact on
terminal wealth than a late gain/loss. So, their annual rate of attrition subtracts from
the sum of the real rate and the inflation rate—i.e., from the nominal interest rate. If
the gain from trading just offsets management fees and the portfolio is not subject to
taxes, the terminal impact of a current dollar of nominal gain or less will appreciate at
the nominal interest rate.

8 An Approximation

The logarithmic asset is probably not available in today’s security markets. But it can
readily be approximated using assets that are. Consider the following Taylor series
expansion of the logarithmic function, where « is greater than zero:

X xX—a 1 (x—a\* 1 (x—a\’
In— = — — 4 - — ...
a a 2 a 3 a
Although the accuracy of the approximation increases with the number of terms
4

retained in the series,” we retain only the first two. Expanding these terms we have

o(2)=2()-:0) -3

The investor who seeks time diversification is actually concerned with the corresponding
risks. How well does the risk of the right-hand side approximate the risk of the left-hand
side? The dollar risk on both sides depends on a product. One factor in the product is
the rate of change with respect to the market level x. We have for the respective sides

d (x) 1(1) 1 1( x)
—In{-)=-|—|=-~-(2—--
dx a a\x/a x a a

The other factor in both products is the dollar risk in x. But, if dx/x is stationary, then,
the dollar risk in x is proportional to the (known, non-risky) value of x.

If we invest in the approximation portfolio when x equals 4, then, the above rate of
change is 1/a for both the logarithmic portfolio and the approximation. But the risk
in the approximation drifts away from the log portfolio as the market level x moves
away from a.



102 Jack L. TREYNOR

9 The Role of Beta

We have noted that beta is a measure of how much an asset’s value changes when the
general market level changes—that, specifically, it is the ratio of two rates of excess
return. Define x as the market level, y as the (fully diversified) asset’s value and level of
relative risk by the Greek letter 8. Then, we have

dyly _
dx/x
dy dx
7 Ux

Taking the indefinite integral, we have
Iny=p8Ilnx+ Ink
where In % is a constant of integration. Taking antilogs we have
y = fexcP

We see that a diversified asset’s value is linked to the market level by a power that equals
its beta. Our truncated Taylor series approximation to the logarithmic function of the
market level contains two powers of the market level x. Evidently, the terms containing
these powers correspond to investment positions in diversified assets with betas of 1
and 2.

10 Accuracy of the Approximation
How bad are the errors in the approximation portfolio? Let
a = beginning market level
x = market level at the end of the year
dx = change in market level
04, = standard deviation of change
y = value of approximation portfolio
dy = change in value of approximation
o4y = standard deviation of change

As noted, its dollar risk is the product of its rate of change with respect to the market
and the dollar risk in the market. The first column in Table 2 displays a range of
possible ratios of the ending market level x to the beginning market level 2. The second
column shows the resulting new market levels. The third column shows the standard
deviation of the market’s dollar risk for the following year—assuming its relative risk,
the standard deviation of its rate of return, is still 20%.

The fourth column shows the rate of change of the approximation portfolio with
respect to change in the stock market level. The fifth column is the product of the third



TIME DIVERSIFICATION 103

Table 2 Approximation errors.

x/a x Odx dx/dy o4y % Error

1.30 1302 0.26a 0.70/a 0.1820 9.00
1.25 1252 0.25a 0.75/a  0.1875 6.25
1.20 1.202 0.242 0.80/a  0.1920 4.00
1.15 1152 0.23z 0.85/a 0.1955 2.25
1.10 1.102 0.222 0.90/a 0.1980 1.00
1.05 1.052 0.21z 0.95/a 0.1995 0.25
1.00 1.002 0.202 1.00/a 0.2000 0.00
095 095z 0.192 1.05/a 0.1995 0.25
090 0.902 0.182 1.10/a 0.1980 1.00
0.85 0.852z 0.172 1.15/a 0.1955 2.25
0.80 0.80z2 0.16a 1.20/a 0.1920 4.00
0.75 0.74a 0.152 1.25/a  0.1875 6.25
0.70 0.70z 0.142 1.30/a 0.1820 9.00

and fourth columns. Because the third column measures dollar risk in the market level,
and the fourth column measures its rate of change with respect to that level, the fifth
column measures dollar risk in the approximation portfolio.

The dollar risk in the ideal, logarithmic portfolio is 20% of the initial market level
a, no matter what the subsequent change in market level. But the approximation is
imperfect. The fifth column shows how its dollar risk drifts progressively farther from
the correct, constant value as the new market level x moves away from the beginning
level . (It may be worth noting, however, that the dollar risk of the approximation
portfolio is always less than or equal to the correct value.) The sixth column expresses
the errors as percentages of the correct dollar risk.

Table 2 shows that a 20% move up or down in the market level changes the dollar
risk in the approximation portfolio by only 4%. To trade back to constant dollar risk
every time their portfolio changed 4%, conventional investors would have to trade

020\> 2 _ s

0.04) =
that is, 25 times as often. (If the dispersion of random fluctuations over a time interval
varies with the square root of its length, the length of the time interval varies with the

square of the stipulated dispersion.) Is this why conventional investors do not attempt
to time diversify?

11 Rebalancing

We have seen that, when the market has moved up or down one standard deviation,
or 20%, the new standard deviation for the approximation portfolio is no longer 20%
of the original dollar investment, but merely 18.2%. (Roughly one year in three,
the market moves more than 20%.) When the market level x moves away from the
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“beginning” level 4, two things happen:

1. the approximation breaks down as the risky positions’ 4 : 1 ratio breaks down;
2. the scale, or magnitude, of net risk moves away from beginning net risk.

There are many combinations of the two risky positions that will satisfy the 4 : 1
condition and, hence, restore the logarithmic character of the portfolio. Also, there
are many combinations that will restore the original net risk. But one, and only one,
combination of the two positions can satisfy both conditions. If the investor changes
the “beginning” market level # in this ratio to the current market level x, the ratio
reverts to its original value of 1. But when the values of the risky positions were based
on a ratio value of 1, they

1. were in the accurate 4 : 1 ratio; and
2. had the desired level of net dollar risk that the investors wanted to maintain over
their lifetime.

What the new value of 2 does not do is retain the same net investment in the two
risky positions they had before we changed the ratio back to 1. This is where the third,
constant, “riskless” term in the Taylor series formula comes in: when we are making
the trades in the risky assets dictated by the change in the ratio, these trades free up
or absorb cash, which then flows to or from the third, riskless, position. (Obviously,
changes in the value of the riskless position do not change the portfolio’s risk’ so if,
after these trades, the risky positions have the correct risk, so has the portfolio.)
In Table 3, the beginning market level is arbitrarily set ac 1000. Then, the long

position is

2(1000) = 2000
and the short position is

1(1000) = 500

So, the net value of the two risky positions (the “risky equity”) is then

2000 — 500 = 1500

Each rebalancing returns the risky equity to 1500. But offsetting transfers to or from
the riskless asset preserve the investor’s total equity.

Table 3 shows how the approximation portfolio would have functioned using actual
US stock market data for end-of-year levels from 1977 to 2000. Although, given the
limited data, rebalancings could not be triggered by daily market closes, there were
11 rebalancings during this period.

Table 3 devotes three states of calculation (separated by semicolons in the third
column) to each year (except 1978). For the current value of 4, the first type calculates
the ratios x /2 and (x/4)?. The second type applies the coefficients in the approximation
formula to the respective ratios, and then multiplies all three terms in the formula by
1000. (For example, the initial value of the riskless term becomes —1500.) The third
stage calculates the new risky equity, and the change since the last rebalancing.

Rebalancing makes the third stage of calculation more complicated. Since each
rebalancing wipes out the difference between the current risky equity and the original



Table 3 Calculations for approximation portfolio 1977-2000 (see text).

Year  US mkt index

1977 169

1979 179 179/169 = 1.0592, 1.05922 = 1.1218;2(1059) — 1/2(1122); 2118 — 561 = 1557; 1557 — 1500 = 57

1980 210 210/169 = 1.243,1.2432 = 1.544; 2(1243) — 1/2(1544); 2486 — 772 = 1714, 1714 — 1500 = 214

1981 225 225/210 = 1.0714, 1.0714% = 1.1479; 2(1071) — 1/2(1148); 2142 — 574 = 1568, 1568 + 214 — 1500 = 282
1982 208 208/210 = 0.990,0.9902 = 0.9810;2(990) — 1/2(981); 1980 — 491 = 1489, 1489 + 214 — 1500 = 203

1983 281 281/210 = 1.3381,1.3381% = 1.7905;2(1338) — 1/2(1790) = 2676 — 895 = 178151781 + 214 — 1500 = 495
1984 283 283/281 = 1.007, 1.0072 = 1.014;2(1007) — 1/2(1014); 2014 — 507 = 1507, 1507 4+ 495 — 1500 = 502

1985 324 324/281 = 1.1530, 1.15302 = 1.328;2(1153) — 1/2(1328); 2306 — 665 = 1641, 1641 4 495 — 1500 = 636

1986 409 409/281 = 1.456, 1.456% = 2.119;2(1456) — 1/2(2119); 2912 — 1059 = 1853, 1853 + 495 — 1500 = 848

1987 516 516/409 = 1.2616, 1.2616* = 1.591752(1262) — 1/2(1592); 2524 — 796 = 1727,1727 + 848 — 1500 = 1075
1988 478 478/409 = 1.169, 1.169% = 1.366;2(1169) — 1/2(1366); 2338 — 683 = 1655, 1655 + 848 — 1500 = 1003

1989 577 577/409 = 1.411,1.411% = 1.990;2(1411) — 1/2(1990); 2822 — 995 + 1827, 1827 + 848 — 1500 = 1175

1990 609 609/577 = 1.0554, 1.0554% = 1.114;2(1055) — 1/2(1114); 2110 — 557 = 1553, 1553 4+ 1175 — 1500 = 1228
1991 695 695/609 = 1.141, 1.1412 = 1.302; 2(1141) — 1/2(1302); 2282 — 651 = 1631, 1631 4 1228 — 1500 = 1359

1992 765 765/695 = 1.1007, 1.1007% = 1.2116;2(1101) — 1/2(1212);2202 — 606 = 1596, 1596 + 1359 — 1500 = 1455
1993 806 806/695 = 1.160, 1.160% = 1.345;2(1160) — 1/2(1345); 2320 — 672 = 1648, 1648 4+ 1359 — 1500 = 1455

1994 841 841/806 = 1.0434, 1.0434% = 1.0887;2(1043) = 1/2(1088); 2086 — 544 = 1542, 1542 + 1507 — 1500 = 1549
1995 1000 1000/841 = 1.189, 1.1892 = 1.414; 2(1189) — 1/2(1414);2378 — 707 = 1671, 1671 + 1549 — 1500 = 1720
1996 1235 1235/1000 = 1.2350,1.2350% = 1.5252;2(1235) — 1/2(1525); 2470 — 763 = 1707, 1707 4+ 1720 — 1500 = 1927
1997 1593 1593/1235 = 1.290, 1.290% = 1.664; 2(1290) — 1/2(1664); 2580 — 832 = 1748, 1748 4+ 1927 — 1500 = 2175
1998 1987 1987/1593 = 1.2473, 1.2473% = 1.5558;2(1247) — 1/2(1556); 2494 — 778 = 1716,1716 4+ 2175 — 1500 = 2391
1999 2513 2513/1987 = 1.2647,1.2647% = 1.5995; 2(1265) — 1/2(1600); 2530 — 800 = 1730, 1730 4+ 2391 — 1500 = 2621
2000 2728 2728/2513 = 1.0856, 1.0856% = 1.1784;2(1086) — 1/2(1178);2172 — 589 = 1583 + 2621 — 1500 = 2704
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investment (in this example, 1500), the third stage also calculates the new value of the
riskless asset, reflecting the cash freed up or absorbed in returning the risky positions
to their original values.

The value of the approximation portfolio to the investor includes the net value
of both his risky positions and the accumulating sum of these (algebraic) additions to
the riskless asset. Thus, the three-stage entry for a rebalancing year reflects both the
effect of rebalancing, which takes place at the beginning of that year, and the effect on
the two risky positions of the subsequent change in market level, between the beginning

and the end.®

12 The Evidence

The last three decades of the century included several painful market collapses as well
as a celebrated bull market. The nominal market level increased 16 times, the real level
four. Surely this period is a worthy test of whether

1. the risk in the markets’ rate of return is really stationary;
2. the dollar risk in the logarithmic portfolio is really stationary.

In order to test whether risks were stationary, we need to be able to measure ex ante
risk ex post. Actuaries use a special kind of graph paper called “probability paper” to
do this. Its vertical axis is conventional, with horizontal lines equally spaced. But its
horizontal axis is variously compressed and stretched so that, when drawings from a
normal sample are ranked from lowest to highest and then accorded equal probability
increments (rather than equal distances) on that axis, they plot as a straight line.
Depending on the chosen scale of the conventional vertical axis, the slope of that line
reflects the sample’s dispersion.

The point, of course, is that if the sample is drawn from a universe with different
dispersions—if, across time, the risk is not stationary—then, the sample cannot plot
as a straight line.

Were the two risks really stationary over the sample period? Figure 1 displays the
data for the market’s rate of return. Figure 2 displays the data for the year-to-year
change in the dollar value of the logarithmic portfolio.

Did the approximation portfolio really track the logarithmic portfolio? Figure 3
displays the data for the dollar values. Figure 4 displays the data for the year-to-year
changes in dollar value of the two portfolios—i.e., for their risks.

13 Implementing the Approximation Portfolio

As the market level goes up, the value of the short position increases, even as the value of
the long position increases. Rebalancing entails reducing the long and short positions
after the stock market has gone up and increasing the long and short positions after
the stock market has gone down.

Brokers who borrow the stock the investor sells short will demand “margin®—
valuable assets to protect them in case the investor is unable to cover because the
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Figure 2 Year to year changes in the dollar value of a portfolio that varies with the logarithm of the

US market (1972-2000).
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market has risen too much. If the investors deposit their long position with the broker,
their margin does not start to shrink until the market level has doubled (five standard
deviations). It does not run out until the market level has quadrupled (3 x 5 = 15
standard deviations of annual stock market return). But, in the meantime, the investor
has rebalanced to less risky positions, over and over.

On the other hand, when the market falls the investors lose margin. But they do
not lose all of it until the market level reaches zero. The 4 : 1 target ratio assures that
the long position will always provide more margin for the short position than even the
most timid broker would require.

14 Should Risk Decline with Age?

We have argued that, if their real riskless rate is zero—or just large enough to offset
trading and other costs—investors who want to time diversify should take the same
dollar risk in the last year of their investment career as they take in the first. Does not
this prescription conflict with the intuition that an old investor should take less risk
than a young investor?

We have seen that, if they have time diversified, investors approaching the end of
their career are likely to be richer than when they began. But, then, the same dollar
risk at the end of their career represents a smaller relative risk; and relative risk is the
way most investors—especially conventional investors—think about risk.

Is time diversification (constant dollar risk) just an unfamiliar way of expressing a
familiar intuition?

Notes

' Obviously, the investor’s savings at various points in his career also contribute to terminal

wealth, appreciated forward at the effective riskless rate. Let his savings in year  be Az. Then,
their contribution to terminal wealth is

o+ +a+0" 4 =D 51 +7)

2 Dimson, E., Marsh, P. and Staunton, M. (2000). The Millenium Book. ABN-AMRO and
the London Business School.

Past inflation has the same effect on the units of measure for the numerator and denominator.
Current inflation adds algebraically to both market gains and losses, but affects the mean of
these numbers rather than the dispersion.

There are other power series approximations—even other Taylor series approximations—to
the logarithmic function.

When we use year-end data for the market level, we restrict our opportunities for rebalancing
back to an accurate approximation of the logarithmic asset. In practical applications, changes
in the market level can be followed and responded to almost continuously.

When increasing approximation error forces us to rebalance back to our original investment
positions, these positions should be scaled up from those of the previous rebalancing by
a factor reflecting appreciation over the interval between rebalancings. (If the price level is
inflating very rapidly, rescaling does not have to wait for the next rebalancing. Then, however,
the investor incurs additional trading costs.)
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¢ Question: if rebalancing restores the original dollar risky positions at rebalancing, why is this
not evident in JLT’s 22 year example using actual US stock market data? Answer: Whereas
rebalancing occurs at the beginning of the year, the worksheet numbers are based on market
level at the end.

Keyword: Time diversification
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A PRACTICAL FRAMEWORK FOR PORTFOLIO CHOICE
Richard O. Michaud?

Traditional portfolio optimality criteria often have serious theoretical or practical lim-
itations. A financial planning portfolio choice framework consisting of a resampled
efficient portfolio set and multiperiod geometric mean analysis is a practical alterna-
tive for many situations of investment interest. While Monte Carlo financial planning
is a more flexible framework, geometric mean analysis may be less error prone, the-
oretically justifiable, and convenient. Controversies that have limited applications of
geometric mean analysis are resolvable by improved understanding of distributional
properties and rational decision-making issues. The geometric mean is also useful in
rationalizing a number of investment paradoxes.

Optimal portfolio choice is the central problem of equity portfolio management, finan-
cial planning, and asset allocation. Portfolio optimality in practice is typically defined
relative to a Markowitz (1952, 1959) mean—variance (MV) efficient portfolio set.
Markowitz or classical efficiency is computationally efficient, theoretically rigorous,
and has widespread applicability. For example, Levy and Markowitz (1979) show that
MV efficient portfolios are good approximations to portfolios that maximize expected
utility for many utility functions and return generating processes of practical interest.
While there are many objections to MV efficiency, most alternatives have no less serious
limitations.?

However, there are two main limitations of classical efficiency as a practical frame-
work for optimal portfolio choice. (1) Classical efficiency is estimation error insensitive
and often exhibits poor out-of-sample performance. (2) Some additional criterion is
required for portfolio choice from an efficient set. The estimation error limitations
of classical efficiency and a proposed solution—the resampled efficient frontier—are
detailed in Michaud (1998). The major focus of this report is to showthat the distri-
bution of the multiperiod geometric mean within a financial planning context can be
the framework of choice for choosing among a properly defined efficient portfolio set
for many applications of interest in investment practice.

A roadmap for the paper is as follows. A brief review of classical versus resampled
MYV efficiency issues for defining a practical efficient portfolio set is provided. Common
optimality criteria, such as the long-term geometric mean, utility function estimation,
and probability objectives, are shown to have significant theoretical or practical limi-
tations. A financial planning approach, which describes the multiperiod consequences
of single-period investment decisions as a framework for choosing among efficient

3New Frontier Advisors, Boston, MA 02110, USA.
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portfolios, avoids many of the limitations of conventional and ad hoc optimality cri-
teria. The pros and cons of the two main financial planning methods, Monte Carlo
simulation and geometric mean analysis, are presented. The geometric mean distribu-
tion is also useful for resolving some outstanding financial paradoxes and providing
valuable investment information in practice. The special case of asset allocation for
defined benefit pension plans is presented. A brief summary of the results is given.

1 Classical Versus Resampled Efficiency

Classical MV efficiency is estimation error insensitive. Jobson and Korkie (1980, 1981)
show that biases in optimized portfolio weights may be very large and that the out-of-
sample performance of classically optimized portfolios is generally very poor. Simple
strategies like equal weighting are often remarkably superior to classical efficiency.® In
addition, classical efficiency is very unstable and ambiguous; even small changes in
inputs can lead to large changes in optimized portfolio weights. Managers typically
find the procedure hard to manage and often leading to unintuitive and unmarketable
portfolios. The limitations of MV efficiency in practice are essentially the consequence
of portfolios that are overly specific to input information. MV efficiency assumes 100%
certainty in the optimization inputs, a condition never met in practice. Managers do not
have perfect forecast information and find it difficult to use an optimization procedure
that takes their forecasts far too literally.

Resampled efficiency uses modern statistical methods to control estimation error.*
Resampled optimization is essentially a forecast certainty conditional generalization
of classical MV portfolio efficiency.’ Statistically rigorous tests show that resampled
efficient portfolios dominate the performance, on average, of associated classical effi-
cient portfolios. In addition, managers find that resampled efficient portfolios are
more investment intuitive, easier to manage, more robust relative to changes in the
return generating process, and require less trading. Since investors are never 100%
certain of their forecasts, there is never a good reason for an investor to use classical
over resampled efficiency in practice. Unless otherwise stated, in what follows we
assume that the efficient portfolio set is defined in terms of properly forecast certainty
conditioned, MV resampled efficient portfolios.®

2 DPortfolio Optimality Criteria

A number of portfolio optimality criteria have been proposed either based on the MV
efficient set or directly. The three most common in finance literature are probably utility
function estimation, short- and long-term probability objectives, and the (long-term)
geometric mean. All have important theoretical or practical limitations. A brief review
of the limitations of utility function and probability objective optimality criteria is
provided because the issues are largely well known in the investment community. The
misuses of the geometric mean are explored in more depth not only because they are
less well known but also because the principles involved apply to a number of ad hoc
optimality criteria in current investment usage.
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2.1 Utility Functions

Defining portfolio optimality in terms of the expectation of a utility function is the
traditional finance textbook solution. Utility functions may have widely varying risk-
bearing characteristics. In this approach, a utility function is chosen and its parameters
estimated for a given investor or investment situation. The set of portfolio choices may
or may not be confined to portfolios on the efficient frontier. The optimal portfolio is
defined as the one with maximum expected utility value.

An expected utility approach is generally not a practical investment solution for
optimal portfolio choice. Investors do not know their utility function. Also, utility
function estimation is very unstable. It is well known that choosing an appropriate
utility function even from a restricted family of utility functions may be very difhfi-
cult. In cases where a family of utility functions differs only by the value of a single
parameter, even small differences of the estimated parameter may lead to very differ-
ent risk-bearing characteristics (Rubinstein, 1973). Multiple-period utility functions
solved with a dynamic programming or continuous-time algorithm only compound
the difficulties of utility function estimation as a portfolio choice framework. As a prac-
tical matter, investors have a very difficult time explaining something as simple as why
they choose one risk level over another or why risk preferences may change over time.

2.2 Short- and Long-Term Return Probabilities

The consequences of investment decisions over an investment horizon are often
described in terms of the probability of meeting various short- and long-term return
objectives. For example, an investor may wish to find a strategy that minimizes the
probability of less than zero (geometric mean) return over a 10-year investment hori-
zon. Other multiperiod return objectives include maximizing a positive real return or
some other hurdle rate over an investment horizon. Long-term return probabilities
may be approximated with the normal or lognormal distribution to the geometric
mean or with Monte Carlo methods. The results are often interesting and seductively
appealing. However, the tendency to define an optimal strategy based on probability
objectives, long- or short-term, has serious limitations. Markowitz (1959, p. 297) notes
that return probability objectives may appear to be conservative but are often danger-
ous and reckless. Return probability objectives are also subject to Merton—-Samuelson
critiques, discussed below, and cannot be recommended.

2.3 The Long-Term Geometric Mean Criterion

The geometric mean or compound return over N periods is defined as

Gu(r) =[]+ -1 (1)

where 7 represents the vector of returns 71,72,...,7y in periods 1,..., N, and
r; > —1. The usual assumptions associated with the geometric mean are that returns are
measured independent of cash flows and the return generating process is independent
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and stationary over the investment horizon. The stationary distribution assumption is
not always necessary for deriving analytical results but is convenient for many purposes.

The geometric mean is a summary statistic used in finance to describe the return
over multiple equal duration discrete time intervals. Intuitively, the geometric mean
statistic describes the growth rate of capital over the NV-period investment horizon. It is
a widely used measure of historical investment performance that is of interest to fund
managers, institutional trustees, financial advisors, and sophisticated investors.

The geometric mean is usually introduced to students with the following example:
Suppose an asset with a return of 100% in one period followed by —50% in the second
period. The average return over the two periods is 25% but the actual return is zero.
This is because a dollar has increased to two at the end of the first period and then
decreased to a dollar at the end of the second. The geometric mean formula (1) gives
the correct return value, 0%. It is the measure of choice for measuring return over
time. This example is pedagogically useful; it is simple, straightforward, and, within
its context, correct. However, this example is easily misunderstood.

As the number of periods in the investment horizon grows large, the (almost sure)
limit of the geometric mean is the point distribution:

GOO(Z) — eE(log(H—r)) 1 (2)

The point distribution limit (2) or long-term geometric mean is also the limit of
expected geometric mean return. Formula (2) has been the source of important errors
in financial literature.

Properties of the (long-term) geometric mean have fascinated many financial
economists and have often been proposed as an optimality criterion.” For example, the
approximation for the long-term geometric mean, expressed in terms of the mean, p,
and variance, o2 of single-period return,

2

Goou)w—% 3)

can be used to find the portfolio on the MV efficient frontier that maximizes long-
term return.d Intuitively, such a portfolio has attractive investment properties. Another
optimality criterion motivated by properties of the long-term geometric mean is given
in Hakansson (1971b). In this case, the criterion for portfolio optimality is

Max E(log (1 + 7)) (4)

As Hakansson shows, maximization of (4) leads to almost certain maximization of long-
term geometric mean return while optimal MV efficient portfolios may lead to almost
certain ruin.” There are important theoretical and practical objections that have been
raised of the Hakansson criterion (4) and its near relative (3). The theoretical objections
are discussed in the next section. From a practical point of view, the investment horizon
is not infinite. For finite /V, the Hakansson optimal portfolio has a variance that is often
very risky. Hakansson optimal portfolios may be near, at, or beyond the maximum
expected return end of the efficient frontier.!® For many investors and institutions, the
Hakansson proposal is often not a practical investment objective.
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2.4 Merton—Samuelson Critique of the Long-Term Geometric Mean Criterion

Merton and Samuelson raised serious theoretical objections to the proposals in
Hakansson (1971b).!! While there are a number of technical details, the basic thrust
of their objections consists of the inadvisability of financial decision-making motivated
by statistical properties of objective functions however intuitive or attractive. Financial
decision-making must be based on expected utility maximization axioms. An objective
function that is not consistent with appropriate rationality axioms leads to decisions
that do not satisfy some basic rationality principle. As importantly, no one utility
function is likely to be useful as a general theory of portfolio choice for all rational
investors.!2

While addressed to Hakansson (1971b), the Merton—Samuelson critiques are very
general and are applicable to many ad hoc optimality criteria in current use in the
investment community.!? It seems self evident that the notion of portfolio optimality
and investment decision-making must necessarily rest on rationality principles similar
to, if not precisely, those of classical utility.'4 We assume Merton and Samuelson’s views
throughout our discussions.

3 Properties of the Geometric Mean Distribution

If the number of periods is finite, the geometric mean distribution has a mean and
variance and possesses many interesting and useful properties for finance and asset man-
agement. The following simple example may provide helpful guidance. Suppose an asset
with two equally probable outcomes in each investment period: 100% or —50%. What
is the expected geometric mean return for investing in this asset over the investment
horizon? In general it is not 0%. A correct answer requires more information.

Suppose we plan to invest in this asset for only one period. The expected return of
the investment is 25% not 0%. Suppose you are considering investing in the asset for
two or three investment periods. The expected geometric mean return is 12.5% over
two periods and 8.26% over three periods. For any finite horizon, the investment has
a variance as well as an expected return. It is only at the limit, when the number of
investment periods is very large, that the expected growth rate of investing in this asset
is 0%.1>

An improved understanding of the properties of the geometric mean return distri-
bution is necessary to address and resolve outstanding fallacies and to properly apply
it in practice.’® Four properties of the geometric mean distribution with a focus on
financial implications are given below. The reader is referred to Michaud (1981) for
mathematical and statistical proofs and more technical and rigorous discussion.

3.1 Horizon Dependence

The expected geometric mean is generally horizon dependent and monotone decreasing
(or nonincreasing) as the number of periods increases.!” The two-outcome example
above illustrates the monotone decreasing character of the expected geometric mean
and non-equality to the limit (2) when the number of periods NV is finite. It is an
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amazingly common error, repeated in many journal papers, including finance and
statistical texts, that the expected geometric mean is equal to the almost sure limit (2)
for finite V. An important corollary is that maximizing £(log(1 + 7)) is generally
not equivalent to maximizing the expected geometric mean return when NV is finite.
The lognormal distribution is the exception where the equality and maximization
equivalence are correct.

An important consequence of this result is to highlight the often-critical limita-
tions of the lognormal assumption for applications of geometric mean analysis. While
it is easy to show that empirical asset return distributions are not normal, if only
because most return distributions in finance have limited liability, it is just as easy
to show that empirical asset returns are not lognormal, if only because most assets
have a non-zero probability of default. Unless empirical returns are exactly lognormal,
important properties of the geometric mean are ignored with a lognormal assump-
tion. In general, lognormal distribution approximations of the geometric mean are not
recommendable.!®

A short digression on the related subject of continuously compounded return may
be of interest. A return of 20% over a discrete time period is equal to the continu-
ously compounded rate 18.23%. Financial researchers and practitioners often use the
average of continuously compounded returns for multiperiod analyses, usually explic-
itly or implicitly with a lognormal distribution assumption. However, the lognormal
distribution assumption is not benign; it implies horizon independence and is not
consistent with most empirical returns in finance. The average of continuously com-
pounded returns may be insufficient as a description of multiperiod return and should
be used with care.

3.2 The Geometric Mean Normal Distribution Approximation

It is well known that the geometric mean is asymptotically lognormally distributed.'
However, it is also true that it can be approximated asymptotically by a normal
distribution.?? This second result turns out to have very useful applications. Asymptotic
normality implies that the mean and variance of the geometric mean can be conve-
nient for describing the geometric mean distribution in many cases of practical interest.
The normal distribution can also be convenient for computing geometric mean return
probabilities for MV efficient portfolios. A third important application is given in the
next section.

3.3 The Expected Geometric Mean and Median Terminal Wealth

The medians of terminal wealth and of the geometric mean, Gy, are related according
to the formula

Median of terminal wealth = (1 + GM)N (5)

Because of asymptotic normality, the expected geometric mean is asymptotically equal
to the median and, consequently, the expected geometric mean is a consistent and
convenient estimate of median terminal wealth via (5). Since the multiperiod termi-
nal wealth distribution is typically highly right-skewed, the median of terminal wealth,
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rather than the mean, represents the more practical investment criterion for many insti-
tutional asset managers, trustees of financial institutions, and sophisticated investors.2!
As a consequence, the expected geometric mean is a useful and convenient tool for
understanding the multiperiod consequences of single-period investment decisions on

the median of terminal wealth.

3.4 The MV of Geometric Mean Return

A number of formulas are available for describing the V-period mean and variance of
the geometric mean in terms of the single-period mean and variance of return.?? Such
formulas do not typically depend on the characteristics of a particular return distribu-
tion and range from simple and less accurate to more complex and more accurate.??
The simplest but pedagogically most useful formulas, given in terms of the portfolio

single-period mean p and variance of return p? are:

. 2

E(Gu(r)) = — % (6a)
1+ —=1/N)o?/2)c?

V(Gr(r)) = St ]/v Jo’/2)o (6b)

Formulas (6a) and (6b) provide a useful road map for understanding the multiperiod
consequences of single-period efficient investment decisions. Note that (6a) shows
explicitly the horizon dependent character of expected geometric mean return.

4 Financial Planning and Portfolio Choice

Financial planning methods are widely used for cash flow planning and portfolio choice
in institutional consulting practice. Monte Carlo simulation and geometric mean meth-
ods are commonly associated with financial planning studies. Both methods describe
the short- and long-term investment risk and return and distribution of financial con-
sequences of investing in single-period efficient portfolios. An appropriate risk level is
chosen based on visualization and assessment of the risk and return tradeoffs in financial
terms for various investment horizons. Applications include defined benefit pension
plan funding status and required contributions, endowment fund spending policy and
fund status, investor retirement income, and college tuition trust funds. Such studies
range from simply examining multiperiod return distributions and objectives to large-
scale projects that include specialist consultants.> In this context, a low risk investment
may often be risky relative to a higher risk alternative for meeting a specific financial
goal. Financial planning methods have often been useful in identifying strategies or
funding decisions that are likely to lead to insolvency or significant financial distress.>®

Figure 1 displays a standard framework for a financial planning study. The risk and
return of a candidate efficient portfolio is given, capital for investment and inflation
assumptions input, the length of the investment horizon and draw down period defined,
and results displayed in various ways as appropriate.
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Figure 1 Financial planning framework.

4.1 Monte Carlo Financial Planning

Monte Carlo simulation methods are widely used for cash flow financial planning and
what-if exercises. Monte Carlo methods are characterized by flexibility; virtually any
cash flow computable outcome, including accounting variables and actuarial proce-
dures, can be analyzed. Various legal and tax events are readily modeled in a Monte
Carlo framework.

4.2 Geometric Mean Financial Planning

The geometric mean distribution is also a flexible financial planning tool. Straight-
forward applications include planning for future college tuition, endowment and
foundation asset allocation and spending rules, and 401 K pension plan retirement
planning (Figure 2).2° The special case of defined benefit pension plans is treated
in a later section. Variations include allowing for contributions and/or withdrawals
during the investment period that may be constant or vary in value, defined either
as actual cash values or as percent of fund value in each time period, in nominal or
current dollars. The draw down period can be defined either in nominal or current

100%

80%

60% 1

40% 1

Probability (%)

20% 1

$ Annuity (000s)

Figure 2 Twenty-year annuity distribution.
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dollars as annuities, fund values, or spending levels. Varying cash flow schedules in the
contribution and draw down periods can be useful in addressing multiple objective
situations.?’

Note that the Merton—Samuelson objections to the geometric mean as an opti-
mality criterion are not operative in a financial planning context. As in Monte Carlo
simulation, the geometric mean is simply used as a computation engine to estimate the
multiperiod consequences of single-period efficient investment decisions. Properties
of the geometric mean also provide the mathematical foundation of the Monte Carlo
simulation financial planning process, an important issue, which we discuss further
below.

4.3 Monte Carlo Versus Geometric Mean Financial Planning

The advantage of Monte Carlo simulation financial planning is its extreme flexibility.
Monte Carlo simulation can include return distribution assumptions and decision
rules that vary by period or are contingent on previous results or forecasts of future
events. However, path dependency is prone to unrealistic or unreliable assumptions.
In addition, Monte Carlo financial planning without an analytical framework is a trial
and error process for finding satisfactory portfolios. Monte Carlo methods are also
necessarily distribution specific, often the lognormal distribution.?8

Geometric mean analysis is an analytical framework that is easier to understand,
computationally efficient, always convergent, statistically rigorous, and less error prone.
It also provides an analytical framework for Monte Carlo studies. An analyst armed
with geometric mean formulas will be able to approximate the conclusions of many
Monte Carlo studies.

For many financial planning situations, geometric mean analysis is the method of
choice. A knowledgeable advisor with suitable geometric mean analysis software may
be able to assess an appropriate risk level for an investor from an efficient set in a
regular office visit. However, in cases involving reliably forecastable path-dependent
conditions, or for what-if planning exercises, supplementing geometric mean analysis
with Monte Carlo methods may be required.?’

5 Geometric Mean Applications to Asset Management

Geometric mean properties have useful applications for asset management in situations
where investment risk in each period is relatively constant over the investment horizon.
This assumption is often satisfied for institutional equity strategies and many asset
allocation applications and financial planning situations.

5.1 The Critical Point and Maximum Growth Rates

Assume that single-period portfolio efficiency is monotone increasing in expected
return as a function of portfolio risk.3? Formula (Ga) teaches that V-period expected
geometric mean return might not be a monotone increasing function of (single-period)
efficient portfolio risk.>! In other words, there may exist an interior “critical point”
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Figure 3 Efficient frontier expected geometric mean return versus portfolio risk for 1-, 3-, 5-,
10-year horizons.

on the single-period efficient frontier that has the highest expected geometric mean
return.32 This critical point can be found analytically under certain conditions or com-
putationally using a search algorithm.3? Institutional asset managers may often want to
avoid efficient portfolios if they imply less expected geometric mean return and median
wealth as well as more risk relative to others. 3

Figure 3 provides an example of the expected geometric mean as a function of
single-period portfolio risk associated with a single-period MV efficient frontier. There
are four curves. The top curve is the MV efficient frontier. The three curves below the
efficient frontier display the expected geometric mean as a function of single-period
portfolio risk for three investment horizons: 3, 5, and 10 years.>> Note that the expected
geometric mean curves show that a critical point exists ranging roughly from 17% to
19% portfolio risk.

An interior efficient frontier critical point may not exist (Michaud, 1981). The
non-existence of an interior point often means that the maximum expected geo-
metric mean return portfolio is at the upper end point of the efficient frontier and
all single-period efficient portfolios can be described as multiperiod MV geometric
mean efficient.3® When an interior critical point exists, it is generally horizon depen-
dent, with limit the efficient portfolio with expected geometric mean return equal to
the almost sure limit (2). The geometric mean formulas and critical point analysis
can also be used to estimate an upper bound for efficient portfolio growth rates in
capital markets under the assumptions.?” Investors are well advised to know the mul-
tiperiod limitations of risk prior to investment, particularly when leveraged strategies
are being used.
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6 Resolving Financial Paradoxes with Geometric Mean Analysis

A good model for investment behavior typically provides unexpected insight in totally
different contexts. In this regard, the geometric mean distribution is often useful in
rationalizing investment behavior and resolving paradoxes of financial management.
Three examples are given below, which have interest in their own right and demonstrate
the power and investment usefulness of geometric mean analysis.

6.1 CAPM and the Limits of High Beta Portfolios

The security market line of the capital asset pricing model implies that expected return
is linearly related to systematic risk as measured by B. Taken literally, the implication is
that managers should take as much B risk as they can bear. In practice, many managers
do not take much more than market risk (8 & 1) and even high-risk active portfolios
seldom have a § larger than 3. Are asset managers not acting in their own and their
client’s best interests?

Michaud (1981) derives formulas for the critical point for 8 under the security mar-
ket line assumption. The critical B for a market with expected annual return of 10%,
risk free rate of 5%, and standard deviation of 20% for an investment horizon of 5
years is approximately 1.85. Longer horizons or larger market standard deviations lead
to a smaller critical 8. On the other hand, relatively recent capital market history in
the US has exhibited historically low volatility and has been associated with increased
popularity of leveraged hedge fund strategies. Lower market volatility, when persis-
tent, rationalizes the use of higher leveraged strategies. In these and other situations,
investment practice often mirrors the rational implications of geometric mean results.

6.2 Taxes and the Benefits of Diversified Funds

Consider providing investment advice to an investor who owns a one stock portfolio
that has performed well over a recent period. Typical financial advice is to sell the stock
and buy a diversified fund. This is because the one stock portfolio has a great deal of
undiversified risk. According to investment theory, diversifiable risk is not associated
with long-term return and should be largely avoided.

From the investor’s point of view, the advice may often not be congenial. If the stock
has a larger B than the diversified fund, financial theory implies higher expected return.
Also, selling the stock will certainly result in substantial capital gains taxes and loss of
portfolio value. So how can the diversified fund recommendation be rationalized? This
situation is a problem encountered by financial advisors many times in their career.

The benefits of the diversified fund are not generally justifiable from single-period
investment theory but often are from MV geometric mean analysis. In this context,
geometric mean analysis may lead to the computation of a “crossover” point where
the diversified fund is expected to outperform, and is consequently more investment
attractive than, the undiversified portfolio beyond some period in the investment
horizon. In many cases, the crossover point can be surprisingly short and of serious
practical consideration.
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Figure 4 Crossover return analysis risky asset, diversified, diversified after-tax.

Assume that the investor’s one stock portfolio hasa f = 2 and a market correlation
of 0.5. Assume a diversified market portfolio with expected annual return of 10%
and standard deviation of 20% and a risk free rate of 5%. Assume a return generat-
ing process consistent with the security market line of CAPM and that capital gains
taxes reduce capital value by 25%. Figure 4 displays the expected geometric mean
return as a function of annual investment periods over a 20-period investment hori-
zon for the undiversified, diversified, and diversified after-tax portfolios. In the first
period, the top curve or undiversified fund has significantly higher expected return
than either the middle curve (diversified fund) or bottom curve (diversified fund after-
taxes). However, the exhibit shows that, over time, the expected geometric means of
the diversified funds cross over and outperform the undiversified fund. This is true
even when the initial loss of capital due to taxes is factored into the analysis. The
diversified funds are likely to outperform the undiversified fund well within four years
even considering taxes.

This example dramatically shows the power of diversification over time. It should
also be noted that the example is far from extreme. Many high-performing one stock
portfolios encountered in financial planning and investment consulting have 8 signif-
icantly in excess of 2. On the other hand, a less volatile market environment than that
assumed may have significantly improved the performance of the undiversified fund.?8
While the results depend on the assumptions, and a crossover point need not exist,
investment in diversified funds is often well rationalized by multiperiod geometric
mean analysis in many cases of practical interest.??



A PRACTICAL FRAMEWORK FOR PORTFOLIO CHOICE 123

6.3 Asset Allocation Strategies that Lead to Ruin®

Suppose an investor invests 50% of assets in risky securities in each time period. Either
the return matches the investment or it is lost. Both events are equally likely. This is a
fair investment game similar to an asset mix investment policy of equal allocation to
risky stocks and riskless bonds with rebalancing. In this case, investment policy leads
to ruin with probability one. This is because the likely outcome of every two periods
results in 75% of original assets. However, the investment is always fair in the sense that
the expected value of your wealth at the end of each period is always what you began
with. For two periods the expected geometric mean return is negative and declines to
the almost sure long-term limit of —13.4%, which is found using (2).

This example vividly demonstrates the difference between the expected and median
terminal wealth of an investment strategy. It shows that the expected geometric mean
return implications of an investment decision are often of significant interest.

7 The Special Case of Defined Benefit Pension Plan Asset Allocation

Monte Carlo asset-liability simulation methods are prevalent in investment-planning
practice for defined benefit pension funds. This is due to the perception that the funding
of actuarially estimated liabilities and the management of actuarially estimated plan
contributions is the appropriate purpose of invested assets. In this context, geometric
mean analysis appears to have limited portfolio choice value. However, the traditional
actuarial valuation process typically ignores the dynamic character of the economics of
pension funding risk.*! These same issues make Monte Carlo asset—liability simulation
studies for defined benefit pension plans often irrelevant or misleading.

7.1  Economic Nature of Defined Benefit Pension Plans

Defining an appropriate and useful investment policy begins by understanding the true
economic nature of a pension plan. A pension plan is deferred compensation. It is part
of the total wage and fringe benefit package associated with employee compensation.
Far from being a corporate liability or drag on firm profitability, it is a US government
sponsored asset for promoting corporate competitiveness. This is because pension
contributions are tax-advantaged. If the firm is to remain competitive for human
capital and total employee compensation remains the same, pension plan termination
leads to greater, not less, corporate expense. Corporations should prefer employee
compensation in the form of plan contributions than direct compensation.

While actuarial methods and assumptions are designed to manage the cost of the
pension plan to the corporation, there are many economic forces that are at work. If
total employee compensation is competitive relative to other firms, a more than normal
percent of payroll plan contributions may only mean that the firm has decided to tilt
total compensation towards deferred rather than current. If total compensation is high
relative to competing firms, this may be part of a conscious firm policy of attracting
human capital. Alternatively, there are many things the firm may want to do besides
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change their asset allocation in order to manage plan contributions. For example, the
benefit formula, employee workforce, or level of current compensation can be reduced,
all of which has direct implications for required contributions.

An appropriate asset allocation comes from an understanding of the business risks
of the firm and its ability to grow and compete for human capital over time and has
little, if anything, to do with actuarial valuation.*> A contemporary example of the
dangers associated with asset allocations derived from a conventional understanding of
pension liabilities is given in the next section.

7.2 A Cautionary Tale for Pension Fund Asset Allocation

As an example, the economic and market climate in the year 2001 has much to teach
in terms of true economic pension liability risks and appropriate asset allocation. The
year saw a dramatic decline in interest rates leading to an increase in the present value of
actuarially estimated pension liabilities. At the same time equity values fell significantly
leading to a serious decline in the funding status of many US pension plans. Were large
allocations to equities a terrible mistake? Should pension plans redirect their assets to
fixed income instruments to reduce their funding risk in the future?

During this same period, due in part to declining equity values and associated
economic conditions, many corporations downsized their workforce, froze salaries,
reduced or eliminated bonuses, and shelved many internal projects. All these fac-
tors impact workforce census, expected benefits, and pension liabilities. Because the
actuarial valuation process uses many non-economic long-term smoothing assump-
tions, liability valuation is typically little influenced by changes in expected benefits or
the business risks of the firm.*> An updated actuarial valuation with few smoothing
assumptions, which more closely approximates financial reality, is likely to find that
many US corporations had very diminished pension liabilities in this period and may
be far less underfunded. Financial reality will eventually emerge from the actuarial
valuation process in the form of much reduced pension liability, all other things being
the same. This is because promised benefits have to be paid whatever the assumptions
used to estimate them. An asset allocation based on actuarial valuation methods may
often have serious negative investment consequences on plan funding when markets
and economic productivity rebound and the value of non-fixed income assets become
more attractive.

7.3 Economic Liabilities and Asser—Liability Asset Allocation

It is beyond the scope of this report to describe the economic risk characteristics of a
defined benefit pension plan or other institutional or personal liabilities and how they
may be modeled.®* Asset—liability asset allocation problems require an understanding
of changes in economic factors and capital market rates and their relationship to the
economic nature of liabilities or use of invested assets.*> Actuarial methods often have
limited and even dangerous decision-making asset allocation value.

The recommended alternative is to define the resampled efficient set in a benchmark
framework relative to an economic model of liability risk.4® MV geometric mean
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analysis and Monte Carlo simulation may then be used to derive the multiperiod
financial planning implications of efficient portfolios.

8 Conclusion

Geometric mean analysis is far more robust and applicable to a far wider range of
portfolio choice applications than is widely perceived. It can rationalize much investor
behavior while providing very useful information for investors and financial advisors
for improving the value of invested assets. It can avoid overly risky and leveraged invest-
ments and strategies by providing investors with a realistic view of long-term capital
growth rates. It is also analytically and computationally very convenient. Used properly,
MYV geometric mean analysis is often fundamentally important for investment consult-
ing, financial planning, and asset management. However, the appropriate definition
of the resampled efficient portfolio set remains paramount in the investment value of
any financial planning procedure.

Appendix A
A.1 Additional Critical Point Issues

Formula (3) is a very standard approximation to the expected geometric mean. It has
a number of practical limitations that are shared with many other approximations in
widespread use. When /V is finite, the horizon dependence property illustrated in (6a)
shows that the portfolio that maximizes formula (3) might not represent well the critical
point portfolio. Another issue is that neither (3) nor (6a) may be sufficiently accurate
approximations of £(Gy (7)) and the critical point when V is large. A more accurate
formula from Michaud (1981, Appendix) of the long-term geometric mean return in
terms of the single-period mean and variance of return, is

2
Go(r) = (1+M)6Xp{—[m:|} -1 (A1)
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Notes

' Currently, there are serious controversies on the appropriate framework for rational decision-
making under uncertainty for finance. The characteristics of investor gains and loss behavior
have raised valid objections concerning the limitations of Von Neumann—Morgenstern
(1953) udility axioms and alternative frameworks based on psychological principles pro-
posed. This issue is well beyond the scope of this report. Recent research, for example Luce
(2000), shows that an expanded set of utility axioms may serve as a basis for character-
izing rational decision-making that addresses the gains and loss behavior objections. Luce
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shows that his axioms are consistent with recent psychological empirical data and competing
non-axiomatic frameworks are not.

Michaud (1998, Ch. 3) provides a review of the major proposed alternatives to classical
efficiency and notes that classical efficiency is far more robust than is widely appreciated.
This result is a simple way to rationalize why many investors do not use classical optimization
in their investment decisions.

Resampled efficiency, as described in Michaud (1998, Chs. 6 and 7), was co-invented
by Richard Michaud and Robert Michaud and is a US patented procedure, #6,003,018,
December 1999, patent pending worldwide. New Frontier Advisors, LLC, has exclusive
licensing rights worldwide.

The number of returns used to estimate simulated optimization inputs, a free parameter
in the resampled efficiency process, is used to condition the optimization according to an
investor’s assumed level of forecast certainty. This parameter is calibrated from one to ten
to facilitate the user experience. Roughly, at level one the optimized portfolios are similar
to the benchmark or equal weighting; at level ten the portfolios are similar to a classical
optimization. Various additional research updates of resampled efficient optimization are
available at www.newfrontieradvisors.com/publications.

Incorporating forecast certainty as part of the definition of practical portfolio optimality
is a rational, even necessary, consideration. In terms of enhanced utility axioms, Bourbaki
(1948), commenting on Godel (1931), explains that rationality axioms do not characterize
but follow from and codify scientific intuition. There is currently a widespread misperception
in finance concerning the role of rational utility axioms and rule-based systems in scientific
thought. A review of these and related issues is given in Michaud (2001). As in the case of
gains and loss behavior, rule-based utility systems that do not accommodate characteristics
of rational thought should be considered incomplete and reflect the need for extensions or
revisions as in Luce (2000). Resampled efficiency’s inclusion of forecast certainty in defining
portfolio optimality is simply another case where extensions or alternative formulations of
utility axioms and an enhanced notion of rational decision-making in finance are necessary.
An incomplete list is: Breiman (1960), Kelly (1956), Latane (1959), Markowitz (1959,
Ch. 6), Hakansson (1971a,b), Thorp (1974).

Markowitz (1959, Ch. 6).

This result will be further illustrated in Section 6.3.

Hakansson (1971a) shows that the max E(log (1 + 7)) portfolio may not be on the single-
period classical efficient frontier.

Merton and Samuelson (1974) and Samuelson and Merton (1974).

It should be noted, as in Hakansson (1974), that the objections raised by Merton and
Samuelson can be avoided by removing the statistical motivation to the argument in
Hakansson (1971b). In fact, log utility is an objective function in very good expected
utility axiom standing. However, without the statistical argument, log utility is simply one
of many possibly interesting investment objectives.

A different class of ad hoc methods for identifying optimal portfolios has to do with ques-
tionnaires that investors are asked to answer that purport to measure risk preferences and
result in a recommended “model” portfolio from a predefined set. Such methods typically
have no theoretical justification and may provide little, if any, reliable or useful information
for investors.

Von Neumann and Morgenstern (1953).

In this case 0% is also the almost sure limit of the geometric mean.
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A surprisingly widespread simple asset allocation error is to use geometric instead of arith-
metic mean inputs in a classical optimization to moderate the effect of large return and
risk assets and make the solutions more acceptable to investors. Stein methods, discussed
in Michaud (1998, Ch. 8) are often the appropriate methods for shrinking outlier data for
the purpose of improving forecastability.

A statistic may or may not be dependent on the number of observations in a sample. Examples
include sample size independence of the sample mean and sample size dependence of the
sample variance.

Unless otherwise noted, our results in the following are non-parametric and do not depend
on the lognormal return distribution assumption.

Applying the log function to each side of the equality (1) and invoking the central limit
theorem implies that the /V-period geometric mean distribution is asymptotically lognormal.
The fact that a distribution can asymptotically be well approximated by two different distri-
butions is not unique in probability theory. The binomial distribution can be approximated
asymptotically by both the normal and Poisson distribution under certain conditions. Intu-
itively, a lognormal characterization of the asymptotic geometric mean return distribution
may seem more natural because of the skewness normally associated with multiperiod
returns. However, the Nth root function reduces much of the skewness effect when N
is reasonably large.

The relationship between N-period geometric mean return and terminal wealth is given
by: Wy (r) = (1 + Gy(r))N =[] (1 + ). Applying the log function to each side of
the equality and invoking the central limit theorem leads to the conclusion that V-period
terminal wealth is asymptotically lognormal.

For example, Young and Trent (1969).

Michaud (1981) provides caveats on the applicability and approximation accuracy of these
and other formulas.

One carly comprehensive Monte Carlo study of pension fund investment policy that
included an examination of the volatility of pension liabilities under workforce census
changes, corporate policy, and market rate assumptions is given in Michaud (1976).

The author first encountered this effect in 1974 when conducting a Monte Carlo simulation
study of proposed spending and risk policies for the Harvard College Endowment Fund.
Under some proposals that were subsequently rejected, the simulations showed that the
fund may have run out of money within roughly twelve years. Multiperiod insolvency cases
were also encountered in Monte Carlo studies for individuals that proposed to spend capital
at unsustainable rates.

For example: A prospective retiree has $500,000 to invest for retirement. There are ten years
until retirement. The fund has an expected return of 10% and a 20% standard deviation. The
goal is to purchase a retirement annuity that will provide $50,000 annual income in constant
dollar terms. A life expectancy of 20 years in retirement and a 3% inflation rate is assumed.
What is the likelihood of the $50 K annuity and median annuity value at retirement? Using
simple annuity formulas, a geometric mean analysis shows that there is a 43% chance of
reaching the $50,000 annuity objective for a 20-year period in retirement with a median
value of $45,000. The 20-year distribution of annuity values and probabilities are displayed
in Figure 2. A less risky strategy of 7% portfolio return and 10% standard deviation leads to
a 17% probability of meeting the $50,000 annuity objective with a median annuity value
of $38,000.
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The assumption that allows geometric mean analysis to address these and other long-term
investment planning issues and multiple objectives is that the consequence of cash flows
leaves the underlying return generating process unchanged. Adjustment for the impact of
intermediate cash flows is implemented using multiple geometric mean investment horizon
assumptions.

Limitations of the lognormal assumption were described in Section 3.1.

Many tax and legal situations are extremely complicated. Often the only available solutions
for cash flow planning are heuristics that have evolved from experience and insight. In such
cases, Monte Carlo methods may be the only recourse. Also the impact of trading decisions
and costs over time may only be resolvable with Monte Carlo methods. In these and other
cases, geometric mean analysis followed by detailed Monte Carlo simulation, assuming
economic feasibility, is the recommended procedure.

Unlike classical efficiency, the resampled efficient frontier may curve downward from some
point and may not be monotone increasing in expected return as a function of portfolio risk.
The investment implications include limitations of high-risk assets not well represented by
classical efficiency.

Markowitz (1959, Ch. 6) noted this possibility from his simulations relative to the geometric
mean limit formula (3).

While efficient frontiers in practice often satisfy a budget constraint and non-negative port-
folio weights, neither resampled efficiency nor geometric mean critical point analysis is
limited to such frontiers. In particular, a critical point can be computed for unbounded
leverage efficient frontiers as in Hakansson (1971a) and can be very revealing.

Michaud (1981) provides analytical solutions for the critical point in terms of portfolio .
It should be emphasized that the critical point is a total, not residual, risk—return geometric
mean concept.

The efficient frontier is based on annualized historical monthly return Ibbotson Associates
(Chicago, Il) index data for six asset classes—T-Bills, intermediate government bonds,
long-term corporate bonds, large capitalization US equity, small capitalization US equity,
international equity—from January 1981 to December 1993. See Appendix A for additional
critical point issues.

The exceptional case is given in Hakansson (1971a) where the critical point is at the origin.
This result is given in Michaud (1981).

An all or nothing trading strategy is not the only way to implement a multiperiod diversifi-
cation program. Roughly, the same principles apply to diversifying a fixed amount of capital
over multiple periods in order to manage trading and other costs.

The tax effect could have been dealt with in a number of ways. It is unlikely that many
investors would convert 100% of a one stock portfolio into a diversified fund in the first
period. However, the tax effect is something of an illusion. Unless taxes can be avoided in
some way altogether, the one stock portfolio is likely to be subject to tax at some point in the
investment horizon and the comparison may be even more favorable for diversified funds
than illustrated.

From Block (1969).

For example, Michaud (1979) notes the irrelevance of the widely used actuarial interest rate
in defined benefit plans as an investment objective for asset allocation.

See Michaud (1998, Ch. 10) for further discussion of these issues.

The standard rationale for smoothing assumptions is that required contributions should
not be affected greatly by relatively ephemeral volatility in capital markets. However, this
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argument has the critical flaw that the firm’s business risks do not exist in isolation to capital
market volatility or changes in the domestic and global economy.

4 An important issue, ignored here, is the impact of the 50% nondeductible reversion tax now
assessed on excess assets from a terminated US defined benefit pension plan. These taxes
alter the economics of pension plan liability risk. See Ippolito (2002) for further discussion.

45 These and related issues are discussed further in Michaud (1998, Ch. 10).

46 See Michaud (1998, Ch. 10).
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A MARKOV CHAIN MONTE CARLO METHOD FOR
DERIVATIVE PRICING AND RISK ASSESSMENT

Sanjiv R. Das® and Alistair Sinclair®

Derivative security pricing and risk measurement relies increasingly on lattice represen-
tations of stochastic processes, which are a discrete approximation of the movement of the
underlying securities. Pricing is undertaken by summation of node values on the lattice.
When the lattice is large (which is the case when high accuracy is required), exhaustive
enumeration of the nodes becomes prohibitively costly. Instead, Monte Carlo simulation
is used to estimate the lattice value by sampling appropriately from the nodes. Most
sampling methods become extremely error-prone in situations where the node values
vary widely. This paper presents a Markov chain Monte Carlo scheme, adapted from
Sinclair and Jerrum (Information and Computation 82 (1989)), that is able to over-
come this problem, provided some partial (possibly very inaccurate) information abour
the lattice sum is available. This partial information is used to direct the sampling,
in similar fashion to traditional importance sampling methods. The key difference is
that the algorithm allows backtracking on the lattice, which acts in a ‘self-correcting”
manner to minimize the bias in the importance sampling.

1 Overview

This paper explores a novel algorithm for the pricing of derivative securities. There are
now hundreds of different types of derivative securities, each with their own peculiar
characteristics. Yet, no single approach works for every type of contract, and, indeed,
the literature in finance is replete with a vast number of different pricing models.

The goal in this paper is to propose a novel pricing model that is tailored to some
derivatives of more recent interest, for which dominant models do not as yet exist. The
algorithm is based on a Markov chain Monte Carlo approach, developed in a different
context by Sinclair and Jerrum (1989). While the use of Monte Carlo methods is
well established for pricing derivatives, our approach differs in several respects: it
uses backtracking to prevent the accumulation of errors in importance sampling; it
has rigorously provable error bounds; and it is, in principle, applicable to derivative
pricing on any nonrecombining lattice. In addition to describing the algorithm, we
also present some initial experimental results that illustrate its application to a simple
barrier option pricing problem.

Financial securities are called “derivatives” if their value is derived from some other
primary underlying security or economic variable. The “underlying” could very well

3Santa Clara University, Leavey School of Business, 500 El Camino Real, Santa Clara, CA 95053-0388, USA

(corresponding author).

bUniversity of California, Berkeley, CA, USA.
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be a derivative too, and it is not uncommon to see derivatives on derivatives. Options
and futures are well known and very common forms of derivatives. To set notation,
a “call” option Cy on a stock Sy (where the subscript zero indicates “initial price” at
time 0) is a contract in which the buyer of the option receives at the maturity of the
contract (i.e., at time 7°) the difference between the stock price 7 and a preset “strike”
price K, if this amount is positive. Thus, the payoff at maturity is

Cr = max(0,57 — K) 1)

(A “put” option Py is the converse contract and pays off when K > S7.) For the
privilege of always receiving a non-negative payoff, the option buyer must pay an
upfront premium to the option writer. The objective of any algorithm for the pricing
of options is to determine as precisely as possible what the fair premium Cpy (or P for
puts) should be.

Therefore, the pricing of options requires assumptions about the stochastic process
that governs the underlying security (a stock, for example), and a computation of the
fair value of the option under strict economic assumptions that ensure that no arbitrages
(i.e., “free lunches”) are permitted. The price of a call option is given by

Co = Efle”" max(0, St — K)] )

where 7 is the market’s risk-free rate of interest, and the expectation £*( - ) is taken
over the possible final stock prices S7, and sometimes over the paths of 7 as well. The
probability measure under which £* operates is known as the “risk-neutral” measure,
and is derived from no-arbitrage principles. No discussion of this aspect of option
pricing is offered here, and the reader is referred to the seminal work of Harrison and
Kreps (1979) for a complete exposition. If the probability density of S7 under the
risk-neutral measure is denoted f(S7), then the pricing model involves an integral as
follows:

Gy = /K T (57 — K)f(S7) dSt 3)

In a few limited cases, such as when S7 is log-normal, this integral yields a closed form
solution. [See, e.g., Merton (1990, Chapter 3) for background on continuous-time
modeling of security prices.] Most often, however, numerical integration is required,
leading to a search for fast, accurate numerical algorithms.

These techniques usually consist of building a layered “lattice” depicting the evolu-
tion of the security price in time, and performing the required computations on it. If
we use a lattice approach, the continuous-time, continuous-space model is transformed
into a discrete-time, discrete-space one, leading to approximation error. This error can
be mitigated by choosing a denser lattice representation for the stochastic process. The
trade-off comes from the corresponding increase in computational effort of traversing
a denser lattice.

A “lattice” is the generic term for any graph we build for the pricing of financial
securities, and is a layered directed graph in which the nodes at each level represent
the possible values of the underlying security in a given period. The entire life of the
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option spans time period 7". The time step between levels # — 1 and 7 is denoted A(z),
so that ), A(¢) = T. We shall denote the number of levels by &; thus, when A(z) = 4
is the same for all #, we have 4 = 7/h. Edges in the lattice are permitted only between
nodes at successive levels; an edge from node 7 at level # — 1 to node ; at level # is
labeled with the probability, p;;(#), of the corresponding change in the security price
(from S;(z — 1) to S;(#)). We always have ij,-j(t) = 1forall 7 and ¢.

We always assume that each node (except the single node at level 0) has in-degree 1,
so that the lattice is a #ree.! The starting security price Sy comprises the single “root”
(node at level 0) of the lattice, and the last level, or “leaves” of the lattice, correspond
to all the possible final outcomes of the stock price. Figure 1 illustrates an example of
such a lattice, which happens to be a balanced binary tree (i.e., each node has exactly
two children). The transition probabilities p;; are omitted.

Given the graphical representation of the stochastic process on the lattice, we can
price the derivative security by computing the expected, discounted value of the payoffs
at maturity under the risk-neutral measure. The lattice solution is a discretized version
of Eq. (3):

L
Co=)_ e max(0,S)(d) — K) x Pr(/) (4)
/=1

where / indexes the leaves, L is the total number of leaves, and Pr(/) is the probability of
reaching leaf /. Hence, each leaf value is given by v; = e T max(0, S;(d) — K) x Pr(/),
which consists of three components: (i) the discounting factor e~’T; (ii) the terminal
payoff max(0, $;(d) — K) ;2 and (iii) the probability of the leaf Pr(/). The probability
Pr(/) of a leaf / is just the product of probabilities of all the edges on the path to the
leaf, i.e., Pr(/) = Htp,'j(t), where the product is over all edges (7,) on the path from
the root to /.

AN ANANA
AANAAAN AN

75 76 82 84 95 100 120 96 105117 130 128 140 150 200

Figure 1 Examples of a stock price tree (lattice).
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The derivative security’s value on the lattice can easily be computed by dynamic
programming. We first compute the payoff C;(d) = max(0, S;(d) — K) at each leaf of
the tree. To obtain the value at a node at level # — 1, we weight each “child” node ; of 7
at level # by the probability p;;(#) of the edge from 7 to j. Thus, dynamic programming
computes the value of node 7 as follows:

Cit—1)=e "0 Zplj(t)(:(t) . Vit 5)

This eventually results in the desired value Cp.

The running time of dynamic programming is proportional to the size of the tree
(i.e., the total number of nodes). In a typical (nonrecombining) tree of depth 4, this
will be exponential in the depth d. In other words, the size of the tree undergoes a
“combinatorial explosion” as the depth increases. For example, in a binary tree, where
each node is connected to two nodes at the next level (see, e.g., Figure 1), the size (and
hence the running time) is proportional to 24. This is prohibitively large for values of 7
much above 20 or so. But in most cases of interest a discrete approximation with only
about 20 time periods is not sufficient for a good approximation to the continuous
time process. Our algorithm, sketched in the next section, is designed to overcome the
effects of this combinatorial explosion. The algorithm will have a running time only

polynomial in d, the depth of the tree.

2 Basic Ideas

A standard approach toward mitigating the above combinatorial explosion in the lattice
is to use Monte Carlo simulation. This involves repeatedly sampling leaves of the lattice
by simulating the branching probabilities p;;(#) of the underlying stock. When a leaf
is sampled, its discounted payoff e ™" T max(0, S)(d) — K) is computed. The sample
average of many leaves (i.e., £ /N, where NV is the number of leaves sampled and X is
the sum of their discounted payoffs) is taken as the estimate of the desired value Cp.
The problem with this approach is that, although the estimator is unbiased, it may have
very high variance; specifically, its variance will be 02/ N, where o2 is the variance of
the payoffs (under the distribution induced by the underlying stock). This problem is
particularly acute in situations where the payoff is highly skewed, i.c., large payoffs are
associated with low probability leaves. In this situation o2 is very large, so the number
of samples, IV, has to be very large also in order to ensure a good statistical estimate.
The naive Monte Carlo approach can be improved using the idea of “importance
sampling,” which attempts to sample leaves with probabilities closer to their actural
values, rather than to their probabilities according to the stochastic process governing
the underlying stock. Suppose that we have available some information about the total
contribution to the sum in (4) of all the leaves / in any given subtree; in other words,
for each node 7 at level #, we have an estimate V;(¢) of the quantity V;(¢) = 3 leT; Vi>
which is the sum of the values of all the leaves / in the subtree 7; rooted at ;. If in
our Monte Carlo simulation we branch according to these subtree values,’ rather than
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the probabilities p;;(#) associated with the underlying stock, then we would expect the
variance to decrease. Indeed, if our estimates V;(#) were exact, we would sample each
leaf with probability exactly proportional to its value, which would give us an estimator
with zero variance!

Now, of course, in practice we will have only rough estimates V;(z). But if we use
these approximate values to guide our brancing over many levels of the tree (large 4),
then the errors in the approximations may tend to accumulate so that the leaf sampling
probabilities are again very far from being proportional to their values, resulting again
in large variance. Indeed, over d levels it is possible to accumulate an error that is
exponenetial in 4, so that exponentially many samples will be needed to get a good
estimate.

We overcome this obstacle by adapting an algorithm of Sinclair and Jerrum (1989),
which was first introduced in the context of “approximate counting” in combinatorics.
The algorithm is based on the idea of importance sampling as described above, but it
uses backtracking as a means of “self-correcting” the estimates that drive the branching
down the tree. Thus, the algorithm moves down the tree with probabilities proportional
to the estimates V;(#) as above, but at each step it also has probability of moving back
to the previous level. This backtracking probability will also be proportional to the
corresponding estimate Vi(t — 1) at the previous level, so that if, for example, that
estimate was actually an overestimate (and thus this branch was taken with too high
probability), it will make backtracking more likely, thus mitigating the effect of the
inflated probability. The resulting process is a Markov chain (a weighted random walk)
on the tree, which converges to a stationary distribution in which the probability of
each leaf is exactly proportional to its value.

Simulation of the Markov chain gives us a way of sampling leaves with the desired
probabilities. However, since a leaf can be reached by many different sample paths, we
can no longer get away with the very simple estimator described above for importance
sampling. Instead, we apply a recursive estimation technique that uses leaf samples
from successively smaller subtrees to obtain a statistical estimate of the value of the
whole tree. The details of the algorithm are spelled out in the next section.

As indicated earlier, this kind of importance sampling approach is most useful in
situations where the tree is highly skewed, i.e., where high payoffs correspond to low
path probabilities Pr(/) for the leaf. In these situations naive Monte Carlo methods will
lead to estimators with high error, since they will explore regions of the tree that are
high in probability, instead of regions that are high in value. Such “needle in a haystack”
problems occur frequently in finance. In the case of credit options, for example, this is
quite severe. A credit option pays off a large sum when a firm defaults during period
[0, 7], a low probability event, and pays nothing when the company is solvent at 7', a
high probability event in the case of most firms. Another example of this phenomenon
is that of barrier options, where the option payoff may depend on the stock price
remaining within narrow regions of the state space. We shall give an example of such
an application, together with experimental results for our algorithm, in Section 4.
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Finally, we mention that there are several alternative approaches commonly taken
to improve the efficiency of a naive Monte Carlo estimator, such as antithetic variate
techniques, control variate methods, non-random sampling, Sobol space approaches,

etc. A good recent reference for all these methods as applied in finance is Glasserman
(2003).

3 The Algorithm

The Markov Chain Monte Carlo (MCMC) method is an approach that has proven to be
very successful in combinatorics, statistical physics, statistical inference in probability
models, computing volumes and integration, and combinatorial optimization. See
Jerrum and Sinclair (1996) for a survey of these applications, and of some of the tools
available for analyzing the rate of convergence (and hence the experimental error).

3.1 Ser-Up

For simplicity we consider only (full) binary trees, in which each node has out-degree
exactly two. There is nothing special about binary trees, and everything we say can be
generalized to arbitrary trees (with suitable minor modifications). In a binary tree of
depth 4, the total number of nodes is 24+1 _ 1 and the number of leaves is 2.

3.2 Owerall Structure

The algorithm consists of two components: a “random sampling” component and
a “recursive estimation” component. The goal of the random sampling component
is to sample each leaf in a given subtree with probability proportional to its value
v = e Tmax(S;(d) — K, 0) Pr(/). The recursive estimation component uses these
random samples in successively smaller subtrees in order to obtain an estimate of

Co=>_ ; Vi> the aggregated value of all the leaves.

3.3 Recursive Estimation

We first describe the recursive estimation component, which is fairly standard. The
idea here is the following. Suppose we sample leaves with probabilities proportional to
their values. In a sample of NV leaves, let Ny, IV, respectively, denote the number of
leaves in the two subtrees whose roots are the children of the root. Assume w.l.o.g. that
N; > N, Let V; denote the sum of leaf values in the first subtree. Then the quantity

Vo= V1 x Mt o (6)
M
is clearly a good estimator of V{), the aggregated value of all leaves in the entire tree.
Now we can apply the above idea recursively on the first subtree to obtain an
estimate V7 of Vi, and so on down the tree. At each level we use random sampling to
obtain an unbiased estimate R, = N (¢) /(N1(2) + Na(2)) of the proportion of leaves
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Level t

R, =1/v,
Ny(t) Ny(t)
Estimate of ratio at level t
Estimator = S R = _ NGO
RRR,...R, N,(1)+ N,(1)

Figure 2 The recursive estimation procedure.

sampled in one of the two subtrees at this level. Our final estimate for Cy = V) is then
~ 1
G=]] = ?)

At the bottom level &, the “tree” consists of the single leaf node / and the estimate Ry
(which is in fact exact) is just 1/2;, where v; is the value of this leaf (Figure 2).

The efficiency of the above scheme depends on the number of samples, NV, we need
to take at each level to ensure that (7) is a good estimate with high probability. This
in turn depends on the variance of the estimator. As we shall argue in Appendix A, it
suffices to take N = O(d /€?) to obtain an estimate that is within a factor (1 £ €) of
Co with high probability.

3.4  Random Sampling

The random sampling is achieved via a novel use of MCMC. This proceeds by simu-
lating a weighted random walk (a Markov chain) on the lattice (binary tree), viewed
as an undirected graph; i.e., backtracking to previous levels is allowed. From any given
node x, transitions are permitted to the “parent” y of x, and to the two “children” 21, z»
of x. The transition probabilities are determined as follows. For any node x in the tree,
let Vi denote the aggregated weight of all leaves in the subtree 7, rooted at x, i.e.,
Ve=2 ) 7, v1- Also, let V. be an estimate of V, obtained from some other source



138 SANJIV R. DAS AND ALISTAIR SINCLAIR

y

O

p(x, y) o<V,
*O

p(-x’ Zl) Ocvzl P(X, Zz) “‘712

20 Oz

Figure 3 The Markov chain.

(see below). Then the transition probabilities from x are (Figure 3):

Ve
plx,y) = = = =
Vet Vi + Vo
f/
P(X, Zl) = % (8)
Vet 21 + sz
I}
p(x, Zz) = %
Vit Vo + V5

Notice that the estimate V, determines both the probability of branching down to x
from its parent y, and the probability of branching back up to y from x. Thus, if V, is
an overestimate, then both of these probabilities will tend to become inflated. It is this
feature that makes the algorithm “self-correcting.”

The transition probabilities at the root and the leaves are special cases. At the
root (which has to parent), we branch only to the two children with probabilities
I7zl / (Vzl + f/zz) and sz / (1721 + 17z2) respectively. At the leaves (which have no
children), we backtrack to the parent with probability %, and remain in place (a
“self-loop”) with probability %.6

We now discuss the estimates 17x. These can be obtained in any way, e.g., by solving
some approximation to the stochastic process under investigation that has a closed form
solution, or by using a crude upper or lower bound on the value of a subtree. We assume
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only that, for all nodes x, V. approximates the true value V. within ratio g, i.e.,

Vo< V.<BVe Vx

| —

for some B > 1. Moreover, when x is a leaf /, we assume that V, = vy is exact (which
we may do w.l.o.g. since we can compute the exact value of any given leaf as explained
earlier).

Given all the above ingredients, we argue in Appendix A that the Markov chain has
the following properties:

1. The Markov chain is ergodic, i.e., starting at any state (node) it converges to some
fixed stationary distribution 7w over the nodes, independent of the starting state.
Moreover, for any leaf / the probability 7; is proportional to the leaf value v, and
the total probability ), 7; of all the leaves is at least 1/(84 + 1).

2. The “mixing time” of the Markov chain, i.e., the number of simulation steps required
to ensure that the distribution of the simulated chain is close to the stationary
distribution 7, starting at the root, is o(p*d? log(ﬁzd)), where d is the depth of
the subtree on which the Markov chain resides.

To obtain a sample leaf from any given subtree, we proceed as follows: simulate the
Markov chain on that subtree, starting from its root, for T steps, where 7 is at least the
mixing time for that subtree. If the final node is a leaf, output that leaf; if not, restart
the simulation from the root. Property (1) above ensure that leaves will be sampled
with probability proportional to v, as required.” It also ensures that the simulation
will output a leaf with probability at least 1/(84 + 1). Thus, the total (expected) time
to sample a leaf is O(Bd 7). By Property (2) above, this is at most O(ﬁgdﬁlog(ﬁzd)),
which is polynomial in 4.

3.5 Overall Running Time

Putting the above two ingredients together, we see that the total running time is the
number of samples times the time per sample, which is O(B3d4e2 log(,Bzd)). This is
a polynomial function of 4, and for large & compares favorably with the exponential
time O(2) required by dynamic programming,

We note also the dependence of the running time on B, the error in our approx-
imations for the subtree values. This produces a factor of essentially O(8%), which
again is not catastrophic. Note also that the algorithm can be viewed as taking as input
B-approximations to these values (one might think in terms of 8 ~ 2 or B &~ 10)
and outputting much better approximations (within ratio 1 4 € for small €). In par-
ticular, we get a much better approximation to the value Vy = Cp, which is the sum
of the values of all the leaves in the tree. This, of course, is the desired price of the
security.
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4 An Application: Barrier Options

In this section, we present an illustrative application of the algorithm to the pricing of
barrier options. In the next section, we will point out other possible applications of the
approach.

A barrier option may be a call, put, or digital option; here, we restrict our attention
to double-barrier knockout digitals. This is an option that pays off a large sum A if
the stock price remains within a pre-specified range (bounded by two “barriers”) for
the entire period of the option. The initial stock price is denoted Sy, and the barriers
are denoted Spigh and Sjoy, respectively. The risk-neutral evolution of the stock price
over discrete periods of time 4 is the following: in each period, the stock price either
moves up by a factor U or down by a factor D. Thus, at time 7 4 4, the stock takes
values in the set S(# + /) = US(¢) U DS(¢). The lattice is therefore a full binary tree of
depth d (where T is the total time period and 4 = 7'/5). The payoff is M at all leaves
whose path from the root does not cross either of the two barriers; i.e., all immediate
stock prices along the path remain within the range [Siow, Shigh]- At all other leaves the
payoff is zero. To keep matters simple, the risk-free interest rate is assumed to be zero.
As shown in Cox ez al. (1979), the no-arbitrage principle dictates that the probability
of an up-move in the stock price is equal to p = (1 — D)/(U — D); a down-move
occurs with probability 1 — p.

For the purposes of experimentation, assume that U = 1/D, which means in fact
that the lattice is recombining. We do this because it provides us with a closed-form
solution for the stock price (summation of leaf values) in every subtree, which we can
use both as a means for testing our algorithm and as a source for the approximate infor-
mation required by the algorithm (see below). However, we stress that the algorithm
itself is oblivious to this recombining property, and is working over the full binary tree
of depth .

As is apparent, this is a particularly hard problem when the range between the
barriers is relatively narrow, since then the probability of a payoff is low. Naive simula-
tion of the stock price will be very wasteful because the simulation will almost always
generate paths of value zero. By contrast, our MCMC algorithm will sample leaves
with probabilities proportional to their values, and thus concentrate the samples in the
desired central portion of the tree.

Because we have analytical solution for this problem, we are able to evaluate exactly
the quantity Vy (the sum of leaf values in the subtree rooted at x) at any node x of the
tree. In particular, by evaluating this at the root we get the desired value V) = Cy of
the option, so we can judge how well our algorithm is doing. Moreover, we can use
the exact values V; to generate the approximate values V. needed by the algorithm by
simply perturbing V, by some specified factor B. This allows us to experiment with
varying degrees of approximation . Note in particular that, whatever the value of g,
if V. = 0 then V, = 0. Therefore, the algorithm will never cross the barriers during
simulation.

For comparison, we also compare our MCMC approach with a standard Importance
Sampling (IS) algorithm that makes use of exactly the same approximate value Ve (see
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below for a detailed specification). This is a fair and appropriate comparison (unlike
with naive simulation, which has access to no additional information). When there is
no error in our estimates f/x, (i.e., B = 1), we would expect IS to be perfectly accurate.
However, as B increases, so that the estimates become less accurate, we would expect
IS to accumulate significant errors over the tree, and eventually to be outperformed by
the MCMC algorithm.

As an illustration, we fix the depth (number of periods) of the tree to be & = 40.
The initial stock price is set to be S = 100, and the payoff A/ = 100,000. The
interest rate is zero. The stock volatility is 0 = 30% per year, and the maturity of the
option is taken to be 77 = 1 year. Since there are 4 = 40 periods, the time interval

ish = T/d = 0.025. The up move in the stock price is U = V7 and the down

move is D = ¢°V*. The lower and upper barriers are set to be Sjo, = 93.158 and
Shigh = 107.400. The probability of an up move is 0.4881 and that of a down move is
0.5112. Note that this problem has a very narrow range, with at most two consecutive
rises or falls possible if the stock is to remain within the barriers. The probability of a
nonzero payoff at maturity is on the order of one in a million. Hence, this is a canonical
“needle in a haystack” problem.

We ran the following two types of simulations:

1. The MCMC approach. Here, we implement the algorithm described in the preceding
section for the binary tree above of fixed depth 4 = 40, with various different
approximation ratios 8. We obtain the approximate values V, as follows. Using
the closed form for the sum of leaf values in any subtree, we compute V, exactly.
Then, we multiply V; by either B or 871, the choice being made by a fair coin
toss, independently for each x. Thus, all of our estimates will be off by a factor of
exactly 8, and are equally likely to be under- or over-estimates.

We fix number or leaf samples taken per level to 10,000 (recall that this number
depends only on the depth 4, and not on B). The number of Markov chain steps
for each simulation depends on the approximation ratio 8 as well as on the depth 4
of the current subtree; following our analysis in the previous subsection, we take it
to be CB2d? log(B>d), where C is a constant. We first arbitrarily set C = 1 for this
experiment. Finding that it provided accurate estimates, we established the mini-
mum run time for the importance sampler, which we exceeded in our experiments
so as to bias the comparison in favor of importance sampling. Subsequently, to bias
the results against MCMC, we reduced C to one-tenth, i.e., C = 0.1.

By simulating the Markov chain on appropriate subtrees, and taking the resulting
leaf samples, we compute a sequence of ratios R;, one for each level. The final
output is the product of the reciprocals of these ratios, as described in the previous
section.

2. Importance Sampling. This is essentially equivalent to the MCMC approach but
without backtracking. From a node x in the tree, IS branches down to one of the
two children 2y, z) of x with probabilities V;, /(V,, 4+ V,) and V,,/(V,, + V3,),

respectively. Eventually, it will reach a leaf /, with necessarily non-zero payoff M 8
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During branching, IS keeps track of both the true probability of the leaf, Pr(/),
and the probability p with which the leaf was actually reached (i.e., the product of
the branching probabilities along the path taken). The value output by IS is then
M Pr(l)/p, i.e., the leaf value adjusted for the importance sampling.

For a fair comparison, we ran IS for at least as long as the MCMC approach with
C =1, i.e., we allowed IS to take repeated independent samples as described above
until it had used a similar running time MCMC.? The final output of IS was then
the mean of all these samples.

In order to compare the performance of the algorithms, we ran each algorithm five
times. We recorded the following data: (i) the mean value of five runs, (ii) the standard
deviation of these values, (iii) the run time of the algorithm, and (iv) the maximum
and minimum of run values. All experiments were run on a Windows PC on an Intel
3.2 GHz processor with 1 MB of RAM. Programs are written in Java (ver. 1.4) and run
on a Windows XP platform. No attempt was made to optimize the code.

The results are presented in Table 1. We ran our experiment with g = {1,2, 3}
for the IS, and did not raise 8 further, as the IS became very inaccurate (see top
panel of Table 1). We then generated results for the MCMC (with C = 0.1) and

Table 1 Comparison of run times and estimator accuracy for the IS and MCMC algorithms. Run
times are in milliseconds.

Importance sampling
B=1 B=2 B=3
Run no. Est. value CPU time Est. value CPU time Est. value CPU time
1 0.0929 13066426 0.1955 43218362 0.0492 57756313
2 0.0941 13244863 0.0810 43333972 0.0527 57653343
3 0.0929 13098622 0.0812 43208828 0.0265 57035578
4 0.0929 13019433 0.1607 43182917 0.0250 57448016
5 0.0943 13096241 0.1067 43111802 0.0275 57781609
Mean 0.0934 13105117 01250 43211176 0.0362 57534972
St. dev. 0.0007 0.0511 0.0121
MCMC sampling
p=1 p=2 =3 p=>s

Run no. Est.value CPU time Est.value CPU time Est.value CPU time Est.value CPU time

0.0924 356140 0.0961 1448094  0.0975 3843578  0.1016 16331234
0.0916 355516 0.0960 1442141 0.0890 3847797  0.0977 14941203
0.0991 361313 0.0843 1493046  0.0978 3894750  0.0955 14442125
0.0883 354671 0.0942 1443282 0.0937 4074860  0.0966 14422719
01008 355454 0.0894 1445750  0.0966 4196750  0.0909 14568000
Mean 0.0945 356618 0.0920 1454463  0.0949 3971547  0.0965 14938856
St.dev.  0.0047 0.0046 0.0033 0.0034

N N~

True mean value = 0.0943
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B = {1,2,3,5}, and found that this gave acceptable accuracy, at much smaller run
times.

When 8 = 1, the estimates f/x are exactly equal to their correct values V, and
the IS algorithm provides an exact result with zero variance (apart from minor round-
ing errors), as it should. As we inject errors into the estimates by increasing f, the
performance of IS degrades significantly, even though it has time to over-sample the
leaves.

As expected, the MCMC algorithm does not perform as well as importance sam-
pling when B = 1 (the standard error is seven times that of importance sampling), as
it always suffers from some statistical error. However, as B increases its performance
does not degrade. This demonstrates the ability of the MCMC algorithm to correct for
substantial errors in the approximate values supplied for the subtrees.!? While these
experiments are very limited, we believe that they provide a proof of concept for the
potential usefulness of the MCMC approach in derivative pricing.

5 Discussion

We stress again that the illustrative application to barrier options presented in the pre-
vious section is a very simple one, intended purely as a proof of concept. Indeed, given
that an analytic solution is available in this case, there is really no need for simulation
at all; moreover, the lattices is in reality recombining so exhaustive enumeration would
in fact be quite feasible here. However, note that our implementation made no use of
the recombining property, and it used the analytic solution only in order to generate
approximations V. (which are deliberately perturbed versions of the exact values). Our
aim is to illustrate how the MCMC approach is able to correct errors in the information
supplied to it. We note also that the running time of the simulations is fairly large.
While this is in part due to the fact that we made no attempt to optimize the code, it
is also an inherent feature of the method: being computationally intensive, it is most
likely to be useful in situations where the combinatorial explosion of the size of the
lattice defeats all other methods.

We note also that our assumption that the lattice is a binary tree is inessential, and
large (non-uniform) branching can easily be incorporated. In particular, even with a
binary tree, one might investigate a possible speed-up of the algorithm by jumping
down (and up) by two or more levels at a time. (Thus, we would classify our leaf
samples according to which of the four subtrees two levels below they belong to. We
would then choose the “heaviest” of these subtrees and recursively estimate its weight.)
It would be interesting to investigate the tradeoff between the reduction in the number
of levels of the tree and the larger number of samples needed at each level to control
the variance of the overall estimate.

The MCMC technique requires approximations Vj for the value of the tree under
any given node x, and, hence, the natural question arises as to how to come up with such
approximations in more realistic examples. One possibility is to use a simplification
of the actual stochastic process on the underlying stock, for which a known closed-
form solution exists. Say, for instance, we are pricing stock options assuming an equity
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process with stochastic volatility. The value of a subtree under a given node may then
be approximated using the well-known Black and Scholes (1973) pricing equation,
which assumes instead that the volatility of the equity process is constant. A second
possibility is to approximate subtree values using a much sparser tree for the same
stochastic process. Thus, if the depth of the actual tree is & = 40, say, we might obtain
approximate values using a tree of depth only 10 (which is small enough to be rapidly
evaluated by exhaustive enumeration). Other strategies are also possible. Note also that
subtrees whose total value is known to be very small can safely be eliminated. We stress
that, whatever method is used to obtain the approximation I7x, the MCMC algorithm
is in principle able to correct any error in these approximations. Of course, the larger
the error f in the approximations, the larger the simulation time we need to allow for
each sample.

There are many settings in which Monte Carlo simulation is required in pric-
ing financial securities. Path-dependent options are common examples, where even
if the stock process can be embedded on a recombining lattice, if the payoff is path-
dependent, the pricing scheme needs to be implemented on a nonrecombining tree,
making exhaustive enumeration impractical. For instance, though there are recom-
bining lattice algorithms for pricing options in the GARCH(1,1) case (see Ritchken
and Trevor, 1999), the GARCH(p, ) model requires Monte Carlo methods. Likewise,
stochastic volatility models pose the same difficulties. Models with recombining lattice
versions for this pricing problem are few and far between, and rely on restrictive choices
of stochastic processes for volatility. Closed-form solutions are also known only in a
few cases (as in Heston, 1993). In particular, our MCMC approach could be useful
for the pricing of volatility arbitrage strategies, and smile trading, which have highly
skewed payoffs. The MCMC approach may also be useful in providing error correction
in some cases where importance sampling is currently used. A classic problem where
IS may be enhanced with MCMC is in the area of Value-at-Risk estimation. The most
popular class of term structure models, i.e., the Libor Market Models (LMMs), now
rely heavily on simulation, and our approach may be adapted to this realm as well.

Appendix A: Properties of the Algorithm

In this appendix, we provide a brief sketch of the arguments leading to the stated
properties. This is based on the work of Sinclair and Jerrum (1989).

A.1  Discussion of Variance

In Section 3, we claimed that only O(d /e?) leaf samples per level are required to obtain
an estimate that is within a factor (1 £ €) of the tree sum Cy with high probability.
Recall from (7) that our overall estimator is

~ 1
Co = -
0 lj[Rt
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For convenience, we will work with the reciprocal estimator
TI%
t
The efficiency of the estimator is governed by the quantity

Var(Zo)
E(Zp)?
By a standard application of Chebyshev’s inequality, the probability that the estimator

deviates by more than a (1 & ¢) factor from its mean is at most v (Z)/€2. The same

holds for the original estimator Co. Thus, it suffices to analyze y (Zp).
Now he have

Var(Z) = Var (]_[ Rt> —E <]_[ R2> (U ie,f)z

= ]_[E(RZ) - H E(R)* = [ [[Var(R,) + E(R)*1 = [ [ B(R)?
. Var(R;) = ~

- 1‘[ {(13(1%,)2 + 1) E(R,) ] ]:[Euef)

= []‘[ (y(R)+1) } [[E®)

y(Z) =

and hence

y(Zo)=Jo@®)+1) -1 (A1)

Now each R; is an unbiased estimator of the proportion p(z) of leaf value lying in one
of the two subtrees at level . It is obtained as the sum of /N Bernoulli trials, each with
“success” probability p(z). Thus, its mean is p(¢) and its variance is (1/N)p(£)(1 — p(2)),
and hence y(i?t) = (1/N)(1 — p(#))/(p(#)). Recall that we always choose the subtree
with the larger number of samples; this means that, with high probability, p(z) > % (and
we shall neglect the small probability of this not being the case). Thus, y (i?t) <3/N.
Plugging this into (A.1) we get

d
s 3 3 N
V(Zo)sl_[(1+—>—1=(1+—) — 1<V
. N N

Taking N = 3kd we get v(Z) < e'/* — 1 ~ 1/k. Thus, we see that a sample size of
N = O(d/g?) at each level suffices, as claimed.

A.2  Discussion of Property (1)

We note first that the Markov chain is 7rreducible (i.e., any state can be reached from
any other state) and aperiodic (because of the self-loops on the leaves). By the standard
theory of Markov chains, this implies it is ergodic.



146 SANJIV R. DAS AND ALISTAIR SINCLAIR

To compute the stationary distribution 7, we associate with each (undirected) edge
{x,y} of the tree a weight equal to f/x, the estimate of the aggregated value Vi of the
subtree rooted at the Jower end x of the edge. For any node x, we define the degree
d(x) of x to be the sum of the weights of the edges incident at x. Thus, if x has parent
y and children zi, 23, then

d(x) = I7x + I7.21 + I7z2

Now from the definition (8), we see that our Markov chain makes transitions from x
with probabilities V, /d(x), Vzl /d(x), f/ZZ /d(x), which are proportional to the edge
weights. The same is true for the special case of leaves /, if we view the self-loop as an
edge with weight v; and set d(/) = 2v;. Hence, our Markov chain is a standard random
walk on the edge-weighted tree, which implies that its distribution is proportional to
the node degrees; i.e., 7 (x) = d(x)/D where D = ) _d(x) is a normalizing constant.
This immediately shows that, for any leaf /, 7 (/) = 2v;/D, as we claimed.
Now consider any node x. Note that

Ax) = Ve + Vo + Vo < BV + V, + Vi) = 28V4 (A.2)

In the first step here we have used the fact that each V. is a -approximation to V;
in the second step we have used the fact that V, = V,, + V,, (because both of these
expressions is equal to the aggregated value of all leaves in the subtree rooted at x).
If we now sum (A.2) over all nodes x at any given level 7 of the tree (other than the
leaves), we get

Y. dw=28 ), Vi=28G (A3)

x at level ¢ x at level ¢

(Clearly the sum of V; over all nodes x at any level is the total leaf sum Cy.) On the
other hand, if we carry out the same sum at the leaf level, we get

Yo A=) 20=2G (A.4)

leaves / /

Putting together (A.3) and (A.4) we see that

D= Z d(x) < 2BdCy +2Cy = 2Cy(Bd + 1) (A.5)

Using (A.4) again, we get that the total probability of the leaves is

1 26, 1
XZ:”(Z) B 52/:“’(1) = 2G@Bd+ 1) Bdt1

as we claimed. This concludes the verification of Property (1).

A.3  Discussion of Property (2)

The “mixing time” of an ergodic Markov chain (X;) with stationary distribution 7 is
defined as the time until the distribution of X; is within total variation distance'! 8
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of 7, starting from some given state Xp, i.e.,
7x,(8) = min{z: |X; — 7|l < &}

Standard techniques for the analysis of mixing times, specialized to our random walk
on an edge-weighted rooted tree of depth 4, tell us that

—1
Ty, (8) < d log(w (Xo) ™" + log(6™1)) (min M) (A.6)
x w(Ty)

where p(x,y) is the probability of backtracking from x to its parent y, and 7 (7)
denotes the total stationary probability of all nodes in the subtree 7 rooted at x.
The intuitive explanation for the minimization in (A.6) is that expresses the minimum
“escape probability” from any subtree, normalized by the “weight” of that subtree: if
this quantity is large then the random walk cannot get trapped in any subtree for too
long (relative to the weight of the subtree), and hence the mixing time is not too large.
The factor log(m (Xo)~!) captures the effect of the initial state Xp, and the factor 4
arises from the diameter of the tree. The term log(6™!) is the price we have to pay
for increasing accuracy (i.e., decreasing deviation from the stationary distribution); for
simplicity, we shall assume that this term can be absorbed into the term log(w X)™H
in our application and will therefore neglect it for the remainder of this discussion.
Equation (A.6) is a special case of a general “multicommodity flow” technique for
bounding mixing times; a full derivation can be found, e.g., in Sinclair (1992).

To bound the right-hand side in (A.6) for our Markov chain, consider any node x
and its subtree 7. By definition of the transition probabilities p(x, y) we have
I796 d(x) IM/vx

X —

d(x) D D

Also, by similar reasoning to the derivation of (A.5), we have

P(X,}/)TC(X) =

1 2V,
T(T) =5 ) de) < - (Bd+1)
z€Ty
Hence, the minimum in (A.6) is given by
pleyTx) _ Vi D 1

> — X

>
BT T D T 2viBd+ 1) — 4p2d
where we have used the fact that Vx/Vx > 1/B (and Bd + 1 < 28d). Also, since we

always start our simulation from the root, we have, again by similar reasoning,

d(root) - 1 1 1

m0) = T 2 g X g Z apd

Plugging all this into Eq. (A.6) we get the following bound on the mixing time:
Troor (6) < dlog (2p%d) x 4p*d = O(B*d* log ()

This concludes the justification of Property (2).
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Notes

' Note that we do not consider so-called “recombining lattices,” where the in-degree is greater

than 1. Recombining lattices typically do not suffer from the combinatorial explosion of
the number of nodes (see below), so the need for faster algorithms is not so acute here.

In more complex options, the terminal payoff may not be a function only of the terminal
price S;(d), but may depend on the path leading to leaf /.

That s, from node 7 at level # — 1, branch to node  at level  with probability proportional to
I7j(t). In this strategy, when we reach a leaf the value of our estimator is not the discounted
payoff at the leaf as before, but rather this value times the ratio Pr(/)/p, where p is the
product of the branching probabilities we actually took to reach the leaf.

In fact, if these estimates were exact then we would have nothing to do because the estimate
at the root, V, would be equal to Vy = Cp, which is what we are trying to compute!

If not, then simply interchange the labels 1 and 2. The purpose of choosing the subtree with
larger value is to minimize the variance; the estimator would still make sense if we used the
smaller subtree in place of the larger one but the variance would be higher.

This seemingly arbitrary detail is actually important for the algorithm as specified here: if
we did not have this self-loop probability then the Markov chain would be periodic, i.e., it
would always be at odd levels of the tree at odd time steps and even levels at even time steps,
and hence would not converge to a stationary distribution.

Strictly speaking, there will be a small error here because the distribution of the chain will
not be exactly 7, but very close to it. We can absorb this error into the other sources of
statistical error in the algorithm.

Like the MCMC algorithm, IS will also never cross the barriers because it is using the same
values V.

In fact, since the running time of MCMC was quite large, IS had time to over-sample all its
leaves, thus dispensing with any statistical error. However, IS is still left with the systematic
error resulting from the skewed distribution from which it samples leaves.

19 e also ran the importance sampler much longer, basing the run times on the MCMC
algorithm run times with C = 1.

For two probability distributions 41, (2 over a finite set €2, the total variation distance

i1 — 2l is defined as (1/2) X, cq 11 () — pa()l.

11
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ACTIVE RISK AND INFORMATION RATIO

FEdward Qian® and Ronald Hua®

One of the underlying assumptions of the Fundamental Law of Active Management
is that the active risk of an active investment strategy equates estimated tracking
error by a risk model. We show there is an additional source of active risk that is
unique to each strategy. This strategy risk is caused by variability of the strategys
information coefficient over time. This implies thar true active risk is often different
[from, and in many cases, significantly higher than the estimated tracking error given
by a risk model. We show that a more consistent estimation of information ratio is
the ratio of average information coefficient to the standard deviation of information
coefficient. We further demonstrate how the interaction between information coefficient
and investment opportunity, in terms of cross-sectional dispersion of actual returns,
influences the IR. We then provide supporting empirical evidence and offer possible
explanations to illustrate the practicality of our findings when applied to active portfolio
management.

1 Introduction

Information ratio (IR), the ratio of average excess return to active risk, is an important
performance measure for active investment management. One result regarding ex ante
IR is Grinold’s (1989) Fundamental Law of Active Management, which states that
the expected IR is the expected information coefficient (IC) times the square root of
breadth. IC refers to the cross-sectional correlation coefficient between forecasts of
excess returns and actual returns. For equity portfolios—the focus of the present paper,
the breadth is the number of stocks within a select universe. In mathematical terms,
the relationship is

IR = ICVN (1)

Throughout the paper, the bar denotes the expected value.

Equation (1), while providing insight to active management, is based on several
simplified assumptions. Various studies re-examine this result when different assump-
tions are used. For instance, one of the assumptions is that active portfolio is a pure
long—short portfolio free of long-only constraint. Grinold and Kuhn (2000) exam-
ine how IR deviates from Eq. (1) under the long-only and other portfolio constraints
using simulation techniques. Recently, Clarke ez /. (2002) developed a framework
for measuring such deviations by including a “transfer coefficient” on the right-hand
side of Eq. (1). In addition to the long-only constraint, they also study the impact of

2PanAgora Asset Management, 260 Franklin street, Boston, MA 02110, USA. E-mail: eqian@panagora.com
(corresponding author).

bPutnam Investments, One Post Office Square, Boston, MA 02109, USA.
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constraints in terms of turnover as well as factors such as size and style. Both stud-
ies conclude that portfolio constraints generally tend to lower ex ante IR, as given
in Eq. (1).

Equation (1) hinges on another simplified assumption regarding active risk of invest-
ment strategies. Namely, it assumes that the active risk of an investment strategy is
identical to the tracking error estimate by a risk model. Our research shows that ex post
active risk often significantly exceeds the target tracking error by risk models, even
after appropriately controlling risk exposures specified by a risk model. In this paper,
we will unveil an additional source of active risk that accounts for this discrepancy.
This new source of risk stems from the variability of IC, i.e., the correlation between
forecasts and actual returns. Hence, it is unique to each investment strategy and we
shall refer to it as strategy risk. Mathematically, it is the standard deviation of IC, i.e.,
std(IC).

The previous research mentioned above, while acknowledging the average IC of
different strategies, assumes that all strategies have the same active risk if they have the
same target tracking error. This simplified assumption is not adequate in characterizing
different investment strategies. As we will show below, the true active risk is a combi-
nation of the risk-model risk and the strategy risk. Although there are other alternative
measurements of active risk, we consider standard deviation of excess return or tracking
error in the present paper. We use active risk and tracking error interchangeably.

It is no surprise that the variability of IC plays a role in determining the active risk.
Just imagine two investment strategies, both taking the same risk-model tracking error
Omodel Over time. The first strategy is blessed with perfect foresight and it generates
constant excess return every single period. In other words, it has a constant positive
IC for all periods such that std(IC) is zero. Such a risk-free strategy, admittedly hard
to find, has constant excess return, and thus, no active risk whatsoever. However, the
risk model is not aware of the prowess of the strategy and dutifully predicts the same
tracking error all the time. In this case, the risk model undoubtedly overestimates
the active risk. In contrast, the second strategy is extremely volatile with large swings
in its excess return, i.e. its IC varies between —1 and +1 with a large std(IC). As a
result, its active risk might be much larger than the risk model estimate. Thus, the
two strategies with identical risk-model tracking error have very different active risk in
actuality.

In practice, the difference between active investment strategies is not that extreme.
However, our experience shows that risk-model tracking error given by most com-
mercially available risk models routinely and seriously underestimates the ex post active
risk.! This underestimation could have serious practical consequences. For example, an
enhanced index product with low risk-model tracking error but high standard deviation
of IC could be far more risky, because the true active risk is larger.

Our results will enable portfolio managers to obtain more accurate estimates of
active risk of their active strategies, and as a result, better estimates of IR. Furthermore,
they can be used jointly with the results of Grinold and Kuhn (2000) and Clarke ez al.
(2002) by portfolio managers to provide realistic IR estimates.
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2 Notations and Main Results
To facilitate our analysis, we introduce the following notations and terminologies.

o Risk-model tracking error, denoted as 00461 It is the tracking error or the standard
deviation of excess returns estimated by a generic risk model such as BARRA, and
it is also referred to as risk-model risk or target tracking error.

o Swrategic risk, denoted as std(IC): It is the standard deviation of IC of an investment
strategy over time. It is unique to each active investment strategy, conveying strategy-
specific risk profile.

o Active risk, denoted as o : It is the active risk or tracking error of an investment strategy
measured by the standard deviation of excess returns over time.

Our main result regarding the active risk is the following: the active risk is a product
of the strategy risk, the square root of breadth, and the risk-model tracking error:

o = std(IC)V N model )

This result has several clear implications. First, the active risk is 707 the same for different
investment strategies due to varying levels of strategy risks. Second, only rarely does
the active risk equal the risk-model tracking error. It happens only when strategy risk,
std(IC), is exactly equal to the reciprocal of the square root of N. This is true in an
ideal situation, in which the standard deviation of IC is proportional to the sampling
error of a correlation coefficient, which is the reciprocal of the square root of V. In
reality, however, as our empirical results will show, the standard deviation of IC bears
little relationship to this theoretical sampling error, and is significantly different for
different strategies.

We note that our paper is not a critique of any risk model because our focus is not
the same as studying the measurement error of risk models over a single rebalancing
period. In those studies (e.g. Hartmann ez 2/., 2002), one analyzes the performance of
risk models over a single, relatively short period, during which the examined portfolios
are bought and held. The approach is to compare predicted tracking errors of a risk
model to the realized tracking errors using either daily or weekly excess returns for
many simulated portfolios. Hartman ez /. (2002) attribute the difference between
the estimated risk and the ex post tracking error to several items: estimation error in
covariances in a risk model, time varying nature of covariances, serial auto-correlations
of excess returns, and the drift of portfolio weights over a given period. Depending
on how these factors play out in a given period, a risk model can overestimate as well
as underestimate with seemingly equal probability ex post tracking errors of simulated
portfolios. There is no clear evidence of bias one way or the other.

In contrast, we study the active risk of an investment strategy over multiple rebal-
ancing periods, during which the active portfolio is traded periodically based on the
forecasts of that investment strategy. While it is useful to consider the single-period
active risk of a buy-and-hold portfolio, it is arguably more practical to analyze the
active risk over multiple rebalancing periods. Our analysis reveals a clear underestima-
tion bias of risk-model risk even if the risk model is adequate. This is because using a
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risk model alone is not enough to accurately estimate the true active risk. Only through
consideration of strategy risk can an unbiased estimate of active risk be obtained.

Because of more realistic estimate of active risk, our estimate of IR is different from
that of Eq. (1). We shall show that IR of an investment strategy is

IC

IR=——"
std(IC)

3)
Equation (3) is very intuitive. Since IR measures the ratio of average excess return to the
standard deviation of excess return, if IC were the sole determinant of excess return,
then IR would be the ratio of average IC to the standard deviation of IC. In most of
the cases we have studied, IR is lower than that of Eq. (1) because the true active risk
tends to be higher than the risk-model tracking error.

3 Cross-Sectional IC and Single-Period Excess Return

To derive the IR of an active investment strategy over multiple periods, we start by
calculating a single-period excess return, which is the summed product of active weights
and subsequent realized actual returns. We use active mean—variance optimization to
derive the active weights under the following framework. First, we model security risk
by a generic multi-factor fundamental risk model, such as the BARRA risk model.
Second, the optimal active weights are selected by mean—variance optimization while
neutralizing portfolio exposures to all risk factors, in addition to being dollar neutral.
We have done so for two reasons. First, the alpha factors we shall study in the empirical
section below are employed by quantitative managers mostly to exploit stock specific
returns. The second reason is more technical. Imposing binding constraints on all
risk factors allows us to derive an analytical solution for the optimal portfolio weights
without knowing the historical covariance matrices of risk factor returns. While it is
certainly possible to extend our analysis to strategies that also take factor bets, the
research is out of the scope of this article. While we reasonably expect that different
factor-related strategies would have their own component of strategy risk, practitioners
should use caution when applying our results directly to those strategies.

Under these conditions, Appendix A gives the exact solution for the active weights
wj,, for security 7 and time 7. The excess return for the period is the summed product
of the active weights w;, and the subsequent actual return 7; ;. To reflect dollar and
factor neutral constraints, we recast the summed product expression by adjusting both
the forecasts and the actual returns to obtain

N
o = )\:1 ZRi,tFi,t (4)

i=1

where A is a risk-aversion parameter used in the optimization, R is the risk-adjusted
actual return, and F is the risk-adjusted forecast. They are the “raw” return or forecast
adjusted for dollar and factor neutrality, and then normalized by security specific risk

(Appendix A).
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So far, our derivation of Eq. (4), in Appendix A, has been standard. Similar analyses
can be found in Grinold (1989) and Clarke ez a/. (2002). From this point on, our
analysis uses a different approach. In previous work (Grinold, 1994; Clarke ezal., 2002),
one makes an assumption about the expected returns of individual securities, such as
“Alpha is Volatility Times IC Times Score” (Grinold, 1994). The validity of such a
normative approach, which has its origin in risk modeling, is questionable in reality. We
shall adapt a descriptive approach with no assumptions regarding individual securities.
We write Eq. (4) as the covariance between the risk-adjusted returns and forecasts, which

in turn can be rewritten as a product of IC and their dispersions.> We have
a; = A (N — D[cov(R,, F,) + avg(R,) avg(F,)]
=2, M(V = 1) IC, dis(R,) dis(F,) (5)

We use R, and F, to denote the cross-sectional collections of the risk-adjusted returns
and forecasts, and IC, = corr(R;, F;). The average term in Eq. (5) vanishes because we
have made avg(R;) = 0 (see Appendix A). Equation (5) states that the single-period
excess return is proportional to the IC of that period and the dispersions of the risk-
adjusted returns and forecasts for that period. The intuition is clear: the excess return isa
function of IC, which measures the forecast’s cross-sectional ranking ability, the disper-
sion of the forecasts, which reflects the perceived cross-sectional opportunity, and the
dispersion of the actual returns, which represents the actual cross-sectional opportunity.
The risk-model risk, on the other hand, depends only on the dispersion of the
forecasts through the optimal active weights. They are related by (see Appendix A)

Omodel & A, 'W/N — 1dis(F,) (6)

In other words, the risk-model risk is the dispersion of the risk-adjusted forecasts (which
varies from period to period) times the square root of NV — 1 divided by the risk-aversion
parameter. Equations (5) and (6) show that, while the excess return depends on IC
and both dispersions, the risk-model risk is only a function of the forecast dispersion.
In other words, the risk-model risk is independent of IC since the risk model has no
knowledge of the information content of the forecasts.

We shall maintain a constant level of risk-model tracking error® by varying the risk
aversion parameter accordingly. Combining Egs. (5) and (6) produces the relationship

a; ~ IC;v/Nopedd dis(R,) )

We have replaced V — 1 with IV, which is justified when NV is large enough. The excess
return of an active strategy in a single period is IC times the square root of breadth
times the risk-model tracking error times the dispersion of the risk-adjusted returns.
Among the four terms in Eq. (7), the dispersion of the risk-adjusted returns is new and
thus deserves some discussion. In theory, if the risk model truly describes the return of
every single security, then each risk-adjusted return R;, is close to a standard normal
random variable. The base case estimation for the dispersion of a large number of such
random variables is unity.> Later, we shall see that this is approximately true for certain
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risk models. This dispersion represents the degree of opportunity in the market. For
a given level of IC and risk-model risk, a greater opportunity leads to a higher excess
return.

4 Information Ratio

We derive IR of an investment strategy over multiple periods. Equation (7) is close to
a mathematical identity. While it is always true ex posz, we now use it in ex ante by
considering its expectation and standard deviation, i.e., the expected excess return and
the expected active risk. Among the four terms affecting the excess return, we assume
that the number of stocks does not change over time and the risk-model tracking
error remains constant. For the two remaining terms that do change over time, IC
is associated with greater variability than the dispersion of the risk-adjusted returns.
Therefore, as a first approximation we treat the latter also as a constant.

4.1 The Simple Case

Assuming dis(R;) is constant and equal to its mean, the expected excess return is
ay = Et VNOpodel dis(Ry) (8)

The expected excess return is, therefore, the average IC (skill) times the square root of
N (breadth) times the risk-model tracking error (risk budget) times the dispersion of
actual returns (opportunity).

The expected active risk is

o = std(IC)VNomodel dis(R;) )

The standard deviation of IC measures the consistency of forecast quality over time.
Therefore, the active risk is the standard deviation of IC (strategy risk) times the
square root of N (breadth) times the risk-model tracking error (risk budget) times the
dispersion of actual returns (opportunity).

The ratio of Egs. (8) to (9) produces Eq. (3); i.e., IR is the ratio of the average IC to
the standard deviation of IC, or IR of IC. We also note that when the mean dispersion
is unity, Eq. (9) reduces to Eq. (2).

4.2 A Better Estimation of IR

In reality, the variability in the dispersion of the risk-adjusted return dis(R;) is small
but, nonetheless, non-zero. What happens to IR if we include this variability? The
following insight from Eq. (7) helps us to understand how the interaction between the
IC and the dispersion affects the excess return. To produce a high positive excess return
for a single period, we need high and positive IC as well as high dispersion. Conversely,
when IC is negative, we would like a low dispersion so that the negative excess return
would be small in magnitude. This argument implies that, over the long run, the
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performance will benefit from a positive correlation between IC and the dispersion.
On the other hand, a negative correlation will hurt the average excess return.
Appendix B shows that the expected excess return including this correlation effect is

& = V'Nomoda{IC, dis(R,) + p[IC,, dis(R,)] std(IC,) std[dis(Ry)}]  (10)

The additional term consists of the correlation between IC and the dispersion, and
the standard deviations of IC and the dispersion. According to Appendix B, the active
risk is little affected by the correlation because the coefficient of variation of dis(R;)
is much smaller than that of IC and one. Combining Eqs. (9) and (10) produces the
new IR estimate

I, .+ std[dis(Ro)]
= wd(C) + plIC,, dlS(Rt)]—diS(Rt) (11)

The second term captures the correlation effect on IR. It has two factors. The first is
the correlation between IC and the dispersion over time and the second term is the
coefficient of variation of the dispersion. As we mentioned earlier, the coefficient of
variation of the dispersion is usually small. Therefore, the effect of the second term is
typically small unless the correlation between IC and the dispersion becomes very high,
either positive or negative. For most practical purposes, Eq. (3), i.e., the first term in

IR

Eq. (11), approximates IR well enough. Nonetheless, Eq. (11) is an improvement.

5 Empirical Examinations

To demonstrate that Eq. (9) is a more consistent estimator of ex ante active risk, we study
empirical results of 60 qantitative equity strategies. To ensure practical relevance, these
strategies are based on a set of quantitative factors commonly used by active managers.
The set encompasses a wide range of well-known market anomalies, and thus provides a
good representation of different categories of quantitative strategies deployed by active
managers.

We first briefly describe the data. Then, we apply the analysis to the Russell 3000
indices to demonstrate our theoretical result. To assess the statistical significance of
the differences in the strategy risk, we provide a closer examination of two valuation
factors—gross profit to enterprise value and forward earnings yield. We introduce a
strategy-specific scaling constant « and use it in conjunction with a risk model to
provide a consistent forecast of ex post active risk. Lastly, we suggest different ways to
forecast strategy risk and ascertain the efficacy of such predictions.

5.1 The Data

The quarterly data used in our analysis span 1987 to 2003, with 67 quarters in total.
The alpha factors come from a proprietary database and they include seven different cat-
egories: price momentum, earnings momentum, earnings surprise, valuation, accruals,
financial leverage, and operating efficiency. The values for beta, systematic risk factors,
industry risk factors, and stock specific risk come from the BARRA US E3 equity risk

model. To ensure factor accuracy and to prevent undue influence from outliers, we first
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exclude stocks that have factor values exceeding five standard deviations on each side.
Next, we bring factor values between three and five standard deviations to the three
standard deviation values. The actual number of stocks that are tested against the Russell
3000 index is, therefore, fewer than 3000. In addition, the number of stocks fluctuates
from quarter to quarter due to data availability as well as the reconstitution activities
of Russell indices. However, the fluctuation is insignificant as to alter the analysis.

In terms of portfolio construction, we form optimal long—short portfolios on a
quarterly basis. Subsequently, cross-sectional analyses of alpha and IC and dispersion
of the risk-adjusted returns are computed on a quarterly basis. We set the constant
risk-model tracking error at 2.5% per quarter. Additionally, to control risk exposures
appropriately, we neutralize active exposures to all BARRA risk factors (market beta,
13 systematic risk factors, and 55 industry risk factors) when rebalancing portfolios
each quarter. Hence, the risk-model risk is 100% stock specific according to the risk
model. The results below are collected on a quarterly basis and are annualized for the
purposes of this paper. For example, the annualized target tracking error would be 5%,
provided there is no serial auto-correlation in alpha.

5.2 The Russell 3000 Universe

Figure 1 shows the histogram of ex post active risk of the 60 strategies. Although the
risk-model tracking error is targeted at 5% for all strategies, the ex post active risks
differ widely with substantial upward bias, indicating the risk model’s propensity to
underestimate active risk. The average active risk is 7.7% and the standard deviation
is 1.7%. The highest active risk turns out to be 13.1% while the lowest is just 5.0%.
In other words, almost all strategies experienced ex post risk higher than the risk-model
tracking error.
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Figure 1 Histogram of the ex post active risk of equity strategies.
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To gauge the risk model’s estimation bias in relative terms, we rearrange Eq. (9)
to derive a scaling constant k that approximates the ratio of true active risk to the
risk-model risk, in terms of the standard deviation of IC for each factor and the average
number of stocks over time:

o

k = stdIC)VN ~ (12)

Omodel

We have neglected the dispersion of returns, dis(R;), because it turns out to be very
close to unity with a value at 1.01 and a standard deviation of 0.15. By this measure, the
BARRA E3 model shows remarkable internal consistency. Figure 2 shows the histogram
of the scaling constant « for all 60 strategies. Note that for a majority of strategies the
model underestimates the ex post active risk by 50% or more. Figure 2 resembles Figure 1
quite closely except that the x-axis is rescaled by the risk-model tracking error of 5%. A
scatter plot of the active risk and x (Figure 3) confirms the observation. Additionally,
Table 1 reports the estimated coefficients of the regression using the scaling constant
Kk to explain ex post active risk. The R-squared of this regression is 98%, indicating
that Eq. (9) is a highly accurate approximation of the ex posr active risk despite the
assumption that dis(R;) is constant over time. More importantly, it seems possible
that practitioners can use the scaling constant k to adjust risk-model tracking error to
achieve a consistent forecast of active risk. We demonstrate this adjustment below.

5.3 Information Content of Strategy Risk: An Example

The strategy risks of these quantitative strategies vary greatly. Naturally, one wonders
about the statistical significance of their differences. These differences are important in
terms of forecasting portfolio active risk that incorporates strategy risk. In other words,
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Figure 2 Histogram of the scaling constant k of equity strategies.
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Figure 3 Scatter plot of ex post active risk and scaling constant.

Table 1 Summary statistics of coefficient estimates.

Standard Lower Upper
Coefficients error #-Stat P-value 95% 95%
Intercept —0.0034 0.0015 —2.3260 0.0235 —0.0063 —0.0005
Scaling constant k& 0.0528 0.0009 55.9084  0.0000 0.0509 0.0547

Table 2 Summary statistics of valuation factors.

Average STD IR Average STD IR Average  Average
Alpha  of Alpha  of Alpha IC of IC  of IC  dis(R) N
GP2EV 6.2% 6.9% 0.90 2.4% 2.7% 0.91 1.01 2738
E2P 3.3% 8.7% 0.38 1.4% 3.4% 0.41 1.00 2487

after appropriately controlling risk exposures specified by the BARRA E3 model in our
case, does the standard deviation of ICs provide additional insight regarding the risk
profile of an equity strategy? The answer to this question is “yes” in many cases. Here
we select two valuation factors—gross profit to enterprise value (GP2EV) and forward
earnings yield based on IBES FY1 consensus forecast (E2P)—for a closer examination.
We test the statistical significance of the difference between the two strategy risks using
the F-test.

Table 2 shows the summary statistics of these two factors. For GP2EV, the stan-
dard deviation of IC equals 2.7%; it is 3.4% for E2P. The ex post tracking errors are
6.9% and 8.7%, respectively. Since both standard deviations are estimated over 67
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quarters, the degree of freedom equals 66. The variance ratio of the two factors is
(3.4 x 3.4)/(2.7 x 2.7) = 1.58 and « equals 0.032. Thus, in this example, there is
enough evidence to reject the null hypothesis that these two factors, from the same
valuation category, have the same strategy risk at a 5% confidence level. Our results
indicate that the strategy risks of factors selected from different categories, more often
than not, are statistically different.

5.4 Consistent Estimator of Active Risk

Can practitioners use strategy risk in conjunction with a risk model to compute a
more consistent active risk forecast? As a first attempt to answer this question, we divide
the testing period into two halves: in-sample period (1986-1994) and out-of-sample
period (1995-2003). In the in-sample period, we estimate k according to Eq. (12) for
each of the 60 equity strategies. Then, in the out-of-sample period, we adjust the risk-
model tracking error by 1/k, using strategy-specific k to compensate the risk model’s
bias in estimating active risk. The adjusted risk-model tracking error is
* Omodel

O model = T (1 3)

Figure 4 shows the distribution of ex post active risks in the out-of-sample period
when we set the target tracking error at 5%/« (the adjusted risk-model tracking error),
and for comparison, Figure 5 shows active risk of portfolios targeting the same tracking
error at 5% (the original risk-model tracking error). We would like to emphasize again
that the adjusted risk-model tracking error o . is unique to each equity strategy
depending on its k estimates, while the risk-model tracking error opy,04e] is the same for

all strategies. From these two histograms, it is obvious that 0% . is a more consistent
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estimator of active risk. First, the average ex post active risk is 4.7% when using o> |,
and 7.6% when using opodel. Thus, the expected ex post active risk is much closer
to our target of 5% with no bias when using the adjusted risk-model tracking error.
Second, the adjusted risk-model tracking error also provides a tighter, more bell-shaped
distribution of ex post active risks. The standard deviation of ex post active risk is 0.76%
when using o ', |, and 1.45% when using omodel- It is apparent that in this shorter
period, the risk model experienced a similar problem of underestimating the true active

risks of many strategies.

5.5 Persistence of Strategy Risk

Naturally, one must be able to forecast the strategy risk, std(IC), with reasonable accu-
racy in order to provide a consistent forecast of active risk using Eq. (9). The application
of the scaling constant x above constitutes a simplistic form of forecasting strategy
risk—using the strategy risk estimated in the in-sample period as the forecast of the
out-of-sample period. Our simplistic forecasting method assumes that strategy risk
persists from the in-sample period to the out-of-sample period. One implication of
this methodology is that the relative ranking of strategy risks stays the same in both
periods. We employ the in-sample and out-of-sample specification to show this is
indeed the case.

Figure 6 shows the scatter plot of strategy risks measured in the in-sample period
(x-axis) versus that in the out-of-sample period (y-axis). The R-squared of the regression,
using in-sample strategy risks to explain the variability of out-of-sample strategy risks, is
52%. Table 3 shows the summary statistics of the coefficient estimates of this regression.
The null hypothesis, that in-sample strategy risks have no explanation power of the
variability of the out-of-sample strategy risks, is rejected at a 1% confidence level.
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Figure 6 Scatter plot of in-sample strategy risk versus out-of-sample strategy risk.

Table 3 Summary statistics of coefficient estimates.

Lower Upper

Coefficients Standard error t Stat P-value 95% 95%
Intercept 0.0138 0.0020 7.0245 0.0000 0.0099 0.0178
In-sample strategy risk ~ 0.4941 0.0622 7.9449  0.0000 0.3697  0.6186

Hence, it is plausible that, using this simplistic forecast method in conjunction with
Eq. (9), active managers can improve their ability to assess portfolio active risk.

6 Conclusion

Among active equity managers, it is commonly known that ex post active risk often
exceeds the target tracking error specified by a risk model. We attribute this deviation to
an additional source of active risk—the strategy risk. Measured as the standard deviation
of IC, strategy risk is unique to each investment strategy conveying a strategy-specific
risk profile. Furthermore, through analytical derivations, we show that a consistent esti-
mator of active risk must incorporate strategy risk in conjunction with the risk-model
tracking error. Consequently, we provide a practical extension to the Fundamental
Law of Active Management: ex ante IR equal to the ratio of average IC to the stan-
dard deviation of IC. Additionally, we also demonstrate that IR depends not only on
the strength of IC, but also on the correlation between IC and the dispersion of the
risk-adjusted returns over time.

Empirical evidence shows that risk models systematically underestimate ex post
active risk. It is reasonable to expect this, because, by definition, the risk-model risk
only accounts for tracking error caused by risk factors and specific risks specified by a
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risk model. However, all active strategies are exposed to alpha factors, which must have
explanatory power for cross-sectional returns beyond the power provided by the risk
model. This cross-sectional correlation between the alpha factor and the actual returns
introduces additional risk not embedded in the risk model. Equation (9) provides a
way to capture both the risk-model risk and the strategy risk associated with alpha
factors.

This fact alone does not imply the deficiency of a risk model, because the job of
a risk model is to capture the majority of cross-sectional dispersion in security returns
embedded in commonly specified risk factors. While it is plausible that a given risk
model might be improved with additional risk factors, it is unrealistic to expect a risk
model to include all possible fundamental factors in all possible variations, as is often the
case when active equity managers search for alpha factors. Combining the risk-model
risk and the strategy risk represents a reasonable and realistic solution to the issue.

Our empirical survey of commonly used quantitative equity strategies confirms our
analytical results. The difference in strategy risk is often statistically significant. We also
illustrate how to use strategy risk to recalibrate the risk-model tracking error so that the
ex ante active risk reaches a target level. While more sophisticated methods to forecast
strategy risk await further research, such a simple modification has already proven far
superior to just using the risk-model risk alone.

In addition to these benefits, our analysis also enables practitioners to estimate
the ex ante excess return and active risk more accurately, without the daunting task
of optimized back tests. This is especially true for market neutral equity hedge fund
strategies with fewer portfolio constraints because our risk-constrained optimization
closely resembles those strategies. For long-only active strategies, or other kinds of
strategies with more constraints, our estimation could be combined with those of
Grinold and Kahn (2000) and Clarke ez /. (2002) to provide a more realistic IR
estimate. Finally, for active equity managers, our analytical framework can be applied in
a number of ways to provide a rigorous risk specification of equity investment strategies
in terms of diversification benefit across strategies and most importantly better portfolio
IR. For example, Sorensen ez al. (2003) illustrate a way to combine multiple alpha
sources more efficiently in an unconditional framework to achieve the highest portfolio
IR. Alternatively, we can also apply the analysis in a conditional framework to take
advantage of certain market conditions through tactical rotations of active investment
strategies. These rotation tactics can be grounded on careful examination of how the
strategy excess return and the strategy risk respond to different macro-environment,
market segments (style or sector), and seasonal influences.

Appendix A: Optimal Active Weights and Excess Return

This appendix provides mathematical details of the results in Section 1 regarding the
optimal active weights and the excess return.
The active weights is the solution of the following optimization problem: Maximize

1
ft/ c Wy — E)\.t . (Wl/’ . Vl' . W;) (A.l)
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subject to
;e
w,-1=0

The subscript ¢ denotes the period. For clarity, we omit it from our notation hereafter.
In Egs. (A.1) and (A.2), f = (fi,/2,...,fn) is the vector of alpha factors or forecasts

of excess returns over an index at time ¢#; w = (w1, wa, . .., wy) the vector of active
weights against the index; B = (81, B85, ..., Bys) the matrix of risk factors with each
B; a vector of risk factor; i = (1,1,...,1)" the vector of ones; A the risk-aversion

parameter; and V the covariance matrix. The number of risk factors is M.
The covariance matrix V in a multi-factor risk model takes a special form:

V=B-X3-B' +8S (A.3)

where 2p is the covariance matrix of risk factors, and S = diag(olz, 62, ...,0 1%,) is the

diagonal matrix of stock-specific risks. Equation (A.3) assumes zero correlation between
stock-specific risks. Because we require that the active weights are factor neutral, and
there is no systematic risk in the active weights whatsoever, we can reduce the objective
function (A.1) to the following, provided that we keep all the constraints

1
f/-w—z)»-(w/~s~w) (A.4)

We can now solve the optimization of (A.4) with the constraints (A.2) analytically
using the method of Langrangian multipliers. We switch from matrix notation to using
summations. The new objective function including M + 1 Langrangian multipliers
(1 for the dollar neutral constraint and M for M risk factors) is

N

L& N N N
Zﬁwi - 5)» Z wio} — Z w; — b Z wiPri— - — s Z wiBuyi  (A.S)
=1

i=1 i=1 i=1 i=1 i=

Taking the partial derivative with respect to w; and equating it to zero gives

o )L—lﬁ —h=bprii— = lus1Bumi
w; = 5

o;

(A.6)

The values of Langrangian multipliers are determined by the constraints through a
system of linear equations.

Given the active weights, the portfolio excess return is the summed product of the
active weights and the actual excess returns

N N
Z Zz‘—/—l i— o — |, i
o wirs = 3] fi—h —bp ! M+1BM, . (A7)
o
i=1 =1 i

To arrive at Eq. (4) with the risk-adjusted forecast and the risk-adjusted return, we
replace the return 7; by r; — k1 — k21, — - - - — kar+1Bar1i, where (ka, . . ., kar41) are
the returns to M risk factors. This does not change the equation due to the constraints
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placed on the active weights. We choose the value of 41 to make the risk-adjusted return
mean zero. Defining

_fi=h=bBui— - — a1 Bui

;=

i (A.8)
ri— k1 —tkofri — - — by Bui

]

R =

Eq. (A.7) becomes Eq. (4).

We next calculate the residual variance or equivalently the risk-model tracking error
as the sum of active weights squared times the specific variance. The active portfolio
has no market risk within the risk model because the active weights are neutral to all
risk factors. We have

N N
Giodcl = Z wiz()‘i2 = )‘_2 Z F12 (A9)
=1 i=1

The residual variance is, therefore, the sum of the risk-adjusted forecasts squared.

Therefore,

—1
Omodel = )‘-,:

N
> R =2;'WN - 1\/ [dis(F,)]* + [avg(F,)]?
i=1

~ A7 'WN — 1 dis(F,) (A.10)

We have assumed that avg(F;) &~ 0 and this approximation is quite accurate in practice.

Appendix B: The Information Ratio

This appendix presents the exact results regarding the expected excess return and active
risk. To obtain the expected excess return and active risk based on Eq. (7) we must find
the expected value and variance of a product of two random variables. We use x and y
to denotes IC and the dispersion of the risk-adjusted returns.

Elementary statistical calculation tells us that

E(xy) = xy + poxoy (B.1)

The barred variables are averages and o denotes the standard deviation, and p is the
correlation. Identifying IC as the variable x and the dispersion of the risk-adjusted
returns as the variable y, we obtain the expected excess return as in Eq. (10).

We can also obtain the variance of x times y as

Var(xy) = zeayz + ,0203%2 + 9?20},2 +)720xz (B.2)
When 0, /y < 1and 0,/y < 0,/%, i.e., the coefhcient of variation for the dispersion

of the risk-adjusted returns is much less than 1 and much less than the coefficient of
variation for IC, the variance can be approximated by

Var(xy) = }72 ze (B.3)

This approximation justifies using Eq. (9) for the active risk.
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Notes

! This problem has also been recognized by other practitioners. For example, Freeman (2002)

notes that “if a manager is optimizing the long-short portfolio, he or she better assume that
the tracking error forecast (of a risk model) will be at least 50% too low.”

Grinold (1994) proposed this alpha formula mainly for translating cross-sectional z scores
into alpha inputs for an optimizer. While such a prescription holds true for a linear time series
forecast model, it is not theoretically valid with cross-sectional z scores. We demonstrate in
the paper, that such a prescription is not necessary in deriving IR. Furthermore, while it is
necessary to use a risk model for individual securities in the mean-variance optimization to
form the optimal portfolio, it is not necessary and perhaps overreaching to assume returns of
individual securities follow the prescription of the risk model. Instead of such a normative
approach, we take a descriptive one, making no explicit assumptions about the expected
return of each security.

Later in the paper, we will use the time series standard deviation as well. To avoid confusion we
shall use dispersion when describing cross-sectional standard deviation and standard deviation
when describing time series standard deviation.

It is difficult to maintain a constant level of risk-model tracking error for all time. One often
targets it within a narrow range to accommodate portfolio drift and changing risk model
estimates.

The variance of N such independent variables is a scaled chi-square distribution if their
mean is zero. It can be proven that when V is large, the dispersion is close to unity, using
the approximation of a chi-square distribution (Keeping, 1995).
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THE YEAR-END PRICE OF RISK IN A MARKET
FOR LIQUIDITY

Mark D. Griffiths* and Drew B. Winters®

Musto (1997, Journal of Finance 52(4), 1861—-1882) identifies a year-end effect in

commercial paper (CP) and suggests that the price of risk may increase at the year-end.

Griffiths and Winters (2003, Journal of Business, forthcoming) show that the timing of
the year-end effect in CP is consistent with a preferred habitat for liguidity. However,

Griffiths and Winters use data from only one risk class, so we extend their analysis by
using spreads between different risk classes to determine if the price of risk does increase
at the year-end. Using daily spreads between two risk classes of 7 day, 15 day, and
30 day non-financial CB we find that the spread does increase at this time. However,

the timing of the spread increases and decreases aligns with expectations consistent with

a preferred habitat for liquidity at the year-end. This suggests that when liquidity is

tight at the year-end, money market investors increase the price of risk.

1 Introduction

Kidwell ez al. (1997) describe the money markets as markets for liquidity. That is,
investors with temporary cash surpluses store their liquidity by investing in money
market securities and borrowers with temporary cash shortages borrow liquidity by
issuing money market securities. Hence, money market investors require short-term
debt securities that have: (1) maturities that match the anticipated length of time
until the surplus cash is needed, (2) low default risk, and (3) high marketability.
The securities in the $3 trillion US money markets include: Treasury bills, negotiable
CDs, bankers’ acceptances, repurchase agreements (repos), Fed funds, and commercial
paper (CP).

Musto (1997) identifies a year-end effect in the CP market where the rates increase
dramatically when the instrument matures in the new calendar year. Musto suggests
that either the price of risk, or the quantity of risk, increases at the end-of-the-year and
suggests that the cause is risk-shifting window dressing by money market mutual fund
managers.! This risk-shifting window dressing hypothesis argues that fund managers
shift away from the riskier investments in their portfolio so that, at the year-end
disclosure date, the portfolio reported will under-represent the typical risk level of
the portfolio. This exodus drives down the price and, thus, increases the yield on CP
making it an increasingly expensive source of funds (for borrowers) as the disclosure
date approaches.

Jack R. Anderson Professor of Finance, Richard T. Farmer School of Business, Miami University, Oxford, OH 45014,
USA. Tel.: 602-978-7612; e-mail: griffitm@t-bird.edu (corresponding author).

DTexas Tech University, Federal Reserve Bank of St. Louis.
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Griffiths and Winters (2003) revisit the year-end effect in 1 month CP and provide
strong evidence that the identified rate effect is not consistent with risk-shifting window
dressing. To support risk-shifting window dressing, the rate pressure must continue
across the year-end because the portfolio disclosure date is the last trading day of the
year and, Griffiths and Winters show that the year-end rate pressure begins to abate
prior to that last trading day. They contend that the year-end rate pattern is consistent
with a year-end preferred habitat for liquidity.?

A preferred habitat for liquidity implies that money market investors have specific
investment horizons when they enter the market and choose to invest in securities that
match their required horizon. One possible reason for specific investment horizons is
that many periodic cash flows occur at the turn-of-a-month, so that the temporary
cash surpluses are invested such that they mature before the turn-of-the-month when
the cash is needed. Ogden (1987) notes that many regular cash flows occur near the
end-of-the-year, but not necessarily on the last day of the year. This implies that a
year-end preference for liquidity would create rate increases when the maturity of
money market securities spans the investors year-end cash flow dates followed by
rate decreases as the year-end cash obligations dates pass. The rate decrease from the
abatement of liquidity preference pressure can occur before the last trading day of
the year.

This is also consistent with Garbade’s (1999, p. 182) comments on the pricing of
Treasury bills with special value that are “attributable to maturities that immediately
precede dates when many corporate treasurers need cash to make payments. In addition
to quarter-end bills, these include ‘month-end’ bills maturing at the end of a calendar
month . . . and ‘tax’ bills maturing immediately before important Federal corporate
income tax dates . . .”

Griffiths and Winters (2003) extend their analysis to include 1 month money
markets in: negotiable CDs, bankers’ acceptances, euro-dollar deposits, and T-bills,
and find that a year-end preference for liquidity generalizes across these markets. Their
analysis uses daily rates from one risk class of borrower in each market, which allowed
them to determine that the timing of the year-end rate pattern in the money markets is
consistent with a preference for liquidity and not with risk-shifting window dressing.
However, their data from one risk class prevents them from analyzing whether the price
of risk increases at the year-end and, if the price of risk does increase at the year-end,
what is an appropriate explanation for the increase.

We collect daily rates on 7-day, 15-day, and 30-day non-financial CP from 7/1/97
through 6/30/02 for the commercial paper risk categories identified by the Board of
Governors as AA and A2/P2. We find year-end patterns for each maturity across both
risk classes consistent with the year-end pattern identified by Griffiths and Winters
(2003). In addition, we find a year-end pattern in the spread between the AA rates
and the A2/P2 rates that aligns with regularities in the rates suggesting that there is an
increased price for risk at the year-end but, that the timing of the price increase coincides
with year-end liquidity preferences but not with risk-shifting window dressing. In
particular, we find that the two different classes of CP both become more expensive
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for the borrower when the maturity dates of the instruments first begin to cross into
the next calendar year. The CP then cheapens just prior to the year-end.

2 Data and Methods
2.1 Data

The Board of Governors of the Federal Reserve System reports daily interest rates on
a wide variety of short-term and long-term debt instruments. Beginning in July 1997,
the Board began reporting daily interest rates on financial and non-financial CP in
initial maturities of 7, 15, 30, 60, and 90 dalys.3 They also began reporting 30 day
A2/P2 non-financial CP rates in July 1997 and expanded their reporting of A2/P2
rates to include other CP maturities in January 1998. We collect all the non-financial
7,15, and 30 day rates available from 7/1/97 through 6/30/02.% The data reflect the
pricing on new issues of CP with same day settlement in immediately available funds.

The Board of Governors reports the definition of AA non-financial commercial
paper as short-term credit with at least one “1” or “1+” rating but no ratings other
than “1.” It reports the definition of A2/P2 non-financial CP as short-term credit with
at least one “2” rating but no ratings other than “2.”> A Moody’s rating of “1” suggests a
superior ability to repay senior short-term debt, while a Moody’s rating of “2” indicates
a strong ability to repay senior short-term debt. Thus, CP that is rated “2” is not junk
bond quality debt. It is high quality debt that is likely to meet its obligations, but
it is not the highest quality debt, and the rating agencies are able to differentiate its
borrower’s ability to service debt from borrowers in the highest rating category.

Including an examination of daily volume at the year-end could enhance our anal-
ysis. However, data on daily volume are not available. The Board of Governors of the
Federal Reserve systems provides only monthly outstandings and quarterly volume for
various classes of CP.

2.2 Methods

We start with the regression model Griffiths and Winters (2003) used to analyze rate
and spread changes at the year-end. However, we only include year-end pressure points
in our model since we are focusing on the year-end and because Griffiths and Winters
did not find significant turn-of-the-month effects in the months not at the turn-of-
the-year. We add to our explanatory variables the first lag of the dependent variable to
control for trends in the dependent variable. Our model is as follows:

AX;, = ag + a1 (AX,_1) + B1BCross + $2ACross + B3BYearend
+ B4AYearend + y (ATB;) + ¢, (1)

where AX; is the daily change in rates or spreads specified as X, — X,_1, BCross a
0/1 dummy variable that equals 1 on the two trading days before the maturity of the
instrument begins to span the year-end and 0 otherwise, ACross a 0/1 dummy variable
that equals 1 on the trading day that the maturity of the instrument begins to span the
year-end and the following day and 0 otherwise, BYearend a 0/1 dummy variable that
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equals 1 on the last two trading days of a year and 0 otherwise, AYearend a 0/1 dummy
variable that equals 1 on the first two trading days of a new year and 0 otherwise, and

ATB, the daily change in 3 month T-bill yields specified as TB, —TB,_; and is included
in the model to control for changes in the general level of short-term interest rates.®
We estimate Eq. (1) using OLS with White’s (1980) adjustment for heterosce-

dasticity.

3 Analysis
3.1 Descriptive Analysis

The feature that differentiates risk-shifting window dressing from a preferred habitat for
liquidity is the timing of the year-end rate (spread) decrease that returns rates (spreads)
to “normal” levels. For risk-shifting window dressing, the decrease must occur after
the year-end, while for a preferred habitat for liquidity the decrease may occur before
the year-end.” In addition, since rates (spreads) are returning to “normal” levels at the
year-end, we must see that, prior to the year-end, during the period when the maturity
of the instrument spans the year-end, rates (spreads) are “abnormally” high. We will
demonstrate the presence of this year-end regularity in our data with a series of plots.
The X -axis in each plot is trading days relative to the year-end. In each plot, the X -axis
has a 0, which is not a trading day but instead marks the break point between the years.
Trading day —1 is the last trading of the year while trading day 1 is the first trading
day of the new year.

We begin with Figure 1 which plots daily average rates around the year-end for 7,
15, and 30 day AA non-financial CP. In Figure 1, trading day —4 is the first trading
day when new 7 day CP matures in the new year and day —10 is the first day that
new 15 day CP begins to mature in the new year. The plot of the 30 day CP is drawn
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so that trading day —21 is the first day the new 30 day CP matures in the new year.
To get the switch days to align across years, some minor adjustments were made to the
30 day CP data, while the switch day for all the 7 day CP data is day —4 and all the
15 day CP is day —10.8

In Figure 1 we see the same pattern in 30 day AA non-financial CP as identified in
Griffiths and Winters (2003) and this regularity is consistent with a preferred habitat
for liquidity at the year-end. The 30 day AA non-financial CP rates increase on trading
day —21 when the maturity of new 30 day CP begins to span the year-end and rates
decrease to normal levels across the last few trading days of the year. A similar pattern
of the rates increasing when maturity begins to span the year-end followed by rate
decreases over the last few trading days of the year also occurs in the 15 and 7 day
AA-rated CP, which suggests a year-end preference for liquidity across maturities in
the 30 day and under CP market. Recall that rates would have to remain elevated to
support the risk-shifting window dressing hypothesis. We note that there is an unusual
increase in average daily rates for 15 day CP on trading day —1. The largest daily rate
increase in our 15 day AA non-financial CP occurs on the last trading day of 1999,
which may be associated with Y2K liquidity provided by the Federal Reserve.” We
chose to leave the outlier observation in our analysis.

Figure 2 is similar to Figure 1 using the rates for A2/P2 non-financial CP. Figure 2
shows that the plots for each maturity resembles the plots in Figure 1. That is, for
each maturity the A2/P2 rates increase when the maturity begins to span the year-end
and rates decrease across the last few trading days of the year. This suggests that the

evidence to support a preferred habitat for liquidity at the year-end generalizes across
risk classes of CP.
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Figure 3 plots the AA to A2/P2 spread at the year-end and provides our first look at
the price of risk at the year-end. If the price of risk does not increase at the year-end then
the spread should remain constant. Figure 3 shows that the spread for each maturity
increases dramatically at the year-end arguing in favor of a price of risk increase at
the year-end. However, the timing of the spread changes is consistent with the timing
hypothesized for a preferred habitat for liquidity. That is, each spread increase aligns
with the maturity of the instruments beginning to span the year-end and each spread
decrease occurs across the last few trading days of the year. Spreads would have to
remain abnormally high through the year-end to be consistent with the risk-shifting
window dressing hypothesis. The observed pattern suggests that in this market, when
liquidity gets squeezed at the end-of-the-year the price of risk increases, but that this
effect is not associated with portfolio disclosure dates. That is, the instrument gets
expensive for the borrower as expected but, then, cheapens prior to the last trading day
of the year.

Even without the benefit of tests for statistical significance, we note that the spread
increases are economically significant. Stigum (1990) states money market traders view
10-20 basis points (bps) as a significant arbitrage opportunity, while Figure 3 shows
that the CP spreads increase at least 30—60 bps at the year-end. To provide the numbers
for the daily average spreads in Figure 3, we provide Figure 4 with three panels. Each
panel plots a different maturity from Figure 3 with the X -axis modified to focus on the
period of increased spread for each maturity and each daily plot point is accompanied
by the numerical value (in percentage points) of the average daily spread.
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Figure 4, Panel A shows that 7 day average spreads increase on trading day —4
from 52 to 90 bps with spread remaining around 90 bps for 3 days: a year-end spread
increase of at least 40 bps. Figure 4, Panel B shows that 15 day average spreads increase
from 29 bps on trading day —11 to 78 bps on trading day —9 and over the next 7 days
range between 74 bps and 117 bps: an increase of at least 50 bps. Figure 4, Panel C
shows that 30 day average spreads increase on trading day —21, from 35 to 62 bps and,
over the next 20 trading days, remain between 59 and 79 bps: an increase of about

35 bps. Again, all of these spread increases are economically significant.!?

3.2 Regression Analysis

In this section, we take a closer look at the year-end break points in each time series
of data in a regression analysis. The regression analysis controls for changes in the
general level of short-term interest rates so that the dummy variables for the break
points can isolate calendar-time specific effects. We estimate Eq. (1) for the daily rate
changes in AA non-financial CP for each maturity and in A2/P2 non-financial CP for
each maturity. In addition, we estimate Eq. (1) for the daily changes in the spread
between AA CP and A2/P2 CP for each maturity. The results from estimating Eq. (1)
are reported in Tables 1-3.

Table 1 provides the results from estimating Eq. (1) for each maturity of the AA-
rated non-financial CP. All three maturities show a positive and significant (at better

Table 1 Regression for daily rate changes in AA-rated non-financial CP (Eq. (1)).

7 Day 15 Day 30 Day
Intercept —0.0036 —0.0039 —0.0019
(0.2685) (0.1548) (0.1679)
AX;— 0.0337 —0.1276 0.1265
(0.2907) (<0.0001) (<0.0001)
BCross 0.0062 0.0089 0.0431
(0.8643) (0.7675) (<0.0001)
ACross 0.2955 0.1833 —0.0096
(<0.0001) (<0.0001) (0.5197)
BYearend —0.1585 —0.0209 —0.1004
(<0.0001) (0.4992) (<0.0001)
AYearend 0.0186 —0.0853 0.0231
(0.6051) (0.0045) (0.1183)
ATB 0.4053 0.3275 0.2541
(<0.0001) (<0.0001) (<0.0001)

F-statistic 26.00 16.53 37.00
(<0.0001) (<0.0001) (<0.0001)
Adjusted 0.1308 0.0855 0.1475

R-square

Note: p-Values appear in parentheses under each parameter estimate.
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Table2 Regression for daily rate changes in A2/P2-rated non-financial CP (Eq. (1)).

7 Day 15 Day 30 Day
Intercept —0.0040 —0.0029 —0.0028
(0.2413) (0.3177) (0.1680)
AX,_, ~0.1285 ~0.1667 —0.1547
(<0.0001) (<0.0001) (<0.0001)
BCross 0.0664 —0.0073 0.2223
(0.0819) (0.8175) (<0.0001)
ACross 0.5974 0.4336 0.0945
(<0.0001) (<0.0001) (<0.0001)
BYearend —0.3212 —0.3653 —0.1974
(<0.0001) (<0.0001) (<0.0001)
AYearend —0.2266 —0.1727 —0.1481
(<0.0001) (<0.0001) (<0.0001)
ATB 0.3169 0.1845 0.1599
(<0.0001) (0.0003) (<0.0001)

F-statistic 58.65 52.58 38.55
(<0.0001) (<0.0001) (<0.0001)
Adjusted 0.2576 0.2369 0.1529

R-square

Note: p-Values appear in parentheses under each parameter estimate.

Table 3 Regression for daily spread changes in non-financial CP for the spread

between A2/P2 and AA Rated CP (Eq. (1)).

7 Day 15 Day 30 Day
Intercept 0.0002 0.0015 —0.0002
(0.9242) (0.5671) (0.8790)
AX;_ —0.2411 —0.4189 —0.4129
(<0.0001) (<0.0001) (<0.0001)
BCross 0.0619 —0.0168 0.1477
(0.0187) (0.5683) (<0.0001)
ACross 0.2688 0.2759 0.1122
(<0.0001) (<0.0001) (<0.0001)
BYearend —0.0952 —0.3342 —0.0438
(0.0003) (<0.0001) (0.0141)
AYearend —0.2916 —0.1725 —0.2260
(<0.0001) (<0.0001) (<0.0001)
ATB —0.1088 —0.1462 —0.1232
(0.0102) (0.0019) (<0.0001)

F-statistic 40.69 71.49 65.87
(<0.0001) (<0.0001) (<0.0001)
Adjusted 0.1928 0.2978 0.2377

R-square

Note: p-Values appear in parentheses under each parameter estimate.
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than the 1% level) parameter estimate on the daily change in 3 month T-bill yields,
indicating that the AA-rated CP rates tend to move with changes in the general level
of short-term interest rates. For the 7 day rate changes, we find that the parameter
estimate for ACross (measuring the date the instrument begins to span the year-end)
is positive and significant at better than the 1% level and BYearend (measuring the
last two trading days of the year) is negative and significant at better than the 1%
level. These results suggest that the 7 day AA-rated non-financial CP rates increase
significantly when the instrument begins to mature in the new year and that the rates
decline significantly over the last two trading days of the year. This is consistent with a
preferred habitat for liquidity but does not support the risk-shifting window dressing
hypothesis. For the 15 day rate changes we find that the parameter estimate for ACross
is positive and significant at better than the 1% level and AYearend (measuring the
first two trading days of the new year) is negative and significant at better than the
1% level. These results appear to support the risk-shifting window dressing hypothesis.
However, a review of Figure 1 shows that rates decrease dramatically before the year-
end, but that the majority of the rate decrease occurs earlier than the last two trading
days of the year so that the rate decrease is not captured in our regression dummy
variables (BYearend equals 1 only on the last two trading days of the year). For the
30 day rate changes, we find that the parameter estimate for BCross (measuring the last
two trading days before the instrument spans the year-end) is positive and significant
(at better than the 1% level) and BYearend is negative and significant (at better than
the 1% level). These results suggest that the 30 day AA-rated non-financial CP rates
increase significantly when the instrument still matures in the current year and that
the rates decline significantly over the last two trading days of the year.

Table 2 provides the results from estimating Eq. (1) for each maturity of the A2/P2-
rated non-financial CP. All three maturities show a positive and significant (at better
than the 1% level) parameter estimate on the daily change in 3 month T-bill yields,
which indicates that the riskier A2/P2-rated CP rates also tend to move with changes
in the general level of short-term interest rates. For the 7 day A2/P2-rated rate changes,
we find that the parameter estimate: for ACross is positive and significant at better than
the 1% level, for BYearend is negative and significant at better than the 1% level, and
for AYearend is negative and significant at better than the 1% level. The rate changes
for 15 day A2/P2 rated non-financial CP follow the same pattern as the 7 day A2/P2
paper. For the 30 day A2/P2-rated rate changes, we find that the parameter estimate:
for BCross is positive and significant at better than the 1% level, for ACross is positive
and significant at better than the 1% level, for BYearend is negative and significant at
better than the 1% level, and for AYearend is negative and significant at better than the
1% level. These results suggest that, in all cases, the rate increase begins by the time
maturity spans the year-end and that the rate decrease occurs across the turn-of-the-year
with the decrease beginning before the switch to the new year.

Table 3 provides the results from estimating Eq. (1) for each maturity on the
spread between AA-rated and A2/P2-rated non-financial CP. All three maturities show
negative and significant (at better than the 5% level) parameter estimates on the daily
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change in 3 month T-bill yields. This result is somewhat surprising and suggests that
spread changes decrease when T-bill yields increase. However, this result is consistent
with the results on the change in 3 month T-bill yields from Tables 1 and 2, which
show that AA-rated CP is more responsive to changes in the general level of short-term
interest rates than A2/P2 CP. For the 7 day spread changes, we find that the parameter
estimate: for BCross is positive and significant at better than the 5% level, for ACross
the estimate is positive and significant at better than the 1% level, for BYearend the
estimate is negative and significant at better than the 1% level, and for AYearend the
estimate is negative and significant at better than the 1% level. For the 15 day spread
changes, we find that the parameter estimate: for ACross is positive and significant at
better than the 1% level, for BYearend is negative and significant at better than the
1% level, and for AYearend is negative and significant at better than the 1% level.
For the 30 day spread changes, we find that the parameter estimate: for BCross is
positive and significant at better than the 1% level, for ACross the estimate is positive
and significant at better than the 1% level, for BYearend the estimate is negative and
significant at better than the 5% level, and for AYearend the estimate is negative and
significant at better than the 1% level. These results suggest tha, in all cases, spreads
also begin to increase when maturity begins to span the year-end and that spreads
decrease across the turn-of-the-year with the decrease beginning before the switch to
the new year. These spread change results are consistent with the timing of the year-end
preference for liquidity and are inconsistent with expectations based on risk-shifting

window dressing arguments.!!

3.3 Discussion About Market Participants

Burghardt and Kirshner (1994) discuss the effect of the turn-of-the-year interest rate
increases on LIBOR and euro-dollar futures contract prices. They note that the turn
effect in interest rates has gained notoriety among bankers because of the pressures
applied to year-end financing rates. They note further that the source of the effect is
said to be demand for cash. To address this year-end rate pressure the Chicago Mercan-
tile Exchange (CME) has developed the Turn (interest rate) Futures contract, which
the CME describes as “the first transparent, objective, and simple vehicle for taking
advantage of opportunities presented by this closely scrutinized annual phenomenon.”

In CP, the year-end rate increase could occur because the borrowers do not have
any viable options for their year-end financing. However, CP is generally viewed as
a less costly alternative to bank debt for high quality borrowers, so these borrowers
can access bank debt if they get squeezed in the CP market. Saindenberg and Strahan
(1999) examine this possibility by examining the decrease in non-financial CP across
the fourth quarter of 1998. They find that over the same period covered by the reduction
in CP outstanding, borrowing under bank commercial lines of credit increased by the
same amount. Hence, when lenders squeeze borrowers in the CP market, borrowers
have a readily available alternative source of funds. To further this point, Downing and
Oliner (2004) show that tier-2 CP outstanding balances decline at the year-end and
rebound in January.
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When borrowers exit the CP market, the supply of available CP declines, resulting
in prices rising and rates falling, ceteris paribus. However, our results suggest that rates
increase at the year-end, suggesting a more than offsetting decline in amount loaned.
That is, investors are withholding their cash from the markets in larger dollar amounts
than the borrowers are switching to alternative funding sources. Shen (2003) states that
the primary investors in CP are: money market mutual funds, trust funds, insurance
companies, pension funds, and large firms with extra cash. Why would these firms
hold back their available cash at year-end when rates in CP are high? We contend that
it is precisely these investors who, at the margin, need the cash to meet their year-end
cash obligations.

4  Conclusion

Musto (1997) identifies a year-end effect in CP rates and suggests that either the price
of risk, or the quantity of risk, increases at the year-end. Griffiths and Winters (2003)
show that the timing of the year-end rate changes in CP is not consistent with risk-
shifting window dressing, but with a year-end preferred habitat for liquidity. Griffiths
and Winters were unable to determine if the price of risk increases at the year-end in
the CP market.

We examine whether the price of risk increases at the year-end in CP by using CP
rates from two different risk classes. We determine that the spread between the risk
classes increases at the year-end and that the spread increase occurs across CP with
initial maturities of 30 days or less. Further, we show that the timing of the year-end
spread changes is consistent with the year-end timing suggested by a year-end preferred
habitat for liquidity, but does not support risk-shifting window dressing. We conclude
that in a market for liquidity, when liquidity becomes paramount to the investors (at
the year-end) the price of risk increases dramatically.
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Notes

! The risk-shifting window dressing hypothesis is a variant on the traditional year-end window
dressing hypothesis suggested by Haugen and Lakonishok (1987) and Ritter (1988).

2 The preferred habitat hypothesis was developed by Modigliani and Sutch (1966). Ogden
(1987) adapts the preferred habitat hypothesis to the money markets to explain the month-
end and year-end effect in the T-bill market identified by Park and Reinganum (1986).
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The rates reported each day are for new instruments with initial maturities of 7, 15,
30, 60, and 90 days, instead of, for pre-existing instruments with these numbers of days
remaining until maturity.

We limit our analysis to CP with initial maturities of 30 days or less because previously
Griffiths and Winters (1997) find a year-end preferred habitat for liquidity in repos with
initial maturities of 1, 2, and 3 weeks, and 1 month but not with maturities of 2 or 3
months.

The numerical ratings correspond to the numerical ratings from the credit rating
agencies. Moody’s short-term debt ratings and rating definitions can be found at
www.moody’s.com/moodys/cust/ and provide an excellent example of a rating agency’s
short-term debt ratings and definitions.

We recognize that 3 month T-bills is a maturity mismatch relative to all of the rates and
spreads that we use as dependent variables. However, we believe that it is the best available
proxy for the general level of short-term interest rates. Musto (1997) and Griffiths and
Winters (2003) find no evidence of a significant year-end effect in 3 month T-bill yields,
while Longstaff (2000) describes 1 month T-bills as special and Griffiths and Winters (2003)
find significant year-end yield changes in 1 month T-bills.

We note that money market instruments trade in immediately available funds, which means
we do not need to adjust the alignment of trading days relative to the year-end from any
delay in settlement.

The adjustment to the data does not materially alter the plot. A few spaces were inserted
in the middle of the year-end period in a couple of years, so that all the switch days would
align in 30 day CP.

Our sample period includes the year-end switch from 1999 to 2000 and its associated
concerns about technology problems. One of the responses to the Y2K concerns was the
increase in market liquidity by the Federal Reserve. This action by the Federal Reserve
could affect our results. We re-drew our plots and re-estimated our regressions controlling
December 1999 and the switch to the year 2000 and the results are similar to the results
reported in our figures and tables. That is, the increase in general market liquidity for the
switch to the year 2000 does not drive our results and the patterns in December 1999 and
January 2000 are similar to those in the other years of our sample (with the notable exception
of the outlier in 15 day AA CP on trading day —1).

As a final reference point for the size of the year-end spread effect, we note that the
90 bps spread in 7 day CP is about four standard deviations above the mean, the year-
end spreads in 15 day CP are between three and six standard deviations above the mean,
and the year-end spreads in 30 day CP are two to three standard deviations above the
mean.

Liquidity changes in the overnight markets could affect our results. We examined this
possibility by estimating the unexpected daily rate changes in the effective Federal funds
rate and then using the unexpected change as an explanatory variable in our Eq. (1). See
Spindt and Hoffmeister (1988), Griffiths and Winters (1995) and Hamilton (1996) for
models of daily changes in Federal funds rates and volatility. The unexpected rate change
in the overnight market does not provide information about the year-end effect in CP
during our sample period. Accordingly, we chose not to include the unexpected rate change
in Eq. (1).
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RESAMPLED FRONTIERS VERSUS DIFFUSE BAYES:
AN EXPERIMENT

Harry M. Markowitz* and Nilufer Usmen®

1 Introduction

This paper reports on an experiment which compares two methods of handling the
fact that empirically observed means, variances, and covariances, for a mean—variance
analysis, are themselves noisy. One method is Bayes inference using diffuse priors which
the present authors, among many others, have reccommended. (Markowitz and Usmen,
1996a,b). The other is the method of Resampled Efficient Frontiers'™ recommended
by Richard O. Michaud (Michaud, 1998).!

The experiment is a computer simulation “game” with two players and a referee.
In the game the referee generates 10 “truths” about eight asset classes. For each truth
the referee draws 100 different possible “histories” of 216 monthly observations. (We
chose eight asset classes and 216 months to keep the experiment as close as possible to
that of Michaud.)

Each history is presented to each player. The players know that the truth is a joint
normal distribution with unchanging means, variances, and covariances but do not
know the parameter values. The Michaud player uses the observed history to generate
a resampled frontier. That is, for a given history the player randomly generates many
mean—variance efficient frontiers and averages these. The Bayes player uses the observed
history to update beliefs, from prior to posterior, then uses these beliefs to compute
one efficient frontier. Because of the high dimensionality of the “hypothesis-space,”
Monte Carlo sampling must be used to approximate the Bayes player’s ex post means,
variances, and covariances. Given their respective frontiers each player picks three
portfolios, namely, the portfolios which each player believes maximizes

EU =E — AV (1)

for A = 0.5, 1.0, 2.0, where £ and V are the portfolio mean and variance. The
referee notes the player’s actual expected utility using the true means, variances, and
covariances—known only to the referee. The referee also notes each player’s estimate
of its expected utility. This is repeated for the 100 randomly drawn histories for a given
truth and the 10 truths of the game.

#Harry Markowitz Company, 1010 Turquoise Street Suite 245, San Diego, CA 92109, USA. Tel.: (858) 488-7212

(corresponding author).

bSchool of Business, Montclair State University, Upper Montclair, New Jersey, USA.
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The assumption of normality and unchanging distributions may be unrealistic, but
both players are apprised of the rules of the game. It is not obvious that the assumptions
favor one methodology over the other. The authors expected the Bayesian approach
with diffuse priors to do better than the resampled frontier approach. In fact, the
opposite turned out to be the case. Section 2 of this paper describes how the referee
generates truths and, from these, the histories “observed” by the players; Section 3
describes the actions of the Michaud player; Section 4 describes the actions of the
diffuse Bayesian player; Section 5 presents the results of the experiment; Section 6
points out some questions raised by these results; Section 7 summarizes.

2 The Referee and The Game

The experiment (“game”) is outlined in Exhibit A. The referee generates 100 histo-
ries from 10 “truths,” each history consisting of returns on eight asset classes during
216 consecutive months. Each truth is itself randomly generated by the referee by

Exhibit A The Experiment.

Referee chooses First/Next “Truth”

“Truth” is a joint normal return distribution with fixed mean vector (4 and covariance
matrix C not known to the players.

Referee draws First/Next historical sample randomly from Truth
For Player = {Bayesian, Resampler}
Referee gives historical sample to Player.
Player applies its procedure to sample. (See write-ups of respective procedures.)

For the given sample and for each utility function (specifically, for EU = E — AV for
A= %, 1, and 2) the Player returns:

Selected Portfolio
Estimate of its Expected Utility

For each (Player, Utility function):
Referee computes True expected utility.
Repeat for Next Historical Sample

After all historical samples have been generated and processed, and with Truth still
fixed:

For each utility function, see which player had higher £U on average.
Compare EU achieved versus £U anticipated on average.

Repeat for Next Truth

Did one of the players do better for most Truths or on average?
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Table 1 Asset classes used in experiment.”

Asset class Data source
Canadian Equities Morgan Stanley Capital International®
French Equities Morgan Stanley Capital International®
German Equities Morgan Stanley Capital International®
Japanese Equities Morgan Stanley Capital International®

United Kingdom Equities  Morgan Stanley Capital International®

United States Equities S & P 500 Index total return
United States Bonds Lehman Brothers®
Euro Bonds Lehman Brothers?

2Source: Michaud (1998) p. 13, footnote 16.

bDollar return indexes net of withholding taxes.
€Government/Corporate US bond index.

dEurobond global index.

computing the means, variances and covariances of 216 draws of eight returns each
from a “seed” distribution. This seed distribution is normally distributed with means,
variances, and covariances equal to the historic excess return over the US 30-day T-bill
rate of the eight asset classes listed in Table 1 for the 216 months from January 1978
through December 1995, as in Michaud (1998).

Having thus established a truth, the referee generates a 216 month “history” from
this truth by sampling joint normally from the truth’s mean vector and covariance
matrix. Each history is presented to each of the two players. Each player tells the
referee, for each history, the portfolio which the player believes maximizes £U in (1)
for . = 0.5, 1.0, 2.0, respectively. The player also provides the referee with the player’s
own estimate of EU. The referee computes the actual value of EU from the truth, known
only to the referee. The referee tabulates the actual value and the players’ estimates of
this value for the two players. This is repeated for 100 histories per truth and 10 truths
for the experiment.

3 The Michaud Player

Michaud proposes the following procedure to handle the fact that observed means,
variances, and covariances are not the true parameters but contain noise. In private
conversations with the present authors, Michaud points out that more sophisticated
procedures could be incorporated into the resampling philosophy. We grant this, but
note that it would be difficult to formulate an experiment that encompasses all the
possible nuances of both the resampling and Bayesian approaches. The experiment
we report here, admittedly, compares “vanilla” resampled frontiers with diffuse Bayes
implemented by a particular Monte Carlo analysis.

Following Michaud (1998), the “Michaud player” in our experiment proceeds as
follows: given a specific history O (“O” for “Observation”) generated by the referee with
its means, variances, and covariances, the Michaud player draws 500 new samples of
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returns on the eight asset classes for 216 months, drawing these from a joint normally
distributed i.i.d. random process with the same means, variances, and covariances as
O. For each of these 500 samples the Michaud player generates an efficient frontier
and then averages these 500 efficient frontiers. Specifically, it notes the first, second,
third. . .. 101st points on the frontier spaced by equal increments of standard deviation.
The first point is the one with the highest expected return on the frontier; the 101st
point is the one with the lowest standard deviation. The “resampled frontier” has as its
first portfolio the average holdings of the first portfolios of the 500 particular frontiers,
its second portfolio is the average holdings of 500 second portfolios, etc.

The portfolio mean and variance ascribed to each of the 101 portfolios of the
resampled frontier are computed using the original means, variances, and covariances
of the observation O. (The present authors thank Richard and Robert Michaud for
clarification on this point.) The task that each of the players is assigned is to provide
portfolios which maximize the expected value of (1). Therefore, for a given history
the Michaud player picks from his resampled frontier the points which maximize the
expected value of its estimated £U for A = 0.5, 1.0, and 2.0. This process is repeated
for each of the 100 randomly drawn histories for each of the 10 truths presented to
the player by the referee.

4 The Diffuse Bayes Player
4.1 Basics

At any moment in time (say # = 0) the Bayesian rational decision maker (RDM) acts
as if it ascribes a probability distribution Py(/) to hypotheses 4 in some space H of
possible hypotheses. In the present discussion, a hypothesis is a vector of eight means
and 36 distinct variances and covariances:

/ h h b _h h
b :(Ml,...,Ms,all,alz,...,asg) (2)

plus the assertion that the variables

Y=, ..., 1) (3)

are joint normally distributed with these parameters. The hypothesis space A may be
taken as all possible values of 4:

H = R* (4)

It is inconsequential whether we restrict / to the set ™ of 44-tuples that can possibly
be parameters of a joint normal distribution, or define it as in (4) and understand that

Po(R*™ — H*) =0 (5)

The probability distribution P,(H) changes over time, as we review below. We assume
that, as of any time #, the RDM chooses an action « so as to maximize a single-period
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utility function

EU = E[E(U(r;a)lh)] (6)

In other words, the action « is chosen so as to maximize EUwhere U depends on returns
7 and action &, and the expected return in (6) is computed as if Nature randomly drew
a hypothesis 4 using probability distribution P, then drew 7 given 4. In the present
experiment the action « is the choice of a portfolio.?

To pick a portfolio which maximizes EU in (6) using the utility function in (1),
the RDM uses only its estimated portfolio mean (£) and portfolio variance (V') which
depend only on its estimated means u; of securities and the covariances 0;; (including
variances V; = 0;;) between pairs of securities. These are given by

wi = E(r;) = JE(E(Vz‘)l/?) = Eﬂf = Avgp! @

oij = E(ry — ni)(r; — ;) = E(r; —ul ol — wi) x (7 —M]/'J-FM]/'J — 1)
= E(o) = E(u7 — mi) (1} — )
= Avgo, — cov(u), 11]) ®)
since, e.g.
E [~ 1))~ )] = 0
In particular, for i = j (Eq. 8) says
V; = Avg V!’ — Var(u}) )

The last line of (7) and (8) are mnemonics for the immediately preceding lines. These
formulas tell us that, for the Bayesian RDM, the expected value of 7; at time # is the
average, using P, (h) over h € H, of ,uf’ ; whereas covariance between 7; and 7; is the

average O ; plus the covariance between ,uf and l/«]/? . In particular, the variance of 7; is
the average Vl-b plus the variance of /,Lf .

As evidence accumulates, P, (/) changes over time, according to the Bayes rule. If
P,(H) has a probability density function P;(4), and O is an observation taken between

tand ¢ + 1 (e.g., O is the set of monthly returns 7;, fori =1,...,8,# =1 to 216 as
described before), with L(O|5) the probability density of O given hypothesis 4, then,
2:(h)L(OIh)
(h) = (10)
P Ty 2eWL(O1) db

The human decision maker (HDM) who wishes to emulate an RDM sometimes avoids
the burden of specifying p, (/) by assuming that

p:(h) = 1/vol(Q¥) forall h € QF (11)

where “vol” stands for volume and Q* C H is assumed to be sufficiently large that

[ swroma (12)
H—-Q*
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is negligible. With (11) assumed, the updated beliefs of (10) become
pr+1(h) = L(O|h)/ D (13)

where

D= / L(O|h)dh (14)
Q*
and the expected value [with respect to P,41(h)] of any integrable function v(5) is

Ev(h) =N/D (15)
H

where

Nz/ v(h)L(O\h) dh
QF

In principle, (15) can be used to compute £ u,f , E Gﬁ , and E pu” p? which are
H H 7 7 '

necessary to compute Avg ,uf? , Avg 05 and cov (Mfy , l/«]/? ) in (7) and (8). The practical
problem is that V and D are integrals over 44-dimensional spaces. As is often done,
we will use Monte Carlo analysis to approximate a high-dimensional integral. The
specifics of how we do this are described in a following subsection. First, we discuss the
fact that a hypothesis space can often be parameterized in different ways, and present
a parameterization of the present situation that will be very convenient for the Monte
Carlo analysis that follows.

4.2 Diffuse Priors

Suppose, for the moment, that there was only one unknown parameter, an expected
value i of one random variable 7. Then, the standard diffuse prior spreads probability
belief concerning p uniformly over some large interval:

1
—  f —A,A
sy = {2a OrmElmAAl (16)

0 otherwise

The choice of A is not importantas longas A is sufficiently large, since the contribution
to £ (r) becomes negligible beyond a sufficiently large A. Admittedly, this is often not a
very plausible prior. For example, if 7 is the return on an asset class it is not plausible for
the asset class to have a large constant-through-time negative expected return. Such an
asset class would disappear. However, the use of (16) is justified as convenient because
it saves making a decision as to the exact form to be used for prior beliefs. In effect, it
assumes that posterior beliefs are proportional to the likelihood function L(O154). One
justification for assuming posterior beliefs are proportional to L(O|h) is the Edwards
et al. (1963) principle of stable estimation. “To ignore the departures from uniformity,
it suffices that your actual prior density change gently in the region favored by the data
and not itself too strongly favor some other region” (p. 202). In particular, it suffices
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if the likelihood function is much more concentrated than the prior beliefs are, and
prior beliefs do not strongly favor any region.

Next, suppose that there are two parameters to be estimated, namely an expected
return ¢ and a standard deviation 0. Now, there are competing choices for a diffuse
prior such as

1
fi —A1, A
SINV or u € [—A1, Aq]
p(u, o) = o €[0,A,] 17)
0 otherwise
! fi e [—A1, Aq]
2A1A2 or W 1, A1
P, V)= V € [0, As] (18)
0 otherwise
1
f —ALA
iALA, or L € [—Ay1, Aq]
P, logo) = logo € [—As, As] (19)
0 otherwise
Since log 0 = % log V, a similar expression for p(u, log V') would not be a new

alternative. Since the use of (16) is justified by convenience and the principle of stable
estimation, even when not plausible, one should be permitted the choice between (17),
(18), and (19) on the basis of convenience, since the principle of stable estimation would
seem to apply about equally to any of them.

With two normally distributed random variables, » = (71, 1), the hypothesis space
would most naturally include the choice of

/
b = (1, n2,01,02,012, or P12).

One way of forming diffuse priors for the above is to assume that j1, 01 and u2, 02
each have as priors (17), (18), or (19) and that p1; is independently drawn with a prior
density of

L for —1<p<1
sp)=12 T == (20)

0 otherwise

It might seem that one could repeat the process for » = 8 with ;04,7 =1,...,8
having priors (17), (18), or (19) and with each p;; independently having (20) as a prior
fori=1,...,7,j =174 1,...,8. One problem with this is that it assigns positive
probabilities to correlation matrixes which are logically impossible. For example, it is
impossible to have p;; < —% for every 7 # j for eight returns.

We use a different “diffuse approach” which avoids the above difficulty and is
computationally quite convenient for the Monte Carlo analysis described below. This
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approach uses priors equivalent to nature drawing 7;; according to

—  forv; —A,A
sy = | 28t €7 A 21)

0 otherwise

independently for i = 1,...,8, # = 1,...,216, then computing u;, o;, and p;
as the means, standard deviations, and the correlations of the randomly drawn 7;.
The distribution of (141, 42, . . . , 0gg) is implicit. In other words, we will find it most
convenient to assume that prior probability distribution of (i1, ..., 03g) is the same
as that of the sample statistics of random variables 7, ..., 73 drawn uniformly and
independently, for sample size 7 = 216. For example, for a very large A in (21) the
distribution of 11 is approximately normally distributed with a large standard deviation.

4.3 Importance Sampling

Let
K = R® x R* (22)
be the space of 8 x 216 real matrices. Examples of members of X include O, the

historical observation handed to each player, and 41, . . ., k509, the 500 histories which
the Michaud player generates. Recall, H is defined in (4) as R4, Members of H include

b in (2), the parameters of a joint normal distribution of (1, . . ., 7g).

Let fxkzr be a function fxzr : K — H which associates with each point # € K the
(W1, ...,088) vector h € H obtained by computing these parameters from the returns
matrix 4. For two points 41, and k; in K we define

216
L(ki|kr) = Llkr|fxrr (k2)] = l_[N[VthKH(/eZ)] (23)

=1
where N (r; /) is the normal density of the random vector 7 given the parameters 4.
In other words, (23) defines the likelihood of 4; given 4 to mean the likelihood of
getting the sample 41 from a normal distribution with parameters fxz (£2).
Let
K*={reK| |r|<AVir} (24)

for some large A. We assume that the prior density is uniformly distributed over this set,
K*. To evaluate an expected value as in (15) by integration would require integration
over a large rectangle in an 8 x 216-dimensional space. This is not feasible. On the
other hand, an estimate of £(») by Monte Carlo, for randomly drawn v, depends on
sample size and the moments of v rather than on the dimensionality of XK.

Given any function v(k) of the sample point 4, in principle, one could estimate the
Bayes player’s £ (v) given O, by sampling 4 from K™ with probability

pk) = L(Olk)/D (252)

where

D:f L(O|k) dk (25b)
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Instead, we will have the Bayes player use the same 500 samples from Kwhich the
Michaud player uses to compute its resampled frontier. We must keep in mind that
these 500 samples were drawn with probability density

q(k) = L(£]0) (26)

That is, the 8 x 216 matrices (r;) in Michaud’s samples are drawn joint normally
assuming the parameters of the “historical” observation O. Observe that L(£|0) in
(26) is not the same as L(O|k)/D in (25a).

There is a standard correction applicable when we wish to estimate an expected
value

E(@v) = /1(*P(k)y(k) dk (27)

and we draw a sample, e.g. v1,. .., v500, with probability ¢(#) rather than p(k). The

sample average

1 500
V= — v; (28)
500 p
has expected value
E@ﬂ:i/ J(B)ok) dk 29)
K*
which may differ from £ () in (27). Instead, we may use a weighted average
1
D= — k) /q(k) | v(k; 0
"= 200 [2(k)/q(R)] v(ki) (30)
This has expected value
E(@v) = /q(/e) [p(k)/q(k)] v(k) dk = E(v) (31)

as desired.
The weights in (30) correct for sample probabilities ¢(#) provided 4(#) > 0 when
p(k) > 0. This does not mean that all sampling distributions ¢(#) are equally good.

Since all are adjusted to have the correct £(v), the variance of v depends only on

E) - 0(k)\2 [pk)o(k)]
Ezz/./e(p(—)d/e:/—d/e 2
@) q(k) 2 ) (32)
The minimum of this subject to
/q(/e) dk=1.0 (33)
is
q(k) = p(k)|v(k)| (34)

Since our sample will serve to estimate the expected value of many different »(£),
perhaps all we can conclude from (34) is that it is best to avoid large g(%) where p(k)
is relatively small. (k) = p(k) seems at least good and perhaps ideal.
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To compute p(k) we need D from (25b). We now discuss how we approximate this.
Let “Vol” be the volume of K* in (24). Assuming L(O|k) may be ignored in K’ — K*,
Eq. (25b) may be written as

B L(O|k) dk

This is the volume of K* times the expected value of L(O|k) in K* when 4 is drawn
uniformly from it; i.e., with probability density

p(k) = 1/Vol (36)

We can approximate this expected value using the sample of 500 #; drawn with proba-
bility density L(k;|O) by weighing the observed L(O|4;) by the ratio of desired density
(1/Vol) to the density used L(k;|O). That is, we can approximate the integral (expected
value) in (35) by

;1 L(Olk:)
L=— ) —— 37
500 Z L(k;10) - Vol 37)
But D in (35) is “Vol” times the integral, so the approximation to D is
. 1 L(Olk;)
D=—5% ——= 8
500 Z L(k;|O) (38)

i.e., the observed average ratio of L(O|%;) to L(k;|O). It may be objected that if D is
substituted for D in (25a), p() is a ratio of unbiased estimators, which is not necessarily
unbiased. On the other hand, with D thus used for D in (25a), the weights in (30)
sum to one. In this case v is a weighted average of v(£), which seems attractive.

Our procedure then is as follows. To approximate the RDMs posterior mean
vector (4 and covariance matrix C we approximate the expected values of variables
v, such as Er; and Er;7; for all 7, 7, then use the relationships in (7) and (8). To estimate
E(v), we evaluate v for each of the Michaud samples from O, namely 4, ..., As0o,
then form the weighted average v of the v(k7) where the weights are shown in (30)
with ¢(k) denned in (26) and p(#) defined in (25a) and (38).

For the one case we checked, most weights ¢(k)/p(k) are close to unity. Table 2
shows the deciles of the 500 weights computed for Truth 1 History 1. All weights
were greater than 0.80 and not greater than 1.025. Ninety percent of the weights were
between 0.96 and 1.025. This says that the Michaud sample is a good one for the
present purpose, according to (34) and the discussion that follows it.

5 Results

The results of the experiment are presented in Tables 3 and 4. The first panel of Table 3
shows averages of estimated and actual expected utility achieved by the two players.
Specifically, for A = 0.5, 1.0, and 2.0, as indicated by the row labeled “Lambda,” and
for each player, as indicated by the row labeled “Player,” the table presents two columns
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Table 2 Distribution of weights p(#)/q(k) for Truth 1 History 1.

Deciles From To

1st 0.809 0.961
2nd 0.961 0.984
3rd 0.984 0.999
4th 0.999 1.005
5th 1.005 1.012
6th 1.012 1.015
7th 1.015 1.019
8th 1.019 1.021
9th 1.021 1.023
10th 1.023 1.025

of information. The first column is the average (over the 100 histories generated for
a truth) of the players” estimate of expected utility. The second column is the average
of actual utility as evaluated by the referee. For example, on the line labeled Truth 1
we see that, on average over the 100 histories generated for Truth 1, the Bayesian
player believed it had achieved an expected utility of 0.01181 whereas the average of its
actual EUwas 0.00712. The comparable numbers for the Michaud player are 0.01032
and 0.00753. Thus, both players overestimated how well they did, but the Michaud
player overestimated less and achieved more. On the next nine lines similar numbers
are reported for Truth 2 through Truth 10. The final three lines of the panel summarize
results for the 10 truths. In particular, the average over the 10 truths of the Bayesian
player’s estimate was 0.01383 but it actually achieved 0.00861. In the average over all
10 truths, again, the Michaud player overestimated less and achieved more. In fact,
comparing the average EU each player achieved in each of the 10 truths, the average
over the 100 histories was greater for the Michaud player than the Bayes player in the
case of each of the 10 truths, as noted in the last line of Panel A.

A similar story holds for A = 1.0 and 2.0. Looking at the last row of Panel A for the
actual £U achieved by the two players for these cases we see that the Michaud player
achieved a higher average (over the 100 histories for a given Truth) in 10 out of 10
truths for A = 1.0 and 2.0.

For some individual histories of the 100 histories of a given truth, the Bayes player
had a higher £U than the Michaud player. In fact, in Panel B of Table 1 the entry for
A = 0.5, Bayes player, Truth 1 reports that the Bayes player achieved a higher £U than
the Michaud player in 54 out of the 100 histories, despite having a lower average over
the 100. Sticking with Truth 1, the Bayes player also “won” 54 out of 100 times for
A = 1.0, and 50 out of 100 for A = 2.0. The Bayes player’s “win count” was even more
favorable in the case of Truth 6. In this case, the Bayes player “beat” the Michaud player
62 times out of 100 for A = 0.5, 60 for A = 1.0 and 66 for A = 2.0. Nevertheless,
the average EU achieved, averaged over the 100 histories, was higher for the Michaud
player in each of these Truths.



Table 3 Player’s choice of portfolio.

A 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
Player: Bayes Bayes  Michaud  Michaud Bayes Bayes Michaud ~ Michaud Bayes Bayes Michaud ~ Michaud
Eval. by: Player Referee Player Referee Player Referee Player Referee Player Referee Player Referee
Panel A: EU averaged over 100 histories, for each of 10 truths
Truth 1 0.01181  0.00712 0.01032 0.00753  0.01004 0.00564  0.00886 0.00594  0.00754 0.00394  0.00678 0.00426
Truth 2 0.01528 0.00885 0.01194 0.00901  0.01389 0.00783  0.01085 0.00801 0.01160 0.00616  0.00902 0.00664
Truth 3 0.01011 0.00614 0.01009 0.00737  0.00887 0.00534  0.00904 0.00636  0.00692 0.00410  0.00721 0.00481
Truth 4 0.01457  0.00850 0.01147 0.00862 0.01324 0.00746  0.01041 0.00763  0.01094 0.00573  0.00849 0.00600
Truth 5 0.01170  0.00641  0.00984 0.00694  0.00988 0.00480  0.00846 0.00549  0.00706 0.00282  0.00612 0.00322
Truth 6 0.01646  0.01056  0.01304 0.01078  0.01462 0.00890  0.01149 0.00914 0.01173 0.00670  0.00911 0.00700
Truth 7 0.01590 0.01147 0.01408 0.01152  0.01412 0.00989 0.01271 0.01015 0.01124 0.00758  0.01036 0.00793
Truth 8 0.01502  0.00956  0.01261 0.01005 0.01329 0.00811 0.01119 0.00861 0.01053 0.00578  0.00866 0.00610
Truth 9 0.01402  0.00906 0.01241 0.00961 0.01204 0.00719  0.01087 0.00798  0.00892 0.00462  0.00812 0.00521
Truth 10 0.01343 0.00846 0.01130 0.00900 0.01176 0.00676  0.00975 0.00735  0.00909 0.00402  0.00712 0.00453
Grand mean 0.01383  0.00861 0.01171 0.00904 0.01217 0.00719  0.01036 0.00767  0.00956 0.00514  0.00810 0.00557
Std Dev 0.00205 0.00171 0.00138 0.00150  0.00200 0.00161  0.00133 0.00145 0.00190 0.00148 0.00129 0.00142
No. times better 0 10 0 10 0 10
Panel B: Number of “wins” out of 100 histories, for each of 10 truths

Truth 1 54 46 54 46 50 50
Truth 2 52 48 54 46 65 35
Truth 3 46 54 43 57 41 59
Truth 4 57 43 61 39 64 36
Truth 5 43 57 27 73 30 70
Truth 6 62 38 60 40 66 34
Truth 7 57 43 53 47 42 58
Truth 8 54 46 48 52 41 59
Truth 9 32 68 28 72 27 59
Truth 10 61 39 49 51 52 48
Avg No. wins 51.80 48.20 47.70 52.30 47.80 52.20
No. times better 7 3 5 5 5 5

$61
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Table 3 (Continued)

A 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
Player: Bayes Bayes Michaud  Michaud Bayes Bayes Michaud  Michaud Bayes Bayes Michaud  Michaud
Eval. by: Player Referee Player Referee Player ~ Referee Player Referee Player ~ Referee Player Referee
Panel C: Standard deviation of EU over 100 histories, for each of 10 truths

Truth 1 0.00516  0.00210  0.00401 0.00132  0.00470  0.00160  0.00359 0.00102  0.00356  0.00116 0.00265 0.00077
Truth 2 0.00445 0.00149 0.00395 0.00084 0.00416 0.00185 0.00372 0.00113  0.00364 0.00258 0.00331 0.00121
Truth 3 0.00354 0.00244 0.00339 0.00109  0.00331 0.00231 0.00321 0.00092 0.00286 0.00178 0.00284 0.00080
Truth 4 0.00413  0.00203  0.00369 0.00101  0.00398 0.00221  0.00356 0.00118  0.00377  0.00235 0.00331 0.00117
Truth 5 0.00514 0.00161  0.00347 0.00077  0.00475 0.00126  0.00329 0.00064 0.00396  0.00077 0.00275 0.00058
Truth 6 0.00469  0.00223 0.00476 0.00114  0.04427 0.00227  0.00438 0.00101  0.00379  0.00242 0.00373 0.00117
Truth 7 0.00544 0.00178  0.00347 0.00088  0.00515 0.00155 0.00331 0.00086  0.00447 0.00111 0.00296 0.00073
Truth 8 0.00399 0.00217 0.00413 0.00119  0.00391 0.00169 0.00398 0.00112  0.00376  0.00117  0.00360 0.00073
Truth 9 0.00584 0.00144 0.00371 0.00056  0.00551 0.00130 0.00359 0.00070  0.00467  0.00089  0.00319 0.00065
Truth 10 0.00399 0.00283  0.00445 0.00155  0.00391 0.00212  0.00422 0.00130  0.00360 0.00166 0.00353 0.00077
Avg Std Dev 0.00201 0.00104 0.00182 0.00099 0.00159 0.00086
No times better 0 10 0 10 0 10
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Table 4 Referee’s choice of portfolio.

A 0.5 0.5 1 1 2 2
Player: Bayes Michaud Bayes Michaud Bayes Michaud
Eval. by: Referee Referee Referee Referee Referee Referee
Panel A: EU averaged over 100 histories, for 10 truths
Truth 1 0.007811  0.007709  0.006303  0.006253  0.004852  0.004899
Truth 2 0.009625  0.009407 0.008641 0.008594 0.006967 0.007104
Truth 3 0.007111  0.007552 0.006198 0.006647 0.004741  0.005139
Truth 4 0.009157  0.008915 0.008109  0.008049  0.006220  0.006395
Truth 5 0.006721  0.007008  0.005200 0.005662 0.003504 0.003661
Truth 6 0.011378 0.011183 0.009781 0.009608 0.007486  0.007481
Truth 7 0.011935 0.011571 0.010425 0.010303 0.008178  0.008260
Truth 8 0.009674  0.010071  0.008225 0.008714 0.005799  0.006309
Truth 9 0.009423  0.009641 0.007712  0.008169 0.005112  0.005576
Truth 10 0.008193  0.008854  0.006665 0.007339  0.004151  0.004718
Grand mean 0.009103  0.009191  0.007726  0.007934  0.005701  0.005954
Std dev 0.001701  0.001509 0.001654 0.001473 0.001506 0.001414
No. times better 5 5 5 5 1 9
Panel B: Number of wins out of 100 histories, for 10 truths
Truth 1 65 60 53
Truth 2 66 64 58
Truth 3 56 52 47
Truth 4 69 67 59
Truth 5 52 32 40
Truth 6 67 60 60
Truth 7 74 64 54
Truth 8 44 45 37
Truth 9 55 43 27
Truth 10 58 58 41
Avg wins 60.6 54.5 47.6
No. times greater 9 7 5
Panel C. Std Dev of EU over 100 histories, for 10 truths

Truth 1 0.00169 0.00112  0.00113 0.00082  0.00063 0.00043
Truth 2 0.00110 0.00058  0.00128 0.00060  0.00127 0.00061
Truth 3 0.00186 0.00083  0.00163 0.00071  0.00117 0.00060
Truth 4 0.00143 0.00062  0.00153 0.00060  0.00139 0.00056
Truth 5 0.00145 0.00053  0.00106 0.00042  0.00054 0.00027
Truth 6 0.00106 0.00086  0.00074 0.00058  0.00099 0.00059
Truth 7 0.00131 0.00084 0.00102 0.00070  0.00090 0.00054
Truth 8 0.00137 0.00089  0.00121 0.00076  0.00093 0.00051
Truth 9 0.00137 0.00053  0.00125 0.00049  0.00082 0.00039
Truth 10 0.00274 0.00145  0.00223 0.00114 0.00120 0.00067
Avg Std Dev 0.00154 000082 000131  0.00068 0.00098  0.00052
No. times lower 0 10 0 10 0 10
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Panel C of Table 1 shows that, for a given Truth, the standard deviation of the
achieved EU was higher for the Bayesian than the Michaud player. For example, for
Truth 1, A = 0.5, the standard deviation of EU for the Bayesian player was 0.00210
as compared to 0.00132 for the Michaud player. In fact, for all three values of A and
all 10 truths, the variance of the actual £U was lower for the Michaud player than the
Bayes player.

Most significant for our purpose is the fact that the Michaud strategy delivered
higher average £U in 10 out of 10 truths for three out of three values of A. Thus, the
Michaud player did a better job of achieving the objective, namely high EU.

Table 4 displays the results of a slightly different game. In this second game, for
each history and each truth each player computes an efficient frontier as in the first
game. But instead of picking a point from the frontier for each A, the player passes
its entire frontier to the referee. For each A the referee picks the point on the player’s
frontier that has the highest true EU. Game 2 thus addresses the question of whether
the superiority of the Michaud player over the diffuse Bayesian player in the first game
is due to a better frontier or to a better pick from an equally good frontier.

The Bayes player does much better in Game 2 than it did in Game 1. In particular,
for A = 0.5 and 1.0 Panel A of Table 4 shows that with five out of 10 truths the
Bayesian player achieves higher average £U than the Michaud player as compared to 0
out of 10 in Game 1. Also, Panel B shows that for . = 0.5 and 1.0 the Bayesian player
has a higher £U in many more histories for a given Truth than the Michaud player. On
the other hand, the Michaud player comes out ahead overall. In particular, for every A
the “Grand Mean” of achieved E£U averaged over all truths is greater for the Michaud
player than the Bayesian player. However, the out-performance of the Michaud player
over the Bayes player is smaller in the second game than in the first. In particular, for
A = 0.5 the difference in performance between the two players is only about 20% as
great in the second game as it is in the first (0.000088 = 0.009191 — 0.009103 versus
0.00043 = 0.00904 — 0.00861), about 44% as great when A = 1.0 and 59% as great
when A = 2.0.

As explained in the next section, for A = 0.5, EUin (1) is approximately® £(In (1+
7)). This, in turn, is In (1 4 ¢) where g is the geometric mean or growth rate. We can,
therefore, give the results in Tables 3 and 4 a more concrete interpretation for the case
of A = % Annualizing, the Bayes player believes it can achieve an “average” annual
growth rate of 18.05% (0.180548 = exp (12-(0.01383)) — 1), whereas the portfolios
it chose had an average actual growth rate of 10.89% and the best from its frontier
averaged a growth rate of 11.54%. The Michaud player thought it could achieve an
average annual growth of 15.09%; the portfolios it chose had an average growth rate of
11.46%; the actual average highest growth portfolio on its frontier was 11.66%. Thus,
in game 1, the Michaud methodology adds 0.57 to the average growth rate. In game
2 itadds 0.12.

The relatively better performance of the Bayesian player in Game 2 (as compared to
its performance in Game 1) suggests that the Game 1 superiority of the Michaud player
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is more due to a wise pick from its frontier than due to a superior frontier, though the
latter reason is also applicable.

6 Questions

The preceding results raise questions for portfolio theory and practice. In particular, the
results represent something of a crisis for the theoretical foundations of portfolio theory
as presented in Part IV of Markowitz (1959), Chapters 10-13. Chapters 10 through
12 present introductory accounts of utility analysis as justified by Von Neumann and
Morgenstern (1944), personal probability as justified by Savage (1954), and dynamic
programming as presented by Bellman (1957). Chapter 13 applies these principles to
the problem of selecting a portfolio. Specifically, mean—variance analysis is justified
as an approximation to the single-period “derived” utility function always associated
with many-period utility maximization. It is argued that the mean—variance approxi-
mation should be good as long as the probability distribution of return is not spread
out too much. Calculations—by Markowitz (1959), Young and Trent (1969), Levy
and Markowitz (1979), Dexter ez al. (1980), Pulley (1981, 1983), Kroll ez al. (1984),
Simaan (1987) and Hlawitschka (1994)—show that, for most utility functions pro-
posed for practice, the mean—variance approximation to expected utility is quite robust.
As Levy and Markowitz conclude

If Mr. X can carefully pick the E,V efficient portfolio which is best for him then
Mr. X, who still does not know his current utility function, has nevertheless selected
a portfolio with maximum or almost maximum expected utility.

In addition, Markowitz and van Dijk (2003) illustrate the ability of a suitably
constructed “single-period” mean—variance analysis to give near-optimum results in the
case of transaction costs and changing probability distributions. One caveat however:
as Grauer (1986) illustrates, the return distributions from highly levered portfolios are
too spread out for mean—variance approximations to do well. However, for unlevered
return distributions as considered in the present paper, computations have generally
shown mean—variance to be quite good.

Thus, until now, calculations seem to support the theoretical foundations for mean—
variance analysis presented in Part IV of Markowitz (1959). An integral part of these
foundations is that a RDM will use probability beliefs where objective probabilities
are not known, and will update these beliefs according to the Bayes rule as evidence
accumulates. Usually, when Bayesian inference is tried in practice it is assumed that,
prior to the sample in hand, beliefs are “diffuse”—i.e., “neutral” in some sense with
respect to which hypothesis is true—as recommended by Jefferies (1948) or Edwards
et al. (1963).

Given this background, the results presented in this paper are badly in need of an
explanation. Such explanation could be in terms of why Bayesian updating did not do
better, or why the Michaud estimation did so well.

Concerning why Bayesian updating did not do better: it may have to do with
the difference between the computation which we performed and which a RDM
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would perform. The latter is an integration over a high-dimensional space, well beyond
foreseeable human computational abilities. We approximated this integral by Monte
Carlo sampling. (Note the distinction between the sample which the referee handed
both players, and the sample we used to approximately compute the integral which
the RDM computes exactly.) If this—exact versus approximate calculation of updated
beliefs—is the source of difficulty with the Bayesian approach taken here, then, maybe
the conclusion will be that Bayesian inference is ideal for the RDM but not for the
human, at least at the level of computational effort spent by the Bayesian and Michaud
players in the reported experiment.

Alternatively, perhaps the problem with the approach taken here is the priors used.
Perhaps “diffuse prior” should be defined differently. Or, perhaps, an informed prior
should be used like those of Black and Litterman (1990)—but updating the priors
using history rather than user estimates as in Black and Litterman.’

Expected utility and Bayesian inference were originally proposed, by Daniel
Bernoulli and Thomas Bayes in the Eighteenth Century, as plausible rules for action
when the future is unknown (see Bernoulli, 1954; Bayes, 1958). Von Neumann and
Morgenstern (1944) and Savage (1954) derive these rules from more basic principles of
rational behavior. The resampled frontier as presented by Michaud (1998) is a plausible
procedure which, we find, works quite well. But how does it relate to the theory of
rational behavior? Does it contradict one or more of Savage’s axioms? If so, is this a
black mark against the method or against the axioms? Or does Michaud’s procedure
somehow satisfy the Savage axioms? We would very much like to know the answers to
some or all of these questions.

Practical questions, raised by the success of the Michaud method in the experiments
reported here, include those of costs and benefits. In particular, how much expected
return do these procedures add for a given level of risk—in practice. This may involve
transaction costs, changing probability distributions, non-normal distributions—all
assumed away in the current experiments. Historical backrests might shed some light
on these matters.

Concerning costs, computation costs may or may not be a problem. It does not take
long or cost much these days to generate a set of 500 frontiers and average these. But
it might still be computationally burdensome to compute many such resampled fron-
tiers in a backtest with many monthly re-optimizations, with the backtest frequently
repeated to see the effects of alternate parameter settings. However, a Bayesian update
of beliefs would also be computationally burdensome in such a case.

Finally, the cost of using a resampled efficient frontier depends on what the patent
holder charges for the use of this patented procedure (see note 1).

7 Conclusions

This paper reports the results of an experiment comparing two procedures for dealing
with sampling error in the inputs to a mean—variance analysis. One procedure is the
Bayesian updating of diffuse priors. The other is Michaud’s resampled efficient frontier.
In the experiment a referee generates 10 “truths” at random from a “seed” distribution.
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From each “truth” the referee randomly generates 100 histories. Each history is pre-
sented to a Bayesian player and a Michaud player. Each player follows its prescribed
procedure to determine which portfolio would provide highest £ — AV for A = 0.5,
1.0, and 2.0. Sometimes one player, sometimes the other picks a portfolio with higher
E — 1V . Butin the case of each truth and each value of 1, the average of the 100 values
of E — AV is higher for the Michaud player than the Bayes player. However, the Bayes
player does almost as well as the Michaud player when each player presents its entire
efficient frontier to the referee, and the referee picks the player’s best portfolio from
the frontier. This suggests that the chief problem with the Bayesian player’s choice
of portfolio is that the latter is more over-optimistic than is the Michaud player in
estimating achievable portfolio mean and variance.

This result has practical implications for the estimation of inputs to a mean—variance
analysis, even for methods other than the two considered explicitly here. For example, in
practice, mean—variance analysis is often performed at an asset class level with estimates
of means based partly on judgment, but using historical variances and covariances.
The results of this paper imply that these variance estimates are too low. First, if you
accept the theory of rational behavior under uncertainty developed by Savage (1954), as
explained by Markowitz (1959) Chapter 12, then you should not use historical variance,
nor even an average variance—averaged over possible explanations of history. Rather,
you should use the latter p/us a term reflecting your uncertainty in your estimate of the
mean. Furthermore, the results of the present paper imply that, for reasons unknown
to us, when this theoretical correction is made, the investor is still too optimistic for
his or her own best interest.
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Notes

' Resampled efficiency, as described in Michaud (1998, Chapters 6 and 7), was co-invented
by Richard Michaud and Robert Michaud and is a US patented procedure, #6,003,018,
December 1999, patent pending worldwide. New Frontier Advisors, LLC, has exclusive
licensing rights worldwide.

2 The assumption of a single-period utility function is not less general than the assumption
of many-period or continuous-time utility maximization, since many-period or continuous-
time utility maximization may be reduced to a series of one-period or instantaneous utility
maximizations using a “derived” utility function, as described by Bellman (1957). In general,
the time-varying derived utility function U, may be a complicated function that includes
state variables as well as returns, and depends on what has gone before. Our specific assump-
tion, that U, is given by (1), is a vast simplification which we justify on the grounds that
our objective is not to solve the dynamic programming problem for some many-period or
continuous-time investment model, but to take a reading on the ability of two alternate
methods to handle uncertainty.

For other values of A, £U in (1) approximates the expected value of other utility functions.

The choices made by a Bernoulli/Von Neumann and Morgenstern utility function are not
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affected by adding a constant or multiplying by a positive constant. That s, the same decisions
maximize E[a + 6U(r)], b > 0, as those that maximize EU(7). It is, therefore, essential to
the validity of the comparisons made in the text—e.g., that the difference in performance
is only 20% as great in game 2 as game 1 when A = 0.5—that this comparison is in fact
unaffected by the arbitrary choice of 2 and 4 > 0.
4 The “average” referred to here is the antilog of an average logarithm, therefore, a geometric
mean.
Harvey eral. (2003) reports the results of an experiment in which Bayes outperforms Michaud
when conjugate priors are used.
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FUND MANAGERS MAY CAUSE THEIR BENCHMARKS
TO BE PRICED “RISKS”

Michael Stutzer®

The presence of a positive intercept (‘alpha’) in a regression of an investment fund’s
excess returns on a broad market portfolio’s excess return (as in the CAPM), and
other ‘factor” portfolios’ excess returns (e.g., the Fama and French factors) is frequently
interpreted as evidence of superior fund performance. This paper theoretically and
empirically supports the notion that the additional factors may proxy for benchmark
portfolios that fund managers try to beat, rather than proxying for state variables of
Sfuture risks that investors (in conventional theory) are supposed to care about.

1 Introduction

The CAPM is a linear, single excess return factor model, derivable by assuming that
all investors are “rational,” in the sense of choosing the tangency portfolio of risky
assets on the mean—variance efficiency frontier. This portfolio is the single factor. But
authors, too numerous to mention, have argued that additional factors are also present.
For example, Fama and French (1992) documented the ability of the following linear,
3-factor model (their Eq. (1)) to predict anomalous expected excess returns earned by
some well-known stock portfolio strategies:

E(R) — Ry = bilE(Ryr) — Re] + s;E(SMB) + h;E(HML) (1)

where M denotes the broad market portfolio, SMB denotes the return on a portfolio
that sells relatively big cap stocks and buys relatively small cap stocks, and HML
denotes the return on a portfolio that sells relatively low book-to-market stocks and buys
relatively high book-to-market stocks. Because (1) arises by taking expectations of both
sides of multiple linear regression specification without an intercept, it subsequently
became quite common to regress the returns of managed investment funds on the
factors in (1) with an intercept o, and then to interpret a statistically significantly
positive & as indicative of superior fund performance (e.g., see Davis, 2002).

Fama and French (1992) could not find empirical support for the standard zheoret-
ical frameworks that permit derivation of factor models like this, concluding with the
following summary:

Finally, there is an important hole in our work. Our tests to date do not cleanly
identify the two consumption—investment state variables of special hedging concern
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to investors that would provide a neat interpretation of the results in terms of Merton’s

(1973) ICAPM or Ross’ (1976) APT.

Researchers subsequently struggled to do this, focusing on the possibility that the
additional factors proxy for state variables of financial distress. Yet, a recent paper by
Vassalou and Xing (2002) concludes that:

Fama and French [Fama and French (1996)] argue that the SMB and HML factors of
the Fama and French (FF) model proxy for financial distress. Our asset pricing model
results show that, although SMB and HML contain default-related information, this
is not the reason that the FF model can explain the cross section. SMB and HML
appear to contain important price information, unrelated to the default risk.

Of course, this failure has not and will not stop others from compiling statistics
favorable to claims that the factors proxy for predictors of other future risks that
investors (in conventional theory) should care about, although this should be done with
some care (as noted by Cochrane, 2001, p. 171). Given the easily observed relative
scarcity of alternative quantitative theories presented in finance journals (relative to
statistical studies loosely guided by old theories or no theory at all), perhaps it is time
to propose plausible alternative theoretical explanations for the success of multifactor
models. In a refreshing attempt to do so, Shefrin and Statman (1995) provide evidence
that investors (likely wrongfully) presume that the stock of healthy, thriving companies
will be unusually good investments, and conjecture that this might be the cause of the
additional Fama and French factors. But they did not produce a quantitative financial
theory that derives an equation like (1), nor more importantly, derives additional
quantitative equations that could be tested.

In contrast, this paper does provide an alternative quantitative financial theory for
the presence of non-market factor portfolios’” expected excess returns in the following
linear, excess return factor generalization of the CAPM:

ER) — Ry = BimlER) — R+ D BulERy) — Rels i=1,...,N (2
beB

where B is a set of 7 benchmark portfolios that different classes of portfolio managers
(and/or other investors) try to “beat.” While Fama and French did not write the linear
model (1) in the excess return form (2), many other studies do use the excess return form,
e.g., Gruber (1996) or Elton ez al. (1996). It is a very widely accepted assumption that
portfolio managers are motivated to try to outperform specific benchmark portfolios,
e.g., see Bailey (1992) and Bailey and Tierney (1993, 1995). A typical example of
benchmarking, which is of more than just professional interest to academic readers of
this paper, is contained in the following statement by the TIAA-CREF Trust Company:

Differentaccounts have different benchmarks based on the client’s overall objectives ...
Accounts for clients who have growth objectives with an emphasis on equities will be
benchmarked heavily toward the appropriate equity index—typically the S&P 500
index—whereas an account for a client whose main objective is income and safety of
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principal will be measured against a more balanced weighting of the S&P 500 and the
Lehman Corporate/Government Bond Index. [TIAA-CREF (2000, p. 3)]

Roll (1992, p. 13) argued that “This is a sensible approach because the sponsor’s
most direct alternative to an active manager is an index fund matching the benchmark.”
The ability of funds like TTAACREEF to attract individual investors by the use of relative
performance objectives implies the possibility that this may be the voluntary choice of
(possibly bounded rational, or possibly differently motivated) investors, who think the
funds are better able to beat their desired benchmarks and hence attain their desired
objectives. In fact, it is certainly possible that individual investors also try to beat
benchmarks.

Perhaps the best known quantitative model of benchmark beating behavior is the
Tracking Error Variance (TEV) model of Roll (1992). TEV investors try to earn a
higher expected return than a specific benchmark portfolio’s expected return, while
minimizing the variance of the difference of the two returns. This paper will show that
the presence of benchmark portfolios as factors in (2) does not necessarily have to arise
as a result of hedging of state variable risks by conventional investors, but instead could
be due to the concurrent portfolio choice behavior of TEV investors attempting to beat
the benchmark portfolios. That is, the very attempt to beat these benchmarks results
in them occurring as priced factors in (2).

To eventually establish this, Section 2 starts by briefly contrasting conventional
mean—variance investor behavior in the presence of a riskless asset with Roll's TEV
behavior. Proposition 1 shows that in the presence of a riskless asset, the Information
Ratio (Goodwin, 1998; Gupta ez al., 1999; Clarke ez al., 2002) produced by substi-
tuting a benchmark portfolio return for the riskless return in the conventional Sharpe
Ratio (1994), plays a role analogous to that played by the Sharpe Ratio in conventional
mean—variance theory. Despite the widespread use of both the TEV criterion and the
Information Ratio, it does not appear that this result has been previously published.
Proposition 2 provides the following plausible frequentist rationale for maximizing the
Information Ratio: it is consistent with maximizing the probability of outperforming
the benchmark on-average. Section 2.1 makes a brief descriptive and prescriptive case
for this behavioral criterion.

Proposition 4 in Section 3 shows that the linear excess return factor model (2) is
a capital market equilibrium relation resulting from the aggregate asset demands of
both conventional investors (if any) and TEV investors. This proves that the theory
is capable of delivering any linear multifactor model, after substituting a set of factor
mimicking benchmark portfolios for the proposed factors. Because of this, empirical
tests different from the mere goodness-of-fit of a particular specification of (2) must
be used to differentiate this theory from others that imply (2). Fortunately, Propo-
sition 3 shows that this theory implies an unusual sign restriction on the intercepts
in regressions of each (i.e., the market and the benchmarks) portfolio’s excess returns
on the others’ excess returns. This sign restriction—an inherently sharper test than
the mere search for statistical connections between the factors and financial distress
and/or other conjectured risk variables—is tested in Section 4, where we show that
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some of the explanatory power of multiple factors appearing in stock returns may be
explained by the presence of separate classes of TEV investors who respectively try to
beat growth and value benchmarks. Section 5 concludes, and suggests some topics for
future research.

2 Conventional Mean—Variance versus TEV Investing

The concise derivation of conventional mean—variance investing in Huang and
Litzenberger (1988, pp. 76-78) is presented and then contrasted with its TEV gen-
eralization. Conventional investors choose an unrestricted weight vector g, of the N
risky assets, investing the rest of their investable funds in the riskless asset. They do so
by minimizing the return variance, subject to a portfolio expected return constraint:

1 / /
min—g'Vy st q/[E(R) = 1Re] = E(R) = Rp = E(R, = Ry) (3)

where V' denotes the covariance matrix of the return vector R with expectation vector
E(R), and 1 denotes a vector of ones. Note that £(R,) denotes the expected return on
a portfolio that could contain the riskless asset. The risky asset vector g, satisfies the
following Lagrangian first-order condition:

Vgy = ME(R) — 1Ry] (4)

Premultiplying both sides of (4) by V!, and then dividing each side of the resulting
equation by the sum of its respective components (assuming that the sum of the risky
asset weights is not equal to zero), we obtain the tangency portfolio w7 of the risky

assets:
% VUE(R) — 1Rf]

Vg, UV ER — 1R " )

Expression (5) is the familiar result that all conventional investors purchase risky assets
. . . . l _ /
in the same proportions as the tangency portfolio w7. Letting g, =1-1g, denote

conventional investor 7’s weight on the riskless asset, (5) shows that the risky asset
weight vector of the 7th conventional investor is:

g, = (1= gy )wr ©)

A few more routine calculations (see Huang and Litzenberger, 1988, pp. 76-77) show
that the conventional Sharpe Ratio of the chosen portfolio is:

E(R, — Rr) B E(R,) — Rr
\/Var(R], — Ry) B \/Var(Rp)

= JIER) — 1RV VUER) — 1R = VH
7)

where «/ H is the maximum conventional Sharpe Ratio among mean—variance efficient

risky asset portfolios, attained by the tangency portfolio (5).
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Now, consider another class of investors, comprised of individuals and/or fund
managers who use a portfolio g, with return R as a benchmark against which per-
formance is measured. According to the TEV hypothesis of Roll (1992), they would
choose a risky asset weight vector g, by solving

1
mqin Sla - a)'Vig—aqu] stlg— @l [ER) — 1R ] =ER, —R;) >0 (8)

That is, a TEV-efficient investor minimizes the TEV Var(R, — R;) required to exceed
the expected return of the benchmark by some chosen amount. The tradeoff between
that chosen amount, and the minimum TEV required to achieve it, is dubbed the
TEV frontier. Just as the conventional mean—variance frontier is simplified by the
introduction of a riskless asset, I will now show that the TEV frontier is similarly
simplified. Define x = ¢ — ¢, to be the unrestricted risky asset vector in excess of the
benchmark’s. Substituting x into (8), we have the equivalent problem:

min %x/ Vi s.t.x'[E(R)—1Rs] = E(R,)— Ry — (E(Ry)—Ry) = E(R,—Ry)  (9)

which is formally equivalent to (3). Assuming the solution x, = g, — ) does not sum
to zero, i.e., the weight placed on the riskless asset in the managed portfolio does not
equal the weight placed on the riskless asset in the benchmark, the solution is found
by substitution into (5), yielding

%  VTUER) —1R]
Ux, UVER — 1R " (10

and substituting 1'x, = 1'[g, — q4] = (1 — q¢) — (1 — qu¢) = qur — qpr # 0 into
(10) results in the following risky asset weight vector for the jth TEV investor, now

denoted by q]{ b
q;;, =g+ (g — q;bf)wr (11)

Because (11) shows that qz , — 44 is proportional to the tangency portfolio whose Sharpe
Ratio is the right-hand side of (7), the analogous finding for TEV investors is

EQR,—R) _ ER)—E(Ry)
SVar@®, = R;)  /Var(R, — Ry)

= JIER) = 1RVUER) — 1R = VA

(12)
The left-hand side of (12) is the Information Ratio (Goodwin, 1998; Gupta et al., 1999;
Clarke ez al., 2002). A survey of the TEV literature failed to uncover the following
proposition characterizing the symmetry between the conventional mean—variance and
TEV optimal portfolios in the presence of a riskless asset:

Proposition 1: When a riskless asset exists, conventional mean—variance investors choose
risky asset weight vectors by maximizing the conventional Sharpe Ratio. Normalization
of the vectors produces the Tangency Portfolio. Analogously, TEV investors choose risky



208 MICHAEL STUTZER

asset weight vectors by maximizing the Information Ratio. Normalization of the difference
between a risky asser weight vector and the benchmark risky asset weight vector produces

the same Tangency Porz;folio.l

Proposition 1 uses traditional theorizing to establish that in the presence of a riskless
asset, the TEV hypothesis is a natural extension of the mean—variance hypothesis
relative to a benchmark. But there is also a quite plausible frequentist foundation for
TEV behavior. Anyone desiring to beat the benchmark return R, will, at the very least,
endeavor to beat it on-average over some span of time 7" that possibly differs across
them. That is, anyone desiring to beat the benchmark would like ZtT: Rt/ T >
Z?: 1 R/ T for some T. If T = o0, the law of large numbers dictates that he/she
needs only choose a portfolio p with E[R,] > E[R;] in order to ensure this. But over
the finite time horizons 7" faced by real- world managers and/or investors, there is a
nonzero probability that this might not happen, i.e., Prob[ Z; 1 (Rpr —Ry) | T < 0].

Assuming that Ry, — Ry, is an IID normally distributed process, as commonly (albeit
sometimes implicitly) assumed in textbook presentations of applied mean—variance
analysis, Zthl (Rpr — Ry)/ T ~ N (E[RP] — E[Ry], \/(Var[Rp — Rb])/T). So, by
transforming this normally distributed variate to the standard normal variate Z, the
underperformance probability is

. _
—(E[Ry] — E[R,])
P Ry — Ry)/T = Prob | Z
b {;( e R/ T = O} b = /Var[R, — &])/T}

— Prob | Z > fw} (13)

JVarlR, — Ry]

Someone who wants to minimize the left-hand side of (13), i.e., the probability of
failing to beat the benchmark on-average over a finite time horizon 7', will choose the
risky asset portfolio p that minimizes the right-hand side of (13). We immediately see
that this is the same portfolio that maximizes the Information Ratio, independent of the
time horizon T. Because the probability of our performing the benchmark on-average
is one minus the left-hand side of (13), it is equally valid to state that this portfolio
maximizes the probability of outperforming the benchmark on-average.

This frequentist interpretation of the Information Ratio is exactly true only when
returns in excess of the benchmark are IID normal, no matter how many periods 7" are
used to form the average return. But Central Limit Theorems (e.g., see Lehmann, 1999,
Chap. 2) prove that this interpretation is still approximately true for suitably large 7', in
many cases when returns in excess of the benchmark are independently, non-normally
distributed. Thatis, the average of 7 returns will be approximately normally distributed
once 7T is large enough, making the above probability calculations accurate once 7 is
suitably large.? These results are summarized in the following proposition.

Proposition 2: Assuming the presence of independent, normally distributed returns mea-
sured in excess of a TEV investors benchmark, maximization of the Information Ratio is
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equivalent to maximization (minimization) of the probability of outperforming (under-
performing) the benchmark portfolio on-average over any number of evaluation periods T.
Without the normality assumption, this interpretation is approximately valid for suitably
large 73

In conjunction with Proposition 1, Proposition 2 shows that the criterion of
maximizing (minimizing) the probability of outperforming (underperforming) the
benchmark on-average is a natural generalization of the TEV hypothesis and its asso-
ciated Information Ratio criterion function [see Browne (1999a,b) for analyses of
portfolio choice based on more complex outperformance probability based criteria]. It
provides a new, frequentist interpretation of existing studies that used the Information
Ratio, e.g., Gupta ez al. (1999) and Clarke ez al. (2002).4

Finally, comparing (11) to (6), we see that a TEV investor’s risky asset weight
vector is no longer proportional to the tangency portfolio w7, but instead is an affine
transformation ofit, displaced by the benchmark portfolio’s risky asset weight vector g;.
Hence, TEV investors portfolios will not be mean—variance efficient, i.e., a linear
combination of two mean—variance efficient portfolios, unless the benchmark itself is.

2.1 Description Versus Prescription

The TEV hypothesis, and especially its aforementioned interpretation as maximizing
(minimizing) the probability of outperforming (underperforming) a benchmark, is at
least as plausible a description of fund manager behavior as the conventional mean—
variance hypothesis is. Chan ez al. (1999, p. 938) note that “Since managers are
evaluated relative to some benchmark, it has become standard practice for them to
optimize with respect to tracking error volatility.” They provide further corrobora-
tion of the outperformance probability interpretation given in Proposition 2 above,
by stating that (Chan ez 4/, 1999, p. 956) “Since professional managers are paid to
outperform a benchmark, they are in general not concerned with the absolute vari-
ance of their portfolios, but are concerned with how their portfolio deviates from the
benchmark. Underperforming the benchmark for several years typically results in the
termination of a manager’s appointment.” Some direct evidence for this was provided
by Olsen (1997), who conducted a series of surveys of portfolio managers and strate-
gists, randomly selected from US-based Chartered Financial Analysts (CFAs). He asked
these professionals to “list those things that first come into your mind when you think
about investment risk,” and found that 47% of them placed either “a large loss™ or
“return below target” first on their lists, which was more than twice as high as any
other response. Finally, Goodwin (1998, p. 34) notes that “Most money managers
routinely report their products’ information ratios to investors, and some investors
rely on information ratios to hire and fire money managers.” The close connection
between Information Ratio maximization and outperformance probability maximiza-
tion, detailed in Proposition 2, shows that those money managers and their clients are
at least implicitly concerned with the probability of outperforming their benchmark. Is
it not reasonable to presume that the massive amount of professionally managed capi-
tal, invested in attempts to beat benchmarks, has had some influence on the returns of
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assets favored or disfavored by this criterion? Those proposing alternative explanations
for multiple priced factors implicitly presume that fund management is irrelevant.
While it may be a better description of portfolio managers’ behavior than the con-
ventional mean—variance hypothesis, Roll (1992) worried that it may not be a good
prescription for funds’ investors. If'a manager’s benchmark portfolio is not on the
mean—variance efficiency frontier, Roll (1992) foresaw a role for portfolio constraints
that would induce fund managers to choose more mean—variance efficient portfolios.
Bug, it is quite difficult for investors, fund managers, and/or regulators to ascertain
whether or not a particular benchmark portfolio is on the mean—variance frontier. As

Roll (1992, p. 19) notes:

Estimation error is severe in portfolio analysis. No one knows where the global total
return efficient frontier is really located. Its position depends, inter alia, on individual
asset expected returns, which can be estimated only with substantial error because of
the large component of noise in observed returns.

Furthermore, it is possible that measuring performance relative to a benchmark is
a second-best, principal-agent mechanism desirably employed by investors (i.e., the
principals), coping with an asymmetry in which portfolio managers (the agents) have
better information about the efficiency frontier than they do. Measuring performance
relative to a benchmark subtracts out a common shock faced by investors, which in
the words of Brown ez al. (1996, p. 87) would “allow the principal to separate some
of the variation in outcome due to the state of nature from the agent’s contribution.”
Moreover, Roll (1992, p. 20 and footnote 10) notes that doing so helps cope with
estimation error, because when the correlation coefficient of the benchmark portfolio’s
return with a managed portfolio’s return is in excess of half the ratio of their volatilities,
“estimated differences between portfolio returns can be estimated more precisely.”

Finally, the prescriptive case against measuring performance relative to a benchmark
presumes that all investors should be worried about possible portfolio mean—variance
inefficiency. A priori, it is equally plausible that some investors should be worried that
their investments will not outperform a particular benchmark that provides a floor for
their satisfaction, and accordingly either seek to employ a manager that will choose a
portfolio with the highest probability of beating that benchmark on-average, or attempt
to do it themselves.

3 Capital Market Equilibrium

Following Brennan (1993), capital market equilibrium is derived analogously to the
standard CAPM: one imposes the equilibrium condition that the aggregate risky asset
demand vector must equal the vector of market supplies. The demand arises from
both conventional investors and the different classes of benchmark investors. The
equilibrium condition is:

WYY W, =W, (14)

beB j
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where the W’ in the first term denotes the total wealth invested by the conventional
mean-variance investor 7, g, denotes the risky asset weight vector chosen by that

investor, W]b is the total wealth invested by the TEV investor ; utilizing the benchmark
b, and q]i]b denotes the risky asset weight vector chosen by that TEV investor. The
right-hand side of (14) multiplies the vector of market portfolio weights w,, by the
total value of the market W to obrtain the vector of risky assets’ market supplies.
Now substitute (6) into the first term on the left-hand side of (14), and (11) into
the rest of it, to produce the aggregate demand vector. The sums can be simplified by
noting that the factor portfolios identified in the literature, e.g., the aforementioned
papers of Fama and French, are comprised solely of risky assets, in which case we can
let g5y = 0 in (11). Letting W7 denote the aggregate value of wealth invested by

conventional mean—variance investors in 7isky assets, W/fb denote the aggregate wealth

invested in the riskless asset by TEV investors with benchmark &, and W denote the
aggregate wealth invested by TEV investors with benchmark &, we derive

wr * (W -y W}) = W"w,— Y _ W, (15)

beB beB

Now, substitute (5) for w7 in (15), multiply both sides by the covariance matrix V' of
the risky assets’ returns, and rearrange to obtain:

'V-YHE(R) —1R
E® ~ 18y |:W’”Vwm —ZWW%}
‘Vrf_ZbeB‘Vf beB

ER) — 1Ry =

- WV, — Y w Vq;,:|
L beB

S

W” Cov(R1,R,) — > W* Cov(Rl,Rb):|
L beB

A
W[ " Cov(Ry, Ry) — Y _ W Cov(RN,Rb):|
beB
A
= COVW[W’”, —wh, . —why (16)

where COV denotes the matrix of the NV risky assets’ covariances with the market
and the 7 benchmark portfolios’ returns, A = 1'V"[E(R) — 1Rr] is one of the four
numbers that Huang and Litzenberger (1988, p. 64) used to characterize the mean—
variance efficient set, and W = W — )" beB VVfb The covariance terms arise because
the product of V" and any portfolio weight vector is the vector of the risky assets’ return
covariances with that portfolio’s return. This will soon be transformed into the exact
linear factor model (2). But first, let us examine an important implication of it.
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Premultiplying both sides of (16) by any portfolio’s risky asset weight vector pro-
duces a linear relationship between that portfolio’s expected excess return and its
covariances with the market and benchmarks’ returns. Successively doing so for market
and the 7 benchmark portfolios yields the following system of linear equations:

T
E(Ry) = Rp = | W Cov(Ry, Ry) = 3 W Cov(Rm,Rb):|
L beB
A | m b |
E(Ry) = Ry = < | W Cov(Ry,, Ry) - > W Cov(Ry,, Ry)
L beB .
A [ m b ]
E(Ry,) = Ry = 2| W Cov(Ry,, Ry) = > W Cov(Ry,, Ry) (17)
L beB .
It is convenient to write (17) in matrix form as:
A
E(R)— 1Ry = S—[W",—wh, .. —wo] 18
(R)— 1R = B ] (18)

where £(R) denotes the vector of market and benchmark portfolios’ expected returns
on the lefthand side of (17) and X is the square covariance matrix of the market
and benchmark portfolios’ returns. Premultiply both sides of (18) by X ~! to produce
SEMR) - 1Rr], and then use the seminal result in Stevens (1998, Eq. (9), p. 1826)

to rewrite it as follows:

A
W =W =W = STHER) — 1Ry
/
(077 Ay, &p,
= , ey 19
|:Var(8m) Var(gy,) Var(ebn)i| (19)

where «,, is the intercept and Var(g,,) is the variance of the error term in the following
linear excess return factor model for the market portfolio:

R, _Rf :am+2ﬂmbj(ij _Rf) + &m (20)
j:l

and ab; and Var[e,,] are the counterparts in the following linear excess return factor
model for the 7th benchmark portfolio:

Ry, — Ry = ay, + Bom (R — Rp) + Z Buib; (R, — Rp) + &4, 1)
j#i

Because the theory does not imply a particular sign for A/ W, (19) only implies that
., in the factor model (20) for the market portfolio has a sign opposite to the predicted
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common sign of each «, in the factor model (21) for the benchmark portfolio 7. This
implication is summarized as the following proposition:

Proposition 3: The intercept (i.e., alpha) in a linear factor regression model of the market
portfolio’s excess return on the benchmark portfolios  excess returns should be opposite in sign
to the intercept in a linear factor regression model of any benchmark portfolios excess return
on the excess returns of the market portfolio and the other benchmark portfolios.

While a test of the sign restriction in Proposition 3 is conducted in Section 4, there
is another implication of the theory that has already received vast testing and com-
mentary. This is (2), the general linear, multi-excess return factor generalization of the
CAPM. Let us derive (2) as an equilibrium relationship; (19) permits the substitution
of Z7I[E(R) — 1Rs] for (A/W)[W™,—W*1,...,—W’] in (16), resulting in the

vector of equations
E(R) — 1Ry = COV =7 '[E(R) — 1Ry] (22)

whose ith component is the factor model (2), i.e., COV > listhe N x n+ 1 matrix
of the /V risky asset returns’ betas on the market, and the 7 benchmark portfolios that
separate classes that TEV investors want to beat. This is summarized in the following
proposition:

Proposition 4: The linear, excess return factor model (2) of expected asset returns arises as
a market equilibrium in the presence of a riskless asset, with both mean—variance investors
and classes of TEV investors, who respectively attempt to beat one of the benchmarks in (2).

4 Some Empirical Evidence

Let us test the theory’s implied sign restriction given in Proposition 3, using the port-
folios that were essential in the Fama and French equity factor model tests. Fama
and French (1996, Table IX, pp. 70-71) documented that “equivalent descriptions
of returns” are provided when omitting an explicit size factor from their three factor
model (1), using just Ryy — R, Ry — Ry, and Ry — Ry as excess return factors in a
three factor model, where Ry is the return on the CRSP Value Weighted portfolio,
Ry is the return on their portfolio of low book-to-market ratio (i.e., growth) stocks,
and Ry is the return on their portfolio of high book-tomarket ratio (i.e., value) stocks.
In fact, even their earlier study (Fama and French, 1992, pp. 447-448) concluded
that “Unlike the size effect, the relation between book-to-market equity and average
return is so strong that it shows up reliably in both the 1963-1976 and the 1977-1990
subperiods ... The subperiod results thus support the conclusion that, among the
variables considered here, book-to-market equity is consistently the most powerful for
explaining the cross-section of average stock returns.” Corroborating this emphasis on
book-to-market equity, Knez and Ready (1997) employed an outlier-robust regression
technique to re-examine the Fama and French evidence, concluding that (Knez and
Ready, 1997, p. 1380) “the negative relation between firm size and average returns is
driven by a few extreme positive returns in each month,” that (Knez and Ready, 1997,
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p- 1356) “most small firms actually do worse than larger firms,” but (Knez and Ready,
1997, p. 1357) “that the risk premium on book-to-market is not affected by extreme
observations once you control for size.”

In light of this evidence for the efficacy of a linear model (2) of stock returns with
three excess return factors R, — Rf, R — Rf, and Ry — Rf, let us follow Fama and
French in using the CRSP Value Weighted equity portfolio as the “market” portfolio,
and test Proposition 3 assuming that there are two classes of TEV investors: one class
tries to beat a growth stock benchmark, proxied by the Fama and French growth stock
portfolio L, while the other class tries to beat a value stock benchmark that is proxied by
the Fama and French value stock portfolio /. Using the same July 1963 to December
1993 data period adopted by Fama and French, the OLS-estimated (with #-statistic in
parentheses) o, = —0.059% per month (—2.42) in (20). The L benchmark portfolio’s
o = 0.059% per month (1.64) in (21). The H benchmark portfolio’s ¢z = 0.277%
per month (4.21). The significantly negative sign of the market alpha is opposite to
the significantly positive signs of the L and H alphas, consistent with Proposition 3.
Given the aforementioned Fama and French evidence on the efficacy of the L and A
benchmark factors in explaining stock returns, it is not surprising that the market
regression (20) and the two benchmark factor regressions (21) all had values for their
adjusted R? in excess of 90%.”

Additional corroborating evidence for this theory was found in the two factor model
of Gomez and Zapatero (in press). They used the MSCI US equity index as the proxy
for the market portfolio, and the S&P 500 as a benchmark portfolio that all TEV
investors try to beat. They estimated an orthogonalized version of the resulting linear
two-factor model (2) on a large number of stocks, and concluded that the addition
of the S&P 500 factor did indeed help explain the expected returns of those stocks.
Because of Fama and French’s (1992, p. 446) finding that “large stocks are more likely to
be firms with . . . lower book-to-market equity,” the findings of Gomez and Zapatero
overlap with Fama and French’s findings about the explanatory ability of their low
book-to-market “L”” portfolio. Gomez and Zapatero (in press) did not derive an analog
of the sign restriction in Proposition 3, and hence did not subject their proposed factor
model to the additional test conducted above.

5 Conclusion

A linear excess return factor model was derived as a consequence of equilibrium asset
demands from a class of conventional mean—variance investors and different classes of
other investors, each of whom tries to beat a different benchmark portfolio in accord
with the TEV hypothesis of Roll (1992). That is, each TEV investor chooses a portfo-
lio to minimize the variance of its return about a benchmark portfolio’s return, while
trying to exceed the benchmark’s expected return by some amount. In the presence
of a riskless asset, this is equivalent to choosing a risky asset weight vector portfolio
that maximizes the well-known Information Ratio, calculated by using the bench-
mark portfolio’s return in place of the riskless asset return in the conventional Sharpe
Ratio. It was shown that maximization of the Information Ratio is also consistent with
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maximization (minimization) of the probability of outperforming (or underperform-
ing) the benchmark used to compute it, particularly so over longer time horizons. This
frequentist criterion seems plausible, and there does not appear to be any direct evi-
dence that either institutional investors (e.g., managed mutual funds, banks, insurers,
and other financial intermediaries) or individual investors behave more in accord with
conventional mean—variance theory than TEV theory.

The theory implies that an asset’s expected excess return is linearly related to the
excess return of the market portfolio’s excess return, as in the CAPM. But the excess
returns of each of the benchmark portfolios in wide use will also be factors priced in
this way, whether or not they are mean—variance efficient portfolios. The theory also
implies that if one builds a separate excess return factor model for the market portfolio
with the benchmarks as factors, and builds separate excess return factor models for each
benchmark portfolio with the market and the other benchmark portfolios as factors,
the market model’s alpha must have a sign opposite to that of the usual one for all the
benchmark portfolios’ alphas. An empirical test of this implication indicated that the
seemingly anomalous empirical multifactor findings of Fama and French (1992, 1996)
may be explained by the presence of two classes of TEV investors, trying to beat growth
stock and value stock benchmarks, respectively.

An ambitious future theoretical topic is to use the generalized theory of benchmark
investing developed in Stutzer (2003) and Foster and Stutzer (2002) to extend the
theoretical predictions beyond the normally distributed TEV paradigm. This should
yield analogous nonlinear multifactor models. A good empirical topic would be to
incorporate a widely adopted bond benchmark and a value weighted blended market
portfolio, in order to jointly test the theory on both stocks and bonds.
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Notes

Here is the proof. A risky asset vector that maximizes the Information Ratio also maximizes
the squared ratio. Again, using the notation ¢ — ¢ = x as in (9), the squared Information
Ratio is (Zl x[E(R;) — Rf])z/ > Z]‘ Viixix;. Because gy, is fixed, maximizing over g can
be achieved by maximizing over x. Because neither risky asset vectors ¢ nor ¢ need sum to
one, the x; are unrestricted variables, so the first derivatives of the Information Ratio with
respect to each must be zero at a maximum. The kth first derivative condition can be written
as Zj Vijhx; = E(Ry) — Ry, where & = (ZZ x;[E(R;) —Rf])/2 > Zj v;jx;x;. Substituting
variables defined by y; = Ax; transforms these into an exactly determined system of linear
equations, with solution vector y = VIUER) — I'Rf = Ax. Dividing both sides of this
expression by >".y; = 1’y = A1'x we obtain /1’y = x/1'x = wy. This is the same as
Eq. (10), which is used to characterize the TEV portfolio.

Restrictions on the process R,; — Ry, that are required for a CLT approximation of the average
return’s distribution are given in many texts, e.g., Lehmann (1999). Such process restrictions
are often implicit in commonly applied time series analyses of financial returns.
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3

6

7

The Girtner—Ellis Large Deviations Theorem (Bucklew, 1990, Chap. 2) provides an alterna-
tive to the CLT approximation when 7 is large. In the special case of IID, but not necessarily
normally distributed R, — Rj, Stutzer (2000) used it to show that the Information Ratio

should be replaced by the alternative performance criterion maxg E[—e ?% =) je., the
expected CARA utility of R, — Ry, when evaluated at the coefficient of absolute risk aversion
6 that maximizes the expected CARA utility of R, — Ry,. A straightforward calculation shows
that this is half the squared Information Ratio when R, — R; is normally distributed, and is
thus equivalent to using that ratio, consistent with Proposition 2.

It is also possible to formulate the probability of cumulatively outperforming the benchmark
by a specific calendar time T, rather than on-average over T periods, by substituting log
R, — log Ry, for R, — R, before forming the average. Stutzer (2003) and Foster and Stutzer
(2002) studied and applied this formulation of the outperformance probability hypothesis.
But the on-average criterion is needed here to derive the exact linear factor model (2) of
non-log returns that is commonly used in practice.

Remember that A/W = (' V™ [E(R) — 1Rf])/(\Vf — > en VVfb) The case analysis and

figures in Huang and Litzenberger (1988, pp. 77-78) assume that A/1’S 711 > 0. Because
¥~ is positive definite, this is tantamount to assuming that A > 0. But the sign of W
depends on whether or not the aggregate wealth invested by conventional mean—variance
investors in risky assets exceeds the aggregate wealth invested by all TEV investors in the
riskless asset. Because there appears to be no direct evidence that conventional mean—variance
investing in risky assets is any more common than TEV investing (among individuals as well
as institutional investors) in riskless assets, the theory does not imply that W > 0. Hence,
the sign of A/ W is indeterminate.

The derivation simplifies the development in Brennan (1993). Brennan only allowed conven-
tional investors the right to invest in the riskless asset. In his model, the TEV investors are not
allowed to use the riskless asset. As a result, Brennan derives a more complicated relationship
than (2), which necessitates replacing Ry in (2) by a complicated function of it, the return
on the minimum variance portfolio, and investors’ wealths and absolute coefficients of risk
aversion (see Brennan (1993) for details). By symmetrically allowing the TEV investors the
same right to invest a fraction of the funds in the riskless asset that conventional investors
have, the simpler relationship (2) results, which has a form commonly used in empirical
studies (e.g., in Fama and French, 1996, Table IX, pp. 70-71; Gruber, 1996; Elton ez al.,
1996).

A referee wrote that a small cap benchmark should be included in these regressions, because
small cap benchmarks “are in common usage among investors.” Adding the excess returns
from a benchmark portfolio of small cap stocks (specifically, a portfolio representing the
smallest 20% of CRSP stocks’ market capitalization, as reported on Kenneth French’s website)
resulted in a sign pattern analogous to that reported above. That s, the estimated «,, in (20) is
statistically significantly negative, while the intercepts in two of the three possible regressions
(21) of a benchmark portfolio excess return on the market’s and the other two benchmarks’
excess returns were statistically significantly positive. While the estimated intercept in the
other regression (the excess return of the small cap benchmark on the excess return of the
market and the excess returns of the L and A benchmarks) was negative, it was statistically
insignificant (its #-statistic was only 1.10). Hence, the addition of a small cap benchmark
does not change the empirical support for the theory’s Proposition 3.
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