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To Ros, who still, after nearly 40 years,

sometimes listens when I extol the wonders of

singular perturbation theory, fluid mechanics or water waves

—usually on a long trek in the mountains.



CONTENTS

Foreword xi

Preface xiii

1.Mathematical preliminaries 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Some introductory examples 2

Notation 10

Asymptotic sequences and asymptotic expansions 13

Convergent series versus divergent series 16

Asymptotic expansions with a parameter 20

Uniformity or breakdown 22

Intermediate variables and the overlap region 26

The matching principle 28

Matching with logarithmic terms 32

1.10 Composite expansions 35

Further Reading 40

Exercises 41



viii Contents

2. Introductory applications 47

472.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Roots of equations

Integration of functions represented by asymptotic
expansions 55

Ordinary differential equations: regular problems 59

Ordinary differential equations: simple singular problems 66

Scaling of differential equations 75

Equations which exhibit a boundary-layer behaviour 80

Where is the boundary layer? 86

Boundary layers and transition layers 90

Further Reading 103

Exercises 104

3. Further applications 115

3.1

3.2

3.3

3.4

A regular problem 116

Singular problems I 118

Singular problems II 128

Further applications to ordinary differential equations 139

Further Reading 147

Exercises 148

4. The method of multiple scales 157

4.1

4.2

4.3

4.4

4.5

4.6

Nearly linear oscillations 157

Nonlinear oscillators 165

Applications to classical ordinary differential equations 168

Applications to partial differential equations 176

A limitation on the use of the method of multiple scales 183

Boundary-layer problems 184

Further Reading 188

Exercises 188

5. Some worked examples arising from physical problems 197

5.1

5.2

5.3

5.4

5.5

Mechanical & electrical systems 198

Celestial mechanics 219

Physics of particles and of light 226

Semi- and superconductors 235

Fluid mechanics 242



ix

5.6

5.7

Extreme thermal processes 255

Chemical and biochemical reactions 262

Appendix: The Jacobian Elliptic Functions 269

Answers and Hints 271

References 283

Subject Index 287



FOREWORD

The importance of mathematics in the study of problems arising from the real world,
and the increasing success with which it has been used to model situations ranging
from the purely deterministic to the stochastic, is well established. The purpose of the
set of volumes to which the present one belongs is to make available authoritative, up
to date, and self-contained accounts of some of the most important and useful of these
analytical approaches and techniques. Each volume provides a detailed introduction to
a specific subject area of current importance that is summarized below, and then goes
beyond this by reviewing recent contributions, and so serving as a valuable reference
source.

The progress in applicable mathematics has been brought about by the extension and
development of many important analytical approaches and techniques, in areas both
old and new, frequently aided by the use of computers without which the solution of
realistic problems would otherwise have been impossible.

A case in point is the analytical technique of singular perturbation theory which
has a long history. In recent years it has been used in many different ways, and its
importance has been enhanced by it having been used in various fields to derive
sequences of asymptotic approximations, each with a higher order of accuracy than its
predecessor. These approximations have, in turn, provided a better understanding of
the subject and stimulated the development of new methods for the numerical solution
of the higher order approximations. A typical example of this type is to be found in
the general study of nonlinear wave propagation phenomena as typified by the study
of water waves.
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Elsewhere, as with the identification and emergence of the study of inverse problems,
new analytical approaches have stimulated the development of numerical techniques
for the solution of this major class of practical problems. Such work divides naturally
into two parts, the first being the identification and formulation of inverse problems,
the theory of ill-posed problems and the class of one-dimensional inverse problems,
and the second being the study and theory of multidimensional inverse problems.

On occasions the development of analytical results and their implementation by
computer have proceeded in parallel, as with the development of the fast boundary
element methods necessary for the numerical solution of partial differential equations
in several dimensions. This work has been stimulated by the study of boundary inte-
gral equations, which in turn has involved the study of boundary elements, collocation
methods, Galerkin methods, iterative methods and others, and then on to their im-
plementation in the case of the Helmholtz equation, the Lamé equations, the Stokes
equations, and various other equations of physical significance.

A major development in the theory of partial differential equations has been the
use of group theoretic methods when seeking solutions, and in the introduction of
the comparatively new method of differential constraints. In addition to the useful
contributions made by such studies to the understanding of the properties of solu-
tions, and to the identification and construction of new analytical solutions for well
established equations, the approach has also been of value when seeking numerical
solutions. This is mainly because of the way in many special cases, as with similarity
solutions, a group theoretic approach can enable the number of dimensions occurring
in a physical problem to be reduced, thereby resulting in a significant simplification
when seeking a numerical solution in several dimensions. Special analytical solutions
found in this way are also of value when testing the accuracy and efficiency of new
numerical schemes.

A different area in which significant analytical advances have been achieved is in
the field of stochastic differential equations. These equations are finding an increasing
number of applications in physical problems involving random phenomena, and oth-
ers that are only now beginning to emerge, as is happening with the current use of
stochastic models in the financial world. The methods used in the study of stochastic
differential equations differ somewhat from those employed in the applications men-
tioned so far, since they depend for their success on the Ito calculus, martingale theory
and the Doob-Meyer decomposition theorem, the details of which are developed as
necessary in the volume on stochastic differential equations.

There are, of course, other topics in addition to those mentioned above that are of
considerable practical importance, and which have experienced significant develop-
ments in recent years, but accounts of these must wait until later.

Alan Jeffrey
University of Newcastle

Newcastle upon Tyne
United Kingdom



PREFACE

The theory of singular perturbations has been with us, in one form or another, for a little
over a century (although the term ‘singular perturbation’ dates from the 1940s). The
subject, and the techniques associated with it, have evolved over this period as a response
to the need to find approximate solutions (in an analytical form) to complex problems.
Typically, such problems are expressed in terms of differential equations which contain
at least one small parameter, and they can arise in many fields: fluid mechanics, particle
physics and combustion processes, to name but three. The essential hallmark of a
singular perturbation problem is that a simple and straightforward approximation (based
on the smallness of the parameter) does not give an accurate solution throughout the
domain of that solution. Perforce, this leads to different approximations being valid in
different parts of the domain (usually requiring a ‘scaling’ of the variables with respect to
the parameter). This in turn has led to the important concepts of breakdown, matching,
and so on.

Mathematical problems that make extensive use of a small parameter were probably
first described by J. H. Poincaré (1854–1912) as part of his investigations in celestial
mechanics. (The small parameter, in this context, is usually the ratio of two masses.)
Although the majority of these problems were not obviously ‘singular’—and Poincaré
did not dwell upon this—some are; for example, one is the earth-moon-spaceship
problem mentioned in Chapter 2. Nevertheless, Poincaré did lay the foundations for
the technique that underpins our approach: the use of asymptotic expansions. The
notion of a singular perturbation problem was first evident in the seminal work of L.
Prandtl (1874–1953) on the viscous boundary layer (1904). Here, the small parameter is
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the inverse Reynolds number and the equations are based on the classical Navier-Stokes
equation of fluid mechanics. This analysis, coupled with small-Reynolds-number ap-
proximations that were developed at about the same time (1910), prepared the ground
for a century of singular perturbation work in fluid mechanics. But other fields over
the century also made important contributions, for example: integration of differential
equations, particularly in the context of quantum mechanics; the theory of nonlinear
oscillations; control theory; the theory of semiconductors. All these, and many others,
have helped to develop the mathematical study of singular perturbation theory, which
has, from the mid-1960s, been supported and made popular by a range of excellent
text books and research papers. The subject is now quite familiar to postgraduate stu-
dents in applied mathematics (and related areas) and, to some extent, to undergraduate
students who specialise in applied mathematics. Indeed, it is an essential tool of the
modern applied mathematician, physicist and engineer.

This book is based on material that has been taught, mainly by the author, to MSc
and research students in applied mathematics and engineering mathematics, at the
University of Newcastle upon Tyne over the last thirty years. However, the presentation
of the introductory and background ideas is more detailed and comprehensive than has
been offered in any particular taught course. In addition, there are many more worked
examples and set exercises than would be found in most taught programmes. The style
adopted throughout is to explain, with examples, the essential techniques, but without
dwelling on the more formal aspects of proof, et cetera; this is for two reasons. Firstly, the
aim of this text is to make all the material readily accessible to the reader who wishes
to learn and use the ideas to help with research problems and who (in all likelihood)
does not have a strong mathematical background (or who is not that concerned about
these niceties). And secondly, many of the results and solutions that we present cannot
be recast to provide anything that resembles a routine proof of existence or asymptotic
correctness. Indeed, in many cases, no such proof is available, but there is often ample
evidence that the results are relevant, useful and probably correct.

This text has been written in a form that should enable the relatively inexperienced
(or new) worker in the field of singular perturbation theory to learn and apply all the
essential ideas. To this end, the text has been designed as a learning tool (rather than
a reference text, for example), and so could provide the basis for a taught course. The
numerous examples and set exercises are intended to aid this process. Although it is
assumed that the reader is quite unfamiliar with singular perturbation theory, there
are many occasions in the text when, for example, a differential equation needs to be
solved. In most cases the solution (and perhaps the method of solution) are quoted, but
some readers may wish to explore this aspect of mathematical analysis; there are many
good texts that describe methods for solving (standard) ordinary and partial differential
equations. However, if the reader can accept the given solution, it will enable the main
theme of singular perturbation theory to progress more smoothly.

Chapter 1 introduces all the mathematical preliminaries that are required for the
study of singular perturbation theory. First, a few simple examples are presented that
highlight some of the difficulties that can arise, going some way towards explaining
the need for this theory. Then notation, definitions and the procedure of finding
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asymptotic expansions (based on a parameter) are described. The notions of uniformity
and breakdown are introduced, together with the important concepts of scaling and
matching. Chapter 2 is devoted to routine and straightforward applications of the
methods developed in the previous chapter. In particular, we discuss how these ideas
can be used to find the roots of equations and how to integrate functions represented
by a number of matched asymptotic expansions. We then turn to the most significant
application of these methods: the solution of differential equations. Some simple regular
(i.e. not singular) problems are discussed first—these are rather rare and of no great
importance—followed by a number of examples of singular problems, including some
that exhibit boundary or transition layers. The role of scaling a differential equation is
given some prominence.

In Chapter 3, the techniques of singular perturbation theory are applied to more
sophisticated problems, many of which arise directly from (or are based upon) im-
portant examples in applied mathematics or mathematical physics. Thus we look at
nonlinear wave propagation, supersonic flow past a thin aerofoil, solutions of Laplace’s
equation, heat transfer to a fluid flowing through a pipe and an example taken from gas
dynamics. All these are classical problems, at some level, and are intended to show the
efficacy of these techniques. The chapter concludes with some applications to ordinary
differential equations (such as Mathieu’s equation) and then, as an extension of some
of the ideas already developed, the method of strained coordinates is presented.

One of the most general and most powerful techniques in the armoury of singular
perturbation theory is the method of multiple scales. This is introduced, explained and
developed in Chapter 4, and then applied to a wide variety of problems. These in-
clude linear and nonlinear oscillations, classical ordinary differential equations (such as
Mathieu’s equation—again—and equations with turning points) and the propagation
of dispersive waves. Finally, it is shown that the method of multiple scales can be used
to great effect in boundary-layer problems (first mentioned in Chapter 2).

The final chapter is devoted to a collection of worked examples taken from a wide
range of subject areas. It is hoped that each reader will find something of interest here,
and that these will show—perhaps more clearly than anything that has gone before—
the relevance and power of singular perturbation theory. Even if there is nothing of
immediate interest, the reader who wishes to become more skilled will find these a
useful set of additional examples. These are listed under seven headings: mechanical
& electrical systems; celestial mechanics; physics of particles & light; semi- and su-
perconductors; fluid mechanics; extreme thermal processes; chemical & biochemical
reactions.

Throughout the text, worked examples are used to explain and describe the ideas,
which are reinforced by the numerous exercises that are provided at the end of each of
the first four chapters. (There are no set exercises in Chapter 5, but the extensive ref-
erences can be investigated if more information is required.) Also at the end of each of
Chapters 1–4 is a section of further reading which, in conjunction with the references
cited in the body of the chapter, indicate where relevant reference material can be
found. The references (all listed at the end of the book) contain both texts and research
papers. Sections in each chapter are numbered following the decimal pattern, and
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equations are numbered according to the chapter in which they appear; thus equation
(2.3) is the third (numbered) equation in Chapter 2. The worked examples follow a
similar pattern (so E3.3 is the third worked example in Chapter 3) and each is given a
title in order to help the reader—perhaps—to select an appropriate one for study; the
end of a worked example is denoted by a half-line across the page. The set exercises
are similarly numbered (so Q3.2 is the second exercise at the end of Chapter 3)
and, again, each is given a title; the answers (and, in some cases, hints and intermediate
steps) are given at the end of the book (where A3.2 is the answer to Q3.2). A detailed
and comprehensive subject index is provided at the very end of the text.

I wish to put on record my thanks to Professor Alan Jeffrey for encouraging me
to write this text, and to Kluwer Academic Publishers for their support throughout.
I must also record my heartfelt thanks to all the authors who came before me (and
most are listed in the References) because, without their guidance, the selection of
material for this text would have been immeasurably more difficult. Of course, where
I have based an example on something that already exists, a suitable acknowledge-
ment is given, but I am solely responsible for my version of it. Similarly, the clarity
and accuracy of the figures rests solely with me; they were produced either in Word
(as was the main text), or as output from Maple, or using SmartDraw.



1. MATHEMATICAL PRELIMINARIES

Before we embark on the study of singular perturbation theory, particularly as it is rele-
vant to the solution of differential equations, a number of introductory and background
ideas need to be developed. We shall take the opportunity, first, to describe (without
being too careful about the formalities) a few simple problems that, it is hoped, explain
the need for the approach that we present in this text. We discuss some elementary dif-
ferential equations (which have simple exact solutions) and use these—both equations
and solutions–to motivate and help to introduce some of the techniques that we shall
present. Although we will work, at this stage, with equations which possess known
solutions, it is easy to make small changes to them which immediately present us with
equations which we cannot solve exactly. Nevertheless, the approximate methods that
we will develop are generally still applicable; thus we will be able to tackle far more
difficult problems which are often important, interesting and physically relevant.

Many equations, and typically (but not exclusively) we mean differential equations,
that are encountered in, for example, science or engineering or biology or economics,
are too difficult to solve by standard methods. Indeed, for many of them, it appears
that there is no realistic chance that, even with exceptional effort, skill and luck, they
could ever be solved. However, it is quite common for such equations to contain
parameters which are small; the techniques and ideas that we shall present here aim to
take advantage of this special property.

The second, and more important plan in this first chapter, is to introduce the ideas,
definitions and notation that provide the appropriate language for our approach. Thus
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we will describe : order, asymptotic sequences, asymptotic expansions, expansions with
parameters, non-uniformities and breakdown, matching.

1.1 SOME INTRODUCTORY EXAMPLES

We will present four simple ordinary differential equations–three second-order and
one first-order. In each case we are able to write down the exact solution, and we will
use these to help us to interpret the difficulties that we encounter. Each equation will
contain a small parameter, which we will always take to be positive; the intention
is to obtain, directly from the equation, an approximate solution which is valid for
small

E1.1 An oscillation problem

We consider the constant coefficient equation

with x(0) = 0, (where the dot denotes the derivative with respect to t); this
is an initial-value problem. Let us assume that there is a solution which can be written
as a power series in

where each of the is not a function of The equation (1.1) then gives

where we again use, for convenience, the dot to denote derivatives. We write (1.3) in
the form

and, since the right-hand side is precisely zero, all the must vanish; thus
we require

(Remember that each does not depend on
The two initial conditions give
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and, using the same argument as before, we must choose

where the ‘1’ in the second condition is accommodated by (If the initial
conditions were, say, then we would have to select

Thus the first approximation is represented by the problem

the general solution is

where A and B are arbitrary constants which, to satisfy the initial conditions, must
take the values A= 1, B = 0. The solution is therefore

The problem for the second term in the series becomes

The solution of this equation requires the inclusion of a particular integral, which here
is the complete general solution is therefore

where C and D are arbitrary constants. (The particular integral can be found by any
one of the standard methods e.g. variation of parameters, or simply by trial-and-error.)
The given conditions then require that and D = 0 i.e.

and so our series solution, at this stage, reads

Let us now review our results.
The original differential equation, (1.1), should be recognised as the harmonic

oscillator equation for all and, as such, it possesses bounded, periodic solutions.
The first term in our series, (1.5), certainly satisfies both these properties, whereas
the second fails on both counts. Thus the series, (1.7), also fails: our approximation
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procedure has generated a solution which is not periodic and for which the amplitude
grows without bound as Yet the exact solution is simply

which is easily obtained by scaling out the factor, by working with
rather than t. (The ‘e’ subscript here is used to denote the exact solution.) It is now an
elementary exercise to check that (1.8) and (1.7) agree, in the sense that the expansion
of (1.8), for small and fixed t, reproduces (1.7). (A few examples of expansions
are set as exercises in Q1.1, 1.2.) This process immediately highlights one of our
difficulties, namely, taking first and then allowing this is a classic case
of a non-uniform limiting process i.e. the answer depends on the order in which the limits
are taken. (Examples of simple limiting processes can be found in Q1.4.) Clearly, any
approximate methods that we develop must be able to cope with this type of behaviour.
So, for example, if it is known (or expected) that bounded, periodic solutions exist,
the approach that we adopt must produce a suitable approximation to this solution.

We have taken some care in our description of this first example because, at this
stage, the approach and ideas are new; we will present the other examples with slightly
less detail. However, before we leave this problem, there is one further observation
to make. The original equation, (1.1), can be solved easily and directly; an associated
problem might be

with appropriate initial data. This describes an oscillator for which the frequency
depends on the value of x(t) at that instant—it is a nonlinear problem. Such equations
are much more difficult to solve; our techniques have got to be able to make some
useful headway with equations like (1.9).

E1.2 A first-order equation

We consider the equation

with Again, let us seek a solution in the form

and then obtain

or
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we use the prime to denote the derivative. Thus we require

with the boundary conditions

The solution for is immediately

but this result is clearly unsatisfactory: the solution for grows exponentially, whereas
the solution of equation (1.10) must decay for (because then Per-
haps the next term in the series will correct this behaviour for large enough x; we have

Thus

and we require A = 0; the series solution so far is therefore

However, this is no improvement; now, for sufficiently large x, the second term dom-
inates and the solution grows towards Let us attempt to clarify the situation by
examining the exact solution.

We write equation (1.10) as

the general solution is therefore

and, with C = 1 to satisfy the given condition at x = 0, this yields

Clearly the series, (1.12), is recovered directly by expanding the exact solution, (1.13),
in for fixed x, so that we obtain

Equally clearly, this procedure will give a very poor approximation for large x; indeed,
for x about the size of the approximation altogether fails. A neat way to see this
is to redefine x as this is called scaling and will play a crucial rôle in what
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we describe in this text. If we now consider    small, for X fixed, the size of x is now
proportional to and the results are very different:

indeed, in this example, we cannot even write down a suitable approximation of (1.14)
for small The expression in (1.14) attains a maximum at X= 1/2, and for larger X
the function tends to zero.

We observe that any techniques that we develop must be able to handle this situation;
indeed, this example introduces the important idea that the function of interest may
take different (approximate) forms for different sizes of x. This, ultimately, is not
surprising, but the significant ingredient here is that ‘different sizes’ are measured in
terms of the small parameter, We shall be more precise about this concept later.

E1.3 Another simple second-order equation

This time we consider

with

(The use of here, rather than is simply an algebraic convenience, as will become
clear; obviously any small positive number could be represented by or —or anything
equivalent, such as or et cetera.) Presumably—or so we will assume—a first
approximation to equation (1.15), for small is just

but this problem has no solution. The general solution is where A and
B are the two arbitrary constants, and no choice of them can satisfy both conditions.
In a sense, this is a more worrying situation than that presented by either of the two
previous examples: we cannot even get started this time.

The exact solution is

and the difficulties are immediately apparent: with x fixed, gives
but then how do we accommodate the condition at infinity? Correspondingly, with

and fixed, we obtain and now how can we obtain the dependence
on As we can readily see, to treat and x separately is not appropriate here—we
need to work with a scaled version of x (i.e. The choice of such a variable
avoids the non-uniform limiting process: and
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E1.4 A two-point boundary-value problem

Our final introductory example is provided by

with and given. This equation contains the parameter in two places:
multiplying the higher derivative, which is critical here (as we will see), and adjusting
the coefficient of the other derivative by a small amount. This latter appearance of the
parameter is altogether unimportant—the coefficient is certainly close to unity—and
serves only to make more transparent the calculations that we present.

Once again, we will start by seeking a solution which can be represented by the
series

so that we obtain

the shorthand notation for derivatives is again being employed. Thus we have the set
of differential equations

with boundary conditions written as

where and are given (but we will assume that they are not functions of The
general solution for is

but it is not at all clear how we can determine A. The difficulty that we have in this
example is that we must apply two boundary conditions, which is patently impossible
(unless some special requirement is satisfied). So, if we use we obtain

if, by extreme good fortune, we have then we also satisfy the second
boundary condition (on x = 1). Of course, in general, this will not be the case; let us
proceed with the problem for which Thus the solution using does
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not satisfy and the solution

does not satisfy Indeed, we have no way of knowing which, if either, is
correct; thus there is little to be gained by solving the problem:

(We note that, since we must have and then there is, ex-
ceptionally, a solution of the complete problem: for But we still
do not know

As in our previous examples, let us construct and examine the exact solution. Equa-
tion (1.16) is a second order, constant coefficient, ordinary differential equation and
so we may seek a solution in the form

i.e.

The general solution is therefore

and, imposing the two boundary conditions, this becomes

(We can note here that the contribution from the term is absent in the
special case we proceed with the problem for which

This solution, (1.22), is defined for and with let us select any
and, for this x fixed, allow (where denotes tending to zero

through the positive numbers). We observe that the terms and
vanish rapidly in this limit, leaving

this is our approximate solution given in (1.20). (Some examples that explore the
relative sizes of      exp(x) and ln(x) can be found in Q1.5.) Thus one of the possible
options for introduced above, is indeed correct. However, this solution is, as
already noted, incorrect on x = 0 (although, of course, The difficulty
is plainly with the term for any x > 0 fixed, as this vanishes
exponentially, but on x = 0 this takes the value 1 (one). In order to examine the rôle
of this term, as we need to retain it (but not to restrict ourselves to x = 0); as
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we have seen in earlier examples, a suitable rescaling of x is useful. In this case we set
and so obtain

and now, for any X fixed, as we have

This is a second, and different, approximation to valid for xs which are proportional
to note that on X = 0, (1.25) gives the value  which is the correct boundary value.

In summary, therefore, we have (from (1.23))

and (from (1.25))

These two together constitute an approximation to the exact solution, each valid for an
appropriate size of x. Further, these two expressions possess the comforting property
that they describe a smooth—not discontinuous—transition from one to the other,
in the following sense. The approximation (1.26) is not valid for small x, but as x
decreases we have

(which we already know is incorrect because correspondingly, (1.27) is not
valid for large but we see that

results (1.28) and (1.29) agree precisely. This is clearly demonstrated in figure 1, where
we have plotted the exact solution for (as an example) i.e.

for various As decreases, the dramatically different behaviours for x not too small,
and x small, are very evident. (Note that the solution for x not too small is
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Figure 1. Plot of for with the
maximum value attained (e) is marked on the y-axis.

In these four simple examples, we have described some difficulties that are encountered
when we attempt to construct approximate solutions, valid as directly from
given differential equations; a number of other examples of equations with exact
solutions can be found in Q1.3. We must now turn to the discussion of the ideas
that will allow a systematic study of such problems. In particular, we first look at the
notation that will help us to be precise about the expansions that we write down.

1.2 NOTATION

We need a notation which will accurately describe the behaviour of a function in a
limit. To accomplish this, consider a function f (x) and a limit here a may be
any finite value (and approached either from the left or the right) or infinite. Further,
it is convenient to compare f (x) against another, simpler, function, g (x); we call g (x)
a gauge function. The three definitions, and associated notation, that we introduce are
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based on the result of finding the limit

We consider three cases in turn.

(a) Little-oh
We write

if the limit, (1.31), is L = 0; we say that ‘ f is little-oh of g as Clearly, this
property of a function does not provide very useful information; essentially all it
says is that f (x) is smaller than g (x) (as So, for example, we have

but also

and

It is an elementary exercise to show that each satisfy the definition L = 0 from
(1.31), by using familiar ideas that are typically invoked in standard ‘limit’ problems.
For example, the last example above involves

confirming that the limit is zero. (Note that, in the above examples, the gauge func-
tion which is a non-zero constant is conventionally taken to be g (x) = 1; note also
that the limit under consideration should always be quoted, or at least understood.)

(b) Big-oh
We write

if the limit, (1.31), is finite and non-zero; this time we say that ‘ f is big-oh of g
as or simply ‘ f is order g as As examples, we offer

but

also



12 1. Mathematical preliminaries

finally

but

(Little-oh and big-oh–o and O—are usually called the Landau symbols.)
(c) Asymptotically equal to or behaves like

Finally, we write

if the limit L, in (1.31), is precisely L = 1; then we say that ‘ f is asymptotically
equal to g as or ‘ f behaves like g as Some examples are

and then we may also write

Finally, it is not unusual to use ‘=’ in place of ‘~’, but in conjunction with a
measure of the error. So, with ‘~’, ‘O’ and ‘o’ as defined above, we write

or

but such statements should be regarded as no more than equivalents to some of
the statements given earlier. Some exercises that use o, O and ~ are given in
Q1.6, 1.7 and 1.8.

We should comment that other definitions exist for O, for example, although
what we have presented is, we believe, the most straightforward and most directly
useful. An alternative, in particular, is to define f (x) = O[g(x)] as        if
positive constants C and R s.t.

our limit definition follows directly from this.
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1.3 ASYMPTOTIC SEQUENCES AND ASYMPTOTIC EXPANSIONS

First we recall example (1.32), which epitomises the idea that we will now generalise.
We already have

and this procedure can be continued, so

(and the correctness of this follows directly from the Maclaurin expansion of sin(3x)).
The result in (1.33), and its continuation, produces progressively better approximations
to sin (3x), in that we may write

and then

At each stage, we perform a ‘varies as’ calculation (as in (1.33), via the definition of‘~’);
in this example we have used the set of gauge functions for n = 0, 1, 2, . . . . ;
such a set is called an asymptotic sequence. In order to proceed, we need to define a
general set of functions which constitute an asymptotic sequence.

Definition (asymptotic sequence)

The set of functions is an asymptotic sequence as
if

for every n.

As examples, we have

(In each case, it is simply a matter of confirming that Some

further examples are given in Q1.9.
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Now, with respect to an asymptotic sequence (that is, using the chosen sequence),
we may write down a set of terms, such as (1.34); this is called an asymptotic expansion.
We now give a formal definition of an asymptotic expansion (which is usually credited
to Henri Poincaré (1854–1912)).

Definition (asymptotic expansion)

The series of terms written as

where the    are constants, is an asymptotic expansion of f(x), with respect to the
asymptotic sequence if, for every

If this expansion exists, it is unique in that the coefficients,     are completely
determined.

There are some comments that we should add in order to make clear what this defi-
nition says and implies—and what it does not.

First, given only a function and a limit of interest (i.e. f (x) and               the asymp-
totic expansion is not unique; it is unique (if it exists—we shall comment on this
shortly) only if the asymptotic sequence is also prescribed. To see that this is the case,
let us consider our function sin(3x) again; we will demonstrate that this can be repre-
sented, as in any number of different ways, by choosing different asymptotic
sequences (although, presumably, we would wish to use the sequence which is the
simplest). So, for example,

indeed, this last example, is a familiar identity for sin(3x). (Another simple example of
this non-uniqueness is discussed in Q1.10.) So, given a function and the limit, we need
to select an appropriate asymptotic sequence—appropriate because, for some choices,
the asymptotic expansion does not exist.
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To see this, let us consider the function sin(3x) again, the limit and the
asymptotic sequence The first term in such an expansion, if it exists, will be a
constant (corresponding to n = 0); but in this limit, so the constant is
zero. Perhaps the first term is proportional to for some n > 0; thus we examine

If we are to have (for some n and some constant c), then this limit is
to be L = 1. However, this limit does not exist—it is infinite—for every n > 0. Hence
we are unable to represent sin(3x), as with the asymptotic sequence proposed
(which many readers will find self-evident, essentially because sin(3x) ~ 3x as
If every in the asymptotic expansion is either zero or is undefined, then the
expansion does not exist.

Let us take this one step further; if we have a function, a limit and an appropriate
asymptotic sequence, then the coefficients, are unique. This is readily demonstrated.
From the definition of an asymptotic expansion, we have

consider

and take the limit to give

which determines each
Finally, the terms should not be regarded or treated as a series in

any conventional way. This notation is simply a shorthand for a sequence of
‘varies as’ calculations (as in (1.33), for example); at no stage in our discussion have
we written that these are the familiar objects called series—and certainly not convergent
series. Indeed, many asymptotic expansions, if treated conventionally i.e. select a value

and compute the terms in the series, turn out to be divergent (although,
exceptionally, some are convergent). Of course, numerical estimates are sometimes
relevant, either to gain an insight into the nature of the solution or, more often, to
provide a starting point for an iterative solution of the problem. Because these issues
may be of some interest, we will (in §1.4) deviate from our main development and
offer a few comments and observations. We must emphasise, however, that the thrust
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of this text is towards the introduction of methods which aid the description of the
structure of a solution (in the limit under consideration).

Finally, before we move on, we briefly comment on functions of a complex variable.
(We will present no problems that sit in the complex plane, but it is quite natural to
ask if our definitions of an asymptotic expansion remain unaffected in this situation.)
Given and the limit we are able to construct asymptotic
expansions exactly as described above, but with one important new ingredient. Because

is a point in the complex plane, it is possible to approach i.e. take the limit,
from any direction whatsoever. (For real functions, the limit can only be along the
real line, either or However, in general, the asymptotic correctness
will hold only for certain directions and not for every direction e.g. for

(for some and for other args the asymptotic expansion (with
the same asymptotic sequence, fails because for some n.

1.4 CONVERGENT SERIES VERSUS DIVERGENT SERIES

Suppose that we have a function f (x) and a series

then is a convergent series if as for all x satisfying
(for some R > 0, the radius of convergence). This is a statement of

the familiar property of the type of series that is usually encountered; so we have, for
example, as that

and

One important consequence is that we may approximate a function, which has a
convergent-series representation, to any desired accuracy, by retaining a sufficient num-
ber of terms in the series. For example

where the limit as is 2. With these ideas in mind, we turn to the challenge
of working with divergent series.

In this case, has no limit as for any x (except, perhaps, at the one
value x = a, which alone is not useful). Usually diverges—the situation that is
typical of asymptotic expansions—but it may remain finite and oscillate. In either case,
this suggests that any attempt to use a divergent series as the basis for numerical estimates
is doomed to failure; this is not true. A divergent series can be used to estimate f (x)
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for a given x, but the error in this case cannot be made as small as we wish. However,
we are able to minimise the error, for a given x, by retaining a precise number of terms
in the series–one term more or one less will increase the error. The number of terms
retained will depend on the value of x at which f (x) is to be estimated. This important
property can be seen in the case of a (divergent) series which has alternating signs—a
quite common occurrence—via a general argument.

Consider the identity

where N is finite; is the remainder. Suppose that and with
(and, correspondingly, a reversal of all the signs if this

describes the alternating-sign property of the series. Let us write

then

But the remainders are of opposite sign, so they always add (not cancel, approximately),
which we may express as

similarly

Hence the magnitude of the remainder—the error in using the series—is less than the
magnitude of the last term retained and also less than that of the first term omitted. It is
important to observe that, provided N remains finite, it is immaterial to this argument
whether the series is convergent or divergent. Thus, for a given x, we stop the series
at the term with the smallest value of (which, if the series is convergent, arises at
infinity and is zero); the sum of the terms selected will then provide the best estimate
for the function value. Let us investigate how this idea can be implemented in a classical
example.

E1.5 The exponential integral

A problem which exhibits the behaviour that we have just described, and for which
the calculations are particularly straightforward, is the exponential integral:

We are interested, here, in evaluating Ei(x) for large x (and we observe that
as see Q1.13); of course, we cannot perform the integration, but we can
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generate a suitable approximation via the familiar technique of integration by parts. In
particular we obtain

and so on, to give

Note that we have used a standard mathematical procedure, which has automatically
generated a sequence of terms—indeed, it has generated an asymptotic sequence,

defined as This is another important observation: our definitions have
implied a selection of the asymptotic sequence, but in practice a particular choice either
appears naturally (as here) or is thrust upon us by virtue of the structure of the problem;
we will write more of this latter point in due course. Here, for the expansion of (1.37)
in the form (1.38), we might regard                              as the natural asymptotic sequence.
It is clear that we may write, for example,

but what of the convergence, or otherwise, of this series? In order to answer this, we
will use the standard ratio test.

We construct

(because x > 0 and and if this expression is less than unity as for some
x, then the series converges (absolutely). But the expression in (1.39) tends to infinity
as for all finite x; hence the series in (1.38) diverges. To examine this series
in more detail, let us write (1.38) in the form

where the series can be interpreted as an asymptotic expansion for
is the remainder, given by
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It is convenient, because it simplifies the details, if we elect to work with

and then we have

and so on. Thus, using (1.36a,b), we obtain

so that, in general,

The best estimate, for a given x, is obtained by choosing that n which minimises the
smaller of these two bounds; in this example, this is clearly n = [x] (where [ ] denotes
‘the integral part of ’). In fact, when x is itself an integer, these two bounds for
are identical.

As a numerical example, we seek an estimate for Ei(5)—and since our asymptotic
expansion is valid as x = 5 appears to be a rather bold choice. The remainder
then satisfies

and

i.e. 0.166 < I(5) < 0.174, where we have re-introduced the sign of the remainder, so
that and then we obtain 0.00112 < Ei(5) < 0.00117. The sur-
prise, perhaps, is that a divergent asymptotic expansion, valid as can produce
tolerable estimates for xs as small as 5. Of course, for larger values of x, the estimates
are more accurate e.g. 0.09155 < I(10) < 0.09158, from which we can obtain a good
estimate for Ei(10). Two further examples for you to investigate, similar to this one,
can be found in Q1. 11, 1.12; other asymptotic expansions of integrals are discussed
in Q1.13–1.17 and finding an expansion from a differential equation is the exercise in
Q1.18.

In this example, E1.5, we have used the alternating-sign property, but we could have
worked directly with the remainder, If it is possible to obtain a reasonable
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estimate for the remainder, there is no necessity to invoke a special property of the
series (which in any event, perhaps, is not available). Here, we have (from (1.41))

for because (where and so

For any given x, this estimate for the remainder is minimised by the choice n = [x],
exactly as we found earlier. The only disadvantage in using this approach, for any
general series, is that we may not know the sign of the remainder, and so we must
content ourselves with the error

Although a study of series, both convergent and divergent, is a very worthwhile
undertaking and, as we have seen, it can produce results relevant to some aspects of
our work, we must move on. We now turn to that most important class of asymptotic
expansions: those that use a parameter as the basis for the expansion.

1.5 ASYMPTOTIC EXPANSIONS WITH A PARAMETER

We now introduce functions, which depend on a parameter and are to be
expanded as Here, x may be either a scalar or a vector (although our early
examples will involve only scalars). In the case of vectors, we might write (in longhand)

note that commas separate the variables, but that a semicolon is used to
separate the parameter. As we shall see, it does not much matter in this work if the func-
tion we (eventually) seek is a solution of an ordinary differential equation (x is a scalar)
or a solution of a partial differential equation (x is a vector): the techniques are essen-
tially the same. The appropriate definition of the asymptotic expansion now follows.

Definition (asymptotic expansion with a parameter 1)

With respect to the asymptotic sequence defined as we write the
asymptotic expansion of as

for x = O(1) and every The requirement that x = O(1) is equivalently that
x is fixed as the limit process is imposed.

Now suppose that f is defined in some domain, D say, which will usually be prescribed
by the nature of the given problem e.g. the region inside a box which contains a gas. It
is at this stage that we pose a fundamental question: does the asymptotic expansion in
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(1.42) hold for If the answer is ‘yes’, then the expansion is said to be regular
or uniform or uniformly valid; if not, then the expansion is singular or non-uniform or
not uniformly valid. Further, it is not unusual to use the terms breakdown or blow up to
describe the failure of an asymptotic expansion. To explore these ideas, we introduce
a first, simple example.

E1.6 An example of

Let us consider the function

for and use the binomial expansion to obtain the ‘natural’ asymptotic expan-
sion, valid for x = O(1):

Here, the asymptotic sequence is and we have taken the expansion as far as terms
at But the domain of f is given as and clearly the expansion (1.44) is
not even defined on x = 0 (which is more dramatic than simply not being valid near
x = 0). Thus (1.44) is not uniformly valid–indeed, it ‘blows up’ at x = 0.

The original function can, of course, be evaluated at x = 0:

and now another complication is evident. The asymptotic sequence used in (1.44)
does not include terms and so it could never give the correct value on
x = 0, even if the terms were defined there. Clearly, the expansion in (1.44) has been
obtained by treating x large relative to but this cannot be true if x is sufficiently
small. The critical size is where x is about the size of which is precisely the idea that
led us to the introduction of a scaled version of x. Let us write then

where we have labelled the same function, expressed in terms of X and as
The binomial expansion of (1.46), for with X = O(1), yields

which, on X = 0, recovers (1.45).
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Thus we have two representations of one valid for x = O(1), (1.44), and
one for (1.47). Further, the latter expansion is defined on X = 0 (i.e. x = 0)
and gives the correct value (as an expansion of With these observations in
place, we are now in a position to discuss uniformity and breakdown more completely
and more carefully.

1.6 UNIFORMITY OR BREAKDOWN

Suppose that we wish to represent for by an asymptotic expansion

which has been constructed for x = O(1). This expansion is uniformly valid if

for every and Conversely, it breaks down (and is therefore non-uniform)
if there is some and some such that

In other words, the expansion is said to break down if there is a size of x, in the
domain of the function, for which two consecutive terms in the asymptotic expansion
are the same size. On the other hand, the expansion is uniformly valid if the asymptotic
ordering of the terms, as represented by the asymptotic sequence is maintained
for all x in the domain.

It is an elementary exercise to apply this principle to our previous example; from
(1.44) we have

and the domain of the original function is As the second term in the
expansion, (1.48), becomes the same size as the first where the expansion
has broken down. That is, for x of this size, the expansion (1.48) is no longer valid;
in order to determine the form of the expansion for we must return to the
function and use this choice i.e. write is exactly how we generated
(1.47). Thus the breakdown of an expansion can lead us to the choice of a new,
scaled variable, and we note that this is based on the properties of the expansion, not
any additional or special knowledge about the underlying function. (This point is
important for what will come later: when we solve differential equations, we will not
have the exact solution available—only an asymptotic expansion of the solution. But,
as we shall see, the equation itself does hold information about possible scalings.) We
apply this principle of breakdown and rescaling to another example.
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E1.7 Another example of

Here, we are given

with for x = O(1) we write

and then two applications of the binomial expansion yields

The domain of f is and so we must consider and in either
case the asymptotic expansion (1.49) breaks down. For the breakdown occurs
where (from for the breakdown is where
(from In the former case, we introduce to give

(which, we note, recovers the correct value on X = 0). For the other breakdown, we
introduce and so

Thus the function requires three different asymptotic expansions, valid for different
sizes of x, and two of these have been determined by examining the breakdown. (We
note that these choices are evident from the original function, although this is not
how we deduced the scalings in this example.) Furthermore, expansion (1.50) is valid
as and expansion (1.51) is valid for there are no further breakdowns
(based on the information available in these asymptotic expansions).

Before we continue the discussion of these ideas, and their consequences, we must
adjust the definition of an asymptotic expansion with a parameter; see (1.42). We
have already encountered functions such as these cannot be represented
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in separable form i.e. for any choice of the functions a and Thus we must
extend the definition of an asymptotic expansion to accommodate this:

Definition (asymptotic expansion with a parameter 2)

We write (cf. (1.42)

for x = O(1) and every          where

as

It is clear that the separable case is simply a special version of this more general defi-
nition; let us investigate an example which incorporates such a term.

E1.8 One more example of

Consider the function

for with x = O(1) we obtain

because the term is exponentially small. This asymptotic expansion, (1.53),
as written down, is uniformly valid: there is no breakdown as and the asymptotic
ordering of the terms is even reinforced as However, from (1.52), we see that

which is not the result we obtain from (1.53): the (complete) expansion, started in
(1.53), cannot be uniformly valid! Of course, it is clear that the difficulty is associated
with the exponential term; it is this which contributes to the boundary value (on
x = 0), but it is ignored in the 2-term asymptotic expansion (1.53).

The rôle of the exponential term becomes evident when we retain it, following our
familiar scaling which gives
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for X = O(1) as           Then the value of (1.55), on X = 0, recovers the correct
boundary value, (1.54). Furthermore, the asymptotic expansion (1.55) is not uniformly
valid in as it breaks down where i.e. x = O(l), which
is the variable previously used to generate (1.53).

This example prompts a number of additional and important observations. For the
purposes of determining a relevant scaling, from the breakdown of an expansion, it is
quite sufficient for this to occur only in one direction i.e. expansion A breaks down,
producing a scaling used to obtain expansion B, but B does not necessarily break down
to recover the scaling used in A. This is evident here when we compare (1.53) and
(1.55); expansion (1.55) breaks down, but (1.53) does not. Indeed, as we have seen,
there is no clue in (1.53) that we have a problem—this is only evident when we return
to the original function, (1.52), or we already have available the expansion (1.55). It
is possible to extend the asymptotic expansion given in (1.53) and thereby make plain
the nature of the breakdown; this will prove to be a useful adjunct in some of our later
work.

The breakdown that must exist in the expansion of (1.52), for x = O(l) as
arises from the exponential term. However, to include this term in the asymptotic
expansion would mean, apparently, the inclusion of all terms based on the sequence

because is smaller than for any n (see Q1.5). Of course, there is
no need to write them down explicitly; we could indicate their presence by the use of
an ellipsis (i.e. . . . ) or, which is the usual practice, simply to state which terms we will
retain. So we might expand (1.52), for x = O(1) and retaining O(1),
and terms only, to give

In a sense, the omitted terms are understood, but not explicitly included and, more
significantly, any further manipulation of (1.55) that we employ will use only the terms
written down. It is clear that, with or without the use of ellipsis, the expansion (1.55)
breaks down as for, eventually, the exponential term becomes O(1)—the
same size as the first term. (The fact that there is an infinity of breakdowns, where x
satisfies for each n, is immaterial; we have a well-defined breakdown the
other way—from (1.55)—which is sufficient. Further, an intimate relation between
different expansions of the same function, which we discuss later, shows that this
infinity of breakdowns plays no rôle.)

The inclusion of the exponentially small term in (1.55) may seem superfluous,
and it is in a strictly numerical sense, but it contains important information about the
nature of the underlying function (and it helps us better to understand the breakdown).
Because we are interested in the behaviour of functions (as and not simply
numerical estimates, we shall retain such terms when they provide useful and relevant
information.
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1.7 INTERMEDIATE VARIABLES AND THE OVERLAP REGION

In our examples thus far, we have expanded the given functions for x = O(1),
and, in one case, for We now investigate other scalings which correspond
to sizes that sit between those generated by the breakdown of an asymptotic expansion.
This will lead us to an important and significant principle in the theory of singular
perturbations.

Let us suppose that we have an asymptotic expansion of a function which is valid for
x = O(1), and another of the same function which is valid for further, the
breakdown of at least one of these expansions produces the scaling used in the other.
The line we now pursue is to examine what happens to these expansions when we
allow where

i.e. the size (scale) of x is smaller than O(1) but not as small as Given that the
expansion valid for x = O(1) breaks down at the asymptotic ordering of the
terms is unaltered if we use i.e. it is still valid for this size of x. Conversely,
we are given that the expansion valid for breaks down where x = O(1), but
it remains valid for x smaller than O(1)—so this is also valid for Hence both
expansions are valid for intermediate variable; furthermore, this validity
holds for all which satisfy (1.56). In order to make plain what is happening here,
let us apply this procedure to an example.

E1.9 Example with an intermediate variable

We are given the two asymptotic expansions

both as (It is left as an exercise to show that these expansions are obtained
from the function but we do not need to know
the form of the function in what follows.)

In the expansion (1.57), we write where is defined in (1.56), and
expand:

where we have retained terms O(1), and It is not clear how many terms
we should retain, without being more precise about the size of For example,
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Figure 2. Diagrammatic representation of the overlap region, between and

if we choose then and so, to be consistent, we should certainly
include the issue of precisely which terms we should retain will be addressed
later. Correspondingly, in the expansion (1.58), we write and
expand:

We have chosen to write down only the first three terms of this expansion, in order to
be consistent with (1.59). We see that (1.59) and (1.60) are identical and, furthermore,
this holds for all satisfying (1.56): we have verified, in this example, the rôle of the
intermediate variable. (Again, it is left as an exercise to show that the same results are
obtained directly by expanding the original function for

To proceed with this discussion, we now make choices for choice for the
O(1) expansion (e.g. (1.59)), and another for the expansion (e.g. (1.60)).
For example, in the former we might select and in the latter we use

both ‘expansions of expansions’ are valid for these choices, because both satisfy
(1.56). Thus the asymptotic expansion, constructed for x = O(1), is valid also for

correspondingly, the expansion constructed for is valid for
Hence the expansion of expansions (e.g. (1.59) or (1.60)) is valid for xs

between and the resulting expansion is now valid in an overlap region
(which is represented in figure 2).
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We have made one choice but the same argument can be developed
for other choices; in particular, we could use As p decreases,
so the overlap region extends; indeed, we may allow this to proceed provided p > 0
(because (1.56) still holds). Of course, if we permit the limit then conditions
(1.56) will be violated, although we may allow p to be as close as we desire to zero. This
obviously prompts the question: what does happen to our procedure—the expansion of
expansions—if we do select p = 0? After all—being naïve—it would seem but a small
step from p nearly zero (which is permitted) to p = 0 (although we are all aware that
there can be big differences between and x = a in some contexts!). In fact, this
situation here is not unfamiliar; it is analogous to the discussion that must be undertaken
when the convergence of a series is investigated. Given that a series is convergent for

and divergent for its status for (i.e. the two
cases x = a ± R) must be investigated via individual and special calculations. Here, we
will employ the same philosophy, namely, to apply our procedure in the case p = 0,
and note the results; they may, or may not, prove useful. In the event, it will transpire
that the results are fundamentally important, and lead to a very significant property of
asymptotic expansions.

1.8 THE MATCHING PRINCIPLE

Again, we suppose that we have two asymptotic expansions, one valid for x = O(1) and
one for exactly as described in the previous section. This time, however,
we expand the first expansion for and the second for x = O(1), i.e. the
overlap region is the maximum that we can envisage (and one step beyond anything
permitted so far). We know that this procedure is acceptable for the pair
with 0 < p < 1, but now we set p = 0. Let us investigate this by returning to our
previous example.

E1.10 Example with the maximum overlap

As in E1.9, we are given

and we expand (1.61) further, using We retain terms O(1) and because
we have no information about terms and smaller. Thus we obtain
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obtained by expanding with X = O(1); correspondingly, (1.62) gives

and we see that (1.63) and (1.64) are identical, when expressed in terms of the same
variable (x or X). Further, these new expansions are not recoverable from (1.59) or
(1.60) simply by writing there: being precise about the terms to be retained
has resulted in the appearance of a new term The two expansions, (1.61) and
(1.62), are said to match to this order (because we can match only the terms available
in the original expansions).

The matching principle is a fundamental tool in the techniques of singular pertur-
bation theory; it is invoked, sometimes as a check, but more often as a means for
determining arbitrary constants (or functions) that are generated in the solution of
differential equations. Although we have not presented the matching principle as
a proven property of functions—it is one reason why we call it a ‘principle’—we
have every confidence in its validity. For some classes of functions, it is possible to
develop a proof which goes something like this. Define the operator which
generates the first n terms of the asymptotic expansion of as for

(written correspondingly, the operator generates the first
m terms of the asymptotic expansion of as for Here,
the two functions are identical in that for some scaling

obtained from the breakdown of the asymptotic expansion(s). Under suitable
conditions—but we are able to apply the principle more widely—it can be proved
that

when written in the same variable i.e. or (Much more on these ideas can be
found in some of the texts and references that are listed in the section on Further
Reading at the end of this chapter.) Put simply, this states that the m-term expansion of
the n-term expansion is identical to the n-term expansion of the m-term expansion;
when presented in this form, this procedure is usually associated with the name of
Milton van Dyke (1964, 1975). We present a slight variant of the principle, which
we hope is transparent and readily applicable.
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Definition (matching principle)

We are given two asymptotic expansions of a function, defined as and valid
for x = O(1) and X = O(1), where  (and either or

as in the form

respectively. These two expansions are valid in adjacent regions, so that the break-
down of one leads to the variable used in the other i.e. there are no other regions,
and associated asymptotic expansions, between them. Here, N and M are not used
simply to count the first so-many terms in the expansions; they may be used to des-
ignate the type of terms e.g. first three using the asymptotic sequence and the
first exponentially small term. However, N and M must retain these interpretations
throughout the matching process. Now we form

and

the matching principle then states that

or expressed in terms of x, if preferred. We say that the expansions ‘match to this
order’, because we can match only the terms that we have in the expansions.

Let us apply this matching principle, as we have described it, in the following example.

E1.11 An example of matching

We will show that these two expansions match:

both defined as (This is based on example E1.8.) Note that, although (1.66)
uses the first two terms in the sequence n = 0, 1, 2, . . . . , the expansion (1.65)
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retains the first two (in size), plus the first exponentially small term and then the first
which involves both the sequences and these two specifications define
N and M here.

To proceed, we write in terms of X and expand:

where we have retained terms O(1) and (which constitute M here). Correspond-
ingly, we write (1.66), in terms of x and expand:

where we have retained terms O(1), and which is N here.
Finally, we write (1.68), say, in terms of X:

which is identical to (1.67): the two expansions match (to this order).

This example makes clear that we need not restrict the matching to the first N and
first M terms (in size)—but we must accurately identify N and M and then retain
precisely these terms when the expansions are further expanded. Of course, as we
have seen, there is also no requirement to work to the same number of terms in each
original asymptotic expansion. However, we should offer one word of warning. In the
above example, we included the term which arises from the two otherwise
disjoint asymptotic sequences and To retain such terms, we must ensure
that all terms that might contribute are also included; here, these are and We
may not elect to keep this term alone, and ignore those in and To take this one
step further, if we decided, in this example, to include the term we must also
include the terms of order 1, (And for this same reason,
it is obvious that we must retain all terms of orders 1, when we wish to go as
far as A number of examples of expanding and matching can be found in Q1.19,
1.20.
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In our presentation of the matching principle we have described how it can be
applied to functions which involve and exponential terms (or functions which can
be expanded in terms of these). However, when we apply this same procedure to
logarithmic functions, we encounter a difficulty which requires a careful adjustment
of the matching principle.

1.9 MATCHING WITH LOGARITHMIC TERMS

To see that we have a problem, let us consider an appropriate example, expand and
then attempt to match in the way described above.

E1. 12 A logarithmic example

We are given

and we construct the asymptotic expansions for x = O(1) and as
So we obtain

where we have written down the first two terms. (Note that as
Correspondingly, we have

where we have retained, again, the first two terms. We now match (1.69) and (1.70),
and so we write (1.69) in terms of X and expand:

retaining terms O(1), as required for (1.70). Similarly, from (1.70), we obtain
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when we retain the terms O(1),  used in (1.69). It is clear that (1.71) and
(1.72) do not satisfy the matching principle: the term appears in one expansion
but not in the other.

However, it is easily confirmed that the two 1-term expansions [f ~ 1/(1 + x),
F ~ 1] do match, as do the 1-term/2-term expansions

Further, it is easily checked that any additional terms retained in the
expansion of by expanding the contribution, will also lead
to a failure of the matching principle. Perhaps if we retained all these terms, we might
succeed; let us therefore rewrite (1.69) as

which immediately matches with (1.70) when we treat in (1.70),
in the same way.

In order to investigate the difficulty, let us consider the three simple functions
and ln x (and we may extend this to any function which is constructed

from these elements, or can be represented as a series of such). Now introduce a new
scaled variable, X say, and so obtain, respectively,

the first two are the corresponding functions but of a different size (taking X = O(1)
and i.e. and O(1), respectively. We note, however, that the logarithmic
function does not follow this pattern: producing two terms of
different size i.e. and O(1), respectively. Indeed, we could write

but in order to match any dependence in x (or X) we would need to retain the term
ln X with (The retention of but ignoring ln x, is at the heart of the problem
we have with (1.71) and (1.72); but retaining and ln x allowed the matching
principle to be applied successfully.)

The device that we therefore adopt, when log terms are present, is to treat
for the purposes of retaining the relevant terms; the matching principle, as

we stated it, is then valid. Indeed, the matching principle will produce an identity (as be-
fore), with the correct identification of all the individual terms involving logarithms i.e.
the interpretation is used only for the retention of the appropriate terms.
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Thus, for example, we must regard all the terms

as when selecting terms to use for matching. We conclude this discussion with
one more example (and a few others are given in Q1.21).

E1.13 Another logarithmic example

Given

then as we write

keeping the first two terms in the asymptotic expansion, but treating ‘ln
For we write to give

if we include terms as far as To match, we write (1.73) as

retaining terms O(1), as required for (1.74). Similarly, we write (1.74) as

again retaining terms O(1), as required for (1.73), but with ‘1n it is
immediately apparent that the two expansions match (to this order): (1.75) and (1.76)
are identical (with

The processes of expanding, examining breakdowns, scaling and matching are the
essential elements of singular perturbation theory; these will provide the basis and the
framework for the rest of this text. However, there is one final aspect to which we



35

should briefly return: the production of approximations that may prove useful in a
mainly numerical context.

1.10 COMPOSITE EXPANSIONS

When we have obtained two, or more, matched expansions that represent a function,
we are led to an intriguing question: is it possible to use these to produce, for example,
an approximate graphical representation of the function, for all x in the domain? The
main difficulty, of course, is that presumably we need to switch from one asymptotic
expansion to the next at a particular value of x–which runs counter to the matching
principle. One possibility might be to plot the function so that, for some values of
x, both matched expansions are used and allowed to overlap, but this still involves
using first one and then the other. A single expression which represents the original
function, asymptotically, for would be far preferable. Such an expression can
usually be found; it is called a composite expansion.

Suppose that we have a function which is described by two different asymptotic
expansions, and say, valid in adjacent regions, with
(We are using the notation that was introduced in example E1.11; the exten-
sion to three or more expansions follows directly.) We now introduce a function

which possesses the properties that

both as If such a function exists, it is called a composite expansion for the
original function (for obvious reasons); note that the only requirement is that the
correct behaviour, or is generated—any other (smaller) terms may not be
correct if these expansions were continued further. The issue now is how we find
we present two commonly used constructions that lead to a suitable choice for The
simpler uses a straightforward additive rule, and the other a multiplicative rule.

Definition (composite expansion—additive)

We write

where denotes the ‘overlap’ terms which are those terms involved in the match-
ing.

The inclusion of becomes obvious when we note that the terms that match must
appear in both and and so are counted twice; then removes one of them.
Given the pair and it is an elementary exercise, in particular cases, to check
that the expansion of (1.77), either for or recovers the appropriate
leading-order terms. Further, it is then possible to compare the approximation,
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against the original function, by estimating for we will
return to this shortly. An example of the additive rule is now presented.

Mathematical preliminaries

E1.14 A composite expansion (additive)

From E1.8 (see equations (1.52), (1.53) and (1.55)), we have

and

where and the matching involves (see E 1.11)

Following (1.77), we define

and then we obtain directly

retaining O(1) and terms. Correspondingly, for X = O(1), we have

retaining terms O(l) and Thus, to this order, (1.79) is a composite expansion
for the function (1.78), for To confirm the accuracy of this approximation,
we compare (1.78) and (1.79), for in figure 3.
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Figure 3. Comparison of the composite expansion, equation (1.79), with the exact function
with

The agreement between the composite expansion, (1.79), and the original function,
as depicted in figure 3, is quite remarkable (and we have not chosen a particularly small
value of which would make the agreement even more pronounced). This suggests
that we should be able to obtain a formal estimate for the error when we use the
composite expansion; we will examine this conjecture in a simpler version of E1.14
(so that the manipulation is particularly routine and transparent).

E1.15 Error using a composite expansion

From E 1.14, we are given

and so we form the composite expansion
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The error in using this composite expansion is, with

But the maximum value of occurs at   for then

and so we have the estimate

and hence the error, for is at most (indeed, this upper bound is approx-
imately for small

This example demonstrates that estimates for the error in using a composite expansion
are readily derived, at least in particular cases, when the original function is known.
However, corresponding results for the solutions of differential equations are not so
easily obtained—and this is the situation of most practical interest. Then we have
available only the equation and its asymptotic solution, but not the exact solution of
the equation, of course. Thus any estimates will need to be based on an analysis of
appropriate differential inequalities; we will touch on these ideas later in this text. (We
should add that only rarely is it possible satisfactorily to complete such calculations; in
addition, it is often deemed not worthwhile to devote much energy to this exercise,
essentially because the results and the context persuade us that we have the appropriate
and correct asymptotic form of the solution.)
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To conclude this discussion, we briefly describe the multiplicative rule which can
be used as an alternative for the construction of a composite expansion. So, with the
same notation as introduced earlier:

Definition (composite expansion—multiplicative)

Now we write

provided that for

Here, the terms involved in the matching appear in both and and so
dividing by cancels one of these. It is clear, therefore, that a composite expansion, to
a given order, is not unique; indeed, any number of variants exists—we have presented
two possible choices only. We will provide an example of the application of (1.82), but
we are unable to use the expansions quoted in E1.14 (which would have been useful
as a comparison) because, there, However,
a slightly simpler version of E1.14 is possible.

E1.16 A composite expansion (multiplicative)

See E1.14; let us be given

and

the matching of these expansions involves simply Thus, (1.82) gives

and so

and

thus (1.83) is a (multiplicative) composite expansion for (1.78). (An examination of
the accuracy of this expansion can be found in Q1.24, and a few additional examples
of composite expansions appear in Q1.22, 1.23.)
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This concludes our presentation and discussion of all the elements that constitute
classical singular perturbation theory. However, this is far from a complete description
of all the techniques that are needed to solve differential equations. These will be
introduced as they are required; suffice it to record, at this stage, that one approach
that subsumes much that we have done thus far will be carefully developed later—the
method of multiple scales.

FURTHER READING

In this chapter we have introduced, with carefully chosen explanations and examples,
the basic ideas that are at the heart of singular perturbation theory. However, other
approaches are possible, emphasising one aspect or another, and a number of good texts
are available, which some readers may find both interesting and instructive. We offer
the following as some additional (but not essential) reading, with a few observations
about each. Of course, such a list is unlikely to be exhaustive, so I have included only
my own favourites; I apologise if yours has been omitted.

Any list of texts must include that written by van Dyke (1964), and especially its
annotated edition (1975); this provides an excellent introduction to the ideas, together
with their applications to many of the classical problems in fluid mechanics. Two
other good texts that present the material from a rather elementary stand-point are
Hindi (1991) and Bush (1992), although the former is somewhat sophisticated in
places; both these cover quite a wide range of applications. A text that also provides
an introduction, although perhaps in not so much detail as those already cited, is
Kevorkian & Cole (1996), but it offers an excellent introduction to the application of
these methods to various types of problem. (This publication is a revised and updated
edition of Kevorkian & Cole (1981), which was itself a rewritten and extended version
of Cole (1968), both of which are worth some exploration.) A nice introduction to
the subject, mainly following the work of Kaplun (see below), is given in Lagerstrom
(1988). Nayfeh (1973, 1981) provides many examples discussed in detail (and often
these are the same problem tackled in different ways); these two books are useful as
references to various applications, but perhaps are less useful as introductions to the
relevant underlying ideas.

A carefully presented discussion of how singular perturbation theory manifests itself
in ordinary differential equations, and a detailed description of methods of solution
with applications, can be found in O’Malley (1991). An outstanding collection of
many and varied problems, most of them physically interesting and important, is given
in Holmes (1995), but this text is probably best avoided by the novice. Eckhaus (1979)
presents a very formal and rigorous approach to the subject, and some interesting appli-
cations are included. Smith (1985) uses an instructive mixture of the formal approach
combined with examples and applications (although almost all of these relate to ordi-
nary, not partial, differential equations); a large number of references are also included.
A discussion of the matching principle, via expansion operators, can be found in the
papers by Fraenkel (1969).

We now turn to some texts that are more specialised in their content. A collection of
the work and ideas of Kaplun, particularly with reference to applications to problems in
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fluid mechanics, can be found in Kaplun (1967); this is advisable reading only for those
with a deep interest in fluids. The construction of asymptotic solutions to ordinary
differential equations (that is, in the absence of a small parameter) is described in Wasow
(1965) and also in Dingle (1973); this latter book provides a very extensive analysis
of asymptotic expansions, their properties and how to construct useful forms of them
that provide the basis for numerical estimates.

There are various texts that describe the techniques for finding asymptotic ex-
pansions of functions defined, for example, by differential equations or as integrals;
excellent examples in this category are Erdelyi (1956), Copson (1967) and Murray
(1974). But the outstanding text has got to be Olver (1974), for its depth and breadth;
furthermore, this provides an excellent reference for the behaviour of many standard
functions (and the results are presented, comprehensively, for functions in the complex
plane). Finally, we mention two texts that discuss the properties of divergent series:
Hardy (1949) and Ford (1960). The former has become a classical text; it covers a lot
of ground but is written in a pleasant and accessible style—it cannot be recommended
highly enough.

EXERCISES

Q1.1 Maclaurin expansions I. The following real functions are defined for suitable real
values of x. Use your knowledge of Maclaurin expansions to find power-series
representations of these functions as giving the first three terms in
each case; state those values of x for which the expansions are convergent.
(Some of these may not be expressible wholly in terms of integral powers of x.)

(a) (b) (c) (d)

(e) (f) (g)

Q1.2 Maclaurin expansions II. Repeat as for Q1.1, but for each of these series also find
the general term in the expansion.

(a) (b) sin(l + x); (c)

Q1.3 Exact solutions of ODEs. Find the exact solutions of these ordinary differential
equations and explore their properties as (for example, by sketching
or plotting the solutions for various You may wish to investigate how an
appropriate approximation, for might be obtained directly from the
differential equation (The over-dot denotes the derivative with respect to t,
time, for problems in the prime represents the derivative with respect
to x )

(a)
(b)
(c)

with
with

with

(d) with
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(e)

(f)
(g)
(h)

with
repeat (e) for

with
with

[Hint: seek a solution
(i)
(j)

(k)
(1)

(m)
(n)

with
repeat (i) for

with for « = 1;
repeat (k) for n = 1/2 and
repeat (k) for n = 2 and
repeat (k) for n = 3 and

Q1.4 Uniform or non-uniform? Is the behaviour of each of these functions uniformly
valid as and (To answer this, compare followed by

with the reversed order of taking the limits.)

(a) (b) (c) (d)

Q1.5 Limits involving exp(x) and ln(x). (a) For x > 1 and show that 0 <
and hence that (b) Interpret these as

inequalities for lnx, choose and show that
(c) Now write x = 1/y and hence as

(d) In (b), write and show that
as (e) In (d), write x = exp(y) and deduce that

for
Q1.6 Examples of O, o and ~. Determine which of the following are correct as

(a)

(c)

(e)

(g)

(i)

(k)

(b)

(d)

(f)

(h)

(j)

Q1.7 Dominant behaviour. Find the dominant behaviour, i.e. find g (x) so that
for each of these functions, f(x).

(a)

(d)

(g)

(b) (c)

(e) (f)

F[G(x)] where

for

as
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Q1.8 Properties of O and o. For the limit

(a)
(b)

given that f (x) = O[g(x)], F(x) = O[G(x)], show that f F = O(g G);
given that f (x) = O[g(x)] , F(x) = o[G(x)], show that f F = o(g G).

Q1.9 Asymptotic sequences. Verify that these are asymptotic sequences, where n =
0, 1, 2, . . . .

(a)

(c)
(b)

Q1.10 Non-uniqueness of asymptotic expansions. Find two asymptotic expansions of the
function valid as based on the asymptotic sequences:

(a) for a suitable function which is to be deter-
mined.

Q1.11 Error function. The error function is defined by

where as Obtain asymptotic expansions of erf(x) for:
(a) and in each case find the general term and decide
if these series are convergent or divergent. Use your result in (b) to give an
estimate for the value of erf(2).

Q1.12 A sine integral. Obtain an asymptotic expansion of

for and decide if the series is convergent or divergent. Also obtain
an expression for the remainder, as an integral, and find an estimate for it.

Q1.13 Exponential integral. Find an asymptotic expansion of

this will involve Euler’s constant

It might be helpful, first, to show that

as
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Q1.14 An integral I. Find the first four terms in an asymptotic expansion of the integral

for (a) (b)
Q1.15 An integral II. Find the first four terms in an asymptotic expansion of the integral

for (a) (b) (and in this case, introduce the constants

Q1.16 An integral III. Find the first two terms in an asymptotic expansion of the integral

as Explain why your result is not valid if [Hint: simply
use integration by parts.]

Q1.17 An integral IV. Use an appropriate integration by parts to find an expansion,
valid as of the integral

in particular, find the general term and also an expression for the remainder.
Show that this is an asymptotic expansion and that the series diverges. Find an
estimate for the remainder and use this to select the number of terms, for a
given x, which will minimise the error when using the series to find the value
of I (x).

Q1.18 Approximation for a Bessel function. The Bessel function is a solution of the
equation

first write find the equation for z(x) and show that, for large
x, this becomes approximately. Hence seek a solution
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where and are constants to be determined; also find the recurrence relation
for the coefficients (This is to be compared with the familiar Frobenius
method for second order ODEs.) Write down the most general solution avail-
able (by using both values of and retain terms as far as Show that this
is consistent with the solution

although it is not possible, here, to find values for C and
Q1.19 Expansion of a function with a parameter. For these functions (all with the domain

expand as for each of x = O(l), and
and find the first two terms in each asymptotic expansion. Show that your
expansions satisfy the matching principle (and you may wish to note wherever
any breakdowns are evident in your two-term expansions). Remember that the
matching principle applies only to adjacent regions.

(a) (b) (c)

(d) (e)

for this one, also include (f)

Q1.20 Expansion with exponentially small terms. For these two functions (both with the
domain expand as for x = O(1) and retain terms O(1),
and for expand and now retain the first two terms
only. Show that your expansions satisfy the matching principle.

(a) (b)

Q1.21 Matching with logarithms. The domain of these functions is given as x > 0 with
in each case, find the first two terms in each of the asymptotic expan-

sions valid for x = O(1) and for as Show that, with the
interpretation your expansions satisfy the matching principle.

(a) (this example was introduced by Eckhaus);

(b)
(c)

Q1.22 Composite expansions I. For these functions, given that find the
first two terms in asymptotic expansions valid for x = O(1) and for
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as Hence construct additive composite expansions.

(a) (b)

What do you observe about your composite expansion obtained in (b)?
Q1.23 Composite expansions II. See Q1.22; now, when they are defined, find the corre-

sponding multiplicative expansions. (You may wish to compare, by plotting the
appropriate functions, the original function and the two composite expansions.)

Q1.24 Estimate of error. See E1.16; find an estimate of the error in using this form of
the composite expansion.



2. INTRODUCTORY APPLICATIONS

In the previous chapter, we laid the foundations of singular perturbation theory and,
although we will need to add some specific techniques for solving certain types of
differential equations, we can already tackle simple examples. In addition, we will see
that we can apply these ideas directly to other, more routine problems—and this is
where we shall begin. Here, we will describe how to approach the problem of finding
roots of equations (which contain a small parameter), and how to evaluate integrals of
functions which are represented by asymptotic expansions with respect to a parameter.
Finally, we begin our study of differential equations by examining a few important,
fairly straightforward examples which are, nonetheless, not trivial.

2.1 ROOTS OF EQUATIONS

At some stage in many mathematical problems, it is not unusual to be faced with the
need to solve an equation for specific values of an unknown. Such a problem might
be as simple as solving a quadratic equation:

or finding the solution of more complicated equations such as
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In this section, we will describe a technique (for equations which contain a small
parameter, as in those above) which is a natural extension of simply obtaining an
asymptotic expansion of a function, examining its breakdown, rescaling, and so on.

We will begin by examining the simple quadratic equation

and seek the solutions for The essential idea is to obtain different asymptotic
approximations for valid for different sizes of x, and see if these admit (ap-
proximate) roots. Given that we could have roots anywhere on the
real line, and so all sizes of x must be examined. (We will consider, first, only the real
roots of equations; the extension to complex roots will be discussed in due course.)
One further comment is required at this stage: we describe here a technique for find-
ing roots that builds on the ideas of singular perturbation theory. In practice, other
approaches are likely to be used in conjunction with ours to solve particular equations
e.g. sketching or plotting the function, or using a standard numerical procedure (such
as Newton-Raphson). There is no suggestion that this expansion technique should be
used in isolation—it is simply one of a number of tools available.

Returning to (2.1), if x = O(1), then

and so we have a root x = – 1 (approximately). In order to generate a better ap-
proximation, we may use any appropriate method. For example, we could invoke the
familiar procedure of iteration, so we may write

with Then we obtain

and so on (but note that iteration may not generate a correct asymptotic expansion at
a given order in It is clear from this approach that a complete representation of the
root will be obtained if we use the asymptotic sequence and so an alternative is
to seek this form directly—and this is more in keeping with the ideas of perturbation
theory. Thus we might seek a root in the form

so that (2.1) can be written as
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(where the use of ‘= 0’ here is to imply ‘equal to zero to all orders in thus
and so on. We have one root

It is clear that (2.2) admits only one root; the other—it is a quadratic equation that we
are solving—must appear for a different size of x.

The ‘asymptotic expansion’ (we treat the function as such)

remains valid for and so there is no new root for x = o(1); however, this
expansion does break down where We define
and write

or

This approximation admits the roots X = 0 and X = –1, so now the quadratic equa-
tion has a total of three roots! Of course, this cannot be the case; indeed, it is clear that
the root X = 0 is inadmissible, because the ‘asymptotic expansion’
breaks down where (which is x = O(1) and so returns us to (2.5)). The only
available root is X = –1, and this is the second (approximate) root of the equation
(leaving X = 0 as no more than a ‘ghost’ of the root x ~ –1). The expansion for F
does not further breakdown (as and so there are no other roots—not that we
expected any more! We may seek a better approximation, as we did before, in the form

which gives

i.e. thus

or

The two roots of the quadratic equation, (2.1), are therefore
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it is left as an exercise to confirm that these results can be obtained directly from
the familiar solution of the quadratic equation, suitably approximated (by using the
binomial expansion) for (Similar problems based on quadratic equations can
be found in exercise Q2.1.)

This simple introductory example covers the essentials of the technique:
find all the different asymptotic forms of and investigate if roots

exist for each (dominant) asymptotic representation. Let us now apply this to a slightly
more difficult equation which, nevertheless, has a similar structure.

E2.1 A cubic equation

We are to find approximations to all the real roots of the cubic equation

for First, for x = O(1), we have

and this approximation admits the roots x = ±1; a better approximation is then ob-
tained by writing

so that we obtain

This equation requires that and so on; two roots are therefore

Now the ‘asymptotic expansion’

remains valid as but not as it breaks down where or
We write and then

or
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The only relevant root is X = 1 (because the other two are the ghosts of the roots
that appear for x = O(1)). To improve this approximation, we set

to give

i.e. so that a third root is as Thus the three
(real) roots are

Our introductory example, and the one above, have been rather conventional poly-
nomial equations, but the technique is particularly powerful when we have to solve,
for example, transcendental equations (which contain a small parameter). We will now
see how the approach works in a problem of this type.

E2.2 A transcendental equation

We require the approximate (real) roots, as of the equation

For x = O(1), we now have two possibilities:

but only the first option admits any roots for real, finite x. Thus x = ±1 (approxi-
mately) and then only the choice x = +1 is acceptable (because we require x > 0); a
better approximation follows directly:

The ‘expansion’ is written

where the term must be exponentially small for x = O(1) or larger (because
no roots exist if this term dominates). Now, for x > 0, there is no breakdown as
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thus any other roots that might exist must arise as Indeed, as
we see that the expansion (2.8) breaks down where and so we set
to give

This approximation has one root at X = 0, but this cannot be used directly because
the expansion, (2.9), itself breaks down as This occurs where
i.e. so a further scaling must be introduced: to produce

Since we have

we have a root near to obtain an improved approximation, we write

and so obtain

As there is no further breakdown, and so we have found two real roots

A number of other equations, both polynomial and transcendental, are discussed in the
exercises Q2.2, 2.3 and 2.4. However, all these involve the search for real roots; we now
turn, therefore, to a brief discussion of the corresponding problem of finding all roots,
whether real or complex. It will soon become clear that we may often adopt precisely
the same approach when any roots are being sought (although, sometimes, there may
be an advantage in writing and working with two, coupled, real equations).
The only small word of warning is that the size of the real and imaginary parts, measured
in terms of may be different e.g. x = O(1) now implies that which
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can be satisfied if either, but not necessarily both, and are O(1). Let us see how
this arises in an example.

E2.3 An equation with complex roots

Here, using the more usual notation for a complex number, we consider

and immediately we obtain

and so we have roots approximately. Thus we write

and so the equation becomes

This is satisfied if etc., and thus we have two complex roots

and we observe that the imaginary part is O(1), but that the real part is
The full ‘expansion’ is clearly not uniformly valid as there is a breakdown

where or We introduce and write

and so

which produces the single, available root near Z = – 1 and then, more accurately, we
have The equation has three roots, two of which are complex:

Finally, a class of equations for which this direct approach (for complex roots) is not use-
ful is characterised by the appearance of terms such as (or anything equivalent).
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In this case, it is almost always convenient to formulate the problem in real and imag-
inary parts, and the appearance of a small parameter does not affect this approach in
any significant way; we present an example of this type.

E2.4 A real-imaginary problem

We seek all the roots of the equation

as note that

and so the form of this problem does indeed exhibit this more complicated structure.
Let us write z = x + iy , and then (2.9) becomes

or

We see immediately that the right-hand sides of these two equations do not presage a
breakdown of these contributions, as x or y increases or decreases; thus we proceed
with x = O(1) and y = O(1). Now equation (2.10b) possesses the solutions

and this is the relevant choice (rather than y = 0) because we require sin x cosh y > 1
(from (2.10a)). Then equation (2.10a) gives

and this is consistent only if n = 2m (m = 0, ±1, ±2, ...) because cosh y > 0. Finally,
the solution arises only for since cosh as we see that a
solution exists where and so we introduce Thus we obtain
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and so we have the set of (approximate) roots

A few examples of other equations with complex roots (some of which may be real,
of course) are set as exercises in Q2.5.

2.2 INTEGRATION OF FUNCTIONS REPRESENTED
BY ASYMPTOTIC EXPANSIONS

Our second direct, and rather routine application of these ideas is to the evaluation
of integrals. In particular, we consider integrals of functions that are represented by
asymptotic expansions in a small parameter; this may involve one or more expansions,
but if it is the latter—and it often is—then the expansions will satisfy the matching
principle.

The procedure that we adopt calls upon two general properties: the first is the
existence of an intermediate variable (valid in the overlap region; see §1.7), and the
second is the familiar device of splitting the range of integration, as appropriate. We
then express the integral as a sum of integrals over each of the asymptotic expansions
of the integrand, the switch from one to the next being at a point which is in the
overlap region. The expansions are then valid for each integration range selected and,
furthermore, the value of the original integral (assuming that it exists) is independent
of how we split the integral. Thus the particular choice of intermediate variable is
unimportant; indeed, it may be quite general, satisfying only the necessary conditions
for such a variable; see (1.56), for example. Let us apply this technique to a simple
example.

E2.5 An elementary integral

We are given

and we require the value, as of the integral

(Note that the integral here is elementary, to the extent that it may be evaluated directly,
although we will integrate only the relevant asymptotic expansions; this example has
been selected so that the interested reader may check the results against the expansion
of the exact value.)
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First, we expand for x = O(1) and for to give

and

both for we have retained terms as far as in each expansion. (You
should confirm that these two expansions satisfy the matching principle.)

Now these two expansions are valid in the overlap region, represented by
defined by

thus we express the integral as

The only requirement, at this stage, is that we are able to perform the integration of the
various functions that appear in the asymptotic expansions. Note that the first integral
has been expressed as an integration in X—the most natural choice of integration
variable in this context. To proceed, we obtain

and this is to be expanded for and (note!). Thus we obtain



where the ellipsis (· · ·) indicates further terms in the various binomial expansions; we
keep as many as required in order to demonstrate that vanishes identically (at this
order), to leave

Thus we have found that

as as far as terms at here we see that the integration over x =O(l)
provides the dominant contribution to this value.

This example has presented, via a fairly routine calculation, the essential idea that
underpins this method for evaluating integrals. Of course, there is no need to exploit
this technique if the integral can be evaluated directly (as was the case here); let us
therefore examine another problem which is less elementary.

E2.6 Another integral

We wish to evaluate the integral

as here, the expansion of the integrand requires three different asymptotic
expansions (valid for x = O(l), Thus we obtain

57
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In this problem, we require two intermediate variables; these are defined by

all as The integral is then written as

and we will now retain terms that will enable us to find an expression for correct
at Thus we find that
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(You should confirm that, in the above, both and cancel identically, to this order.)

Further examples that make use of these ideas can be found in exercises Q2.6, 2.7 and
2.8. With a little experience, it should not be too difficult to recognise how many
terms need to be retained in each expansion in order to produce to a desired
accuracy. The region that gives the dominant contribution is usually self-evident,
and quite often this alone will provide an acceptable approximation to the value of
the integral. Furthermore, terms that contain the overlap variables can be ignored
altogether, because they must cancel (although there is a case for their retention—
which was our approach above—as a check on the correctness of the details).

2.3 ORDINARY DIFFERENTIAL EQUATIONS: REGULAR PROBLEMS

We now turn to an initial discussion of how the techniques of singular perturbation
theory can be applied to the problem of finding solutions of differential equations—
unquestionably the most significant and far-reaching application that we encounter.
The relevant ideas will be developed, first, for problems that turn out to be regular
(but we will indicate how singular versions of these problems might arise, and we will
discuss some simple examples of these later in this chapter). Clearly, we need to lay
down the basic procedure that must be followed when we seek solutions of differential
equations. However, these techniques are many and varied, and so we cannot hope
to present, at this stage, an all-encompassing recipe. Nevertheless, the fundamental
principles can be developed quite readily; to aid us in this, we consider the differential
equation

for This problem, we observe, is not trivial; it is an equation which, although
first order, is nonlinear and with a forcing term on the right-hand side.

The first stage is to decide on a suitable asymptotic sequence for the representation
of Here, we note that the process of iteration on the equation, which can be



60 2. Introductory applications

written for this purpose (with a prime for the derivative) as

gives

and so on, so that takes the form (for appropriate functions
When this solution is used to generate it is clear that we will produce terms

in and and so this pattern will continue: the equation implies the ‘natural’
asymptotic sequence so this is what we will assume to initiate the solution method.
(It should be noted that the boundary condition is consistent with this assumption,
as is the alternative condition On the other hand, a boundary value

would force the asymptotic sequence to be adjusted to accommodate
this i.e.

Thus we seek a solution of the problem (2.11) in the form

for some (and we do not know which xs will be allowed, at this stage). The
expansion (2.12) is used in the differential equation to give

where ‘= 0’ means zero to all orders in thus we require

and so on. Similarly, the boundary condition gives

of course, to evaluate on x = 1 implies that the asymptotic expansion, (2.12), is valid
here—but we do not know this yet. This is written down because, if the problem turns
out to be well-behaved i.e. regular, then we will have this ready for use; essentially,
all we are doing is noting (2.14)—we can reject it if the expansion will not permit
evaluation on x = 1.

The next step is simply to solve each equation (for in turn; we see directly
(from (2.13a)) that the general solution for is

so that
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where is an arbitrary constant. Then, from (2.13b), we have

which can be written (on using the integrating factor as

This produces the general solution

where is a second arbitrary constant. It is immediately clear that these first two terms
in the expansion are defined (and well-behaved i.e. no hint of a non-uniformity) for

so we may impose the boundary conditions, (2.14a,b); these produce

Thus our asymptotic expansion, so far, is

and this is certainly uniformly valid for we have a 2-term expansion of the
solution. (Note that the specification of the domain is critical here; if, for example,
we were seeking the solution with the same boundary condition, but in then
(2.17) would not be uniformly valid: there is a breakdown where i.e.

see the problem in (2.34), below.) The evidence in (2.17) suggests that
we have the beginning of a uniformly valid asymptotic expansion i.e. (2.12) is valid
for and for (and it is left as an exercise to find and to check that
the inclusion of this term does not alter this proposition).

In order to investigate the uniform validity, or otherwise, of (2.12), one approach is
to examine the general term in the expansion; this is the solution of

where with The solution to (2.18)
is

but and are bounded functions for and hence so is and
then so is and hence all the In particular, as and

constants) as there is no breakdown of the asymptotic
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expansion. The problem posed in (2.11) is therefore regular, resulting in a uniformly
valid asymptotic expansion.

More complete, formal and rigorous discussions of uniform validity, in the context
of differential equations, can be found in other texts, such as Smith (1985), O’Malley
(1991) and Eckhaus (1979). Typically, these arguments involve writing

where and then showing that remains bounded for
and for We will outline how this can be applied to our problem,

(2.11); first, we obtain

with for Since each satisfies an appropriate differential
equation and boundary condition, this gives

where comprises the terms, and smaller, from the expansion of (after
division by A uniform asymptotic expansion requires that is bounded as

for and To prove such a result is rarely an elementary exercise
in general, and it is not trivial here, although a number of approaches are possible.
One method is based on Picard’s iterative scheme (which is a standard technique
for proving the existence of solutions of first order ordinary differential equations in
some appropriate region of (x, y)-space); this will be described in any good basic text
on ordinary differential equations (e.g. Boyce & DiPrima, 2001). Another possibility,
closely related to Picards method, is formally to integrate the equation for
thereby obtaining an integral equation, and then to derive estimates for the integral
term (and hence for We will outline a third technique, which involves the
construction of estimates directly for the differential equation, and then integrating a
reduced version of the equation for

At this stage we do not know if is of one sign, for or if it changes
sign on this interval; however, we may proceed without specifying or assuming the
nature of this property, but it will affect the details; first we write

But we do know that each is bounded (for and hence so is which
we will express in the form (a constant independent of and so
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This same property of the functions leads to a corresponding statement for
(again, independent of which now gives

where the upper sign applies if and the lower if (Often in
arguments of this type, we cannot incorporate both signs, and we are reduced to
working with the modulus of the function; we will see here that we can allow the
form given in (2.20).) Between the two inequalities, we have an expression associated
with a constant coefficient Riccati equation; let us therefore consider

where and for arbitrary (bounded) functions and
If an appropriate unique solution of (2.21), satisfying exists for all
and all as specified, then we will certainly have satisfied (2.20). However, we will,
in this text, give only the flavour of how the development proceeds, by considering
a restricted version of the problem with the special choice: and constant (but
satisfying the given bounds).

To solve (2.21), we introduce to obtain

which has, in our special case, the general solution

where the arbitrary constants are A and B, and the auxiliary equation for the exponents
is

The roots of this equation have been written as

where for i = 1, 2, as Finally, the solution which satisfies the
condition on x = 1 is

which is bounded for as Thus the
error is for as required. (A comprehensive discussion
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requires the analysis of the equation for with general, bounded and
which is possible, but beyond the aims of this text.)

As should be clear from this calculation, it is to be anticipated that special prop-
erties, relevant to a particular problem, may have to be invoked. Here, for example,
we took advantage of the underlying Riccati equation; other problems may require
quite different approaches. However, we must also emphasise that, for many practical
and important problems encountered in applied mathematics, these calculations are
often too difficult to succumb to such a general analysis. Indeed, the conventional
wisdom is that, if breakdowns have been identified, rescaling employed and asymp-
totic solutions found (and matched, as required), then we have produced a sufficiently
robust description. It should be noted that the process of rescaling might involve a
consideration of all possible scalings allowed by the governing equation, which will
then greatly strengthen our trust in the results obtained. Those readers who prefer the
more rigorous approach that such discussions afford are encouraged to study the texts
previously mentioned. In this text, however, we shall proceed without much further
consideration of these more formal aspects of the asymptotic solution of differential
equations.

Now that we have presented the salient features of the method of constructing
solutions, we apply it to another example.

E2.7 A regular second-order problem

We seek an asymptotic solution, as of

with and the primes here denote derivatives. First, we assume
that there is a solution, for some of the form

Thus we obtain

and so on, with

(if the expansion is valid at the end-points). The general solution of (2.23a) is
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and then (2.23b) becomes

which, in turn, has the general solution

where are the new arbitrary constants. The functions and are clearly
defined for and there is no suggestion of a breakdown, so we impose the
boundary conditions (2.24) to give

and then our asymptotic expansion (to this order) is

Now that we have obtained the expansion, (2.25), we are able to confirm that we
have a 2-term uniformly valid representation of the solution. In order to examine the
general term in this asymptotic expansion, if this is deemed necessary, we can follow
the method described earlier. Thus we may write

where, in particular, we have and for the general
solution for is

where and are determined to satisfy the two boundary conditions. The essentials
of the argument are then as we have already outlined in our first, simple, presentation:

is bounded (on [0, 1]), so is and hence so is etc., for all Further,
as and as for the asymptotic expansion is uniformly

valid.

Some further examples of regular expansions can be found in Q2.9 and 2.10, and an
interesting variant of E2.7 is discussed in Q2.15.
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2.4 ORDINARY DIFFERENTIAL EQUATIONS: SIMPLE SINGULAR PROBLEMS

Now that we have introduced the simplest ideas that enable solutions of differential
equations to be constructed, we must extend our horizons. The first point to record is
that, only quite rarely, do we encounter problems that can be represented by uniformly
valid expansions (although, somewhat after the event, we can often construct such
expansions—in the form of a composite expansion, for example; see §1.10). The
more common equations exhibit singular behaviour, in one form or another; the
simplest situation, we suggest, is when the techniques used above (§2.3) produce
asymptotic expansions that break down, resulting in the need to rescale, expand again
and (probably) invoke the matching principle. (Other types of singularity can arise, and
these will be described in due course.) To see how this approach is a natural extension
of what we have done thus far, we will present a problem based on the equation given
in (2.11).

We consider

for the important new ingredient here is the variable coefficient (which, we
note, is for x = O(1)). We seek a solution in the form

and we will need to find the terms and (at least) in order to include a
contribution from the new part of the coefficient. The equations for the are

and so on; the boundary condition requires that

In this problem, we should expect that evaluation of the expansion on x = 1 is
allowed—all terms are defined for x = O(1)—but we must anticipate difficulties as

The solutions for the functions and follow from the results given in
(2.15) and (2.16), respectively, but with the particular integral omitted; thus
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The 2-term asymptotic expansion, is uniformly valid for
Let us find the next term in the expansion; this is the solution of

Thus, introducing the integrating factor we have

and so

where the arbitrary constant must be A = 0 (to satisfy This third term
in the asymptotic expansion is very different from the first two: it is not defined on
x = 0, so we must expect a breakdown. The expansion, to this order, is now

as for x = O(1); as we clearly have a breakdown where the second
and third terms in the expansion become the same size i.e. or
Note that this breakdown occurs for a larger size of x (as x is decreased from O(1))
than the breakdown associated with the first and third terms, so we must consider

The problem for is formulated by writing

where the relabelling of y is an obvious convenience (and we note that y = O(1) for
The original equation, in (2.26), expressed in terms of X and Y, requires

the identity

and then we obtain
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but the boundary condition is not available, because this is specified where x = O(1).
Equation (2.28) suggests that we seek a solution in the form

which gives

Immediately we obtain (an arbitrary constant), and then equation (2.29b)
becomes

which integrates to give

where is a second arbitrary constant.
The resulting 2-term expansion is therefore

the two arbitrary constants are determined by invoking the matching principle: (2.30)
and (2.27) are to match. Thus we write the terms in (2.27) as functions of X, let
(for X = O(1)) and retain terms O(1) and (which are used in (2.30)); conversely,
write (2.30) as a function of x, expand and retain terms O(1), and From
(2.27) we construct

and from (2.30) we write

(This expansion requires the standard result:
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which the interested reader may wish to derive.) The two ‘expansions of expan-
sions’, (2.31) and (2.32), match when we choose and
the asymptotic expansion for X = O(1) is therefore

We now observe that, although the expansion (2.27) is not defined on x = 0, the
expansion valid for does allow evaluation on x = 0 i.e. X = 0; indeed, from
(2.33), we see that

In summary, the procedure involves the construction of an asymptotic expansion
valid for x = O(1) and applying the boundary condition(s) if the expansion remains
valid here. The expansion is then examined for seeking any breakdowns,
rescaling and hence rewriting the equation in terms of the new, scaled variable; this
problem is then solved as another asymptotic expansion, matching as necessary. A
couple of general observations are prompted by this example. First, the matching
principle has been used to determine the arbitrary constants of integration because
the boundary condition does not sit where thus the process of matching
is equivalent, here, to imposing boundary conditions (and thereby obtaining unique
solutions for In the context of differential equations, this is the usual role of
the matching principle, and it is fundamental in seeking complete solutions.

The second issue is rather more general. In this example, the expansion for x = O(1),
(2.27), had to be taken to the term at before the non-uniformity (as
became evident. This prompts the obvious question: how many terms should be
determined so that we can be (reasonably) sure that all possible contributions to a
breakdown have been identified? A very good rule of thumb is to ensure that the
asymptotic expansion contains information generated by every term in the differential
equation. Thus our recent example, (2.26),

requires terms to include the nonlinearity and terms for the dominant
representation of the varying part of the variable coefficient. In a physically based
problem, the interpretation of this rule is simply to ensure that every different physical
effect is included at some stage in the expansion. As an example of this idea, consider
the nonlinear, damped oscillator with variable frequency described by the equation:
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At O(1) we have the basic oscillator; at the variable frequency; at the non-
linearity; at the damping. Thus, in order to investigate the leading contributions
(at least) to each of these properties of the oscillation, the asymptotic expansion must
be taken as far as the inclusion of terms (There is no suggestion that each will
necessarily lead to a breakdown, and an associated scaling, but each needs to be ex-
amined.) One further important observation will be discussed in the next section; we
conclude this section with two examples that exploit all these ideas.

E2.8 Problem (2.11) extended

We consider the problem

which is the same equation and boundary condition as we introduced in (2.11), but
now the domain is The asymptotic solution for x = O(1), which satisfies the
boundary condition, is (2.17) i.e.

and this breaks down where or Thus we introduce
but for this size of x, we observe that and so this also must be scaled: we
write

Equation (2.34) becomes

and we seek a solution

which gives

and so on. This result may cause some surprise: this sequence of problems is purely
algebraic—there is no integration of differential equations required at any stage.

Equation (2.36a) has the solution
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and we will need to invoke the matching principle to decide which sign is appropriate.
Thus from the first term in (2.35), we see that

from (2.37) we obtain

and then (2.38) and (2.39) match only for the positive sign. (Note that, because y has
also been scaled, this must be included in the construction which enables the matching
to be completed.) The solution for the first term is therefore

and then the second term is obtained directly as

the resulting 2-term asymptotic expansion is

We have found that this problem, (2.34), requires an asymptotic expansion for
x = O(1) and another for In addition, it is clear that (2.40) does not
further break down as (and it is fairly easy to see that no later terms in
the expansion will alter this observation): two asymptotic expansions are sufficient.
The appearance of an algebraic problem implies that all solutions are the same—any
variation by virtue of different boundary values is lost for how is
this possible? The explanation becomes clear when (2.35) is examined more closely; the
terms associated with the arbitrary constants (at each order) are exponential functions,
and for these are all proportional to they are exponentially
small. Such terms have been omitted from the asymptotic expansion for if
they had been included, then the matching of these terms would have ensured that
information about the boundary values would have been transmitted to the solution
valid for albeit in exponentially small terms.
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E2.9 An equation with an interesting behaviour near x = 0

We consider the problem

as we assume that

for some x = O(1). We obtain the sequence of equations

and so on; the boundary condition (if available here) gives

The general solution of (2.42a) is simply

(which is not defined on x = 0, so we anticipate the need for a scaling as if a
bounded solution exists), and then (2.42b) gives

The asymptotic expansion is therefore

and this is defined for x = O(1), including x = 1, but not as So the boundary
condition, (2.43), can be applied, requiring the arbitrary constants to be and

i.e.

or
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As expansion (2.44) breaks down where or
and then we introduce the scaled variables

and then the equation in (2.41) becomes

For this equation, it is clear that we must seek a solution in the form

and then (2.45) yields

and so on. The first equation here can be written as

where is an arbitrary constant; thus

and both and the choice of sign are to be determined by matching.
From the first term in (2.44) we obtain

and from (2.47) we have

which matches with (2.48) only for the positive sign and then with Thus
(2.47) becomes
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and then equation (2.46b) is

or

The general expression for is therefore

and so we have the expansion

and this is to be matched with (2.44). From (2.44) we obtain

and, correspondingly from (2.49), we have

or

which matches only if (because the term in must be eliminated).
The solution valid for is therefore

and this expansion is defined on X = 0, yielding

We observe, in this example, that the value of the function on x = 0 is well-defined
from (2.51), but that it diverges as This demonstrates the important property
that we require, for a solution to exist, that the asymptotic representation be defined



75

for but that solutions obtained from these expansions may diverge as
we may have x = 0 in the domain, but

The examples that we have presented thus far (and others can be found in Q2.11-2.15),
and particularly those that involve a rescaling after a breakdown, possess an important
but rather less obvious property. This relates to the existence of general scalings of the
differential equation, and the resulting ‘balance’ of (dominant) terms in the equation;
this leads us to the introduction of an additional fundamental tool. This idea will now
be explored in some detail, and use made of it in some further examples.

2.5 SCALING OF DIFFERENTIAL EQUATIONS

Let us first return to our most recent example

given in (2.41). We may, if it is convenient or expedient, choose to use new variables
defined by

where and are arbitrary positive constants; X and Y are now scaled versions of x
and y, respectively. Thus, with equation (2.52) becomes

and then a choice for and might be driven by the requirement to find a new
asymptotic expansion valid in an appropriate region of the domain. In this example,
the first term of the asymptotic expansion valid for x = O(1) is y ~ 1/x (see (2.44))
and so any scaling that is to produce a solution which matches to this must satisfy
Y ~ 1/X i.e. With this choice, equation (2.53) becomes

and from our previous analysis of this problem, we know that the breakdown of the
asymptotic expansion valid for x = O(1) occurs for                  i.e.             the issue
here is whether this can be deduced directly from the (scaled) equation.

The clue to the way forward can be found when we examine the terms, in the
differential equation, that produce the leading terms in the two asymptotic expan-
sions, one valid for x = O(1) and the other for From (2.41) and (2.45),
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these are

where ‘–’ denotes terms used, in the first approximation, with x = O(1), and de-
notes, correspondingly, the terms used where (The derivative has not
been labelled, but it will automatically be retained, by virtue of the multiplication
of terms, when labelled terms are used in an approximation.) The important inter-
pretation is that some terms—here all—used where x = O(1) are balanced against
some terms not used previously (in the first approximation), but now required where

When we impose this requirement on (2.54), and note that the breakdown
is as i.e. then the only balance occurs when we choose
or, because we may define in any appropriate way, simply It is impossi-
ble to balance the term in against the O(1) terms here (to give different leading
terms) because, when we do this, the dominant term then becomes
which is plainly inconsistent. Note that and as can never be
balanced.

Thus, armed only with the general scaling property, the behaviour y ~ 1/x as
and the requirement to balance terms, we are led to the choice this
does not involve any discussion of the nature of the breakdown of the asymptotic
expansion. This new procedure is very easily applied, is very powerful and is the most
immediate and natural method for finding the relevant scaled regions for the solution
of a differential equation. We use this technique to explore two examples that we have
previously discussed, and then we apply it to a new problem.

E2.10 Scaling for problem (2.11) (see also (2.34))

Consider the equation

with a boundary condition given at where as the
domain is either or The solution of the first term in the asymptotic
expansion valid for x = O(1) is (see (2.15))

The general scaling, X, in (2.55) gives
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if the domain is then from (2.56) we see that y = O(1) as (unless
; see below). So we select (2.57) becomes

and there is no choice of scaling, as which balances the term against
We conclude that a second asymptotic region does not exist, and hence that the

expansion for x = O(1) is uniformly valid on this (bounded) domain, which agrees
with the discussion following (2.17). (In the special case as
and so a matched solution now requires producing

again, there is no choice of as which balances against
On the other hand, if the domain is then as and we

require for a matched solution to exist; equation (2.57) now becomes

This time, with (because the O(1) terms balance if
e.g. or which recovers the scaling used to give (2.40) in E2.8.

E2.11 Scaling for problem (2.22)

Consider the equation

with and suitable boundary conditions (which may both be at one end,
or one at each end). The general solution of the dominant terms from (2.58), with
x = O(1) as is

(as used to generate (2.25)). In this example, the asymptotic expansion, of which (2.59)
is the first term, may break down as or as or, just possibly, as
with All these may be subsumed into one calculation by introducing a
simple extension of our method of scaling: let where we may allow

in this formulation. Then with the usual (2.58) becomes
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(Note that we have used the identity

and similarly for the second derivative; this is valid for For general A and B,
(2.59) implies that y = O(1) as so we select

and no balance exists (that is, between and as Again we deduce, on
the basis of this scaling argument, that the asymptotic expansion is uniformly valid for

(exactly as we found was the case for expansion (2.25)). The special case
in which produces as and so we now require

but any balance is still impossible.

E2.12 Scaling procedure applied to a new equation

For our final example, we consider the equation

where r (x) is either zero or r (x) = x; the two boundary conditions are either one at
each end of the domain, or both at one end—it is immaterial in this discussion. The
general solution of the dominant terms in (2.60) as for x = O(1), is

the latter applying when r (x) = x. The general scaling in the neighbourhood of any
is and which gives

for the equation with Because this equation is linear and homogeneous, the
scaling in y is redundant: it cancels identically. (We may still require to measure
the size of y, but it can play no rôle in the determination, from the equation, of any
appropriate scaling near The balance of terms, as requires either that

or that and only the latter is consistent, so the
former balances the terms and Y, but then is the dominant contributor! Thus
any scaled region must be described by although this analysis cannot
help us decide if an exists, or what might be; we will examine this issue in the
next section.
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The case of r (x) = x is slightly different, because the equation is no longer homo-
geneous: there is a right-hand side. The same scaling now produces

but can be found by the condition that any solution we seek for Y must match to
(2.61b). If y = O(1) as then and the result is as before: the only balance
is provided by On the other hand, if then
as so and then we have

But the new term is the same size as an existing term, and so the same result follows
yet again: is the only available choice. (Taking gives the same result.)

The technique of scaling differential equations, coupled with the required behaviour
necessary if matching is to be possible, is simple but powerful (as the above examples
demonstrate). It is often incorporated at an early stage in most calculations, and that
is how we will view it in the final introductory examples that we present; additional
examples are available in Q2.16. We will shortly turn to a discussion of a classical type
of problem: those that exhibit a boundary-layer behaviour (a phenomenon that we
have already met in E1.4; see (1.16)). However, before we start this, a few comments
of a rather more formal mathematical nature are in order, and may be of interest to
some readers.

Let us suppose that we have scaled an equation according to and
and that we have chosen to satisfy matching requirements; we will express this as

for some known n. The scaling, or transformation,

will be represented by this transformation of variables belongs to a continuous group
or Lie group. (Note that this discussion has not invoked the balance of terms, which then
leads to a choice this would constitute a selection of one member of the group.)
We now explore the properties of this transformation. First we apply, successively, the
transformation and then this is equivalent to the single transformation and
so we have the multiplication rule:
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But we also have so this law is commutative. Furthermore, the
associative law is satisfied:

in addition, we have the identity transformation i.e. for all
Finally, we form

and so is both the left and right inverse of Thus the elements of for all real
form an infinite group, where   is the parameter of this continuous group. (If n is

fractional, then we may have to restrict the parameter to
Although we have not used the full power of this continuous group—we eventually

select only one member for a given —there are other significant applications of
this fundamental property in the theory of differential equations. For example, if a
particular scaling transformation leaves the equation unchanged (except for a change
of the symbols!) i.e. the equation is invariant, then we may seek solutions which satisfy
the same invariance. Such solutions are, typically, similarity solutions (if they exist) of
the equation; this aspect of differential equations is generally outside the considerations
of singular perturbation theory (although these solutions may be the relevant ones in
certain regions of the domain, in particular problems).

2.6 EQUATIONS WHICH EXHIBIT A BOUNDARY-LAYER BEHAVIOUR

There are many problems, posed in terms of either ordinary or partial differential
equations, that have solutions which include a thin region near a boundary of the
domain which is required to accommodate the boundary value there. Such regions are
thin by virtue of a scaling of the variables in the appropriate parameter and, typically,
this involves large values of the derivatives near the boundary. The terminology—
boundary layer—is rather self-evident, although it was first associated with the viscous
boundary layer in fluid mechanics (which we will describe in Chapter 5). Here, we
will introduce the essential idea via some appropriate ordinary differential equations,
and make use of the relevant scaling property of the equation.

The nature of this problem is best described, first, by an analysis of equation (1.16):

with and (and we will assume that and are not functions
of and that In this presentation of the construction of the asymptotic
solution, valid as we will work directly from (2.63) (although the exact
solution is available in (1.22), which may be used as a check, if so desired). Because
we wish to incorporate an application of the scaling property, we need to know where
the boundary layer (interpreted as a scaled region) is situated: is it near x = 0 or near
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x = 1 (or, possibly, both)? Here, we will assume that there is a single boundary layer
near x = 0; the problem of finding the position of a boundary layer will be addressed
in the next section, at least for a particular class of ordinary differential equations. Let
us now return to equation (2.63).

As should be evident from example E1.4, and will become very clear in what follows,
it is the appearance of the small parameter multiplying the highest derivative that is
critical here. The presence of in another coefficient is altogether irrelevant to the
general development; it is retained only to allow direct comparison with E1.4. We seek
a solution of (2.63) in the form

and then we obtain

and so on. The only boundary condition available to us (because of the assumption
about the position of the boundary layer) is

Thus

and indeed, in this problem, we then have although exponentially
small terms would be required for a more complete description of the asymptotic
solution valid for x = O(1); so we have

The scaled version of (2.63) is obtained by writing for and
(because y = O(1) as although any scaling on Y will vanish identically

from the equation); thus

The relevant balance, as we have already seen in (2.62), is or
giving
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We seek a solution of this equation in the usual form:

which gives

and so on. We have available the one boundary condition prescribed at x = 0 (which
is in the region of the boundary layer) i.e. at X = 0, so

From (2.67a) and (2.68) we obtain

where is an arbitrary constant, and then (2.67b) becomes

Thus

where and are the arbitrary constants, which must satisfy from
this gives the solution

The 2-term asymptotic expansion valid for is therefore

which is to be matched to (2.65); this should uniquely determine and We write
(2.65) as

retaining terms O(1) and (as used in (2.70)); correspondingly, we write (2.70) as
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and the term is included because that was obtained for (2.65)—although it had a
zero coefficient. In order to match (2.71) and (2.72), we require and
i.e.

(It is left as an exercise to show that (2.65) and (2.73) are recovered from suitable
expansions of (1.22).) We should note that (2.65) exhibits no breakdown—there is
only one term here, after all—but (2.73) does break down where i.e.
x = O(1), as we would expect. Any indication of a breakdown in the asymptotic
expansion valid for x = O(1) will come from the exponentially small terms; let us
briefly address this aspect of the problem.

The first point to note is that, from (2.70) and (2.73), we would require not only
O(1) and but also terms (and others), in order to complete the matching
procedure; this is simply because we need, at least in principle, to match to all the terms
(cf. (2.72))

Thus the expansion valid for x = O(1) must include a term to allow matching
to this order (and then it is not too difficult to see that a complete asymptotic expansion
requires all the terms in the sequence n = 0, 1, 2,…, m = 0, 1, 2,…).
In passing, we observe that this use of the matching principle is new in the context
of our presentation here. We are using it, first, in a general sense, to determine the
type(s) of term(s) required in the expansion valid in an adjacent region in order to
allow matching. Then, with these terms included, the ‘full’ matching procedure may
be employed to check the details and fix the values of any arbitrary constants left
undetermined. We will find the first of the exponentially small terms here.

For x = O(1), we seek a solution

where in this example); thus equation (2.63) be-
comes

(Again ‘= 0’ means zero to all orders in We already have that satisfies the
original equation, and so must satisfy
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with we obtain or (constant). Thus the
expansion (2.74) becomes

and this is to be matched to the asymptotic expansion (2.73); from (2.75) we obtain

and from (2.73) we have

which match if Thus the solution valid for x = O(1), i.e. away from
the boundary layer near x = 0, incorporating the first exponentially small term, is

One final comment: this solution, (2.76), produces the value
so now the boundary value is in error by To correct this, a

further term is required; we must write (at the order of all the first exponentially small
terms)

where It is left as an exercise to show that
with the solution ensures that the boundary condition on
x = 1 is correct at this order. The inclusion of the term in the expansion
valid for x = O(1) forces, via the matching principle, a term of this same order in
the expansion for and so the pattern continues. (The appearance of all
these terms, in both expansions, can be seen by expanding the exact solution, (1.22),
appropriately.)

E2.13 A nonlinear boundary-layer problem

We consider the problem
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with for we are given that the boundary layer
is near x = 1. We seek a solution, for 1 – x = O(1), in the form

and so

etc., with for Thus we obtain

which leads to

but this solution does not satisfy the boundary condition on x = 1.
For the solution near x = 1, we introduce (with and

so that i.e.

The solution in the form

gives

and so on; the available boundary condition requires that

Thus

and

where and are the arbitrary constants to be determined by matching; that is,
we must match
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with (2.78). From (2.79) we obtain

from (2.78) we have

and these match if we select and thus (2.79) becomes

The fundamental issue relating to boundary-layer-type problems, which we have
avoided thus far, addresses the question of where the boundary layer might be lo-
cated. In the examples discussed above, we allowed ourselves the advantage of knowing
where this layer was situated—and the consistency of the resulting asymptotic solution
confirmed that unique, well-defined solutions existed, so presumably we started with
the correct information. We now examine this important aspect of boundary-layer
problems.

2.7 WHERE IS THE BOUNDARY LAYER?

For this discussion, we consider the general second-order ordinary differential equation
in the form

with suitable boundary conditions and for                 note that the coefficient of      must
be The coefficient a (x) will satisfy either a(x) > 0 or a(x) < 0, for the
term (or smaller) as for and for all solutions
that may be of interest. Of course, this describes only one class of such boundary-layer
problems, but this does cover by far the most common ones encountered in mathe-
matical modelling. (Some of these conditions, both explicitly written and implied, can
be relaxed; we will offer a few generalisations later.) The guiding principle that we will
adopt is to seek solutions of (2.80) which remain bounded as for

The starting point is the construction of the asymptotic solution valid for suitable
x = O(1), directly from the equation as written in (2.80)—but this will necessarily
generate a sequence of first-order equations. It is therefore impossible to impose the
two boundary conditions (as we have already demonstrated in our examples above); the
inclusion of a boundary layer remedies this deficiency in the solution. We introduce
the boundary layer in the most general way possible: define for some g (x)
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and some and write Then we have

and so equation (2.80) becomes

where We will further assume, whatever the choice of (and in almost
all problems that we encounter, that the terms in and dominate as

Thus the ‘classical’ choice for the balance of terms, applies here for
general g(x) (which we have yet to determine).

The differential equation valid in the boundary layer can now be written

which has the first term in an asymptotic expansion, satisfying

At this stage, has yet to be determined; let us choose (we may not
choose then we are left with the simple, generic problem for

which also solves the difficulty over the mixing of the x and X notations in (2.83).
Thus all boundary-layer problems in this class have the same general solution, from
(2.84),

However, we are no nearer finding the position of the boundary layer itself; this we
now do by examining the available solutions for g(x).

The general form for g(x) is

where C is an arbitrary constant (and this proves to be the most convenient way of
including the constant of integration). First, we suppose that a(x) > 0, and examine
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(2.85) when expressed in terms of x (as will be necessary for any matching); this gives

But we are seeking solutions that remain bounded as and this is possible only
if the exponent in (2.87) is non-positive for Thus we require

and this means that          for the same xs i.e.            (for otherwise x < C can occur
in the domain, and the integral will change sign). Then, for x sufficiently close to
we have

and we have a choice for the boundary-layer variable. Hence, for a (x) > 0, the bound-
ary layer must sit near the left-hand edge of the domain. Conversely, the same argument
in the case a (x) < 0 requires that the boundary layer be situated near (the right-
hand edge of the domain). When we apply this rule to equation (2.63):

we see that and so the boundary layer is
in the neighbourhood of x = 0 (and we introduced for this example).
Similarly, equation (2.77):                                       has a(x) = – 1 < 0,
and so the boundary layer is now near x = 1 (and we used

It is rarely necessary to incorporate the formal definition of g ( x ) to generate the
appropriate variable that is to be used to represent the boundary layer (although it
will always produce the simplest form of the solution). For example, the equation of
this class: has a boundary layer near x = 2
(because a (x) = –1/(2 + x) < 0 for Now an appropriate scaled variable is
simply giving

and this choice will suffice, even though higher-order terms will require the expansion
of (but this is usually a small price to pay—and we already know that
this asymptotic expansion will breakdown for so retaining in the
coefficient has no unforeseen complications). It should also be noted that, exceptionally,
a boundary-layer-type problem may not require a boundary layer at all, in order to
accommodate the given boundary value (to leading order or, possibly, to all orders).
This is evident for the equation given in (2.63) (and see also the exact solution, (1.22));
in this example, if the boundary values satisfy the special condition then no
boundary layer whatsoever is required. Note, however, that if then
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the boundary layer is present, but only to correct the boundary value at —the
leading term (for x = O(1)) is uniformly valid. We call upon all these ideas in the next
example.

E2.14 A nonlinear, variable coefficient boundary-layer problem

We consider

with for Because the coefficient of is negative for
the boundary layer will be situated at the right-hand edge of the domain i.e.

near x = 1. Away from x = 1, we seek a solution

etc., and we may use the boundary condition on x = 0:

Thus we obtain

and then the application of the boundary condition yields the solution

we note that remains real and positive as (The second term can also be
found, but it is a slightly tiresome exercise and its inclusion teaches us little about the
solution.) Clearly, as the right-hand boundary is approached, which does not
satisfy the given boundary condition and so a boundary layer is required.
(Of course, if then (2.90) would be a uniformly valid 1-term asymptotic
solution.)

We introduce (so that and write equation
(2.88) then becomes

and so
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which gives, with

The solution of (2.92), which satisfies the boundary condition is

and is to be determined by matching. From (2.90) we have directly that
and from (2.93) we see that thus matching requires and the first
term in the boundary-layer solution is

and then a composite expansion can be written down, if that is required.

The fundamental ideas that underpin the notion of boundary-layer-type solutions, in
second-order ordinary differential equations, have been developed, but many variants
of this simple idea exist; see also Q2.17–2.20. These lead to adjustments in the for-
mulation, or to generalisations, or to a rather different structure (with corresponding
interpretation). We now describe a few of these possibilities, but what we present is
far from providing a comprehensive list; rather, we present some examples which em-
phasise the application of the basic technique of scaling to find thin layers where rapid
changes occur. In the next section, we briefly describe a number of different scenarios,
and present an example of each type.

2.8 BOUNDARY LAYERS AND TRANSITION LAYERS

Our first development from the simple notion of a boundary layer is afforded by an
extension of our discussion of the position of this layer, via equation (2.80); here,
we consider the case where Such a point is analogous to a
turning point (see Q2.24) and the solution valid near takes the form of a transition
layer. (The terminology ‘turning point’ is used to denote where the character of the
solution changes or ‘turns’, typically from oscillatory to exponential, in equations such
as The general approach is to seek a scaling–just as for a boundary
layer–but now at this interior point. Let us suppose that for given
constants and n, then equation (2.80) becomes

and we introduce
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to give

where we have used the same notation as in (2.81). The balance that we seek is given
by the choice or provided that n < 1 (in order that this balance
does indeed produce the dominant terms, with F = O(1) or smaller). The procedure
then unfolds as for the boundary-layer problems, although we will now have solutions
in and in where together with a matched
solution where If then the balance of terms requires

and then either (n = 1) all three terms in the equation contribute to leading
order, or (n > 1) the balance is between and F. (This description assumes that
F = O(1); note also that the chosen behaviour of a(x) used here need only apply near

for this approach to be relevant.)

E2.15 An equation with a transition layer

Consider the equation

for where, for real solutions, we interpret the boundary
conditions are

We will find the first terms only in the asymptotic expansions valid away from x = 0
(where the coefficient is zero), in and then in and
finally valid near x = 0. For x = O(l), we write and so, from (2.94),
we obtain

we determine the arbitrary constant by imposing the boundary conditions (2.95a,b),
thereby producing solutions valid either on one side, or the other, of x = 0:

Note that these solutions do not hold in the neighbourhood of x = 0 i.e. we may
allow                   but with                        this solution would be valid for                         to
leading order, if the function given in (2.96) were continuous at x = 0, and then no
transition layer would be needed (to this order, at least).
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Near x = 0, we write and, in order to match, we require y = O(1), so we
write equation (2.94) then gives

and hence we select Thus in the transition layer we have the equation

and we seek a solution where

(The lower limit in the integral here is simply a convenience; with this choice, the
arbitrary constant following the second integration is Note that this integral exists
for These arbitrary constants are determined by matching; from
(2.96a,b) we obtain directly that

From (2.97), we first write

now let us introduce the constant

(where is the gamma function), then

and matching (2.98) and (2.100) requires and The first term
of the asymptotic expansion valid in the transition layer (around x = 0) is therefore
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This example has demonstrated how boundary-layer techniques are equally applicable
to interior (transition) layers and, further, they need not be restricted to single layers.
Some problems exhibit multiple layers; for example

has transition layers both near x = 1/2 and near x = –1/2, and the solution away
from these layers is now in three parts.

A type of problem which contains elements of both boundary and transition layers
occurs if the coefficient, a(x), of is zero at one (or both) boundaries. Because

at an internal point, it is not a transition layer, but the fact that at
the end-point affects the scaling—it is no longer in general—and this must be
determined directly (as we did for the transition layer).

E2.16 A boundary-layer problem with a new scaling

We consider the equation

for with and note that and so we must
expect a boundary layer near x = 0. Away from x = 0, we seek a solution

which gives

and so on, with and for Thus we obtain

in order to satisfy the boundary condition (and as this does not approach
and so a boundary layer is certainly required). The equation for is

therefore

or
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which has the general solution

and requires (It should be noted that as
which, alone, indicates a breakdown where this, as we shall see

below, is irrelevant).
For the boundary layer, we scale with then the equation,

(2.101), becomes

and so we must select which leads to

(The apparent scaling, is therefore redundant—it is smaller than that required
in the boundary layer.) We seek a solution with

and the available boundary condition, then gives

Finally, we determine by invoking the matching principle; from (2.102) we obtain
and from (2.103) we see that

which match if the boundary-layer solution is therefore

where k is given in (2.104).
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Boundary layers also arise even in the absence of the first-derivative term; indeed,
equations of the form

with for can have a boundary layer at each end of the domain. (If
then the relevant part of the solution is oscillatory and boundary layers are

not present. If a (x) = 0 at an interior point, then we have a classical turning-point
problem and near this point we will require a transition layer.) The solution away
from these layers is simply given, to leading order, by y(x) = –f (x)/a(x). To see the
nature of this problem, consider the case a (x) = 1. The equation that controls the
solution in the boundary layers is then and so and
exponentially decaying solutions—ensuring bounded solutions as —arise for
A = 0 or B = 0, appropriately chosen, either on the left boundary or on the right
boundary.

E2.17 Two boundary layers

Consider the equation

for with the solution for suitable x = O(1) is written
as to leading order, where

This solution, (2.106), clearly does not satisfy the boundary conditions as nor as
The boundary layer near x = 1 is expressed in terms of

with equation (2.105) then becomes

which leads to the choice Seeking a solution then

and for bounded (i.e. matchable) solutions as we must have The
boundary condition, gives and so
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and this is completely determined, as is (2.106), so matching is used only to confirm
the correctness of these results (and this is left as an exercise).

The boundary layer near x = 0 is written in terms of with
again); equation (2.105) now becomes

The boundary layer is, not surprisingly, the same size at this end of the domain:
and then with we obtain

A bounded solution, as requires the choice and will ensure
that the boundary condition is satisfied i.e. The next term
in the asymptotic expansion satisfies

with (for boundedness) and (because i.e.

it is left as another exercise to confirm that this matches with (2.106).

In our examples so far (and see also Q2.21, 2.22), the character and position of the
boundary layer (or its interior counterpart, the transition layer) have been controlled
by the known function a (x), as in (or a (x) y in our most recent example).
We will now investigate how the same approach can be adopted when the relevant
coefficient is a function of y. In this situation, we do not know, a priori, the sign of
y—and this is usually critical. Typically, we make an appropriate assumption, seek a
solution and then test the assumption. For example, if the two boundary values for
y—we are thinking here of two-point boundary value problems—have the same sign,
then we may reasonably suppose that y retains this sign throughout the domain. On
the other hand, if the boundary values are of opposite sign, then the solution must
have at least one zero somewhere on the domain (and this indicates the existence of a
transition layer).

E2.18 A problem which exhibits either a boundary layer or a transition
layer: I

(An example similar to this one is discussed in great detail in Kevorkian & Cole, 1981
& 1996; see Q2.23.)
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We consider the equation

for with and (where and are independent of
for suitable x = O(1), we seek a solution in the usual form

which gives

and so on. The general solution to equation (2.108a) is

we exclude the solution because we will consider problems for which
and (Any special solutions which may need to make use of the zero solution
are easily incorporated if required.) The next term in this asymptotic expansion is
obtained from (2.108b) i.e.

which yields

where is the second arbitrary constant (and we have taken
It is clear, however, that it is impossible to proceed without more information about

the boundary values, and Let us examine, first, the problem for which both
values are positive; we therefore assume that a solution, y > 0, exists and hence that
any boundary layer must be situated in the neighbourhood of x = 0 (indicated by the
term with y > 0). With this in mind, we may use the one available boundary
condition away from x = 0, i.e. thus we obtain

Correspondingly, with we see that we will assume hereafter that
(but we clearly have an interesting case if for then the

solution does have a zero near even with possibility not pursued
here).
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Now, as we see that and if this does not equal
then a boundary layer is required near x = 0. For this layer, we write with

(= O(1)), and then (2.107) becomes

with the choice We seek a solution where

and we have chosen to write the arbitrary constant of integration as any
other choice produces a solution which cannot be matched—an investigation that is
left as an exercise. The next integral of (2.113) gives the general solution

and to satisfy this can be written as

The value of the remaining arbitrary constant, is now determined by matching
(2.114) and (2.111); from (2.111) we obtain

and from (2.114) we see that

which requires that Thus we have successfully completed the initial cal-
culations in the construction of asymptotic expansions valid for x = O(1) and for

these demonstrate that, in the case and we have a solution
which satisfies y > 0 for

E2.19 A problem which exhibits either a boundary layer or a transition
layer: II

We repeat example E2.18, but now with the boundary values (chosen to avoid
the difficulties already noted) and and thus the solution must change sign (at
least once) in order to accommodate these boundary values. This indicates the need
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for a transition layer at some and determining becomes an
essential element in the construction of the solution.

For x = O(1) we have, as before (see (2.111)),

but this can hold only for but where is
introduced below); for we have the corresponding solution

Near we write with which essentially
repeats (2.112) i.e. and so

and this gives the same general solution, to leading order, as before (see (2.113),
et seq.):

However, for a transition layer, we do not have any boundary conditions; here, we
must match (2.117) to both (2.115) and (2.116).

From (2.115) and (2.116) we obtain

respectively, both for X = O(1); from (2.117), with we have

as We observe, immediately, that a property of this transition layer is to admit
only a change in value across it from        to        (which will fix the value of
and that the matching excludes (so this cannot be determined at this stage). Now
(2.119) does match with (2.118) when we choose

which requires that
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and hence a transition layer exists at provided

If this condition is not satisfied, for given and then the adjustment to the given
boundary value must be through a boundary layer near x = 0. Thus, for example, with

and there is a transition layer at and the jump
across the layer is between ±3/2 (to leading order). On the other hand, the problem
with and does not admit a transition layer; the boundary layer near
x = 0 is used to accommodate the change in value from (to leading order)
to The dominant solution in the transition layer is given by (2.117) with

although is unknown at this stage. (The role of is to
determine the position of the transition layer, correct at

These two examples, E2.18 and E2.19 (and see also Q2.23), demonstrate the complex-
ity and richness of solutions that are available for this type of problem, depending on
the particular boundary values that are prescribed. All this can be traced to the nonlin-
earity associated with the term; if this term were simply then we would have
a fixed boundary layer, or fixed transition layers, independent of the specific boundary
values (as we have seen in our earlier examples). We conclude this section with an
example which shows how these ideas can be extended, fairly straightforwardly, to
higher-order equations. (The following example is based on the type of problem that
can arise when examining the displacement of a loaded beam.)

E2.20 A problem with two boundary layers

We consider

for (and the use of here is merely an algebraic convenience), with

Before we begin the detailed analysis of this problem, a couple of points should be
noted. First, the variable coefficient, in (1.121), is positive for
and so, second, this implies that we have available (locally) two exponential solutions.
These arise from, approximately,

and so we may select one exponential near x = 0 and the other near x = 1, ensuring
exponential decay as we move away from the boundaries. Thus we must anticipate
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boundary layers near both x = 0 and x = 1; we will assume that they exist—we
can always ignore them if they are not required (because the boundary values are
automatically satisfied).

Hence, for x = O(1) away from x = 0 and x = 1, we seek a solution with
where

but no boundary conditions are available (by virtue of the assumed existence of bound-
ary layers). For the boundary layer near x = 0, it is clear that we require

(but we do not know at this stage; since presumably
as although the size of in this limit is unknown). Thus equation

(2.121) becomes

We seek a solution where satisfies

provided as we will assume that this condition applies, and we
will check it shortly. The boundary conditions are and we must not
allow the term which grows exponentially away from X = 0, so and then

Immediately we observe that the term is unmatchable to
unless we select (and then this we do, so that

Correspondingly, for the boundary layer near x = 1, we write
and now choose to give

Thus the first term in the expansion,  satisfies



102 2. Introductory applications

and then (exactly as described for we obtain

We now determine the constants and by matching (2.123) with, in
turn, (2.124) and (2.125). First, from (2.123) with and we obtain

from (2.124) we have

which requires and then Again, from (2.123), but now with
and we obtain

and, finally, (2.125) gives

Now we require and thus, collecting all these results, we see
that

and hence, to leading order, we have

with

So, indeed, boundary layers are required at each end in order to accommodate the
boundary conditions there (although we may note that the solution for does
satisfy but not the derivative conditions).

Some further examples of higher-order equations that exhibit boundary-layer be-
haviour are offered in Q2.26.

This chapter has been devoted to a presentation of some of the fairly routine ap-
plications of singular perturbation theory to various types of mathematical problem.
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Although we have touched on methods for finding roots of equations, and on inte-
gration, the main thrust has been to develop basic techniques for solving differential
equations—the most important use, by far, of these methods. We shall devote the rest
of the text to extending and developing the methods for solving differential equations,
both ordinary and partial, and their applications to many practical problems that are
encountered in various branches of mathematical modelling. Many of the examples
and exercises in this chapter are, perforce, invented to make a point or to test ideas;
however, a few of the later exercises that are included at the end of this chapter (see
Q2.27–2.35) begin to employ the techniques in physically relevant problems. In the
next chapter, we will show how these ideas can be applied to a broader class of prob-
lems and, in particular, begin our discussion of partial differential equations. This will
allow us, in turn, to begin to extend the applications of singular perturbation theory
to more problems which arise within a physically relevant context.

FURTHER READING

A few of the existing texts include a discussion of the methods for finding roots of
equations, and for evaluating integrals of functions which contain a small parameter;
in particular, the interested reader is directed to Holmes (1995) and Hinch (1991).
Differential equations that give rise to regular problems are given little consideration—
they are quite rare, after all—but some can be found in Holmes (1995) and in Georgescu
(1995). We have already mentioned those texts that present a more formal approach to
perturbation theory (Eckhaus, 1979; Smith, 1985; O’Malley, 1991), but some further
developments along these lines are also given in Chang & Howes (1984).

The whole arena of scaling with respect to a parameter, and we should include here
the construction of non-dimensional variables, is fairly routine but very powerful.
These ideas play a rôle, not only in the identification of asymptotic regions (as we have
seen), but also in providing more general pointers to the construction of solutions. A
very thorough introduction to these ideas, and their connection with asymptotics, can
be found in Barenblatt (1996). A discussion of the applications of group theory to the
study of differential equations is likely to be available in any good, relevant text; one
such, which emphasises precisely the application to differential equations, is Dresner
(1999).

The nature of a boundary layer (which is, for our current interest, limited to a
property of certain ordinary differential equations) is described at length, and carefully,
in most available texts on singular perturbation theory. We can mention, as examples
of the extent and depth of what is discussed, the excellent presentations on this subject
given by Smith (1985) and Holmes (1995). The determination of the position of
a boundary layer is also covered in most existing texts, although O’Malley (1991)
probably provides the most detailed analysis. (This work also includes a number of
relevant references which the interested reader may wish to investigate.) An excellent
discussion of the interplay between boundary layers and transition layers (for nonlinear
equations) is given in Kevorkian & Cole (1981, 1996). (Those readers who wish
to examine techniques applicable to turning points, at this stage, are encouraged to
study Wasow (1965) and Holmes (1995); we will touch on these ideas in Chapter 4.)
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Finally, some examples of higher-order equations, which exhibit boundary-layer-type
solutions, are discussed in Smith (1985) and O’Malley (1991).

EXERCISES

Q2.1 Quadratic equations. Write down the exact roots of these quadratic equations,
where is a positive parameter.

Now, in each case, use the binomial expansion to obtain power-series repre-
sentations of these roots, valid for writing down the first three terms
for each root. (You may wish to investigate how these same expansions can be
derived directly from the original quadratic equations.)

Finally, obtain the corresponding power series which are valid for
Q2.2 Equations I. Find the first two terms in the asymptotic expansions of all the

real roots of these equations, for

Q2.3 Equations II. Repeat Q2.2 for these slightly more involved equations.

Q2.4 Kepler’s equation. A routine problem in celestial mechanics is to find the eccentric
anomaly, u, given both the eccentricity and the mean anomaly nt
(where t is time measured from where u = 0, and where P is the
period); u is then the solution of Kepler’s equation

(see e.g. Boccaletti & Pucacco, 1996). For many orbits (for example, most
planets in our solar system), the eccentricity is very small; find the first three
terms in the asymptotic solution for u as Confirm that your 3-term
expansion is uniformly valid for all nt.

Q2.5 Complex roots. Find the first two terms in the asymptotic expansions of all the
roots of these equations, for

(a)

(d)

(f)

(h)

(j)

(a)

(b)

(d)

(a) (b) (c)

(b)

(e)

(g)

(i)

(c)

(e)

(a)

(d)

(b) (c)

(e) (f)

(c)
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Q2.6 Simple integrals. Obtain estimates for these integrals, for by first finding
asymptotic expansions of the integrand for each relevant size of x, retaining
the first two terms in each case. (These integrals can be evaluated exactly,
so you may wish to check your results against the expansions of the exact values.)

Q2.7 More integrals. See Q2.6; repeat for these integrals (but here you are not
expected to have available the exact values).

Q2.8  An integral from thin aerofoil theory. An integral of the type that can appear in the
study of thin aerofoil theory (for the velocity components in the flow field) is

obtain the first terms in the asymptotic expansions of the integrand (for
with x away from the end-points, for each of: (a) away from x

and away from (b) (c) Hence find an
estimate for Repeat the calculations with and then with

for away from the end-points, and then with
respectively. Again, find

estimates for and for show that your asymptotic
approximations for satisfy the matching principle.

Q2.9 Regular expansions for differential equations. Find the first two terms in the
asymptotic expansions of the solutions of these equations, satisfying the given
boundary conditions. In each case you should use the asymptotic sequence

and you should confirm that your 2-term expansions are uniformly valid.
(You may wish to examine the nature of the general term, and hence produce
an argument that shows the uniform validity of the expansion to all orders in

(a)

(c)

(a)

(c)

(e)

(a)

(b)

(c)

(d)

(e)

(b)

(d)

(b)

for for(d)

(f)
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Q2.10 Eigenvalue problems. A standard problem in many branches of applied mathe-
matics and physics is to find the eigenvalues (and eigenfunctions) of appropriate
problems based on ordinary differential equations. In these examples, find the
first two terms in the asymptotic expansions of both the eigenvalues and
the eigenfunctions; for each use the asymptotic sequence

Q2.11 Breakdown of asymptotic solutions of differential equations. These ordinary differ-
ential equations define solutions on the domain with conditions
given on x = 1. In each case, find the first two terms in an asymptotic solution
valid for x = O(1) as which allows the application of the given
boundary condition(s). Show, in each case, that the resulting expansion is not
uniformly valid as find the breakdown, rescale and hence find the
first term in an asymptotic expansion valid near x = 0, matching as necessary.
Finally find, for each problem, the dominant asymptotic behaviour of
as

Q2.12 Another breakdown problem. See Q2.11; repeat for the problem

but show that, for a real solution to exist, the domain is where
and then find the dominant asymptotic behaviour of

as
Q2.13 Breakdown as Find the first two terms in an asymptotic solution,

valid for x = O(1) as  of

with Now show that this expansion
is not uniformly valid as find the breakdown, rescale and find the first
two terms in an expansion valid for large x, matching as necessary. Show, also,
that this 2-term expansion breaks down for even larger x, but do not take the
analysis further.

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)
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Q2.14

 Q2.15

Breakdown as II. See Q2.11 (a) and (c); for these equations and bound-
ary conditions, and the asymptotic solutions already found for x = O(l), take
the domain now to be Hence show that the expansions are not uni-
formly valid as find the breakdown, rescale and then find the first
terms in the expansions valid for large x, matching as necessary.
Problem E 2.7 reconsidered. Find the first two terms in an asymptotic expansion,
valid for x = O(1) as of

with Show that, formally, this requires
two matched expansions, but that the asymptotic solution obtained for x =
O(1) correctly recovers the solution for D i.e. it is uniformly valid. (Note
the balance of terms, when scaled near x = 0!)

Q2.16

Q2.17

Scaling of equations. See Q2.11 and Q2.14; use the dominant terms only, valid
for x = O(1), together with appropriate scalings associated with the relevant
balance of terms, to analyse these equations. Compare your results with the
scalings obtained from the breakdown of the asymptotic expansions.
Boundary-layer problems I. Find the first two terms in asymptotic expansions,
valid for x = O(1) (away from the boundary layer) as  for each of
these equations, with the given boundary conditions. Then, for each, find
the first term in the boundary-layer solution, matching as necessary. (You
may wish to use your expansions to construct composite expansions valid for

D, to this order.)

Q2.18 Boundary-layer problems II. See Q2.17; repeat for these more involved equations.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

(f)
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Q2.19 Two boundary layers. The function is defined by the problem

with Find the first two terms in an asymptotic expan-
sion valid for x = O(1), as away from x = 0 and x = 1. Hence show
that, in this problem, boundary layers exist both near x = 0 and near x = 1,
and find the first term in each boundary-layer solution, matching as necessary.

Q2.20 A boundary layer within a thin layer. Consider the equation

for with Find the first terms in each of three
regions, two of which are near x = 0, matching as necessary. (Here, only the
inner-most region is a true boundary layer; the other is simply a scaled-thin-
connecting region.)

Q2.21 Boundary layers or transition layers? Decide if these equations, on the given
domains, possess solutions which may include boundary layers or transition
layers; give reasons for your conclusions.

Q2.22 Transition layer near a fixed point. In these problems, a transition layer exists at
a fixed point, independent of the boundary values. Find, for (a), the first two
terms, and for (b) the first term only, in an asymptotic expansion (as
valid away from the transition layer and the first term only of an expansion
valid in this layer; match your expansions as necessary.

Q2.23 Boundary layer or transition layer? (This example is based on the one which is
discussed carefully and extensively in Kevorkian & Cole, 1981 & 1996.) The
equation is

for and given Suppose that a
transition layer exists near find the leading terms in the
asymptotic expansions valid outside the transition layer, and in the transition
layer. Hence deduce that a transition layer is required if and are of opposite

(a)

(b)

(c)

(d)

(e)

(a)

(b)
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sign and and then find the leading terms in all the relevant
regions for:

Q2.24 Transition layers and turning points. Consider the equation

introduce and find a choice of which produces
an equation for in the form

and identify F. If F changes sign on the domain of the solution, then the point
where this occurs is called a turning point; find the equation that defines the
turning points in the case

Q2.25 Transition layer at a turning point. Consider the equation

find the position of the turning point and scale in the neighbourhood of the
transition layer. Write down the general solution, to leading order, valid in the
transition layer, as (This solution is best written in terms of Airy func-
tions. A uniformly valid solution is usually expressed using the WKB method;
see Chapter 4.)

Q2.26 Higher-order equations. For these problems, find the first terms only in asymptotic
expansions valid in each region of the solution, for

Q2.27 Vertical motion under gravity. Consider an object that is projected vertically up-
wards from the surface of a planetary body (or, rather, for example, from our
moon, because we will assume no atmosphere in this model). The height above
the surface is z(t), where t is time, and this function is a solution of

where R is the distance from the centre of mass of the body to the point
of projection, and g is the appropriate (constant) acceleration of gravity. (For
our moon, The initial conditions are

find the relevant solution in the form t = t(z) (and you
may assume that

(a)

(b)

(c)

(a) (b) (c)
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(a)

(b)

Write your solution, and the differential equation, in terms of the non-
dimensional variables and introduce the
parameter Suppose that the limit of interest is (which
you may care to interpret); find the first two terms of an asymptotic ex-
pansion, valid for (in the form directly from the
governing equation. (You should compare this with the expansion of the
exact solution.) From your results, find approximations to the time to reach
the maximum height, the value of this height and the time to return to the
point of projection.
A better model, for motion through an atmosphere, is represented by the
equation

where is a constant. (This is only a rather crude model for air
resistance, but it has the considerable advantage that it is valid for both

and Non-dimensionalise this equation as in (a), and then write
Repeat

all the calculations in (a).
(c) Finally, in the special case (i.e. the escape speed), find

the first term in an asymptotic expansion valid as Now find the
equation for the second term and a particular integral of it. On the assump-
tion that the rest of the solution contributes only an exponentially decaying
solution, show that your expansion breaks down at large distances; rescale
and write down—do not solve—the equation valid in this new region.

Q2.28 Earth-moon-spaceship (1D). In this simple model for the passage of a spaceship
moving from the Earth to our moon, we assume that both these objects are fixed
in our chosen coordinate system, and that the trajectory is along the straight line
joining the two centres of mass. (More complete and accurate models will be
discussed in later exercises.) We take x(t) to be the distance measured along this
line from the Earth, and then Newton’s Law of Gravitation gives the equation
of motion as

where m is the mass of the spaceship, and the masses of the Earth
and Moon, respectively, G is the universal gravitational constant and d the
distance between the mass centres. Non-dimensionalise this equation, using d
as the distance scale and as the time scale, to give the non-
dimensional version of the equation (x and t now non-dimensional) as

where



111

where We will construct an asymptotic solution, for
as (The actual values, for the Earth and Moon, give

and a trajectory from surface to surface requires
approximately.) Write down a first integral of the equation.

(a) Find the first two terms in an asymptotic expansion valid for x = O(1),
by seeking (cf. Q2.27), and use the data as

and write

(Here, is the non-dimensional initial speed away from the Earth, is small
and the condition on k ensures that the spaceship reaches the

Moon, but not at such a high speed that it can escape to infinity.) Show that
this expansion breaks down as

(b) Seek a scaling of the governing equation in the neighbourhood of x = 1
by writing (which is consistent with the
solution obtained in (a), where the first term, provides the
dominant contribution at x = 1). Find the first term in an asymptotic ex-
pansion of match to your solution from (a) and hence determine

(Be warned that ln terms appear in this problem.)

Q2.29 Eigenvalues for a vibrating beam. The (linearised) problem of an elastic beam
clamped at each end is

for with where is the
eigenvalue (which arises from the time-dependence), and Young’s mod-
ulus. Find the first term in an asymptotic expansion of the eigenvalues. (This
problem can be solved exactly, and then the exponents expanded for
this is an alternative that could be explored.)

Q2.30 Heat transfer in 1D. An equation which describes heat transfer in the presence
of a one-dimensional, steady flow (Hanks, 1971) is

with temperature conditions Find the first two
terms in an asymptotic expansion, valid for x = O(1) as  and the
leading term valid in the boundary layer, matching as necessary.

Q2.31 Self-gravitating annulus. A particular model for the study of planetary rings is
represented by the equation
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where and are constants, with the density, satisfy-
ing (This example is based on the more general
equation given in Christodoulou & Narayan, 1992.) For (the narrow
annulus approximation), introduce and then write
the density as find the first three terms in an asymptotic ex-
pansion for P. On the basis of this information, deduce that your expansion
would appear to be uniformly valid for

Q2.32 An elastic displacement problem. A simplified version of an equation which de-
scribes the displacement of a (weakly) nonlinear string, in the presence of
forcing, which rests on an elastic bed, is

where is a constant, with Find the first two terms in an
asymptotic expansion, for and use this evidence to deduce that this
expansion would appear to be uniformly valid for
Laminar flow through a channel. A model for laminar flow through a channel
which has porous walls, through which suction occurs, can be reduced to

Q2.33

where is an arbitrary constant of integration, with
(This is taken from Proudman,

1960; see also Terrill & Shrestha, 1965, and McLeod in Segur, et al., 1991;
here, the stream function is proportional to the function and
1/(Reynolds’ Number).) Assume that A(0) exists and is non-zero, and then
find the first term in an asymptotic expansion for and for valid
for x = O(1), and then the first two terms valid in the boundary layer (the first
being simply the boundary value there).
Slider bearing. The pressure, p, within the fluid film of a slider bearing, based
on Reynolds’ equation, can be reduced to the equation

Q2.34

written in non-dimensional form; here, is a constant and is the
given (smooth) film thickness, with (and
Find the first two terms in an asymptotic expansion, for valid for
x = O(1), and then the first term only in the boundary layer, matching as
necessary. (The first term in the boundary layer can be written only in implicit
form, but this is sufficient to allow matching.)
An enzyme reaction. The concentration, of oxygen in an enzyme reaction
can be modelled by the equation

Q2.35
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with where is a constant. The boundary conditions specify
the concentration on r = 1 and that the flux of oxygen must be zero at r = 0;
these are expressed as

(a) Find the size of the boundary layer near r = 1 (in the form
for suitable and hence show that satisfies

(b)

where we have assumed that and as (which
is consistent with the equation).
From the result in (a), deduce that is exponentially small as
for 1 – r = O(1), seek a solution (which is exponentially small) in terms
of the scaled variable and show that where

satisfies

Solve this equation, apply the relevant boundary condition, match and hence
show that

where is a constant (independent of which should be identified.
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3. FURTHER APPLICATIONS

The ideas and techniques developed in Chapter 2 have taken us beyond elementary
applications, and as far as some methods that enable us to construct (asymptotic)
solutions of a few types of ordinary differential equation. The aim now is to extend
these methods, in particular, to partial differential equations. The first reaction to this
proposal might be that the move from ordinary to partial differential equations is a very
big step—and it can certainly be argued thus if we compare the solutions, and methods
of solution, for these two categories of equation. However, in the context of singular
perturbation theory, this is a misleading position to adopt. Without doubt we must have
some skills in the methods of solution of partial differential equations (albeit usually in
a reduced, simplified form), but the fundamental ideas of singular perturbation theory
are essentially the same as those developed for ordinary differential equations. The only
adjustment, because the solution will now sit in a domain of two or more dimensions,
is that an appropriate scaling may apply, for example, in only one direction and not in
the others, or in time and not in space.

In this chapter we will examine some fairly straightforward problems that are repre-
sented by partial differential equations, starting with an example of a regular problem.
The approach that we adopt will emphasise how the methods for ordinary differential
equations carry over directly to partial differential equations. In addition, we will take
the opportunity to write a little more about more advanced aspects of the solution
of ordinary differential equations, in part as a preparation for the very powerful and
general methods introduced in Chapter 4.
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3.1 A REGULAR PROBLEM

A simple, classical problem in elementary fluid mechanics is that of uniform flow of an
incompressible, inviscid fluid past a circle. (This is taken as a two-dimensional model
for a circular cylinder placed in the uniform flow.) Represented as a complex potential
(w), the solution of this problem can be written as

where is the velocity potential, the stream function, U the constant speed of the
uniform flow (moving parallel to the x-axis) and a is the radius of the circle, centred
at the origin. In terms of complex potentials, this solution is constructed from the
potential for the uniform flow (Uz) and that for a dipole at the origin the
complex variable is Both and satisfy Laplace’s equation in two
dimensions:

and, if we elect to work with the stream function (as is usual), then we have

expressed in plane polar coordinates. We now formulate a variant of this problem:
uniform flow past a slightly distorted circle.

Let the distorted circle be represented by

where will be our small parameter; in terms of the problem is to solve

(where subscripts denote partial derivatives) with

and

The condition (3.4) ensures that there is the prescribed uniform flow at infinity i.e.
as (see (3.1)), and (3.5) states that the surface of the distorted

circle is a streamline (designated of the flow. We see, immediately, that there
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is a small complication here: is embedded in the second boundary condition, (3.5).
In order to use our familiar methods, we must first reformulate this condition.

We assume (and this must be checked at the conclusion of the calculation) that
on can be expanded as a Taylor series about r = a i.e.

Now the problem—albeit via a boundary condition—contains the parameter in
a form which suggests that we may seek a solution for based on the asymptotic
sequence Thus we write

and then

with

and from (3.6):

and so on. The problem for is precisely that for the undistorted circle, so

as given in (3.1).
The problem for now becomes that of finding a solution of Laplace’s equa-

tion which satisfies

and as The most natural way to proceed is to represent as a
Fourier Series, and then a solution for follows directly by employing the method
of separation of variables. As a particularly simple example of this, let us suppose that

and so

the relevant solution is then
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and so we have

This two-term asymptotic expansion is clearly uniformly valid for and for
and it is also analytic in this domain, so the use of the Taylor expansion to generate
(3.6) is justified. It is left as an exercise (Q3.1) to find the next term in this asymp-
totic expansion and then to discuss further the validity of the expansion; it is indeed
uniformly valid. A few other examples of regular expansions obtained from problems
posed using partial differential equations can be found in Q3.2 and Q3.3.

This exercise has demonstrated that, as with analogous problems based on ordinary
differential equations, we may encounter asymptotic expansions that are essentially
uniformly valid i.e. the problem is regular. However, this is very much a rarity: most
problems that we meet, and that are of interest, turn out to be singular perturbation
problems. We now discuss this aspect, in the context of partial differential equations,
and highlight the two main types of non-uniformity that can arise.

3.2 SINGULAR PROBLEMS I

The most straightforward type of non-uniformity, as we have seen for ordinary differ-
ential equations, arises when the asymptotic expansion that has been obtained breaks
down and thereby leads to the introduction of a new, scaled variable. This situation is
typical of some wave propagation problems, for which an asymptotic expansion valid
near the initial data becomes non-uniform for later times/large distances. Indeed, the
general structure of such problems is readily characterised by an expansion of the form

where c is the speed of the wave and the functions f ,g and h are bounded (and typically
well-behaved, often decaying for However, for a solution defined
in (which is expected in wave problems), we clearly have a breakdown when

irrespective of the value (size) of (x – c t). Thus we would need to examine
the problem in the far-field, defined by the new variables (In this
example, we have used x – ct (c > 0) for right-running waves; correspondingly, for
left-running waves, we would work with x + ct.) We present an example of this type
of singular perturbation problem.

E3.1 Nonlinear, dispersive wave propagation

A model equation which describes small-amplitude, weakly dispersive water waves can
be written as
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where we have again used subscripts to denote partial derivatives, and here the speed
(associated with the left side of the equation) is one. (This equation is usually called the
Boussinesq equation and it happens to be one of the equations that is completely integrable,
in the sense of soliton theory, for all see johnson, 1997, and Drazin & Johnson,
1992.) Our intention is to find an asymptotic solution of (3.9), valid as subject
to the initial data

where as (and, further, all relevant derivatives of f(x) satisfy this
same requirement).

The equation for (where u is the amplitude of the wave), on using our
familiar ‘iteration’ argument, suggests that we may seek a solution in the form

for some xs (distance) and some ts (time). Thus we obtain from (3.9)

(where ‘= 0’ means zero to all orders in which gives

and so on. The initial data, (3.10), then requires

and

Equation (3.12a) is the classical wave equation with the general solution (d’Alembert’s
solution)

for arbitrary functions F and G; application of the initial data for (given in (3.13))
then produces

(We note, in this example, that the particular initial data which we have been given
produces a wave moving only to the right (with speed 1), at this order.)



120 3. Further applications

The equation for (3.12b), is most conveniently written in terms of the characteristic
variables so that we have the operator identities

Thus (3.12b) becomes

which can be integrated directly to give

where J and K are arbitrary functions. The initial data, (3.14), requires

and

or

where A is an arbitrary constant. These two equations enable us to find J and K as

hence the solution for becomes

where we have written For convenience, let us set

then we have the asymptotic solution (to this order):

This two-term asymptotic expansion, (3.17), contains terms f, H and all of
which are bounded and decay as their arguments approach infinity (because of our
given f(x)), and so there is no non-uniformity associated with these. However, if we
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follow the right-going wave (by selecting any x – t = constant) then, as t increases
indefinitely, we will encounter a breakdown when This leads us to intro-
duce a new variable and otherwise we may use (because we are
following the right-running wave) and we observe that no scaling is associated with
this variable. Thus we transform from (x, t) variables (the near-field) to variables
(the far-field), i.e.

and so our original equation, (3.9), becomes

where

The nature of the appearance of in this equation is identical to the original
equation, suggesting that again we may seek a solution in the form

which gives

and so on. This equation can be integrated once in and, when we invoke decay
conditions at infinity (i.e. all as which mirrors our
given conditions on f(x)), we obtain

This equation is very different from our previous leading-order equation (in the near-
field) : that was simply the classical wave equation. Our dominant equation in the far-
field, (3.21), describes the time evolution of the wave in terms of the wave’s nonlinearity

and its dispersive character Equation (3.21) is a variant of the famous
Korteweg-de Vries (KdV) equation; its solutions, and method of solution, initiated
(from the late 1960s) the important studies in soliton theory. For solutions that decay as

it can be demonstrated that the later terms in the asymptotic expansion
contribute uniformly small corrections to as (This is a far-from-trivial
exercise and is not undertaken in this text; the interested reader who wishes to explore
this further should consult any good text on wave propagation e.g. Whitham, 1974.)

In summary, we have seen that this example (which we have worked through rather
carefully) describes a predominantly linear wave in the near-field (where t = O(1) or
smaller) but, for (the far-field), the wave is, to leading order, described
by a nonlinear equation. Equation (3.21) can be solved exactly and, further, we may
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impose initial data at in terms of matching (first term to first term), this is
equivalent to solving (3.21) with as (where F is a suitable arbitrary
function) and hence, for the right-going wave, we select and the solution

is uniformly valid for i.e. This uniform validity generated
by the far-field solution is an unlooked-for bonus, but it should be remembered that
the basic expansion (3.11) is not uniformly valid, and so we certainly have a singular
perturbation problem.

Other examples of wave propagation problems, which exhibit a breakdown and con-
sequent rescaling, are set as exercises in Q3.4–3.8. In addition, we present one further
example which embodies this same mathematical structure, but which is a little more
involved. However, this is a classical problem which should appear in any standard text
and, further, it has various different limits that are of practical interest (and some of
these will be discussed later; see also Q3.10 and Q3.11).

E3.2 Supersonic, thin-aerofoil theory

We consider irrotational, steady, supersonic flow of a compressible fluid past a (two-
dimensional) thin aerofoil. The equations of mass and momentum conservation can
be reduced to the single equation

where a is the local sound speed in the gas, and the velocity is
The corresponding energy equation (Bernoulli’s equation) is

where and as and is a constant describing the na-
ture of the gas: pressure (an isentropic gas). The aerofoil is described by

with where the upper/lower surfaces are
denoted by +/–. Using U and  to non-dimensionalise the variables, eliminating

and then writing the resulting non-dimensional velocity potential as we
obtain

where is the Mach number of the oncoming flow from infinity. The
aerofoil is now written as (which defines for this problem)
and so ensures that we have a thin aerofoil. (Thus implies that there is
no aerofoil present, and then the non-dimensional velocity potential is simply x i.e.
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everywhere.) The non-dimensional version of the physical configuration is
shown in figure 4. Finally, the boundary conditions are

and

where the first, (3.23), ensures that, upstream, we have only the given uniform flow
with and the second, (3.24), states that the surface of the aerofoil is

a streamline of the flow.
Equation (3.22), with and is predominantly a wave equation (but

here expressed in spatial variables, x and y); the form of this equation suggests that we
seek an asymptotic solution

and then we obtain

and so on. Correspondingly, the boundary conditions give

and

Figure 4. Sketch of the uniform flow (speed = 1, Mach number >1) past the aerofoil
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This second condition is rewritten as an evaluation on y = 0, by assuming that
possesses a Taylor expansion (cf. §3.1), so we now obtain

or

and so on. It is not possible to solve, in any simple compact way, for both the upper
and lower surfaces together (as will become clear), so we will consider only the upper
surface, (The problem for the lower surface follows a similar, but different,
construction.)

The general solution of equation (3.26), for the case of supersonic flow
is given by d’Alembert’s solution:

where and F and G are arbitrary functions. The contribution to the
solution from G, in the upper half-plane, extends into x < 0 and so, in order to satisfy
(3.23), we must have (The contribution from F extends into x > 0 for y > 0.)
Condition (3.29a) (upper surface) now requires that

and so to within an arbitrary constant, which may be
ignored in the determination of a velocity potential (because such a constant cannot
contribute to the velocity field). Thus we have

in y > 0. (It will be noted that the corresponding problem in the lower half-plane
requires the retention of with

The solution of equation (3.27), for is approached in the same way that we
adopted for the similar exercise in E3.1: we introduce characteristic variables, which
here are With these variables, equation (3.27) becomes
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for (where we have used our solution for and otherwise
which generates only the zero solution when the boundary conditions are applied. The
boundary conditions relevant to the solution of (3.31) are (from (3.28) and (3.29b))

and

because of the form of this latter boundary condition, it is a little more convenient to
find the asymptotic solution for (Of course, from this it is then possible to
deduce both and if these are required; see later.) From (3.31) we obtain directly
that

where J and K are arbitrary functions, and condition (3.32) then requires that
cf. the solution for The boundary condition (3.33) is satisfied if

and then we obtain directly (because we may use

(for where we have written The two-term asymptotic
expansion for is therefore

as for and
It is clear, for and bounded, that the expansion (3.35) breaks down where

—the far-field. (This same property is exhibited by the expansions for
and The assumption that we have and bounded (and correspondingly,
and for the lower surface), for  implies that these aerofoils are sharp
at both the leading and trailing edges—which is certainly what is aimed for in their
design and construction. However, if these edges are suitably magnified than it will
become evident that a real aerofoil must have rounded edges on some scale. This in turn
implies that stagnation points exist, where and then the asymptotic
expansion, (3.35), certainly cannot be uniformly valid near to and even
for y = O(1): a boundary-layer-type structure is required near and near
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This, and other aspects of compressible flow past aerofoils, will be put to one side in
the current discussion (but some additional ideas are addressed in Q3.10 and 3.11).
Here, we will work with the mathematical model for the flow in which and

are bounded, so that the only non-uniformity arises as
The solution in the far-field is written in terms of the variables and

with Equation
(3.22) now becomes

where, for simplicity, we have written down only the leading terms on the right-hand
side of the equation. We seek a solution

and then satisfies the nonlinear equation

or

and note that The general solution for is

where H is an arbitrary function; solution (3.39) provides, for general H, an im-
plicit representation only for (which has far-reaching consequences, as we shall see
shortly).

We determine H by matching, and this is most easily done by matching and
—but for this we require the expansion of It is left as an exercise to show that,

from (3.35), we obtain

which gives
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when we retain the O(1) term only. From (3.39), we find that

where we have retained the O(1) and terms (and we have assumed that H possesses
a suitable Taylor expansion). These two expansions, (3.41) and (3.42), match precisely
when we select and then

We conclude this important example by making a few observations.
First, the behaviour of the far-field solution, (3.43), as recovers the near-

field solution, and so (to this order, at least) the far-field solution is uniformly valid in
(although our original expansion, (3.25), exhibits a singular behaviour). The

solution (3.43), as Y increases, can be completely described by the characteristic lines,
in the form

along which These lines are therefore straight, but not par-
allel; they first intersect for some (which depends on the details of the function

and then the solution becomes multi-valued in —which is unacceptable,
unless we revert to an integral form of equation (3.38) and then admit a discontinuous
solution. This discontinuity, at a distance from the surface of the aerofoil, man-
ifests itself in the physical world as heralding the formation of a shock wave. It should be
no surprise that the characteristic variable plays a significant rôle in the solution of this
wave-type (hyperbolic) equation; indeed, the results described here can be obtained by
seeking asymptotic expansions for these, rather than for the functions themselves (see
Q3.9). A final point, which embodies an important idea, is to note that the near-field
solution takes essentially the correct form (to leading order) even for the far-field, in
the sense that the solution is replaced by where is the
appropriate approximation to the characteristic variable. One way to interpret this is
to regard as the correct solution, but that it is in the ‘wrong place’ i.e. it

is not constant along lines but rather, along lines

We have seen, in these two somewhat routine examples, and the similar problems in
the exercises, how the simplest type of singular perturbation problem can arise. The
other fundamentally different problem that we may encounter, just as for ordinary
differential equations, is where the small parameter multiplies the highest derivative:
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the boundary- (or transition-) layer problem. We now turn to an examination of this
classical singular perturbation problem in the context of partial differential equations.

3.3 SINGULAR PROBLEMS II

There are two partial differential equation-types that are often encountered with small
parameters multiplying the highest derivative(s): the elliptic equation (e.g. Laplace’s
equation) and the parabolic equation (e.g. the heat conduction, or diffusion, equation).
These two, together with the wave equation (i.e. of hyperbolic type) discussed in §3.2,
complete the set of the three that constitutes the classification of second-order partial
differential equations. The two new equations are exemplified by

respectively. Of course, the use of singular perturbation methods to solve these partic-
ular examples is somewhat redundant, because we are able to solve them exactly (for

using standard techniques. Thus we will discuss two simple—but not completely
trivial—extensions of these basic equations.

E3.3 Laplace’s equation with nonlinearity

We are going to find an asymptotic solution, for of the equation

where u is prescribed on the boundary of the region. First, we will make a few general
observations about this problem and then obtain some of the details in a particular
case.

The appearance of in equation (3.44) suggests that we may seek a solution

which turns out to be consistent with the matching requirements to the boundary
layers; thus we obtain

and so on. Immediately we see that we can find which satisfies the given data
on x = 0 and x = a, but only in very special circumstances will this also satisfy the
data on y= 0 and y = b: the solution will (in general) require boundary layers near
y = 0 and near y = b. No such layers exist near x = 0 and x = a. All this follows
from the term the term simply contributes a (small) nonlinear adjustment
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to the solution. To proceed, let us be given, as an example, the specific data:

and we will find the first two terms in the solution valid away from the boundary layer,
and then the first terms in each boundary-layer solution. From (3.46a), we obtain

where A and B are arbitrary functions; the available data, (3.47), requires that

The next term, satisfies (3.46b) with

Equation (3.46b) can be written

and so the solution for is

and we have the asymptotic solution

This two-term asymptotic expansion does not satisfy the given data on y = 0 or on
y = 1; thus we require (thin) layers near these two boundaries of the domain.

The first stage involves finding the size of the boundary layers; let us introduce
with as for the boundary layer near y = 0. Further, we note

that u = O(1) here and, of course, there is no scaling in x. Thus, with
equation (3.44) becomes

and so we have
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and we must choose or simply and then seek a solution

The matching condition, from (3.98), gives so

The simplest solution available  for       involves using the method of separation of variables
and so, noting the boundary value on y = 0, i.e. Y = 0, given in (3.48), we write

Thus we obtain

where C and D are arbitrary constants; a bounded solution valid away from the bound-
ary layer requires C = 0 and then as The condition on
Y  = 0 is then satisfied if we select D = 1, and therefore the solution in the boundary
layer near y = 0 is

Near y = 1, the boundary layer is clearly the same thickness, so here we write
and set to obtain the equation

cf. equation (3.50) with The matching condition this time, again from (3.98),
is

we seek a solution where

with

The solution is obtained altogether routinely by writing so that

with

with
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which produces

where the constants are determined as the coefficients of the Fourier-series rep-
resentation of this is left as an exercise. Thus the solution in the boundary
layer near y = 1 is

where the are known. This completes, for our purposes, the analysis of this
boundary-layer problem.

This example has admirably demonstrated, we submit, how the ideas of singular per-
turbation theory (here exhibited by the existence of boundary layers) developed for
ordinary differential equations, carry over directly to partial differential equations. The
boundary layers have been required in the y-direction, by virtue of the presence of the
parameter but not in the x-direction. Of course, the method of solution has required
some knowledge of the methods for solving partial differential equations, but that was
to be expected; otherwise no other complications have arisen in the calculations.

For our second example, we consider a physically-based problem: heat conduction,
and so the governing equation will now be parabolic.

E3.4 Heat transfer to fluid flowing through a pipe

We consider a circular pipe of radius r = 1 (we will describe this problem, from the
outset, in terms of non-dimensional variables), extending in a straight line in
the role played by the length of the pipe will be discussed later. Through the pipe
flows a fluid, with a known velocity profile represented by u = u(r), the
equation for the temperature, of the fluid is

where we have assumed no variation in the angular variable around the pipe. The non-
dimensional parameter, is proportional to the thermal conductivity of the fluid.
We seek a solution of equation (3.53), for subject to the boundary conditions

The fluid enters the pipe (at x = 0) with an initial temperature distribution and
the temperature of the pipe wall (r = 1) is prescribed along the pipe i.e. heat
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is transmitted to (or possibly lost by) the fluid as it flows along the pipe. (Note that,
in order to avoid a discontinuity in temperature at the start of the pipe—which is
not an essential requirement in the formulation of the problem—then we must have

Finally, observe that multiplies the highest derivative terms, so we
must expect a boundary-layer structure.

We will choose the velocity profile to be that associated with a laminar, viscous flow
i.e. and then we seek a solution

where we have been careful not to commit ourselves to the second term in this
asymptotic expansion. Thus we have, from (3.53),

when we invoke the boundary condition (3.54a); this solution is, apparently, valid for
all but (in general) it cannot possibly accommodate the boundary condition on
r = 1 in x > 0, (3.54b). This observation, together with the form of the governing
equation, (3.53), suggests that we need a boundary layer near r = 1; let us set

with as and write
Thus equation (3.53) becomes

and, as we must use the balance (using the ‘old’ term/‘new’ term concept):
which is satisfied by the choice and so we have

We seek a solution of this equation in the form

with and a matching condition for
Although it is possible to find the appropriate solution of (3.57), satisfying the given
boundary conditions, it is somewhat involved and we are likely to lose much of the
transparency of the results. Thus we will complete the solution in the special case:
constant wall temperature x > 0, and we will seek a solution
in x > 0, thereby ignoring the discontinuity that is evident as

so that
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(This difficulty in the solution can be discussed separately—but not here—or the
discontinuity can be replaced by a smooth function that takes from at

Now, since

we must find a solution of (3.57), subject to

To proceed with the solution of this problem, we write and
so

this is solved very simply by introducing the similarity solution. Set
for some m, then we find directly that m = –1 /3 and

where A and a are arbitrary constants, and then all the boundary conditions are satisfied
by

Thus the solution in the boundary layer, R = O(1), is

in this special case. We have the first terms in each of the outer region (away from
the pipe wall) and the region close to the pipe wall (the boundary layer): (3.55b) and
(3.58), respectively.

We have completed all the detailed calculations that we will present, although we
make a few concluding comments that highlight some intriguing issues. First, knowing
the temperature in the fluid near the pipe wall enables us to find the heat transferred
to or from the fluid, if that is a property of particular interest.
Second, a more technical matter: what is the form of the solution in the outer region,
i.e. what terms in the asymptotic expansion must be present in order to match to
the boundary-layer solution? To answer this, we need to know the behaviour of the
boundary-layer solution as (because we have for 1 – r =
O(1) as For our similarity solution, (3.58), this can be obtained by using a
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Figure 5. Schematic of the boundary-layer region, which grows from the pipe wall, and the ‘fully
developed’ region for and larger.

suitable integration by parts:

Thus we will need to match to

for suitable functions and g(r, x). (It turns out that g satisfies a nonlinear, first
order partial differential equation, and that is governed by a linear, first order partial
differential equation, with coefficients dependent on g.) This result has particularly
dramatic consequences in the case for then the solution away from
the pipe wall is apparently exactly However, the requirement to match
to the boundary-layer solution introduces an exponentially small correction to the
outer solution—and this is the sole effect of the presence of the different temperature
at the pipe wall, at least for x = O(1).

Finally, we address the problem-and there is one-associated with the length of the
pipe. As we have just commented (and we will relate all this only to the simple case of
the similarity solution with if the total length of the pipe is

as for x = O(l) and 1 – r = O(l). That is, the asymptotic expansion valid
away from the boundary layer must include the exponentially small term of the form



135

as measured in terms of then the flow away from the wall is t = 1, with only
exponentially small corrections. The boundary layer remains thin along
the full length of the pipe, but note that lines of constant temperature, emanating
from the neighbourhood of the wall, are the lines i.e.
Thus, defining the boundary-layer thickness in terms of a particular temperature, this
thickness increases as x increases, although it remains However,
if the pipe is so long that then the exponential term in (3.59) becomes
O(1), and the temperature now has an O(1) correction. In other words, the O(1)
temperature at the pipe wall has caused heat to be conducted through the fluid to
affect the whole pipe flow, Indeed, we see that the scaling in our
original equation, (3.53), balances dominant terms from both sides of the equation for

there is no longer a boundary layer at the wall; this is shown schematically
in figure 5.

The two examples presented above have shown how the notion of a boundary
layer, as developed for ordinary differential equations, is relevant to partial differen-
tial equations—and essentially without any adjustment to the method; some similar
examples can be found in exercises Q3.12–3.14. We have now seen the two basic
types of problem (breakdown and rescale; select a scaling relevant to a layer), although
the equations that we have introduced as the vehicles for these demonstrations—quite
deliberately—have been relatively uncomplicated. We conclude this section with an
example that, ultimately, possesses a simple perturbation structure (as in §3.2), but
which involves a set of four, coupled, nonlinear partial differential equations. As be-
fore, the purpose of the example is to exhibit the power (and inherent simplicity) of
the singular perturbation approach.

E3.5 Unsteady, one-dimensional flow of a viscous, compressible gas

The flow of a compressible gas, with temperature variations and viscosity, is described
by the equations

which are the equations of momentum, mass conservation, energy and state, respec-
tively. Here, is the coefficient of (Newtonian) viscosity, the thermal conductivity,

the gas constant and is associated with the isentropic-gas model (see E3.2); we
shall take all these parameters to be constant. Any movement of the gas is in the
direction—we use primes here to denote physical variables—with no variation in other
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directions, so any disturbance generated in the gas is assumed to propagate (and possibly
change) only in is time. The speed of the gas is and its pressure, density and
temperature are and respectively.

First, we suppose that the gas in its stationary undisturbed state is described
by

all constant. The gas is now disturbed, thereby producing a weak pressure wave (often
called an acoustic wave, although this is usually treated with temperature fixed); the size
of the initiating disturbance will be measured by the parameter We introduce
the sound speed, of the gas in its undisturbed state, defined by

and then we move to non-dimensional variables (without the primes) by writing

we let a typical or appropriate length scale (e.g. an average wave length) be and also
define

The governing equations, (3.60)–(3.63), therefore become

where the Reynolds Number is and the Prandtl Number is
with (Note that we have elected to define the speed in the defi-
nition of as which is proportional to the scale of the speed generated by the
disturbance; a suitable choice of is a crucial step in ensuring that we obtain the
limit of interest.)
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We now seek a solution of the set of equations (3.65)–(3.68), for and fixed
as  by writing

where q (and correspondingly represents each of p, T and u. The first terms
in each of these asymptotic expansions satisfy the equations

which follow from (3.65)–(3.68), respectively. These equations then give

and then, selecting the right-going wave (for simplicity), we have

for some f(x) at t = 0. For a solution-set which recovers the undisturbed state for
we also have

However, our experience with hyperbolic problems (see §3.2)is that asymptotic ex-
pansions like (3.69) are not uniformly valid as t (or x) for x – t = O(1) i.e.
in the far-field. Let us investigate the result of the non-uniformity directly, without
examining the details of the breakdown (which is left as an exercise).

The variables that we choose to use in the far-field are

for each q, so we have the identities

equations (3.65)–(3.68) become (when we retain only those terms relevant to the
determination of the dominant contributions to each Q):
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where Again we expand

for each Q; immediately we see that the leading-order terms satisfy

(cf. (3.71)), but these functions are otherwise unknown.
The terms are defined by the equations

from (3.72)–(3.75), respectively, and this last equation is used only to define The
first three equations involve the combinations of terms:

respectively, and so we may eliminate all of and between them, which we
do. The resulting single equation involving and is written in terms
of one function—     say—by using (3.77); this gives the leading term (for U) in the
far-field as the solution of

Thus is described by an equation in which the time of the
solution is controlled by both nonlinearity and dissipation cf. the
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KdV equation, (3.21). Equation (3.78), like the KdV equation, is also an important
equation; it is the Burgers equation (Burgers, 1948) which can be solved exactly by
applying the Hopf-Cole transformation (Hopf, 1950; Cole, 1951) which transforms the
equation into the heat conduction (diffusion) equation. As with the corresponding
KdV problem (in E3.1), the matching condition is as and, for
suitable the asymptotic expansions (3.76) are uniformly valid as The
solution that we have obtained describes a weak pressure wave moving through the
near-field (t = O(1)) and, as t increases into the far-field, the wave-front steepens, but
this effect is eventually balanced by the diffusion (when Finally the wave
will settle to some steady-state profile—a profile which is regarded as a model for a
shock wave in which the discontinuity is smoothed; see Q3.5.

This concludes all that we shall present here, as examples of fairly routine singular per-
turbation problems in the context of partial differential equations. Further ideas—very
powerful ideas—which are applicable to both ordinary and partial differential equa-
tions will be developed in the next chapter. We complete this chapter on some further
applications by examining two rather more sophisticated problems that involve ordinary
differential equations. The first employs the asymptotic expansion in a parameter in
order to study an important equation in the theory of ordinary differential equations:
Mathieu’s equation. The second develops a technique, which is an extension of one of
our earlier problems associated with wave propagation, that enables the asymptotic so-
lution of certain ordinary differential equations to be written in a particularly compact
and useful form—indeed, one that exhibits uniform validity when none appears to
exist.

3.4 FURTHER APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS

The Mathieu equation, for x(t),

where and are constants, has a long and exalted history; it arose first in the work of
E-L. Mathieu (1835–1900) on the problem of vibrations of an elliptical membrane. It
also applies to the problem of the classical pendulum in which the pivot point is oscil-
lated along a vertical line, one result being that, for certain amplitudes and frequencies
of this oscillation (which corresponds to certain and the pendulum becomes
stable in the up position! It is also relevant to some problems in electromagnetic-wave
propagation (in a medium with a periodic structure), some electrical circuits with spe-
cial oscillatory properties and in celestial mechanics. The equation is conventionally
analysed using Floquet theory (see e.g. Ince, 1956) in which the solution
for in general, a complex constant, has y(t) periodic (with period or for
certain We will show how some of the properties of this equation are readily
accessible, at least in the case
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E3.6 Mathieu’s equation for

We consider the equation

where we use the over-dot to denote the derivative with respect to t; special curves
in the separate stable (oscillatory) from unstable (exponentially growing)
solutions: on these curves there exist both oscillatory and linearly growing solutions.
We will seek these curves in the case

First, with we obtain

which has periodic solutions, with period or only if (n = 0, 1, 2 ...)
although n = 0 might be thought an unimportant exceptional case. The form of the
equation suggests that we should seek a solution in the form

and invoke the requirement that each be periodic; each is a constant inde-
pendent of We will explore the cases n = 0 and n = 1 ( and the case n = 2 is left
as an exercise).

(a) Case n = 0
Equation (3.79), with (3.80a,b), becomes

where, as is our convention, ‘= 0’ means zero to all orders in Thus we have the
sequence of equations

and so on. The only periodic solution for —and trivially so—is
which we will normalise to = 1. Then equation (3.81b) becomes

and the solution for which is periodic requires thus
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where A is an arbitrary constant. Finally, from equation (3.81c), we obtain

which has a periodic solution for only if and so the method
proceeds. Thus the transitional curve in the along which a or
periodic solution exists, is

(b) Case n = 1
This time, although the general procedure is essentially the same, the appearance
of non-trivial periodic solutions at leading order complicates things somewhat.
Equation (3.79) now becomes

and thus we obtain the equations

and so on. The general solution of equation (3.83a) is simply

for arbitrary constants A and B; we may now proceed, collecting all terms pro-
portional to A, and correspondingly to B, but it is far easier (and more usual) to
treat these two sets of terms separately. Thus we select A = 1, B = 0, and A= 0,
B = 1; this will generate two transitional curves: one associated with
and one with which is the usual presentation adopted. Let us choose

then (3.83b) can be written

and a periodic solution for requires (because otherwise there would
be a term proportional to t therefore we obtain
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where C and D are arbitrary constants. Finally, from (3.83c), we have the equation

for which periodic solutions, require (and D = 0). Thus, to this
order, the transitional curve for

it is left as an exercise to show that, with the choice then

In summary, we have the stability boundaries given by

Set as an exercise, the case n = 2 can be found in exercise Q3.15. A corresponding cal-
culation to those described here, but now formulated in a way consistent with Floquet
theory, is set in Q3.16. More information about Mathieu equations and functions, and
their applications, is available in the excellent text: McLachlan (1964).

For our final discussion in this chapter, we will incorporate the idea introduced at
the end of E3.2, namely, a ‘correct’ solution in the ‘wrong place’, but applied here
to ordinary differential equations. We will describe the method of strained coordinates,
which has a long history; it was used first, in an explicit way, by Poincaré (1892), but
other authors had certainly been aware if the idea earlier, in one form or another.
Some authors refer to this as the PLK method after Poincaré, Lighthill (1949) and Kuo
(1953). The idea is exactly as mentioned above: the solution
(say), which is not uniformly valid, is made so by writing

where is a suitably chosen strained coordinate. Of course, only relatively special
problems have solutions that possess this structure, but it is regarded as a significant
improvement—over matched expansions—when it occurs. Indeed, we have met a
problem of this type in Chapter 1: E1.1, our very first example. There we found that
a straightforward asymptotic expansion led to
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(see equation (1.7)), but the use of the ‘strained’ coordinate (see (1.8))
immediately removes the non-uniformity that is otherwise present as Further,
the leading term above (~ sin t) is essentially correct, but ‘in the wrong place’; if t is
replaced by then sin becomes a uniformly valid first approximation as We
will show how this method develops for a particular type of equation (first examined by
Lighthill, 1949 & 1961; similar examples have been discussed by Carrier, 1953 & 1954).

E3.7 An ordinary differential equation with a strained coordinate
asymptotic structure

We consider the problem

(and possesses the property that it can be expanded uniformly for
as this is essentially the problem discussed by Lighthill (1949). The ideas are
satisfactorily presented in a special case (which leads to a more transparent calculation);
we choose to examine the problem with

where and are constants independent of Thus (3.84) and (3.85) become

We will start by seeking the conventional type of asymptotic solution, as
in the form

and then       satisfies

which produces the general solution

where A is an arbitrary constant. It is immediately clear that, with this solution
is not defined on x = 0, although we may use the boundary condition on x = 1,
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which we choose to do, to give:

The behaviour of is discussed in Q3.18, where it is shown that the
asymptotic expansion is not uniformly valid as it breaks down where

Here, we will approach the problem of finding a solution by introducing
a strained coordinate.

The strained coordinate, is defined by

which, if this expansion is uniformly valid on the domain in (that corresponds to
may be inverted to find note that, if (3.89) is uniformly valid, then

for all x on the domain. The solution we seek is now written in terms of the
strained coordinate as

and the reason for using (3.89), rather than becomes evident when we
see that we transform of the original problem into functions of, and derivatives with
respect to, only Thus, with

the equation in (3.86) can be written

where, as in our previous convention, ‘= 0’ means zero to all orders in From equation
(3.91) we obtain

and so on. Because we have defined (3.89) with each the boundary condi-
tion on x = 1 becomes simply
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The solution of (3.98), with (3.94), produces exactly the solution obtained earlier,
(3.88), but now expressed in terms of rather than x:

We now turn to the vexing issue of solving (3.93)—and it is vexing because this is one
equation in two unknown functions: and How do we proceed?

The aim of this new technique is to obtain a uniformly valid asymptotic expansion—
if that is at all possible—for 1], although we have yet to determine
(which corresponds to x = 0). If there is to be any chance of success, then we must
remove any terms that generate non-uniformities in the asymptotic expansion for

from Q3.18, it is clear that the only such term here is i.e.
Thus we define so as to remove this term from the equation for it is
sufficient to remove such singular terms in any suitable manner, but if it is possible
to choose so as to leave an homogeneous equation for then this is the
usual move. (Other choices produce different asymptotic representations of the same
solution, but all equivalent to a given order in Here, therefore, we elect to write
the equation for as

An immediate response to this procedure is to observe that the term that causes all
the difficulty, has now appeared as a forcing term in the equation for —so
all we have succeeded in doing is moving the non-uniformity from one asymptotic
expansion to another! As we shall see, this is indeed the case, but the non-uniformity
in the expansion for the strained coordinate is not as severe as that in the expansion for
y. Before we address this critically important issue, we may note, from (3.97), that

where B is an arbitrary constant; but from (3.94) we see that we require B = 0 and so
Further, if this same strategy for selecting the equations for each is adopted,

then for every n = 1, 2, . . . , and the exact solution, in terms of becomes

It is typical of these problems that it is not necessary to solve completely the equations
for each it is sufficient to examine the nature of the solutions as Thus we
will employ the same approach as described in Q3.18. First, from (3.92), we substitute

leaving
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for into (3.96) and then cancel everywhere), to give

and then, for this can be written

This is easily integrated to produce the solution

where the term involving the arbitrary constant of integration is suppressed because it
is less singular than the term retained. Thus the asymptotic expansion (3.89) becomes

which exhibits a breakdown where exactly as for (3.87) (see Q3.18)—
just what we most feared! But there is a very important difference here: the original
expansion broke down where and we still required a solution valid on
x = 0; now we have a breakdown at but, because x = 0 corresponds
to

the burning question now is: are we allowed to use (3.99) with and
hence define The answer is quite surprising.

We have seen that

where is the constant it is fairly straightforward to show that

where the are constants bounded as Thus the asymptotic expansion (3.89),
for the strained coordinate, becomes

obtained directly from (3.99), we require tobe nosmaller  than Of course,
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and this series converges for

where is some constant independent of Hence the expansion converges for
—but is to be no smaller than which is larger

than Thus the asymptotic expansion with (which maps to
is not just uniformly valid—it is convergent! This is an altogether unlooked-

for bonus; the method of strained coordinates, in this example, has proved to be a very
significant improvement on our standard matched-expansions approach.

Some further examples that make use of a strained coordinate are set as exercises Q3.19–
3.25. Although our example, E3.7, has demonstrated, to the full, the advantages of the
strained coordinate method, not all problems are quite this successful. Many ordinary
differential equations of the type discussed in E3.7 do indeed possess convergent series
for the coordinate—so the complete solution is no longer simply asymptotic—but
other problems may produce a strained coordinate that is uniformly valid only (without
being convergent). In the exercises, the question of convergence is not explored (but,
of course, the interested and skilful reader may wish to investigate this aspect).

In this text, at this stage, we have introduced many of the ideas and techniques
of singular perturbation theory, and have applied them—in the main—to ordinary
and partial differential equations of various types. In the next chapter we present one
further technique for solving singular perturbation problems. This is a method which
subsumes most of what we have presented so far and is, probably, the single most
powerful approach that we have available. When this has been completed, we will
employ all our methods in the examination of a selection of examples taken from a
number of different scientific fields.

FURTHER READING

A few regular perturbation problems that are described by partial differential equations
are discussed in van Dyke (1964, 1975) and also in Hinch (1991). A discussion of wave
propagation and breakdown, and especially with reference to supersonic flow past thin
aerofoils, can be found in van Dyke (above), Kevorkian & Cole (1981, 1996) and in
Holmes (1995). Any good text on compressible fluid mechanics will cover these ideas,
and much more, for the interested reader; we can recommend Courant & Friedrichs
(1967), Ward (1955), Miles (1959), Hayes & Probstein (1966) and Cox & Crabtree
(1965), but there are many others to choose from. A nice collection of partial differential
equations that exhibit boundary-layer behaviour are presented in Holmes (1995). Most
of the standard texts that discuss more general aspects of singular perturbation theory
include Mathieu’s equation, and related problems, as examples; good, dedicated works
on ordinary differential equations will give a broad and general background to the
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Mathieu equation (such as Ince, 1956). A lot of detail, with analytical and numerical
results, including many applications, can be found in McLachlan (1964).

The method of strained coordinates is described quite extensively in van Dyke
(1964, 1975), Nayfeh (1973), Hinch (1991) and, with only slightly less emphasis, in
Kevorkian & Cole (1981, 1996).

EXERCISES

Q3.1 Flow past a distorted circle. Find the third term in the asymptotic expan-
sion, for  of the problem described by

with and for

Hence write down the asymptotic solution to this order and observe that,
formally at least, there is a breakdown where Deduce that the
solution in the new scaled region is identical (to the appropriate order) to that
obtained for r = O(1), the only adjustment being the order in which the terms
appear in the asymptotic expansion (and so the expansion can be regarded as
regular). Use your results to find an approximation to the velocity components
on the surface of the distorted circle.

Q3.2 Weak shear flow past a circle. Cf. Q3.1; now we consider a flow with constant,
small vorticity past a circle. Let the flow at infinity be

which has the constant vorticity (in the the problem
is therefore to solve

with as and
Seek a solution find the first two terms and,

on the basis of this evidence, show that this constitutes a two-term, uniformly
valid asymptotic expansion. Indeed, show that your two-term expansion is the
exact solution of the problem.

Q3.3 Potential function outside a distorted circle. (This is equivalent to finding the potential
outside a nearly circular, infinite cylinder.) We seek a solution, of the
problem

with
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where Write find
and then determine in the case On the basis of this evi-
dence, confirm that you have a two-term, uniformly valid asymptotic expansion
in

Q3.4 The classical (model) Boussinesq equations for water waves. These equations are writ-
ten as the coupled pair

where is the horizontal velocity component in the flow,  the
surface displacement i.e. the surface wave, and is a constant independent of
Find the first terms in the asymptotic expansions

for x = O(1), t = O(1), as (the near-field). Then introduce
the far-field variables: for right-running waves, and hence
find the equations defining the leading order; show that the equation for u
takes the form

the Korteweg-de Vries equation.
Show that a solution of this equation is the solitary wave

where is a free parameter.
Q3.5 Long, small-amplitude waves with dissipation. A model for the propagation of long

waves, with some contribution from dissipation (damping), is

where and are positive constants independent of Follow the same
procedure as in Q3.4 (near-field then far-field, although here the right-going
characteristic will be Show that, in the far-field, the leading term,
for u (say), satisfies an equation of the form

the Burgers equation. Show that this equation has a steady-state shock-profile
solution

for suitable constants C and (> 0), which should be identified. (This
solution is usually called the Taylor shock profile; Taylor, 1910.)
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Q3.6 A nonlinear wave equation. A wave is described by the equation

where Seek a solution (for right-running waves only) in the form

find the first two terms and demonstrate the existence of a breakdown when
Now introduce and show that the leading term

in the expansion valid for satisfies the equation

This calculation is now extended: define

and then determine f and g so that

where satisfies (*) and satisfies the corresponding equation for left-going
waves. (You may assume that both f and g possess Taylor expansions about
x + t and x – t, respectively.)

Q3.7 A multi-wave speed equation. A particular wave profile, u(x, t; with as
is described by the equation

where and c are constants (independent of  Show that, if
then on the time scale the wave moving at speed and the wave
moving at speed each decay exponentially (in time), to leading order as

Show, also, that on the time scale the wave moving at speed
c has diffused a distance about the wave front and, to leading order,
it satisfies a Burgers equation (see Q3.5).

Q3.8 Water waves with weak nonlinearity, damping and dispersion. The propagation of a
one-dimensional wave on the surface of water can be modelled by the equations
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where is the horizontal velocity component in the flow, and
is the surface wave; cf. Q3.4. Find the first terms in the near-field expansions
of and as and then obtain the equation for the leading term in

valid in the far-field You should consider only right-going
waves. (The equation that you obtain here is a Korteweg-de Vries-Burgers
(KVB) equation; see Johnson, 1997.)

Q3.9 Supersonic, thin-aerofoil theory: characteristic approach. The characteristics for equa-
tion (3.22) can be defined by the equation where is the
streamline direction (so that and is the inclination of
the characteristic relative to the streamline (so that tan where
M is the local Mach Number). Show that

and hence deduce that, on the characteristics,

Finally, since to leading order show that

Q3.10
and confirm that this is recovered from equation (3.39).
Thin aerofoil in a transonic flow. Show that the asymptotic expansion (3.35) is not
uniformly valid as
(a) Set write and and hence deduce that a

scaling consistent with equations (3.22) and (3.24) is
and that then satisfies, to leading order,

(b) Given that use the scaling in (a) to show that there is a
distinguished limit in which what now is the equation for
to leading order?

Q3.11 Thin aerofoil in a hypersonic flow. See (3.35); show that this expansion breaks
down as when Introduce leave x un-
scaled and write show that terms from both the left-
hand and right-hand sides of equation (3.22) are of the same order in the
case for a particular choice of What is the resulting
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leading-order equation for [This result can only give a flavour of how
things might proceed because, with strong shock waves most cer-
tainly appear and then a potential function does not exist. To investigate this
properly, we need to return to the original governing equations, without the
isentropic assumption.]

Q3.12 Asymmetrical bending of a pre-stressed annular plate. The lateral displacement,
of a plate is described by the equation (written in non-dimensional

variables)

and corresponds to weak bending rigidity. The annular plate is defined
by with the boundary conditions

where is a constant independent of Seek a solution
find the equation for u and then find the first two terms in each of

the asymptotic expansions of as valid away from the boundaries
of the region, and in the two boundary layers (near Match your
expansions as necessary. [For more details, see Nayfeh, 1973.]

Q3.13 A nonlinear elliptic equation. The function satisfies the equation

and it is defined in The boundary conditions are

Use the asymptotic sequence and hence obtain the first two terms
in the asymptotic expansion valid away from the boundaries x = 0 and y = 0;
this solution is valid on y = 1. Now find the first term only in the asymptotic
expansion valid in the boundary layer near y = 0, having first found the size
of the layer; match as necessary. Repeat this procedure for the boundary layer
near x = 0 and show that, to leading order, no such layer is required. However,
deduce that one is needed to accommodate the boundary condition at
Write the solution in this boundary layer as

(written in appropriate variables) and formulate the problem for the leading
term in the asymptotic expansion for V, but do not solve for V.
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Q3.14 The steady temperature distribution in a square plate. The temperature,
in a plate is described by the heat conduction equation (written in non-
dimensional variables)

where the plate is with the temperature on the boundary
given by

and

Seek the first term of a composite expansion by writing

where is the relevant boundary-layer variable. Determine
completely and and then show that

Q3.15
where
Mathieu’s equation for n = 2. See E3.6; find the asymptotic expansion of as
far as the term in the case n = 2 (and there will be two versions of this,
depending on the choice of either sin or cos).

Q3.16 Mathieu’s equation based on Floquet theory. Write the Mathieu equation

as an equation in by setting where is a
constant; is periodic with period or (Note that the transitional
curves are now Seek a solution

in the case n = 1; because we now have the solution will be that which
is valid near the transitional curves. Show that

where is a free parameter.



154 3. Further applications

Q3.17 A particular Hill equation. (Hill’s equation is a generalisation of the Mathieu
equation.) Consider the equation

where is a constant independent of seek a solution

Q3.18

where the are independent of Impose the condition that and are
to be periodic; what condition(s) must and   satisfy?
Matched expansion applied to E3.7. Consider

with (and constants independent of Find the equation for the
second term of the expansion, and from this deduce that

this can be done by first approximating the equation for before integrating
it—see the method leading to equation (3.96). Hence show that the asymptotic
expansion for breaks down where rescale x and y in
the neighbourhood of x = 0, and then find and solve the equation describing
the dominant term in this region (matching as necessary). What is the behaviour
of as based on your solution?

Q3.19 A strained-coordinate problem I. (This is a problem introduced by Carrier, 1953.)
Find an asymptotic solution of

as in the form

Find and use your solution to find the dominant behaviour of
where (You may assume that the asymptotic expansion of
the coordinate is uniformly valid on

Q3.20 A strained-coordinate problem II. See Q3.19; follow the same procedure for the
problem

as Use your results to show that
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Q3.21 A strained-coordinate problem III. See Q3.20; follow this same procedure for

as Show that as where is the appro-
priate solution of the equation (which does possess one real
root).

Q3.22 A strained-coordinate problem IV. See Q3.19; follow this same procedure for the
problem

as (You may observe that this problem can be solved exactly.)
Q3.23 A strained coordinate problem V. See Q3.19; follow this same procedure for the

problem

as If the boundary condition had been with the same
domain, briefly investigate the nature of this new problem.

Q3.24 Duffing’s equation. The equation for the motion of a simple pendulum, without
the approximation for small angles of swing, takes the form

If x is small, and we retain terms as far as we obtain an equation like

this is Duffing’s equation (Duffing, 1918) which was introduced to improve the
approximation for the simple pendulum (without the complications of working
with sin x). Seek a solution of this equation, for and

by using a strained-coordinate formulation:

where the are constants. Determine the solution as far as terms in
choosing each in order to ensure that the solution is periodic.
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Q3.25 Weakly nonlinear wave propagation. A wave motion is described by the equation

with

(which ensures, certainly to leading order, that we have only a right-going
wave). Seek a solution in the form

and hence find the solution correct at



4. THE METHOD OF MULTIPLE SCALES

The final stage in our presentation of the essential tools that constitute singular per-
turbation theory is to provide a description of the method of multiple scales, arguably the
most important and powerful technique at our disposal. The idea, as the title implies,
is to introduce a number of different scales, each one (measured in terms of the small
parameter) associated with some property of the solution. For example, one scale might
be that which governs an underlying oscillation and another the scale on which the
amplitude evolves (as in amplitude modulation). Indeed, this type of problem is the most
natural one with which to start; we will explore a particularly simple example and
use this as a vehicle to present the salient features of the method. However, before we
embark on this, one word of warning: this process necessarily transforms all differen-
tial equations into partial differential equations—even ordinary differential equations!
This could well cause some anxiety, but the comforting news is that the underlying
mathematical problem is no more difficult to solve. So, for example, an ordinary dif-
ferential equation, subjected to this procedure, involves an integration method that
is essentially unaltered; the only adjustment is simply that arbitrary constants become
arbitrary functions of all the other variables.

4.1 NEARLY LINEAR OSCILLATIONS

We will show how these ideas emerge in this class of relatively simple problems; indeed,
we start with an example for which an exact solution exists. Let us consider the linear,
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Figure 6. (a) Upper figure is a plot of the function for with
(b) Lower figure is a plot of the function for with

damped oscillator which is governed by

with

where This problem can be solved exactly (and having the solution available
will help initiate the discussion); the solution is

where the ‘e’ subscript denotes ‘exact solution’. This solution represents an oscillation,
with a fixed period, and with an amplitude which decays exponentially, albeit slowly.
(This type of solution is depicted in figure 6a, and another function with a different
modulation is shown in figure 6b.) Now this solution, (4.2), has three important
characteristics: first, it is an oscillation controlled by (usually called the
fast scale); second, the amplitude decays slowly according to (usually called
the slow scale); third, even if we express the solution in terms of T and it will still
require an asymptotic expansion, as by virtue of the factor in the
denominator. Any construction of an asymptotic solution directly from (4.1) must
accommodate all these elements.
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Figure 7. Sketch of the with the line included.

The appearance of two time scales in (4.2) is quite clear: T (fast) and  (slow), so
we could write the solution as

The underlying idea in the method of multiple scales is to formulate the original problem
in terms of these two scales from the outset and then to treat
function of two variables; this will lead to a partial differential equation for X. Clearly,
T and are not independent variables—they are both proportional to t—so we have,
apparently, a significant mathematical inconsistency. How, therefore, do we proceed
with any confidence? The method and philosophy are surprisingly straightforward.

We seek an asymptotic solution for as as a function with its
domain in 2-space; this is certainly more general than in the original formulation.
The aim is to obtain a uniformly valid expansion in and This will,
typically, require us to invoke periodicity (and boundedness) in T, and boundedness
(and uniformity) in If we are able to construct such an asymptotic solution, it will
be valid throughout the quadrant in Because the solution is
valid in this region, it will be valid along any and every path that we may wish to follow
in this region; in particular, it will be valid along the line which
is the statement that T and are suitably related to t. This important interpretation
is represented in figure 7, and this idea is at the heart of all multiple-scale techniques.
We will now apply this method to (4.1), presented as a formal example.
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E4.1 A linear, damped oscillator

Given

with

we introduce

where the are constants, and write

where each is to be periodic in T and, we hope, uniformly valid as and as
(Note that the choice of T, in (4.5), follows exactly the pattern of a strained

coordinate; cf. Q3.24.) From (4.5) we obtain the operator identity

and so equation (4.3) becomes

where, as usual, ‘= 0’ means zero to all orders in When we insert (4.6) for X, we
obtain the sequence of equations
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and so on. The initial conditions, (4.4), become

which give

et cetera. It is now a very straightforward exercise to solve each of these problems, in
sequence.

The general solution of (4.7a) is

although it is rather more convenient to write this as

where and are arbitrary functions; we require, from (4.8),

which we satisfy by selecting

The equation for (4.7b), can now be written

where, for simplicity, we have written But for to be periodic
in T, all terms on the right-hand side, in and must vanish (for otherwise
we will generate particular integrals for like this removal of
secular (i.e. non-periodic) terms requires

The solution of (4.11a) and then (4.11b), with (4.10), gives directly



162 4. The method of multiple scales

leaving

Thus, at this stage, we have the asymptotic solution

but and are, as yet, unknown. Before we proceed to examine the
equation for it is instructive to note, in (4.13), that the oscillatory component of
the solution depends on

Thus, at this order, vanishes identically and so we may just as well set this
is the usual simplification that is adopted in these problems. The reason for this redun-
dancy readily becomes clear: in the definition of the fast scale, the term could be
written and then subsumed into the general of the solution. Thus
to set from the outset is permitted.

The equation for from (4.7c) and with becomes

where to make plain all the terms (sin T, cos T) which generate
secular behaviour, we further write this as

Thus is periodic in T if

with initial conditions (from (4.48))

and so
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Equation (4.15) can be written

where is an arbitrary constant; but (4.16) then requires

Equation (4.14) can be written in a similar fashion:

and it follows that the solution for will contain a term unless
We must make this choice in order to avoid a non-uniformity as (because this
second term in the asymptotic expansion will grow like relative to the first). Thus
we are left with

and hence, noting (4.17), we have (and the arbitrary is now unim-
portant). Thus we have the solution

where this should be compared with the expansion of the exact
solution, (4.2).

We have used this example to introduce and illustrate all the essential features of the
technique. It should be clear that the transformation from an ordinary to a partial
differential equation does not introduce any undue complications in the method of
solution. We do see that we must impose periodicity and uniformity at each order, and
that this produces conditions that uniquely describe the solution at the previous order.
Indeed, the removal of terms that generate secularities is fundamental to the approach.
Further, as we have seen, suitable freedom in the choice of the fast scale enables non-
uniformities also to be removed. The only remaining question, at least in the context
of ordinary differential equations, is how the method fares when the equation cannot
be solved exactly (so we have no simple guide to the form of solution, as we did above).
We explore this aspect via another example.

E4.2 A Duffing equation with damping

We consider the problem

with
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where and is a constant independent of  cf. Q3.24. We seek an
asymptotic solution in the form

where

and note that we have omitted the term in accordance with our earlier observa-
tion. Equation (4.18) becomes

which gives the sequence of equations

and so on. The initial conditions, (4.19), become

as far as terms The solution to (4.20a), with (4.21) and (4.22), is

The problem for can be written

where with
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The function is periodic in T only if

thus, with (4.23), we obtain

(Note that, if we allow then and which corresponds to
the results obtained in Q3.24; the change of sign in is because here the leading
term involves cos rather than sin.) This leaves the solution of (4.24) as

with

The analysis of equation (4.20c), for follows the same pattern (and see
also E4.1), but here the details are considerably more involved; we will not pur-
sue this calculation any further (for we learn nothing of significance, other than to
show that which is left as an exercise). The solution, to this order, is
therefore

Other examples based on small adjustments to the equation for a linear oscillator can
be found in exercises Q4.1–4.9. It might be anticipated, in the context of oscilla-
tors governed by ordinary differential equations, that the method of multiple scales
is successful only if the underlying problem is a linear oscillation i.e. controlled by an
equation such as this would be false. In an important extension of these
techniques, Kuzmak (1959) showed that they work equally well when the oscillator
is predominantly nonlinear. Of course, the fundamental oscillation will no longer be
represented by functions like sin or cos, but by functions that are solutions of nonlinear
equations e.g. the Jacobian elliptic functions.

4.2 NONLINEAR OSCILLATORS

Equations such as

possess solutions that can be expressed in terms of sn, cn or dn, for example. (In the
Appendix we present all the basic information about these functions that is necessary for
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the calculations that we describe.) We discuss an example, taken from Kuzmak (1959),
which exemplifies this technique.

E4.3 A nonlinear oscillator with slowly varying coefficients

We consider the problem

for together with some suitable initial data; this is a Duffing equation with
slowly varying coefficients. The equation clearly implies that the slow scale should be

but what do we use for the fast scale? Here, we define a general form of fast
scale, T, by

where is to be determined, and the period of the oscillation in T is defined
to be a constant—an essential requirement in the application of multiple scales in
this problem. (In some more involved problems, it might be necessary to introduce

Equation (4.27) is transformed according to

which gives, with

and we seek a solution

where each is periodic in T. (The boundedness and uniform validity, that we aim
for as will depend on the particular we will assume that these
functions allow this.) Now (4.30) in (4.29) yields the sequence of equations

as far as Note that, although the first equation—for —is necessarily
nonlinear, all equations thereafter are linear.
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An exact solution of equation (4.31) is

where

(The confirmation of this, using the properties given in the Appendix, is left as an
exercise.) Here, is a constant (to ensure that the period in T is a constant which,
with the chosen form (4.33), is 1). Given and equations (4.34a,b) provide
two equations for the three unknown functions: and A third equation
is obtained by imposing periodicity on

The task of solving (4.32) is not as difficult as it might appear; the important ma-
noeuvre is to write

and then to solve for Equation (4.32), with (4.35), gives

but from (4.31) we also have that

and so (4.36) becomes, after multiplication by

Now, for to be periodic with period 1, must be similarly periodic
(because is, in (4.35)). Thus we must have, for any T,

which can be written

which is our third relation. When (4.33) is used in (4.37), the integration is possible
(but this does require some additional skills with, and knowledge of, elliptic functions
and integrals; see e.g. Byrd & Friedman, 1971), to give
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initial data will determine both this constant and Then, for known and suitable
and equations (4.34a,b) and (4.38) enable the complete description of the

first term in the asymptotic expansion (4.30).

This example has demonstrated that we are not restricted to nearly-linear oscillations,
although we must accept that mathematical intricacies, and the required mathematical
skills, are rather more extensive here than in the two previous examples. In addition,
problems of this type, because they are strongly nonlinear, often force us to address other
difficulties: we have used a periodicity condition, (4.37), but this fails if the solution
is not periodic—and this can happen. If the solution evolves so that then the
periodicity is lost because the period becomes infinite in this limit. In this situation, it
is necessary to match the solution for m = 1 to the periodic solution approximated as

an example of this procedure can be found in Johnson (1970). Some additional
material related to this topic is available in Q4.10 & 4.11.

4.3 APPLICATIONS TO CLASSICAL ORDINARY DIFFERENTIAL EQUATIONS

The method of multiple scales is particularly useful in the analysis of certain types of
ordinary differential equation which incorporate a suitable small parameter. We will dis-
cuss three such problems, the first of which we have already encountered: the Mathieu
equation(§3.4 and E3.6). The next two involve a discussion of a particular class of
problems—associated with the presence or absence of turning points (see §2.8)—with
a solution-technique usually referred to as WKB (or, sometimes, WKBJ); we will write
more of this later.

The Mathieu equation, discussed in §3.4 is

to which we will apply the method of multiple scales. However, before we undertake
this, we need to know what the fast and slow scales should be; this requires a little care.
Let us consider the equation with (fixed independent of

then we could select The equation for becomes

In general, we find that each has a particular integral proportional to
  unless and then we have particular integrals that grow

in t. This condition will occur for and so the critical values of are
(n = 0, 1, 2 . . .) . From these points on the will emanate the transitional curves,
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in the which separate purely oscillatory from exponentially growing so-
lutions; see Further, for any given n, the asymptotic expansion will take the
form

and so we should then use the slow scale We note that the fast scale can be
taken simply as t. With these points in mind, we consider an example in some detail.

E4.4 Mathieu’s equation (n = 1) for

We use the method of multiple scales for the equation

with thus we have the case n = 1 and so we introduce the scales

Equation (4.39), with then becomes

where has been expanded in the usual way, and then we seek a solution

thus we generate the sequence of equations

and so on.
Equation (4.41a) has the general solution

and then (4.41b) can be written
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Thus a solution for which is periodic in T requires

which possess the general solution

where and are arbitrary—possibly complex which then requires

the complex conjugate to be included—constants. We see that

(a)

(b)
(c)

if then and are oscillatory and so is oscillatory in
both T and
if then there exists a solution which grows exponentially;
if then (see (4.42)) one of or is constant and the other grows
linearly.

The method of multiple scales has enabled us, albeit in the limit to describe
all the essential features of solutions of Mathieu’s equation, and how these change as
the parameters select different positions and regions in The corresponding
problem for n = 2 is discussed in Q4.12, and related exercises are given in Q4.13 &
4.14.

We now turn to an important class of problems that are exemplified by the equation
(cf. Q2.24)

where is given. In the simplest problem of this type, takes one sign
throughout the given domain (D) i.e. a > 0 (oscillatory) or a < 0 (exponential). A
more involved situation arises if a changes sign in the domain: a turning-point problem
(see Q2.24). The intention here is to examine the solution of the equation in the case

so that, for the coefficient is slowly varying. We use the
method of multiple scales to analyse this problem and hence give a presentation of the
technique usually referred to as ‘WKB’. (This is after Wentzel, 1926; Kramers, 1926;
Brillouin, 1926, although the essential idea can be traced back to Liouville and Green.
Some authors extend the label to WKBJ, to include Jeffreys, 1924.) We will formulate
an oscillatory problem and use this example to describe the WKB approach.

E4.5 WKB method for a slowly-varying oscillation

We consider



171

with for and with suitable initial conditions. The most natural
and convenient formulation of the multiple-scale problem follows E4.3: we introduce

and seek a solution

Equation (4.44) becomes

and, in this first exercise, we will not expand (but see Q4.15). Thus (4.45) leads to
the sequence of equations

for the O(1) and problems.
To solve (4.46a), we first select and then obtain the general solution

where and are arbitrary functions. (Other choices of  lead to a formulation in
terms of but then the period will depend on which leads to additional non-
uniformities—see E4.6—unless is constant; we have made the simplest choice of
this constant.) The equation for now becomes

where we have written The solution for  is periodic in T, i.e. in
if

and so

So, for example, if we are given the initial data then we have
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and a solution (with T = 0 at say), expressed in terms of is

This describes a fast oscillation (by virtue of the factor with a slow evolution of the
amplitude; these are the salient features of a WKB(J) solution. (Note that a property
of this solution is which is usually called ‘action’; typically, energy

and so is conserved—not the energy itself.)

The problem of finding higher-order terms in the WKB solution is addressed in Q4.15,
and the corresponding problem with is discussed in Q4.16, and
an interesting associated problem is discussed in Q4.17. We now consider the case of
a turning point.

It is apparent that the solution (4.47) is not valid if  which is the case at a
turning point. In (4.43), we will write with throughout
the domain D, and analytic (to the extent that may be written as a uniformly
valid asymptotic expansion, as for This choice of has a
single (simple) turning point at x = 0; a turning point elsewhere can always be moved
to x = 0 by a suitable origin shift. The intention is to find a solution valid near the
turning point and then, away from this region, use the WKB method in x < 0 and
in x > 0. Thus the turning-point solution is to be inserted between the two WKB
solutions and, presumably, matched appropriately. We will present all these ideas, using
the method of multiple scales valid as in the following example.

E4.6 A turning-point problem

We consider

where both and are positive, O(1) constants, and analytic for
and The turning point is at x = 0, and the first issue is to decide

what scales to use in the neighbourhood of this point; this has already been addressed
in Let us write (and any scaling on y is redundant, in so far as the
governing equation is concerned, because the equation, (4.48), is linear) to give

and so a balance of terms is possible if i.e. fast scale. The
slow scale is simply However, a more convenient choice of the fast variable
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(cf. §2.7)is

where h ( X ) > 0 is to be determined; then we have the operator identity

Finally, before we use this to transform equation (4.48), we need to decide how to
replace x in the coefficient in equation (4.48): should we use Z or X or both?
Now the important property of the fast scale, (4.49), is that it is zero at the turning
point; thus we elect to write any part of a coefficient which has this same property
in terms of Z, and otherwise use X. With this in mind, we use (4.49) and (4.50) in
(4.48) and then, with we obtain

where, for simplicity, we have written

We seek a (bounded) solution in the form

and hence we obtain the sequence of equations

and so on.
The bounded solution of (4.52a) can be expressed in terms of the Airy function, Ai

(see e.g. Abramowitz & Stegun, 1964). At this stage, however, we have not yet made
a suitable choice for h(X); let us choose

and then we have



174 4. The method of multiple scales

This solution is oscillatory for Z > 0 and exponentially decaying for Z < 0; in par-
ticular

and

The equation for  now becomes

and a particular integral of this equation is necessarily proportional to ZAi(Z), which
immediately leads to a non-uniformity in Thus we
must select

it is left as an exercise to show that, if we had written
then another non-uniformity would be present unless  k = constant, and we have
already set k = 1. We alluded to this difficulty at the end of E4.5. Finally, the leading-
order solution will be completely determined once we have found h(X) (introduced
in (4.49)).

From (4.53) and (4.51), we have the equation

we consider the case X > 0, then it is convenient to write

This is

and so

which gives (with the appropriate choice of sign)
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with X  > 0 and h ( X ) > 0. (It follows directly from this result that

The case X < 0, where the corresponding choice is G(X) = – Xh(X), is left as an
exercise; you should find that as a continuous h ( X ) can
be defined.

In order to complete the calculation, we require the solution in X  > 0 and in
X  < 0, away from the neighbourhood of the turning point. Following E4.5 we have,
for X  > 0 and writing

where and and are arbitrary constants (because we will not impose any
particular conditions at For X  < 0 (see Q4.16) we obtain

for a bounded solution (as and with (Re-
member that, since the original equation, (4.48), is second order, only two boundary
conditions may be independently assigned.)

The solution in the neighbourhood of the turning point is

where G(X ) is given by (4.55) and is an arbitrary constant. The final task is therefore
to match (4.57) with (4.56a,b). First, in Z < 0, X  < 0, we have (from (4.57) and
(4.54b))

From (4.56b) we have
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where we have used (4.55) (and note that thus matching occurs if we
choose

For Z > 0, X > 0, from (4.57) and (4.54a), we have

from (4.56a) we obtain

which also matches if we choose

The matching conditions are usually called, in this context, connection formulae: they
‘connect’ the solutions on either side of the turning point i.e. the relation between

and Here, we have three relations between the four constants and
so only one is free; that only one occurs here is because, of the two (independent)
boundary conditions that we may prescribe, one has been fixed by seeking a bounded
solution in X < 0 i.e. the exponentially growing solution has already been excluded.

A number of other examples of turning-point problems are offered in the exercises;
see Q4.18–4.21. This completes all that we will write about the routine applications to
ordinary differential equations; we now take a brief look at how these same techniques
are relevant to the study of partial differential equations.

4.4 APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

It is no accident that we will discuss partial differential equations which are associated
with wave propagation; this type of equation is analogous to oscillatory solutions of
ordinary differential equations. (These two categories of equations are the most natural
vehicles for the method of multiple scales, although others are certainly possible.) In
particular we will start with an equation that has become a classical example of its type:
Bretherton’s model equation for the weak, nonlinear interaction of dispersive waves
(Bretherton, 1964).
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E4.7 Bretherton’s equation

The equation that we will discuss is

where is defined in and we will further assume that
we have suitable initial data for the type of solution that we seek. The aim is to produce
a solution, via the method of multiple scales, for First we observe that, with

there is a solution

where, given k (the wave number), (the frequency) is defined by the dispersion relation:

The presence of the parameter, together with a naïve asymptotic solution (generating
terms proportional to or suggests that we must expect changes on the slow
scales and The fast scale is defined in much the same way that we adopted for
E4.3 and E4.5; thus we write

The solution now sits in a domain in 3-space, defined by
A solution described by these variables will have the property that

both the wave number and the frequency slowly evolve. (Note that the correct form of
the solution with is recovered if k = constant and The retention
of the parameter in the definitions of k and allows us to treat these functions as
asymptotic expansions, if that is useful and relevant; often this is unnecessary.

From (4.61) we have the operator identities

and also

etc., as far as It is sufficient, for the results that we present here, to
transform equation (4.58) but retain terms no smaller than thus, with
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we obtain

Before we proceed with the details, we should make an important observation. The
transform, (4.61), defining the fast scale (usually called the phase in these problems),
implies a consistency condition that must exist if is a twice-differentiable function,
namely

this additional equation is called the conservation of waves (or of wave crests), and it
arises quite naturally from an elementary argument. Consider (one-dimensional) waves
entering and leaving the region the number of waves, per unit time, crossing

into the region is given as and the number leaving, across x, we will write as
The total number of waves (wave crests) between and x is if the number of
waves does not change (which is what is typically observed, even if they change shape)
then

or, upon allowing differentiation with respect to x,

which immediately recovers (4.63) if the dependence on (x, t) is via (X, T).
Returning to equation (4.62), we seek a solution

with

and then we obtain the sequence of equations
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and so on. We will take the solution of (4.65) to be (cf. (4.59))

and this requires

The equation for (4.66), will include terms generated by which involve
or —and all these must be removed if  is to be periodic. The terms in
give

and those in

leaving

The two equations, (4.69) and (4.70), which ensure the removal of secular terms,
look rather daunting, but quite a lot can be done with them. However, we first need
to introduce two familiar properties of a propagating wave. One is the speed at which
the underlying wave—the carrier wave—travels, usually called the phase speed. This is
defined as the speed at which lines  move i.e. lines such that

so

The other—and for us, the far more significant—property is the speed at which the
energy propagates (and therefore, for example, the speed at which the amplitude
modulation moves); this is defined as the group speed. From our result
in (4.68), we have
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Equation (4.70), after multiplication by can be written as

or

which describes the property (the wave action; see E4.5) propagating at the group
speed, and evolving by virtue of the non-zero right-hand side of this equation.
Similarly, equation (4.69) can be written first as

and if we elect to write then (4.61) and (4.64) allow us to interpret
and and then we obtain

Thus the correction to the phase, also propagates at the group speed and evolves.
Finally, from (4.63), and noting that (4.68) (or (4.72)) implies we obtain

the wave number (and, correspondingly, the frequency) propagate unchanged at the
group speed. (The initial data will include the specification of

This example has demonstrated that the method of multiple scales can be used to
analyse appropriate partial differential equations, even if we had to tease out the details
by introducing, in particular, the group speed. A related exercise can be found in
Q4.22.

In our analysis of Bretherton’s equation, we worked—not surprisingly—with real-
valued functions throughout i.e. There is, sometimes, an advantage in working
within a complex-valued framework e.g. complex conjugate. We will use this
approach in the next example, but also take note of the general structure that is evident
in E4.7.

E4.8

A wave profile, satisfies the equation

A nonlinear wave equation: the NLS equation
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where In this problem we seek a solution which depends on x  –  c t (here,
c is the phase speed), on is the group speed) and on t (time). We expect
that the dependence on is slow i.e. in the form but we will allow
an even slower time dependence; we define

although we have yet to determine c and With and
(4.74), equation (4.73) becomes

and we seek a solution

with ‘cc’ denotes the complex conjugate. This solution represents a primary
harmonic wave together with appropriate higher harmonics (the number
of which depends on i.e. on the hierarchy of nonlinear interactions). The wave
number of the primary wave, k, is given and real; X and T are real (of course), but
each is complex-valued. We will assume that c and are independent of

First we use (4.76a) in (4.75) to give the sequence of equations

as far as the terms. The solution of (4.77a) is given in the form

(see (4.76b)), and so we-require

which defines the phase speed; at this stage is unknown. Equation (4.77b), for
now becomes
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with the given form of solution

which requires

with (and still arbitrary. (We note that and that, with
we have so the classical result for group speed.)

The final stage is to find the solution—or, at least, the relevant part of the solution—
of equation (4.77c). The usual aim in such calculations is to find, completely, the first
term in (we hope) a uniformly valid asymptotic expansion. In this case we have yet
to find  (although we know both c (k) and the determination of
arises from the terms in equation (4.77c). We will find just this one term; the rest
of the solution for is left as an exercise, the essential requirement being to check
that there are no inconsistencies that appear as is determined. These terms, in
(4.77c) give the equation

where the over-bar denotes the complex conjugate. When the earlier results are in-
corporated here, we find the equation for

This equation, (4.79), is a Nonlinear Schrödinger (NLS) equation, another of the ex-
tremely important exactly-integrable equations within the framework of soliton theory;
see Drazin & Johnson (1992). Thus we have a complete description of the first term
in the asymptotic expansion (4.76a,b):

where is a solution of (4.78) and both c (k) and are known.

We should comment that, because of the particular form of solution that we have
constructed in this example, it is appropriate only for certain types of initial data.
Thus, from (4.80), we see that, at t = 0, we must have an initial wave-profile that is
predominantly a harmonic wave, but one that admits a slow amplitude modulation i.e.
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Any initial conditions that do not conform to this pattern would require a different
asymptotic, and multi-scale, structure. Other examples that correspond to E4.8 are set
as exercises Q4.23–4.26; see also Q4.27.

Before we describe one last general application of the method of multiple scales—
perhaps a rather surprising one—we note a particular limitation on the method.

4.5 A LIMITATION ON THE USE OF THE METHOD OF MULTIPLE SCALES

The foregoing examples that have shown how to generate asymptotic solutions of par-
tial differential equations appear reasonably routine and highly successful. However,
there is an underlying problem that is not immediately evident and which cannot be
ignored. In the context of wave propagation, which is the most common application
of this technique to partial differential equations, we encounter difficulties if the pre-
dominant solution is a non-dispersive wave i.e. waves with different wave number (k)
all travel at the same speed. To see how this difficulty can arise, we will examine an
example which is close to that introduced in E4.8.

E4.9 Dispersive/non-dispersive wave propagation

We consider the equation (cf. (4.73))

where is a given constant and we seek a solution in the form
where

The equation then becomes

and we look for a solution periodic in in the form of a harmonic wave:

where all this follows the procedure described in E4.8.
Here, we find that

but is yet to be determined. At the next order, the equation for can be written
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and so we require

It is immediately evident that we have a non-uniformity as From (4.82) we see
that corresponds to a non-dispersive wave i.e. c = ±1 for all wave numbers, k.
When we set in (4.83), and use no solution exists, although for any

no complications arise and we may proceed.

This failure is not to be regarded as fatal: for the assumed initial data (the harmonic
wave), or any other reasonable initial conditions, an asymptotic solution (with
can be found by the method of strained coordinates. For a wave problem, as we have
seen (e.g. Q3.25), this simply requires a suitable representation of the characteristic
variables. Nevertheless, in the most extreme cases, when the method of multiple scales
is still deemed to be the best approach, the resulting asymptotic solution may not be
uniformly valid as T (or in our discussion of ordinary differential equations)
Typically, the multiple-scale solution will be valid for T (or no larger than O(1),
but this is usually an improvement on the validity of a straightforward asymptotic
expansion.

4.6 BOUNDARY-LAYER PROBLEMS

The examples that we have discussed so far involve, usually with a rather straightforward
physical interpretation, the slow evolution or development of an underlying solution.
Boundary-layer problems (see §2.6–2.8), on the other hand, might appear not to possess
this structure. Such problems have different—but matched—solutions away from, and
near to, a boundary. However, the solution of such problems expressed as a composite
expansion (see §1.10) exhibits precisely the multiple-scale structure: a fast scale which
describes the solution in the boundary layer, and a slow scale describing the solution
elsewhere. We will demonstrate the details of this procedure by considering again our
standard boundary-layer-type problem given in equation (2.63) (and see also (1.16)).

E4.10 A boundary-layer problem

We consider

with where and are constants independent of
and The boundary-layer variable for this problem (see (2.66)) is

and so we write which leads to equation (4.84)
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written in the form

with

Note the appearance of the evaluation on which may cause some anxiety; we
will now address this issue. To see the consequences of this, and before we write down
the complete asymptotic expansion, it is instructive first to solve for i.e.

with the boundary conditions

This second condition involves and to accommodate such terms the asymptotic
expansion must include them; thus we seek an asymptotic solution

and evaluation on is now no longer an embarrassment.
The sequence of equations, generated by using (4.87) in (4.85), starts

The general solution of (4.88a) is

and then we may write (4.88b) as

which itself has the general solution

We seek a solution which is uniformly valid for and but this
latter implies thus we require, for uniformity,
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The boundary conditions, at this order, give

and so we have the solutions

which completely determines the first term of the asymptotic expansion:

as given in equation (2.76). The other terms in the expansion follow directly by im-
posing uniformity at each order; the terms for are used to remove the ex-
ponentially small contributions that appear in the boundary condition on x = 1.

The method of multiple scales is therefore equally valid, and beneficial, for the analysis
of boundary-layer problems. However, the example that we have presented is particu-
larly straightforward (and, of course, we have available the exact solution). We conclude
this chapter by applying the method to a more testing example (taken from Q2.17(a)).

E4.11 A nonlinear boundary-layer problem

We consider the problem

with for The slow scale is clearly x, but for the fast
scale we will use the most general formulation of the boundary-layer variable; see §2.7.
Thus we introduce

and then we write so that equation (4.89) becomes

with

The terms that are exponentially small on x =  1, as are and so we
seek a solution
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The first two equations in the sequence, obtained by using (4.91) in (4.90), are

and (4.92a) has the general solution

with

Equation (4.92b) can then be written

which has the general solution

A solution that is uniformly valid as requires

and so, incorporating the boundary conditions, (4.94), we readily obtain

Combining this with (4.93), we have the first term of a uniformly valid representation
of the solution:

which should be compared with the solution obtained in Q2.17(a).
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Now that we have seen the method of multiple scales applied to boundary-layer prob-
lems, it should be evident that this provides the simplest and most direct approach
to the solution of this type of problem. Not only do we avoid the need to match—
although, of course, the correct selection of fast and slow variables is essential—but
we also generate a composite expansion directly, which may be used as the basis for
numerical or graphical representations of the solution. Further examples are given in
exercises Q4.28–4.35.

This concludes our presentation of the method of multiple scales, and is the last
technique that we shall describe. In the final chapter, the plan is to work through a
number of examples taken from various branches of the mathematical, physical and
related sciences, grouped by subject area. These, we hope, will show how our various
techniques are relevant and important. It is to be hoped that those readers with interests
in particular fields will find something to excite their curiosity and to point the way
to the solution of problems that might otherwise appear intractable.

FURTHER READING

Most of the texts that we have mentioned earlier discuss the method of multiple scales,
to a greater or a lesser extent. Two texts, in particular, give a good overview of the
subject: Nayfeh (1973), in which a number of problems are investigated in many dif-
ferent ways (including variants of the method of multiple scales), and Kevorkian &
Cole (1996) which provides an up-to-date and wide-ranging discussion. The appli-
cations to ordinary differential equations are nicely presented in both Smith (1985)
and O’Malley (1991), where a lot of technical detail is included, as well as a careful
discussion of asymptotic correctness. Holmes (1995) provides an excellent account of
both the method of multiple scales and the WKB method. This latter is also discussed
in Wasow (1965) and in Eckhaus (1979). Finally, an excellent introduction to the rôle
of asymptotic methods in the analysis of oscillations (mainly those that are nonlinear)
can be found in Bogoliubov & Mitropolsky (1961)—an older text, but a classic that
can be highly recommended (even though it does not possess an index!).

EXERCISES

Q4.1 Nearly linear oscillator I. A weakly nonlinear oscillator is described by the equation

where a (> 0) is a constant (independent of and the initial conditions

are

Use the method of multiple scales to find, completely, the first term in a
uniformly valid asymptotic expansion. (It is sufficient to use the time scales
T = t and Explain why your solution fails if a < 0.
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Q4.2 Nearly linear oscillator II. See Q4.1; repeat this for the problem

with

Q4.3 Nearly linear oscillator III. See Q4.1; repeat this for the problem

where (> 0) is a constant (independent of and is an integrable
function; the initial condition is What condition must satisfy
if, on the basis of the evidence of your two-term expansion, the asymptotic
expansion is to be uniformly valid?
[Hint: remember that the general solution of

where is an arbitrary constant.]
Q4.4 A nearly linear oscillator with forcing. See Q4.1; repeat this for the problem

where and are constants, both independent of Find the general form
of the first term, given that Explain the consequences
of (a) (b) Also, write down the equations defining the slow
evolution of the solution in the cases: (c) (d) (See Q4.7,
4.8 for more details.)

Q4.5 A slowly varying linear oscillator. A damped, linear oscillator is described by the
equation

with and Obtain the complete description of the (general)
first term of a uniformly valid asymptotic expansion, for which you should use
the fast scale defined by (and the slow scale is

Q4.6 A coupled oscillatory system. An oscillation is described by the pair of equations

with and the initial conditions are Introduce
and use the method of multiple scales

and find, completely, the first term of a uniformly valid asymptotic expansions.
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Also, from the equations that define the third term in the expansions, show
that the solution is uniformly valid (as only if

Q4.7 Forcing near resonance I. Consider an oscillation described by a Duffing equation
with (weak) forcing:

with is the given frequency of the forcing and the initial condi-
tions are Given that (where is
a constant independent of find the equation which describes completely the
first term of a uniformly valid asymptotic expansion. [Hint: write the forcing
term as where are the fast/slow scales, respectively.]

Q4.8 Forcing near resonance II. See Q4.7; repeat this for in the equa-
tion

(see Q4.4), where is a constant independent of (and note the appearance of
subharmonics).

Q4.9 Failure of the method of multiple scales. An oscillator is described by the equation

with Introduce and (with and
analyse as far as the term at which ensures the complete description
of the solution as far as Show that a uniformly valid solution cannot be
obtained using this approach. (You may wish to investigate why this happens
by examining the energy integral for the motion.)

Q4.10 Nonlinear oscillation I. A (fully) nonlinear oscillation is described by the equation

with Show that a solution with is x = a cn[4K(m)t; m] for a
suitable relation between a and m. Now use the method of multiple scales,
with the scales T (where and to find the first term of
an asymptotic expansion which is periodic in T. (The periodicity condition
should be written as an integral, but this does not need to be evaluated.)

Q4.11 Nonlinear oscillation II. See Q4.10; follow this same procedure for the equation

where a solution with can be written for
suitable a, b and m.
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with (which is the case n = 2). Introduce T = t and
show that and find the equation for the term in the asymptotic

expansion for x; from this, deduce that the exponent which describes the
amplitude modulation (cf. E4.4) is

What is the nature of the solution of this Mathieu equation, for various
(These results should be compared with those obtained in Q3.15.)

Q4.13 A particular Hill equation. See Q4.12; follow this same procedure for the Hill
equation

where is a fixed constant (independent of and for
Show that and that the leading term is periodic in T and

only if

where are to be identified. (These results should be compared with those
obtained in Q3.17.)

Q4.14 Mathieu’s equation away from critical See Q4.12; consider Mathieu’s equa-
tion, but now with away from the critical values: set
n = 0, 1, 2,..) and fixed independent of Introduce with

and and find the solution correct at (You should
note the singularities, for various that are evident here.)

Q4.15 WKB: higher-order terms. See E4.5; consider the equation

with introduce and write

Show that

and then expand both Determine
and in terms of  and the constant (which is independent



192 4. The method of multiple scales

of (This procedure is a very neat way to obtain higher-order terms in the
WKB approach.)

Q4.16 WKB (exponential case). Consider the equation

where for and Introduce and
and hence find, completely, the first term of a uniformly valid asymp-

totic expansion (which will be the counterpart of equation (4.47)).
Q4.17 Eigenvalues. Use the method of multiple scales, in the WKB form, to find the

leading approximation to the eigenvalues of the problem

with and a > 0 for (You should in-
troduce and Evaluate your results, explicitly,
for the cases: (a) (b) a (X) = 1 + X. [Written in the form

it is evident that this is the problem of find-
ing approximations to the large eigenvalues.]

Q4.18 A turning-point problem I. Consider

where with f > 0 and analytic throughout the given domain.
Show that the relevant scaling (cf. §2.7) in the neighbourhood of the turning
point (at x =  1) is and then introduce the more useful fast
scale and use x as the slow scale. Show that

where = constant and Ai(X ) is the
(bounded) Airy function (a solution of Determine h(x) and
write down the first term of the asymptotic expansion of

Q4.19 A turning-point problem II. Show that the equation

where and has turning points at x = 0 and at x = 1. [Hint:
write Use the WKB approach (for to find the first term
in each of the asymptotic expansions valid in x < 0 , 0 < x < 1, x > 1. Also
write down the leading term in the asymptotic expansions valid near x = 0
and near x = 1.

Q4.20 A higher-order turning-point. Show that the equation
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with and f > 0 throughout the given domain, has a turning point
at x = 0. Find the equation that, on an appropriate fast scale (X ), describes
the solution near x = 0 (as Show that this equation has solutions
which can be written in terms of Bessel functions: for suitable

and v.
Q4.21 Schrödinger’s equation for high energy. The time-independent, one-dimensional

Schrödinger equation for a simple-harmonic-oscillator potential can be
written

where E (= constant) is the total energy. Let us write and
define to give

this equation has turning points at and we require exponentially de-
caying solutions as (and oscillatory solutions exist for
Find the leading term in each of the regions, match (and thus develop ap-
propriate connection formulae) and show that the eigenvalues (E) satisfy

where n is a large integer. (This problem can be solved
exactly, using Hermite functions; it turns out that our asymptotic evaluation of
E is exact for all n.)

Q4.22 A weakly nonlinear wave. A wave is described by the equation

where Introduce
and derive the equations that completely describe the leading-order solution

which is uniformly valid. (Do not solve your equation for
Q4.23 A weakly nonlinear wave: NLS I. A wave is described by the equation

with Introduce (where c (k)
and are independent of and seek a solution
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where Determine c (k) and (and confirm that satisfies the
usual condition for the group speed) and find the equation for

Q4.24 A weakly nonlinear wave: NLS II. See Q4.23; repeat all this for the equation

Q4.25 A weakly nonlinear wave: NLS III. See Q4.23; repeat all this for the equation

Q4.26 Kd V NLS. Consider the Korteweg-de Vries (KdV) equation

where is a parameter. Introduce and
(and here and will be corrections to the original c and

because the given KdV equation has already been written in a suitable moving
frame). Seek a solution

where find c (k), and the equation for (This
example demonstrates that an underlying structure of the KdV equation is
an NLS (Nonlinear Schrödinger) equation; indeed, it can be shown that, in
the context of water waves, for example, the relevant NLS equation for that
problem matches to this NLS equation—see Johnson, 1997.)

Q4.27 Ray theory. A wave (moving in two dimensions) slowly evolves, on the scale
so that where

show that
(a) where and
(b) (the eikonal equation);
(c) (so the vector k is ‘irrotational’).
(Given that the energy in the wave motion is E(X, Y, T), it can be shown
that where All this is the basis for ray
theory, or the theory of geometrical optics, which is used to describe the properties
of waves that move through a slowly changing environment.)

Q4.28 Boundary-layer problem I. Use the method of multiple scales to find, completely,
the first term of a uniformly valid asymptotic expansion of the solution of

where
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Q4.29 Boundary-layer problem II. See Q4.28; repeat this for the problem

with
Q4.30 Boundary-layer problem III. See Q4.28; repeat this for the problem

with
Q4.31 Boundary-layer problem IV. See Q4.28; repeat this for the problem

with
Q4.32 Boundary-layer problem V. See Q4.28; repeat this for the problem

with
Q4.33 Heat transfer problem. See Q4.28; repeat this for the heat transfer problem

(as given in Q2.30)

with [Take care!]
Q4.34 A more general boundary-layer problem. See Q4.28; repeat this for the problem

where is a given integer, with the boundary conditions

Q4.35 Two boundary layers. See Q4.28; repeat this for the problem

with but note that two fast scales are
required here, to accommodate the two boundary layers—one near x = 0 and
the other near x = 1.
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5. SOME WORKED EXAMPLES ARISING FROM PHYSICAL PROBLEMS

In this final chapter, the aim is to present a number of worked examples where most
of the details are given explicitly; what little is left undone may be completed by the
interested reader (although no formal exercises are offered). Also, we will not dwell
upon the purely technical aspects of finding the solution of a particular differential
equation. These examples are taken from, or based on, texts and papers that introduce,
describe, develop, explain and solve practical problems in various fields; references to
appropriate source material will be included. Most have arisen—not surprisingly—
from the physical sciences, but we have attempted to provide a fairly broad spread of
topics. Each problem is described with sufficient detail (we hope) to enable it to be
put into context, although it would be quite impossible to include all the background
ideas for those altogether unfamiliar with the particular field. To this end, the prob-
lems are collected under various headings (such as ‘mechanical & electrical systems,
‘semiconductors’ or ‘chemical & biological reactions’) and so the reader with particular
interests might turn to specific ones first. Nevertheless, the hope is that every problem
is accessible, as an example in singular perturbation theory, to those who have followed
this (or any other suitable) text. The technique adopted to construct the asymptotic
solution will be mentioned, and a reference will be given to a relevant section or
example from the earlier chapters of this text.

A number of the examples and exercises that have already been discussed have been
taken from various important applications; in some cases, those presented in this chap-
ter build on and expand these earlier problems. The reader should be aware, therefore,
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that the relevant calculations in the previous chapters may need to be rehearsed before
embarking on some of the new material presented here. In each group of problems,
every example will be labelled by a suitable name, and the full list of these will appear
in the preamble to that group. The titles of the groups are: 5.1 Mechanical & elec-
trical systems; 5.2 Celestial mechanics; 5.3 Physics of particles & light; 5.4 Semi- and
superconductors; 5.5 Fluid mechanics; 5.6 Extreme thermal processes; 5.7 Chemical &
biochemical reactions. These chosen headings are intended simply to provide a general
guide to the reader; there is no doubt that some examples could be placed in a different
group—or appear in more than one group. Further, many other examples could have
been included (and the author apologises if your favourite has been omitted); the in-
tention in a text such as this is to give only a flavour of what is possible. Nevertheless, it
is hoped that sufficient information is available to encourage the interested researcher
to appreciate the power of the techniques that we have described.

Although the physical basis for each problem will be outlined, the relevant non-
dimensional, scaled equations will usually be the starting point for the analysis. There is
little to be gained by presenting the original physical problem, in all its detail, together
with the non-dimensionalisation, et cetera, if only because of the requirement, for
example, to define all the physical variables in every problem. Further, the reasonable
limitation on space also precludes this. The interested reader should be able to fill in
the details, particularly with the aid of the original reference(s).

5.1 MECHANICAL & ELECTRICAL SYSTEMS

The examples collected under this heading are based on fairly simple mechanical or
physical principles; more advanced and specific topics (such as celestial mechanics)
which might have appeared in this group are considered separately. The examples to
be discussed are: E5.1 Projectile motion with small drag; E5.2 Child’s swing; E5.3
Meniscus on a circular tube; E5.4 Drilling by laser; E5.5 The van der Pol/Rayleigh
oscillator; E5.6 A diode oscillator with a current pump; E5.7 A Klein-Gordon equa-
tion.

E5.1 Projectile motion with small drag

We consider a projectile which is moving in the two-dimensional (x, z)-plane under
the action of gravity (which is constant in the negative z-direction) and of a drag force
proportional to the square of the speed (and acting back along the local direction of
motion). The non-dimensional equations are most conveniently written as

where and the initial conditions are given as
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is the angle of projection The small parameter is (>0), and for
motion such as that for a shot-put (see Mestre, 1991) its value is typically about 0.01. In
these projectile problems, the main interest is in estimating the range (and maximum
range), x, for a given vertical displacement (z), which may be zero; here, we find x
where z = h. We seek a solution, following the straightforward procedure (which may
produce a uniformly valid solution; cf. §2.3):

and then from (5.1a,b) we obtain

At the next order, we have the equations

which give, after an integration and on using the initial conditions on
t = 0,

Thus we have, for example,

which remains valid only if t is smaller than and at this stage we do not know
the domain for which z = h at

Finally, we integrate once again to find how the position of the object, (x, z), de-
pends on time (t), on and on
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where each for
Now we suppose that h = O(1) as then the time at which this is attained

is also O(1), and hence our asymptotic expansions are valid for In
particular, for z = h and selecting the larger of the roots for i.e. further away, we
find (from (5.6)), that

where provided that (For the case of the shot-put
application of this model, the landing point is below the projection point, so h < 0
and this condition is certainly satisfied.) Finally, using this asymptotic expansion for

in (5.5), we find that the range is

from which, for example, we can estimate the angle which maximises the range; this
is left as an exercise.

This example has proved to be particularly straightforward; indeed, because of the
specific application that we had in mind—the shot-put—all the asymptotic expansions
are uniformly valid. On the other hand, if we had projected the object from the top
of a high cliff, then we would encounter the problem of i.e. and
then the validity of the original expansions would be in doubt. The expansions are
not valid when but we still have u = O(1) although this
investigation is also left as an exercise.

E5.2 Child’s swing

We are all familiar with the child’s swing, and the technique for increasing the arc
(i.e. the amplitude) of the swing. The process of swinging the legs (coupled with a
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Figure 8. Pendulum of variable length, swinging through the angle (in a vertical plane).

small movement of the torso) causes the centre of gravity of the body to be raised and
lowered periodically. This can be modelled by treating the swing as a pendulum which
changes its length, by a small amount; the model equation for this (in the absence
of damping) is

for the angle of the swing, given see figure 8. We choose to represent the
child’s movement on the swing by where is a (positive) constant
and is a constant frequency to be selected. We will further simplify the problem by
analysing only the initial stages of the motion when is small, so we write sin
(For larger amplitudes, we must retain sin this complicates the issue somewhat.
A number of more general observations about this problem can be found in Holmes,
1995.)

Thus we approximate equation (5.7) as

which we will solve using the method of multiple scales (cf. E4.1).
We take the fast scale as T = t (or, more generally, but there is no advantage

in this, for we are led to the choice and, by virtue of the term in a slow
scale thus we have the identity
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Equation (5.8), with becomes

and we seek a solution in the form

which is periodic in T. In this problem, we have yet to choose the frequency is
what the child can control in order to increase the amplitude of the swing. Without
any damping in the model, we must anticipate that we can find an which allows the
amplitude to grow without bound. First, with (5.10) in (5.9), we obtain

and so on. Equation (5.11a) has the general solution

for arbitrary functions and which leads to equation (5.11b) in the form

In order to make clear the forcing terms in equation (5.12), which may lead to
secularities in T, we expand the last term to give

We see immediately that periodicity in T  requires and so we
will, for simplicity, choose (We are not particularly concerned about how
the motion is initiated, which would serve to select a particular value of  Now if

(all sign combinations allowed), then we require for period-
icity in T, and the amplitude remains constant: the arc of the swing is not increased.
However, we are seeking that condition which will allow the amplitude to increase on
the time scale thus we expect that will increase as increases. This is possi-
ble only if and this can arise here if (all sign combinations to be
considered), and so we may choose (and the sign of  is immaterial).
Thus with periodicity in T requires that
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and the amplitude grows. We conclude, therefore, that the adjustments provided by
the child on the swing must be at twice the frequency of the oscillation of the swing—
which is what we learnt as children.

E5.3 Meniscus on a circular tube

The phenomenon of a liquid rising in a small-diameter tube that penetrates (vertically)
the surface of the liquid is very familiar, as are the menisci that form inside and out-
side the tube. In this problem, we determine a first approximation to the shape of
the surface (inside and outside) in the case when the surface tension dominates (or,
equivalently, the tube is narrow). The basic model assumes that the mean curvature
at the surface is proportional to the pressure difference across the surface (which is
maintained by virtue of the surface tension). With the two principal curvatures of radii
written as and then this assumption can be expressed as

where z is the vertical coordinate and the pressure difference is proportional to the
(local) height of the liquid above the undisturbed level far away from the tube; this
relation is usually referred to as Laplace’s formula. In detail, written in non-dimensional
form, this equation (for cylindrical symmetry) becomes

where the surface is r is the radial coordinate with r = 0 at the centre of
the tube, and the tube wall (of infinitesimal thickness) is at r = 1; the liquid surface
satisfies as  (see figure 9). The non-dimensional parameter is inversely
proportional to the surface tension in the liquid and proportional to the square of the
tube radius (and is usually called the Bond number). We will examine the problem of
solving equation (5.13) for with the boundary conditions

where is the given contact angle between the meniscus and the tube (measured
relative to the upward vertical side of the tube). For wetting, then we have
which we will assume is the case for our liquid. We solve the interior and
the exterior (r > 1) problems independently. The discussion that we present for the
exterior problem is based on Lo (1983); another description of both the interior and
exterior problems is given in Lagerstrom (1988). As we will see, this problem results in
the construction of a uniformly valid expansion (interior), and a scaling and matching
problem in the exterior (cf. §§2.4, 2.5).
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Figure 9. Circular tube (centre r = 0) penetrating the surface of a liquid whose undisturbed level is z = 0.

Interior problem

It is a familiar observation, at least for   that the narrower the tube then
the higher the liquid rises in the tube; this suggests that the height of the liquid will
increase as When this is coupled with the property (the confirmation of which
is left as an exercise) that no relevant solution of equation (5.13) exists if we ignore the
term we are led to write the solution in the form

where h(0) = O(1) (and h(0) > 0). Now we seek an asymptotic solution

and so the leading-order problem becomes

with

(The prime denotes the derivative with respect to r.) One integration of (5.14) gives
directly that
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and then (5.15b) requires that the constant of integration be zero. The condition
(5.15c) now shows that

which defines the height of the column of the liquid (measured at the centre-line of
the tube). The solution for can be written down immediately; it is conveniently
expressed in terms of a parameter as

which satisfies condition (5.15a). We have found the first approximation to the height
of the liquid at r = 0 (namely, and the shape of the surface of the liquid
inside the tube: a section of a spherical shell. Further terms in the asymptotic expansions
can be found quite routinely; these expansions are uniformly valid for

Exterior problem

Finding the solution for the shape of the surface outside the tube is technically a more
demanding exercise. First, the deviation of the surface from its level (z = 0) at infinity
is observed to be not particularly large—as compared with what happens inside. This
suggests that we attempt to solve equation (5.13) directly, subject to

Let us write

so that we are not committing ourselves, at this stage, to the size of the next term in
the asymptotic expansion; in fact, as we shall see, logarithmic terms arise, although we
will not pursue the details here. The equation for is simply

where the arbitrary constant A is determined from (5.16a) as One further
integration of (5.17) then yields
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where B is a second arbitrary constant. The complications alluded to earlier are now
evident:  In r as which can never accommodate the condi-
tions at infinity, (5.16b), for any choice of B.

Now any solution of equation (5.13) which admits (5.16b) must balance contribu-
tions from each side of the equation; because the difficulties in (5.18) arise as
and this is where these other boundary conditions are to be applied, we write
where as Whether z also needs to be scaled is unclear at this stage;
let us therefore write and then (5.13) becomes

and so, provided that as we must select We choose
and hence obtain the equation

valid far away from the tube. The solution of this equation is to satisfy the boundary
conditions at infinity and also to match to the solution valid for r = O(1) i.e. to (5.18).
We seek a solution of equation (5.19) in the form

where

which has solutions and the modified Bessel functions; but grows
exponentially as (and decays), so we select the solution

where C is an arbitrary constant. Now this modified Bessel function has the properties:

so the conditions at infinity, (5.16b), are satisfied.
Finally, we match the first term valid for (5.20), to the first term valid

for r = O(1), (5.18). The latter gives
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and so

where we have retained the logarithmic term in (as we have learnt previously is
necessary; see §1.9). From (5.20) we obtain

or, reverting to the R-variable, simply

For (5.21) and (5.22) to match, we choose

We note that the left-hand side of equation (5.13) allows z to be shifted by a constant,
which at this order is B, and this contains a term In The asymptotic procedure for the
full equation may proceed provided (the right-hand side)   0  for r = O(1), and this
is the case even in the presence of this logarithmic term, since In as
Of course, the appearance of this term indicates the need to include logarithmic terms
throughout the asymptotic expansions.

This completes the description of the exterior problem so far as we are concerned
here; much more detail can be found in Lo (1983).

E5.4 Drilling by laser

This problem is a one-dimensional model for the process of drilling through a thick
block of material using a laser. The laser heats the material until it vaporises, and we
assume that the vapour is continuously removed; the essential character of this problem
is therefore one of heat transfer at a boundary—the bottom of the drill hole—which
is moving. In suitable non-dimensional variables, the temperature relative to ambient
conditions satisfies the classical heat conduction equation

with

(which describes the initial state and the condition at infinity, respectively), and
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Figure 10. Sketch of a laser drilling through a block of material; the bottom of the drill hole moves
according to

the vaporisation condition at the bottom of the drill hole at see figure 10.
The speed of the drilling process is controlled by

which is based on Fourier’s law applied at the bottom of the hole. This set, (5.23)–(5.26),
is an example of a Stefan problem; see Crank (1984) for more details (and important
additional references) about this problem and other moving-boundary, heat-transfer
examples. (A discussion of this particular problem can also be found in Andrews &
McLone, 1976, and, in outline, in Fulford & Broadbridge, 2002.)

Our intention is to seek a solution of this set of equations for For many
common metals, is fairly small (about 0.2); small signifies that rather more (latent)
heat than heat content is required to vaporise the material, once it has reached the
vaporisation temperature. We shall approach the solution by seeking a straightforward
expansion in powers of but we will need to take care over the evaluation on the
moving boundary. We will find that the resulting solution is not uniformly valid as

and the way forward requires a careful examination of what is happening in
the early stages of the heating process.

We write

so that equations (5.25) and (5.26) yield

and
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respectively, where all the evaluations on x = X have been mapped to by
allowing Taylor expansions about (and constructed for The subscripts
in x denote partial derivatives and the over-dot is the time derivative. The leading-order
problem is then described by the equations

with as where
Thus and then the complete solution for (obtained by using the

Laplace transform, for example) is

where erfc is the complementary error function:

All this appears to be quite satisfactory, at this stage.
The solution for (5.30), can now be used to initiate the procedure for finding

the next term. In particular, (5.29b) becomes

which means that

and this asymptotic expansion is not uniformly valid as indeed, we see that it
breaks down when But we still have so  further, for
the general in equation (5.26) to be O(1) then, retaining T = O(1) which is
necessary in order to accommodate (5.25), we see that in this region. Thus
we define the new variables

which produces the problem in this region as
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with

where

One essential difficulty that we have overlooked thus far is that the process of heating
the material, starting from ambient conditions at t = 0, requires the temperature to be
raised before any vaporisation occurs, and therefore before the hole can begin to form.
Because we have a failure of our original asymptotic expansion only when
this should contain the time period over which the initial heating phase occurs. Let the
hole be unformed for (and we assume that if it is smaller, we
will rescale), then in this time interval we have and so the boundary
condition (5.35) now reads

The resulting problem for (which excludes (5.34c) and uses (5.36) in place of (5.35))
no longer contains and it can be solved exactly:

(Many of these standard solutions that we use in theories of heat conduction can be
found in Carslaw & Jaeger, 1959.) The additional boundary condition (5.35c) now
becomes the condition which, when attained, heralds the formation of the hole. From
(5.37), we see that on at the time

and after this time the hole develops.
Finally, we complete the formulation of the problem for but for times

larger than we introduce and write
with to give

with

and
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The leading-order problem, as is therefore (with equations
(5.39), (5.40) and (5.41), and (5.42a,b) replaced by

The solution for         can be found (by using the Laplace transform again) and
then used to determine some details of this calculation are given in Crank (1984).
Although the form of is cumbersome, the resulting expression for on

is very straightforward, yielding

which matches precisely with (5.31) when this is expanded for  The difficulties
in as have been overcome.

This example has required us to undertake some quite intricate analysis in terms of
singular perturbation theory, coupled with a careful appreciation of the details of the
physical processes involved. This problem, perhaps more than the previous three, shows
how powerful these techniques can be in illuminating the details. We now turn to a
far more routine type of calculation, although the equation and physical background
are important, and the resulting solution has far-reaching consequences.

E5.5 The van der Pol/Rayleigh oscillator

This classical example requires a fairly routine application of the method of multiple
scales to a nearly linear oscillator (cf. E 4.2), although the solution that we obtain takes a
quite dramatic form. The equation first came to prominence following the work of van
der Pol (1922) on the self-sustaining oscillations of a triode circuit (for which the anode
current-voltage law takes the form of a cubic relation). However, essentially the same
equation had already been discussed by Rayleigh (1883), as a model for ‘maintained’
vibrations in, for example, organ pipes. (A simple transformation takes Rayleigh’s equa-
tion into the van der Pol equation.) We will write the equation in the Rayleigh form

for in the context of the van der Pol problem, is proportional to the grid
voltage, V. [A circuit diagram is given in figure 11, and the governing equations for
this triode circuit are

where and are positive constants.]
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Figure 11. Circuit diagram for the triode oscillator.

The method of multiple scales leads us to introduce

and then equation (5.44), for becomes

We seek a solution in the form

which is periodic in T and uniformly valid as The equations for the first
three terms are

The general solution of equation (5.45a) is

(for arbitrary functions and and then equation (5.45b) can be written
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where For to be periodic in T, i.e. in we require

which may be integrated to give

where Hence, for any initial amplitude as
the solution exhibits a limit cycle (ultimately an oscillation in T with amplitude 2). This
is the raison d’être of the triode circuit.

If we proceed with the analysis (the details of which are left as an exercise) we find,
first , that

where and are additional arbitrary functions. (The constant is fixed by the
initial data At the next order, we deduce that the amplitude
remains bounded as only if

Another problem with an electrical background, but with a rather different asymp-
totic structure, will now be described.

E5.6 A diode oscillator with a current pump

In this problem, which contains two small parameters (one of which is used to simplify
some of the intermediate results, as expedient), we seek the initial condition which
leads to a periodic solution. The circuit (figure 12) is represented by the equations

and then Kirchhoff’s law gives

which leads to the non-dimensional equation

Typical values of the parameters are: (This equation was brought
to the author’s attention by a colleague, Dr Armstrong.)
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Figure 12. Circuit diagram for the diode oscillator with a current pump.

We seek the first term of an asymptotic expansion for

for  fixed (and we may take advantage of small   to simplify some of the details, but
this is not essential). Thus the problem for from (5.47), becomes

which can be solved exactly (by writing it is convenient to
express the initial value as

and then we obtain

The nature of this solution is, perhaps, not immediately apparent, but it becomes more
transparent if we invoke We provide approximations to for various t,
below (the details of which are left as an exercise):
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Figure 13. Sketch of the solution (5.49) for small

(Most of these results require the use of asymptotic estimates of
for various t, as see e.g. Olver, 1974, or Copson, 1967; cf. Q1.16.) This
(approximate) solution is sketched in figure 13. Clearly and so this
first term is not periodic; however, for the solution is exponentially small
(as and if this becomes as small as then the term omitted in (5.48)
cannot be ignored. (This observation also follows when we find the next term in the
asymptotic expansion and seek a breakdown; this is a rather tiresome process here, so
we treat the problem as one of rescaling the differential equation, as discussed in

For although the precise domain is not yet known, we write
and then (5.47) becomes

We seek a solution
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and so, from (5.51), we obtain the equation

which can be integrated directly:

where is an arbitrary constant. This solution is to match to the asymptotic expan-
sion for and, in particular, to the first term, (5.49). Further, we are seek-
ing the condition(s) that ensure the existence of a periodic solution, so we also
impose

In principle, we are able to match (5.49) and (5.52) for arbitrary but the
result is not particularly useful; further, the periodicity condition implies that, for small

then must be small. Thus we again invoke and from (5.52) we obtain
(for

which matches with (5.50f) if we choose

Indeed, this match is valid for The periodicity requirement, (5.53),
now becomes and thus from (5.52) (with and (5.50a) we
obtain

Thus (5.54) and (5.55) imply that we must have

where and so

i.e. for the given we have
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Thus for a periodic solution to exist, we require the initial amplitude, a, to be
restricted in value, a conclusion that can also be reached on the basis of an examina-
tion of the direction field for this equation. For a given the amplitude

is chosen by selecting and which satisfy (5.54) and (5.55),
where is given by (5.56). The problem of the existence of solutions to this set—
solutions do exist!—is left as an additional investigation.

This example has demonstrated how we can extract fairly simple estimates from a
solution with a complicated structure, even though the governing differential equation
may have persuaded us that no serious difficulties would be encountered.

Finally, we apply the method of multiple scales to a partial differential equation of
some importance.

E5.7 Klein-Gordon equation

The general form of the Klein-Gordon equation, written in one spatial dimension, is

where V(u) (which can be taken as a potential, in quantum-mechanical terms) is,
typically, a function with nonlinearity more severe than quadratic. We will consider
the problem for which

and so introduce a parameter which we will allow to satisfy The equa-
tion with this choice arises, for example, in the study of wave propagation in a cold
plasma. (The choice V(u) = –cos u gives rise to the so-called sine-Gordon equation—a
pun on the original name—and this equation has exact ‘soliton’ solutions; see e.g.
Drazin & Johnson, 1992.) We follow the technique described in §4.4, and so we intro-
duce

and then with we obtain the equation

We seek a solution which is to be periodic in in the form
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and so we obtain the set of equations

where we have elected to take k (and hence as constants, for the purposes of this
discussion. A suitable solution of equation (5.58) is

with and are arbitrary functions. Equation (5.59), for now
becomes

where We use                                                               and then observe that        is periodic in
i.e. in only if

which have the general solutions

for arbitrary functions F and Thus the leading term in the asymptotic expansion
is

where and we observe that we may write the oscillatory
term as

Both the wave number (k) and the frequency have small-amplitude corrections—
we assume that is a bounded function—which produces an approximate speed
of the carrier wave of

which shows that the inclusion of the nonlinearity in the equation is to change the
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speed of the wave. Indeed, larger waves travel faster—a typical observation in many
wave propagation phenomena. Note also that the amplitude function,
represents propagation at the speed which is precisely the group speed, see
§4.4. The initial data for this solution must take the form

where k is a given constant (rather than appear in the more general form sin
and for a suitable amplitude function.

This concludes the set of examples that have been taken from a rather broad spectrum
of simple mechanical and electrical systems. We will now consider the more specialised
branch of classical mechanics.

5.2 CELESTIAL MECHANICS

We present three typical problems that arise from planetary, or related, motions: E5.8
The Einstein equation (for Mercury); E5.9 Planetary rings; E5.10 Slow decay of a
satellite orbit.

E5.8 The Einstein equation (for Mercury)

Classical Newtonian (Keplerian) mechanics leads to an equation for a single planet
around a sun of the form

where is a small parameter (about for Mercury, the planet for which the
equation was first introduced). The plan is to find an asymptotic solution of equation
(5.60), using the method of multiple scales (cf. E4.2), subject to

(It happens that equation (5.60) can be integrated as it stands, in terms of Jacobian
elliptic functions, but this tends to obscure the character of the solution and is therefore;
hardly worth the effort since is so small.)

where is the polar angle of the orbit, u is inversely proportional to the radial coordinate
of the orbit and h measures the angular momentum of the planet. However, when a
correction based on Einstein's theory of gravitation is added, the equation becomes
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We introduce

and then the equation for becomes

We seek a solution, periodic in T and bounded in in the familiar form

and so obtain

and so on. The initial conditions give

The general solution for from (5.61a), is

for arbitrary functions and the initial conditions, (5.62a,c), require that

and so we select

Equation (5.61b) then becomes

where is periodic in T, i.e. in only if
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Then, with conditions (5.63), we see that

which leaves the solution for as

It is left as an exercise to show that the solution of equation (5.61c), for is
periodic in T and bounded as if

with and

This example has proved to be a particularly straightforward application of the method
of multiple scales; the next is a rather less routine problem that contains a turning point
(see E4.6).

E5.9 Planetary rings

In a study of a model for differentially rotating discs (Papaloizou & Pringle, 1987), the
radial structure of the azimuthal velocity component for large azimuthal mode number
(essentially here) satisfies an equation of the form

This equation clearly possesses a turning point at (see §2.8); let us examine the
solution near this point first. For the neighbourhood of  we set
where as and ignore the scaling of v (because the equation is
linear), so equation (5.64) becomes (with

Thus we select and with we obtain the leading-order
equation

which is an Airy equation (see equations (4.52), (4.54)) with a bounded solution
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where C is an arbitrary constant. The solution in and is now found
by using the WKB method (see E4.5). (In this example, we will find an approximation
to the solution, in each of the three regions, by using only the appropriate local variable;
as we have seen in §4.3, all this could be expressed using formal multiple scales.)

For R > 0, is oscillatory and so in we seek a solution of equation (5.64)
in the form

where (as is a scaling to be determined, is a constant
and is to be written as a suitable asymptotic expansion when we know
Thus we obtain

where and the prime denotes the derivative with respect to r. Thus
we require and so we write

and hence we obtain

and so on. These two equations are readily solved, to give

where A is an arbitrary constant.
The corresponding solution for (the details of which are left as an exercise) is
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where B is a second arbitrary constant. The matching of (5.68) and (5.69) with (5.65)
(using the results quoted in (4.54)) follows directly. From (5.68) and (5.65) we find
that matching is possible if

from (5.69) and (5.65) we obtain

which implies the connection formula A = 2B. (We also see that, if C = O(1), then A
and B are as

Our final example under this heading is related to problem E5.1, but now placed
in a celestial context. Our presentation is based on that given by Kevorkian & Cole
(1981, 1996).

E5.10 Slow decay of a satellite orbit

The equations for a satellite in orbit around a primary (in the absence of all other
masses), with a drag proportional to the  are first written down in terms of
polar coordinates, These are then transformed to and (where
t is time), and finally—this is Laplace’s important observation—to and we
obtain the non-dimensional equations

where is a measure of the drag coefficient on the satellite. We seek a solution
of this pair of equations, for subject to the initial conditions i.e. conditions
prescribed at what we will call

Here, v at i.e. t = 0) is the initial component of the velocity vector in
the we assume that this is given such that v > 1 and that it is independent
of

The form of equations (5.70), and our experience with problems of this type,
suggests that we should introduce new variables (multiple scales) and
more general choices for T (e.g. or are unnecessary in this
problem. Before we proceed, observe that equations (5.70) contain only through
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so it is convenient to solve for u and first (and then t follows after
an integration or, at least, by quadrature). Thus, for the purposes of constructing a
solution, let us set with (and the condition on t
at is redundant at this stage). Thus our equations (with
become

and we seek a solution

which is periodic in T.
From equations (5.71) we obtain

and so on.
The exact solution of equations (5.72), which describe a Keplerian ellipse, is usually

written in the form

where is the eccentricity, denotes the position of the pericentre
(i.e. at and is the angular momentum. (We may write

where is the semi-major axis, if this is useful.) Equation (5.73b)
now becomes (with appropriate use of equations (5.74))

which may be integrated, at least formally, to give
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where A is an arbitrary function. This expression can be used directly in (5.73a) to
give

and we impose the condition that be periodic in T. This can be done quite gener-
ally by writing solving for and then imposing periodicity.
However, by virtue of the integral term in (5.75), this produces a somewhat involved
and far-from-transparent result. In order to make some headway, and to produce useful
solutions, let us suppose that the satellite orbit is initially almost circular—a fairly com-
mon situation—so that the value of is small. In particular, the initial conditions give

and so now we are assuming that v is close to 1; it will soon become clear that this
approximation holds as because we will show that decreases to zero from
its initial value.

For small e, we find that

and so we expand equation (5.75) as

where Â  is a new arbitrary function (replacing A). Now the solution, of equation
(5.76) is periodic in T if

which have solutions (correct to this order in e):

where (which is small).
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We see, therefore, that the small drag in this model leaves the pericentre unaffected
the eccentricity decreases towards zero (from its already assumed small

value) and the semi-major axis also approaches zero as
Thus the orbit gradually spirals in and, as it does so, it becomes more circular.

We have seen how we might tackle the problem of orbits that graze the atmosphere
of a planet, although here it was expedient to assume that the orbit was initially nearly
circular. If this is not the case, then will not be small and we face a more
exacting calculation, although the essential principles are unaltered.

5.3 PHYSICS OF PARTICLES AND OF LIGHT

In this section, we will examine some problems that arise from fairly elementary
physics; these will touch on quantum mechanics, light propagation and the move-
ment of particles. In particular, we discuss: E5.11 Perturbation of the bound states of
Schrödinger’s equation; E5.12 Light propagating through a slowly varying medium;
E5.13 Raman scattering: a damped Morse oscillator; E5.14 Quantum jumps: the ion
trap; E5.15 Low-pressure gas flow through a long tube.

E5.11 Perturbation of the bound states of Schrödinger’s equation

This is a classical problem in elementary quantum mechanics; it involves the time-
independent, one-dimensional Schrödinger equation

where is the given potential and E is the energy (i.e. the eigenvalues of the
differential equation). We seek solutions for which as and
is finite (and conventionally, we choose to provide a normalisation of
the eigenfunction, In this example, we choose

and this is to be a uniformly valid approximation as for The
problem then becomes

with as and
We seek a solution by assuming a straightforward expansion, and we will comment

on the conditions that ensure a uniform expansion valid for all x; see §2.3. Thus we
write
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and so equation (5.77) gives

with

and

We assume that a solution exists for will give an example shortly—then
(5.78b) can be written

which is integrated over all x. After using integration by parts on the first term, and
invoking the decay conditions at infinity, we obtain

which reduces to

when we make use of (5.78a) and (5.80b). Thus the correction to the energy is known
(and we assume that and are such as to ensure that this correction is finite). The
same procedure applied to equation (5.78c) yields

A simple potential is that associated with the harmonic oscillator, namely
then equation (5.78a) becomes

which can be rewritten in terms of to give
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This is Hermite’s equation with solutions that guarantee at infinity only if
In particular,

and each of these solutions has been chosen to satisfy the normalisation condition on
(5.80a). A typical choice for is

but in order to ensure that is uniformly valid for all x, then (to avoid
a breakdown as and (to avoid a breakdown as for p > 2;
the case p = 2 and is equivalent to Let us calculate for m = 0
(so we have and and for a perturbation with
p = 2 and thus

and so the energy becomes

Observe that, at this order, we do not need to determine to  find

Calculations of this type, for various and can be found in any good
text on quantum mechanics.

E5.12 Light propagating through a slowly varying medium

Fermat’s principle states that light travels between any two points on a path which
minimises the time of propagation. If the path, in two dimensions, is written as y =
y(x), and the speed of light at any point is c(x, y), then y(x) must satisfy

This equation can be obtained either from the eikonal equation (see Q4.27) for rays or
as the relevant Euler-Lagrange equation in the calculus of variations. [In the special case
where the medium varies only in x, so that c = c(x), we obtain
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if, for a light ray, we set then

which is Snell’s law.]
Let us suppose that the properties of the medium slowly change on the scale in

the form

and so the inherent difficulty of this problem is now evident: we seek yet y
appears in the function c. In the case that c = constant, the light rays are straight lines
e.g.

let us seek a solution of (5.81) which satisfies precisely these conditions i.e.

For the given c, (5.82), and with we see that both and are and
so, from (5.81), we have that a cursory analysis of the problem suggests
that we write the solution in the implicit form

where Thus

and we will assume that is such that A, and all its relevant derivatives, lead to
uniform asymptotic expansions in the domain where the material exists. This ensures,
for example, that we may write

for all X, Y  in the domain. Differentiation of (5.84) yields

which can be solved for (given from (5.85)). We seek a solution in the form
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and then (5.86) and (5.85) in equation (5.81) produces, at leading order, the equation
for

This equation can be solved in general (by introducing and expressing
the solution in terms of once is expressed in these same variables); this is
left as an exercise. We present a simple example: for which the
solution can be written (on introducing

which satisfies on as required by the condition at the
origin.

This problem of finding the path of a light ray has used the idea of multiple scales in
a less routine way; we now examine an equation for which a more familiar approach
(§4.2) is applicable.

E5.13 Raman scattering: a damped Morse oscillator

Under certain circumstances, a small fraction of the incidence light propagating through
a medium may be scattered so that the wavelength of this light differs from that of
the incident light—usually it is of greater wavelength. This is called Raman scattering.
An example of this (Lie & Yuan, 1986), which incorporates the Morse (exponential)
model for the potential energy of atoms as a function of their separation, is

This equation also includes a (weak) linear damping term, which we will characterise
by we wish to find a solution, subject to the initial conditions

Because equation (5.87) is nonlinear (although the underlying solution—valid for
be expressed in terms of elementary functions), we must expect a development

along the lines of that described in E4.3.
We introduce fast and slow scales according to

and then seek a solution which has a constant period (in T). Equation (5.87) therefore
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becomes, with

where the solution is to be

The equations for the are therefore

and so on. The most general solution of equation (5.89), with a constant period is

for arbitrary and note that, for a constant period, we will require that
The initial conditions, (5.88), now on are satisfied by

the choices

and the existence of a real, oscillatory solution (of the form (5.91)) requires that
0 > a > – ln 2.

The periodicity condition, which will define can be obtained from (5.90) by
first writing and then using the T-derivative of (5.89); this
yields

This can be integrated once directly, when multiplied by so that we now have

i.e.

For to be periodic, then so must be both F and with the period prescribed as
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we therefore obtain the periodicity condition

Finally, the evaluation of the integral (which is left as an exercise) yields

and so we have, after solving for

where We observe that as and that

with This describes the evolution (shift) of the frequency, as the
damping progressively affects the solution.

E5.14 Quantum jumps: the ion trap

In the study of the discontinuous emission or absorption of energy (quantum jumps),
a single ion is trapped (in an electromagnetic device called a Paul trap; see Cook, 1990)
and its motion is governed by an equation of the form

Here, is a parameter, v(x) is a given function (sufficient for the existence of
and we seek the complex-valued function for In this case, we see
that the oscillatory term on the right oscillates rapidly and so we use the method of
multiple scales in the form

which gives the equation

We seek a solution
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which is uniformly valid as from (5.92) we obtain

and so on.
The solution of (5.93a) is immediately seen to be

where is an arbitrary function; then (5.93b) becomes

This can be written as

and hence for to remain bounded as also ensures periodicity in
require

A solution of this equation can be expressed as

but very little headway can be made, at this stage, without some knowledge of v(x).
We do note, however, that for k < 0 the solutions for are essentially exponential
(growing and decaying), but for bounded and large enough, the solutions are
oscillatory.

Our final example is a problem of a gas flow but, because the density is so low, the
model is based on an approach that invokes the ideas of statistical mechanics.

E5.15 Low-pressure gas flow through a long tube

The flow of a gas through a long circular tube, i.e. radius/length is small, where
molecular collisions are assumed to occur only with the wall of the tube, can be
represented by the Clausing integral equation
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Here, is the rate of molecular collisions (with the wall) between x and
and the rate contributed by those molecules that have their first collision
between these same stations. The kernel, K(x – y), measures the probability that a
molecule which has collided with the wall at x = y will collide again between the
stations. (This type of process is called a free-molecular or Knudsen flow.)

When we introduce the appropriate models for and non-
dimensionalise and use the symmetry of  n(x) (i.e. n(x) + n (–x ) = 0 so that n(0) = 0),
we obtain the equation

with the normalised boundary condition (See Pao & Tchao, 1970,
and DeMarcus, 1956 & 1957, and for more general background information, Patterson,
1971.) At first sight, equation (5.94) looks quite daunting and very different from
anything we have examined so far in this text. However, the first terms on the right
do indicate the presence of boundary layers near x = ±1/2, so perhaps our familiar
techniques can be employed.

For x away from the ends of the domain, the expansion of the first terms in (5.94)
leads to the asymptotic form of the equation:

Now we must estimate the integral, for which we use ideas discussed in §2.2 and
exercise Q2.8. This is accomplished by expressing the domain of integration as

and where but such that
It is left as an exercise (which involves considerable effort) to show that (5.95) eventually
can be written as

and so as must satisfy
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But so we have simply

this is the first term in the asymptotic expansion, where is an arbitrary constant,
valid away from the boundary layers (see §2.6). (If we were to apply the boundary
condition on x = 1/2, then we would deduce that which turns out to be
correct, as we shall see below.)

For the boundary layer near x = 1/2, we write and
which gives (from (5.94))

But the dominant contribution to the integral will come from the behaviour of N
outside the boundary layers i.e. we use When we do this, the
integral term yields the result

and this is used in (5.96), together with the boundary condition to
give

The corresponding solution in the boundary layer at the other end is obtained from this
result by forming where Note that, because the boundary
condition has been used here, is now determined (in a way analogous to matching)
and so away from the boundary layers. This concludes all that we will
write about this very different type of boundary-layer problem; see Pao & Tchao
(1970) for more details.

5.4 SEMI- AND SUPERCONDUCTORS

The study of semiconductors and of superconductors, as it has unfolded over the last
50 years or so, has thrown up any number of interesting and important equations that
describe their properties and design characteristics. We will look at three fairly typical
examples: E5.16 Josephson junction; E5.17 A p-n junction; E5.18 Impurities in a
semiconductor.
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E5.16 Josephson junction

The Josephson junction between two superconductors, which are separated by a thin
insulator, can produce an AC current when a DC voltage is applied across the junc-
tion (this by virtue of the tunnelling effect). An equation that models an aspect of this
phenomenon (Sanders, 1983) is

where a and b are given constants, and We will construct the
asymptotic solution, using the method of multiple scales, for Note that,
in the absence of the term then is a solution of the complete problem.
We anticipate that the presence of will force a non-zero solution which, if it
remains bounded, should be for all time (t); thus we write Further, we
introduce

and so satisfies the equation

We assume a bounded, periodic solution can be written as

and so we may expand

Thus we obtain the set of equations

and so on. These equations follow the pattern for a nearly linear oscillator; see §4.1.
The general solution of (5.98a) is

with initial conditions
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then equation (5.98b) becomes

where Immediately we see that is periodic in T, i.e. in only if

and so we have

which shows that a bounded solution (as requires Thus the solution,
to this order, is

the construction of higher-order terms is left as a fairly routine exercise.

E5.17 A p-n junction

A p-n junction is where two semiconducting materials meet; such junctions may
perform different functions. The one that we describe is a diode. We analyse the
device for where the junction sits at x = 0 (and, by symmetry, it extends into

and an ohmic contact is placed at x = 1. In suitable non-dimensional,
scaled variables we have

where e is the electrostatic field, p the hole density and n the electron density. The
term ‘+1’ in (5.99a) is a constant ‘doping’ density and we will assume that the current
density, I(x) (appearing in (5.99b,c)), is given; indeed, in this simple model, we take
I(x) = constant. The boundary conditions are

and is our small parameter (typically about 0.001). (See Shockley, 1949; Roosbroeck,
1950; Vasil’eva & Stelmakh, 1977; Schmeisser & Weiss, 1986.) It is evident that the set
(5.99) exhibits the characteristics of a boundary-layer problem (§§2.6, 2.7) because the
small parameter multiplies the derivatives in each equation. However, a neat manoeuvre
allows one equation to be independent of
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Let us introduce u = np, then equations (5.99) can be rewritten as

with

Now away from the boundary layer (whose position is yet to be determined) we write
each of and as asymptotic expansions

and then the leading order (from (5.100)) yields

Thus we must select the solution

it is now evident that the condition (see (5.101 a)) cannot be attained by this
solution, so the boundary layer must be at x = 0—the position of the junction—and
thus we are permitted (in this soluiton) to use the boundary conditions at x = 1, to
give

Now from equations (5.100a,b), it is clear that the boundary-layer thickness is
and so we introduce and write for each of e, p
and u, to obtain the set

with at X = 0 and matching conditions for Thus, from equations
(5.103), the leading-order terms (zero subscripts) in the straightforward asymptotic
expansions satisfy the equations
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and the last equation simply requires that

(which is equivalent to the observation, from (5.100c), that there is no boundary-
layer structure in the solution for The first two equations, (5.104a,b), give an
equation for

which can be integrated once (by setting to give

where A is an arbitrary constant. Sadly, we cannot integrate once again (so a numerical
approach might be considered), but we can make a few observations.

The boundary condition on X = 0 becomes and, in addition, the match-
ing condition is satisfied if

(see (5.102c) which requires the choice

(It is left as an exercise to show that there is a solution for which

However, more success in the development of useful analytical detail is possible if we
use (5.104a,b) to produce an equation for

One integration then produces the result

where the arbitrary constant must, in order to satisfy the matching condition at infinity,



240 5. Some worked examples arising from physical problems

take the same value as A above:

Thus, although we are unable to write down an expression for in terms of
elementary functions, we do have a simple relation between and in particular,
we see that

the electrostatic field at the junction, x = 0. More details can be found in the references
cited above; also a discussion of similar problems is given in Smith (1985) and O’Malley
(1991).

E5.18 Impurities in a semiconductor

A significant issue in the design and operation of semiconductors is the presence, and
movement, of impurities. In particular, the level of impurities that diffuse from the
outer surface of the material and move to occupy vacant locations within the structure
can be modelled (King, Meere & Rogers, 1992) by the equations

Here, is the concentration of the impurities, the concentration of
vacancies (holes), and and are positive constants; the boundary and initial
conditions are

All these boundary values are constants—and is positive—and, further-
more, the appearance of the same values at t = 0 and as suggests that we could
use a relevant similarity solution. The small parameter, is associated only with the

and so we may anticipate the existence of a boundary-layer structure in v,
but not in c; cf. E3.3. Indeed, it should be clear that this necessarily must be near
x = 0 and used to accommodate the boundary value given by (5.106d).

Away from x = 0, we seek a solution with
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which, from (5.105), must therefore satisfy the equations

and then (5.107b) gives

where is an arbitrary function. We may impose the initial conditions, (5.106a,b),
and so then (5.107a) becomes simply

and the (similarity) solution which satisfies (5.106a,c,e) is

(provided that t = 0 is interpreted as Thus

which does not satisfy the boundary value on x = 0 and so we require
the boundary layer near here.

Let us introduce and write

then equations (5.105) become

the leading-order problem (zero subscript) therefore satisfies

The solution of this pair is to satisfy the matching conditions
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and thus (5.108a) gives directly

and then (5.108b) becomes

The appropriate solution of this equation, which satisfies both the matching condition
and (5.106d), is

Higher-order terms, in both the outer and boundary-layer solutions, can be found
altogether routinely (although the calculations are rather tedious).

This completes our few examples in this group; we now turn to one of the areas where
singular perturbation theory has played a very significant rôle.

5.5 FLUID MECHANICS

The study of fluid mechanics is broad and deep and it often has far-reaching conse-
quences. Many of the classical techniques of singular perturbation theory were first
developed in order to tackle particular difficulties that were encountered in this field.
Examples that are available are numerous, and any number could have been selected for
discussion here (and some have already appeared as examples in earlier chapters). We
will content ourselves with just four more very different problems that give a flavour
of what is possible, but these are all fairly classical examples of their type. Many others
can be found in most of the texts already cited earlier. We will discuss: E5.19 Viscous
boundary layer on a flat plate; E5.20 Very viscous flow past a sphere; E5.21 A piston
problem; E5.22 A variable-depth Korteweg-de Vries equation for water waves.

E5.19 Viscous boundary layer on a flat plate

The solution of this problem (about 1905), with Poincaré’s work on celestial mechanics,
together laid the foundations for singular perturbation theory. In this example, we
consider an incompressible, viscous fluid (in y > 0) flowing over a flat plate,
the flow direction at infinity being parallel to the plate. The governing equations are the
Navier-Stokes equation (in the absence of gravity) and the equation of mass conservation:
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Figure 14. Sketch of the viscous boundary layer on a flat plate.

where is the Reynolds number (and we have used subscripts throughout to denote
partial derivatives). We will consider the problem of steady flow with

the boundary conditions for uniform flow at infinity are

which imply that the pressure p constant away from the plate (and we will not
analyse the nature of the flow near x = 0); the plate will extend to infinity
The presence of the small parameter multiplying the highest derivatives, is the
hallmark of a boundary-layer problem. In particular, the (inviscid) problem can satisfy
v = 0 on y = 0, but not as (in x > 0), so we expect a boundary-layer
scaling in y; see figure 14.

Outside the boundary layer, the solution is written

and so equations (5.109) give

subject to the boundary conditions (5.110a,b,d), for zero-subscripted variables; this
has the solution

(It is clear that this solution has additional problems for on y = 0, where the
stagnation point exists at the leading edge of the plate.) Note that this solution can be
expressed in terms of the stream function: (where, in general,

The region of the boundary layer is described by the scaled variable where
as and x is unscaled. (We would need to scale x near excep-

tional points such as the leading edge, a point of separation and the trailing edge of a
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finite plate.) By virtue of the existence of a stream function, we see that we must also
scale we write

and then we must choose to give

This set is to be solved, subject to the boundary conditions (5.110c,d), written in
boundary-layer variables, and matching conditions for The leading-order
problem (zero subscripts) satisfies

with

and the matching conditions

To solve equations (5.111), we note, first, that and then the matching
condition requires throughout this region. Next we use (5.111c) to allow the
introduction of a stream function and then (5.111a) can be
written

with

and

The relevant solution (Blasius, 1908) takes a similarity form:
direct substitution then yields the ordinary differential equation

for

with

This equation must be solved numerically; the properties of the solution agree well
with experimental data for laminar flows. It is left as an exercise to show that there are
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solutions of the form

and

the values of the constants, and are obtained from the numerical solution as
From the behaviour as we see that the solution outside

the boundary layer must now match to

which shows that we require a term in the asymptotic expansion valid in
the outer region.

Thus we seek a solution of the set (5.109) in the form

where q represents each of u, v and p. The problem for the second terms in this region
therefore becomes the set

with

and, in terms of the stream function

This is a classical problem in inviscid flow theory, where the exterior flow is distorted
by the presence of a parabolic surface—the effect of the boundary layer which grows
on the plate. The exact solution can be expressed in terms of the complex variable

(and denotes the real part):

which gives

(It can be shown that, in order to match, the boundary-layer solution must now contain
a term not as might have been expected. For more general surfaces
than a flat plate, the next term in the boundary-layer expansion is indeed
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We will not proceed further with this analysis here (but far more detail is available in
many other texts e.g. van Dyke, 1975), although we should add one word of warning.
The details that we have presented suggest that we may continue, fairly routinely,
to find the next term in the boundary-layer expansion, and then the next in the
outer, and so on, and that these will develop according to the asymptotic sequence

However, this is not the case: a term ln appears and this considerably
complicates the procedure (again, see e.g. van Dyke, 1975).

The two essential types of problem that are usually of most interest in fluid mechanics
are associated with (a) (the previous example) and (b) (the next
example). Problems for small Reynolds number (sometimes referred to as Stokes flow
or slow flow) have become of increasing interest because this limit relates to important
problems in, for example, a biological context. Thus the movement of platelets in
the blood, and the propulsion of bacteria using ciliary hairs, are examples of these
small-Reynolds number flows. We will describe a simple, classical problem of this
type.

E5.20 Very viscous flow past a sphere

In this example, we take (and since where U is a typical speed of
the flow, d a typical dimension of the object in the flow and v the kinematic viscosity,
this limit can be interpreted as ‘highly viscous’ or ‘slow flow’ or flow past a ‘small
object’). We consider the axisymmetric flow, produced by a uniform flow at infinity
parallel to the chosen axis, past a solid sphere; see figure 15. (This could be used as a
simple model for flow past a raindrop.) It is convenient to introduce a stream function

(usually called a Stokes stream function, in this context), eliminate pressure from the
Navier-Stokes equation and hence work with the (non-dimensional) equation

for and where

with

and

this latter condition ensuring that there is an axisymmetric flow of speed one at infinity.
(The subscripts here denote partial derivatives; we have mixed the notation because,
we submit, this is the neatest way to express this equation.) The velocity components
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Figure 15. Coordinates and velocity components for the uniform flow past a sphere.

(see figure 15) are given by

Note that equation (5.114) does not exhibit the conditions for a boundary-layer struc-
ture, as because the highest derivatives are retained in this limit—indeed, this
term dominates. It is therefore unclear what difficulties we may encounter.

Let us seek a solution

then from (5.114) we simply have that

and all the boundary conditions appear to be available. Indeed, there is an exact solution
(Stokes, 1851) which satisfies all the given conditions:

and for a number of years this was thought to be acceptable, and that higher-order
terms would simply provide small corrections in the case However, difficulties
were encountered when a more careful analysis was undertaken, and a little thought
suggests why this should be so. At infinity the motion (convective terms) dominate, i.e.
the left-hand side of the equation, but near the sphere the viscous terms dominate (the
right-hand side); thus an approximation which uses only the right-hand side (as
above does) cannot be uniformly valid—it must break down as

We introduce where as and then from (5.117)
we see that we must also scale Equation (5.114) yields immediately
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that the appropriate choice is (Oseen, 1910), but unfortunately this scaling
recovers the full equation—the small parameter is removed identically! However, the
good news is that this scaling (obviously) is associated with the region far away from
the sphere (the ‘far field’), where the uniform flow exists and, presumably, this should
be the first term in an asymptotic solution valid here; we expect, therefore, that

Of course, (5.118) and (5.117) match directly, and we should now regard (5.117) as
valid only for r = O (1) (the ‘near field’) and then (5.118) is valid for
When we express (5.117) in far-field variables, we obtain

and so we require a term in the far-field expansion; let us write

The equation for from (5.114), is

where

with

and

the former condition being given by the matching, and the latter ensuring that the
flow at infinity is unchanged.

The relevant solution of equation (5.120a) is

where A – E are arbitrary constants, and then written in near-field
variables, gives

The term in is unmatchable, and so it must be removed, and otherwise this



249

expression is to match to (5.119); this requires that

i.e.

Finally, to be consistent with the development of this asymptotic expansion, we set

and then  satisfies

where is given by (5.117). It is left as an exercise to show that the solution of
this equation, which satisfies the boundary and matching conditions, is

And, to complete our presentation, we comment that expanded for
produces

and the term here in contributes, apparently, to a change in the uniform flow at
infinity—which is impossible—and hence the need for a matched solution in the far
field. It was this observation that first alerted the earlier researchers to the difficulties
inherent in this problem; this complication is typical of flows in the limit

Another general area of study in fluid mechanics is gas dynamics, where the compress-
ibility of the fluid cannot be ignored. We have already seen some of these problems
(E3.2, E3.5 and Q3.9–3.11); we now look at another classical example.

E5.21 A piston problem

We consider the one-dimensional flow of a gas in a long, open-ended tube. The gas
is brought into motion by the action of a piston at one end, which moves forward at
a speed which is much less than the sound speed in the gas. (This is usually called the
acoustic problem.) The gas is modelled by the isentropic law for a perfect gas (pressure

and is described by the equations
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Figure 16. Sketch of a piston moving a gas (according to in an open tube.

where a is the (local) sound speed in the gas and u its speed along the tube. The initial
and boundary conditions are

and

with and V(0) = 0; see figure 16. (The problem of a closed tube,
described in a Lagrangian framework and using the method of multiple scales, is
discussed by Wang & Kassoy, 1990.)

We are already familiar with the result, in small-disturbance theories—which this
is for the simple, near-field wave-propagation problem is not uniformly
valid as t (or see E3.2. In particular, for disturbances propagating down
the tube (into which are described by e.g. u(x, t) ~ F(x – t), there will
be a breakdown where (or, equivalently, when with x – t =
O(1). Note that, in this problem, because the tube is open, there can be no disturbances
propagating back towards the piston. We introduce and (to make
the evaluation on as simple as possible) and then write and

to give

with

and

We seek an asymptotic solution, which is to be uniformly valid as in the form
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which gives (from (5.121)

and so on. Further, we assume that the boundary condition at the piston can be
expressed as a Taylor expansion about t:

the validity of which certainly requires that remains finite as (and so
must be finite).

From (5.123) we find that

where is an arbitrary function, but and are otherwise undetermined at this
stage. From (5.124), we multiply the first by and then add to it (5.124b),
which eliminates and to produce

The terms in are now replaced by using (5.126) to give the equation
for

This is a nonlinear equation which, for given is readily solved. However, this
solution is incomplete without the weak acoustic shock wave that propagates ahead of
this solution; we must therefore write down the conditions for the insertion of a shock
(discontinuity).

First, from (5.122), this initial condition requires that To further deter-
mine we impose the Rankine-Hugoniot conditions that define the jump conditions
across the shock. The conditions ahead are undisturbed; let the conditions behind the
shock be denoted by the subscript ‘s’ and write the speed of the shock as  In this
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problem, these conditions (see e.g. Courant & Friedrichs, 1967) can be written as

and so

(Here, is the perturbation of the density.) This latter result confirms, from (5.126),
that behind the shock and, since ahead of the shock, we have

for Thus from (5.127) we obtain the implicit result

where F is an arbitrary function which, from (5.125), can be determined to give

(since, at the piston,
Thus the near-field solution is recovered, although this needs to be written
to accommodate the existence of the wave front there i.e.

where H is the Heaviside step function: We conclude
with the observation that the shock wave travels faster than the local sound speed
behind the shock; that is, from (5.128), as compared with

(and remember that ). Much more detail can be found in
any good text on gas dynamics.

As our final example, we use a similar technique to that employed in the previous
problem, but now in a quite different context: waves on the surface of water. (See
Q3.4 for a much simpler but related exercise.)

E5.22 A variable-depth Korteweg-de Vries equation for water waves

We consider the one-dimensional propagation of waves over water (incompressible),
which is modelled by an inviscid fluid without surface tension. The water is stationary
in the absence of waves, but the local depth varies on the same scale that is used to
measure the weak nonlinearity and dispersive effects in the governing equations. For
right-running waves, the appropriate far-field coordinates are and
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Figure 17. Wave propagation in stationary water over variable depth.

where is to be determined. The non-dimensional equations are

with

and

Here (u, w) are the velocity components of the flow, p the pressure in the fluid relative
to the hydrostatic pressure (with pressure constant at the surface) and is
the surface of the water. The bottom is represented by the function see
figure 17.

We seek a solution in the familiar form:

where q represents each of u, w, p and The leading-order problem gives, from
(5.129),

with

This set is easily solved; the relevant solution (in which is not a function of z) is
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where the surface boundary condition finally gives

and is arbitrary at this stage. For rightward propagation, we select

so that the characteristic variable becomes

which, with D = 1 (constant depth), recovers the standard result: Note
that, in this calculation, we have taken the evaluation at the surface to be on z = 1;
see below.

At the next order, equations (5.129) give

with

and

The boundary conditions at the surface, have been written by invoking
Taylor expansions, and so become the corresponding boundary conditions evaluated
on z = 1, valid as (and for sufficiently smooth surface waves). Again, this set
is fairly easily solved; the details are left as an exercise, but some of the intermediate
results are

and
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Finally, the surface boundary condition for gives the equation for identically
cancels—in the form of a variable-coefficient Korteweg-de Vries equation (see E3.1
and Q3.4):

This is usually expressed in terms of to give

which recovers the classical Korteweg-de Vries equation for water waves when we
set D = 1. This equation is the basis for many of the modern studies in water-wave
theory; more background to this, and related problems in water waves, can be found
in Johnson (1997).

5.6 EXTREME THERMAL PROCESSES

This next group of problems concerns phenomena that involve explosions, combus-
tion and the like. The two examples that we will describe are: E5.23 A model for
combustion; E5.24 Thermal runaway.

E5.23 A model for combustion

A model that aims to describe ignition, followed by a rapid combustion, requires a
slow development over a reasonable time scale that precedes a massive change on a
very short time scale, initiated by the attainment of some critical condition. A simple
(non-dimensional) model for such a process (Reiss, 1980) is the equation

where is the concentration of an appropriate chemical that takes part in the
combustive reaction. The whole process is initiated by the small disturbance at
time t = 0. (It should be fairly apparent that this equation can be integrated completely
to give the solution for c, but in implicit form and so the detailed structure as
is far from transparent; this integration is left as an exercise.)

By virtue of the initial value we first seek a solution in the form
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and then from (5.130) we obtain

with

This set is very easily solved to give the asymptotic solution

and it is immediately evident that this expansion breaks down when let us
write and to produce the new equation

Again, we seek a straightforward solution

so that (5.132) gives

and so on, together with the requirement to match to (5.131).
The general solution to equation (5.133a) is

where A is an arbitrary constant; with we obtain

and hence matching to the first term in (5.131) requires the choice A=1. Thus we
have

the next term can be found similarly and leads to
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which clearly exhibits a catastrophic breakdown as Thus we have a gradual
acceleration of the process, until the time is reached and then—presumably—
combustion occurs. This breakdown is not simple: it is at a time given by

When logarithms (or exponentials) arise, we have learnt (§2.5) to
return to the original equation and seek a relevant scaling (although the presence
of a logarithm here indicates that ln terms are likely to appear in the asymptotic
expansion). Let us set then from (5.134), where
as thus we write and it is immediately clear from (5.132) that
we must choose The equation for is therefore

the original equation! In order to proceed, we need an appropriate solution—but this
is no longer required to satisfy the initial condition. The general solution to equation
(5.135) can be written as

and for small this gives and so to match we require the arbitrary
constant, B, to be zero (but we will return to this origin shift below). In passing, we
note that for close to unity, we obtain and so the state of full combustion

is attained as
Finally, we reconsider the matching of (5.136), with B = 0, to the expansion (5.134).

From (5.136) we obtain

which with gives

and the matching is not possible, as it stands, because of the presence of the ln
term. However, this suggests that the variable used in this region of rapid combustion

should include an origin shift. If we write, now, Then
(5.137) produces

and matching with (5.134) requires that Thus the
combustion occurs in an O(1) neighbourhood of the time the appear-
ance of shifts expressed in terms of ln are quite typical of these problems.
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E5.24 Thermal runaway

A phenomenon that can be encountered in certain chemical reactions involves the
release of heat (exothermic) which increases the temperature, and the temperature nor-
mally controls the reaction rate. It is possible, therefore, to initiate a reaction, then heat
is released which raises the temperature and so increases the rate of reaction which
releases even more heat, and so on; this is called thermal runaway. In the most extreme
cases, there is no theoretical limit to the temperature, although physical reality inter-
venes e.g. the containing vessel might melt or the products explode. A standard model
used to describe this (Szekely, Sohn & Evans, 1976; see also Fowler, 1997, which
provides the basis for the discussion presented here) is the equation

where T is the temperature and is a parameter. In this example, we will examine the
nature of the steady-state temperature in one dimension i.e. the solution of

as for various The boundary condition is that the external temperature is
maintained; we will represent this by T = 0 on and so we seek a solution
for (and we will assume symmetry of the temperature distribution about
x = 0).

An important property of the solution of (5.138) can be derived by first writing

where satisfies the equation

with the boundary conditions This problem has the exact solution

where is the maximum temperature (attained at x = 0) defined by
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which follows immediately when evaluation on x = ±1 is imposed. It is left as an
exercise (which may require a graphical approach) to confirm that (5.140) has zero,
one or two solutions for given depending on whether or
respectively, where the critical value is the solution of

it can be shown that there does exist just one It turns out that the
consequences of this are fundamental: for any if the initial temperature is high
enough, or for any temperature if then the time-dependent problem produces
a temperature that increases without bound—indeed, in a finite time. What
we will do here is to examine the temperature attained according to the steady-state
equation, (5.138), for various although we will approach this by considering different
sizes of temperature (as measured by

It is immediately apparent that the approximation that led to (5.139) cannot be valid
if the temperature is as large as see equation (5.138). Let us therefore write

and then (5.138) becomes

and so if we seek a solution (with as ) we obtain simply

where A and B are arbitrary constants. Such a solution is unable to accommodate
a maximum temperature at x = 0 (if the solution is to be differentiable, and
constant for all x does not satisfy (5.141)). Thus (5.142) can describe the solution
only away from x = 0, but then we may impose the boundary conditions on x = ±1,
so

and the single arbitary constant, A, may be used in both solutions by virtue of the
symmetry. Near x = 0, let and seek a solution where

is the (scaled) maximum temperature attained in the limit note
that, at this stage, we do not know the scalings and Equation (5.141) becomes
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and for an appropriate solution to exist, to leading order for X = O(1), we must have

which implies that is exponentially small as Let us write
then from (5.144) with (5.145) included, we obtain the equation for as

and this gives a meaningful first approximation, independent of only if we choose
e.g. This equation then has the general solution

for arbitrary constants and C. This solution is to be symmetric about X = 0, so
(which is satisfied with ), and is to match to

(5.143). Thus we must have and then we obtain

which matches only if, first, we choose the scaling and then
(valid in X > 0, X < 0, respectively). Thus, in particular, we find that

and so the maximum temperature becomes

where, from (5.145), we have

for given we may write this equivalently as where
and so determines is the interpretation that we employ.

The calculation thus far indicates that, for suitable the resulting steady-state
temperature (if it can be attained through a time-dependent evolution) is already very
large, namely But it is also clear from (5.147) that even smaller exist that give
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and then the temperature expansion, (5.146), is not uniformly valid; in par-
ticular this expansion breaks down when that is, for
Let us therefore rescale write and then equation (5.141)
becomes

with This branch of the solution, interpreted as a function of  is
usually called the hot branch. We seek a solution to give

but we cannot use the boundary conditions here because of the evident non-
uniformity as in equation (5.148). However, if we set at x = 0
(where by symmetry) we obtain

(where we have set and this latter integral can be expressed in terms of
an exponential integral, if that is useful. A solution with the property that

as (which is necessary if matching is to be possible to the solution valid near
x = ±1, where is exponentially small i.e. must satisfy

where as or – 1. (Of course, matching is then
trivial, for we simply choose A = B.) Thus we may integrate (5.149) from x = 0 to,
say, x = 1:

and now we find that increases as  increases. So once we have reached this ‘hot
branch’, which is accessed by using the temperature will increase
without bound (or, rather, until some other physics intervenes). Even more details
of this problem, and related thermal processes, can be found in the excellent text on
modelling by Fowler (1997).

The final group of problems bear some relation to those just considered, for they also
involve chemical processes, but we include in this section some mention of biochemical
processes as well.

at x = ±1.
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5.7 CHEMICAL AND BIOCHEMICAL REACTIONS

The examples that are presented here are intended to show that it is possible to model,
and describe using perturbation theory, some very complex processes that, perhaps fifty
years ago, were thought to be mathematically unresolvable. Certainly, some extensive
simplification is necessary in the development of the model—and this requires consid-
erable skill and knowledge—but the resulting differential equations remain, generally,
quite daunting. We will describe: E5.26 Kinetics of a catalysed reaction; E5.27 Enzyme
kinetics; E5.28 The Belousov-Zhabotinskii reaction.

E5.26 Kinetics of a catalysed reaction

In a model (the Langmuir-Hinshelwood model; see Kapila, 1983) for the kinetics of a
particular type of catalysed reaction, the concentration of the reactant varies according
to the equation

with

(where is a given constant. The parameter  is a rate constant and,
for we observe that the equation reduces to a purely algebraic problem which
is readily solved:

We have selected the positive sign so that On x = 1, this gives the value

and so we will require a boundary layer near x = 1; see §§2.6, 2.7. (Note that, from
this solution, c = 1 on x = 0, so we can expect that as in the solution
of the full equation.) Let us introduce and write
the equation for C is then

We seek a solution
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and so satisfies

with The general solution of this equation can be found, albeit in implicit
form, as

where and A is an arbitrary constant which is

evaluated as

when the boundary condition on X  = 0 is imposed. As (which will give the
behaviour outside the boundary layer), we see that

which therefore automatically matches with the solution already found in the region
away from the boundary layer, (5.151). It is left as a straightforward exercise to find
higher-order terms, or to write down a composite expansion valid for see
§1.10.

This first example has presented us with a very routine exercise in elementary
boundary-layer theory; the next has a similar structure, but in only one of the two
components.

E5.27 Enzyme kinetics

A standard process in enzyme kinetics concerns the conversion of a substrate (x) into
a product, by the action of an enzyme, via a substrate-enzyme complex (y); this is the
Michaelis-Menton reaction. A model for this process is the pair of equations

where and are positive constants and the initial conditions are

The parameter measures the rate of the production of y; we consider the problem
posed above, with It is clear that we should expect a boundary-layer structure
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in the solution for y, but not for x. A suitable boundary-layer variable is
(rather than simply and we will take the opportunity to use the method of
multiple scales here, using T = t and (see §4.6). We introduce
and and then equations (5.152) become

with

The asymptotic solutions are expressed in the usual way:

which gives immediately that only; then we obtain

and so on.
In (5.155a) we choose to make the as simple as possible—the real

purpose behind the introduction of f (T ) = f(t)—and so we write

and then we have simply

This is solved with ease, to produce

where is an arbitrary function. The initial conditions, (5.154), require that
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From (5.155c) we now have

which integrates to give

and then uniformity as requires that

which defines Thus

where C is an arbitrary constant. The initial condition, (5.154), then yields the result
C = 1; the implicit solution for is therefore described by

(Although this equation appears unsatisfactory and rather involved, its solution has a
simple interpretation: starts at and decreases to zero, eventually expo-
nentially like as

Finally, we look at equation (5.155b), which can be written as

the important information we require from this equation is the condition that defines
(in (5.156)). This requires that the term in on the right-hand side, is

removed (because otherwise will contain a term which leads to a non-
uniformity as The relevant term is

or



266 5. Some worked examples arising from physical problems

but this contains so now we must call on equation (5.155d) to find this term.
In this equation, the avoidance of non-uniformities requires the removal of all terms
that depend on only T (for otherwise we will have It is left as an exercise to
show that this condition produces the equation for

or

this, and then the equation for can be integrated, and solutions expressed in terms
of

In our final example, we are able to use ideas from singular perturbation theory in
only a rather superficial way, but this is such an important problem that we could not
ignore it.

E5.28 The Belousov-Zhabotinskii reaction

This is a famous and much-studied phenomenon, first demonstrated by Belousov in
1951. He discovered that a steady oscillation of the concentration of a catalyst, between
its oxidised and reduced states, was possible. In a suitable medium, this can be exhibited
as a dramatic change in colour—a colour being associated with a state—with a period
of a minute or so. A set of model equations for this chemical reaction is

where the concentration of the catalyst is represented by z (Tyson, 1985). The constants
and v are positive and independent of measures the rate constant for the

production of x, and gives the size of the corresponding constant for y and of the
nonlinearity in (5.158a). We will consider the problem with The initial
conditions are relatively unimportant here, but we will assume that they are sufficient
to start the oscillatory process. It would be impossible in a text such as ours, with its
emphasis on singular perturbation theory, to give a comprehensive description of the
relevant solution of the set (5.158). This would involve, for example, a detailed (but
local) stability analysis. We will content ourselves with a brief overview that emphasises
the various scales that are important.

The first point to note is that equations (5.158a,b) have a boundary-layer structure,
so that there is a short time during which the initial values are lost and the
solution settles to a (local) steady state (sometimes referred to as quasi-equilibrium).
Note, however, that (5.158c) allows a relatively long evolution time, so for times of
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size O(l) we have (with

These we will label state I.
From I it is clear that, if then both x and z must increase, but then eventually

the nonlinearity in equations (5.158) will become important (and most particularly
the term in (5.158a)). This observation provides the basis for the scaling in this
situation: we write and and so equations (5.158)
become

These three equations each have a different time scale, so another story unfolds here.
On a very short time interval Y  evolves from its initial value (close to 1) to a
(local) steady state governed by Then on a longer—but still short!—time
interval X now evolves so that and then on an O(1)
time scale we have  these together constitute state II:

In terms of the relevant scales, this is sufficient for the oscillatory process. Of course,
how the solution actually evolves, and jumps between states I and II, needs more
discussion than we are able to present here. A careful analysis demonstrates that, pro-
vided then the solution slowly (O(1) scales) evolves in state I,
becomes unstable and jumps to state II; this also slowly evolves until it becomes unsta-
ble and reverts to state I. This is the essence of the oscillatory process (sometimes called
a relaxation oscillation, because the solution ‘relaxes’ back to a former branch of the
solution).

We have chosen to ignore many important elements in our presentation of the
Belousov-Zhabotinskii reaction, mainly because they require much that goes well
beyond the methods of singular perturbation theory. An illuminating discussion of
this process can be found in Fowler (1997) and this text, in conjunction with Murray
(1993), provide an excellent introduction to many chemical, biochemical and biolog-
ical models and their solutions.

In this final chapter, we have presented and described a number of examples taken
from the physical and chemical sciences, and in each the ideas of singular perturbation
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theory play a significant rôle. As we implied earlier, such a collection could not be
exhaustive—indeed, we can hope to give only an indication of what is possible. Even
if the particular applications offered here are of no specific interest to some readers,
they do provide a set of additional worked examples that should help to reinforce the
ideas that contribute to singular perturbation theory. Other examples, some described
in detail and some set as exercises, are available in many of the texts previously cited.
In addition, interested readers are encouraged to investigate the references to related
material that have been provided throughout this chapter.



APPENDIX: THE JACOBIAN ELLIPTIC FUNCTIONS

Given the integral

where m is usually called the modulus, we then define the jacobian elliptic functions

We see immediately that we have the identities

Further, as and as
The relevant differential relations are

similarly we have
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and

The (real) period of the Jacobian elliptic functions is 4K(m) where

are the complete elliptic integrals of the fast and second kinds, respectively. (The Jacobian
elliptic functions are doubly-periodic in the complex plane; for example, the other period
of cn(u; m) is 2iK(1 – m).)

The interested reader can find more information in texts that specialise in the func-
tions, such as Lawden (1989) or Byrd & Friedman (1971).



ANSWERS AND HINTS

The answer, where one is given, is designated by the prefix A; for example, the answer
to Q1.1 is A1.1. In some cases a hint to the method of solution is included; in a few
of the more involved calculations, some intermediate steps are given.

CHAPTER 1

A1.1 (a) for (b) for

for

(d) for (e)

(c)

for
(f) (cf. (d)) for

for x > 0. [N.B. as(g)

A1.2 (a) for

(b) for

(c) for



A1.3 (a) (b)
which is periodic but of large amplitude as (c)

(d) (e) and note the behaviour
near x = 0 and near x = 1; (f) and only near x = 0
is interesting (cf. (e)); (g)
and the P.I. dominates for x = O(1) as (h) first

and then (i) where

(j)

(k) (l) (m)

(n)

A1.4 (a) both limiting processes give 0—uniform; (b) for first, the limit is 0;
for first, the limit is 1—non–uniform; (c) for first, the function
tends to for first, the function tends to
(d) for first, the limit is 0; for first, the limit is 1—non–uniform.

(a) simply perform the integrations; (b) multiply the result in (a) by
(d) raise the result in (b) to the power

(a) yes; (b) yes; (c) yes; (d)
(e) (f) yes—see Q1.5(e);
(g) yes; (h) yes; (i)

(j) yes; (k) and so

A1.5

A1.6

A1.7 (a) (b) –1/ln x; (c) (d) (e) x ln x; (f) — ln x;
(g)

(a) suppose that then (b) as in (a), but with

(a) (b)

(c)

as required for (a); (b) write as
so p(x) = x – 1.

(a) and ratio test gives

as for all finite x, so convergent for these xs;

(b) and the ratio test

fails for all finite x—divergent. Consider
with x = 2, then 0.9952 < erf(2) < 0.9954. (Accurate value is 0.99532.)

A1.8

A1.9

A1.10

A1.11

A1.12 divergent; then

272 Answers and hints
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A1.13

A1.14
A1.15

A1.16

(a) (b)
(a) (b)

fails because

A1.17

A1.18

ratio test gives

n/x, so diverges; which is minimised by n = [x].

where N.B. More complete descriptions of produce

A1.19(a) where

where match &

match

(b) where

where match
match
(c) where

where match match

(d) where

where match match

(e)
where where match

match

(f)
where

where match

where

match match &

A1.20 (a)

where match:

(b)

where match:

&

&
&

&

&

&

&
&

&

&

&

Write as

with the general term
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A1.21 (a)

where match:

(b)

where

match:

(c)
1n where match: 1n 1n

A1.22 (a) where

(b) where

which is identical to the expansion for

F with

A1.23 (a) does not exist at (b)

A1.24 Form

CHAPTER 2

A2.1 (a) (b)
(c) and for (a)

(b) (c)

A2.2 (a) (b)
(c) (d) (e)

(f) (g)

(h)
(i) (j)

A2.3 (a)
(c) 1n 1n

(b)

(d) 1n (e)

A2.4



A2.5 (a) (b)

(c) (d)
(f)

A2.6 (a)
(d)

A2.7 (a)
(d)

(b) (c)

(b) (c)
(f)

A2.8 I

A2.9 (a)

(b)
(c)
(d)
(e)

A2.10 (a)

(b)

(c)

A2.11 (a)

(b)

(c)

(d)

(e)

A2.12

A2.13

(e)

N.B. Solution for x = O(l) is correct on x = 0;

(e)

275
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A2.14 (a)
(c)

A2.15
where

scaling does not produce a balance of terms.

A2.16 (a)
(b)
(c)
(d)

A2.17(a)
(b)

(c)

A2.18 (a)

(b)

(c)

(d)
(and we cannot determine

(e)

(f)

A2.19

A2.20

A2.21 (a) boundary layer near x = 1; (b) boundary layer near x = 0; (c) transition
layer near x = 1/2; (d) transition layer near x = 0; (e) solution depends on the
particular boundary values.

A2.22 (a)

matching gives

the

no balance for large

(d) (e)

at this order);

for and
for both away from x =

(b)
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for and for both away from

A2.23 for and for

both away from so that the jump is be-

tween and the result follows;

(a) and

B is unknown at this order; (b)

(c)

A2.24 Choose then
and the turning points are the zeros of

if the derivative is non-zero at the zero.

A2.25 where Ai and Bi are the Airy functions.

A2.26 (a)
(b)

(c)

A2.27

where (a) then
returning at time (twice the

previous time); (b)
max. height at time

then max. height at time returning at

time (not twice now); (c)
then breakdown where

which gives (for the dominant terms).

A2.28 then

(a)

which breaks down because the first term approaches a constant, but the second
is dominated by

(b)

where are constants, with (and is also
determined).

special case gives
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A2.29

A2.30

A2.31

A2.32

A2.33

A2.34

A2.35

with

where

where

(a) (b) solution for then the con-

stant is given by 1n

CHAPTER 3

A3.1

A3.2

A3.3

A3.4

A3.5

A3.6

A3.7

A3.8

A3.9

A3.10

A3.11

From (3.39): constant; dy/dx follows.

where
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A3.12

A3.13

A3.14

A3.15
A3.16
A3.17

A3.18

A3.19

A3.20
A3.21

A3.22

A3.23

A3.24

A3.25

where
near near

matching gives:
from which we can

obtain

with we obtain

with we write where
with the boundary conditions

as

introduce then
and where thus we obtain

You will obtain

(for cos t).

Introduce then
with then

after matching;

dominant behaviour of
satisfies and then

and as

and as and
With is undefined at near this point we have

and satisfies the equation

where

where

CHAPTER 4

A4.1 The equation for the amplitude is and so

if a < 0
then amplitude and phase are undefined at
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A4.2

A4.3

A4.4

A4.5

A4.6

A4.7

A4.8

A4.9

A4.10

A4.11

For

The equation for the amplitude is and so

requires and to remain
bounded as

where
(so amplitude is constant) and then the phase is

For the particular integral is a

constant (which is not a problem); for the particular integral is secular.
For

The equation for the amplitude is and so
where are

constants.

Write the first term in u as and then
and so

where

where
Note that the forcing contributes to the term

subharmonic.in the form

periodicity requires and then (except for zero
initial data) and/or grow linearly in for all
The energy integral is for non-zero initial data: all
trajectories are unbounded for so nearly periodic, bounded solutions
do not exist.

where with
where is an arbitrary constant.

where
with

where is an arbitrary constant.
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A4.12

A4.13

A4.14

A4.15

A4.16

A4.17

A4.18

A4.19

A4.20

A4.21

where
Then exponential growth for

oscillatory for linear growth on

and then the second term is periodic if
and the third if

Thus

where are constants and

(for a bounded solution as
here,

First and then where is an

arbitrary constant; thus the eigenvalues are given by

for

for x > 1.

Ai(X), where is an arbitrary constant.

For x > 1 (bounded solution):

for x < 0: for 0 < x < 1:

First then with we obtain and
so

For

for

for
for where

Near x = 0:
near x = 1:
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Matching gives
leaving which

gives the required result.

A4.22

A4.23

A4.24

A4.25

A4.26

A4.27

A4.28

A4.29

A4.30

A4.31

A4.32

A4.33

A4.34

A4.35

First then

First and then

As for A4.23, then

First then

First then

E.g. etc.

**In the next five answers, we have

and so
where

and so
where

B = constant and so where

and so
where

and so

The use of gives rise to a solution which is not defined on x = 0;

use then

With and so
where

With we obtain
and so

where



REFERENCES

Abramowitz, M. & Stegun, I. A. (ed.) (1964), Handbook of Mathematical Functions. Washington: Nat. Bureau
of Standards. (Also New York: Dover, 1965)

Andrews, J. G. & McLone, R. R. (1976), Mathematical Modelling. United Kingdom: Butterworth.
Barenblatt, G. I. (1996), Scaling, self-similarity, and intermediate asymptotics. Cambridge: Cambridge University

Press.
Blasius, H. (1908), Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys., 56, 1–37. (Trans-

lated as ‘Boundary layers in fluids with small friction,’ Tech. Memor. Nat. adv. Comm. Aero., Washington
no. 1256.)

Boccaletti, D. &Pucacco, G. (1996), Theory of Orbits 1: Integrable Systems and Non-perturbative Methods. Berlin:
Springer-Verlag.

Bogoliubov, N. N. & Mitropolsky, Y. A. (1961), Asymptotic Methods in the Theory of Nonlinear Oscillations.
Delhi: Hindustan Publishing.

Boyce, W E. & DiPrima, R. C. (2001), Elementary Differential Equations and Boundary Value Problems. (7th
Edition) New York: Wiley.

Bretherton, F. P. (1964), Resonant interaction between waves. The case of discrete Oscillations, J. Fluid
Mech., 20, 457–79.

Brillouin, L. (1926), Rémarques sur la méchanique ondulatoire, J. Phys. Radium, 7, 353–68.
Burgers, J. M. (1948), A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1,

171–99.
Bush, A. W (1992), Perturbation Methods for Engineers and Scientists. Boca Raton, FL: CRC.
Byrd, P. F. & Friedman, M. D. (1971), Handbook of Elliptic Integrals for Engineers and Physicists. 2nd edn. New

York: Springer-Verlag.
Carrier, G. F. (1953), ‘Boundary problems in applied mechanics’ in Advances in Applied Mechanics III. New

York: Academic Press.
(1954), Boundary layer problems in applied mathematics, Comm. Pure Appl. Math., 7, 11–17.

Carslaw, H. W. & Jaeger, J. C. (1959), Conduction of Heat in Solids. Oxford: Clarendon.
Chang, K. W. & Howes, F. A. (1984), Nonlinear Singular Perturbation Phenomena: Theory and Applications.

Berlin: Springer-Verlag.



284 References

Christodoulou, D. M. & Narayan, R. (1992), The stability of accretion tori. IV. Fission and fragmentation
of slender self-gravitating annuli, Astrophys. J., 388, 451–66.

Cole, J. D. (1951), On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9,
225–36.

(1968), Perturbation Methods in Applied Mathematics. Waltham, MA: Blaisdell.
Cook, R. J. (1990), ‘Quantum jumps’ in Progress in Optics, XXVIII (E. Wolf, ed.). Amsterdam: North-

Holland.
Copson, E. T. (1967), Asymptotic Expansions. Cambridge: Cambridge University Press.
Courant, R. & Friedrichs, K. O. (1967), Supersonic Flow and Shock Waves. New York: Interscience.
Cox, R. N. & Crabtree, L. F. (1965), Elements of Hypersonic Aerodynamics. London: English Universities Press.
Crank, J. (1984), Free and Moving Boundary Value Problems. Oxford: Clarendon.
DeMarcus, W. C. (1956, 1957), The problem of Knudsen flow, Parts I, II (1956) & III (1957), US AEC

Rep. K-1302.
Dingle, R. B. (1973), Asymptotic Expansions: their Derivation and Interpretation. London: Academic Press.
Drazin, P. G. & Johnson, R. S. (1992), Solitons: an Introduction. Cambridge: Cambridge University Press.
Dresner, L. (1999), Applications of Lie’s Theory of Ordinary and Partial Differential Equations. Bristol: Institute

of Physics Publishing.
Duffing, G. (1918), Erzwungene Schwingugen bei veränderlicher Eigenfrequenz, F. Vieweg u. Sohn (Braun-

schweig).
Eckhaus, W. (1979), Asymptotic Analysis of Singular Perturbations. (Studies in Mathematics and its Applications,

Vol. 9.) Amsterdam: North-Holland.
Erdelyi, A. (1956), Asymptotic Expansions. New York: Dover.
Ford, W B. (1960), Divergent Series, Summability and Asymptotics. Bronx, NY: Chelsea.
Fowler, A. C. (1997), Mathematical Models in the Applied Sciences. Cambridge: Cambridge University Press.
Fraenkel, L. E. (1969), On the method of matched asymptotic expansions. Parts I–III, Proc. Camb. Phil. Soc.

65, 209–84.
Fulford, G. R. & Broadbridge, P. (2002), Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter.

(Australian Mathematical Society Lecture Series vol. 16). Cambridge: Cambridge University Press.
Georgescu, A. (1995), Asymptotic Treatment of Differential Equations. London: Chapman & Hall.
Hanks, T. C. (1971), Model relating heat-flow value near, and vertical velocities of, mass transport beneath

ocean rises, J. Geophys. Res., 76, 537–44.
Hardy, G. H. (1949), Divergent Series. Oxford: Clarendon.
Hayes, W D. & Probstein, R. F. (1960), Hypersonic Flow Theory I: Inviscid Flows. New York: Academic Press.
Hinch, E. J. (1991), Perturbation Methods. Cambridge: Cambridge University Press.
Holmes, M. H. (1995), Introduction to Perturbation Methods. New York: Springer-Verlag.
Hopf, E. (1950), The partial differential equation Comm. Pure Appl. Math., 3, 201–30.
Ince, E. L. (1956), Ordinary Differential Equations. New York: Dover.
Jeffreys, H. (1924), On certain approximate solutions of linear differential equations of the second order,

Proc. Land. Math. Soc., 23, 428–36.
Johnson, R. S. (1970), A non-linear equation incorporating damping and dispersion, J. Fluid Mech., 42(1),

49–60.
(1997), A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge: Cambridge

University Press.
Kaplun, S. (1967), Fluid Mechanics and Singular Perturbations. (P. A. Lagerstrom, L. N. Howard, C. S. Liu,

eds.) New York: Academic Press.
Kevorkian, J. & Cole, J. D. (1981), Perturbation Methods in Applied Mathematics. (Applied Mathematical

Sciences, Vol. 34.) Berlin: Springer-Verlag.
(1996), Multiple Scale and Singular Perturbation Methods. (Applied Mathematical Sciences, Vol. 114.)

Berlin: Springer-Verlag.
Kapila, A. K. (1983), Asymptotic Treatment of Chemically Reacting Systems. Boston: Pitman.
King, J. R., Meere, M. G., & Rogers, T. G. (1992), Asymptotic analysis of a nonlinear model for substitu-

tional diffusion in semiconductors, Z. angew Math. Phys,, 43, 505–25.
Kramers H. A. (1926), Wellenmechanik und halbzahlige Quantisierung, Z. Physik, 39, 829–40.
Kuo, Y. H. (1953), On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds

number, J. Math. and Phys., 32, 83–101.
Kuzmak, G. E. (1959), Asymptotic solutions of nonlinear second order differential equations with variable

coefficients J. Appl. Math. Mech. (PMM), 23, 730–44.
Lagerstrom, P. A. (1988), Matched Asymptotic Expansions: Ideas and Techniques. New York: Springer-Verlag.



285

Lawden, D. F. (1989), Elliptic Functions and Applications. Berlin: Springer-Verlag.
Lie, G. C. & Yuan, J.-M. (1986), Bistable and chaotic behaviour in a damped driven Morse oscillator: a

classical approach, J. Chem. Phys., 84, 5486–93.
Lighthill, M. J. (1949), A technique for rendering approximate solutions to physical problems uniformly

valid, Phil. Mag. 40, 1179–1201.
(1961), A technique for rendering approximate solutions to physical problems uniformly valid, Z.

Flugwiss., 9, 267–75.
Lo, L. (1983), The meniscus on a needle–a lesson in matching, J. Fluid Mech., 132, 65–78.
McLachlan, N. W. (1964), Theory and Applications ofMathieu Functions. New York: Dover.
McLeod, J. B. (1991), ‘Laminar flow in a porous channel’ in Asymptotics beyond All Orders (H. Segur, S.

Tanveer, & H. Levine eds.). New York: Plenum Press.
Mestre, N. de (1991), The Mathematics of Projectiles in Sport. Cambridge: Cambridge University Press.
Miles, J. W. (1959), The Potential Theory of Unsteady Supersonic Flow. Cambridge: Cambridge University

Press.
Murray, J. D. (1974), Asymptotic Analysis. Oxford: Clarendon.

(1993), Mathematical Biology. (Biomathematics Vol. 19.) Berlin: Springer-Verlag.
Nayfeh, A. H. (1973), Perturbation Methods. New York: Wiley.

(1981), Introduction to Perturbation Techniques. New York: Wiley.
Olver, F. W. J. (1974), Introduction to Asymptotics and Special Functions. New York: Academic Press.
O’Malley, R. E. (1991), Singular Perturbation Methods for Ordinary Differential Equations. (Applied Mathematical

Sciences, Vol. 89.) New York: Springer-Verlag.
Oseen, C. W. (1910), Uber die Stokes’sche Formel, und uber eine verwandte Aufgabe in der Hydrodynamik,

Ark. Math. Astronom. Fys., 6(29).
Pao, Y.-P. & Tchao, J. (1970), Knudsen flow through a long circular tube, Phys. Fluids, 13(2), 527–8.
Papaloizou, J. C. B. & Pringle, J. E. (1987), The dynamical stability of differentially rotating discs–III, Mon.

Not. R. Astron. Soc., 225, 267–83.
Patterson, G. N. (1971), Introduction to the Kinetic Theory of Gas Flows. Toronto: University of Toronto

Press.
Poincaré, H. (1892), Les Méthodes Nouvelles de la Méchanique Céleste II (available New York: Dover, 1957).
Proudman, I. (1960), An example of steady laminar flow at large Reynolds number, J. Fluid Mech., 9,

593–602.
Rayleigh, J. W. S. (1883), On maintained vibrations, Phil. Mag., 15, 229–35.
Reiss, E. L. (1980), A new asymptotic method for jump phenomena, SIAMJ. Appl. Math., 39, 440–55.
Roosbroeck, W. van (1950), Theory of the flow of electrons and holes in germanium and other semicon-

ductors, Bell System Tech.J., 29, 560–607.
Sanders, J. A. (1983), ‘The driven Josephson equation: an exercise in asymptotics’ in Asymptotic Analysis

II—Surveys and New Trends (F. Verhulst, ed.). New York: Springer-Verlag.
Schmeisser, C. & Weiss, R. (1986), Asymptotic analysis of singularly perturbed boundary value problems,

SIAMJ. Math. Anal., 17, 560–79.
Segur, H., Tanveer, S., & Levine, H. (eds.) (1991), Asymptotics beyond All Orders. (NATO ASI Series B:

Physics Vol. 284). New York: Plenum Press.
Shockley, W. (1949), The theory of p-n junctions in semiconductors and p-n junction transistors, Bell System

Tech.J., 28, 435–89.
Smith, D. R. (1985), Singular-perturbation Theory: An Introduction with Applications. Cambridge: Cambridge

University Press.
Stokes, G. G. (1851), On the effect of the internal friction of fluids on the motion of pendulums, Trans.

Camb. Phil. Soc., 9(11), 8–106.
Szekely, J., Sohn, H. Y., & Evans, J. W. (1976), Gas-Solid Reactions. New York: Academic Press.
Taylor, G. I. (1910), The conditions necessary for discontinuous motion in gases, Proc. Roy. Soc., A84,

371–77.
Terrill, R. M. & Shrestha, G. M. (1965), Laminar flow through a channel with uniformly porous walls of

different permeability, Appl. Sri. Res., A15, 440–68.
Tyson, J. J. (1985), ‘A quantitative account of oscillations, bistability, and travelling waves in the Belousov-

Zhabotinskii reaction’ in Oscillations and Travelling Waves in Chemical Systems (R. J. Field & M. Burgur
eds.). New York: Wiley.

van der Pol, B. (1922), On a type of oscillation hysteresis in a simple triode generator, Phil. Mag., 43, 177–93.
Van Dyke, M. (1964), Perturbation Methods in Fluid Mechanics. New York: Academic Press.

(1975), Perturbation Methods in Fluid Mechanics (Annotated Edition). Stanford, CA: Parabolic Press.



286 References

Vasil’eva, A. B. & Stelmakh, V. G. (1977), Singularly disturbed systems of the theory of semiconductor
devices, USSR Comp. Math. Phys., 17, 48–58.

Wang, M. & Kassoy, D. R. (1990), Dynamic response of an inert gas to slow piston acceleration, J. Acoust.
Soc. Am., 87, 1466–71.

Ward, G. N. (1955), Linearized theory of Steady High-speed Flow. Cambridge: Cambridge University Press.
Wasow, W. (1965), Asymptotic Expansions for Ordinary Differential Equations. New York: Wiley.
Wentzel, G. (1926), Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,

Z. Phys., 38, 518–29.
Whitham, G. B. (1974), Linear and Nonlinear Waves. New York: Wiley.



SUBJECT INDEX

Acoustic problem, 249
acoustic wave, 136
Airy equation, 221
Airy function, 173
amplitude modulation, 157
angular momentum, 224
applications

1D heat transfer, 195
asymmetrical bending of a pre-stressed annular

plate, 152
Belousov-Zhabotinskii reaction, 266
Boussinesq equation, 119
Boussinesq equation for water waves, 149
celestial mechanics, 219
chemical and biochemical reactions, 262
child’s swing, 200
combustion model, 255
connection between KdV and NLS equations, 194
decay of satellite orbit, 223
diode oscillator with a current pump, 213
drilling by laser, 207
Duffing equation, 155
Duffing equation with damping, 163
earth-moon-spaceship, 110
eigenvalue problem, 106
Einstein’s equation for Mercury, 219
elastic displacement, 112
enzyme kinetics, 263
enzyme reaction, 112

extreme thermal processes, 255
flow past a distorted circle, 116, 148
fluid mechanics, 242
gas flow through a long tube, 233
gas flow (unsteady, viscous), 233
heat transfer in 1D, 111, 195
heat transfer to a fluid flowing through a pipe, 131
Hill’s equation, 154, 191
hypersonic flow (thin aerofoil), 151
impurities in a semiconductor, 240
incompressible, inviscid flow past a circle, 116
Josephson junction, 236
Kepler’s equation, 104
kinetics of a catalysed reaction, 262
Klein-Gordon equation, 217
Korteweg-de Vries equation (variable depth) for

water waves, 252
laminar flow through a channel, 112
light propagating through a slowly varying medium,

228
low-pressure gas flow through a long tube, 233
Mathieu’s equation away from critical, 191
Mathieu’s equation based on Floquet theory, 153
Mathieu’s equation, case n = 0, 140
Mathieu’s equation, case n = 1, 141, 169
Mathieu’s equation, case n = 2, 153, 191
mechanical & electrical systems, 198
meniscus on a circular tube, 203
nonlinear, dispersive wave propagation, 118
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perturbation of the bound states of Schrödinger’s
equation, 226

physics of particles and of light, 226
piston moving a gas in a long tube, 250
p-n junction, 237
planetary rings, 221
potential function outside a distorted circle, 148
projectile motion with small drag, 198
quantum jumps—the ion trap, 232
Raman scattering: damped Morse oscillator, 230
ray theory, 194
Rayleigh oscillator, 211
satellite orbit (decay), 223
Schrödinger’s equation for high energy, 193
self-gravitating annulus, 111
semiconductors, 235
semiconductor impurities, 240
shot-put, 199
slider bearing, 112
superconductors, 235
supersonic, thin aerofoil theory, 122
supersonic, thin aerofoil theory (using

characteristics), 151
swing (child’s), 200
thermal runaway, 258
thin aerofoil in a hypersonic flow, 151
thin aerofoil in transonic flow, 151
thin aerofoil theory, 151
transonic flow (thin aerofoil), 151
triode oscillator, 211
unsteady, 1D flow of a viscous, compressible

gas, 135
van der Pol oscillator, 211
vertical motion under gravity, 109
very viscous flow past a sphere, 246
vibrating beam, 111
viscous boundary layer on a flat plate, 242
water waves over variable depth, 252
water waves with weak nonlinearity, damping

and dispersion, 150
wave propagation (nonlinear, dispersive), 118
waves with dissipation, 149
weak shear flow past a circle, 148

asymmetrical bending of a plate, 152
asymptotic expansion, 14

complex variable, 16
composite, 35
conditions for uniqueness of, 15
definition, 14
integration of, 55
non-uniqueness, 14, 43
used in integration, 55
with parameter (1), 20
with parameter (2), 24

asymptotic sequence, 13
definition, 13
natural, 18

asymptotically equal to, 12

Behaves like, 12
Belousov-Zhabotinskii reaction, 266
Bernoulli’s equation, 122
Bessel function

asymptotic behaviour, 44
modified, 206

big-oh, 11
Blasius equation, 244
blow up, 21
Bond number, 203
bound state (perturbations of), 226
boundary layer

nonlinear problem, 84
on a flat plate, 242
ordinary differential equations, 80
position, 86
two of them, 95, 108, 195
using method of multiple scales, 183, 194
within a layer, 108

boundary layer or transition layer, 90
examples, 96, 98

Boussinesq equation, 119
Boussinesq equation for water waves, 149
breakdown, 21, 22
Bretherton’s equation, 177
Burgers equation, 139

in a multi-speed equation, 150

Carrier wave, 179
catalysed reaction (kinetics), 262
celestial mechanics, 219
characteristic variables, 120
chemical and biochemical reactions, 262
child’s swing, 200
Clausing integral equation, 233
combustion model, 255
complementary error function, 209
completely integrable, 119
complex roots, 53
composite expansions, 35, 184

definition—additive, 35
definition-multiplicative, 39
error in using, 37

connection formula, 176, 223
conservation of waves (wave crests), 178
continuous group, 79
convergent series, 16
cubic equation, 50

D’Alembert’s solution, 124
definition

asymptotic expansion, 14
asymptotic expansion with parameter (1), 20
asymptotic expansion with parameter (2), 24
asymptotic sequence, 13
asymptotically equal to, 12
behaves like, 12
big-oh, 11
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breakdown, 22
composite expansion (additive), 35
composite expansion (multiplicative), 39
Jacobian elliptic functions, 219
little-oh, 11
matching principle, 30
uniformity, 22

differential equations
scaling, 75
turning point, 90
with boundary-layer behaviour, 80

diode (semiconductor), 237
diode oscillator with current pump, 213
dispersion relation, 177
dispersive/non-dispersive wave, 183
divergent series, 16

estimates for, 16
doping (semiconductor), 237
drilling by laser, 207
Duffing equation with damping, 163
Duffing’s equation, 155

Earth-moon-spaceship, 110
eccentricity, 224
eigenvalue

in Schrödinger’s equation, 226
problems, 106, 192
vibrating beam, 111

eikonal equation, 194, 228
Einstein’s equation for Mercury, 219
Einstein’s theory of gravity, 219
elastic displacement, 112
ellipse (Keplerian), 224
elliptic equation, 128
elliptic functions, 165

definitions, 269
enzyme kinetics, 263
enzyme reaction, 112
equation

Airy, 173, 221
Bernoulli’s, 122
Blasius, 244
Boussinesq, 119, 149
Bretherton, 176
Burgers, 139
Clausing, 233
cubic, 50
differential, scaling, 75
Duffing, 155
Duffing with damping, 163
eikonal, 228
Einstein’s for Mercury, 219
elliptic, 128
Euler-Lagrange, 228
first order, linear, 4
Hermite, 228
Hill, 154, 191
hyperbolic, 128

Kepler’s, 104
Klein-Gordon, 217
Korteweg-de Vries, 121, 149, 255
Laplace’s, 128
linear oscillator, 2
linear oscillator with damping, 160
Mathieu, 139
Mathieu, away from critical, 191
Mathieu, case n - 0, 140
Mathieu, case n = 1, 141, 169
Mathieu, case n = 2, 153, 191
multi-wave-speed, 150
Navier-Stokes, 242, 246
Nonlinear Schrödinger, 181, 193
ordinary differential, first order (regular problem), 59
ordinary differential, first order (singular problem),

66,70
ordinary differential, second order (regular problem), 64
parabolic, 128
quadratic, 47
Riccati, 63
scaling of, 75
Schrödinger’s, 193, 226
second order, linear, 2, 6, 8
sine-Gordon, 217
transcendental, 51
two-point boundary-value problem, 7
with boundary-layer behaviour, 80

error in composite expansion, 37
error function, 43
Euler-Lagrange equation, 228
exponential integral, 17, 43, 261

estimates for, 43
extreme thermal processes, 255

Far-field, 121
fast scale, 158
Fermat’s principle, 228
Floquet theory, 139

applied to Mathieu’s equation, 153
flow of a compressible gas (unsteady), 135
flow past a distorted circle, 116, 148
flow through a channel (laminar), 112
fluid mechanics, 242
Fourier’s law, 208
free-molecular flow, 234
frequency, 177
function

Airy, 173
Bessel, 44
complementary error, 209
error, 43
gamma, 92
gauge, 10
Heaviside step, 252
Hermite, 193, 228
Jacobian elliptic, 165, 269
Jacobian elliptic (definitions), 219
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modified Bessel, 206
stream, 243

Gamma function, 92
gas (isentropic), 122, 135, 249
gas constant, 135
gas flow through a long tube, 233
gas flow (unsteady, viscous), 135
gauge function, 10

set of, 13
geometrical optics, 194
ghost of a root, 49
group

continuous, 79
infinite, 80
Lie, 79

group speed, 179
in solution of Klein-Gordon equation, 217
in solution of Nonlinear Schrödinger equation, 180

Harmonic wave, 181
heat transfer

one dimensional, 111, 195
to a fluid flowing through a pipe, 131

Heaviside step function, 252
Hermite functions, 193
Hermite’s equation, 228
higher harmonics, 181
Hill, equation, 154, 191
Hopf-Cole transformation, 139
hot branch, 261
how many terms ?, 69
hyperbolic equation, 128
hypersonic flow (thin aerofoil), 151

Implicit solution, 126
impurities in a semiconductor, 240
infinite group, 80
integral in thin aerofoil theory, 105
integration

using asymptotic expansions, 55
using overlap region, 56

intermediate variables, 26
examples, 26

invariant, 80
ion trap, 232
isentropic gas, 122, 135, 249

Jacobian elliptic functions, 165, 269
for Einstein’s equation, 219

Josephson junction, 236

KdV—see Korteweg-de Vries
Keplerian ellipse, 224
Keplerian mechanics, 219
Kepler’s equation, 104
kinetics of a catalysed reaction, 262
Kirchhoff’s law, 213

Klein-Gordon equation, 217
Knudsen flow, 234
Korteweg-de Vries equation, 121, 149, 255

connection to Nonlinear Schrödinger equation, 193
Korteweg-de Vries equation (variable depth), 252

Laminar flow through a channel, 112
Landau symbols, 12
Langmuir-Hinshelwood model, 262
Laplace transform, 209
Laplace’s equation, 128
Laplace’s formula, 203
laser drilling, 207
Lie group, 79
light propagation, 228
limit cycle, 213
limit process, non-uniform, 4, 6
linear differential equation

first order, 4
second order, 2, 6, 7

linear oscillation, 2
bounded solution, 3
periodic solution, 3

linear, damped oscillator, 160
little-oh, 11
logarithmic terms—matching with, 32

Mach number, 122
Maclaurin expansion, 41
maintained vibrations, 211
matching principle, 28

definition, 30
van Dyke’s, 29
with logarithmic terms, 32

Mathieu’s equation, 139
away from critical, 191
case n = 0, 140
case n = 1, 141, 169
case n = 2, 153, 191
transitional curves, 141

Mathieu’s equation and Floquet theory, 153
mechanical & electrical systems, 198
meniscus on a circular tube, 203
Mercury—Einstein’s equation for, 219
method of multiple scales, 157

boundary-layer problems, 184, 194, 195
limitations, 183

method of separation of variables, 130
method of strained coordinates, 142
Michaelis-Menton reaction, 263
modified Bessel functions, 206
Morse oscillator, 230
motion under gravity, 109
multiple scales (method of), 157
multi-wave-speed equation, 150

Natural asymptotic sequence, 18
Navier-Stokes equation, 242, 246
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near field, 121
nearly linear oscillations, 157, 188, 189
Newtonian mechanics, 219
Newtonian viscosity, 135
NLS—see Nonlinear Schrödinger
non-dispersive/dispersive wave, 183
nonlinear oscillator, 165, 190
Nonlinear Schrödinger equation, 181, 193

connection to Korteweg-de Vries equation,
193

non-uniform, 21
non-uniform limiting process, 4, 6
non-uniformity at infinity, 71
non-uniformity near the origin, 72
normalisation, 226
notation

asymptotically equal to, 12
behaves like, 12
big-oh, 11
little-oh, 11

number
Bond, 203
Mach, 122
Prandtl, 136
Reynolds, 136, 243

Ordinary differential equations
exact solutions, 41
first order, singular, 66
regular problem (first order), 59
uniform validity, 61

oscillation
linear, damped, 160
linear, simple, 2
nearly linear, 156, 187, 188
maintained, 211
nonlinear, 165, 190
relaxation, 267
self-sustaining, 211

oscillator
diode, with current pump, 213
in the Belousov-Zhabotinskii reaction, 266
Morse with damping, 230
nonlinear, 165, 190
Rayleigh, 211
van der Pol, 211

overlap—maximum possible, 28
overlap region, 26

example, 26
used in integration, 56

Parabolic equation, 128
partial differential equation (regular problem), 115
Paul trap, 232
pendulum (stable up), 139
pendulum (child’s swing), 201
pericentre, 224
periodicity, 159, 225

perturbation of the bound states of Schrödinger’s
equation, 226

phase, 178
phase speed, 179
physics of particles and of light, 226
Picard’s iterative scheme, 62
piston problem, 249
planetary rings, 221
PLK method, 142
p-n junction, 237
Poincaré, H., 14
position of a boundary layer, 87
potential function outside a distorted circle, 148
Prandtl number, 136
pressure wave, 136
projectile motion with small drag, 197
projectile range, 198

Quadratic equation, 47
quantum jumps, 232
quasi-equilibrium, 266

Radius of convergence, 16
radius of curvature, 203
Raman scattering, 230
range (projectile), 199
Rankine-Hugoniot conditions, 251
ratio test, 18
ray theory, 194
Rayleigh oscillator, 211
regular, 21
regular problem

first order ordinary differential equation, 59
flow past a circle, 116
ordinary differential equations, 59
partial differential equation, 115
second order ordinary differential equation, 64
uniform validity, 61

relaxation oscillation, 267
resonance, 190
Reynolds number, 243
Riccati equation, 63
roots (ghost of), 49
roots of equations, 47

complex, 53
cubic, 50
quadratic, 47
transcendental, 51

Satellite orbit (decay), 223
scale

fast, 158
slow, 158

scaling
differential equations, 75
introduction to, 21

Schrödinger’s equation—perturbation of bound states, 226
Schrödinger’s equation for high energy, 193
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secular terms, 161, 179
self-gravitating annulus, 111
self-sustaining oscillations, 211
semiconductor, 237
semiconductor impurities, 240
semi-major axis, 224
separation of variables, 130
shock profile (Taylor), 149
shock wave, 127
shock wave (weak), 251
shot-put (application of projectile motion), 199
similarity solution, 133, 241

Blasius, for boundary layer on a flat plate, 244
sine integral, 43
sine-Gordon equation, 217
singular, 21
singular problems (simple differential equations), 66,

118
slider bearing, 112
slow flow, 246
slow scale, 158
Snell’s law, 229
soliton theory

Boussinesq equation, 119
Korteweg-de Vries equation, 121
Nonlinear Schrödinger equation, 182
sine-Gordon equation, 217

speed
group, 180, 181,219
phase, 178

stagnation point, 243
Stefan problem, 208
Stokes flow, 246
Stokes stream function, 246
strained coordinates, 142
stream function, 244

Stokes, 246
superconductors, 235
supersonic flow (thin aerofoil theory), 122

using characteristics, 151
surface tension, 203
swing (child’s), 200

Taylor shock profile, 149
theory of geometrical optics, 194
thermal conductivity, 131, 135
thermal runaway, 258

hot branch, 261
thin aerofoil theory, 105

hypersonic flow, 151
integral problem, 105
supersonic, 122
transonic flow, 151

time scales, 159

transcendental equation, 51
transition layer, 90
transition layer or boundary layer, 90
transitional curve (Mathieu equation), 141
transonic flow (thin aerofoil theory), 151
triode circuit, 211
tunnelling effect, 236
turning point, 90, 170, 192
two boundary layers, 95, 108, 195
two-point boundary-value problem for linear equation, 7

Uniform, 21
uniformity, 22
uniformly valid, 21, 22

Van der Pol oscillator, 211
van Dyke’s matching principle, 29
velocity potential, 122
vertical motion under gravity, 109
vibrating beam (eigenvalues for), 111
vibrations of elliptical membrane, 139
viscosity, 135
viscous boundary layer, 242
viscous flow of a compressible gas, 135
viscous flow past a sphere, 246

Water waves, 150,252
wave

acoustic, 136
action, 180
carrier, 179
conservation, 178
dissipative, 149
harmonic, 181
higher harmonics, 181
non-dispersive, 183
water, 150, 252
pressure, 136

wave action, 180
wave number, 177
wave propagation

characteristic variables, 120
d’Alembert’s solution, 124
dispersive/non-dispersive, 183
far field, 121
near field, 121
non-dispersive/dispersive, 183
nonlinear, dispersive, 118

weak shear flow past a circle, 148
wetting, 203
WKB method, 170
WKB—exponential case, 192
WKB—higher-order terms, 191
WKBJ—see WKB method




