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PREFACE TO THE FIRST EDITION

In the preface to Part I of these lectures (Arithmetic, Algebra, Analysis)
I expressed a doubt as to whether Part IT, devoted to geometry, could appear
very soon. Nevertheless it has been possible to complete it, thanks to the
diligence of Mr. Hellinger.

Concerning the origin and purpose of this series of lectures I have nothing
especial to add to what was said in the foreword to Part I. However, a word
seems necessary concerning the new form which this second part has as-
sumed.

This form is, in fact, quite unlike that of Part I. I made up my mind to
give, above all, a comprehensive view of the field of geometry, of such a range
as I should wish every teacher in a higher school to have; the discussions
about geometric imstruction were pushed into the background and were
placed in connected form at the end, insofar as there was room.

The choice of this new order was motivated partly by the desire to avoid
a stereotyped form. There were, however, weightier and deeper reasons. In
geometry we possess no unified textbooks corresponding to the general level
of the science, such as exist in algebra and analysis, thanks to the model
French Cours. We find, rather, a single page here, another there, of an ex-
tensive subject, just as it has been developed by one or another group of
investigators. In contrast to this, it seemed to be demanded by the ped-
agogic and the general scientific purpose which I am pursuing that I attempt
a more unified presentation.

I close with the wish that the two complementary parts of my Elementary
Mathematics from an Advanced Standpoint which are herewith completed
may find the same friendly reception in the teaching world as the lectures on
the organization of mathematical instruction by Mr. Schimmack and my-
self, which appeared last year.

Gottingen, Christmas, 1908

Klein

PREFACE TO THE THIRD EDITION

In accord with the comprehensive plan for the new edition of my mimeo-
graphed lectures, which I developed in the preface to the third edition of the
first volume, the text and presentation of this, the second volume, have re-
mained unaltered, except for small changes in detail and a few insertions.t

1 Newly added remarks are indicated by square brackets.
A4



vi Translators’ Preface

The two supplements, which concern literature of a scientific and pedagogic
character which was not considered in the original text, were prepared by
Mr. Seyfarth after repeated conferences with me. He assumed again the
major portion of the burden entailed by the publication. Messrs. Hellinger,
Vermeil, and Walther assisted him in the proof reading. Mr. Vermeil under-
took the preparation of the two indexes. I feel under obligation to these
gentlemen, and also to the firm of Julius Springer, which showed on all occa-
sions a willing spirit of accommodation.
Gottingen, May, 1925

Klein

TRANSLATORS’ PREFACE

The favorable reception given to the English translation of volume one of
Klein’s three-volume work entitled Elementary Mathematics from an Ad-
vanced Standpoint seems to justify the appearance of the present book, which
is a translation of volume two. Professor Courant of New York University,
who, while he was a professor at Gottingen, suggested the English transla-
tion of Klein’s books, has been generously helpful in smoothing the way for
the printing of volume two in the United States.

The Translators
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ELEMENTARY MATHEMATICS FROM AN
ADVANCED STANDPOINT—GEOMETRY

INTRODUCTION

Gentlemen! The course of lectures which I now begin will be an immediate
continuation of, and a supplement to, my course of last Winter.! My pur-
pose now, as it was then, is to gather together all the mathematics that you
studied during your student years, insofar as this could be of interest for
the future teacher, and, in particular, to show its bearing in the business of
school instruction. I carried out this plan, during the winter semester, for
Arithmetic, Algebra, and Analysis. During the current semester, attention
will be given to geometry, which was then left to one side. In this course,
comprehension of our considerations will be independent of a knowledge of
the preceding course of lectures. Moreover, I shall give the whole a some-
what different tone: In the foreground I shall place, let me say, the encyclo-
pedic ideal—you will be offered a survey of the entire field of geomeltry into
which you can arrange, as into a rigid frame, all the separate items of knowl-
edge which you have acquired in the course of your study, in order to have
them at hand when occasion to use them arises. Only afterward shall I
emphasize that interest in mathematical instruction which was always my
starting point last winter.

I am glad to refer to a vacation course for teachers of mathematics and
physics which was given here in Gottingen during the Easter vacation in
1908. Init Igave an account of my winter lectures. In connection with this,
and also with the address of Professor Behrendsen of the local gymnasium,
there arose an interesting and stimulating discussion concerning the reor-
ganization of school instruction in arithmetic, algebra, and analysis, and
more particularly about the introduction of differential and integral calculus
into the schools.? Those who took part showed an extremely gratifying
interest in these questions and, in general, in our efforts to bring the uni-
versity into living touch with the schools. I hope that my present lectures
also may exert an influence in this direction. May they contribute their part

1{Appeared as Part I of these lectures on Elementary Mathematics from an Advanced
Standpoint, Berlin, 1924, 3rd edition. The quotation “Part 1” refers to the third edition.]
2 See the report by R. Schimmack, Ueber die Gestaltung des mathematischen Unierrichis
im Sinne der neueren Reformideen, Zeitschrift fiir mathematischen und naturwissenschaft-
lichen Unterricht, vol. 39, pp. 513-527, 1908 (also printed separately, Leipzig, 1908).
1



2 Introduction

toward the elimination of the old complaint which we have had to hear
continually—and often justly-—from the schools: University instruction
provides, indeed, much of a special nature, but it leaves the beginning teacher
entirely without orientation as to many important general things which he
could really use later. _

Concerning now the material of these lectures, let me say that, as in the
preceding course, I shall now and then have to presuppose knowledge of im-
portant theorems from all of the fields of mathematics which you have
studied, in order to lay emphasis upon a general survey of the whole. To be
sure, I shall always try to assist your memory by brief statements, so that
you can easily orient yourself in the literature. On the other hand, I shall
draw attention, more than is usually done, as I did in Part I, to the historical
development of the science, to the accomplishments of its great pioneers. I
hope, by discussions of this sort, to further, as I like to say, your general
mathematical culture: alongside of knowledge of details, as these are supplied
by the special lectures, there should be a grasp of subject-matter and of
historical relationship.

Allow me to make a last general remark, in order to avoid a misunder-
standing which might arise from the nominal separation of this “geometric”
part of my lectures from the first arithmetic part. In spite of this separation,
T advocate here, as always in such general lectures, a tendency which T like
best to designate by the phrase “ fusion of arithmetic and geometry’—mean-
ing by arithmetic, as is usual in the schools, the field which includes not
merely the theory of integers, but also the whole of algebra and analysis.
Some are inclined, especially in Italy, to use the word “fusion’ as a catch-
word for efforts which are restricted to geometry. In fact it has long been
the custom in the schools as well as the university, first to study geometry of
the plane and then, entirely separated from it, the geometry of space. On
this account, space geometry is unfortunately often slighted, and the noble
faculty of space perception, which we possess originally, is stunted. In con-
trast to this, the “fusionists” wish to treat the plane and space together,
in order not to restrict our thinking artificially to two dimensions. This
endeavor also meets my approval, but T am thinking, at the same time, of
a still more far-reaching fusion. Last semester I endeavored always to en-
liven the abstract discussions of arithmetic, algebra, and analysis by means
of figures and graphic methods, which bring the things nearer to the in-
dividual and often make clear to him, for the first time, why he should be
interested in them. Similarly, I shall now, from the very beginning, accom-
pany space perception, which, of course, will hold first place, with analytic
formulas, which facilitate in the highest degree the precise formulation of
geometric facts.

You will most easily see what I mean if T turn at once to our subject and
consider first a series of simple geometric fundamental forms.



PART ONE
THE SIMPLEST GEOMETRIC MANIFOLDS

I. LINE-SEGMENT, AREA, VOLUME
AS RELATIVE MAGNITUDES

You will notice by this chapter heading that I am following the intention
announced above, of examining simultaneously the corresponding magni-
tudes on the straight line, in the plane, and in space. At the same time,
however, we shall take into account the principle of fusion by making use
at once of the rectangular system of coordinates for the purpose of analytic
formulation.

If we have a line-segment, let us think of it as laid upon the x axis. If the
abscissas of its endpoints are x; and xs, its length is x; — x,, and we may
write this difference in the form of the determinant
1

(;,2)=x1—xz=i

X 1’
le

Similarly, the area of a friangle in the xy plane which is formed by the
three points 1, 2, 3, with coordinates (x1, y1), (x3, ¥2), (%3, ¥3), Will be

. 1 X1 N 1
(1, 2, 3) = 1—.5 X2 Yo 1]-
X3 Y3 1

Finally, we have, for the volume of the tetrahedron made by the four
points 1, 2, 3, 4, with coordinates (x1, y1, 21), * * *, (¥4, ¥4, 24), the formula

X1 Y1 %1 1

_ 1 X2 Y2 29 1 .
(1!2)3)4) - 1.2.3{%3 ¥z 23 1
X4 Y4 24 1

We say ordinarily that the length, or, as the case may be, the area or the
volume, is equal to the absolute value of these several magnitudes, whereas,
actually, our formulas furnish, over and above that, a definite sign, which
depends upon the order in which the points are taken. We shall make it a
fundamental rule always to take into account in geometry the signs which
the analytic formulas supply. We must accordingly inquire as to the geo-
metric significance of the sign in these determinations of content.

It is important, therefore, how we choose the system of rectangular coor-

3



4 The Simplest Geometric Manifolds

dinates. Let us, then, at the outset, adopt a convention, which is, of course,
arbitrary, but which must be binding in all cases. In the case of one dimen-
ston, we shall think of the positive x axis as always pointing to the right. In
the plane, the positive x axis will be directed toward the right, the positive
y axis upward (see Fig. 1). If we were to let the y axis point downward, we
should have an essentially different coordinate system, one which would be
a reflection of the first and not superimposable upon it by mere motion in

4 » T

Y

Y

Fic. 1 Frc. 2

the plane, i.e., without going out into space. Finally, the coordinate system
in space will be obtained from the one in the plane by adding to the latter a
z axis directed positively to the fromt (see Fig. 2). A choice of the z axis
pointing positively to the rear would give, again, an essentially different
coordinate system, one which could not be made to coincide with ours by
any movement in space.!

If we always adhere to these conventions, we shall find the interpretation
of our signs in simple geometric properties of the succession of points as these
are determined by their numbering.

For the segment (1, 2) this property is obvious: The expression x, — x2
Sor its length is positive or negative according as point 1 lies to the right or to
the left of point 2.

In the case of the iriangle, we obtain: The formula for area has the positive
or the negative sign according as a circuit about the triangle from the vertex 1 to

3 via 2 turns out to be counterclockwise or the reverse.

4 We shall prove this by taking, first, a conveniently

2 placed special triangle, evaluating the determinant
which expresses its area, and then, through con-

.{) sideration of continuity, passing to the general case.

We consider that triangle which has, as its first

|3 - 1 vertex, the unit point on the x axis (x1 = 1,y; = 0),
Fc. 3 as its second, the unit point on the y axis (x, = 0,

y2=1), and as its third the origin (x; = 0,

ys = 0). According to our agreement about the system of coordinates,

! These two systems are distinguished as “right-handed” and “left-handed” because
they correspond respectively to the position of the first three fingers of the right and left
hand. (See Part I, p. 64.)



Line-Segment, Area, Volume 5

we must traverse the boundary of this triangle in the counterclockwise
sense (see Fig. 3), and our formula for its area yields the positive value:

101
1lo 1 1|=+41
00 1

Now we can bring the vertices of this triangle, by continuous deformation,
into coincidence with those of any other triangle traversed in the same sense,
and we can do this in such a way that the three vertices of the triangle shall
at no time be collinear. In this process, our determinant changes value con-
tinuously, and since it vanishes only when the points 1, 2, 3 are collinear,
it must always remain positive. This establishes the fact that the area of
any triangle whose boundary is traversed in counterclockwise sense is posi-
tive. If we interchange two vertices of the original triangle, we see at once
that every triangle which is traversed in clockwise sense has negative area.

We can now treat the fefrakedron in analogous fashion. We start, again,
with a conveniently placed tetrahedron. As first, second, and third vertices,
we choose, in order, the unit points on the x, ¥, and 2z axes, and as fourth
vertex, the origin. Its volume is therefore

1001
010 1| .,
o 01 1=
000 1

It follows, as before, that every tetrahedron which can be obtained from
this one by continuous deformation during which the four vertices are never
complanar (i.e., during which the determinant never vanishes), has positive
volume. But one can characterize all these tetrahedrons by the sense in
which the one face (2, 3, 4) is traversed when it is looked at from the vertex 1.
In this way we obtain the result: The volume
of the tetrakedron (1, 2, 3, 4) which our formula
yields is positive if the vertices 2, 3, 4, looked ot
from vertex 1, follow one another in counterclock-
wise sense; otherwise it is negative.

We have thus, from our analytic formulas,
actually deduced geometric rules which permit
us to assign a definite sign to any segment, any
triangle, any tetrahedron, if the vertices are
given in a definite order. Great advantages are Fic. 4
thus gained over the ordinary elementary ge-
ometry which considers length and contents asabsolute magnitudes. Indeed,
we can mention general simple theorems where elementary geometry must
distinguish numerous cases according to the appearance of the figure.

8

Y




6 The Simplest Geometric Manifolds

Let me begin with a very primitive example, the ratio of the segments made
by three points on a line, say the x axis. Denoting the three points by 1, 2,
and 4 (see Fig. 5), as is convenient in view of what is to follow, we see that
the ratio in question will be given by the formula § = (x; — %3) /(% — %4),
and it is clear that this quotient is positive or negative according as the point
1 Kes outside or inside the segment (2, 4). If, as is customary in elementary
presentations, we give only the absolute value

S5>0 — |S| =12 — x|/l 1 — 24|, we must always

1 2 4 either refer to the figure, or state in words
S<0 % 1 4~ whether we have in mind an inside or an out-
Fre. 5 side point, which is, of course, more compli-

cated. The introduction of the sign thus takes
account of the different possible orders of the points on the line, a fact to which
we shall often have to refer in the course of these lectures.
If we now add a fourth point 3, we can set up the cross ratio of the four
points, that is,
DB % B X (w1 — x2) (s — x4)
X1 — X4 X3 — x4 (21— x0) (X3 — x2)

This expression has again a definite sign, and we see at once that D < 0
when the pair of points 1 and 3, on the one hand, and the pair 2 and 4, on
the other hand, mutually separate one another; and that D > 0 in the op-
posite case, i.e., when 1 and 3 lie both outside or both inside the segment
2, 4. (See Figs. 6 and 7.) Thus there are always two essentially different
1 2 3 4 2
D<0 D>0
Fic. 6 F1c. 7

' + L
+ + 1

——

arrangements which yield the same absolute value D. If this absolute value
alone is given, we must give the arrangement also. For example, if we de-
fine harmonic points by the equation D = 1, as is still the custom, unfor-
tunately, in the schools, one must include in the definition the demand that
the two pairs of points separate each other, whereas in our plan the one
statement D = —1 is sufficlent. This practice of taking account of the
sign is especially useful in projective geometry, in which, as you know, the
cross ratio plays a leading role. There we have the familiar theorem that
four points on a line have the same cross ratio as the four points
which arise when we project the given points from a center upon an-
other line (perspective). If we now consider the cross ratio as a relative
magnitude, affected by a sign, the converse of this theorem holds without
exception: If each of two sets of four points lies on one of two lines, and
if they have the same cross ratio, they can be derived one from the other by
projection, either single or repeated. For example, in Fig. 8, the sets 1, 2, 3,
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4,and 1", 2", 3", 4" are in perspective to 1/, 2/, 3’, 4’ if we use the centers
P and P'. If, however, we know only the absolute value of D, the corre-

sponding theorem does not hold in this simple form; we should have to
make a special assumption about the arrangement of the points.

We have a more fruitful field if we consider applications of our triangle
formula. Let us first select any point 0 in the interior of a triangle (1, 2, 3)
and let us join O to each of the vertices (see Fig. 9). Then the sum of the
areas of the three partial triangles, thought of in the elementary sense as
absolute magnitudes, is equal to the area of the original triangle. Thus we
may write | (1,2,3){=1(0,2,3)|+1](0,3,1)|+1](0,1,2)|. The fig-
ure shows that, in all the triangles, the order of the vertices, as they appear
in the above equation, is counterclockwise. Hence the areas (1, 2, 3},
(0, 2, 3), (0, 3, 1), (0, 1, 2), are all positive in the sense of our general defi-
nition, so that we may write our formula in the form

(1’ 2: 3) = (0: 2: 3) + (01 3: 1) + (0; 1: 2)

Now I assert that the same formula also holds when O lies outside the tri-
angle, and, further, when 0, 1, 2, 3 are any four points whatever in the plane.
If we take Fig. 10, for example, we see that the boundaries of (0, 2, 3) and

2 - s

2 %
X
SR

NS |
:‘.|||I||| mllllii:%

Fic. 9 Frc. 10

(0, 3, 1) are traversed in counterclockwise sense, but that of (0, 1, 2) is
traversed in the clockwise sense, so that our formula for the absolute areas
would give | (1,2,3) | =[(0,2,3) |+ (0,3, 1)| — | (0, 1,2)|. The fig-
ure verifies the correctness of this equation.

We shall give a general proof of our theorem by means of the analytic



8 The Simplest Geometric Manifolds

definition, whereby we shall recognize in our formula a well known theorem
of the theory of determinants. For convenience, let us take the point O as
our origin x = 0, y = 0, which is obviously no essential specialization, and
let us substitute for each of the four triangle areas the appropriate deter-
minant. Then, omitting everywhere the factor 3, we are to prove that, for
arbitrary xy, - - -, ¥s, the following relation holds:

ow oy 1] Jo 0o 1 0 0 1 0 0 1
X Yo 1l=1]% 92 1]+ |xs Y3 114+ % Y1 1.
X3 y3 1 X3 V3 1 X1 N 1 X2 Y2 1

The value of each of the determinants on the right will remain unchanged if
we replace the second and third 1 of the last column by zeros, since these ele-
ments enter only those minors which are multiplied by zero when we develop
according to the top row. If we now make a cyclic interchange of rows in the
last two determinants, which is permissible in determinants of the third, or,
in fact, of any odd order, we can write our equation in the following form:

oy 1 0 0 1 1y O 1 oy O
%2 y2 1|=1|x2 3 O(+|0 0 1[4 |x y2 Of-
%3 ys 1 %3 ys3 O %3 ys O 0 0 1

But this is an identity, for on the right there are only the minors of the last
column of the first determinant, so that we have merely the well known
development of this determinant according to the elements of a column.
Thus, at one stroke, we have proved our theorem for all possible positions
of the four points.

We can generalize this formula so that it will give the area of any polygon.
Imagine that you had, say, the following problem in surveying: To deter-
mine the area of a rectilinear field after having measured the coordinates of

the corners 1,2, - - -, » — 1, n (see Fig. 11). One

6 4 who is not accustomed to operate with signs
W would then sketch the shape of the polygon,
b divide it up into triangles by drawing diagonals,
7 ( perhaps, and then according to the particular
i 4 shape of the field, paying especial regard to
whether some of the angles are re-entrant, find

the area as the sum or difference of the areas of

9 the partial triangles. However, we can give at

% once a general formula which will give the cor-

Frc. 11 rect result quite mechanically without any neces-

sity of looking at the figure: If O is any point in

the plane, say the origin, then the area of our polygon, the boundary being
traversed in the sense 1, 2, - - -, », will be

(1)2’37""”)::(0)1;2)+(012y3)+"'+(0’”_1;”)'!_(0’”71),
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whereby each triangle is to be taken with the sign determined by the sense
in which the circuit about it is made. The formula yields the area of the poly-
gon positively or negatively according as the circuit of the polygon in the sense
1, 2, - - -, n is counterclockwise or not. It will suffice to write this formula.
You yourselves can easily supply the proof.

Instead of pursuing this example further, I prefer to take up some es-
pecially interesting cases, which, to be sure, could not arise in surveying,
namely, cases of polygons which overlap them-
selves as in the adjoining quadrilateral (see
Fig. 12). If we wish here to talk at all about
definite area, it can only be the value which
our formula yields. Let us consider what this
value means geometrically. At the outset we
notice that this must be independent of the
particular location of the point 0. Let us
place O, as conveniently as possible, at the
point where the overlappings cross. Then the triangles (0, 1, 2) and (0, 3, 4)
will be zero and there remains:

1,2,3,4 =(0,2,3) + (0,4,1).

Fic. 12

The first triangle has negative area, the second positive area; hence the
area of our overlapping quadrilateral, if we prescribe a circuit in the sense
(1, 2, 3, 4), is equal to the absolute value of the area of the part (0, 4, 1)
that was traversed in counterclockwise sense, diminished by that of the part

(0, 2, 3) that was traversed in clockwise sense.
As a second example, let us examine the

adjoined star pentagon (see Fig. 13). If we
take O in the middle part, all the partial tri-
angles in the sum

©0,1,2)+(0,2,3) +---+(0,5,1)

19 3
T

are traversed in the positive sense; their sum
covers the five-cornered central part of the
figure twice, and each of the five tips once.
If we again consider a positive circuit around
our polygon (1, 2, 3, 4, 5, 1), we see that every
part of the boundary is traversed counter-
clockwise and that, in particular, we have passed twice around the
portion of the polygon which is doubly counted in the area, but only once
around the remaining portions.

From these two examples we can infer the following general rule: For any
rectilinear polygon with arbitrary overlappings, our formula yields, as lotal
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area, the algebraic sum of the separate partial areas bounded by the polygonal
line, whereby each of these partial areas is counted as often as we pass around
ils boundary when the circuit (1, 2, 3, - - -, n, 1) is made once, this counting to
be made positively or negatively according as we pass around the partial area
in counterclockwise or clockwise sense. You will have no difficulty in estab-
lishing the truth of this general theorem.

Let us now pass from polygons to areas with curvilinear boundaries. We
shall consider any closed curve whatever, which may cross itself any number
of times. We assign a definite sense of direction along this curve and inquire

as to the area bounded by the curve. We find

this area in a natural manner if we approxi-

mate the curve by polygons having an in-

creasing number of shorter and shorter sides

(see Fig. 14) and calculate the limit of the

areas of these polygons, found in the way we
PP have just described. If

Fic. 14 P(x,y) and Pi(x+ dx, vy + dy)

™

are two neighboring vertices of such an approximating polygon, then its
area consists of a sum of elementary triangles (OPP,), that is of summands:

0 0 1
3| y 1| = 3(xdy — ydx).
x+dx y4+dy 1

In the limit, this sum becomes the line integral
3 fway - yan

taken along the curve, which, therefore, defines the area bounded by the
curve. If we wish to interpret this definition geometrically, we can apply
to the new case the result just given for polygons: Eack partial area enclosed
by the curve is counted positively as many times as it is encircled in counter-
clockwise sense and negatively as many times as it is encircled in clockwise sense

@

Fic. 15 F1c. 16 Fic. 17

while the given curve is traversed once in the prescribed semse. For a simple
curve, such as that of Fig. 14, the integral yields, accordingly, the exact
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area bounded by the curve, taken positively. In Fig. 15, the outer part is
counted once positively, the inner part twice; in Fig. 16, the left-hand part
is negative, while the right-hand part is positive, so that, altogether, a
negative area results; in Fig. 17, one part is not counted at all, since it is
encircled once positively and once negatively. Of course, curves can arise
which, in this sense, bound a zero area. We obtain such a curve if we take
the curve in Fig. 16 symmetric with respect to the double point. Such a
case presents nothing absurd when we recall that our determination of
area rests upon a convenient assumption.

I shall now show you how appropriate these definitions are by consider-
ing Amsler’s Polar Planimeter. This
highly ingenious and very useful ap- /\
paratus, constructed in 1854 by the A l A
mechanic Jacob Amsler of Schafi- y '
hausen, effects the determination of
areas precisely in the sense of our dis-
cussion above. Let me consider, first,
the theoretical basis of the construction.

We think of a rod 414 (see Fig. 18) of length ! moved in the plane in
such a way that 4; and 4, describe separate closed curves and the rod itself
returns to its initial position. We wish to find the area which the rod sweeps
out, counting the several parts of this area as positive or negative, according
as they are swept out in one sense or in the other. To this end, we replace
the continuous motion of the rod by a succession of arbitrarily small ele-
mentary motions from one position 1 2 to a neighboring one 1’ 2/, and we
use the limit process as we do in every integration. The actual area swept
out by the rod will be the limit of the sum of the “elementary quadrilaterals”
(1, V', 2, 2) formed by these elementary
motions, and it is easy to see that the sense
of the motion of the rod is taken into ac-
count properlyif we give to each elementary
quadrilateral the sign corresponding to a
2-‘;; 1 s circuit in the sense 1, 1/, 2', 2. Now we

can resolve each elementary motion of the
rod 414. into three steps (see Fig. 19):

(1) A translation in the direction of the rod by an amount ds.

(2) A translation normal to its direction by an amount dp.

(3) A rotation about the end 4, through an angle d¢.

In this way the areas 0 - ds, [ - dp, (12/2) d¢, respectively, will be swept
out. We can replace the area of the elementary quadrilateral by the sum
of these three areas, since the error thus made would be an infinitesimal of
higher order and would disappear in the limit process (which is, indeed, a
simple process of integration). It is essential to note that this sum

Fic. 18

FiG. 19
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l2
L-dp+35-dd

agrees in sign with the area of the quadrilateral (1, 1’, 2’, 2), if we measure
d¢ positively in counterclockwise sense and dp positively for translation
toward the side of increasing ¢.

Integration along the path of motion yields for the area swept out by

A,A, the value
2
J=lfdp—|—%fd¢.

The integral f'd¢ represents the entire angle through which the rod turns
with respect to its initial position. Since the rod returns to its initial position,
Jd¢ = 0, unless the rod has made a complete revolution, so that the area is

(1) J=lfdp.

If, however, the rod makes one or more complete turns before returning
to its original position, which is possible with suitably chosen paths for
A, and 4., then f'd¢ is a multiple of 27, and we must add to the right-
" hand side + =72 for each complete turn
. /’/’7"13 ., in the positive sense and — x/? for each
2 Py / \11, one in the negative sense. For the sake
2 / 11 of simplicity we shall pass over this

slight complication.
Now we can determine the area J
in a somewhat different way (see Fig.
Fie. 20 20). In the succession of elementary
motions let the rod take, one after
another, the positions 12, 1" 2/, 1" 2”7, . . ., Then J will be the sum of the

elementary quadrilaterals

J — (1’ 11, 21, 2) + (1’, 1H’ 211, 2/) + (1”, 1"', 2[II’ 21’) + SR

or, more exactly, the integral which represents the limit of this sum, whereby
each quadrilateral is to be traversed in the sense here indicated, just as
before. Using our earlier polygon formula, we now have, where O is the
arbitrarily chosen origin of coordinates,

J=01, 1)+ 0,1, 22)+(0,2, 2)+(0,2, 1)
+ (0’ 1’, lll) + (0’ 1H’ 2") + (0, 2!/, 2/ ) + (0’ 2l’ 1[ )
+ (0’ 1/” 1///) _l_ (0’ llll’ 2’[’) + (0’ 2’/” 2”) _l_ (0, 2”, 1”)

The second triangle here in each row is the same as the fourth triangle in
the next following row, but traversed in the opposite sense,
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[(0: 1” 2') = _(0: 2’7 1,)7 (0) 1”, 2") = -—(0; 2”) 1")’ -t ']:

so that these summands all cancel each other. Moreover, since the series
of elementary quadrilaterals is closed, this summand (0, 1, 2) will appear
in the last row and will cancel (0, 2, 1) of the first row. There will remain
only the first and third triangles of each row. These first triangles, however,
by what precedes, add up to the polygon (1, 1/, 1"/, - - -), and this, in the
limit, is the area F of the curve described by the end A, of the rod. Similarly,
the third triangles, if we change the sign everywhere, add up to
(2,2,2",-.-), which, in the limit, is the area F; of the curve described by A.,.
Thus we have, finally,

@) J=F,— F,.

Obviously both curves can cross each other arbitrarily, provided we define
F, and F, with careful regard to our sign rule.

The geometric theory of the planimeter is contained in the two formulas
(1) and (2). If, namely, we allow 4, to move along a curve of known area
Fs, and a tracing point at 4, to glide along the boundary of F1, we can at
once determine the value of

@) F1=F2+lfdp

if we have a device which allows us to measure f'dp. Amsler created such
a device—and that is the second part of his mechanical invention—by fixing
a roller upon the rod A4;4, as axis, which rolls upon the paper with the
motion of the rod. Let its distance from A4, be X and its radius p (see Fig.
21). The angle ¢, through which the roller turns with the motion of the
rod, will be the sum of the angles dy that

arise in the elementary motions. Each d¢ 4 g A,
X p

can be thought of as made up of the rota-
tions di, difs, dyfs that come from the three
simple movements of the rod into which we
resolved each of its elementary motions (p. 11). During the translation (1),
the roller does not turn, so that dy; = 0; during the translation (2) of 4142
normal.to itself, in amount dp, the roller moves over the paper in amount
dp = pdis, so that dy, = dp/p; during the rotation (3) about 4,, through
the angle d¢, the roller rim moves in amount Ad¢ = pdy;, so that
dys = (\/p) dp. We have then, finally,

1 A
dy = ;'dP + ;d¢>-

Frc. 21

If we integrate over the entire path of motion, we have S'd¢ = 0if 4:4,
returns to its original position without making a complete turn, and the
full turning angle of the Amsler roller will be
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3) = ‘1—) f dp.

If the rod, however, makes one or more complete rotations, then there will
appear appropriate multiples of 2r(A/p) on the right; but of this, again, we
we shall take no account.

Combining the formulas (2) and (3), we obtain finally the formula

Fi—Fy=1:p-¥;

that is, the difference between the two areas encircled by the two ends of the rod
is measured by the angle  through whick the roller turns.

In the making of the instrument, it is desirable to make Fs zero. Amsler
brings this about in an admirable way by attaching 4, to an arm which is
made to rotate about a fixed point M. (See Fig. 22.) Then 4, can move
only back and forth on the arm of a circle and can therefore enclose no area,
if we ignore the complicating possibility that 4, makes one or more com-
plete circuits about M. Because of this ““pole” M, the whole instrument is
often called a polar planimeter. The instrument is actually operated simply
by causing the point 4., provided with a marking pencil, to traverse the

4, boundary of the area one wishes to measure,
and by then reading the angle ¢ on the
A1 roller. We obtain thus the enclosed area
M Fiy=1:p-y. The constant of the instru-
ment Ip can be determined by measuring

Fic. 22 a known area, say a unit square.

I can show you here a picture of the polar planimeter (see Fig. 23). Of
course you must examine the instrument yourself, and manipulate it, if
you wish fully to understand it. Naturally, if the instrument is to function
reliably, it must be constructed in a manner more complicated than is im-
plied by the theoretical discussion. In this connection, let me add a few
words. The point M is carried by a heavy mass and is joined to 42 by a rod.

FiG. 23

The theoretically important rod 4,4,, which we talked about, is not the
second metal bar which you see on the instrument, but the ideal prolonga-
tion of the axis of the roller, which is parallel to that bar and which passes
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through the moving pencil point 4,. This sharp point is accompanied by a
parallel blunt peg to keep the point 4, from tearing the paper. The roller
carries a vernier for finer readings and a marker for recording complete
revolutions.

Instead of mentioning further details, I should like here to sound a general
warning against neglecting the actual practical demonstration when such in-
struments are considered in illustration of a theory. The pure mathemati-
cian is often too prone to do so. Such neglect is just as unjustifiably one-
sided as is the opposite extreme of the mechanician who, without taking an
interest in the theory, loses himself in details of construction. Applied mathe-
matics should supply here a bond of union. It should, in particular, take
into account that the theoretical formulation of the principle is never
exactly realized in the instrument: thus the joints of the apparatus will
always be somewhat loose; the roller will always slide somewhat instead
of only rolling; finally, the drawing paper is never a uniform plane, and
one is never able to guide the pencil point exactly along the curve. To
what extent such errors are important, to how many places, in consequence,
the result read off of the roller can be relied upon, are of course questions
of greatest importance in practice. To investigate such questions is the
province of applied mathematics.

In connection with this diagram, I shall consider the place of these lec-
tures with reference to two earlier courses of similar title, which appear
likewise in mimeographed form: Applications of Differential and Integral
Calculus to Geometry, a Revision of Principles [SS, 1901; prepared by
C. H. Miiller Y}, and Infroduction to Higher Geometry [WS 1892-93 and
SS 1893; prepared by Fr. Schilling ?. In the first one of these courses, there
appears in the foreground the difference just mentioned between abstract
and practical geometry. In fact we had, in that course, a seminar talk on
the sources of error in Amsler’s polar planimeter. In the other course, how-
ever, I developed somewhat thoroughly the theories of abstract geometry
to meet the needs of the specialist who desires, in the spirit of research of
today, to work independently in this field. In the present course, finally,
I want to do a third thing: I should like to set forth, so to speak, the ele-
mentary theory of geomeiry: those things which, without question, every pro-
spective teacher should know, and in particular, also, the things which are
of elementary importance for applications in physics and mechanics. I
shall be able to refer in this course only occasionally to things which belong
to the first two fields mentioned above.

Returning now to our general considerations about areas and volumes,

1 New printing, Leipzig, 1907. [Will appear shortly as vol. IIT of the present edition of
El tary Math tics.}

2Two parts. New printing, Leipzig, 1907. [Out of print. Concerning the plan for a
new edition, see the preface to vol. I, p. v.]
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1 shall give first a historical note. 1 wish to mention the man who first ap-
plied consistently the sign principle in geometry, the great geometrician
A. F. Mébius, of Leipzig. The book in which he took this important step
is a youthful work of the year 1827: The Barycentric Calculus.* 1t is one
of the works which are decidedly fundamental for the newer geometry.
The reading of his book is unusually pleasant, if only because of the beautiful
presentation. The title refers to the fact that M&bius proceeds from the
following considerations, which have to do with centers of gravity. At three
fixed points O1, Os, O3 of a plane are placed three masses m;, ms, ms which
may be positive or negative, as in the case of electric charges. Then the
center of gravity P is uniquely determined, and we can make it assume
any position in the plane by varying my, ms, and m;. Now the three masses
my, me, and ms are thought of as coordinates of P, so that P depends only
upon the ratios of these magnitudes. This is the first instance of the intro-
duction into geometry of what we now call #rilinear coordinates. So much
in explanation of the title of Mobius’ book. As to its very interesting con-
tents, we shall be concerned now mainly with §§ 17-20, where the principle
of the sign is applied in determining the area of a triangle or the volume of a
tetrahedron, and in which the definitions that T have mentioned are given.
04(my) I should remark also that Mobius, as an old man,
. extended these results in 1858 by a far-reaching
discovery, which was first published, however, in
oP 1865 in the paper entitled On the determination of the
volume of a polyhedron.? In this he proved, namely,
that there are polyhedrons to which we cannot in any
way assign ¢ volume, whereas we can, as we saw
earlier, define area for any plane polygon no matter in how complicated a
manner it overlaps itself. We shall now consider in detail these remarkable
phenomena.

Let us start from the formula established above for the volume of the
tetrahedron:

0,(m,) omy

Fic. 24

X1 M1 21

—1|% Y2 2
(1’273)4‘) € X3 Y3 23

X4 Y4 24

[ T N 'y
.

If we develop this determinant according to minors of the last column, this
amounts—as we saw earlier (p. 7 et seq.), in the case of the triangle,—to
resolving the tetrahedron into four others which have the faces of the given

! Leipzig, 1827 = Collected Works, vol. T (Leipzig, 1885), 633 pages.

% Berichte iiber die Verhandlungen der Koniglich Sichsischen Gesellschaft der Wissen-
schaften (Mathemathisch-physikalische Klasse), vol. 17 (1865), p. 31 = Collected
Works, vol. 2 (Leipzig, 1886), p. 473.
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tetrahedron as their bases and the origin as their common vertex. According
to the sign rule in the theory of determinants, we shall obtain, if we take the
cyclic order 1, 2, 3, 4, the following formula:

(1: 2, 3: 4) = (07 2; 3, 4) - (07 37 4‘; 1) + (07 41 17 2) - (0’ 1) 2: 3)

The reason why minus signs appear, whereds, with the triangle, only plus
signs occurred, is that determinants of even order change sign under cyclic
interchanges, while those of odd order do not. Of course we can get rid of
the minus signs by suitable interchanges of rows, but we maust then give up
the cyclic order. We can write, for example,

(1,2,3,4=1(0,2,34)+0,43,1)+(0,41,2 +,21,3).

In order to appreciate the law involved here, think of the tetrahedral
faces as made of paper and as folded down into the plane (2, 3, 4), whereby
the vertex 1 takes three different positions (see Fig. 25). Then the vertices
of each of the three faces appear, in the last formula, in an order which
corresponds, in Fig. 25, to a counterclockwise circuit about all the triangles.

We can obtain the same result for this space figure, of course, without
any folding down of the faces. To each of the six edges there correspond two
faces, and it is clear that, when the circuit is made |
about all the triangles in the order indicaled, each side

will be traversed omce in one semnse and once in the . '
other. By this law, which Mobius called the law of

edges, there is obviously set up a definite sense of 4 2
circuit for all the face triangles, as soon as one is

arbitrarily selected for one face triangle. Our for-

mula says now: 4 fetrahedron (1, 2, 3, 4) can be {
thought of as the sum of four tetrahedrons with the com- Fro. 35

smon first vertex O, provided that after choosing the cir-
cuit sense (2, 3, 4) for ome triangle we select the circuit sense for the other faces
according to Mobius’ law of edges.

Just as we defined the area of an arbitrary polygon earlier (p. 8), by re-
solving it into triangles and generalizing the triangle formula, so now we
shall try to pass from the result just obtained to a definition of the volume of
an arbitrary polyhedron. In the present case, however, we must not only
allow the sides of a single polygonal face of our polyhedron to cross each
other, but must also allow the faces to intersect in an arbitrary way. We
now select an arbitrary auxiliary point O, and, as a first step, we define
the volume of the pyramid which projects from O one of the polygonal faces
of the polyhedron.

For this purpose we must first choose the sense for the boundary of the
base. [Suppose it to be the face (1, 2, 3, 4, 5, 6) (Fig. 26) of the polyhedron.]
This polygon has a definite area, according to what precedes, and we shall
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set the volume of the pyramid equal to one-third of the product of its base
by its height, as in elementary geometry, and merely add a positive or a neg-
ative sign according as the circuit (1, 2, 3, 4, 5, 6), viewed from O, is counter-
clockwise or the reverse. We see easily that this definition includes, as a
special case, the earlier agreements as to the volume of the tetrahedron.
Moreover, we can deduce this definition from that special case if we replace
the polygon by its component triangles, so traversed that their sum will yield
4 its area, and then define the pyramid as the sum

1 of the tetrahedra which these triangles project.
In order to represent the polyhedron, in the gen-
6 eral case, as the sum of such partial pyramids, one
must assign a definite sense of circuit for eack of

2 3 its faces, and the guide for this selection must be

the law of edges, in view of what precedes: We

5 Fro. 26 choose arbitrarily the sense of circuit for one face, then

¢ continue the circuits so that each edge of two contig-

uous faces is traversed in opposite senses. 1f this process can be completed

for the entire polyhedral surface without contradiction, then the volume of

the polyhedron is determined as the sum of the volumes of the partial pyramids

into which the faces of the polyhedron, traversed in the sense indicated, project

Jrom an arbitrary point O. 1t is easy to see that this determination is unique
and independent of the position of O.

It is very remarkable, however, that this law of edges cannot be carried out
without comtradiction for every closed polyhedral surface; that is, there are
polyhedra for which every attempt to fix a sign fails, and to which we can-
not, therefore, assign a volume. This is the great discovery which M&bius
published in 1865. He discusses there, among others, the surface which was
later called the Mébius band. This surface is constructed by taking a long
narrow rectangle of paper A,B14.B; (see Fig. 27) and, after a half turn,
bringing the two ends together so that

A coincides with 4, and B; with B,. 41 B,
It is clear that the front and back faces
of the sheet are thus brought into con- g A,

nection, so that a surface is formed
that has only one side. We may de-
scribe it as follows: A painter who wished to paint the strip would find that
he needed twice as much paint as he had supposed from the length of the
strip; for after painting down the length of the strip, he would find himself
opposite the point of beginning and he would have to go around again to
reach the starting place.

Instead of this curved sheet, we can set up a polyhedral surface (not
closed) with plane parts of the same property, by dividing the original paper
rectangle into triangles and creasing it along their edges. To the strip of

Fre. 27
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triangles thus obtained it is not possible to apply the law of edges. At least five
triangles are required, and they should be arranged as in Fig. 28, where the
two half triangles, right and left, form one triangle (4, 5, 1) in the process
of folding. If we choose here (1, 2, 3) as the positive sense of circuit and

4 2 5
:
NN A
) 3 1
Fic. 28

continue to the left according to the law of edges, we obtain, in order, the
senses (3, 2,4), (3,4, 5), (5,4, 1), (5,1, 2), so that finally 12 is traversed
in the same sense as in (1, 2, 3), which contradicts the law of edges. Looked
at from above, the folded strip appears as a five-
cornered figure with the five sides 13,335, 52, 2 4,

4 1 as diagonals, as sketched in the adjoining figure
(Fig. 29). With this zone of triangles M&bius con- 3
structs a closed polyhedron by joining its free edges—
these five diagonals—by means of triangles with an
arbitrary point in space O, most suitably chosen
above the middle of the pentagon. In other words,
he sets up a five-sided pyramid with intersecting
faces. It is, of course, likewise impossible to apply the law of edges to this
closed polyhedron with ten triangular faces, so that we cannot talk about
its volume.

Another one-sided polyhedron, which is closed and simple in construction,
can be obtained easily in the following way from an octahedron ABCDEF
(see Fig. 30). Select four faces of the octahedron that are not consecutive,
that have, thus, a vertex but no edge in common (say AED, EBC, CFD,
ABF), and the three diagonal planes ABCD, EBFD, AECF. The hepta-
hedron ? so formed has the same edges as the octahedron, for in every edge
of the latter two contiguous faces of the heptahedron meet (namely, a face
and a diagonal-plane of the octahedron). The diagonals of the octahedron
are not to be considered as edges of this heptahedron since for it the diagonal
planes are not consecutive. The diagonals AC, BD, EF are, rather, lines
along which the heptahedron intersects itself. We can prove the one-
sidedness of this heptahedron by using again the law of edges. If we pick

F16. 29

L Compare the application in graphostatics of this one-sided polyhedron in my paper
Ueber Selbstsp g eb Diagr ¢, Mathematische Annalen, vol. 67, p. 438
[= Klein, F., Gesammelte M athematische Abhandlungen, vol. 2, p. 692, Berlin, 1922].

2 [First mentioned in the literature by C. Reinhardt, Zu Mobius’ Polyedertheorie, Ver-
handlungen der Koniglich Sichsischen Gesellschaft der Wissenschaften (mathematisch-
physikalische Klasse), vol. 37, 1885.]
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out, namely, the successive faces A ED, EDFB, ECB, ABCD, assign for the
first one a sense of circuit, and determine the sense for the others by the law
of edges, it turns out that the edge 4D is traversed twice in the same sense.

With this T bring to a close the consideration of numbers as the measure
of contents, and pass on to the treatment of additional elementary geometric
magnitudes. Just as the name Mobius
has guided us thus far, we shall now
follow the thoughts of the great Stet-
tin geometrician, Hermann Grass-
mann, as he first set them down in
1844 in his Lineale A usdehnungslehre.*
This book, like that of Mébius, is
rich in ideas, but, unlike M&bius’
book, it is written in a style that is
extraordinarily obscure, so that for
decades it was not considered nor
understood. Only when similar trains
of thought came from other sources
were they recognized belatedly in
Grassmann’s book. If you wish to
get an impression of this abstract manner of writing, you need only
glance at the chapter headings of this book. They are: Derivation of the
Notion of Pure Mathematics, Deduction of the Theory of Extension, Ex-
position of the Theory of Extension, Form of Presentation,—then there follows
Survey of the General Theory of Forms. Only after you have fought your way
through these expositions, will you come to the purely abstract presentation
of the material, which is still very hard to understand. It was not until a
later revision of the Ausdehnungslehre ® appeared in 1862 that Grassmann
used a somewhat more accessible presentation, with the use of coordinates.
Moreover, Grassmann coined the word Ausdehnungslehre (theory of ex-
tension) to imply that his developments were applicable to any number of
dimensions, while geometry was, for him, the application of this new en-
tirely abstract discipline to ordinary space of three dimensions. This new
word did not, however, take root. One speaks today briefly of n-dimensional
geomelry.

Let us make use of our familiarity with analytic coordinates in forming
an acquaintance with the Grassmann notions. Confining ourselves, first,
to plane geometry, we shall use the Grassmann Principle as the title of the
next chapter.

Fii. 30

1 Leipzig, 1844. See Gesammelle mathemathische und physikalische Werke, vol. 1 (Leipzig,
1804), 2nd edition, Leipzig, 1898.
2 Berlin, 1862. See Werke, vol. 1, Part 2, Leipzig, 1896.
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II. THE GRASSMANN DETERMINANT PRINCIPLE FOR
THE PLANE

Let us recall the fundamental explanations of the first chapter. There,
using the coordinates of three points, we set up the determinant

X1 N 1
X2 Yo 1
X3 ys 1

and interpreted it as twice the area of a triangle, i.e., as the area of a paral-
lelogram. Now let us consider, in addition, the forms made with two points,
and with one point, respectively:

X1 Y 1
X9 Ve 1

, or |21 91 1]

which we call matrices. Every such matrix is to represent the fofality of de-
terminants which can be made from it by omitting one column, or bwo columns,
respectively. Thus we obtain from the first matrixz, by omitting the first and
then the second column, the two-rowed determinants

Y=y1—y2, X = %1 — %9

and by omitting the third column, the determinant N = x,y, — %gy:. The
notation is chosen so that it will be appropriate for geometry of space. We
must inquire what geometric configuration is determined by these three
determinants X, ¥, and N. We shall look upon this configuration as a new
elementary geometric magnitude that has the same justification as the area
of the triangle. From the second one-rowed matrix, we get, as one-rowed
determinants, beside the number 1, the coordinates (x,, y;) themselves.
They determine the point which has these coordinates as the simplest ele-
mentary magnitude, and they require no further investigation.

It will now be comprehensible if I give a general enunciation of the Grass-
mann principle: We consider, in the plane, as well as in space, all matrices
(with fewer rows than columns) whose rows are formed from the coordinales of a
point and 1, and we inguire what geomelric configurations are determined by
the determinants which result when we omit a sufficient number of columns.

In this principle, which is here set up somewhat arbitrarily, and which
only gradually will disclose itself as a useful guide through the mass of ele-
mentary geometric.configurations, we shall recognize eventually a natural
development of an extensive group of ideas which embrace the entire system
of geometry.

But let us return to the concrete problem: What is given in the figure (see
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Fig. 31) of two points 1 and 2, if we know the determinants X, ¥, and N?
Obviously there remains still one degree of freedom in the position of the

y points, since it takes four magnitudes to
\ fix them. I assert: We obtain the same triple
v, 1 of values X, Y, and N if, and only if, 1 is the
endpoint and 2 the initial point of a segment,
oA 2 with definite length and direction, which is
free to move on o definite straight line. Here,
0 L i >z as well as in what follows, we think of the

1

arrow as placed so as to indicate direction

Fic. 31 from the initial point 2 toward the endpoint 1.

That the line joining 1 and 2 is determined by X, ¥, and N follows at
once from the fact that its equation

x oy 1
X1 N 1= 0
X2 Y2 1

can be written in the form V-4~ X - y+4 N = 0. From this one sees
also that this line is determined if only the ratios X: V: N are known. Fur-
thermore, we see from our earlier consideration of length of segments and
of area of triangles that X and V represent the projections upon the x axis
and the y axis of the segment (1, 2} with the direction from 2 toward 1, and
N represents twice the area of the triangle (0, 1, 2) taken with the sense of
circuit (0, 1, 2). Obviously, then, the only changes in position of the points
1, 2 which leave X, V, and N unchanged are translations of the segment
(1, 2) along its line, with maintenance of its length and its sense. This
proves my assertion. Grassmann called such a segment of definite length
and sense lying upon a definite line a Linienteil (directed line-segment).
The word vector is more usual today, in German literature, or to be more
exact, Linienfliichtiger Vector (line-bound vector). We speak simply of a
vector, or of a free vector, if the segment is allowed to move parallel to itself
(under maintenance of length and sense) even outside of its line. The line-
bound vector, determined by the mairix

X1 N 1
X2 Yo 1

in other words, by the determinants X, YV, and N, is the first elementary geo-
metric configuration that we consider according fo the Grassmann principle.

I remark, at once, that the quantities X and ¥ by themselves, determine
a free vector, since they are unaltered by the parallel translation of the seg-
ment outside of the line. Similarly, the ratios X: ¥: N, equivalent to two
quantities, determine only the unlimited straight line, not the length of a
segment upon it. The free vector and the unlimited straight line are thus
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auxiliary configurations that we encounter here. The principle which will
guide us in the introduction of auxiliary configurations will be developed
later. ’

These notions play a very important role in mechanics in the study of
elementary statics, where, traditionally, they have presented themselves nat-
urally on their own account. As long as we operate in the plane, we shall be
concerned here with the statics of plane rigid systems. For geometric treat-
ment, one can consider the Linienteil (directed line-segment) as the full equiv-
alent of the force which is applied to the system, the point of application of
which may be moved at will in the direction of the 1
force because of the rigidity of the body. Let us
represent the force here in the spirit of the old me-
chanics: A rope is attached at the point 2 and a pull
is given whose intensity is measured by the segment
12 (see Fig. 32). I recall, as an example of the vivid FiG. 32
way of thinking in the old mechanics, in contrast to the abstract mod-
ern way of presentation, that there always used to be the picture of a
hand pulling on the rope.! Of the coordinates of the directed line-segment
(X, Y, N), th first two are called the components of the force, while N is the
moment of turning about O. For, from the equation of the line one gets the
perpendicular upon it from O as p = N/Va? + y? so that N is actually
the product of the distance  and the length Vx% + y? of the segment, i.e.,
the magnitude of the force. We can consider these three magnitudes to-
gether as the coordinates of the force. The analytic definition gives for
them in every case—this is especially important—well-determined signs,
which we can interpret geometrically, just as before. To be sure, it should
be noted here that, in deference to the symmetry of the formulas, we have
departed from the customary method in mechanics of determining the sign
of the turning moment. In fact, it is customary to use the determinant
formed from the coordinates of the initial point 2 and the two coordinates
(X, Y) of the free vector:

X2 Y2
XY

Xa ¥ ,
X1 — %2 y1— Y

which obviously is equal and opposite to our N. But this small discrepancy
can hardly give rise to confusion, if it is once known.

The first problem of the mechanics of rigid bodies is to find the resultant
of an arbitrary system of such forces (X;, Vi, Ng), ¢ =1,2,---, n). This
amounts, analytically, to forming the line-bound vector with the coordinates

i X, 2 Y E"j N..
i=1 i=1 i=1

1 See, for example, the tables in Varignon, Nouvelle M écanique ou Stalique, Paris, 1775.
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Very elegant methods for the geometric solution of this problem are de-
veloped in graphical statics. With two forces, we use simply the well known
parallelogram law, while for » > 2, we have to do with the polygon of forces.
In general, we find a unique line-bound vector as the resultant of any sys-
tem of forces. There are, however, exceptions, for example, where the sys-
tem consists of two parallel forces which are equal and are oppositely di-
rected on two different lines, (X, ¥, Ni), and (— X, =V, N3), (N1 £ —N,).
The resultant has the components (0, 0, N1 4+ Ns), numbers which obviously
cannot be the coordinates of a vector. The elementary presentation can do
nothing with this phenomenon and must always reckon with these irre-
ducible, so-called couples, which always disturb the simplicity and generality
of the theorems. We can easily fit these apparent exceptions into our system,
however, if we consider that our earlier formulas, applied formally to the
components (0, 0, N, + N3), yield V02 + 02= 0 as the intensity of the
resultant and

p it

as its distance from the origin. Thus, if, in the case of an ordinary force,
one allows its distance p from the origin to become infinite and its intensity
VX? + V? to approach zero so that the product p - VX% + V% which is
the turning moment, remains finite, the components assume precisely those
exceptional values, so that one can look upon the resultant (0, 0, N1 + N3)
of a couple as an infinitesimal but infinitely remote force with a finite turning
momeni. This fiction is extremely convenient and useful for advancing
science, and corresponds entirely to the customary introduction of infinitely
remote elements into geometry. Above all, we are able, on the basis of this
extension of the notion of force, to enunciate the perfectly general theorem
that an arbitrary number of forces acting in & plane have, in all cases, o single
force as a resultant, whereas in the elementary presentation one must always
drag along the alternative concept of a couple.

Let me now complete our discussions by studying the behavior of our ele-
mentary magnitudes under transformation of the rectangular coordinates. That
will supply a valuable principle of classification for the application, in its
finer shades, of the Grassmann system.

The formulas for the change of coordinates, i.e., the expressions for (+', ¥),
the coordinates of the point for the new position of the axes, in terms of the
original coordinates (x, y), for the four fundamental transformations of
rectangular coordinate systems are as follows:

1. For parallel translation:

x4+ a,

4y y+b.

—_———
Qw
o
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2. For rotation through an angle ¢:

!

(4s) {x’= x cos ¢ + ysin ¢,
2 ¥y = —xsin ¢ + y cos ¢+

3. For reflection in the x axis:

(4s) =%y =-y
4. For a change in the unit of measure:

(4y) =M, 3y =M.

If we combine with one another transformations of these four sorts for all
values of the parameters a, b, ¢, N, we obtain the equations for the most
general transition possible from ome rectangular coordinate system to another
with simultaneous change of unit. The combination of all possible transla-
tions and rotations corresponds to the totality of ordinary movements of the
coordinate system within the plane. The totality of these transformations
forms a group, i.e., the combination of any two of them gives again a trans-
formation of the totality, and the inverse of any transformation is always
represented. The special transformations (4) from which all the others can
be derived are called generators of the group.

Before we inquire how these separate transformations change our de-
terminants X, ¥, and N, I shall enunciate fwo general principles which 1
have habitually emphasized and have put into the foreground in these funda-
mental geometric discussions. Although in this generality they sound at
first somewhat obscure, they will, with concrete illustrations, soon become
clear. One of them is that the geometric properties of any figures must be ex-
pressible in formulas which are not changed when one changes the coordinate
system, 1.e., when one subjects all the points of the figure simultaneously to
one of our transformations; and, conversely, any formula which, in this sense,
is invariant under the group of these coordinate transformations must represent
a geometric property. As simplest examples, which all of you know, let me
remind you of the expression for the distance or for the angle, in the figure
of two points or of two lines. We shall have to do repeatedly with these and
with many other similar formulas in the following pages. For the sake of
clearness, I shall give a trivial example of non-invariant formulas: The
equation y = 0, for the figure consisting of the point (x, y) of the plane, says
that this point lies on the x axis, which is, after all, a thoroughly unessential
fact, foreign to the nature of the figure, useful only in serving to describe it.
Likewise, every non-invariant equation represents some relation of the figure
to external, arbitrarily added, things, in particular to the coordinate system,
but it does not represent any geometric property of the figure.

The second principle has to do with a system of analytic magnitudes which
are formed from the coordinates of points 1, 2, - « -, such asour X, ¥, and N,
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for example. If this system has the property of transforming into itself, in a
definite way, under a transformation of coordinates, i.e., if the system of
magnitudes formed from the new coordinates of the points 1, 2, - - -, expresses
itself in terms exclusively of these magnitudes formed in the same way from
the old coordinates (the coordinates themselves not appearing explicitly),
then we say that the system defines a new geomelric configuration, i.c., one
which is independent of the coordinate system. In fact, we shall classify oll
analytic expressions according to their behavior under coordinate trensforma-
tion, and we shall define as geometrically equivalent two series of expressions
which transform in the same way.

We shall now make all this clear, using the material supplied by the
Grassmann elementary magnitudes. To that end, we subject our two points
(®1, y1), (%2, ¥2) to the same coordinate transformation.

1. Let us begin with the translation (4y):
xi=x1+ay x;=x2—|-a,
n=wn+b v=ntbd
Comparing the coordinates of the vector before and after the transforma-
tion, we have
X=x—2, Y =y—y, N =z
X = x{ - xé! V' = y; - yé; N = xb’; - xé)’i
It follows immediately that
X=X,
(Bl) Y' = Y,
N' =N + bX — oV,
In precisely the same way, we obtain as transformation formulas:
2. Upon rotation (4s):

X' = Xcos¢-+ Vsing,
(Ba) V=—-Xsin¢d+ Y coso,
N' = N.
3. Upon reflection (4s):
X' = X,
(Ba) V' =-Y,
N = —N.
4. Upon chenge of unit of length (A4):
X' =AX,
(B4) V' =12\Y,

N’ = NN,
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In the last formulas (B,), there is a difference in the behavior of the magni-
tudes, in that the exponent of A in the multiplying factor is not always the
same. We express this difference in physics by introducing the notion of di-
mension: X and ¥ have the dimension 1, of a line; V the dimension 2, of an
area.

When we examine these four groups of formulas, we notice that the vec-
tor {directed line-segment) defined by the three determinants X, ¥, and N
actually satisfies our definition of a geometric magnitude. The new co-
ordinates X', ¥’, and N’ express themselves exclusively in terms of X, ¥,
and N.

We.see more if throughout we look at the first two equations only, into
which N does not enter. The two coordinates (X', ¥’) of the vector in the
new coordinate system depend solely upon the original values (X, ¥) of
these coordinates; in particular, they are unchanged under translation, and,
in the other cases, the relation of (X, ¥) to (X', ¥’) is just the same as that
of (x, y) to (*',%’). In view of the second principle, enunciated above, we can
say that the two coordinates X and YV determine a geomelric configuration in-
dependently of the coordinate system, and we know already that this con-
figuration is the free vector. We have thus found the formerly announced
systematic principle that occasions the introduction of this configuration
alongside of the vector (Linienteil).

The following considerations lie in the same field. Since X', ¥’, and N’
occur, in all four groups of formulas, as komogeneous linear functions of
X, Y,and N, we see, by division of the equations, that the ratios X' : ¥’ : N
depend only on the ratios X : ¥ : N. Thus these ratios X : Y : N determine a
geomelric configuration independently of the coordinate system, without regard
to the actual values of the three magnitudes themselves, and we recognized
this configuration earlier as the unlimited straight line.

Let us now apply our formulas (B), in particular, to a couple, for which

X=0, V=0
Then, of course,

while in the four separate cases:

(C) N'= N,
(Cy) N'= N,
(Cs) N'=—N,
(C4) N’ = AN,

If we use the customary expression invariant for a magnitude which changes,
under the operations of a group of transformations, at most by a factor, and
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if we call the invariant absolute or relative according as this factor is 1 or not,
we can express formulas (C) in these words: The moment of turning of a cou-
ple is a relative invariant with respect to all rectangular coordinate transforma-
tons in the plane.

Let us compare with this the behavior under coordinate transformation of
the elementary geometric magnitude which we studied at the beginning, the
area of the triangle:

X1 N 1
A= % X2 Y2 1}
X3 Y3 1

Parallel translation (41) dees not change this determinant, since it only adds
a to the elements of the first column and b to those of the second, i.e., the
a-tuple and b-tuple, respectively, of the elements of the third column. Con-
sequently we have

(D)) A=A
Similarly, the three other transformations yield
D) A= A

(D) A= —A4,
(D) A= NA,

all of which we might easily infer at once from the geometric significance of
the area of the triangle. However, these formulas agree precisely with (C):
The area of a triangle and hence every area (which can always, indeed, be ex-
pressed as the sum of triangles) behaves under arbitrary transformation of co-
ordinates precisely as does the turning moment of a couple. According to our
second general principle, we may look upon both things, therefore, as equiva-
lent geometrically, and we can interpret this statement in the following way:
If we have in the plane any couple with turning moment N, and if we define,
in any way, a triangle with area A = N, this equality is preserved under all
coordinate transformations, i.e., we can tllustrate the turning moment of a
couple, regardless of the system of coordinates, by the area of o triangle, or by the
area of a parallelogram, or by the area of any other plene figure. Just how this
geometric correspondence is to be brought about, will appear later when we
come to the analogous, but somewhat more complicated, and therefore
more instructive, relations in space.

With this I shall leave the geometry of the plane, in which these abstrac-
tions are almost trivially simple. To every analytic formula one can assign
a good geometric meaning, whereby full analytic generality finds its way
automatically into geometry. In this connection, an essential assumption,
which must again be emphasized, is that the proper conventions should be
made concerning the signs of the geometric configurations.
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III. THE GRASSMANN PRINCIPLE FOR SPACE

We shall carry out the corresponding investigations for space in complete
apalogy with the foregoing considerations for the plane. ‘We start therefore
from the matrices which can be formed with the coordinates of 1, 2, 3, or 4
points:

x1y1z11
x1y1211
21y 21 1 1
lxl Y1 lel, 13151 y X2 Y2 Zzl, Y2 Y2 %2 .
%z Y2 % 1 %z s %3 1
x3y3231
x4y4241

The determinants of the first matrix represent the point coordinates them-
selves and require no further consideration. The fourth matrix is already a

four-rowed determinant, and gives, as we know,
the six-fold volume of the tetrahedron (1, 2, l
3, 4), which we can call a space-segment 3

(Raumteil) in agreement with the terminology
to be introduced later. We can, moreover,
think of it simply as the volume of a parallelo-
piped with the edges 4 1, 4 2,4 3 (see Fig. 33), ¢ 1
which Grassmann called a Spaf (the word Fre. 33
Spat is taken from the miners’ word Kalkspat).
New configurations are supplied by the second matrix and by the third
matrix. The two-rowed matrix represents the aggregate of the following
stx determinants of second order, which arise by the deletion of two columns:

(1) {X=x1—x2, Y=y1—y2, Z=Zl—22,
L= Y1%2 — Y221, M = z129 — 2921, N = X1Ye2 — X2,
similarly, the third matrix represents the following four determinanis of third
z order:
vy 21 1 %21 X1 1
1 8 =1y Zz. 1 N m = 12%9 X2 1 y
1 z 1
y (2) Y 23 3 X3
f) 2 X1 Y 1 X1 Y1 21
9] L m= X3 Y2 1, §B=— X3 Y2 3Zg|.
- X3 ys 1 X3 Y3 23
Fi1c. 34

First, as to the six determinants (1), we can
infer, from the corresponding discussion for the plane, that X, V, and Z are
the projections upon the coordinate .axes of the segment joining 2 to 1,
while L, M, and N are double the areas of the projections upon the coor-
dinate planes of the triangle (0, 1, 2), taken in the sense 0, 1, 2 (see Fig. 34).
All these magnitudes remain obviously unchanged when we move the seg-
ment (1, 2) along its line, preserving its length and its sense. They represent
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what we shall call a directed line-segment (Linienteil) or line-bound vector (Iini-
enfliichtiger Vector) of space. The quantities X, ¥V, and Z themselves remain
unchanged if one moves the vector out of its line parallel to itself; they
therefore determine a free vector. Similarly thefiveratiosX : ¥V :Z:L: M : N
are not changed by arbitrarily changing the length or sense of the directed
line-segment on its line. Thus they determine the unlimited straight line.

The four determinants (2) determine, first of all, the plane of the three
points 1, 2, 3; for we can write the equation

2 vy 2z 1

X1 N % 1 _

X2 Yo 22 1 ]

X3 Y3 23 1
obviously in the form

L+ MWy +Nz+P=0.

Hence the ratios € : I : N : P determine the unlimited plane. We see, fur-
ther, that £, I, N are double the areas of the projections upon the coordi-
nate planes of the triangle (1, 2, 3), always taken in the boundary sense
1, 2, 3, and that P is six times the volume of the tetrahedron (0, 1, 2, 3),
again with that sign which corresponds to this succession of vertices. Now
these four magnitudes obviously are unchanged when, and only when, the
triangle (1, 2, 3) is so moved and deformed in its plane that its area and its
boundary sense are unchanged, and they determine thus a triangle or a
plane area with this freedom of motion, which Grassmann calls a
plane-segment (Ebenenteil) or a plane-magnitude (Plangrosse). The first
three coordinates £, M, and N of the plane-segment also remain unchanged
when we move the plane of the triangle parallel to itself. They determine
then, as to area and boundary sense, a triangle which is free to move in
space parallel to itself, a so-called free plane-magnitude.

If we turn now to a closer examination of the directed line-segment we
notice first that it is determined in space by five variable parameters, since
its two endpoints have together six coordinates, but the one endpoint can
be moved arbitrarily along a straight line. Thus the six coordinates X,
Y, Z, L, M, and N of the direcied line-segment, which we defined above,
cannot be independent of one another, but must satisfy a condition. We
can deduce this condition most simply from the laws of determinants,
which are, indeed, always the key to our theories. We consider the deter-
minant

X1 y;;zl 1

ize 1
x2y22 | =0,
1 iz 1
x2 Yaize 1
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which vanishes identically because two rows coincide, element for element.
We develop it as the sum of products of corresponding minors of the first and
last pairs of rows. The first summand, which contains the two enclosed
minors, is simply N « Z, and for the whole determinant we get

3) UN-Z+M-Y +L-X).

Hence we have the identity XL+ Y +-M + Z+ N = 0 as the necessary
condition for the six coordinates of any directed line-segment. It is easy to
show that the equation (3), between the six magnitudes, suffices in order
for them to represent, by means of formulas (1), the coordinates of a di-
rected line-segment. I hardly need to go into this very elementary discussion.

I shall now go over again to the application of these notions to mechanics.
Just as in the plane (p. 23), we now have the directed line-segment repre-
senting a force applied to a rigid body in space, including the point of applica-
tion, the magnitude, and the direction. Of the six coordinates of the directed
line-segment, we call X, ¥, and Z the components of the force parallel to the
coordinate axes and L, M, and N the turning moments about these axes.' The
three components X, ¥, and Z determine the magnitude and direction of the
force, whose direction-cosines are in the ratios X: V: Z. We obtain the force
as the diagonal of the parallelopiped whose edges are the segments X, ¥,
and Z on the coordinate axes. With the same construction, using L, M, and
N, we get a definite direction called the direction of the axes of the resullst
turning moment. 'The equation of condition (3) shows, according to a well-
known formula of space geometry, that the direction of the force and that of
the axis of the resultant turning moment are at right angles to each other. Just
as in the plane, so here we shall include, as couple, the limiting case where
X=Y=2Z=0,whileZ, M, and N do not all vanish, in the notion of di-
rected line-segment. A simple passage to the limit shows that one should
mean here an infinitely remote infinitesimal force whose turning moment re-
mains finite. The elementary theory avoids this form of expression and
looks upon a couple only as the combination of two equal, oppositely di-
rected, forces acting upon different parallel lines: (X, ¥, Z, L, M1, N,) and
(=X, =Y, —Z, Ly, My, Ny), whose sum gives, in fact, just such coordi-
nates (0,0, 0, L; + Ly, M1+ M,, N1+ Ns), as we have just assumed.

We have to consider now the composition of a system of arbitrary forces
acting upon a rigid body: X, Vi, Ziy Liy Miyy Niy (1=1,2,---, n).
Much time is spent on this problem in elementary books and lectures,
whereas we can dispose of it rapidly here because our analytic formulas
make superfluous that consideration of separate cases which a neglect of the
rule of signs imposes upon the tedious elementary discussion. The funda-
mental principle of composition is that we set up the sums:

1 Again we have chosen the sign opposite to that which is usually taken in mechanics.
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2":1/,-, Z = 2"22;,
i=1 .

i1

iNt
=1

i
i

-$x,

”n ”n
A=XrIL, M=>M, N=
=1 i=1

and consider them as the coordinaies of the system of forces or, according to
an appropriate term introduced by Pliicker, as coordinates of the Dyname.
Here, again, we distinguish the three componenis along the axes and the three
turning moments about them. Now this system of forces will not, in general,
be a single force, since the six sums will not necessarily satisfy the condition
for the coordinates of a single directed line-segment

E-A+H-M+Z-N=0.

This is the new thing that comes up in space as opposed to the plane, namely,
that a system of forces acting upon a rigid body does not necessarily reduce to a
single force.

In order to gain a concrete picture of the nature of a system of forces, we
shall try to represent it in the simplest possible way as the resultant of the
fewest possible forces. We shall prove that we can consider every sysiem as the
resultant of a single force and of a couple whose axis is parallel to the line of
action of that force, the so-called cemtral axis of the system; and this resolution
is unigue. This theory of the composition of forces acting upon rigid bodies
had its classical presentation in Poinsot’s Eléments de statique, which ap-
peared first in 1804, and which, since then, has gone through new editions.?
We speak, indeed, of Poinsol’s central axis. The treatment by Poinsot was
an elementary geometric one, and was very involved, just as it still is in
elementary instruction.

To prove, now, the above theorem, we note that any single force which
could arise by the withdrawal of a couple from the system must have 5,
H, and Z as components parallel to the axes. Thus the turning moments of
the couple must be proportional to 5, H, and Z if its axis is to be parallel to
the central axis. We assume its six coordinates to be 0, 0, 0, kE, ¢H, *Z,
where k is a parameter still to be determined. To get from this couple our
system (E, H, Z, A, M, N), we must add to it the system

E,H,Z,A — kE,M — tH,N — FZ.

The theorem would be proved if one could determine % so that this system
would be a single force. A necessary and sufficient condition for this is
that the coordinates satisfy (3), i.e., that

EA — EE) + HM — tH) + Z(N — kZ) = 0.

! Twelfth edition by J. Bertrand, Paris, 1877.
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From this we get uniquely

EA 4+ HM + ZN
=2 | 12 4 72

for we may assume that the denominator is different from zero, otherwise
we should be dealing with a couple instead of with a proper system. If one
assigns to k this value, which Pliicker calls the parameter of the Dyname, one
actually resolves the system into a couple and a single force, and the method
of proof shows that the resolution is unique.

Now the question arises as to what geometric representation one can asso-
clate with this resolution. These investigations go back again to M&bius,
to his Lehrbuch der Statik ! of 1837. Here he inquires about an axis around
which the turning moment of the system would be zero, the so-called null-axis.
The system of all these null-axes he calls a null-system. It isin this connection
that this word, no doubt familiar to you, has its origin.

We must now define the general notion of turning-moment, or moment,
which finds application here. Let two directed line-segments (1, 2) and
(1, 2') be given in space (see Fig. 35). Construct with them the tetra-
hedron (1, 2, 1/, 2’), whose volume is

k=

’

Xt oyt 2
X2 y2 22
AV

Xy ¥y
Developing this determinant as the sum of products of minors of the first
and last pairs of rows, as we did with the identically vanishing determinant
(p. 30), we get ¥(XL' + YM' +ZN' + LX' + MY' + NZ'), where X',
-+ +, N’ are the coordinates of the directed line-segment (1’, 2'). The bi-
linear combination of the coordinates of both directed line-segments which

appear here,
XU+ YM 4+ ZN' + LX'+ MY’ + NZ',

o=

1
1
nE
1

will be called the moment of one directed line-
segment with respect to the other. 1t is equal to
six times the volume of the tetrahedron whose ver-
tices are the endpoints of the directed line-segmenis,
and it is consequently an independent geometric Fio. 35
magnitude. If r and »* are the lengths of the di-
rected line-segments, ¢ the angle between them, and p the common per-
pendicular to their two lines, it follows from elementary geometry that the
moment isr - ¥’ - p - sin ¢, if the sign of ¢ is properly chosen.

If, instead of the directed line-segment (1, 2) we choose the unlimited

1L eipzig, 1837. See Werke, vol. 3, Leipzig, 1896.
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straight line, then the moment of the directed line-segment (1, 2) with
reference to the line will be defined as its moment, in the preceding sense,
taken with reference to a directed line-segment of length » = 1 on that line,
ie. r'p sin ¢. This is the result of dividing the preceding expression by

= (VX4 VY + Z?) so that finally, the moment of a directed line-segment
(X', V', 2!, L', M’', N') with respect to an unlimited line which contains the
directed line-segment (X, Y, Z, L, M, N) is

XL+ YM 4+ ZN' + LX' + MY + NZ'
VX, + V5 F 2,

This value depends, in fact, only upon the ratios of the six magnitudes
X,- -+, N, along with a sign common to them, so that it is fully determined
when the unlimited line and a direction on it are known. This moment is pre-
cisely what is known in statics as the turning-moment of a force, represented
by a directed line-segment, about the line as axis, although a different sign is
commonly chosen (see p. 31).

We shall now consider the moment, or turning-moment, of a system of forces,

of @ Dyname,
g=ixg,...,N=2N;.
i=1 i

By this we shall naturally mean the sum of the moments of the several
forces, i.e., the expression

2”XL;+ YM,+ ZN,+ LX, + MY} + NZ}
P NXT v 22|

_ XA+ YM 4 ZN + LE 4 MH 4 N7,
NX?+ v? + Z2

If, in this expression, we identify the unlimited line of X, - - - , N with the
three positive axes, in order, the expression takes on, in order, the values
A, M, N, which justifies the designations for these quantities which we used
previously (p. 32).

Now we can take up the question raised by M&bius. A given system
E,H, - - -, N has the moment 0 with respect to a line (X:¥:-- - : N) (this
is the mull-axis) f AX + MY 4+ NZ -+ EL + HM + ZN = 0. Thus the

null-system of the Dyname 1s the totality of the straight lines (X:Y:--+:N)
given by this equation. But that is the most general linear homogeneous
equation for the six quantities X, - - - , N, since the coefficients A, - - -, Z, as

coordinates of a Dyname, can be six arbitrary quantities. Now Pliicker,
along with M&bius, the pioneer in analytic geometry of the nineteenth cen-
tury, investigated just such totalities of straight lines which are defined by
an arbitrary linear homogeneous equation, in a connection which we shall
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discuss more fully later, and called them linear complexes. Thus the null-
system of Mobius is exactly the same as the line complex of Pliicker.

We shall now try to give as clear a picture as possible of this null-system,
although, of course, we cannot speak of a geometric figure in the proper
meaning of that word, since the null-system fills space infinitely often.
Nevertheless, its grouping can be understood quite simply. To this end,
according to the plan always to be followed in these lectures, we shall select
the coordinate axes as conveniently as possible, which we accomplish here
by choosing the ceniral axis of the Dyname as the z axis. Since, as we know,
the Dyname is the resultant of a single force acting along the central axis,
and a couple with its axis parallel to that central axis, the four coordinates
E, H, A, M must all vanish, by our choice of the z axis, so that Z represents
the magnitude of the single force and N the turning moment of the couple
about its axis. The parameter of the Dyname is, therefore,

k=EA+HM+ZN=E_
22+ H 4+ Z° Z
The equation of the linear complex in the new coordinate system has then
the simple form NZ +4 ZN = 0, or, after division by Z,

(1) k-Z+N=0.

We use this form as the basis of the rest of our discussion. If Pi(x4, y1, 21)
and Py(xs, ys, 22) are two pointson a line (X:Y: Z: L: M: N) of the null-
system, then since Z = z; — 2, and N = x;y3 — %2y1, the equation (1)
gives, for the coordinates of any two points of a null-line, the condition

2) k(z1 — 22) + (x1y2 — x91) = 0.

If now we keep P, fixed, then (2) is the equation for the coordinates
(%1, 1, z1) of all points P, which lie with P, on a line of the null-system. If,
for the sake of clearness, we write, as running coordinates, (x, ¥, 2) in place
of (x1,v1, z1), we see that all the points P; fill a plane whose equation is

@ yox — %9y + k2= kzs

This plane contains the point P,, since the equation is satisfied by x = s,
Y=y, 2= 2;. We have thus proved that through any point Py in space
there pass infinitely many null-lines which form o plane pencil of rays that fill
the plane (2'). Our problem will be solved if we can get a clear picture of the
position of this plane (null-plane) which corresponds to every point P,.

The two expressions N = x1ys — %3y1, Z = 21 — 33, which occur in (2),
have the property of remaining unchanged under translations of space paral-
lel to the z axis, as well as rotations about it; for translations leave x and'y,
hence also N, and likewise the difference z; — 23, all unchanged, whereas
rotations have no effect upon the z coordinate, i.e., upon Z, and leave N, as
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area in the xy plane, unchanged. Consequently, equation (2), and therefore
the null-system which it determines, goes into itself under screw motions of
space about the central axis—for that is the meaning of the z axis—and frans-
lations along .

This theorem makes our problem much easier. If we only know which
plane in the nuil-system belongs to any point of the positive half of the x axis,
then we know automatically also the null-plane which belongs to each point of
space; for, by translating that half-axis along, and turning it about the
z axis, we can bring one of its points into coincidence with any point in space,
whereby, according to our theorem, the corresponding null-planes go into
\Z themselves. In other words: The null-planes
of the points of a half ray which is perpendic-
pry ular to this central axis have a position with

¢/ reference to the ray and the central axis which
/ \ B s independent of the choice of the ray.

"% If we now confine ourselves to the x axis,

/\ / setting vy, = 25 = 0, we get from (2’) as the

equation of the plane belonging to the point

P, with abscissa x5 : k2 — %9y = 0. It passes

through the x axis itself, since y = 5 = 0 sat-

isfies the equation identically (see Fig. 36).

If we write the equation in the form z/y = x2/k, we infer that the angle of

inclination ¢ of the plane to the horizontal (xy plane) has the trigonometric
tangent

F1c. 36

ta.n¢=’—;;2

and the position of our plane is fully determined. In Fig. 37, its trace in the
vertical yz plane is sketched.

From what has been said above, we can state the result independently of
the special choice of coordinate system. To every point at a distance r from
the cemtral axis, thought of as vertical, there belongs &
a plane of the null-system which contains the per- Q¥
pendicular from the point upon the axis, and whose “ é&\
angle of inclination to the horizontal plane has the
Irigonometric tangent v[k. If we move the point 2
on a half ray perpendicular to the axis, then the
corresponding plane of the null-system will be
horizontal for » = 0, and will turn, with increas-
ing r, up or down (according as & 2 0) and will
approach the vertical asymptotically when r becomes infinite. I can make
these relations clearer to you by means of a Schilling model (see Fig. 38) in
which there is 2 movable arm which slides along and turns about the cen-

Fic. 37
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tral axis, and which carries a plane sheet that rises in the proper way as it
recedes from the axis.

Let us now consider, in particular, the direction of the normal which be-
longs to the plane through the point P,. Its direction cosines have the same
ratios as the coefficients in the equation of the plane (2'),1.e., y2: (—x3) : k.

We can think of this same direction as the direction of motion of the point
P, under an infinitesimal screw movement of space. Indeed, if we turn space
as a rigid body around the z axis through the
finite angle w and move it, at the same time, Normal
parallel to the z axis by the amount ¢, every
point (x, y, 2) will go into the new position
given by the equations

%' = % cosw— ysin w, Null Plane
y = xsin w4 y cos w,
2 =z4c.
We pass from this finite screw motion to an
infinitesimal one by replacing w by —dw and
Frc. 38

setting ¢ = kdw. The minus sign means that
for & > 0 the turning in the xy plane is negative, if the translation is in
the positive z direction, i.e., that the screw motion is negative (left-handed).
Neglecting quantities of second and higher orders in dw, that is, putting
cos dw = 1, sin dw = dw, we obtain

¥ =z + ydo, Y= —xdw +y, 2 = 3+ kdo.

The increments of the coordinates of a definite point P, under this infinitesi-
mal screw motion are dxs = y; dw, dys = —x3dw, dz; = k dw, that is, P,
will be moved in the direction

dxz :dyz :de = Yo (—x;;,) k.

This is, in fact, precisely the direction along the normal (3). Thus, if we give
to space an infinitesimal screw motion about the cemntral axis such that the mo-
tion along this axis 1s k times the angle of rotation (taken negatively), then the
plane of the null-system of parameter k& which belongs to any point of space will be
normal to the arc traversed by the point.

Since the representation of a screw motion is very easy, we can get in
this way a vivid picture of the arrangement of the planes in a null-system.
For example, the greater the distance r of a point from the central axis, the
longer is the horizontal projection rde of the elementary path which it
traverses in the screw motion, the flatter is the path itself, since the rise,
kdw, is constant, hence the steeper is the plane of the null-system, since it
is normal to that path. If we combine infinitely many of these infinitesimal
screw motions into a continuous screw motion of space, every point at a
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distance r from the central axis will describe a %elix whose inclination to the
horizontal has —k/r for its trigonometric tangent, and whose pilck is
therefore 27k, independent of r. The planes normal to this helix are the planes
of the null-system.

In conclusion, having talked only about the planes of the null-system,
let us now try to get a clear picture of the null-axes. We take any null-axis g
(see Fig. 39) and draw the common perpendicular between g and the central
A2 axis, meeting the latter in O, and g in P. Then PO,

as a perpendicular from P to the central axis, be-

9 longs to the null-system, and OPg must be the

) plane of the null-system belonging to P. Since g

is perpendicular to OP, it makes with the hori-

T zontal the same angle ¢ as the null-plane, ie.,

P tan ¢ = r/k, where r = OP. Thus we obtain all

the null-axes, if, through every point P of every half

ray perpendicular to the central axis we draw that

normal to this ray which makes with the horizontal

an angle whose trigonometric tangent is tan ¢ = r/k, where r is the distance
of P from the central axis.

We can make this construction a little clearer. We take a circular cylinder
of radius r whose axis is the central axis and draw on it all helices whose inclina-
tion G to the horizontal plane is given by tan ¢ = r/k. The
totality of tangents to these helices is obviously identical with
the totality of null-axes at the distance v from the central axis.
By varying r, we get all the null-axes. As we move outward,
these helices get steeper. They have at each point the cor-
responding null-plane as osculating plane and they are
therefore at right angles to the previously mentioned hel-
ices, which are at every point normal to the null-plane.

After this discussion, which has exhibited a double con-
nection between helices and the null-system, we can un-
derstand why this whole theory has been associated with
that of helices. Sir Robert Ball used this designation in
his Theory of Screws,! in which he discussed all the geometric relations
connected with a system of forces acting upon a rigid body.

Let us now return to our systematic development. We had obtained, by
using Grassmann’s principle, the four elementary geometric configurations,
the point, the line-segment (Linienteil), the plane-segment (Ebenenteil),and the
space-segment (Raumteil). As in the plane, we shall now examine the behavior
of these configurations, under transformation of the rectangular coordinate
system, and classify them according to the general principle announced above.

(]

F1c. 39

Fic. 40

1 Dublin, 1876.
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IV. CLASSIFICATION OF THE ELEMENTARY CONFIGURA-
TIONS OF SPACE ACCORDING TO THEIR BEHAVIOR
UNDER TRANSFORMATION OF RECTANGULAR
COORDINATES

Above all, of course, we should obtain a view of all possible transforma-
tions of a rectangular coordinate system in space. These transformations
are really fundamental for all geometry of space, so that, for this very reason,
we could not overlook them in these lectures. The most general change in the
coordinate system that comes up for consideration is made up, as in the
plane, of the following component parts: (1) translation; (2) rotation about
the origin; (3) reflection; (4) change in the unit of length.

The equations of translation are, of course,

¥ =zx+a,
(Al) y,=y+br
7=z4+c

The equations of rofation, in any case, have the form

¥ = awx + by + 1z,
(4,) y = asx + by + 22,
2’ = asx + bsy + cs2.

We shall consider at once the determination of the coefficients, which is more
complicated here than in the plane. The combination of all possible trans-
formations of these two sorts yields all the proper movements of the coordi-
nate system in space.

Just as, in the plane, we reflected in an axis, so here we can consider reflec-
tion in a coordinate plane, say the xy plane, and we obtain

Y=z y=y, 7 = —z
But we can write these formulas more symmetrically by using three minus
signs, in the form '

(45) ¥ = -z, y = -y, 3=z

This is a reflection in the origin, sometimes called inversion.! In the
plane,

¥=-x, ¥=-y

is not a reflection, but a turning through 180°; and, generally, inversion
in the origin is a reflection only in spaces of an odd number of dimensions.
If the number is even, it is a rotation.

1 Sometimes the designation “inversion” is used for the totally different transformation
by means of reciprocal radii.
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A change in the unit of length, finally, is given by the equations
(44) =N, yY=Ny, =N where A> 0.

If A< 0, this transformation involves a reflection, in addition to a change in
unit length.

It remains for us to consider in greater detail the formulas for rotation.
The most general rotation about the origin depends, as you know, upon
three parameters, because, first, the direction cosines of the axis of rotation
represent two independent quantities and, in addition, the angle of rotation
is arbitrary. A symmetrical treatment of all rotations in terms of three in-
dependent parameters is furnished by the theory of quaternions, which you
will find discussed in my lectures ! of last winter. Moreover, Euler had set
up the formulas in question before quaternions were invented. I shall give
here the treatment that one usually finds in textbooks on mechanics and
which makes use of the nine direction cosines of the new axis with reference
to the old. We start from the form of the equations of transformation given
above:

I

2 = ax + by + 6z,
1) Y = ax + bay + o2,
3’ = asx + bsy + cs2.

Let us consider one point z, ¥ = 0, z = 0 of the old x axis. It has, with refer-
ence to the new system, the coordinates ' = aix, y' = asx, 2’ = asvx, that is,
a1, as, as are the cosines of the angles which the new axes make with the old x
axis. Similarly, by, be, bz and ¢, ca, cs are the cosines of the angles which the
new axes make with the old y axis and the old 2 axis, respectively.

These nine coefficients of the equations of transformation are not at all
independent of one another. We can deduce the relations between them from
the interpretation just given, or we can make use of the known relations that
obtain in every orthogonal substitution, i.e., in every rotation or reflection
with fixed origin:

@) APyt =2yt 2

which states that the distance from O is tnvariant. We shall choose the second
method:

o) We substitute (1) in (2) and obtain, by comparing coefficients, the

following six relations among the nine quantities a,, - - - , ¢s:
3 { aita; +ai =1, bi4b: +b; =1, a+ g+dq =1,
brertbace+b3cs=0, ¢181+FC2a2+caa3=0, a1b1+azbs+azhs=0.

1See Part I, p. S8 et seq.
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B) We multiply the three equations (1) by the three quantities a, b, ¢
respectively, and add. Solving them by means of (3), we obtain

x = aw' + ay’ + as?,
(4) y = b’ + by’ + bs?’,
Z = clx' + Czyl + CaZ’.

This is obviously the so-called fransposed linear substitution which arises from
(1) by interchanging rows and columns in the array of coefficients.

%) On the other hand, solving equations (1) by the rules of determinants,
we find

1 b €1 @ b a
x=3 ¥y by ¢, - ,whereA=]a by czf.
7 bs ¢ e by s

The coefficient of x’ here must be the same as in the first equation (4), that
is,

©) 3

and similarly, eack cocfficient of the orthogonal substitution must be equal to the
corresponding minor of the array of coefficients, divided by the determinant A.

0) We shall now calculate the determinant A. To that end, we set up its
square by the law of multiplication of determinants:

a1 by afler b1 o a%‘l-af» +1132 b +baaa+-bsas  cre1t-coastcsas
(72 bz Coj*ig bz Col= a1b1+a2b2—|-a3b3 b?-’—bg +b§ 61b1+62b2+63b3,
as by csllas by cs| laicitascatascs  brcit-bacs +bacs 0%4‘6% +C§

where the columns of the first determinant are multiplied by those of the
second. According to the formulas (3) this product determinant is

by ¢

= q
b3 C3 ’

100
A’=10 1 0;=1,
0 01

so that finally A = 1. In order to decide which sign to choose, we note
that we have thus far used only the relation (2), which is satisfied equally in
rotation and in reflection. Now, among all orthogonal transformations, rota-
tions have the property that they can be generated from the identical transfor-
mation ¥’ = x,y' = y,7 = 2, by continuous variation of the coefficients, corre-
sponding to a continuous movement of the coordinate system from the
original to the new position. On the other hand, the substitution which we
call, in general, reflection, arises by continuous modification of the inversion
¥ = —x,9 = —y,3’ = —3, whereas this inversion itself cannot be gener-
ated continuously from the identical transformation. However, the determi-
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nant of the substitution is a continuous function of the coefficients, and it
must change continuously when we change the identical transformation
continuously into an arbitrary rotation. Its value at the start is

100
01 0f=+41.
001

Since its value, as we have seen, is always either +1 or —1, it must of neces-
sity remain always +1 for rotations, for an abrupt change to —1 would
mean a discontinuity. Hence for every rotation the determinant A has the
value

a b a
(6) A=laz by cz|= 41,
as ba C3
and, similarly, for every reflection, we must have A = —1.
The formula (5) now takes the simple form:
_ by c
(7) ay = ba cs .

Thus eack coefficient in the array of substitutions of rotation for the rectangular
coordinate system is equal lo the corresponding minor.

We come now to our real problem, to find out how the coordinates of the
elementary space configurations, the line-segment X, ¥, Z, L, M, N, the
plane-segment €, M, N, B, and finally the space-segment T, behave under
the four kinds of change of the rectangular system of coordinates.

To write down all the formulas of transformation would take too much
space, and it would also eventually become tedious. Therefore I shall men-
tion only a few points that deserve special notice. First, I make the remark,
which you can easily verify, that in all formulas of transformation of the
coordinates of a line-segment, the first three coordinates X’, ¥’, Z’ in the
new system are expressed in terms of X, ¥, Z alone, and, in fact, as linear
homogeneous functions of them. The quantities L, M, N do not enter.
Thus, according to the general principle already announced (p. 25 et seq.) the
totality of the three quantities X, V, Z must, in itself, determine a geomeiric
configuration independent of the system of coordinates. This is the free vector
which we have mentioned (p. 30). In the same way, the three coordinates
2, M, N of the plane-segment are transformed without regard to the fourth,
B, so that they also have geomeiric significance independent of ine coordinate
system. They represent the free plane-magnitude already mentioned (p. 30).

We shall now find out, by special calculation, how the coordinates of the
Jree vector X, V, Z, behave under our transformations (41), - - -, (44) (p. 39).
For that purpose, we replace only in X’ = #{ — #4, . - - the xi,- - - by , ¥, %,
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by means of the formulas (4,), and we obtain at once the following formulas.
1. For translation:

(B1) X =X, V=V, =12
2. For rotation:

X' = 01X + b1Y + c;Z,
(Bz) V= aX 4 bY +cZ,
Z' = a;X 4 b3Y + ¢caZ.
3. For inversion:
(Bs) X' = ~X, YV =-Y, Z'=—Z.
4. For change of unit length:
(B4) X' =ANX, V' =NV, Z'=\Z.
Thus, under translation of the system of coordinates, the coordinates of the free
vector remain unchanged; otherwise, however, they behave like the point coor-
dinates themselves.
Let us compare with this the formulas of transformation for a couple,

which we obtain from the formulas of transformation of the coordinates of
a line-segment by putting X = ¥ = Z = 0. Then, of course,

X'=V=2'=0,
and, for the moments of turning with respect to the new axes, we get the

following formulas.
1. For translation:

(Cy) L' =1, M =M, N =N.
2. For rotation:

L' =a L 4+ WM + a1V,
(Co) M’ = aoL 4+ boM + coN,
N' = a3L + bsM + c3N.

3. For inversion:

(Cs) L'=L, M=M, N=N.
4. For change of unit length:

(Cy) L'=NL M =XNM, N =NN.

The coordinates of a couple are unchanged by translation of the system of co-
ordinates, and by inversion, they behave, under rotation, like point coordinales;
and they are multiplied by the factor N under change of the unit of length, i.e.,
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they have the dimension 2 (of an area), whereas the free vector, like point
coordinates, has the dimension 1.

The formulas (Cy), (Cs), (Cs) are derived without any difficulty; perhaps
(C3) needs some explanation. Indeed, with the aid of formulas (42), we get

2 asx1 + bay1 + 21 asx1 -+ bsy1 4 ¢z
¥2 2 as%s + bays -+ €222 asxs -+ bays + €322
If we multiply out the last determinant, we get 33 - 3+ 3 = 18 terms,
of which three sets of two terms (e.g., @sx1 - Gsxz — @a%1 + A%, - - +) cancel.
The remaining twelve terms can be collected into the following sum of
products of determinants:

L': =

as by
as b3

b2 Cy
ba C3

Co Qg
c3 Qs

yr 21 X1 N
Y2 22 X2 Y2
According to formula (7), the first factors are equal to a, b1, ¢1, while the
second factors are L, M, N. Thus the formula given above for L’ has
been obtained. The two other formulas for M’ and N’ follow similarly.

As a third configuration, let us now consider the free plane-magnitude.
Very simple calculations like those above, which I shall leave for you to
carry out, lead to the result that the components 2, M, N of a free plane-
magnitude transform, in all cases, just as do the coordinates L, M, N of a
couple.

For the sake of clearness, let us combine these results into a listle table.
It gives the transformed first coordinate, from which the others come by
cyclic interchange.

Z21 X
29 X9

I = . . .

TRANSLATION ROTATION INVERSION CEANI(‘;:N%;HUMT
Free Vector X aX +0Y +aZ —X \X
Couple L alL + blM + ClN L XZL
Free Plane-Magnitude U al + M+ N e A2

We have now obtained the precise foundation for a series of geometric
statements which appear in the textbooks frequently not at all, or only
incidentally, and in a form in which their simple geometric content is not
readily apparent. Often the geometric configurations which we consider
here are not at all separated in the clear cut manner which we consider neces-
sary, and, as a result, a whole series of interesting relations is completely
obscured. For example, even with Poinsot, the concepts of couple and free
plane-magnitude, from the start, are always tied together. Obviously this
makes the discussion more difficult to understand. For us, a comparison
of the last two lines of the above table shows, according to a general principle
stated earlier, that a couple and a free plane-magnitude are to be thought of as
Sfundamental geomelric configurations of the same sort, because they behave
in the same way under all changes of the rectangular coordinate system.
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Let us make the content of this statement still clearer. If a couple L, M, N
is given and we set up a relation between it and a plane magnitude £, ¢, N,
by means of the equations = L, M = M, N = N (or if we set it up in
reverse order, starting from £, IN, N), then this coincidence remains un-
affected by any transformation of coordinates. It must therefore be sus-
ceptible of pure geometric description without making use of a coordinate
system. For this purpose, we start with the plane magnitude &, I, 9, and
specialize the coordinate system most conveniently by setting = ¢ = 0.
Then the free plane-magnitude represents a triangle (1, 2, 3) lying in the
xy plane or parallel to it, such that 9 is twice its area, i.e., equal to the area
of the parallelogram (1, 1/, 2, 3), where the sign is to be determined by the
circuit sense 11’ 2 (see Fig. 41). I assert, now, that the corresponding couple,
with the moments L = 0, M = 0, N = R can be formed with the opposite
parallelogram sides (1, 1’) and (2, 3), with the /‘ 4

arrow heads at 1 and 2. To prove this, I
choose the system of coordinates in the xy 1:1/
plane still more conveniently, namely, with

the y axis in the line 1 1’ and the x axis
through the point 2. (Drawn dotted in
Fig. 41.) Then the two line-segments (1, 1)
and (2, 3), and likewise the couple formed by ¢
them, have the turning-moments L = 0 and

M = 0. Moreover, the third turning-moment Fic. 41

for the line-segment (1, 1) is also zero, so that finally N is equal to the
turning-moment of (2, 3):

X2 Y2
X3 Y3
(for 2, = x3 and y, = 0, according to our assumption). On the other hand,
for this position of the coordinate system, the third coordinate of the plane-
segment is

N= =x2'y3’

0 Y1 1
N=]w 0 1{=2x5+9s
X2 Y3 1

that is, the product of the base y; of the parallelogram by the height x,.
Thus N = 9 in sign as well as magnitude, which proves my statement.

We can state this as a general result, without reference to a special co-
ordinate system. A free plane-segment, represented by a parallelogram of
definite comtour sense, and the couple given by two opposite sides of the paral-
lelogram, with arrows directed opposise o that sense, are geomeirically equiv-
alent configurations, i.e., they have equal components with reference to every
coordinate system. Thus this theorem permits, at any time, the replacement
of a couple by a parallelogram, or of the latter by a couple.
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We need pay no further attention to the second row of the table (p. 44),
and we shall compare the first and the third rows, i.e., the free vector and the
Jree plane-magnitude. We notice, first, that both behave in the same manner,
under translation and rotation, but that a difference appears when we add
reflection or even a change of the unit of length. In order to follow this in
detail, we think of a plane magnitude £, I, N given in the familiar (right-
handed) coordinate system, and we associate with it a free vector by means
of the equations X = &, V' =M, Z=N. These equations will remain
unaffected if we restrict ourselves to movements of the system of coordi-
nates, but they will be modified by reflection or by change of the unit of
length. If we wish to give geometric expression to them, we cannot get along
without taking account of the sense of the coordinate system and of the
unit of length. In fact, if we again place the system of coordinates as before,
so that € = P = 0 and N is equal to the area of the parallelogram (1, 1/, 2, 3)
in the xy plane, then, as the figure shows (see Fig. 42), > 0, and the vector
X =Y = 0, Z = N has the positive direction of the z axis. Obviously, we
can state this fact independently of the special position of the coordinate
system: I'n order fo oblain, in a right-handed system of coordinates, the free
vector whick has the same coordinales as a given plane-magnitude, we erect @
normal to the plane, toward that side from whick the contour of the parallelogram
y representing the plane-magnitude appears
3 counlerclockwise, and we lay off on it a

segment equal to the area of the parallelo-
, gram. The equality between the coordi-
1 nates of the vector and of the plane-
magnitude persists, no matter how one
translates or rotates the coordinate sys-
tem. It ceases, however, if we perform
an inversion, or if we change the unit of
length. For example, if we measure in
decimeters, instead of in centimeters, the
measure of the area is divided by 100, that of the vector-segment only by
10; likewise, under inversion, the vector changes sign, but not the plane-
magnitude.

We can identify a free plane-magnitude completely with a free vector
only if we choose once for all a definite sense for the system of coordinates
and a definite unit of length. Each person is free, of course, to impose such
a restriction according to his whim, but he must recognize the arbitrary
nature of his choice, if he would come to an understanding wiih others.
All these things are, as you see, very clear and simple, but they must always
be borne in mind because the historical development has left a certain con-

fusion in present day physics. A word, therefore, concerning the kistory of
these matters.

Fic. 42
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Grassmann’s theory of extension, of 1844, because it was so hard to read,
as I have emphasized, made little impression upon our physics and me-
chanics. The development by W. R, Hamilton in Dublin, at about the same
time, had much more influence in England. Hamilton was the inventor of
guaternions, which I considered at length ! during the winter semester. I
need add here only that he also introduced the word vecfor for what we have
called free vector, whereas he did not expressly use the notion of line-bound
veclor. Furthermore, he did »oi distinguish between free plane-magnitude and
Jree vector, because, at the outset, he assumed a definite determination of the
coordinates as to sense and as to unit of length. This usage went over into
physics, where, for a long time, no distinction was made between real vectors
and plane-magnitudes. To be sure, there arose gradually, in finer investiga-
tions, the need for a separation of two forms, according to their behavior
under inversion, both of which had been called indiscriminately vector, and
for this purpose, the adjectives ““polar” and “exial”’ were introduced. A4
polar vector changes ils sign under inversion, and is thus identical with our
Jree vector; an axial vector does not change under inversion, and agrees, therefore,
with our free plane-magnitude (whereby we take no account of dimension).
Eventually, physics had to recognize here a difference which is surprising
in some ways, and which occurs still in the usual presentations, but which,
in our general treatment, appears from the start as quite natural.

Let us now give an example which will clarify this discussion. The state-
ment that electric excitation is a polar vector means that it is measured by
three quantities X, ¥, Z, which transform according to the first row of our
table (p. 44). The corresponding statement that magnetic field strength is
an axial vector means that its three components change according to the
last row in the table. To be sure, I leave here undetermined the question
as to the dimension of these components, as that would take us too far into
physical details.

Along with the word vector, Hamilton introduced the word scelar, which
also plays an important role in physics today. A4 scalar is simply a quaniity
that is an imvariant under all of our transformations of coordinates, ie., a
quantity which, under changes of the coordinate system, itself changes
either not at all, or only by a factor. If we go into detail, we can distinguish
different shades in the notion of scalar. Let us consider, first, as example,
the space-segment, or the volume of the tetrahedron:

X1 M 2
X! 2
T=4% 2 Y2 %2
X3 Y3 23
X4 Y4 %4

Pk ek ek ek
.

1 See Part I, p. 58 et seq.
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This transforms, as is easily verified by calculation, as follows:

Unper TRANSIATION ROTATION INVERSION Ucmngx
over into T T -T AT

Such a quantity, which is unchanged by translation or rotation, but is
changed in sign by reflection, is called a scaler of the second kind, while a
scalar of the first kind is unchanged also by inversion. The dimension, which
is given by the fourth column, is not considered in this statement.

We can also easily set up scalars of the first kind. The simplest examples
are X2 + V2 + 7%, where X, ¥, Z are the coordinates of a free vector, and
2 ++ M2 + N2, where 8, M, N are the coordinates of a free plane-magnitude.
That these quantities remain, in fact, unchanged by all movements and re-
fiections (not by changes in the unit of length) can be inferred from the table
on page 44, if we also take into account equations (3), page 40, for the co-
efficients of rotation. They must, therefore, have a pure geometric meaning.
Indeed we know that they represent the square of the length of the vector,
or, as the case may be, of the area of the plane-segment.

We shall now inquire kow we can obtain, from combinations of given funda-
mental configurations (vectors and scalars of both kinds), additional configura-
tions of the same species. We shall consider first a very simple example.
Let T be a scalar of the second kind, say the volume of a tetrahedron, and
let X, ¥, Z be the coordinates of a polar vector. We consider the three
quantities T+ X, T- ¥, T+ Z. They transform, under movements, just
as do the vector components X, ¥, Z themselves. Under inversion, how-
ever, they remain unchanged, because both factors change sign. Thus
these three magnitudes represent an axial vector. Similarly, starting with
an axial vector £, M, N, we can obtain a polar vector T+ ¢, T - M, T - N.

Now we shall take two polar vectors X1, V1, Z1 and Xy, Vs, Zy and we
shall form from them all sorts of characteristic combinations, starting with
a purely analytic procedure. We shall examine the behavior of the newly
formed magnitudes under transformation of coordinates and we shall de-
cide from this what sort of geometric quantities they represent.

1. We start with the three sums X;+ Xs, Y1+ ¥y, Z1+ Z;. They
transform in just the same way, obviously, as do the vector components
themselves; hence they represent a new polar vector which has with the two
given vectors a purely geometric relation which is independent of the system
of coordinates. \

\
2. The bilinear combination of both vector components

X1 Xo+ ViV + Z1Z,
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remains unchanged by all movements and reflections, as is easily verified
by calculation; hence it represents a scaler of the first sort, which, as such,
must admit a purely geometric definition.

3. The three minors of the matrix formed from the components

X, W Z,
Xz Y2 Zz

behave, as is easily shown, just as do the coordinates of a free plane-magnitude
or of an axial vector, which must then be connected with the given vectors
independently of the coordinate system.

4. We consider finally three polar véctors, and form out of their nine com-
ponents the determinant

X1  Z;
Xy Yo Zs)-
X3 Ya Z3

This remains unchanged under all movements, but it changes sign under
reflection, so that it defines a scalar of the second kind.

I shall indicate the geometric interpretation of these configurations. After
the result is once stated, you can easily complete the proofs, if you will
only start from a properly specialized position of the coordinate system.

Interpretation of 1. The interpretation of the so-called sum of the two
vectors, defined here, is well known. If the two vectors are drawn from the
same point, then the diagonal, drawn from that point, of the parallelogram

2 2 ASV
2 mﬁ A 2
1 1 1

F1c. 43 Fic. 44 Fic. 45

Sformed from them represents this sum. [Rule of the “ parallelogram of forces.”
(See Fig. 43.)]

Interpretation of 2. If the vectors have the lengths r1 and rs, and if the
angle between their directions is ¢ (see Fig. 44), then the bilinear combination
5 1172 cos .

Interpretation of 3. We consider, again, a parallelogram, whose sides are
parallel to the vectors 1 and 2, and we think of it as iraversed in the sense given
by the succession of the directions of 1 and 2 (see Fig. 45); then we have a
completely determined free plane-magnitude, precisely the one defined
above by its three coordinates. Moreover, the absolute value of its area is
given by r1+r;|sine| .
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Interpretation of 4. If the three vectors all start from one point, they
form the three edges of a parallelopiped (see Fig. 46) whose volume, with
properly determined sign, will be equal to the scalar of the second kind de-
fined by the determinant.

Let me speak now of the way in which these processes appear elsewhere in
the literature, where it is not customary to give primary importance, as we
do here, to an investigation of the behavior of cer-
5, tain analytic expressions under transformation of the
% coordinates, i.e., to a rational and simple theory of
{ invariants. In the usual treatments, a certain no-
V) menclature in mechanics and physics has been
< evolved, following Grassmann and Hamilton. It is
customary to speak about the so-called vector al-
gebra, and about vector analysis, which compares
the rules of formation of new vectors and scalars from given vectors with
the elementary rules of operation upon ordinary numbers.

We first note that the operation appearing in No. 1 is called, as already
indicated, simply the addition of the two vectors 1 and 2. Justification for this
designation is found in the validity of certain formal laws which characterize
the addition of ordinary numbers, in particular, the eommutalive and the
associative laws. The first of these laws states that the definition of the ‘“sum”
is independent of the order in which the two vectors 1 and 2 are used. The
second of the two laws states that the addition of the sum of 1and 2 to a
vector 3 gives the same result as the addition of 1 to the sum of 2 and 3.
In a much freer manner, the operations defined in No. 2 and in No. 3 have
been called multiplication, and we distinguish between inner or scalar multi-
plication (No. 2) and outer or vector multiplication (No. 3). Indeed, in each
of these, the important property called the distributive law of multiplication
with respect to addition, which is expressed by the equation

3,

[y

FiG. 46

ai(az + a3) = a1a; + ags,
is valid. In fact, for inner multiplication, we have

Xi(Xo+ X)) + ViV + ¥Vs) + Zi(Za + Zs)
= (X Xy + ViVo+ Z:1Zy) + (X1 Xs + YVi¥s + Z2:25).

The analogous property for outer multiplication can be derived with equal
simplicity. As to the other formal laws of multiplication, which I discussed
fully in my lectures ! last winter, I may say that the commutative law
(a-b=1"5-a) holds for inner multiplication, but not for outer multiplica-
tion, since the small determinants of the matrix which Jefines the outer
product change sign when the vectors 1 and 2 are interchanged.

1See Part I, p. 9.
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I may add that the outer product of two polar vectors is often defined
simply as a vector, without sufficiently emphasizing its axial character. Of
course, on the basis of the general relation given above (p. 46), we can replace
the free plane-magnitude by a vector, and we obtain the following rule. The
outer product of two vectors 1 and 2 is a vector 3 of length riry | sin |, per-
pendicular to the plane of 1 and 2, and so directed that the vectors 1, 2, 3 are
oriented to each other as are the positive x, v, 2 Product

axes, respectively, to ome another (see Fig. 47). 2

It must not be forgotten, however, that this 1
definition depends essentially upon the kind of

coordinate system and upon the unit of length. Fic. 47

Why this language of vector analysis has been so firmly adopted I am un-
able fully to understand. It may well have some connection with the fact
that many people derive much pleasure from such formal analogies with the
common time-honored operations of reckoning. In any event, these names
for the vector operations have been accepted with tolerable generality. How-
ever, the choice of a definite symbolism for these operations, in particular
for the different kinds of multiplication, has resulted in a great divergence
of opinion. In my preceding course of lectures,® I explained that there re-
mains great disagreement, in spite of all efforts. Meanwhile, an interna-
tional commission was set up at the recent mathematical Congress in Rome,
and was asked to propose a unified notation. Whether any sort of agreement
will be reached even among the members of this Commission, and whether
the great body of mathematicians will accept its proposals, only time will
tell. It is extraordinarily difficult to induce a large number of individuals,
bent upon going comfortably in their own ways, to reconcile their divergent
views, except under the compelling force of legislative enactment or of ma-
terial interest. I prefer not to talk here about the notation of vector analysis;
otherwise I might unwittingly create a new one.

I do not wish to end this discussion without pointing out, with emphasis,
that, for our general standpoint, the questions of ordinary vector analysis con-
stitute only a chapter out of a profusion of more general problems. For
example, line-bound vectors, restricted plane-magnitudes, screws, and systems
of forces are, strictly speaking, not considered in vector analysis. For a real
understanding of the operations of vector algebra themselves, however, it is
actually necessary to take a broader view of them. Only then does the prin-
ciple which inheres in them, namely, that of defining geometric magnitudes
according to their behavior under the various kinds of transformation of
rectangular coordinates, find full expression. As to the literature concerning
all these questions, I mention first the work in which I explained our general
principle of classification and applied it, in particular, to the above men-

1Part I, p. 65.
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tioned theory of screws: Zur Schraubentheorie von Sir Robert Ball.' 1 should
mention also the Encyclopedia articles by E. Timerding (Geometrische
Grundlegung der Mechanik eines starren Korpers, Enz. IV, 2) and M. Abra-
ham (Gegmetrische Grundbegriffe der Mechonik deformierbarer Korper,
Enz. 1V, 14).

[The Committee which was set up in Rome for the unification of vector
notation did not have the slightest success, as was to have been expected.
At the following Congress in Cambridge (1912), they had to explain that
they had not finished their task, and to request that their time be extended
to the meeting of the next Congress, which was to have taken place in
Stockholm in 1916, but which was omitted because of the war. The com-
mittee on units and symbols met a similar fate. It published in 1921 a pro-
posed notation for vector quantities, which aroused at once and from many
sides the most violent opposition. This plan is printed in volume I (1921)
of the Zeitschrift fiir angewandte Mathematik und Mechanik, page 421
et seq. The comments of the opponents are published in the second volume
(1922) of the same journal. The terminology which is usual today in vector
calculation comes historically, in the main, from two sources, from Hamil-
ton’s quaternion calculus and from Grassmann’s theory of extension. The
developments of Grassmann were hard to read and remained unknown to
German physicists; for a long time they formed a sort of esoteric doctrine
for small mathematical groups. The ideas of Hamilton, on the other hand,
made their way into English physics, mainly through Maxwell. In his
Treatise on Electricity and Magnetism (2 vols., Oxford, 1873), however,
Maxwell used, in his vector equations, the representation by components
almost exclusively. He made little use of a particular notation, through fear
of not being understood, although in his opinion it was desirable, for many
purposes in physical deliberations, to avoid the introduction of coordinates
and to draw attention instantly to a point in space instead of to its three
coordinates, and to the direction and magnitude of a force rather than to
its three components. That which today is called the vector calculus of the
physicist is derived from the work of the telegraph engineer Heaviside and
the American scholar J. W. Gibbs. The latter published in 1881 his Elements
of Vector Analysis. Although Heaviside, as well as Gibbs, were Hamiltonians
at the start, they both took over Grassmann’s ideas into their calculus.
Indirectly, through the works of these two authors, the vector calculus,
and with it Grassmann’s theory of extension, as well as Hamilton’s quater-
nion calculus, made its way into German physics. The first book that in-
troduced the vector calculus into the circle of German physicists, and that
after the manner of Heaviside, was A. Foppl's Einfiihrung in die /M axwell’sche

L Zeitschrift fiir Mathematik und Physik, vol. 47, p. 237 et seq., and Mathematische
Annalen, vol. 67, p. 419 = F. Klein, Gesammelte Mathematische Abhandlungen, vol. 1,
P 503 et seq.
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Theorie, which appeared in 1894. Both Grassmann and Hamilton had this
in common, that the object of each was to operate with directed magnitudes,
themselves, and only later to go over to their components. It is remarkable
that both generalized the meaning of the word “product.” This may be
due to the fact that, from the outset, they associate their developments with
the theory of complex numbers of more than two terms. (See my presenta-
tion of quaternions in Vol. I, p. 58 et seq.) Otherwise, however, the tech-
nical terms of the two are entirely different, as has been shown already.
The terms line-segment, plane-segment, plane-magnitude, inner and outer
product, come from Grassmann, while the words scalar, vector, scalar prod-
uct, and vector product, come from Hamilton. The disciples of Grassmann,
in other ways so orthodox, replaced in part the appropriate expressions of
the master by others. The existing terminologies were merged or modified,
and the symbols which indicate the separate operations have been used with
the greatest arbitrariness. On these accounts, even for the expert, a great
lack of clearness has crept into this field, which is mathematically so simple.

The principle announced on page 25 is a guiding star through this con-
fusion. According to it, we can characterize the theories of Grassmann and
Hamilton as follows. While Grassmann in his Lineale Ausdeknungsiehre
studies the theory of those invariants which belong to the group of affine !
transformations which leave the origin of coordinates unchanged, he builds
on the group of rotations in his later Vollstindige Ausdehnungslekre, as does
Hamilton also in his Quaternions. Hamilton’s procedure in this is thoroughly
naive. It did not occur to him that there is anything arbitrary in the choice
of the orthogonal group. Other differences can arise, as already explained,
if inversion, that is, reflection of all the coordinate axes in the origin, is ad-
mitted on the one hand or is excluded as superfluous on the other. The whole
situation can best be made clear with the notions outer product (free plane-
magnitude), vector product, and vector. If we select the group of orthogonal
transformations but exclude inversion, we make no distinction between
these three types of quantity. For this reason, Grassmann, in his Voll-
stindige Ausdehnungsiehre, represents the free plane-magnitude (a paral-
lelogram with a sense of rotation) by means of a vector, which he calls the
complement of the plane-magnitude, and which corresponds completely to
the vector which the physicist designates as a vector product. But if in-
version is admitted, then “plane-magnitude’ and “vector product” are to
be considered equivalent geometric configurations, but different from that
of “vector.” This corresponds to the customary distinction in physics be-
tween polar and axial vectors. If we now go over to the group of affine trans-
formations, we can no longer consider Grassmann’s free plane-magnitude
and the vector product as geometric quantities of the same kind.]

! These transformations are discussed later in this book (see p. 70 et seq.).
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V. DERIVATIVE MANIFOLDS

This completes what I wished to say here about elementary configura-
tions of geometry, and I shall now turn to the kigher configurations which
arise by combination of these. I shall do this in Aistorical form, so that you
can get a picture of the development of geometry in the different centuries.

A. Up to the end of the eighteenth cenbury only points were commonly used as
elementary configurations. Other elementary configurations appeared at
times, but never systematically. As configurations derived from points,
there were considered curves and surfaces as well as more general configura-
tions made up of parts of different curves and surfaces. Let us consider,
briefly, how varied such configurations may be.

1. In elementary instruction, and sometimes even in the introductory
course in analytic geometry, it would appear as though the whole of geom-
etry were confined to the straight line, the plane, the conic sections, and sur-
faces of the second order. Of course that is a very narrow view. Even the
knowledge of the ancient Greeks went beyond this, in part, for they in-
cluded certain higher curves which they considered as ““geometric loci.” To
be sure, these things had not reached down into ordinary instruction.

2. Let us compare with this the state of knowledge around 1650, when
analytic geometry began with Ferma? and Descartes. In those days, scholars
distinguished between geometric and mechanical curves. The first type in-
cluded particularly the conic sections, but included also certain higher
curves such as those which are now called algebraic curves; the second type
included such curves as those defined by some meckanism, e.g., the cvcloids,
which arise when a wheel rolls. Such curves belong for the most part to the
curves now called trenscendental curves.

3. Both these types of curves are included under analytic curves, which
were defined later. These are curves whose coordinates %, y can be repre-
sented as analytic functions of a parameter ¢, i.e., briefly, as power series in .

4. In recent times, consideration has often been given to mon-analytic
curves, whose coordinates x = @(¢), y = (£) cannot be developed into power
series. Such are, for example, the curves defined by continuous functions
without derivatives. This implies a more general notion of curve, which in-
cludes the analytic curve as a special case.

5. Finally, through the development, in recent times, of the theory of
aggregates, which I have discussed before,’ a concept has g/ppeared which
was heretofore unknown, namely, the infinite point set. This is a totality of

18ee Part I, p. 250 et seq.
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infinitely many points, a point cluster, which may not exactly form a curve,
but which is still defined by a certain law. If we wish to find, in our con-
crete perception, something that corresponds fairly well to a point set, we
might look at the milky way, in which more careful search discloses ever
more and more stars. The actual infinity of the abstract point set theory
is replaced here by the infinity of the mathematics of approximation.

Within the scope of this course of lectures there will not be room, un-
fortunately, for more than this brief account of these disciplines, in par-
ticular for infinitesimal geometry and point set theory, although these are, of
course, likewise important parts ! of geometry. They are, however, treated
thoroughly in many special lectures and books. Hence we shall give only
this indication of their place in the whole field of geometry, in order that we
may treat more fully things that are not so often treated elsewhere.

However, I should like to add to this account an explanation of the dif-
ference between analytic and synthetic geomeiry, which always plays a part
in such discussions. According to their original meaning, synthesis and
analysis are different methods of presentation. Synthesis begins with de-
tails, and builds up from them more general, and finally the most general,
notions. Analysis, on the contrary, starts with the most general, and sep-
arates out more and more the details. It is precisely this difference in mean-
ing which finds its expression in the designations synthetic and analytic
chemistry. Likewise, in school geometry, we speak of the analysis of geo-
melric constructions: we assume there that the desired triangle has been
found, and we then dissect the given problem into separate partial problems.

In higher mathematics, however, these words have, curiously, taken on
an entirely different meaning. Synthetic geometry is that which studies figures
as such, without recourse to formulas, whereas analytic geometry consistently
makes use of suck formulas as can be written down after the adoption of an ap-
propriate system of coordinates. Rightly understood, there exists only a dif-
ference of gradation between these two kinds of geometry, according as one
gives more prominence to the figures or to the formulas. Analytic geometry
which dispenses entirely with geometric representation can hardly be called
geometry; synthetic geometry does not get very far unless it makes use of a
suitable language of formulas to give precise expression to its results. Our
procedure, in this course, has been to recognize this, for we used formulas
from the start and we then inquired into their geometric meaning.

In mathematics, however, as everywhere else, men are inclined to form
parties, so that there arose schools of pure synthesists and schools of pure
analysts, who placed chief emphasis upon absolute ““purity of method,”
and who were thus more one-sided than the nature of the subject demanded.
Thus the analytic geometricians often lost themselves in blind calculations,

! Part III will contain something about these things.



56 The Simplest Geometric Manifolds

devoid of any geometric representation. The synthesists, on the other hand,
saw salvation in an artificial avoidance of all formulas, and thus they ac-
complished nothing more, finally, than to develop their own peculiar lan-
guage formulas, different from ordinary formulas. Such exaggeration of the
essential fundamental principles into scientific schools leads to a cerfain
petrifaction; when this occurs, stimulation to renewed progress in the science
comes principally from “outsiders.” Thus, in the case of geometry, it was
investigators in function theory who first made clear the difference between
analytic and non-analytic curves, a difference which had never received
sufficient attention either from the scientific representatives, or in the text-
books, of either of the two schools. Similarly, it was the physicists, as we
have seen, who gave currency to vector analysis, although the fundamental
notions are found in Grassmann. Even in texts on geometry today, vectors
are often scarcely mentioned as independent concepts.

From time to time, it has been proposed that geometry, as'an independent
subject of instruction, be separated from mathematics, and that, generally
speaking, mathematics, for purposes of instruction, be resolved into its sep-
arate disciplines. In fact, there have been created, especially in foreign uni-
versities, special professorships for geometry, algebra, differential calculus,
etc. From the preceding discussion, I should like to draw the inference that
the creation of such narrow limits is not advisable. On the contrary, the
greatest possible living interaction of the different branches of the science
which have a common interest should be permitted. Each single branch
should feel itself, in principle, as representing mathematics as a whole. Fol-
lowing the same idea, I favor the most active relations between mathemati-
cians and the representatives of all the different sciences.

With this, I bring our digression to an end and I shall resume considera-
tion of the historical development.

B. Let us consider now the powerful impulse that geometric investigation
received, from 1800 on, when the so-called newer geometry stepped into the
foreground. Today we call it, rather, projective geometry, because the opera-
tion of projection, which I shall discuss at length later, plays a chief role.
The name newer is still used a good deal, but really inappropriately, be-
cause many still newer tendencies have appeared since then. As the first
pathfinding investigator, I would name J. V. Poncelet, whose Traité des
proprietiés projectives des Figures ' appeared in 1822.

The difference between the synthetic and the analytic direction also played a
role, from the first, in the further development of this projective geometry.
As representing the first type, I'mention the Germans J. Steiner and Ch. von
Staudt; among the second group, in addition to A. F. Mobius, comes, above

1 8econd edition, Paris, 1865-66.
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all, J. Pliicker. The fundamental works of these men, which have even
today an active influence, are: Steiner’s Systematische Entwickelung der
Abhingigkeit geometrischer Gestalten von einander,' von Staudt’s Geometrie
der Lage,® Mbius’ Baryzentrische Kalkil,® and, finally, Pliicker’s Analynsch—
geometrische Entwickelungen.t

If I were to set forth the most important guiding principles of these
“newer”’ geometries, I should put first the following ideas.

1. As the chief accomplishment of Ponucelet, I should select his giving
prominence for the first time to the thought that there are other configura-
tions that have equal justification with the point. In particular, we may, in
the plane, set the unlimited line over against the point, and in space we can
compare the unlimited plane and the point. In alarge number of the theorems
in geometry, we can replace the word “point” by the word “line” or by
the word ““plane,” as the case may be. This is the principle of duality.

Poncelet, in his developments, started from the theory of reciprocal polars,
the polar theory of the conic sections. As is well known, to every point #
there belongs, with reference to a definite conic, ™
a straight line &, the polar of the point, which
may be defined, perhaps, as the line joining the
points of contact of tangents drawn from p to
the conic (see Fig. 48). Conversely, there be-
longs to every line 7 a pole p, and the recipro-
cal relation obtains that if a point ¢’ lies on ,
then 7', the polar of p’, goes through . From
this special one-to-one relation between points and lines in the plane, which
the conic establishes, together with the analogous correspondence between
points and planes in space, which is set up by a surface of the second order,
Poncelet concluded #:at one could “ dualize” in this way all theorems of geom-
etry whick have to do with properties of position, the mutual incidence of point
and line, or of point and plane. A famous example is the theorem of Pascal,
concerning the hexagon inscribed in a conic, which dualizes into Brianchon’s
theorem concerning the hexagon of tangents circumscribed about the conic.

F1c. 48

2. As time went on, a deeper study of the principle of duality led to its being
detached from the theory of polars, and to its recognition as a conseguence
of the peculiar constitution of projective geometry. This beautiful systematiza-
tion appears first in the work of Gergonne and of Steiner. You need only
read the preface of Steiner’s Systematische Entwickelungen,® where he pic-
tures in enthusiastic words how projective geometry first brought order into

! Berlin, 1832 = Gesammelte Werke, 13d, I (Berlin, 1881), p. 229 et seq. Reprinted in
nos. 82, 83 of Ostwald’s Klassiker der exakien Wissenschaften.

2 Niimberg, 1847. ¢ Two vols., Essen, 1828, 1831,

3 See p. 17. § Cited above, p. 233,
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the chaos of geometric theorems, and how everything arranges itself so
naturally in it.

As I shall often have occasion to speak of this discipline in the course of
these lectures, I should like to give a brief survey of it now. The principle
of duality may be stated as follows. In the fundamental notions and the
fundamental theorems (axioms) of geometry, the point and the plane, in space,
or the point and the line, if we restrict ourselves to the plane, dways enter sym-
metrically, i.e., these axioms, and hence the theorems logichlly derived from
them, are dual by pairs. The so-called mass relations of elementary geom-
etry, such as distance, angle, etc., do not, in the first instance, appear at
all in this discipline. We shall see, later, how they can be fitted in supple-
mentarily. In detail, the composition of the structure is as follows.

(a) Three kinds of configurations are used as the simplest ones for a founda-
tion: the point, the (unlimited) straight line, the (unlimited) plane.

(b) The following relations (called theorems of commection or axioms of
connection) exist between these fundamental configurations: Two points de-
termine a line, three non-collinear points determine o plane; two planes deter-
mine a line; three non-collinear planes determine a point. The unrestricted
validity of these axioms will be brought about by the skillful introduction of
extraordinary (infinitely distant) elements in a way to be explained later.

(c) We now construct the linear fundamental configurations (i.e., those
which are defined analytically by linear equations). ‘

1. The fundamental configurations of the first kind, each consisting of
! elements:
(o) The totality of points on a line: a rectilinear point range.
(B) The totality of planes through a line: an axial pencil of
planes.
(y) The lines through a point in a plane: a (plane) pencil of lines.
I1. Fundamental configurations of the second kind, each consisting of
o ? elements:
() The plane as locus of its points: a field of points.
(o) The plane as locus of its lines: a field of lines.
(B) The planes through a fixed point: a pencil of planes.
(8") The lines through a fixed point: a pencil of lines.
II1. Fundamental configurations of the third kind, each consisting of o3
elements:
() Space as the locus of its points: a space of points.
(B) Space as the locus of its planes: a space of planes.

In this entire structure, complete duality appears everywhere. We can
exhibit the whole body of projective geometry in two mutually dual ways if,
using the given fundamental elements, we start on the one hand from points,
and on the other either from lines, if we are concerned with geometry of the
plane, or from planes if we are thinking of geometry of space.
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3. This structure can be represented in another manner, and more con-
veniently, if we follow the analytic way and inquire, for that purpose, in the
first place, in what form the principle of duality appears with Pliicker. We can
write the eguation of the straight line in the plane, if the constant term is not
zero, as follows:

ux+vy+1=0.

The line is determined if we know the values of the coefficients % and v,
which, moreover, appear in this form symmetrically with the running
coordinates x and y. Now it is Pliicker’s thought to look upon # and
v as the “coordinates of the line” and as having equal justification with the
point coordinates x and vy, and as being considered, at times, as variable instead
of them. With this new point of view, ¥ and y have fixed values, and the
equation expresses the condition that a variable line passes through a fixed
point: it is the equation of this point in line coordinates. Finally, it is not
necessary, in the form of expression used, to show a preference for either of
these configurations. We can leave entirely undetermined which pair of
quantities we will consider constant and which variable. Then the equation
expresses the condition for the “uniled position” of point and line. Now the
principle of duality lies in this, that every equation in x and vy, on one hand, and
in u and v on the other hand, is completely symmetrical. Everything that we said
above concerning the duality that is inherent in the axioms of connection rests in
this property.

In space, of course, the equation of the line will be replaced by the eguation
of the plane

ux+vw+wz41=0.

As a result of these considerations, geometry can be developed analytically
by looking upon either x, y, z or %, v, w as the fundamental variables and,
accordingly, by simply interchanging the words point and plane. In this way,
then, arises the familiar fwo-way development of geometry, which you find
emphasized in many texts, where dual theorems appear side by side on the
same page, separated by a vertical line. Let us cast a rapid glance at the
higher configurations which arise in this way, always in dual pairs, whereby
we shall, in a sense, obtain a continuation of the above dual scheme of linear
configurations.

To start with, we look upon =, y, z as definite, non-constant functions ¢, X,
¥ of a parameter ¢. These three functions will then represent a space curve,
which, in particular (when ¢, x, ¥ satisfy identically a linear equation with
constant coefficients), can be a plane curve, or, finally (when they satisfy two
such linear equations), can degenerate into a straight line. In the same way,
considering #, v, w as functions of ¢, we obtain a singly infinite succession of
planes, which we can consider most conveniently as the tangent planes of a
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developable surface. As special cases we get, as the first case, that all the
planes pass through a point, i.e., that they envelop a cone, and, as the second
case, that they all go through a fixed line.

Secondly, if we consider x, y, z as functions of two parameters t and ', we
get a surface, which, in particular, can degenerate into a plane. The dual of
this is the double infinity of planes enveloping a surface, which can degenerate
into a pencil of planes through a point. C

Let us collect these results into a table: 'F

x=¢ () Curve u = ¢ ({) ) Developable surface
y=x (@) (Plane curve) v =x (£ (Cone)

z =y (@) (Straight line) w =y (§) (Straight line)

¥ Z ¢ E;’ I;g Surface- 1_: z ¢ E;’ iig Surface

Z _ f[i L] (Plane) .z z (| @oin)

This will suffice as an example of a dual scheme which men have found
pleasure in developing, these many years.

4. One finds even in Pliicker an essential extension of this entire subject. Just
as he looked upon the three coefficients in the equation of the plane as vari-
able plane coordinates, so he conceived the notion of considering, guite gen-
erally, the constants upon which any geometric configuration depends—e.g.,
the nine coefficients in the equation of a surface of order two—as variable co-
ordinates of this configuration, and he investigated what on equation belween
them might signify. Of course, one can no longer talk of “duality,” in any
real sense, since this dependeci upon the special property that the equation
of the plane, as well as that of the straight line (see p. 59 et seq.), was symmet-
rical in coefficients and coordinates.

Pliicker himself carried out this idea especially for straight lines in space.
A straight line in space is given, in point coordinates, by two equations,
which Pliicker writes in the form

x=rz+4p, y = sz 4. 0.

The four constants r, s, p, o in these equations are to be called the coordinates
of the line in space. It is easy to show how they are related to the six ratios
X:V:- . -:N,derived by Grassmann’s principle from two points of the
line, which we have used before (p. 30 et seq.). Pliicker now considers an
equation f(r, s, p, o) = 0 between the four coordinates. It separates out
from the four-fold infinity of straight lines in space a three-fold infinity of
lines which Pliicker calls a line complex. We have already mentioned (p. 35)
the simplest case of this manfold, the linear complex. Two equations

f(r» S, Py U) =0, g(r) $, Py U) =0
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determine a line-congruence, which is also called a system of rays. The first
of these names implies that we are concerned with those straight lines in
which the two complexes f = 0, g = 0 coincide. Finally, three equations
of the same sort, f = g = % = 0 determine a simply infinite family of
straight lines which cover a certain surface called a ruled surface.

Pliicker gave this presentation in 1868-69 in his book entitled Neue Geome-
trie des Raumes gegriindet auf die Betrachtung der geraden Linie als Raumde-
ment.! He died as the printing of the first part was nearly finished, and I, as
his assistant, was able to win my spurs by editing the second part.

Pliicker’s general principle of considering any configuration as a space
element and its constants as coordinates has led to other interesting develop-
ments. Thus the eminent Norwegian mathematician Sophus Lie, who
worked many years in Leipzig, had great success with his geometry of the
sphere. Here the space element is the sphere, which, like the straight line,
depends upon four parameters. I mention, further, Study’s Geometrie der
Dynamen,? of a later date, where a whole series of interesting investigations
of this nature are connected with the notion of the “dyname,” which we
have discussed above.

C. The “new geometry’’ which we have been discussing is based primarily
on the prominence given to the unlimited line and the unlimited plane as
space elements. Grassmann’s developments, beginning in 1844, went beyond
this, however. Here he placed the limited line-segment, plane-segment, space-
segment in the foreground and assigned components to them according to his
determinant principle, all of which we have discussed thoroughly. The beauti-
ful thing about this is that it corresponds to the needs of mechanics and
physics far more effectively than do, for example, line geometry and the
principle of duality.

Of course, these different directions are by no means so sharply separated
from one another as I have made it appear in my attempt to give you a
clearer view of each of them. The fact of the matter is that Pliicker gives
more weight to the unlimited line, Grassmann more to the line-segment,
while, with each of them, the other configuration sometimes appears. In
particular, Study might just as well be placed in the present rubric as in the
preceding one.

I must emphasize, however, that Grassmann by no means confined him-
self to things that were immediately applicable, but that, with unfettered
creative instinct, he went far beyond that. His most important contribution
is that he introduced the general notion of # point coordinates x1, xa, - * * , %n,
instead of the three x, y, 2, and so he became the real creator of geometry of
space, Ry, of n dimensions. Following his general principle, he considered, in

1 Parts 1, 2, Leipzig, 1868 and 1869.
2 Leipzig, 1903.
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such a higher space, the matrices of the coordinates of 2, 3, -+, n 41
points, whose minors then gave him a whole series of fundamental configura-
tions of R,, corresponding to the line-segment and the plane-segment. I
have mentioned already that Grassmann called the abstract discipline thus
created the theory of extension.

This notion of R, has been extended in recent times to include the con-
sideration of infinitely many coordinates xi, %z, * - - ad injinitum, and one
speaks of space R. of infinitely many dimensions. That such a notion can
make sense can be seen if we think of operating with power series: a power
series is determined by the totality of its infinitely many coefficients, and it
can, to that extent, be represented by a point in R..

The remarkable thing here, as has been recognized in general by mathe-
maticians, is that this way of speaking geometrically of # and, indeed, of in-
finitely many variables, has proved to be of real use. By means of it, dis-
cussions become more vivid than when they are confined to abstract analytic
expression. The student acquires soon such facility in the use of the new
geometric representation as to make it appear that he is really at home in
Ra or R,. What measure of truth lies behind this phenomenon, and
whether, perhaps, a natural gift of the human mind comes to light, which is
ordinarily limited in its development by experience in space of only two or
three dimensions—that is a question to be decided by psychologists and
philosophers.

If Tam to give you a survey of the role of mathematics in general culture,
I must devote a word to the turn which was given to geometry of higher
dimensions in 1873 by the astronomer Zillner of Leipzig. We have here one
of the rare cases where a mathematical expression has gone over into every-
day use. Nowadays everybody uses expressions involving the “fourth di-
mension.” This popularizing of the fourth dimension arose from experiments
made before Zgllner by the spiritualist Slate. Slate announced himself as a
medium who had direct intercourse with the spirits, and his exhibitions con-
sisted, among others, in causing objects to disappear and to reappear. Zoll-
ner believed in these experiments and set up for their explanation a physico-
metaphysical theory which was widely accepted. He postulated that for the
real physical phenomenon, there is really a space of four or more dimensions,
of which we, because of our limited endowment, can appreciate only a three-
dimensjonal section xs = 0. He argued that an especially gifted medium
who, perhaps, is in touch with beings living outside this world of ours, can
remove objects from it, which would then become invisible to us, or he can
bring them back again. He attempts to make these relations clear by pictur-
ing beings who are restricted to a two-dimensional surface, and whose per-
ceptions have this limitation. We may think of the mode of life of certain
animals, e.g., mites. If an object is removed from the surface in which these
creatures live, it would appear to them to disappear entirely (that is how it is
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conceived), and it was in analogous fashion that Zgllner explained Slate’s
experiments. Various attempts have been made to picture the existence of
these two-dimensional beings. Especially amusing is the one in an anony-
mous English booklet Flatland.! Here the author paints exactly the appear-
ance of a two-dimensional world: the individual beings differ through their
geometric form, being more complicated the more highly organized they are.
Regular polygons are the highest beings. Women, of whom the author seems
to have a poor opinion, have simply the form of a dash; and so it goes.

I hardly need to add here that the mathematical conception of geometry
of higher dimensions has nothing to do with Zéllner’s metaphysical notions.
Mathematics shows itself here as a pure normative science, to use a modern
expression, which considers the possible connections of things, and which
exists quite independently of the facts of natural science or of metaphysics.

After this digression, I should like to consider, in somewhat more detail,
the higher manifolds which, as combinations of Grassmann’s elementary mani-
Jolds, in particular of vectors, can be placed alongside of the combinations of
points, planes, etc., which we have already discussed. We come here to the
further development of the real vecior-analysis, which, thanks especially to
Hamilton, has become one of the most valuable tools of mechanics and
physics. I place before you Hamilton’s Elements of Quaternions, as well as
the Vector Analysis,? already mentioned (p. 52) by the likewise distinguished
American J. W. Gibbs.

The new notion which is added here to our already familiar concepts of
vector and scalar, is the connecting of these quantities with the points of space:
To every point in space we assign a definite scalar S = f(x, y, 2) and we
speak then of a scaler field. On the other hand, we attach to every point in
space a definite vector

X = ¢(x’ Y, z)’ Y= ‘l’(x; Y, Z)y Z= X(x; ¥s Z)

and we call the totality of these vectors a vector field.

In this way we designate two of the most important geometric notions,
which are used everywhere in modern physics. It will suffice if I recall a few
examples of their wide application. The density of a mass distribution, the
temperature, the potential energy of a continuous extended system, always
thought of as a function of position, are examples of scalar fields. The field
of force, in which a definite force is applied at each point, is the typical ex-
ample of a vector field. I will cite the following additional examples. In
the theory of elasticity, the field of displacements of a deformable body, when
we assign to each point a line-segment that indicates the amount and direc-

L A Romance of Many Dimensions. By a Square. London, 1884, The purpose of the
author here is really to make comprehensible the possibility of a geometry of higher di-
mensions,

? Edited by E. B. Wilson, New York, 1901.
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tion of its displacement, is a vector field. Similarly, in hydrodynamics, the
field of velocities, and finally, in electrodynamics, the electric and magnetic
field, in which to each point is assigned a definite electric and a magnetic
vector, are examples of vector fields. Since at every point we can combine
the vector of the magnetic field strength, which is of axial nature, with the
polar vector of the electric field strength, to form a screw, the electromag-
netic field can be interpreted also as an example of a screw-ﬁafd.

Hamilton showed how these fields could be made available in the simplest
way, for the methods of differential and integral calculus. To this end, it is
fundamental to remark that the differentials dx, dy, dz, whose ratios de-
termine the direction of displacement at a point of space, represent a free
vector, i.e., that they behave, under transformation of coordinates, as do free vec-
tor components. This follows easily from the fact that they arise by a limit
process from the coordinates of a small linear segment passing through the
point x, y, 2.

More important, but more difficult to grasp, is a second remark that zhe
symbols of partial differentiation

d d d

o’ 3y 0z
also have the character of free vector components, i.e., if we go over to a new
rectangular coordinate system «’, 9/, 2/, the new symbols 9/9x’, 3/dy’, 302’
behave toward the old as do the transformed coordinates of a vector (and,
specifically, a polar vector).

This will be clear, at once, if we carry it out for a rotation of the system of
coordinates

x' = ax + by + 12,
(1) ¥ = agx 4 byy + ¢z,
! = gsx + byy + c32.

w
It

As we showed earlier (p. 41), these formulas of rotation have the character-
istic that their solution is obtained simply by the interchange of rows with
columns in the system of coefficients:

x = awx’ -+ a2y’ + a3,
(2) y= blx' + bzyl + sz,,
z2=cx' + ¢y + 37,

If we have, now, any function of %, y, z, we can, by means of (2), express it as
a function of «/, ', 2, and we shall have according to the known rules for
partial dlﬁerentlatlon,

dx 8 dy , 9 9z
290 Tayor T a;57°

Q!,Q_,

9 _
'
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9 _ 93 03y 90
dydy " 829y’
d d0x 4ddy, 9 9z
87 5}&7+ayaz+azaz

The derivatives of x, y, z with respect to 2, 3/, 2’ are immediately available
from (2), and we get

0

d d d
37 = M3z + b15§ + oz

a d d a
3y 4126*4- b:za—-{- Cag
a

Jz g = aa +b3 +03

A comparison with (1) shows, in fact, agreement with the transformation
formulas for point coordinates, and thus for vector components.

An essentially simpler calculation would show also that, under franslation
of the system of coordinates, the three symbols d/dx, 8/dy, 3/0z are un-
changed, but that, under inversion, the sign changes, so that the statement
is proved. To be sure, we have taken no account of changes in the unit of
length, i.e., of dimension. If we do this, we find that our symbols have the
dimension —1, because of the differentials of coordinates that appear in the
denominators.

We shall now perform, with this Hamilton vector symbol (d/dx, d/dy,
d/0z), the same operations that we performed earlier with vectors. Let me
remark, in advance, that we may call the result of the operation 8/dx upon
a function f(x, y, %), that is, df/0x, symbolically, the product of 3/0x and f,
since the formal laws of multiplication, insofar as we are here concerned
with them, in particular the distributive law

W+ 9, %
9z ox ax

hold for these combinations.

Now let a scalar field S = f(x, v, z) be given, and let us multiply this scalar
by the components of the Hamilton vector symbol, in the sense just out-
lined, i.e., let us form the vector

of o 9

ox’ 9y 0z
We have already seen (p. 48) that the product of a scalar by a vector is
again a vector. Since, in the proof of this theorem, only such properties of
multiplication are used as persist also in our symbolic multiplication, it
follows that these three partial derivatives of the scalor field define a vector
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which depends on x, v, 2 and is thus a vector field. The connection between this
vector field and the scalar field is independent of the particular system of coordi-
nates chosen. This vector field, with the sign changed, is called the gradient
of the scalar field, a term taken from meteorology. Thus, in the familiar
weather charts of the newspapers, the air pressure at each point is indicated
as a scalar field S, while the curves S = const. are drawn and the cerrespond-
ing values of S are indicated. The gradient gives, then, the direction of the
most rapid drop in air pressure and is always normal to these contour curves.

One can always form a scalar X2 -+ ¥? 4 Z2 from the vector components
X, ¥, Z. Hence we can obtain, from the gradient of a scalar, a new scalar

feld:
(&) + @) + G

which must be connected with it, and therefore with the original scalar
field, in a manner independent of the system of coordinates. This scalar is
equal to the square of the length of the gradient, or, as it is called, to the square
of the slope of the scalar field f.

Applying this same principle, we can form, from the vector symbol J/dzx,
d/dy, 8/0z, a symbolic scalar, by multiplying symbolically each component
by itself, i.e., by applying the operation which it implies twice. This yields
the operation

9t = 0?
which has, thus, scalar character, i.e., it is invariant under transformation of
coordinates. If we “multiply” this scalar symbol by a scalar field f, we get,
necessarily, again a scalar field
9% 62f 62f
Ox? + 2 T 5 oz2’

whose relation to the first one is independent of the coordinate system. If we
think of a liquid flowing in a field, whose initial density is 1, and whose
velocity at each point is given by the gradient of f, then the density at each
point increases, in the first instant of time d¢, by an amount equal to this
scalar multiplied by d2. Hence we call
(%, 97 4 9F
(5 55+
the divergence of the gradient of .
Formerly, following Lamé, it was customary to call a scalar field

S = f(x, y, 2) also a point function (fonction du point), and to call the first
scalar field connected with it, (9f/8x)% + (8f/0y)% + (0f/02)?, the first dif-
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ferential parameter and the second, 9% /0x® 4 9%f/0y* 4 0% /02? the second
differential parameter.

In similar manner, we shall now combine our vector symbol with a given
(polar) vector field:

X=9¢@7912, Y=xxvy2, Z=ykxmv2.

Indeed, we shall do this with the aid of both kinds of multiplication of two
vectors with which we have become acquainted:

(a) By inner multiplication there results a scalar, which, in the already
familiar notation of symbolic multiplication, may be written in the form:

ax adYy , az
i 3y + 35
Since this result also is independent, of course, of x, ¥, 2, it also represents a
scalar field whose relation to the given vector field is independent of the sys-
tem of coordinates. It is called, in the sense defined above, the divergence
of that field.
(b) Outer multiplication yields the matrix:

209 9
dx dy 09z,
X Y Z

whose three determinants are to be read as:

0Z 9Y X 9z ¥ X

dy 9z 9z 9z  dox Oy
These define, according to what precedes, a plane-magnitude, or, as the case
may be, an axial vector or an axial vector field. The connection between the
two vector fields is again independent of the choice of the coordinate system,
According to Maxzwell, this vector field is called the curl of the given one.
In Germany, the German word guirl, of like germanic origin, is used. Occa-
sionally, this is called also rofor, or rotation.

We have thus obtained, through systematic geomelric investigation, all
those quantities which the physicist must always have at hand in his study
of the various vector fields. It is pure geometry, however, that we are study-
ing. I must emphasize this all the more, since these things are often re-
garded as belonging to physics, and are therefore discussed in books and
lectures on physics, instead of in geometry. In the nature of the case, such
an attitude is thoroughly unjustified, and it is comprehensible only as a
residue of the historical development. When the time came, physics had to
create the weapons which it needed, and which it did not find ready at hand
in mathematics.

There exists here the same misunderstanding which I mentioned often last
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semester in the field of analysis. In the course of time, physics developed
all sorts of mathematical needs. Hence it often created valuable stimulation
to mathematical science. But mathematical instruction, especially as it is
given in the schools, even today, pays no attention to these changes. It
goes along in the same old rut which it has followed for centuries, and leaves
it to physics laboriously to provide its own aids, although these wpuld sup-
ply much more appropriate material for mathematical instruction than do
the traditional topics. You observe that in the life of the intellect there is
also a law of inertia. Everything continues to move along its old recti-
linear path, and every change, every transition to new and modern ways,
meets strong resistance.

With this I leave the first main part, which has taught us the various kinds
of geometric manifolds, the objects of geometry. Now we shall concern our-
selves with a particular method, which is of greatest importance for the
more exact study of these manifolds.



PART TWO

GEOMETRIC TRANSFORMATIONS

That which we now undertake is one of the most important chapters of
scientific geometry. In its fundamental ideas and in its simpler portions it
offers, however,—and I wish especially to point this out in these lectures—
very stimulating material for school instruction. Geometric transforma-
tions are, after all, nothing more than a generalization of the simple notion of
Sfunction, which our modern reform tendencies are striving to make the cen-
tral point of mathematical instruction.

I begin with a discussion of potnt transformations, which constitute the
simplest class of geometric transformations. They let the point persist as
space element, i.e., they bring every point into correspondence with another
point—in contrast with other transformations which carry the point over
into other space elements, such as the straight line, the plane, the sphere,
etc. Here again I place the analytic treatment in the foreground, since it
often enables us to give the most accurate expression of the facts.

The analytic expression of a point transformation is what analysis calls
the introduction of new variables «', y', 3’

x = ¢(x, Y, %),
y x(x, ¥, %),
7 = ’10 x, Y, Z)

We can interpret such a system of equations geometrically in two ways, I
might say actively and passively. Passively, it represents @ change in the system
of coordinates, i.e., the new coordinates x/, ', 2’ are assigned to the point
with the given coordinates x, y, z. This is the meaning we have always had
in mind previously in our study of the changes of the rectangular system of
coordinates. For general functions ¢, x, ¥, these formulas include, of course,
over and above that, the transition to other kinds of coordinate systems,
e.g., trilinear coordinates, polar coordinates, elliptic coordinates, etc.

In contrast with this, the active interpretation holds the coordinate sys-
tem fast and changes space. To every point x, y, z, the point «’, ¥/, 2’ is
made to correspond, so that there is, in fact, a transformation of the points
in space. It is with this conception that we shall be concerned in what fol-
lows. )

We shall obtain the first examples of point transformations, in the sense
of these remarks, if we consider again the formulas which, before (see p. 39

69
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et seq.), passively interpreted, represented a translation, a rotation, a re-
flection, or a change in the unit of length, and we shall now interpret them
actively. Tt is easy to see that the first two of these
groups of formulas represent a translation of space—
thought of as rigid—and a rotation about O, re-
spectively, with respect to the immovable system of
coordinates. The third group gives an ndersion of
the points of space in the origin O. [Every point
x, ¥, % goes into —x, —y, —z, symmetric to it with
respect to O (see Fig. 49).] The last one represents a so-called similarity
transformation of space, with O as center.

We now start our real investigations with a particularly simple group of
point transformations, which includes all the foregoing as subcases, namely,
the affine transformations.

F16. 49

I. AFFINE TRANSFORMATIONS

An affine transformation is defined analytically when «’, ¥/, 2’ are linear
integral functions of x, y, 2:

= ax+ by~ cz 4 dy,
(1) y, asx + b2y + Ca% + dz,
Z, = a3x + bay + C3% + d3.

The name, which goes back to Mobius and Euler, implies that, in such a
transformation, infinitely distant points correspond again to infinitely dis-
tant points, so that, in a sense, the “ends” of space are preserved. In fact,
the formulas show at once that «, ', 2’ become infinite with x, y, z. This
is in contrast to the general projective transformations, which we shall
study later, in which «’, ', 2’ are fractional linear functions, and by which,
therefore, certain finite points will be moved to infinity. These affine trans-
formations play an important role in physics under the name of komogeneous
deformations. The word ‘“homogeneous” implies (in contrast to heteroge-
neous) that the coefficients are independent of the position in space under
consideration; the word ‘“deformation” reminds us that, in general, the
form of any body will be changed by the transformation.

The transformation (1) can be made up of displacements, in amounts
d1, ds, ds, parallel to the three coordinate axes, together with the homo-
geneous linear transformation

8
Il

! = aix + by + ¢z,
asx + boy - coz,
! = asx + by + cxz,

(2)

SIS
i
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which leaves the position of the origin unchanged (centro-affine transforma-
tion), and which is somewhat more convenient to use. We start the con-
sideration of this type (2).

1. We inquire about the possibility of solving the system of equations (2).
As the theory of determinants shows, this depends essentially upon whether
the determinent of the system of coefficients of the transformation

a1 bl Cc1
(3) A= as b2 C3
as b3 C3

vanishes or not. We shall consider the first case later; for the present we
shall assume that A 7% 0. Then (2) has an unique solution of the form

x = apx’ + by + iz,
) y = e’ + by’ +

2 = ap’ by’ + caz,
where ay, * * +, ¢y are the minors of A, divided by A itself. Thus to each
point x, y, 2 we may say not only that there corresponds a point ', ¥/, 7/,
but also that there is only one, and the transition from «/, ', 2’ to x, 9, z is
again an affine transformation.

2. We now ask how the manifolds in space change under these affine trans-
formations. To begin with, let us take a plane

Ax+ By+Cz+ D =0,

substituting the expressions (4) for x, v, 2, as equation for the corresponding
manifold, we obtain

A'x' + Blyl + CIZI + DI — 0’

where the 4’, - -+, D’ are certain combinations of 4, +-+, D and of the
coefficients of the transformation. In view of (1), we see that every point
of the second plane arises from an appropriate point of the first. Thus fo
every plane there corresponds another plane. Since a straight line is the inter-
section of two planes, it follows necessarily that to every line there corresponds
another line. Mobius calls transformations that have this property collinea-
tions, since they express the “collinearity” of three points, i.e., the prop-
erty of lying upon a line. Hence an affine transformation is a collineation.
If we investigate in the same way a surface of the second degree

Ax?*+ 2Bxy - Cy2 4+ -+ =0,

using equations (4) to replace x, ¥, z by «/, ¥/, 2/, we obtain a quadratic
equation. Hence an daffine transformation transforms every surface of second
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degree into another of the same sort, and, similarly, every surface of degree n
into another of that same degree.

We shall be especially interested, later, in those surfaces which correspond
to a sphere. In the first place, they will be surfaces of the second degree,
since a sphere is a special surface of this sort. However, since all points of
the sphere are finite, so that none of them can be carried to infinity, the
transformed surface must be one of the second degree which lies wholly
in a finite region, i.e., it must be an ellzpsord.

3. Let us now see what happens to a jfree vector with the components
X =ux1—12xy, YV =y91—179, Z=2— 2. Using formulas (2) for the co-
ordmates of the pomts 1 and 2, we get, for the components X’ = xj — 2,

Y' = v, — v, Z' = 3, — 2, of the corresponding segments 1’ 2/,
X = alX + b]Y + ch,
(5) V= aX 4 b.Y + ¢3Z,

Z’ = G3X + b3Y + C;gZ.

It follows that these new components depend only upon X, ¥, Z and not
upon the separate values of the coordinates xi1, ¥1, 21; %2, 2, 25, that is, all
segments 1 2 with the same components X, ¥V, Z correspond to segments
1’ 2’ with the same components X', ¥/, Z’. In other words, under an affine
transformation, a free vector always corresponds to another free vector. There
is essentially more in this statement than in the statement that a line al-
ways corresponds to a line. Indeed, let us take equal segments on two par-
alle] lines, both in the same sense. Since these represent the same free vector,
the corresponding segments must represent one and the same vector, i.e.,
they must be parallel, equal, and have the same sense (see Fig. 50). To every

system of parallel lines there correspond again parallel lines, and to equal seg-
ments on them there correspond equal segments. These properties are rather
remarkable, since—as it is easy to show—the absolute length of a segment
and the absolute value of the angle between two lines are changed, in gen-
eral, by an affine transformation.

4. Let us now consider two vectors of unequal length on the same line. One
of these will be transformed into the other by multiplication by a scalar.
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Since X', ¥’, Z’, in (5) are homogeneous linear functions of X, ¥, Z, the
corresponding vectors will differ by the same scalar factor, which means
that their lengths are to each other as the lengths of the first vectors. We
can state this as follows: Two stratght lines which correspond in an affine
transformation are “similar,” i.e., corresponding segmenis on the two lines
have the same ratio.

5. Finally, let us compare two tetrahedron volumes T = (1, 2, 3, 4) and
T=({,2,3,4). We have

’ I ’
xp Y1 % 1
% y' 25 1

2 2

6T = |7 7% 7}
X3 V3 23 1

Xy Y4 2% 1

a1 + by - iz, gy 4 b2y1 + coz1, asxr + bayi + €321,
axe -+ by + 122, agxs + b2y2 4 coz0, azxs +- b3y2 + cazs,
arxs 4 b1y3 + cizs, aaxs 4 bays + coz3, asxs+ bays 1+ cazs,
a1 b1y4 + c12s, aoxa 4 b2y4 + co24y Gaxs + b3y4 + ¢34,

[ S VG GO
~

or, applying the known theorem for multiplying determinants,

a by ¢ 0 2 Y1 % 1
;|G b2 ca O X2 Y2 2o 1
6T - as b3 C3 0 X3 V3 23 1 )

0 0 0 1 Xs Ve 2a 1

The first factor is A, the second 6T, so that we have T/ = A« T. Under
affine transformations all tetrahedron volumes and hence all space volumes (as
sums of tetrahedron volumes, or as limits of such sums) are multiplied by a
constant factor, namely by A, the determinant of the substitution.

These few theorems which we have deduced from the analytic definition
of affine transformation suffice to give us a dear geometric picture of this
transformation. Their proofs have been simpler than those ordinarily given,
because we had at hand, in the vector concept, the proper means for pre-
senting them.

We get the clearest picture of the affine transformation if we start with
a sphere in the space R of the coordinates x, ¥, 2. To this sphere, as we know,
there will correspond an ellipsoid in the space R’ of the coordinates «/, ', 2.
If we now consider a system of parallel chords of the sphere, we know, by
No. 3 above, that to these chords will correspond also parallel chords of the
ellipsoid (see Fig. 51). Further, since corresponding point rows are similar
(No. 4), the middle points of the chords of the sphere must also be in corre-
spondence with the middle points of the chords of the ellipsoid. Since the mid-
points of the chords of the sphere lie in a plane, the mid-points of the chords
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of the ellipsoid, by virtue of the fundamental property No. 2, must also e
in a plane, which is called a diametral plane of the ellipsoid. Now all diametral
planes of the sphere contain its center M, which bisects every chord of the
sphere which passes through it (dZameter of the sphere); hence the correspond-
ing point M’ (center of the ellipsoid)
lies in every diametral plane, and
bisects every chord through it (dZam-
eler of the ellipsoid).

It is also important to see what
corresponds to a system of three mu-
tually per pendicular diametral planes
of o sphere. This system has obvi-
ously the characteristic property
that each of the three planes bisects chords parallel to the intersection of
the other two planes. This property persists under affine transformation.
Hence to eack of the infinitely many triples of mutually perpendicular diametral
planes of a sphere there corresponds a triple of diemetral planes of the ellips-
oid which have the property that chords parallel to the intersection of two
of the planes are bisected by the third. Such groups of planes are called #riples
of conjugate diametral planes; their intersections are called triples of conjugate
diameers.

I may assume that you know that an ellipsoid contains three so-called
principal axes, i.e., a triple of mutually perpendicular comjugate diameters.
By what precedes, to these there must correspond under our affine trans-
formation three mutually perpendicular diameters of the sphere in R. Let
us assume, for simplicity, that the center of the ellipsoid and the center of
the sphere are the origins in R’ and R, respectively, and, by appropriate ro-
tation, let us make these two perpendicular triples the «/, ', # and x, y, 2
axes in R’ and R, respectively. It is a matter of arbitrary choice whether
we think here of the space, or of the coordinate axes, as being turned. In
either case, the operation is effected by a linear homogeneous substitution
of coordinates of the special sort that we have considered. Since a succession
of linear homogeneous substitutions always yields another substitution of
the same sort, the equations of the transformation which carries R into R’
will be of the form (2) in the new coordinates:

x’ = 41X + bly + ci12,
v = axx + bay + caz,
7' = agx + bay + csz.

With the new coordinate system thus chosen, the 2’ axis corresponds to the
x axis, i.e,, when y = z = 0sois y/ = 2’ = 0. It follows that @, = a3 = 0,
and, similarly, that by = b3 =¢; = ¢2 = 0. [ ' we ignore incidental rotations,
every affine transformation is a so-called *“ pure affine transformation”:
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2 = Az,
6) y =y, where AZ0,
2 = vz

)

or, as the physicists say, ¢ pure strain. We may interpret these equations
geometrically in the following simple way: space is sireiched by a factor \
(compressed if l)\ l < 1) parallel to the x axis, and also reflected if N < 0;
and stmilarly, with respect to the other two coordinate directions, by the factors
u and v respectively. In brief, we can look upon a pure affine transformation
as a uniform stretching of space in three mutually perpendicular directions,
which affords as clear a geometric picture as one could desire.

If we admit oblique parallel coordinates, the relations are still simpler.
We take, in the space R, an arbitrary system of axes x, ¥, z, rectangular or
oblique, without changing the position of the origin, and we use the lines
corresponding to these as axes «’, y’, 2" in R’. The new axes will be, in gen-
eral, oblique. Now the formulas for transition from rectangular to oblique
coordinates, with fixed origin, are linear homogeneous equations of the
form (2). Since the combination of two such substitutions always leads to
another of the same sort, the equations of the affine transformation must
have the form (2), even after applying the above oblique coordinates. How-
ever, with our selection of axes, they must carry the three axes of R into
those of R’; hence we can conclude, after a repetition of the above argument,
that the equations reduce actually to the form (6). Thus, if we make use of
(oblique) parallel coordinates in connection with two corresponding axis triples,
the equations of an affine transformation assume the simple special form (6).

In connection with our discussion, there is a beautiful solution of the prob-
lem of finding a mechanism with which we can perform affine transforma-
tions. This problem arose in a course of lectures on mechanics which I
gave during the winter semester, 1908-09. The best solution, both with
regard to the underlying thought and with regard to the appropriate form

F1c. 52

of the mechanism, was furnished by R. Remak. He used, as kinematic
unit, the so-called “Niirnberg shears,” i.e., a chain of jointed rods which
forms a series of similar parallelograms. The corners common to two suc-
cessive parallelograms Sy, S, Ss, * - ¢ , under all deformations of the jointed
system, form similar point rows on the line g which joins them, the common
diagonal of the parallelograms. (See Fig. 52.) If we fashion a triangle from
three such shears by jointing them together at any of the corners S, then
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the point system consisting of all the corners S, undergoes an affine trans-
formation with every change of the total jointed system. This will become
clear (see Fig. 53) if we make an oblique

/' ™ coordinate system out of two of the diagonal
SR lines of the shears. We can get additional

I&I /o'/ \/@\ points belonging to the same affine trans-
S \@ formation if we insert additional shears of

J A AN the same sort between any two points S of

g J s § B the triangle and consider their corners S.
e _@5’__ _@11__ & é’__\_\@ (In the figure, these shears are represeyted
Fic. 53 by their diagonal lines.) On this principle,

we can set up ! plane and space models of
variable affine systems of the greatest variety.

I shall not go farther into the discussion of properties of affine transforma-
tions. Instead, I shall show how these transformations can be used.

In the first place, an example of how they supply an excellent device for
the discovery of new geometric theorems. The affine transformation of the
sphere into the ellipsoid, explained above, enables us to get new theorems on
the ellipsoid from known properties of the sphere. For example, if we con-
struct three mutually perpendicular diameters of the sphere, together with
the six tangent planes at their ends, we have a circumscribed cube of volume
J = 83, where r is the radius of the sphere. Our affine transformation ob-
viously carries each tangent plane of the sphere into a tangent plane of the
ellipsoid. It follows, with the aid of the theorems above, that to the cube in
space R there corresponds in space R’ e parallelopiped circumscribed about
the ellipsoid, whose faces, tangent at the ends of three conjugate diameters,
are parallel to the corresponding diametral planes; and whose edges are

parallel to those diameters. (Analo- R
gous relations hold in the plane for the R
circle and the ellipse; see Fig. 54.) / \

The converse of this argument obvi-
ously holds also: To every parallelo- K /
piped circumscribed about an ellipsoid,

in the way described above, there cor-

responds a cube circumscribed about Fic. 54

the sphere, since to three conjugate

diameters of the ellipsoid there correspond three mutually perpendicular
diameters of the sphere. Now we know (p. 73) that, under an affine

transformation, every volume is multiplied by the determinant A of the
substitution, so that the volume of a parallelopiped of the above sort cir-

1 A series of such models has appeared in the publishing house of Martin Schilling in
Leipzig. See F. Klem and Fr. Schilling, Modelle zur Darstellung affiner Transformationen in
der Ebene und im Raume, Zeitschrift fiir Mathematik und Physik, vol. 58, p. 311, 1910.
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cumscribed about an ellipsoid is given by the formula J' = J - A = 83. A,
This formula is clearly independent of how the parallelopiped lies, so that
the parallelopiped has the same constarit volume, no matter to what
triple of conjugate diameters it belongs. If we select, in particular, as
our triple, the principal axes, which are mutually perpendicular, we
get a rectangular parallelopiped whose volume is 8abc, where 2a, 25, 2¢
are the lengths of the principal axes. In this way we determine the constant
volume, and our theorem takes the following form. Al parallelopipeds which
circumscribe an ellipsoid and whose faces are parallel to three conjugate diam-
etral planes, have the same volume J' = 8abc, where a, b, ¢ are the lengths of
the semi-principal axes. In order to show that this theorem is valid for all
ellipsoids, it is necessary only to see that every ellipsoid can be generated
from a sphere by affine transformation. This follows at once from the
form (6) of the equations of the affine transformation. These equations
show that the axes of that ellipsoid are to each other as A : u: v, where \, u, »
are three arbitrary numbers.

Although I shall confine myself to this simple example of the applications
of affine transformations to theoretical geometry, I wish to emphasize even
more strongly that affine transformations have the greatest significance in
practice.

Coming first to the needs of the physicist, it is to be noted that the affine
transformations play a fundamental role in the theory of elasticity, in kydro-
dynamics, and, in fact, in every branch of the mechanics of continua. I hardly
need to amplify this, for anyone who has busied himself at all with these
disciplines knows well enough that as soon as consideration is confined to
sufficiently small space elements, the problem has to do with homogeneous
linear deformations.

I prefer to discuss here, at greater length, the application to correct drawing,
which is used both by the physicist and by the mathematician. Insofar as
one has to do with parallel projection,
one 15 concerned fundamentally solely
with affine transformations of space. Un-
fortunately, many sins are committed
in this field of correct drawing. You
can find unbelievable errors in books on
mathematics in the depiction of space
configurations, as well as in books on
physics in the representation of apparatus. To mention but one example,
the sphere is very often pictured with the equator drawn as two intersecting
circular arcs. (See Fig. 55.) Of course that is absurd; in fact, the correct
representation is always an ellipse, as we shall see.

The principle of correct geometric drawing lies in the fact that the figure
drawn is projected from a point upon the plane of the drawing. The relations

FiG. 55



78 * Geometric Transformations

are simplified if we think of that central point as lying at infinity, i.e., if

we obtain the picture by means of a pencil of parallel rays. This is the case

which interests us here. Incidentally, with these remarks we enter the field

of descriptive geometry. I shall not give a systematic account, but I shall

exhibit simply its orderly arrangement in the general edifice of geometry.

E Hence I shall not always give the details of

proofs.

Let us begin by investigating the repre-

E' sentation of a plane figure, i.e., the projec-

tion of a plene E upon another E' by means

of & pencil of parallel rays. For this purpose,

we choose the origin O in the intersection

of E and E’ (see Fig. 56), and the x axis

z=g’ along this line. Choose the y axis anywhere

in E, eg., perpendicular to the x axis,

through O, and the y' axis as the projection

of the y axis upon E’ by the parallel pencil, so that we have in E’, in

general, a system of oblique parallel coordinates. Then the coordinates of
two corresponding points of E and E’ satisfy the relations

F1G. 56

x:x’ y’:#.y,

where p is a constant depending upon the given position of the planes and
the pencil. Thus we have actually an affine transformation. The proof of these

]

\B
4,

’/
\‘Bl /By

Fic. 57

equations is so simple that I hardly need to state it. Moreover, these equa-
tions are specializations of the general form (6) in that here A = 1 and hence
x’ = x. This is due, of course, to the fact that the x axis is the intersection
of the original plane with the plane of the drawing, so that along it each
point coincides with its image. We get at once all of the essential properties
of the figure if we specialize for the plane the theorems deduced earlier for
space, e.g., to every circle in E there corresponds an ellipse in E’, etc.

It is natural, now, to raise the converse question: If two plenes E and E'
have a given affine relation to each other, can they be so placed that one is the
parallel projection of the other? In order to decide this, let us start from an
arbitrary circle in E and the corresponding ellipse in E’. (Instead of this,
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we might use any two corresponding ellipses.) To the center M of the circle
there will correspond the center M’ of the ellipse (see Fig. 57). If we now
place the circle of E tn the plane E' so that its center falls at M, it will cut the
ellipse in four points or not ot all. The limiting case of tangency will be dis-
regarded, for the sake of simplicity.

In the first case, the one shown in the figure, we consider the two diameters
A'A}, B'By, of the ellipse, which go through the four points of intersection
lying in £’. Corresponding to these—and equal to them by construction—
are two diameters 4 4,, BB, of the circle in E. Hence, by reason of a gen-
eral property of affine transformations (No. 4, p. 72), corresponding seg-
ments on 44; and 4’4}, as well as on BB; and B’ By, are equal. Now, if we
lay the plane E upon E’ so that M falls upon M’ and so that one of these
pairs of lines, say 44, and 4’41, coincides, and if we then turn E about this
line as axis up into space, we have an affine transformation of the two planes,
under which each point of their line of intersection corresponds to itself.
Then it is easy to show, though I shall not carry out the proof, that, no
matter what the angle between the planes may be, the joins of correspond-
ing points are all parallel to each other, i.e., that the affine transformation
between the two planes can, in fact, be effected by parallel projection.

If, however, our circle does not cut the ellipse, i.e., if its radius is smaller
than the small semi-axis of the ellipse or larger than the large one, then, in
the language of analysis, the two common diameters are imaginary and
are not available for use in drawing; hence the construction is impossible.
If it is still desired to bring about parallel projection, it becomes necessary
to employ a similarity transformation, and to expand or shrink the circle by
that transformation until the first case appears. We use such similarity
transformations constantly in the making of pictures, in order to “change
the scale.” Thus we reach finally the main theorem, that any affine relation be-
tween two planes can be effected in infinitely many different ways through com-
bination of a similarity transformation with a parallel projection.

We go over now to the problem of representing all of space upon a plane by
means of parallel projection, which is much more important and interesting
than this mapping of one plane upon another. To avoid tedious details,
we shall agree always to admit a stretching or a shrinking of the picture by
means of a similarity transformation. There arises, thus, the process which
is called axonometry in descriptive geometry. This process plays an extraor-
dinarily important role in practice. Every photograph is very nearly an
axonometric mapping, if the object is only far enough away from the cam-
era. (Strictly speaking, it is a central projection.) Exact axonometry is
used especially, however, in most of the cases in which we wish to map
geometric figures in space, physical apparatus, architectural parts, and so
on. Very interesting examples of all sorts of axonometric mappings, which
are also directly useful in instruction, can be found in the book entitled
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Leitfaden der Projectionsiehre by C. H. Miiller and O Pressler.! It is shown
there, for example, how to draw accurately a tangent compass, a buoy,
crystals of the most varied kinds, and, to cite examples from the entirely
different field of biology, cellular tissue, a beehive, and many other things.
Let me now state the theorem which connects axonometry with our dis-
cussion of affine transformations: The mapping of space upon a plane by
means of parallel projection and similarity transformation (axomometry) is
effected analytically by an affine transformation with a vanishing determinant:

¥ =ax+ byt cz a b o
¢ v = asx + bay + oz, where A= |a; by ca|=0.
2 = asx + byy - ¢z a; by ¢

This is precisely the exceptional case which we postponed. Thus you see
the importance of these *“ degenerate’’ transformations, which unfortunately
are often unduly neglected. The converse is also true, namely, that every
such substitution, with A = 0, gives an axonometric mapping. This presup-
poses, to be sure, that neither all the coefficients of the substitution nor all
the minors of second order vanish, for these possibilities would imply still
further degenerations, which I shall pass over, since they can be investi-
gated readily according to the following plan.

In order to prove our assertion, let us convince ourselves that all poinis
%, ¥, & given by (1) (for arbitrary x, v, %) actually lie in one plane, i.e., that
there are three members k,, ks, k3, such that we have

(2) klx’ + kgy' + k:gZI =0

identically in x, ¥, z. By (1), this identity is equivalent to the three homo-
geneous linear equations

klal + k2a2 + k3113 = 0,
2" kiby 4 kobo 4 ksbs = 0,
klcl + kgCg + k363 = 0,

and these determine precisely the ratios ky: ko: k3 uniquely, provided that
the determinant A vanishes but that the nine minors are not all zero. Hence
all the image points a2, ', 2" actually lie in the plane (2) determined by the
equations (2).

We shall now introduce, in the space R/, a new rectangular system of co-
ordinates such that the plane (2) becomes the x'y’ plane (¥ = 0). Then
there must correspond to every point of R a point in 2" = 0, and the equa-
tions of our affine transformation, in the new coordinates, will have neces-
sarily the form

.’JC' = Alx + Bly + Clz,
3 . ¥y = A + Byy + Coz,
7 = 0.

! An exercise book for constructions i solid geometry, Leipzig, 1903.
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The six constants 4y, « + , Co are completely arbitrary, since the determinant
of the substitution vanishes in any case, by reason of the special form of the
last row. The three minors may not all vanish however; that is

A1: Bli C1 #= Ao B2: C2;

otherwise we should have the degeneration that we excluded above.

I shall now give the proof that the mappings of the space R upon the
#'y’ plane E’, defined analytically as above, are identical with the axono-
metric projections defined above. I shall present the proof in separate steps,
by developing the chief properties of the transformation (3), much as we
discussed earlier (p. 70 et seq.) the affine transformations with non-vanishing
determinant.

1. In the first place, it is clear that to every point x, , z of R there corre-
sponds a unique point (x/,%’) in E’. Conversely, given a point («/, ") in
E', the equations (3) show that the corresponding point (x, ¥, 2) in R lies
in two definite planes whose coefficients, by our assumption, are not propor-
tional, and which have, therefore, a line of intersection. All the points of
this line must correspond, in our transformation, to the same point («/, y").
If we now allow the point (', ") to vary; each of the two planes will be
moved parallel to itself, since the coefficients 4., B, C; and 4., Bz, C,
remain unchanged. Thus their line of intersection remains parallel to itself,
and we have the result that to each point of E' there correspond all the points
of one line of a double infinity of parallel lines tn R. This indicates imme-
diately the connection between our mapping and the parallel projection of
space.

2. Just as in No. 3 (p. 72) under the general affine transformation, we
find now for the components X’, ¥ of the segment in E’ which corresponds
to the free vector X, ¥, Z of R, the formulas

X' = 4,X + BY + C.Z,
@) V' = A:X + BsY + CaZ,
Z' = 0.

These show again that fo every free vector in R there corresponds a free vector
X', ¥ of the picture plane E’, or, more precisely, if one displaces a segment
in space R parallel to itself, preserving its length and sense, the correspond-
ing segment in the plane E’ also moves parallel to itself and maintains its
length and sense.

3. We consider in particular the unit vector X = 1, VY = Z = 0, on the x
axis, which goes from (0, 0, 0) to (1,0, 0). To it there corresponds in E’, by
(4), the vector X’ = A4, ¥V’ = A,, which goes from the origin O’ to the
point whose coordinates are (4, 42). In precisely the same way, there cor-
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respond to the unit vectors on the y and the z axes the two vectors from 0’
to the points (B1, Bs) and (C1, Ca), respectively. These three vectors in E’,
which we shall call for brevity, (4), (B), (C) (see Fig. 58), can be chosen arbi-
trarily, since the coordinates of their endpoints determine the six arbitrary
C,,C: B. B parameters of the affine transformation (3),
. so that they completely determine the map-
) (B)/ ping. Now these three vectors must not all

_ (4)

0!

lie in the same line, and we shall assume, for
AI)A2
F1c. 58

simplicity, that no two of them lie in one
line. The result is as follows: The three unit
vectors on the coordinate axes of R are mapped
upon three arbitrary vectors through the origin O’ in E', which, when they are
known, completely determine the offine transformation.

4. In order to obtain geometrically the map of (4), (B), (C), we start from
any point p(x, ¥, z = 0) of the xy plane. We get the vector from O to p by
multiplying the unit vector of the x axis by the scalar number x, and that of
the y axis by the number y, and by then adding the product vectors (see Fig.
59). However, we can transfer this construction at once.to E', since the rela-

Y

z y.(B) P’
y4
(B)
1 Yy
1 > x T > >
14) i g o (4) z.(4)
F16. 59 Frc. 60

tion between the xy plane and E’ is obviously an ordinary two-dimensional
affine transformation (with non-vanishing determinant). We obtain, then,
the picture #’ of p by means of the scalar multiplication of the vectors (4)
and (B) by x and +y, respectively, and the ,
addition of the products by the parallelo- ‘-
gram law (Fig. 60). In this way, we can con-

struct in E’, the map of any point, and hence,
point by point, any figure of the xy plane.

5. If we carry over these considerations to m
an arbitrary point of the space R, we can O '
prove easily (see Fig. 61) the following re- 2-(4)
sult: We obtain the picture p' of a point p Fra. 61
whose coordinates are (x, y, 2), if we apply the parallelogram law for ad-
dition to the products of the vectors (A), (B), (C) by x, y, and z, respec-
tively. Since addition is commutative, we can perform this construction in
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1+ 2.3 = 6 different ways, and we get ' as the terminal point of six differ-
ent additive combinations of parallel and equal segments. The figure thus
constructed (see Fig. 61) is obviously the representation of that rectangular
parallelopiped in the space R which is bounded by the three coordinate planes
and the planes through p parallel to them. We are accustomed, from our
youth on, to look upon such plane figures as pictures of solid figures, espe-
cially when the appearance is heightened by drawing the front edges in
heavier lines. This habit is so strong that this mapping of the parallelopiped
seems almost trivial, whereas it represents really a very noteworthy theorem.

6. With the aid of this last construction, we can make in E’ the picture of
any figure in space, i.e., of all of its points. I shall consider only one example:
If we have a sphere, with radius 1 and center at the origin O, then we shall
consider primarily the circles in which
it cuts the coordinate planes. The circle--
of intersection in the xy plane has the
unit vectors on the x and the y axes as
conjugate, i.e., as mutually perpendicu- <
lar semi-diameters. Since we have an
affine relation, there will correspond to
it an ellipse (see Fig. 62) which has ¢’
as center and the vectors (4) and (B) as
conjugate semi-diameters, and which is
thus inscribed in the parallelogram formed by the vectors 2(4) and 2(B).
In the same way, the ellipses corresponding to the other two circles of inter-
section will have O’ as center and (B), (C) and (4), (C) as conjugate
semi-diameters.

Fic. 62

7. Now that we have made a complete picture, showing the nature of the
affine transformations (3) with vanishing determinant, we must take the
last, decisive, step in our considerations, and show, namely, that these affine
transformations actually arise through axonometric projection, as we have
asserted. This requires, chiefly, the so-called fundamental theorem of Pohlke,
which K. Pohlke, professor of descriptive geometry at the School of Archi-
tecture in Berlin, discovered in 1853 and published in his Lekrbuck der darstel-
lenden Geometrie' in 1860. H. A. Schwartz published in 18632 the first
elementary proof of this theorem and gave, at the same time, a sketch of
the interesting history of its discovery, which you should read.

Pohlke himself did not define axonometry analytically, but geometrically,
as a representation of space by means of parallel rays (together, where
necessary, with a similarity transformation). His theorem stated that the

! Two parts, 4th edition, Berlin, 1876. This theorem is in Part I, p. 109.
2 Journal fiir die reme und angewandte Mathematik, vol. 63, p. 309 = Gesammelte
Mathematische Abhandlungen, vol. 2, p. 1, Berlin, 1890.
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three unit vectors on the coordinate axes of space could go over, under such a trans-
formation, into three arbitrary vectors of E' through O'. That our analytically
defined mapping actually led to three such vectors was apparent in No. 3;
hence for us the underlying significance of Pohlke’s theorem is tkat our ana-
lytically defined iransformation (3) (p. 80) is effected by parallel projection and
change of scale, whereby the parallel lines mentioned in No. 1 become project-
ing rays.

8. I should like to indicate an approximate plan for a direct analytical
proof of the theorem thus formulated. If we fix our attention upon the two
pencils of parallel planes in R:

A1x+31y+sz=£, A2x_+32y+c22=77,

where £ and 7 are variable parameters, then each pair of values of £ and 7
determines one of the parallel lines in question. Now, if it were possible to

s y' place in the space R a picture plane E’
i /4\(&") containing a rectangular coordinate
system x’, 9’ with an appropriate unit

of length, so that each ray £, 5 would
pierce the plane E’ in the point &' = £,
y’ = 7, then the mapping (3) would ac-
tually be brought about geometrically,
as desired.

To this end, the planes £ = 0,7 =0
must cut the plane E’ in the coordi-
nate axes 0’y and O’x’ respectively, i.e.,
in mutually perpendicular lines. If 6,
6, (determining the position of E’) are
the angles between these axes and the line £ = n = 0 (see Fig. 63), and if
we denote by « the (known) angle between the planes £ = 0 and = 0,
then, applying the cosine theorem of spherical trigonometry to the trihe-
dral angle formed by £ = 0,7 = 0, and E’, we find the cosine of the angle
of O’x', O’y to be

F1G. 63

cos 6y cos 0 4 sin @, sin 6; cos «,
and this angle is a right angle if
(a) ctn @, » ctn By = —cos a.

Now every plane Ax 4- Byy + Ciz = £ cuts E in a line «’ = constant.
If ¢ is its intersection with the x’ axis, then the corresponding ' value, to
within the undetermined scale factor N of the coordinate system in E/, is
equal to O'Q’. If we drop perpendiculars Q'S and Q'R upon the plane £ = 0
and the line £ = 5 = 0, respectively, we shall have
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oQ = _QIE, QR = _QL‘S:_,

sin 6, sin «
and since Q'S, as the common perpendicular between the planes
Alx—I-Bly—I-Clz: 0

and 4,x 4+ Byy + Ciz = £ is easily expressed by means of a known formula
of analytic geometry of space, it follows finally that

£
Va? 4+ B2+ C?-sin 0, - sina

# =\ 00 =X

Similarly, we find as the 3 coordinate of the points of intersection of
Agx 4 Bey + Coz = 7 and E/,

,=x‘ n 3
VAE 4+ B2+ C2-sin 6y - sina

y

Now, since we wish each parallel ray determined by the parameter values
£, n to pierce the plane E’ in the point 2 = £, y' = 5, we must have

(b) A="VA2+ B2+ C?-sin 0, -sina = VAZ+ B2+ CZ. sin 0, - sin «,
from which we get the second equation for 8,, 0,:
(©) sin 61 - V42 + B? 4 C? = sin 6,VA2 + B2 + C2.

A simple calculation shows that the equations (a) and (c) have only one real
pair of solutions for ctn 6y and ctn 6, determined except for the sign; i.e.,
there is essentially only one position (of course symmetric to the common normal
plane of £ = 0, 7 = 0) of the plane E', in which the affine transformation
¥ =&, v = n is axonometrically realized, insofar as we choose the scale of
the rectangular coordinate system in E according to (b). We can give this
whole argument a more geometric form if we start from the condition that
the unit points of the x’ and 9’ axes fall upon the lines £ = 1, = 0 and
£=0,n= 1. Then the problem is to find a plane E’ which cuts a given
triangular prism in an isosceles right triangle.

After this detailed presentation, I hardly need to discuss further the con-
verse theorem, already mentioned, that every axomometric projection repre-
sents an affine transformation with @ vanishing determinant. This converse
can be verified by using first, as we did earlier (p. 78), the oblique coordinate
system in the plane of projection £’ which arises by parallel projection from
the ¥ and y axes in R and then, by means of a linear substitution, going over
to the initially given rectangular coordinate system in E’.

In closing this chapter on affine transformations, I should like to remind
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you that we can get an illustration of axonometric representation experi-
mentally by using a projection lamp (one must think of it as infinitely re-
mote) to throw shadow pictures of simple models (square, circle, ellipse, cube)
upon a projection screen. We should get, in this way, a confirmation of our
results and our figures; and, in particular, we could easily check experimen-
tally the theorem of Pohlke, by subjecting the shadow picture of three mu-
tually perpendicular rods to all sorts of change by movements of the model
as well as of the screen. '

We go over, now, to a new chapter, which treats of more general trans-
formations, including affine transformations as special cases, namely, the
projective transformations.

II. PROJECTIVE TRANSFORMATIONS

In this chapter also, I should like to deal with space of three dimensions
from the first.

1. I shall begin with the analytic definition of the projective transformation.
We now take «’, 9/, 2/, no longer as integral, but as fractional linear functions
of x, ¥, 2, but with the condition, which is essential, that they all have the
same denominator:

ooty toztd
asx - bay + czt-ds
(1) y, G +- b2y+ coz 4+ d:z’
aet + by + cz+-ds
_ a3x+b3y+caz+d3'
B ax + by + cz 4 ds

To every point x, v, = there corresponds, accordingly, a definite finite point
x', v, 2, provided only that the common denominalor is not zero. If, however,
the point x, y, z approaches the plane agt 4 b4y 4 cs2 + ds = 0, the cor-
responding point «/, y’, 2’—this is the novelty, as compared with the affine
transformation—moves to infinity: it “vanishes,” in a sense. We call that
plane, therefore, the vanishing plane, its points vanishing points, and we say
that it corresponds, in the projective transformation, to the part of space
at infinity, or to the points at infinity.

~

2. In the treatment of the problems arising here, it is very convenient,
as you know, to use komogeneous coordinates, i.e., in place of the three point
coordinates x, ¥, 2, to use four quantities &, 9, {, 7, defined by the equations

] {,

x == =, z =
T y T T

These four quantities are to vary independently of each other, but not all four
are to vanish simultaneously, and none of them'is to become infinite. To every
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point x, v, z there will then belong infinitely many systems of values
p&, pn, p¢, pr, where p is an arbitrary factor (20). Conversely, every sys-
tem of values &, #, {, T where 7 £ 0, determines a definite finite point x, v, z
(all systems p+ &, p -1, p - {, p T give the same point). When 7 = 0, one,
at least, of the quotients x, ¥, z becomes infinite, and we stipuiate, accord-
ingly, that every system of values &, 4, {, v = 0 shall signify an “infinitely dis-
tant point,” and, indeed, all systems p£, py, p¢, 0 represent the same point at
infinity. In this precise way we introduce the points which, as “infinitely
distant,” are added to the ordinary finite points.

Experience shows that operation with homogeneous coordinates produces,
at least with beginners, something like physical discomfort. I believe that
the somewhat indefinite, fluid, quality of these quantities, which the arbi-
trary factor p brings in, is the cause of this feeling, and I hope that such
a statement may help to allay this discomfort.

With the same end in view, some incidental remarks may be helpful
about certain geometric representations which can be associated with homo-
geneous coordinates. I shall speak first only of a plane E. In this case, let us
write for the two rectangular coordinates

u &7
7 Y
x = ;, y = ; T - E
Y

We now interpret &, 9, 7 as reciangular coor- =1 . x
dinates in space and, in this space, we choose
the plane 7 = 1, parallel to the &, 7 plane, as 0 ot
the plane E (see Fig. 64). In this plane E, put Fic. 64

x = £, v =1n. If we now join the point x, y of '
E to O by a straight line, then, for points on this line, £/7 and n/r are
constant and we may write

x,

=%

= e

1
T

since, for 7 = 1, we have £ = x, n = y. Accordingly, the introduction of
homogeneous coordinates signifies simply the representation of the plane E into
that space pencil of rays with the origin O as center, of which E is a section.
The homogeneous coordinates of @ point are the space coordinates of the points
of the projecting ray of that point. Since to each point of E there correspond
the infinitely many points of the ray, the significance of the indefiniteness
of the homogeneous coordinates is made clear. The exclusion of the sys-
tem of values £ = n = 7 = 0 has its geometric basis in the fact that the
point O determines no ray, and hence no point in E. Moreover, it is obvious
that we need no infinite values of £, 7, 7, since we get all rays by joining O
with finite points. Finally, it is clear that we avoid infinitely large values of
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the coordinates by replacing the infinite region of the plane E by the parallel
rays through O given by 7 = 0.

Moreover, the common expression “the line at infinity ” finds here its
clear geometric connotation. Analytically, it is only the expression of the
abstract analogy that all “infinitely distant points’’ satisfy the linear equa-
tion 7 = 0, just as every finite line has a linear equation. But now we can
say geometrically that to evety line of E there belongs a plane pencil of the
space pencil O; and, conversely, every plane pencil in the space percil O
determines a line in E, except the plane pencil 7 = 0. Hence it seems ap-
propriate to designate as a line the aggregate of points in E that correspond
to this pencil 7 = 0, and so we have “the infinitely distant line.”

We can form similar representations if we introduce homogeneous co-
ordinates into space of three dimensions. We think of the space as a section
r = 1 of a four-dimensional auxiliary space &, #, {, 7, and we relate it to the
space pencil which projects it from the origin in the auxiliary space. We
can then carry through without difficulty all the other considerations in
almost word-for-word analogy with what precedes, and, in particular, we
can carry over the interpretation of the infinitely distant elements. In this,
the use of four-dimensional space is only a convenient means of expression, to
which no mystical significance is to be attached.

3. If we now introduce into the equations (1) of the projective trans-
formation komogeneous coordinates for both spaces R and R’, we can separate
them, by introducing an arbitrary proportionality factor p’, since they all
have the same denominator, into the following four equations:

oY =at+ by 4+ el + dir,
(2) o' = @€ 4 b+ cof + dar,
o't = a4 bsp + it + dar,
P’ = aif + bay + ¢t + dar.

Leaving out of account the arbitrary factor p’, we see that this is the most
general homogeneous linear transformation in four variables; hence it rep-
resents an affine relation of the two four-dimensional auxiliary spaces P,P’,in
which we can interpret the homogeneous coordinates in the manner ex-
plained in No. 2. All this can be represented more concretely if we again
limit ourselves to the plane. We obtain the most general projective transforma-
tion of a plane if we apply an arbitrery affine transformation o the space of
that space pencil, with fixed cemter O, whick projects this plane, and then cut
the plane with the transformed pencil. We always get, in this way, the same
projectivity of our space, corresponding to the factor p/, if we add a simi-
larity transformation from O. For this transforms into itself each of the
rays through O, and the projectivity depends solely upon the intersections
of these with the plane.

The procedure which we have followed, in using the auxiliary spaces
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P, P’, is called the principle of projection and section. It is often very useful
in that, generally speaking, it makes complicated relations in space of n di-
mensions appear simpler and easier to understand, through euxiliary considera-
tions in space of n 4 1 dimensions.

4. We shall now solve the transformation equations (2) for £, , {, 7. The
theory of determinants shows that £, 9, {, T are likewise linear homogeneous
combinations of ¥, 1, {’, 7', of course with a proportionality factor p:

of = aif + b’ + i + &7,
3) 01 = &F + by + o + dp7,

p¢ = azt’ + by’ + 3’ + dyr’,

pr = af + by’ + i’ + dir’,
provided only that the determinant

i

a, b1 c1 d1
a9 b2 Ca dg
A as b3 C3 d3
ay b4 Ca d4

of (2) does not vanish. The systems of values §, 9, {, Tend &, 7', ', 7' are thus
in one-to-one correspondence (fo within those arbitrary common factors).

Let me say, however, as you might expect after our experience with the
affine transformations, that the case A = 0 is here also especially interesting,
and that it may not be disregarded. It represents the mapping of space
upon a plane, as in every central projection, e.g., in photography. For the
present, however, we shall consider the general case A 7 0.

5. It follows at once from (2) and (3) that, when a linear relation exists
between &, 5, {, 7, there is also one between &, 1/, {’, 7, and conversely. To
every plane there corresponds a plane; in particular, to the infinitely distant
plane of R’ there corresponds a definite and, in general, a finite plane in R,
i.e., the vanishing plane mentioned above. Thus the conve..tional introduc-
tion of the plane at infinity serves a purpose, since it permits the statement
of the preceding theorem as valid without exception. It follows, further,
that fo every line there corresponds a line. In the terminology of Mobius
(p. 71), every projective transformation is a collineation.

6. Now it is remarkable that the converse is also true: Every collineation
of space, i.e., every reversibly unigue transformation such that to every line
there corresponds o line, and which satisfies certain other almost self-evident
conditions, is a projectivity, i.e., a transformation defined analytically by
equations (1) or (2).

For the sake of convenience, I shall give here Mobius’ proof only for the
plane; for space we should proceed similarly. The plan of the proof is as
follows. From an arbitrary collineation, we select two corresponding point
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quadruples and we shall show (a) that there is always a projectivity which
transforms two such quadruples into each other. However, a projectivity
is also a collineation; and we shall prove (b) that, under certain conditions,
there can be only oze collineation in which these quadruples can correspond
to each other. Thus the projectivity must, in fact, be identical with the
given collineation, which proves the theorem. We shall now give the desails
of these two steps.
(a) We remark that the equations of the projectivity in the plane:

p'E = ai§ + b+ dir,
o' = ak + b+ der,
o't = at 4 by 4 dar

contain 9 — 1 = 8 constants. (A change in p’ does not alter the transforma-
tion.) That two given points may correspond to each other in a projectivity
requires two linear equations for the constants of the projectivity, since we
are concerned only with the ratios of the three homogeneous coordinates.
The correspondence of two point quadruples represents thus 2 X 4 = 8
linear conditions, or, more precisely, eight linear homogeneous equations for
the nine quantities a,, - - - , d5. Such equations always have a solution, as
you know; hence we have found in this manner the constants of a projectivity
which transforms the given quadruples into each other. We can guarantee, to be
sure, that this is a proper projectivity with a non-vanisking determinant,
and that it is uniquely determined, only if each of the given point quadruples
is “in general position,” i.e., if no three points of a quadruple are collinear;
but it is only for this case that we need the theorem.

(b) We now think of an arbitrary collineation of the planes E and E'. If,
then, 1, 2, 3, 4 are any four points of E, of which no three are collinear, and

F1G. 65

if 1/, 2', 3, 4’ are the corresponding points in E’, satisfying the same condi-
tion, then our assertion is that the collineation is completely determined by the
corres pondence between these two quadruples of points. We shall give this proof
by showing that this collineation can be built up in one and only one way
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from these two corresponding quadruples by using solely their two charac-
teristics properties (uniqueness, and the mutual correspondence of straight
lines). As our chief aid, we shall use the so-called Mobius’ net, which we
spread over the plane after the manner of a spider’s web. To begin with, we
draw, in each plane (see Fig. 65) the six lines joining the four points by pairs.
These must correspond in the collineation, for, to the line 1 2 there must
correspond a line in £’ which must contain 1’ as the image of 1, as well as 2/,
the image of 2; and that could be only the line 1’ 2’. Similarly, the points
arising as intersections of corresponding lines must themselves correspond,
e.g., the points (1 4, 2 3) and (1’ 4/, 2’ 3’): this follows immediately from
the collinearity and the uniqueness. If we join the new points by lines,
extend these to intersection with the earlier lines, join the resulting points
of intersection again, and continue this process, there will appear in each
plane a net of points and lines which gets denser and denser, and these poinis
and lines must correspond tn pairs tn the desired collineation.

If we now select an arbitrary point in E, say, either it will be itself one
of the corners of the net, or else it is easy to show that we can enclose it in a
mesh which can be made as small as we please, i.e., we can make it a limit
point of corners. In the first case the corresponding point in £’ is uniquely
determined as the corresponding net corner. In order to take care of the
second case, we must make an g¢ddition to the definition of collineation, one
which to Mgbius seemed so self-evident that he did not think it required
explicit statement. It is, namely, that the mapping shall be continuous, i.e.,
each limit point of @ point set in E shall be tn correspondence with the limit
point of the corresponding point set tn E’. From this, and from the preceding
remarks, it follows also in the second case that the corresponding point in
E’ is uniquely determined. We have established then the correctness of our
assertion 6, insofar as the collineation is continuous. In the same way we
could prove that a continuous collineation in ordinary space is determined
by five pairs, and in space of # dimensions by # -}- 2 pairs, of corresponding
points.

Returning to the considerations at the beginning of No. 6 (p. 89), we
have, as one result, the following precise theorem. Projective transformations
are the only continuous reversibly unique transformations which elweys carry
lines into lines.

After this digression, let us resume the investigation begun in No. 5
(p. 89) of the behavior of the fundamental geomeiric manifolds under pro-
jective transformations, or, as we can now say, under collinear transfor-
mation. We saw there that an unlimited plane or straight line is carried over
by projection into a figure of the same sort, so that these concepts have a
definite invariable significance with respect to projectivities. In this prop-
erty, the general projectivities agree with the affine transformations. They
differ from them however in their behavior with respect to parallelism.
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7. Behuvior with respect to the concept of parallelism. Indeed, the parallel-
ism of two straight lines is not necessarily maintained under projective
transformations, as it was under affine transformation (p. 72). On the con-
trary, the infinitely distant plane of one space can go over into any finite
plane whatever (the vanishing plane), of the other, and there will correspond,
thereby, in general, to the point at infinity common to two parallels, a finite
point of the vanishing plane in which the two lines intersect that correspond
to the parallels. By the aid of homogeneous coordinates we can follow this
exactly. To be sure, we see here, also, that the concept of parallelism is not
ruthlessly disturbed, but that it becomes a part of a perfectly definite gen-
eral concept. The infinitely distant points of space constitute o plane, which
can be carried over by projection into any other (finite) plane of space, and which,
to this extent, has equal justification with oll these plames. It is characterized
as arbitrary, only to a certain degree, by the descriptive phrase “the infinitely
distant.” Lines (and planes also) are then called parallel if their intersection
lies on this special plane. By a projective transformation they may be carried
into lines (or planes) which meet on another fixed plane, in which case the
new lines (or planes) are said to be no longer parallel.

With this property there is connected the fact tkat the fundamental mani-
folds of Grassmann, likewise, have no invariont significance under projection.
The free vector is by no means carried over into another free vector, the line-
bound vector into another such, etc. In fact, let us look at a line-segment of
space R, with the six coordinates.

X = 21— %9, V = y1— s, Z = 21— 2,
L = yizo — yom, M = xoz1 — 2024, N = 21y2 — y1%2
and let us set up the analogous quantities X', - - - , N” out of the coordinates

of the points (x;, y;) and (x;, v;) which correspond to (x;, y1) and (%2, v2)
under the projective transformation (1) (p. 86):

% = x4 blyl + ¢z + dy ete xl = aixe + b1y2 + cze + da e
t aax1 + boyr + cam + ds ? 2 aaxy + baye + caze + da

By these formulas, X', - - - , N’ become fractions whose numerators, to be
sure, appear as linear combinations solely of the six quantities X, - - -, N,
with constant coefficients, while the denominator common to all of them,
(aax1 4+ byyr + caz1 + da)(@axe + bays + csz2 + ds), contains the point coor-
dinates themselves and cannot be expressed in terms of X, - -+, N alone.
Thus the coordinates of the transformed line-segment depend not only on
those of the original segment but also on the special position of its end
points. If we slide the segment (1 2) along its line, so that X,---, N do
not change, X’, - - -, N will change, in general, i.e., the segment (1’ 2') is
not a line-segment in the Grassmann sense.

That the unlimited straight line persists as such, nevertheless, under pro-

tc.
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jective transformation, follows from the fact that it is represented by the
ratios of the quantities X’ : ¥’ :- - - N’, from which the disturbing common
denominator disappears by cancellation.” Thus these ratios are actually ex-

8. There remain still some important manifolds whick go over into mani-
folds of the same sort under projective transformation. In the first place, every
quadratic equation in &', y’, 2’ arises from a quadratic equation in x, y, z, as
we see by multiplying through by the square of the common denominator
a4 bey + caz 4 da, and conversely. This shows that every surface of the
second degree in a space R corresponds to one of the same nature in R'. There-
fore every intersection of such a surface with a plane, i.e., every curve of
order two in a space R corresponds to one of the same nature in R'. In the same
way, any algebraic manifold, defined by one or several equations in the coordi-
nates, will be transformed into a manifold of the same sort; the nature of these
manifolds is thus invariant under projective change.

9. Along with these invariant manifolds, defined by equations, I must
mention a numerical gquantity whose value remains unchanged under all
projective transformations. It offers a certain substitute for the concepts
distance and angle, whose values, as you know, are not invariant even under
affine transformations, to say nothing of projective transformations. Speak-
ing first of the straight line, let us consider a certain function of the distances
among four arbitrarily selected points 1, 2, 3, 4, namely, the cross ratio men-
tioned on page 6:

0.3 _T0.3
14734 14.32

In fact we can easily verify (by calculation), the invariance of this quantity
under projective transformation, and we shall actually do so later in another
connection. (See p. 146 et seq.)

The case is quite similar for pencils of rays, except that we use, not the
angles themselves, but their sines. Thus, if 1, 2, 3, 4 are rays or planes of a
pencil, their cross ratio is the expression

sin (1,2) sin (3,2) _ sin (1, 2) sin (3, 4)
sin (1,4) "sin (3,4) sin (1, 4) sin (3, 2)

Since these cross ratios were the first numerical invariants of projective
transformations to be discovered, many students of projective geometry
thought it a praiseworthy goal to reduce all other invariants to cross ratios,
even though the reduction was sometimes very artificial. Later on we
shall consider these questions more thoroughly.

These few indications will suffice to show how we can distinguish sharply
between the various concepts of geometry according to their behavior under
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projective transformation. Everything that remains unchanged by such
transformation constitutes the subject matter of projective geometry, which
arose during the last century, of which I have already spoken, and which
we shall discuss more thoroughly later on. This name, which is used now
quite generally, is better than geometry of position (Geometrie der Lage),
which was much used earlier, and by which mathematicians wished to in-
dicate the contrast to geometry of measure or elementary geometry, which
embraced all geometric properties, including those that are not invariant
under projective transformation. The older name conceals entirely the fact
that many properties of measurement, in particular the values of the cross
ratio, are included.

I should like to discuss now the applications
ﬂuz ! of projective transformations, just as I did earlier
with affine transformations.

4

2=l 1. Starting with descriptive geometry,and mak-
ing no attempt to be systematic, I shall discuss
some characteristic examples.
Fic. 66 (a) The first is the mapping of space upon a
plane by means of central perspective, which is
the direct generalization of axonometry (parallel perspective). The pro-
jecting rays proceed here from a finite point instead of from an infinitely
distant one. We select the center of projection at the origin of coordinates
O and the plane of projection as z = 1. (See Fig. 66.) Then, for the image
?'(«, ¥, 2') of any point p(x, y, z) we always have 2’ = 1, and, since p and
#' lie on the same ray through O, we have

o

Y

9 g =%y,

Hence the equations for our mapping are

x z
¥ ==, y’=27 2 ==
4 2 4

This is a special projective transformation, and the analogy with what happens
in axonometry leads us to suspect that its determinant vanishes. In fact,
going over to homogeneous coordinates, we get

pPE=E =19, =5 7=
and the determinant of the substitution is
0
=0,

0 0
1 0
0 0
0 0

OO O =

0
1
1
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You can readily derive the various properties of this transformation by
analogy with our earlier discussions, provided you note that, in general,
every plane is connected with the plane of projection by a projective (two-
dimensional) transformation with a non-vanishing determinant. It follows
from this, in particular, that the cross ratio of any four points on a line, or
of any four rays through a point, is unchanged by the transformation.

(b) The second example concerns a projectivity which includes the central
perspective as limiting case, one with a non-vanishing determinant, the so-
called relief perspective. The relief of an object is to be so formed that it
will send the same rays to an observer’s eye, placed at a definite point, which
the original would send to an observer correspondingty placed. This means
that, with an appropriately oriented system of coordinates, the original point
and its image should lie on the same ray through the origin:

(1) 2iyid = xry:a.

The difference between this and the previous case is that the original is
not mapped upon a plane but is compressed into a certain narrow space
segment of finite width.

I assert that this is accomplished by the formulas

A+ B , (A4 k)y (14 k)
2) =575 YT R YT iFn

which, in the first place, give at least a projectivity and also obviousty
satisfy equations (1). Let us form their determinant, using the corresponding
homogeneous equations

pPE=0+BE o' =Q0+kn pU=0+E o7=+0k
It will be

’

1+ 0 0 o
]l o 1+ 0 0 _ s
A=l o 0 14k P
0 0 1 k
and is thus different from zero, except when k& = 0 or &k = —1.

For k=0, (2) goes over precisely into the previous formulas of central
perspective, i.e., the relief degenerates completely into a plane. The value

= —1 gives ' = 3y = 2’ = 0, i.e., every point in space is represented by
the origin, which is obviously a useless and trivial degeneration.

For the sake of definiteness, we choose £ > 0. In order to make the trans-
formation (2) clear geometrically, we notice, first, that every plane 2 = const.
goes over into a parallel plane:

_(+ ke
@) 7= 2+ k
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The resulting mapping of the two planes upon each other by the rays pro-
ceeding from O is perfectly clear, and we now need only interpret the law (3).
Forz = o (r = 0),2' = 14 k. The plane parallel to the xy plane and at
a distance 1 + k is the vanishing plane of the space of the tmage, and at the
( 200 same time it forms, in a sense, the background
47 . of the relief upon which the infinitely distant
background of the space of the object appears
Objects 4 to be mapped. The plane z = 1 plays also an
important role, since object and image coin-
cide for that plane. This follows from the
, fact that if z = 1, then 2’ = 1 also. If, now,
+2=1 z increases from 1 to o, 2’ increases mono-
0 o tonically from 1 to 1 4 &, i.e., if we restrict
Fie. 67 ourselves to objects behind the plane 3 = 1, we
obtain actually, as image, a relief of fimite
depth k. In practice, there can and must always be such a restriction.
(See Fig. 67.)

Examining again the relation (3), we find for the cross ratio of the points

z, 1, 2/, 0, the relation

z—l.z’—O_z~1.(1+k)Z_1+k.
z2—0 Z—1" 2z Riz—1 &k

T2=l+k
Image[l

+ 2=

In general, those two values z and 2’ correspond to each other which form
with the points 1 and 0 a cross ratio of constant value.

We have a model in our mathematical collection which represents, in
relief perspective, a sphere on a cube, a cone of revolution, and a cylinder
of revolution. Examined at the proper distance, the model] actually gives
a very clear impression of the original bodies. Of course, psychological
reactions play an important part. The isolated fact that the same light rays
enter an eye does not suffice to determine the spatial impression; habit must
certainly play an important part. Indeed, since we have seen a sphere on a
cube much oftener than we have seen a narrow ellipsoid on a narrow hexa-
hedron (that is the form of the image in relief perspective), we are disposed,
from the start, to refer the light impression to the first source. A closer
examination of the reactions that enter here may be left to the psychologists.

This will suffice to give you a first glimpse of the application of projective
transformations to descriptive geometry. Of course, these theorems demand
further consideration, and I cannot leave this field without urging you to
make a thorough study of descriptive geometry, which is, I think, indis-
pensable for every teacher of mathematics.

2. The second application of projective transformations of which I wish
to talk is the derivation of geometric theorems and points of view. You will
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recall that we discussed affine transformations with a similar purpose
(p. 76 et seq.).

(a) We start from the theorem that when we subject a circle to a projective
transformation or to o central perspective- transformation, it goes over into a
““comic section,”’ i.e., into the intersection by a plane of the cone whose sur-
face is formed by the projecting rays
drawn to the points of the circle. I
have here a model which shows how an
ellipse, a hyperbola, or a parabola can
arise in this way. (See Fig. 68.)

(b) It follows that, for projective geom-
etry, there is only a single conic section,
since any two can be transformed into
a circle and therefore into each other.

The division into ellipse, parabola, hy-

perbola indicates, from this standpoint,

no really fundamental difference, but

reflects merely the accidental position \‘
with reference to that line which is

ordinarily called “infinitely distant.”

(c) Let us now derive the follow-
ing fundamental cross-ratio theorem for
conics: Any four fixed points 1,2, 3, 4 on a conic are projected from a fifth
movablz point P of the same conic by four rays whose cross ratio is independent
of the position of P.

To prove this, we go back to
the circle from which the conic in
question arose by central perspec-
tive. Since, in this, the cross ratio
is unchanged, our theorem will be
true, in general, if only we can
show that the four corresponding
points 17, 2’ 3 4’ on the circle
are projected from two other ar-
bitrary points P;, P;, by rays
which have the same cross ratio.

Fic. 69 But this is at once evident, for,

by the theorem on inscribed an-

gles, the angles of the pencil of rays Pi(1’, 2, 3', 4) on the one hand, and

of Py(1’,2',3',4") on the other, are equal in pairs; hence the two cross ratios
formed from the sines of the angles of the two ray quadruples are equal.

(d) Steiner actually based his definition of conics on this theorem by
starting from two ‘“projectively related” pencils of rays, in which two cor-

Frc. 68
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responding ray quadruples have the same cross ratio. A4 comic is then the
locus of the intersections of corresponding rays of these projectively related
pencils. ‘

These few remarks will suffice to make clear to you the great significance
of projective transformations for the theory of conic sections. You can
find a more complete account in any textbook on projective geometry.

Proceeding further in the wide range of this chapter, we shall now come
to new classes of geometric transformations not belonging to the class
of linear transformations which we have thus far considered and which
have led us progressively from displacements to the most general projectiv-
ities.

II1. HIGHER POINT TRANSFORMATIONS

We shall now investigate transformations that are represented, not by
linear functions, but by higher rational algebraic functions, or even by tran-
scendental functions:

x = o(z, Y Z)r y’ = x(xi Y, Z)) g’ = ‘l’(x: Ys Z)

Adhering to the plan of these lectures, I shall not give a systematic pres-
entation, but I shall present a series of particular examples which have
general significance in pure mathematics and, above all, in its applications.

First of all, T shall discuss that one of these transformations which is
most frequently used: the fransformation by means of reciprocal radi.

1. The Transformation by Reciprocal Radii

This transformation carries each point p into that point p' on the line Op
joining p with the origin O, for whick Op - Op' is equal to a given constant.

(See Fig. 70.)
P As you know, this transformation plays an im-
? portant role in pure mathematics, and particularly
5 in the theory of functions of a complex variable. It
Fre. 70 appears not less frequently, however, in physics

and in other applications. Later on, we shall dis-
cuss at length one particular application.

1. In treating this transformation, I shall again start with the derivation
of its equations in rectangular coordinates. Since p and ' lie on the same
line through O, we have

(1) xiylis = xiyig,

and from the relation between the distances Op and Op’, setting the con-
stant equal to 1, for simplicity, we find

2) (@ + y2 + 22) (2" + y'2 +2") = 1.
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Therefore, the equations of the transformation are

—-——-———‘x ’ '=-—-—-——-y ] Z’='—'—'—Z .
2+ 32 + 22 ¥ LAy 2+ v+ 2

In the same way, we obtain, conversely,

B) «=

xl yl Z’

Thus not only are the coordinates of p’ expressed rationally in terms of
those of p, but also the coordinates of p are expressed rationally in terms of
those of ’; and the functions that occur are the same in both cases. The
denominator in each case is a quadratic expression. We have here a par-
ticular case of what is called o quadratic birational transformation. There is,
moreover, an extensive class of such birational transformations (in general
uniquely reversible), which are expressed, in both directions, by rational
functions. Under the name Cremona transformations they are the object
of a widely developed theory, to which I must at least allude as I discuss
the simplest one of them.

4) x=

2. Equations (3) and (4) show that to every point p in space there cor-
responds a point ', and, conversely, to every point p’ there corresponds a
point p, if we except (for the present) the origin. However, if we let x, y,
and z approach zero simultaneously, the denominator of (3) becomes small,
of higher order than the numerator, and #’, y’, and 2’ become infinite. We
could call the origin, therefore, a wvanishing point of the transformation.
Conversely, if 2/, 3/, and 2’ become infinite in any way, then, by (4), %, y,
and z all approach zero. If, then, we were to use our earlier terminology, we
should say that a single point corresponds to the whole infinitely distant
plane. However, this “infinitely distant plane” was merely a convenient
expression which was suitable for the projective transformation. It signified
that, under that transformation, the infinitely remote part of space behaved
as though it were a plane, i.e., it went over into the points of some finite
plane, and this made it possible to enunciate theorems without making
exceptions, and without introducing several cases. There is nothing to
hinder us from employing here a different form of expression, and from
stating, by means of it, for our present purpose, theorems likewise valid
without exception. By our transformation, the infinitely remote in space
is transformed into a point; hence we say, simply, there is only one infinitely
distant point, and it corresponds, under our transformation, to the origin of
coordinates. Then our transformation in fact is uniquely reversible without
exception.

It is impossible to overemphasize that here, as well as in our earlier re-
marks, we are not thinking, in the remotest sense, of metaphysical repre-
sentations of the true nature of infinity. There are, of course, always people,
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who, partial by habit to the one or to the other form of expression, would
like to assign a transcendental meaning to infinity. Such advocates of these
two points of view sometimes fall into controversy. Of course they are
both wrong. They forget that we are really concerned merely with an arbi-
trary convention which is appropriate for the one purpose or for the other.

3. The principal property of our transformation is that (speaking gen-
erally) it transforms spheres into spheres. Indeed, the equation of a sphere
has the form

(5) A+ y*+ 2 + B + Cy + DZ + E= 0.

Substituting for «/, 9, 2’ their values in (3), replacing the quadratic term
2’2 + 9’2 -+ 2’2 by means of (2), and multiplying through by x'2 + 3’2 4 2%,
we get A + Bx 4+ Cy 4 Dz 4 E(«* + y2 + 2%) = 0, which is indeed the
equation of a sphere. To be sure, it should be noticed that the equation (5)
(for A = 0), includes also planes, which we can appropriately consider here
as special spheres; they are in fact those spheres which contain the point at
infinity. Under our transformation they go over into spheres that pass
through the point which corresponds to the point at infinity, that is, the
origin. Conversely, any spheres that go through the origin go over into
spheres through the point at infinity, that is, into planes. With this con-
vention, the theorem that spheres correspond to spheres is valid without
exception.

Since two spheres (likewise a sphere and a plane) intersect in a circle, it
follows also that fo a circle there corresponds always a circle, whereby, in
particular, straight lines are included as ““circles through the point at infinity.”
Conversely, to a straight line corresponds, under our transformation, a
circle through the origin.

4. This last theorem is, of course, still valid if we restrict the transforma-
tion to a plane. This gives rise to an elegant solution of the problem of gen-
erating a straight line which is very elemen-
' w\am|  tary and which belongs really to the field of

interests of the non-mathematician. The

o P problem is to guide a point, by means of a

m 4s|  linkage of rigid rods, so that it will describe

a straight line. Formerly, in the construc-

tion of steam engines, particular importance

Fie. 71 was placed upon mechanisms that would

effect the transmission between the piston, which moves rectilinearly, and
the end of the crank, which describes a circle. '

This directs our interest to the inversor which Peaucellier, a French officer,
constructed in 1864, and which caused a sensation then, although the con-
struction is very simple and fairly obvious. The apparatus consists of six
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jointed rods. (See Fig. 71.) Two of the rods, of length /, are attached at a
fixed point O; the other four rods, all of length m, form a rhombus whose
opposite vertices are the ends of the rods &: Call the two free corners of this
rhombus p and p’. The apparatus has two degrees of freedom: First, one
can incline the two rods !/ to each other at will, and, second, one can rotate
them together about O. With every such motion, however, Opp’ remains
a straight line, as it is easy to prove geometrically, and the product

O0p » Op' = 12 — m? = const.

is independent of the position of p. Thus the apparatus actually effects a
transformation by reciprocal radii with O as center. We need only move p
on a circle through O, in order to force p'—according to the theorems of
§ 3—to move actually on a straight line. This result is secured at once if
we attach at p a seventh rod pC, whose other end, C, is fixed at the midpoint
between O and the initial position of 5. Then there remains but one degree
of freedom, and " will, in fact, be carried along a line. It should be noticed
that the point p’ cannot traverse the entire unlimited line, but that its free-
dom to move is limited by the fact that its distance from O remains always
less than Im, because the given lengths of the rods do not permit more ex-
tended motion. In some models, the point C is displaced a little, so that the
circle which p traverses passes close to O, and ' moves, therefore, not in a
straight line but on a circle of large radius. This application of the apparatus
also may be useful at times.!

5. Of the general properties of the transformation by reciprocal radii, I
will emphasize, lastly, that of the preservation of angles. This means that
the angle whick two surfoces make with each other at any point of their curve of
intersection is the same before and after the transformation. I shall omit the
proof since I am not concerned, in this survey, with carrying out the de-
tails.

6. We can look upon stercographic projection, which also plays an impor-
tant role in the applications, as a special chapter of the transformations by
reciprocal radii. It is obtained as follows. Let us consider the sphere which
is carried by our transformation into the fixed plane 5’ = 1. By the third
of the formulas (3) the equation of this sphere is

1_ b4
_x2+y2+zz’

which may be written in the form

Byt E-P=t

1 [See also A. B. Kempe, How to Draw a Straight Line, London, 1877; and G. Hessenberg,
Gelenkmechanismen sur Kreisverwandischaft, Heft 6 der Naturwissenschaftlich-medezin-
ischen Abhandlungen der Wiirttembergischen Gesellschaft zur Férderung der Wissen-
schaften, Abteilung Tiibingen, 1924.}
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Thus the sphere which is transformed into the plane z’ = 1 has a radius 3,
and has its center at the pointz = % on the z axis. It passes through the origin,
v and is tangent to the image plane z’ = 1.

(See Fig. 72.) We can at once make clear
e P p' the details of the relation between the
1 D plane and the sphere if we use the space
pencil of rays through the center O, and
" P discover the corresponding points. I shall
state the following theorems without
proof.

0 1. The mapping is, without exception,
Fic. 72 reversibly unique, if we think of the in-
finitely distant part of the plane as a

point, which is then mapped upon the point O on the sphere.

2. Circles on the sphere correspond to circles in the plane; in particular,
circles through O correspond to circles through the point at infinity, i.e.,
to straight lines.

3. The relation between the two surfaces preserves angles, or, as it is cus-
tomary to say, the transformation is conformal.

You know, of course, that stereographic projection has great significance
in the theory of functions of a complex variable. Indeed, I used it to advantage
frequently in my lectures last semester.! Of other applications in which it
plays an equally important role, I would mention geography and astronomy.
Stereographic projection was known to the ancient astronomers; even today,
you find in every atlas representations of the hemispheres, and of the polar
regions of the earth, in stereographic projection.

I shall now present a few more examples from the last-mentioned field
of application.

2. Some More General Map Projections

A digression in this direction seems to me especially appropriate for the
present lectures. The theory of geographic maps is, after all, a subject which
is of great importance in school instruction. It will interest every boy to
hear from what point of view the maps in his atlas were drawn. The teacher
of mathematics can put more feeling into his instruction, if he can give the
desired information, than he can if he discusses only abstract questions.
Thus every prospective teacher should be informed in this field, which,
moreover, furnishes the mathematician with interesting examples of point
transformations.

It will serve our purpose best if, at the outset, we think of the earth as

1 See Part I, p. 105 et seq.
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projected stereographically from, say, the south pole, upon the xy plane.
Then, with respect to that pole, any other mapping upon a £ plane will be
given by the two equations § = ¢(x, y), 1 = x(x, y).

Among the first representations, much used in practice, are those in which
angles are preserved. We obtain these, as is taught in the theory of functions
of a complex variable, if we think of the complex variable £ + in as an onalytic
function of the complex variable x + iy:

£+ in = fla+ iy) = ¢(x, ) + ix(x, y).

I should like to emphasize, however, that precisely in geographic practice
use is often made of representations in whick angles are not preserved, so that
conformal transformations should not be regarded, as is often done, as the
only important ones.

Under the conformal representations there appears prominently the so-
called Mercator projection, which was discovered about 1550 by the mathe-
matician Gerhard Mercator, whose real name, by the way, was the good
German name Kremer. You will find y
mercator maps of the earth in every ﬂ
atlas.

The mercator projection is determined
by choosing our analytic function f as the @‘ Q

logarithm. It is given by the equation 9 . z
£+ in = log (x + 1y). .

As mathematicians, we can at once
deduce the properties of the projection
from this short formula, whereas for the
geographer without mathematical train-
ing, the treatment of the mercator pro-
jection is, of course, rather difficult. Introducing polar coordinates into
the xy plane (see Fig. 73), i.e., putting x + iy = 7 - ¢, we get

£+ in = log (r - €®) = log r + i,

so that £ = logr, n = ¢.

We assume that the south pole of the earth is the center of our stereo-
graphic projection. Then the origin O of the xy plane corresponds to the
north pole of the earth, and the rays ¢ = const. in the xy plane correspond
to meridians. Consequently, in the mercator projection (see Fig. 74) the
meridians become 9 = const., i.e., parallels to the £ axis. The north pole
(r=0, £= — ) lies on them to the left, the south pole (r = 4,
£ = 4 =), to the right, at infinity. Since the angle ¢ is undetermined to
within multiples of 2w, the mapping is infinitely many-valued, and each
strip of width 2w, parallel to the £ axis, gives an image of the entire surface
of the earth. The circles of latitude,» = const., become, in the mercator map,

Fic. 73
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the parallels £ = const., i.e., since angles are of course preserved, they are
the orthogonal trajectories of the images of the meridians. To the equator
(r = 1), there corresponds the 7 axis

K (£=0).

This one example may serve to arouse
you to further study of the numerous
° 1 o transformationsin the geographical theory
E g’{_ £ E of mapping. Let me now pass on, rather,
< =N g to a more general theorem of this theory.
3 2 2 Those of you who have busied yourselves

Z sl . .
o 1 o with geography have heard, certainly, of
& ® the Tissot theorems which Tissot devel-
oped in his book, translated by Hammer
L in Stuttgart.! Itis very easy to make its

contents clear, from our standpoint.
Fre. 74 Let there be two geographic maps, rep-

resentations of the earth’s surface upon
an xy plane and a £y plane, each of which may be arbitrary and not nec-
essarily conformal. The two will stand in some relation to each other,
which we may write in the form £ = ¢(x, v), 7 = x(x, ¥).
We shall examine the neighborhood of two corresponding positions (xg, yo)
and (&, 7o), where & = ¢(xg, 1), 70 = X(%0, %). For this purpose we intro-
duce new variables (x', ") and (¢, 9’) by means of the equations

r=x+2, y=n+;
E=6L+E g=n+79.

We obtain then, by development according to Taylor’s theorem,
, a¢) " a¢) b
£= ( 3 + e
X 6x)
/ = —_— . ’ —_— . Y Y
”“(ax)ox+(ayoy+ !

where the derivatives are to be taken for x = xg, ¥ = yo, and where terms
of higher order are indicated by dots. We restrict ourselves, now, to suck a
small neighborkood of (x, yo) that the indicated linear terms give a sufficient
approximation to the actual values of (¢, 7’). This means, of course, that
we exclude singular positions (xp, yo) for which such a neighborhood does
not exist. Thus we exclude a point at which all four partial derivatives
vanish simultaneously, so that the linear terms would not give a usable
approximation. Then if we look at the linear equations thus obtained be-
tween (x', y') and (&, 5'), we have at once the fundamental theorem which

! Die Netzenentwiirfe geographischer Karlen nebst Aufgaben iiber Abbildungen beliebiger
Flichen auf einander, Stuttgart, 1887.
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forms the basis of Tissot’s reflections: Two geographic maps of the same ter-
rain are connected, in the neighborhood of o non-singular position, approxi-
mately, by an offine transformation. If we now apply our earlier theorems on
affine transformations, we obtain actually all of the so-called Tissot theorems.

I shall merely remind you of a few principal points. We know that every-
thing depends on the determinant of the affine transformations, i.e., here,

on the determinant
(2, )
A= Jx 0 ay 0
&), G
Jdx [1} ay 0
which is called the functional determinant of the functions ¢ and X, for the
position x = xy, y = yo. We always avoid the case A = 0 in these applica-
tions, for in that case the neighborhood of (xy, o) in the xy plane would be
mapped upon a curve segment of the £y plane, and the geographer would
hardly consider such a map as usable. We are thus to consider here A 5£ 0.
In our earlier discussions (see p. 73 et seq.) we made clear how such an affine
transformation comes about; hence we can now take over the theorem:
The neighborhood of the point (5 no) is oblained from that of the point (xo, 50),
with the accuracy which here concerns us, by subjecting the latter to o pure de-
Jormation in two mutually perpendicular directions and by then turning it
through a switable angle. You will find in Tissot’s book that he actually
gives a clear ad hoc deduction of this theorem, and you have here an in-
teresting example of how those concerned with the applications manage to
meet the mathematical needs of their own subject. To the mathematician,
the thing always seems very simple, but it is still instructive for him to
know what these applications require.
I shall now pass to the consideration of a general class of point trans-
formations.

3. The Most General Reversibly Unique Continuous
Point Transformations

All of the mapping functions which we have thus far considered were
continuous and successively differentiable, indeed they were analytic (de-
velopable into a Taylor series). However, we admitted multiple, even in-
finitely many-valued functions (e.g., the logarithm). We shall now set down
as precisely our chief requirement that our mapping functions shall be without
exception reversibly one-valued. We shall assume also that they are continuous.
We shall make no assumptions, however, as to the existence of derivatives,
etc. We inquire as to the properties of geometric figures which remain un-
changed under these most general reversibly unique and continuous trans-
formations. Let us think, say, of a surface or a solid made of rubber, with
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figures marked upon it. What is preserved in these figures if the rubber is
arbitrarily distorted without being torn?

The totality of properties which we find in the treatment of this question
makes up the field that is called analysis situs. We might call it the science
of those propertics which depend upon position and not af all upon size. The
name comes from Riemann, who, in his famous paper of 1857, Theorie der
Abelschen Funkionen,! was drawn into such investigations by function-
theoretical interests. Since that time, moreover, it has often happened that
analysis situs is not mentioned in books on geometry, and is left for dis-
cussion in the theory of functions when it is needed. It was not so, how-
ever, with Mobius, who, in a paper written in 1863, discussed analysis situs
from its purely geometric interest. He calls those figures which transform
into each other through reversibly unique continuous distortion elementarily
related figures, because the properties which are invariant under these trans-
formations are the simplest possible properties.

We shall restrict ourselves here to the investigation of surfaces. To begin
with, we should note a property which was first discovered by Mdbius, and
which Riemann had missed entirely: the distinction, namely, as to whether a
surface is one-sided or two-sided. Indeed we have discussed (p. 18 et seq.)
the one-sided Mobius band, upon which, by continuous movement, one can
come unawares from the one side to the other, so that a distinction between
the two sides no longer has any meaning. It is clear that this property per-
sists through all continuous distortions and that therefore, in analysis situs,
we must actually distinguish, from the beginning, between one-sided and two-
sided surfaces.

For the sake of simplicity we shall concern ourselves here only with two-
sided surfaces, especially since they alone are ordinarily considered in the
theory of functions of a complex variable. However, the theory of one-sided
surfaces is not essentially more difficult. It turnsout that for a surface, in the
sense of analysis situs, there are two natural numbers which are completely
characteristic: The number p of its boundary curves and the number p of closed
cuts which do not separate it into parts (the so-called genus). More precisely,
a necessary and sufficient condition that two two-sided surfaces be applicable
to each other reversibly uniquely, and continuously (that they be “ elementarily
related” or, as we say today, they be homeomorphic) is that these two numbers
1 and p shall be the same for both surfaces. The proof of this theorem would

! Journal fiir die reine und angewandte Mathematik, vol. 54 = Gesammelle mathema-
tische Werke (2nd edition, Leipzig, 1892), p. 88.—Riemann, following Leibniz, uses here
the word “analysis” in its original methodological sense, not with the meaning which it has
taken on as a mathematical term.

2 Thearie der elementaren Verwandtschaft, Berichte iiber die Verhandlungen der Kéniglich
Sichsischen Gesellschaft der Wissenschaften, mathematischphysikalische Klasse, vol. 15,
p- 18 f. = Gesammelte Werke, vol. 2 (Leipzig, 1886), p. 433 ff.
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carry us too far afield. I can merely illustrate these numbers p and # by a
few examples.

Let us think of three surfaces placed alongside of one another, a sphere, a
torus, and a double torus (shaped like a pretzel), as they appear schematically
in Fig. 75. Each is a closed surface, i.e., it has no boundary curve; hence

C Cy Cz

Fie. 75

= 0. In the first example, every closed cut divides the surface into two
separate parts, so that p = 0. In the second example, a meridian curve C
represents a closed cut which does not separate the surface into parts. After
the curve C has been drawn, however, every additional closed cut actually
divides the surface into parts. This is precisely what we mean when we say

= 1. In the third example, p = 2, as is shown by the two different meri-
dian curves Cy and Cg, on the two separate handles. By the addition of more
handles, we can create surfaces with any desired vatue of p. On the other
hand, we can give p any desired integral value different from zero by mak-
ing in these surfaces small holes or punctures, each of which adds a boundary.
Thus we can actually set up surfaces with arbitrary values of $ and pu, and
all other surfaces with the same values of $ and g must then be homeomor-
phic with them, no matter how different they may be in appearance. The
theory of functions offers many examples of such surfaces.

I must explain here also the term connectivity, which Riemann introduced.
By it he means the number 2p + u, and he calls the surface (2p + w)-ply
connected. A surface is simply-connected
if 2p+ p=1,sothat p=0and p = 1;
that is, it is homeomorphic to a sphere
with one puncture, which we could de- ‘
form continuously into a circuler disk
by enlarging the hole. (See Fig. 76.)

Riemann also introduces the notion Fic. 76 Fic. 77
of crosscut, i.e., a cut which joins one
boundary point with another. Thus we can speak of crosscuts only if bound-
ary curves actually exist, that is, only if p> 0. We can then prove the fol-
lowing theorem. Each crosscut reduces the connectivity by 1, so that, in particu-
lar, any surface for which u> 0 can be changed into @ simply-connected surface
by 2p + p — 1 crosscuts, Let us consider a torus (see Fig. 77) with one punc-
ture (p = p = 1), and let us draw the first crosscut ¢: from this puncture
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and necessarily back to the same puncture. Then let us draw the second
crosscut g, gvhich starts and also ends in the first cut and resembles pre-
cisely the closed cut in the torus of Fig. 76. Then the connectivity is actually
reduced from 2+ 141 = 3 to 1.

As to literature concerning analysis situs, there is a comprehensive list, not
merely for surfaces, but also for arbitrarilty extended manifolds, in the
Enzyklopidie der mathematischen Wissenschaften in the Report by M. Dehn
and P. Heegard (III AB3), which is, to be sure, very abstract. It would be
highly desirable to have a more readable presentation, which would be acces-
sible to the beginner, and in which the abstract theory would be preceded by
a development of the general ideas with simple examples.!

Analysis situs finds applications in physics, especially in potential theory.
But it reaches also into school instruction, in the polyhedron theorem of Euler,
concerning which I shall say a word. Euler observed that if an ordinary
polyhedron has E corners, K edges, and F faces we always have the relation
E+ F = K 4 2. Now if we deform the polyhedron in any way which is re-
versibly unique and continuous, these numbers, and hence the equation, will
remain unchanged, so that the latter will still hold when E, F, K are the
numbers of corners, faces, and edges of an arbitrary division of the sphere or,
indeed, of any surface homeomorphic to it, provided only that each subdivision
is simply-connected. We can generalize this theorem at once to surfaces of
arbitrary genus, as follows. If we divide a surface whick admits p closed cuts
without dismemberment, into F simply-connected parts by means of K line-seg-
ments, and if E corners are created, then we shall have E+ F = K + 2 — 2p.
I leave it to you to set up illustrative examples and to ponder over the proof
of the theorem, or to read it in the Dehn-Heegard report. Of course, there
are still broader generalizations of this theorem.

With this we shall leave altogether the theory of point transformations,
and we shall try to obtain a view of the most important classes of those trans-
formations which carry points over into other space elements.

IV. TRANSFORMATIONS WITH CHANGE
OF SPACE ELEMENT

1. Dualistic Transformations

The most obvious cases are those correspondences which interchange
point and line in a two-dimensional region, or point and plane in a three-
dimensional region. I shall restrict myself to the first case, and I shall follow
the line of thought which Pliicker first used in 1831 in the second part of his

1 [A more recent work is B. v. Kerékjarts, Vorlesungen tiber Topologie (vol. 1, only, has
appeared), Berlin, Springer, 1923. Another article on analysis situs will appear soon in the
Enzyklopidie der mathematischen Wissenschaften, by H Tietze.}
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Analytisch-geometrische Entwickelungen, which we mentioned earlier (p. 57).
We shall begin with the analytic formulation.

The first idea used by Pliicker, which T have discussed already (p. 59 et
seq.), is to place on an equal footing with ordinary coordinates the constants
% and v in the equation of the straight line,

1) ux + vy = 1,

to regard « and v as line coordinates, and to build up the structure of analytic
geometry by using these two sorts of coordinates in analogous “dual”’ ways.
Thus, in the plane, there correspond to each other the curve as @ locus of
potnts given by the point equation f(x, y) = 0, and the curve as the envelope of
a single infinity of lines of a family defined by the line equation g(u, v) = 0.

A proper transformation, such as we now wish to consider, will be obtained,
of course, only when we add to our plane E a second plane E’,and set up a
relation between the line coordinates # and » in E and the point coordinates
2’ and 5’ in E’. Thus the most genera) transformation of this kind would be
given by the two equations

2) u=¢@,y), v=x,y)
i.e., to each point («/, y") in E’ there will correspond the line in E whose equa-
tion is obtained by substituting these values (2) in (1).

1. To begin with, let us consider the simplest example of suck a transforma-
tion, which is given by the equations

3) wu=a, v=3y.

By means of this transformation, to the point (x, ') in E', there will corre-
spond in E the line

(3a) x4+ y'y = 1.

If we now superimpose the planes E and E’ so that their coordinate systems
coincide, we see that this equation represents the polar of the point («, ¥')
with respect to the unit circle about the origin, Plzy)

(2* 4+ y% = 1), so that our trensformation is the -\-C\’y y

familiar polar relation for the circle. (See Fig.78.) /
\

i 9(u,v)
We notice that, in place of the two equations \

(3), the one equation (3a) suffices to define the re- . 0

lation, since it is the equation of the line corres- ’

ponding to any point («/, y'). Since it is com-

pletely symmetrical in # and y on one hand and

in «’ and y’ on the other, tke two planes E and E'

must play the same role in our relation, i.e., to every

point in E there must also correspond a line in E’. It makes no difference,

when the two planes coincide, whether we think of the point asin Eorin E'.

]

Fic. 78
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With respect to the first property, we call the transformation dual in the
narrower sense; with respect to the second, reciprocal. Thus, without mak-
ing any distinction between the two planes, we can speak simply of the cor-
respondence of a definite polar to a pole, and then express the reciprocal
property in the manner stated on page 57.

As for other properties of this transformation, I remark merely that, to a
curve traced by the point («’, y’) in the plane E’, there would correspond,
by the principle of duality, the curve in the plane E enveloped by the cor-
responding line (%, v).

2. By analogy with our earlier discussion of the most general “collinea-
tion,” it can be proved easily that the most general dual relation is obtained
if we generalize the assumption (3) and set « and v equal to linear fractional
functions of x' and v’ with the same denominator:

" = a1x’+b1y'+61’

@) asx: + bsy: +cs
v =a2x +b2y +52.

axt’ + b3y’ + ¢

Substituting these values for # and v in (1), multiplying by the common
denominator, and noting that the nine coefficients ay, « « + , ¢3 are arbitrary,
we obtain the most general linear equation in x and y as well as in &’ and y':

(4a) axx’ + bixy’ + cix + aoyx’ + boyy' + coy — asx’ — by’ — ca = 0.

Conversely, every such “bilinear” equation in x, y and ¥/, y' represents o dual
transformation between the planes E and E'. For, if we assume that one pair
of coordinates are constant, i.e., if we think of a fixed point in one of the
planes, the equation is linear in the other two coordinates and represents a
line in the other plane, corresponding to that fixed point.

3. This relation, however, is not in general reciprocal in the sense defined
above, unless two symmetrical terms in (4a) always have the same coeffi-
cient, in which case the equation is

(5) Axx’ 4 B(xy' + y2) + Cyy' + D(x+2') + E(y + y') + F = 0.

The transformation thus determined is familiar from the theory of conic sec-
tions. It expresses the correspondence of pole and polar with respect to the
conic whose equation is

Axt+ 2Bxy + Cy*+ 2Dx 4 2Ey+ F = 0.

Every such polar relation is dual and reciprocal.

We can pass immediately from this to the consideration of an essentially
more general class of transformations with a change of the space element,
namely, the contact transformations.
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2. Contact Transformations

These transformations, so named by Sophus Lie, are obtained if, instead
of the bilinear equation (4a), we start with an arbitrary higher equation in the
four point coordinates of the two planes:

(1) Q,y; 2,5 = 0.

We shall assume that this equation satisfies the requisite conditions of con-
tinuity. Ttis called, after Pliicker, the aequatio directrix or directrix equation.
For plane geometry, all the relevant developments are found in Pliicker’s
work mentioned above.! To begin with, we keep x and y fized, i.e., we con-
sider a definite point P(x, y) in E. (See Fig. 79.) Then the equation @ = 0
represents, in the running coordinates #’ and 4', a definite curve C’ in the
plane E’, and we make this curve correspond, as a new element of the plane
E/, to the point P, as we did earlier with the straight line. If, however, we
now take a fixed point P’'(x’, ) in E’, say on the curve C’, then the same
equation @ = 0, in which we now . .

think of 2’ and 3’ as fixed and of Pl\a{;e E: c Plane E-

. : . O NK
and y as running coordinates, rep- P
resents a definite curve C in E. Of

course, the curve C must pass \\
through the first point P. In this K\\
way, we have established a corres- A

pondence between the points P in
E and the «? curves C’ in £, and
between the points P’ in E’ and
the «? curves C in E, just as we established earlier a correspondence be-
tween points and straight lines.

If, now, a point P in E moves on an arbitrary curve K (indicated by a
broken line), there will correspond to each position of P a definite curve C’ in
E’. In order to obtain from the simply infinite family made up of the curves
C’, a single curve in E’ which we can set into correspondence with the curve
K in E, we apply to the present case the envelope principle already used in the
relation of duality: We place in correspondence with K that curve K' in E’'
which is enveloped by the curves C’ that correspond to the points of K by means
of the equation @ = 0. Evidently, we could repeat the same argument, start-
ing with an arbitrary curve K’ in E'. Thus we have finally derived from the
directrix equation = 0, a transformation of the two planes by which to
every curve in the one plane, there corresponds a definite curve of the other
plane.

In order to follow this discussion enalytically, let us replace the curve K
by a rectilinear polygon with short sides, as we habitually do in differential

Frc. 79

1 Loc. cit., pp. 259-265.
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calculus for the sake of clearness, and let us ask what corresponds to a single
such polygonal side. We always have in mind, of course, a passage to the
, curve as a limit, so that by the polygon
Plane E: c' Plane & :P' side we understand, really, ¢ point P and
A - its direction of motion (the direction of
\ G the tangent to K at P); together these
B form a so-called line-element. We now
P choose, in this direction from P, a point
Frc. 80 P, (see Fig. 80) with coordinates x - dx
and y -+ dy, where dx and dy are small
and are ultimately to approach zero, but where dy/dx always has the de-
finite value p which characterizes the given direction at P. To the point P’
corresponds the curve C' in E’ whose equation in the running coordinates
«’ and ' is

Qx, y; 2/, ¥') = 0.
To the point P; there corresponds the curve C; whose equation is
Qx + dx, y + dy; &', y') = 0.

Expanding in terms of dx and dy, and retaining only linear terms because
of the ultimate passage to the limit, we obtain

Q
Qx, y; 2, ) + %s—zdx+ Tay=o.
x dy

These two equations give the coordinates #’ and y’ of the intersection of C’
and Cy, which, in the limit, is the point of contact of C’ with the envelope
K'. Since dy/dx = p, we may write these equations in the form

Qx, y; o, y’) =0,
2 oe | 90
dx  dy

Moreover, C’ and C; have, in the limit, a common tangential direction in P’
given by the equation dy’ /dx’ = ', which is also the direction of the enve-
lope K’ in P’. Since £ = 0 is the equation of C’ in the running coordinates
«’ and ¥, this tangent direction is determined by the equation

oQ oQ

e d / o / —
3 -+ 3 dy =0
or

02 , 00 .,
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Thus, if we know a point P of K and the direction p of the tangent at P,
then a point P’ on the corresponding curve K’ is determined, together with
the direction p’ at P'. We say, therefore, that our transformation establishes
a correspondence between every
line-element x, vy, p of the plane E
and a definite line-element &', v, ¢’
of the plane E', by means of equa- g
tions (2) and (3). K,

If we apply this argument to
each side of the polygon which
approximates the corresponding
curve K (or to each of the line-
elements of K), we get in E' the
sides of the polygon which approximates the corresponding curve K’ (or
the line-elements of K’). Hence the equations (2), solved for ' and ¥/, give
the analytic represemiation of the curve K', when we let x, v, and p, the coordinates
and the slope, run through the values given by all the points on K. (See Fig. 81.)

It now becomes clear why Lie called these transformations contact trans-
formations. For, if two curves in E touch each other, this means that they
have a line-element in common; hence the corresponding curves in E’ must
have a common line-element, i.e., a common point and a common direction
through that point. The langency of two curves is thus an invariant under
the transformation, which is what the name implies. Lie developed exten-
sively the theory of these contact transformations also for space. He began
in 1896, together with G. Scheffers, a comprehensive presentation in his
work entitled Geometrie der Beriihrungstransformationen, which unfortu-
nately was not continued much beyond the first volume.!

Having given this brief discussion of the tkeory of transformations with a
change of the space element, I shall try to enliven it with a few concrete
examples, in order to show what can be done with these things in the appli-
cations.

Plane E? .
Plane E: , K, K’ !

A

K K
F1c. 81

3. Some Examples

Let me speak first of the dual transformations and of the role which they
play in the theory of the forms of algebraic curves. We shall inquire how typi-
cal curve-forms change under dual transformation, as in the reciprocal polar
relation with respect to a conic. We must restrict ourselves, of course, to a
few characteristic cases. Thus I shall examine first, under curves of third
degree, the type which has an odd number of branckes, and which is cut by
every line either in one or in three real points. In the adjacent sketch
(Fig. 82) there is one asymptote; but we can immediately obtain from this a

1Vol. 1, Leipzig, 1896. The first three chapters of the second volume appeared post-
humously in Mathematische Annalen, vol. 59 (1904).
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form with three asymplotes by transforming the curve projectively so that
a line which cuts it in three points is thrown to infinity. In any event, the
curve has three real points of inflection, and these have the
special property of being collinear. By dualization of this
curve, we get a curve of class three, to which there can be
drawn from any point either one or
three tangents. To the point of inflec-
tion there must correspond a cusp, as
will become clear upon careful reflec-
tion. Moreover, you will find these
matters discussed thoroughly in my
earlier lectures on geometry. The curve
Fic. 82 Fie. 83 of the third class which arises here
(Fig. 83) has thus three cusps, and the
tangents at those cusps must go through a point P’ which corresponds to
the line g on which the three points of inflection lie.
I shall now make similar brief statements concerning the curves of degree
Sfour and those of class four. A curve of fourth degree can appear in the form

'

Fic. 84

of an oval with an indentation; indeed, there exist also forms with two, three,
or four indentations. (See Fig. 84.) In the first case, there will be two real
points of inflexion and one double tangent; in the others there can be as
many as eight inflexions and four double tangents. If we dualize, we must

add to what was said above that the dual of
a double tangent is a double point. There
will arise, therefore, types of curves of fourth
class with from two to eight cusps and from
one to four double points, as sketched in

Fig. 85. There is a special charm in care-

fully working out the forms of algebraic Fi. 85
curves. Unfortunately, I cannot here follow them in more detail and I
must content myself with these brief indications.! These examples amply

1 [See F. Klein, Gesammelie mathematische Abhandlungen, vol. 2, p. 89 et seq., p. 136 et
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illustrate, however, how duality transformations bring under the same law
things which at first glance seem as unlike as possible.

I come now to the applications of the theory of contact transformations. It
turns out here, interestingly enough, that the idea of contact transforma-
tions, like most really good theoretical ideas, has a wide field of application.
Indeed, mathematicians were making use of them long before the theory
was worked out. Itis the old principle of cog wheels, or gears, that I now have
in mind particularly. It constitutes a special chapter of kinematics, of the
general science of the mechanisms of motion, which is of central importance,
for example, in the construction of machines. The devices for drawing a
straight line, of which we recently discussed an example, also belong to
kinematics. What I have so often said in these lectures holds likewise here:
I can of course only pick out small parts of each discipline and endeavor
to make their meaning and significance as obvious as possible by means of
simple examples. With the stimulation that I have supplied, I trust that
you will try to fill in the details from special presentations. As chief means
of orientation in the whole field of kinematics, I recommend the report by
A. Schoenflies in the Enzyklopddie (IVs), which also gives information con-
cerning the extensive literature.

The problem of constructing gears is to transfer uniform motion from one

wheel to another. However, since forces are also to be transferred at the same
time, it is not enough to let the wheels roll upon
each other (see Fig. 86). It is necessary to pro-
vide one of the wheels with projections (teeth) R:
which fit into depressions on the other. The
problem is, therefore, to form the profiles or
faces of these teeth so that uniform rotation of R,
the one wheel will bring about uniform rotation of
the other. That is certainly a very interesting
problem, even from the geometric side. I shall Fic. 86
give the most important part of its solution.
The teeth of one of the wheels con be chosen, in the main, arbitrarily, with
restrictions imposed by practical usableness, such as that the individual
teeth should not collide with one another. The leeth of the second wheel
are then necessarily fully determined, and, in fact, they are derived from the
leeth of the first wheel by a definite contact transformation.

I need only explain briefly how this theorem comes about, without giving
a full proof. We note first that we are concerned only with the motion of
the two wheels relatively to each other. We may think, therefore, of one
of them R, as fixed, while the other Ry, in addition to its own rotation,
travels around Ry. Thus every point on R; describes in the fixed plane of

seq., p- 99 et seq., Berlin, Springer, 1922, the two papers UTber eine neue Art Riemannscher
Fldchen and the first paper Uber den Verlauf der Abelschen Integrale bei den Kurven 4 Grades.]
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R, an epicycloid which is prolate, has cusps, or is curtate, according as the
tracing point is inside, on, or outside the periphery of Re. It follows that to
every point of the moving plan€ of R, there
corresponds a definite curve in the plane
of R,. If we derive, by the method abieady
discussed, the contact transformation from the
equation which expresses this correspondence,
we shall have precisely the contact transform-
ation for the gears in question. Itiseasy to
show that two curves which correspond to
each other under this transformation actu-
ally mesh into one another in this motion.

Finally, a word as to how the theoretical principle, thus outlined, actually
takes form in the practical construction of gears. I shall mention only the
simplest case, the toothing of the driving pinion. Here the teeth of R, are
simply points (see Fig. 88) or, rather, since points could not transfer force,
small circular pivots, the pinions. To every such small circle there corre-
sponds, under the contact transformation, a curve
which differs only slightly from an epicycloid, namely, @
a curve parallel to it and distant from it by the radius \
of the pinion. The circles roll upon these curves
when R, turns, so that these curves are the flanks of
the teeth which must be erected upon R, in order that
the circular teeth of R may clutch properly. In this
model which I show you, the beginnings of these
curves can be seen realized as profiles of the teeth of Ry, each curve being
of such width that one tooth after another clutches.

I show you also the models of two other types of gear teeth which are
much used in practice, the involute and the cycloid gear teeth.' For the first
type, the tooth profiles of both wheels are in-
volutes of circles (see Fig. 89), curves which arise
when a thread is unwound from a circle, and whose
evolutes are therefore circles. For the second type
mentioned, the teeth are made up of arcs of cy-
cloids.

I hope that T have succeeded in giving you at
least a preliminary orientation concerning the problems with which the
theory of transformations with a change of the space element is concerned.
Before we leave this second major part concerning transformations, I must
supplement what I have said by a discussion of an important chapter
which should not be omitted in a cyclopedia of geometry, namely, the use
of imaginary elements.

1 All these models are made by F. Schilling (firm of M. Schilling, Leipzig).

Fic. 87

Fic. 88

Fic. 89
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V. THEORY OF THE IMAGINARY

As you know, the theory of imaginary quantities was first developed in
algebra and analysis, especially in the theory of equations and in the theory
of functions of a complex variable, where, indeed, it has celebrated its
greatest triummph. In addition to this, however, at an early date, mathema-
ticians had assigned to the variables x and y in analytic geometry complex
values x = %y + ix2, y = y1 + iy2, and had thus added to the real points a
large manifold of complex points without, at first, assigning any proper geo-
metric meaning to this manner of speaking, which had been borrowed from
analysis.

The usefulness of this new introduction was, of course, that it made
superfluous those distinctions of cases which were imposed by a restriction
to real variables, and that it made it possible to enunciate theorems in a
general way, without exceptions. Entirely analogous considerations in
projective geometry led us to the introduction of infinitely distant points
as well as the infinitely distant line and plane. What we did is appropriately
called the “adjoining of improper poinis’ to the proper points of space which
are conceived intuitively.

We shall now undertake both extensions at the same time. To that end,
we shall introduce, as before, komogeneous coordinates. Remaining, for the
present, in the plane, we put x:y: 1 = £ : 7 : 7 and we admit complex values
for &, n, 7. We exclude the system of values (0, 0, 0). Let us consider now,
for example, a homogeneous quadratic equation

1) AE + 2Bty + Cn* + 2Dér + 2Eq7 + Fr2 = 0,

and let us call the totality of systems (£, n, 7) which satisfy it (no matter
whether they represent finite or infinitely distant points) a curve of second
degree. The term conic section is sometimes used, but this can lead to mis-
understanding, if not by those who know the subject, at least by those who
are not familiar with the consideration of imaginary elements. The curve,
under this definition, need not have a single real point.

We now combine (1) with a linear equation

(2) af+ By + yr =0,

which we look upon as the definition of a curve of first degree, i.e., a straight
line. These equations then have just two sets of values (£ : 7 : 7) in common,
i.e., a curve of the first degtee and one of the second degree intersect always in
two points, which may be real or complex, at a finite or at an infinite distance,
separate or coincident. To be sure, degenerations are thinkable which would
furnish exceptions to this theorem. If the left side of (1) breaks up into two
linear factors, one of which is identical with (2), i.e., if the curve of second
degree is a pair of straight lines, and if (2) is identical with one of them,
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then every point of (2) is a common point. This amounts to saying that
the quadratic equation which we get by eliminating one variable from the
two given equations has only vanishing coefficients. Other degenerations
appear, of course, when the left side of one of the given equations, or, in-
deed, of both of them, vanishes identically (d = B=-.--=F =0, or
a = f3= v =0). However, I shall ignore all such particular situations as
being essentially trivial. Passing to the consideration of fwo curves of second
degree, we may then enunciate the theorem that they always have four com-
mon points. '

Let us now introduce homogeneous coordinatesx : y:z:1=£:9:{:7in
space, and let us assign to them arbitrary complex values, excluding the
system of values (0:0:0:0). The totality of solutions of a linear homogene-
ous equation in these four variables is called a surface of the first degree
(a plane); of a quadratic homogeneous equation, a surface of second degree.
Then, if we ignore trivial exceptions, it is true that, in general, a surface of
second degree is cut by a plane in a curve of second degree; and that two surfaces
of second degree intersect in a space curve of order four, which itself is cut by
any plane in four points. In this it is left undetermined whether or not these
curves of intersection have real branches, or whether they lie wholly in a
finite region.

In his Traité des proprietés projectives des figures, Poncelet had already ap-
plied these notions, as early as 1822, to circles and spheres. To be sure, he
did not use homogeneous coordinates and the precise formulations which
they make possible. Instead, he followed his strong feeling for geometric
continuity. In order to become acquainted with his remarkable resuits in
exact form, let us start with the equation of the circle

=0+ G-t =r,
which we shall write in the homogeneous form
E—an)?4+(—0bn)t—r12=0.

The intersection with the line at infinity 7 = 0 will thus be given by the
equations

£24 92=0, 7=0.
The constants a, b, and r, which characterize the preceding circle, do not
appear in this result. Hence, every circle cuts the line at infinity in the same
two fixed points:

E:n= i, T=0,
which are called the imaginawy circular points. In the same way one can
show that every sphere culs the plane ot infinity in the same tmaginary conic:

E4r+it=0, 1=0,

which is called the imaginary spherical circle.
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The converse is also true: Every curve of second degree which passes through
the imaginary circular points in its plane is a circle; and every surface of second
order which contains the imaginary spherical circle is a sphere. These are,
then, characteristic properties of the circle and the sphere.

I have purposely avoided using the expressions “infinitely distant” cir-
cular points and “infinitely distant” spherical circle, which are sometimes
used. Indeed, the distance from the origin to the imaginary circular points
is not definitely infinite, as might perhaps at first be believed. Instead, that
distance has the form Vz? 4 y2 = vV £24- 42/t = 0/0, and is therefore
indeterminate. Any desired limiting value may be assigned to it according
to the way in which we approach the imaginary circular points. Similarly,
the distance from eny finite point to the imaginary circular points is inde-
terminate, and the same is true of the distance from any point in space to a
point of the imaginary spherical circle. This is not surprising, for we have
required of these imaginary circular points that they should be at a dis-
tancer from a finite point (lie on the circle with an arbitrarily given radiusr),
and at the same time that they should be at an infinite distance from it.
This apparent contradiction can be relieved in the analytic formula only
by its yielding this indeterminateness. It is necessary to make these simple
things clear, especially since untruths are often spoken and written about them.

The imaginary circular points and the imaginary spherical circle make it
possible to include the theory of circles and spheres very elegantly under
the general theory of manifolds of the second degree, whereas, in the ele-
mentary treatment, certain differences seem to exist. Thus, in elementary
analytic geometry, it is customary to speak always of only fwe points com-
mon to two circles, since the elimination of one unknown from their equa-
tions leads to only a quadratic equation. The elementary presentation takes
no account of the fact that the two circles have in common also the two
imaginary circular points on the line at infinity. The preceding general the-
orem actually furnishes us four intersections, the requisite number for two
curves of the second degree. Similarly, it is customary to speak always of
only one circle in which two spheres meet, and moreover that one may be
real or imaginary. However, we know now that the spheres have in com-
mon also the imaginary spherical circle on the plane at infinity, and this,
together with the finite circle, makes the curve of order four in which the
general theorem requires them to intersect.

In this connection, I should like to say a few words about the so-called
imaginary transformation. By this is meant a collineation with imaginary co-
efficients which carries imaginary points in which we are interested over into
real points. Thus, in the theory of the imaginary circular points, we can
use to advantage the transformation

£,=£; TI'=i77, T =T
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This transformation sends the equation £%-- %% = 0 into the equation
£? — 5/t = 0 and changes the imaginary circular points §:m = =i, 7= 0
into the real infinitely distant points

=21, 71=0

which are the points at infinity in the two directions that make an angle of
45° with the axes. Thus all circles are transformed into conics which go
Ly’ through these two real infinitely distant
points, i.e., into equilateral hyperbolas whose
asymptotes make an angle of 45° with the axes.
45° (See Fig. 90.) By means of the picture of
these hyperbolas, all of the theorems on cir-
cles can be explained. This is very useful
for some purposes, especially for the corres-
ponding developments in space. I must con-
tent myself with these brief remarks if I am
not to overstep the limits of these lectures.
F16.90 More complete discussions are given in lec-

tures and books on projective geometry.

The question arises as to whether or not a pure geometric approach might
be made to these imaginary points, planes, conics, etc., without drawing
them by force from the formulas of analysis, as we have done thus far. The
older geometers, Poncelet and Steiner, were never clear on this point. To
Steiner, imaginary quantities in geometry were ghosts, which made their
effect felt in some way from a higher world without our being able to gain a
clear notion of their existence. It was von Staudt who first gave a complete
answer to the question, in his works Geometrie der Lage * and Beitrdge zur
Geometrie der Lage,® which we have mentioned before. We must now give
some attention to his reflections. These books of von Staudt are quite hard
to read, since his theories are developed at once deductively in their final
form without reference to analytic formulas and without inductive hints.
One can grasp with comfort only the genetic presentation which follows the
path probably taken by the author in the development of his ideas.

Corresponding to the two works of von Staudt, there are two different
steps in the development of his ideas which I shall now present briefly. The
work of 1846 is concerned primarily with the consideration of manifolds of
order two with real coefficients—I say manifolds, because I wish to leave
undetermined the number of dimensions (straight line, plane, or space).
Let us consider, say, a curve of the second degree in the plane, i.e.; a homo-
geneous quadratic equation in three variables with real coefficients:

A8+ 2By + Cn? + 2Dé7 + 2EnTt + Fr2 = 0.

Y

45

1 Niirnberg, 1846. % Niirnberg, 1856-1860.
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For the analytic treatment, it is a matter of indifference whether or not this
equation has real solutions, i.e., whether or not the curve of the second de-
gree has a real branch or has only complex points. The question is how a
pure geometer, in the latter case, should visualize such a curve; how he
should define it by geometric means. The same question arises in the one-
dimensional region, when we cut the curve by a straight line, say by the
x-axis 7 = 0. The intersections, whether they are real or not, are then given
by the equation with real coefficients

AE 4 2DEr 4 Fr2 =0

and the question is whether or not, in the case of complex roots, one can
attach a geometric meaning to them.

Von Staudt’s idea is, in the first place, as follows. He considers, instead
of the curve of second degree, its polar system, which we have dicussed
(p. 110), i.e., a dual reciprocal relation given by the equation
AEE + B(&n' + &) + O’ + D(Er' + E'7) + E(nr’ + v'1) + Frr’ = 0.
Because of the reality of the coefficients, this is a thoroughly real relation,
which creales a correspondence between every real point, and a real line, whether
the curve itself is real or not. The polar system, on the other hand, com-
pletely determines the curve as the fotality of those points whick lie on their
own polars. The question is left open as to whether or not such points have
areal existence. In any case, however, the polar system supplies always a real
representative of the curve of second degree defined by the preceding equation,
and one which can be used, instead of the curve itself, as the object of the
investigation.

If we now cut the curve by the x axis, i.e., set y and 5’ equal to zero, we
have on it, by analogy, @ one-dimensional real polar relation, given by the
equation

AEE + D(Er' + £'1) + Fre’ = 0,
which always sets two real points in reciprocal relation to each other. The
intersections of the x axis with the curve are the two self-corresponding
points in this polar relation, the so-called fundamental or order points. They
can be real or imaginary, but they will be only of secondary interest; the
chief thing is, again, the polar relation as their real representative.

To designate the two points (§/7, £ /7'), which correspond to each other
in such a one-dimensional polar relation, we use the expression point pairs in
involution, which originated with Desargues in the seventeenth century, and
we distinguish fwo principal kinds of such involutions, according as the
Sfundamental points are real or tmaginary, and a fransition case in which they
coincide. The chief thing here for us, however, is the notion of involution
itself; the distinction as to cases, i.e., the question as to the nature of the
roots of the quadratic equation, is of secondary interest only.
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These considerations, which can easily be carried over into three dimen-
sions, of course, do not afford, indeed, an interpretation of the imaginary,
but still they supply, insofar as manifolds of order two are concerned, a
standpoint for the distinction between real and imaginary. Each manifold of
second order is represented by a real polar system and we can operate geo-
metrically with this polar system as we can operate analytically with the
real equations of the manifold.

An example will show this more fully. Consider a curve of the second de-
gree, i.e., of a polar system given in the plane, and consider also a straight
line. This offers intuitively many possible cases according as the curve has
or has not any real points whatever, and, if it has, whether the line cuts it
in real points or not. In any case, the plane
polar system will establish on the line g (see
Fig. 91) a linear polar system, i.e., an involu-
tion. To every point P on g there corresponds
in the first system a polar p’, and this meets g in
a point P'. The points (P, P') traverse the in-
volution in question. We may enquire also
about the fundamental points, and determine
whether they are real or imaginary. In all this, we have put into geometric
language just what we inferred from the equations in the beginning of this
discussion.

We shall apply these considerations, in particular, to the imaginary cir-
cular points and the imaginary spherical circle. We sald earlier that any two
circles cut the line at infinity in the same two polnts, the imaginary circular
points. This means now, geometrically, that their polar systems set up on the
line at infinity one and the same one-dimensional polar system, the same involu-
tion. In fact, if we draw the tangents (see p. 57) from an infinitely distant
point P to a circle, then its polar py, as the join of the points of tangency of
these tangents from P, will be perpen-
dicular to their common direction (see P

Fi6. 91

Fig. 92). Since all lines to the same 4 3

point at infinity are parallel, the polar p, / i\ : >P
of P, with respect to a second circle, will 1Pz Py »P
be perpendicular to the same direction as K: / / i \

p1 and therefore parallel to p;. In other : { »P
words, p; and p, meet the line at infinity ' !

in the same point P'. Thus the polar sys- :

tems of all circles cut the line at infinity in { >P
one and the same polar system, the so-called Frc. 92

“absolute involution,” whose pairs of
points, looked at from any finite point, appear in directions at right angles to
each other.
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Let us now put these thoughts into analytic language. If we start from
the homogeneous equation of the circle:

E—anNt+ (g —br)P—r12=0,
or
£+ 92— 2akr — 2bp7 + (@2 + B2 — )72 = 0,

then the corresponding polar relation is
B+ — ol&r’ + 1) — by’ +0'1) + (a®+ b — 1B’ = 0.

From this we get the relation generated on the line at infinity if we put
r=1=0:

& +m=0 7=0, =0

These equations are, in fact, independent of the special constants a, b, and r
of the initial circle. Furthermore, it follows from analytic geometry that,
because of the first equation, two lines drawn to the points (¢, %, 0) and
(&, 7', 0) are perpendicular to each other, so that we have actually obtained
the theorem stated above.

Entirely analogous results hold for the spheres of space. They all generate
on the plane at infinity one and the same, the so-called absolute polar relation,
which is given by the equations

B+ +'=0, 7=0, 1 =0

Since the first equation says that the directions £:%:¢ and &:9': ¢ are
perpendicular to each other, then there corres ponds to every point at infinity P
that line at infinity which is cut out by the plane perpendicular to the direction
toward P from a finite point. Thus we have a real geometric equivalent of the
theorems concerning the imaginary spherical circle.

It may be said, to be sure, that the imaginary is avoided rather than in-
terpreted in this discussion. An actual interpretation of individual imagi-
nary points, lines, and planes was first given by von Staudt in his “Beitrdge”
of 1856-60, by an extension of this theorem. I shall give this interpreta-
tion, also, because it is actually simple and ingenious; it seems strange and
difficult only in von Staudt’s abstract presentation. I shall follow the
analytic presentation given by Stolz in 1871.' Stolz and I were then to-
gether in Gottingen. He had read von Staudt, which I could never bring
myself to do; hence I learned in personal intercourse with him not only
these but many other interesting ideas of von Staudt with which I myself
later worked a good deal. I wish here to give only the most important fea-
tures of the train of thought, without carrying out the details fully. It will
suffice if I confine myself to the plane.

1 Die geometrische Bedeutung der complexen Elemente in der analytischen Geometrie, Mathe-
matische Annalen, vol. 4, p. 416, 1871.
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Let us assume, to start with, an imaginary point P, given by its complex
coordinates (£, 9, 7). Let these be separated into their real and imaginary
parts i

(1) £ =&+ if, n = N+ i, T=1T7+ i70.

Now we wish to construct a real figure by means of which this point P can
be interpreted, and the connection is to be projective, i.e., speaking more pre-
cisely, it is to remain unchanged under arbitrary real projective transforma-
tion.

1. The first necessary step for this is to fix attention upon the two real
points P1, P; whose homogeneous coordinates are, respectively, the real
parts of the coordinates of P and the imaginary parts multiplied by —i:

(la’) Pl: ‘El) M, T1, P2: 52) Mo, T2.

These two points are different, i.e., the relation £5: 9,: 71 = £2: 922 72 cannot
obtain, otherwise £: 5: 7 would behave like three real quantities and would
represent therefore one real point. Hence P,, P, determine a real straight
line g whose equation is

E 7 7
(2) 51 m T = (.
£ m T

This line contains the given imaginary point P, as well as the conjugate
tmaginary point P, whose coordinates are

(i) 2=£1_i£2; 5=TI1—1:7]2, ;=Tl—"i’7'2,
since both coordinate triples (1), (1) satisfy the equation of the line.

2. Of course the pair of points P,, P,, so constructed, can by no means
pass as the representative of the imaginary point P, for they depend essen-
tially upon the separate values of £, 5, and 7, whereas, for the point P, it is
only the ratios of these values which count. The same point P will therefore
be represented if, instead of &, 5, and 7, their products by an arbitrary com-
plex constant p = p1 + ips are written in the form

pE = pi&1 — peba + i(pekr + pra),
(3) p1 = pyh — panz + i(pan2 + pin2),
pT = p1Ty — paTe -+ 1(pe71 + p172);

but then we get, if we separate the real parts from the imaginary, instead of
the points Py, Py, other real points P, Py, whose coordinates are
(38) {P{: Evinyi T = pif1 — pofet pr — pame: pr71 — PaTa

’l

! 1 !
2! £2:mp: 7o = pab1 -+ pafai pams + p1me: pat1 + prTe.
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If we consider the totality of pairs of points P} and Pj, given by all the values
of p; and pz, we have a geometric manifold in which only the ratios £:p: 7
count, i.e., the “geometric’” point P, which is therefore fitted to serve as
representmg P. Moreover, the connection with P is, in fact pro;ectlve for
if we transform £, 9, 7 in any real linear manner, then £,, #,, 7;, and £2, M2, T2
suffer the same substitution.

3. In order, now, to study the geometric nature of this totality of pairs
of points, we note first that, whatever the value of p, the points P; and Pj
lie on the line P\Py (see Fig. 93), since their coordinates obviously satisfy
equation (2). Moreover, if we allow p to assume all complex values, i.e.,
p1 and pg all real values (a common real factor
makes no essential difference), then P; runs E R F &
through all the real points of g, and P, rep- Fic. 93
resents always a second real point on g in unique correspondence with Py
Thus, for p1 = 1, p2 = 0, we have P, and P, as corresponding points.
The correspondence stands out more clearly if we introduce the ratio

a
-4

Pr_ _\
p1
Then we have

(3b) for P;: Eiimpiri = &1+ Mot 4 Mt 7o+ N7y

' ’ ! ’ 1 1 1
for Py: 52377237'2=gl—xlem—xmzn—xn-

4. From these formulas we can infer also that, when \ varies, the points
Py and P, become all the point pairs of an involution on the line g. For if
we introduce a one-dimensional coordinate system on g, the homogeneous
coordinates of the points P; and P; become linear integral functions of the
parameters A =X\ and \; = —1/}, respectively, of the equations (3b).
Hence the equation A+ M, = —1between the two parameters yields a
symmetrical bilinear relation between the linear coordinates of P and P,
and consequently, in view of the definition on page 121 (see also p. 110), the
assertion is proved.

5. The fundamental points of this involution, i.e., the points which cor-
respond to each other, are given by A = —1/\, or A = i. They are both
imaginary, one being the point P with which we started, the other the con-
jugate imaginary P. Thus far we have given only a new presentation of
von Staudt’s old theory. Besides P we have considered the point P, which,
together with P, forms a one-dimensional manifold of the second degree, deter-
mined by a real quadratic equation, and we have then constructed the resulting
involution as its real representative. I remind you that such an involution is
determined if we know fwo of ifs point pairs, say Py, P, and Py, P,. If this
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involution is to have imaginary fundamental points, it is necessary and
sufficient that these point pairs should overlap, i.e., that one of the points
P! and Pj should lie between P; and P and the other outside of them.

6. In order to solve our problem completely, we need only a means for
transforming the common representative of P and P into a representative
of P-alone (or of P alone). Von Staudt discovered such a means in 1856 as
the result of a brilliant thought. The point P;, with the coordinates
&1 4 N2y + Ama: 71+ A7p traverses, namely, the line g in a perfecily

A0 A=0 >0 Aew  A<O definite dirvection (see Fig. 94) if N\
> ——> >——¢ runs through all real values from 0 to

B L B + and back through negative val-
Fi16. 94 . i
ues to 0. It is easy to show that we
should be led to just the same sense on g if we started with the coordinates
of P multiplied by an arbitrary p, i.e., if we considered the point
£1 -4 &, -+ - . Moreover, under real projective transformation of P, the
direction of the arrow for the image point would follow from the one just de-
termined, as a result of the same transformation. We shall, then, satisfy
our requirements if we make this arrow direction correspond, once for all,
with the original point P (&1 + ifs, - - +). Since the conjugate imaginary
point P has the coordinates £; + i(—£,), - - - , we must, accordingly, assign
as the sense of motion of P for positive increasing A, the opposite of the
sense just determined for the line g, thus achieving the desired distinction:
We distinguish between i and —i simply by distinguishing between the
positive and the negative traversing of the real values of \.

Thus we have, at last, the following rule for the construction of a unique
and projectively invariant real geometric figure to represent the imaginary point
£+ k2,1 + im2, T + 7o Construct the points Py(E1:mi:71) and Pa(Er:ma:73),
their join g, and that point involution on g (or another point pair on g) in
which the points

Pik + N2+ M2 71+ Arp) and Pé(& - %Ezim — )1\172! Ty — }1’\72)

are always paired. Finally, we add the arrow, giving it the direction in which
P moves with positive increasing \.

7. It remains for us still to show that, conversely, every such real figure,
consisting of a straight line, two overlapping point pairs on it Py, Py and Py, Py
(or an involution range without real double points), together with a direction
arrow, represents one and only one imaginary point. I need not carry this
proof out in detail. However, by choosing a suitable real constant factor, it
is easy to give the coordinates of P, such values &3, 2, T2 that the coordinates
of P} and P are proportional to
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B+ Noim+ MmN, and & — %521 m— 51\‘7722 T — %n,
or, what is the same thing, that the double points of the assumed involution
range have the coordinates £; & i&,, - - - . The sign of A\, which is thus far
arbitrary, is to be chosen so that the direction of motion of the point
& 4 Nt my 4+ Nma: 7y 4 A7y, when N increases positively from zero on,
shall agree with the direction arrow. Then the point P, with coordinates
£1 - N, - - -, in view of the preceding developments, will actually represent
the given involution with the given direction of the arrow. Moreover, it
can be shown, that we are led to the same co- o
ordinate ratios, i.e., to the same point P, if we -
start from another point pair of the involu-
tion. -~

Having completed the discussion of our

\\\ -
\\\ l- - 11
problem for the point, we can carry over the =7 T~
- \\\
~
\\1

-2

solution to the straight line in the plane by
the principle of duality. Accordingly, we have
a real unique representation of a complex line
by means of a real point (or a pencil involution without real double rays),
together with a definite sense of rotation in the pencil. (See Fig. 95.)

These results permit also the representation of all relations between
complex and real elements, by means of tangible properties of real geometric
figures. This fact constitutes the real value of these results. In order to
make this clear by a concrete example, I shall show you the meaning, in this
representation, of the statement Zkat ¢ point P (real or imaginary) lies on a
line g (real or imaginary). Here we have, of course, to distinguish four cases:

1. Real point and real line.

2. Real point and imaginary line.

3. Imaginary point and real line.

4. Imaginary point and imaginary line.
Case 1 needs no special explanation; it consti-
tutes a fundamental relation of the usual geom-
etry. In case 2, the given real point must lie
also on the conjugate imaginary line; hence it
must be identical with the vertex of the pencil
which we use to represent the imaginary line.
Similarly, in case 3, the real line must be iden-
tical with the range which carries the point in-
volution that represents the given imaginary
Fic. 96 point. Case 4 is the most interesting. (See

Fig. 96.) -Obviously, in this case, the conjugate

imaginary point must lie on the conjugate imaginary line, from which it
follows that each point pair of the involution range which represents P

Fi6. 95
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must lie on a pair of lines of the involution pencil which represents g, i.e.,
that these two representing involutions must be perspective to each other; more-
over, it turns out that ke arrows of the two involutions are also in perspective.

Summing up this discussion, we may say that we have a complete real pic-
ture of the plane of analytic geometry, one whick takes account also of the com-
plex elements, if we adjoin to the totality of the real points and lines of the
plane, as new elements, the totality of given involution figures together with. the
direction arrows. It will suffice, perhaps, if I indicate in outline how we
should construct this real picture of complex geometry. In this I shall follow
the order in which the earlier theorems of elementary geometry are now
usually presented.

1. We start with the existence theorems which take accurate account of the
presence of the elements we have just considered in the extended field of

ordinary geometry.

2. Then follow the theorems of connection, which state that through two
points there goes one and only one line and that fwo straight lines have one and
only one common point, even in the extended region defined in 1. There are
four cases to be distinguished here, just as above, according to the reality
of the given elements, and it is interesting to determine in what point and
line involutions these complex relations find their image.

3. As to the laws of order, there arises here, in contrast with real relations,
an entirely new situation. In particular, the totality of real and complex
points on a straight line constitute a two-dimensional continuum, as do also
all the lines through a fixed point. Everyone, indeed, is accustomed, from
the theory of functions of a complex variable, to represent the aggregate of
values of a complex variable by all the points of a plane.

4. Concerning the theorems of continuity, I shall only point out how we
represent the complex points which lie arbitrarily near a real point. For
this purpose, we draw a real line through the real point P (or through a
neighboring real point) and we take upon it two overlapping point pairs
Py, P, and Py, P; (see Fig. 97) such that two points P, P; of different pairs
lie close to each other and to P. If we

. now let P, and P} move into coincidence,
oy ‘ ; the invdlution determined by these pairs
g R R g . -

Fic. o7 degenerates, i.e., the two double points

which were complex coincide with
Py = Pi. Each of the two imaginary points represented by the involution
(with the one or the other arrow) thus goes continuously into a point
near P or, indeed, into P itself. We must, of course, work our way care-
fully into these representations of continuity in order to use them with
profit.
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If this entire construction is prolix and bothersome, in comparison with
the ordinary real geometry, it can, on the other hand, supply incomparably
more. In particular, it completely clarifies algebraic manifolds, from a geo-
metric standpoint, as the totality of their real and complex elements. With
it, we can make geometrically obvious, with figures, such theorems as the
Sfundamental theorem of algebra, or the theorem of Bezout that two curves of
degrees m and » have, in general, m « # common points. To achieve this, we
should have to work out the theorems much more carefully than has yet
been done. However, all the essential material for such an investigation
can be found in the literature.

In most cases, to be sure, the application of this geometric interpretation,
notwithstanding its theoretical advantages, might create such complications
that we should be satisfied with its theoretical possibilities and return ac-
tually to the more naive standpoint: a complex point is the aggregate of
complex coordinate values with which, to a certain extent, one can operate
as with real points. As a matter of fact, this use of imaginary elements, in
complete disregard of all questions of theory, has always proved fruitful
in dealing with the imaginary circular points and the imaginary spherical
circle. As we saw, Poncelet was the first to use the imaginary in this sense.
Other French geometers followed, notably Chasles and Darboux. In Ger-
many, this conception of the imaginary was used particularly by Lie with
great success.

With this digression on the imaginary, I bring to a close the second main
division of this course and turn to a new chapter.



PART THREE

SYSTEMATIC DISCUSSION OF GEOMETRY AND
ITS FOUNDATIONS

I. THE SYSTEMATIC DISCUSSION

In this chapter, we shall use geometric transformations to bring about
a division of the entire field of geometry, one which will enable us, from one
standpoint, to see the separate parts and their interrelations.

1. Survey of the Structure of Geometry

We are concerned here with ideas such as those that I developed systemati-
cally in my Erlanger Programm * of 1872. You will find information as to
the development of these ideas since that time in the encyclopedia report
by G. Fano: Die Gruppentheorie als geometrisches Einteilungsprinzip (Enz.
IIT A.B. 4b).

1. As in the past, we shall consistently make use of analysis to gain
mastery of geometric relations by thinking of the totality of points in space
as represented by the totality of values of the three “coordinates” x, y, and z.
To every transformation of space there corresponds, then, a certain trans-
formation of these coordinates. From the beginning of our discussions we
have recognized four kinds of transformations of particular significance,
which are represented by certain special linear substitutions of x, y, and z:
Parallel displacements, rotations about the origin O, reflections in O, and sim-
tlarity transformations with O as center.

2. It might be supposed that the introduction of coordinates would bring
about complete identity between analysis of three independent variables
(x, v, 2) and geometry. Such is not the case, however, at least in a specific
sense. As I have already emphasized (p. 25 et seq.), geometry is concerned
only with those relations between the coordinates which remain unchanged
by the linear substitutions mentioned in 1, regardless of whether these are
thought of as changes in the system of coordinates or as transformations
of space. Thus geometry is the invariant theory of those linear substitutions.
All non-invariant equations between coordinates, on the other hand, e.g.,
the statement that a point has the coordinates (2, 3, 3), have reference only

1 Vergleichende Betrachtungen iiber neuere geometrische Forschungen, Erlangen, 1872. Re-
printed in Mathematische Annalen, vol. 43, p. 63 et seq., 1893; and F. Klein, Gesammelte

mathematische Abhandlungen, vol. 1, p. 460 et seq., Berlin, Springer, 1921.
130
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to a definite coordinate system, fixed once for all. Such a discussion would
belong to a science which must individualize each point for itself and con-
sider its properties separately: to lopography, or, if one prefers, geography.
As an aid to understanding, I call to your attention several examples of
geomelric properties: The statement that two points are separated by a dis-
tance, when once a unit of length is chosen, means for us that we can con-
struct from their coordinates (x,, %1, 2) and (x2, ye, 22) an expression
V{xy — %2)2 + (y1 — y2)2 -+ (21 — 22) which remains unchanged under all
those linear substitutions, or is multiplied by a factor that is independent
of the special location of the points. A similar meaning must be given to
the statements that two lines are inclined at a certain angle, that a conic has
certain principal axes and foci, etc.

The totality of these geometric properties we shall call metric geometry, in
order to distinguish it from other kinds of geometry. We shall obtain the
latter by separating out for consideration by themselves, according to a
definite principle, certain groups of theorems of metric geometry. Accord-
ingly, all these newer kinds of geometry are, at least for the immediate
purpose, parts of metric geometry as the most inclusive “kind of geometry.”

3. We start with the affine transformations, which we have studied care-
fully, i.e., with the integral linear substitutions in x, y, and z:

¥ = ax+ by + ciz + dy,
¥y = asx + byy + coz + d,
! = agx + bsy + caz + da.

I
Ii

Under this transformation all the transformations mentioned in 1 are em-
braced as special cases, and we select from among the totality of geometric
concepts and theorems the narrower group of those which remain unchanged
under all affine transformations. This aggregate of concepts and theorems
we consider as the first new kind of geometry, the so-called ¢ffine geometry
or the invariant theory of affine transformations.

From the knowledge we have acquired of affine transformations, we can
select, at once, the concepts and the theorems of this geometry. I recall
here only a few: In affine geometry, we cannot discuss distance and angle.
The notion of principal axes of a conic, and the distinction between circle
and ellipse likewise disappear. There remains, however, the distinction be-
tween finite and infinite space and everything which depends upon it, such
as the notion of parallelism of two lines, the division of conics into ellipses,
hyperbolas, parabolas, etc. Moreover, the notions of center and diameter of a
conic, and particularly the relation of conjugate diameters, remain.

4. We shall now proceed to projective changes, i.e., we shall introduce the
linear fractional transformations
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%' = (ax + by + 12 + d1): (aex + bay + caz + dy),
yl = (aax “+ bzy + c22 + dz): (a4x + bsy 4 ciz + d4),
2 = (e + bsy + sz + da): (asx + bay + cuz - d),

which include the affine transformations as special cases. Geometric prop-
erties that remain unchanged under these transformations must certainly
belong also to affine geometry. Thus, from affine geometry, we separate
out the so-called projective geometry as the invariant theory of projective trans-
formations. The step-by-step sifting of affine and projective geometry from
metric geometry can be compared to the procedure of the chemist, who, by
applying ever stronger reagents, isolates increasingly valuable ingredients
from his compound. Our reagents are first affine transformations, and then
projective transformations.

As to the theorems of projective geometry, it should be emphasized that
the exceptional role of infinity and the concepts connected with it in affine
geometry all now fall away. There is only one kind of proper conic. There
still remains, however, for example, the relation between pole and polar, and
likewise the generation of the conic by means of projective pencils, which we
discussed earlier (p. 96 et seq.).

By means of the same principle, we may now pass from metric geomelry
also to other kinds of geometry. One of the most important is the geometry of
reciprocal radii.

5. The geometry of reciprocal radit. This comprises the aggregate of those
theorems of metric geometry which retain their validity under all trans-
Jormations of reciprocal radii. In this geometry, the concepts of straight line
or plane have no independent meaning; they appear as special cases in the
notion of circle or sphere, respectively.

6. Finally, let me propose still another kind of geometry, which, in a sense,
is obtained by the most careful sifting process of all, and which, therefore,
includes the fewest theorems. This is analysis situs, which I mentioned
earlier (p. 105 et seq.). Here one is concerned with the aggregate of properties
whick persist under all transformations which are reversibly unique and con-
tinuous. In order to avoid assigning an exceptional place to infinity, which
would go into itself in all such transformations, we can adjoin either the
projective transformations, or the transformations by means of reciprocal radii.

We shall define still more sharply the scheme thus outlined, by intro-
ducing the concept of a group. As we have already seen, an aggregate of trans-
formations is called a group if the combination of two of its transformations
gives again a transformation of the aggregate, and if the inverse of every lrans-
formation also belongs to the aggregate. Examples of groups are the totality
of all movements, or that of all collineations (projective transformations);
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for two movements combine into a movement, two collineations into a col-
lineation, and in both cases there exists an inverse to every transformation.

If we look back at our different kinds of geometry, we see that the trans-
formations which play a role in each case always form a group. In the first
place, all linear substitutions which leave unchanged the relations of metric
geometry—displacements, rotations, reflections, similarity transformations—
obviously form a group, which one calls the principal group of the transfor-
mations of space. It is easy to establish the analogous significance of the
affine group of all affine transformations for affine geometry, and of the pro-
jective group of all collineations for projective geometry. The theorems of the
geometry of reciprocal radii remain valid under all transformations that are
obtained by combining any reciprocal radii transformations with substitu-
tions of the principal group. All these form again a group, namely, that of
reciprocal radii. For analysis situs, finally, one has to do with the group of all
continuous reversibly unique distortions.

We wish now to determine upon how many independent parameters a
single operation in each of these groups depends. In the principal group,
the motions involve six parameters, to which one must add one parameter
for the change in unit length, so that altogether there are seven parameters.
We express this by calling the principal group a G;. The equations of the
general affine transformation contain 3 + 4 = 12 arbitrary coefficients; those
of the projective 4 - 4 = 16, whereby a factor common to all is unessential.
It follows that the affine group is a Gio, and that the projective group is a Gis.
The group of the reciprocal radii turns out to be a Gy. Finally, the group of all
continuous distortions has no finite number of parameters whatever; the
operations of this group depend, rather, upon arbitrary functions, or, if one
wishes, upon infinitely many parameters. We may say that it is a Ge.

In the connection between different kinds of geometry and groups of
transformations, which we have just discussed, there appears a fundamental
principle which can serve to characterize all possible geometries. It was just
this which constituted the leading thought of my Erlanger Programm:
Given any group of transformations in space whick includes the principal
group as a sub-group, then the invariant theory of this group gives a definite
kind of geometry, and every possible geometry can be oblained in this way.
Thus each geometry is characterized by its group, which, therefore, assumes
the leading place in our considerations.

This principle has been completely carried through in the literature only
for the first three cases of our outline. We shall devote some time to these
as the most important or the best known, and we shall pay special attention
to the passage from one of them to the other.

We shall adopt an order opposite to that just followed, and start with
projective geometry, that is, with the Gis of all projective transformations,
which we may write in the homogeneous form
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p'E = ai§ + by + ol + dir,
(1) _ p'n" = ask + by + ol + da,
P’ = asf + ban + csf + ds,
p't = a4 by + cuf + dar.

In order to get from this to the affine group, we begin with the remark
that a projectivity is an affine transformation if it sends the plane at infinity
into itself, i.e., if to every point with vanishing 7 there corresponds a point
with vanishing /. This will happen if a4 = b4 = ¢4 = 0; hence, if we divide
each of the equations (1) by p’7' in order to get non-homogeneous equations,
and replace a,: ds, - - - simply by a,, - - - , we obtain

= ax + by +V512 + dy,
2) Y = ayx + boy + Coz + do,
asx -+ byy -+ c3z + ds.

8]
J

N
Ii

These are, in fact, the old affine formulas: The condition that the plane at in-
Sfimity shall remain unchanged separales out of the projective Gis a twelve-
parameter sub-group, namely, the affine group.

Similarly, we obtain the principal group Gi by selecting out the projectiv-
ities (or the affine transformations) which leave invariant not only the plane
at infinity but also the imaginary spherical circle, i.e., under which, to every
point which satisfies the equations £2 4 2 + {2 = 0 and 7 = 0, there corre-
sponds a point which satisfies the same equations. This assertion is easily
verified. You need only bear in mind that our condition fixes, to within a
constant factor, the six (homogeneous) constants of the conic which corre-
sponds to the imaginary spherical circle by virtue of an affine transforma-
tion in the plane 7 = 0. Hence it imposes upon the twelve constants of the
affine transformation 6 — 1 = 5 conditions, so that precisely the 12 — 5 = 7
parameters of the Gy remain.

This whole manner of viewing the subject was given an important turn
by the great English geometer A. Cayley ! in 1859. Whereas, up to this
time, it had seemed that affine and projective geometry were poorer sections
of metric geometry, Cayley made it possible, on the contrary, o look upon
affine geometry as well as metric geomelry as special cases of projective geometry.
“ projective geometry is all geometry.”” This apparently paradoxical connection
arises from the fact that one adjoins to the figures under investigation cer-
tain manifolds, namely, the plane at infinity, or, as the case may be, the
imaginary spherical circle which lies in it; hence the affine or the metric prop-

erties, respeciively, of a figure are nothing but the projective properties of the
figure thus extended.

YIn A sixth memoir upon quantics, Philosophical Transactions of the Royal Society of
London, 1859 = Collected Mathematical Papers, vol. 2 (Cambridge, 1889), p. 561 et seq.
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Let me illustrate this by two very simple examples, in which I shall
present well-known facts in a somewhat altered form. The statement that
two straight lines are parallel has no immediate meaning in projective geom-
etry. However, if we add the plane at infinity to
the given manifold (the two lines), we have the
purely projective statement (see p. 92) that two
given lines intersect on a given plane. We have a
similar situation if a line is perpendicular to a plane.
We can resolve this (see p. 122 et seq.) into a
polar relation (a projective property) of the given
figure extended by the addition of the imaginary
spherical circle (see Fig. 98): The point trace P, Fic. 98
of the line and the line trace g, of the plane, in the
plane at infinity, are pole and polar with respect to the imaginary spherical
circle.

I should like to carry out more fully the line of thought which I have in-
dicated briefly here and show how it leads to a completely systematic structure
of geometry. The greatest credit for this belongs to the English mathemati-
cians. I have already mentioned Cayley. Next to him I should place
J. J. Sylvester and G. Salmon of Dublin. These men, beginning in 1850,
created the algebraic discipline which is called, in a narrower sense, the in-
variant theory of linear homogeneous substitutions,' and which, under the
guidance of Cayley’s principle, makes possible a complete systematic struc-
ture of geometry on an analylic basis. In order to understand this system, it
will be necessary for us to devote a little time to the theory of invariants.

2. Digression on the Invariant Theory of Linear Substitutions

Of course, I shall be able to present only the main results and lines of
thought, without going into details and proofs. As to the literature of this
wide field, I refer you, above all, to the report by W. Franz Meyer: Die
Fortschritte der projectiven Invariantentheorie im letsten Vierteljahrhundert in
the first volume of Jakhresberichle der deutschen M athematiker-Vereinigung
(1892), as well as to the report on Invarianteniheorie in the Enzyklopidie
by the same author (Enz. Bd. I B 2). All that is needed in the geometry of
invariant theory especially is to be found in the textbooks of G. Salmon,?
which have contributed most to spread the ideas which arise here. The
German edition of Salmon’s book by W. Fiedler has always enjoyed an

1 The words “invariant theory” are used also in a wider sense with reference to arbitrary
transformation groups. In the narrower sense, as we shall use them in these pages, they
were first applied by Sylvester.

2 Analytic Geometry 1. Conic Sections; I1. Higher Plane Curves; 111, Space; IV. Lectures on
the Algebra of Linear Transformations. German by W. Fiedler, Leipzig (Teubner). Each
volume in several editions. (I newly edited by F. Dingeldey; III by K. Kommerell and
A. Brill.



136 Systematic Discussion of Geometry

unusually wide use. The lectures of A. Clebsch," which Lindemann edited,
are in the same category.

1. Going over now to our subject, let us think of any number of given
variables, and let us speak, accordingly, of a binary, ternary, quaternary, . . .
region. To enable us to consider the variables in the first three cases ulti-
mately as homogeneous coordinates in a line, a plane, or in space, we desig-
nate them by the symbols

£ T; Em s & 61y
where 7 = 0 will always characterize the infinitely distant elements.

2. We consider the groups of all homogeneous linear substitutions of these
variables. At present we shall have in mind not merely the ratios of the
variables, as will be the case later in projective geometry, but also their
individual values. We may write these substitutions in the form

. = af+ bm+ ol + dir,
= b i, ’
A e e S S
T = aif + daT; ™ = af + b + dir; = a3k + by + &f + dar,
’ 7= a4£+b471+64§+d47-

The number of parameters in these three groups is 4, 9, and 16, respectively.

For convenience, we shall use habitually in the formulas only the variables
£ and 7, and we shall write out only the terms involving these two, with
dots between them. If we are dealing then with the binary region, we simply
ignore these dots; for the ternary and quaternary regions, we replace the
dots by terms in », or in # and {, analogous to terms already written out.
In general, then, we speak of the variables &, - - -, 7 and of the linear sub-
stitutions in them

I
I
I

=at+---+dr,
1 e e e e
T =+ dar.

3. As to the objects of the invariant theory, we shall consider the ques-
tion in two different forms. In the first form we think of any individual
systems of values of the variables &1, -+, T1; &, -+, Tos &3, -+, T3 - 0,
which, in the spirit of geometry, we may designate outright as points
1,2,3,- . Each of these systems of values is subjected to the substitu-
tions of the group (1), and we are concerned with sefting up combinations

of our systems of values which remain invariant under these simultaneous sub-
stitutions.

1 Vorlesungen iiber Geometrie, edited by F. Lindemann, Leipzig (Teubner), 1st ed., 1876
et seq., 2nd ed., 1906 et seq.
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4. The second form of the problem considers, in addition to such points,
also functions of the variables, and, primarily, rational integral functions., We
may confine ourselves, indeed, to komogeneous rational integral functions
(called forms), since the terms of like dimension substitute as such, anyway,
by reason of the homogeneity of the substitutions. Thus we shall consider
the linear forms

$=af+-- o+ or
the quadratic forms

[=AB A4 2GE 4 4 KA

and so on. We can also examine simultaneously several forms of like dimen-
sion, in which case we distinguish them by indices, e.g.,

dr=ob+ -+ 07 o= k4 -+ b

Similarly, we could start with forms in several variables, e.g., with the
bilinear forms

f=Ab& 4 -+ Al 4o -+ Nrbo - - - + Hnyre.

In order to make clear the general problem which arises here, we must
first inquire how the coefficients of these forms are transformed when we subject
the variables to the substitutions of the group (1) and prescribe that the
value of the form ¢ or f shall remain unchanged. Considering first the
linear form, let us place

p=at+ -+ ébr=a¥+- - -4 7.

If we introduce for &, - - - , 7’ the expressions (1), we get, in the variables
&, - - -, 7, the identities

b= @A) ot Ve 4+ dar)
= (a4 -+ Vadk+ - - -+ (dy 4+ - - - 4 ddo),

from which we obtain

o= a0 + -+ aid,
(2) o
6==d1a'+---+d45’.
Thus the new coefficients o/, « + -, &’ of the linear form are connected with
the old «, - - + , & by another linear substitution, which is related in a simple
way to (1): the vertical and the horizontal rows in the array of coefficients
are interchanged (the substitution is ‘‘transposed’’) and, furthermore, the
places of the old (unaccented) and the new (accented) magnitudes are inter-
changed. This new substitution (2) is called contragredient to the original
substitution (1) and we say, briefly, that the coefficients e, + * + , & of a linear
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form are contragredient to the variables &, - -+, 7. The sets of variables
£,++,71; €, , T2+, which are all subjected to the same substitu-
tion (1), are called, in analogous terminology, cogredient variables.

Going over now to the quadratic form f, let us inquire first how the quad-
ratic terms £2, - -+, &7, - - -, 7% behave under the linear substitution (1).
From (1), we find at once, for the quadratic terms of the new variables, the
formulas

2= g¥t 4. - 4 200dikT - - - - dEY

(3) §1' = 10482+ - - - 4 (a2ds + addi)ér - -« - dadir?,

2= @+« + o 4 2adibT + - - - + A7

We can express these relations briefly as follows. The quadratic terms of the
variables undergo, simultaneously with the variables themselves, a homo-
geneous linear substitution which can be derived immediately from (1).
Since f is a linear form in these quadratic terms, we infer, by repetition of the
foregoing reasoning, that the coefficients A, - - , 2G, - - - , K undergo a trans-
formation which is linear and homogeneous, and whick is, indeed, contragredient
to the substitution (3) of the terms &%, « - -, &1, - - 72; i.e., the equations be-
tween 4,+++,2G,-++,Kand 4’,---,2G, - -+, K are obtained from (3)
just as (2) are from (1).

5. We can now formulate the general problem of the theory of invariants.
Given any set of points 1, 2, + - + , and also certain linear, quadratic, or even
higher forms ¢y, @2, * -+, f1, f2, * * + , then we mean by an invariant a func-
tion of the coordinates &, « + +, 71; &3,+ ¢+, 725+ + +, and of the coefficients
Qv oy 8 agycee, Bgyecs Ay v, Ki; Agy -+, Kg;+++, which re-
mains unchanged under the linear substitutions (1) of the variables and the
associated substitutions ‘of the systems of coefficients which we have just
determined. Tke aggregate of all possible invariants is to be studied.

The words covariant and comravariant are used sometimes for particular
kinds of what are designated above in general as invariants. If the variables
£y, -, 136 -+, T2; - - - themselves occur in the invariant expression, we
speak of covariants, and if coefficients of linear forms oy, * + -, &y @2, -+ * +
d2;- + - appearinit, wesay condravariant. The word invariant is then confined to
the expressions which contain neither such coordinates £y, - - - nor coefficients
oy, - - -, but are made up only of coefficients of quadratic or higher forms.
The reason why these two cases are emphasized and contrasted is that the
sets of variables &, - - - , 7 on the one hand,and ¢, - - - , 8 on the other,showa
certain reciprocal behavior: if one of them undergoes a linear substitution,
the other experiences the contragredient substitution, no matter with which
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set we start. Hence we can derive from every invariant expression of the one
sort, by suitable rearrangement, a similar one of the other sort. As for the
geometric interpretation, we have here obviously an expression of the prin-

ciple of duality, for @, - - -, & become homogeneous line or plane coordinates
if we think of §, - - - , 7 as point coordinates. However, the distinction as to
whether or not &, - - -, 7,0r @, - - -, 8, actually appear in the expressions in

question has, of course, no fundamental significance. We shall, in general,
from now on, use the word ¢nvariant in the wider sense.

6. We shall now define the notion of invariant more sharply in another
direction, so as to make it possible to build up the theory in an orderly way.
From now on, we shall think of invariants only as rational functions of the
coordinates and the coefficients and which, moreover, are komogeneous in the
coordinates of every point and in the coefficients of every form that occurs.
We can express each such rational function as the quotient of two integral
rational homogeneous functions, and we shall investigate these by themselves.
Since a factor common to numerator and denominator does not alter the
value of the quotient, these terms need not be invariants, in the sense thus
far used, but may possibly take on a certain factor under each linear sub-
stitution.

It can be shown that this factor depends only on the coefficients of the sub-
st:tution, and that it is necessarily a power of the determinant of the sub-
stitution:

a1 da

a4...d4

We come thus finally to the consideration of those rational integral homoge-
neous functions of the given sets of quantities which, under linear substitution
of the variables and the coefficients (as we have set them up) are muliiplied by a
power 1" of the determinant of the substitution. These we call relative invari-
ants, since the changes they undergo are always unessential and they remain
entirely unchanged under all substitutions for which » = 1. The exponent
A is called the weight of the invariant. By contrast, we call that which we
have heretofore designated as invariant an absolute invariant. Thus every
absolute invariant is the quotient of two relative invariants of the same weight.

7. With this we have actually gained a point of view for the systematization
of the theory of invariants. The simplest relative invariants will be poly-
nomials of the lowest possible degree in the given sets of variables. Starting
with them, we should ascend to those of higher degree. If fi, 75 are any two

relative invariants, then every product of their powers j;‘ . ];’ will also be
arelative invariant. For, if the substitution brings to 7, the factor 7 and to
ja the factor #, then j;'+ j;’ will reproduce itself except for the factor
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F™M ¥ Tt we now construct a sum of such terms, each multiplied by a

constant factor
ECKIS K2, . . j:‘J‘; )

(x1, K2, .. .

and if we make sure that the individual summands are all multiplied by the
same power of r, i.e., that they all have the same weight (are “isobaric”),
then we have again, obviously, a relative invariant of higher degree, since
the factor of the individual terms can be placed before the summation sign.

The central problem of the theory of invariants is, naturally, the question
as to whether or not we can always get all the invariants in this way. What
is, in eack given case, the complete system of lowest invariants from which one
can build up, rationally and integrally, in the way indicated, all relative invari-
ants? The principal theorem, however, is that fo every fisrite number of given
quantities there is always a finite “ complete invariant system,’ i.e., a finite
number of invariants from which all others can be built up rationally and in-
tegrally. The credit for these definitive results in the systematic theory of in-
variants goes to the German investigators P. Gordon and D. Hilbert. The
memoir by Hilbert in volume 36 of the Mathematische Annalen ! is espe-
cially noteworthy.

I shall now take up some simple examples, such as we shall use afterward
in geometry, in order to make clear the abstract development which we have
been considering. Here, of course, I shall give outlines rather than proofs.

1. Let us assume, first, that we have merely a number of points in a binary
region:

51, T1; 52, T2 53, T3;

Here we have the interesting theorem that the simplest invariants are fur-
nished by the two-rowed determinants whick can be formed from these coordinates,
and that these determinants constitute the complete invariant system.

With two points 1 and 2, we can set up a two-rowed determinant

51 T1
52 T2

A12 =

This is actually an integral rational function of the variables, and is also
homogeneous both in (£,, 7,) and (&, 75). We recognize the invariant nature
of this determinant at once if we apply the rule for multiplying determinants
to the calculation:

A' — gi”'; 4151 -+ dimy, 11451 + dimy — ad, . 517'1 =r-Ap
1 272 gy + dirs, asbs + date ads| | Eame 1

Thus the invariant has the weight 1.
Y Uber die Theorie der algebraischen Formen, vol. 36, p. 473 et seq., 1890.
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In the same way, # points 1, 2, - - - | # have altogether n(n—1)/2 invari-
ants of weight 1: .
giT i
Ay = e (G k=12, ) 1)-

To prove that these determinants constitute the complete invariant system,
i.e., that every relative invariant of the n points can be expressed as a sum of
isobaric terms:

IC Ay D - - -

would take us too far. We obtain the most general rational absolute invari-
ants from the relative invariants, as quotients, where numerator and de-
nominator are of equal weight; thus a simple example of an absolute invari-
ant would be the quotient Ay /Am.

In connection with this example, I should like to explain a finer abstrac-
tion which plays an important role in the theory, namely that of the syzygy
(i.e., a coupling together, or connecting, of invariants). It can happen,
namely, that certain of those aggregates of the fundamental invariants vanish.
Thus we have, for example, with four points

A12A34 + A13A42 + A14A23 = 0.

This amounts to nothing more than a known determinant identity, which
we have used, in fact, on occasion (see p. 30). Such an identity between in-
variants of the complete system is called a syzygy. If we have several such
syzygies, we can form new ones from them by multiplication and addition,
and we may ask, as with determinants themselves, concerning the complete
system of syzygies, out of which all the others can be formed in this way.
The theory shows that there is elways a finite system of this sort. In the case of
four points, for example, this complete system consists of the single equation
above, i.e., all identities obtaining between the six determinants Ay, - - -,
As, are consequences of that one. In the case of five or more points, the com-
plete system consists of all the equations of this type. Knowledge of these
syzygies is, of course, of fundamental importance toward knowledge of the
whole invariant system; for, if two isobaric aggregates of the simplest invari-
ants differ by terms which have as a factor the left side of a syzygy, they are
identical and do not need to be counted twice.

2. Similarly, if we have single poinis in a ternary or quariernary region, then
the full invariant system consists, in precisely the same way; of the three-
rowed or four-rowed determinants formed from the coordinates. In the ternary
region, for example, the fundamental invariant of three points is again of
weight 1:
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fl m 71
Apps = 52 N2 T2].
Ea N3 T3

I shall leave to you all the rest of the details; in particular, how the syzygies
are set up here.

3. Let us now consider a quadratic form, in, say, a quartenary region:

J = AE + 2BEq + Cu* + 2DEL + 2Bn{ 4 F{2 + 2GEr + 2Hyr

+ 2J¢r 4+ K72,
We can write down at once one invariant which depends only on the ten
coefficients 4, - - - ; K, namely, the determinant
4 B D G
A= B C E H
“ID E F J
G HJ K
Since the coefficients 4, - - - , K transform contragrediently to the quadratic
termsin g, - - -, 7,itis easy to show that the weight of this invariant is —2:
A = y72. A, The full system of invariants formed alone from the coefficients of

the form comsists solely of this A, i.e., every integral rational invariant which
contains only 4, - - - , K is a multiple of a power of A,

If we add now the coordinates £, 3, {, 7 of a point to the coefficients of the
former, the simplest common invariant, or (according to the terminology men-
tioned above) covariant, is the form f itself; for the transformations of the
coefficients 4, - - - , K are completely determined by the prescription of their
invariance. Thus every given form is of course its own covariant. Indeed, by
definition, it is entirely unchanged under our substitutions and is therefore
an invariant of weight 0, or an absolute tnvariant. Moreover, if we employ
two points &1, - - -, 7y and &, « « +, T2, there will appear, as new covariant, the
so~called polar form:

A&k + B(Ems + Eam) + Cypme + - - - + K717s,

whose weight is again 0, i.e., it is likewise absolutely invariant.

Finally, if we consider, simultaneously with f, also a linear form ¢, i.e., the
totality of its coefficients a, B, v, 8, we obtain the following simulianeous
invariant of weight —2 which arises from the determinant through the so-
called process of ‘“bordering” with e, 8, v, d:

ROty
oW
R NThY
SN O
S 2 R
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According to what precedes, we can also call it a contravariant. This deter-
minant, as you know, plays an important role in analytic geometry. We
recoghize that the pure analytic process of forming invariants is funda-
mental here.

If wehave two linear forms ¢, ¢, with coefficients ay, -+ -, drand s, * * -,
52, we obtain, by a “double bordering’ of the same determinant, another
invariant:

A B D G a1 a
B C E H B B
D E F J Y1 Y2
G HJ K & &j,
24} ﬂl Y1 6 0 O
o Bz v2 62 0 O

which likewise has the weight —2.

These few statements must suffice to give you a glimpse of the broad field
of the theory of invariants. An unusually extensive doctrine has been de-
veloped here, and much acumen has been exercised, especially in devising
methods for setting up the complete system of invariants and the complete
system of syzygies for a given fundamental form. Let me make just one more
remark of a general character. In our examples, we have always reached our
invariants by setting up determinants, and in this we find justification for
the theory of determinants as the foundation for the theory of invariants. Be-
cause of this connection, Cayley originally used the name hyperdeterminants
for invariants. It was Sylvester who introduced the word inzarient. It is
interesting to raise the question as to the importance, in the field of mathe-
matics as a whole, which should be assigned to a particular chapter of it, let
us say to determinants. Cayley once said to me, in conversation, that if he
had to give fifteen lectures on the whole of mathematics, he would devote
one of them to determinants. Reflect, if you will, whether, according to your
experience, your appraisal of the value of the theory of determinants would
be so high. I find that in my own elementary lectures, I have, for peda-~
gogical reasons, pushed determinants more and more into the background.
Too often I have had the experience that, while the students acquired facility
with the formulas, which are so useful in abbreviating long expressions, they
often failed to gain familiarity with their meaning, and skill in manipulation
prevented the student from going into all the details of the subject and so
gaining a mastery. Of course, in general considerations, and consequently
here in the theory of invariants, determinants are indispensable.

We come now, at last, to our real object, to obtain, by the aid of these re-
flections, a systematization of geometry.
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3. Application of Invariant Theory to Geometry

We begin by using the variables &, - - -, 7 to represent ordinary rectangular
non-homogeneous coordinates: (£, 7) in the plane, (£, 5, 7) in three-dimen-
sional space, (§, 9, {, 7) in four-dimensional space, etc. The linear homo-
geneous substitutions of invariant theory

R Ry

¢)) e e e e e

T =4 dat

represent then the fotality of affine transformations of the space under con-

sideration with fixed origin of coordinates. Each relative snvariant itself will

be a geometric magnitude which, to within a factor, remains unchanged by
these affine transformations, i.e., @ magnitude whick has a definite meaning in
the affine geometry defined by these transformations.

If, for example, in the binary case, i.e., in the plane, two points 1 and 2
are given, then, as we have seen, the fundamental invariamt Ay represents
twice the area of the triangle (012), provided with a suitable sign. In fact,itis
known (see the analogous situation for space, p. 73) that an affine transfor-
mation merely multiplies the area of a triangle by the determinant of the
substitution, and this means precisely that A,; is a relative invariant of
weight 1. The quotient A;5/A;4, of two areas, remains absolutely unchanged,
but so also does the equation A1z = 0, since multiplication by a factor would
have no significance in this equation. Actually, this equation has the ab-
Aé solutely invariant meaning, with respect to our
2 affine transformation, that the three points 0, 1, 2

lie on a straight line.

4 If we have several points 1,2, 3,4, - - - (see Fig.
99), their complete invariant sysiem consists of all
their determinants A;. Hence if it is possible to
construct a quantity which is a rational integral

0 o 99 >7  function of the coordinates and which is relatively

6.9 invariant under all affine transformations (1), i.e.,
which has significance, at all, in our affine geometry, it must be expressible as

a polynomial in the Ay. We can verify this at once geometrically in simple

cases, €.g., every area in the plane, say that of the polygon (1, 2, 3,4), is such

an invariant, and the general formula which we gave earlier (p. 8) for the
area of a polygon

(1,2,3,4) = Ap + Agy + Ags + Ay

is actually nothing but the expression of the general theorem for this special
case.
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Finally let us consider the syzygies between the invariants. The funda-
mental syzygy

ApAgy + Az 4 Aphgy = 0

represents an identity between the areas of the six triangles formed by
four arbitrary points and the origin, and therefore a general theorem of our
affine geometry. Something similar holds, of course, for every syzygy.
Conversely, every theorem of our affine geometry, insofar as it is a relation
between invariants of the affine transformations (1), must be represented
by a syzygy. Thus, according to our previous assertion (p. 141) about the
complete system of syzygies in the case of four points, all the theorems of our
affine geometry which are valid for a system of four points must follow from
the one just given. In the same way, we can establish the correctness of the
general assertion that the theory of invariants permils the systematic enumera~
ton of all possible magnitudes and theorems, without exception, since it sup-
plies the complete system of invariants and syzygies.

Again I shall refrain from carrying through this examination in detail. I
mention merely that, along with points, one can conside; also geometric
manifolds determined by forms ¢ = af + o7, f = AE + 2GEr + k72, - - -
Such a form sets up a correspondence between each point of the plane and a
number, i.e., it determines a scalar field. With this point of view, we can
easily interpret geometrically the invariants of a given form, and each
syzygy between the invariants will represent again a geometric theorem.

Alongside of what I may call the naive interpretation of invariant theory
in geometry of # dimensions, which we have thus far considered, in which
the # variables are thought of as rectangular coordinates, there is another
essentially different interpretation: One can think of the variables as homo-
geneous coordinates in (n — 1)-dimensional space R,_,, whose non-homo-
geneous coordinates are x = £/7, - - - , where a factor common to the # coor-
dinates is unessential. We discussed earlier (p. 87 et seq.) the connection
between the coordinatesin R, -, and R.. We thought of R,_ as the linear
(n — 1)-dimensional manifold 7 = 1 of R. and projected its points by rays
drawn from the origin of R.. The aggregate, then, of all possible systems
of values of the homogeneous coordinates of a point in R._1 is identical
with that of the coordinates of the points in R, corresponding to it. Now
the linear substitutions of the homogeneous variables in R, _ ; represent pro-
jective transformations. Indeed, all substitutions of the form

plE = at+ - +dr,

P = ak + -+ da,
which differ from one another by an arbitrary factor p’ produce one and the
same projective change. The group of all these projective transformations
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contains not #n, but only ny — 1 arbitrary constants; in R, and Rs, in particu-
lar, the number of such constants is 8 and 13, respectively.

If we wish, then, to interpret the theory of invariants of # variables
£, - - -, 7 geometrically in the projective geometry of R,— 1, we must bear in
mind, above all, that, just because we are using homogeneous coordinates,
only those magnitudes and relations of the theory of invariants will be ca-
pable of interpretation which are komogeneous of order zero in the coordinates
£, - -, 7 of every point that occurs, and which have the same property also
with respect to every system of coefficients of a linear, quadratic, or other
form which may occur.

This will become clear if I carry it out in concrete examples. It will be
sufficient to discuss the binary field (n = 2). We assume, then, two variables
£ and 7, and we think of x = £/7 as an abscissa on the straight line. If a series

of systems of values (&, 71), (&3, 739), - - -, is given, we know that the de-
terminants
£ 1 .
A'- == k — 1, o a
k g |’ @, » P)

represent the complete system of fundamental invariants. Of all invariant
statements, which ones have meaning in projective geometry? Among these
is certainly not the statement that one of the A;; has some definite numerical
value, for if we multiply £, 7; by a factor p, which would not change the
point i, we multiply A also by p. However, the vanishing of a Ay, that is,
the relation Az = 0, has a meaning in projective geometry, for we can
write it in the form &:/7; = &/7i, so that actually only the ratios of the
coordinates of the points appear, and the geometric significance—the coin-
cidence of the points i and k—is evident.

In order, now, to get a numerical tnvariant which is itself of dimension
zero in the coordinates of each point, we must combine more than two
points. Trial shows that we need at least four points 1, 2, 3, 4, in which
case each quotient of the form

A12 ° A34
Arg - Agy

is homogeneous of dimension zero in each of the four pairs of variables
(§1, T1), + - -, (&4, 74). It follows from this that its weight is 0, i.e., it is an
absolute invariant. This quantity has, then, a projective meaning and rep-
resents a numerical value which is invariant under all projective trans-
formations of the line. Itis, of course, nothing other than the cross ratio of
the four points written in a definite order. For it can be written, in non-
homogeneous coordinates, in the form

X — Xy Xz — %o
Xy — X4 X3 — %4
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From the standpoint of the theory of invariants, we obtain the cross ratio of four
points as the simplest invariant of a point range on the line which satisfies the
homogeneity condition that is necessary in order that the invariant have a mean-
ing in projective geomeltry.

I should like to add here a general remark. For many years I have thought
about the widespread tendency in projective geometry to resolve all mag-
nitudes which exhibit invariant character back to cross ratios. From the
standpoint which we have reached, we can pronounce the judgment that
such an effort only makes it more difficult to gain a deeper insight into the
structure of projective geometry. It is better to begin with a search for all
rational integral (relative) invariants and to form from them, first, the
rational invariants, especially the absolute ones, and among these again
those which satisfy the homogeneity condition of projective geometry. In
this way we follow a systematic procedure which progresses from the sim-
plest to the more complex. This procedure is obscured if we place in the fore-
ground a special rational invariant, the cross ratio, and try to form the other
invariants exclusively from it.

Let us now see to what kind of theorems of projective geometry the
syzygies between the invariants Ay give rise. Starting from the fundamental

Syzygy
A12A34 -+ A13A42 -+ A14A23 = 0;

dividing through by the last summand of the left side, and noting that
Agz = —Ajz, and Agy = —Ayp, we get

A12A34 =1 — A13A24 .
A Auly;

Here we have, on the left, the cross ratio of the points 1, 2, 3, 4, according
to the original definition. On the right, we have the cross ratio of the same
points formed in the same way after the order of 2 and 3 has been changed.
The cross ratios in still other orders are obtained if we divide by other terms.
Thus the fundamental sysygies between the invariants of four points find their
geometric meaning in the known relations between the six values which their
cross ratio can take according to the order in whick the four points are laken.

I shall not go any farther here in showing how the projective geometry of
the straight line is built up on this foundation and how, in like manner, the
interpretation of the ternary and quaternary theory of invariants in the projective
geomelry of the plane and of space proceeds. You will find that set forth in
detail in, for example, the books of Salmon-Fiedler and Clebsch-Lindemann,
already mentioned, where precisely this interpretation of the theory of in-
variants is used continually. There arises thus a self-contained complete de-
velopment of projective geometry, not only with respect to the magnitudes
which one can consider in it (corresponding to the invariants), but also with




148 Systematic Discussion of Geometry

respect to the theorems which can be set up (corresponding to the syzygies).
To be sure, this interpretation is less satisfying for the student of invariants
than it is for the geometrician. For the former, the interpretation given in
the study of affine geometry of R, + 1 is more valuable, since in R, only those
invariants and syzygies are useful which satisfy the homogeneity condition,
as we have seen.

I should like to consider in more detail one especially important point, in
order to resume the discussion which we interrupted earlier (p. 135). I
should like to show how the Cayley principle makes it possible by use of the
theory of invariants to classify affine and metric geometry in the scheme of
projective geometry.

4. The Systematization of Affine and Metric Geometry Based on
Cayley’s Principle

We are concerned here with general affine geometry, where we do not
assume a special fixed point, the origin of coordinates, as was the case when
the complete interpretation of the theory of invariants was first discussed.

We start at once, in three-dimensional space, with the non-homogeneous
coordinates x, y, z or, as the case may be, with the homogeneous coordinates
£, 7m,¢, 7. Then the Cayley principle states that affine geometry or metric
geometry arises from projective geometry when we adjoin to the given
manifold the plane at infinity, T = 0, or this plane and also the imaginary
spherical cirdle T = 0, £2 + n? 4 72 = 0, respectively.

A remark about the imaginary spherical circle will simplify the following
discussion. We have defined it here by two equations, as the intersection
of the plane at infinity with a cone through the origin. But we can determine
it, or, in fact, any conic, by one equation in plane coordinates, if we think of
it as the envelope of all the planes which touch it.- If, as before, we denote the
‘“‘plane coordinates,” i.e., the coefficients of a linear form ¢, by «, 8, v, §,
then, as is easily verified, the equation of the imaginary spherical circle is
o 4 B% 4 42 = 0. In other words, this equation is the condition that the
plane o + - - - 487 = 0 shall be tangent to the imaginary spherical circle.

It is now easy to understand the transition by means of the theory of in-
variants to affine and to metric geometry, respectively. To the given sys-
tems of values—point coordinates, linear and quadratic forms, etc.—which
describe the configuration under discussion, we add the definite linear form v
(i.e., the system of coefficients 0, 0, 0, 1), or the quadratic form o 4 82 + 2,
written in plane coordinates, respectively. If, just as before, we treat the
system of forms thus extended, i.e., if we set up the full system of its invariants
and of the syzygies between these, and emphasize those among them which
satisfy the condition of homogeneity, we obtain all of the concepts and all of the
theorems of affine and of metric geometry, respectively, of the elements originally
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given. The development by means of the theory of invariants is thus carried
over to affine and to metric geometry. I should like again to call your at-
tention (see p. 147) to the fact that, by emphasizing in particular the form-
ing of rational integral invariants and syzygies, a systematizing point of view
comes into geometry which otherwise is not brought clearly to light.

Instead of talking abstractly about this, I prefer to make these relations
clear at once by means of simple examples by showing how we can represent
the most elementary fundamental magnitudes of affine and metric geometry
as simultaneous invariants of the given systems of magnitudes and of the
forms 7 and a? + B2 + 42, respectively.

To start with, I choose from affine geometry, as an example, the volume T
of the tetrahedron formed by four points, which, as you know, is expressed by
the formula '

1 vy oz 1 qEm 6o

T = 1 X2 Y2 %2 1 - 1 Ez N2 {2 T2 .
6lxs y3 23 1 O6T1TaTsTa| £s 53 &3 T3
Xy y4 24 1 £s e b4 T

Let us inquire to what extent this expression has the asserted invariant
property. In the first place, we know that this determinant is actually the
fundamental relative invariant of four points (p. 141). Moreover, we find,
in the denominator for these four points, the values of the linear form 7
which we adjoined to our configuration, and these are the very simplest
(absolute) invariants that can be constructed by the use of a form (p. 142).
This means, of course, that, after a transformation, those values of the form
into which the linear form 7 goes over are to be written in the denominator,
or that, if we adjoin in general the form af -+ B9 + v{ + o, the product
of the four values of this form for the points 1, - - - , 4 is to go into the de-
nominator. Thus T is itself also a rational invariant and, indeed, it is homo-
geneous of dimension zero in the coordinates of each of the four points. To
be sure, T has the dimension —4 with respect to the coefficients of our ad-
joined linear form 0, 0, 0, 1 (or «, B, v, 9, as the case may be) which appear
in the denominator. Hence, since a common factor of these magnitudes is
arbitrary, the absolute value of T can have no meaning in the projective
geometry of our extended figure. In fact, there is also no way of assigning a
definite numerical value to the volume of a tetrahedron in affine geometry,
unless we have already selected a unit segment or a unit tetrahedron, as we
always did when we were using non-homogeneous coordinates. But this
would mean, from our present general point of view, that we should add to
our figure other elements beside the “infinitely distant plane” 7 = 0. If we
adjoin a fifth point, for example, and take the guotient of two expressions
analogous to T, we have actually an expression that satisfies all of the con-
ditions of homogeneity. This expression must be, then, an absolute invariant
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of affine geometry. The single expression T is only a relative invariant of
weight 1, as indeed we learned earlier (see p. 73).

At this point we should refer again to the developments of the first main
part, the essential meaning of which now appears more clearly. We recog-
nized in our special study of affine transformations (see p. 72 et seq.) that
the Grassmann elementary magnitudes of geometry which we deduced there
belong entirely to affine geometry. The Grassmann determinant principle,
however, which supplied those magnitudes, is by no means a haphazard
device. To the contrary, as we can now see, it is a thoroughly natural appli-
cation of the theory of tnvariants in offine geometry, i.e., projective geometry
under adjunction of the plane at infinity. The appearance of the ordinary
determinants—segment, area, volume—is sufficiently explained by the
example just discussed. It remains to be shown how the development by
the theory of invariants leads to the general Grassmann elements defined
by the minors of rectangular matrices. That, again, will be made clear by
means of an example. Given two points (£, 7, 71) and (£, 52, 72) in a plane,
we wish to find the equivalent in the theory of invariants of the manifolds
of affine geometry (line-segment, straight line, - - -) which belong to them.
This falls into orderly agreement with earlier results if we add a third “un-
determined” point (£, 9, 7) and consider again the fundamental invariant

E 9 7|
51 nm T
& N2 T2

TT1T2

as a linear form in £, 5, 7. The three coefficients of these variables, that is,
the determinants of the matrix

1
T1T2

 n 1
X9 y21

gl m 71
£ M2 T2

’

are thus the characteristic magnitudes for the newly defined manifold, and
we have actually been led precisely to the maltrix whick was used earlier to define
the line-segment 1 2. In exactly the same way, in space, we can set up, from
three or from two points, by adjoining one or two quadruples of undeter-
mined coordinates, respectively, a relatively invariant linear or bilinear form,
whose coefficients then supply the coordinates of a plane-segment or a space
line-segment, in entire agreement with our old definition. I cannot amplify
these suggestions with further details; they will perhaps suffice as a first
orientation and as a stimulation to further study.

Now that we have found an ordered place in the theory of invariants for
the principle of Grassmann, it is important to raise the question as to its
usefulness. In this connection, we should compare it especially with that
principle of classification which was stated (p. 25 et seq.) for the particular
case of the principal group, and which yielded for us there all the funda-
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mental geometric manifolds. The appropriate extension of the principle of
classification to the case of an arbitrary linear transformation group is ob-
vious. According to it, we shall consider, iri each “geometry,” alongside of
the single integral rational functions of the given series of magnitudes
{coordinates, form coefficients, etc.) which thus far have furnished the invari-
ants, also systems of such functions &, B, - - - . If such a system is trans-
formed into itself under all the substitutions of the pertinent group con-
cerned, i.e., if the similarly formed functions &y, 5, - - - of the transformed
series of magnitudes are expressed linearly in terms of 5, E,, - - - alone, with
the aid of coefficients which arise in a definite and unique manner from those
of the fundamental transformation, we say that the system defines a manifold
of the geometry in question. The separate functions of which the system con-
sists are called the components of the manifold. The property which deter-
mines the nature of a geometric manifold is the behavior of its components
under the transformations of the group under consideration. Two geometric
manifolds are said to be of the same sort when their components form two
series of the same number of expressions, each of which, under change of
coordinates, undergoes the same linear substitution, that is, they are co-
gredient, according to our earlier terminology. If the system which defines
a geometric manifold consists of a single function, the linear substitution
reduces to a multiplication by a factor, and the function is a relative in-
variant.

I shall make this abstract situation clear by means of a simple example
from the invariant theory of the ternary field, which we shall interpret in
the affine geometry of three-dimensional space with a fixed origin. If two
points (&1, 1, 71) and (&s, 92, 72) are given, then the simplest system of func-
tions in which both coordinate triples appear homogeneously and symmetri-
cally is the system of nine bilinear terms

1) £i6s, Eamo, £17o, mbs, - - -, TR

Under a linear transformation, in our customary notation (see p. 136), we
get:

L = bk +abEm+mE) +-- -+ dnm,
Emy = @maskibs + abskime + wbimbs + - - - + didemimy,
nry=ahEs  + b+ mb) 4+ dinim,
i.e., these nine magnitudes form, in fact, a system of the sort just discussed.
We shall look upon them as the determining elements of a manifold of our
affine geometry. Such a manifold, and likewise any other system consisting

of nine magnitudes which transform according to the equations (2), is called
a tensor.
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Upon examining equations (2), we notice that we can derive from the nine
quantities (1), on the one hand six, and on the other hand three, simple
linear combinations which are transformed into themselves under a linear
substitution. Indeed, if we arrange the quantities (1) into a quadratic
system

£6: Em Eimo,
méz M2 M7y
Tiés T M2 TiTy

the first set is the sums of the terms symmetric to the diagonal:

(3) 2618y, Ema+mbs Eira T, -, 27T,

and the other is their differences:

(4) Eine — Thfz, £172 — Tlfz, MT2 — Til2.

The substitution formulas for the systems (3) and (4) come immediately
from equations (2). Thus we have secured two new manifolds for our affine
geometry, of which the one, made up of the six magnitudes (3), is called a
symmetric tensor, while that consisting of the three magnitudes (4) is the
plane-segment already known to us. The name applies, of course, to any
system of magnitudes which are transformed cogrediently. We shall con-
sider directly the justification for the adjective “symmetric.”

As to the geometric meaning of the three quantities (4), we know (see
p- 29) that they are twice the projections upon the coordinate planes of the
triangles formed by the points (£, 71, 71) and (&s, s, 72), and the origin of
coordinates, each triangle contour being traversed in a suitable sense. We
have here precisely one of the first manifolds which the Grassmann deter-
minant principle yielded. Hence we may enunciate the following theorem.
The systematic search for manifolds of affine geometry by means of our principle
of classification leads necessarily, among other things, to the Grassmann deter-
minant principle and to the geometric manifolds determined by its use. Of
course, I cannot carry this out here in detail. It will suffice to state that all
the manifolds can be derived which we discussed earlier if we treat the
general affine geometry in a similar way by means of Cayley’s principle, by
means of the quaternary invariant theory (see p. 148 et seq.).

The important result of our examination, however, is the knowledge that
the Grassmann determinant principle is something special, and, in itself, does
not at all yield all the manifolds of affine geometry. We have, rather, in the
tensors (1) and (3) essentially new geometric magnitudes.

Because of the great significance which these manifolds have for many
fields of physics, as, for example, for the theory of elastic deformation and
for the theory of relativity, I shall discuss them briefly. Above all, I shall
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make some remarks concerning the names of these quantities, which should
help the reader to orient himself in the newer literature on tensor calculus.

I used the word fersor in volume 1 of this work, when I was discussing
Hamilton’s quaternion calculus, in a sense different from that which we
are now using. If ¢ = a + 57 + ¢j + dk is a quaternion, we called the ex-
pression T = \/a"’——f- b + ¢* 4 d? its tensor. This name, introduced by
Hamilton, is justified, since one can interpret multiplication by a quaternion,
geometrically, as a rotation and a stretching, with a fixed origin, as we ex-

plained fully in volume 1 (p. 65 et seq.). The B Tension N

measure of the stretching turns out to be pre- — 7

cisely the square root T which we called the Compression
—

tensor. W. Voigt, in his work on the physics
of crystals,! used the word femsor in a manner
closely related to this. Voigt denotes by it directed magnitudes which
correspond to events, such as the longitudinal stretching or compression
of a rod, at the ends of which pulls or pushes are applied in the direction
of the axis of the rod, but in opposite senses. We could represent such a
A tensor pictorially by a segment which carries at its ends
arrowheads oppositely directed (see Fig. 100).
We could designate the directional character of a
tensor, thus understood, as ““two-sided,” and that of a
> vector, by contrast, as “one-sided.” Such tensors arise
often in physics as fensor triples, i.e., three of them at
right angles to one another (see Fig. 101). We men-
tioned earlier (see p. 75) a pure strain (pure affine
transformation) as a uniform stretching of space in
three mutually orthogonal directions, with a fixed
origin. Instead of this, we can say now that a pure strain is represented
geometrically by a tensor triple. We reach a commonly used meaning of
the word fensor if we think of the concept of those three stretchings of
space as a single geometric quantity, and, dropping the word triple, call
this magnitude a tensor. The tensor notion in this sense is precisely what
we called above a “symmetric tensor.”
In fact, a pure strain, with a fixed origin, is given by substitutions of the
following form

F16. 100

A

Fic. 101

£=anux+ a2y + @132,
(5) N = Q1% -+ Ga2y + 233, (e = ari).
T = @13% + aosy + aasz.

! See, for example, (a) Der gegenwdrtige Stand unmserer Kenninisse der Kristallelas-
tizitit; (b) Uber die Parameter der Kristallphysik und iiber gerichtete Grissen hiherer Qrd-
nung. Both memoires in the Gottinger Nachrichten 1900.
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Let us interpret the number triples (x, y, 2) and (£, 1, 7) as point coordinates
in one and the same rectangular coordinate system. The array of the coeffi-
cients of the transformation is symmetrical with respect to the principal
diagonal. If we go over now to a new rectangular coordinate system with
the same origin, we obtain, as a simple calculation shows, the following
new representation for the strain in question:

’ ’ ’
§ = ayw + apy 4 aps, L
(6) 7 = 01’2“3’ =+ ‘12’23” + a2,32', (0 = am)-
(7" = a3 + a9y + ag?.

The same formulas give the relations between z, y, z and «’, ¥/, 5’ as be-

tween £, n, 7 and &, 7', 7'. For the six coefficients a4, Y @y, it turns
out that
1. They depend linearly upon the six coefficients @11, @12, - -, @33, and

upon these only, i.e., they define a geometric magnitude.

2. They transform precisely as do the expressions (3), bilinear in the co-
ordinates, which we designated on page 152 as the components of a sym-
metric tensor. The adjective symmetric is justified by the form of the array
of coefficients in the transformation formulas (5) and (6).

Let us now go over to the general affine transformation

f = ayx -+ a2y + 6133,
) N = an% -+ any + 0232,
T = au¥x + ey -+ assz,

where the origin is fixed. Then it develops, in a manner corresponding pre-
cisely to that just indicated, that in the geometry of the orthogonal trans-
formations the nine coefficients @1, @12, * - , @33 transform precisely as do
the coordinate products (1); hence they form the components of a magnitude
of the same sort. This, means, in our terminology, according to which the
word Zensor is not restricted specially to pure strains, that the array of co-
efficients of a general affine transformation is a tensor.

A large number of other names for this concept are to be found in the
literature. Some of the most common are the following.

1. Affinor (because of the connection with the affine transformation).

2. Linear vector function [since the linear substitutions (7) can be so in-
terpreted that, by means of them, to a vector x, y, 2, starting from the origin,
another similar vector £, %, 7 will be placed in linear correspondence].

3. Dyed and dyadic. However, the first of these two words is used orig-
inally only for a particular case, to be explained later.
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The components of the plane-segment (4) also can be regarded as the co-
efficients of a transformation, namely one of the type

= lex~c-y+b-3
(8) n= c¢xt+1y—a-z
T=—bex+a-y+1-2z

Indeed, it is easy to show that the coefficients of this substitution behave,
under rectangular coordinate transformation, as do the bilinear expressions
(4). Because of the structure of the array of coefficients in (8) (symmetry
with respect to the main diagonal along with change of sign), the magnitude
determined by it is also called an antisymmetric tensor.

Geometrically, the formulas (7) can be interpreted as a general homo-
geneous deformation, the formulas (6) as a pure deformation (without ro-
tation), and the formulas (8) as an infinitesimal rotation. The decomposition
of a homogeneous infinitesimal deformation into a pure deformation and a ro-
tation corresponds thus perceptually to the formal process (p. 151) in which we
derived the symmetric tensor (3) and the antisymmetric tensor (&) from the
coordinate products (1).

Thus far, in changing the coordinate system, we have confined ourselves
to orthogonal transformations. It remains to complete this for the case in
which we pass from the rectangular to oblique coordinates, or, indeed,
where both (§, 7, 7) and (x, v, 2) are, at the start, introduced as oblique par-
allel coordinates. We shall continue to think of the origin of coordinates as
fixed. In making this change, we pass from the geometry of the principal
group to that of the affine group. When we examine, for this group, the
behavior of the substitution coefficients under transformation of the co-
ordinates, it turns out that, although they again represent the components
of a geometric magnitude, they are transformed, not as are the coordinate
products (1), but contragrediently to them. The coefficients of (6) and (8)
behave in a corresponding way. It can be shown that the same tensor (for
example the same homogeneous deformation) with respect to a parallel
coordinate system can be given by components of the sort (1), as also by
such components as the coefficients of (7). The former are called cogredient,
the latter are called contragredient components of the tensor. Instead of co-
gredient and contragredient, the terms contravariant and covariant are often
used. Sometimes the last two expressions are interchanged in meaning.
The difference between the two kinds of components is the same as that
between point and plane coordinates.

Another meaning of the word Zensor, and one that is much more general
than the one we have favored, will become clear if we study the behavior
of homogeneous forms under a change of coordinates. On page 138, we
carried through this investigation for the case of a quadratic form
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ang? + 2aéy + - - - + awTh,

using a somewhat different notation. We found that the form coefficients
an, 2ay2, - - -, as3 transform linearly, homogeneously, and contragrediently
to the terms £2, £, - - -, 72 of the point coordinates. The latter, however,
transform cogrediently to the expressions (3), as it is easy to see. We can
announce this result as follows. The coefficients a,1, 2a1s, - - - , @33 of a quad-
ratic form are the contragredient components and the terms &2, &g, - - -, 72
are the cogredient components, of a symmetric tensor. A corresponding
result holds for a bilinear form. Of the latter, we may say, with Gibbs, that
it forms a dyad when it can be written as a product of two linear forrs.
Finally if we have a komogencous n-tuple linear form of the point coordinates,
we can show, by a slight calculation, that its coefficients likewise substitute
linearly and homogeneously under transformation of coordinates, and, in-
deed, contragrediently to the terms of the point coordinates.

The generalization of the tensor notion, which we have discussed, con-
sists in calling every such magnitude a tensor, using this name not merely,
as we did before, in connection with bilinear forms. It isin this general form
that the name is used, in particular, by Einstein and his followers. In the
older terminology it was customary to speak rather of linear, quadratic,
bilinear, trilinear, cubic, etc., forms.

Along with this variety in terminology, there appears the tendency, in
practice, to denote the system of components of a tensor by a single letter,
and to indicate calculations with tensors, when they arise, by means of
symbolic combinations of the letters. All these things are in themselves
essentially very simple; if they seem difficult to the reader, it is only because
different writers use different notations. The same unfortunate situation
arises here that we mentioned when we were discussing the vector calculus,
but here it is greatly exaggerated. However, it seems impossible to get
rid of the confusion. We could not refrain from mentioning it, since the
whole modern literature is controlled by it.

Let us now turn to metric geometry in order to select there a few charac-
teristic examples. I shall show how the two most important fundamental
notions ‘“distance r between two points x, = £;/7y, - - - ,and x5 = &yf7o, - - -7
as well as “angle w between two planes oy, - - -, dyand a, - -+, 8’ can be de-
rived from the systematic procedure of the theory of invariants. From the
well-known formulas of analytic geometry, we have

r= N — 2)?+ (1 — 3)2 + (21 — 2)?
— \/(El‘rz - 5271)2 + (7717'2 - 772"'1)2 + (fﬂ'z - {271)2

2.2 ’
7172

& = arc cos ( ayas + BiB: + vy ) )
VG + 8+ D)3+ 6+ i
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These are algebraic and transcendental functions, respectively, of the pa-
rameter. We may call them “algebraic” and “transcendental” invariants,
respectively, if we show that the rational integral parts of which they are
formed are themselves invariants in the old sense.

We start with the angle w. The figure, whose invariant it should be, con-
sists of the two linear forms a,, By, 1, 81 and a, By, 7v2, 82, and the quadratic
form in plane coordinates

a2+ﬂz+'y2+0-62,

which represents the imaginary spherical circle. We can of course construct
invariants from this quadratic form in plane coordinates, just as we did
earlier (p. 142 et seq.) from forms in point coordinates, by always interchang-
ing point and plane coordinates (“‘dualizing”). In particular, the values
of the form for the two given systems of values

i+ Bi+i+0-8 and e+ Bi+i+0-5

and also the value of the polar form constructed for these two systems

asoy + Bife + yry: + 0+ 8,02

are all invariant. It is precisely out of these expressions that cos w is ac-
tually constructed. Furthermore, cos w is homogencous of dimension zero
in each of the two systems e, « - -, 8; and «g, - - -, 8, and likewise in the
coefficients 1, 1, 1, 0 of the given quadratic form, so that the expression has
an independent meaning in metric geometry. There is, in fact, in metric
geometry, an absolute angle measure which is independent of the arbitrary
choice of the unit. This amounts to saying that our expression is an absolute
invariant.

Next, as to the distance r, we recall that we constructed invariants of a
quadratic form in point coordinates by bordering its determinant with the
coordinates of one or of two planes (see p. 144 et seq.). In the same way we
shall now obtain invariants for our figure, which consists of a quadratic
form in plane coordinates and two points, if, proceeding precisely in a dual
manner, we border the determinant of the form o? -4 82+ y2 40 - 8%

coom~
SO mo
S~oco
cocooo

once and twice with the coordinates &y, - - -, Tyand &, - - -, 72 of the given
points. From the determinants thus obtained we form the quotient
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(1) (1’ 8 g fi f}z 1 0 0 0 &| |1t o o0 o0 &
00 10 & & 01 0 0 m| |0 1 0 0 =
000 0 n o]0 0 10 &-l0 0 1 0 g

0 0 0 0 0 0 /|0 00 0 =
fom Gom EEm Hom O £2 m $2 72 O
£2 M2 {2 72 0 O

If we develop these determinants, it is easy to show that this quotient is
precisely the value given above for r, which is thus shown to be invariant.
Like the fundamental invariant of affine geometry, which we considered
earlier, this quotient is homogeneous and of dimension zero in the coordi-
nates of the two points, but not in the coefficients of the given quadratic form,
in which it is homogeneous and of dimension —4. Moreover it is not an
absolute invariant, for each of the determinants has the weight 2, i.e., the
quotient has the weight 2 — 4 = —2, as we see from the fact that what we
here have is the dual of the constructions considered on pages 142-143.
Consequently the numerical value of r has no immediate significance in
metric geometry. Indeed, we can measure the distance between two points
only if we assume a further arbitrary (unit) segment, i.e., if we adjoin that
segment to the figure, along with the fundamental quadratic form. Ab-
solute invariants of metric geometry appear only if we construct quotients
of expressions of the sort here considered.

Here again I must not go into further detail. These examples will give
you, at least, some idea as to the appearance of the complete systematic
development of affine and metric geometry which results from the systematic
articulation of integral rational invariants. I hope that you will extend your
knowledge by reading in the many textbooks already mentioned.!

I shall touch lightly one more simple example, which is treated in detail
in the new edition of Clebsch-Lindemann; 2 I refer to the so-called geometry
of the triangle. In the course of time, an extensive closed field has appeared
here, due especially to the work of secondary teachers, devoted to the many
remarkable points, lines, circles, which can be defined in connection with
the triangle: the center of gravity, the altitudes, the bisectors of the angles,
the incircles, the circumcircle, the Feuerbach circle, and so on. The count-
less relations, toward the discovery of which men have long striven, and
are still striving, fall easily into orderly arrangement in our systematic de-
velopment. Let there be given, as vertices of a triangle, three points

(‘El) T, Tl)) -(521 N2, 72)’ (53: 13, 73)-

t{In connection with the above. attention should be called especially to an article by
H. Burkhardt in vol. 43 (1893) of the Mathematische Annalen: I/ber Funktionen von Vector-
grissen, welche selbst wieder Vectorgrissen sind. Eine Anwendung invariantentheoretischer
Methoden auf eine Frage der mathemalischen Physik.}

% Loc. cit., p. 321. I should mention, above all, the Enzyklop4die report (IIT A B 10).
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Since we are concerned with metric relations, we adjoin the two imaginary
circular points, whose line equation is @ + 82 = 0. We may simply adjoin
the values (1, 7, 0) and (1, —3, 0) of their point coordinates. (See Fig. 102.)
Then the whole geometry of the triangle is nothing else than the projective in-
variant theory of these S poinis, i.e., five arbitrary points, two of which we
denote by special terminology. This remark gives to geometry of the tri-
angle the transparent character of a sys-
tematic structure which is otherwise lost to
sight.

With this I leave the consideration of the
systematic development of geometry. It cer-
tainly satisfies the esthetic sense to have an o2
orderly arrangement of the sort which I have
described. Moreover, since this systematic
treatment alone permits a deeper insight into geometry, every mathema-
tician, every prospective teacher, should know something about it. For this
reason I felt compelled to include it in this course, although you will often
find this point of view in the literature, but perhaps not always in such a
consistent presentation. Of course it would be entirely perverse to tie our-
selves dogmatically to this systematic procedure and to present geometry
always in this light. The subject would soon become tedious and would lose
all attractiveness. Above all, this would be a bar to investigative thought,
which always functions independently of systematic planning.

Up to this point we have been considering, in a sense, the architecture of
the structure of geometry. We shall now turn our attention to the no less
important question of its foundations.

ol X(l,i,o)

3

x(1,~1%,0)
Fic. 102

I1. FOUNDATIONS OF GEOMETRY

A view of the very broad field which we now enter is afforded by the en-
cyclopedia article by F. Enriques entitled Prinzipien der Geometrie (Enz.
IIT A. B.1). Investigationsin the foundations of geometry often approach
very closely the interests of the theory of knowledge and of psychology,
which, from their viewpoints, study the origin of space perception and the
justification of treating it by mathematical methods. We shall touch these
questions very superficially, of course, and we shall treat essentially the
mathematical side of the problem, assuming that space perception is to be
taken for granted. We must also pass over the question that is so im-
portant in pedagogy, as to how space perception develops in the
individual to the precise form to which we, as mathematicians, are ac-
customed.

Our problem, restricted in this manner, is to erect the entire structure of
geometry upon the simplest foundation possible, by means of logical operations.
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Pure logic cannot, of course, supply the foundation. Logical deduction can
be used only after the first part of the problem is solved, i.e., after we have a
system which consists of certain simple fundamental notions and certain simple
statements (the so-called axioms), and whick is in accord with the simplest facts
of our perception. These axioms may be subdivided, of course, according
to taste, into separate parts which are independent of one another. Other-
wise we have great freedom in choosing them. The one condition which the
system of axioms must satisfy is imposed by the second part of our problem:
It must be possible to deduce the entire contents of geometry logically from these
fundamental notions and axioms, without making any further appeal to
perception.

The whole course of these lectures suggests a definite characteristic way
of treating this question. As a matter of principle, we have always availed
ourselves of the aids of analysis, and in particular of the methods of analytic
geometry. Hence we shall here again assume a knowledge of analysis, and
we shall inquire how we can go, in the shortest way, from @ given system of
axioms to the theorems of analytic geometry. This simple formulation is, un-
fortunately, rarely employed, because geometricians often have a certain
aversion to the use of analysis, and desire, insofar as possible, to get along
without the use of numbers.

The program thus indicated in general can be carried through in different
ways, depending upon whkick fundamental notions and axioms we decide to
use. Itis convenient, and not unusual, to start with the fundamental notions
of projective geometry, namely, with point, straight line, and plane, which we
have already emphasized as fundamental concepts (p. 57 et seq.). We should
not try to set up definitions as to what sort of things these are,—one must
know that from the start. The program demands rather a statement of
only so many characteristic properties and mutual relations that we can
derive from them, in the sense indicated above, the whole of geometry. I
shall not enumerate completely the separate axioms that would suffice for
this purpose, for that would carry us too far afield. I shall only characterize
their contents sufficiently for you to get a clear idea of them.

At the head are the theorems of commection, which I enunciated earlier
(p. 58) for projective geometry. We shall not demand, at the outset, as we
did there, the existence, without exception, of a point of intersection of two
lines in a plane or of a line of intersection of two planes. Instead, as befits
the relations of metric and affine geometry, we shall restrict ourselves to
the theorem that fwo lines of a plane have one point, or none, in common, two
planes have either a line or else not a single point in common. We can then
derive, by the adjunction of “improper” points, lines, and planes, the com-
plete system of projective geometry.

Next come the theorems of order, which describe how different points in
the plane and on the line can lie with respect to each other. Thus, of three
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points a, b, ¢ on a line, there is always one, say b, which lies between the
other two, @ and ¢; and so on. These statements are also called theorems of
betweenness. (See Fig. 103.)

Finally, as to properties of continuity, I shall emphasize here, for the
present, only the fact that the straight line has no gaps in it. If we separate,
in any way, the segment between two points ¢ and & into two parts 1 and 2,
so that (if ¢ lies to the left of ) all the points of 1 lie to the
left of all the points of 2, then there exists just one point ¢

which brings about this separation, so that the points of 1 lie ¢
between ¢ and ¢, those of 2 between ¢ and . This corresponds b
obviously to the introduction of irrational numbers by means of 44
the Dedekind cut.?

F1c. 103

From these axioms we can actually derive by logical deduc-
tion the whole of projective geometry of space. In particular, we could, of
course, promptly introduce coordinates and treat projective geometry ana-
lytically.

If we desire to go over to metric geometry, we must take into consideration
that in projective geometry we have also the notion of the group of 8
collineations or projective transformations of space. We know how to char-
acterize, as a subgroup of this, the seven-parameter principal group of mo-
tions in space whose invariant theory constitutes metric geometry. This
group consists of the collineations which leave unchanged a certain plane,
namely, the infinitely distant plane, and in that plane a curve of the second
degree, namely, the imaginary spherical circle (or the absolute polar system
which represents it). However, we must go a step farther than this, if we
wish to get exactly the theorems of elementary geometry. We must sep-
arate out from the principal group the six-parameter subgroup of proper move-
ments (translations and rotations) which, unlike the similarity transforma-
tions, leave the distance between two points wholly unchanged. In this way,
we shall have the metric geometry of congruences as our invariant theory.
We can derive the motions from the principal group, for example, by setting
up the requirement that the ““path curves” of a motion are closed insofar
as it leaves only one point fixed.

The plan thus sketched for building up geometry is theoretically perhaps
the simplest, since it operates, at first, for projective geometry, exclusively
with linear manifolds, and only later adjoins a quadratic manifold, the
imaginary spherical circle, when this becomes necessary in order to get metric
geometry. To carry this plan through is quite an abstract and tedious
matter, however, and it would be appropriate only in a course of lectures
devoted to projective geometry alone. It will suffice after this general ex-
position, to refer you to that presentation in the literature which is the most

! See Part I, p. 33 et seq.
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readable, namely, to the translation, by H. Fleischer of the book by F. En-
riques, entitled Vorlesungen iber projective Geometrie.t

For general purposes of instruction, I prefer another method of developing
the subject of geometry, to which I now turn. For simplicity’s sake I con-
fine myself to geometry of the plane.

1. Development of Plane Geometry with Emphasis upon Motions

We shall take as fundamental notions point and straight line, and we shall
assume for them axioms of connection, order, and continuity. Here again,
the theorems of connection contain only the facts of perception that through
any two points there always passes one and only one line, while two lines can
have either one point or none in common. Concerning the order of the points
on a line we shall retain the conditions already indicated above. A careful
formulation of the additional axioms of order and of the axioms of continuity
will be considered during the course of the investigation.

With this foundation, we shall now avoid the roundabout use of pro-
jectivities, and we shall introduce immediately the group of «® motions in the
plane, in order, through it, to reach our goal, the system of plane analytic
geometry. First of all, we must formulate abstractly, in a series of axioms,
the properties of these motions which we shall assume and use, with respect
to our system of points and lines. We shall be guided here, of course, by the
vivid conception of motion which we have had in our experience with rigid
bodies. Accordingly, a motion must, in the first place, be a reversibly unique
transformation of the points of our space. In particular, it must coordinate
with every point a point lying in finite space. Moreover, it must carry a
straight line over into a straight line, without exception. It is convenient
to use again, in general, the word collineation for transformations of this
kind. To be sure, we do not yet know whether or not there are such col-

a lineations, since we are not now in possession

of projective geometry, as we were before.

, Hence we must expressly postulate the existence,
at least, of these particular collineations, by
means of a new axiom. Accordingly, we assume

A f that there is @ group of ©* collineations, which we

Fm‘l_l 104 shall call motions, and whose invariant theory

we shall look upon as the geometry of the plane.

We must explain more precisely what is meant here by “triply infinite.”
Given any two points 4 and A’ (see Fig. 104) and two rays q and o’ drawn
from A and 4’, respectively. Then there will always be one and only one
motion which carries the point 4 into the point 4’ and the ray a into the

1 Ifeipzig, 1903 [2nd German edition 1915). The title of the original is Lezioni di geo-
meiria proiettiva, Bologna, 1898; third edition, 1909.
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ray ¢’. Figures which can be carried into each other by motion are called
congruent.

However, we shall not yet make use of this entire group of motions, but
only of a particular class of motions concerning which we shall set up some
special postulates. In fact, there is just one motion which carries a point 4
into an arbitrary given point 4’ and the straight line from 4 to 4’ (together
with this direction) into itself. We call such a motion a #ranslation, or, more
precisely, a parallel translation. We shall assume now that each such transla-
tion carries into itself (with maintenance of its direction) the straight line which
joins any two of its corresponding points B and B', and, what is essential, that
the «2 translations of the plane constitute @ subgroup of the group of motions.

If we perform repeatedly one and the same translation (see Fig. 105),
the point A goes over into points 4’, 4", A", - - . of that ray of the line
AA’ which points toward 4’. We must assume,
as another postulate, that these points ultimately \ /}' 4"
reack or include every point of this ray. By repe- 4
tition of the inverse transformation we obtain a )

. . B
series of points of the same character on the op- B
posite ray. If we think of each translation as
performed continuously, from the initial point
to the endpoint, which is what we shall use
later, we call the line in question the path curve of the point A4 under the
translation. Every line is thus the path curve of infinitely many points,
and for every translation there are ' path curves, namely, the straight
lines which the translation carries over into themselves.

Now it should be noted that two different path curves of the same translation
cannot intersect. Otherwise, the point of intersection obviously would result
from the translation of two different points, namely, one from each of the
two path curves, which is contrary to the character of a translation as a
reversibly unique point transformation. We say that all the path curves of
one and the same translation are parallel to one another. We have thus de-
rived this notion from a property of our motions. At the same time, it is clear
p that through a given point 4 there is certainly

a parallel to a line @, namely, the path curve
7" of A under a translation along a.

Finally, we must set up a last axiom for
these translations, namely, that any two trans-
lations T, T" are interchangeable, i.e., that

Fio. 106 the same point B will result when we subject

a definite point 4 first to the translation 7" and

then to T, as when we perform first 7" and then T’ (see Fig. 106). Sym-
bolically we may write T/« 7" = T" . T".

I shall have something to say later regarding the method by which we

"

4

Fic. 105
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arrive at such axioms. For the present, let me emphasize that our initial
theorems are merely the expression of that which is familiar to everyone,
from the beginning of geometric drawing. Indeed,
the first thing that one does is to move a rigid body,
ruler or compasses or other instrument from one part
of the drawing plane to another, in order to transfer
magnitudes. In particular, we perform the operation
of translation very often by sliding a triangle, say,
. along a straight edge (see Fig. 107). Here experience
Fre. 107 " shows again and again that all the points of the tri-
angle describe parallel lines. Our assumptions, which
we shall not analyze logically any further, are thus not in the least artificial.
We shall now see how far we can get in analytic geometry with these first
notions derived from translations. We cannot talk about rectangular coor-
dinates, of course, since we have nothing yet upon which to base a definition
of a right angle. We can, however, introduce general parallel coordinates.
We draw, through a point O, any two straight lines, which we call the x
axis and the v axis. (See Fig. 108.) We consider the translation T which
carries 0 into an arbitrarily chosen point 1 on the x axis, and we suppose that
repetition of the translation T' yields y
the points 2,3, 4, - - - on the xaxis. If 2
we perform, in the same way, the in-
verse operation T, so defined as to
carry 1 into 0, the point 0 will go

successively into the points —1, —2, 1 2 3
—3,--- of the x axis. We assign to the
points thus obtained the positive and
negative integers 0,1,2,---, —1, —2,
£« ;s 2
as “abscissas” x. To be sure, they Frc. 108

will not exhaust all the points on the
x axis, but they will, accérding to one of our postulates, lie so that every
other point will be included between some pair of them.

In similar manner, we start from any translation 7" along the y axis, and,
by performing it repeatedly forwards and backwards, we obtain the points
1,2,3,...,—1,—2",—3,. - -, to which we assign positive and negative
integral y coordinales. However, we should note here that we cannot set
the x and y segments, thus determined, into reciprocal relation with each
other, since we have not yet introduced the motion (rotation) which would
carry the x axis into the y axis.

We can now consider the points on the x axis with non-integral abscissas,
if we keep fixed the arbitrarily detern..ned unit. We shall discuss first the
rational points. In order to make the matter clear by an example, we shall
seek a translation S along the x axis, which, if repeated once, would produce
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the unit translation 7. We shall denote as the point 1/2 that point into which
S carries O, while repeated application of S will yield points with abscissas
3/2,5/2, - -. In order to establish the existence of such a translation .S and
of these points, we shall first show that the line from 1/2 to the point 1’
on the y axis must be parallel to the line 1 2’ (which corresponds to the
known construction for bisecting a segment). In-
deed, if we consider the translation S (see Fig. 109)
of 0 to 1/2 as made up of the translation 77 of 0
to 1, followed by the tramslation S’ of 1’ to 1/2,
then the once repeated translation S, which, by def-
inition, is identical with T, can be replaced, in
view of the interchangeableness of two translations,
by the once repeated translation T’ followed by O 2 1

the once repeated translation S’. But since the Frc. 109

first carries O to 2’, this amounts to saying that two

applications of S’ carries 2’ to 1. Then 2'1 is a path curve of the translation
S’ and, as such, is parallel to 1}, a path curve of the same translation.

By what precedes, we are already in possession of the points 2’ and 1,
and consequently of the translation S’. Thus the unique constructibility,
from given elements, of the point 1/2, as the intersection of the x axis with
the path curve from'1’ in the translation S’, would be assured if we only
knew that this path curve really cut the x axis. Of course, no one would
doubt this, intuitively, but in the framework of our axiomatic deduction we
need here a special axiom, the so-called “befweenness axiom” for the plane.
This axiom states that if a line enters a triangle through a side, it must
leave it through another side,—a trivial fact of our space perception which
requires emphasis as such, because it is logically independent of the other
axioms. Completely analogous considerations show, obviously, the exist-
ence of a point for every rational abscissa x. We can easily infer from our
postulates that there are such “rational points’ inside of every segment,
however small it may be.

In order, now, really to reach all the points which we actually consider
in geometry, we must take into account irrational abscissas. For this pur-
pose we need a new, likewise very obvious axiom, one that is merely a precise
statement of the requirements of continuity mentioned above. There are in-
fimitely mawy other points on the x axis (translations of the axis into itself)
whick have to the rational points the same relations of order and continuity
which the irrational numbers have to the rational. This axiom is the more
plausible, in that, conversely, the introduction of irrational numbers came
about historically from a consideration of geometric continuity.! We have,
finally, all the points of the x axis brought into reversibly unique correspondence

1 See the discussion in Part I, p. 31 et seq.
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with all the positive and negative real numbers x. An analogous relation can
of course be set up for the points of the y axis.

Let me remind you that the method thus sketched for comstructing a
scale on a line is a thoroughly natural one. When we make a scale, we do it
by sliding a rigid body that has the arbitrary length of the unit (say the dis-
tance between the points of the com-
passes) along a straight edge, and by
subdividing the segments thus ob-
720,25 tained.

““““““““““ A Each translation of the plane along
3 foa >z the x axis can now be characterized by

a simple equation, which, for every

point x of the x axis, gives the abscissa
of the new position: ' = x + a. In other words, the rational or irrational,
positive or negative segment ¢ is added to x. Similarly, a translation along
the y axis is described by the equation y' = y + 5. If we perform both these
translations successively, in either order, O goes over into a definite point P,
since the translations are interchangeable. We say that P has the abscissa a
and the ordinate b. Conversely, to any point P one can assign uniquely two
numbers ¢ and 5. We need only translate O to P and determine the abscissa
and ordinate of the intersections of the new positions of the axes with their
original positions. There is thus established a one to one correspondence between
the aggregate of the points in the plane and the aggregate of number pairs (a, b),
i.e., we have a complete determination of coordinales in the plane.

It remains for us to consider how the equation of the line looks. Let us
study first the line from O to P (e, 5). Obviously, it must contain all the
points which arise through iteration of the translation which takes O to P,
i.e., the points x = Aa, y = Nb, where \ is an integer. Moreover, we see that
the points determined by these equations for rational values of A, and finally
for irrational values of A, also lie on this line, but that then all the points
on the line are exhausted. FEliminating N, we obtain the equation of the
line in the form x : y = a : 4, or bx — ay = 0. It follows that every equation
of the form ax -+ By = 0 represents a line through O, provided that « and
B do not vanish simultaneously. Now any line can be derived from a se-
lected line through O by translation. It follows then, finally, that all straight
lines are given by all equations of first order,

ox+ By 4y =0,

which, for this reason, are called linear equations.

From the fact that the straight line has a linear equation, it follows that
a large part of the theorems of geometry can be derived without difficulty
by methods of analytic geometry. I cannot go into details here, and I add
merely that we can deduce in this way the whole of affine geometry and hence

Fic. 110
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also the whole of projective geometry. We can get this far simply on the basis
of the special postulates concerning the subgroup of «? translations. I shall
lay stress upon only one more fact, which we shall use later. We proved
earlier, by means of the theorems of projective geometry, the theorem of
Mibius, that every collineation is a projective transformation, i.e., a trans-
formation which is given by a linear fractional or a linear integral substitu-
tion of coordinates. Now, according to our first assumptions, all motions
were collineations, under which there corresponds to every finite point likewise a
finite point. On the other hand, however, we possess now the whole of pro-
jective geometry, so that, from our standpoint, the theorem of Md&bius
is also valid. Thus every motion will be represented necessarily by a linear in-
tegral transformation of the parallel coordinates x and y, which were introduced
above (see p. 169).

Thus far we can talk only of the distance between two points on the x or
on the y axis, if we wish now to press farther into the metric notions of geome-
try, and, in particular, to know about the angle between two lines and the dis-
tance between two arbitrary points, we must turn
our attention to the entire group of motions.

We shall consider, in particular, the motions
which leave a point, say the origin O, unchanged.
These are the so-called rofations about this point.
According to the general postulate concerning a
the determination of a motion, there is just one
rotation which carries a ray ¢ through O into an
arbitrary ray o’ through O (see Fig. 111). These
rotations are, in a sense, dual to the translations,
since they leave a point unchanged, whereas translations carry a line
into itself. Just as with the translations, we shall think of the rotations as
carried out continuously from the initial position on, and we shall talk again
of the path curve which each point describes.

There is, however, one essential difference between rotations and transla-
tions, which we must expressly formulate here as a postulate. Tke rays a’,
a"”, - -, which are derived from a by repetition of one and the same rotation
about O ultimately coincide with or include every ray through O (whereas a trans-
lation only yields the points of a single ray). In particular, therefore, the con-
tinuous rotation of the ray ¢ must ultimately return it to its initial position,
whereby each point of @ returns to its original position. The path curves are
thus closed lines which meet each ray through O in just one point 4, so that
all segments OA4 are congruent to each other (i.e., can be carried over into
one another by a motion). They are what are commonly called circles with
center O.

By means of these rotations, we shall now establish a scale in the pencil of
rays about O, much as we constructed a scale on the line by means of trans-

’

A
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lations. In this also we must make suitable assumptions as to continuity. I
do not need to carry this out in detail and I give only the result, that we
associate with every rotation a real number, the
angle of this rotation, and every real number ap-
pears as an angle of rotation. The periodicity of
the rotation appears, of course, as a new con-

2R 0 . .
iE cept, and it would be natural to select, as a unit,
the complete rotation which carries a ray into
itself. Asa matter of tradition, however, we select
3P as unit a quarter of a rotation, which, when re-
peated four times, gives a full rotation and whose
angle is called a right angle R. Each rotation is
thus measured by its angle w - R, where w may be any real number, but
may be restricted, on account of periodicity, to the values from 0 to 4
(see Fig. 112).

R
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!

In the same way, we can define @
the angle scale in the pencil of rays
about any other point 0,. But, with @ Q
the aid of translation, we can trans- \ !
fer the angle scale of O tmmediately to /;1 a,
O;. Indeed, if (see Fig. 113) the rays
a, and a, through O, are given, and \Q T
if T is the translation which carries o
O into Oy, then we designate by a FiG. llg

and ¢’ the rays through O into which

the rays ¢, and a, go under the reciprocal translation 77 If, now, Q is the
rotation about O which carries @ into @', then the rotation Q, of a, into af
about O, is given by the succession of T}, £, and T, or, in symbols,

Ql = ]‘_IQT.
This follows from the fact that the right side represents also a motion which
carries O,a, into O,ay, and such a motion is uniquely determined. We assign
now to {2, the same angle w + R which £ has by the above definition. If we

have a second rotation, ', in the pencil O, there will correspond to it, in the
pencil O,, the rotation

Q= T7QT,
and the combination of Q; and Q] is
Q= TQTT T = THQY)T,

which corresponds to the composition of € and &'. It follows that our trans-
fer actually gives the same scale at O, that would arise through repetition of
the original procedure.
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Thereis a theorem in Euclid, which is omitted from most of our elementary
textbooks, that all right angles are congruent. Of course every boy will look
upon this theorem as self-evident, and I think that it should be ignored in the
schools, since the pupils do not appreciate what it means. However, its con-
tent is identical with the result of the preceding discussion, namely, that
equal angles, which are defined by rotations at different points, can be
brought into coincidence by motions, i.e., that they are congruent.

Now that we have given a general definition of angle, we shall define the
distance between two arbitrary points. Thus far we have been able to compare
distances only on one and the same line by means of translation. If a dis-
tance r is laid off on the x axis, say, from O, we a
can transfer it (see Fig. 114) by rotation about
O, to any line a’ through G. Then we can trans-
fer to o’ the scale of length on the x axis and 7,
then also, by trapslation, to any line parallel to 0
@', and thus to any line whatever. We can, then, F
actually measure the distance between amy two
points by joining them by a line and transferring
to it, in the way indicated, the scale on the x axis. In particular, we shall think
of the scale initially chosen for the y axis as having been derived thus from
the one on the x axis.

Using the new notion of rotation, we shall now complete our apparatus for
analytic geometry. In doing this, we shall use, as we now may, the special
rectangular coordinates x and y, instead of general parallel coordinates.

Y We know already (p. 167) that every motion is
given by a linear substitution in x and y:

> T x,=(01x+b1y+61):N,
y' = (axx + boy + c2) : N.

Since this carries each finite point into another finite
point, the denominator N must be constant and may
be set equal to 1. If we consider in particular a rotation about O, then
¢1 = ¢; = 0, and we have

(1) ¥ =ax+by, ¥ =ax+by.

For the special rotation through a right angle, we can state at once the
form of the equations. Since we have rectangular coordinates, the x axis is
carried into the y axis, and the y axis is carried into the negative x axis, so
that we have

¥
]
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(2) 7= - y’ = x.

The question as to the determination of the formulas of rotation is now
reduced to the following purely analytic problem. We seek a simply infinite
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group of substitutions of the form (1) which shall include the substitution (2) and
such that, if w is a real parameter, every substitution of the group, speaking gen-
erally, arises from (2) by w-tuple iteration. For a rational fractional value of
w, say p/q, this expression means, of course, that the substitution repeated ¢
times gives the substitution (1) iterated p times, while an irrational value of
w is to be approximated by rational values, according to our assumptions re-
garding continuity. It must be understood clearly that we may presuppose no
geometric knowledge whatever, especially concerning the formulas of rota-
tion of a rectangular coordinate system; however, we may and we shall use
all of our knowledge of analysis without any scruples. The structure which
we thus erect will certainly not be immediately usable for school instruction,
but it does assume a very elegant and simple form.

I shall start with the remark that the rotation (2), by the use of complex
numbers, can be expressed by the one formula

2 ¥+ iy = i(x + 2y).

From this form we see that the result of two successive applications of the
substitution is represented by the relation ' + 7y’ = #2(x 4 ¢y). Thisis an
equation of the same form, where the factor i has taken the place of the
factor i. Similarly an w-tuple iteration, in the foregoing sense, produces the

factor ¢ for each real w. We have, therefore, as the analytic representation
of the rotation of the plane about O through the angle v - R, the formula

3) x4+ iy = °(x + 2y).

In order to carry out this line of thought with precision, we must as-
sume from analysis a complete knowledge of the exponential function ¢?, and
also a complete knowledge of the trigonometric functions, which satisfy
Euler’s formula

e* = cos z + 4 sin 2.

In Wntmg down this relation we do not need to have, at present even a
suspicion of its geometric significance.

We know also the number 7, by means of the formula ¢ = —1, and we
may write

ll
i=e?,

By ¢“ we understand here the value uniquely defined by the formula
o VT T T
1 e cos + i sin 5
If we substitute this value in (3), and separate the real and the imaginary
parts, we have



Foundations of Geometry 171
4)

which is, in elementary analytic symbols, the desired representation of the
10tation group.

With this result, it is natural to choose, as the unit, not the right angle, but the
angle w/2. We shall call this the natural angle scale, as we speak of the nat-
ural logarithm, to indicate that these notions are based upon the nature of
things, although their full appreciation requires deeper insight. In this nat-
ural scale we write simply w instead of ww /2, and we have, as formulas of
rotation, instead of (4), the well-known equations

B ¥ =cosw+x—sinw-y,
Y =sinw: x4 cosw- y.

We must now examine these formulas to see what geometric truths they
contain. These will turn out to be the elementary theorems which are usually
employed in setting up the formulas (5).

1. Let us start with a consideration of the point on the x axis, at a distance
r from the origin: x = r, y = 0. If we turn it through the angle w, the
formulas (5) give as coordinates of its new position

(6) X = r COS w, y = rsin w, %y

where, for brevity, the accents have been omitted 7 Y

from the new coordinates. If, to fix ideas, we w o
take w < 7/2 and consider the right triangle (see xec 16

Fig. 116) formed by the radius vector r, the ab-

scissa x, and the ordinate y of the point (x, y), then the formulas (6) ex-
hibit the connection between the sides and the angle w. From the rela-
tion cos?w + sin? w = 1, which follows from the analytic definition of these
functions, we find at once from (6)

(62) 2y = 12

This is the Pythagorean theorem, which we thus obtain as a resuit of our as-
sumptions concerning motions in the plane. Moreover, we can write (6) in the
form

x .
cosw=2, sinw=2-
r r
We obtain thus the elementary trigonometric significance of our angle functions,

which is the exact form in which they are usually defined: The cosine and the
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sine are the ratios of the adjacent side and the opposite side, respectively, to
the hypotenuse.

2. Itis now easy to state the general analytic expressions for the fundamen-
tal notions distance and angle, if we bring the given elements, points or lines,
through translation and rotation, into the special position just considered.
For the distance between two points (x1, v1) and (x2, y2), we have

r= \/(x1 — x9)% 4 (3’1 - yz)z-
To obtain this result, it is merely necessary to carry the point (2) to the origin
by a translation, whereupon, by the translation formulas (p. 166), the dif-
ferences 1 — %3, y1 — y2 become the new coordinates of the point (1), and
(6a) gives at once our expression for 7. In the same way, we obtain from (6b)
for the angle w between two lines whose equations are e + By + 8, = 0,
aex + Byy + 93 = 0, the formula

a0 + BB , Sin e = aiffs — aaPy .
Vo + B2 Vot + B3 Vo£ + B2 Va2 + B2

I hardly need to give the details of the proof.

Cos w =

3. Finally we have still to discuss the notion of area, of which we have not
made the slightest use, thus far, in our development of geometry. Neverthe-
less, this notion is present in the naive space consciousness of every person,
even if in more or less inexact form. Every peasant knows what it means to
say that a piece of land has an area of so many acres. Although we have suc-
ceeded, then, in laying completely the foundations of geometry—and we
have actually done just that—without using this fundamental notion, it
behooves us to add it now as a supplement to the system, i.e., to express it in
terms of coordinates.

We must begin with a simple geometric discussion, such as the one given in
Euclid or the one given in the elementary presentations. If we have a rec-

tangle with sides 4 and B, we define its areq to

I be the product AB. I we combine two rec-

B tangles, or any two figures of known area, we
! define the area of the resulting figure as the

Iéc 7 sum of the two areas. If we remove from a

rectangle, or from another figure, a smaller
piece lying entirely within it, the remainder
has for area the difference of the given areas.
(See Fig. 117.))

With these conventions, we can proceed at
once to the area of a parallelogram. This figure
arises from a rectangle of equal base and height by taking away a triangle
and adding a congruent one. (See Fig. 118.) Hence its area is equal to

F1c. 118
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that of the rectangle, i.e., to the product of base and altitude. A diagonal
divides the parallelogram into two congruent triangles, each of which has
for area, therefore, half that of the parallelogram: The area of a triangle is
half the product of base and altitude.

If we apply this to a triangle with sides 1, 75, and include angle w, the

altitude upon 7, is 72 sin w; hence the area is Tl
r1re sin w
A=—"T— z
2 7 vY

If we place one vertex of this triangle (see
Fig. 119) at the origin and call the coordi-
nates of the other two vertices (%3, y;) and O
(%2, ¥2), then this formula, with the aid of Fe. 119

the above expressions for distance and for angle, can be written in
the form

7

A= X1y2 — XoY1
2
It is easy to show that rotation of the coordinate system leaves this expres-
sion A unchanged, so that it really supplies a ‘‘geometric concept.” In
order to have invariance under translation, and so under all motions, how-
ever, we must transform the third vertex, i.e., we must set up the formula for
the area of a triangle with vertices at three arbitrary points (x1, 1), (%2, ¥2),
(x3, v3). We obtain in this way the formula

¥1 "N 1
A =% X2 Y2 1 ?
X3 y3 1

which is, indeed, the formula with which we began these lectures (see p. 3).
It is easy to show that, if triangles are combined or subdivided, their areas,
defined as above, are added or subtracted. The proof, as we saw earlier, de-
pends upon simple determinant relations.

The addition of the idea of area to our system of analytic geometry is thus
completed, and we have, at the same time, gained something which is not
contained in the naive conception: Area has become a magnitude affected
with a sign. 1 discussed (see p. 3 et seq.) at the beginning of these lectures
the great advantage thus gained with respect to the free operation with the
formulas and their universal validity, in contrast with the naive notion of
area as an absolute magnitude.

4. Another example of a concept which occurs with more or less precision
in the naive perception of space, which we must add as a supplement to our
system of geometry, is the notion of an (arbitrary) curve. Every person be-
lieves that he knows what a curve is until he has learned so much mathe-
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matics that the countless possible abnormalities confuse him. Good orienta-
tion in this field can be found in the encyclopedia report by v. Mangoldt
entitled Die Begriffe ““ Linie” und * Fliche” (IXX, Ab 2). We shall not bother
here with details but we shall state simply that, for us, a curve is the totality
of points whose coordinates are continuous functions ¢ and x of a parameter
¢, which are differentiable as many times as may be necessary:

z=¢@®, y=x0.

Proceeding in this manner, we can develop immediately, in the frame of our
analytic geometry, all of the notions and theorems which are comprised
usually under the name infinitesimal geometry, the
notions of length of arc, area of curved surfaces,
curvature, evolute, etc. The fundamental idea is
always that we think of the curve as the Limit of
an inscribed rectilinear polygon (see Fig. 120). If
the coordinates of two neighboring points are (x, y)
and (x + dx, y + dy), then it follows at once from
the pythagorean formula that the length of arc is:

I RzE=)

and it follows also, in the same way, from the formula for the area of a tri-
angle with vertex at O, that the area of the sector between the curve and two
radius vectors is given by the formula (see p. 10):

%f(xdy— v dx).

With this I leave our first development of geometry, which was char-
acterized by our placing in the foreground the existence and structure of the
three parameter group of motions and then introducing coordinates, in order
thereafter to make our inferences entirely within the field of arithmetic.
There is a second method of developing geometry, one which is, in a sense,
opposed to this. It leads likewise directly to metric geometry and it has al-
ways played an important role. We shall now turn our attention to it.

Frc. 120

2. Another Development of Metric Geometry—the Role of the
" Parallel Axiom

The contrast with the first development consists in this, that now the con-
cept of motion is consistently avoided, or, at most, brought in as an after-
thought. The fact that this arrangement was preferred in ancient times, as
it frequently still is, was due, in part, to philosophical considerations, which
Ishould at least mention. It was feared that motion would bring into geome-
try an element foreign to it, namely, the notion of time. When an attempt
was made to justify a preference for motion by the marked obviousness of the
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idea of the concept of a rigid body, the objection was raised that this
idea in itself had no precise comprehensible meaning. On the contrary, it
was held that this idea could have meaning for us only if we already pos-
sessed the notion of distance. The empiricist can reply, of course, that the
abstract idea of distance can actually be inferred only from the presence of
“sufficiently”’ rigid bodies. However, let me now indicate briefly the prin-
cipal thoughts of this second development of geometry.

1. We begin, just as before, with the introduction of points and lines, and
with the theorems concerning their connection, order, and continuity.

2. By the side of these—and this is new here—we assume the new funda-
mental notions, on one hand, of the distance between two points (segment)
and, on the other hand, the engle between fwo lines; and we set up axioms con-
cerning them which state, in substance, that segments and angles can be meas-
ured by numbers in the customary manner.

3. Here the first congruence theorem appears as the following characteristic
axiom, which really replaces the axioms of the group of motions: If two tri-
angles have two sides and the in-

cluded angle respectively equal, < Q

they are congruent,i.e., they are m /<\

equal in all their parts. Inour /_

earlier system, this was a prov- 4 B A B
Fic. 121

able theorem, for we can find a
motion which (see Fig. 121) brings the side 4’B’ into coincidence with 4B.
Then A’C’ necessarily falls along AC, because of this assumption, and the
triangles coincide throughout. But if we do not include motions among the
fundamental notions, i.e., if we may not use them, there is no possibility
of proving this theorem, and we must of necessity postulate it as a new
axiom.

4. For the rest, the procedure is precisely opposite to that in our first de-
velopment, as you know. Elementary instruction in geometry does this con-
sistently, adhering essentially to the plan of Euclid, of whom I shall have
something to say later. Itis customary first to prove the pythagorean theo-
rem, and then to introduce the trigonometric functions cosine and sine, from
their meaning in the theory of triangles. From this beginning, the same
analytic apparatus is finally derived that we have stated.

5. In this process it becomes necessary to set up another axiom which is
very important, concerning the theory of parallels. In our first development,
parallelism was one of the first fundamental notions, which appeared im-
mediately upon consideration of translations. Lines were called parallel if
they were path curves of the same translation. Here it is entirely different.
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Parallelism is not among the fundamental notions considered thus far, and
we must now discuss it. Indeed, if we have a line g (see Fig. 122) and a point
O outside it, we join O with a point P of g and let P move out along g through
the positions P/, P/, - - - . Inother words,
we consider the succession of points P,
P’, P” . - or the succession of lines OP,
OP', OP”, .-, whereby there is no
thought of motion in the earlier sense.
The ray OP, under these circumstances,
will reach a limiting position when P
moves off to infinity, and we call this
Limiting line a porallel to g through O. It
does not appear at all necessary that OP
should approach the same limiting posi-
tion when P goes to infinity in both direc-
tions, so that the abstract possibility arises of the existence of two different
parallels to g through O.

In our present development, therefore, it is a new axiom if, according to
our common perception, we postulate that the two limiting positions should
coincide, i.e., that there is only one parallel through a given point to a given line.
Such is the famous parallel axiom, concerning which there has been so much
dispute these many hundreds of years. Itis also called Euclid’s axiom, since
it was expressly formulated by him as a postulate.

I should like to tell you something of the history of this axiom. Through
many years men used their best efforts in the attempt to prove the axiom, i.e.,
to show that it was a consequence of the other axioms, but always in vain.
Of course, these attempts have not all been abandoned, even today. For
although science advance never so far, there will always be people who think
that they know better and who ignore the assured results of exact investi-
gation. The fact is that mathematics has long since advanced, beyond these
futile attempts, to fruitful new investigations and to positive results. As
early as during the eighteenth century, there was raised the following char-
acterstic question, suggestive of new possibilities: s it not possible to set up a
logically consistent system of geometry, free from contradictions, in which
the parallel axiom is set aside, and in which the existence of fwo different
limiting lines in the sense discussed above, i.e., of two different parallels to g
through O, is admitted?

At the beginning of the nineteenth century, this question could be an-
swered affirmatively. It was Gauss who first discovered the existence of a
“nom-euclidean” geomeiry, which is the name that he gave to such a geomet-
ric system. It appears from his posthumous papers that he certainly knew
this in 1816. To be sure, the notes in which he discussed these things were
found only much later and were not printed until 1900 in volume 8 of his

Frc. 122
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collected works.? Gauss himself had published nothing about this great dis-
covery, beyond a few occasional remarks. The jurist Schweikart, about 1818,
independently of Gauss, constructed a non-euclidean geometry which he
called astral geometry, but he likewise did not publish his results. They be-
came known first through a letter to Gauss which was found in the latter’s
papers. The first publications on non-euclidean geometry came from the
Russian, N. J. Lobatschefsky (1828), and the Hungarian, J. Bolyai de Bolya,
the younger (1832),% both of whom had got these results independently of
each other and were in possession of proofs by 1826 and 1823, respectively.
In the course of the century, these things have come into the general pos-
session of mathematicians through numerous articles, so that today, indeed,
every person of general culture has heard of the existence of a non-euclidean
geometry, even though a clear understanding of it can be attained only by
an expert.

In the early part of the second half of the nineteenth century Riemann
gave an essentially new direction to these problems. His work appeared in
1854 in his habilitation address entitled Uber die Hypothesen welche der
Geometrie zugrunde liegen.® Riemann remarked that at the bottom of all the
preceding investigations there was the assumption that the straight line was of
infinite length, which was certainly very natural and obvious. He asked what
would happen if we should give up this assumption, that is, if we should
allow the straight line to return into itself, as does the great circle on the
sphere. We are confronted here with the difference between the infinity and
the unboundedness of space, which can best be seen, perhaps, in two-dimen-
sional space. The surface of the sphere and the ordinary plane are both un-
bounded, but only the second is infinite, whereas the first is of finite extent.
Riemann assumes, in fact, that space s only unbounded and not infinite.
Then the straight line on which the points lie will be a closed curve similar to
a circle. If now we let a point P move, as before, in a definite direction, far-
ther and farther on a line g, it will ultimately return to its original position.
The ray OP of our former discussion will not have a limiting position and
there will be no parallel to g through O. Thus there appears with Riemann a
second kind of non-euclidean geometry, in contrast with the non-euclidean
geometry of Gauss, Bolyai, and Lobatschefsky.

This seems at first paradoxical, but the mathematician notices here, at
once, a relation to the ordinary theory of quadratic equations, which points

1 Leipzig, 1900. The part in question was edited by P. Stiickel.

2 Translated into German in Urkunden zur Geschichie der nichleuklidischen Geometrie by
Engel and Stickel: Part I (Lobatschefsky) by Engel (Leipzig, 1898). [Part 2 (W. and J.
Bolyai) by Stickel, Leipzig, 1913.] See also Urkundensammlung zur Vorgeschichte der
nichieuklidischen Geomelrie by Stickel and Engel, Leipzig, 1895.

3 Pyblished in vol. 13 of Abhandlungen der Gesellschaft der Wissenschaften zu Got-
tingen = Gesammelle mathematische Werke, 2nd ed., p. 272 et seq. (Leipzig, 1892). [Pub-
lishing firm Springer, Berlin, 3rd edition by H. Weyl, 1923.]
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the way to an understanding of the matter. Indeed, a quadratic equation
has either two different real roots, or none at all (both being imaginary), or
finally, as a transition case, one real root counted twice. This is entirely
analogous to the two different real parallels of Gauss, to the absence of real
parallels in Riemann, and finally to the transition case of one parallel counted
in two ways, as the same limiting position, in euclidean geometry.

Before I enter more carefully upon the discussion of non-euclidean geom-
etry, I shall touch, at least briefly, upon its great significance from the philo-
sophical side, by virtue of which it has always aroused tremendous interest
with the philosophers, but has also often been flatly rejected.

Above all, this new field throws light upon the ckaracter of geometric axioms
looked at from the standpoint of pure logic. Indeed, from the existence of non-
euclidean geometry, we can conclude at once that the euclidean axiom is
not a consequence of the preceding fundamental notions and theorems, nor
are we under any other logical compulsion to accept it. For if we retain all
the other axioms but replace this one by a contrary assumption, we are not
led to a contradiction, but we obtain, rather, non-euclidean geometry, as a
logical structure which is just as correct as is euclidean geometry. Details of
our space perception, suck as those described in the parallel axiom, are thus
certainly not o purely logical necessity.

The question arises, now, whether or not, perhaps by means of sense per-
ception, we can decide as to the correctness of the parallel axiom; upon
this also non-euclidean geometry throws a clear light. I fact, it is certainly
not true that immediate sense perception teackes us the existence of just one
parallel. For, our appreciation of space is decidedly not absolutely exact.
As in every other region of sense perception, so here, we can no longer recog-
nize as distinct, magnitudes (segments, angles, etc.) whose difference lies
below a certain limit, the so-called threshold of perception. Thus if we draw,
in particular, through the point O, two lines very close to one another (see
Fig. 123), certainly we can no longer distinguish between them if we make
the angle between them small enough, say 1", or, if one will, .001”, or even
still smaller. Thus it would be difficult to decide, by immediate sense per-
o) ception, whether there is really just one

g Dparallel to g through O, or two which are
separated from each other by such a small
angle. We sense this still more distinctly
if we think of O as very far away from g, say
as far away as Sirius, or a million times that
far. With such distances, sense perception
loses completely the keenness which we

otherwise expect of it, and we should certainly no longer be able to deter-
mine visually whether the limiting position of the rotating ray provided one
or two parallels to the given line g.

Fic. 123
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Now this situation actually fits into the non-euclidean geometry of the
first kind just as well as it does into euclidean geometry. As we shall soon
see, when we look into the mathematical formulas, there is an arbitrary con-
stant involved. By a suitable choice of this constant, we can make the angle
between the two parallels to g arbitrarily small if the point O is moderately
distant from g, and this angle becomes appreciably large only when O is
sufficiently remote from g. In view of the fact that our space perception is
adapted only to a limited part of space, and then only with a limited degree of
accuracy, it can obviously be satisfied by a non-euclidean geometry of the first
kind as closely as we please.

But a similar thing is true also for Riemannian non-euclidean geometry.
It is only necessary to realize that the infinite length of the straight line
cannot be an inference from our sense perception. We can follow any straight
line only in a finite part of space; consequently it cannot contradict our
space experience if we say that the line has a length that is enormously great
but still finite, perhaps a million or more times the distance to Sirius. Imag-
ination can conjure up arbitrarily large numbers which exceed every pos-
sibility of immediate perception. In accord with these considerations, we can
represent the situation in any limited part of space with any desived degree of
accuracy by means of a Riemannian non-euclidean geometry, for such a geom-
etry also has an arbitrary constant.

The logical and intuitive facts here touched upon, as they present them-
selves from the standpoint of mathematics, run counter in high degree to
that conception of space which many philosophers connect with the name
Kant, and according to which all theorems of mathematics must have ab-
solute validity. This explains why non-euclidean geometry, since its intro-
duction into philosophical circles, has attracted so much attention and
aroused so much opposition.

If we turn now to a proper mathematical treatment of non-euclidean geom-
etry, we shall do best to choose the path through projective geometry. That is
the derivation which I gave in 1871 in volume 4 of the Mathematische
Annalen.

We think of projective geometry as developed from the fundamental no-
tions point, line, plane, and their axioms of connection, order, and conti-
nuity, independently of all measurement, as I indicated briefly in the begin-
ning of the discussion of the foundations of geometry (p. 160 et seq.). In
particular, we introduce point coordinates #, y, z, or homogeneous coordi-
nates £:%:{: 7, and also plane coordinates o : B :4 : 9, so that the mutual
incidence of point and plane is given by the bilinear equation

of + Bn+ ¢+ ér = 0.

L [ber die sogenannte nichteuklidische Geometrie, p. 573 et seq. = [F. Klein, Gesammelte
mathematische Abhandlungen, vol. 1, p. 254 et seq.].
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Upon this foundation we have already set up ordinary euclidean geomeiry,
by means of the theory of invariants and Cayley’s principle, by adjoining
the special quadratic form written in plane coordinates

(I)0=Ol2+ﬁ2+')/2,

which, set equal to zero, represents the imaginary spherical circle. The
angle between the two planes

@ = arc cos oy + 3132 -+ Y1y2 ,
Voi + B+ viVeg + B +

and the distance between two points

,— VEire — £11)° + (s — 1am0)* + (Cimz — $o7)?

TiTe

were then, as we showed (p. 156 et seq.), simple simultaneous invariants of
the given figure (the two planes or the two points) and the form &;.

We are going to try to set up non-euclidian geomelry in the same way.
Instead of the imaginary spherical circle a2 + % 4 ¥ = 0, we take another
quadratic form which is “near” the preceding one, namely:

P=a?4 P2+ v —¢€- 8%

Here e is a parameter which can be chosen arbitrarily small, and for € = 0,
we have & = ®;. Our form is so chosen that for positive € we get non-
euclidean geometry of the first kind; for negative ¢, Riemannian non-
euclidean geometry; while for e = 0, we get the preceding formulas for
ordinary euclidean geometry. It is essential in the setting up of this form ®
that its determinant

OO O
(=Rl
o= OO

o OO

—€

is, in general, different from zero. The determinant vanishes only in the
special case € = 0, i.e., when ® = 0 represents the imaginary spherical
circle. Our assumption then amounts to this, that we replace the quadratic
form whose determinant vanishes by a quadratic form whose determinant is
positive or negative (but arbitrarily small in absolute value).

We shall obtain the definitions of a system of measurement for our non-
euclidean geometry by constructing, from the general form ® and from the
figure consisting either of two planes or of two points, invariants entirely
analogous to those which represent the euclidean magnitudes for the special
form & = a? + B2+ % This is nothing else than the notion of Cayley,!

VIn the Sixth Memoir upon Quantities, already cited (p. 145).
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developed in 1859, “that one can define a system of measurement just as well
with respect to any quadratic surface (e.g., the surface ® = 0) as with respect
to the imaginary spherical circle. In view of the limited space to which this
digression is confined, it will be expedient to set down the analytic formulas
in advance. In this way the situation can be most quickly outlined with
precision, and every shadow of mystery avoided. Of course, this presenta-
tion can lead to a full understanding of the material only if it is afterwards
worked through carefully from the geometric side, as you will find it done
in my article, already mentioned, in volume 4 of the M athematische Annalen.

If we first consider two planes, it seems natural to set up the expression
for the “measure of the angle between them with respect to the surface & = 0”
by generalizing the preceding expression for the angle. Just as there, we
construct, from the values of the form ® and of its polar form, the formula

ooy -+ 3132 + Yiyz — €010, .
Voi + B} + v — ediVad + B} + 7} — €&

In this way we obtain an expression which is obviously invariant, which for
€ = 0 actually goes over into the formula for angle of euclidean geometry.

It is not so immediately clear how one can transform the expression for
the distance between two points for our system of measurement. In fact,
the difficulty in the change lies in the fact that we now have a form whose
determinant does not vanish, instead of the form @,, whose determinant
vanishes, which characterized euclidean measurement. However, we can
discover how to set up the expression for distance if we proceed exactly dual-
istically to the definition of the angle just given. In this way, we are certain
to get an invariant. We set up first, then, the equation of the surface ® = 0
in point coordinates. We get its left side f(£, 4, {, 7), as you know, by bor-
dering with point coordinates the determinant A of &:

100 0 ¢
010 0 7 .
f=10 01 0 {|=e&+9+)—71%
0 00 —e 7
En ¢ 70

We now transfer the expression for @ by writing the quotient of the pola®
form of f divided by the product of the square roots of the values of f formed
for the points 1 and 2, and then taking the arc cosine:

e(1bs + nume + $1fs) — Tt )
Ve& + i+ 8D — Ve +mi + 1D — 73
The factor k which we have inserted permits us to make an arbitrary seg-

ment equal to unity, as we are in the habit of doing. Moreover, this will
become necessary when we go over to euclidean geometry. We must think

W = arc cos

r = karc cos
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of & as real when € is negative and as pure imaginary when € is positive, in order
that  shall be real for all real points or at least for a certain sub-region of all
real points (when e > 0), which then make the real substratum of non-
euclidean geometry.

We have now reached a general definition of distance. It remains, only,
to show that, for € = 0, it leads to the customary expression of euclidean geom-
etry. This is not so easy here as it was before for the angle w, for if one sets
€ = 0 outright, the quotient is 1, and r/k is equal to zero, to within an un-
determined additive multiple of 2. In spite of this somewhat paradoxical
result, we can nevertheless obtain finally the euclidean expression by means
of a certain device. To this end, it is convenient to transform the defining
equation for 7 by means of the equation arc cos @ = arc sinVl — a?. Re-
ducing to a common denominator, we find that the value of 7 is

karc sin\/ {e@mi+&) i} {e(G+mi+8) — 8} — {e(frbo e +0ils) —Tima}
{e(+ i+ — i} (G +m+8) — i)

We can now easily transform the numerator. Indeed, using a known de-
terminant relation, the value of f (i.e., the determinant A of the form &,
once bordered) for the point 1, multiplied by the same determinant for the
point 2, minus the polar form taken for points 1 and 2, can be shown to be
equal to the product of the determinant A itself by the determinant A bor-
dered twice with the coordinates of 1 and 2, that is, equal to the product

1t 0 0 0 & &
100 Ol [0 1 0 0 m n
010 010 0 1 0 & b,
001 0/ ]0 0 0 —e 71 7
000—6 £1 U §'1 T10 0

22 72 {2 2 0 0

Performing this multiplication, we find

—e+ {(§ire — £+ (mre — mer)? -+ (5172 — $om0)?
—e(mle — nel1)? — (fafe — (o81)? — e(me — Eam1)?}.

Anyone who is not skillful in calculating with determinants can show by
direct transformation that this expression is identical with the numerator
in the preceding expression for r. If we insert this expression in the formula
for  and put € = 0, we get, of course, just as in the first form,

7 .

7= arcsin0 = 0,
because of the factor v—e. But if we do not allow € to become zero, but
only to become very small, the arc sine is, as a first approximation, equal
to the sine. We can neglect, in the numerator, the three squares, each multi-



Foundations of Geometry 183

plied by €, and, in the denominator, that term in each factor which is multi-
plied by €. There remains, as a first approximation,

- \/_-——c"(gl‘f'z = &) 4+ (mre — am)® + Came — $o0)?

Ti1* T2

We come now to the device mentioned above. During the passage to the
Umit, im € = 0, we do not assign to k a fixed value, but we let it become infinite
in such a way thatlim(k+ v—¢) = 1. For this purpose we must, of course,
let k& run through pure imaginary or through real values according as e
approaches zero through positive or through negative values. But it is
evident that the expression for distance in euclidean geometry (p. 180) actually
does emerge from this passage to the limit.

If we think our way into the geometric significance of the form f, as well
as the significance of the expressions which have been only analytically put
down here, it turns out that we actually have, for € > 0, non-euclidean geom-
etry of the first kind, for € < 0, that of the second kind, and for € = 0, of course,
euclidean geometry. To be sure, I cannot give the whole argument here. For
that I must refer you to my article in volume 4 of the Mathematische An-
nalen.! At that time I proposed for these three gometries the names Ayper-
bolic, elliptic, and parabolic, since the existence of two real, two imaginary,
or two coincident parallels corresponds precisely to the behavior of the
asymptotes. of these three conics, respec-
tively. You will find these names frequently
in the literature.

I should like to show in greater detail, by ;
an example, what form the theory of par- !
allels takes from the expression for distance. g P
For this purpose I choose Ayperbolic geometry
in the plane. We must then set the third
coordinate equal to zero. Qur quadratic form
becomes ¥ = a? 4 B2 — €8 which, equated
to zero, represents a real conic which we can think of as an ellipse, since
€ > 0. The distance formula takes the form

e dtbtam—rm
VE(E% + 7)) — T%Ve(g + 77%) — ‘r%

where £ is pure imaginary. It yields, as it is easy to see, real values for
points which lie inside the real conic, where we mean by inside points the
totality of the points in a plane from which no real tangents to the conic
can be drawn. Hence the field of operations of the real hyperbolic geometry

=0

.

Fic. 124

1 Attention is again drawn to Einfiihrung in die nichteuklidische Geometrie by F. Klein
(edited by W. Rosenbaum), which is about to appear as a revision of the earlier mimeo-
graphed volume of Klein’s lectures on non-euclidean geometry.
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consists exclusively of these interior points and of the lines which lie in this in-
terior. The points on the conic (see Fig. 124) itself represent the infinite
region. For, the formula yields the value « for the distance of each point 1
from a point 2 on the conic {for which e((2 4 #3) — 72 = 0)]. Thus there
are, in this sense, two infinitely distant points in hyperbolic geometry on
every straight line, namely its intersections with the conic ® = 0, but there
is only one on each ray a. If we have a line g, and a point O not lying on it,
then the parallels through O, in the sense of our earlier definition (p. 176),
as the limiting positions of the lines joining O with a point which moves
along g to infinity, are the lines joining O with the intersections of g with
the conic. There are, in fact, two parallels, essentially different from each
other, each of which belongs to one of the two directions on g.

Let me make one more brief remark, which concerns a comparison with
our first development of euclidean geometry. We started there with the group
of motions. That was the totality of collineations which left the relations
of measure unchanged. But there are likewise such collineations in non-
euclidean geometry. A general homogeneous equation of the second degree
has ten terms and therefore nine essential constants. In the most general
space collineation there are fifteen arbitrary parameters, so that there is a
stx-fold infinity of collineations which transform a given quadratic form, e.g.,
our ® form, into itself. Indeed, this is the condition that the relations of
measure which we have introduced should remain unchanged. Hence there
is also in each non-euclidean geomelry a six-fold infinite group of “motions”
which leave w and r unchanged. For geometry in the plane the number of
parameters would reduce, as before, to three.

We can, therefore, develop each non-euclidean geometry also by starting
from the existence of a group of motions. It remains only to point out how it
came about that our earlier development led us exclusively to euclidean
geometry. The reason was, of course, that we selected from among the
motions the special two-parameter (in space it would be a three-parameter)
subgroup of so-called parallel translations, which had only straight lines as
path curves. There are no such subgroups in any non-euclidean geomeliry,
and since we postulated their existence at the beginning, we excluded non-
euclidean geometry once and for all and retained only euclidean geometry.

Let me conclude this special discussion of non-euclidean geometry with
a few general advisory stafements, as I may call them.

1. Whereas I reported earlier that, from the side of philosophy, non-
euclidean geometry had frequently not been fully understood, I must em-
phasize that it is today quite generally recognized in the science of mathe-
matics. In fact, for many purposes, e.g., in the modern theory of functions
and in the theory of groups, it is used as a very convenient means for making
clear visually relations that are arithmetically complicated.
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2. Every teacher certainly should know something of non-euclidean geometry.
Thus, it forms one of the few parts of mathematics which, at least in scat-
tered catch-words, is talked about in wide circles, so that any teacher may
be asked about it at any moment. In physics there are, of course, far more
such things which are on every tongue and about which, therefore, every
teacher should be informed. Indeed, almost every discovery in physics be-
longs in this category. Imagine a teacher of physics who is unable to say
anything about Réntgen rays, or about radium. A teacher of mathematics
who could give no answer to questions about non-euclidean geometry would
not make a much better impression.

3. On the other hand, I should like to advise emphatically against bring-
ing non-euclidean geometry into regular school instruction (i.e., beyond
occasional suggestions, upon inquiry by interested pupils), as enthusiasts
are always recommending. Let us be satisfied if the preceding advice is
followed and if the pupils learn really to understand euclidean geometry.
After all, it is in order for the teacher to know a little more than the average
pupil.

I should like to consider briefly the further development of modern science
which has been occasioned by non-euclidean geometry. A good starting
point was made from one of its results, namely, that the euclidean parallel
axiom was logically independent of the other axioms of geometry (see p. 176).
This stimulated the study of the other geometric axioms as to thetr mutual logicel
dependence or independence. From this arose the modern theory of geometric
axioms, which in its procedure follows closely the path which the older in-
vestigation had disclosed. In it, we determine what parts of geometry can
be set up without using certain axioms, and whether or not, by assuming
the opposite of a given axiom, we can also secure a system free from con-
tradictions, that is, a so-called “ pseudo-geometry.”

As the most important work belonging here, I should mention Hilbert’s
Grundlagen der Geometrie.! Its chief aim as compared with earlier investi-
gations, is to establish, in the manner indicated, the significance of the axioms
of continuity. To accomplish this, it is of course necessary, above all, to
arrange the system of geometric axioms so that the theorems on continuity
come at the end, whereas for us they have thus far stood at the beginning.
Thus we were unable, in our development of non-euclidean geometry, to
make use of the first arrangement of the axioms (p. 162 et seq.), which put
the notion of parallels at the head. To the contrary, we were obliged to
create a system of axioms in which the greater part of the discussion said
nothing about parallels, and in which the parallel axiom was added at the
end. Setting aside the essential departure thus indicated, Hilbert’s system

1 5th edition, Leipzig and Berlin, 1922
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of axioms accords, in the main, with our second development of elementary
geometry (p- 174 et seq.).

In this sense, Hilbert inquired ¢z kow for geometry can be developed without
using the axioms of continuity. He includes in the ireatment also the “ pseudo-
geometries,” in which all the other geometric axioms are valid, excepting only
the axioms of continuity. Such geometries consist essentially of those facts
which are concerned with the one-to-one correspondence between the points
of a line and the ordinary real numbers (their abscissas). (See p. 161 and
p. 164.) Of course, I cannot give the details of the line of thought of Hil-
bert’s investigations or the interesting results which he obtained concerning
the logical connection between certain geometric theorems and axioms. With
these few explanatory remarks, I leave it to you to read all this in Hilbert’s
own writings. Let me recall, however, that his non-archkimedean geometry,
which we discussed in the first volume of these lectures ! belongs here. This
is, indeed, such a pseudo-geometry in which that axiom of continuity which
was formerly named after Archimedes, but which now often bears the name
of Eudoxus, is no longer satisfied, i.e., in which the abscissas of two different
points may differ by an “actually infinitely small quantity,” of which no
finite multiple is equal to an ordinary finite real number.

I do not wish to conclude these brief remarks on the modern theory of
axioms without saying a few words on the important question concerning
the true nature of geometric axioms and theorems. Of course, this takes me
out of the strict field of mathematics into that of philosophy and the theory
of knowledge. I have already emphasized one thing about which most
people today are in reasonable agreement. That is that we are concerned
here with the leading concepts and statements whick one must of necessity put
into the front rank of geometry in order to be able to deduce mathematical proofs
from them by pure logic. This agreement does not answer the question as
to the real source of these leading concepts and statements. There is the old
point of view that they are the infuitive possession of every person, and that
they are of such obvious simplicity that no one could question them. This
view, however, was shaken, in large measure, by the discovery of non-
euclidean geometry; for here it is clearly shown (see p. 177 et seq.) that
space perception and logic by no means lead compellingly to the euclidean
parallel axiom. To the contrary, we saw that, with an assumption which
contradicts the parallel axiom, we come to a logically closed geometric sys-
tem which represents actual perceptual relations with any desired degree
of approximation. However, it may well be claimed that this parallel axiom
is the assumption which permits the simplest representation of space rela-
tions. Thus it is true in general that fundamental concepts and axioms are
not immediately facts of perception, but are appropriately selected idealizations

1 See Part I, p. 218 et seq.
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of these facts. The precise notion of a point, for example, does not exist in
our immediate sense perception, but is only a fictitious limit which, with our
mental pictures of a small bit of shrinking space, we can approach without
ever reaching.

In contrast with this, one finds frequently now, on the part of persons
who are interested only in the logical side of things and not in the side of
perception or of the general theory of knowledge, the opinion that the axioms
are only arbitrary statements which we set up at pleasure and the fundamental
concepts, likewise, are only arbitrary symbols for things with which we wish to
operate. The truth about such a view is, of course, that within pure logic
there is no room for these statements and concepts, and that they must
therefore be supplied or suggested from other sources—precisely through
the influence of perception. Many authors express themselves much more
one-sidedly, however, so that in recent years, in the modern theory of
axioms, we have frequently found ourselves led in the direction of that
philosophy which has long been called nominalism. Here interest in things
themselves and their properties is entirely lost. What is discussed is the
way things are named, and the logical scheme according to which one oper-
ates with the names. For example, it is said that we call the aggregate of
three coordinates a point, “without thinking of any particular object,”
and we agree ‘“‘arbitrarily”” upon certain statements which shall hold for
these points. In such a discussion, we may set up axioms arbitrarily, and
without limit, provided only that the laws of logic are satisfied and, above
all, that no contradictions appear in the completed structure of statements.
For one, I cannot share this point of view. I regard it, rather, as the death
of all science. The axioms of geometry are—according to my way of thinking—
not arbitrary, but sensible, statements, whick are, in general, induced by space
perception and are determined as to their precise content by expediency. '

As a counterpart to the philosophical digressions to which we have re-
peatedly been led in the foregoing pages, I should like to give some account
of the history of geometry, in particular of the development of views concern-
ing its foundations. In contrast with similar considerations which we re-
peatedly gave last winter in the fields of algebra, arithmetic, and analysis,
we notice, at the outset, a great difference. These other disciplines, in their
modern form, really have a history of only a few centuries. They had their
start when men began to calculate with decimal fractions and letters, in
round numbers about the year 1500. Geometry, however, as an independent
discipline has a history reacking far back into Greek antiquity. Indeed, it had
even then reached such a high stage of development that for a long period,
reaching almost to the present time, men looked upon Greek geometry as
a model of a completed science. At the same time, the famous Elements
(grouxeta) of Euclid, by far the most significant systematic textbook to
survive, was looked upon as the whole of Greek mathematics. There is,
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indeed, hardly another book which, for so long, maintained such a place in
its field of science. Even today, every mathematician must come to terms
with Euclid. To him, therefore, we shall devote the last section of the present
chapter.

3. Euclid’s Elements

Let me first put before you the edition of this work prepared by J. L. Hei-
berg * of Copenhagen, which is the best from a philological standpoint. In
it, the Latin translation of the original Greek text is added, which is also
very helpful for those who have not studied Greek. Indeed, Euclid’s Greek
differs widely, especially in the technical terms, from the Greek taught in
the schools. As literature to serve as an introduction to Euclid, I should
recommend Zeuthen’s Geschichte der Mathematik im Altertum und Mittelal-
ter  and Max Simon’s Euklid und dic 6 planimetrischen Biicher.® You will
find your way into the subject if you read first Simon, then Zeuthen’s more
general discussion, and then the text of Heiberg, but the latter should be
read by all means carefully and with a critical mistrust of each translation.

Very little is known of Euclid personally. We know only that he lived
in Alexandria about 300 B.c. However, we are informed about the general
scientific activity that existed in Alexandria. After the founding of Alexan-
der’s world empire, there arose gradually the need for collecting and bring-
ing into a unified scientific system, everything that the past centuries had
created, so that there developed in Alexandria a system of instruction which
corresponded closely to certain phases of our university teaching of today.
But the collection and arrangement of the material at hand took precedence over
the free onward drive of scientific investigation, so that a certain tendency to
pedantry manifested itself in this whole activity.

Before we go over to a detailed consideration of the Elements, let me make
some general remarks about the place in history and the scientific importance
of Euclid, or rather of Euclid’s Elements. Although a complete picture of
Euclid would require the consideration of his numerous lesser writings, I am
nevertheless justified in discussing here only the one great work; for this
alone has achieved the remarkable commanding position which, from our
standpoint, urgently.demands discussion.

As a justification for this commentary, I offer the remark that the under-
lying reason for the erroneous appraisal of Euclid’s Elements is a mistaken
belief as to the Greek spirit, which was widespread for a long time, and which
indeed still persists. It was believed that Greek culture confined itself to
relatively few fields, but that it wrought in these fields with such complete

! Euclid’s Opera Omnia, Books I-V, Elementa, Leipzig, 1883-1888.

2 Copenhagen, 1896.

3 Leipzig, 1901 = Abhandlungen zur Geschichte der mathematischen Wissenschafien, XI.
[See also the annotations of T. L. Heath in his English translation of the Heiberg text: The
Thirteen Books of Euclid’s Elements, 3 vols., Cambridge, 1908.]
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mastery that its achievements must remain a model for all time supreme
and unattainable. The fact is, however, that modern philological science
has long since shown this view to be untenable. It has taught us, rather,
that the Greeks, as no other people, busied themselves, with the greatest
possible versatility, in all fields of human culture. Just as their accom-
plishments in every field were certainly admirable, for their era, so cer-
tainly they failed in many things to get beyond what we now consider
the very beginnings. In no field can it be said that they attained the all-
time summit of human achievement.

As to mathematics, in particular, this overestimate—or should I say under-
estimate?—of Hellenism found expression in the dogma that the Greeks
had given very substantial attention to geometry and had set up there a
system that could not be surpassed. This belief had led, in particular, to
an outright cult of Euclid’s Elements, in which it was claimed that such a
system had been completely realized. In opposition to this old and outworn
belief, I make the assertion that although ke Grecks worked fruitfully, not
only in geometry, but also in the most varied fields of mathematics, nevertheless
we today have gone beyond them everywhere and certainly also in geometry.

I shall consider this assertion in detail and shall try to justify it. In writ-
ing his Elements, Euclid wished by no means to compile a cyclopedia of the
accumulated geometric knowledge of his time; otherwise he would not have
disregarded entire portions of geometry which were certainly known in his
day. I need mention only the theory of conics and of higher curves which the
Greeks had already begun to treat extensively,! although we owe its full
development to Apollonius (about 200 B.c.). Moreover, the Elements were
to be merely an infroduction to the study of geometry, and therefore to
mathematics itself. Hence it seems they were intended for a particular
purpose. They were to treat mathematics in the way considered necessary,
in the sense of the platonic school, as a preparation for philosophical studies
in general. With this in mind, we see why emphasis was placed upon working
out the logical connections and upon setting forth geometry as a closed
system, while all practical applications were laid aside. In favor of this
system, however, Euclid certainly passed over an entire part of the the-
oretical knowledge of his time which was not far enough developed to fit
into his needs.

We can best obtain a correct impression of the limited character of the
material of Euclid’s Elements, compared with the range of Greek mathematics
as a whole, if we use for comparison the individuality and the achievement
of the most eminent of Greek mathematicians, Archimedes, who lived shortly
after Euclid, in Syracuse, about 250 B.c. I shall mention only a few espe-
cially interesting and distinguishing facts.

1 Euclid had himself written a work on conics, which has not survived.
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1. In marked contrast to the controlling spirit in Euclid’s Elements,
Archimedes shows a strongly developed semse for numerical calculation.
Indeed, one of his greatest feats, to mention only one definite example, was
the calculation of the number = by approximating to the circle with regular
polygons. Among other results, he derived the approximation 22/7 for .
Euclid shows no trace of interest for such numerical values. Instead, we
find in Euclid the fact that two circles are to each other as the squares of
their radii, or that two circumferences are to each other as the radii them-
selves; but. the calculation of the proportionality factor, this number , is
not even attempted.

2. Characteristic of Archimedes was his far-reaching imderest in applica-
tions. It is well known that he discovered the fundamental principle of
hydrostatics, and that he took an active part in the defense of Syracuse, by
constructing effective machines. How little thought Euclid gave to applica-
tions, on the contrary, appears clearly from the fact that he does not once
mention even the simplest drawing instruments—the ruler and compasses.
He merely postulates, in the abstract, that one can draw a line through two
points, or a circle about a point, without devoting a single word to 4ow one
does it. Here Euclid is doubtless under the influence of the notion which
prevailed in certain ancient schools of philosophy, that practical application
of a science was something inferior, artisan-like. Unfortunately this view
persists in many places today, and there are still always university teachers
who cannot be too scornful of any concern with applications, as being ig-
noble. The arrogance of such views should be vigorously combatted. We
should value equally highly every admirable performance, whether in the
theoretical or in the practical field, and we should allow each individual to
concern himself with those things to which he feels most strongly inclined.
In this way, any person will show himself the more versatile, the more tal-
ents he possesses. The most eminent mathematicians, as Archimedes,
Newton, Gauss, have always uniformly included both theory and applica-
tions.

3. Finally, another difference attracts particular attention. Archimedes
was a great investigator and pioneer, who, in every one of his works, made
advances in knowledge. Euclid’s Elements, however, are concerned merely
with the collection and systematization of knowledge already at hand. That
is the reason for the difference in the form of presentation, to which I drew
your attention last semester when I was talking more generally.! In this
connection, there is an especially characteristic manuscript 2 of Archimedes

1 See Part I, p. 80.

% See Heiberg und Zeuthen, Eine neue Schrift des Archimedes, Leipzig, 1907. Bibliotheca
Mathematica, 3rd series, vol. 7, p. 321 et seq. [See also the edition of Archimedes by T.

L. Heath, which was translated into German by F. Klein (Berlin, 1914); the handwriting
is reproduced there, p. 413 et seq.]
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which was discovered in 1906 (mentioned in Part I), in which he confides
to a scientific friend his most recent investigations on the volumes of space
figures. His presentation resembles closely our present method of instruction.
He proceeds geneticelly, first indicating the train of thought, and by no
means using the rigid arrangement of hypothesis, proof, conclusion which
characterizes the euclidean Elements. Moreover, it was known before this
new discovery, that the Greeks had, besides this crystallized “euclidean”
presentation of a systematized discipline, also a free genetic form, which
was used, not only by the investigator, but also by the teacher in his instruc-
tion. Presumably Euclid also employed this method in his other works
as well as in his teaching. Indeed, there was in Alexandria at that time an
analog of our present-day mimeographed volumes of lectures, called hypom-
nemata, i.e., loose-leaf reproductions of oral presentations.

This will suffice as a comparison of the Elements with the whole range of
Greek mathematics. Asa conclusion of this discussion, I shall show, by means
of a few simple examples, how far modern mathematics has advanced be-
yond that of the Greeks. One of the important differences is that the Greeks
possessed no independent arithmetic or analysis, neither decimal fractions,
which lighten numerical calculation, nor general use of letters in reckoning.
Both of these, as I showed in my lectures last winter, are inventions of early
modern times, during the renaissance. As a substitute, the Greeks had only
a calculus in geometric form, in which operations were performed construc-
tively with segments or other geometric magnitudes, instead of with num-
bers, a process much more cumbersome than is our arithmetic. Coupled
with this also is the fact that the Greeks did not have negative and imaginary
numbers, which are really what give facility to our arithmetic and analysis.
Consequently they lacked the generality of method which permits the in-
clusion in a formula of all possible cases. A tedious distinguishing of cases
played a great role with them. This lack is often very noticeable in geometry,
whereas today, by employing analytic aids, as we have actually done in
these lectures, we can easily achieve complete generality, and we can avoid
all distinction of cases. These few indications will suffice here. You will be
able, from your own knowledge, to give many other instances of the advance
of modern mathematics as compared with that of the Greeks.

After this general commentary on Euclid’s Elements, we can turn to a
special discussion. Let me begin with a brief survey of the “thirteen books,”
i.e., chapters, of which they consist.!

Books 1-6 are devoted to planimetry. The first four books contain general
considerations about fundamental geometric forms, such as segment, angle,
area, etc., and the theory of simple geometric figures (triangles, parallelograms,

! One speaks also of Books 14 and 15 of the Elements (vol. 5 of Heiberg’s edition); but
these two books are not by Euclid. The first comes rather from Hypsikles; the second is
ascribed to Damaskios.
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circles, regular polygons, etc.), in the manner in which they are usually
given today. In this connection, there is given (Book 2) an elementary arith-
metic and algebra of geometric magnitudes in which—to give but one example—
the product @ - b of two segments a, b is represented as a rectangle. If we
wish to add two such products ¢« b and ¢+ d, which we can carry out at
once arithmetically, it is necessary, in order to represent the product as a
single rectangle again, to transform the two rectangles ¢ - » and ¢ - d into
rectangles with equal bases.

Book 5 goes much deeper, in that it introduces the geometric equivalent of
the general positive real number. This is the ratio ¢/b of any two segments
a, b, which Euclid calls logos (Aéyos). Ireferred to this last semester, in my
general discussion of irrational numbers.! The essential keynote of this
development is the definition of the equality of two ratios a/b and a¢/d. This
definition must be perfectly general, and must hold, therefore, when a /b is, in
our sense, irrational, i.e., when the segments ¢ and b are (as Euclid says)
asymmetroi, i.e., without a common measure, or, as it was translated later,
incommensurable. Euclid proceeds as follows: He takes any two integers
m and » and compares, as to size, the two segments m + ¢ and # - b on the
one hand, and m + c and # - d, on the other. There must obtain one of the
three relations

> >
maznb or m-c=n-d

If, then, for arbitrary values of m, n, the same sign always holds in both cases,
we say that a/b = c/d. This corresponds completely, in fact, to the famous
cut process by means of which Dedekind introduces irrational numbers.

Euclid now proceeds with the consideration as to how one can reckon
with these ratios, and he develops his well-known theory of proportion, i.e.,
a geometric theory of all possible algebraic transformations of equations of
the type ¢/b = ¢/d. Euclid uses for a proportion the word analogia by
which he means that the Jogos of the two pairs of magnitudes is the same.
You see how far the word has drifted away today from its original meaning.
There are places in mathematics, however, where the word retains its old
meaning. We still speak in trigonometry of Napier’s analogies, because these
have to do with certain proportions. To be sure, few persons seem to know
the real meaning of this name.

The theory of proportion is a characteristic example of the persistence with
which the euclidean tradition maintains itself in mathematical instruction.
Even today, this theory is taught in many—perhaps, indeed, in most—of
the schools, as a special chapter of geometry, although it is included completely,
in substance, in our modern arithmetic, and has therefore been taught twice
before this,—once during the study of the proportion, and again in the be-
ginnings of reckoning with letters. Why the same thing should appear a

t See Part I, p. 31 et seq.
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third time, and in especially mysterious geometric clothing, is truly hard to
understand. The tendency to do so must be quite incomprehensible to the
students. Of course, the only reason is thatmen still cling to the old euclidean
plan, although, indeed, the sensible purpose which Euclid had in the theory
of proportion—to create a substitute for the arithmetic which he lacked—
is for us utterly useless.

This criticism of the present-day treatment of the theory of proportion
does not refer, of course, to the scientific importance of the fifth book of Euclid.
That is, of course, great, because there was given here, for the first time—
speaking in modern terms—the rigorous basis for calculation with irrational
numbers, based upon precise definitions. We observe clearly here that
Euclid’s Elements were, and are, by no means a school textbook, as has
been so often erroneously assumed. The Elements presuppose, rather, a
mature reader capable of scientific thinking.

I must mention the tradition that this fifth book was not written by
Euclid himself, but by Eudoxus of Knidos (circa 350 B.c.). In fact, the Ele-
ments are looked upon, not as a unified work, written in one piece, but as
having been put together out of different older parts.

However this may be, in any case, all of the information as to the authors
is clouded with the greatest uncertainty, since there is absolutely nothing
extant, in the nature of historical notes, by Euclid or by any of his con-
temporaries. The above tradition goes back to Proclus Diadochus, a com-
mentator on Euclid who lived about 450 A.p., that is, more than 700 years
after Euclid. Even though, for various reasons, the assertion of Proclus
may have a certain essential probability, still we should be as little inclined to
admit it as absolutely reliable evidence as we should be to accept a theory
promulgated today as to the authority of a work compiled around 1200 A.p.

Proceeding with the contents of the Elements, we find in Book 6 the theory
of similar figures, where the principal aid used is the doctrine of proportion.

In Books 7, 8, and 9, the theory of integers is treated, partly in geometric
form. We find here, for proportions with integers, i.e., for reckoning with
rational fractions, a theory which is entirely independent of the develop-
ments of Book 5. Although rational fractions are merely a special kind of
real numbers, no reference of any sort is made to the more general theory.
It is therefore difficult to believe that the two presentations are by the
same author. Of the contents of these books, I should like to mention only
two things, both of which are now used in the theory of numbers. One of
these is the euclidean algorithm for finding the greatest common divisor of
two integers ¢ and b, which Euclid represents by segments. In modern
terms, it consists in dividing ¢ by b, then 4 by the remainder, and so on
according to the scheme

a=m-b+r, b=m-ntr, = mg- 72+ 713
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Finally, after a finite number of steps, the division will be exact. The last
remainder is the divisor sought. Secondly, one finds in Euclid the well-
known simple proof of the existence of infinitely many prime numbers, which
I gave in my lectures last winter.?

In Book 10, which is especially tedious and hard to understand on ac-
count of the geometric form of expression, there is a geomelric classification
of irrationalities that ave expressible as square roots, such as were to be used
later in geometric constructions.

Not until in Book 11 do we find the beginnings of stereometry. You
observe that Euclid is no ‘“fusionist.” He sets stereometry as far apart from
planimetry as possible, whereas we consider it desirable today, in the sense
of our oft-mentioned ““striving toward fusion,” to develop space perception
as a whole as early as possible, and consequently to accustom the pupil from
the beginning to three-dimensional figures, rather than to restrict artifi-
cially his first instruction to the plane.

in Book 12 there appear again general considerations about irrational mag-
nitudes, which were necessary for finding the volume of a pyramid and of other
bodies. Here we find a veiled application of the notion of a limit, in the so-

called “proof by exhaustion,” by means of which proportions between irra-
\

% circumscribed #-gon of an increasing number of

Finally, Book 13 contains the theory of the regular bodies, and using the

tions of geometry. The ideal purpose which Euclid had in mind was obviously

tional numbers are rigorously deduced. This method is used first in proving

sides. It can, in a sense, be exkausted, in that the
material collected in Book 10, culminates in the proof that one can con-
the logical derivation of all geometric theorems from a set of premises completely

the planimetric theorem that two circles are to each other as the squares

of their radii, and it is by means of this example

that T shall explain briefly the underlying concep-

tion of the method. Any circle can be increasingly

approximated by an inscribed #z-gon and also by a

& areas of the polygons differ arbitrarily little from

the area of the circle. If, then, the proportion did

Fic. 125 not obtain, one could easily bring about a contradic-

tion of the fact that every inscribed polygon is smaller than the circle, and
that every circumscribed is larger than the circle. (See Fig. 125.)

struct all these bodies, i.e., the lengths of their sides, with ruler and com-

passes. This final result corresponds to the interest which the Greek phi-

losophers always showed in the regular bodies.
Having given this general survey of the contents, let us turn our atten-
tion, in some detail, to those chapters of Euclid which treat of the founda-

1 See Part I, p. 40 et seq.
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laid down in advance. The historic significance of the Elements rests mainly,
without doubt, on the creation (or transmission) of this ideal. But Euclid
did not, by any means, really reach his high goal. Indeed, modern science
has gained deeper knowledge, in precisely the fundamental notions of geom-
etry, and has found obscurities in Euclid. Nevertheless, tradition is so
strong that Euclid’s presentation is widely thought of today, especially in
England, as the unexcelled pattern for the foundation of geometry. Men
mistake the historical importance of the work for absolute and permanent
importance. It is only natural, in view of this over-valuation of Euclid’s
Elements, that I should, in the following discussion, lay empbhasis upon the
negative side, upon those points in which Euclid’s presentation no longer
meets our requirements.

A special difficulty arises, in every such criticism of Euclid in the uncer-
tainty of the text. Much of it is attested by Proclus, who is our oldest source.
The oldest manuscripts which we possess are from the ninth century A.p.,
i.e., they are 120Q years younger than Euclid! Furthermore, these various
manuscripts differ greatly, and often precisely in the fundamental parts on
which so much depends. Then, too, there is the tradition of Latin and
Arabian translators and commentators, in whose works there are many
important divergences, due to the efforts to clarify the text. The production
of a trustworthy text of the elements is thus an exceedingly complicated
philological problem, upon which an amazing amount of acumen has been
expended. We must be satisfied with the fact that what is gained by such
philological work is, at best, the most probable text, but that it cannot be the
true original text. It by no means follows that what we infer from many
different statements, as the most probable course of events, agrees in all
points with actuality. It is generally admitted that Heiberg’s text stands
at the summit of modern philological science, and we non-philologists can-
not do better than to base our arguments upon it, although we must not
forget that it is by no means necessarily identical with the original text.
Hence, if we find shortcomings and contradictions in this text, we must al-
ways be in doubt as to whether they should be ascribed to Euclid, or whether
they slipped in during transmission.

And now, coming to the point, let us first inquire how, in Book 1, the
foundations of geometry are laid. Euclid places at the head three groups of
propositions which he calls 8pou (definitiones), cirfuara (postulata), and
kowal Evvoian (communes animi conceptiones) which we may render in
German perhaps by Erklirungen, Forderungen, und Grundsdtze.® For the
last group we usually employ, with Proclus, the word axioms, which now-
adays has extended its meaning to include that of the postulates.

In order to get at the contents of the definitions, let us recall how we

! In non-technical English, we may call these explanations, agreements, and fundamental
statements; in technical terms, definitions, postulates, and axioms.—THE TRANSLATORS.
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started earlier with our development of geometry. We said that we could
not define certain things, such as point, line, plane, but that we must look
upon them as fundamental concepts familiar to everybody, and that we
should state precisely only such of their properties as we wished to use.
With that understanding, we were able to construct geometry, up to the
point of producing the system of coordinates (%, y, 2) of analytic geometry.
Only after that did we consider the general notion of a curve, by thinking
of #, y, and z as continuous functions of a parameter ¢. At that time, I in-
dicated that this would include bizarre degenerations, such as curves which
completely cover a surface, etc.

Euclid did not have this spirit of cautiousness, or of strategic retreat.
He begins with the “definition” of all sorts of geometric concepts, such as
point, line, straight line, surface, plane, angle, circle, etc. The first “definition”
runs: A point is that which has no part. We are hardly able to recognize this
as a proper definition, since a point is by no means determined by this prop-
erty alone. Again, we read: 4 line is length without breadth. Here, indeed,
even the correctness of the statement is doubtful, if one recognizes the
general notion of curve, mentioned above, of which Euclid, of course, knew
nothing. Then, thirdly, e straight line is “defined” as a line which lies evenly
with respect to its poinis. The meaning of this statement is wholly obscure;
all sorts of meaning can be attached to it. It might mean that the line has
the same direction everywhere, in which case direction must be admitted
as a fundamental notion familiar to everyone. We might also interpret it
by saying that a straight line, if realized as a rigid rod, always coincides
with itself under certain motions in space,
namely, under rotation around itself as an
axis or under translation along it. This view
of Euclid’s ““definition” would, to be sure,
presuppose the notion of motion; whether
Euclid intended that is a disputed question
to which we shall return. In any event,
it has not been possible to find an unam-
biguous interpretation for Euclid’s definition of the straight line, and like-
wise for many of his other definitions which I cannot consider here in
detail.

We come now to the postulates, of which five are given in the Heiberg
edition. The first three of these require that i skall be possible:

(@) To draw a straight line from one point to another;

(b) to prolong indefinitely o limited straight line;

(¢) to draw a circle with a given center so as to pass through a given point;

I shall withhold the fourth, temporarily, and pass on to the fifth, the so-
called paraliel postulate:

(d) If two straight lines make with a third line, and on the same side of it,

F1c. 126
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interior angles whose sum is less than a straight angle, the two lines cut each
other, if they are sufficiently prolonged toward that side. (See Fig. 126.)

These postulates state the possibility of certain constructions, or the
existence of certain geometric figures, of which Euclid makes use later. But
there are a considerable number of similar existence-
postulates in geometry which he also uses and which
cannot be deduced logically from those that he does
state. Ishall mention, as one example, the theorem
that two circles intersect if each passes through the
center of the other (see Fig. 127). It would be easy
to state many other similar theorems. Hence we
must say that the euclidean system of postulates is certainly deficient.

Let us now consider the fourth postulate:

(e) All right angles are equal.

There has been much dispute as to what this postulate means, and why
it appears where it does. Involved with this is the question as to whether
or not Euclid uses the concept of motion. If we consistently put at the be-
ginning the notion of the movement of figures as rigid bodies, as we did in
our first development of geometry, then this postulate follows as a necessary
logical consequence (see p. 169), and it would therefore be superfluous here,
even if Euclid otherwise had this point of view. In all these fundamental
theorems of Euclid, however, there is nowhere any explicit mention of mo-
tion, so that many interpreters assume that this fourth postulate is to serve
precisely to introduce the idea of motion, though all would admit, to be sure,
that the idea would still be in incomplete form.

On the other hand, most of the commentators on Euclid think that one of
the essential tendencies of Euclid was precisely to keep the concept of mo-
tion out of geometry, as a matter of principle, in accordance with certain
philosophical considerations (see p. 174). But then the abstract concept of
congruence should be at the head—as in our second development—and then
this fourth postulate would have to serve as the basis for the theory of con~
gruence. The question arises here, to be sure, why analogous statements are
not also made concerning the congruence of segments. But we shall soon
see what grave difficulties result from each of these points of view, in the
further developments in Euclid.

Let me remark that neither of the two interpretations adequately ex-
plains why this theorem is found among the postulates whose general tend-
ency is characterized above. This has called forth an interesting explanation
from Zeuthen, which is not wholly convincing. He argues that the postulate
would state that the prolongation of a line through a point, which by postu-
late (b) is certainly possible, is umnique. The details are to be found in
Zeuthen’s Geschichte der M athematik im Altertum und Mittelalier.* Finally,

1 Loc. cit., p. 123 et seq.

Fic. 127
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there is always this loophole, the assumption that the text kere has been al-
tered. Indeed, this conclusion has been reached repeatedly and it cannot,
in fact, be silenced. . ,

I turn now to the axioms, of which there are again five in the Heiberg
edition:

(a) Things equal to the same thing arve equal to each other; if a = b, b = c,
then a = c.

(b) Equals added to equals give equals; if a = b, ¢ = d, thena + ¢ = b+ d.

& Ifa=bc=d,thena—c= b~ d.

(d) Two coincident things are equal.

(e) The whole is greater than o part; a > a — b.

Four of the theorems just stated are logical in nature, and, as introduced
here, they are obviously intended to state that the general relations which
they express hold, in particular, also for all the geometric magnitudes which
occur (segments, angles, areas, etc.). The fourth statement, then, declares
that the deciding criterion as to equality or inequality is, ultimately, con-
gruence or cotncidence—whereby, to be sure, it is again not clear whether or
not the idea of motion is assumed.

Concerning the difference between axioms and postulates, Simon has ad-
vanced the idea that the former have to do with the simplest facts of logic,
while the latter deal with those of space perception. This would be very
fitting and illuminating if it were only certain that the order in the Heiberg
text corresponded to that in the original. In the various manuscripts, how-
ever, there are actually essential divergences, both as to order and as to
content of the postulates and axioms, which by no means fit into this
scheme; e.g., the parallel postulate is often entered as the eleventh axiom.

Now we shall examine more closely the beginnings of the euclidean struc-
ture of geometry which is built upon these definitions, postulates, and axioms,
namely, the first four paragraphs which immediately follow the axioms.
In this we shall be able, at the same time, to make some interesting observa-
tions concerning Euclid’s conception of the foundations, in particular his
attitude toward the idea of motion.

The purpose of the first three paragraphs is to solve the problem of laying
off a given segment AB upor another segment CF, beginning at C. Practically,
A B anyone would, of course, do this by direct
transference, using a compass or a strip of
paper, i.e., by displacing a rigid body in
~ the plane. Euclid does it otherwise with
his theoretical method. In his postulates, he has assumed no construc-
tion which corresponds to this free movement of the compass. His pos-
tulate (c) (see p. 196) permits the drawing of a circle about a point only
when a point of the periphery is already given. Now he may make use only
of the possibilities afforded by the postulates, and he must therefore break

Cr F
Fic. 128
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up this apparently simple construction into a number of more complicated,
but very clever, steps:

1. Upon a given segment AB to erect an equilateral triangle. Postulate (c)
permits us to draw a circle about 4 with radius 4B, and one about B with
radius BA. That these circles will have a point of in- c
tersection C is, as mentioned above, assumed without
any explanation. Then follows a rigorous formal log-
ical proof, with use of the appropriate axioms, that
ABC is actually equilateral.

2. To lay off from a given point C a segment equal Al B
to a given segment AB (see Fig. 130). By (1), erect Fre. 129
upon AC an equilateral triangle ACD.
Prolong D4 beyond A (Postulate b),
and strike a circle about 4 with ra-
dius 4B (Postulate c), so as to get
the intersection B’ with DA. (The
reason for the existence of this inter-
section is, to be sure, again not ex-
plained.) Now draw a circle about D,
with a radius DB’, and obtain its in-
tersection E with the extension of DC;
then CE = AB. The proof, which is
obvious, is then given in detail.

3. Given two segments AB, CF, such that CF > AB; to lay of from C upon
CF a segment equal to AB. By (2), draw from C any segment CE = AB and

F1c. 130

describe about C a circle, with a c c'

radius CE, meeting CF in G; then ~ o

CG is the desired segment. /< \\\\ /< \\\
With this, the given problem S~ ~

is solved. Euclid now states, 4 B A B'

as No. 4, the first congruence Fre. 131

theorem: I two triangles ABC and A'B’C’ have, in each, two sides and
their included angle respectively equal (4B = A’B’, AC = A'C'; 4 = A’),
the triangles are equal in all their parts. In proving this theorem, Euclid
is guilty, in view of the preceding construction, of a noteworthy incon-
ststency, which supplies the reason for my reproducing this entire proof.
He thinks of the triangle A’B’C’ laid upon 4 BC so that the sides 4'B’ and
A’C’ fall respectively upon 4B and AC, and angle 4’ upon 4. Now we have
learned, indeed, in what precedes, how to lay off a segment upon another, but
not a word has been said as to the laying off of an angle, and still less about
what would happen, in this process of transfer, to the third side B'C’, not
even whether or not it would, indeed, remain a straight line. Intuitively this
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is, of course, quite clear; but Euclid’s entire purpose is the logical complete-
ness of the deduction. Nevertheless he concludes here, without further ex-
planation, that B’C’ must also go over into a straight line, which must then,
of course, coincide with BC. However, this is nothing else than the as-
sumption of motions which do not change the form and the measurements of
geometric figures—just as we explicitly did do in our first development of
geometry. If this is done, it is then obvious, of course, that the first congru-
ence theorem can be proved (see p. 175).

Thus this proof of Euclid’s would seem to show that he was a supporter
of the idea of motion. The question then remains as to why nothing is said
about it in the foundations. Above all, his skillful proof of Exercises 2 and
3 would then be without purpose, since that proof could be given in a
word by use of the concept of motion. On the other hand, however, if we look
upon No. 4 as a later interpolation, the question is still open as to what
Euclid’s attitude may have been toward the first congruence theorem.
Hence there remains an essential gap in his development. Without the con-
cept of motion, it is impossible to prove this theorem and we must place it,
as we did in our second development, among the axioms (p. 175). We can
only say, in concluding this discussion, tkat so meny essential difficulties pre-
sent themselves, precisely in the first theorems of the first book of the Elements,
that there can be no talk about the attainment of an ideal, such as that mentioned
above.

But all these gaps and obscurities do not weigh so heavily as another 0b-
jection which must be made to Euclid’s presentation of the foundations if
one measures him by his own ideal and at the same time considers our
present knowledge. If we resort to the familiar language of analysis, Euclid,
with his geometric magnitudes (segment, angle, surface, etc.), never uses a
sign—he treats all of these as absolute magnitudes. He carries on, in a
sense, an analytic geometry in which the coordinates and other magnitudes
appear only with their absolute values. The result of this is that he cannot
obtain theorems that have general validity, but must always drag along
different cases according as, in a concrete instance, the
parts lie thus or so. To mention a simple example, the
so-called extended pythagorean theorem, expressed in

the modern formula ¢? = a?+ 4% — 2ab cos vy, holds

FICG. 132 generally for triangles with acute or obtuse angles (see

Fig. 132 since cos oy takes on both positive and nega-

tive values. But Euclid knows only the absolute value | cosy | and he
must therefore distinguish the two cases in two different formulas:

p

A=a’+ b —2ab|cosy| and 2= a®+ B2} 2ab]|cosy;

of course these case distinctions become more complicated and less per-
spicuous the farther one goes.
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This lack of which we are talking can of course be formulated for pure
geometry. A difference in sign in the analytic presentation corresponds, in
pure geometry, to a difference in order, of the type as to whether a point C
lies between the points 4 and B, or outside the segment AB. It is possible
to carry out a completely logical construction of geometry, only if we ex-
pressly formulate the fundamental facts in this relation of position, the so-
called “axioms of betweenness,” as we did, with emphasis, in our first, as
well as in our second, development of geometry. If we omit this, as Euclid
does, we cannot reach the ideal of a pure logical control of geometry. We
must continually recur to the figure and we must discuss these relations of
position. Our objection, then, against Euclid is, in brief, that he has no axioms
of betweenness.

This view that one must actually formulate certain assumptions concern-
ing the concept “between,” in other words, that we must endow the ele-
mentary magnitudes with signs, according to certain conventions, is rela-
tively new. At the beginning of these lectures (p. 16), when we discussed
this topic, I reported that the first consistent use of the rules of sign is to be
found in M&bius’ barycentric calculus, in 1827. In this connection there is
an interesting letter from Gauss to W. Bolyai, dated March 6, 1832, but
first published in 1900 in volume 8 of Gauss’ works,! in which we find: “For
complete achievement, we must first base such words as ‘between’ upon
clear concepts, a thing which is quite feasible but
which I have nowhere seen done.”

The first careful geometric formulation of these
“axioms of betweenness” was given by M. Pasch in
1882 in his Vorlesungen iiber neuere Geometrie.2 Here
there appeared for the first time the characteristic the-
orem, which we used, by the way, in our first develop-
ment of geometry (p. 165): If a straight line meets one side of a triangle, it
also meets one of the other two sides. (See Fig. 133.)

The significance of these axioms of betweenness must not be under-
estimated. They are just as important as any of the other axioms, if we wish
to develop geometry as a really logical science, which, after the axioms are
selected, no longer needs to have recourse to intuition and to figures for
the deduction of its conclusions. Such recourse is, however, stimulating,
and will of course always remain a necessary aid in research. Euclid, who
did not have these axioms, always had to consider different cases with the
aid of figures. Since he placed so little importance upon correct geometric
drawing, there is real danger that a pupil of Euclid may, because of a falsely
drawn figure, come to a false conclusion. It is in this way that the numerous
so-called geometric sophisms arise. These are formally correct proofs of false

Fic. 133

1 Page 222. 2 Leipzig, 1882 (2nd edition, 1912).
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theorems, which rest on figures which are wrongly drawn, i.e., which con-
tradict the axioms of betweenness. As an example, I shall give one such
sophism, which is certainly known to some of you, the “proof” that every
triangle is isosceles.

Draw the bisector of the angle 4, and the perpendicular to the side BC
at its middle point D. If these two lines were
parallel, the angle bisector would be also the
altitude, and the triangle would obviously be
isosceles. We assume then that these two lines
meet, and we distinguish two cases, according
as the meeting point O lies inside or outside
the triangle. In each case, draw OF and OF
perpendicular to AC and 4B, respectively, and join O to B and to C.

In the first case (see Fig. 134), the horizontally hatched triangles AOE
and AOF are congruent, because the side 40 is common, and the angles at
4 are equal, as are also the right angles. Hence AF = AE. Similarly the
vertically hatched triangles OCD and OBD are congruent, since OD is com-
mon, DB = DC, and the right angles are equal, so that OB = OC. Now,
because, from the first congruence, OE = OF, we can infer the congruence
of the unhatched triangles OEC and OFB. Hence we have FB = EC, and,
adding this to the former equation, we get actually 4B = AC.

In the second case, where O lies outside (see Fig. 135) we show, in the
same way, the congruence of the three pairs of corresponding triangles, and
we find AF = AE, FB= EC. By subtraction it follows, again, that
AB = AC, as the figure A
shows. Hence it is proved
that in every case the tri-
angle is isosceies.

The only thing in this
. proof that is false is the fig- N
ure. Inthe firstplace,Ocan B C
never fall inside the trian- m"
gle; and, in the second 0

. Fic. 136
place, the positions can
never be as they are drawn in Fig. 135. Of the two feet E and F, one must
lie inside, the other outside the side on which it lies, as shown in Fig. 136.
Actually, then, we have

AB = AF — BF, AC = AE+ CE = AF 4+ BF,

Fie. 135

and we can by no means infer the equality of the two sides.

This clears up this sophism completely, and we can dispose in a similar
way of the many other known sham proofs. The argument is always based
upon inaccurate figures, with perverted order of points and lines.
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Having criticized some of the essential shortcomings in Euclid’s develop-
ment I should like to point out one of its greatest refinements, one which his
enthusiastic supporters usually overlook, as they do his errors. I remarked
earlier that in the fifth book the ratio (logos) of any two geometric mag-
nitudes ¢ and b is so considered that it gives the equivalent of the general
concept of numbers. Now Euclid stipulates here expressly that he will con-
sider the ratio of two geometric magnitudes of the same sort ¢ and b only
under a certain condition: if, namely, two integers m and n can be found such
that ma > b and a < nb. His words are: Magnitudes have a ratio if their
multiples can exceed one another. This requirement is called nowadays
Archimedes’ axiom, a name which is thoroughly at variance with history,
since Euclid had it before Archimedes, and it is probable that Eudoxus
knew it. Today the designation axiom of Eudoxus is gaining currercy.

This archimedean axiom plays a great role as one of the most important
continuity postulates in modern investigations in the foundations of geom-
etry, as well as in the foundations of arithmetic. We have accordingly men-
tioned it repeatedly in these lectures. You will notice, in particular, that the
postulate which we used in our fust development of geometry, whereby the
points arising from A, through iteration of a translation, ultimately include
every point of a ray (p. 163), is identical in substance with the archimedean
axiom. But we also discussed this axiom in detail in the first part of this
present work.! We then called a quantity ¢ which, after multiplication by
any finite number #, remained always smaller than b, actually infinitely small
with respect to b, or conversely, b actually infinitely large with respect to a.
Thus what Euclid does, by his prescription, is to exclude systems of geometric
magnitudes which contain actually infinitely small or infinitely large ele-
ments. In fact, it is necessary to exclude such systems, if we wish to develop
the doctrine of proportion, which, as we have emphasized, is nothing else
than another form of the modern theory of irrational number. Thus Euclid
(or, indeed, Eudoxus before him) does here—and that is the remarkable
part of it—fundamentally exactly what one does in the modern investiga-
tions of the concept of number, and he does it with exactly the same tools.

We shall appreciate best the significance of the axiom under discussion
if we examine a concrete system of geometric magnitudes which does not satisfy
it, and which is also particularly interesting because it was already known
and much discussed in ancient and in medieval times. I refer to the so-
called Aorn-shaped angles, that is, angles between curves, thought of in a
certain general way. When we speak today of angles, we think always of
angles between straight lines; and by the angle between two curves, in par-
ticular, we understand the angle between their tangents (Fig. 137). The
angle between a curve, say a circle, and its own tangent is then always

1See Part I, p. 218.
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zero. In this way, all angles form an ordinary “archimedean” system of
magnitudes, to which we can apply the euclidean theory of ratio, which, in
other words, is measured in terms of simple real numbers.

In contrast to this, we understand by the korn-shaped angle between two
curves (see Fig. 138) the portion of the plane enclosed by the curves them-

W\J\o%
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selves, in the neighborhood of their intersection (or point of contact), and
we shall now see how this definition gives rise to the concept of a non-
archimedean magnitude, i.e., to a concept which does not satisfy that axiom.
We shall confine ourselves, here, to angles one of whose arms is a fixed line
(the z axis), whose vertex is the origin O, and whose other arm is a circle
(in case of need also a straight line) which cuts or touches the x axis in O
(Fig. 139). It will then be natural to call that one of two horn-shaped angles
the smaller whose free arm ultimately remains below the free arm of the other,
when we approack O, i.e., the one which ultimately bounds the narrower
portion of the plane. The angle of a fangent circle will thus always be smaller
than that of an infersecting circle or of a straight line. Of two tangent circles,
the one with the larger radius will make
the smaller angle, since it passes below
the other. It is clear that these agree-
0 ments determine, for any two of our
horn-shaped angles, which of them is
the smaller and which the larger, so
that the totality of horn-shaped an-
gles is simply ordered, as one says today
in point set theory, precisely as is the case with the totality of ordinary
real numbers.

In order to appreciate the difference between these two aggregates, we
must agree upon something more precise concerning the measuring of horn-
shaped angles. Let us, first of all, measure the angle of a straight line through
O in ordinary angle units. Then every angle a, made by a circle tangent to
the x axis, will be smaller, by definition, than any angle bounded by two
straight lines, however small it may be, provided only that it is but different
from zero. Such a situation is impossible, however, in the ordinary number

Fic. 139
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continuum for a number ¢ different from zero, and it characterizes our e
“actually infinitely small.”

In order to follow this in connection w1th the archimedean axiom, we
must define, for these curvilinear angles, multiplication by an integer. If we
have a circle of radius R tangent at O, then it seems natural to ascribe to the
tangent circle of radius R/n the n-fold angle. This actually accords with the
preceding definition, insofar as the angles of tangent circles with radii
R, R/2, R/3, - - -, get larger and larger. Thus multiplication of the angle ¢
of a tangent circle by an integer always yields another angle of a tangent
circle, and every multiple na is necessarily smaller, by our definition, than,
say, the angle b of a fixed intersecting straight line (see Fig. 140), however
large we take #n. Thus the axiom of Archimedes is not satisfied; and the angles
of the tangent circles must be looked
upon, accordingly, as actually infin- b
itely small with respect to the angle
of an intersecting straight line. As to
general addition of two such angles,
that will be done, in view of the defini-
tion already set up for multiplication
by integers, by adding the reciprocal Frc. 140
values of the radii, which will serve,
after all, as the measures of the actually infinitely small angles.

If we have now an arbitrary circle through O (see Fig. 141), we can look
upon its angle as the sum of the angle of its tangent with the x axis (measured
in the ordinary sense), and of its own actually infinitely small angle with

that tangent, in the sense just defined. If we
then apply addition and multiplication to
these separate summands, we shall have set
up a complete method for operating with
>z horn-shaped angles. But in this field the
axiom of Archimedes does not hold, and one
may not, therefore, employ in it “logoi,” or
ordinary real numbers. Presumably this was
known to Euclid (and Eudoxus), and he consciously excluded such systems
of magnitudes by means of his axiom.

With modern methods we can extend the field of these horn-shaped angles,
whereby the definitions become both broader and simpler—if we consider
all of the analytic curves through O. Any such curve will be given by a power
seriesyr = + Bl + vt -,y = + Ber? Fyd® +--- . We
shall say that the angle of the curve 1 with the x axis is greater or less than
that of 2 according as a1 > ag or ay < a; if, however, a1 = ay, then relative
size depends upon the inequalities B1 Z By; if B1= Ba, then the decision
rests upon the inequalities y1 = -, etc. Itis clear that, in this way, the angles

(0]

Fre. 141
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of all analytic curves are brought into a definite simply ordered series, in which
circles are included in the order defined for them above.

To get the n-tuple of the angle of curve 1 with the x axis, we can simply
take the angle of the curve # + y = nayx 4 #pwx® 4+ - - -, obtained by mul-
tiplying the power series B’y n. Before, we had to employ a more compli-
cated operation, in order not to go outside the field of circles; namely, we
replaced the circle of radius R, whose series expansion is

2 ozt
RV m
by one of radius R/n:

y= n-— + 7o R3 Lt

which agrees only to the first term with # times the first expansion. How-
ever, with this new and simpler definition we also have again a non-
archimedean system of magnitudes. A curve whose series expansion begins
with 2%(az = 0) will, after multiplication by arbitrarily large #», still make a
smaller angle than a curve with non-vanishing ;. We have, in essence, only
repeated here, in more perspicuous form, what we did in volume 1.! In
the power series y = ax + fa® + y2® 4 - - -, the successive powers x, %2,
%3, - -, simply play, in this interpretation, the role of actually infinitely
small magnitudes of different, ever-increasing order.

It is interesting that we can condense this succession of horn-shaped
angles still more by adding certain non-analytic curves. However, in order
to permit of comparison as to size, they must not oscillate infinitely often,
or, more precisely, they may not cut an analytic curve infinitely many times.
It will suffice if I give one example, the curve y = ¢ %%, This curve has the
property that all its derivatives vanish at « = 0. Hence it does not permit
there a development in power series. It is clear, therefore, that it ultimately
passes below every analytic curve. Notwithstanding the fact that we had
before a dense succession of horn-shaped angles, we have now a new horn-
shaped angle which, together with its finite multiples, is smaller than any angle
made with the x axis by any analytic curve.

With this we shall conclude these discussions and our entire study of
Euclid. In closing, I shall summarize, in a few sentences, the judgment con-
cerning Euclid’s Elements which we have reached in all these deliberations.

1. The great historical significance of Euclid’s Elements consists in the fact
that through them there was passed on to later times the ideal of a consistent
logical development of geometry.

1 Part I, p. 218 et seq., where the magnitudes of different orders were called 9, ¢, - - - .
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2. As to its execution, much of it is very nicely done; much of the remainder,
however, remains decidedly below our present scientific requirements.

3. Numerous details of an important nature, especially at the beginning
of the first book, remain doubtful, because of uncertainties in the text.

4. The entire development seems often unmecessarily cumbersome, be-
cause Euclid had no arithmetic ready at hand.

5. One-sided emphasis on the logical processes renders difficult both the
understanding of the work as a whole, and its essential connections.

I should like to characterize farther our own attitude toward the develop-
ment of geometry, by recalling two conceptions which have already been
noticed at different points.

One of these has to do with the fact that we were able to develop geometry
according to entirely different plans. We gave careful attention to two of
these. The one method started with the notion of a group of motions, in
particular the group of translations. The other began with the axioms of
congruence and pushed parallelism toa much later place. This juxtaposition
gives prominence to the freedom which we have in the axiomatic foundation
of geometry. And I should like especially to emphasize again this fact, in
the face of intolerant utterances which one often hears, and which are aimed
at championing this or that pet concept of the author, as absolutely the
simplest and, in fact, the only suitable one to use in the foundations of geom-
etry. As a matter of fact, the source of all fundamental geometric concepts
and axioms is our naive geometric perception. From it we choose the data
which, in appropriate idealization, we lay at the base of the logical treatment.
As to which choice should be made, however, there can be no absolute judg-
ment. The freedom which exists here is subject to only one restriction,
namely, the requirement that the system of axioms shall fulfill its purpose
of guaranteeing a consistent development of geometry.

Another observation concerns our attitude to analytic geometry, and our
criticism of certain traditions, from Euclid on, which have long since ceased
to conform to the position of mathematical science, and which should, on
that account, be given up in school instruction. In Euclid, geometry, by
reason of its axioms, is the rigorous foundation of general arithmetic, in-
cluding also the arithmetic of irrational numbers. Arithmetic remained in
this position of bondage to geometry well on into the nineteenth century,
but since then there has been a change. Today arithmetic, as a proper
fundamental discipline, has reached-a dominating place. This is a fact which
ought to be reckoned with in the development of scientific geometry, i.e.,
geometry should make its start upon the basis of the results of arithmetic.
The attitude to analytic geometry which we took in our development, and



208 Systematic Discussion of Geometry

the fact that we have systematically made use of the resources of analysis
in the treatment of geometry, merit approval in this sense.

With this we bring to a close our discussions of the theories of pure geom-
etry, with the hope that they have given you the desired survey of the
whole field, insofar as it has any relation to the needs of the schools.
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Position, geometry of 94. )
Postulate in Euclid 196—197.
Principal group 133, 161.
Product in vector calculus
—, outer 50, 53.
—, inner 50.
—, scalar 50.
-—, symbolic 66—68.
—, vectorial 50, 53.
Program, Erlangen 130, 133.
Projection
Map — 102—105.
Parallel — 77—385.
Central — 94—97.
Stereographic — 101.
Projection and section 89.
Projective geometry 56—60, 86—98, 132,
145—148, 160—167, 179—184.
— group 133, 145, 161.
— point transformation 86—98, 131—132.
— and non-euclidean geometry 179—184.
Projectivity 86—98.
Degenerate — 94—95.
Properties, definition of geometric 25, 26,
151.
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Proportion, theory of 192.
Pseudo geometry 185.

Quaternion 47, 52.

Radii, reciprocal
Geometry of transformations by — —
98—102, 132.
Group of transformations by — — 133.
Ratio of segments 6, 93.
— — — as affine magnitude 146.
Rays, system of 61.
Reciprocal transformation 110.
Rectangular coordinate system
Construction of 24—26.
— point transformation 25, 40—42.
Reflection 25, 39, 41, 70, 130.
Relative invariants 27, 139.
Relief perspective 95—96.
Rigid body 162, 175.
Rotation 25, 39, 42, 43, 70, 130, 155, 167—

172.
Rotor 67.
Scalar 47.
— of first kind 48.
— of second kind 48.
— field 63—66.

— product 50—351.

Screw field 64.

— symmetry of null-system 36—38.

—, theory of 38.

Section and projection 89.

Segment as relative magnitude 3—4, 6.

Similarity transformations 70, 79, 88, 130.

Sophisms, geometric 201—202.

Space perception 159—160, 178—179, 186—
187.

— segment 29,

Spat 29.

Sphere-circle, imaginary 119, 122, 123, 129,
134, 135, 148, 161.

Spherical coordinates 61.

— geometry 61.

Statics of plane systems 23, 24, 26—28.

— — space systems 31-—35.

Stereographic projection 101—102.

Straight line, unlimited 22, 27, 30.

Stretching, uniform 75, 152—153.

Substitutions, cogredient and contragre-
dient 138.

—, transposed 137,

Surfaces

Generated by points 54, 59—61.
Enveloped by planes 59—61.

Index of Contents

Surfaces, conical 59—61.
—, developable 59—61.
—, ruled 61.
—, one-sided 18—19, 106.
—, two-sided 106—108.
Symmetric tensor 152.
Synthetic and analytic geometry, difference
between 55.
Syzygy 141.
Complete system of syzygies 141.

Tensor 151—156.
Symmetric 152.
Antisymmetric 155.
Topologic point transformations 105—108,
132.
Transformation
Contact — 111—113, 115—116.,
Imaginary — 119.
Point — 69—108.
— with change of space element 108—116.
Dual — 108—110.
Reciprocal — 109—110.
— group, 25, 132.
Translation, see displacement 24, 39, 70,
130, 163—166.
Transposed substitution 137.
Triangle, geometry of 158.
Trigonometric functions
Application of analytic properties 170—
171,
Geometric significance 171.
Turning moment of a force 23, 31, 33—34.
— — — — dyname 34.
— — — — line segment 33.
Two-dimensional beings 62—63.

Vector
Axial 47-—48.
Free 22, 27, 30, 42—43, 46, 72, 81.
Line-bound 22, 27, 30.
Polar 48.
— algebra 48—51.
— analysis 63—68.
— field 63—67.
— function, linear 154.
— multiplication 50, 51, 65—67.
— product 50, 51, 53.
— symbol, Hamilton’s 64—66.
Volume as relative magnitude 3—5, 16—19.
— of polyhedron 18.
— of pyramid 18.
— of tetrahedron 5.

Weight of an invariant 139.
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Astronomy

BURNHAM’S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel-
lation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to®
Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 6% x 9%.
Vol. I: 23567-X
Vol. II: 23568-8
Vol. I1I: 23673-0

EXPLORING THE MOON THROUGH BINOCULARS AND SMALL TELE-
SCOPES, Ernest H. Cherrington, Jr. Informative, profusely illustrated guide to locat-
ing and identifying craters, rills, seas, mountains, other lunar features. Newly revised
and updated with special section of new photos. Over 100 photos and diagrams.
240pp. 8% x 11. 24491-1

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael J. Crowe. First
detailed, scholarly study in English of the many ideas that developed from 1750 to
1900 regarding the existence of intelligent extraterrestrial life. Examines ideas of
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus-
trations. 704pp. 5% x 8%. 40675-X

THEORIES OF THE WORLD FROM ANTIQUITY TO THE COPERNICAN
REVOLUTION, Michael J. Crowe. Newly revised edition of an accessible, enlight-
ening book recreates the change from an earth-centered to a sun-centered concep-
tion of the solar system. 242pp. 5% x 8%. 41444-2

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned

study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton,

Eddington’s work on stars, much more. Hlustrated. References. 521pp. 5% x 8%.
65994-1

A COMPLETE MANUAL OF AMATEUR ASTRONOMY:: Tools and Techniques
for Astronomical Observations, P. Clay Sherrod with Thomas L. Koed. Concise,
highly readable book discusses: selecting, setting up and maintaining a telescope;
amateur studies of the sun; lunar topography and occultations; observations of Mars,
Jupiter, Saturn, the minor planets and the stars; an introduction to photoelectric pho-
tometry; more. 1981 ed. 124 figures. 26 halftones. 37 tables. 335pp. 6% x 9'%.
42820-6

AMATEUR ASTRONOMER’S HANDBOOK, J. B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives, microm-
eters, spectroscopes, more. 189 illustrations. 576pp. 5% x 8%. (Available in U.S. only.)

24034-7

STARS AND RELATIVITY, Ya. B. Zel’dovich and 1. D. Novikov. Vol. 1 of
Relativistic Astrophysics by famed Russian scientists. General relativity, properties of
matter under astrophysical conditions, stars, and stellar systems. Deep physical
insights, clear presentation. 1971 edition. References. 544pp. 5% x 8'%. 69424-0
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Chemistry

THE SCEPTICAL CHYMIST: The Classic 1661 Text, Robert Boyle. Boyle defines

the term “element,” asserting that all natural phenomena can be explained by the

motion and organization of primary particles. 1911 ed. viii+232pp. 5% x 8.
428257

RADIOACTIVE SUBSTANCES, Marie Curie. Here is the celebrated scientist’s
doctoral thesis, the prelude to her receipt of the 1903 Nobel Prize. Curie discusses
establishing atomic character of radioactivity found in compounds of uranium and
thorium; extraction from pitchblende of polonium and radium; isolation of pure radi-
um chloride; determination of atomic weight of radium; plus electric, photographic,
luminous, heat, color effects of radioactivity. ii+94pp. 5% x 8. 42550-9

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8. 67628-5

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Ihde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 tables.
Bibliographies. Indices. Appendices. 851pp. 5% x 8%. 64235-6

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.

Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution,

carbonyl- and acyl-group reactions, practical kinetics, more. 864pp. 5% x 8!%.
65460-5

ELEMENTS OF CHEMISTRY, Antoine Lavoisier. Monumental classic by founder
of modern chemistry in remarkable reprint of rare 1790 Kerr translation. A must for
every student of chemistry or the history of science. 539pp. 5% x 8. 64624-6

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a coher-
ent set of chemical laws. 260pp. 5% x 8'%. 61053-5

A SHORT HISTORY OF CHEMISTRY, J. R. Partington. Classic exposition
explores origins of chemistry, alchemy, early medical chemistry, nature of atmos-
phere, theory of valency, laws and structure of atomic theory, much more. 428pp.
5% x 8'%. (Available in U.S. only.) 65977-1

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics, statis-
tical mechanics, thermodynamics correlated with descriptive chemistry. Problems.
992pp. 5% x 8'%. 65622-5

FROM ALCHEMY TO CHEMISTRY, John Read. Broad, humanistic treatment
focuses on great figures of chemistry and ideas that revolutionized the science. 50
MNustrations. 240pp. 5% x 8%. 28690-8
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Mathematics

FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent treatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics, and engineering. Text covigss
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 6% x 9%. 402517

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 5% x 8%. 650820

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. 1. Borisenko
and I. E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 5% x 8. 63833-2

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician’s classic work on material nec-
essary for mathematical grasp of theory of relativity. 452pp. 5% x 8. 63401-9

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problemns (with answers). Index. 304pp. 5% x 8. 65942-9

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8! 65973-9

COMPUTABILITY AND UNSOILVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8. 61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8% 64221-6

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms;
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends.
512pp. 5% x 8%. 64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8. 65191-6
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CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8'%.
64856-7

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying complex
algebra till harmonic functions have been analyzed from real varjable viewpoint.
Includes problems with answers. 364pp. 5% x 8%. 61388-7

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R. Gelbaurn and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
“real variables.” The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xxiv+198pp. 5% x 8'%. 42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry, and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii+666pp. 6% x 9'%.
67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8'%.

65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8. 65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8. 65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden’s theorem, the Landau-Schnirelmann hypothesis and Mann’s

theorem, and a solution to Waring’s problem. Solutions included. 64pp. 5% x 8%.
40026-3

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan
Kbrner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appendices.
Index. 198pp. 5% x 8%. 25048-2
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INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func-
tional analysis. Some 350 problems. 403pp. 5% x 8%. 612260

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design %f
finite processes for approximating solution of analytical problems. Algebraic equations,
matrices, harmonic analysis, quadrature methods, more. 559pp. 5% x 84 65656-X

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”: sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8.

65940-2

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati-
cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies. 523pp. 5% x 8. 65954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 8k 66810-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x 8. 65038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
to the existing literature. . . . "-Math Reviews. 490pp. 5% x 8'%. 64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues, and differential
equations. Numerous exercises. 432pp. 5% x 8%. 66014-1

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel
Analyzes models of fluid flow and solid deformation. For upper-level math, science,
and engineering students. 608pp. 5% x 8k 65369-2

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8. 65385-4

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8'%. 63829-4
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8. 63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 649407

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level
Exercises. Bibliography. 238pp. 5% x 8%. 64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8. 633179

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural num-
bers; complete induction; limit and point of accumulation; remarkable curves; complex
and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8%. 42804-4

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 ed.
ix-+283pp. 5% x 8'k. 67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8. 630692

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x 8%. 67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8'. Two-vol. set.

Vol. I: 65536-9 Vol II: 655377

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8% 65251-3

THE THEORY OF GROUPS, Hans J. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more. 276pp. 5% x 8. 40922-8
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Math-Decision Theory, Statistics, Probability

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exerci%s.
364pp. 5% x 8. 65218-1

STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical collection
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8%. 60599-X

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory, and design of sampling techniques for social scientists, industrial
managers, and others who find statistics important at work. 61 tables. 90 figures. xvii
+602pp. 5% x 8. 64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8. 65491-5

PROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 509pp. 5% x 8%. 65943-7

INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games illustrates applications to
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced calculus a prerequisite. 1952 ed. x+372pp. 5% x 8'4. 42811-7

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%. 65355-2

PROBABILITY THEORY: A Concise Course, Y. A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. 148pp. 5% x 84. 63544-9

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical contro] to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8Y. 65232-7
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Math—Geometry and Topology

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intu-
itive approach to topology from set-theoretic topology to Betti groups; how concepts
of topology are useful in math and physics. 25 figures. 57pp. 5% x 8%. 60747-X

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5% x 8%. 40179-0

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathernatics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 210pp. 5% x 8. 25933-1

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. 55 figures. 352pp. 5% x 8. 64025-6

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’s own diagrams,
together with definitive Smith-Latham translation. 244pp. 5% x 84%. 60068-8

PRACTICAL CONIC SECTIONS: The Geometric Properties of Ellipses,
Parabolas and Hyperbolas, J. W. Downs. This text shows how to create ellipses,
parabolas, and hyperbolas. It also presents historical background on their ancient
origins and describes the reflective properties and roles of curves in design applica-
tions. 1993 ed. 98 figures. xii+100pp. 6% x 9%. 42876-1

THE THIRTEEN BOOXKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Thomas L. Heath. Definitive edition. Textual and linguistic
notes, mathematical analysis. 2,500 years of critical commentary. Unabridged. 1,414pp.
5% x 8%. Three-vol. set. Vol. I: 60088-2 Vol. II. 60089-0 Vol. III: 60090-4

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Iluminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 84. 63830-8

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature, trans-
formation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8. 63433-7

CURVATURE AND HOMOLOGY: Enlarged Edition, Samuel I Goldberg.
Revised edition examines topology of differentiable manifolds; curvature, homology
of Riemannian manifolds; compact Lie groups; complex manifolds; curvature,
homology of Kaehler manifolds. New Preface. Four new appendixes. 416pp. 5% x 8'%.

40207-X
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History of Math

THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed.). Topics include
the famous problems of the ratio of the areas of a cylinder and an inscribed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; an

quadrature of the parabola. Informative introduction. clxxxvi+326pp; supplement
52pp. 5% x 8. 42084-1

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8% 20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8'%. 60509-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
arithmetic, algebra, geometry, and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8'%. 25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
study notes the first appearance of a mathematical symbol and its origin, the com-
petition it encountered, its spread among writers in different countries, its rise to pop-
ularity, its eventual decline or ultimate survival. Original 1929 two-volume edition
presented here in one volume. xxviii+820pp. 5% x 84 67766-4

GAMES, GODS & GAMBLING: A History of Probability and Statistical Ideas, F. N.
David. Episodes from the lives of Galileo, Fermat, Pascal, and others illustrate this
fascinating account of the roots of mathematics. Features thought-provoking refer-
ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x 8%.
{Available in U.S. only.) 40023-9

OF MEN AND NUMBERS: The Story of the Great Mathematicians, Jane Muir.
Fascinating accounts of the lives and accomplishments of history’s greatest mathe-
matical minds—Pythagoras, Descartes, Euler, Pascal, Cantor, many more. Anecdotal,
illuminating. 30 diagrams. Bibliography. 256pp. 5% x 8. 28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8'%. Two-vol. set. Vol. I: 20429-4  Vol. I1: 20430-8

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 4] illustrations. 195pp. 5% x 84%. 602559
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OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8'%. 65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8'%. 65969-0

ATOMIC PHYSICS: 8th edition, Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8'h. 65984-4

A SOPHISTICATE’S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a “law of nature”? What is the role of the “observer”? Extensive

treatment, written in terms accessible to those without a scientific background. 1983
ed. xviii+172pp. 5% x 8%. 42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv+360pp. 5% x 8. 67597-1

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6% x 9%. 42878-8

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures on mathematical methods in quantum mechanics from Nobel
Prize-winning quantum pioneer build on idea of visualizing quantum theory through
the use of classical mechanics. 96pp. 5% x 8. 41713-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8. 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The Physics
of the Chemical Bond, Walter A. Harrison. Innovative text offers basic understanding
of the electronic structure of covalent and ionic solids, simple metals, transition metals
and their compounds. Problems. 1980 edition. 582pp. 6% x 9%. 66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8'. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMI?NT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8'%. 60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%. 64926-1

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.

Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%. 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill.
Excellent basic text offers wide-ranging coverage of quantum statistical mechanics,
systemns of interacting molecules, quantum statistics, more. 523pp. 5% x 8%. 65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. xxiii+885pp. 5% x 8%. 65227-0

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quanturn mechanics, wave mechanics, angular

momentum, molecular spectroscopy, more. 280 problems, 139 supplementary exer-
cises. 430pp. 6% x 9%. 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. I. Perfect Lattices in
Equilibrium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
ordered systemns. Total of 1,301pp. 5% x 8% Vol. I: 65015-4  Vol. II: 65016-2

WHAT IS RELATIVITY? L. D. Landau and G. B. Rumer. Written by a Nobel Prize
physicist and his distinguished colleague, this compelling book explains the special
theory of relativity to readers with no scientific background, using such familiar
objects as trains, rulers, and clocks. 1960 ed. vi+72pp. 23 b/w illustrations. 5% x 8%.

428060 $6.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8. Two-vol. set. Vol. I: 60636-8 Vol. II. 60637-6
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QUANTUM MECHANICS: Principles and Formalism, Roy McWeeny. Graduate
student—oriented volume develops subject as fundamental discipline, opening with
review of origins of Schrodinger’s equations and vector spaces. Focusing on main
principles of quantumn mechanics and their immediate consequences, it concludes
with final generalizations covering alternative “languages” or representations. 1972
ed. 15 figures. xi+155pp. 5% x 8%. 42829-X

INTRODUCTION TO QUANTUM MECHANICS WITH APPLICATIONS TO
CHEMISTRY, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by
Nobel Prize winner applies quantumn mechanics to chemical and physical problems.
Numerous tables and figures enhance the text. Chapter bibliographies. Appendices.
Index. 468pp. 5% x 8%. 64871-0

METHODS OF THERMODYNAMICS, Howard Reiss. Outstanding text focuses
on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8.

69445-3

TENSOR ANALYSIS FOR PHYSICISTS, J. A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical exam-
ples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%. 65582-2

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8% 65660-8

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, Morris H. Shamos (ed.). 25 crucial discoveries: Newton’s laws of motion,
Chadwick’s study of the neutron, Hertz on electromagnetic waves, more. Original
accounts clearly annotated. 370pp. 5% x 8%. 25346-5

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolman. Landmark study extends thermodynamics to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501pp. 5% x 8. 65383-8

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics, and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x 8'%. 65401-X

Paperbound unless otherwise indicated. Available at your book dealer, online at
www.doverpublications.com, or by writing to Dept. GI, Dover Publications,
Inc., 31 East 2nd Street, Mineola, NY 1150). For current price information or for free
catalogs (please indicate field of interest), write to Dover Publications or log on to
www.doverpublications.com and see every Dover book in print. Dover pub-
lishes more than 500 books each year on science, elementary and advanced mathe-
matics, biology, music, art, literary history, social sciences, and other areas.



