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- INTRODUCTION -

Where Reason Cannot Go

WE ALL LIVE WITH LIMITATIONS—some natural, some rule-based. We
cannot fly unaided, nor can we beat the ace of spades with the deuce.
This book is about the grander limitations that stand like granite walls
around our scientific and technological enterprise. “This far and no far-
ther,” they seem to say, an ancient prohibition from sacred ground. I
locate these barriers “beyond reason” because reason, even though it
found them, sees no way around them.

Potential barriers might include a prohibition of time travel, espe-
cially into the past. However, I know of no established physical or math-
ematical theory that prohibits it. There may also be some reason why we
can never solve the prime number problem, butI do not know it.

To speak of time travel and prime numbers in one breath expresses
the dual nature of this book. Everyone knows what “time travel” means,
but few know what a prime number is. Thus I must immediately explain
that a prime number is one that cannot be divided evenly by any other
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number except 1. To solve the prime number problem means to arrive
at what mathematicians call a closed-form expression involving a vari-
able n that, when you substitute specific values of n into the expression,
yields the nth prime number. [ know of no theory that prohibits such a
possibility, although the problem may well have no solution.

This book deals with two kinds of science: one inductive, the other
deductive. One is vastly more popular than the other, but could not exist
without it.

Although no current physical theory appears to prohibit time travel,
the discovery of a method is sure to be cloaked in the language of math-
ematics. Conversely, any prohibition of the possibility will involve for-
mulas and equations. It has become somewhat fashionable to speak of
mathematics as a “language.” While it has many features of a language—
mainly notation that looks like Egyptian hieroglyphics to nonmathemati-
cians—there must be more than mere language going on. We still have
to account for the amazing success of mathematics as a description of
physical reality. The precision of so many theories of physical reality may
hint at a deeper truth, that mathematics is a major structural foundation
of our universe. Nothing expresses the presence of structure better than
barriers. There are some things we cannot know and some things we
cannot do, all as a result of the internal logical structure of this field. The
limitation does not depend in any way on the wishes or fears of individ-
ual scientists, much less their cultural backgrounds.

For the sake of names I would invoke the entire universe of mathe-
matics, both known and unknown, by the term “holos,” Greek for
“whole.” The word “cosmos” has essentially the same meaning in Greek
but, in this context, means the physical universe in which we live, move,
and have our being. With such terminology one can make mystical-
sounding statements such as “The cosmos rests upon the holos.” I have
only the vaguest idea of what this sentence might actually mean, but it
advertises the aim of this book: to discover how physical reality depends
on mathematical reality, and to examine how mathematical reality
manifests itself—at least to exploring minds that are still capable of
curiosity.

The physical world as described by physics has a somewhat eerie
mathematical configuration, taken together. A stone thrown in a vacuum
will execute a parabola with a precision great enough to rule out any
other polynomial function as a possible path. Dd Galileo and Newton
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lay this fantasy upon us because they were Italian or English? Because
they were expressing a post-Renaissance yearning for perfection? Or
were Galileo and Newton merely traveling the mental landscape of pure
reason? Would Galileo recognize the thoughts of Newton? If not, why
not? Both were explorers of the holos, and neither had much choice
about what he would find—or not find.

The discovery of barriers to knowledge has been accelerating some-
what over the past two centuries, keeping pace with science itself. We
have known since the late nineteenth century that we cannot square the
circle, but in the 1920s we learned that there exist theorems that we shall
never prove. In the 1940s, even as computers emerged from the smoke
and dust of a world war, we discovered noncomputable functions and the
unsolvability of the halting problem. This meant, among other things,
that we would never be able write a program that debugs (finds all the
errors in) other programs. In the 1970s we learned that even computable
functions could be a problem. There are literally hundreds of well-
known and important problems lurking behind every conceivable nook
and cranny of our technological infrastructure. There are instances of
these problems that cannot be solved by any computer (no matter how
fast) before the universe comes to an end.

The foregoing barriers were all discovered by reasoning in pure math-
ematics. Although physicists may object, saying that I am laying claim to
their territory, it can be suggested that the other barriers were discov-
ered by reasoning in applied mathematics {or physics, if you wish). We
have known since the mid-nineteenth century that we cannot build a
perpetual motion machine, but learned, in the first ten years of the twen-
tieth century, that we shall never travel through space any faster than
the speed of light. In the 1920s we were dismayed to learn that we would
never be able to measure precisely the simplest properties of tiny parti-
cles like the photon and the electron. In the 1980s, chaos descended on
the field of dynamical systems with the discovery that the behavior of
some not-so-tiny systems suffered from another form of unpredictability.
We cannot predict the weather with anything like complete accuracy, nor
will we ever be able to.

There are people among us who will brook no barriers, bridling at
every limitation, as though it were their God-given right to be, well, God.
Theology aside, there are others who, like me, will find marvels in these
barriers to thought and action. A barrier gives shape, after all.
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Like a landscape, science has spaces that we may freely roam, inves-
tigating phenomena and making progress. But we rebound from the walls
that reason has discovered. “Adamantine” is too soft a word. Unlike cliffs
or chasms, these cannot be penetrated by the intellectual equivalents
of sledgehammer, bulldozer, or dynamite. They are insurmountable,
impenetrable barriers. Reason brought these barriers to our attention, yet
reason cannot penetrate them.

TWO OLD CHESTNUTS

For several centuries, it was thought that someone clever enough might
just succeed in squaring the circle. Given a circle on a sheet of paper,
construct a square with exactly the same area. The construction must be
Euclidean, of course: the only instruments allowed are an unmarked
ruler and a compass. Such means may seem unduly restrictive, yet with
a ruler and a compass alone, we can construct a square equal in area to
that of a triangle, to any square (of course), and to any pentagon, hexa-
gon, or any regular polygon. The figures in this sequence come ever
closer to resembling a circle. Who can distinguish between a circle and
a thousand-sided regular polygon? Yet we cannot square the circle.

Although “squaring the circle® has become synonymous with all
hopeless projects, the task was not known to be impossible until late in
the nineteenth century, when the German mathematician Ferdinand
Lindemann proved it so, once and for all. Before Lindemann’s proof some
of the finest mathematical minds in the world made attempts at the con-
struction. All of them failed.

In the physical world similar barriers await us. For several centuries,
some of the cleverest people around tried to construct perpetual motion
machines. The rewards were, of course, enormous. Not only would the
person who constructed the first perpetual motion machine become the
most revered person in all of history (certain spiritual leaders aside), he
or she also would stand a good chance of becoming the wealthiest per-
son who ever lived. Mills and factories would all be run by such
machines, and everyone who used them would, of course, pay the holder
of the patent. With such huge rewards waiting, it is not surprising that
more than a few had faked the results. But all of them failed.

Their devices were often wheels with rolling weights, with weights on
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pivots, running water, stationary or moving magnets, rods, belts, pulleys,
and a variety of other attachments. Some of the devices made Rube
Goldberg look like a rank amateur.

We may construct a machine that, once set in motion, will run for an
arbitrarily long time. For example, we may build a succession of wheels
that, once spun, continue to revolve for an hour, a day, or even a year.

What brings every wheel to a state of immobility, sooner or later, is
friction. Even as our would-be perpetual wheel began to spin, we would
hear a faint noise coming from it. Tt takes energy to make noise, the
energy of friction, slowly bleeding away the wheel’s momentum.

Of course, if we set a wheel revolving out in space, it will continue
to revolve virtually forever, but that is not the precise meaning of per-
petual motion. The device, besides continuing to run forever, must be
capable of useful work. That is what all those unsuccessful inventors
were aiming at.

Again, it was not until the mid-nineteenth century that we finally
understood that the project was doomed. The newly emerging theory of
thermodynamics dictated that the total energy of an isolated system was
the sum of two components: potential energy (the energy of position)
and kinetic energy (the energy of motion). In many of the proposed
designs, potential energy was continually being converted into kinetic
energy and back again, as though either process might, by some magic,
increase the total energy of the system. Not so. Moreover, the new ther-
modynamics also stated that energy of an isolated system was a con-
served quantity, neither created nor destroyed.

However, none of the proposed machines was an isolated system. The
friction encountered by the devices also took part in the equation. The
energy of motion included not only the moving parts of the proposed
device but also the movements of molecules affected by it, those in the
device and those in the surrounding environment. Although the total
energy of the system + environment remained constant, more and more
of it would be found in the agitation of molecules of metal, wood, and
air. Slowly or quickly, the kinetic energy available for moving parts
would decline.

More recently, we have encountered other barriers to what can be
achieved by technology. As Einstein showed, neither we nor any signal
we send can travel faster than the speed of light. Likewise, quantum
mechanics, the most successful physical theory of all time, tells us that
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we cannot predict the detailed behavior of fundamental particles such
as electrons and photons. We cannot even predict the weather, according
to the theory of chaotic dynamical systems.

The latter barriers are not imposed by mathematics per se, but by
well-established physical theories with a mathematical form that extends
from physical axioms to physical theorems. Along the way, there are
mathematical steps that invoke the grander edifice lurking in the back-
ground. We must, for example, use the Pythagorean theorem to get from
Einstein’s basic assumption (that light appears to travel at the same speed
relative to all frames of reference) to the formulas of special relativity.
Mathematics will have its way.

This book has accordingly been divided into two halves, the first con-
cerning physical impossibilities, the second devoted to mathematical
ones. This division reflects not only the cosmos and the holos but
also the two major parts of science. Inductive science includes physics,
chemistry, astronomy, and the other so-called experimental sciences.
Deductive science includes pure mathematics, applied mathematics, the
theory of computation, and related fields.

The process of induction involves inferring the rules governing the
behavior of physical systems from particular instances. Knowledge
accretes in a succession of increasingly general layers. For example, the
properties of chemical compounds, once a confusing mélange of spe-
cific observations, became perfectly comprehensible from a unified point
of view with the wide adoption of Dalton’s theory of the atom.

The process of deduction, on the other hand, operates on abstract
systems which, because they are perfectly defined in full generality,
can be subjected directly to deductive operations. We already know
everything we need to know about such systems in order to find out
more. Here, knowledge builds outward from the axioms of a system
toward all the specific theorems that are ultimately obtainable. And here,
too, knowledge develops increasingly general layers. Seemingly unre-
lated things such as number systems, symmetries of crystals, and permu-
tations of letters all came to be viewed as examples of groups, for
example.

Scientific knowledge is about generality. One could say that the more
general a successful theory is, the more “scientific” it has become. The
most general fields of inductive science are heavily mathematical—in
proportion to their generality, not surprisingly. Thus quantum physics
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and relativity theory are practically all mathematics—with an interpre-
tive framework grounded in observations. In contrast, biology has rela-
tively little mathematics in it, but a host of observational data that
ecologists and biologists are still trying to make sense of. The two great-
est discoveries of biology—the Darwin-Wallace theory of evolution and
the Watson-Crick discovery of DNA—are among the most general (and
mathematical) parts of biology. The Darwin-Wallace theory can be
viewed as a simple deduction from axioms about reproduction, the ten-
dency for populations to grow without limit, and survival. The Watson-
Crick theory, on the other hand, describes a mathematical code that is
the basic structure of every living creature. As pure mathematics, neither
the deduction nor the code are of great interest, but their significances
for science and humanity are immense.

All of this is not to say that at least one of these barriers may be found
to be illusory, but we may expect most of them to be with us for a long,
long time. Such a view, with its built-in back door, is only partially
cowardly.

Theories are overturned, as Thomas Kuhn has rightly observed, from
time to time. That much was known long before Kuhn, who introduced
the term “paradigm shift” to signal more than a mere overturn. It was
Kuhn who argued that scientific revolutions have their roots not so much
in data, but in how we interpret them; theories are “social construc-
tions.” This is undoubtedly true in that social preferences surely favor
one direction of research over another or one conceptual framework over
a different one. Cultural bias may cause a scientist to miss a result, but
someone else will probably find it.

But to claim that science is one big social construction amounts to
throwing the baby out with the bathwater. In fact, Kuhn’ interpretation
of his main example, the Copernican revolution, is incorrect. The
Ptolemaic notion of planetary motions was superseded by the Copernican
model for a very good reason. The Ptolemaic theory, with its complicated
system of epicycles, was simply wrong. Long before Copernicus, few
astronomers were very happy with epicycles. Even in the post-Ptolemaic
period, several Arab astronomers were certain it was incorrect. Anyone
who thinks that a social construction lurks in the labors of Kepler (who
put the theory on a solid footing with his discovery of elliptical orbits)
should read of research driven purely by the observational data of Tycho
Brahe, and learn of Kepler’s frustration when he discovered that the one
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social construction he did attempt, the “mysterium cosmographicum,”
was a dismal failure. It did not fit the data.

Today, no one doubts the Copernican theory. It is the correct theory.
The extremely slight changes induced by general relativity do not change
the fact that the Farth goes around the Sun and not vice versa.

It has been said, “Never say never.” Will the barriers described in this
book never be penetrated, leaped over, or gotten around? At the end of
each chapter, I examine what appear to be exceptions to the claim or dis-
cuss potential breakthroughs that would undermine it. For example, to
do away with million-year space voyages that are limited by the speed of
light, science fiction writers have invented the warp drive, a device that
folds space. Two parts of the space-time continuum, previously far apart,
are brought into proximity, and the starship Enterprise leaps halfway
across the galaxy. Well, be careful! The limitations here are sometimes
subtle. Even if we had such a spaceship now, it would not actually vio-
late the cosmic speed limit. After all, it wouldn’t travel through space, but
around it, so to speak.

Limitations on what we can know or do, whether real or only appar-
ent, have the salutary effect of driving the scientific and technological
process forward. Based on the apparent acceleration of impossible find-
ings, it seems safe to predict that science will increasingly become entan-
gled with things unknowable and undoable. Perhaps all the barriers,
taken together, will more sharply outline this place we find ourselves in.
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The Energy Drain

Impossible Machines

[T IS NOT POSSIBLE TO BUILD A MACHINE
THAT RUNS FOREVER WITH NO SOURCE COF
ENERGY, YET PRODUCES USABLE ENERGY.

LIKE SQUARING THE CIRGLE, the problem of making a machine that
would run forever has probably absorbed more man-hours than the
building of the Egyptian pyramids. The idea of the “perpetuum mobile”
is nearly as old as the pyramids. It is so seductive that I run a certain
risk even writing about the subject. I mean, why shouldn’t it be possible
to build a machine that runs forever? T'll even throw in the requirement
that it produces a little usable energy. In my mind’s eye [ see a simple
but wonderful contrivance that will (in my mind) run forever. It is noth-
ing more than a wheel with beautifully curved spokes, each engraved
with a track that carries a steel ball.

11
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%

A perpetual wheel

Clearly, the balls on the right-hand side of the wheel shown here are
going to weigh more heavily, in turning the wheel, than those on the left.
Hence, with barely a nudge, the wheel will begin to rotate. As each new
spoke comes into position, another steel ball rolls to the right. In fact,
because of the continuing downward acceleration of the right half of the
wheel, it will spin with increasing velocity. One might imagine that it will
spin faster and faster, without limit, until it literally flies into pieces. But
at some point during this potentially fatal acceleration, the centrifugal
force on the balls, particularly those on the left side, will prevent them
from rolling toward the hub, as they would normally do. At such a pass,
the wheel will continue to spin, gradually slowing, owing to frictional
forces. As soon as the wheel slows enough to allow the balls on the left
half of the wheel to roll to the right once more, it will, of course, begin to
speed up again.

The wheel will therefore seek and find, ultimately, the narrowest
range of speeds wherein it will remain spinning like the governor of a
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steam engine. Unlike a governor, however, this wheel has no external
source of power! It will spin at exactly this rate until the parts begin to
wear out. Sooner or later, something will give way and the wheel will roll
to a clattering halt.

Nevertheless, it has been a valid demonstration of perpetual motion,
at least conceptually. We could construct the wheel and its parts of mod-
ern space-age alloys, with Teflon bearings and silicon lubricants. It might
be guaranteed to run for a thousand years. Or a million. Put enough care
into it, and the latest version of the wheel will run for a billion years.
We are limited only by the lifetime of the universe, whatever that might
turn out to be.

The time requirement of the problem—that the device operate
perpetually—is clearly unrealistic. As I just hinted, there is rather
strong evidence that the universe will one day cease to exist altogether,
taking our wonderful machine with it. But in a purely theoretical
sense, the machine is potentially capable. It would, if it could, spin
forever.

Now, if it were possible to eliminate all friction from an ordinary
wheel, it, too, would spin forever, thanks to a law first discovered by the
great British natural scientist Isaac Newton. This motion, while perpet-
ual within any practical meaning of the word, is not the sort of motion
we have just been discussing, as it produces no new energy. [ will there-
fore call it type one perpetual motion. Earth satellites are essentially type
one perpetual motion machines.

In type two perpetual motion we expect the device not only to exhibit
potentially eternal motion but also to produce energy while doing so. In
my opinion, type two perpetual motion is the more exciting of the two
kinds.

Can the wheel in my mind’s eye do actual work? Think of my won-
derful wheel again, now writ large.

It will be found inside a secret government building somewhere in
the desert. The wheel will be forty stories tall and made of more than a
million tons of steel, Kevlar, diamond, and other awesome materials.
We'll take an elevator to the fifteenth floor of the building, near the hub.
We'll stare in stupefaction from our observation window as, one by one,
the great spokes swing by, each with a great steel ball rolling along it with
a terrifying rumbling noise. The secret installation sounds like a cosmic
bowling alley.
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Now, just before the great wheel reaches that critical speed where
centrifugal force begins to eat away noticeably at its acceleration, a
giant dynamo engages gears with the wheel, and outside the building
power lines surge with millions of kilowatts of power, all of it appar-
ently free.

That's what I mean by energy. Even a type two machine that produces
the tiniest excess of energy may nevertheless be scaled up to almost any
size—or multiplied a thousandfold by mass production. Indeed, any
macroscopic machine that runs “forever” under ordinary circumstances
must be overcoming frictional forces and must be type two.

When scientists say that perpetual motion is impossible, they mean
only that a machine that produces more energy than it consumes (typi-
cally none) is impossible. Type two machines are impossible. The rea-
son for the impossibility lies with a fundamental tenet of modern
physics, the law of conservation of energy. I will come back to this law
later, subjecting it to a scrutiny it rarely receives. (Perhaps there is a flaw
somewhere.)

In the meantime, we have been examining “machines” in the ordi-
nary sense of the word, macroscopic systems of metal, plastic, even
wood. But the microscopic world is inhabited by other systems: atoms in
a state of apparent perpetual motion, electrons that whirl incessantly
about nuclei, albeit in an unmanifest state, even at absolute zero. They
are not producing any new energy, but their motion appears to be truly
perpetual. After all, there is nothing to “wear out.”

From this point of view, the closest we have yet come to a type one
perpetual motion machine, here on Earth, is a doughnut-shaped ring
of some hi-tech superconducting material in which electrons have been
set circulating. Back in the 1980s, newspapers and science magazines
frequently showed pictures of a superconducting ring floating above a
magnet. How did it work?

The doughnut or torus is made from one of the latest metallo-ceramic
hybrid materials that “superconducts” electrons at a temperature that is
low, but not too low to be achievable in a laboratory. Superconduction
works like ordinary conduction except that electrons move through the
material without the production of heat {(and subsequent loss of energy)
that accompanies normal conduction.

Electrons in such a ring are set in motion by placing the ring in a
strong magnetic field. The apparent levitation of the ring is not part of
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Superconducting ring

the perpetual motion of the electrons inside it. Perfectly balanced, the
ring does not move nor even rotate. The levitation is merely a macro-
scopic signal that the electrons inside it are circulating, something that
newspapers never explained and science magazines rarely.

The Lorentz effect is a well-known physical phenomenon in which an
electron, moving at right angles to a magnetic field, experiences a side-
ways force in a direction that is simultaneously perpendicular both to
its direction of travel and to the field. Continually bending in the same
direction, it travels in a circle and will do so as long as the magnetic field
is present. At the same time, electrons traveling in a circle generate a
magnetic field of their own. In the case of the ring, merely moving it into
the magnetic field sets the electrons in motion. The proof that they do
not slow down, as they would if the ring were made of an ordinary con-
ductor, is the continuing opposing force that the circulating electrons set
up. The magnetic “north” of the magnet is opposed by a balancing
“north” generated by the electrons in the superconducting torus. It floats
eerily in the magnet’s field.

Left to themselves under ideal conditions, the electrons might be
coaxed into circulating for arbitrarily long periods of time. This is
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perpetual motion of sorts, but it involves a microscopic motion within a
macroscopic object that does not actually move, but remains suspended.
In any event, the electrons have no frictional or other opposing forces to
overcome. If they did, they would quickly grind to a halt, and the magic
ring would fall with a rattle to the magnet beneath it. It follows that the
circulating electrons are incapable of producing any new energy, and the
superconducting torus exhibits, at best, type one perpetual motion. In
the traditional search for perpetual motion, only machines with macro-
scopic motion need apply.

It fascinates many people, particularly mathematicians, how various
physical theories interact in ways that their framers might not have
foreseen. When they do, the result is rarely a contradiction. For exam-
ple, suppose some bright young scientist developed a gravity-blocking
material.

Such a device was used by the famous British science fiction writer
H. G. Wells in his novel The First Men in the Moon. Two adventurous
souls sit inside a special sphere equipped with food, air, and the other
necessities of life. Two sets of blinds made of “cavorite” (after one of the
adventurers, a scientist) are used to propel the sphere toward the Moon.
By simply drawing the Farthside blind, gravity is blocked and the sphere
floats upward, attracted by the Moon’s gravity. Close to the Moon, the
hardy explorers simply close the Moonside blind and open the Earthside
one to slow the sphere to a gentle landing.

Is a material like cavorite possible? If it were, I could instantly invent
a perpetual motion machine. T would simply turn a bicycle upside down
and place the cavorite sheet on the ground below the front half of the
front wheel. The portion of the wheel screened from gravity by the
cavorite sheet would be weightless, and the heavier half would begin to
turn Earthward. The wheel would therefore spin, faster and faster, until
it reached its mechanical limits. Moreover, it would produce energy and
be a true type two perpetual motion machine. The resulting contraption
appears to contradict the laws of conservation of energy—until we real-
ize that it resulted from the assumption that cavorite is possible. Cavorite
or any material or device with the same property must therefore also be
impossible. We have thus discovered a strange link between perpetual
motion and gravity!

But is perpetual motion really impossible? If so, does this not repre-
sent an intolerable limitation on our freedom?
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TYROS AND TRICKSTERS

The wheel on page 12 was actually dreamed up in the 1640s by Edward
Somerset, the second marquis of Worcester. He had a device built, a
monstrous wheel with forty 50-pound balls (weighing in total 1 ton) that
rolled along curved spokes of wood. In 1648 he demonstrated his
machine to King Charles I and members of the royal court in the Tower
of London. Somerset was wealthy, but not exactly a dilettante. He con-
tributed to the early development of the steam engine by designing a
two-chambered engine that could pump water using the action of steam
to create a partial vacuum.

He describes the occasion of the royal inspection of his wondrous
machine as follows: “The wheel was fourteen foot over, and forty weights
of fifty pounds apiece. Sir William Balfour, then Lieutenant of the Tower,
can justify it with several others. They all saw that, no sooner these great
weights passed the diameter-line of the lower side, but they hung a foot
further from the centre, nor no sconer passed the diameter-line of the
upper side, but they hung a foot nearer. Be pleased to judge the conse-
quence.”

Whatever the “consequence” was, it seems doubtful that the king or
any of his courtiers saw perpetual motion that day. A wheel of such size
and weight, once set in motion, might turn for a considerable time before
stopping. And if, long after the royal party had departed, the wheel
slowly came to a halt, the marquis might attribute the phenomenon to
poor construction. All evidence points to Somerset’s sincere belief that he
had, indeed, achieved perpetual motion.

Was there a link between the development of the steam engine and
the craze over perpetual motion? Did people once think that if only they
were clever enough, they could dispense with the messy boiler and the
need for fire? Probably not. The dream of perpetual motion goes back
much earlier than the seventeenth century.

An intriguing passage in a seventeen-hundred-year-old Sanskrit book
on astronomy, the Siddhanta Ciromani, describes a self-turning wheel.
Its outer rim or tread was to be drilled with equally spaced holes that
(probably) pointed not toward the axis, but a little ahead of it, so to
speak. Fach hole was half filled with mercury and then sealed. The passage
claims that if the wheel was properly supported, it would turn forever.

In spite of the similarity in principle behind the Indian device and the
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wheel T have been describing, it is doubtful that any of the European
Renaissance inventors were familiar with the Sanskrit book. Mark
Antony Zimara, an [talian physician and astrologer, published a treatise
on diseases of the body in about 1520. As an incidental enclosure, he
included a description of a perpetual motion machine (something that
few medical texts could get away with these days). The machine con-
sisted of a large fan, which, when it turned, worked several levers that, in
turn, operated three giant bellows. The bellows, in case you hadn’t
guessed by now, blew directly on the fan to keep it going. No record
exists of anyone attempting to build Zimara’s machine, and Zimara him-
self may have had lingering doubts, as this translation from the Latin
hints: “This, perchance, is not absurd, but is the starting point for inves-
tigating and discovering that sublime thing, perpetual motion, a starting
point which T have not read of anywhere, neither do T know of anyone
who has worked it out.”

Most of the early designs for perpetual motion machines in the
Renaissance involved feedback of one kind or another: the motion of com-
ponent A serves to keep component B moving, which, in turn, powers A.

In 1618, this principle was actively employed by Robert Fludd, an
English physician and philosopher. He designed a closed-cycle grinding
mill for which the motive power came from an endlessly circulating flow
of water over a mill wheel. The wheel not only ground the grain but also
powered an Archimedean screw, as in the illustration.

wx“—‘k ” N

‘turning screw

B

raises water : j-a“ir\cj
O watey
A > Provides
o . : ;) powey
it \ -
) e
AR d (’ < e

excess Power
r.jrindﬁ ﬂrain

Fludds closed-cycle grinding mill



THE ENERGY DRAIN 19

Omnce set rotating, the screw brought the water from a discharge basin
up to a reservoir, where it could begin its trip to the wheel all over again.
Clearly, Fludd thought that somewhere in the cycle of the mill’s action,
the system would gain energy. Would the energy of the falling water be
greater than the energy it took to transport the water to the top of the
millrace? It is generally easier to propose a grandiose scheme than to
carry it off. Fludd made no attempt to build his perpetual mill. If it had
worked, Fludd’s machine would have been a good example of a type two
perpetual motion machine.

Many clergy of seventeenth-century England were also amateur sci-
entists and inventors. Bishop John Wilkins of Chester designed a scheme
very similar to Fludd’s but went to the trouble of actually building it. He
had the integrity to make his failure public: “When I first thought of this
invention, I could scarce forbear, with Archimedes, to cry out ‘Eurekal
Eureka! it seeming so infallible a way for the effecting of the perpetual
motion that nothing could be so much as probably objected against it;
but, upon trial and experience, I find it altogether insufficient for any
such purpose, and that for two reasons: (1) The water that ascends will
not make any considerable stream in the fall. (2) The stream, though
multiplied, will not be of force enough to turn about the screw.”

One of the most famous perpetual motion machines was constructed
by a Polish German engineer, Johann Ernst Elias Bessler, who styled him-
self as “Orffyreus.” In the 1710s, all Europe was abuzz with news of
Orffyreus’ amazing perpetual wheel. It was housed in a room of a castle
that belonged to the landgrave of Hesse-Cassel at Wissenstein. The land-
grave allowed Orffyreus to set the wheel in motion, then locked the room
in which it was kept, with the landgrave’s own official seal on the lock.
At the end of two months, the story went, the room was opened, and
there was Orffyreus’ wheel, still turning at a good clip.

Many distinguished philosophers, engineers, and scientists came to
view the amazing machine, and all went away shaking their heads in
wonder. Writing to the French philosopher Jean Desaguliers, Baron
Fisher described what he saw: “The wheel turns with astonishing rapid-
ity . .. twenty turns a minute. This I noted several times by my watch,
and I always found the same regularity. An attempt to stop it suddenly
would raise a man from the ground. Having stopped it in this manner it
remained stationary (and here is the greatest proof of perpetual motion).
[ commenced the movement very gently to see if it would of itself regain
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its former rapidity, which I doubted; but to my great astonishment I
observed that the rapidity of the wheel augmented little by little until it
made two turns, and then it regained its former speed.”

Orffyreus’ wheel was 12 feet in diameter, 14 inches wide, and had a
rather large axle, about 8 inches thick. The entire wheel was covered
with a waxed cloth to conceal the inner workings from those who might
seek to steal the great Orffyreus’ idea. After receiving a handscme gift
from the landgrave, Crityreus showed his patron the interior of the
machine. He had extracted a sclemn oath from the landgrave that he
would never divulge the marvelous mechanism.

Perhaps what he saw roused the landgrave’s suspicions. And perhaps
encugh skeptics of the wheel’s cperaticn remained to prompt him to
launch an investigation. He hired the Dutch philesopher and engineer
Professor s'Gravesande of Leyden to investigate. We have the professor's
findings in a letter to Sir Isaac Newton. He found the wheel “covered
over with canvas, to prevent the inside from being seen. Through the
centre of this wheel runs an axis of about six inches diameter, terminated
at both ends by iron axes of about three-quarters of an inch diameter
upon which the machine turns. I have examined these axes, and am
firmly persuaded that nothing frem withcut the wheel in the least con-
tributes to its metion. When T turned it but gently, it always stood still
as soon as I took away my hand; but when I gave it any tolerable degree
of velocity, I was always obliged to step it again by force; for when I let it
g0, it acquired in two or three turns its greatest velocity, after which it
revolved for twenty-five or twenty-six times in a minute.”

Orftyreus, who was apparently not informed of the inspection, flew
into a rage at the news, went to the castle, and smashed his marvelous
engine beyond all repair. He never built another wheel, as far as I know,
and no one ever explained how the wheel was able to turn so long
without an outside source of energy. Suffice it to say that Orffyreus was
trained as a clockmaker. It might be suspected that the extraordinarily
thick axle held the secret. In any event, the need to conceal a secret
source of energy would be covered by the same story as the need to
protect a genuine idea. After all, a working mechanism would be worth,
ultimately, all the wealth of the world, and no attempt to conceal its
secret, however elaborate, could be considered unreasonable.

In the nineteenth century the search for perpetual motion intensified,
amounting almest to a craze. At the same time, the skeptical eye had
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been honed to a point that would have made an Orffyreus impossible.
The scene shifts to America, where, in 1812, a man named Charles
Redheffer appeared in Philadelphia with a curious machine that, he
claimed, would never stop. The public, eager for wonders, flocked to
see the machine. Bets, some of them quite large, were made over the
proot or disproof that Redheffer’s machine actually worked as claimed.

The intrepid inventor applied to the Pennsylvania legislature for what
today we would call a research grant. To inspect Redhetfer’s machine to
determine the feasibility of perpetual mction, the legislature duly dis-
patched eight commissioners to examine the device. When they arrived
at the building that housed the machine, they found that the roem con-
taining the machine was locked and Redheffer was nowhere in sight.

Through a barred window they saw a turntable mounted on a spindle
shaft and apparently powered by two miniature trucks that rested,
motionless, on two inclined planes, respectively. Each truck contained
two small weights that, it was said, provided the actual power owing to
their attraction by gravity. Although the trucks did not move, they were
attached by levers to the spindle. The levers thus transmitted the force of
gravity to the spindle, turning it—or so Redheffer claimed.

It is amazing that so many pecple were taken in by this machine.
Since the little cars did not move relative to the large supperting wheel,
nor the wheeled inclined planes, it would be utterly mysterious to a
laypersen untutored in mechanics how the thing worked. (It would, of
course, be even more mystericus to a knowledgeable engineer.) Perhaps
the gimecrack nature of the machine, coupled with the hypnotic effect of
the slowly turning wheel, succeeded in convincing not only the lay visi-
tor but the professional engineer as well. T mean, there it was, turning.

The illusion was reinforced by Redheffer or whomever he hired to
operate the machine. Removing the little weights brought the device to
an immediate halt.

The inspection by the commission of engineers employed by the leg-
islature included a gentleman named Nathan Sellers, who brought his
son along to see the machine. In the course of the inspection through the
barred window, the son tugged on his father’s coat. “See, Papa, the gear-
ing locks wrong.” The lad was referring to the birdcage gear that was
supposed to be driven by the great wheel. The boy peinted out to his
professional father, as well as to the other gentlemen present, that the
wear on the wooden teeth of the birdcage gear was on the wrong side.
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In cther words, the gear was driving the great wheel, not the other way
around.

Saying nothing to Redheffer, Sellers consulted later with Isaiah
Lukens, an engineer and skilled mechanician with the Franklin Institute
in Philadelphia. Sellers described the machine well enough for Lukens to
make an almost exact copy. This would function as a lure to draw
Redheffer out and so expaose the fraud.

Although Lukens could not know what ultimate source of power
Redheffer drew upen to keep his machine in meticn, he devised cne that
was no doubt equally subtle. Under the handsome wood paneling below
the great wheel, he installed a small spring motor that could be wound
up by turning one of the wooden knobs on top of the crnamental frame-
work that surrounded the machine. Thus a custodian could approach the
exhibit as the machine was running down, draw cut a rag and pretend
to dust the machine, in reality turning the secret knob a few times as he
pretended to polish it.

A demonstration of the duplicate machine was arranged by Sellers
and Lukens, and they invited Redheffer to attend. Lukens had even
arranged that the duplicate machine would also halt when the weights
were removed. The clockwork motor concealed in the machine did net
drive the birdcage gear, but the main axle itself, transmitting its force
through friction that was barely sufficient with the weights in their cars.
But with the weights removed, the friction dropped below the critical
value, and the turning of the motor had no effect on the big wheel.

Redheffer could not conceal his amazement at the device shown to
him by these sober, respectable citizens. Privately he offered Sellers a
great deal of money if only he would reveal the principle by which the
machine operated. Sellers may have replied, “Why, the principle is the
same as that employed by your own good self: chicanery!”

Exposed, Redheffer decided to move his exhibit te New York. He had
fleeced thousands of Philadelphians out of their one-dollar admissions
(a good deal of money in those days) and could depend on the peor com-
munications of the day to delay news of the scam.

Unfortunately fer Redheffer, New York was not only the home of a
much larger flock of potential believers but also the lair of cne of
America’s foremaest engineers, Rebert Fulton. Although he refused at first
to attend the exhibit of what he considered to be an obvious fraud,
friends prevailed upen him, and Fulton finally gave in. As soon as he
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entered the room to inspect the machine, he cried, “Why, this is a crank
moticn!” He meant that the unevenness of the turning sound {rem the
device indicated that someone, scmewhere, was turning a crank.

He denounced Redheffer, who happened to be present, on the spot.
Redheffer blustered and became angry. Fulton said he weuld repay
Redhefter in full for all damages and proceeded to attack two supports
that were presumably meant to steady the machine against one wall.
Inside one of the supports, Fulton discovered a catgut drive belt. Like
bloodhounds on the scent, Fulton and his cronies sniffed at a hole in
the wall through which the drive belt passed. They forced their way
through a series of rooms until they came, according to one account,
upon “an old man with a long beard who displayed all the signs of hav-
ing been impriscned in the room for a long, long time. The man had no
nction of what was happening and sat there on a stocl gnawing on a
crust with cne hand and turning a crank with the other.”

Although surely a romantic exaggeraticn, the discovery of an accom-
plice put the crowd into a rage. They destroyed Redheffer’s marvelous
machine, and the great inventer had to {lee for his life.

Perpetual motion machines continued to be the stock in trade of
tricksters and con artists throughout the nineteenth century. In the
1850s, an engineer from Connecticut, C. P Willis, made an elegant hor-
izontal toothed wheel of brass that was enclosed, with the rest of the
mechanism, in a glass case, where the curiocus could ponder the endless
motion of the wheel. As the brass wheel spun, it engaged a gear that
turned a flywheel that communicated with the first wheel by a system of
pulleys. It was the old dream of A drives B while B drives A.

Willis charged people to inspect his machine, first in New Haven and
later in New York. An alert patent attorney, however, noticed a strut near
the flywheel that had no apparent function. He discevered that Willis
had arranged a supply of compressed air, fed inte the strut, to blow on
the flywheel and keep it in motion.

It would be fascinating to view a vast museum exhibit of all the per-
petual motion machines ever built or even imagined. There would be
hundreds, if not thousands. There would be nct only overbalancing
wheels and feedback water mills but alsc sponge machines employing
capillary action, machines driven by magnets, and numercus other
devices. They could all be started at cnce, and the great exhibit hall
would be filled with a kind of mechanical sigh of despair as collectively
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and one by one the machines ran down or their fraudulent energy
sources were cut off.

PROOFS OF IMPOSSIBILITY

Newton’s third law states that a body at rest or in a state of uniform
motion will continue in the state unless influenced by some external
force. In other werds, all metion is perpetual in the absence of external
forces. Paradoxically, type one perpetual motion is built into the very
foundations of classical physics.

As for type twe, or true perpetual motion, one may analyze each
device in turn and prove that it could not possibly be producing more
energy than it consumes. Such preofs, because of the complexity of some
devices, may involve considerable labor. In other cases, as below, the
analysis is relatively straightfcrward. T will present an analysis of a device
first described by the Dutch philesopher/mathematician Simon Stevinus
at about the turn of the sixteenth century.

As far as I can tell from available sources, Stevinus may have
“invented” the machine that appears in the figure to demonstrate the
impossibility of perpetual motion (in this one case), or he may have
come upen the design in sources that are no longer available. I prefer to
think the latter.

The machine shown here consists of fourteen “rollers,” essentially
cylinders that are linked by a flexible chain connecting their axles. Four

The two-track roller machine
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rollers occupy the long ramp on the left of the figure, while two rollers
rest upon the sherter ramp on the right. Tt is easy te imagine that the four
rollers on the left exert a greater force on the endless chain than do the
ones on the right. After all, there are four of them. As Stevinus observed,
the eight rollers (not shown in the figure) that hang under the ramps
make no contribution to the resulting perpetual moticn because they
exert an equal force on both the right and left portiens of the chain. My
analysis will be a simplified and more modern version of the one given
by Stevinus.

Let us call the long ramp A, the short cne B. We do not know the
exact lengths of these ramps, but if we designate them by the symbols a
and b, respectively, then a = 2b, since the long ramp accemmodates twice
as many rcllers as the short cne.

To analyze this particular machine, we will search for the motive
power that would result from an imbalance of forces among the rollers.
Such an imbalance would surely manifest at the porticn of chain joining
the four rollers on the long ramp to the two rollers on the short cne. At
that point, the force due to gravity manifested along the leng ramp will
presumably be greater than the force along the short cne.

We use the trigenometric cosine function te express the action of
gravity along the angle made by either ramp with the vertical. In other
words, although the force of gravity acts downward on a roller, the ramp

Diagram of forces on a roller
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prevents it from moving in the downward direction. The force must act
along the ramp, that being the enly direction in which a roller can move.

In this right-angled triangle the vertical arrow represents the down-
ward force on a roller due to gravity. If each roller weighs w grams {or
pounds), the dewnward force is w. The sloping arrow, cn the other hand,
represents the component of gravity acting on the roller in the down-
ramp direction. We’'ll call this force f. If ¢ is the angle made by the ramp
with the vertical, then the cosine of o, written cos(), is simply the ratio
of the sides f/Aw. In other words, cos() = f/w, so that f, the downramp
force, equals weos(@).

If ¢ is the angle made by the leng ramp with the vertical, we’ll sup-
pose the short ramp makes the angle B. The downramp force to the left
must result from the weight of four rellers, as resclved by the cosine
operator:

4wcos(o).

Similarly, the downramp force in the cther directicn, with just two
rollers, must be:

2weos(f).

We can now eliminate the cosine function by recognizing that it
represents the ratic of two distances. In this case, cos(@) = c/a, while
cos(P}) = ¢/b. The two forces may now be written as follows:

torce along shallow ramp = 4wecos(or)
= dwela,

while

force along steep ramp = 2weos(3)
= 2wc/b.

As we observed earlier, the distances a and b have the relationship
a=2b.
This leaves us with the

torce along shallow ramp = 4wc/a
= 4wc/2b
= 2wc/b,
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which just happens to be the force along the steeper ramp. Obvicusly, the
rollers will net begin, of themselves, te move. Nor will they develop any
additional energy as a result of moving. If friction is reduced to a mini-
mum, the rollers may continue to circulate up one ramp and down the
other for a while, but eventually they will slow down and step.

A similar analysis could be made of the Somerset machine, except
that the geometry leads te more complicated expressions. Suffice it to say
that for each positicn in which the wheel may be overbalanced in one
direction, there is another position in which it overbalances by the same
amount in the opposite direction.

If a mere glance at the first position was enough to convince Edward
Somerset, as well as thousands of people after him, that the wheel would
turn forever, a glance at the second position might have given him pause.
If popular illustrations of the wheel had included both pesitions, the
machine might not have inspired such perpetual emoticn.

PHYSICS HAS ITS SAY

There are general physical laws that imply that type two perpetual
motion is impossible. The laws may even be cast in mathematical form,
as we will presently see. Thus, in analyzing the varicus proposals for per-
petual motion machines, we may always say, “There’s no need to analyze
these things in detail. There are physical laws that say such machines can
never work.”

On the other hand, we may also analyze each machine mathemati-
cally, employing the simplest physical concepts such as leverage and
force, concepts that have nothing to do with the grand laws we are about
to explore. Applying these concepts and incorpeorating them intea math-
ematical analysis of each device always lead to the same conclusion: it
cannot work as advertised.

This is a very strange phenomenon when you think about it. It
implies a consistency between our applied mathematical analyses and
a general fiat about conservation of energy, a consistency that cannot
be explained within any framework of knewledge currently available to
us. If we had no notion whatever that all physical systems were con-
strained by the law of conservaticn of energy, we would still be reaching
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conclusions of impossibility for these machines based purely on applied
mathematical reascning.

CONSERVATION OF ENERGY

The historical beginnings of the law of conservation of energy reveal an
ironic twist. The law was inspired in part by the belief of early scientists,
beginning with Galilec Galilei of Ttaly, that perpetual motion was impossi-
ble. Based as it was on the continuing failure of such devices to work, we
cannot say that the beliel was exactly arbitrary. However, it led to some
astonishing progress from the seventeenth to the nineteenth centuries.

Galileo, for example, analyzed the motion of bedies rolling down
inclined planes. He concluded that a ball rolling down a straight ramp
from top to bottom must reach the same velocity (friction aside) at the
point where the ramp met the tabletop as it would if drepped directly
from the release point cnto the table. If this were not so, he reascned,
type two perpetual motion would be possible. Suppose the ball came off
the ramp at a greater speed than it would develop by merely falling ver-
tically. In such a case it could be deflected upward by a suitably arranged
elastic barrier at the bottem of the ramp. The ball would bounce upward,
rising higher than the peint from which it started. If it landed on a sec-
ond ramp, it could roll back to its starting point on the first ramp with
even greater energy than on the first occasion.

On the other hand, if the ball came off the ramp with a slower speed
than it would have if dropped (friction aside), the procedure cutlined
above could be reversed. If the ball were dropped from the same height
as the starting peint on the ramp, directly onto the same barrier, now
arranged to deflect the ball directly up the ramp, it would travel beyond
the release peint. In this case it could be arranged for the ball to fall
through a secend hole, striking the tabletop with even greater force than
it did on the first occasion and so on, ad infinitum.

An able experimenter, Galileo tested his hypothesis and found it to be
correct.

Two hundred years later, Sadi Carnot, a brilliant young French sci-
entist, devised a conceptual scheme that gave direct insights into the
relationship between mechanical work and another form of energy: heat.
In 1824 he imagined a peculiar apparatus consisting of a gas-filled cylin-
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der with a piston that fitted the cylinder so perfectly that no gas could
escape. Two heat reserveirs, one at a high temperature, the other at a low
one, served to add heat energy to the cylinder or to remove it when the
cylinder was placed over them.
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Carnot’s “gedanken” experiment

Placed cover the ccld reservair, the piston would take up a particular
position within the cylinder. Placed over the hot reserveir, the cylinder
would gain heat and the temperature of the gas would rise, accompa-
nied by a rise in pressure. The piston would therefcre rise in the cylin-
der to a new, higher position.

After heating his cenceptual cylinder, Carnot moved it to an insulat-
ing pad, where the piston’s pesition remained unchanged. Carnot then
placed a weight on the piston, causing it to descend inte the cylinder
back to its original position. Next he moved the cylinder to the cold
reservoir, simultaneously removing the weight. The position of the pis-
ton did not change in the end. The tendency of the piston to rise, thanks
to the removal of the weight, was exactly counterbalanced by a drop in
pressure within the cylinder, thanks te the removal of heat.

Heat had therefore been transterred from the hot reservoir to the cold
one, the exact amount being equivalent to the work done by gravity
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acting on the weight and causing the piston to compress the gas. Carnot
concluded that there was a direct and simple relationship between
changes in heat energy in a cylinder and the amount of work dene on it.
Today we call this conceptual process the Carnot cycle, fundamental for
understanding everything from automebile engines tc refrigerators. Heat
and mechanical energy are simply two forms of energy, and one could
be converted inte the other. Except for loss through leakage of heat or
friction acting on mechanical motion, energy was conserved. The equa-
tions governing the relatienship of mechanical and heat energy remain
fundamental to thermodynamics today.

It is germane to our central theme that the experiments of Galileo and
Carnot had a purely logical (i.e., mathematical) structure. Whether the
experimental system involved rolling spheres or heated gases, a logical
deduction could be made from the assumption that energy was conserved.
Here is how the system ought to behave. Voilal It does. Interestingly
encugh, the conclusion that conservation of energy is real is not actually
a logical deduction from the experimental results. Only if the experiment
had turned out negatively could either Galileo or Carnot have said, “Alas,
energy does not appear to be conserved!” Instead, we can only say that the
experimental outcomes “support” the idea that energy is conserved. That
is the real difference between inductive and deductive science.

In the next chapter we will see an experiment in which no actual
test is necessary, the famed “gedanken” experiments of Einstein and
associates.

A mere twenty-three years after Carnot published his analysis of heat
engines, the German physicist Hermann von Helmheltz presented the
first formal statement of the law of conservation of energy. He began his
address to the Physical Society of Berlin by declaring that perpetual
motion was axiomatically impossible. The general law he proposed
stated that energy could neither be created nor destroyed, but only
changed from one form to another.

These early foundations of the law of conservation of energy might
therefore be cited as a form of circular reasoning: perpetual moticn is
impaossible because conservation of energy is true; conservation of energy
is true because perpetual moticn is impessible. On the other hand, if per-
petual motion really was impessible (and empirical experience strongly
suggested this to be the case), then additicnal weight was added to the
newly minted law.
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Omne could say that the search for perpetual motion, by focusing the
attention of scientists on the intimate energy transactions within vari-
ous machines, caused them to consider the same transactions within the
wider scope of all physical systems. If the search for perpetual moticn
was not exactly the mother of conservation of energy, it was certainly
the midwife. In any event, we have come to the final act of this drama:
What, exactly, does conservation of energy mean?

When we talk about the conservation of energy, we must understand
what we mean by “energy.” Everyone understands that a fast-moving
object such as a speeding automobile has a lot of energy. Just try to stop
one. All motion involves the form of energy we call “kinetic.” Even very
small objects such as atoms carry kinetic energy when they move.

Another form of energy is heat. In most physical bodies it is stored
in the form of kinetic energy, namely the motions cf the many atoms that
compose them. Heat may also take the form of radiation, being received
or emitted by a bedy in the infrared portion of the electromagnetic spec-
trum. Machines with moving parts constantly generate heat from fric-
tion. This heat is normally conducted or radiated away.

There are other forms of energy as well. Potential energy is the energy
of positicn. Tt depends on an external force field such as gravity, elec-
tricity, magnetism, or what have you, to be expressed. A car on a 100-foct
cliff may not be moving, but relative to the ground below it, the car car-
ries the potential to develop a lot of kinetic energy. Push it off the cliff
and you will witness the effect of the Earth’s gravitational field on the
vehicle. Its potential energy will be converted inte kinetic energy that is
fully equivalent to the energy of the car when it speeds down the high-
way. All bodies, from planets to atoms, have potential energy of one kind
or another.

Energy, as it turns cut, inheres nct only in the kinetic or potential
behavior of physical bodies but in their very substance. Mass, according
to Albert Finstein’s celebrated formula, is equivalent to energy:

E = mc?.

The “rest energy” of a physical body equals its mass multiplied by the
speed of light squared. This speed, expressed in meters per second, is
very large even when not squared:

¢ = 299,792 458 meters per second.
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This may be written approximately as 3 x 10° meters per second. A
kilogram of mass of any kind (steel, pigeon feathers, or garden seil)
would therefore contain 3 < 10'® joules of energy. A joule of energy is
well within our ability to experience directly. For example, it takes about
10 joules of energy to raise a 1-kilogram (about 2.2-pound) rock 1 meter
(a bit over 3 feet) above the floor. If the same rock were converted
entirely into energy, it would produce approximately 3 x 10'® joules. If
this energy were released all at once in the form of an explosion, it would
rival a very large atomic bomb in its effect. (Althcugh atomic bombs use
much larger masses, only about 0.1 percent of their masses are converted
directly intc energy.) A more striking example would invelve an ordinary
penny, which, if it could be converted entirely intc energy, would supply
the power needs of the average house for a lifetime.

We therefore have three kinds of energy. The law of conservation of
energy states that in every “isclated” physical system, energy may be
transformed from cne kind to another, but never created nor destroyed.
A propased type two perpetual motion device, if not allowed any energy
input from the outside world, would quality as an isolated system but
would not be exempt from this law.

Put mathematically, the law of conservation of energy states that an
isolated physical system must cbey the following equation:

mc? + K+ P + H=E (a constant).

Here, mc? is the rest energy of the system. Assuming that no nuclear
processes are inveolved in a perpetual motion device, this quantity will
remain constant, and [ can move it to the right-hand side, absorbing it
in a new constant, E’. The letters K, B and H represent kinetic, potential,
and heat energy, respectively, within the system. A simplified equaticn
results:

K + P + H = E’ (another constant).

In Somerset’s wheel, we learned of twe positions from which it would
turn spentanecusly, albeit in opposite directions. In either position, the
potential energy was high and the kinetic energy was zerc. As the wheel
began to turn from the first position, its value of K would rise, exactly
compensated by a drop in P As it continued to turn, it would approach
the secend position, at which peint P would again begin te rise and K to
drop, again by an amount that compensated exactly for the drop in K.
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Did I say “exactly”? If there were no friction at all, either from the air
or from the axle, this would be true. The wheel would approach the sec-
ond position, pause, then begin to turn in the other direction, replaying
the previous scenaric in reverse. In fact the wheel would develcp perpet-
ual motion, but not exactly what Somerset envisicned. It would enter a
regime of perpetual (type one) motion.

Since the wheel must encounter fricticn as it turns, it would not quite
reach the second position. Nor, in turning back, would it ever again
reach the first. Instead, it would rock back and forth in gradually dimin-
ishing arcs until it finally came to rest in what physicists call a position
of equilibrium. Full stop. The energy robbed frem the wheel by friction
would be converted into heat H, some of it retained in the wheel, the rest
radiated away as electromagnetic energy. A diagram of the wheel in this
final pesiticn would create very little excitement in potential inventors.

IS THERE A WAY AROUND IT?

The final question leaves us with an unsolved mystery, one that mathe-
matics would seem unable to address because it invelves a very deep
structural property of the universe in which we find ourselves. How do
we know that the law of conservation of energy is valid? As with other
physical “laws,” we do not make deductions, but inferences.

The only loophole I can think of invelves the exchange of energy and
informaticn. Maxwell’s demon, a cenceptual imp named after the
Scottish physicist James Clerk Maxwell, plays a prank on us by sitting
astride a tiny doorway between tweo gas-filled vessels, A and B. The
demen is small enough to observe directly the motions of individual gas
molecules in either vessel. When he sees a molecule approach the dcor-
way from vessel A, he opens the door and allows it to pass inte vessel B.
But when he sees a molecule approach the deorway from vessel B, he
keeps the docr closed. Thus, cver time, pressure builds in vessel B until
it contains virtually all the gas molecules.

A pipe that connects the two vessels passes through a turbine and,
when a stopcock is opened, the turbine runs for a while until the pres-
sures in the two vessels are once again equal. Again the demon sets to
work, and again the turbine is run. Is this not—conceptually, at least—
an example of type twe perpetual motion?
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The answer lies in quantum mechanics. As we will see in chapter 3, the
kind of knowledge to which the demon is privy is impossible to obtain. He
may know the position of a particle only to the extent that he is ignorant
of its speed. He will not know when to open the door, in effect.

And even in quantum mechanics, energy is conserved, being quan-
tized—that is, cccurring in discrete packets called quanta. Each atom
contains a certain amount of energy in the levels of excitation of its elec-
trons. Should a single electron drop from a higher to a lower energy level,
the atom loses energy. But the energy lost is emitted by the atom in the
form of a quantum of energy that travels in the form of a wave until it is
abscrbed by some other atom. Quanta do not disappear, nor do they
appear out of nowhere. Quantum mechanics is the mest successful phys-
ical theory ever developed.

As one of the most general physical laws we have, conservation of
energy pervades both the classical and the quantum mechanical branches
of physics. In the classical domain, which fer cur purposes consists of
Newtonian physics and relativity theory, no experiment ever performed
has found a violaticn of this law. In fact, the mathematical accounting
that goes into every physical calculation has never revealed a violation of
either of the equations involving K, F, and H. Energy may be converted
frem cne form to ancther, but it is never lost. Energy radiated away from
one system will eventually arrive at another, to put it crudely. It is never
lost in transit, ner does it ever appear out of nothing.

If someone, scmeday, designs and builds an actual type two perpetual
motion machine, that persen will net only become wealthy enough to
make Bill Gates look poor, but also he—or she—would be entitled, I
should think, to a Nobel Prize in physics.
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The Cosmic Limit

Unreachable Speeds

[T IS NOT POSSIBLE FOR MATTER OR ENERGY
TO TRAVEL FASTER THAN THE SPEED OF
LIGHT IN A YVACUUM.

EVERYONE KNOWS WHAT LIGHT IS, and yet no one knows. It shines
brilliantly er dully on our werld frem many sources. The Sun, like most
stars, emits light. The Moon and the planets reflect it. Fire made light
for the ancients, and electricity makes it for us. And everybedy has expe-
rienced these things, more or less.

Physicists also know what light is, more or less. It travels at the incred-
ible speed of 299,792.458 kilometers per second. Moreaver, it has a dual
nature, consisting of particles or waves. Which aspect of light you see
depends on the dimensions of your vision. In the macroscopic world of
ordinary experience, where objects all have dimensions of millimeters or
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more, all the phenomena we see can be explained by the wave nature of
light. But in the microsceopic werld of the atem, where sizes and dis-
tances are measured in nanometers, light takes on a grainy, particulate
quality. Light is “quantized,” in a word, and its behavior in such tiny
dimensions is truly bizarre, hiding many secrets behind a quantum cur-
tain—to be drawn aside in the next chapter.

Here we focus on its wave nature and two discoveries. The first dis-
covery, made by the Danish astronomer Olaus Roemer in the eighteenth
century, was that light traveled at a finite speed. The second discovery,
made by the German Swiss scientist Albert Einstein in the twentieth cen-
tury, was that nothing could travel faster.

Both discoveries overturned earlier ideas about light in particular and
motion in general. Aristotle had held that light was transmitted instan-
taneously frem a luminous body, the cause of light, te its perception in
the eye, the effect of light. He argued with those who believed that light
had metion: “Empedocles . . . was wrong in speaking of light ‘traveling’
or being at a given moment between the Earth and its envelope, its move-
ment being unobservable by us . . . if the distance traversed were short,
the movement might have been unobservable, but where the distance is
from extreme east to extreme west, the draught upon our powers of
belief is toc great.”

Plato thought that light traveled, but in the opposite direction, so to
speak, being an “influence” that left the eye and embraced the chject
seen. The Platconists who followed in Plato’s footsteps developed a sort of
hybrid theery in which light traveling from an object toward the eye was
met and assisted by an emanation from the eye.

The earliest Greek thecry of light, first advanced by the Pythagorean
school, has a strangely modern ring. Light traveled with a finite speed,
but consisted of particles too fine to see. This amounted to a corpuscu-
lar theory of serts, which the English scientist Newton would revive
some twenty-three centuries later. That other English scientific icon,
Francis Bacon, believed with Plato that chjects were rendered visible by
emanations from the eye.

The great seventeenth-century French philesopher and mathemati-
cian René Descartes viewed light as a kind of pressure transmitted by an
infinitely elastic medium that pervaded space. This was as close to a wave
theory as science would come until the eighteenth century, when
Christiaan Huygens would study diffraction in lenses.
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CATCHING SOME RAYS

By 1672, most natural philosophers (as scientists were called in these
days) believed that the speed of light was finite. Galileo even proposed a
method of measuring it: two men with lanterns would stand on adja-
cent mountaintops. One would uncover a light and the other, as scen as
he saw the first one’s light, would unceover his own. The first man would
then measure the elapsed time. The speed cf light would then be twice
the distance between the mountaintops divided by the time. Unfortu-
nately, even if the mountaintops were 100 kilometers apart, light travel-
ing at nearly 300,000 kilometers per second would take 0.3 millisecond
to travel from cne top to the other. This would make the reactien time
of the second cbserver nearly a thousand times too slow.

In that same year of 1672, the Danish astronomer Olaus Roemer
began a series of measurements of Jupiter’s moen Ic at an observatory
near Paris. In 1610, Galilec had discovered lo and other moons of Jupiter
through a new invention called the telescope. Galileo’s discovery had cre-
ated a sensation. It showed that one body could easily be the satellite of
another, giving new credibility to the Copernican hypothesis. Some fifty
years later, Newton formulated his new laws of motion. The new field of
celestial mechanics was off and running.

To plot the orbit of Jupiter’s moon lo, Roemer timed occultations of
Io as it passed behind its Jovian companicn. On each such occasion, he
carefully recorded the time, extending his cbservaticns as far as the year
1675. By that time he had enough timed occultations to determine
orbital periods. But when he worked out the time between successive
occultations of the same moon, he discovered to his dismay that the
times gradually increased over half of each year and decreased over the
next half, increasing again after that.

Could Newten’s new theory, the very foundaticn cf celestial mechan-
ics, be wreng? Was there another, unknown influence acting on Io? Or
was it light itself? Roemer was well aware that in the vast theater of the
solar system, all planets moved at different speeds in their orbits, the
outer planets, such as Jupiter, taking much longer to go around the Sun
than the inner ones, such as the Earth. In other words, it was quite pes-
sible for the Earth, as it sped around the Sun, to complete several orbits
as Jupiter completed only a pertion of its own orbit. Consequently, cne
could pretty well treat Jupiter as fixed. As it happened, the discrepancies
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in the orbital data followed a nearly annual cycle—a major clue.
The illustration below shows how, over a six-menth peried, light
from Jupiter (or Io) would take longer and longer to reach Earth.
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Light from Jupiter’s moon crosses Earths orbit

As Earth moved away from Jupiter, the occultations of Io would
“arrive” at successively later times, while during the rest of the year, the
opposite happened. The greatest difference between the two sets of data
would occur between the time when Earth was farthest from Jupiter and
when it was closest, a total difference of about 17 minutes. Roemer must
have seen immediately that this time was precisely how long it took light
from Jupiter te cress Earth’s orbit.

In the 1670s, the diameter of Earth’s orbit was not known precisely,
the best estimates placing it at about 200,000,000 kilometers. By this
reckoning, the speed of light would be

200,000,000/(17 = 60) km/sec
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or roughly 196,000 kilometers per second. This value is off by approxi-
mately 33 percent.

Subsequent recalculations, based on better estimates of the diame-
ter of Earth’s orbit, improved the accuracy of this estimate slightly, but
there was no real further advance until 1849, when the French physi-
cist Armand Fizeau found the speed of light to within 4 percent of the
correct value. e employed a toothed wheel and a light path that
passed first through the teeth, then to a reflecting mirror some distance
away, then back to the toothed wheel. Fizeau found that by driving the
wheel fast enough, the return beam would strike a tooth in the wheel
instead of reentering the gap it had first left. The speed of the wheel,
its diameter, and the distance between teeth, as well as the length of the
light path would, among them, make it possible to calculate the speed
of light.

Not to be outdone by a countryman, the French physicist Jean
Foucault used a rotating mirrer and the same basic setup a year later. The
mirrer had greater sensitivity than the toothed wheel for this experiment.
Foucault’s value came within 1 percent of the correct speed. The subse-
quent history of the determination of the speed of light takes us beyond
the starting peint (historically speaking) of the next section. But in the
years from 1924 to 1926, the American physicist Albert Michelson con-
ducted a series of measurements between the tops of Mounts Wilson and
San Antonio in California in a modern version of Galilec’s original sug-
gestion. But instead of two men with lanterns, Michelson used a variant
of Foucault’s rotating mirror, an eight-sided affair that, coupled with the
very long light path, yielded the most accurate result then available,
299,729 kilometers per second. Michelson’s measurement came within
0.02 percent of the correct value, being some 70 kilometers an hour too
slow, owing to the passage cf light through air. The modern value quoted
above was obtained entirely in the laberatery using a relatively short
light path but extremely fast electronics.

The speed of light is today considered cne of the fundamental con-
stants of nature, but not because it has been measured so accurately. It
amounts to a fundamental limit on all motion, even communication, in
our universe. The remarkable insights that gave birth to this fundamen-
tal knowledge had their cwn birth in a curly-haired bey cf twelve living
in Zurich.
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THE ETHER

Albert Einstein was born in Ulm, Austria, in 1879, the son of a middle-
class Jewish family who were then struggling to make ends meet. In his
early schooling he was slow and awkward, leading at least one teacher
to exclaim, “He won’t amount to much.” But by the time he was twelve,
young Einstein had develcoped a strong liking for physics and mathe-
matics. Gifted with a powerful imagination and an almost cbsessive
curiosity about nature and “how God works,” Einstein was as much
given to speculative reasoning of a specific type as he was fond of
tinkering with machines that demenstrated physical principles. The
“specific type” of reasoning was the famous gedanken (or thought)
exXperiment.

At sixteen, Einstein had tried to imagine what it would be like to
travel beside a ray of light, moving at nearly 300,000 kilometers per sec-
ond. What would he see? His own answer (as recalled much later in life)
was “a spatially oscillatory electromagnetic field at rest.” This was an
obvious contradiction that not even Maxwell’s famous equations gov-
erning all electromagnetic phenomena (including light) cculd elucidate.
Already Einstein could see that the only way out was to presume that
somehow the laws of electromagnetism would be different for an
observer at rest and cne traveling at the speed of light.

Since Maxwell’s equations were unlikely to be wrong, the only
remaining possibility would be that nothing could travel that fast; so far
had the young Einstein reascned in his youth. To know the kind of ques-
tion cne might be pursuing at the end of fermal schocling gave an ines-
timable advantage. On the other hand, Finstein’s education was anything
but smooth. His life in the Luitpeld Gymnasium in Munich was miser-
able, owing to the strict Prussian atmosphere that surrounded much of
the German educational system in the late nineteenth century. He hated
meost of his teachers and frequently displayed a rebellious attitude. In
fact, he failed to graduate, being expelled. “Your presence in the class is
disruptive and affects the other students,” said cne of his teachers.

Luckily, Einstein had been reading mathematics and physics bocks
through his teens, steadily building competence and confidence. His
father decided that Albert was better off continuing his education in
Zurich. The Swiss Federal Institute of Technolegy required no secondary
school diplema, deciding instead that admission weould depend on an
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entrance examination. Finstein failed the exam. Although his mathe-
matics was equal to the challenge, he had acquired none of the cther sub-
jects, such as biclogy. A kindly master at the institute directed the young
Einstein to a cantcnal schocl near Zurich, where he could spend the year
preparing for the entrance examination. Even when he passed the exam
a year later, he was still one year below the normal admission age of
eighteen. He was admitted anyway.

Knowing (more or less) where he was going, Einstein studied math-
ematics and thecretical physics at the institute, blosseming as a student
(as much as he ever would) and falling in love with Switzerland.

At the turn of the twentieth century, physics was bubbling. Dalton’s
atoms had proved tc contain electrical charges; radioactive decay had
just been cbserved; and Maxwell’s equations described waves of all
kinds, including light. The appearance of Henri Poincaré at the First
International Congress of Mathematicians in Zurich at the end of
Einstein’s first year at the institute may have been a major influence on
the young physics student. Said to be the last mathematician who would
ever know “everything” there was to know about mathematics, Poincaré
gave a stirring lecture, which included the following prophecy: “Absolute
space, absolute time, even Fuclidean geometry, are not conditions to be
imposed on mechanics; cne can express the facts connecting them in
terms of non-Euclidean space.”

Ancther hint of things to come was in a book by Ernst Mach called
The Science of Mechanics. Mach was German, a physicist turned philoso-
pher. His book stirred many students at the Zurich institute, including
the young Einstein. Perhaps Mach’s criticisms of Newton caught his
eye. Mach railed at the noticns of “absclute space” and “absolute time,”
urging that “relative to the fixed stars” be substituted for the former
expression.

The noticn of absclute space was already becoming a bit threadbare,
thanks to the work of Michelson and Merley, two physicists then work-
ing at universities in Cleveland, Ohioc. The wave theory of light was first
proposed seriously by Christiaan Huygens in 1678, then established by
elegant experiments of Fresnel and Youngs. It seemed perfectly clear that
light traveled in waves, like waves on the sea. But what “sea” could be
said to fill all of space so that waves of light could ripple across it at such
fantastic speed? Most physicists of the late nineteenth century accepted
some versicn or other of Descartes’ suggestion that an “ether” was the
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basic substrate through which light traveled. Maxwell, whese equations
seemed tc close the bock en light and other electromagnetic phencmena,
also favored the idea of an ether, the “luminifercus [light-carrying]
ether,” as he called it.

The mystericus ether had scme strange properties. First, it had tc be
extraordinarily rigid to transmit light at such a high speed. For exam-
ple, the speed of sound in steel is seventeen times faster than the speed
of sound in air because the atoms comprising the steel are in constant
and intimate contact and therefore vibrate much socner, relatively speak-
ing, when their neighbors vibrate. Another problem with the ether was
that it had to permeate material objects such as windows (since light
can travel through them) and, as experiments on the speed of light in
moving water clearly demonstrated, the ether must, to some extent, be
dragged along by the water. On the other hand, the apparent directions
of stars cbserved from the Earth were not affected by motion of the ether
outside the Earth. Consequently, the ether outside material cbjects must
be stationary, a fixed frame of reference that would have been heartily
welcomed by the likes of Newten.

The inconsistency arose from the assumption that the ether—what-
ever it was—actually existed. The speed of light would obviously be con-
stant in the ether. An cbserver moving through the ether weuld be able
to measure a slowing down or speeding up of light, depending cn
whether the observer was moving with the ether or against it. In other
words, if light was represented by a moving train and the ether by tracks,
it would indeed be possible to catch up with a beam of light along a par-
allel track. It would be possible, as young Einstein had imagined, to
waltch this speeding train as if it were (relatively) motionless.

In 1882, Albert Michelson, the physicist whose measurement of the
speed of light T described earlier, joined the physics department at the
Case Institute of Applied Science in Cleveland. There he teamed up with
a chemist, Edward Morley, from the adjoining campus of Western
Reserve University. Michelson had already developed his famous inter-
ferometer for detecting the luminiferous ether while visiting Germany a
few years earlier, and now, with Morley to assist, he was ready to conduct
a very precise experiment.

The idea was simple. A beam of light was focused on a beam splitter,
a semitransparent surface that transmits half the beam while reflecting
the other half. In this manner, the emergent beam was split into two
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components at right angles to each other. Each beam was reflected from
a distant mirror and returned nearly te the beam splitter, arriving at a
screen where they could interfere with one another.

beam

splitter | @-—b—-—-
mirroy

léghf source

The Michelson-Morley interferometer

Since the two paths did not necessarily have precisely the same length,
the two beams of light, when they rejoined, would produce a set of fringes
that represented the phase difference between the two beams. If the crest
of a wave in one beam met the trough of a wave in the other, the two
would cancel out, producing a dark band. If two crests met, however, the
waves would reinforce each other, and the result would be a white band.
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The fringes or interference patterns weould thus indicate, to within a
wavelength of light, the exact positions of the two beams relative to one
another. If one of the light paths were to lengthen by a slight amount (or
it either beam were to change its relative velocity), the fringe pattern
would shift by a measurable amount on the screen of the interferometer.
With the apparatus aligned so that cne beam traveled parallel to the
Earth’s supposed moticn through the ether while the other traveled at
right angles to that direction, the theory behind the experiment is not
difficult te understand. The beam of light traveling in the same direc-
tion as the Earth’s motion through the ether would complete the first half
of its journey somewhat faster than the waves traveling at right angles
to the Earth’s motion. On the return journey, the waves would travel
somewhat slower. Both halves of the path taken by the right-angled beam
would be traversed at the same speed. If the ether were real, the beam
traveling parallel to the Earth’s motion through the ether would take less
time to travel the “downstream” leg of its journey than it would to
return. The beam traveling at right angles to the Earth’s moticn through
the ether, however, would take the same amount of time on both paths.
The average speed of the beam traveling parallel to the ether would
nct exactly equal the speed of the other beam, however. The whole
experiment hinged on the solution of an old elementary schocl problem.
I will follow the time-honored tradition of inveking two swimmers in
a river, calling them “A” and “B.” Both A and B dive into the middle of a
river from a bridge at the same time and swim at exactly the same speed
relative to the water. Swimmer A swims 100 meters downstream, then
100 meters back to his starting point on a bridge. Swimmer B, mean-
while, swims 100 meters across the river at right angles to the direction
of flow, then back again. Assuming that the rate of flow is everywhere the
same in the river, which swimmer arrives back at the starting point first?
Suppose the current travels at 6 meters a minute and that both swim-
mers travel at the rate of 30 meters a minute. Swimmer A travels the
downstream leg of his journey at the speed of 36 meters a minute relative
to the land, taking just 100/36 = 2.78 minutes. On the return leg, he
travels at 24 meters per minute and therefore requires 100/24 = 4.17
minutes, for a total travel time of 6.95 minutes. Swimmer B, on the other
hand, completes both legs of his journey in the same time of 100/30 =
3.33 minutes, for a total travel time of 6.66 minutes. Clearly, swimmer
A takes longer.
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Michelson and Morley set up the interferometer in what they thought
might be the directicn of the Earth’s travel through the ether, but found
that the interference fringe did not shift in their instrument. Well, per-
haps, they hadn’t guessed right, so they tried another angle. That pro-
duced no effect, either. They tried every angle they could think of, even
tilting the interfercmeter toward the ceiling. Still no effect. They con-
cluded that there was no ether, at least not cne with the properties attrib-
uted to it. In short, light was not propagated through any mysterious
medium. Mcrecver, the speed seemed to be the same in all directions!

They published their results, and the effect on physics was profound,
creating a first-class crisis from which no cne cculd see a way out.
Maxwells equation required an ether (or seme such medium) that could
propagate light waves through it. Yet the ether had not the slightest effect
on the speed of light waves. It was this second observaticn that caught
young Einstein’s eye. Could the speed of light be constant and inde-
pendent of the speed of the observer? How could that be?

Einstein completed his degree at the Zurich institute in 1900 but,
owing to uneasy relaticns with one cf his professors, did not get the
equivalent of a postgraduate position. Thus he was thrown into a patch-
work academic life of short-term teaching pests while he werked en his
doctoral thesis en the kinetic theory of gases. By 1902 he had finished
the thesis and had found a job at the Swiss patent office, in which he held
the post of technical expert, charged with examining patents for inven-
tions that depended on tricky physical effects. He would stay with the
patent office for seven years. It was not until 1903 that he defended his
thesis at the Zurich institute, an examination that was “touch and go,”
according to one biographer. In that same year Einstein published three
papers in the journal Annalen der Physik. One paper linked Brownian
motion with the existence of molecules. The second, more remarkable
paper, explained the photoelectric effect; and the third, most remark-
able paper of all, outlined the principles of special relativity.

Physicists had neticed that when a beam of light, even a weak beam,
was directed onto a metal surface, it would trigger a flow of electrons
from the plate, a phenomenon known as the photcelectric effect. The
energy of the electrons thus emitted, moreover, did not depend on the
intensity of light, enly cn its coler, or wavelength. This particular phe-
nomenon could not be predicted by Maxwell’s equations. In his paper
Einstein derived equations of great generality that enabled him not only
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to declare that the radiation emitted by certain heated bodies must con-
sist of individual particles of light, but also to explain the photoelectric
effect using the new theory. What the German physicist Max Planck had
hypothesized only five years earlier—that under some circumstances,
light was best considered as occurring in tiny packets called quanta—
Einstein demonstrated to be real. The photon was born, or, should we
say, discovered. Remarkably, physics had traveled full circle, from the
Pythagorean view of light as a stream of particles (reinforced by
Newton) to the discovery of the wave nature of light by Huygens and
Fresnel, neatly packaged in the wave equations of Maxwell, and back to
the “new” view of Planck and Einstein that light consisted of particles
after all.

Einstein was thus ameng the founders of a new branch of physics to
be known as quantum mechanics. He could not foresee the distress it
would eventually bring to his intellectual life, causing the now famous
complaint “God does not play dice with the universe.”

THE THIRD PAPER

From age sixteen, Einstein had been pondering the nature of physical
reality, always returning to light. His strange and contradictory dream of
the staticnary light wave never left him. It blossomed into a preblem he
would view from every conceivable angle during his undergraduate and
graduate days. Even as he labcred on molecular dynamics for his disser-
tation, he would interrupt himself cccasionally as a new thought struck
him.

He was alert to clues, wherever they might come, not only to the
remarks of Peincaré about non-Fuclidean geometry or Mach’s attempt to
abclish absolute space and time, but also tc some strange new develop-
ments in Ireland, Holland, and France.

George Fitzgerald was a professor of “natural and experimental phi-
losophy” at Trinity College in Dublin. Fitzgerald had been troubled by
the very same preblem as the young Finstein, but from a different angle,
so to speak. According to the outcome of the Michelson-Morley experi-
ment, light always traveled at the same speed, regardless of the state of
motion of its source. The light from two stars, one speeding away from
the Earth, the other speeding toward it, would arrive at precisely the
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same speed, nearly 300,000 kilometers per second. He did not believe
that the velocity of light could be unaffected by the moticn cf its source.
The only escape {rem this logical cul-de-sac, as far as Fitzgerald was con-
cerned, was to suppose that any object in a state of motion was subject
to a contraction in the direction of its metion. In other words, a single
wave from the approaching star would appear to shorten in the direc-
tion of its travel so that its wavelength would be shortened (toward the
blue end of the spectrum) when measured. Similarly, light from a reced-
ing source weuld be shifted teward the red and in this way, the motion
of the source would directly influence the physical properties of the
arriving waves.

The premise was questicned by other physicists, as the hypcthesis
was untestable: a meter stick set up to measure the effect of high veloc-
ity en a moving cbject would have to travel with it. Aligned in the direc-
tion of the object’s motion, the meter stick would contract by the same
amount and give precisely the same reading as when the object was sta-
tionary. Perhaps the following little limerick, recited in a course on rela-
tivity thecry I once attended, dates back to the days of derision:

There once was a swordsman named Fisk

Whose thrust was exceedingly brisk.

So quick was his action, the Fitzgerald contraction
Shortened his sword to a disk!

The actual transformation in length developed by Fitzgerald had a
relatively simple algebraic form. If an object traveled at velocity v in a
given direction, its length would shorten by the ratio #:

r="N1—(v¥c?).

The shortening is practically unncticeable at the velocities we
encounter in ordinary life. For example, suppese you're driving a car at
100 km/hr (about 60 mph}); the actual amount by which the car—and
you—shorten from the peint of view of a stationary observer can be read-
ily calculated from the formula. Given that 100 kmv/hr is approximately
0.028 km/sec, we can form the ratio

vic = 0.028/299,792
=0.093 x 10°°,
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If we square this number, we get
v = 0.859 x 1078,

For the next step in the calculation, we must subtract this amount
frem 1 and then take the square root of the result:

1 —0.859 % 1077 = 0.999999991.

The square root of this quantity is 0.999999995, and the length of
your car (say, exactly 4 meters) has shortened to

4 0.99999999] meters.

At 100 km/hr, your car is geing nowhere near the speed of light, so it
is not surprising that the actual shrinkage is likely to be small. In this
case, it becomes

4.0 = 3.999999964 = 0.000000036

or 0.036 micron, 1 micren being the diameter of a smallish bacterium.

As for the swerdsman Fisk, if he should manage to thrust at just half
the speed of light, his sword would still be semewhat more effective than
a disk; it would shorten by a mere 13.4 percent.

To see how Fitzgerald derived his contraction ratio, we can almaest
follow his mental footsteps. He would, of course, have been thinking
abcut the famous Michelson-Morley experiment, since that was the
source of all the trouble. As you may recall, the interferometer had two
arms with a mirror at the end of each arm. One arm (the “ether arm™)
would supposedly be parallel to the flow of the ether as the Earth moved
through it. The other arm would be at right angles to the flow. The con-
traction that Fitzgerald hypothesized would take place in the ether arm,
exactly enough to shorten it to the right degree. Light, which had to fight
its way upstream against the ether, would, of course, be traveling more
slowly, but the ether arm would contract by exactly the right amcunt to
make the time taken by the light beam along that arm equal to the time
taken by the other beam. The following figure shows the apparatus once
again, but this time with an cutside chserver.

Fitzgerald examined everything from the point of view of an observer
who was stationary with respect te the ether. Te such an observer,
Michelseon, Morley, and their lab might go speeding past his or her posi-
tion, but as they sped by, this privileged chserver would be able to deter-
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Michelson and Motley being watched

mine the exact length of the path along the ether arm. In the diagram I
have labeled it as P’, whereas the perpendicular path has length P. To the
observer, P’ would appear shorter than P

Suppose that the ether arm of the interferometer was pointing
“upstream” into the ether. Then the time taken by light to travel the dis-
tance P’ to the distant mirror would be

P'ic—v),

since light (¢) was slowed by the passing ether (v).

After being reflected in the mirror at the end of the ether arm, the
light would now travel the downstream leg of its path, traveling a little
faster than before and therefere taking somewhat less time:

P/(c +v).

To determine the time taken by light to travel the path of length P
Fitzgerald may have reasoned by analogy; let’s return to the swimmer. To
travel across the river at right angles to the direction of flow;, the swimmer
must angle somewhat upstream so he does not drift steadily downstream,
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even as he crosses the river. Traveling at the speed of light {so to speak),
the swimmer makes an angle with the current (or ether) that exactly
compensates for the speed v of the current. The fellowing diagram shows
that a right-angled triangle is just the thing to determine the swimmer's
resultant speed.

velocily of current

£

effectfive
velocity v !

wih v .
OJL swimme ve\om\j c

of swimmer

Diagram of velocities

Pythageras’ theorem has to be the most useful result in all of mathe-
matics. Here it tells us that the square of ¢ must equal the square of v plus
the square of the unknown {cross-stream) velocity v/, The latter velocity
must therefere be

¥2=cl v

The time it takes light to traverse the path of length P must then be:

2P or 2P
v e v,

Since the sum of the two traversal times taken by light along the ether
arm of the apparatus must equal the time just derived, we have, finally,

P, P 2P
(c=v) (c+v) cr—-vi
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A little algebra comes in handy at this point. To simplify the expres-
sion on the left-hand side of the equation, we may first take out the com-
mon factor P* and concentrate on the expression

e —v) + LAc+v).

To bring both fractions to a commen denominator, we simply use
the product of the two denominaters and write

cC+Vv + c—v

cd—vi o ol vl

The terms with v in them cancel out and we are left with

2c
c? =2,

Finally, we multiply by the P’ which we had left cut of the expression
for the time being:

JcP’

T2

C

We are, as some mathematicians say, almest home. The equation that
we started with can now be written

2cP’ _ 2P

ct—v? Py

In the following steps I form the ratio P”/P, which is identical to r. But
first I multiply both sides by the square root of the expression ¢? — v,
which leaves us with

ZCP, = 2P
Vi =2

The ratio

g = (Ve —v)/c

can be further simplified by taking the factor 1/¢ inside the square root,
where it becomes 1/c%:

£ =1 —v¥c2
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There is a strange irony in this formula. In what weould turn cut to
be a vain attempt to save the ether, Fitzgerald had invoked a mysterious
contraction of the ether when, in reality, it was everything else that was
contracting. And yet it was exactly the right expression for a profound
overhaul of cur ideas abcut space, time, matter, and energy.

In the meantime, physicists regarded Fitzgerald’s notion of a con-
tracting ether as far-fetched, to say the least. In 1894 Fitzgerald wrote his
friend Hendrik Lorentz, a well-known Dutch physicist, “I have been
rather laughed at for my view cver here.”

In spite of the barely plausible nature of Fitzgeralds contraction,
Lorentz saw something mere in it. Such a contraction might result when
a body moved through the ether. The motion might disturb the equilib-
rium of electrical charges composing the body, and its particles would
change their relative positicns toc assume a new shape. Lorentz, one of
the discoverers of the electron, gave the hypothesis a new respectability
as the nineteenth century drew to a close. At the same time, he realized
that it would play havoc with ordinary notions of time and space, at least
in the sense that ordinary addition eor velecities, even calculations of
position, would all have to be recast to allow for what were then coming
to be known as the Fitzgerald-Torentz transfermations. His warries fore-
shadowed the world of relativity, which, at that time, was hardly more
than a cloud of questicns and netions in the brain of young Einstein, still
a student in Zurich.

The great Henri Poincaré, meanwhile, felt that deeper issues were
afoot. He addressed a sympesium on the achievements of science in the
century just past in St. Louis, Missouri, in 1904, “Perhaps we should
construct a whole new mechanics, of which we only succeed in catch-
ing a glimpse, where, inertia increasing with the velocity, the velocity of
light would become an impassable limit.”

THE GREAT INSIGHT

For Lorentz and Fitzgerald, the transformation equaticns amecunted to a
property of bodies, specifically bedies that contained electrens (just
about all forms of matter). Lorentz had added a further contracticn, cne
in time itself, so they would fit with Maxwell’s equations, which
described electromagnetic waves in both space and time. The equaticns,
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which related two frames of reference—one “fixed,” the other moving—
were simple enough to be understood by a high school student:

5 x—vt

Y1 —v¥c?

v
t— sz
V1 —v¥cl.

This version of the Lorentz-Fitzgerald transformations is not the

t' =

most general one. It assumes that one frame, with coordinates x, y, and z,
is staticnary, while the second frame, with coordinates x’, ¥, and 2/, is
moving at a velocity v relative to the first frame in the x direction alone.
In the most general version, the equations for ¥* and z° would lock sim-
ilar to those for x”.

Although Einstein used these very transformations in his ground-
breaking 1905 paper introducing the world to the special theory of rela-
tivity, he interpreted them somewhat differently. For Einstein, the
transformations were a property of space (rather, space-time) itself and
in no way depended cn the properties of electrons. He had already seen
that many physical measurements produced the same result, no matter
what state of uniform motion the laboratory happened to be in. For
example, the Michelsen-Morley experiment preduced a null result in
October as well as in April, six months later, when the Earth was moving
in the opposite directien in its annual course about the Sun. There was
simply nc experiment a person could perform that could tell what “ulti-
mate” state of motion one was in.

The transformaticns applied, moreover, to all frames of reference, no
matter what their state of mction, as leng as velecity was a constant.
Such frames of reference are called “Galilean frames” in honer of the
Italian physicist Galileo Galilei. To quality as Galilean, they could be nei-
ther rotating nor accelerating. Thus it was easy tc determine whether
one’s frame of reference happened to be Galilean or not. Neither form of
motion is relative in the sense that if your laberatery were spinning,
objects would tend to slide off tables. If accelerating, you would feel a
force pulling you toward one wall.

The following figure shows two Galilean frames, one with its axes
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labeled x, v, and z, the other with axes labeled x’, ¥, and 2. Let us suppose
that you, the reader, happen tc be moving with the first frame (x, v, 2),
while I, the author, happen to be moving with the second one {(x’, v, 2').

As a courtesy, [ have left your Galilean frame apparently at rest, while
mine appears to be meving te the right at velocity v Of course, to me
your frame appears to be moving in the opposite direction at the same
speed. As far as Finstein was concerned, that would be about all we
could say concerning our moticns. The transformation equations enable
me tc determine my coordinates in terms of yours. If T want to know the
x’ coordinate of a point within my own frame, for example, I take the
correspending peint in your frame and subject it to the appropriate for-
mula, the one invelving x, x°, and v. Thanks te the transfermation equa-
tions, everything geing cn in your frame of reference can be expressed in
my own ccordinates. T can measure distances in your frame cf reference,
for example.

As a purely practical matter, however, [ will have to equip each of us
with a meter stick and a clock within cur respective Galilean frames. To
overcome certain difficulties pertaining to our high speed relative to cne
another, and our consequent separation, we also will have to use tele-
scopes with which to view each other’s instruments. Te me your clock
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will appear to be running slow, and your ruler also would appear short.
My clock also weuld appear equally slow to you and my ruler equally
shert. For example, if v = 39,958,492 (one-fifth the speed of light in
meters per second), our respective clocks would each appear to the other
torun at

Y1 -0.04=0.98

seconds per second, so to speak. In other words, your clock would
appear to lose 2 out of every 100 seconds when compared to mine, while
my clock would appear equally faulty te you. Our meter sticks also
weuld appear shorter to each other, by about 2 centimeters in both cases.
Admittedly, such discrepancies are not very dramatic. But at four-fifths
the speed of light, the Lorentz-Fitzgerald transformations produce more
impressive differences. In this case the transformations yield a much
smaller ratio:

V1 - 0.64 = 0.60.

At this relative velocity, each of us will cbserve the cther’s clock to
lose 40 seconds out of every 100. Alsc, each of us will see the other’s
meter stick shorten to 60 centimeters—although none of the marks on
these rulers will disappear. They will just look cleser together to the
other observer.

Besides reinterpreting the Lorentz-Fitzgerald transformations anew,
Einstein saw important consequences for the observed behavior of mass.
For example, prior te Einstein, physicists had always determined the
kinetic energy of a moving cbject of mass m by using the formula

mv/2.

Einstein, applying the Lerentz-Fitzgerald transformations, cbtained
a new formula, with some startling implications:

mc?

V1 — v¥ci

One cf these implications concerned the behavior of an object trav-
eling ever cleser to the speed of light. As v appreaches ¢ in value, the
expression inside the square root approaches 0. Divisicn by a quantity
that approaches O produces a quantity that approaches infinity. In other
words, the cbject’s kinetic energy, as cbserved by us, would simply
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become greater and greater without limit. At v = c the energy would
appear infinite—an utter impossibility, according to Einstein. Another
important implication concerned the value of the formula when the
object is standing still relative to the observer's frame of reference. In this
case, the value inside the square rcot is ¢ and the energy of the object,
called its “rest energy,” is mc?. But that is another story.

IS THERE A WAY AROUND IT?

As everyone knows, a popular way of measuring distance in deep space
uses a unit called the light-year. The nearest star tc cur sclar system,
Proxima Centauri, is about 4.3 light-years away, but the vast majority of
stars in our galaxy are thousands of light-years away. Traveling at the
speed of light, it would take you as many years to reach these stars.
Science fiction writers, impatient with this annoying limitation, have
invented a hyperspace drive that circumvents the problem. The idea is to
“fold” space back upon itself so the region T inhabit actually comes into
contact with a region thousands of light-years away. [ pilot my space-
ship across the fold, and voilal T'm there.

Such travel would not viclate the speed-of-light edict, since the body
thus translocated would not have been moving in the classical sense. At
the same time, folding space, even if it were possible, might well invelve
the expenditure of prodigicus amounts of energy, making it never more
than a hypothetical pessibility.

The speed of light not only limits the velocity of any classical (large)
body but alsc limits the speed at which information can travel. Some
have argued that quantum effects involving instantanecus changes in the
state of two widely separated photons weould provide the basis for a
faster-than-light signaling system. Unfertunately, as we will discover in
the next chapter, there is no way to manipulate the state of these pho-
tons, so even if the effect is instantaneous, no information can be trans-
mitted faster than light.

Perhaps the speed of light is not censtant, after all. Would that change
its nature as a cosmic speed limit? In the early 1980s two Australian
physicists, Barry Setterfield and Trevor Norman, published a claim that
the speed of light was not constant. They made the case that even over
the past 400 years there had been a small but statistically significant
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decline in the velocity of light. They thecrized that the speed of light
shertly after the big bang had been many orders of magnitude greater,
that it had declined exponentially since then, and was now dropping by
nearly imperceptible amounts every century.

The recognition that ¢ is not constant after all has gained ground in
the past decade. Does this not put Einstein out the window? In fact, nei-
ther the special ner the general theory of relativity depend on the speed
of light being a fixed constant, as long as it is the same for all chservers,
which, apparently, it is.

Perhaps the best way to test the universal speed limit (even if the cos-
mic police are steadily reducing it) is to ask what would happen if one
could go faster than light. According to special relativity, both space and
time would shrink by the Fitzgerald contraction:

I S
V1 — v¥ci

At such a juncture, things would become distinctly creepy. The quan-
tity inside the square root would become negative because the term v/c?
would exceed 1. Distance and velocity would become imaginary num-
bers. What does that mean? [ haven't a clue, and [ shudder to think.



3.

The Quantum Curtain

Unknowable Particles

THE DETAILED BEHAVIOR OF ANY QUANTUM
SYSTEM, WHETHER IT CONSISTS OF ELECTRONS,
PHOTONS, OR ATOMIC PARTICLES, CANNOT BE
PREDICTED BY ANY MATHEMATICAL LAW OR
COMPUTER PROGRAM.

IF THE EARLY DECADES of the twentieth century were decisive for
modern mathematics, no less is true of modern physics. Einstein’s thecry
of relativity was revolutionary enough, with its strange amalgamation of
space and time and its counterintuitive ideas, such as light bending in
gravitational fields. But the rise of quantum mechanics signals an even
stranger development, with an interpretation that Einstein himself resis-
ted to the end of his days.

The thecry of relativity is shelved within “classical” physics because
its equations demand a classical notion of reality. A body traveling

59
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through space always has a definite position and velocity, and we can
measure these quantities as accurately as we like, independently of each
other. Even if the body is traveling at close tc the speed of light and its
shape changes as a result, we can predict the degree of distortion.

In quantum mechanics, all that goes out the window. For example,
we can measure the pesition or velocity of an electron, but, as we will see
shortly, we cannct do beth simultaneously. Mereover, we cannot be sure
that these quantities have any value unless and until they are measured!
Yet the success of quantum mechanics, as measured by the accuracy of
its predictions, is unparalleled in physics.

The uncertainty about the position, mementum, spin, and other
attributes of a quantum particle may have its rocts in what appears tc be
a random element operating at the very basis of quantum phencmena. To
the classical physicist the complaint of Finstein that “God does not play
at dice” expresses the ultimate dismay at the loss of causality and deter-
minism. I do not prepose teo rescue Einstein from his dilemma, but he
might just have found comfort in the following proposal: Whatever God
is deing, He’s doing it behind what T call the quantum curtain, a kind of
reality veil behind which we cannot see. In other words, whether the
behavior of quantum particles is random cr not, we may never know the
difference. We will not, in any case, ever be able tc predict the detailed
behavior of such systems.

The rocts of quantum mechanics penetrate well back inte the nine-
teenth century, with the discovery of discrete atomic spectra by the
Swedish physicist Anders Angstrom and the Swiss mathematician Jacob
Balmer, but it was Einstein himself who opened this Pandora’s box when
he published his findings cn the photoelectric effect in 1903. T will return
to the history for the insight it affords, but T cannot resist rushing to the
central phenomenon.

THE TWO-SLIT EXPERIMENT

The laboratory is dark. Somewhere a vacuum pump wheezes. A physicist
stares intently at a screen, where he sees minute flashes of light several
times a second. These are individual phetons striking the screen after
passing through two slits in an opaque shield, as shown in the figure.
The photons come from a very weak light scurce, well behind the screen
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and aimed at it. Two photodetecters tell the physicist which of the slits
each photon passes through. At the moment, the detectors have been
turned off.

[AVIRAW

Y

The two-shit experiment

The pattern on the screen demonstrates the well-known phenome-
ncn of wave interference. Light passing through the slits interferes with
itself to preduce alternating dark and light bands. Of course, the physi-
cist does not see the interference pattern in this case because the photons
arrive at the screen too slowly to make out any kind cf pattern. But if he
replaces the screen by a photographic plate, any underlying pattern in
the behavior of the photons will shew up when the plate is developed.

If the physicist turns on the photodetectors, he can immediately tell
which slit a given photon passed through. Strangely, even though he
knows which slit each photon passed through, ne theory will tell him in
advance which slit a given photon will use. It is completely randem as far
as he or anycne involved in the study of quantum mechanics knows.
With the light source aimed just so, he can even arrange that the proba-
bility is 50-530. Half the time a pheoton passes through one of the slits,
half the time the other. If he tosses a ccin, he’ll have a pretty fair approx-
imation te the behavior of these photens. The physicist can guess, of
course, and approximately half the time he will be right. But neither he
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nor any other scientist can predict what an individual photon might de.
Whatever process might be thought to lie behind the deployment of the
photens is hidden frem his view behind the quantum curtain.

Life in the quantum lab gets considerably creepier than this. If the
physicist develops the plate after an experimental run when there are no
detectors beside the slits, the pattern portrayed in the figure above shows
up cn the plate. Obviously the photens were interfering with each other.

But wait! How can the photons interfere with each other when they
pass through the slits one ata time? It turns out that each photon may be
considered as a wave. [t interferes with itself. But to interfere with itself,
it must pass through both slits. This view is cenfirmed by what happens
when the physicist runs the experiment with the detectors turned on.
This time the developed plate shows no pattern at all, just a random scat-
tering of points on the plate.

It appears that if the physicist does not measure which slit the pho-
ton passes through, it passes through both.

We're not out of the creepy department yet. It may be that before it
“chocses” which slit te pass through, the photon has no real existence. It
also may be that the consciousness of the experimenter plays a crucial
role in the experiment.

In what follows we will witness other experiments and wander a his-
torical path that leads from Finstein to the Danish physicist Niels Bohr
and on tc Werner Heisenberg, John ven Neumann, and other luminar-
ies of the quantum universe.

ROOTSs OF THE DISCOVERY

Einstein has no cne te blame but himself (althcugh the German physi-
cist Max Planck and the French physicist Louis de Broglie must share
some of the blame) for the scandalous behavior of light. It was Einstein
who gave the first reasonable interpretaticn of an experiment perfoermed
by the German physicist Philipp von Lenard and others around the turn
of the nineteenth century. Von Lenard and his colleagues had discovered
that if light is shone on a metal sheet, electrons are ejected from the
metal. The puzzling thing was that light, as everyone knew, was a wave
and that it possessed energy. Therefore, the more energy he put into the
light beam in the form of more photons, the higher the expected veloc-
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ity of ejected electrons. But this is not what happened. Instead, the speed
of ejected electrens was the same, but more electrens left the metal. On
the cther hand, if the color of light was changed, sc was the speed of elec-
trons leaving the metal. The higher the frequency of the light beam, the
higher the velccity of the departing electrens.

The key to understanding these phenomena had been provided by
Planck in the year 1900. Einstein inserted the key and cpened the docr
to the quantum age. Planck had spent arducus years working on one
problem: Why did the classical wave thecory of Maxwell fail to sclve the
so-called black body problem? “Black” is the color of a conceptual cavity
in an unheated body of unspecified material. As the material is heated,
the walls of the cavity slowly turn from black to red. Higher temperatures
produce further changes in color, to orange, then yellow, until, at a high
enough temperature, the body glows white. Thus the higher the energy
contained in a black body, the higher the frequency of emitted light
would be. Assuming that particles composing the black body were {ree
to have any energy, Maxwell’s theory predicted that black bodies should
glow bright blue at all temperatures! The reasons for this cutcome were
technical, and Planck thought he saw a way around the difficulty. By
allowing the particles that composed the black bedy to emit or absorb
energy of one specific frequency, the equations gave the desired result;
as the body was heated to a certain temperature, the color corresponding
to that temperature emerged.

Planck had solved the black body problem in a way that made his
fellow physicists suspicicus. Surely, to assume that energy came in small,
discrete packets was something of a “kludge.” Behind the questionable
solutien, merecver, there lurked an implicit law that required energy to
be quantized.

The cenclusion based on Maxwell’s laws was mistaken not because
Maxwells laws were wrong but because physicists had assumed that the
particles making up the black body were free tc have any energy what-
ever. Planck’s new law stated that the energy of the particles was con-
strained by the rule

¢ = nhf,

where ¢ is the energy of a particle, h is a constant, and fis the frequency
with which the particle vibrates. The symbol n stocd for a positive inte-
ger, which could take any value 1, 2, 3, and so on. This formula required
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that the energy of a particle in the black body could only have values that
were multiples of hf, in effect. Energy cccurred in discrete packets, or
quanta. There was, moreover, a specific value of h that gave the formula
the power to describe the black body effect perfectly, namely

h =4.14 x 107,

In spite of the fact that the new theory explained the color change
in a body undergoing heating, the scientific world ignored Planck’s bold
hypothesis until 1905. In that year, Einstein published three earth-
shaking papers, including his explanation of the photoelectric effect
based on Planck’s idea. In the process, Einstein explained the puzzling
phenomena noted by von Lenard and others by reviving the Newtonian
idea of corpuscular light. If monochromatic light could be considered
as a stream of particles, each with the same frequency, then each parti-
cle of light would eject one electron from the metal’s surface. This
explained why more intense light only resulted in more electrons being
ejected from the metal. According to Planck, the energy of such a par-
ticle was proportional to its frequency. Thus only electrons kicked out
of the metal by light particles of higher frequency would have higher
energies.

The “particles of light” would scon beceme known as “photons,” as
if naming the corpuscle would tame the puzzling dual existence it had
introduced to physics. Phetons, like all cther fundamental particles, have
both wave and particle qualities, depending on how you look at them, so
to speak. Their double nature is referred to as wave/particle duality.

How could light consist of both particles and waves at the same time?
Te this day, physics has no good answer to this question. But soon,
thanks to a Danish physicist, the question would become meaningless.

NIELS BOHR AND THE COPENHAGEN
SCHOOL

From 1903 to 1925, physics was in ferment, and not just over the new
wave-particle dichctomy introduced by Einstein and others. The French
physicist Louis de Broglie had declared that not only did waves have par-
ticle qualities but alsec all particles would be found to have wave proper-
ties, such as frequency. Very soon, the wavelength of the electren was
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measured by the American physicists Clinton Davisson and Lester
Germer.

In the preceding “classical” era, physics had been deminated by the
concepts of matter and field, complementary but very distinct ideas. The
emerging physical reality blurred the distinction. If matter, consisting of
particles and fields, were the stuff of waves, then matter and field could
nc longer be considered distinct and separable entities. The stuff of
which the universe was made could be both simultaneously.

But what was that stuff? Quantumstuff?

Niels Bohr was born in 1883, the very year that a humble teacher of
mathematics in a Swiss girls’ school discovered the mathematical law
behind the hydrogen spectrum. Jacch Balmer had inferred, purely on
the basis of spectral data published by the Swedish physicist Anders
Angstrém, the magic fermula that described the spectrum of the hydre-
gen atom.

It was perhaps the discrete lines of the hydrogen spectrum that first
hinted at the discrete nature of atomic reality that scientists, including
Bchr, were destined to wrestle with. Tt was Behr who would eventually
explain these lines as due to specific, quantized energy levels in the
hydrogen atem. When a hydrogen atom received energy, an electron
would be bumped up to a higher energy level, reradiating the energy as
a photon if it dropped back to its former state. The frequency of the emit-
ted photon depended on the energy level occupied by the electron that
emitted it, higher frequencies implying higher energies. Each line of the
hydrogen spectrum therefore reflected a different energy level that an
electron might occupy within the hydrogen atom.

Bohr’s best work began when he was relatively young and working
in the laboratory of Ernest Rutherford in Manchester. The problem of the
day had been stumbled upen by Rutherford himself, who had recently
discovered that atoms were mostly empty space, with a tiny concentra-
tion of pesitive charge at its center and cne or more electrens forming
the “bulk” of the atom’s physical dimensicns. Rutherford wondered
whether the electrons might orbit the nucleus like miniature planets.
The preblem with this view was that in circling the atem, an electron that
was subject only to the classical laws of electromagnetism ought to be
radiating energy as it circled the atem. But if the electron lost energy con-
tinuously, it cught to spiral into the nucleus, never to be heard from
again.
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Bohr sclved the problem by turning te Planck’s quantum in what
would be enly the third major application of Planck’s ideas. By postulat-
ing that electrons could only have certain, discrete energies, a continu-
ous loss of energy was prohibited, and orbits were automatically stable.
The very word “orbit,” however, reflects this early and tentative plane-
tary model of the atom. Later, when it was realized that electrons did
nct necessarily enjoy a particlelike existence within atoms, physicists
replaced the unfortunate werd by “crbital® (good) and “energy level”
(better).

Furthermore, when Bohr used Planck’s constant to derive the diame-
ter of the hydregen atom—Dbingo! The numbers as derived and the num-
bers as measured matched closely. Bohr's theory alsc correctly predicted
the energy levels of the hydrogen atom and, consequently, the positions
of the lines in the hydrogen spectrum. A puzzle exactly as old as Bohr
himself was thus solved in 1913, the year his paper “On the Constitution
of Atoms and Moclecules” appeared.

MATHEMATICS OF THE QUANTUM

An electren, photon, or other fundamental constituent of our world has
a fundamentally mysterious existence. Rather than try to plumb the
“reality” of these entities, quantum mechanics consists merely of rules
for manipulating their attributes. What are those attributes? Briefly, we
can divide them into static and dynamic. Static attributes such as charge
and mass are always the same for a given type of particle. Dynamic
attributes such as position, velccity, and spin may be different each time
they are measured. Quantum mechanics gives rules for predicting the lat-
ter values in a statistical sense. It might predict that half the photons in
the two-slit experiment will pass through slit A without being able to say
which photens, in particular, would do so.

An early and very impertant develepment of quantum mechanics
helped to explain the anomalous behavior of photons and other funda-
mental particles. Tn 1925 the Austrian physicist Werner Heisenberg pub-
lished his famous uncertainty principle, which says, in effect, that one
can measure the position of a fundamental particle, or its mementum,
as accurately as one likes, but one can never measure both.

We can illustrate the physical reality of Heisenberg’s principle by
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conducting a one-slit experiment: let a stream of photons pass through
a narrow slit and you will see a diffracticn pattern, with individual phe-
tons materializing as points of light that ccllectively build up the pattern
shown in the figure.

Diffraction pattern for photons passing through a single slit

If we now narrow the slit, making the photen’s lateral position mere
certain, the pattern widens. Evidently the lateral momentum of these
photons has undergone some kind of change. Some of the photens pass-
ing through the slit now diverge horizontally to a much greater degree,
even as others pursue scmething much closer to their trajectories in the
earlier experiment. Statistically speaking, even if we are more certain
about the horizontal positicn of each photon as it passes through the slit,
we are less certain about its lateral mementum. The photons that appear
much further from the center of the pattern in the second experiment
have greater lateral momenta than those in the first experiment. In gen-
eral, we have paid a price for cur improved certainty about the horizon-
tal positicn of each photon in being less certain of its mementum. This
relationship between momentum and position for photons has been
found te hold for all quantum entities.

Heisenberg’s uncertainty principle is expressed by a formula that
relates our ability to measure a particle’s momentum to cur ability to
measure its position. If we dencte cur uncertainty about positicn by Ax
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and our uncertainty about momentum by Ap, the principle is readily
formulated:

Ax-Apzh,

where h is Planck’s censtant.

Heisenberg was the first physicist to place quantum mechanics on a
solid mathematical foundation. In 1925 Heisenberg, aleng with German
physicist Max Born, developed matrix mechanics, a system for represent-
ing attributes of a fundamental particle or atom by a matrix of numbers.
Each number of the matrix represented the quantum difference between
two energy levels, and Heisenberg discovered that to multiply two quan-
tities, such as the position and momentum of a particle, he had to multi-
ply the matrices together. In 1925 most physicists were competent in
scheol mathematics but frequently lacked training in more sophisticated
forms. Heisenberg was unfamiliar with matrices. It was Born who
pecinted out that the products of these multiplicaticns of Heisenberg’s
reminded him of a course in matrix algebra he once took. It turned out
that mathematicians had been using matrices, multiplying and adding
them for approximately 100 years. In particular the two remarked on the
fact that in general the product of two such matrices was not commuta-
tive. In other werds, while we may ferm the product of two ordinary
numbers such as 3 and 7, we may multiply them in any order we like:

3XT =73

Not so with matrices. Here, for example, are two matrices:

H RO )

To form a product like the cne shown, ene multiplies rows of the first
matrix by columns of the second matrix. The entry in the ith row and jth
column of the product is thus formed by multiplying the ith row of the
first matrix by the jth column of the second one. The entry in the first
row and second celumn of the product above is 26, obtained by multi-
plying the first row of the first matrix, namely (2 6), by the secend col-
umn of the second matrix, namely (4 3). The product is taken pairwise:
2X4+6x3=8+18=126.

If we now reverse the order of these matrices, we get something a lit-
tle different on the right side:
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(1 4) _ (2 6) _ (18 14)
7 3) 4 2)7 lae 48).

Mathematical operations in which the order of multiplication makes a
difference are called noncommutative. Matrix multiplication is a noncom-
mutative operation. Strangely enough, it was the failure of his matrices to
commute that set Heisenberg on the path to discovering his famous
uncertainty relation. The preduct of two matrices for the position and
momentum of a photon, for example, is the result of measuring these
attributes in that order. Measure them in the cpposite order and you get
a different result. To Heisenberg, this meant that measuring the position
of a photon meant destroying cur knowledge of its momentum—and
conversely.

The year 1925 was something of an annus mirabilis in physics. For
in the year of Heisenberg’s discovery, two other physicists formulated
their own versions of quantum theory. The German physicist Erwin
Schrédinger developed an all-wave formulation of quantum mechanics
with a single equation, today called the Schrédinger wave equaticn.
Meanwhile, in England, Paul Dirac formulated his “transformation
theory,” a representation of quantum particles as vectors in a high-
dimensional space. Dirac developed a technique for transtorming from
one coordinate system to another; hence the name of his theory.

By the end of 1925, physics had three completely different-locking
theories cf the quantum. It was Dirac who, with brilliant insight, dis-
covered that the other two theories could be formulated as special cases
of his own, depending on what sort of coordinate system he chase for his
system. This surprising development echoes the equivalence among the
three separate formulations of computation explained in chapter 7,
namely the theories of Church, Turing, and Kleene. In this case, however,
the explanation lies closer at hand: each was trying to express the same
quantum facts with his theory—reading from the same script, in effect.
In formulating what it means to compute, however, each of the latter
researchers probably had quite different ways of imagining a computa-
tion. For one thing, in those days there were no computers.

Today, quantum mechanics is an essentially mathematical subject
that can be described in a nutshell only for those who know a little
about vector spaces: quantum mechanics uses both finite and infinite-
dimensional (Hilbert) space to represent states of a quantum system
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such as an electron. In addition, the theory uses operators on such
spaces Lo represent various observable quantities of those states such as
spin or momentum. The possible values of these observables are given by
so-called eigenvectors, special vectors within the space that are invari-
ant when the operators are applied to them. The various possible out-
comes of an experiment have respective probabilities attached to them
according to the size of the components of the eigenvectors.

The picture of fundamental particles that emerges from the mathe-
matics is fundamentally mysterious. A photon traveling from a source
to a detector exists as a wave, which amounts to a prohability distribu-
tion. Where will it appear on the phosphor screen? Who knows—until
itappears? Schridinger’s major contribution to quantum mechanics, the
equation that now bears his name, describes the probability distribution
of an electron in an atom. The following figure shows such a distribution
for a hydrogen atom in an excited state. It looks somewhat like a pump-
kin. If one measures the actual position of the electron, it might turn
out to be anywhere within the pumpkin with equal probability. However,
it will not appear very near either pole of the pumpkin, since the distri-
bution does not allow it.
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Since the position of the electron is unknown until it is measured,
one might even say that it has no real existence until that happens. But
everything in the universe {more or less} is made from atoms the prop-
erties of which depend in the most fundamental way on the shapes of
these probability distributions. If we run headfirst into a stone wall com-
posed entirely of unreal atoms, we nevertheless end by being persuaded
of its reality.

THE COPENHAGEN INTERPRETATION

The central question surrounding the dynamic attributes of a funda-
mental particle is whether these attributes may be said to possess definite
values when they're not being measured. The question reminds us of the
old chestnut “If a tree falls in the forest and no one is there, does it make
a sound?”

Bohr's interpretation of the quantum facts and of quantum theory led
him to believe that before a dynamic attribute of an electran, photon, or
any other particle/wave was measured, the attribute had no particular
value. For example, until a photon manifested itself as a point of light, it
had no particular position. Until its polarization was measured, it had no
particular spin. This interpretation of quantum mechanics is called the
“Copenhagen interpretation,” after Bohr's hometown. Bohr and, ulti-
mately, the vast majority of physicists took the view that there was
simply no underlying reality. Until the polarization of a photon was
measured, it had no polarization at all.

The ultimately mysterious event during which a wave becomes a
point of light on a screen, or takes one slit rather than another, is some-
times called “the collapse of the wave function.” A wave function would
appear to carry all of its potential values-as-measured simultaneously—
pregnant with possibilities, so to speak. The collapse of the wave func-
tion is essentially a birth event, the ultimate process by which our clas-
sical “lived world” becomes manifest.

Einstein, among others, bridled at the mere thought of such indeter-
minacy and sought, by means of a series of thought experiments that he
proposed to Bohr over a period of twenty years, to upset the quantum
mechanical applecart by imagining a situation where quantum mechanics
would either contradict itself or, at best, be helpless to provide an answer.
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Einstein believed that our ignorance of the state of a particle/wave
was “classical” in nature: we simply did not know enough about it. Bohr
believed that our ignorance was “quantum mechanical” in nature, and
we can hever know more about it.

For every thought experiment that Einstein sent to Bohr, the latter
always found a mistake or hole in Einstein’s reasoning. Finally Einstein
teamed up with two other physicists—Boris Podolsky, a Russian physi-
cist who immigrated to America, and Nathan Rosen, an American—to
propose the now famous EPR (Einstein-Podolsky-Rosen) thought exper-
iment in 1935.

Originally proposed as an experiment involving the momentum of
particles, an updated version uses polarization of photons. There are cer-
tain atoms, such as mercury, that when excited, emit not one but two
photons when dropping back to their ground state. The two photons are
said to be “entangled,” owing to a definite but mysterious relationship
between them. No matter where or when their polarizations are meas-
ured, they always turn out to be the same. According to the Copenhagen
interpretation, neither photon actually had any polarization when it left
the excited mercury vapor, vet somehow, when either was measured, it
would always yield the same result as the other photon. The two photons
were linked by a powerful relationship that transcended space itself.

Every fundamental particle possesses a quality called spin. Quantum
mechanics aside, it does no harm to think of the particle spinning about
its axis, with the spin axis pointing in a particular direction. The direc-
tion of this axis is called the polarization of the particle. When the spin
of a photon is measured, a definite result is always obtained. Because
only one direction can be measured at a time, the outcome of such exper-
iments always has a yes/no quality.

To measure polarization, physicists use a crystal of calcite, commonly
called Iceland spar. A beam of unpolarized light passing through such a
crystal splits into two beams that are refracted at different angles. The
polarizations of the two beams are at right angles to each other.

If we now imagine a stream of photons entering a calcite crystal,
some will take one path, the rest taking the other. If you imagine a pho-
ton with a particular polarization entering the crystal, you might be puz-
zled by the fact that even if its supposed polarization is not the same as
either of the exit paths, it simply will have the polarization attributed to
the particular path it took.
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For example, if you send a stream of random photons through a crys-
tal with one exit stream polarized in a 45-degree diagonal direction, you
may measure these photons with a secaond crystal having the same ori-
entation and you will discover that all of them take the same exit path.
However, if you now change the angle of the second crystal to a hori-
zontal orientation, you will find that half the photons exit by one path
and half by the other.
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Which photon will take which path? No one knows. The same quan-
tum indeterminacy that made it impossible to prediet which slit an elec-
tron would pass through in the example at the beginning of this chapter
also governs the behavior of photons.

The EPR thought experiment involves a source of entangled photon
pairs, as described earlier. The experimental setup is shown in the figure.
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The EPR experiment

From the source, S, a pair of photons is emitted as frequently (or
infrequently) as one likes. The green photon travels to a detector nearby,
while the blue photon travels to a detector on Mars, say. Here comes a
photon now. The green photon detector, which happens to be set up at
the angle ¢, goes off. Thus the green photon has a measured polarization
of o. We now know that its blue twin, still on the way to Mars, also will
have polarization o.

According to the Copenhagen interpretation, this photon has no
polarization at all and won’t have until it is measured. But how can it be,
argued Cinstein, Podolsky, and Rosen, that a photon can have no polar-
ization when we already know how the measurement will turn out? After
all, no action taken here on Earth can possibly affect the outcome on
Mars. For such a thing to happen, the influence would have to travel
faster than the speed of light, and nothing can travel faster than the speed
of light. This property of experimental independence assumed by
Einstein, Podolsky, and Rosen has come to be known as the locality
assumption.

Einstein’s chief aim was not to prove that quantum mechanics {the
theory he helped to develop) was wrong, merely that it was an incom-
plete description of reality. Here, based on the simplest of assumptions,
such as locality, was a result that begged for a different interpretation of
events than the Copenhagen interpretation was willing to allow. Bohr
answered the EPR thought experiment, called by some a “paradox,” with
the intellectual equivalent of a shrug. The attributes of a photon meas-
ured here or at a distance are the joint creation of the photon and the
measuring apparatus, and that’s all that can be said. As for this property
of locality, who knows?

It is ironic yet strangely heroic that Einstein, who struggled to prove
that there is more to physical reality than is described by standard quan-
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tum mechanics, should have produced a thought experiment that would
ultimately undermine his own assumption of localized influences. From
1935 until the early 1960s, more than a hundred papers were written
about the “EPR paradox.” No resolution was reached until an Irish
physicist, John Bell, took a sabbatical in 1964 and decided to have a long,
hard look at the EPR thought experiment. Within the year, he had dis-
covered a mathematical result that, when compared with the predictions
of quantum theory, revealed a nonlocal universe, one in which the results
of a measurement here could immediately and instantaneously affect the
outcome of a measurement over there.

BELL'S THEOREM

[ will explain Bell’s theorem by first divorcing it entirely from its quan-
tum mechanical context. Suppose I make up a table with three rows
labeled A, B, and C. Each column of the table will consist of 0s and 1s,
which [ may write in completely arbitrary fashion. The following table
will serve as an example; even the number of columns in the table is
completely arbitrary:

A 0o 1 o 1 © 0 0 1 0
B 1 1 o 1 0o 0 1 1
C 1 1 0 0 1 1

For the sake of a verbal handle, let us call such an object a “table of
triples.” T will also introduce a function XY(x, y), where X and Y will be
two distinct row letters and x and y two entries under the same column
in the respective rows. The function XY simply tells us the number of
times that an x appears in row X in the same column that a y appears in
row Y. In the example above,

AR(1, 1) = 3,
while

BC(0,1) =2
and

AC(L, 1) =2.
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We note in passing that, in this particular example,
AB(1, 1) + BC{0, 1) 2 AC(1, 1),
that is,
3+222.

It is now easy not only to state Bell’s theorem but also to prove it:
Theorem: For any table of triples,

AB(1, 1) + BC{O, 1) 2 AC{1, 1).

Proof: The simplest proof of this inequality observes that each col-
umn of a table of triples, by itself, obeys Bell’s inequality. If T simply
write any triple of binary numbers, a b ¢, and assume that the
inequality does not hold, then AC(1, 1) must equal 1, and the sum
of the terms on the left side of the inequality must be 0. But it AC{1,
1) = 1 it must be true that

a=1 and c=1.
What value can the binary number b have? If b = 0, then
BC(0,1) =1 while AB(1,1)=0

and the inequality holds. Since the inequality was supposed to fail, it
must be true that b = 1. But this assumption also contradicts the suppo-
sition because in this case

BC(0,1) =0 while AB(1,1)=1.

[ have just shown that every column of a table of triples obeys Bell's
inequality. If [ now add the contributions of every column to each of the
three functions, I will always be adding function values that obey the
inequality separately and, therefore, collectively as well. This proves
Bell’s theorem.

If the reader began to nod off during this proof, I can hardly blame
him or her. [ nearly fell asleep myself. To some people it may sound
shooty to say so, but as mathematical theorems go, it is strictly ho-hum.
Given a certain interpretation however, the theorem suddenly develops
a profound significance—not mathematical, but physical. To explain the
significance, we must revisit the EPR thought experiment, as Bell did en
route to his theorem.



THE QUANTUM CTURTAIN 77

Suppaose we measure the polarization of a single photon in three dif-
ferent directions. In each case the number in parentheses will be used as
a code to symbolize the outcome of the measurement in question:

A: parallel (1) or perpendicular {0) to the horizontal
B: parallel (1) or perpendicular (0) to an angle o, and
C: parallel (1) or perpendicular {0) to another angle 3.

Unfortunately, we cannot make all of these measurements for a single
photon because the act of measurement of polarization requires that it
pass through a polarizing crystal, which spoils all subsequent measure-
ments. However—conceptually, at least—we can imagine measuring its
polarization in the horizontal direction, then turning back the clock and
remeasuring the same photon’s polarization in the direction o, then turn-
ing back the clock once more to measure the B-polarization.

If we were to repeat this conceptual experiment thousands of times,
we would end with a table of triples to which we could then apply Bells
theorem, finding that the inequality is satisfied, as it must be.

A more practical way to produce a table is to send out photon pairs,
as in the EPR thought experiment, from a central source to two other
points, called “here” and “there.” If we measure the horizontal polariza-
tion of one photon here and measure the @-polarization there, we would
get a pair of numbers that reflected the results of those measurements. If
the numbers were 0 and 1, for example, the photon would not be polar-
ized in the horizontal direction but would be in the e-direction. This
single little experiment would contribute 0 to the term AB(1, 1). If the
photon and its twin both produced 1s, however, the contribution would
be 1. So let us make such a measurement on one thousand pairs of pho-
tons, obtaining, in the process, one thousand values contributing to the
quantity AB(1, 1), some of them Os and some of them 1s.

We could certainly construct a partial table with the first two rows
filled in. We could even compute AB(1, 1). Indeed, if we carried out this
extensive experiment many times, the values of AB(1, 1) that resulted
would all be rather similar, subject only to slight statistical fluctuations.

If we now perform the second experiment, measuring polarization at
the angle o over there, repeating it thousands of times as well, we could
get a second partial table with the second and third entries in each row
filled in. If the property of locality holds, the results of this experiment
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should be completely independent of the first experiment, at least in a
statistical sense. The value of BC(0, 1) should in no way depend on the
value of AB(1, 1). In fact, we should then be able to treat both sets of
entries as if they came from the same table, fully expecting them to sat-
isly Bell's inequality. The same thing is true for AC(1, 1) when we finally
compute it after our lengthy experiment.

Assuming locality, we may then infer that Bell’s inequality holds for
these observations and that when the experiments are all complete and
the numbers toted up, we get

AB(1, 1) + BC(0, 1) = AC(1, 1).

When the theoretical predictions of quantum mechanics are com-
pared with Bell’s inequality, there are angles o and 3, which produce
predicted values that contradict Bell’s inequality. For example, with
o = 20 degrees and B = 60 degrees, the actual values for these functions,
as predicted by quantum theory and as verified by experiment, are

AB(L, 1) + BC(0, 1) =0.66
and
AC(1, 1) =0.88,

Has quantum mechanics failed? Since Bells inequality holds for all
possible tables of triples, it certainly didn’t fail. The fact that the two out-
comes are ditferent lies with the fact that the three numbers were com-
puted on the basis of three separate tables that, it must be concluded,
were not equivalent at all. They were not statistically independent
because, somehow, the measurements that produced the AB count were
strongly influenced by the measurements of the BC and AC counts.

It would be astounding to most physicists if, after nearly a century of
rigorous testing, quantum mechanies should suffer such a failure. It is by
far and away the most successful physical theory we have ever discov-
ered. On the other hand, many physicists would be upset by the idea of
notilocality. How to decide between the alternatives?

Ina purely mathematical setting, the situation would be analogous to
Godels theorem: either a system containing the standard arithmetic is
inconsistent, or it contains theorems that cannot be proved within the
system. (See chapter 6.} It is not clear how mathematics could decide
which of the two alternatives held for a given system, but physics has the



THE QUANTUM CTURTAIN 79

advantage of experiments. Is there an experiment that would demon-
strate a clear violation of Bell’s inequality and thus directly imply that
quantum mechanics is a nonlocal theary?

Bell's theorem first appeared in a little-known journal in 1964. It tock
several years for most physicists even to become aware of Bell’s theorem.
It fell to a newly minted Ph.D., John Clauser, to actually test quantum
mechanics against Bell’s theorem in 1972 at the University of California
at Berkeley. Clauser apparently thought he might disprove quantum
mechanics by demonstrating that the predicted violation of Bell’s
inequality simply did not happen. He used excited mercury atoms as
sources of twin photons, changing the orientation of his polarization
detectors 100 times a second. His detector data, when analyzed, revealed
a clear violation of Bell’s inequality, just as quantum theory predicted.
After that, it became increasingly difficult for physicists to ignore Bell’s
inequality and its violation by actual quantum mechanical experiments.
Nevertheless, some physicists argued that the detectors, being in the
same roomn, might still be interacting by an unknown yet strictly local
mechanism.

French physicist Alain Aspect removed even these objections by
carrying out essentially the same experiment but with a detector-
switching time of one ten-billionth of a second. This meant that no
local interaction could take place between the two meters because the
detectors changed their orientation while each photon pair was in
flight, so to speak. The switching time was faster than it took a photon
to cross the laboratory. By 1982, Aspect announced his results. The
world was definitely nonlocal. The effects of nonlocality extend well
beyond the reach of laboratory apparatus. Every fundamental particle in
our hodies has interacted with untold billions of fundamental particles
everywhere else in the universe, and all are to some degree entangled
with each other. There is an unseen but possibly influential synchro-
nicity in our affairs.

THE MEASUREMENT PROBLEM

Up to this point I have pretended that quantum theory is a maonolithic
scientific enterprise in which all physicists are in agreement. While there
is little disagreement about the mathematical and operational side of
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quantum theory, there are several schools of thought about the underly-
ing reality.

The best intreduction to these schools takes the so-called measure-
ment problem as its starting point. This problem centers on the ques-
tion “When does the wave function collapse occur?”

The question sits exactly on the boundary between the quantum
world and the “classical” world. Essentially, the quantum world involves
very small objects, while the classical world consists of all the objects
we can see, feel, or sense directly.

Hungarian-born John von Neumann, perhaps the greatest mathe-
matician of the twentieth century, published a classic beok en quantum
mechanics in 1932. Called Die Grundlagen, von Neumann’s book painted
an all-quantum picture of the world. Even macroscopic objects such as
your body or the Earth itself had its own proxy wave with its associated
quantum numbers. On the one hand, von Neumann demonstrated that
electrens and cther fundamental particles are nct “real” entities because
they cannot be said to possess any dynamical attribute before it is meas-
ured. This seemed to buttress the philesophical approach of the
Copenhagen interpretation. On the other hand, von Neumann did not
endow measuring instruments with a special status, as the Copenhagen
interpretation did.

Von Neumann analyzed the measurement act, breaking it down
into a series of steps called the “von Neumann chain.” Applied to the
two-slit experiment, for example, the von Neumann chain consists of
(1) the emergence of a photon from a source, (2) its passage through
one of the slits, (3) the triggering of a detector, (4) the signal from the
detector to a meter, (3) the movement of a needle or other registration
device, (6) the light from the meter to the eye of the observer, (7) the
message from the observers retina to the observer’s brain, {8) process-
ing of the signal in the observer’s brain, and (9) registration in the
observer's consciousness.

Where dees the collapse cccur? The preblem of locating the ccllapse
is well illustrated by the story of Schrédinger’s cat. A live cat, along with
a photen source, a pair of slits, a detecter, and a loaded revclver are
placed in a sealed, soundproof, lightproof box. Inside the box, things
are arranged so that if the photon passes through cne slit, the revolver is
triggered and the cat is killed. But if the photon passes through the other
slit, the revolver is not triggered and the cat remains alive. According to
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the Copenhagen interpretation of quantum mechanics, the cat is neither
dead nor alive until the bex is opened. Is this a reascnable propesition?

Von Neumann showed that one may place the ccllapse at any point
on the chain that cne likes. Only one site, however, has anything like a
privileged position in the chain: the consciousness of the cbservers
mind.

Many pecple have drawn silly conclusions frem this hint that con-
sciousness may play a special role in the collapse of the wave function.
For example, one scheol of thought has concluded that human con-
sciousness literally creates the world. It may be that any attempt to peer
behind the quantum curtain results in silliness of cne kind or another.
Why should T, in trying to discern some shape behind it, not be silly as
well? Could it be that our own consciousness results from an ongeing
process of ccllapse in our own brains? If se, strange as it may sound, the
reverse also may be true: wave function collapse is the result of a con-
scious process—not necessarily our own, however.

What is going on behind the quantum curtain?

IS THERE A WAY AROUND IT?

One of the major non-classical features of quantum mechanics is the
randomness associated with the collapse of wave to particle and its inti-
mate connection with the measurement problem. While still a graduate
student at Princeten in 1957, Hugh Everett 11T proposed that each time
a particular outcome emerges from a quantum event, the universe splits
into as many copies as there are outcomes. Fach copy is identical except
for the outcome of the measurement. In one of these universes, you and
I see a peint of light here on the screen but, simultanecusly, copies of you
and me in another universe see the point of light there. Since quantum
collapse is going on all the time, even apparently when unwitnessed by
us, our universe spawns myriad others at every moment. Fach universe
follows the same laws of physics as our own but remains forever sepa-
rate. This propesal is called the “many-worlds hypothesis.”

The many-worlds hypothesis certainly solves the measurement
preblem; all possible cutcomes actually de occur, each in its own uni-
verse. To many, however, the proposal seems extravagant beycnd meas-
ure, a cure that is worse than the disease. The many-worlds hypothesis is
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nevertheless regarded as serious a contender as the preferred explanation
of the collapse of the wave function, a fact that signals both the frustra-
tion of physicists and the impenetrable nature of the quantum curtain.

Another way around the quantum collapse problem inveolves an
entirely new interpretation of quantum theory, worked out in 1951 by
David Bohm, an American expatriate physicist living in England. In
Bohm’s theory the wave function is a real but undetectable wave called the
pilot wave. As the name suggests, it shepherds a single particle through
slits, polarizers, and magnets, playing the wave role as witnessed in the
laboratory, while the particle, equally deterministic, passes through cne
slit or ancther, depending cn its actual position, alse unmeasurable.
Bchm’s theory could be called an all-classical versien of quantum
mechanics. Unfortunately, the theory requires that the pilot wave com-
municate information about the envirenment instantly to its associated
particle, inveking superluminal signaling velocities in which real infor-
mation is communicated.

Some have argued that the entanglement phenomenon cught to make
superluminal messaging possible. The idea is that since both experi-
mental parties (green detector and blue detector) have the same infor-
mation (the polarization of a photon pair), communication between
them should be possible. But here again quantum mechanics draws its
veil across cur knowledge. Randomness.

The only way we can transmit a message is to have the ability to
manipulate the polarization of individual photons, in sequence, as they
are produced. According to the principles of quantum mechanics, this is
impossible. No one can predict, much less manipulate, which polariza-
tions will emerge when an atom such as mercury begins to give off
photons. A random message has zero information.

On the cther hand, the twin-polarization phenomenon promises a
breakthrough in secure communication. When two parties wish to
exchange secret messages, they generally do so by encrypting the infor-
mation in a cede. Virtually all codes in use today are enciphered and
deciphered using a key specially set up for the purpose. Therefore there
is always danger of the key falling into the wrong hands. For many kinds
of encryption schemes the key can be an arbitrary string of zeros
and ones. What better than a stream of randomly polarized photons?
Both parties, separated by as great a distance as you like, can simultane-
ously receive precisely the same key and thereafter send each other
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secure messages. Morecver, should one of the photon streams such as the
blue one be intercepted, this weuld amount te a measurement act,
destroying the key and rendering it useless. The interception would be
immediately observable at the blue end of the channel. For example, if
the interloper measured polarizaticns with a calcite crystal, the blue end
might receive photons that all had the same polarization.

The world of quantum phenomena is markedly different from our
own. No doubt, stranger discoveries await us as we drift toward a view of
the ultimate reality first hinted at by Einstein when he said, “Not only is
the universe stranger than we think, it is stranger than we can think.”



4.

The Edge of Chaos

Unpredictable Systems

THERE ARE SOME CLASSICAL SYSTEMS (SUCH
AS THE WEATHER OR PLANETARY MOTIONS)
THE LONG-TERM BEHAVIOR OF WHICH CANNOT
BE PREDICTED BY ANY MATHEMATICAL LAW
(OR COMPUTER).

THERE CAN BE LITTLE DOURBT that the term “chaos® is far more excit-
ing than the term “extreme sensitivity to initial conditions,” but it is
nevertheless somewhat misleading. The cne-word label has come to be
attached to a wide variety of phenomena that are predictable in princi-
ple but not in practice. The phenomena all reside in what physicists call
dynamical systems, arrangements of physical cbjects that, once set in
motion, follow rigid laws that should make the behavior of the system
completely predictable. Where’s the problem?

The behavicr of such systems may depend critically {and not just

85
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approximately) on their current states. A tiny change in a current state
can completely alter future states in a surprisingly short time. And the
“tiny change” may be too small for a computer to register.

My favorite example of a chaotic dynamical system is that old-
fashicned taffy-mixing machine, the cne with two rotating ladle bars that
stretch and fold the soft delicacy over and over again, once every 2 sec-
onds cr so. When a porticn of the taffy is stretched, twe particles cf the
material (let us call them tafty molecules) draw somewhat apart. When
the metal arm swings by again, one of the particles may be caught up in
it more than a neighbering particle is. Before you know it, the former
neighbors are at epposite ends of the mixing tub. The history of a parti-
cle depends critically on its initial position. That is chaos.

In terms of the way language is ordinarily used, there’s nothing
“chactic” about the mixing process. Indeed, it's quite crderly. Replace the
taffy by a mathematically idealized, viscous fluid, write the equations
that represent the mixing process, and you couldn’t ask for a more deter-
ministic system. Yet we cannot always predict where a given particle will
end up, especially after several cycles of mixing.

The problem lies not only in the process but also in the way we
represent it. Suppose I have coordinates in centimeters for the pesition
of a particle of idealized taffy at a particular moment:

(21.2732, 51.3725,0.8226).

Where will the particle be exactly 2 secends later? Surely, with that
many digits of accuracy, T cught to be able to predict its position. T will
use a computer microscope.

[ alsc will examine a second particle, this cne a near neighboer, under
the microscope:

(21.2733, 51.3725,0.8226).

This particle is a mere micron {one-thousandth of a millimeter) away
from the first one in the directicn of the first coordinate. The question
now beccmes, “Where will the two particles be 2 seconds later? As the
virtual taffy undergces the threes of equational mixing in the computer,
we may find that after 2 seconds the two particles are 3 microns apart.
Then aleng comes the mathematical mixing bar, stretching the concep-
tual fluid so that, 2 seconds later still, the particles are now 3 microns
apart. This isn’t toc surprising when you consider that the taffy is being
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pulled every time the mixing bar comes around. But suppose now that
the first particle of taffy happens to be rather clese to the mixing bar,
while the second is farther away, sc that when the taffy is pulled, the sec-
ond particle ends up nearly 100 microns from its previous neighbor. On
the next go-round, the particles could be separated by as much as a mil-
limeter, then a whole centimeter. After surprisingly few reveolutions of
the bar, the two particles could be on cpposite sides of the mixing tub.

So where is the “chacs™

In case you wondered why T bothered specifying all those digits, the
grim truth can now be revealed. If I had specified only three digits after
the decimal peint instead of four, the two particles would have been
indistinguishable as far as their initial positions were concerned. How
then could a computer registering only this many digits possibly have
predicted where the particle at that position might have ended up several
revolutions later, when a difference of cne unit in the fourth pesition
could make such a huge difference? The shert answer is that it could
not have made such a prediction with any expectation of accuracy.

In the conceptual taffy, there is ne limit te hew many decimal digits
I might need to predict where a given particle might be at a later point
in the machine’s operation. Indeed, only if [ am allowed the power of
infinite decimal expansicns to express the positions of peints in the vir-
tual tafty will the mixing equations make accurate predicticns.
Ceomputers, of course, are not designed to use infinite decimal expan-
sions, nor could they be.

The crucial peint at which the particles first begin to separate dra-
matically typifies what we call “extreme sensitivity to initial conditions,”
or “chacs” fer short. In most dynamical systems capable of chaotic
behavier, it does not happen all the time, only sometimes. But when it
happens, all predictions go out the windew. The phenomenon is scme-
times alsc called the “butterfly effect,” a metaphor that expresses the
presence of chaos in weather systems. Thus, a butterfly beating its wings
somewhere in the Amazon rain forest today will make all the difference
in Helland a week later between a heavy windstorm and a nice day.

It is highly doubtful that a butterfly has ever had this effect in the his-
tory of the planet—but who knows? As we will see, weather systems
appear to be chaotic in this sense, so it is possible that a zephyr breeze
developing along the coast of India, had it been just a trifle weaker, would
not have contributed to a nasty typhoen in Indonesia four days later.
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In the mixing process just described, not only do particles separate,
but they come together as well. Chaotic systems have been characterized
by the American mathematician Stephen Smale as consisting of two
operations: stretching and folding.

THE “SCIENCE” OF CHAOS

”

Althcugh it has been called a “science,” it would be mere accurate to
describe chaos theory as a “field” within science. Research in this field
consists of the discovery of new chaotic dynamical systems, as well as the
development of general thecries of structure and detection. As such,
chaos theory may be located within physics, although like many areas
within physics, it tends to be rather mathematical in nature. One major
feature of this new field is the status of experiments. Most of the dis-
coveries were made using not real systems, but computer simulations
of them. The logical structure of the model in each case produced
phenomena that researchers could assume also occurred in nature itself.
The computer, meanwhile, plays the villain of the piece. If only it could
handle numbers with an infinite number of digits!

Unlike many fields, chaos theory began in several widely scattered
locations at equally scattered dates, ranging through the 1960s and
1970s. A handful of researchers in several different fields studied the new
phenomenon of extreme sensitivity to initial conditions, few of them
being aware of other werk in the newly emerging field. In the next sec-
tions I will describe the work of just two of these researchers in the
1960s, Edward Lorenz at the Massachusetts Institute of Technelogy and
Robert May at the Princeton Institute for Advanced Study. Lorenz stud-
ied models of weather systems, while May agonized over the behavior of
a seemingly simple predator-prey model. I will begin, however, with a
third player.

In what can only be described as the blossoming of a zeitgeist, the
1960s saw the first great surge of exploration of chaotic systems. As well
as Lorenz and May, mathematician Stephen Smale turned from the study
of topological surfaces to a study of dynamical systems.

As we will see later, every dynamical system can be represented in a
phase space where its behavior can be described as a trajectory. As the
system goes through its moticns, a point in phase space traces cut a path
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that may be straight, curved, or even hopelessly convoluted. In the most
general view, the trajectory either lies on or defines a shape in phase
space, usually a surface of lower dimension than the phase space itself.
Such shapes amounted to surfaces or “manifolds,” as topologists call
them, and thus it was nct at all surprising that Smale would take up the
study of these particular kinds of manifolds.

Smale was particularly cencerned with the stability of dynamical sys-
tems, assuming that all or most of them would eventually settle into
some equilibrium state. He had a hunch that the topolegy of his dynam-
ical manifolds would reveal an answer. His hunch was right, but his
assumption was wrong. The behavior of many dynamical systems could
be mirrored in a model that featured a successicn of operations in which
the phase space was molded, so to speak. Stretching and folding {like the
taffy machine) turned out to be a major clue to the behavior of such sys-
tems. Thus Smale first became aware of the extreme sensitivity to initial
conditions that practically typified dynamical systems.

In the early 1970s, James Yorke, a mathematician at the University
of Maryland, stumbled on a paper by Edward Lorenz that had appeared
in an obscure journal. Yorke, with colleague T. Y. Li, studied the new
phencmenon of sensitivity, especially fascinated by the boundary
between chaotic and nonchaotic behavior in dynamical systems. The
pair published a now-classic paper with the intriguing title “Period Three
Implies Chacs.” Yorke had perhaps intended the last word as a mild joke,
but the name stuck. As it happened, the word “chacs” not only described
Yorke’s emoticnal reaction to the utter unpredictability of such systems
but alse would spin the new field into prominence in the media.

Bencit Mandelbret, whe had spent decades labering in obscure areas
of applied mathematics, from analyzing patterns in cotton prices to
measuring ccastlines, made his research home at the IBM Yorktown
research center. Mandelbrot was interested in the appearance of scaling
phenomena in data from a wide variety of sources. For example, price
fluctuations could cccur at all scales, from a few cents to many dollars.
Meoreover, many natural objects, from clouds to cauliflowers, presented
the same phenomencn of scaling, showing the same features at different
scales of magnification. Spaces with such a scaling feature often had no
straightferward dimensicn. For example, what is the dimension of a
ball of twine? At a distance, it appeared to be three-dimensional. Cleser
up it appeared to be one-dimensional, being nothing more than a linear
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element (the twine itself) wound up in a ball. Yet the twine had thick-
ness, so surely it was three-dimensicnal. But wait. The twine was com-
pased of cne-dimensional fibers! In the end it made sense tc assign a
fractional dimensicn to such objects. It was Mandelbrot whe coined the
term "fractal,” meaning an object with fracticnal dimensicn.

In the early 1970s, Harry Swinney, a physicist at the City College
of New York, collaborated with colleague Jerry Golub to study phase
transitions in fluids. The pair used a simple apparatus in which fluid was
set into motion between two cylinders. As the outer cylinder, made of
glass, was rotated faster and faster, the fluid between the cylinders
showed transitions from smooth to turbulent flow. At specific speeds
there would be a transition from turbulence with one frequency
of eddies to turbulence with a higher frequency. Then at an equally spe-
cific point, the turbulence became utterly disorganized—chaotic, one
might say.

Meanwhile, a French physicist, David Ruelle at the Institut des
Hautes Etudes Scientifiques in Paris, along with a Dutch colleague, Floris
Takens, made an amazing discovery about such disorganized forms of
turbulence. They had found rather special structures in the phase space
of such systems. They called the structures “strange attractors.” Strange
attractors began to show up everywhere, it seemed, from systems of elec-
tronic oscillators to the motions of planets in the solar system. Chaos was
ubiquitous.

THE LOGISTIC EQUATION

If there’s one accessible dynamical system that captures the essence of
chaos in a simple but precise manner, it's the now-famous logistic equa-
tion. The logistic equation is simply the reincarnation of an equation
discovered by the nineteenth-century Belgian mathematician Francois
Verhulst, the first to use it to explore the ups and downs of populations.

It was also in the nineteenth century that Malthus had pointed out
that populations of organisms, if supplied with unlimited resources,
would enjoy exponential growth in their populations, increasing their
numbers by a fixed ratio r aver a period of time, then increasing them
again, and so on without limit. Thus, if the size of a population growing
according to Malthus’ prescription were x at the beginning of the period
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of time in questicn, it would be rx at the end of the period, where r is
the ratic of increase.

The prospect of Malthusian growth influenced the development of
the Darwin-Wallace theory of evolution. Owing both to competition
and to limited resources, most populations do not grow in this fashion
exceptrarely or periodically. In the twentieth century a few theoretical
biologists played with the Verhulst equation in the hope that some rays
of light might be thrown on how real populations behave. In the
Verhulst equation, the population at the end of a peried of time would
depend not only on x, but also on the level a of available resources that,
when consumed by the x organisms, would be depleted to a level a —rx,
in effect.

The puzzling thing about the Verhulst equation was its behavior.
Sometimes it gave very nice, well-regulated populations, but sometimes
the numbers would vary all over the map in the most confusing way.

In the 1960s, at the Princeton Institute for Advanced Study, Robert
May, a physicist turned theoretical ecologist, began to explore the
Verhulst equation, determined to get to the bottom of the equation’s
strange behavior. May simplified the equation, renaming it the “logistic
equation,” meaning that growth of a population would be limited by the
logistics of the environment in which it found itself.

The logistic equation describes an abstract relationship between the
relative abundance x of a predator and the relative abundance (1 —x) of
its prey. For the predator I will use a made-up animal, since then I don’t
have to worry about being unrealistic. The animal will be called a grim-
blik, and currently in our pretend ecosystem there are 438 grimbliks.
On the other hand, there are 10,255 smorts, the favorite prey item of
grimbliks. Now the total biomass of both creatures we will take as
438 + 10,255 = 10,693 units, grimbliks and smorts having roughly
equal weight. If I divide both abundances by the sum 10,693, the
total biomass becomes 1 and the abundances become relative abun-
dances of 0.04096 and 0.95904, respectively (to five decimal places,
anyway).

In this conceptual system, the relative abundance x of new grimbliks
after a certain period of time will be proportional to the product of the
relative abundances of the two populations:

x(1—x).
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After all, the number of smorts eaten will depend not only on the
number of grimbliks but on the number of smorts that happen to be
around, as well.

By introducing a constant of proportionality, normally represented by
the Greek letter lambda (&), we may write the equation as follows:

x=Ax(l —x).

The x on the right-hand side of the equation represents the former
number of grimbliks, and the x on the left represents the new population
level after the period of time has passed. This particular dynamical sys-
tem, unlike the taffy machine, operates in discrete jumps, the interven-
ing predation being assumed to be continuous. The constant lambda
represents the “fecundity” of the population, or its tendency to increase.
In other words, a low value of lambda implies a population that does
not increase very much over the period in question, while higher values
mean higher rates of increase.

How large could such values get? Since x must always be less than 1,
being a proportion, the new population, x, would have to be less than 1.
In others words,

Ax(l-x) <1

It is a simple mathematical fact that the expression x(1 — x) reaches
its maximum value over the domain from 0 to 1 when x and (1 —x) both
equal %2. The maximum value must therefore be Y. The left-hand side of
the equation above cannot exceed the value

A

and, since this quantity must be less than 1, we conclude that lambda can
have any value less than 4. In other words, whatever the fecundity of a
population might be, it cannot exceed 4. Populations with low fecun-
dity are very well behaved, according to the logistic equation. For exam-
ple, if A = 2, the Verhulst equation becomes

x=2x(1-x).

Suppose then that grimbliks have precisely this fecundity and that
an initial population level (proportion) happens to be 0.8. In this case,
the equation produces a succession of values for x when the equational
process is iterated over and over again:
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0.800 - 0.320 —» 0.435 — 0.492 - 0.499 — 0.500 —
050 —---

In this calculation, T carried three decimal digits, and the values for x
quickly converged to a number, namely 0.5. It would make no differ-
ence how many digits I carried in this calculation; the result would
always be the same, ultimately 0.50000 - - - to as many digits as I like.
There is no question of chaos in this toy predator-prey system.
Ultimately the two populations settle down to the same values, 50 per-
cent grimbliks and 50 percent smorts. Interestingly enough, it makes no
difference what starting value I might use for x. The ultimate population
levels would reach equality, at 0.5 each. In the language of dynamics,
the system has one stable point, when A = 2.

What happens if we make the grimbliks more fertile, setting A = 37
Lets do the calculation and find out, starting with the same initial value
for x. It takes a little longer to see what the system will do in this case,
as its behavior is a bit mare complicated.

0.800 — 0.480 — 0.749 — 0.564 - 0.738 -5 0.580 -
0.731 - 0.580 - 0.726 -5 0.5397 -5 0.722 -5 0.602 —
0.719 - 0.606 - 0.716 -5 0.610 5 0.714 -5 0.613 >
0.712 5 0.615 -5 0.710 -5 0.618 - 0.708 — 0.620 -
0.707 5 0.621 -5 0.706 -5 0.623 -5 0.705 -5 0.624 >
0.704 -5 0.625 5 0.703 -5 0.626 5 0.702 -5 0.628 -
0.701 - 0.629 - 0.700 — 0.630 — 0.699 - 0.631 -
0.699 — 0.631 —» 0.699 -5 0.631 - - - -

Can you sort out what's happening here, amid the welter of numbers?
The sequence of values for x produced by this equation ultimately turns
out simply to alternate between two values, namely 0.699 and 0.631.

[ have illustrated the behavior of May’s system in a one-dimensional
phase space. Fach successive value of x is represented by a point. The
convergence of the system to the two attractor points makes the overall
process clear.

The grimblik population x oscillates and, of course, so does that of
the smorts, since the relative number of smorts is always 1 — x. Once
again, it doesn’t matter what initial population size of grimbliks you start



o4 MATH IN THE COSMOS

outwith, the end result is always the same. In successive generations, the
population levels of grimbliks and smorts simply swap values. If smorts
happen to have 69.9 percent of the total population in one generation,
they will have 3.1 percent of the population in the next generation.
When A has the value 3, in other words, the system develops what
dynamicists call two stable points, alternating between the two values.

00 2'.5 T 1.0
ey
Himit points
(attractor)

Phase space for grimbliks

May was well aware of this fact. The problems began when he car-
ried out the calculations for higher and higher values of lambda. With a
value of 3.5 for lambda, for example, the system developed four stable
points, with the population of grimbliks jumping from one value to
another, regularly visiting all four values and always in the same order.
At the value of 3.56, May discovered that the system had suddenly devel-
oped eight stable points and just beyond this, 16, then 32, then 64, 128,
256, and so on. May knew perfectly well that something strange was in
the offing; although lambda must always be finite—less than 4, in fact—
the period of the system was doubling, with no end in sight. What hap-
pens when the infinite collides with the finite?

At the value of A = 3.569946, all hell broke loose. There were no sta-
ble points atall! The population of grimbliks, in other words, showed no
regularity whatsoever, hopping erratically from one value to another
with no evident rhyme or reason.

May made a map of the behavior of his logistic system. For many val-
ues of lambda between O to 4 he stacked up the resulting phase spaces,
plotting the points that the corresponding logistic systems converged
to. It was sketchy but clear enough to show something extraordinary.
The (single) stable points drifted to higher values for increasing values of
lambda, forming a gentle curve that suddenly split into two curves, then
four, and so on. The following figure shows a more precise version of
the map, as produced by a modern computer.
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A map of the logistic system

Above the magic value of 3.569946 - - - | this map reveals what May
could have seen only murkily—the onset of chacs. There are no stable
points at higher values of lambda, except intermittently. Stability returns
to the system, as indicated by the clear spaces with a finite number of
lines, only to be wiped out once more by chaotic behavior.

What does the chaos in the logistic map have to do with extreme sen-
sitivity to initial conditions? As we have already seen, for stable values of
lambcda you can start with any value of x that you like, and the system con-
verges, or is attracted, to one or more stable points. The system is quite
insensitive to initial conditions (the value of x) in such cases. On the other
hand, the behavior of the system is quite unpredictable, in any practical
sense, when the system has no stable points. It makes an enormous
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difference, in other words, how many digits vour computer carries when
portraying the behavior of the system. Lel’s try an experiment.

With a value of 3.6 for lambda, let's start with a precise value for x, say
x=0.900. I will iterate the logistic equation with this initial value, as well
as with one that is very close to it, namely 0.901, until the two sets of
numbers diverge substantially. This will mean that the two sets of values
have drifted far enough apart for them to ditfer in the first digit to the
right of the decimal point.

ITERATICON FIRST INITIAL SECOND INITIAL
NUMBER VALUE VALUE
0 0.900 0.901
0.324 0.321
2 0.788 0.785
3 0.601 0.608
4 0.863 0.858
3 0.426 0.439
6 0.880 0.887
7 0.300 0.361
8 0.756 0.830

After just eight iterations, the values of x have gotten far enough apart
to differ in their very first decimal digit. But perhaps we weren’t carrying
enough digits. Let’s try the same experiment with initial values of 0.9000
and 0.9001.

ITERATICON FIRST INITIAL SECOND INITIAL
NUMBER VALUE VALUE
0 0.9000 0.9001
0.3240 0.3237
2 0.7885 0.7881
3 0.6003 0.6012
4 0.8638 0.8631
3 0.4235 0.4254
6 0.8789 0.8600
7 0.3832 0.4334
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Here, owing to the somewhat unruly nature of the logistic equation,
the new sequences take even fewer iterations to become different in the
first decimal place. It is irrelevant how many decimal digits my computer
isable to handle. Sooner rather than later, its predictions about the num-
ber of grimbliks will be wildly wrong.

There is a structure—rather, a kind of structure—associated with all
dynamical systems that are capable of chaotic behavior. That shape is what
Mandelbrot called “fractal.” The overall shape that I call a “dangling bell”
occurs all over the diagram. Moreover, each little dangling bell contains
an infinite regress of dangling bells! Notice that the fractal is not some-
thing you'd see during a walk in the woods. Instead, you have to visit
phase space, as in the diagrams we examine in this chapter.

A fractal is any geometric shape that is composed, essentially, of
copies of itself. In nature we see shapes that are suggestive of fractals:
clouds and cauliflowers, trees and shorelines, to name a few. Although a
cloud can be thought of as composed of clouds, and those clouds of
cloudlets, the regress must come to an end quite abruptly and early.
Water droplets are not shaped like clouds. Real fractals, on the other
hand, just never quit! Within the dangling bell I have just shown you,
other, smaller dangling bells await your inspection. All you need is a
computer microscope.

STRANGE ATTRACTORS

[t is no accident that fractals and chaoes seem to occur together. First,
every dynamical system has an attractor in its phase space, a set of behav-
iors to which the system is “attracted.” Second, in the phase space of a
dynamical system that is capable of chaos, the attractor always has a frac-
tal shape. We will begin with a simple dynamical system and its phase
space.

Here is a grandfather clock, with its steadily swinging pendulum.
One phase space portrait of the pendulum’s behavior uses the angle of
the pendulum and its angular velocity as coordinates. For each point of
time tin the progress of a dynamical system, these coordinates will have
specific values. As time progresses, the system traces a curvilinear path
through its phase space. For the pendulum in the grandfather clock, the
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attractor is a (solid) circle, as shown in the phase diagram above. As the
pendulum continues its stately swing, it continues to follow the circular
path if it is not disturbed.

If we perturb the pendulum, either slowing it down or giving ita
push, the escapement mechanism that drives the pendulum will bring it
back to normal behavior, as shown by the dotted trajectories. Here, the
track in phase space spirals back to the attractor. We witnessed similar
behavior in the logistic system. At low values of the parameter A, the
population of grimbliks converged (or “was attracted”) to the specific
value of a one-point attractor. At higher values, the system converged to
a two-point attractor, then a four-point attractor, and so on.

As far as the single pendulum is concerned, there is no chaotic
behavior and no fractal in its phase diagram. But what about a double
pendulum—that is, a pendulum with a freely swinging pendulum
attached to its end?
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The double pendulum system

The motion of a double pendulum is very complicated. The upper
arm of the pendulum does not swing with the straightforward back-and-
forth motion of the single pendulum. Instead, it speeds up and slows
down in its swing, sometimes completing only a portion before retracing
its angles. If readers bestir themselves to do a search on the phrase
“double pendulum” using their favorite Web browser, they will immedi-
ately find a host of engaging simulations of a double pendulum dynam-
ical system. (Beware of hypnotic effects!) The double pendulum, once
set in motion with the appropriate velocity, will display a crazy and
unpredictable pattern of behavior, one that is, moreover, sensitive to
initial conditions, one that is capable of chaos.

A phase diagram of the double pendulum system shows a complex
fractal shape. The double pendulum is capable of chaos.
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Although all chactic dynamical systems have a fractal lurking in their
phase portraits, not all fractals belong te dynamical systems, The mother
of all fractals, the Mandelbrot set, is shown on the next page. Discovered
mainly by Mandelbrot in 1981, the Mandelbrot set has been described
as the “most complicated object in mathematics.”

The Mandelbrot set may be generated by another iterative equation,
namely,

z=7"+cC.

This equation does not describe any dynamical system that I am
aware cf, althcugh cne might well be found. The issue is not particularly
relevant because the Mandelbrot set is an object of study in its own right.

Without pretending to give a complete description of this equation,
I will merely mention that the variable z takes complex values, namely
numbers of the form a + ki, where a4 and b are real numbers and i is the
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The Mandelbrot set

“imaginary number” that haunts the dreams of engineering students.
Complex numbers exist not in a line, like real numbers, butin a plane
called the “complex plane.” Points in this plane have coordinates (a, b).
When the equation is reiterated as the logistic equation was, the point 2
will jump frem place to place in the complex plane, like a flea on a het
stove. The name of the game is always to start with the same value for z,
namely z =0 + 0i, the very origin of the plane. Of course, the value of the
complex number c is fixed during the iteration process. If, during this
process, the peint z remains in the general area of the Mandelbrot set, it
will do so forever and the constant ¢ is then reckoned to be a member of
the set. Otherwise, the point z will eventually flee to infinity, becoming
larger and larger without limit.

When the constant ¢ happens to lie in the Mandelbrot set, the
behavior of the point z is often impossible to predict, owing once again
to the same sensitivity to initial conditions that infects so many dynam-
ical systems.
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For example, if you start with a particular value for ¢, say 1.0 — 1.2,
you may iterate the equation once to get from z=0+0itoz=1.0-1.2i.
On subsequent iterations z takes on a sequence of values:

0.00 + 0.00i
1.00-1.201
0.56-1.201
-0.13 - 2.54
—4.06 - 0.581.

The complex numbers in this progressicn, viewed as points in the
plane, appear to be getting larger and larger without limit. And indeed
they are, The original value of ¢, namely 1.0 — 1.2i, must therefore lie
outside the Mandelbrot set. However, [ can give that peint a color that
depends on how fast it increases. Such colors provide the intriguing
visual riots that characterize images of the Mandelbrot set.

To peints within the set, we traditionally assign the color black. For
example, the number ¢ = -0.5 + 0.1i produces the following behavicr

for z:

0.00 + 0.001

—0.50 + 0.101
-0.26 - 0.00i
-0.43 + 0.101
—0.33 + 0.021.

These numbers appear not to run “screaming off into infinity,” as cne
of my math instructors used to say. If, indeed, the sequence of numbers
remains bounded, then ¢ = —0.50 + 0.10i is indeed a member of the
Mandelbrot set.

All about the Mandelbrot set one may see what some mathematicians
call “mini-Mandelbrots” sprouting. And these mini-Mandelbrots have
lesser mini-Mandelbrots and so en ad infinitum,

With this background we are now ready tc examine the second fea-
tured scientist in our exploraticn of chacs.
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THE LORENZ ATTRACTOR

In 1960 Edward Lorenz, a mathematician turned meteorologist, began
working on the problem of weather prediction in a new way. He had
ncticed that, apart from seasonal variations and other periodic aspects,
the weather in a given area never quite repeated itself, Were there pat-
terns that nevertheless manifested themselves over time, patterns that
weather forecasters might exploit?

Lorenz explored this question using a rather primitive desktop com-
puter called a Royal McBee, a jumble of boxes, cables, and vacuum tubes
he would program to simulate weather on a simple planetary surface that
was represented by a twe-dimensional grid of points. At each point he
would specify all the relevant variables, such as temperature, air pres-
sure, and humidity. He would also install all the relevant equations of
fluid dynamics, heat transfer, and so on, heping that in this toy system
he might discover regularities or principles that, despite the model’s sim-
plicity, would also occur in the vastly more complicated ocean of air that
enveloped the Earth.

Because computers of that era were far slower than today’s machines
and because the equations that Lorenz had programmed were extensive,
he would initialize conditions at the peints of his geographic grid and set
the machine running. Then he would attend to other academic affairs, go
for a walk, or visit the main office—unless the unwieldy machine had
developed yet ancther bug. Lorenz found that his pretend planet also
developed weather patterns that resembled those on Earth, at least inso-
far as they showed the same kind of variability.

Then, one fateful day in 1961, he decided to extend a run the machine
had just completed. e could have simply started over, had the Royal
McBee been a faster machine. Instead, he typed in the final grid values
of the previous run at its midpeint, expecting that the machine would
more or less duplicate its earlier perfermance before continuing the cal-
culation beyond its original termination point. While Lorenz went for a
coffee, the computer ground its way through the calculation, preducing
results that would startle him.

When he returned from his break, Lorenz found seme puzzling num-
bers on the Royal McBee printout. The repeated portion of the calcula-
tion was nothing like the criginal!
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After checking for bugs in his machine, he also checked the num-
bers he had entered for the repeat run. To save space on his printcuts,
Lorenz’s program specified just three digits of output, instead of the six
that the machine actually used. This was a perfectly reasonable thing to
do since, to track the system’s behavicr, he did not need to see all six dig-
its. If the air pressure at a particular grid peint was actually 99.5327 in
the machine, the value of 99.5 was just as informative as an indication
of how the system was behaving.

To initiate the new run, Lorenz had simply typed in the approximate
printout values, “knowing” that the repeated portion of the run would be
little different from the original. After all, most systems of equations used
in such scientific calculations were well behaved in this sense: a slight
difference in input values would always produce a slight difference in
output values. When he compared the numbers on the two printouts,
however, Lorenz found that they diverged, at first a little, then a lot. How
could this be?

Painstakingly, he analyzed the program’s behavior on the data that
had produced such a wide divergence in outputs, He isclated the equa-
tions that had been chiefly responsible for the difference, then created an
even more miniature system that censisted of just one cell of the plane-
tary surface. What he found both shocked and delighted him. Weather
precdiction weould never be the same.

WEATHER IN A JAR

For the purpose of reproducing the anomalous behavior of his simulated
weather system, Lorenz succeeded in reducing the number of equations
to just three. The resulting minisystem consisted of a single air-filled
cylinder. When heated, the air would rise in the center of the cylinder,
descending aleng its sides,

As the air rose, it would cocl at a rate determined by the value of a
parameter that, like A in the logistic equation earlier, could be set in
advance. Another parameter controlled the amount of heat applied at the
bottom of the column. Depending on the values he gave these parame-
ters, his weather-in-a-jar system might or might not produce ancmalous
behavior,
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For example, with one combination of parameter settings, Lorenz
found that the column would begin te circulate, quickly settling down to
a stable rate. But for other values, it would circulate for a while, gradu-
ally slowing, then reverse itself, the air rising aleng the sides and sink-
ing in the middle, but then, later and in a seemingly unpredictable
fashion, reverse itself once again.

Lorenz succeeded in beiling down the equations that were essential
to the production of this unstable behavior to just three:

dw/dt = oy - x)
dy/dt = px—y —xz
dz/dt = xy — Pz

In these equations, the variables x, y, and z each represent one aspect
of weather in the jar, so to speak. The variable x is the velocity at which
the column of air rises, while y represents the temperature difference
between the ascending and descending air masses. The third variable
is a little more tricky. In slowly moving air, the air temperature changes
linearly as you ge from one mass of air to the other, But as the air
velocity (“wind”) speeds up, this gradient becomes less and less linear, z
measuring the extent of departure from linearity.
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If you give the parameters the values ¢ = 10.0, p = 28.0, and B =
2.667, for example, you may sclve these equations through the use of
successive approximations, starting at ¢ = Q, te obtain initial values for x,
v, and z. For subsequent values of t, the differentials dx, dy, and dz give
the increments in x, y, and z, enabling a computer te plot the behavior
of the system through time.

The resulting picture, shown in the illustraticn, portrays the track
taken by the system as the time, t, progresses. Readers must remember
that the three-dimensicnal space playing host te this track is not the
space inhabited by the jar. Rather, it is phase space, in which the coordi-
nates represent air velocity, temperature difference, and temperature gra-
dient nenlinearity. Can I simply leck at this space and say, “Aha—TI see
it all very clearly®? No, I can’t. But with some practice [ can identify the
right-hand part of the diagram as a place where air velocity is higher.

The resulting diagram scmewhat resembles the butterfly in Lorenz’s
metaphor for chaos. The wings of this butterfly do not flap, however.
Instead, they represent two sets of more or less circular tracks. The sys-

temperature
nonlme«mrity

Mioaikj

temperatu £
difference

Lorenzs “butterfly”
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tem will follow one set of tracks for a while, then, without warning,
move into the second track, where the two sets intersect,

To develop cur intuitions for the erratic behavior of the weather in a
jar, we have the advantage of a very simple dynamical system that
appears, at first sight, quite different from cur little jar.

Imagine a waterwheel with buckets affixed to the outer rim. The
buckets are filled by water that flows steadily frem above the wheel. If the
wheel has any motion, the buckets being filled naturally begin to pull the
wheel increasingly in the same direction, the whole thing gradually
speeding up. There is something peculiar about this particular water-
wheel, however: the buckets all leak!

fLorenzs water wheel

If the wheel turns fast encugh, each bucket spends less time under
the waterfall as it passes beneath. It is even possible that the buckets cur-
rently being filled receive less water than the amount that remains in the
buckets now ascending the left side of the wheel, for these were filled
earlier, when the wheel was turning more slowly. Thus, if the buckets
de not leak teo quickly, the wheel may well slow down, stop, then

reverse direction.
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This peculiar waterwheel happens to mimic the weather-in-a-jar sys-
tem exactly. The velocity of the wheel is simply the velocity of the air
moving inside the jar. The leakiness of the buckets represents the loss of
heat. If a column of air cools, it rises less quickly, just as the buckets on
the descending side feel less attraction under gravity as they lose weight.

PREDICTING THE WEATHER

If the weather in a jar can behave so erratically, what about the real
weather cutside cur windews? An argument for chacs in cur weather
could be sketched as follows: real weather is filled with columns of air—
some rising, some falling. At the smallest scale, small parcels of air about
the size of party balloons may rise from the heated ground. Over a patch
of forest that is surrounded by fields, the air rises, producing the ther-
mals enjoyed by birds of prey and glider pilots alike. In the fields around
the forest, the air tends slewly to sink.

In a supercell thunderstorm, the frontal porticn of the storm plays
hest to a vast column of rising air that may have a cross section of more
than 100 square miles. Although not so nicely organized as the column
of air in a jar, these columns, by virtue of containing the ingredients of
Lorenz’s chactic system, will accordingly behave chaotically. A slight dif-
ference in such a column in the morning might preduce a different sort
of storm by late afternocn.

Even if cur weather computers could handle data from every cubic
meter of the Earth’s atmosphere, they would be able to predict the
weather days ahead with only occasional accuracy.

To see how modern weather forecasting systems are doing today, [
performed a small experiment: I recorded the numbers from a great
many four-day forecasts, noting the probability of precipitation (p.o.p.)
and the predicted temperature (in degrees Celsius). I also noted the tem-
perature and rainfall every day during the period, comparing them tc the
predictions of the previous four days. I continued the experiment for a
little over 100 days, from early April until mid-July. That gave me enough
data to provide a fairly reliable peek at success rates.

Predicted temperatures were all over the map, as can be seen in the
accompanying table. Beside each possible difference between predicted
and recorded temperatures, I have placed as many asterisks as there were
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instances of a prediction being off by that amount. Each distribution of

differences centers roughly on a zero difference, and the average differ-

ences for the one-, two-, and four-day periods was within a degree of

zero. The predictions showed a high degree of variance, however, with

two pessible manifestations of chaos in the one-day predicticn period

when the actual temperature exceeded the predicted temperature by 13

and 13 degrees, respectively.
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Farther out in the prediction envelope, the guesses get wilder, even as
they maintain an appropriate leng-term average. This phenomenon can
be seen in the shape of the distribution, the four-day predicted tempera-
tures being distinctly more smeared out. Not surprisingly, the farther
ahead we try tc forecast temperature, the mere likely we are to be wrong.

The analysis of the p.o.p. figures was even more startling. The accom-
panying table shows what each p.c.p. boiled down te in terms of what
actually happened. Each percentage in the table proper represents the
fraction of times it rained for a great many combinations of predicted
p.o.p. figures and lead times (one-day, two-day, etc.). It must be allowed
that many of the wilder outcomes represent samples too small to draw
firm conclusions from. Taken ccllectively, however, one wouldn’t expect
quite so many wildly off figures.

WHAT “PROBABILITY OF PRECIPITATION”
ACTUALLY MEANS

AVERAGE
%
ONE-DaY Two-DaYy THREE-DAY Four-Day (NUMBER

% % % % CF DAYS)
00 8 22 0 30 19.4(31)
10 27 0 0 20 15.8 (57)
20 21 33 38 43 31.6 (38)
30 20 27 36 14 25.3 (90)
40 20 46 41 46 41.6 (89)
50 0 0 00.0(3)
60 86 30 57 73 65.0 (40)
70 33 50 0 333 (9)
80 20 86 86 80 86.2 (29)
20 100 100.0 (3)
100 66 0 57.1(7)

For example, one would expect that if a 40 percent p.o.p. is predicted
100 times, it should rain on approximately 40 percent of those occasions.
In fact, this is roughly what happened in the case of the 40 percent p.c.p.
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prediction. This p.c.p. was predicted a total of 89 times over the period
of the experiment, and the actual percentage of times it rained was 41.6
percent. That was the enly bright spot in the predictions. Of course, this
particular prediction average was taken over all four prediction periods.
The real questicn is whether the four-day predictions are as accurate as
the one-day predicticns.

In too many cases not to be significant, the cutcomes of the four-day
predictions were worse than the one-day predictions. Indeed, the four-
day predicticns were cut by an average of 28 percentage peints, while the
one-day predictions were off by an average of 18 percentage points.

As this example suggests, weather prediction has beceme about as
much of a science as it is ever likely to be. The uncertainties preduced by
chaoctic systems can pile up pretty rapidly, not only in days, but some-
times in heurs.

Other, major uncertainties surround our fair planet. Has the Earths
magnetic field reversed itself at randem mements in the past due to
chacs in the circulation of the magma? Were past ice ages, influenced as
they were by weather, with disturbances at all scales, also results of
chacs? Are the motions of planets and planetoids unpredictable over a
time scale that is consistent with their orbital velocities (i.e., hundreds of
years)?

Closer to home, are cardiac arrhythmias likely to continue to show
up at unpredictable times?

The answer to all these questions seems to be “yes.” And there isn’t a
thing we can do about it. Or is there?

IS THERE A WAY AROUND IT?

It has been suggested that if we can detect chacs in a system, we should
be able to do semething about it. For example, a visitor to Lorenz’s lab
remarked that if whole systems could be so heavily influenced by small
changes, why not simply make those changes that bring about desired
results. Not possible, replied Lorenz. One simply wouldn’t be able te pre-
dict the overall effect, however profound, of any small change. To see
why this is so, suppcse we had a sophisticated computer program that
applied Lorenz’s equations on a global scale and was dead accurate, at
least in theory. Assuming that the system were currently on track, we
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might run the system ahead a day or two to predict the weather, only
to find a killer typhcon headed for the Bay of Bengal. Backing up and
doing some experiments, we might then discover that a relatively small
westerly-directed current of air in scuthern Italy would avert the tragedy.
Accerdingly, giant fans in the scuth of Ttaly are set blowing to the west.

Strangely enough, the typhoon in the Bay of Bengal turns cut to be
twice as bad as predicted. What went wrong? It turns out that because
the computer only carries, say, 100 digits in its calculations, it missed
a whole new scenaric in which the typhoon in the Indian Ocean turned
out to be a minor tropical storm. It also missed the fact that the Italian
experiment would convert the storm into a full-fledged category 5
hurricane.

Is it possible that future mathematical and physical researches will
ameliorate the situaticn? Insclar as our ability te control chaotic systems
will depend on cur ability to predict their behavior, the answer is “no,”
with one caveat. Some systems, especially human-made ones such as
the wings on modern high-speed aircraft, are not meant to behave chaot-
ically. Tt might be possible to design systems that avoid the chaotic
regime altogether. At least now we know what we're up against.

As for the weather, we might buy cne day of extra accuracy after the
most strenuous technological effort. After that, forget it.
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5.

The Circular Crypt

Unconstructable Figures

[T IS NOT POSSIBLE, USING ONLY RULE AND
COMPASS, TO CONSTRUCT A SQUARE EQUAL
IN AREA TO THAT OF A GIVEN CIRCLE.

YOU HAVE BEEN GIVEN a clean sheet of paper, a compass, and an
unmarked ruler. On the paper someone has drawn a circle. Can you con-
struct a square, using only the ruler and compass, that has the same area
as the circle? If so, you will not only be the first person to solve the
problem, but you will also be the first person ever to have contradicted
a certain bedy of mathematical theory, in this case cne that implies the
feat is impossible.

I must add immediately that the word “theory” appears here in the
strict sense. It is not a matter of opinion or conjecture, but an
inescapable fact. From the time of the ancient Greeks until late in the
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nineteenth century, mathematicians and philosophers, not to mention
myriad ambitious amateurs, thought that squaring the circle was simply
a difficult preblem, but not impossible. So many pecple have tried, in
fact, that a distinct pathology has been identified by mathematicians. The
chief symptoms of the disease called morbus cyclometricus are blurring of
vision, sleeplessness, numercus puncture wounds {caused by slippages
of the compass), and, of course, circles—under the eyes. There is no
known cure.

Since 1882, when the German mathematician Ferdinand Lindemann
finally demonstrated the impossibility of the task, “squaring the circle”
has become a metaphor for hopeless enterprises.

The story behind the preblem has many sides. There is, first of all, the
remarkable development of Greek mathematics, beginning in about 600
B.C. and extending to A.D. 350, a span of nearly a thousand years. If Greek
mathematics had a soul, it was split between the concepts of number and
line, twe pelarities with no middle ground. The Greeks understocd that
line and number were, to a certain degree, aspects of the same underly-
ing reality. At the beginning of the Greek millennium, and for nearly a
hundred years, they thought that all numbers were rational—that is,
ratics of integers (or fractions). In this mathematical worldview, the line
consisted of points, and every point cerrespended to a rational number.
In other words, every point on a line lay at a rational distance from a
given peint. The idea, when you think of it, is really quite beautiful. Tt
was undoubtedly one of the rungs by which Pythagoras and his follow-
ers had hoped to ascend to the Olympian ideal. Mathematical knowl-
edge, especially general knowledge, was akin to spiritual development.
Unfortunately, what is beautiful isn’t always true, Keats notwithstanding,

The first crisis of Greek mathematics was the discovery in about 330
B.C. by Pythagoras, of irrational numbers. His procf that 2 could not be
expressed by any rational number ranks as one of the great achievements
of Greekk mathematics, not because it is a difficult result (a scheolchild
could understand the preof), but because it stirred the Greek mathe-
matical soul to its depths. The crystalline ideal was shattered. Both num-
ber and line were more complicated than anycne had realized. There is
no better illustration that mathematics is not “constructed.”

Ancther side of the story concerns the development of what medern
mathematicians call the “real line.” Essentially the same line that the
Greeks pondered, it was found te have undreamed-of structure. Whereas
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the Greeks had rational numbers and a relative handtful of irraticnal
ones, modern mathematicians discovered a deep structure within the
irraticnals themselves. Beyond the roots of integers such as Y2 and v5,
yet containing them, they found the so-called algebraic numbers, which
could emerge only as the rocts of integer polynemials, both concepts that
[ will explain presently: If that weren’t enough, they also discovered num-
bers that were nct even algebraic, the so-called transcendental numbers,
perhaps because they transcended mere algebra, so to speak. One of the
newly discovered transcendental numbers turned cut to be &, the ratio of
the circumference of a circle to its diameter. Our story revolves around 7.

Before starting out, there is another, simpler story, one that illustrates
the passion this famous classical problem once inspired.

THE 1 WAR

Thomas Hobbes was a seventeenth-century English philesopher who
tock an interest in many subjects, from the structure of society to the
nature of science. He studied and wrote at a precarious time for England.
The menarchy had been temporarily overthrown by Oliver Cromwell,
and Parliament reigned supreme. Royalists were greatly alarmed at these
developments, and it was during this time, in 1651, that Hobbes, who
might be called a radical royalist, published his mest famous book,
Leviathan.

In Leviathan, Hobbes asserted that theclogical entities were immate-
rial things and therefore outside the realm of rational consideration. He
also declared that the British clergy amounted te a “Kingdome of
Darknesse.” The work embraced a thoroughgoing materialism, on the
one hand, while urging the need for the absolute authority of menarchy,
on the other. The menarchy would rule the church itself. Even to sym-
pathizers, some of Hobbes's views were hard to stomach. To less sympa-
thetic souls, Hebbes's name was anathema. They called him the “Monster
of Malmesbury,” after the town where he lived.

In 1628, at age forty, Hobbes became fascinated with Fuclid. Hobbes
saw in geometry the very essence of scientific reasoning. This was a com-
mon view, as geometry had leng been considered the best example of
what Aristotle called a “science.” But Hobbes embraced it almost as a
religion, a body of certain knowledge to which nothing could be added
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except, possibly, an actual sclution to the ancient problem of squaring
the circle. In 16535 he published a treatise called De Corpore (On the
Body), which attempted to recast all of science, including mathematics,
as the study of bodies at rest or in motion. Although the work was more
abcout meaning than method, Hobbes scught te illustrate the power of
his views by squaring the circle. In his solution he used only construc-
tions that, individually, Euclid himself would approve of. The only preb-
lem was, they did not actually produce the results that Hobbes claimed.

John Wallis, the Savilian professcr of geometry at Oxford, took grave
exception to Hobbes’s “solution.” There was, to be sure, more than math-
ematics going on here. Wallis was an ordained minister (as were many
university appointees in those days) and, while his cpinion of Hobbes’s
demonstration was based on the finding of various logical flaws that
doomed the constructions, there can be no doubt that Wallis tock a sav-
age pleasure in deflating the pretensions of such a dangerous man. If
Hobbes was wreng about squaring the circle, perhaps he was wrong
about everything else.

Within a year, Wallis published Elenchus Geometriae Hobbianae, a
treatise that pointed out numerous technical errors in Hobbes’s work,
undermining his claims te have squared the circle. As if this weren’t
encugh, he also published a shorter work for more general consumption:
Due Correction for Mr. Hobbes; or Scheele Discipline, for not saying his
Lessons right.

In 1657 Hobbes replied with Markes of the Absurd Geometry, Rural
Language, Scottish Church-Politiks, And Barbarismes of John Wallis
Professor of Geometry and Doctor of Divinity. This work amounted to a
general offensive, attacking Wallis cn several {rents simultanecusly. The
bitterness and perscnal animosity behind these breadsides seemed only
to grow with time, guaranteeing a war that would last until Hobbes's
death twenty-two years later.

Hcbbes did not defend his censtructions, perhaps because he realized
they contained errcrs. But he thought the errors were unimportant.
Instead, he attacked Wallis where it hurt the most. In 1657 Wallis pub-
lished his own magnum cpus, Mathesis Universalis. In it he argued for
the primacy of arithmetic over geometry in that all geometrical results
could be recast arithmetically. Hobbes attacked the bock in 1660 with
dialogues in Examinatio et Emendatio Mathematicae Hodiernae. As if to
rub salt into whatever wounds he may have inflicted on Wallis, Hobbes
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intreduced another solution to the circle-squaring problem in the new
bock, as well as sclutions to two other classical problems bequeathed by
the ancient Greeks: duplicating the cube and trisecting an angle.

The war continued until Hobbes’s death in 1679. By then, the math-
ematical world had develeped enormously, bypassing the petty struggle
in a sense. Descartes’ analytic geometry was followed by the infinitesimal
calculus developed by Newton and Leibniz. Thinking Euclid the ulti-
mate form of mathematics, Hobbes had reacted to both developments
with horror, probably failing te understand the idea of a functien er,
worse yet, quantities that might be arbitrarily small without being zero.
Meanwhile, although mathematicians (these who cared to read the bit-
ter decuments) agreed that Wallis had “wen” the war, they wondered
why he had spent sc much time on the struggle.

Squaring the circle had become for beth men a kind of mathematical
touchstone on which hung much larger issues of social reform and reli-
gious philescphy. As well, it might be cenjectured that the lure cf a
shortcut to fame had proved too much for Hobbes. Because Hobbes had
already develcped something of a following ameng royalists, Wallis
found it necessary to attack Hobbes where he, Wallis, was most compe-
tent to do se. In the end, it proved to be Heobbes's jugular.

The ® war has been reenacted many times since then. Every year at
least one eager amateur submits a magnum opus to a professional math-
ematician whose heart sinks at the sight of incredible diagrams and
scrawled, badly crganized thoughts, also symptoms of morbus cyclomet-
ricus. The mathematician sighs and quietly asks, “Is there any peint in
mentioning transcendental numbers?”

THE PROBLEM

In the attempt te construct a square that has the same area as a given
circle, you are allowed tc use only ruler and compass. These tools have
a heoary past. The Egyptians, the Babylonians, and the Greeks all used
them in laying out the patterns for temples and other public buildings.
With the aid of a “ruler,” which could be a straight edge made of metal
or wood, or even a stretched string, one could produce straight lines. The
compass might resemble the medern compass or it might be a string with
one end fixed while the other traces a circumference. With it, one can
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produce circles, arcs of circles, or simply transport distances from one
part of a pattern to another.

In his famous Elements, the first real mathematics text ever preduced,
Euclid described ruler and compass constructions for a variety of figures,
as well as proving nearly all the geometrical theorems known to Greek
mathematics in Euclid’s place and time—Alexandrian Egypt, ¢. 300 B.C.

For example, Elements nct only showed how to construct a right
angle but it also included a proof of the famous theorem of Pythagoras,
which states that the square on the hypetenuse of a right-angled trian-
gle equals the sum of the squares on the other two sides.

To construct a right angle at a given peint A from a given line L, you
may set your compass to any distance, place the point of the compass at
A, and describe two arcs that cut L at two new points, Band C, as shown
in the fellowing figure.

B /A ic
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B A ¢
Constructing a right angle by drawing two arcs beside point A (a), drawing two

more (b), then joining the intersection point to A (¢}

Now place the peint of the compass at Band C in turn, drawing two
arcs that intersect above A at a fourth peint, D. Now simply join A to D,
and veila! There’s the right angle at A, with arms AD and AC.



THE CIRCULAR CRYPT 121

I won't bother to prove Pythagoras’ thecrem, but I can illustrate it
with the right-angled triangle in the next figure. It has a hypctenuse that
is 6.5 units long, the remaining sides being 3.9 and 3.2 units long. The
bar indicates a unit of length.

6.5
3‘9

5.2

Frrre——
1 unit

An arbitrary right-angle triangle

Now watch this:
(6.9)2 = (3.9 +(5.2)2
42.25=1521 + 27.04.

If you square the three numbers as shown, then add the twe numbers
on the right-hand side of the second equation, they will equal 42.25.

In mathematics the mest commeonplace observations can have a pro-
found impact. For example, the scale bar is entirely arbitrary. Replace it
by any length bar ycu like, call that cne unit, then carefully measure the
sides of the right-angled triangle according to the new scale. Then put
the new values into the equation. Tt will still be true. Alternatively, you
may keep the same scale bar and draw any other right-angle triangle.
The relation will hold for the sides of that triangle as well. One simple
equation suddenly becomes true for an infinite number of different right-
angled triangles. That's mathematics!

Another wonderful and very useful theorem in Euclid goes back to
Thales, the teacher of Pythagoras. In about 600 B.c., Thales discovered
his famcus thecrem of propertional triangles, although we cannot rule
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out the possibility that he got the idea from Egyptian priests, whom he
visited on frequent trading trips to Egypt.

Thales’ theorem cf proportions invelves any twe triangles that have
exactly the same shape, albeit different sizes. It comes as no great shock
to learn that correspending sides of the two triangles all have the same
ratics. I have illustrated the thecrem in the next figure, where the first tri-
angle has sides of length 1.42, 3.20, and 3.78, while the second has sides
of length 2.13, 4.80, and 5.67.

3.20 1.42

%78

5-67

Proportional triangles

To check that the two triangles are similar, merely measure the angles
at each pair of corresponding corners and note that each pair has exactly
the same number of degrees. According to Thales, the ratic of the first
pair of sides, 2.13/1.42, should equal the ratio of the secend pair of sides,
4.80/3.20, and, for that matter, also the third pair of sides, 5.67/3.78. A
brief calculation reveals that each of these ratios equals 1.5.

With this modest intellectual equipment I will now attempt to square
the circle myself. T realize that it's supposed te be impossible, but what if
Lindemann and the others are wrong? Impelled by the same egomania
that drives all true circle-squarers, I will begin.

With my compass, I first draw a circle, pristine on a sheet of white
paper. Then, using my ruler, [ draw a line through the center and extend
it to meet the circumference of the circle at points A and B.
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D

First attempt at squaring the circle

Next, using the construction that I discussed earlier, I will construct
a right angle tc the diameter at the center cf the circle. I then extend the
new line to cut the circumference at two new points, C and D.

The four points, A, B, C, and D, form the corners of a square, which
[ can now draw, using the ruler. Dees this square not have the same area
as the circle? Oops! Something’s wrong. How can a square that is con-
tained wholly within a circle have the same area as the circle? My con-
struction has failed.

Let me try again. 'm sure that if T am clever enough, T can construct
the appropriate square. This time I will construct a line at right angles
to the diameters at each of the four peints A, B, C, and D. These lines will
become the sides of a new square, as shown in the next figure.

S

Second attempt at squaring the circle

D
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Alas! This square contains the circle, so it is too large and couldn’t
passibly have the same area! [ will give up (for now), but readers are
free to continue this noble preject in their spare time. When you at last
give up, you will have a keener appreciation of the amazing consistency
of mathematics—noct to menticn writer's cramp.

As we are about to see, squaring the circle is impessible because T,
the ratio of a circle’s circumference to its diameter, is the wrong kind of
number. If you try to square the circle yourself, you will find that all your
geomeltrical centortions will enly lead you in circles, so to speak. The
lengths of every line that you preduce will all be numbers of a specific
kind. Meanwhile, © lurks outside this realm altogether, grandly indif-
ferent to your efforts.

NUMBER AND LINE

The concept of the line had philescphical and practical implications fer
the Greeks. Philosophically, the innocent-leoking line that Greek geome-
ters drew with ruler and pen was understood to be the temporary and
ephemeral earthly embodiment of an abstract and imperishable ideal.
That ideal amounted to a continuum of rational lengths. That is, if we
mark one point on the line as a reference peint, establish what we mean
by a unit distance, then the distance from the base point to any other
point on the line would always be a rational number. Few people today
can grasp the beauty of that ideal. Every point on the line is a rational
number, and every rational number isa point cn the line. Arithmetic and
gecmetry are unified!

Until Pythagoras, it was thought that the numbers on the line were all
rational numbers, such as %4 or —45.52347. Pythagoras went through
the professional (and personal) crisis of discovering that some points on
the line were not at rational distances from the base pecint. The specific
villain in this case was the number V2, or the square root of two, which
has the honor to be the first irrational number ever found.

As Pythagoras discovered, if one examines a square with sides one
unit long, the length of the diagonal of the square is not raticnal. In other
words, if this diagonal were laid out on the ideal line {rom its base peint,
the point at the other end would not “fit” in the ideal line. It would not
lie at a rational distance from the base point. As part of the ideal line,
the point in question could not belong. Yet there it was!
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An frrational length on the rational line

By the time the brilliant star of Greek mathematics faded in Ptolemaic
Egypt and the Roman Empire rose tc preeminence in the Mediterranean,
the Greeks had discovered a great many irrational numbers, mainly
square roots of integers. They left us with a fundamental dichotomy: real
numbers were divisible into two disjoint sets: rational numbers and irra-
tional ones.

Toward the end of the nineteenth-century, European mathematicians
had discovered extensions to this scheme. The irraticnal numbers were
themselves divided into two disjoint sets: algebraic numbers and tran-
scendental ones. At the same time, the developing sciences of topology
and analysis brought new insights into the structure cf the real line. The
most dramatic new views of the real line became visible through the twin
lenses of density and countability.

The real line is “dense” with numbers. Given any stretch of the real
line, ne matter how small, we will always find a number there. In fact,
even the rational numbers are dense in the real line: between any two
rational numbers, no matter how small, we can always find a third
raticnal number. The preof of this fact is very simple. Let a and b be any
two rational numbers, no matter how close together. There will always
be a third rational number between them, namely (a + b)/2. The process
of averaging rational numbers can be continued indefinitely. Between the
intermediate rational and either of its “neighbors,” there will be still
another. And another, ad infinitum.
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Yet the plethora of rational numbers is not enough to “fill” the real line.
Gaps remain. After all, the rational numbers are “countable,” meaning that
we can enumerate them, 1, 2, 3, and so on, eventually counting every
rational number that exists. The standard enumeration of the rationals can
be grasped through a simple table, as shown in the following figure.

W K
S LSS

] ’,2/2’,2/3 J% % %%
31/%/%%%%%
U % % mY % Y
- 4

% % % % % % %

The rational numbers are countable

It does not take long te realize that with a steadily increasing dencm-
inator in one direction and a steadily increasing numerator in the other,
the table must contain all the rational numbers. By threading the table in
the following manner, we can enumerate the rationals, putting them into
a one-to-one correspondence with the integers. The enumeraticn would
proceed as follows: 11, 14, %1, 31, 24, 13, Y4, and so on.

The irrational numbers, both the algebraic and the transcendental
numbers taken together, are alsc dense in the real line—far denser, in a
manner of speaking. The irrationals are far too numerous to even be
countable. In fact, if you removed the raticnal numbers from the real
line, you’d hardly notice the difference, so dense are the irrationals.

CONSTRUCTABLE NUMBERS

When I take ruler and compass in hand and make any allowable con-
structicn with them, only diagrams of a specific kind will emerge from
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the process. The crucial question revolves around the points [ construct
and the distances between them. What are those distances? Is there a
property they all have that would help us te understand why squaring
the circle is impaossible? Here we will engage in mathematics in a more
detailed way, beginning to answer the questicn, then recognizing the
emergence of a new concept—the constructable number.

Starting with a long line, a base pcint, and a peint at unit distance
from the base peint, the distance between the two points is 1. Using the
compass, | can produce a point at distance 2 from the base pcint by
merely adjusting the compass to the distance between the base peint and
the point at unity, then moving it te the unit peint and making an arc
with the compass to cut the line at a third point, which will obvicusly
be at distance 2 from the base peint. I can repeat this performance, estab-
lishing points at integer distances from the base point:

1,2,3,4,5,...

Thus I can “construct” the positive integers as distances within
an achievable diagram. What other numbers can T construct? Tt will
be useful to have a name for such numbers. We may as well call them
constructable.

In the next step of our investigation, we find that any raticnal num-
ber is constructable, thanks to the wonderful theorem of Thales involv-
ing similar triangles.

Suppose you give me any rational number, such as 37/22. I you don't
mind, I'm geing to call this ratio a/b. The constructicn 1 provide will use
these symbols instead of 37 or 22. As a result, it will be applicable not
only to this rational number but te all raticnal numbers as well.

Ill begin by constructing a line ¢ units long from the base peint O to
the point A at distance a from O. I will then censtruct a second line at
an angle to the first one and passing through the base point O. The actual
angle doesn’t matter, as long as it’s both acute and constructable. For
example, [ could construct a right angle, then bisect the angle tc achieve
an angle of 45°. In any case, the second line will be b units long and end
at point B, a distance b from O.

I will now add two lines to the diagram. The first joins point A to
point B. The secend line depends on a construction in Fuclid: to draw a
line parallel to a given line and passing through a given peint. In this case
the second line will pass through U, the unit point on the second line,
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/ 0 —— e - a Ll - %
base
Point

The proportionality diagram

as in the figure above. The second line cuts the line OA at a new peint.
Call it U’ (pronounced “U prime”).

There are two triangles lurking in this diagram. Let me name them:
OAB and QUU’. The triangles are similar, technically speaking, because
their internal angles are equal in pairs. In fact, the two angles at O are not
only equal but also identical. According to Thales, since the triangles
are similar, the ratio of OA to OB equals the ratio of OU’ to OU. Writing
the relationship symbolically, we have:

OA _OU
OB  OU.

Now the ratic OA/OB can be written more simply as a/b. At the same
time, we know that the distance OU is simply unity or 1 and that any
number divided by 1 is simply the number itself. With thanks te simple
algebra, we can now write

OuU’ = a/b.

I have thus succeeded in constructing a line (OU’) that has length a/b.

Since it doesn’t matter what integers a and b are, the construction is
perfectly general. As a mathematician, [ would be entitled (after making
the argument more formal, of course) to spell this out as a theorem.

Theorem 1: Any rational distance is constructable.

Sometimes, after a theorem has just been established, a mathemati-
cian will recognize that the result is more general than he or she first
thought. In such a case there is a new theorem.
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Theorem 2: The ratio of any twe constructable distances
is itself constructable.

The proof of this thecrem would use the same argument that estab-
lished the first theorem. I would simply replace the two integer distances,
a and b, by constructable ones {also called a and b), also replacing
the two integer-length lines in the argument by constructable lines, OA
and OB.

So far we have found that all rational numbers are constructable. But
as Pythagoras discovered, there are constructable numbers, such as V2
that are not rational. The next theorem generalizes this result.

Theorem 3: The square roct of any integer is
constructable.

This result can be proved by induction, a mathematical technique of
inference that uses the structure of the integers to establish a general
truth. It says that if a thing is true of the number 1 and if, further, you can
establish that whenever it's true for the integer n, then it’s also true for
n + 1, then it’s true for all integers. Here’s the technique in action.

The integer 1 is censtructable, since it's the unit length with which all
constructions start. The square root of 1 (which is 1) is clearly con-
structable as well.

Next, we suppose that the theorem is true for the constructable inte-
ger n and we then try to establish the same thing for the integer n + 1.
Not surprisingly, we will make an actual construction, a triangle with
sides of length 1 and Vn set at right angles to each other. The length of
the third side, the hypotenuse, can be readily calculated using the
famous theorem of Pythagoras.

square of hypetenuse

= (1% + (Vn)?

=]l4+n
length of hypotenuse
=(Wn+1)

It follows that the square root of the number n + 1 is alsc con-
structable. By the principle of induction, we now know that the square
root of any integer is constructable.
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Theorem 4. The square roct of any constructable number
is itself constructable.

Strangely encugh, when I try to construct the cube root of a con-
structible number, 1 consistently fail. The time has come to cast cur net
more widely and take advantage of post-Grecian mathematics. Enter the
algebraic numbers.

The discovery of algebraic numbers marks the first genuine advance
in our knowledge of real numbers since the Greeks. It began, strangely
enough, with a failed attempt to prove Fermats Last Theorem, a conjec-
ture that many mathematicians had tried to prove since Pierre de Fermat
first stated it in 1639. (The famed “Last Theorem” was not proved until
recently [1998] by the Cambridge mathematician Andrew Wiles.)
Among the better mathematicians to attempt a proof was the German
mathematician E. E. Kummer, who, in 1845, thought he had feund a
procf. However, an error was discovered in his reascning, and Kummer,
anxious to get to the bottom of the mystery, launched an investigation
into algebraic numbers.

Fermat’s Last Theorem stated that the equation

xl’]+yﬂ=zﬂ

has nc integer solutions for any integer n greater than 2. Interestingly,
when n = 2, Fermat’s expressicn recalls the Pythageorean theorem

iy
where x, y, and z might represent the sides of a right-angle triangle. But
if n = 3, the equation

Cryi=2

has ne solutions. Mcre precisely, there are nc nonzero integers that you
can substitute for x, v, and z that will satisfy the equation, making both
sides of the equation equal.

The numbers inspired in part by Fermat’s Last Theorem were the
“roots of pelynomials with integer coefficients.” Here is a deliberately
complicated example of such an expressicn:

5x% — 17x° = 3x% + 25x% + 53x% — 2x = 34,

A polynomial in x is any set of powers of x all added together. The
numbers that multiply each power are called coefficients. You can see in



THE CIRCULAR CRYPT 131

the preceding example that each coefficient is an integer. The roots of this
equation are any values of x that cause the expression to take the value 0.
This is tantamount to solving the equation as

S5x5 = 17x% =3t + 25x% + 53x7 = 2x =34 =0,

which I definitely will not try to do. But here is a much simpler example
with coefficients 1, 0, and =2:

x'—=2=0.
This example is much easier to solve because it asserts simply that
=2,
so that
x=V2.
It follows that ¥2 is an algebraic number. Meanwhile, the equation
2+ 1=0,

also a polynomial with integer coefficients, has a very different kind of

root,
x= VL,

the famous imaginary number that gives us a springboard into an
entirely new numerical realm, that of the complex numbers. Using the
letter i as shorthand for the square root of -1, we may write every com-
plex number such as 4 + 3i as the sum of a real part, 4, and an imaginary
part, 3i. Thus the roots of polynomials with integer coefficients are not
always real numbers. They may also be complex numbers, or a mixture
of the two.

Recalling that the square roots of constructable numbers are also con-
structable makes us wonder if all constructable numbers are algebraic.
We can show that they are by demonstrating that every constructable
number is the root of a polynomial with integer coefficients. In what one
of my mathematics professors called *gruesome detail,” the proof would
take too much space. However, [ can lay it out like the plan of a building.

Theorem: Every constructable number is algebraic.

The set of all rational numbers forms a field—that is, a system of
numbers that can be added and multiplied, like integers and rational
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nutnbers. However, a field must also contain multiplicative inverses; every
number, such as 3, must have a partner that, when multiplied against it,
leaves unity or 1. Thus % is the inverse of 5, since 5- (3) = 1. The integers,
therefore, do not form a field, but the rationals do.

We have already seen that the set of constructable numbers includes
all the rational numbers since, for any two positive integers a and b, the
ratio a/b is also constructable.

The field R of rational numbers therefore lies entirely within the con-
structable numbers. The famous nineteenth-century mathematician
Evariste Galois developed a method of extending fields by adjoining new
elements. We did as much when we noticed earlier that the number
V2 is also constructable. We make a new field from the rationals, one that
contains 2, by taking all numbers of the form a + V2b. These can be
added and multiplied, and the results of these operations can always be
put into this form. In fact, for every number like a + Y2b there is
an inverse, which we may write as ¢ + V2d. When we form the product,
(a +\2b)(c +V2d), and carry out the multiplication, we get 1. The num-
bers ¢ and d have the following formulas:

c=af(a>=2b) and d=W(2bH -a).

If you substitute these expressions for ¢ and d in the product and then
do your algebra correctly, you should get 1 when the dust has settled.

The extension of the field R to include the new number Y2 may be
written in compact notation simply as RV2 .

The general argument goes like this. Suppose you have a con-
structable number, # The construction would have started from a partic-
ular point or line, and all subsequent new points {and therefore lines)
arrived at in the course of the construction arise in only one of three
ways: the new point is the intersection of two lines, of a line with
a circle, or of two circles. In the first case, the lines were formed on the
basis of points with coordinates in R. The intersection, as it turns out,
will also have coordinates in R. But in either of the remaining cases, the
coordinates of the new point must be the solutions of a quadratic equa-
tion and therefore lying in the extension field R(r)), where r| is the root
(like V2) of a quadratic equation. As the construction proceeds, new ele-
ments are occasionally added. The field builds by a new extension to
R(r,. r,), then to R(¥,, r,, r;), and so on. Since the construction is finite,
we end with all the relevant numbers in the geometric construction lying
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in a field that can be written generally as R(r,, r,, - - - r_). All the num-
bers in that field are algebraic because all are roots of polynomial equa-
tions. In fact, the polynomials that correspond to constructable numbers
have integer coefficients, and all the variables are raised to powers of 2,

as in
x x2, x*, %%, and so on.

Since equations of this form make up a tiny minority in the full set
of polynomials with integer coefficients, the constructable numbers are,
by the same token, a tiny minority within the algebraic numbers.

Speaking of algebraic numbers, I am reminded of a thearem first
proved by German mathematician Georg Cantor. It states that the set of
all algebraic numbers is no larger than the set of all integers. It was
Cantor, after all, who proved a result quoted earlier—that the rational
numbers can be put into one-to-one correspondence with the integers.
Using a similar technique, Cantor showed that the algebraic numbers
could also be put into such a correspondence. We will meet Cantor again
in the next chapter, where he shows that the real numbers cannot be put
into such a correspondence. This leaves the transcendentals in posses-
sion of the field, so to speak. Since transcendentals are by far the most
common numbers within the reals, why shouldn’t © be transcendental?

There is one final theorem on the road to understanding the impos-
sibility of squaring the circle. It is easy to state but, with a heavy heart, I
must confess that the proof is beyond our scope. Although it occupies
only a few pages, the explanation of the technical details would take up
pretty much the rest of this book.

Theorem {(Lindemann): The number T is transcendental.

Even mathematicians find the thirteen pages of Lindemann’s proof a
bit heavy going. Is there a shorter, simpler proof? Sometimes a proof can
be shortened by generalizing. In 1885 the German mathematician Karl
Weierstrass made a much more general statement, although his proof
was no shorter:

Theorem (Lindemann-Weierstrass): Leta, a,,4,. . .4,
and b, b, b, ... b, be algebraic numbers such that the a,

are all different and the b1 are nonzero. Then

bt +be™ +be® +-- -+ be™z0.



134 MATH IN THE HeoLos

What does this strange-looking inequality have to do with squaring
the circle? Does it show that T is transcendental?

The fact that it does hinges on an extraordinary little formula that
links three famous constants—e, i, and T—into a single relationship:

eiﬂ = _1

Fans of mathematics will recall that e is the base of the natural loga-
rithm, approximately 2.7626, while i is the imaginary number V-1, and
T, of course, is T—the object of our quest.

Now, if 1 is algebraic and not transcendental, we may devise a spe-
cial case of Weierstrass’s equation with just two terms. Let b, and b, both
equal 1 and let a, = in, while a, = 0. According to the Weierstrass-
Lindemann theorem,

e™+120.

But this contradicts the previous equation, so T cannot be algebraic.

Since the time of Lindemann and Weierstrass, the theorem has been
simplified several times. For example, early in the twentieth century, the
German mathematician David Hilbert (whom we will meet again in the
next chapter) found a somewhat simpler proof of the theorem. The lat-
est proof of the Lindemann-Weierstrass theorem was published in 1990
by three mathematicians whose nationalities leaven the heavy German
presence: Frits Beukers is Dutch, while Jean-Paul Bezevin and Phillippe
Robba are French. (Robba, unfortunately, is no longer with us.) The
Beukers-Bezevin-Robba proof occupies a mere four pages.

The bottom line for circle-squarers is now obvious. A transcendental
number is (by definition) not algebraic, and any constructable number is
algebraic. It follows that 1, not being algebraic, is also not constructable.

But how, exactly, does the nonconstructable nature of T doom ruler
and compass constructions that would square the circle? Suppose you
are given a circle of radius 1. The area of this circle is 72 or just 7 (since
r=1). lf you succeeded in constructing a square of the same area as this
circle, you will have produced a square with sides all equal to VT in
length. This is not exactly the number we now know to be noncon-
structable.

However, since you can construct a length of \/E you can also con-
struct a circle with that radius. The area of the new circle will be 72, as
before, but this expression now equals V), or just m% If you are not



THE CIRCULAR CRYPT 136

too exhausted from your construction of the first square, apply your
method one more time to the new circle, obtaining a square that has the
same area, T2 The side of this square obviously has length . Finally, you
will have succeeded in constructing &, a direct contradiction of Linde-
mann’s theorem. The original supposition, that you could square a circle
of radius 1 in the first place, cannot be correct.

IS THERE A WAY AROUND IT?

I must mention a wonderful construction of Archimedes that does, in
fact, square the circle. The only problem is that it's not a ruler-and-
compass construction.

In the next figure, I have drawn a circle and a right-angle triangle.
The short side of the triangle equals the radius of the circle, and the
longer side equals the circumference of the circle. Archimedes proved
that the area of the triangle equals that of the circle.

How Archimedes squared the circle

Given the triangle, it is an easy matter to construct a square of the
same area. Such a square would have the same area as the circle!

There’s only one hitch in Archimedes’ scheme. He never explained
how to construct a straight line equal to the circumference of a given
circle. As Archimedes would freely have admitted, he never solved the
problem. Yet his famous construction may have encouraged many pec-
ple to believe that the task was somehow possible.

K for cases of morbus cyclometricus: read Lindemann’s proof and call
me in the morning,



6.

The Chains of Reason

Unprovable Theorems

THERE ARE SOME THEOREMS (TRUE MATHE-
MATICAL STATEMENTS) THAT WE WILL NEVER
BE ABLE TO PROVE.

THE MAIN ACTIVITY of research mathematicians is the search for new
theorems. For example, if a mathematician (or anyone else) had ever
succeeded in squaring the circle, the following statement would soon
have appeared in a leading journal:

“Theorem: Pi is a constructable number.”

Unfortunately, no one has been able to square the circle. As you may
recall from the previous chapter, this limit on our abilities is imposed
by a theorem discovered by the German mathematician Ferdinand
Lindemann in 1882.

137
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“Theorem: Pi is a transcendental number.”

Readers will also recall that transcendental numbers are not algehbraic
and therefore not constructable, either. Piis forever beyond our reach via
standard geometric constructions.

Mathematicians tend to accept such limitations philosophically. After
all, a theorem is a theorem, and once it has been proved, that’s it. But
imagine a limitation on our ability to prove theorems. What if not all the-
orems are provable?

When mathematicians encounter a statement they think might he
true, they call it a conjecture, then attempt to prove it. Or they may try
to disprove it by finding a counterexample. If the conjecture says that
every object with property A also has property B, they may hunt for an
example of an object with property A that does not have property B.
Conjectures are both famous and infamous in mathematics. Qur inabil-
ity to prove them may seem insurmountable until some bright young
wizard finds the proof that had eluded everyone else—or finds a counter-
example. Conjectures inspire much research and so play a valuable role
in the development of mathematics. But should one of the conjectures
currently before mathematics happen to be true yet have no proof, then
a truckload of young wizards would not suffice to prove it or to find a
counterexample. Yet it will be true.

Perhaps an unprovable theorem would involve concepts far beyond
our ability to understand. (Who knows?) Or perhaps an unprovable the-
orem would involve obscure, grotesque, and utterly unappealing con-
tent. (Who cares?) Or perhaps an unprovable theorem might be both
easy to understand and invoelve an interesting proposition. Perhaps the
conjecture made by the German mathematician Christian Goldbach in
1742 is both true and unprovable. That would be something!

Goldbach’s conjecture declares that every even number greater than
2 is the sum of two odd prime numbers. After 250 years, mathematicians
have yet to prove the conjecture (which would automatically make it
Goldbach’s theorem) or to find a counterexample. Yet the conjecture
seems to be true. Give me an even number such as 142 and it will not
take me long to find two primes that have 142 as their sum. Let’s see.
How about 59 and 837

It would be easy to program a computer to search for counterexam-
ples. The program would simply count through all the even numbers
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and, for each one, check all pairs of primes on a list (maintained by the
same program) to see if any two of them summed to the number in
question. It would check number after number, mounting ever higher,
searching for a counterexample, in effect. Indeed, such programs have
been written and, the last time 1 looked, have confirmed Goldbach’s con-
jecture up to 10', or 1 followed by 14 zeros. Anyone looking for a coun-
terexample to Goldbach’s conjecture would have to look at even larger
numbers.

What we used to call “Fermat’s Last Theorem” was, until recently, a
misnomer, mote propetly called “Fermat’s Last Conjecture.” But the mis-
nomer was prescient, in a sense. In 1998, a young Cambridge mathe-
matician named Andrew Wiles proved what we can now, with full
justice, call Fermats Last Theorem: any integer equation of the form

X ey=g
has no solution for any value of n > 2.

Ifn =2, for example, we can easily find integers x, ¥, and z, which sat-
isty the equation. In this particular case, x =4,y =3, and z = 5 work quite
nicely in that 4* + 3% = 5% Now try n = 3. You won’t succeed, according
to Fermat (and Wiles).

Will Goldbach’s conjecture go the way of Fermats? Or will we never
know? Do true but unprovable theorems exist? If such a thing could be
proved, it would be a theorem, to be sure, and a metathecrem, to beot.
Such a theorem would have seemed incredible to the Greeks, as well as
to the Indian and Arab mathematicians who followed them, no less to
the Europeans up to the end of the nineteenth century. Yet this is exactly
what the twentieth-century mathematician Kurt Gadel proved in 1930.

Theorem: Some theorems can never be proved.

The actual language of Godel’s theorem is a bit more technical than
this. Moreover, there’s a back door ta the theorem, an escape hatch of
sorts: either there exist unprovable theorems or the standard arithmetic
is inconsistent. Godel’s theorem is about the “standard arithmetic,” a
term I will explain later, but which is merely a formalized portion of the
mathematics we all learned in elementary school. In short, either there
are theorems that our mathematics is simply not capable of dealing with,
or our mathematics is itself inconsistent, neither prospect having much
appeal for the career mathematician.
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From the Greeks to the Europeans—indeed, to all the world’s math-
ematicians in the year 1900—very few things would have been more dis-
turbing than the idea of an unprovable thecrem—unless it was an
inconsistency within mathematics itself.

The stery of this amazing result begins in the year 1900. The setting
is Paris, the Second Internaticnal Congress of Mathematicians. It was an
ideal time for one of the werld’s leading researchers to set the agenda for
a new century. The German mathematician David Hilbert challenged his
worldwide audience with twenty-three preblems. The first two of these
would have a profound influence on Kurt Gédel, whose birth lay six
years in the future.

THE GHOSTS OF INFINITY

The first preblem was to prove the continuum hypcthesis; the secend
was to prove the consistency of arithmetic. We will come back to the sec-
ond preblem in the next secticn.

On those rare occasions when mathematicians believe a conjecture
strongly enough, they dub it a “hypothesis.” This dces not alter the
actual status of a conjecture; it still has to be proved or disproved.

And so with the continuum hypothesis, formulated some sixteen
years earlier by another German mathematician, Geerg Cantor. As a result
of his groundbreaking conceptual invasion of infinity during the years
1871 to 1884, Cantor had formulated a new system of infinite numbers
with a strange arithmetic all their own. The first of these was written X
and called aleph zero. It was the cardinality (infinite, to be sure) cf the
natural numbers, or counting integers. If the members of any infinite set
could be paired off with the numbers 1, 2, 3, . . . and so on fcrever, that
set has ¥ members. The second number, X, aleph one, stood for the car-
dinality of the set of real numbers. If the members of an infinite set could
be paired off with the real numbers, that set would have X, members.

The continuum hypothesis, as formulated by Cantor, stated that
every subset of the real numbers either had cardinality 8, or had cardi-
nality X . There was nothing in between the two numbers. Every attempt
to censtruct a set of real numbers that was not in one-to-one correspon-
dence with either the integers or with the real numbers met with failure.
Thus was born the new field of transfinite arithmetic, with its first two
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numbers, X, and X,. However, it was not until 1891 that Cantor was able
to prove that the transfinite numbers X and X were different! To under-
stand Cantor’s preof of this result we need one or twe mental tocls.

The power set of a set is simply the set of all subsets of the set. For
example, the power set of the finite set A ={1, 2, 3} consists of eight sets,
namely {1, 2, 3} itself, as well as {1, 2}, {1, 3}, {2, 3}, {1}, {2}, }3}, and
the empty set. We can write the power set of A as

24,

If A is finite—having, say, n elements—its power set will alsc be finite
and will have 2" elements, a fact that undoubtedly inspired the notation.
If A were an infinite set, its power set would be written in exactly the
same way and it, too, would consist of all the subsets of A. Whether finite
or not, the power set of a set A always has more elements than A itself, a
great many more.

The real numbers, as it turned out, had the same cardinality as the
power set of the integers. Writing the integers as Z and the reals as R, we
have,

R =12%

It is not difficult to explain why this is so, proving a theorem in effect.
First, every number can be written as an infinite decimal. If x is an inte-
ger, there will be nothing but zeros after the decimal point. If x is a
rational number (and not an integer) there will be a finite sequence of
digits followed by another sequence that repeats endlessly. [ won't bother
with integers or rational numbers in this argument, as they already have
the same cardinality as Z. (Recall the theorem from the previcus chap-
ter, where we showed that the rational numbers could be counted.)

Corresponding to the real number x I will produce a subset A_of Z by
breaking the decimal expansion of x into strings of digits, each of which
will become an integer in the set A . Since the elements of A_must all be
distinct, I will aveid the possibility of duplicating strings during this
process. One way to do this is to select the strings with ever-increasing
length—say, 1, 2, 3, and so on. For example, a real number that begins

x =0.702394741023 . ..
might be written as the set

A, ={7,02,394,7410,.. ).
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The element 02 warns us that our procedure may not be complete. To
prevent any possibility of an integer in A_beginning with a 0, I will place
a 1in front of every element in the set above:

A ={17,102, 1394, 17410, .. .}.

It now follows that every real number (cof interest) can be identified
with a particular subset of 27 and that no other real number can possibly
become identified with the same subset A . In simpler terms, this means
that 27 is large enough to contain all the real numbers. In the language of
transfinite arithmetic, the cardinality of a set of real numbers is no
greater than the cardinality of 27

“Going the other way,” as mathematicians say, | must alsc show that
every subset of 22 can be identified with a unique natural number. If the
sel can be presented in some special order—say, with the numbers
always increasing—I would simply write them down, with no breaks in
between. The final cutcome of this conceptual process would be a real
number. Compared to an actual detailed proof of the result, my summary
is little more than arm-waving, but the essential idea of mapping from
one domain (the power set of Z) to another (R) is clear.

The new system of transfinite arithmetic was justified, in part, by
Canter’s 1891 theorem, a humble but profound result: the two numbers
A, and A, were different. Specifically, he showed that no pairing or one-
to-one correspondence cculd exist between the real numbers and the
integers themselves. His method of proof involved a type of argument
that was new tc the mathematics of the day but that later would play
a key role in Gadel's theorem. His argument used diagonalization, a
process that singled out the main diagenal of entries in an infinite table.
His proof is simple enough te be presented here.

Suppose that a one-to-one correspondence could be found between Z
and its power set, 2%, It could then be written as a functicn f that, for
every integer k, would produce a set f(k) of integers. As the variable kran
through the integers 1, 2, 3, and so en, the functicn f weuld run through
the subsets of Z, all of them, sooner or later. Cantor then examined a very
special set that consisted of all the integers z that were not members of
their corresponding set f(z).

This was a peculiar thing to de. If we made a vast table with the inte-
gers down one side and the subsets of Z across the top, every entry of the
table would consist of a pairing between an integer and a subset of Z. It
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would be natural, in such a table, to place the pairs z, f(z) down the
main diagonal. That, at least, is the motivation for the name “diagonal
argument.”

Some of the integers z will appear inside their corresponding subsets
f(2) and some won't. If we take the set of all integers z that are not mem-
bers of f(z) and place them in a special set W we can ask a very serious
question about W: To what integer does W correspond under this
scheme? If we write that integer as w, we can ask if w belongs to W If w
belonged to W, then w would not be a member of f{w) by the definition
of W, But wait! This is a contradiction, since W = f{w}. On the other
hand, if w were nct a member of W then w must lie in f(w) (i. e., W),
another contradicticn.

What has gone wrong? Have [ just discovered a major inconsistency
in mathematics itself? Nothing sc drastic. We got into this mess by
assuming that there was a function f with the stated property. The
assumption must therefore be wrong. There is no one-to-one assccia-
tion between integers and all subsets of the integers. Hence there is no
one-to-cne correspondence between the integers and the real numbers.
It immediately follows that X and X, cannct have the same cardinality
and that the distinction between them is real. The question that would
immediately suggest itself did sc to Cantor. Was there yet another trans-
finite number between X, and X ? Cantor thought not. His “continuum
hypothesis” remains unresolved tc this day.

In his 1900 address to the world mathematical community, Hilbert
propaosed that resolving the continuum hypothesis was problem one. He
also wished to resolve a ancther question that had been simmering on
back burners (and a few front ones) for a decade or more: Could arith-
metic be axiomatized in such a way as to guarantee the exclusion of any
and all inconsistencies?

CONSISTENCY

By the turn of the nineteenth century, mathematicians had become aware
that deep questions attended the simplest-seeming subject: arithmetic. In
particular, the attempt to axiomatize arithmetic had led, in some cases,
to the recognition of logical ancmalies.

For example, in 1888 the Italian mathematician Giuseppe Peanc had
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intreduced a set of five axioms that characterized the natural numbers
(positive integers). They were nothing if not simple.

1. lisa natural number.

2. If ais a natural number, soisa + 1.

3. If aand b are natural numbersand a = b, thena+1=b + L.
4

If a is a natural number, then ¢ + 1 # 1.

These statements will trouble few readers. From these axioms, with
the aid of a fifth axiom that Peano would employ for the deductive
process itself, all the properties of the natural numbers could be derived.
For example, from these axioms it was possible to prove the associative
law that for all natural numbers a, b, and ¢,

a+h+)=(a+p) +c

This law justifies something that people do all the time, whether dur-
ing the mental arithmetic of calculating change at the store or adding up
assets: It makes no difference in what order numbers are added.

The fifth axiom would prove troublesome, however. By allowing a set
to be arbitrary, it implicitly included a very nasty set that consisted cf all
sets whatsoever.

5. fAisasetand 1 lies in A, and if for every natural number 4 in
A, a+ 1 alsoliesin A, then all natural numbers lie in A.

Known as the principle of induction, this axiom was meant simply
as a formal statement of a major tocl for working with natural numbers,
as it was in chapter 5. If  wish to prove a certain statement about the nat-
ural numbers (such as the associative law above), I might proceed by
induction. I would apply the fifth axiom by defining the set A to consist
of all the natural numbers for which the statement is true. [ would then
show, as a first step in such a procf, that 1 must lie in A. In the next step,
I would assume that an arbitrary number a lies in A and try to prove that
a + 1 must also lie in A. If I succeeded in the second step, the set A would
satisly the cenditions of Peano’s fifth axiom, and I could conclude that all
natural numbers are in A. In other words, the statement would be true of
all natural numbers.

The fifth axiom locked innocent encugh. It had merely incorporated
an cld logical principle that mathematicians had used for centuries in
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reasoning about numbers. As long as mathematicians using the axiom
of induction de not invoke the menstreous set of all sets, they are safe.

This bizarre object seemed to spew out anomalies and dewnright
contradictions. The “set of all sets” sounds almest like a spiritual entity.

In 1893, the German logician Gottlob Frege published the first vol-
ume of his Grundgesetze der Arithmetik, a rigorous formulation of arith-
metic that appealed tc the same concept, the set of all sets. The English
logician Bertrand Russell was at first unaware of the anomaly and cham-
picned the work of Frege, whose unnecessarily difficult book had
attracted few readers. But as Frege’s second volume was about tc appear,
Russell discovered te his horror that a severe logical flaw underlay the
entire work.

The set of all sets contains some nasty items. For example, there are
sets that contain themselves. Why not? Here’s a set S. T'll spell it out:

S=1{1, 2,3, S}

The set S contains the elements 1, 2, 3, and, of course, S. Nothing
wrong with that, right? [ mean, a set may contain whatever element it
pleases, so there’s nothing to stop it from being an element, in turn, of
ancther set. Or of itself, for that matter. My vain attempt to render the sit-
uation graphically appears here.

The set of all sets
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It is surely no more difficult to conceive of sets that are not members
of themselves. T will use my favorite nonsense werd for such sets, not
because I think they are nonsense, but because it illustrates how mathe-
matical terms need have no meaning beyond simply acting as labels. Tt
also happens to underline a certain Germanic flaver in this chapter.

I will therefore call a set that is not a member of itself “gzernmplatz.”
I will go farther and define G to be the set cf all gzernmplatz sets. Now [
come, as Russell did, to the key question: Is G gzernmplatz? Even an
amateur logician would not have to read an account of the discovery. Tt
would have to go something like this: suppose G is gzernmplatz. Then G
must lie within the set of all gzernmplatz sets, namely G. Thus G is a
member of itsell. Wheoops! T guess G can’t be gzernmplatz after all. Tt
follows that G is not in the set G and, therefore, not a member of itself.
Sc G must be gzernmplatz. Wheops again! Has mathematics suddenly
become incensistent under my feet? Will this seemingly solid bridge of
thought disappear under my feet, as in a Read Runner cartoon?

Shut the gates. Avoid such paradoxes by declaring certain infinite sets
verboten. The impact on Frege’s second velume was devastating, and the
Grundgesetze was nearly forgotten, even though it contained many good
things. For example, Frege had established the censistency of Peano’s
axioms in a manner that later turned out to be correct in spite of the
anomalous set lurking in the works.

Mathematical logic was coming of age as the century turned. There
was a growing awareness of difficulties in axiom systems, in the tendency
for paradoxes to leap out froem the shadows of the subject. It also had
been extremely difficult to prove even the simplest of fields, such as
arithmetic, consistent. No cne knew if serious centradictions might
someday appear in our reasoning about numbers.

The dream of a purely logical formulation of mathematics itself, a
recasting of the entire field within the emerging area of metamathemat-
ics, became the passicn not enly of Hilbert but also of Bertrand Russell
and his English colleague Alfred North Whitehead. In 1910 Russell and
Whitehead published the first volume of Principia Mathematica, a strict
formulaticn of mathematics, including arithmetic, in terms of a purely
logical system that involved both propositions and predicates.

In this context, a “proposition” means a statement that that is either
true or false but that contains no variables. For example, the statement
“3 is an even number” is a preposition. It happens to be false. A predi-
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cate, on the other hand, contains cne or more variables. The statement
“x is an even number” is an example of a predicate. It might be true or
false, depending on the value of x. In additicn te predicates, the logical
system of the Principia Mathematica also employed quantifiers, symbols
that indicated the extent of truth of a predicate. For example, 3x (x is
even) says that there exists a number x that happens to be even. As such,
itis true. The other kind of quantifier, called universal, asserts the truth
of a predicate for all values of its variables. ¥x (x is even) is a universally
quantified predicate that says that all numbers are even. This particular
predicate happens to be false. In the Principia, Russell and Whitehead
laid out axioms for logic, for deduction, and for arithmetic. They hoped,
ultimately, to include all of mathematics, publishing two mere volumes
in what turned out to be too wearying a task. They had nevertheless
clearly demonstrated that not only could mathematics—cr significant
portions of it—be reduced to logic, but also that all mathematical truths
were ultimately legical truths.

Here was the vehicle that mathematicians could ride in search of con-
sistency. Simply demonstrate that the axioms of the Principia could never
lead to an inconsistency or contradiction.

In 1923, Hilbert rode forth to the lists with a new program of action
that he called Beweisstheorie, or the thecry of procfs. He published the
proposal in a paper and followed up at many talks and conferences to
promete the idea. But the current climate of logical uncertainly had rat-
tled him. Speaking to the Westphalian mathematical society in June of
that year, he declared the mushrcoming paradoxes as “intclerable.” He
sought a “way of escaping the paradoxes without committing treason”
against mathematics herself.

In a nutshell, Hilbert proposed the reduction of successively larger
pertions of mathematics to a symbclic script—marks on paper, as it
were. A proof would amcunt te a sequence of formulas, each derivable
by purely logical (and symbolic) operations from one or more of its pred-
ecessors, each leading inexorably te the final formula, which would
amount to a statement of the theorem being proved. Following in the
footsteps of Russell and Whitehead, he cast his ideas in predicate logic.
Hilbert’s system began with so-called atomic formulas, the simplest com-
binations of variables and constants, then proceeded to statements or
well-formed formulas that were themselves composed of atomic formu-
las, logical connectives, and quantifiers of the type discussed above.
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An example of a well-formed formula in mathematics would be
Vxdyst (x<y) & (x+1>v).
This rather compact notation may be interpreted as follows:

For all x there exists a y such that x is less than y and x + 1
is greater than v.

The symbols ¥ and 3 are the same quantifiers we discussed earlier.
Their role is to specily, for each variable under their jurisdiction, whether
the formula is to be true for all values or at least one of them, respec-
tively. The & symbel is an example of a legical connective, and the
expressions “x < y” and “x + 1 > y” are examples of atomic formulas.

Such a formula may be interpreted in ditferent ways, depending on
what particular mathematical system it referred to. Fer example, the vari-
ables x and v might represent real numbers, or they might represent inte-
gers. In the former case the formula is true or “satisfiable” because no
matter which real number x you choose, there is always another real
number y that lies between x and x + 1. However, in the latter case, it is
not true. If x and y are integers, v can never lie (strictly) between x and
x + 1. Tt obviously makes a difference what area within mathematics such
formulas are supposed to describe. The whole peint of predicate logic
was that it amounted to a language in which axiom systems and theo-
rems for various areas of mathematics could be expressed. This language
became the focus of interest in the newly emerging field that Hilbert
called “metamathematics.” Tt would interest young Gaédel profoundly.

THE TROUBLEMAKER

Kurt Gadel was born in 1906, the second son of Rudelph and Marianne
Gadel in Brne, a city in the Moravian part of Czechoslovakia. Although
living in Czechoslovakia, the Gédels always considered themselves
German. Rudelph Gédel was a successful businessman in the textile
industry. The Gedels lived quite comfortably, and the children were
denied little. In a privileged but highly structured household, young Kurt
flourished academically, in spite of a somewhat troublescme constitu-
tion. He received high grades throughout his primary school years and
his years at the gymnasium, or high school. In spite of his strong interest
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in mathematics, however, Gadel usually scored higher grades in his
other subjects. He graduated in 1924 and was sent to study at the
University of Vienna.

Godel began in physics but found himself increasingly attracted to
mathematics. While taking courses in physics, he would read the classic
works of Euclid, Euler, and others, Gédel examined mathematics from a
philesephical point of view, reading Kant and Russell as well. Indeed, his
foremost interest in mathematics must have been sparked even more
strongly by attending a weekly seminar cenducted by the philosepher
Moritz Schlick. In the academic year 1925-1926 Schlick focused on
Bertrand Russell’s Introduction to Mathematical Philosophy, later switching
to Wittgenstein’s Tractatus. Scmetime that year, Gédel met one cf the
jewels in Vienna’s mathematical crown, Hans Hahn.

Famous for his contributions te a variety of mathematical fields such
as the calculus of variations, set theory, and analysis, Hahn had recently
turned his attention to the foundations of mathematics. It was Hahn who
had brought Schlick to the University of Vienna. It may even have been
Hahn who suggested tc the young Gadel that he attend another special
weekly seminar, an invitation-only affair. It was at this seminar, later to
be called Der Wiener Kreis (the Vienna Circle), that Gédel heard the cru-
cial issues and logical questicns of the day discussed. Among the brighter
lights of the seminar who would influence Gé&del was Rudolph Carnap,
who viewed the fcundations of mathematics as being largely a question
of syntax. Although Gédel disagreed with this view, he found Carnap
immensely stimulating and probably tecok his course en the foundations
of arithmetic.

By 1927, Gédel was hopelessly involved in mathematical issues and
questions. The Vienna Circle had brought him to the heart of difficult
and important mathematical questions. He read, and he attended lec-
tures. He walked the streets of Vienna alene or with cclleagues. He sat for
heours in varicus coffeehouses discussing mathematics. But this was
Vienna, and the young Gédel could hardly refrain from discussing areas
of wider interest, even with his older colleagues: theater, art, social
reform, even spiritualism. In 1928 Gédel had finished his undergradu-
ate work and by 1929 was already hard at work on his Ph.D. thesis, an
attempt to show that predicate logic was complete.

In 1929 Hilbert and his colleague Willheim Ackermann had pub-
lished their Grundziige der Theoretischen Logik. In his thesis, Godel
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succeeded in proving that the logical system suggested by Hilbert and
Ackermann was complete. Gédel showed that every valid formula (true
expression) was derivable within the system. He began by reducing the
problem of proving completeness to showing that each formula within
Hilbert’s system was either satisfiable or refutable. He established the
latter result, in turn, by using induction.

It was an impressive performance from someone so young. But
the result surprised no one. Everyone expected Hilbert’s system to be
complete.

THE TROUBLE

The “habilitation” denotes a secend hurdle that had te be leaped by all
aspiring academics in Centinental universities. It was not enough to
write and defend a thesis. If cne expected employment at an institution
of higher learning, cne had to publish something of note after the
thesis. For his habilitation paper Gédel chose to werk en Hilberts sec-
ond problem, that of showing the consistency of arithmetic. It would
undoubtedly be mere difficult than the procf that predicate logic was
consistent and infinitely more difficult than the preof that propositional
logic was consistent. That result had been achieved by Emil Post, a math-
ematician at New York’s City College in 1921.

The propositional calculus is the simplest form of logic, essentially
a subject first codified by Aristotle in the fourth century B.c. The
“propositicns” are merely symbols such as a, b, and ¢, which stand for
fixed statements that contain neo variables. Two propesiticns could be
conjcined logically by either the “and” operator or the “or” operator.
For example, a v b represents two propasitions connected by an or sym-
bol, v. The two propesiticns a and b might mean anything:

a = “John drives his car.”
b = “John walks.”

The new propositicn a v b means “John drives his car or John walks,”
not terribly exciting and not always true. John, for example, might be sit-
ting at home reading a bock. A propositions might be negated, as in ~a,
which means “not a” or “it is not true that a.” Thus if a had the interpre-
tation above, ~a would mean “John does not drive his car.”
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In their classic Principia Mathematica, Russell and Whitehead gave
axioms fer the propesitional calculus. Instead of the “and” connective,
however, they used implication, symbclized by the arrow, —. The
expression a — b, which reads *a implies b,” is understood at the cutset
to be logically equivalent to ~a v b.

L. (pvpr—-p

2. po>{pvp)

3. (pvg-olqvp)

4. poqg-ollpvr)=(qvrl

Each axiom in this system seems either harebrained or mildly insane.
Axicm 2, for example, says that if a proposition p is true, then either p
is true or p is true. There is, in any event, very little to argue with in the
axioms.

Russell and Whitehead had shown how, with the addition of two
rules for manipulating propesitions, one could arrive at any thecrem in
propasitional logic. One wrote down a sequence of expressions, each cne
an axiom or a new expression derived from earlier ones in the sequence
by applicaticn of either of the two rules.

The rule of substitution, as applied to a logical expression, allowed one
to replace all occurrences of a propositional symbol p by any expression
that cccurred earlier in the sequence. This was a reascnable rule because
if p stood for any propositicn at all, it must also stand for the proposi-
tions one cculd build up within the system.

The rule of detachment enabled one to detach implications. Given
that the expressions P and P — Q have both occurred earlier in the
sequence, one could now add Q as a new expression. This rule was also
reasonable because if a thing P is true and if an implication with P as its
premise is also true, as in P — Q, then surely the implicand Q is true as
well.

To demonstrate this system in action, I will prove a well-known the-
orem in the propositional calculus.

Theorem: For all propasitions p and q, the statement
p = (~p = q) is always true.

This is not a very exciting theorem at first glance, but it looks a little
strange. It says that p, regardless cf its truth value, always implies that ~p
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implies q. Does it make sense? Since it is true of all possible propositicns,
we may suppcse that

p = “John drives his car.”
and
q = “Roses are blue.”

The thecrem I have just quoted may then be applied to these propo-
sitions as follows: If John drives his car, then it is true that if John does
nct drive his car, roses are blue. The point is that if “Jchn drives his car”
is true then “John does not drive his car” is false, and from an untrue
statement anything can be deduced, even that roses are blue.

The theorem may be proved in three steps by appealing to the equiv-
alence of p = q with ~p v q.

l. p—>pvqlaxiom 2)
2. pvqisequivalent to ~p — q (equivalence of expressions)

3. p=p—o9

The consistency of propositional logic may now be proved by sup-
posing that it is possible to derive two contradictory statements, T and
~T, from the axicms. Suppose then that we have discovered a disastrous
proposition T such that T and ~T are both true. We may use the princi-
ple of substitution, replacing the p of our theorem with T:

T-(~T—>qg.
Since T is true, we may use the rule of detachment to establish that
~T—q

is also true. But ~T is also true, and we may use the rule of detachment
once again to show that

q

is also true. But g can be any proposition whatever. The assumpticn of a
contradictory pair of propositions had therefore led to the conclusion
that all propesitions are true, including the negations of the axioms
themselves. It follows from this contradiction that no such pair of con-
tradictory statements or propesitions can be derived within proposi-
tional logic, and the foundations are secured. It is consistent.
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This example also serves to illustrate an important distinction
between two kinds of reasoning. You will notice that our treatment of
propositional logic involved proofs within the system and procfs out-
side the system. The derivation of the theorem p— {~p v @), like all the-
orems cf propositional calculus, was proved within the system by
applying the rules of substitution and detachment, but the proof of con-
sistency was proved cutside the system. Qur reasoning was nc less for-
mal, but there was nc way to express it as a sequence of propositions,
each derived logically from previous propositions in the sequence. In
short, there was no way tc express the assumption about T. The distinc-
tion is fundamental to metamathematics. We will see it made again when
we consider Godel's amazing theorem. We will also see how Gédel
sneaked around it.

It is still a long way frem showing the consistency of propesitional
logic to that of predicate logic when applied to arithmetic. For one thing,
propesitional legic is silent on the subject of arithmetic. Numbers can-
not be expressed within it.

Godel began by trying to prove that arithmetic, as expressed in the
logical framework of the Principia, was consistent. In seeking to express
the consistency of arithmetic, however, he discovered that he could
express this consistency within arithmetic itself. Not only that, but this
very expression led directly to a theorem that could not be derived
within the logical system of Russell and Whitehead.

After setting up the axioms of a predicate logic that embodied what is
called the standard arithmetic, Godel drew up a list of all the symbols
used and assigned a special code number to each symbol, as shown in the
following table:

SyMBoL CobE NUMBER SrMBoL  CobDE NUMBER
0 X o
s 2 1 10
+ 3 i 11
X 4 & 12
= 3 3 13
{ 6 Y 14
) 7 - 15
8
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The symbeol that resembles the letter L rotated on its head stands for
implication in the predicate calculus. Thus A 1 B means simply that A
implies B or that B can be deduced from A. The symbal s is the succes-
sor function. When applied to a natural number, it yields the next num-
ber in sequence. It might be asked why just cne variable, x, would appear
to be allowed for in a system that would surely have to accommodate
many variables. However, the lene x could readily be made tc serve in
this capacity by using subscripts, in effect. The subscripts used in unary
notation consist of ones. Thus x, would be one variable, x , another,
x,,, yeta third.

Any formula developed in the course of a mathematical investiga-
tien within this system could have each of its symbecls replaced by a
number. Because each formula would have to be expressed by a single,
unique number, Gédel would need a way of boiling all the numbers that
represented a given formula down inte cne number. Somehow that num-
ber would have to encode not enly all the number symbols of the for-
mula simultaneously, but also would have to encode their order.

Godel achieved this trick by using consecutive prime numbers
such as

2,3,5,7, 11,153, 17, 19,23, 29,31, . ..

each raised tc a certain power. Which power he used would depend on
the position of the symbol in the formula. If a symbol such as x appeared
as the seventh symbol in a formula, for example, it would be represented
by a 9 (the symbol for x) raised to the 17th power (the 7th prime in the
sequence).

Thus if Godel wanted to translate the formula (axiom)

X, +sx) =s(x) +x)))

into a single number, he would first replace every symbecl by its numeri-
cal code:

©,10,3,2,9,10, 10, 5,2,6,9, 10, 3, 9, 10, 10, 7.

In this case he would obtain the seventeen integers listed above. Next
he would raise the first seventeen prime numbers to these powers and
multiply them all together, the raised decimal peints representing ordi-
nary multiplicaticn.

20.310.53.72.11°-1310.1710.195.232.208.319.3710.413.43°.4710.5310.597,
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The resulting number is huge but finite. The encoding procedure
could be specified as a finite process that would, given encugh time,
serve to express any formula whatever by an integer, no matter how
large. It was recognized by the early metamathematicians that in explo-
raticns cf the infinite, the best way to stay out of trouble was to use only
finite tocls. The finitary encoding employed by Gédel was just cne exam-
ple of what mathematicians of the day called “recursive,” a property that
would become increasingly important as computers came into general
use a few decades later.

Gadel, by the way, did not actually go to the trouble of converting all
his formulas and rules of logic into these vast numbers. He merely
showed that it could be done by showing how it could be dene.

Consider, for example, the proof of a certain expression in the logi-
cal system employed by Godel. It would consist of a finite string cf for-
mulas. The initial formula would represent an axiom, and all subsequent
formulas would represent either axioms or formulas that were obtained
from earlier formulas in the sequence by the deductive rules of the sys-
tem, not unlike the manner in which we preceeded with propositional
logic. The last formula in the sequence would be the theorem that the
sequence proved. Such a preof could, of course, be encoded by Gédel
into a single integer (nowadays called its Geédel number).

Conversely, given any positive integer whatever, there was a finite pro-
cedure for producing either a corresponding formula or sequence of for-
mulas, complete nonsense, or nothing at all, depending on what symbcls
were enceded (er net) and in what order. Thanks to an important theo-
rem within arithmetic itself, any positive integer can be written as the
unique product of primes, which, when grouped and placed in consecu-
tive order, would represent the given number uniquely. The powers of the
primes could then be translated directly into the cerresponding sym-
bols—unless they happened to be larger than 15. The fact that an arbi-
trary integer might not represent a formula was not a problem. But when
it did, Gadel knew that no other integer could represent that formula.

Godel had thus developed a language of sorts, one that linked two
seemingly different universes. On the one hand, there was the universe
of formulas; on the other, the Gédel numbers, a system of huge integers
that each represented one of these expressions. The very process of
thought, as embodied in the formulas, had been reduced to a cloud of
numbers.
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Thoughis as Gadel numbers

Among the formulas that Godel showed how to construct were ones
that would be typical of theorems and preofs. He had shown how formu-
las could express the process of checking that a proof really was a proof.

The Gadel numbers were all, of course, natural numbers, and as such
formed part of the standard arithmetic. This meant that he could con-
struct statements about the Gédel numbers, just as he could for ordinary
integers. Within the standard arithmetic, in other words, he could frame
predicates that took the Gédel numbers as their subject matter, so to
speak. Of special interest is a rather complex predicate that I will write in
a simple symbolic form:

Proof(x, v, 2).

[ have used the traditional variable names instead of x, x,,, and x,,
to make the path into Gédel’s mind a little easier to fellow. The interpre-
tation of the predicate called “procf” depends en knowing that X is a
sequence of formulas that allegedly prove something, while x is the
Gadel number of the proof X. Another formula, Y, has only one variable,
and y is its Gédel number. With these elements in mind, the predicate

can be described as saying,
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x is the Godel number for the proof X of a one-variable formula Y

with Godel number y and with the integer z substituted into it.

In other words, Gédel number aside, X is a proof of Y, with z substi-
tuted into it. If the formula Y is true for this value of z, and if the system
is complete in that every thecrem can be proved in it, the proot X will
exist, x being its Gédel number. In this case, of course, the formula Y will
be the last formula in the string represented by X. Under these conditions
the predicate called “Procf” will be true. However, one cannct simply
write any numbers one chooses for x, ¥, and z and expect the predicate
Proof to be true. It would in fact be true cnly for the sparsest imaginable
distribution of such integers.

The expressicn “Proof(x, v, 2)” does not belong to the system under
study, but to the metalanguage in which truths about the system are
expressed. Yet this shorthand, “Proof(x, v, 2),” refers to a series of for-
mulas that express what it means for X to be a proof of Y with z substi-
tuted inte it, an encoding, if you like, of the mental machinery required
to check such a procl. For example, the actual expression would have
predicates that checked that each formula in the proof sequence was
derivable from ones earlier in the same sequence. To spell out the preof-
checking procedure, as long as it amcunted to a finite process, was tan-
tamount to an actual check. All that machinery within the logical system,
along with the proof X of the formula Y, amcunted to an extremely long,
but finite, string of formulas. Consequently that string would itself be a
formula and would have its own Gédel number.

The next and most important step that Gédel took was to realize that
the formula Y referred toin the predicate Proof(x, y, z) could have its own
Godel number, y, substituted into it, instead of the mere general variable
z. In other words, Gedels attenticn now focused on the predicate

Proof(x, v, v).

In this form the predicate is true if x is the Gddel number of a
proof that the formula Y is true when its own Gédel number y is substi-
tuted into it. In other words, the predicate automatically symbolizes all
formulas Y within the system that happen to have a proof X when v (the
Godel number of Y) is substituted into Y. This seems an odd thing to
consider.

At this juncture, Gédel’s breath may have caught as he sensed himself
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on a collision course with common sense. What he did next was to form
a new predicate that denied the existence of such a proof:

~Jx Procf(x, y, y).

This expression was all that Gédel locked at while working outside
the system. It formed an element cf the metalanguage that he used to rea-
son about the logical systemn under examination, the cne that contained
the standard arithmetic of integers. Yet by merely appending the same
logical symbols to the extremely lengthy expression inside the logical
system, the one represented by “Proof(x, v, ¥),” he now had a first-class
anomaly on his hands.

The new expression denied the existence of a proof X {(with Gadel
number x) that the formula Y would be true with its own Gédel number
substituted into it. Yet this new predicate, considered as a lengthy expres-
sion within the system, would have yet another Gedel number all its
own—say, .

What, asked Gédel, is the status of the predicate ~3x Proof(x, g, 2)?
This expression asserts that there exists no proof of the predicate symbol-
ized by g, namely the predicate ~3x Procf(x, v, y). If ~3x Proof(x, g, ¢)
were true, then no procf could exist. If ~3x Proof(x, g, g) were false then
the expression

Ix Proof(x, g, @)

weuld be true and a proof would exist. But a proof of what? It would be
a proof of ~3x Proof(x, v, y), because that's what g steod for. But a procf
of this predicate would hold for all pessible values of y, including g, lead-
ing Gé&del to the inevitable conclusion that ~3x Preof(x, g, g) was indeed
true.

Here was the crunch. If the predicate 3x Procf(x, g, g) were both true
and false, then his logical system—and therefore the standard arith-
metic—was inconsistent. The only way out was to assume that the state-
ment symbolized by g was true. And that statement had no procf.

At the time of his discovery of the famous incompleteness theorem,
Godel’s own number (age) was twenty-six. Perhaps because he was so
young, because he was not then an established mathematician, news of the
result did not exactly spread like wildfire. At the same time, the colleagues
and contacts to whom Godel communicated his result most frequently
expressed confusion rather than admiration. And yes, resistance grew.
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IS THERE A WAY AROUND IT?

Unless someone were to find a subtle error in Gédel’s proof of the incom-
pleteness theorem, there are only two alternatives: Either mathematics
is inconsistent, harboring contradictory theorems, or mathematics is
incomplete, harbering unprovable theorems. To illustrate this stark sit-
uation, we examine the aftermath, so to speak, the slow process of
acceptance within the mathematical world.

In August 1930, Gédel met his colleague Rudelph Carnap to plan a
trip to a cenference in Kénigsberg (today Kaliningrad) in cne menth’s
time. Quietly announcing his result, Gadel was surprised to discover that
Carnap did not quite fellow the argument. At the conference in
Konigsberg that September, Gédel’s presentation was relegated to a
twenty-minute “contributed” session near the end of the conference.
This was nct because conference crganizers wished to suppress the
result, but rather that they simply hadn’t heard about it. Why should
such a young mathematician, barely past his thesis, receive any more
prominent a platform?

Godel himself was reticent and retiring when it came to self-promo-
tion, He believed that the mathematical world would eventually catch up
to him. He was right, but the process was slow. It began almost immedi-
ately, however, with the attendance at Gadel’s Kénigsberg presentation by
no less than John von Neumann, a world-renowned mathematician who
had published in a great variety of areas and who tcok a particular inter-
estin the new metamathematics, having spent leng hours wrestling with
the consistency problem himself. After the talk, von Neumann presented
himself to Gédel, congratulating him and inquiring further into the stun-
ning new result. Once he fully understocd what Gédel had dene, ven
Neumann suffered a slight fit of pique. He himself had worked to near
exhausticn, but in the wrong direction. Yet his admiraticn was genuine,
and his desire to promote Gédel’s new result was sincere.

Hilbert, whe also attended the conference, apparently was completely
ignorant of what was going on. His own centributicen, a major speech
titled “Naturkennen und Logik” (Logic and the Understanding of
Nature), labored along the same road he had first mapped out in 1900Q.

For the mathematician there is no ignoramibus, and, in my opinion, not

at all for natural science, either. . . . The true reason why [no one] has
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succeeded in fiinding an unsolvable problem is, in my opinion, that there
is no unsolvable problem. In contrast to the foolish ignoramibus, our

credo avers: We must know. We shall know.

In a further touch of irony, the conference organizers omitted Gadel’s
presentation from the conference summary.

Hilbert did not become fully aware that Gddel had dashed forever
his hope of an impregnable mathematical fortress until the following
January. Paul Bernays, a close mathematical associate of Hilbert,
informed him of the result after obtaining a preprint from Gédel.
Hilbert apparently was quite upset about the new theorem and proba-
bly somewhat depressed as well. After all, his credo that “we must
know"” had just been shattered by the knowledge that unless mathemat-
ics was inconsistent, there would be some things that we would never
know, namely, which conjectures might turn out to be unprovable.
Ultimately he swallowed his disappointment and reluctantly admitted
that things had indeed changed. Bernays, meanwhile, found the new
result confusing.

In March 1931 a strange paper by Godel appeared in the Monatshefte
fiir Mathematik und Physik titled “Uber Formal Unentscheldbare Sitze
Principia Mathematica und Verwandter System 1”7 (On Certain Difficulties
of Proof in the Principia Mathematica and Related Systems). The new
paper slowly made its way into the collective consciousness of the math-
ematical world. The following September Gadel attended a meeting of
the German Mathematical Union in Bad Elster. By now news of the result
had made the rounds, and Gadel met his first real opposition in the per-
son of Ernst Zarmelo, the mathematician who had first axiomatized set
theory, a subject intimately related to logic.

When colleagues proposed getting Zarmelo to lunch with Gadel,
Zarmelo at first refused on a suspiciously wide variety of grounds: he
didn’t like Gadel’s looks; he couldn’t walk that far; if he attended the
lunch, there wouldn’t be enough food to go around. His subsequent hour
with Gadel seemed outwardly pleasant, but Zarmelo held such ditferent
views of logic that he did not fully grasp the import of the incomplete-
ness theorem. Soon after the conference ended, Zarmelo wrote Godel
that he had discovered an “essential gap” in the theorem. Gédel replied
that what appeared to be a gap had in fact been filled later in the paper.
Zarmelo, unfortunately, continued to misunderstand the proof of the
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result, but Godel did nothing more to disabuse him of this condition.
Godel shrank from controversy of any kind.

Other notables alsc found the result difficult te understand, includ-
ing the mathematical philosopher Ludwig Wittgenstein and even
Bertrand Russell, who expressed gratitude that he nc lenger worked in
mathematical logic. By the mid-1930s there was barely a mathematician
alive who did not know of Gédel’s theorem and its philosophical impli-
cations for mathematics. Most preferred to ignore the first horn of the
dilemma raised by Godel’s theorem, that mathematics was privately
plagued by monsters of inconsistency.

Even assuming that mathematics was consistent, it would never be
quite the same. The mere possibility of unprovable theorems has added
a third potential outcome (or nonoutcome) in the pursuit of conjectures.
Scmecne will find a preof, someone will find a counterexample, or no
one will find anything.



7.

The Computer Treadmill

Impossible Programs

THERE ARE SOME YES/NO QUESTIONS, PER-
FECTLY WELL DEFINED, THAT NO COMPUTER,
NO MATTER HOW FAST OR POWERFUL, CAN
ANSWER.

IN TODAY'S ANYTHING-IS-POSSIBLE media climate, many people have
come to believe that there is nothing that computers can’t do. But, as we
shall see in this chapter and the next, there are scme very important
things that computers cannet do. Moreover, we cannot even conceive of
an overall design that would make computers any mere powertul,
whether they are massively parallel machines, quantum computers, DNA
computers, or what have you. Each of these possibilities may make for
faster computers, but uncomputable means uncomputable. Speed means
nothing in this realm. You might even have a computer that doubles its
processing speed every second, but it will make no difference.

183
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There is a fundamental reason for this limitation. All computers are
created equal in a very important sense: once a computer (of whatever
type) becomes fully programmable, it arrives at a plateau beyond which
there can be no progress. By “fully programmable” 1 mean simply that
the computer in question can fcllow a proegram in a language that
includes instructions for storing and retrieving numbers, as well as per-
forming basic arithmetic on them. Most programming languages go well
beyond these simple operaticns, of course, but it makes no difference to
the powers that we will explore in this chapter.

Any fully programmable computer can simulate any other such
machine, and this simply means that what one can do, all can do, albeit
with greatly varying speeds. Conversely, should there be a task at which
one computer is deomed to fail, no matter how long it is given, so will all
computers fail. This limitation has a curious hole in it, however. It is not
really a theorem, but a conjecture. Even if this thesis should turn out to
be incorrect, the limits on computers as we understand them remain.
It would just mean that there’s a completely different kind of computer
that we have not yet imagined, one that is able to surmeunt these limi-
tations.

The conjecture is known as Church’s thesis, named after the
American logician Alonzo Church. It is almost certainly true for a
strangely profound reason. All attempts to arrive at a definition of what
it means to compute something seem tc result in equivalent machines.
There are three famous results, each discovered in the mid-1930s, each
describing a computational scheme that is wildly different from the cth-
ers. All three schemes turn out to be the same. They describe exactly the
same class of functions. Their enly shared property is that they proceed
in steps of one kind or another.

For the past hundred years, mathematicians and logicians had
become increasingly aware that the structure of mathematics itsell was
a fit topic of research. It became increasingly important to have a
description of mathematical reasoning, not necessarily the creative side,
when insights come in a blinding flash, but in the plodding, step-by-step
fashion in which the mathematics must be written out (and checked)
to be sure it is correct. This process, captured by the formalisms of
Hilbert, Godel, and many other mathematicians, had a parallel in alge-
bra itself, wherein one formula leads to another through algebraic
manipulations.
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Words for the process of step-by-step development of an idea
algorithm.” The lat-
ter came to be most cemmenly used. There is ne definition for the word

” o

abounded: “mental process,” “effective precedure,
“algorithm” because it is normally used in an informal sense. But it
corresponds to the notion of any process that (a) is definite and clear,
(b) proceeds by steps, and {c¢) eventually terminates with an answer.
Church’s thesis says, in effect, that as scon as one tries to define the word
“algorithm,” the definition leads tc a computational scheme that is logi-
cally equivalent to all the other schemes so far proposed. Perhaps there
is no way to prove Church’s thesis, only to disprove it. This is a peculiar
situation because we do not know whether someone will someday come
up with a description of an algorithmic process that goes beyond the uni-
form plateau we call “computing.” Until then we shall continue to
believe it.

The rest of this chapter will elaborate these simple remarks in a way
that takes us into the heart of what it means to compute. Qur fecus will
be the Entscheidungsproblem, a formidable German word that means
“decision prehlem.” There is not one decision problem, but many. Each
decision problem calls for nothing more than a “yes” or a “no” answer.
A decisicn problem for integers would be to decide, for an arbitrary inte-
ger, whether it is prime or not. An algorithm exists for this decision prob-
lem, so the problem is decidable. A decisicn problem for the logical
formulas studied by Gadel (see chapter 2) would be to decide, for an
arbitrary formula, whether it had a proof or not. As Gédel showed in
effect, there is no algorithm to solve this decision problem, so the prob-
lem is undecidable.

In what follows, we shall witness the conceptual birth of the modern
computer in a world of abstract conceptions that seems, at first sight,
far removed from the world in which these amazing machines now
operate.

THE TURING MACHINE

Alan Turing was a British mathematician who is perhaps best known for
his werk during Werld War 11 for British Intelligence. He devised a spe-
cialized machine, an early fixed-purpose computer, that analyzed inter-
cepted ciphers from German U-boats.
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But his greatest work was unquestionably in both the theoretical and
practical aspects of computing. The vehicle of his genius was the Turing
machine, a conceptual device so disarmingly simple that even a child
could understand it.

Here then is a Turing machine, shown in diagrammatic form:

/"3\
£
k4
m
>

.)Jol1]o] (o)

STATE
OOOOOOO]E:

Turing machine with tape

The Turing machine consists first of an infinitely long “tape,” which
consists of cells, each cell capable of holding one symbol at a time. For
example, the tape in the figure shows three symbols written in the cells:
0, 1, and X. At any moment, the machine scans a particular cell. It may
replace the symbol it finds in the cell by another, or it may leave the cell
as it is. At the next moment, it may move to the next cell to the right,
the next cell to the left, or not move at all. And that’s it—almost.

Te guide its actions, each Turing machine comes equipped with a
state-transition table. Each Turing machine has a finite number of states,
and at any moment it must be in one of them. The world of a Turing
machine thus consists of twe things: its present state and the particular
symbol it happens to be reading on its tape. When it looks up this com-
bination in its state table, it sees an instruction about what symbol (if
any) to replace the symbol it is scanning. The instruction also tells the
machine which cell to move to next (left, right, or same) and what state
to enter for the next computational cycle.

Here is an example of a state table for a particular Turing machine,
the one that appears in the figure above.
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Turing machine state table and transition diagram

This particular machine multiplies a binary number by 2. It does this
by starting at the left-hand X marker, then proceeding to the right-hand
X marker. It replaces the right-hand X by a zero, then moves one cell
farther to the right, where it now writes the X in its new positicn.

It's not really a very impressive feat. It has simply doubled the binary
number by adding a O to the end of the string that represents the number
on the tape. But it is fully general within the framewcrk of that simple
task. Given any binary number (suitably framed by markers}, no matter



188 MATH IN THE HeoLos

how long, the Turing machine will sconer or later quit with double that
number cn its tape.

The state-transition table works like this: initially the machine is in
state A, corresponding to the first row of the table. This row has three
parts, one for each of the three symbols used by this particular Turing
machine. Thus we interpret the first row of the table as follows: if the
machine happens to be in state A and is examining a cell containing a 0,
it enacts the triple ONA, meaning that it writes a O in the cell {ignecring
it, in effect), makes a nonmove (represented by N), and remains in state
A. In short, under these particular circumstances, as leng as the machine
examines a Q0 in state A, it does nothing at all. The same thing is true if
the machine happens to be examining a 1. Under the column labeled X,
however, we discover what the machine will doif it sees an X in the cell
itis examining. The triple XRB means that it will write the X (i.e., ignor-
ing it), then move one cell to the right (R), then enter a new state (B). In
short, the machine won’ do anything unless we start it over a cell with
an X in it. According to my description, we must place it over the left-
hand cell with an X in it.

Having moved one cell to the right, our machine encounters a 0. In
the second row of the table under Q, we find the triple ORB, which means
write the 0, move one cell to the right (R), then reenter state B. The same
fate awaits a cell containing a 1. The machine basically ignores it and
moves again one cell to the right, remaining in state B all the way to the
right-hand cell with an X in it.

When the machine examines this cell, according to the table, it does
a ORC, so to speak. It replaces the X by a 0, moves one cell to the right,
then enters state C. Readers hardly need me after this. In state C you
will see that no matter what symbol may be found in the next cell, the
machine writes an X, placing a new end marker, in effect. After that the
machine enters a new state, I}, which is the left-moving equivalent of
state B. In this state the machine leaves each symbol as it is, meving left
all the while, until it encounters an X. When this happens it enters its
final, or halting state, E.

Another way to represent this machine’s “brain” is by use of a dia-
gram that merely echoes the table in graphic form. There each state is
represented by a circle, and the transitions are represented by arrows.
You may follow the progress of the machine from state to state more eas-
ily by leoking at this diagram. The labels on the arrcws are merely abhre-
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viated versions of the triples in the table. The first symbol, near the root
of an arrow, represents the symbel appearing in the cell being examined.
The next symbel aleng the arrow represents the move to be made by the
machine {left or right) along the tape. The arrow leads directly to the
state that the machine enters next, whether it's the same state or a new
one. The last state, E, has nc arrows leaving it.

When a Turing machine has dene whatever it is supposed to do, it
halts. However, mere possession of a halting state is no guarantee that a
given Turing machine will halt on a particular tape. For example, the
doubling machine introduced above, if given a tape with only cne X on
it, will never halt, but continue moving to the right forever. One can
object that such nenhalting behavior is trivial in the sense that we had to
dector the tape to prevent the machine from halting, but less trivial
examples abound.

It might seem, from the utter simplicity of Turing machines, that they
would not be capable of much. But it is not difficult to construct Turing
machines that add or multiply numbers, that manipulate characters in
the manner of a word processor, and a great deal else, besides. Turing
machines can do anything! Well, anything that a computer can do, any-
way. This was not immediately obvious in the 1930s, when Turing first
fermulated his machines. In fact, there were no digital computers at all
at the time. That is why anything a Turing machine can do is called
“Turing computable.”

In the context of all possible Turing machines, we find ourselves facing
nct only more cor less sensible machines that carry out sensible compu-
tations such as arithmetic butalso all sorts of strange machines that carry
out perfectly ohscure, often nonsensical computaticns. Would you like
to design your own Turing machine? The exercise is trivial. Justset up a
state-transition table, as I have done on page 170, and fill it in with arbi-
trary symbols of the appropriate type.

I would be very surprised if the machine I have just “designed” did
anything even mildly comprehensible. The point is that the theory
toward which Turing was working had to include all possible Turing
machines because that class and only that class embraced, in an inclusive
mathematical sense, exactly what he meant by a computaticn.

In truth, each Turing machine is more like a program than a computer.
Like the number doubler, it has a single mission in life and can carry out
only that missicn. For Turing, working on the theory of cemputability in
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the early 1930s, it seemed that the machines he conceptualized nicely
captured the idea of what it meant—to Turing, at least—to compute.
What he needed, however, was a conceptual framework in which the
myriad of machines might exist, so to speak.

The universal Turing machine, denoted by a U, provided this frame-
work. Like the machines just discussed, the universal machine has a
fixed state-transition table, but it has two tapes, as shown on page 171.

The upper tape contains a description of a particular machine, M,
essentially its state-transition table written out as one long string of sym-
bols. The lower tape is a duplicate of M’s tape. The universal machine U
proceeds by examining the symbol currently being read on M’s tape.
Then it looks up the appropriate triple on the tape containing the
description of M in order to find out what M would do under those cir-
cumstances. 1t then writes the same symbol on M’s tape that M would
write, moves to the same next cell that M would move to, and keeps
track of M next state. By repeating this cycle of operations endlessly, the
universal machine simulates perfectly the action of M on its tape. The
fact that it takes a very long time to carry out this mission is meaning-
less in the theory of computation. The only sine qua non is that a finite
number of steps be involved in any computation.

With the universal machine U in hand, Turing was ready for the next
step. He was after big game, after all, to address the Entscheidungsproblem
in this context. In particular, Turing wondered about what he called the
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“halting problem.” Was there a general procedure for deciding, given an
arbitrary Turing machine M and an arbitrary tape T for it, whether M
would ever halt on T? The procedure would examine both M and T and,
after a finite number of steps, report either “yes” or “no.” Decision prob-
lems always have yes-or-no answers.

Turing solved this problem with a relatively simple constructicn that
showed that the Entscheidungsproblem (for Turing machines) had no
solution. His construction is so simple that the ultimate sounding board
of all inquiry, the person in the street, could decide the matter for him-
self or herself.

He supposed that he was already in possession of a Turing machine
D that can solve this particular decision problem. I} would be like the
universal machine in that it operated on a tape description of an arbi-
trary machine M, along with a copy, T, of M’s tape. I} has twe halting
states. If it finishes its computation in the state we will call Y, it means
that M eventually halts on T. If D) ends up in state N, however, it means
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that M will not halt on T. To simplify matters, Turing made the two tapes
into cne. This was a permissible operation because any Turing machine
that operates on a two-way infinite tape can be converted into an equiv-
alent one that operates on a cne-way infinite tape.

Turing’s idea was to make the tape T identical to the tape description
of M. Will M halt if supplied with its own description tape? The question
may seem nonsensical, as if we were asking M to indulge in a bit of navel-
gazing, but there’s no question that the operation is meaningful. Worse,
Turing wondered what would happen if Tt were supplied with its own
descripticn tape to examine. He could already see that he had the seeds
of a centradiction when he noticed that if D does not halt cn its own
tape, it must nevertheless enter state N and therefore must halt after all.
But what if D halts on its own tape? Mischievously he added one more
state to T}, as shown in the fellowing figure.

state - transition
oliagram

for D

An indecisive Turing machine

He changed Y to a nonhalting state by adding a new transition arrow
that goes to a new state, N’, in which, no matter what symbol D is scan-
ning, it writes the same symbol and moves one cell to the right. This
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means that if D is supposed to halt on its own description tape, then it
doesn’t halt at all. Te summarize, D halts on its own description tape if
and cnly if it doesn’t halt cn its own description tape. The contradiction
is firm and fully rounded, with no way out. D could not have existed in
the first place, and the halting problem is unsclvable.

This was one of the first decision problems shown to be undecidable.
Others followed in quick order.

THE MARTIAN DICTIONARY

The mid-1930s were remarkable years both in the early history of math-
ematical logic and in computing. Although digital computers had yet to
be developed, their seeds were taking root in the fertile imaginations not
only of Turing but of cther gifted scientists as well. Just prior to the pub-
lication of Turing’s influential paper “On Cemputable Numbers with an
Application to the Entscheidungsproblem,” the American logician Alonzo
Church published a description of the lambda calculus, a system of gen-
erating strings of symbeols that appeared, at the time, to have little or
ncthing to do with Turing’s concept of computability. Another American
logician, Stephen Kleene, published an account of recursive function the-
ory in the same year. Who would suppese that recursive functions,
defined by equations that use their output values for further inputs, had
anything to do with the other two concepts?

Other systems were on the way. As early as 1914, the Norwegian
mathematician Axel Thue, posed a problem involving the manipulation
of symbols that would one day be recognized as the source of yet
another alternative system. In 1947 the American logician Emil Post,
independently but simultaneously with the Russian mathematician
A. A Markov, analyzed Thue’s systemn, recognized it as equivalent to the
other three and found another unsolvable decision problem lurking
in its heart.

Thue’s original problem involved an alphabet and a dictionary. You
could call it a Martian dictionary because it invelved not words of
English, but arbitrary words that look as though they came from Mars.
Here’s an example of the kind of problem Thue studied. It involves
“translating” one curious-looking sentence (with no blanks) into
another by substituting words within the sentence: RTCXUPNTRX.
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Here are the ingredients of a more or less typical problem of this type:

The dictionary:

WORD “‘DEFINITION”
PN XXR

NTR cu

XUP CXXP
TCX RNC

RX NP

The problem: Transtorm the sentence RTCXUPNTRX into
RRNCUXXRTNP

The rules: To transform the first sentence inte the secend one, you
must find a sequence of substitutions that does the job. Each substi-
tutien invelves spotting, within the current sentence, one of the
words in the left-hand column of the dictionary. You may then
replace that word, within the sentence, by its oppesite number in the
dictionary.

The solution: In each sentence of the following sequence I have
underlined the string being replaced.

RTCXUPNTRX  RRNCUPNTRX  RRNCUPNTNP  RRNCUXXRINF

This particular versicn of Thue's word preblem might seem pretty
easy, but such problems can get really nasty, not to mention unseclvable.
Actually, it’s quite easy to pose an unsclvable werd preblem of this kind.
For example, if T asked you te sclve

TRCXUPNTRX — RXTNPUXCRT,

you would undoubtedly fail. This is not what [ mean by a problem that
is unsolvable by a computer, however.

What Thue asked for was a procedure or algerithm that would settle
any and all examples of the word problem, one way or another, in a finite
amount of time. If the problem has a seluticn, this precedure should find
it. If the problem has no solution, the procedure should also discover
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that. In fact, the procedure does not even have to produce a selution, it
merely has to answer “yes” or “ne.” Either a soluticn exists or it deesn’t.
Thue had unwittingly posed one of the first decision preblems cf the
twentieth century.

[ will demonstrate how Thue’s system contains a computer of sorts,
lurking inside it, by showing how it may simulate a Turing machine. It
will turn out, after I have demonstrated this transfermation, that asking
for a solution to the resulting word preblem is like asking whether a
Turing machine will halt.

To set up this simulation, I must first identify certain sentences as
Turing machine cperaticns. So T will start with an unspecified Turing
machine M that has

states q,, q,, . - - 9.

symbols 0, 1, X {(and perhaps others),

and tape moves L, R, N.

I will begin by writing cut all the symbecls on the Turing machine’s
tape at some arbitrary peint during its processing of the tape, as in the
following example:

011X0X0001X011o0
A
Suppose the machine is currently scanning the 1 {(marked by a caret).

To represent this situation, I will place the symbol q, (the machine’s cur-
rent state) just to the left of the symbel currently being scanned:

011 X0X000¢qg 1 X011DA0.

If you guessed that such strings were destined to become the “sen-
tences” of our Thue system, you’d be right. What T need now are diction-
ary entries that reflect the Turing machine’s operation. Suppose then that
the operations that would apply when the machine is in state ¢, and read-
inga 1 appear in the following row from M’s state-transiticn table:

0 1 X

state q: q, O N q 0L q, 1 R
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If the machine is reading a 1 {center column) and happens to be in
state q_, it will enter state q, write a 0, and move one cell to the left. 1
can represent this situation by an appropriate dictionary entry, as follows:

0gq, 1 q 0 0.

Going back to the odd-looking sentence above, I can now demon-
strate the effect of this substitution:

OllXOXOOOquXOIIO
becomes

OllXOXOOqJ.OOXOllO.

Although T have demecnstrated the process of translating Turing
machine operations intc a Thue system with but one example, it should
be clear to readers how the thing is managed in general. Simply replace
each entry in the machine’s state-transition table by a dictionary entry.

It now remains only to give the initial and final werds, again by an
example. To make things just a bit more concrete, I'll use the example of
the number-doubling machine introduced earlier in this chapter {see
page 166).

The initial and final tapes looked like this:

Initia: X0110111001011X
Finah X01101110010110X

The machine happened tc have capital-letter state names, such as A
through E, so I hope it dees not throw any readers off if [ use lowercase
versions of these, instead of the g, notaticn, here. Initially, the machine
was in state g while scanning the leftmost X and, in the end, it was in
state ¢ while scanning the rightmest X. Thus cur initial and final weords
must be:

aX0110111001 011X
and

X01101110010110¢X
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Just to illustrate the process, I will begin it. One of the words in the
dicticnary must correspond te what the Turing machine must de when
in state ¢ and reading an X. The instruction for this situation can be
found as the following entry in the state table that we described earlier:

X R B.
In our present notation, this translates into the dictionary entry
aX0 XboO

The lower-case state marker shifts one positicn to the right and
changes from an a to a b. Applying this dictionary entry to the first word
above we obtain

Xb0110111001011X.
After some fifteen more steps, the second word (above) will result:
X011011100110¢eX.

This particular problem is easy in that there is literally no choice about
what substitution to make at each stage of the solution process. But the
fact that such deterministic Thue systems can simulate Turing machines
means that they are just as powerful as computational schemes.

It immediately follows that the problem originally pesed by Thue is
unsolvable. Suppose that an algorithm existed that could decide, for each
and every instance of the problem, whether it had a sclution or not.
Next, we translate an arbitrary Turing machine inte its corresponding
Thue system and let the algorithm loose on it. After a finite time it would
tell us whether the final tape was achievable by the machine or not. If it
answers “yes,” the machine must have halted. If it answers “no.” the
machine could net have halted. But then it will have sclved the halting
problem for Turing machines, a thing we already know to be impossible.
Ergo, the algorithm cannot exist, and the word problem for Thue sys-
temns is insoluble. The Martian dictionary doesn’t always work!

IS THERE A WAY AROUND IT?

The short answer is: only if Church was wrong. The evidence that he was
right, that anything remotely resembling some kind of system for
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autcmating thought turns out to be equivalent to all the other systems
ever devised, is very powerful indeed. As far as algorithmic abilities go,
humans and computers share this fundamental limitation.

It is nevertheless interesting to examine the roots of computation in
these high adventures of mathematics and logic, as well as to probe the
ultimate branches of future developments.

Turing was aware {rom the very beginning that his conceptual
machine was capable not only of much greater sophistication but also of
an actual physical realization. For example, the individual Turing
machines were actually like programs in that each embodied a particu-
lar procedure or algerithm. The universal Turing machine, cn the cther
hand, cerrespended to the programmable computer. After all, it simply
did what the individual machine told it to do, much as a programmable
digital computer does what its program tells it to do.

During Werld War Il Turing became familiar with digital principles
when building special machines he called “bembes” that systematically
worked through cipher intercepts from German U-boats. After the war
he put these principles te work by developing one of the world’s first
computers at the Teddington Research facility by 1950, a small machine
called the Pilot ACE. Like all early computers, this one performed the
essential switching functions with vacuum tubes.

John von Neumann, another major contributor to the development
of mathematical logic and metamathematics, made major design contri-
butions to one of the first computers in the United States, the EDVAC,
as well as a more advanced computer at the Princeten Institute for
Advanced Study: the computer became operational in 1952. Both scien-
tists recognized that the inherent power of these machines lay in the pro-
vision that they be programmable. Since the 1940s and 1950s, computers
have beccme so all-pervasive that, should they all suffer some unknown
malady and stop, our entire technical civilization might well grind to
a halt.

Computers of the future, scme beginning to take shape in the maost
rudimentary form, others yet gleams in someone’s eye, include not only
the current batch of “supercomputers” but also all-optical computers,
DNA computers, and quantum computers. Will any of these machines,
real or proposed, evade the strictures of Church’s thesis?

The supercomputers of today are essentially very fast parallel
machines. The parallelism means that they can carry out several instruc-
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tions simultaneously, thus speeding them up. No matter how fast they
get, however, they will never be able te perform mere than a fixed, finite
number of instructions at a time. If there’s no algerithm for a particular
problem, a machine can operate as fast as one likes, even doubling its
speed every second; it will make ne difference to the final outcome. No
algorithm means no algorithm.

Optical computers will operate with light instead of electrons, but
the limitations will remain in place. DNA computers promise some
speedup by enabling strings of DNA to interact in a sort of “solution
broth” in which a myriad of chance combinations will all be tried at
once, en route to the solution of a problem. But those chance encoun-
ters between molecules will still be limited to a finite number, no mat-
ter how large the “tank.” Thus DNA computers will fall under the same
gloomy cloud.

The idea behind quantum computers, still an untested, albeit prom-
ising technelogy, exploits a physical phenomenon known as quantum
wave ccllapse (see chaper 3). In its most speculative form, such a com-
puter will preduce a wave functicn that corresponds to, or encedes, a
problem worth solving. If one forces the wave function to manifest itself
by measuring it in the appropriate way, a choice will be made ameng all
the alternative forms that the function could take. The simplest exam-
ple of such a collapse occurs when individual photons are directed at a
pair of slits in some otherwise impervious material. Each slit is equipped
with a detector. It has been shown that when the detectors are turned off,
the photons pass through both slits simultaneously. But when the detec-
tors are turned on, the photon must “make a choice” about which slit to
pass through. This is what is meant by the “collapse” of the photon’s
wave function. If further conditions can be placed on a wave function,
conditions that correspond to the strictures of a particular problem to
be solved, it may be that the wave will collapse in a manner that provides
a soluticn to the problem.

It may even be that the twe-slit experiment itself, or some very
sophisticated version of it, can be adapted to solving decision problems:
if the pheten passes through slit A, the Turing machine will halt; if the
photon passes through slit B, the Turing machine will not halt. This rosy
scenario avoids any and all details (wherein the Devil waits) to encum-
ber the scheme. However, troubles of a specific kind also may plague
such devices. In the next chapter, which is devoted not to problems that
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can never be solved, but to those that merely take the age of the uni-
verse to solve, [ will return te quantum computers for a closer lock.

POSTSCRIPT

For readers who enjoy hand calculations that takes hours, even days,
for programmers who enjoy the idea of driving computers crazy, for peo-
ple who like numbers se menstreusly huge they cannct even be vaguely
conceived, there is Ackermann’s function. This function, called A below,
grows sc fast in its values A(1), A(2), A(3), ... that it is almost not even
recursive (i.e., computable). In any practical sense, it is not computable
at all.

Here are four recursive equations that define Ackermann’s function,
denoted by the symbol A with a single variable within its parentheses.
The functicn S(n) denotes the successcr of the integer n, namely n + 1.
All computations start at m = 0:

A0, n) =5S(n)

A(S(m),0) = A(lm, 1)

A(S(m) - 5(n)) = A(m, A(S(m), n))
Alm) = A(m, m).

This obscure-locking set of formulas lists permissible substitutions in
a process of computaticn. Starting with m = 0, for example, the equations
become

A0, n) =S5(n)

A(S(0),0) = A0, 1)

A(S(0) - S(n)) = A0, A(S(0), n))
A(0) = ACO, 0).

What is the value of A(0)? Tt must be A(Q, 0), according to the last
formula. What is A0, 0)? If we put n =0 in the first equation, we get

A0, 0) = 5(0).

The successor (S) of 0 is obviously 1, so we immediately have
A(0) = 1. The next value, A(1), of Ackermann’s function is 3, and the
value A{2) after thatis 7. It takes only a few minutes to work these out.
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The fourth value takes a couple of hours and results in the value 61.
Then the function really takes off, so to speak. It’s nct clear if any com-
puter has encugh digits to compute A(4), and A(5) may have more
digits than there are fundamental particles in the universe! So forget A(5)
and everything beyend that. If you ever feel the need to exaggerate a
claim, you can say, “Government spending is geing up faster than
Ackermann’s function.”



. 8.

The Big-O Bottleneck

Intractable Problems

THERE ARE SOME MATHEMATICAL PROBLEMS
THAT COMPUTERS CAN SOLVE ONLY BY TAKING
AN EXPONENTIAL AMOUNT OF TIME.

EXPONENTIAL GROWTH 1S EXPLOSIVE, to say the least. A computer
that takes an exponential amount of time to solve a problem is also
caught in an explosive situation because the amount of time it may take
to sclve the problem “blows up.” As the computer tackles larger and
larger instances of the problem, the amount of time it takes to solve them
increases expenentially. It makes ne difference how fast the computer
is, exponential is exponential. Surprisingly small instances of the prob-
lem may take the lifetime cf the universe tc solve.

Problems that, for one reason or another, have no quick solution are
called intractable. The amount of computation it takes to solve them

183
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never fails to remind me of a bottleneck. I call it the big-O bottleneck
because “big O” is the notaticn for orders of magnitude. When numbers
get really large, enly their orders of magnitude may count.

The traveling-salesman problem is perhaps the best-known exam-
ple of a seemingly intractable problem: A salesman travels a road (or
air) network, visiting city after city to sell his goods. To keep profit
high, he naturally wants to keep expenses as low as possible. This
means keeping his mileage to a minimum. Therefore he must travel the
network so he visits each city exactly once and so the total distance
traveled is a minimum.

» »

Trrsrral Wardsville
Belnent Kintore

2Ty
Nilestown

Network for traveling salesman

If, for example, he takes the route shown in the figure, his total dis-
tance traveled is 426 miles. But there is another rcute that invelves just
422 miles, a scmewhat shorter route. Can you find it?

Computers have been (and will continue te be) programmed to find
the minimum-caest route for this problem. A program may take only
1 secend to sclve the problem shown here. But it may well take 2 seconds
to solve a route invelving just one more city, namely eleven cities. As for
twelve cities, that could take as long as 4 seconds. Continuing this dreary
arithmetic up to fifty cities, we find that it could take more than 3.3 mil-
licn years for the program to find the minimum-length tour.

Why does it take so long tc solve the traveling-salesman problem?
There’s no simple answer, but most of the solution methods devised to
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date must consider a great many alternative tours before settling on the
one of minimum length. Tt will come as ne surprise to the reader that the
number of such tours increases exponentially with the number of cities.
For example, for the map above there are 124 tours, but only 1 of mini-
mum length. The more cities there are on a map, the more tours there are
to consider, exponentially more.

Strangely, there are similar problems that de net require an exponen-
tial amount of time to solve. Suppose we take the same map as I have
drawn above and ask for the shortest route joining two of the cities—say,
Nilestown and Springfield. There are more than thirty routes from
Nilestown te Springfield, and if T were tc enlarge the map by one city,
there might be twice as many. In other words, the number cf alternative
routes from cne city to another may also grow expeonentially with the
number cf cities, yet there is a method of finding the shortest route that
does not require an exponential amount of time.

Both problems invelve minimizing a distance. In the first preblem,
however, the tours path must pass through every peint in the network.
In the secend problem, there is no constraint on the path. Tt may pass
through as few points as one likes, as long as it connects Nilestown and
Springfield. Semetimes lifting a constraint makes a problem easier to
solve.

ALGORITHMS AND PROGRAMS

In the mathematical sciences it is crucial for the objects of study to be
well defined—that is, capable of exact expressicn. For example, I could
formulate an operation on numbers called “enlarging.” If [ wanted to
enlarge 10, I might well replace it by 20. I weuld nct get very far in devel-
oping a thecry based on this operaticn. The theory weould depend cru-
cially on just what I meant by “enlarging” a number. Do I mean doubling
it? Do I mean adding 1 to it? Would T mean selecting a random number
and adding it to the number in question?

An algorithm is a step-by-step procedure fcr sclving a preblem. To
the extent that an algorithm is well defined, it can always be converted
into a computer program by translating it into an appropriate computer
language. For example, suppose L isa list of n numbers and that the kth
member of the list is denoted by L{k). Here is an algorithm for finding
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the largest number in L. I have labeled some of the lines or steps of this
algorithm with numbers for easy reference.

1. SetLargest equal to L(1)

2. Setk=2

If L(k) > Largest,
replace the value of Largest by L(k).

4. ITk<n,
set k equal to k + 1 and return to step 3.

W

Otherwise, output Largest and quit.

The italicized letters and names Largest, L, and k are variables. In a
computing centext, one may think of a variable as a kind of cubbyhcle
that will held one number at a time. The variable L is actually a multiple
variable that computer scientists call an array. The values of the array
are indexed as L.(1), L(2), L(3), and so on.

Just for starters I will give the following values to L to illustrate the
algorithm: L.{1) = 17, 1(2) =9, L(3) = 37.

In step 1 the variable called Largest will receive the value 17 hecause
that is the value of L{1). In step 2 the algorithm sets the variable k tc the
value 2, and in step 3 the algorithm compares the sizes of L(2) and
Largest. Is [.(2) greater than Largest? s 9 greater than 177 If 9 were, the
algorithm would replace the value of Largest by 9—but it isn’t larger, so
Largest remains unchanged. Step 4 first compares k with n, the size of the
array L. We're not there yet, so the algorithm increases the value of k by
k + 1, turning the 2 into a 3, and then goes back to step 3. This time
around, with k = 3, the algorithm compares L.(3) and Largest, finding that
L(3) = 37 is indeed larger. Thus it replaces the old value of Largest—
namely, 17—with the newer (and larger} value of 37.

Around and around the algorithm goes, in a loop, replacing the value
of Largest by any number in the list L that happens to be larger yet. In the
end, k is no longer less than n, and the very last line of the algorithm
swings into play by cutputting the last value of Largest. This will, of
course, be the largest number on the list.

An algeorithm is a peculiar thing. You will notice that it specifies
actions but does not actually carry them out. Action is the province of
the computer—or human being. Algorithms are programs in waiting, if
you like. They can be executed by human beings (as I just did) or by
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computers as long as there is a human being around to convert the algo-
rithm inte a werking computer program. In fact, algorithms are really
vehicles of communication expressed in an informal, flexible language
that is just precise encugh to capture the essential elements of a method
without having to go into any details. Tt is frequently the language of pro-
grammers.

The algorithm I have just introduced may be analyzed to find out
how long it takes to find the largest number in a list of n numbers. In
arriving at the time it takes, we worry enly about how leng it takes in the
worst case. In other words, over all instances of a given length, how busy
can we make this algerithm so that it takes the longest possible time to
arrive at an answer?

To find cut, we assume that each step of the algorithm takes one unit
of time to execute. We may keep scere by reproducing the algorithm and
writing a dot beside each step as it is performed. To save a little time, [
will simply assert that the warst case this algorithm will ever have to face
occurs when the numbers in the list increase from first to last. Thus, for
example, the list L. = (1, 2, 3, 4, 3, 6) will result in the following time
score for the algorithm:

k=2345%6
1. SetLargest equal to L(1) .
Setk =2 .
3. U L(k) > Largest, e e e e
replace the value of Largest by L(k). e e e
4. fk<n, e e e
set kequal to k + 1 and return to step 3. e e e
Otherwise, output Largest and quit.  ee .

-

To evaluate the score, simply count the dots. Fach dot represents a
step in the algorithm for a particular value of k. Under the k value of 2
there are six dots, for example, because the first six steps are executed.
For each of the remaining values of k, the algorithm executes four steps
each. The tetal number of dets is twenty-twe, so the algorithm takes
twenty-two steps to find the largest in a list of six numbers. This is
the worst case, of course. If the order of the numbers is reversed, the
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algorithm would have five steps for k = 2 and three steps each time after
that for a total of seventeen steps.

To find out how well the algerithm would de in general, we assume
the list has n numbers in it and ask how many steps it would take, in the
worst case, for the algorithm to come up with an answer. The answer
comes by generalizing what we already know: it will take six steps for
k = 2 and four steps for each value of k from 3 to n. The total number of
steps will therefore be 6 + 4(n—2), or 4n — 2.

This particular algerithm therefore takes 4n — 2 steps te sclve the
maximum-number problem in the worst case and, since the expression
for the time taken is linear, we say that the algorithm takes linear time
to solve the preblem. Tt turns out that when we are faced with problems
that take an exponential ameount of time, the ccefficient 4 and the addi-
tive constant —2 amecunt to pretty small change, so we ignore them. Only
the factor n is important.

Can the maximum-integer problem be solved any faster than in lin-
ear time? We can make the argument that ne algorithm could possibly
discover the largest integer withcut examining all n numbers of the list
(in the worst case), so a linear-time algorithm is optimal. There is
ne algorithm, for example, that takes only logarithmic time, nor could
there be.

Strangely enough, if I change the problem slightly, there is an algo-
rithm to solve it in logarithmic time. In the new problem, I want to see
if a particular number m happens to be in the list. The list, it turns out,
has already been sorted inte increasing order. How long would it take,
in the worst case, to discover whether m is on the list? The answer
inveclves a ubiquitcus technique in computer science: binary search.

There is an amusing anecdote that illustrates the famous binary
searching algorithm: How do you trap a licn in the desert? First you
build a fence across the middle of the desert. The lion will end up cn cne
side of the fence or the other. Next, you build a secend fence acress the
half of the desert that is presently inhabited by the licn. Again, it must be
in one or the other of the new halves (now constituting one-quarter of
the desert). The picture should now be clear. At each iteration of the
basic lion-trapping algerithm, cne cuts the range in half. Before long,
the lion is inside a rather small pen. You have trapped it with the help of
applied computer science.

The binary search algorithm looks for a given number m in a list or
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array L of n numbers arranged as above. The algorithm first examines the
number in the middle of the array. If m is less than this number, the algo-
rithm “knows” it must be in the first half of L; otherwise, it lies in the
second half. Having determined which half holds the number, the algo-
rithm next searches that half by exactly the same method. At each itera-
tion of the basic scheme, the range to be searched narrows by half.

If you think that continued doubling leads to rapid growth, censider
how continued halving leads to rapid shrinkage. If k doublings lead to a
number in the order of 2k, then & halvings lead to a number such as
log{k), and this is precisely the worst-case time taken by the binary
searching algorithm.

There are algorithms of all possible complexities. The following fig-
ure displays just a few of them. The lowest curve shows how the com-
putation time grows for an algorithm of logarithmic complexity. The
straight line illustrates linear complexity. The lower upward-opening
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curve represents quadratic complexity. The highest curve demonstrates
hew exponential complexity runs “screaming off inte infinity,” as a
colleague once put it.

Although the quadratic-time algorithm also locks like it will take a
long time, given large encugh examples of the problem it sclves, it really
doesn’t amount to a hill of beans compared to how much time the expo-
nential algorithm takes on instances of the same length. All preblems
that can be solved {(in the worst case) by polynomial-time algorithms,
even ones that take

n284

steps to solve, are considered “tractable.”

To symbolize our rather cavalier attitude to additive and multiplica-
tive constants in the expressions for complexity of an algorithm, we use
the “big O notation. The “O" stands for “crder of magnitude.” Thus an
algorithm that takes 17n? steps or even 23917n” steps, where n is the
length of the instance, is said tc have complexity

Q(n?).

Other complexities are treated similarly. For example, linear com-
plexity would be written O(n) and expenential complexity would be
written O{2%). Some complexities are more, well, “complex.” If an algo-
rithm takes on the order of nlegn steps (in the worst case) to solve an
instance of length n, we would say that the algorithm has a complexity of

O{nlogn).

BAD NEWS FROM BERKELEY

In 1974, Stephen Cook, a Berkeley graduate student, made a startling
discovery. His thesis, that some problems appear to be inherently
intractable, shook the computer science world. Cook’s discovery centered
on a well-known preblem in propositional logic called “the satisfiability
problem.” Cook proved that if one could solve the satisfiability problem
reasonably quickly, cne would autematically solve a host of other diffi-
cult problems that researchers had slaved over for years—getting
nowhere. Cook’s result implied that the satisfiability problem must be
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very hard to solve indeed. More importantly perhaps, his theorem illumi-
nated an cld theme of mathematics, the search for equivalence among
problems.

The problems that formed the focus of Cool’s research were all deci-
sion problems (see chapter 7). They all had yes-or-no answers. One can
always convert a more regular problem such as the traveling-salesman
problem intc one that has yes-or-no answers by posing itin a slightly dif-
ferent way. Instead of asking “What is the minimum-length tour of this
particular network of reads?” we can ask “Dees this network contain a
tour of length less than 25?” If we can always get an answer quickly to
the latter sort of question, we can, by playing twenty questicns, obtain an
answer to the original preblem. Does it have a tour of length less than
48? Yes? Does it have a tour of length less than 24? No? Does it have a
tour of length less than 367 No? And so on. Astute readers will see the
binary search technique at work here.

Given an instance of the satisfiability problem, a soluticn algorithm
would have toc answer the question “Does this expression have a satisfy-
ing assignment?” In other werds, it would have to find values for the
variable in the expression that made it true. Here is an instance with four
logical variables, w, x, y, and z

wW+x" +y +2)- (x+y) - W +y+2).

The expression censists of a logical preduct (-) of logical sums (+) or
clauses, as I shall call them. The ultimate constituents of such an expres-
sion are called “literals.” These are the logical variables, either as they
stand, x, or negated, x”.

Depending on the values (0 or 1) of the logical variables, the expres-
sion itself will have a logical value. In this context, “true” is symbolized
by “1,” while “false” is indicated by “0.” A satisfying assignment would
be a collection of values for the variables w through z that produced a
value of 1 fer the expression as a whole.

For example, the solution

=
I

=
I}
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satisfies the expression because every sum such as w’ + y + 7 takes the
value 1 after the dust settles: (0 + 0+ 1) = 1.
The expression itself becomes

(1+0+1+D-(1+D-(0+0+1)=1-1-1
=1 (true).

The sum of two or more literals follows the logic of “or.” Under this
logic0+0=0,0+1=1,and 1+ 1 =1.The firstclause, 1 + 0 + 1 + 1,
therefore equals 1. In fact, all three clauses equal 1 and their product
must alsc equal 1, or true.

The preduct of three true clauses is again true. Thus the given assign-
ment satisfies the given expressicn, and the given values do, indeed, con-
stitute a sclution. This particular instance has many sclutions, but some
instances have just one solution, while others have none at all. In gen-
eral, the satishability problem is very difficult to solve.

The length, n, of the expression may be taken as the number of liter-
als in it, in this case 9.

How long dees it take to solve the satisfiability problem? As the num-
ber n of literals increases, is there an algorithm that takes cnly a pely-
nemial (in n) number of steps to solve it? Probably not, according tec the
freshly minted Ph.D. Cook had proved that if such an algorithm existed,
it could be transformed into a sclution for any problem in an extremely
broad class that he called “NP” shert for nondeterministic polynomial-
time problems. I will discuss what “nondeterministic” means in a
moment.

Suffice it to say that the class NP contained not enly the preblems
for which workers had found peolynomial-time algorithms, but alse vir-
tually all of the problems (like the traveling-salesman problem) that had
given hundreds of mathematicians and cemputer scientists se much
trouble over the years.

Cock had discovered a transformaticn from the entire class NP into
a single problem, satisfiability. The transtormation was generic; it could
be applied with miner modificaticns to any problem in NP In shert,
given any problem in NP and any instance of that problem, Cook’s trans-
formaticn would convert that instance inte an instance of the satisfiabil-
ity problem. Moreover, it produced that instance in polynomial time. The
situation can be sketched with a simple diagram:
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NP

Transformation from NP to the satisflability problem

The arrows show the action of the transformation on a great variety of
problems, each with its own acronym. [ will list them without explaining
what they all mean HP (Hamiltonian path problem), SP (shortest-path
problem), LP (linear programming problem), GI (graph-isomorphism
problem), CCF (computer-circuit-fault-detection problem), NC {nxn
checkers), KP (knapsack problem), TT {timetable design), and, of course,
SAT (the satisfiability problem). Such a list only scratches the surface of
the thousands of problems that lie in the class NP As you can infer from
some of the names, they include not only games and puzzles, but also
problems of great importance for a society driven by technology.

If the humble reader should discover a pelynomial-time algorithm for
the satisfiability problem, he or she would, thanks to Cook’s theorem,
earn undying fame as the solver of all the problems in NP! Perhaps you
den’t have the experience necessary to discover such an algorithm.
Perhaps you don’t have the smarts. Perhaps you don't have the ambition.
Yet, for some of the preblems in NP, people with all these qualities in
abundance have failed miserably. Chances are, some of these problems
are inherently intractable. Let me show you what [ mean.

Cock alse found a polynomial-time transfermation frem satisfiability



124 MATH IN THE HeoLos

to other problems such as the vertex-cover problem (VC), as shown in
the next figure. The vertex-cover preblem is about “graphs,” systems of
points connected by lines, a problem menticned above.

NP

Transformation from SAT to VC

The vertex-cover preblem turned cut to have the same magic prop-
erty as the satisfiability problem: find a polynomial-time sclution for this
problem and you will have found a polynomial-time solution for the
whole class NP. The name of this magical property is “NP completeness.”
Within a few years of Cook’s thecrem appearing, researchers had found
a chain of polynemial-time transformations extending cut froem these
humble beginnings to more than a theusand different problems. And
ncne of the problems thus shown to be NP complete appeared to have a
peolynomial-time solution algorithm. Morecver, ncne of the problems
that appeared in the chain was among these that, like the shortest-path
problem, were known to have polynomial-time algorithms.

There isa well-known cartcon among complexity theorists that illus-
trates the central significance of Cock’s theorem and all the subsequent
proofs of NP completeness. The poor researcher cannot find an efficient
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algorithm for a certain problem. He fears that he may have to confess to
his boss, with no excuse for his failure, and the {irst frame of the car-
teon shows him humbly apolegizing. Of course, he would like to say that
he failed because the task just wasn’t possible, and the second frame of
the cartoon shows him unapologetically telling the boss that the problem
can’t be solved. If his problem turns out to be NP complete, however, he
can tell the boss that neither he ner a host of brilliant researchers can
come up with an efficient algorithm. The legion of brilliant researchers
has not worked on the preblem of our peor scientist, but they have
strained their brains to the uttermost on problems that are alse NP com-
plete. Had the hapless researcher solved his problem, he alsc would have
solved theirs, and vice versa.

Before explaining the near-miraculous transfermation of Cock’s the-
orem, I will explain how cne of the proofs of NP completeness works.
Suppose I have a problem A, which I happen to know is NP complete. If
[ suspect that a second preblem, B, also is NP complete, I might be able
to find a transformation T from A into B. The transformation must have
certain properties, however.

First, T must preserve truth values. If X is an instance of A, then T
will preduce an instance T(X) of B. Let us call the latter instance Y. Such
a transformaticn also would be expected to transform a solution of
instance Y into a solution of instance X. The answer to the question asso-
ciated with instance X will be “yes” if and enly if the answer to the ques-
tion associated with problem B is also “yes.”

Secend, the transformaticn must operate in polyncmial time; there
must be a polynomial p(n) such that if the length of instance X is n, the
length of instance Y can be no greater than p(n).

Admittedly, all that is rather abstract, but let’s press ahead to see
what happens. Suppose I have also discovered an algorithm that solves
problem B in polynomial time, the polynomial being q. Applied to an
instance Y of problem B, the algorithm takes no more than g(m)
steps, where m is the length of an instance of B. The algorithm for prob-
lem B can now itself be transformed into an algorithm for problem
A simply by first applying the transformation T to an arbitrary instance
X of A, producing an instance Y of B. Next, I apply the algorithm
for B to the instance X, discovering a solution (if there is one). If the
transformation takes p(n) steps, then the solution to the instance Y
takes q(p(n)) steps.
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What is the latter expression? It's a polynomial with another pelyno-
mial substituted into it. The result is also a pelynomial, which is all we
need to know. We have converted a polynomial-time algorithm fer preb-
lem A into a pelynomial-time algorithm for B. If I can solve problem A in
polynomial time, T can do the same thing for preblem B.

Problem B must therefore itself be NP complete, for if [ now mate
the transformation T with the generic transformation of Cook’s theorem,
I can transform any problem in the class NP into problem B, and I can do
it in polynomial time. Morecver, any peolynomial-time algerithm for
problem B would become, in effect, a polynomial-time algorithm for
every problem in NP

[ will now backtrack and give an example of a transformaticn from
problem A (satisfiability) into problem B (the vertex-cover problem). In
the satisfiability preblem, every instance consists of a product of clauses.
The vertex-cover problem (menticned earlier) involves objects called
graphs—namely, sets of pcints cr vertices, scme pairs of which are joined
by lines or edges. Can I find a vertex cover for the following graph?

A graph

Such a cover would be a subset C of the peints with the property that
every line {or edge) of the graph has at least one of its vertices in C. Of
course, if we put all the vertices of the graph into C, it will certainly be a
cover. The real problem is to find the minimum number of vertices that
C may contain in order to cover all the vertices of the graph. In the graph
the minimum number is 3.
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No one has ever found a polynomial-time algorithm for the vertex-
cover preblem. The peossibility that nc one ever will becomes very real,
in light of the transfermation I will now demenstrate. But hew on Earth
does one turn an instance X of the satisfiability problem into an instance
Y of the vertex cover problem?

The transformation of any instance of the satisfiability problem into
an instance of the vertex-cover problem will convert a legical expres-
sion such as the one we examined earlier into a graph. Here’s how it’s
done. Replace each clause of the expression by as many vertices as there
are literals in the clause, then join all the vertices in each clause set by
edges. Next, replace each of the logical variables by two vertices joined
by an edge, as in the following figure. Finally, join any literal in the upper
part of the graph to a matching literal in the lower part. The figure below
shows what happens when ycu apply this transformation to the instance
of satisfiability that we examined earlier.

Here we see that the clause (w + x” + ¥ + z) has become a cluster of
four vertices all joined by edges. Clearly, any cover for the graph shown
will have to include at least three of these vertices, so that all the edges
are covered. One of the vertices—z in this case—is not in the cover.
Therefcre the edge that leads down to the lower part of the figure from z
had better have its other end in the cover. It does.

’ i

x

wr wl ‘x .x‘ ‘j ‘j z z!

An instance of the VC problem
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The same thing goes for the other twe parts of the graph associated
with the remaining two clauses. Each has all but one of its vertices in
the cover, and the edge leading from the missing vertex to the lower part
of the figure has its other vertex in the cover.

De ycu see how, in the lower part of the figure, each horizental edge
has just one vertex in the cover? Could that represent a satisfying assign-
ment? The answer is “yes.” In fact, the recipe for the transformation goes
like this: Start with any instance of the satisfability problem and replace
each variable x by an edge, (x, x*), as above. Next replace each clause by
a complex that consists of the same number of vertices, each labeled with
the name of the literal it represents. Finally, join each literal in the edges
of the first step with the correspending literal in any of the complexes.
That completes the transtormaticn.

The resulting graph must have at least m vertices in its cover, where
m is the number of literals in the initial expression. If the corresponding
question is “Toes the graph have a cover with m vertices?” the answer is
“yes” if and only if the corresponding logical expression has a satistying
assignment.

How long does the transformation take? Surely a polynomial number
of steps. In the worst case, there is only one clause, and the transforma-
tion would have to create a graph complex with as many edges as there
are pairs of variables, namely a quadratic number of them. The complex-
ity of the transforming algorithm would therefcre be

O{n?).

The transformation just described is typical of the secondary trans-
formaticns that produce the ever-growing list of NP-complete problems.
The primary transfermation discovered by Cook is, not surprisingly,
more complicated because it focuses not on any specific problem in NP,
but on all of them simultaneously. To understand Cook’s generic trans-
formation we must understand what a nondeterministic algorithm is. But
before plunging ahead, the “complexity” of this chapter calls for a
breathing spell.

REPRISE

The first conceptual key to understanding the big-O bottleneck is the
notion of an algorithm. An algorithm ceonsists of computaticnal steps
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that lead to the solution of a problem. To be more precise, I should say
“instance of a problem,” since a problem such as the traveling-salesman
problem can be considered as the ccllection of all possible instances of
it—in this case, all possible networks to be traversed by traveling sales-
men. The size of an instance is measured by some natural quantity asso-
ciated with it, such as the number of cities in a network.

One can analyze an algorithm to discover its worst-case performance
over all instances of a given size. The algorithm’s complexity is just the
total number of steps it takes to sclve the werst-case instance of size n.
Instead of exact-complexity figures such as 3n -7, 12n* — 3n + 25, or
2" — 12n, we boil the complexity down tc its essential size, using the
big-O notation. The foregoing complexities then become G(n), Q(n?),
and O(2"), respectively.

Stephen Cook showed that a particular problem, that of satisfying
propositional expressions, was just as hard a problem to solve as any
problem in a large class that I will define in the next section. If this dif-
ficulty is regarded as a disease, I have shown how the disease “spreads,”
with a single example. There is a way to transform the satisfiability prob-
lem into the vertex-cover problem for graphs so that (a) every instance
of the satisfiability problem is translated into an instance of the vertex-
cover problem, (b) any solution of the latter instance is translated into
a solution of the original instance of the satisfiability problem, and (¢)
the transformation itself takes only a polynomial number of steps to
achieve.

Because Cook’s theorem transforms a potential infinity of problems
into the satisfiability problem, however, the transformation in the proof
is mere complicated than most of the particular transformations from
satisfiability “outward” into the vast crowd of problems that turn out to
be just as difficult as satishability. We are about to find cut just what that
mystericus term “NP completeness” actually means.

NONDETERMINISTIC ALGORITHMS

The initials NP stand for “nondeterministic pelynomial time.” A preblem
in the class NP can be solved by a nondeterministic algerithm in polyno-
mial time. The algorithms we have examined up to now were all deter-
ministic. In other words, they proceeded te find solutions te instances
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of a problem by following a rigid recipe, the cutcome of which is deter-
mined in advance. Not so with nendeterministic algerithms.

Faced with the instance of a problem, a nondeterministic algorithm
simply guesses the yes/no answer and, if the answer is “yes,” also
guesses a solution. For example, the problem might be the traveling-
salesman problem, and the question might be “Does the instance in
hand have a tour of length less than 123?” The answer may well be
“yes,” in which case the algorithm not only says so, but also produces
a tour of length 122 or less. By definition a nondeterministic algorithm
is never wrong,

That’s what “nondeterministic” means: guessing. How does polyno-
mial time come into it? A nondeterministic algorithm also must check
that the solution does, indeed, enable it to answer “ves” to the question.
[t enters a verification stage of processing during which it checks that (a)
it has guessed a genuine tour and not some meandering route that passes
through the same city twice or misses another city altogether, and (b)
that the total length of its tour is less than 123 units. The checking
process, the only measurable activity of the algorithm, must not take
more than a polynomial number of steps.

Suppose that the map has seven cities, each labeled with a number,
and that the tour guessed by the algorithm came in the form of a list
of cities (in the order that the tour passes through them: 3, 5,1, 7, 4, 2,
6, 3), the first city appearing at the end of the list. Taking »n as 7, it seems
clear that the algorithm would take in the order of n steps to check part
(a). After all, it only has to scan the list once, ensuring that each city is
connected to the previous one by a road. It then scans the list once more,
consulting the table for the distance from each city in the list to the next
one, then adding up all the distances. This also absorbs only a linear
number of steps.

If the checking phase of the algorithm comes up with a total distance
of 105, it has clearly found a tour of length less than 123, and it will
answer the original question, “yes.”

Clearly, nondeterministic algorithms are extremely powerful.
Unfortunately, they exist only as theoretical constructs; yet that very
power is what we may be demanding of an algorithm that could solve a
problem such as the satisfiability problem in polynomial time.
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THE GRAND GENERIC ALGORITHM

A problem in NP as [ explained earlier, has a polynomial-time, nondeter-
ministic solution algorithm. We will treat one such problem—call it
problem A—in the abstract. Enter the Turing machine.

Suppose we have a guessed solution for an instance of preblem A.
The algorithm that checks the solution can be recast as a Turing machine
program (see chapter 6), and the instance can be represented by a string
of symbols on the Turing machine’s tape. Cook’s grand generic transfor-
maticn operates on the Turing machine program and its tape, convert-
ing both intc a satishability problem.

The actual transformation is laden with details, but T can provide
enough glimpses of its inner machinery that readers might at least say “I
see.” The glimpses, as such, will involve three different aspects of the
Turing machine program: the next state, the symbol to be written on the
tape, and which way to move the read/write head.

Suppose we are given just cne “instructicn” frem a Turing machine
program. It may be written as a quintuple of symbols:

gy, 5,. 4, 5,. 4).

This instruction says that if the Turing machine happens to be in
state g, while scanning the symbol s, on its tape, it should next enter
state ¢,, replace the symbol s, by the symbol s, on the tape, then move
the read/write head in the direction d, which might be to the left, the
right, or remain stationary. Because time is of the essence in complexity
studies, we will keep track of it through the variable t.

The three actions of the machine prescribed by this instruction
involve entering a new state: writing a symbol and moving the read/write
head. Each action will be represented by a logical expression. The vari-
ables that enter the expression will not be as simple as the ones [ used
earlier in the satisfiahility problem. An intermediate step eases the tran-
sition.

If the machine is in state g, at time t and reads the symbeol s, at time ¢,
then at time ¢ + 1 it will be in state ¢,. | will rewrite this statement in log-
ical form as follows:

QL t) S(L,t) Rk t) > (2, t+1).



202 MATH IN THE HeoLos

There are three logical variables in this expression. The variable Q,
subscripted in effect by number pairs such as (1, ) represents the behav-
ior of the Turing machine’s states. If the machine is in state 1 at time ¢
then Q(1, t) must be true and not otherwise. Similarly, 5(1, t) is true if
the machine happens to be reading symbol s, on its tape at time ¢, while
R{k, t) is true if the machine’s read/write head is positioned over the kth
square of the tape at time ¢.

The expression is written as an implication, as symbolized by the
arrow. If @(1, t) and S(1, t) and R(k, t) are all true, then Q(2, t + 1) also
must be true. To cast the expression in the right logical form, [ will get
rid of the implication arrow using the fact that A — B can always be
replaced by the logically equivalent expression A’ + B—that is, “not-A
or B.” The expression above therefore becomes

[QC1,6)-S(1,6) - R(k, )"+ Q(2, ¢+ 1)
or

QUL O +STL ) +R (R +Q2,t+1),

which is clearly a clause of the sort that appears in the satisfiability prob-
lem. The literals look different because the variables have been indexed,
as in the expression (1, t).

Similarly, we may express the idea that if the machine is in state g,
and reads symbol s , it will write a new symbol, s,, as follows:

QUL &) - S(L,t) Rk, t) > S(2,t+ 1).
Again, this becomes the sum
QL ) +S(L, 1)+ R(k, 1) +5(2, t +1).

Finally, the same thing is done for the third kind of action, moving
the read/write head. Theretore the entire Turing machine program can be
written as a lengthy product of such sums. No matter which instance of
the problem we thus encode in the logical expression, the length of the
encoded program depends mainly on the extent or range of the time vari-
able t. How big will ¢ get? This will be the time it takes the checking com-
ponent of the nondeterministic algorithm to determine that a guess is
correct. Because problem A came from the class NP, there is a polynomial
p(n) that acts as an upper limit on the time ¢ that the algorithm takes to
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solve the instance of A. Here n is the length of the instance. This num-
ber also limits the number of tape squares that can be visited by the
Turing machine that does the checking, so the total length of the clause
system produced by Cook’s generic transformation cannot exceed the
product of p(n) with itself, namely on the order of p*(n) steps.

Suffice it to say that the instance of satisfiability that is produced by
Coolds transformation when applied to an instance of problem A will
have a satisfying assignment if and only if the instance of problem A has
a solution for the question being asked.

The significance of Cook’s theorem goes beyond the question of
whether efficient algorithms can be found for this problem or that one.
The theorem has given us a glimpse of a new kind of mathematics, in my
opinion, one that we may see more of in the new millennium. It has often
happened in the history of mathematics that two problems originally
thought of as quite different turn out to be the same or at least equivalent.
There is a way of looking at the first problem that males you realize that
you're really looking at a disguised version of the second problem. The
“way of looking” at it may amount to a transformation of one problem
into another, and in this sense, Cook’s theorem points the way.

IS THERE A WAY AROUND IT?

A number of proposals for new ways to compute have been publicized in
recent years. DNA computing and quantum computing, in particular,
have been touted as the solutions to our computing bottlenecks.

In DNA computing, a problem is encoded in a strand of DNA, and
potential solutions are allowed to proliferate within a chemical broth
seething with genetic molecules. Such computers are thought by some
researchers to have the potential to squeeze through the big-O bottleneck
because so many potential solutions can be considered simultaneously,
in effect, that discovering a solution that works should take next to no
time at all. For example, one strand of DNA might represent an instance
of the traveling-salesman problem, while others might represent poten-
tial minimum-length tours. All the strands are replicated in the thou-
sands or even millions and, as the chances of a solution strand matching
a problem strand climb to near certainty, the presence of a solution is
detected chemically.



204 MATH IN THE HeoLos

In essence, the DNA is a vast parallel computer in which many
processes can go on concurrently. It can be represented by a more tradi-
tional parallel computer in which there are k processars that, when suit-
ably programmed, can operate in parallel. What effect does the presence
of k processors have? It reduces the complexity of an algorithm by a fac-
tor of k. Unfortunately, k is fixed for the machine in question, and if the
algorithm running on our hypothetical machine runs in time that is
bounded by a polynomial p(n}, the net effect is to divide the polynomial
through by k. As far as complexity theory goes, this changes nothing. As
you may recall, all constant factors and terms were ignored in evolving
the big-O notation. If you divide a quadratic polynomial by 1,736, you
still get a quadratic polynomial when the dust settles.

The fact that each potential solution molecule can contact only a lim-
ited number of strands of problem DNA in the computer broth means
that the degree of parallelism is limited for this kind of computer, just as
itis for a standard parallel processor. This remains true even if there are
billions of strands of each potential solution and problem instance. After
all, a broth of fixed volume will contain a finite number of molecules,
no matter how many. The number of potential encounters is therefore
still limited, on average, by the number of copies of potential solution
strands.

It successful, DNA computers may well speed up the search for
solutions in smaller examples of the traveling-salesman problem, for
instance, but it will yield this advantage only to the extent of extending
the range of our computation to a handful of additional cities.
Exponential is exponential!

The prospect for quantum computing is harder to evaluate. For one
thing, there are several proposals extant at this time. The basic idea
involves the infamous “collapse of the wave function” (see chapter 7). If
a complex quantum system is in a premeasurement state, it may be
thought of as the superimposition of a myriad of states. For example,
1,000 photons on their way to a pelarization detector may be viewed as
the superimposition of

21,000

states of polarization, two for each photon. Each combination of states
has an exceedingly tiny but positive probability of manifesting.
The idea is to set up the measurement apparatus in a way that
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encourages the appearance of certain combinations of states while
excluding others. While it may be too early to tell how effective this idea
will be, is it too early to ask whether such quantum devices will amount
to analog computers?

An analog computer operates by a principle of analogy. For example,
suppose [ want to solve the so-called minimum Steiner tree problem:
Given a finite number of points in the plane, find a tree structure that (a)
contains all the points and (b} has minimum overall length. The follow-
ing figure illustrates a solution to the problem obtained by means of an
analog “computer” I once built. It consists of two parallel sheets of
Plexiglas with rubber-tipped pegs between the sheets. The arrangement

of pegs represents the given problem instance.

A soap solution to the minimum Steiner tree problem
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Simply dip the apparatus in a soap solution and draw it out vertically.
A soap film will automatically appear, and its configuration will resem-
ble a minimum Steiner tree. In many cases it will actually be a minimum
Steiner tree but, alas, in other cases the minimum arrived at by the scap
film will be a local minimum and not a global one. In other words, given
that that particular way of joining up the points {pegs) by lines (sheets
of soap film} may be minimal for that particular geometry, there may be
another geometry altogether that not only has a shorter overall length
but also is not achievable by dipping the apparatus, no matter at which
angle it is withdrawn from the bath.

Should it surprise us that the minimum Steiner tree problem happens
to be NP complete?

Unless and until we stumble upon a completely new paradigm for
what it means to compute, many of our more important problems will be
solved only by forcing them through the big-O hottleneck. The bottle-
neck, like the other barriers to knowledge or action in this book, chal-
lenges us to the very limits of our competence. Will we ever break
through? Don’t bet on it.
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