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I dedicate this book to Amy and Andrew who are well on their way with their
own wonderful life’s journeys.
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Preface

Imagination is as good as many voyages—and how much cheaper.

—George William Curtis (1824–1892)

For as long as I have taught college mathematics, I have been convinced that
despite personal protestations to the contrary, a great many people find real math-
ematics to be quite interesting and very appealing. In addition, with some patience
and a willing spirit most are fully capable of understanding sophisticated mathe-
matical discourse. If the basic ingredients are few and simple and the problems
straightforward and clear, then natural human curiosity provides all the motivation
necessary to work through all the steps of a rigorous argument. In mathemat-
ics there is a keen sense of accomplishment and finality derived from a result
cleanly proved that is nearly unique among intellectual enterprises. The thrill of
discovery and deep understanding that motivates youngsters to find out “what
comes after addition and subtraction” also drives professional mathematicians in
their state-of-the-art research.

In this book I hope to present genuine mathematics to anyone who wants a
real taste of what mathematicians consider fascinating and beautiful. The book
is generally laid out buffet style, so feel free to jump in anywhere and sample
whatever tempts you. If you read most of the book you’ll have had a fairly
nutritious meal of mathematics. I assume that you have had the usual high school
mathematics, but I will not assume that you were always thrilled by it. Knowing
basic rules of algebra (like add the same thing to both sides of an equation) and
standard geometric definitions (e.g., knowing that a quadrilateral has one more
side than a triangle) are nearly sufficient prerequisites. The rest will be introduced
to you as needed in the text (even if you already know some of it).

My teaching philosophy has always been to begin with basic and elementary
notions in order to make sure everyone is on board. Then I move along from
simple notions gradually toward more complex and hopefully more interesting
ones. Every class should include a worthwhile discovery or a memorable result.
I apologize at the beginning to those students who feel they’ve seen some of the
material before, but I promise them that the rewards are great for those who can
understand mathematics solidly and well. After all, don’t professional baseball
players limber up and practice the basics of throwing and hitting every spring
to warm up for the real season? Similarly, one must be completely comfortable
with the mathematical foundation upon which grander results are built. So each

ix
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chapter moves (smoothly I hope) from basic background toward some really neat
and worthwhile mathematics.

Over the years, I have given about two dozen general mathematical lectures at
Middlebury College as part of the seminar series in my department. I have strived
to make those lectures both accessible to new college students and also of some
interest to the experienced mathematicians in the audience. In writing this book,
I have borrowed from many of these lectures and reworked them to give a more
even treatment here. Very little of what I present is original mathematics (i.e.,
created by me and presented for the first time here.) Instead I have collected
material from a wide variety of disparate sources from which I have drawn
connections to make a cohesive whole. The history of ideas and the details of
the lives of the people behind the theorems also interest me. I include a fair
amount of historical background when I think it enhances the exposition, but I
have avoided long historical discourses or philosophical asides when they detract
from the presentation. What I have done in some sense, is to organize a colorful
tour for you through the fascinating and beautiful land of mathematics. There
are chapters on primes, on various mathematical games, on infinite series, on
calculating pi, unusual geometric problems, variations on the partition function,
and much more. Whether you are a high school or college student who wants
to know a bit about the sort of mathematics that’s just not covered in a standard
calculus course, an adult who would like to learn more about the real essence of
mathematics, or a college mathematics instructor who wants to add a bit of spice
to your courses, I hope there is much here to please you. There are some great
panoramic views ahead. Have an enjoyable and stimulating journey!

One final comment : Mathematics is a vibrant, living organism that continues
to move about and grow. This is especially apparent in the area of computational
number theory where new results proliferate at such a rate that any publication
such as this will be somewhat out of date the moment it is printed. Such an
update is in order for Chapter 5. In particular, I am pleased to announce the
discovery of a new “largest known” prime on November 17, 2003. The prime in
question is 220996011 - 1, the 40th Mersenne prime comprising 6320430 digits.
The prime was discovered through the collective efforts of GIMPS (the Great
Internet Mersenne Prime Search). The key participants in this discovery were
George Woltman, Scott Kurowski, and Michael Shafer.
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1 Let’s Get Cooking: A Variety
of Mathematical Ingredients

We begin our mathematical journey by introducing (or reminding you about)
some basic objects of mathematics. These include prime numbers, triangular
numbers, and geometric squares. We will also present a couple of neat proofs
and discuss a very useful tool for carefully establishing results dealing with the
natural numbers, namely mathematical induction. This chapter lays the founda-
tion for many of the latter chapters and hence might be a bit more elementary.
On the other hand, don’t worry about being bored. Mathematics asks (and often
answers) interesting fundamental questions. We’ll get to some really compelling
things right away!

Let’s avoid a philosophical discourse on the construction of (or the a pri-
ori existence of) the natural numbers. I assume that the natural numbers exist (at
least in our humanly defined mathematical world). They are the counting numbers
1, 2, 3, . . . and they continue forever in the sense that if N is a natural number,
then so is N+1. We denote the set of all natural numbers by N . The set of natural
numbers can be subdivided. The number 1 is special in that it is the unique mul-
tiplicative identity. This is just a fancy way to say that anything times 1 is itself.

Next come the primes. You no doubt recall that these are natural numbers that
are only divisible by 1 and themselves. For example, 2 is prime. So are 17 and 41
since they cannot be factored further. So is 10,123,457,689, the smallest prime
containing all ten decimal digits. But 6 = 2 · 3 and 91 = 7 · 13 are not prime.
Numbers like 6 and 91 belong to the third category, namely the composites. The
primes are the multiplicative building blocks for all the natural numbers. The
composite numbers are those that require at least two building blocks.

There are endless questions to be asked about the natural numbers, especially
the primes. The Fundamental Theorem of Arithmetic states that all natural num-
bers have a unique factorization as a product of primes (discounting order of the
factors). Since 2,002 = 2 · 7 · 11 · 13, no other product of primes could equal
2,002. But how many primes are there? Are there any consisting of more than a
million digits? How many are of the form N2+1, that is, exceed a square number
by 1? How spread apart are they? Some of these questions were answered by
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2 MATHEMATICAL JOURNEYS

the ancient Greek geometers more than 2000 years ago. Others still have not
been answered fully. Let’s get right to it and answer the first question, which is
perhaps the most fundamental of all.

Theorem 1.1: There are infinitely many primes.

How does one go about demonstrating the veracity of the statement above?
Certainly any list of primes, no matter how long, will not suffice to show that
there are infinitely many primes. Perhaps showing that the primes satisfy some
pattern would help. For example, if for each prime it was true that its double
plus 1 was prime, then we’d have a process for producing as many primes as
we wished. Let’s give it a try by carrying out this process on the first prime: the
sequence begins 2, 5, 11, 23, 47, . . . —look promising? So far so good, but the
next number in our sequence is 95, a composite number. This isn’t going to be
that easy. But perhaps a similar idea might work.

A theorem is a mathematical statement whose veracity has been rigorously
demonstrated to the satisfaction of mathematicians. At least, that’s my definition
of a theorem. If it sounds a bit tenuous, it no doubt is. On very rare occasions, a
result is erroneously considered to be a theorem for many years before a logical
weakness or flaw is discovered in its purported proof. But such instances are
extremely unusual. Although mathematics is a human endeavor, mathematicians
treat their work very stringently and the standard for proof is high. So from here
on you are a mathematician who is about to read the following proof presented
by Euclid in The Elements (Book IX, Proposition 20), written about 300 B.C.E.
(Before the Common Era). See if it convinces you.

Proof of Theorem 1.1: There are some primes, for example, 2 is prime. So
now consider a nonempty set of primes, S = {p1 , p2 , . . . , pn}. The number N =
p1 ·p2 · . . . ·pn +1 is not divisible by p1 because division by p1 leaves a remainder
of 1. Similarly, N is not divisible by any of the primes in the set S. So N is either
another prime not among those listed in S or N is composite, but made up of a
product of primes none of which are in the set S. So the set S is not a complete list
of all the primes. Since S was an arbitrary set of primes, no finite list of primes
can be complete. Therefore, the number of primes is infinite. �

The result is stunning and the proof is elegant. We have answered a simple
but deep question about the prime numbers and hence about the natural num-
bers themselves. The natural numbers have an infinite number of multiplicative
building blocks. We won’t run dry! And notice that we’ve also answered our
second question. Are there any primes consisting of more than a million digits?
Yes, there are. In fact, there are infinitely many of them (since only finitely many
primes could possibly have a million or fewer digits.) Naming such a prime may
be quite a different matter, but later we will tell some of that story as well.

The primes begin 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47. There
are various sized gaps between successive primes. For example, the gaps from
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our list above are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4. Since two is the only even
prime number, all gaps after the initial gap of 1 are even numbers. How big can
these numbers get? Does 2 appear infinitely often? Do all even numbers appear
at some point? The next theorem answers our first question.

Theorem 1.2: There are arbitrarily large gaps between successive primes.

What we require are arbitrarily long strings of consecutive composite num-
bers. Below we construct such a string. Before we begin, recall the definition of
factorial. If n is a natural number, n! (read “n factorial”) is the product of all the
natural numbers up to and including n. For example, 5! = 1 · 2 · 3 · 4 · 5 = 120.

Proof of Theorem 1.2: Given a natural number N ≥ 2 , consider the sequence
of N consecutive numbers (N + 1 )! + 2 , (N + 1 )! + 3 , . . . , (N + 1 )! + N + 1 .
Note that 2 divides (N + 1 )! since 2 is one of the factors in the product that
defines (N +1 )!. So 2 divides (N +1 )!+2 and hence (N +1 )!+2 is composite.
Similarly, 3 divides (N + 1 )! + 3 and so (N + 1 )! + 3 is composite as well.
Analogously, all the N consecutive numbers from (N +1 )!+2 to (N +1 )!+N +1
are composite. Since the number N is arbitrary, there are strings of consecutive
composite numbers of any given length. Hence there are arbitrarily large gaps
between successive primes. �

Ponder for a moment what Theorems 1.1 and Theorems 1.2 say. There is an
unlimited supply of primes, but gaps between them can be as large as you like.
Also note what the theorems do not claim. Theorem 1.2 does not say that there is
an infinite string of consecutive composites. For if there were, then there would
have to be a last prime, contradicting Theorem 1.1. Nor does Theorem 1.2 imply
that our construction gives the first instance of a particularly sized gap. However,
both theorems do tell us something significant about prime numbers.

On the one hand, there are lots and lots of primes. On the other hand, they’re
not so dense in the natural numbers that there aren’t long patches without them.
Compare this with the odd numbers. There are infinitely many odd numbers,
but there’s never a gap larger than two between them. How about the set of
squares—1, 4, 9, 16, etc.? Certainly there are infinitely many of them. And the
gaps are successive odd numbers that get arbitrarily large. So in some sense the
primes are a bit more like the squares perhaps. Deeper theorems do distinguish
between the density of squares and the density of primes among the natural
numbers, but for now at least we have another concrete model where results
analogous to Theorems 1.1 and 1.2 apply. (For those of you who are curious,
there are more primes than squares in some strict analytical sense.)

What about our other questions? It has not been proven that every possible
even gap appears somewhere along the endless list of primes, but number theorists
tend to believe that it is so. In fact, A. de Polignac conjectured that every even
number appears infinitely often as a gap between consecutive primes (1849).
And although there are lots of examples of the smallest gap of two, even a
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proof that there are infinitely many such twin primes remains elusive. However,
many gigantic examples have been discovered. Currently the record is the twin
pair 33218925 · 2169,690 ± 1, found by Daniel Papp (2002). Each number is a
51,090-digit prime.

Now let’s consider the triangular numbers, for each n defined as the sum of
the first n natural numbers. Denote them by tn. For example, t4 = 1+2+3+4 =
10. Geometrically, we can think of tn as the number of bowling pins with n rows
laid out in the usual triangular array. Imagine some giant extraterrestrial species
bowling with t10 bowling pins. The 46–55 split is a real killer! A most natural
question is, “What is tn?” Is there a nice formula which gives us tn for all n? Of
course there is. Why would I bring it up? The formula is simple and provides us
with the classic example in which to introduce the technique of proof by induction.

Theorem 1.3: For all n ≥ 1 , tn = n(n + 1 )/2 .

The method of mathematical induction is a simple one. It consists of verifying
the assertion for the initial value (n = 1 in this case) and then showing that if
the theorem is true for the case n, then it must be true for case n + 1. In this
way, it’s much like an infinite set of dominoes all lined up in a row. If we
knock over the first one and carefully set up all the rest so that each one knocks
over the succeeding domino, then eventually any particular domino will fall.
This method of proof was widely used by the brilliant French philosopher and
mathematician Blaise Pascal (1623–1662) and so this method of proof is often
attributed to him. However, recently mathematical historians have discovered that
the same technique was utilized by Levi ben Gerson (1288–1344), the Jewish
medieval Biblical scholar, astronomer, philosopher, and mathematician. No doubt
the clever idea of mathematical induction has been independently discovered by
many scholars. Its elegance and simplicity belie its power and broad applicability.

Proof of Theorem 1.3: For n = 1 , t1 = 1 = 1 (2 )/2 . So Theorem 1 is correct
in this case. If the formula is correct for tn , then let’s show that it is correct for
tn+1 as well.

1 + 2 + . . . + n + (n + 1 ) = (1 + 2 + . . . + n) + (n + 1 )

= n(n + 1)/2 + (n + 1) by the inductive hypothesis

= [n(n + 1 ) + 2 (n + 1 )]/2

= (n + 1 )(n + 2 )/2 ,

which is the formula for tn+1 . By mathematical induction, the formula holds for
all n ≥ 1 . �

Make sure to double-check the little bit of algebra in the proof above and be
certain that you are comfortable with the logic behind mathematical induction.
If so, you are well on your way toward thinking like a real mathematician. Now
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if you need to know the sum of the first 1,000 natural numbers, the solution is
easy: t1,000 = 1,000(1,001)/2 = 500,500. Watch out for that bowling ball!

Let’s try our hand on a somewhat more intricate example. Define the Fibonacci
numbers as the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, etc. Each
entry in the sequence from the third entry on is the sum of the two preceding
Fibonacci numbers. Hence F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3.
The Fibonacci sequence is a good example of a sequence defined recursively.
These numbers are named after the Italian mathematician Leonardo of Pisa (ca.
1175–1250), who promoted the use of the Hindu-Arabic numeral system. (He
was also known as Fibonacci, son of Bonaccio.) His book, Liber Abaci (1202),
contained the following problem: “How many pairs of rabbits can be produced
from a single pair in a year if every month each pair begets a new pair which
from the second month on becomes productive?” The sequence thus produces
the number of pairs we’ve listed above.

There seem to be an endless number of interesting arithmetic formulae based
on this simple sequence. For example, let’s pick any Fibonacci number, square
it, subtract from that the product of its two neighboring Fibonacci numbers
(above and below), and see what results. If we choose F7 = 13, then we get
(F7)

2 −(F6 ·F8) = 132 −8 ·21 = 1. If we choose F8 = 21, then a similar compu-
tation gives us 212 − 13 · 34 = −1. Experiment with some other starting values.
Really—try some other examples. Once you’ve done a few calculations, then
read on. (I’m trying to help get you in the mindset for mathematical discovery.
This is the essence of mathematics.)

No doubt you have noticed that the answer is always 1 or −1. In fact, if we
pick an odd-indexed Fibonacci number we get +1 and if we choose an even-
indexed Fibonacci number we obtain −1. This leads us to the conjecture that
F 2

n − Fn−1 · Fn+1 = (−1)n−1. In fact, this is a theorem that we now prove in
two different ways, each making use of mathematical induction.

Theorem 1.4 (J.D. Cassini, 1680): For all n ≥ 2 , F 2
n −Fn−1 ·Fn+1 = (−1 )n−1 .

First Proof of Theorem 1.4 (Direct): Our initial value is n = 2 : F 2
2 −F1 ·F3 =

1 2 −1 ·2 = (−1 )1 . So the proposition is true in this case. Now let’s assume that
it holds for some unspecified value of n, that is, F 2

n − Fn−1 · Fn+1 = (−1 )n−1 .
We will show that the proposition necessarily follows in the next case, namely for
n + 1 .

F 2
n+1 = Fn+1 (Fn + Fn−1 ) by the definition of Fn+1

= Fn+1 Fn + Fn−1 Fn+1 + (F 2
n − F 2

n )

(mathematicians love to add zero to equations since nothing gets disturbed)

= F 2
n + Fn+1 Fn − (F 2

n − Fn−1 Fn+1 )

= Fn(Fn + Fn+1 ) − (F 2
n − Fn−1 Fn+1 )
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= FnFn+2 − (F 2
n − Fn−1 Fn+1 ) by the definition of Fn+2

= FnFn+2 − (−1 )n−1 by the inductive assumption.

Hence F 2
n+1 − FnFn+2 = (−1 )n and the result follows. �

Theorem 1.4 also affords us the opportunity to introduce some basic matrix
arithmetic. Simply put, a matrix is a rectangular array of numbers. Mathemati-
cians have defined various arithmetic operations on matrices such as addition,
subtraction, multiplication, and so on that share many of the standard properties
of the ordinary arithmetic operations on real numbers. Here we need only be
concerned with 2 × 2 square matrices consisting of four entries in two rows and
two columns. Matrix addition and subtraction is defined component-wise and
appears perfectly natural. For example, if

A =
[

1 3
5 7

]
and B =

[
2 4
6 8

]
,

then their sum

A + B =
[

1 + 2 3 + 4
5 + 6 7 + 8

]
=

[
3 7

11 15

]
.

Multiplication is not defined component-wise, but rather in a bit more intricate
way. If

M =
[

a1 b1
c1 d1

]
and N =

[
a2 b2
c2 d2

]

are any two such matrices, then we define their product to be the 2 × 2 matrix

MN =
[

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

]
.

For example, with A and B defined as before, their product

AB =
[

1 · 2 + 3 · 6 1 · 4 + 3 · 8
5 · 2 + 7 · 6 5 · 4 + 7 · 8

]
=

[
20 28
52 76

]
.

In addition, we define positive powers of a matrix by M2 = MM and, more
generally, Mn = MMn−1 for n ≥ 2.

Next we define the determinant of M. If

M =
[

a b

c d

]
,

then the determinant of M, denoted by det M, is the number ad−bc. For example,
with A as previously defined, det A = 1 · 7 − 3 · 5 = −8. Determinants play an
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important role in linear algebra where matrices are used extensively to study linear
transformations. A key result is that the determinant function is multiplicative.
That is, if M and N are two 2 × 2 matrices, then det(MN) = det M · det N , a
fact you may wish to verify directly. The somewhat complicated nature of the
product of two matrices is more than compensated by the simple nature of the
product of their determinants.

Second Proof of Theorem 1.4 (Determinants): We begin by extending our def-
inition of Fibonacci numbers to include F0 = 0 . Notice that F0 + F1 = 0 + 1 =
1 = F2 , which is consistent with our Fibonacci recurrence definition. Let

M =
[

1 1
1 0

]
=

[
F2 F1
F1 F0

]
.

By induction,

M n =
[

Fn+1 Fn
Fn Fn−1

]
.

To see this, note that the assertion is consistent with M 1 , our base case. Assum-
ing that

M n =
[

Fn+1 Fn
Fn Fn−1

]
,

we compute M n+1 . We have that

M n+1 = MM n =
[

Fn+1 + Fn Fn + Fn−1
Fn+1 Fn

]
=

[
Fn+2 Fn+1
Fn+1 Fn

]

as desired. But the determinant is multiplicative. Hence det(M n) = (detM )n

where det M = −1 . It follows that Fn+2 Fn + F 2
n+1 = (−1 )n . Equivalently,

F 2
n − Fn−1 · Fn+1 = (−1 )n−1 . �

Theorem 1.4 shows that the square of a Fibonacci number and a product of
neighboring Fibonacci numbers are nearly equal, in fact just missing by one.
This fact is the basis of a very compelling geometric paradox attributed to the
Oxford don Charles L. Dodgson (1832–1898), better known as Lewis Carroll
of Alice in Wonderland fame. See the diagram in Figure 1.1. The four shapes
comprising the two figures match identically and yet it appears that their total
areas differ by one unit. The figure on the left is a square with area 64, while
the figure on the right appears to be a rectangle with area 65. The solution to
this apparent paradox is that the four pieces on the right don’t quite fit together
neatly. For example, the slope of the two triangles is 3/8 = F4/F6 while that
of the appropriate side of the light and dark trapezoids is 2/5 = F3/F5 (nearly
the same, but not exactly). The visual paradox makes use of the fact that the
ratio Fn−1/Fn+1 converges fairly quickly so that it’s difficult to see that there
are actually two broken diagonal lines rather than a single diagonal.
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5

5 5

5 8

3

8 5

3

5

3 5

3

8

5 3

3

Figure 1.1 Apparent rearrangement of four figures results in different areas.

Another interesting application of Fibonacci numbers is the representation of
positive integers as the sum of Fibonacci numbers F2, F3, F4, etc. In this instance
we do not need F1 = 1 since F2 = 1 as well. In fact, even without repeating a
given Fibonacci number, there may be several ways to write a given integer as
such a sum. For example, 17 = 13 + 3 + 1 = 8 + 5 + 3 + 1. We can denote these
Fibonacci representations by 17 = (100101)F or 17 = (11101)F where we read
from right to left beginning with F2 and adding the appropriate Fibonacci number
every time a 1 appears. A nice result of Edouard Zeckendorf (1972) states that
every natural number has a unique Fibonacci representation with no consecutive
1s. So every positive integer can be expressed as a sum of Fibonacci numbers, no
two being consecutive. Appropriately, such a Fibonacci representation is called
a Zeckendorf representation.

We now turn our attention to a geometric example. Since the principle of
mathematical induction is much like an endless array of dominoes, let’s see
what happens when we apply induction to sets of real dominoes. Actually, we
will consider L-shaped dominoes that cover three squares of a chessboard. In
addition, we will be interested not just in the usual 8 × 8 chessboard, but also in
chessboards of dimensions 2n × 2n for any n ≥ 1. Remove any single square of
such a chessboard. I claim that an appropriate number of such L-shaped dominoes
can neatly cover the rest of the board. An actual construction might take some
time, but induction easily works to show this claim is valid.

If n = 1, it’s simple to verify that one L-shaped domino can cover the other
three squares once one has been removed. See Figure 1.2. Now assume that the
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Figure 1.2 Solution for a 2 × 2 chessboard.

2n 2n

2n

2n

Figure 1.3 Solution for 2n+1 × 2n+1 chessboard.

result is true for a 2n ×2n chessboard with any square taken out. Next consider a
2n+1 ×2n+1 chessboard. Mentally slice the chessboard in half vertically and half
horizontally so that the board is actually made up of four quarter boards, each of
dimension 2n × 2n. If a square is removed from the original large board, it must
lie in exactly one of the four quarter boards. By our inductive hypothesis, the rest
of that quarter board can be covered with L-shaped dominoes. Now consider the
corner where the other three quarter boards meet. Remove the corner square from
each of the three quarter boards. Each quarter board with one square removed
can be covered with L-shaped dominoes. What remains is one last gap of three
squares forming an L-shape. Fill that piece with an L-shaped domino and we are
done (Fig. 1.3)!

In the mathematical literature such L-shaped dominoes are often called right
trominoes. From there it’s a small step to objects like tetraminoes and pentomi-
noes and a whole host of new and interesting questions. Such is the nature of
mathematical generalization!

Finally, please try your hand at the following cute problem. Show that a given
geometric square can be decomposed into n squares, not necessarily all the same
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Figure 1.4 Four squares.

Figure 1.5 Six squares.

size, for n = 4 and for all n ≥ 6. It’s usually a good idea to check out some
initial cases by hand. Then try to understand why the assertion must be true.

The case n = 4 is almost trivial. (I don’t like to claim that anything actually
is trivial. I’ve been puzzled by too many supposedly obvious things over the
years to want to pull the same thing on you.) Here’s a square broken into four
smaller squares, each with sides half the length of the original square (Fig. 1.4).
For n = 6, the following pattern fits the bill with one square having twice the
length and width of the other five squares (Fig. 1.5). And for n = 8, a similar
idea allows us to break up one square into one large one and seven identical
smaller ones, each having one-third the length of the remaining square (Fig. 1.6).

The first picture shows that any square can be broken up into four smaller
squares, thereby increasing the number of squares by three. Hence the first
square depicted can be decomposed into 4, 7, 10, 13, 16, 19, . . . squares. Notice
that these are all the numbers greater than or equal to four having remainder
1 when divided by 3. Similarly, the second square can be decomposed into
6, 9, 12, 15, 18, . . . squares. These are all the numbers greater than or equal
to six that are divisible by 3. And the third square can be decomposed into
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Figure 1.6 Eight squares.

8, 11, 14, 17, 20, . . . squares. These are all the numbers greater than or equal to
8 that have a remainder of 2 when divided by 3. But all natural numbers are
either divisible by 3 or have a remainder of 1 or 2 upon division by 3. Hence a
given square can be decomposed into n squares for n = 4 and for all n ≥ 6.

Congratulations, you’ve completed the first chapter and have digested some
serious mathematics. I hope you share my delight in making discoveries about
primes, Fibonacci numbers, triangular numbers, and geometric squares. Have you
discovered any other interesting properties? Can you prove it?

WORTH CONSIDERING

1. Notice that 2 + 1 = 3, 2 · 3 + 1 = 7, and 2 · 3 · 5 + 1 = 31 are all primes.
Investigate how far this phenomenon continues by considering the product
of the first n primes plus one.

2. Let p be prime and consider the number 2p − 1. Investigate the primality of
2p − 1 for various small values of p. (Such numbers are called Mersenne
numbers, named after Marin Mersenne (1588–1648), who made some long-
ranging conjectures about them.)

3. Fill in the details of the following alternative proof (due to T.L. Stieltjes,
1890) that there are infinitely many primes: Let A and B be two distinct finite
nonempty sets of primes. Let PA and PB be the product of the elements of
A and B, respectively. Consider the factorization of PA + PB . (For fun and
insight, carry out this process on some of your own examples.)
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4. Explicitly work through the construction of six consecutive composites in the
proof of Theorem 1.2. Find a smaller example of six consecutive composites.

5. (a) Let tn be the nth triangular number. Show that tn−1 + tn = n2.

(b) Show that t2
n−1 + t2

n = tn2 .

6. Define the nth pentagonal number by p1 = 1 and pn = 1+4+ . . .+ (3n−2)

for n ≥ 2. Why is this a good name for pn? Use induction to prove that
pn = n(3n − 1)/2.

7. Verify the following Fibonacci identities:

(a) F1 + F2 + . . . + Fn = Fn+2 − 1.

(b) F2 + F4 + . . . + F2n = F2n+1 − 1.

(c) F1 + F3 + . . . + F2n−1 = F2n.

8. Establish that F 2
1 + F 2

2 + . . . + F 2
n = FnFn+1.

9. (a) Show that the number of ways to fill a bowl with n stones by dropping
in either one or two stones at a time is Fn+1.

(b) What is the number of ways to cover an n × 1-sized board with an
assortment of 1 × 1 squares and 2 × 1 dominoes?

10. Verify that if A and B are two 2 × 2 matrices, then det(AB) = detA · detB.

11. Find Zeckendorf representations for the following numbers: 19, 32, 232.

12. Can L-shaped dominoes cover a 3n×3n chessboard with one missing square?
What about a 3n × 3n chessboard with no missing square? What about a
4n × 4n chessboard with one missing square?

13. How many ways can a square be decomposed into ten smaller squares?
(There are at least two possible answers depending on whether you count
symmetric rotations of a given square as being distinct.)

14. Investigate how many ways a 2 ×n chessboard can be covered with n 2 × 1
dominoes.

15. Primes p for which 2p + 1 are also prime are called Germain primes in
honor of Sophie Germain (1776–1831) who demonstrated their intimate con-
nection with Fermat’s Last Theorem. Determine how many of the first 25
primes are Germain primes. (No one knows if there are infinitely many such
primes.)

16. (L. Euler) Does the following polynomial produce just primes: f (n) =
n2 − n + 41?



2 The Green Chicken Contest

Every December, several thousand undergraduate college and university students
from Canada and the United States compete in the William Lowell Putnam Math-
ematical Competition, better known as the Putnam Exam. The contest consists of
two arduous sessions, a three-hour morning and a three-hour afternoon period.
Students work on six challenging mathematics problems in each session. Tests
are graded out of a total of 120 points (10 points per problem). Very little partial
credit is granted. The median score is usually zero! Students work individually,
but many are members of predetermined institutional teams. The pressure to suc-
ceed can be high, but the reward of being on one of the top five winning teams
or being one of the five highest ranking individuals (a Putnam fellow) means a
lifetime of glory (at least within mathematical circles).

Since 1978, Middlebury College and Williams College have also competed in
a less formal pre-Putnam contest. The originators of the contest were two friends
and math colleagues, Bob Martin (of Middlebury College) and Peter Andrews
(then of Williams College). Each team can field as many students as they wish
and no official team is predetermined. In the end, the top four scores from each
school are added together and the winning school is, of course, the one with the
higher total. The contest consists of six mathematical questions and partial credit
for good ideas is given generously. Early on it was determined that the winning
trophy would reside with the team that last won the contest. In fact, the winning
trophy is a plaque attached to a wooden box surmounted by a rather ugly ceramic
green chicken cookie container. There was some lighthearted discussion about
whether it wouldn’t be more appropriate for the losing team to be stuck with the
trophy for a year. Be that as it may, the event is always a lot of fun and a real
celebration of mathematical learning and comradeship. The contest has become
known affectionately as the Green Chicken Contest.

Here are six problems (and solutions) from previous Green Chicken Contests.
Play around and try to solve them yourself before reading the answers. Some
of the problems are original to the Green Chicken Contest, while others are old
chestnuts passed on from one generation to the next. For example, I have seen
the very first problem pop up here and there in different guises. Recently I was
able to track it down to the 1901 Hungarian Eötvös Competition, named after the
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Middlebury and Williams Colleges’ Green Chicken trophy.

founder and first president of the Mathematical and Physical Society of Hungary.
Maybe the problem is even older.

Problem #1 (1978 Green Chicken Contest): Prove that, for any positive integer
n, 1 n + 2 n + 3 n + 4 n is divisible by 5 if and only if n is not divisible by 4.

Problem #1 was the first problem on the first Green Chicken Contest and serves
as a good introduction to the mathematics required to handle such problems.
Always begin with some examples to get a feel for the problem and to see if
it seems plausible. Remember, no set of examples, no matter how numerous,
suffices to establish that an assertion is valid for all natural numbers. However,
one counterexample is sufficient to show that an assertion does not hold generally.
For example, the assertion that all natural numbers are less than a trillion passes
billions of trial tests but fails for the number one trillion (and all larger integers).

Table 2.1 presents a chart for the sum S(n) = 1n + 2n + 3n + 4n for some
initial values of n. Naturally, it’s easy to determine whether or not 5 divides
S(n). Just check if the last digit of S(n) is either a 0 or a 5. The assertion is
satisfied at least for the first ten values of n. In fact, we might hypothesize an
even stronger assertion; namely, that S(n) is divisible by 10 if and only if n is
not divisible by 4. Furthermore, when n is divisible by 4 then the last digit of
S(n) will always be 4.
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TABLE 2.1

n 1 2 3 4 5 6 7 8 9 10

S(n) 10 30 100 354 1,300 4,890 18,700 72,354 282,340 1,108,650

For the sake of clarity and uniformity of presentation, now is a good time
to introduce the notion of congruence. Let a and b be integers and n a natural
number. We say that a is congruent to b modulo n if n divides a − b, written
a ≡ b (mod n). What a simple idea! We’ll see it’s also a very compact and
convenient way to express a host of arithmetic statements.

Double-check your understanding by verifying that 5 ≡ 17 (mod 3), 32 ≡ 142
(mod 10), and 15 ≡ 3 (mod 6). However, 15 is not congruent to 3 modulo 8,
that is, 15 is incongruent to 3 modulo 8.

An integer divided by 5 has only one of five possible remainders, namely 0,
1, 2, 3, or 4. We say that the set {0, 1, 2, 3, 4} forms a complete set of residues
modulo 5. Keeping in mind the definition of S(n), let’s look at the powers of
1, 2, 3, and 4 (modulo 5). Clearly 1n = 1 for all n ≥ 1, which is congruent
to 1 (mod 5). Next 2n = 2, 4, 8, 16, 32, 64, 128, 256, . . . . Reducing mod 5, we
obtain 2, 4, 3, 1, 2, 4, 3, 1, . . . , which repeats the pattern 2, 4, 3, 1 ad infinitum.
We summarize by noting that 2n ≡ 2, 4, 3, or 1 (mod 5) depending on whether
n ≡ 1, 2, 3, or 0 (mod 4), respectively. Similarly, 3n ≡ 3, 4, 2, or 1 (mod 5)
depending on whether n ≡ 1, 2, 3, or 0 (mod 4), respectively. Finally, for n ≡ 1,
2, 3, or 0 (mod 4), 4n ≡ 4, 1, 4, 1 (mod 5).

Now we combine our results by looking at S(n) for each residue modulo 4:

If n ≡ 1 (mod 4), then S(n) ≡ 1 + 2 + 3 + 4 = 10 ≡ 0 (mod 5).
If n ≡ 2 (mod 4), then S(n) ≡ 1 + 4 + 4 + 1 = 10 ≡ 0 (mod 5).
If n ≡ 3 (mod 4), then S(n) ≡ 1 + 3 + 2 + 4 = 10 ≡ 0 (mod 5).
If n ≡ 0 (mod 4), then S(n) ≡ 1 + 1 + 1 + 1 = 4, which is incongruent to 0

(mod 5).

Since all integers are congruent to exactly one of 0, 1, 2, or 3 (mod 4) and only
those divisible by 4 are congruent to 0(mod 4), it follows that 1n + 2n + 3n + 4n

is divisible by 5 if and only if n is not divisible by 4.
It is no doubt apparent that there is a great deal more structure to these sets

of residue classes. The foundations for the development of much of modern
number theory and abstract algebra depends on a deep understanding of general
principles underlying our discussion of Problem #1. For now, just notice that
modular arithmetic is a generalization of “clock arithmetic.” The hours of a clock
repeat themselves every 12th hour. So telling time is akin to counting modulo 12.
Similarly, the days of the week form a residue system modulo 7. Similarly, nearly
all cyclic systems having discrete states admit to a modular description. Carl
Friedrich Gauss (1777–1855) was the first to state the definition of congruence
at the beginning of his magnum opus, Disquisitiones Arithmeticae (1801). A great
deal of previously described mathematics as well as a host of new discoveries
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could then be described in terms of the new language of congruences and residue
systems. This ability to identify the common thread that unifies several seemingly
disparate phenomena is one mark of a great mathematician.

Problem #2 (1983 Green Chicken Contest): Good news! It is now possible to
get Chicken McNuggets in boxes of 6, 9, and 20. What is the smallest integer M
such that for any n ≥ M it is possible to order exactly n delicious McNuggets by
choosing the appropriate number of boxes of each size?

What a beautiful problem! It may surprise you that there even is such an M .
Experiment a bit to find some values of n that work and some values of n that
do not admit such an order. For example, can you order exactly 19 McNuggets?
How about 33?

The solution reduces to finding the first instance where any number of
McNuggets can be ordered for six consecutive numbers; for if we can order
any of M , M + 1, M + 2, M + 3, M + 4, or M + 5 McNuggets, then we can
add an appropriate number of boxes of 6 to make any larger order. The key is
that any six consecutive numbers cover all residue classes modulo 6. Now which
value of M works?

Notice that both 6 and 9 are congruent to 0 (mod 3), while 20 is congruent
to 2 (mod 3). So 40 = 20 + 20 is the smallest number congruent to 1 (mod
3) that can be ordered. This is a promising place to start checking cases. Now
41 = 20 + 9 + 6 + 6 and 42 = 9 + 9 + 9 + 9 + 6. Unfortunately, we cannot
make an order of size 43 (check it). However, we can make orders for 44, 45,
46, 47, 48, and 49 (please verify). So the smallest integer M such that for any
n ≥ M it is possible to order exactly n McNuggets is 44. Hmm . . . something
worth chewing on.

Problem #3 (1984 Green Chicken Contest): Mr. and Mrs. Gauss invite four
other couples to dinner. As the guests arrive they shake hands with everyone they
know and no one else (of course they do not shake hands with their spouses or
with themselves). As the guests are being seated for dinner Mr. Gauss proclaims,
“Not including myself I noticed that one of you shook hands with no one, one of
you with just one person, one with two people, . . . , and finally one with eight
others.” How many hands did Mrs. Gauss shake?

This is another fun problem and at first glance seems impossible to solve. But
sit back, relax, listen to Jerry Lee Lewis’s “Whole Lotta Shakin’ Goin’ On”, and
work a way at the problem one handshake at a time. Please note that although
Mr. Gauss does not report on the number of hands he shook, he does include
himself when counting the number of hands each guest shook. Let’s denote the
couples by A and a, B and b, C and c, and D and d . I make no assumptions
about which one is the husband or wife. (The problem may seem somewhat dated
relative to assumptions about the couples being heterosexual married pairs. But
as a math problem, it still works fine.)
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First notice that Mrs. Gauss could not possibly have shaken all eight guests’
hands. For then, every one of the guests would have shaken at least one hand
contrary to the assumption that one person shook no hands. So let A denote
the guest who shook eight hands (necessarily including the hands of both Mr.
and Mrs. Gauss). Since one person shook no hands, that person must be the
spouse of A, namely guest a. Again if Mrs. Gauss shook exactly seven hands,
then every guest but a shook at least two hands (person A and Mrs. Gauss), a
contradiction. So someone else, say guest B shook exactly seven hands. But then
B’s spouse, person b, shook exactly one hand. Similarly, one of the guests, say
C, shook exactly six hands (and C’s partner c shook two hands). In addition,
another guest, person D, shook five hands and d shook three hands. This forces
Mrs. Gauss to have shaken exactly four hands.

The solution is completely constructive. Figure 2.1 shows precisely who shook
whose hands. The amazing thing is that the given information, as inadequate as
it seemed at first, allows us complete knowledge of the situation (à la Sherlock
Holmes). For example, we now know that Mr. and Mrs. Gauss both know exactly
one member of each couple, in fact, the same person in each case.

Problem #4 (1988 Green Chicken Contest): Show that it is impossible to
weight two coins so that the probability of the three outcomes, two heads, a tail
and a head, or two tails are all equally likely.

Before we tackle this problem, a short reminder about basic probability is use-
ful. The likelihood or probability of an event is assigned a number between 0 and
1 inclusive (or 0%–100%). If p is the probability of an event occurring, then 1−p

is the probability that it did not occur. For example, if the probability that it will
rain tomorrow is 40%, then the probability that it will not rain tomorrow is neces-
sarily 60%. If E is an event, the we denote the probability that E occurs by p(E).

b

C

c

D

d

G g

B

A

a

Figure 2.1 Handshaking diagram for five couples.
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If A and B are independent events with respective probabilities p1 and p2, then
the probability that both A and B occur is p1 ·p2. For example, the probability of
rolling a 6 with a fair die is 1/6, and the probability of choosing a king by drawing
one card from the top of a deck is 1/13 since there are four kings out of 52 total
cards. The probability of rolling a 6 and choosing a king is 1/6 · 1/13 = 1/78
since the two events are independent of each another. But the probability of
choosing a king and then choosing another king (without replacing the first card)
is not 1/13·1/13 because the first event alters the probability of the second event.
Instead, the probability of choosing two kings in succession is 4/52 · 3/51.

Let’s get a feel for the problem by studying the case of two fair coins (where
the chance of flipping a head or a tail is equiprobable.) Let H represent the event
of getting heads with the first coin and let T represent tails. Similarly for the
second coin, let h and t represent the events of heads and tails, respectively. The
probability of any single event with either coin is one-half. Since the result of
each coin flip is independent of the other coin, the four possible events, Hh, Ht,
Th, Tt, are all equally likely. In this case the probability of flipping two heads is
p(Hh) = p(H) · p(h) = 1/2 · 1/2 = 1/4, the probability of flipping a head and
a tail is p(Ht or T h) = 1/4 + 1/4 = 1/2, and the probability of flipping two
tails is p(T t) = 1/4. Certainly the three events are not equally likely with two
fair coins.

Before we present the solution, it is useful to recall the quadratic formula.

If ax2 + bx + c = 0, then x = −b±
√

b2−4ac
2a

. In particular, if the discriminant
b2 − 4ac < 0, then there is no real solution to the quadratic equation (but
rather two complex conjugate roots). We are now prepared to solve the two coin
problem.

Solution to Problem #4: To simplify notation, let p(H ) = P, p(T ) = Q, p(h) =
p, and p(t) = q. Of course, Q = 1 − P and q = 1 − p, but we no longer assume
that either p or P equals one-half. Since the events of flipping each coin are
independent, p(Hh) = Pp, p(Ht or Th) = Pq + Qp, and p(Tt) = Qq. If the
chances of each of these three events is equally likely, each has a probability of
one-third of occurring. Observe that Pp = Qq. Hence Pp = (1 − P)(1 − p)

implying that P + p = 1 . But Pp = 1
3 and so p = 1

3P . Thus, P + 1/(3P) = 1 ,
which leads to the quadratic equation P2 − P + 1/3 = 0 .

But in this case the discriminant b2 − 4ac = −1/3 < 0 . Thus there is no
real solution to the quadratic equation and hence no way to weight two coins as
prescribed. �

Problem #5 (1993 Green Chicken Contest): At Middlebury College seven
students registered for American history, eight students for British history, and
nine students for Chinese history. No student is allowed to take more than one
history course at a time. Whenever two students from different classes get together,
they decide to drop their current history courses and each add the third. Otherwise
there are no adds or drops. Is it possible for all students to end up in the same
history course?
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It’s fun to play around with the numbers a bit and see what arrangements are
possible. For example, if an American history and a British history student get
together, they will each drop their history course and add Chinese history, result-
ing in 6 American history students, 7 British history students, and 11 Chinese
history students. If British and American history students continue to talk to one
another, eventually 23 students could end up in the Chinese history class with
one last student remaining in British history. Fairly quickly one gets the sense
that it’s not possible to get all the students into the same class. But why?

Solution to Problem #5: The key is to work modulo 3. Initially there are 7 ≡ 1
(mod 3) students in American history, 8 ≡ 2 (mod 3) students in British his-
tory, and 9 ≡ 0 (mod 3) in Chinese history. The numbers constitute a complete
residue set modulo 3, the total number of courses involved. If two students add
Chinese history for example, the numbers in American, British, and Chinese his-
tory become 6, 7, and 11. These numbers still form a complete residue set modulo
3. Analogously, the same happens if two students add either American history or
British history. In fact, the numbers always form such a set. At each step of the
process, the three enrollment numbers (say x , y, and z ) are incongruent to one
another modulo 3. At the next step the numbers are x −1 , y −1 , and z +2 . Since
x and y are incongruent (mod 3), so are x − 1 and y − 1 . If z + 2 ≡ x − 1
(mod 3), then x ≡ z + 3 ≡ z (mod 3), a contradiction. Similarly, z + 2 is
incongruent to y − 1 (mod 3). But if all the students ended up in one of the
classes, say x = 0 , y = 0 , z = 24 , then the numbers no longer form a compete
residue system modulo 3. Hence it is impossible for all students to end up in the
same history class. (Those who don’t study this history problem may be forced
to repeat it!) �

Problem #6 (1986 Green Chicken Contest): Prove that log10 2 is irrational.

A brief digression about the nature of irrational numbers is in order before we
proceed with the solution to Problem #6. Rational numbers are those numbers
which can be written as ratios of natural numbers. For example, 22/7 and 67/101
are rational numbers. The Pythagoreans held the world view that “all is number”
and that nature could be completely described in terms of the counting numbers
and ratios of them. Apparently, the discovery that some simple real numbers
were incommensurable, that is, not the ratio of two integers, came as a shock to
them. Today we call such numbers irrational.

The classic example of an irrational number is
√

2. Physically it appears as
the diagonal of a unit square. If you draw such a square with each side 10
centimeters and measure its diagonal, it appears to be about 14 centimeters. So√

2 is about 14/10 = 7/5. But certainly this measurement isn’t exact. Maybe√
2 = 141/100 or 14,142/10,000. In other words, is it possible to build a ruler

with a finer measure that can give us the exact value? What the Pythagoreans
discovered to their dismay is that the answer is “no.”
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To see why
√

2 is irrational, let us argue by contradiction (reductio ad absur-
dum). Assume that

√
2 is rational. In that case we can write

√
2 = a/b where a

and b are positive integers. If we can write
√

2 at all as a ratio of integers, we can
certainly divide out any common divisor and so we may assume in addition that
a and b are relatively prime. Now square both sides obtaining 2 = a2/b2. Mul-
tiply both sides by b2 to get 2b2 = a2. Since the left-hand side of the equation
is divisible by two, so is the right-hand side. Hence, a2 is even. But if a were
odd, then a2 would be odd. Thus, a itself is even. Hence there is an integer c
for which a = 2c. Substituting 2c for a, we obtain 2b2 = (2c)2, or equivalently
2b2 = 4c2. Dividing by two leads to b2 = 2c2. Now the right-hand side of the
equation is divisible by two as is the left-hand side. Thus b2 is even. But if b

were odd, then b2 would be odd. Hence b itself is even. But then both a and b

are divisible by two, contradicting the assumption that a and b were relatively
prime. It follows, that

√
2 cannot be written as the ratio of integers and hence

that
√

2 is irrational.
Before presenting the solution to our last problem, begin by recalling the

meaning of loga b (the logarithm base a of b). For natural numbers a and b, r =
loga b if ar = b. For example, log10 1,000 = 3 since 103 = 1,000. Additionally,
log9 27 = 3/2 since 93/2 = 9

√
9 = 27. The solution to Problem #6 is now fairly

straightforward.

Solution to Problem #6: Assume that log10 2 is rational. Hence there exist rel-
atively prime positive integers a and b for which log10 2 = a/b. By the definition
of logarithms, 10 a/b = 2 . Next raise both sides of the equation to the bth power.
The result is that 10 a = 2 b. But this leads to 5 a = 2 b−a , which contradicts
the Fundamental Theorem of Arithmetic, namely that every integer has a unique
prime factorization. �

The Green Chicken contest is an enjoyable event where each problem is very
specific, conceptually distinct from the others, and usually doesn’t involve any
advanced mathematics—real or complex analysis, topology, or abstract alge-
bra. What it does involve is some cleverness, good problem solving skills, and
a willingness to wrestle with a problem for awhile and uncover its underly-
ing structure. Some knowledge of elementary number theory, geometry, and
combinatorics often proves helpful. Problems #1 and #5 dealt with congru-
ences (mod 5 and mod 3, respectively). In Problem #5 the underlying structure
(of residue systems modulo 3) was not explicit in the statement of the prob-
lem. But upon reflection its mathematical structure surfaced. Problem #4 dealt
with basic probability in the guise of flipping two coins. The problem can be
extended to the situation with three or more coin flips or to rolling a pair of
dice, such is the power of mathematics to generalize. Problem #2 was number-
theoretic and relates to an area known as Diophantine equations as well as to
the concept of covering systems. But I am convinced that anyone willing to
think about the problem seriously can solve it. Problem #3 turned out to be a
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graph theoretic problem. Once we realized that each person could be denoted
by a vertex and handshakes by edges of a graph joining vertices, then the
solution was immediately amenable to solution. Finally, Problem #6 leads to
a deeper understanding of the real number system and the nature of ratio-
nal and irrational numbers. In all cases, hopefully your interest is piqued to
learn more.

In the next chapter, we will deal with one topic and delve a bit wider and
deeper. This is more typical of mathematics in general. Mathematicians frequently
answer one specific question that in turn creates a host of new, related questions.
Oftentimes only once the follow-up questions have been investigated do mathe-
maticians realize the proper setting for the original problem. The answering of
interesting questions and the growth of new related areas of investigation is how
mathematics develops and renews itself.

WORTH CONSIDERING

1. Show that n3/3 + n2/2 + n/6 is an integer for all n ≥ 1.

2. Show that n5 − n is divisible by 30 for all n ≥ 1.

3. Show that S(n) = 1n + 2n + 3n + 4n is divisible by 10 if and only if n is
not divisible by 4.

4. Assume that chocolate-covered strawberries come in boxes of 5, 7, and 10.
What is the largest number of chocolate-covered strawberries that cannot be
ordered exactly?

5. At a party everyone kept track of how many times they shook hands.

(a) Show that the total number of handshakes was even.

(b) Show that there were an even number of people who shook hands an
odd number of times.

6. Two dice are rolled. Show that it is impossible to weight them so that all
possible sums are equally likely.

7. In Problem #5 of Chapter 2, would the conclusion change if initially there
were seven students registered for American history, nine students for British
history, and nine students for Chinese history? What about 7, 9, and 12
students, respectively?

8. The triplets 3, 7, 11 and 13, 47, 61 are two examples of primes in arithmetic
progression, namely p, p + d, p + 2d . Show that in a prime triplet if p �= 3,
then d is divisible by 6, while if p = 3, then d is not divisible by 3.

9. (a) Prove that
√

3 is irrational

(b) Why doesn’t the same sort of proof work on the number
√

4?

(c) Prove that (1 + √
5)/2 is irrational.
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10. Notice that 27 is approximately equal to 53. How is this helpful in approxi-
mating log10 2?

11. A number is algebraic if it is the root of a polynomial with rational coeffi-
cients. Show that

√
2 + √

3 is irrational, but algebraic.



3 The Josephus Problem: Please
Choose Me Last

Imagine yourself standing in a circle with 40 others in which every second person
in succession remaining is to be killed except for the last one standing. Where
would you place yourself so as to survive? No this isn’t some reality TV show
gone haywire. Rather this is the situation that Josephus Flavius reportedly found
himself in the year 66 C.E. when surrounded by a hostile Roman legion. Whether
or not Josephus’s account of his miraculous survival is completely truthful, we
do know that Josephus survived to live an eventful and full life as historian
and counselor to several Roman emperors. In addition, his name survives as the
progenitor of all related mathematical problems.

There are nearly as many versions of the so-called Josephus Problem as there
are people who have written about it. Versions of the mathematical problem
of determining where to stand dates back at least to Abraham ibn Ezra (ca.
1092–1167), a prolific Jewish scholar and author of works on astrology, the
cabala, mathematics, and philosophy. In later versions the number of people tends
to vary from 30 to 41 with every second, third, or even seventh person eliminated.
In several accounts, both Josephus and a friend are spared. A medieval version of
the problem involves 15 Turks and 15 Christians on board a storm-ridden ship that
is certain to sink unless half the passengers are thrown overboard. There’s even
a Japanese version by Yoshida Koyu appearing in his text, Treatise on Large and
Small Numbers (1627). This version involves a family of 30 children, half from a
former marriage. To choose a child to inherit the parents’ estate, they are arranged
in a circle with every tenth child eliminated from consideration. The current wife
cleverly arranges the children so that none of hers are among the first 15 to be
eliminated. However, after 14 children are counted out, the father realizes what
is happening and decides to reverse the order and count in a counterclockwise
direction. Even so, a child from his second marriage is eventually chosen. I think
we can safely assume Father’s Day was not a big holiday in that family.

To make sure the situation is clear, consider just seven people with every other
one eliminated. Figure 3.1 shows the elimination procedure with person number
7 being the last one to go. The order of elimination is 2, 4, 6, 1, 5, 3, 7.

Mathematical Journeys, by Peter D. Schumer
ISBN 0-471-22066-3 Copyright c© 2004 John Wiley & Sons, Inc.

23



24 MATHEMATICAL JOURNEYS
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Figure 3.1 Elimination order for seven people.
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Figure 3.2 Elimination order for n people.

Now let’s tackle the following general problem: There are n people numbered
one to n standing in a circle. The second person tells a secret to the fourth person,
who in turn tells it to the sixth. The process continues as each person tells the
secret to the second person ahead clockwise who has not yet been told. Who is
the last to know (Fig. 3.2)?

For a given value of n, the problem can of course be solved directly. For
example, if n = 41, then write out the numbers from 1 to 41 in a circular fashion



THE JOSEPHUS PROBLEM: PLEASE CHOOSE ME LAST 25

and cross out every second number until only one number remains. But what if
we then wanted to know the answer for 42 people? Since the elimination order
depends heavily on the original number in the circle, there doesn’t appear to
be an easy way to use our first answer to obtain the second. Instead, it appears
that we’ve got to start spinning around all over again. And what about with
43 people—yet another dizzying solution? Looks like a good opportunity for a
general mathematical solution.

Let J (n) equal the last person chosen out of a circle of n people when every
second person is eliminated. We’ve already calculated that J (7) = 7. Here is a
larger chart of J (n) for n from 1 to 20 inclusive (Table 3.1). There seems to
be a regular pattern of some sort. Can you accurately describe it? We will in
a moment and then we will verify it with a proof. Mathematical induction will
play a central role.

Assume n > 1 and that all n people are arranged in a circle. There are
two cases to consider depending on whether n is even or odd. If n is even
(say n = 2k), then after the first go-around all the even-numbered people have
been removed. We now have a circle with k people and we can pretend that
we are just beginning the process starting at person number 1. However, the
people are numbered in a funny way. Instead of being numbered from 1 to k

consecutively, they are numbered from 1 to 2k−1 with consecutive odd numbers
only (Fig. 3.3a). Hence J (2k), the solution to our problem, is directly related to

TABLE 3.1 Josephus numbers for 1 ≤ n ≤ 20

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J (n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 3 5 7 9

5

4

12k−1 2k

3

2

Figure 3.3a Even case: n = 2k.
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5

1
2k+1

3

4

2k

2

Figure 3.3b Odd case: n = 2k + 1.

the solution J (k) with a key modification. Instead of solving for J (k) on the first
k natural numbers, we solve for J (k) on the first k odd integers. Thus

J (2k) = 2J (k) − 1 (3.1)

If n is odd (say n = 2k + 1), then after the first go-around again all the even-
numbered people have been removed. However, we begin one step back at person
number 2k + 1. The next person removed is person number 1. At this point we
continue with a circle of k people numbered 3, 5, . . . , 2k + 1 (Fig. 3.3b). We
have now reduced the problem of calculating J (2k + 1) to calculating the J (k)

problem on the set of odd integers larger than 1. Hence

J (2k + 1) = 2J (k) + 1 (3.2)

Looking at Table 3.1, it should be evident that J (n) runs through the odd
numbers consecutively restarting at 1 each time n is a power of 2. In particular,
for a ≥ 0, let 2a ≤ n < 2a+1. Hence n = 2a + t where 0 ≤ t ≤ 2a .

Proposition 3.1:
J (2 a + t) = 2t + 1 . (3.3)

Proof of Proposition 3.1: Note that J (1 ) = 1 as claimed. Now we will establish
the proposition by using induction on the exponent a.

Let a = 1 . If t = 0 , then n = 2 and J (2 ) = 1 . If t = 1 , then n = 3 and
J (3 ) = 3 . Hence the proposition is true for a = 1 .

Now assume that Formula 3.3 holds for some a − 1 and all such appropriate
values of t . Our inductive step has two parts depending on whether n is even or
odd (and hence whether t is even or odd, respectively.)
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If n is even, then n = 2 a + t = 2k for some integer k . In this case,

J (2 a + t) = 2J (2 a−1 + t/2 ) − 1 by Formula 3 .1

= 2 (2 · t

2
+ 1 ) − 1

= 2t + 1 , as desired.

If n is odd, then n = 2 a + t = 2k + 1 for some integer k . In this case,

J (2 a + t) = 2J (2 a−1 + t − 1

2
) + 1 by Formula 3 .2

= 2 (2 · t − 1

2
+ 1 ) + 1

= 2t + 1 , as required.

Thus J (2 a + t) = 2t + 1 . �

For example, let us calculate J (100). Since 64 is the largest power of two less
than or equal to 100, we write 100 = 64 + 36. By Proposition 3.1, J (100) =
2 · 36 + 1 = 73. Of course to get that desired spot, you may have to shove
Josephus out of the way.

A useful way to view Proposition 3.1 involves the binary (base 2) representa-
tion of numbers. For example, 100 = 1 ·64+1 ·32+0 ·16+0 ·8+1 ·4+0 ·2+0 ·1
and hence 10010 = 11001002. In this case, t = 1001002 and J (100) = 2t + 1 =
10010012. Note that this is the same as taking the binary representation of 100 and
simply removing the leading 1 and then appending it to the right end, formally
known as a one-bit cyclic shift left. How simple! It follows that if the binary
representation of an integer n consists solely of a string of 1s, then J (n) = n.
So J (2t − 1) = 2t − 1 for all t ≥ 1 since numbers of the form 2t − 1 are those
with binary representation consisting of all 1’s.

Most of us are more comfortable with the decimal (base 10) representation of
integers, but the natural language of computers involves binary representation. A
simple algorithm to convert the decimal representation of a number into binary
is to do the following: write the number n and successively list the result of
dividing by 2 (ignoring remainders) and stop when the number 1 is obtained.
Now reading from 1 backwards to n, write 1 for each odd number in the list
and write 0 for each even number. The result is the binary representation of the
original (decimal) number. For example, if n = 100, then we write 100 → 50 →
25 → 12 → 6 → 3 → 1. Reading from right to left we get 1100100, the binary
representation of 100.

To take one more example, let us calculate J (1,000). The “divide by 2” tabu-
lation becomes 1,000 → 500 → 250 → 125 → 62 → 31 → 15 → 7 → 3 → 1
from which we derive 1,00010 = 11111010002. Shifting the leading 1 to the
right gives us J (1,000) = 11110100012 = 977.
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Going the other way is straightforward too. To mentally convert from binary
to decimal, start with the number 1 corresponding with the leading 1 on the left
of the binary number. Read from left to right. For each 0 double the current
number, and for each 1 double the current number and add one. (Equivalently,
at each step double and add the current bit.) For example, if we wish to convert
the number 1101001012, we make the following simple calculations: 1 → 3 →
6 → 13 → 26 → 52 → 105 → 210 → 42110. Let’s call this the “multiply by
2” procedure as opposed to the “divide by 2” procedure to convert from decimal
to binary.

Now let’s generalize the elimination process beyond eliminating every other
survivor. Define J (n, q) = last person remaining when every qth person is elim-
inated beginning with n people. Hence J (n, 2) = J (n). Try calculating J (7, 3)
for size. Here is a chart of the initial values of J(n, 3) (Table 3.2).

Certainly there is some regularity to the values of J (n, 3), but there does not
appear to be a simple, closed formula. It appears that in order to calculate J (8, 3)
say, we have to start all over—essentially reinventing the wheel. Even lacking a
general formula, it would be extremely useful to be able to use J (7, 3) somehow
to calculate J (8, 3). In general, what we seek is a formula for J (n + 1, q) in
terms of J (n, q) for any n and q. Here is the result.

Proposition 3.2: J (n + 1 , q) ≡ J (n, q) + q(mod n + 1 ) for n ≥ 1 , q ≥ 1 .

Note that we use the numbers 1, 2, . . . , n + 1 as our set of complete residues
modulo n + 1. One consequence of Proposition 3.2 is that J (n + 1) ≡ J (n) +
2(mod n + 1). Double-check this with some examples from Table 3.1.

Another point to realize is that q can be larger than n. Notice that J (7, 10)
does not equal J (7, 3) even though 10 ≡ 3 (mod 7) and both situations begin
with seven people. The order of elimination is different after the first person has
been removed. In this case, J (7, 3) = 4 while J (7, 10) = 5. Check it.

Proof of Proposition 3.2: Consider n + 1 people in a circle with every qth
person eliminated. After the first person (number q modulo n + 1 ) is eliminated
we now begin the J (n, q) problem, but start q places ahead (modulo n +1 ). Thus
J (n + 1 , q) = J (n, q) + q(mod n + 1 ). �

By Proposition 3.2, J (8, 3) = J (7, 3) + 3 = 4 + 3 = 7 (mod 8). Similarly,
J (9, 3) = J (8, 3) + 3 = 10 ≡ 1 (mod 9). Since J(1, q) = 1 for any value of q,
it is now a simple matter to fill in a chart of J (n, q) for any q. All that needs
to be done is to repetitively add q, each time reducing modulo the position in
the chart. To check your understanding, fill in the following chart for J (n, 5)

(Table 3.3).

TABLE 3.2 Josephus numbers with every third person eliminated

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

J (n, 3) 1 2 2 1 4 1 4 7 1 4 7 10 13 2 5 8 11 14 17 20 2 5 8 11
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TABLE 3.3 Josephus numbers with every fifth person eliminated

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J (n, 5) 1 2 1 2 2 1 6 3 — 3 — — 6 11 — 6 — — — 7

It is often convenient to list the actual order of elimination. We call this
the Josephus permutation and denote it in the following way: P(n, q) =(

1 2 3 . . . n

r1 r2 r3 . . . rn

)
. Here r1 is the first person removed, r2 is the second

person removed, and so on. Hence rn is necessarily J (n, q). The Josephus per-
mutation gives us the full story of the elimination procedure, not just the position

of the last person remaining. For example, P(7, 3) =
(

1 2 3 4 5 6 7
3 6 2 7 5 1 4

)
.

Another way to view this is to think of the following card shuffle: Place n cards
numbered 1 through n and flip through them placing every qth card facedown on
a table. The resulting order of the cards is the same as the Josephus permutation.
(We can call this a Josephus shuffle—certain to impress our friends at the next
poker night.)

There is a host of interesting questions to be asked about the order of elim-
ination. For example, given n people can we eliminate them in their original
order 1, 2, 3, . . . , n by choosing an appropriate value of n? Of course we can by
picking q = 1. Is there a larger value of q that does the trick? Again the answer
is yes; let q = n! + 1. Let’s see why.

In general, adding n! to a given value of q will not alter the Josephus per-
mutation since every natural number less than or equal to n divides evenly into
n!. At any stage of the elimination with r people remaining, instead of moving
q steps we spin around n!/r times and then move q steps. But we always land
at the same place and so P(n, q) = P(n, q + n!). In fact, by similar reason-
ing if we let L(n) be the least common multiple of the numbers 1, 2, . . . , n,
then P(n, q) = P(n, q + L(n)). For example, L(7) = least common multiple of
1, 2, 3, 4, 5, 6, 7 = 22 · 3 · 5 · 7 = 420. So P(7, 3) = P(7, 423).

Given n people can we choose q so that the n people are eliminated in reverse
order? Our discussion above holds the key. Let q = L(n). Then the Josephus
process repeatedly picks off the last person left in the circle as desired. For

example, P(7, 420) =
(

1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
.

Now let us assume that n is an even number. The solution above solves the
problem of eliminating the second half of the circle first for any even n, namely
let q = L(n). With n an even number and q = 2 the Josephus process eliminates
all the even-numbered positions first, in fact in numerical order.

What if we want to eliminate all the odd-numbered positions first? P(4, 5) =(
1 2 3 4
1 3 4 2

)
. But then we hit a snag.

Given n = 6, no value of q will first eliminate positions 1, 3, 5 in that precise
order. If there were such a value of q, then q ≡ 1 (mod 6) in order to eliminate
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person #1 first. But now there are 5 people left and beginning at position 1
we wish to eliminate person #3. Since person #2 also remains, it follows that
q ≡ 2 (mod 5). Next there are 4 people remaining, we start at position 3, and
must eliminate person # 5 stepping over person #4. Thus q ≡ 2 (mod 4). But it
cannot be the case that q is both congruent 1 (mod 6) and 2 (mod 4). The first
congruence implies that q is odd; the second congruence says that q is even.
Looks like we’re beat. So let’s relax our expectations a bit and see if we can
choose a value of q that eliminates the odd positions first, but not require that
they be in ascending order.

Interestingly, we can always solve the above problem eliminating the odd-
numbered positions first all done in descending order! Just let q = L(n) − 1 and
the numbers fall neatly into place. By way of example, consider n = 6. In this case,

L(6) = 60 and L(6) − 1 = 59. We obtain P(6, 59) =
(

1 2 3 4 5 6
5 3 1 4 6 2

)
.

This solves our problem nicely, but it is of interest to note that L(n) − 1 doesn’t
necessarily provide the smallest value of q, which eliminates odd positions first.

In the example with n = 6, it so happens that P(6, 19) =
(

1 2 3 4 5 6
1 5 3 4 6 2

)
.

Again all the odd numbers are knocked out before any of the even numbers, but
not in strict descending order. Finding the smallest value of q that eliminates all
odds first is still an unsolved problem. Care to try?

WORTH CONSIDERING

1. Solve the original Josephus problem mentioned at the beginning of this
chapter. Namely, where should you stand to be the sole survivor in a circle
of 41 people with every second person killed?

2. In the Japanese version of the Josephus problem with 15 children from each
of two marriages, how were the children distributed around the circle. Which
child was chosen heir?

3. Find J (n) for n = 50, n = 199, n = 512, and n = 1,000,000.

4. Make a table like Table 3.2 for J (n, 4) for 1 ≤ n ≤ 25.

5. Convert the following decimal numbers to binary using the “divide by two
procedure”: 200, 356, 10,000.

6. Convert the following binary numbers to decimal using the “multiply by two
procedure”: 1001001, 10101110000, 11011110000.

7. Calculate P(8, q) for values of q from 2 to 12. Notice how many fixed
points each permutation has.

8. A fixed point in a shuffle is a card which remains in its original position. In
a random Josephus shuffle (or permutation), show that we expect just one
fixed point.

9. Complete Table 3.3.



4 Nim and Wythoff’s Game:
Or How to Get Others to Pay
Your Bar Bill

If you plan on going to a bar and hope to have someone else pick up the tab,
it’s probably best to go with a good friend who already owes you money. But if
you hope to win a bet against a stranger, in this chapter we present two related
games that just might come in handy. Both games are fun and interesting. The
first game is Nim, which was introduced together with a completely worked
out strategy by Harvard mathematician, C.L. Bouton in a 1901–1902 Annals
of Mathematics article. In 1907, a similar game with an additional option was
discussed by the Dutch mathematician W.A. Wythoff. Both games are easy to
learn and can be enjoyably played by children. But winning strategies take some
know-how, which we present below. Let’s do the math.

Nim is a two-person game played with identical counters laid out in several
piles. The number of counters in each pile need not be the same. Play alternates,
and on a given turn a player may remove any positive number of counters from
any single pile. The winner is the player who removes the last counter. That’s
all the rules!

Let’s consider an example. Suppose the game begins with three piles consisting
of 3, 5, and 7 counters, respectively (Fig. 4.1) and two players, Amy and Bob.
Amy removes 3 counters from the middle pile leaving 3, 2, and 7 counters. Bob
then removes 6 counters from the right resulting in 3, 2, and 1 counters remaining.
Amy removes 1 from the left, leaving piles of 2, 2, and 1. Bob removes 1 from
the right pile leaving two piles of 2 apiece. At this point he knows he can win
by mimicking Amy’s play. If Amy removes either 1 or 2 counters from one pile,
Bob will do likewise with the other pile and force a win. Amy loses the game
but refuses to pay the bill anyway, a sneaky move Bob unfortunately didn’t fully
consider. Oh well, back to a strategy for Nim.

A winning strategy in Nim requires making moves that eventually result in
victory. If there are n piles, every position can be represented by an n-tuple
of nonnegative integers. For example, the sequence of positions in our previous
example are represented by (3, 5, 7) → (3, 2, 7) → (3, 2, 1) → (2, 2, 1) →
Mathematical Journeys, by Peter D. Schumer
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Figure 4.1 Amy’s moves in white, Bob’s moves in gray, black counters remaining.

(2, 2, 0), etc. Notice that the order of the numbers in parentheses doesn’t really
matter, hence these are unordered n-tuples. A player has a winning position if
no matter what move the opponent makes, the player can eventually force a win
(through proper play). In other words, a winning position is one that forces the
opponent to choose a losing position.

Interestingly, developing a best strategy for the game of Nim requires binary
representations. Write the number of counters in each pile in binary. Then list
the numbers vertically with the units place aligned. The number of 1’s in any
vertical column will be either even or odd (called an even or odd column, respec-
tively). The player who removes the last counter leaves all piles with zero
counters, resulting in all columns being even. In fact, the winning strategy is
just that. Winning positions are exactly those that have all even columns. Here’s
how it works.

At any point in the game, if your opponent leaves a position with at least one
odd column, you can remove an appropriate number of counters from one pile
that results in all even columns. To accomplish this, go to a pile that contributes
a 1 to the left-most odd column. From that pile remove a number of counters
that changes all odd columns to even columns. If a column is odd, make it
even by changing a 0 to 1 or vice versa. Leave all even columns alone. This
is guaranteed to be possible since the new number in the chosen pile becomes
smaller (the key column reduces from 1 to 0 and any other column changes occur
to the right).

Here’s an example. Suppose the game begins with three piles of 29, 23, and
3 counters and we get to play first. Written in binary the numbers become

1 1 1 0 1
1 0 1 1 1
0 0 0 1 1.
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We have appended three 0’s to the last number just to make the columns clearer.
Reading from left to right the columns are EOEEO where E represent “even”
and O represent “odd.” The second column is the first odd column and hence we
go to a pile contributing a 1 to that column. In this case, the only candidate is
the first pile. In order to leave all even columns we must leave 10100 counters
in the first pile. So we must leave 20 counters in the first pile (or equivalently
remove 9 counters). The result is tabulated as follows:

1 0 1 0 0
1 0 1 1 1
0 0 0 1 1.

Suppose our opponent removes 10 counters from the second pile leaving this
result:

1 0 1 0 0
0 1 1 0 1
0 0 0 1 1.

Now the first column has an odd number of 1’s and so we must move to remedy
this. The first pile has a 1 in the first column and hence we will remove some
counters from the first pile. In fact, we need to leave 01110 counters, that is,
leave 14 counters by removing 6 of them. The resulting piles are

0 1 1 1 0
0 1 1 0 1
0 0 0 1 1.

From this point on you should be able to work out a winning combination for
all subsequent moves by your opponent.

The second game that we consider is Wythoff’s game. Again, two players alter-
nate in removing counters and the player to remove the last counter is declared
the winner. In this instance there are only two piles of counters, but there is one
additional move. At each stage of the game, instead of removing any number
of counters from one pile, a player may choose to remove an equal number of
counters from both piles. This one additional possibility significantly alters an
appropriate winning strategy.

Here’s a brief example of a game played between Andrew and Bertha. The two
piles begin with 10 and 20 counters, respectively, which we denote by (10, 20).
Andrew removes 6 counters from the second pile, hence (10, 14) remains. Next
Bertha takes 8 counters from both piles, leaving (2, 6). The following moves are
Andrew (2, 5), Bertha (2, 1), Andrew (1, 1), then Bertha (0, 0) and the victory.

Some mathematical background is required before a winning strategy for
Wythoff’s game will be presented. We begin with some number play. Some-
what arbitrarily, let x = √

2 and let y = 1/x. Next we tabulate n(1 + x) and
n(1 + y) to four decimal digits for 1 ≤ n ≤ 10 (Table 4.1).

Table 4.1 probably appears to be a fairly random list of real numbers. How-
ever, if we modify it slightly, then a great deal of regularity will appear. Instead
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TABLE 4.1

n 1 2 3 4 5 6 7 8 9 10

n(1 + x) 2.4142 4.8284 7.2426 9.6568 12.0710 14.4852 16.8994 19.3137 21.7279 24.1421
n(1 + y) 1.7071 3.4142 5.1213 6.8284 8.5355 10.2426 11.9497 13.6568 15.3639 17.0710

TABLE 4.2

n 1 2 3 4 5 6 7 8 9 10

[n(1 + x)] 2 4 7 9 12 14 16 19 21 24
[n(1 + y)] 1 3 5 6 8 10 11 13 15 17

TABLE 4.3

n 1 2 3 4 5 6 7 8 9 10

[n(1 + x)] 3 6 9 12 15 18 21 25 28 31
[n(1 + y)] 1 2 4 5 7 8 10 11 13 14

of calculating n(1 + x) and n(1 + y), let us calculate [n(1 + x)] and [n(1 + y)]
where [r] denotes the greatest integer less than or equal to r (Table 4.2).

Do you see a peculiar phenomenon? Notice that among the bottom two rows
every natural number from 1 to 17 occurs exactly once in addition to a few larger
numbers. We may well wonder if this pattern continues for larger values of n.
Namely, will all natural numbers eventually appear, and if so, will each appear
precisely once? In addition, is this a special property of the number x = √

2, or
does this hold more generally?

Let’s make similar calculations for x = π − 1 and y = 1/x (Table 4.3).
Miraculously all small natural numbers seem to appear and to appear just once.
In this case, every integer from 1 to 15 appears along with some larger values.
Let’s look at one more example and then state the result.

Let x = 4, y = 1/x, and tabulate [n(1 + x)] and [n(1 + y)]. We obtain
Table 4.4. This time things did not work out as cleanly. The numbers 4 and 9
do not appear at all, while 5 and 10 appear twice. So this phenomenon seems to
be limited to certain real numbers. Here is the result:
Theorem 4.1: Let x > 0 be an irrational number and y = 1/x . Consider the
sequence S = {[1 + x ], [2 (1 + x)], [3 (1 + x)], . . . , [1 + y], [2 (1 + y)], [3 (1 +
y)], . . . }. Then S contains every positive integer exactly once.

TABLE 4.4

n 1 2 3 4 5 6 7 8 9 10

[n(1 + x)] 5 10 15 20 25 30 35 40 45 50
[n(1 + y)] 1 2 3 5 6 7 8 10 11 12
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Theorem 4.1 was first proved by the Canadian mathematician Sam Beatty
(1881–1970) in 1926. In fact, we now call such sequences Beatty sequences in his
honor. More specifically, the sequences {[n(1+x)]}∞n=1{[n(1+y)]}∞n=1 are called
complementary Beatty sequences. Beatty was the recipient of the first Canadian
Ph.D. in mathematics (1915) under the direction of J.C. Fields (1863–1932).
In fact, Beatty was Fields’s only doctoral student. Beatty went on to lead an
illustrious career at the University of Toronto where as head of the mathematics
department he hired some of the greatest Canadian and international mathemati-
cians including algebraist Richard Brauer, geometer H.S.M. Coxeter, and logician
Abraham Robinson.

Beatty’s advisor, John Charles Fields, was the creator of the International
Medals for Outstanding Discoveries in Mathematics, better known as the Fields
Medals. Fields was professor at University of Toronto and was the president
of the International Congress of Mathematicians that was held there in 1924.
Surplus from monies raised for that congress created the original funding for the
illustrious Fields Medals. Later awards have been funded from his estate.

Proof of Theorem 4.1: Every number of the form n(1 + x) is irrational. Oth-
erwise n(1 + x) = p/q for integers p and q implying that x = (p − nq)/nq,
a rational number contrary to our assumption about x . Similarly n(1 + y) is
irrational for all n ≥ 1 . Hence no member of the sequence S is an integer.

The number of multiples of 1 +x that are less than n is exactly [ n
1+x ]. Similarly,

the number of multiples of 1 + y that are less than n is exactly [ n
1+y ]. Now fix n,

for some positive integer n. By the definition of the greatest integer function, we
have

n

1 + x
− 1 <

[
n

1 + x

]
<

n

1 + x
and

n

1 + y
− 1 <

[
n

1 + y

]
<

n

1 + y
.

Adding the inequalities together we obtain

n

(
1

1 + x
+ 1

1 + y

)
− 2 <

[
n

1 + x

]
+

[
n

1 + y

]
< n

(
1

1 + x
+ 1

1 + y

)
.

But

1

1 + x
+ 1

1 + y
= 1

1 + x
+ x

1 + x
= 1 .

So

n − 2 <

[
n

1 + x

]
+

[
n

1 + y

]
< n.

But [ n
1+x ] + [ n

1+y ] is an integer. Hence [ n
1+x ] + [ n

1+y ] = n − 1 .
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Thus there are n −1 elements of S below n. Analogously, there are n elements
of S below n + 1 (by the same analysis with n replaced by n + 1 ). So there is
precisely one element of S equal to n. Since n is arbitrary, there is precisely one
element of S equal to any given natural number. �

Returning to Wythoff’s game, we call (a, b) a winning position for player A

to create if there is a strategy from (a, b) such that no matter what player B

does, A can eventually win the game. Wythoff’s amazing theorem (1907) is the
following:

Theorem 4.2: The winning positions in Wythoff’s game are (0, 0) and ([n(1 +
x))], [n(1 + y)]) for n ≥ 1 where x = −1+√

5
2 and y = 1

x .

Note that x is the golden mean (or golden section), that ubiquitous number
studied by the ancient Greeks. In particular, Chapter II, Proposition 11 of Euclid’s
Elements directs us “to cut a given straight line so that the rectangle contained
by the whole and one of the segments is equal to the square on the remaining
segment.” In modern parlance, we are asked to find a point x along a unit line
segment such that the ratio 1 to x is as x to 1 − x. Solving for x leads to the
quadratic equation x2 + x − 1 = 0 from which we obtain the positive solution
x = −1+√

5
2 . Study of the golden mean and its natural occurrence within a

regular pentagram as well as its apparent aesthetic appeal no doubt dates back
to the Pythagoreans, several centuries before Euclid (Fig. 4.2).

Let’s make a table for [n(1 + x)] and [n(1 + y)] for x = −1+√
5

2 and y = 1/x

(Table 4.5). Notice that in every column the difference between [n(1 + x)] and
[n(1 + y)] is exactly n itself. This special property of x = −1+√

5
2 allows for a

winning strategy in Wythoff’s game. Any nonwinning position can be changed
in one move to a winning position and any move from a winning position will
result in a nonwinning position. Next we give a more formal proof. For the sake

x 1 x

Figure 4.2 Golden mean x = 1 + 5/2.
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TABLE 4.5

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[n(1 + x)] 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24
[n(1 + y)] 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39

of definiteness, we refer to the two players as Player 1 and Player 2 and each
turn as a move. In addition, the two piles will be referred to as pile A and pile B.

Proof of Theorem 4.2: The number x = −1+√
5

2 is irrational and hence, by The-
orem 4.1, the sequences {[n(1 +x)]}∞n=1 and {[n(1 +y)]}∞n=1 form complementary
Beatty sequences with every natural number appearing uniquely. In this instance,
since x − 1/x = 1 , we have for every n ≥ 1 : [n(1 + y)] − [n(1 + x)] = n.

Assume that at some point Player 1 makes a move resulting in position (a,
b) where the ordered pair (a, b) occurs among the entry rows of Table 4.5 and
a ≤ b. In particular, if b−a = n, then a = [n(1 +x)] and b = [n(1 +y)]. Player
2 has three choices for a move depending on whether counters are removed from
(a) pile A, (b) pile B, or (c) both piles. In no case will the new position be among
those in Table 4.5 by the uniqueness of its entries (case a and b) and the fact that
all natural numbers occur exactly once as the difference between piles (case c).

In case (a), Player 2 moves to position (a − s, b) for some s with 1 ≤ s ≤ a.
Player 1 can return to a position listed in Table 4.5 by finding the entry a − s in
the table and moving left to that position at either (a∗, a − s) or (a − s, b∗) for
appropriate a∗ or b∗. In case (b), Player 2 moves to position (a, b − s) for some
s with 1 ≤ s ≤ b. If a ≤ b − s, then Player 1 removes enough counters from both
counters to move s places to the left in Table 4.5. There the difference between
the two piles is b − s − a as required. If 0 ≤ b − s < a, then move to the position
where b − s occurs in the table ending up at either (a∗, b − s) or (b − s, b∗) for
appropriate a∗ or b∗. In case (c), Player 2 moves to position (a − s, b − s) for
some s with 1 ≤ s ≤ min{a, b}. In this situation, Player 1 finds a −s in Table 4.5
and moves accordingly to either (a∗, a − s) or (a − s, b∗) for some a∗ or b∗.
In all three cases, Player 1 moves to a winning position from which Player 2 is
forced to move away. �

Consider the following example: Suppose Amy leaves the position (9, 15) for
Andrew—namely two piles with 9 and 15 counters, respectively. Andrew has
three possibilities. He can remove any number of counters from the 9’s pile, he
can remove any number from the 15’s pile, or he can remove an equal number
from both piles. Suppose he removes four counters from the 15’s pile, leaving
Amy with position (9, 11). This is case (b), where the difference is 11 − 9 = 2.
So Amy moves to the second position (3, 5) by removing six counters from each
pile. Suppose Andrew now removes one counter from the 3’s pile, resulting in (2,
5). This is case (a) and so Amy looks for the number 2 in the table. She moves
to position (1, 2) by removing four counters from the 5’s pile. Now Andrew
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TABLE 4.6

n 1 2 3 4 5 6 7 8 9 10 11

A 1 100 101 1001 10000 10001 10100 10101 100001 100100 100101
B 10 1000 1010 10010 100000 100010 101000 101010 1000010 1001000 1001010

must move to (1, 1), (0, 2), or (0,1) from which Amy will remove the remaining
counters and win the game.

There is a wonderful way to view the winning positions in Wythoff’s game.
Use Fibonacci numbers! In particular, write the numbers in pile A using their
Zeckendorf representation. Then the corresponding numbers in pile B have the
same Zeckendorf representation with the “Fibonacci digit” (or fidget) 0 appended
on the right. Table 4.6 is part of Table 4.5 rewritten with integers given as Zeck-
endorf representations.

You are now fully prepared to step into any local watering hole, walk up
to the biggest and meanest customer, and say, “Choose your weapon—Nim or
Wythoff’s game?”

WORTH CONSIDERING

1. What move(s) creates a winning position in Nim if there are four piles with
5, 8, 9, and 11 counters, respectively?

2. What move in Wythoff’s game creates a winning position if the piles have
20 and 40 counters, respectively?

3. Show that in the game of Nim, every move from a winning position results
in a losing position.

4. Show that at any step, the number of ways to reach a winning position in
the game of Nim is at most the number of nonempty piles.

5. Develop a winning strategy for the following game introduced by C.G.
Bachet (1612): Two players add from 1 to 10 counters to a common pile.
The player who adds the 100th counter is declared the winner.

6. Northcott’s game is played on a checkerboard. Red begins with eight check-
ers along the first rank and black with eight checkers along the eighth rank.
Play proceeds by each player moving one checker any number of spaces
along a file toward an opposing checker. The last player able to move wins.
Relate Northcott’s game to Nim and then develop a winning strategy.

7. (a) In the game of One Pile, players alternate removing from 1 to m counters
from a common pile. The winner is the player who removes the last
counter. Develop a winning strategy for One Pile.

(b) In the misère version of One Pile, the loser is the one who removes the
last counter. How does this change the winning strategy?
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8. The game of Thirty-one is played with twenty-four cards, the A, 2, 3, 4, 5,
and 6 of each suit representing values one to six. Players alternate by laying
down any remaining card on a common sum. The winner is the player who
makes the total 31 or who forces the opponent to exceed 31. Investigate
the game.



5 Mersenne Primes, Perfect
Numbers, and Amicable Pairs

Pythagoras and his followers believed that a disciplined study of mathematics and
philosophy was essential to a just and moral life. In fact, it is believed that the
very words philosophy (meaning love of wisdom) and mathematics (meaning that
which is learned) may have been coined by Pythagoras himself. The Pythagoreans
classified the natural numbers into various categories and attributed religious and
mystical meanings to them. For example, one was the generator of all numbers
and the source of reason. Even numbers were female and odd numbers beginning
with three were male. Four was the number for justice and squaring of accounts.
Five, being the sum of the first female and male numbers, represented marriage.
Our starting point for this chapter is the number six.

Six was the number of creation that interestingly meshes perfectly well with
the Judeo-Christian account of the genesis of the universe. But six was also
perfect in that it was the sum of its aliquot parts, that is, six is the sum of its
proper divisors: 6 = 1+2+3. Another such example is 28 = 1+2+4+7+14.
Numbers for which the sum of proper divisors was less than the original number
were called deficient. For example, all primes are deficient as is the number
8, whose proper divisors sum to seven. Finally, if the sum of proper divisors
exceeded the number itself, then the number was abundant. The number 12 is
abundant since 1 + 2 + 3 + 4 + 6 > 12.

The ancient Greeks discovered two additional perfect numbers: 496 and 8,128.
But that is where their catalog of perfect numbers ends. Even so, they knew that
the numbers were far from random and discovered a fair amount about the form
of such numbers. Let us retrace their discoveries by factoring the first four perfect
numbers:

6 = 2 · 3
28 = 4 · 7

496 = 16 · 31
8,128 = 64 · 127.

In each case, we have written the given number as a product of an even and
an odd number, a unique and appropriate decomposition from a Pythagorean
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perspective. Next notice that for each perfect number, its largest odd factor is
one shy of being a power of two itself. Furthermore, that power of two is exactly
twice as big as the largest even factor of the number. Rewritten the list looks
like this:

6 = 21 · (22 − 1)

28 = 22 · (23 − 1)

496 = 24 · (25 − 1)

8,128 = 26 · (27 − 1).

Notice that the powers of two comprising the odd part are all prime numbers,
in fact the first four primes! Furthermore, the numbers 3, 7, 31, and 127 are
themselves prime. This observation is summarized in Euclid’s Elements, Book
IX, Proposition 36:

Theorem 5.1: If 2 p − 1 is prime, then n = 2 p−1 (2 p − 1 ) is perfect.

Before we can present Euclid’s proof of this assertion, further background is
needed.

Observation 1: If 2 n − 1 is prime, then n itself is prime.
If n were composite, then n could be expressed as n = a · b where a > 1 and

b > 1 . But then
2 n − 1 = 2 ab − 1

= (2 a − 1 )(2 a(b−1 ) + 2 a(b−2 ) + . . . + 2 a + 1 ),

the last product consisting of two numbers larger than 1. Hence if n is composite,
2 n − 1 is composite. (See the “Worth Considering” section at the end of this
chapter for a similar observation about an − 1 for a > 2 .)

By the way, the mathematics of geometric sums such as that which appears
here was presented in Book IX, Proposition 35 of the Elements.

Define the sum of divisors function, σ(n), to be the sum of all the positive divisors
of n. So σ(6) = 1+2+3+6 = 12, σ(10) = 1+2+5+10 = 18, and σ(28) = 56.
For any prime number p, σ(p) = p + 1. A key observation is that the number
n is a perfect number if σ(n) = 2n. We need to know a little bit more about the
sum of divisors function.

Observation 2: If p is prime and a is a positive integer, then σ(pa) = (pa+1 −
1 )/(p − 1 ).

For verification, let S = σ(pa). Then

S = 1 + p + p2 + . . . + pa and

pS = p + p2 + . . . + pa + pa+1 .
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Subtracting S from pS :
(p − 1 )S = pa+1 − 1 .

Hence
S = (pa+1 − 1 )/(p − 1 ).

In particular, if p = 2 , then σ(2 a ) = 2 a+1 − 1 .

The other observation, which we won’t formally prove here, is that the sum of
divisors function is a multiplicative function. Namely, if a and b are relatively
prime, then σ(ab) = σ(a) · σ(b). For example, since σ(10) = 18, σ (13) = 14,
and 10 and 13 are relatively prime, it follows that σ(130) = σ(10 · 13) =
σ(10)σ (13) = 18 · 14 = 252. The main idea is that if a and b are relatively
prime, then the divisors of a and the divisors of b are distinct (other than the
number one). Hence the product of any divisor of a with a divisor of b will
produce a new divisor of ab, and conversely, all divisors of ab are created in
this way.

Proof of Theorem 5.1: Let 2 p − 1 be prime and set n = 2 p−1 (2 p − 1 ). Since
2 p−1 and 2 p − 1 are relatively prime, it follows that

σ(n) = σ(2 p−1 (2 p − 1 )) = σ(2 p−1 ) · σ(2 p − 1 ).

But by Observation 2, σ(2 p−1 ) = 2 p − 1 . Furthermore, since 2 p − 1 is prime,
σ(2 p − 1 ) = (2 p − 1 ) + 1 = 2 p. Hence

σ(n) = (2 p − 1 )2 p = 2 · 2 p−1 (2 p − 1 ) = 2n. �

It follows from Theorem 5.1 that every discovery of a prime of the form 2p − 1
leads to a concomitant perfect number. During the Middle Ages three more
primes of this form were discovered for prime values p = 13, 17, and 19. In the
preface of his book, Cogita Physica-Mathematica (1644), the French Minimite
friar Marin Mersenne (1588–1648) claimed that 2p −1 is prime for the following
values of p: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257 and for no other values
of p ≤ 257. Mersenne was a noted scholar and maintained a voluminous corre-
spondence with the great European mathematicians of his day. His proclamation
about the primality of 2p − 1 led to a reawakening of interest in such primes
and the related issue of perfect numbers. In his honor, today we call such primes
Mersenne primes.

The first significant step toward either verifying or debunking Mersenne’s
conjecture was taken by the incomparable Swiss mathematician Leonhard Euler
(1707–1783). Euler made use of a result of Pierre de Fermat’s (c. 1601–1665),
which stated that all factors of 2p −1 are of the form 2np+1 for some n. Hence
Euler reduced the problem of checking the primality of 231 − 1 by checking
trial divisors of the form 62n + 1. In fact, Euler just needed to check for primes
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of that form up to
√

231 − 1, approximately 46,341. Of course, having Euler’s
rapid arithmetic capabilities was especially helpful as well. Since none of the
trial divisors turned out to be a legitimate divisor, Euler verified (1772) that in
fact, 231 − 1 = 214,7483,647 is prime. This was an impressive feat at the time.
In Peter Barlow’s Theory of Numbers (1811), he states that this prime number “is
the greatest that will ever be discovered, for, as they are merely curious without
being useful, it is not likely that any person will attempt to find one beyond it.”

Leonhard Euler

Subsequent mathematical history has not been kind to either Peter Barlow’s
or to Mersenne’s conjecture. For over a hundred years, Euler’s prime was the
largest prime known. But in 1876, Edouard Lucas (1842–1891) developed a
new primality test for Mersenne primes and was able to verify that 2127 − 1 was
prime. Good news for Mersenne; bad news for Barlow. But in 1903, Frank Nel-
son Cole (1861–1926) gave a silent albeit stunning presentation at the American
Mathematical Meeting in New York City by calculating 267 −1 and then demon-
strating that it equaled the product of 193,707,721 with 761,838,257,287. Hence
Mersenne’s conjecture was erroneous for the prime p = 67. But mathematicians
are not easily put off. The story certainly does not end here.

We now know millions of larger primes, including a total of 39 Mersenne
primes (as of June 2003). These vast discoveries are due to applying several
new theoretical algorithms on powerful modern computers. Currently the largest
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known prime is the Mersenne prime, 213,466,917 − 1, a titanic prime of 4,053,946
decimal digits! It was discovered in 2001 through the collective effort of math-
ematicians and computer scientists who are part of GIMPS, the “great internet
Mersenne prime search,” combining the resources of tens of thousands of com-
puters over the internet. (In fact, a total of about 13,000 computer years of
computational time was required.) The central figures earning credit for this lat-
est discovery are Michael Cameron, Scott Kurowski, and George Woltman. And
of course they have simultaneously discovered an accompanying perfect number,
the 8,107,892-digit number, 213,466,916 · (213,466,917 − 1). Although it is widely
expected, no one has been able to prove that there are infinitely many Mersenne
primes. Surprisingly, it has not been shown even that 2p − 1 is composite for
infinitely many primes p.

But the relationship between Mersenne primes and perfect numbers is even
stronger than the result of Euclid’s suggests. Euler proved a partial converse to
Theorem 5.1 (published posthumously, 1848). It states

Theorem 5.2: Let n be an even perfect number. Then n is of the form 2 p−1 (2 p −
1 ) where 2 p − 1 is a Mersenne prime.

Proof of Theorem 5.2: Let n = 2 c · b where c ≥ 1 and b is odd. Since n is
perfect, σ(n) = 2n. Since σ is a multiplicative function,

σ(n) = σ(2 c)σ (b).

But
σ(n) = 2n = 2 c+1 · b.

Since σ(2 c) = 2 c+1 − 1 , we have

2 c+1 · b = (2 c+1 − 1 )σ (b).

Note that 2 c+1 and 2 c+1 −1 are relatively prime. Thus 2 c+1 is a divisor of σ(b).
Hence we can write

σ(b) = d · 2 c+1

for some positive integer d. Equivalently,

b = (2 c+1 − 1 )d .

If we can show that d = 1 , then we have shown that n is of the form 2 c+1 ·
(2 c+1 − 1 ).

Suppose, for the sake of contradiction, that d > 1 . Then the number b has at
least 1, b, and d as distinct divisors. It follows that

d · 2 c+1 = σ(b) ≥ b + d + 1 = (2 c+1 − 1 )d + d + 1 = 2 c+1 · d + 1 ,

a clear contradiction.
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All that remains is to demonstrate that 2 c+1 − 1 is prime. But

σ(2 c+1 − 1 ) = σ(b) = 2 c+1 = b + 1 .

So 2 c+1 − 1 is prime and hence c + 1 = p, a prime. Hence n = 2 p−1 (2 p − 1 )

where 2 p − 1 is a Mersenne prime. �

By combining Theorems 5.1 and 5.2, we have a complete characterization of
even perfect numbers. But what about odd perfect numbers? No one has ever
found such an example, nor has it been shown that none could exist. If there is
such a beast, it must have at least eight prime factors (one of which is larger
than ten million) and be at least 300 digits in length.

So what do you make of this example due to the great French philosopher and
mathematician René Descartes (1596–1650)? Let n = 32 · 72 · 112 · 132 · 22,021.
All factors listed are relatively prime. Hence

σ(n) = σ(32) · σ(72) · σ(112) · σ(132) · σ(22,021).

But σ(32) = (33 − 1)/(3 − 1) = 13, σ (72) = (73 − 1)/(7 − 1) = 57, σ (112) =
(113 − 1)/(11 − 1) = 133, and σ(132) = (133 − 1)/(13 − 1) = 183. If 22,021 is
prime, then σ(22,021) = 22,021 + 1 = 22,022. But

13 · 57 · 133 · 183 · 22,022 = 13 · (3 · 19) · (7 · 19) · (3 · 61) · (2 · 7 · 112 · 13)

= 2 · 32 · 72 · 112 · 132 · (192 · 61)

= 2 · 32 · 72 · 112 · 132 · 22,021 = 2n.

Is this an example of an odd perfect number? Of course not. Since the number
22,021 = 192 · 61, it is not prime and hence σ(22,021) �= 22,022. So for
n = 32 · 72 · 112 · 132 · 22,021, σ (n) �= 2n. Even so, I trust you can appreciate
the cleverness of Descartes’s example.

The ancient Greeks were aware of an interesting pair of numbers, 220 and
284. The sum of the proper divisors of one gives the other, and vice versa. Such
numbers are called amicable pairs (or friendly numbers). Since both Greek and
Hebrew letters have numerical meaning as well, it was considered a propitious
sign if your name or house number formed such a pair with a friend or associate.
The search for further examples yielded no results until the Middle Ages. In the
ninth century, the Arab scholar Thabit ibn-Qurra (826–901) discovered a remark-
able formula to aid in the construction of amicable pairs. Here’s what it states:

Theorem 5.3: If p, q, and r are primes of the form p = 3 · 2 n−1 − 1 , q =
3 · 2 n − 1 , and r = 9 · 2 2n−1 − 1 for some integer n > 1 , then a = 2 npq and
b = 2 nr form an amicable pair.

Amicable pairs of this form are now called Thabit pairs. Interestingly, Thabit ibn-
Qurra himself did not find any Thabit pairs other than the well-known 220, 284
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pair (n = 2). However, n = 4 yields the pair 17,296 and 18,416 as noted by the
Moroccan al-Banna (1256–1321) and the Persian al-Farisi (c. 1260–1320) about
the year 1300. (Fermat rediscovered this example in 1636.) The next example
of a Thabit pair occurs for n = 7. Both Muhammed Baqir Yazdi (c.1600) and
Descartes (1638) independently discovered it. But then the search for Thabit
pairs stops since there are no other known examples where p, q, and r are
simultaneously prime. Even so, there are plenty of amicable pairs of other forms.
But first let’s prove Thabit’s result.

Proof of Theorem 5.3: It suffices to show that both σ(a) = σ(b) and that
σ(b) = a + b. Now σ(a) = σ(2 n)σ (p)σ (q) and σ(b) = σ(2 n )σ (r). Hence it
suffices to show that

σ(p)σ (q) = σ(r)and

σ(2 n)σ (r) = 2 n (pq + r).

Since p, q, and r are prime,

σ(p)σ (q) = (p + 1 )(q + 1 ) = 9 · 2 2n−1 = r + 1 = σ(r),

establishing the first equation.
To establish the second equation, note that

σ(2 n)σ (r) = (2 n+1 − 1 )(r + 1 )

= 2 n(9 · 2 2n − 9 · 2 n−1 )

= 2 n(9 · 2 2n − 6 · 2 n−1 − 3 · 2 n−1 )

= 2 n(9 · 2 2n−1 + 9 · 2 2n−1 − 3 · 2 n − 3 · 2 n−1 )

= 2 n(pq + r). �

In 1750, Euler modified Theorem 5.3 from which he produced 62 more examples
(plus, uncharacteristically, two erroneous examples). Euler’s examples included
the wonderful twin pairs 609,928, 686,072 and 643,336, 652,664, which share the
same sum. Despite all these successes, it was a pleasant surprise when in 1866, a
16-year-old Italian student, B.N.I. Paganini, discovered the second smallest pair:
1,184 and 1,210.

Today, all amicable pairs with smaller number less than 1014 have been cat-
aloged (David Einstein, 2003). There are precisely 39,374 such amicable pairs.
In addition, over 2.6 million larger amicable pairs have been discovered. Each
member of the largest known pair has over 5,000 digits. But are there infinitely
many amicable pairs? Can amicable pairs be relatively prime to each other? Are
there any amicable pairs of opposite parity (one odd and one even)? No one yet
knows. Care to find out?
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WORTH CONSIDERING

1. Verify that 211 − 1 is not prime by finding its two prime factors. Does this
contradict Observation 1?

2. Use Fermat’s result that factors of 2p − 1 are of the form 2np + 1 to verify
the compositeness of 223 − 1.

3. Show that an − 1 is composite if a > 2 and n > 1.

4. What is σ(n) for n = 100, 1,000, 22,021?

5. Show that all even perfect numbers are triangular numbers.

6. (a) Verify that 28 = 13 + 33 and that 496 = 13 + 33 + 53 + 73.

(b) Show that every even perfect number > 6 is the sum of consecutive odd
cubes.

7. Find the single example of an odd abundant number less than 1,000.

8. Compute the three known Thabit pairs for n = 2, 4, and 7 in Theorem 5.3.

9. Find the mates for each of the following halves of amicable pairs: 2,620 (L.
Euler, 1747), 6,232 (L. Euler, 1750), 122,368 = 29 · 239 (P. Poulet, 1941).

10. Let s(n) = σ(n) − n denote the sum of the proper divisors of n. Define
sk(n) recursively by s1(n) = s(n) and sk(n) = s(sk−1(n)) for k > 1. Call an
integer n sociable of order k if n = sk(n) for some k ≥ 1.

(a) Verify that perfect numbers are sociable of order 1 and amicable pairs
are sociable of order 2.

(b) Verify that 12,496 is sociable of order 5 (P. Poulet). List four other
numbers sociable of order 5.

(Currently over 100 examples of sociable numbers of order 4 are known, but
none of order 3.)

11. Prove the following two identities that appear in al-Banna’s Raf al-Hijab:

(a) 13 + 33 + . . . + (2n − 1)3 = n2(2n2 − 1)

(b) 12 + 32 + . . . + (2n − 1)2 = n(2n − 1)(2n + 1)/3.



6 The Harmonic Series . . . and Less

The motto of the ancient Pythagorean school was “all is number.” To them the
natural numbers and their ratios were the basis for all natural phenomena whether
terrestrial or celestial. In music, the Pythagoreans studied the relationship between
the lengths of stretched strings and the notes that they produced. For example,
if the length of a string is halved, then the sound emitted by plucking the string
goes up one octave. If a third of the string is pinched off, then the resulting
note is a fifth above the octave. Such investigations led to the study of musical
harmonics.

The harmonic series in the title of this chapter is the infinite sum 1 + 1
2 +

1
3 + 1

4 + . . . , which is denoted compactly by the mathematical notation
∑∞

n=1
1
n

.
The notation indicates that we are to sum the quantity 1/n as n ranges from one
to “infinity”, that is, indefinitely. If we sum from n = 1 to n = 5, the sum is
2.28333 (to five decimal places) and if we sum from n = 1 to n = 10, the
sum is 2.92897. Table 6.1 is a chart for the partial sum of the harmonic series
for the first few powers of ten (each sum rounded to five significant digits).
The sum seems to be growing rather slowly. For that reason it’s natural to
ask whether or not the sum levels off by converging to some limiting value.
We will shortly return to this question after first providing some background
discussion.

The Pythagoreans had a rival philosophical school, the Eleatics, who believed
in the unity and permanence of nature and were bothered by the Pythagorean
assumption that time and space were made up of multitudes of points and
instants respectively. You no doubt have heard some of the paradoxes of Zeno
(c. 450 B.C.E.), their most passionate proponent. Zeno’s arguments were dialec-
tical in that he began with his opponents assumptions and then through dis-
cussion, showed how they led to an absurdity. One famous example is the
Achilles. Here it is argued that in order to traverse any given distance a run-
ner must first traverse half of that distance. But before that he must traverse
half of that, and so on. So he must complete an infinite number of steps in
a finite amount of time. Surely this is impossible, or so it was argued, and
hence the idea that space can be indefinitely subdivided is an absurdity. An
alternative version of the Achilles story is that in order to traverse a given
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TABLE 6.1 Partial sums of the harmonic series

N 10 100 1,000 10,000 100,000 1,000,000∑
n≤N

1
n

2.92897 5.18738 7.48547 9.78761 12.09015 14.39273

distance, Achilles must traverse the first half of that distance. Then he must
traverse half of the remaining distance. Then he must traverse the remaining
half, ad infinitum. How could he ever finish the race in any finite amount
of time?

A more modern way to view Achilles’s race is to consider the total distance
as comprising one unit. First he travels half the distance, then half of half (a
quarter), then half of a half of a half (an eighth), etc. If we assume he runs at a
constant pace, of course he finishes the race since it only takes him half as long
to traverse each subsequent leg of his journey. In other words, the infinite sum
1+ 1

2 + 1
4 + 1

8 + . . . = ∑∞
n=1

1
2n converges to 1. This particular case is an example

of what is known as a geometric series. So in some instances at least, an infinite
addition can have a finite sum. An infinite series which steadily approaches a
finite value is said to converge to that value. Other infinite series for which the
partial sums increase without bound (or do not steadily approach a finite value)
are said to diverge.

To aid in making the above discussion more concrete, recall that with a geo-
metric series the ratio of successive terms is constant. So a geometric series is
an infinite series of the form a + ar + ar2 + ar3 + . . . where a �= 0 and r is a
any constant. If |r| < 1, then the series converges (in fact to the quantity a

1−r
).

If |r| ≥ 1, then the geometric series diverges. So the series 3+ 3
4 + 3

16 + . . . with
r = 1

4 converges to the value 3

1− 1
4

= 4. However, the series 1−2+4−8+16−. . .

with r = −2 diverges.
Zeno’s arguments were subtle and clever and have led to a deeper under-

standing of the nature of time, space, and the infinite. But Zeno lacked a full
understanding of the concept of convergence of infinite series. It was the study
of these and similar ideas which led to the development of calculus, a process
which took over 2,000 years.

Returning now to our harmonic series
∑∞

n=1
1
n

, is it a convergent series like
the one in the Achilles story or does it diverge, that is, get larger and larger
without bound. Despite our numerical evidence that suggests rather slow growth,
it turns out that the harmonic series diverges. In fact, the Parisian scholar Nicole
Oresme (1323–1382) convincingly demonstrated this as follows:

Proposition 6.1: The harmonic series
∑∞

n=1
1
n diverges.

Proof of Proposition 6.1: We prove that the harmonic series diverges by showing
that the sum is bounded below by a series that clearly diverges. To arrive at
the smaller, comparison series we first associate (or congregate) 2 r successive
terms of the harmonic series for each r ≥ 1 beginning with the terms 1

3 + 1
4 . In
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particular,

∞∑
n=1

1

n
= 1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6
+ 1

7
+ 1

8

)
+

(
1

9
+ . . . + 1

16

)

+
(

1

17
+ . . . + 1

32

)
+ . . .

= 1 + 1

2
+

∞∑
r=1

(
1

2 r + 1
+ . . . + 1

2 r+1

)
.

But 1
2 r +1 + . . . + 1

2 r+1 ≥ 1
2 r+1 + . . . + 1

2 r+1 (consisting of 2 r identical terms)
since each term of the sum on the left is at least as large as the corresponding
term of the sum on the right.

Furthermore, 1
2 r+1 + · · · + 1

2 r+1 = 2 r

2 r+1 = 1
2 . Thus,

∑∞
n=1

1
n ≥ 1 + 1

2 + 1
2 +

1
2 + . . . (with an infinite number of one-halves), which certainly increases without
bound. Since the harmonic series is even larger, it must diverge as well. �

There have been many other proofs that the harmonic series diverges. In a
college calculus course, one is most likely to encounter a proof due to Jakob
Bernoulli (1654–1705), which utilizes what is now known as the integral test to
compare the harmonic series with that of the improper integral,

∫ ∞
1

1
x

dx. The
latter integral evaluates as the logarithm function, and the fact that the logarithm
function grows without bound implies the divergence of the harmonic series.
Here however is a simpler argument not requiring integral calculus.

Second Proof of Proposition 6.1: Assume, contrary to what we wish to show,
that the harmonic series converges. Say it converges to the real number s. Then
the sum of the reciprocals of the even numbers,

∞∑
n=1

1

2n
= 1

2

∞∑
n=1

1

n
= s/2 .

Thus, the sum of the reciprocals of the odd numbers,

∞∑
n=1

1

2n − 1
=

∞∑
n=1

1

n
−

∞∑
n=1

1

2n
= s − s/2 = s/2 too.

But 1 > 1
2 , 1

3 > 1
4 , and in general 1

2n−1 > 1
2n for all n ≥ 1 . So the notion

that the sum of reciprocals of the even numbers has the same sum as the sum of
reciprocals of the odd numbers is an absurdity. Therefore, the harmonic series
cannot converge but rather must diverge. �

Although the harmonic series diverges, the Bernoulli brothers, Jakob and
Johann (1667–1749), had a thorough understanding of the convergence of other
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p-series. The p-series are those of the form
∑∞

n=1
1
np for real p > 0. By the inte-

gral test, it was known that all p-series with p > 1 converge. But knowing that
a series converges and determining what in fact it converges to are two entirely
different matters. In fact, both Bernoullis tried in vain to determine the sum of
the reciprocals of the squares

∞∑
n=1

1

n2
= 1 + 1

4
+ 1

9
+ 1

16
+ 1

25
+ . . . .

Johann Bernoulli

Other noteworthy mathematicians worked on the problem as well. In England,
John Wallis (1616–1703), the Savilian Professor of Geometry at Oxford Univer-
sity and one of the organizers of the Royal Society, helped further develop the
theory of infinite series. In addition, he is credited with one of the most famous
infinite products involving the number pi, namely

4

π
= 3

2
· 3

4
· 5

4
· 5

6
· 7

6
· 7

8
· 9

8
· . . . ·



THE HARMONIC SERIES . . . AND LESS 53

Wallis also worked on determining the sum of the reciprocals of the squares, but
could only make the numerical approximation

∞∑
n=1

1

n2
≈ 1.645.

Another mathematician, who had less talent but some impressive contacts,
was Christian Goldbach (1690–1764). He was able to determine that

41,423

25,200
<

∞∑
n=1

1

n2
<

76,997

46,800
.

From this it follows that the series is bounded between 1.643769 and 1.645235,
perhaps a slight improvement over Wallis’s result.

Today, Goldbach is much more famous for his later number-theoretic con-
jecture, namely that every even number beyond 2 can be expressed as the sum
of two prime numbers. In 1742, Goldbach reported his conjecture to the great
Leonhard Euler. At first Euler felt that Goldbach’s Conjecture must be either
false or trivially true, but in time he came to realize that it was a very difficult
problem indeed. In fact, Goldbach’s Conjecture is an open problem to this very
day! But now let’s return to a decade earlier when Euler became intrigued with
the sum of the reciprocals of the squares problem.

In 1731, Euler was able to equate the desired series with a sum involving a
faster converging series. In this way, far fewer terms were required to evaluate
the sum to any given degree of accuracy. In particular, Euler showed that

∞∑
n=1

1

n2
= (log 2)2 +

∞∑
n=1

1

2n−1n2
.

From this it readily followed that
∑∞

n=1
1
n2 ≈ 1.644934, accurate to six decimal

places.
Euler, whom the contemporary French scholar François Arago called “Anal-

ysis Incarnate,” continued to work on the problem and by 1733, through similar
means and prodigious calculations, was able to derive the following incredible
estimate: ∞∑

n=1

1

n2
≈ 1.64493406684822643647.

Even so, a closed form for the sum, if there even was one, seemed no closer now
than when Jakob Bernoulli first considered the problem. But Euler was undeterred
and in 1734 he made a spectacular breakthrough. What he discovered was that,
in fact, ∞∑

n=1

1

n2
= π2

6
. (6.1)
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He was aware that his first proof of Formula 6.1 was not completely rigorous,
but the result was certainly true as a quick calculation could verify. His reason-
ing was based on utilizing a theorem of Isaac Newton (1642–1727) concerning
roots of polynomials and extending its application to infinite series (essentially
polynomials of infinite degree). Let’s take a brief aside to learn more.

Proposition 6.2 (Newton’s Polynomial Roots Rule): If p(x) is a monic poly-
nomial with constant term one, then the sum of the reciprocals of the roots of p is
the negative of the coefficient of the linear term.

Recall that a monic polynomial is one with leading coefficient of one and that
the roots of p are the values of x for which p(x) = 0. For example, consider the
polynomial p(x) = x3 + 3x2 + 3x + 1 = (x + 1)3. The roots are −1, −1, and
−1. The sum of the reciprocals of the roots is −3, the negative of the coefficient
of x in p(x) as expected by Newton’s Rule.

Proof of Proposition 6.2: Let p(x) = xn + an−1 xn−1 + . . . + a1 x + 1 =
(x − r1 ) · · · (x − rn) where r1 , . . . , rn are the not necessarily distinct roots of p
guaranteed by the fundamental theorem of algebra.

Multiplying the right-hand side and equating like coefficients we see that

1 = (−1 )n r1 · · · rn and

a1 =
n∑

i=1

(−1 )n−1 r1 · · · rn/ri .

Hence a1 = a1 /1 = −∑n
i=1

1
ri

. �

Euler knew that the function y = sin x can be represented by a power series
that converges absolutely for all x (the Maclaurin series for sin x). In fact, the
well-known series is

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ . . . =

∞∑
n=1

(−1)n
x2n−1

(2n − 1)!
. (6.2)

Furthermore, the sine function has roots at every integral multiple of π , positive,
negative, and zero. Suppose that r is a nonzero value for which sin r = 0. It
follows that

0 = r − r3

3!
+ r5

5!
− r7

7!
+ . . . .

Since r �= 0, we can divide both sides by r : 0 = 1 − r2

3! + r4

5! − r6

7! + . . . . Let

t = r2 : 0 = 1 − t
3! + t2

5! + t3

7! + . . . . The coefficient of the linear term is −1/6.
In addition, since the nonzero roots of sin x comprised all integral multiples of
π , the roots of the series above are π2, (2π)2, (3π)2, etc.
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Now apply Newton’s rule to the “infinite polynomial” above to obtain

1/6 = 1

π2
+ 1

(2π)2
+ 1

(3π)2
+ . . . .

By multiplying both sides by π2, we get π2

6 = ∑∞
n=1

1
n2 .

Euler had every reason to trust his keen insight, but he also knew that a
rigorous proof could not involve applying a result to infinite series that should
only apply to polynomials. Although we will not delve into the details here, Euler
developed other infinite product representations for sin x and was able to prove
the above result in a more rigorous manner. But he certainly didn’t stop there. He
defined the zeta function by ζ(s) = ∑∞

n=1
1
ns for s > 1. So the previous result

could be restated as ζ(2) = π2

6 .
Jakob Bernoulli had investigated formulas for the sums of squares, cubes, and

so on. In doing so he introduced an infinite collection of numbers, now called
the Bernoulli numbers Bn. They are defined by the following Taylor series

x

ex − 1
=

∞∑
n=0

Bn

n!
xn (6.3)

or alternatively by the following recurrence relation:

B0 = 1 and (n + 1)Bn = −
n−1∑
k=0

(
n + 1

k

)
Bk for n ≥ 1. (6.4)

Recall that the binomial coefficient
(
n+1
k

) = (n+1)!
(n+1−k)!k! .

Euler derived a formula for the zeta function that applied to all positive even
arguments, namely 2, 4, 6, and so on. Here is the result.

Euler’s Theorem (1736): ζ(2k) = (−1 )k+1 (2π)2k B2k
2 (2k)! . (6 .5 )

Euler’s beautiful result applies to any even value of the zeta function no mat-
ter how large. It follows that ζ(4) = π4/90 and ζ(6) = π6/945. Euler, who
delighted in mental calculation, later tabulated many such values of the zeta
function including the whopping

ζ(26) = 1315862

11094481976030578125
π26.

All of the zeta series that we have discussed can be thought of as a thinning
out of our original harmonic series. Instead of getting a divergent series by adding
up the reciprocals of all the natural numbers, we eliminate certain terms to see
if a convergent series arises. So the question becomes how many terms and
which ones need to be removed in order to obtain a convergent series. That’s
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the theme of this chapter and the reason for the title, “The Harmonic Series . . .

and Less.”
Certainly if we remove any finite number of terms from the harmonic series,

we will still be left with a divergent series since an unbounded sum minus a finite
number is still unbounded. In Chapter 1 we established that there are infinitely
many primes. So what about the sum

∑
p

1
p

where we sum over all primes p?
It’s an interesting question and one that Euler himself asked—and answered.
Despite the fact we’ve eliminated all the composite numbers, the sum of the
reciprocals of the primes diverges. In proving this result, he established another
proof (independent of Euclid’s) that there are infinitely many primes. We present
a more elementary and modern proof of Euler’s result.

Theorem 6.3 (Euler, 1737): The series
∑

p
1
p diverges.

Proof (James Clarkson, 1966): Assume that
∑

p
1
p converges. Then there is an

integer k such that
∑∞

m=k+1
1

pm
< 1

2 where pm is the m th prime number. Now let
Q = p1 · · · pk be the product of the first k primes. Consider the numbers 1 + nQ
for n = 1 , 2 , 3 , . . . . None of these numbers is divisible by any of the first k primes
(since each leaves a remainder of one upon division). Hence all the prime factors
of 1 +nQ occur among the rest of the primes pk+1 , pk+2 , . . . . Thus for all r ≥ 1 :

r∑
n=1

1

1 + nQ
≤

∞∑
t=1


 ∞∑

m=k+1

1

pm




t

since the sum on the right includes among its terms all the terms on the left (and
more). But

∑∞
m=k+1

1
pm

< 1
2 . Thus

∞∑
t=1


 ∞∑

m=k+1

1

pm




t

<

∞∑
t=1

(
1

2

)t

= 1 .

(The last series is the geometric series we discussed in Zeno’s Achilles Para-
dox). Hence the series

∑∞
n=1

1
1+nQ is dominated by the convergent geometric

series
∑∞

t=1

( 1
2

)t
, and hence

∑∞
n=1

1
1+nQ converges (by the Comparison Test).

But, in fact, the series
∑∞

n=1
1

1+nQ diverges since
∑∞

n=1
1

nQ diverges (a constant

times the harmonic series) and thus so does
∑∞

n=1
1

1+nQ by invoking the Limit

Comparison Test. Therefore, the assumption that
∑

p
1
p converges is false. �

There are many ways to further thin out the primes and investigate the conver-
gence of the sum of reciprocals of the remaining numbers. For example, in 1919,
the Norwegian mathematician Viggo Brun developed a new and powerful “sieve
method” to show that the sum of the reciprocals of the twin primes converges.
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Recall that the twin primes are those that differ by two from another prime. So
although no one to this day has been able to prove that there are infinitely many
twin primes, they are qualitatively significantly less dense than the full set of
primes.

Now let’s thin out the harmonic series another way. Consider the 7-free
numbers consisting of all the natural numbers lacking the digit 7 in their base
10 representation: 1, 2, 3, . . . , 6, 8, 9, . . . , 16, 18, . . . , 69, 80, 81, . . . . There
appear to be plenty of them. So it is a natural question to enquire whether or not∑

n 7−free
1
n

converges. The following proposition may come as a mild surprise
(known to A.J. Kempner, 1914, and may even predate him).

Proposition 6.4:
∑

n 7−free
1
n converges.

Proof: Since all digits from 1 to 9 save for 7 itself is 7-free, there are 8 one-digit
positive integers that are 7-free. There are 8 · 9 = 72 two-digit numbers that are
7-free. (The first digit can be any digit from 1 to 9 except 7 and the second digit
can be any digit from 0 to 9 except 7.) Similarly, there are 8 · 9 · 9 three-digit
numbers that are 7-free, and in general, there are 8 ·9 n−1 7-free n-digit numbers.
Furthermore, if n is a one-digit number, then 1/n ≤ 1 . If n is a two-digit number,
then 1/n ≤ 1/10 , and in general, if n is a k-digit number, then 1/n ≤ 1/10 k−1 .
Hence

∑
n 7−free

1

n
< (1 + . . . + 1 ) +

(
1

10
+ . . . + 1

10

)
+

(
1

100
+ . . . + 1

100

)
+ . . .

=
∞∑

k=1

8 · 9 k−1 ·
(

1

10

)k−1

=
∞∑

k=0

8 ·
(

9

10

)k−1

The last expression is a convergent geometric series (r = 9/10 ) and hence∑
n 7−free

1
n converges. �

Analogously, for any r = 0, 1, . . . , 9, the sum Sr = ∑
n r−free

1
n

converges.
In a 1979 article in the American Mathematical Monthly, R. Baillie, calculated
each of these sums to 20 decimal places. Here we make a more modest tabulation
(to three decimal places) (Table 6.2). It is worth considering why the sums get
larger as r increases (think of 0 as being 10). Realize that the smaller the value
of n, the larger the contribution of 1/n.

It is an interesting corollary that the sum S = ∑9
r=0 Sr must itself converge

(even with all the repetition of terms). At first glance you might think that the
above sum actually contains the harmonic series, but the harmonic series diverges,
and hence we have a contradiction. But although the sum S contains the recip-
rocals of lots of natural numbers, it does not contain them all. It omits the set of
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TABLE 6.2 Sum of reciprocals of r –free integers

r 1 2 3 4 5 6 7 8 9 0

Sr 16.177 19.257 20.570 21.327 21.835 22.206 22.493 22.726 22.921 23.103

all those integers whose expansion contain all ten-decimal digits. The first two
such numbers are 1,023,456,789 and 1,023,456,798. This leads to the following
corollary:

Corollary 6.4.1: Let D = the set of all integers whose decimal representation
contain all ten distinct digits. Then

∑
n∈D

1
n diverges.

The thinning out of a convergent series must converge. So it follows that∑
p 7−free

1
p

must converge since we are merely summing over the 7-free primes.

Similarly, the sum
∑

p 1−free
1
p

+∑
p 2−free

1
p

+ . . .+∑
p 0−free

1
p

converges. But
the sum of the reciprocals of all the primes diverges. Hence we note in closing,
with D as defined in Corollary 6.4.1, the amazing result:

Corollary 6.4.2:
∑

p∈D
1
p diverges.

What makes Corollary 6.4.2 seem so counterintuitive is that the primes p
in D seem so large (and hence 1/p so small). The first three primes in the set
D are 10,123,457,689, 10,123,465,789, and 10,123,465,897. Yet the sum of the
reciprocal of the squares 1+1/4+1/9+1/16+ . . . . converges! The explanation
is that “most” primes are actually really big and contain all ten decimal digits.
In fact, there are many more of them than there are squares (even though we
somehow “know” and have no trouble naming lots of small squares). The problem
is that we tend to live among the set of puny integers and generally ignore the
vast infinitude of larger ones. How trite and limiting our view!

WORTH CONSIDERING

1. Show that if |r| < 1, then the geometric series a + ar + ar2 + . . . converges
to a

1−r
.

2. Show that for n ≥ 2, the sum 1 + 1
2 + · · · + 1

n
is never an integer.

3. A celebrated puzzle problem involves a bug that flies nonstop back and forth
between the front bumpers of two cars heading straight towards each other.
If the bug flies at 120 miles per hour and starts off when the cars are two
miles apart with each car traveling at 60 miles per hour, what is the total
distance that the bug flies?

4. Given that
∑∞

n=1
1
n2 = π2

6 , determine the sum
∑∞

n=1
1

(2n−1)2 .
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5. Use Equation 6.2 and the fact that sin π
2 = 1 to derive an interesting infinite

series for the number 1.

6. Use Equation 6.4 to determine the first eight Bernoulli numbers.

7. If we define Bn = Nn

Dn
where Nn and Dn are relatively prime and Dn > 0,

then a theorem due to Von Staudt and Clausen (1840) states that if n is even,
Dn is the product of all the primes p where (p − 1)|n. Verify this result for
D2, D4, D6, and D8.

8. Use Equation 6.5 to calculate ζ(k) for k = 2, 4, 6, and 8.

9. Use the fact that 1
n(n+1)

= 1
n

− 1
n+1 to determine

∑∞
n=1

1
tn

where tn is the

nth triangular number.



7 Fermat Primes, the Chinese
Remainder Theorem,
and Lattice Points

In Chapter 1 we presented Euclid’s classic proof that there are infinitely many
primes. In Chapter 6, we stated that Euler had established that

∑
p

1
p

diverges,
thus providing an alternate proof that there are infinitely many primes. Just for
the fun of it, we begin this chapter with two more proofs that there are infinitely
many primes—one by Euler and a second by the Hungarian (later American)
analyst and mathematical pedagogist, George Pólya (1887–1985).

Recall that a geometric series
∑∞

k=0 rk converges if |r| < 1 and diverges
otherwise. If it converges, then

∑∞
k=0 rk = 1

1−r
. Euler reasoned as follows:

Suppose that p1 = 2, p2 = 3, . . . , pn are all the primes. Since 0 < 1
pi

< 1

for all i, the geometric series
∑∞

k=0
1
pk

i

converges, in fact to 1
1− 1

pi

. Hence

n∏
i=1

( ∞∑
k=0

1

pk
i

)
=

n∏
i=1

1

1 − 1
pi

. (7.1)

The left-hand side of Equation 7.1 can be expanded to

(
1 + 1

2
+ 1

4
+ . . .

) (
1 + 1

3
+ 1

9
+ . . .

)(
1 + 1

5
+ 1

25
+ . . .

)
· · ·

×
(

1 + 1

pi

+ 1

p2
i

+ . . .

)
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ . . . =

∞∑
m=1

1

m

by the Fundamental Theorem of Arithmetic (which states that every positive
integer has a unique factorization as a product of primes). But this is the divergent
harmonic series. Since the right-hand side of Equation 7.1 is presumed to be finite,
we arrive at a contradiction. Therefore, there must be infinitely many primes.
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Euler proceeded to show that
∑

p
1
p

diverges by using properties of the loga-
rithm function, but the argument above already sufficed to establish the infinitude
of primes.

Among Euler’s mathematical motivations was the quest to derive many of the
number-theoretic claims and conjectures made by the French jurist and “amateur”
mathematician, Pierre de Fermat (1601–1665). Fermat had inscrutable intuition
and Euler and others were gradually able to validate many of his mathematical
pronouncements. However, in one famous example, at least, Euler ended up
debunking Fermat’s claim.

Fermat was interested in creating a formula that would generate only primes. It
happens that all nonconstant polynomials f (n) are composite for infinitely many
values of n. So what about exponential functions? Let’s consider the simplest
candidate, f (n) = 2n + 1. Fermat realized that if n = ab with a ≥ 3 odd, then
2n + 1 could be factored. In particular,

2n + 1 = 2ab + 1 = (2a + 1)(2b(a−1) − 2b(a−2) + 2b(a−3) − . . . + 1),

and thus 2n + 1 is composite. Hence a better candidate for primality is f (n) =
2n+1 where n itself is only divisible by the prime 2. Fermat defined fn as 22n +1
and verified that f0 = 3, f1 = 5, f2 = 17, f3 = 257, and f4 = 65,537 are all
prime. Based on this evidence, Fermat conjectured that fn is prime for all n.

Pierre de Fermat
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This particular conjecture has not fared well. In 1732, Euler factored f5 =
4,294,967,297 into 641 · 6,700,417 and then showed that each cofactor was
prime. Euler first succeeded in proving that for n > 2, any factor of fn was of
the form k · 2n+2 + 1. To factor f5, he just needed to check primes of the form
128k +1. The first such prime is 257, which is not a factor of f5. But the second
prime of the form 128k +1 is 641, and it is a factor of f5. Obviously more work
was required to verify that the cofactor 6,700,417 is also prime.

Since then, much larger values of fn have been studied. Realize that the
notation fn belies the rapid super exponential growth of the Fermat numbers.
In 1880, after many months of labor, F. Landry (then aged 82) found that f6 =
274,177 · 67,280,421,310,721. It was another 90 years before the next Fermat
number, f7, was completely factored by Brillhart and Morrison with the aid of a
modern computer. To date, no other Fermat number has been shown to be prime,
quite contrary to Fermat’s original conjecture. Currently fn has been completely
factored for n ≤ 11 and it is known that fn is composite for all n ≤ 32. In
addition, some sporadic factors are known for some truly huge Fermat numbers.
For example, Göran Axelson (2002) has shown that 7,619 · 250,081 + 1 divides
f50,078. Interestingly, no one has been able to prove either that there are infinitely
many prime Fermat numbers or to prove that there are infinitely many composite
Fermat numbers! Of course, at least one of these assertions must be true.

Fermat numbers do arise in other contexts, however. In 1796, the incompara-
ble Carl Friedrich Gauss (1777–1855) was able to construct a regular 17-sided
polygon using only straightedge and compass, a feat not accomplished by any of
the great Greek geometers. Furthermore, Gauss proved that a regular polygon of
N sides can be so constructed if and only if N is a power of two times a product
of distinct Fermat primes. So, in theory at least, a regular 65,537-sided polygon
can be constructed with basic Euclidean tools (something actually attempted over
a ten-year period by a Professor Hermes and currently preserved in a trunk at
the Mathematical Institute of Göttingen). Of course, such a multisided polygon
would look a lot like a perfect circle.

Now we present Pólya’s proof that there are infinitely many primes. To show
that the primes are unbounded it suffices to find a nonterminating sequence
1 < a0 < a1 < a2 < . . . of pairwise relatively prime integers. As you may
have guessed, one valid choice is to let an = fn, the nth Fermat number. We
establish that the Fermat numbers are pairwise relatively prime by establishing
the following proposition:

Proposition 7.1: The Fermat numbers satisfy the equation

fm = f0 f1 · · · fm−1 + 2 for m ≥ 1 . (7.2)

Since fn is odd for all n, if any prime p|fn for some n ≤ m − 1, then p fm

by Proposition 7.1 (since p 2), and hence the Fermat numbers are pairwise
relatively prime.
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Proof of Proposition 7.1: (Induction on m) Let m = 1 . Then f1 − 2 = 2 2 1 +
1 − 2 = 5 − 2 = 3 = f0 .

Now assume that the proposition holds for m, that is, that fm = f0 f1 · · · fm−1 +
2 . Next we establish Equation 7.2 for the case m + 1 .

fm+1 = 2 2 m+1 + 1 = (2 2 m
)2 + 1

= [(2 2 m + 1 )2 − 2 · 2 2m − 1 ] + 1

= (2 2 m + 1 )2 − 2 (2 2 m + 1 ) + 2

= f 2
m − 2fm + 2

= fm(fm − 2 ) + 2

= (f0 · · · fm−1 )fm + 2 by the inductive hypothesis. �

Next we turn to the Chinese Remainder Theorem, variants of which were known
in ancient times. For example, the Chinese mathematician Sun-Tzi (ca. 300 C.E.)
proposed the following problem: “There are things of an unknown number which
when divided by 3 leave 2, by 5 leave 3, and by 7 leave 2. What is the number?”
In general, there will be a solution as long as the divisors in the problem (in this
example, 3, 5, and 7) are pairwise relatively prime. We state the theorem below:

Chinese Remainder Theorem: Assume that m1 , m2 , . . . , mr are pairwise rel-
atively prime. Let b1 , b2 , . . . , br be any integers. Then the system of congruences




x ≡ b1 (mod m1 )

x ≡ b2 (mod m2 )
...

x ≡ br (mod mr )

has a simultaneous solution for x . In fact, it is unique modulo m1 m2 · · · mr .

The Chinese Remainder Theorem is the basis for some arithmetic feats. For
example, you could ask someone to pick a number from 1 to 1,000 (or even
1,001), then ask three other volunteers to tell the remainder of the chosen number
upon division by 7, 11, and 13 in turn. Then, after a short calculation, you can
correctly announce the original number. Here’s what’s involved:

Notice that

−77 ≡ 0 (mod 7), ≡ 0 (mod 11), and ≡ 1 (mod 13)

364 ≡ 0 (mod 7), ≡ 1 (mod 11) and ≡ 0 (mod 13)

−286 ≡ 1 (mod 7), ≡ 0 (mod 11), and ≡ 0 (mod 13). (7.3)

These three numbers will serve as our multipliers once our volunteers announce
their results.
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For instance, suppose that the number N is chosen and it is reported that
N has remainder 3 when divided by 7, remainder 4 when divided by 11, and
remainder 10 when divided by 13. Since 7, 11, and 13 are pairwise relatively
prime, the Chinese Remainder Theorem guarantees a unique solution modulo
7·11·13 = 1,001. In addition, in order to work with the smallest numbers possible
(in absolute value), note that 10 ≡ −3 (mod 13). By the way we’ve chosen
our multipliers, we simply multiply the given remainders by the appropriate
multipliers and sum. In this case we get

N ≡ 3(−286) + 4(364) − 3(−77)(mod 1,001). Hence

N ≡ 829 (mod 1,001).

But 1 ≤ 829 ≤ 1,000 and so N must be 829.
Recall Theorem 1.2 from Chapter 1, namely that there are arbitrarily large

gaps between successive primes. Equivalently, for any natural number r there is
a string of r consecutive composite numbers. In fact, the string (r +1)!+2, (r +
1)! + 3, . . . , (r + 1)! + (r + 1) is such an example.

Now we use the Chinese Remainder Theorem to demonstrate that there exist
arbitrarily long strings of highly composite integers. By highly composite we
mean having as many prime factors as we desire. Here is the result:

Theorem 7.2: Let r and n be positive integers. There exist r consecutive numbers
each divisible by at least n distinct primes.

Proof of Theorem 7.2: Let



p1 , . . . , pn be the first n primes
pn+1 , . . . , p2n be the second n primes

...

p(r−1 )n+1 , . . . , prn be the r th set of n primes

Let



m1 = p1 · · · pn
m2 = pn+1 · · · p2n

...

mr = p(r−1 )n+1 , . . . , prn

Consider the simultaneous congruences




x ≡ −1 (mod m1 )

x ≡ −2 (mod m2 )
...

x ≡ −r (mod mr )
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The Chinese Remainder Theorem guarantees a solution N (mod m1 · · · mr ).
Hence m1 |(N + 1 ), m2 |(N + 2 ), . . . , and mr |(N + r). So the r numbers, N +
1 , N + 2 , . . . , N + r, are each divisible by at least n primes. �

Our last topic in this chapter deals with lattice points in the plane. Lattice
points are those points in the plane having both x and y Cartesian coordinates
equal to integers. If we look out from the origin and could see indefinitely far,
then we would see infinitely many lattice points, namely all those points (a, b)
where a and b are relatively prime. However, all the points (a, b) where a and b

are not relatively prime would not be visible. This is readily apparent (mentally,
if not visibly). Suppose that gcd(a, b) = d > 1. Then the visible point ( a

d
, b

d
)

would block (a, b) from our view. Figure 7.1 shows a small part of the plane
with light points being visible lattice points and dark points representing those
that are not visible from the origin.

One interesting mathematical result related to Figure 7.1 is due to Gauss. For
any real number r > 0, consider the square consisting of that portion of the
Cartesian plane for which |x| < r and |y| < r . Let N(r) denote the total number
of lattice points inside the square and let V (r) denote the number of visible lattice
points inside the square. Let [r] denote the greatest integer less than or equal to
r . On the one hand, it is easy to see that N(r) = (2[r] + 1)2 since there is a
lattice point for all integers x and y with −[r] ≤ x ≤ [r],−[r] ≤ y ≤ [r]. On
the other hand, there is no simple formula for V (r). However, Gauss showed
that limr→∞ V (r)

N(r)
= 6

π2 . (It is no coincidence that this number is the reciprocal
of ζ(2) which we discussed in Chapter 6.) Since visible lattice points correspond
to those points having relatively prime x and y values, we can roughly think

Figure 7.1 Green lattice points are visible from the origin, red lattice points are invisible.
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of Gauss’s result in the following way. The chance that two randomly chosen
integers are relatively prime is 6

π2 ≈ 0.6079.
We now state another interesting theorem concerning visible lattice points.

Theorem 7.3: The set of lattice points in the plane visible from the origin con-
tains arbitrarily large square gaps. In particular, given any integer n > 0 , there
is a lattice point (a, b) for which all of the lattice points (a +r, b +s), 0 < r ≤ n,
0 < s ≤ n are invisible from the origin.

Proof of Theorem 7.3: As in the proof of Theorem 7.2, list the first n2 primes
in an n × n tableau:

p1 p2 pn. . .

pn+1 pn+2 p2n. . .

. . . . . . . . .. . .

pn(n−1)+1 pn(n−1)+2 pn2. . .

Figure 7.2 Tableau of first n2 primes.

Multiplying horizontally, let mr = p(r−1 )n+1 p(r−1 )n+2 · · · prn for 1 ≤ r ≤ n.
Multiplying vertically, let Ms = pspn+s · · · pn(n−1 )+s for 1 ≤ s ≤ n.
Notice that the mr ’s are pairwise relatively prime, as are the Ms’s.
Now consider the following congruence system:




x ≡ −1 (mod m1 )

x ≡ −2 (mod m2 )
...

x ≡ −n (mod mn)

By the Chinese Remainder Theorem, there is a unique solution, x ≡ a (mod
m1 m2 · · · mn).

Similarly, the congruence system




y ≡ −1 (mod M1 )

y ≡ −2 (mod M2 )
...

y ≡ −n (mod Mn)

has a unique solution y ≡ b (mod M1 M2 · · · Mn). But m1 m2 · · · mn = M1
M2 · · · Mn.
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b+n

b+1

a+1 a+n

Figure 7.3 An invisible square.

Now consider the square with opposite vertices at (a + 1 , b + 1 ) and (a +
n, b + n) (Fig. 7.3).

Any lattice point inside or on the square has coordinates of the form (a +r, b +
s) where 0 < r ≤ n and 0 < s ≤ n. But by our construction, a ≡ −r (mod mr )
and b ≡ −s (mod Ms). Thus mr |(a + r) and Ms |(b + s). But the prime p at the
intersection of row r and column s in Figure 7.2 (namely p = p(r−1 )n+s ) divides
both mr and Ms . So p|(a + r) and p|(b + s). Hence gcd(a + r, b + s) > 1 . Since
r and s were arbitrary, no point inside or on the square is visible. �

Example: Let M =

 2 3 5

7 11 13
17 19 23


.

We readily calculate m1 = 30, m2 = 1,001, m3 = 7,429, M1 = 238, M2 = 627,
and M3 = 1,495.

In this case, m1m2m3 = M1M2M3 = 223,092,870. Now let




a ≡ −1 (mod m1)

a ≡ −2 (mod m2)

a ≡ −3 (mod m3)

We get a = 11,9740,619.
Next let 


b ≡ −1 (mod M1)

b ≡ −2 (mod M2)

b ≡ −3 (mod M3)

We obtain b = 12,1379,047.



FERMAT PRIMES, THE CHINESE REMAINDER THEOREM, AND LATTICE POINTS 69

So the 3 × 3 square with opposite vertices at (a + 1, b + 1) and (a + 3, b + 3)

is an invisible 3 × 3 square.
Of course, there are invisible 3×3 squares closer to the origin, but the method

we have presented generalizes for squares of any size. For the record, though,
St. Michael’s College computer scientist John Trono has found an invisible 3×3
square with southwest corner at (1,274, 1,308). To extend our method to find an
invisible 4 × 4 square would involve calculations modulo 2 · 3 · 5 · 7 · 11 · 13 · 17 ·
19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 = 32,589,158,477,190,044,730. Care to find
a closer 4 × 4 square?

WORTH CONSIDERING

1. Show that there are infinitely many primes of the form 4k+3 by considering
the number N = 4p1p2 · · · pr − 1 where the pi’s are distinct primes of that
form.

2. J.F.T. Pepin (1826–1904) proved that the Fermat number fn is prime if and
only if 3(fn−1)/2 ≡ −1 (mod fn). Use Pepin’s test to verify that f2, f3, and
f4 are prime.

3. Solve the remainder problem posited by Sun-Tzi.

4. (a) Find integers m1, m2, and m3 for which

m1 ≡ 1 (mod 3), 0 (mod 5), 0 (mod 7)

m2 ≡ 0 (mod 3), 1 (mod 5), 0 (mod 7)

m3 ≡ 0 (mod 3), 0 (mod 5), 1 (mod 7).

(b) Use part (a) to find an integer between 1 and 100 inclusive that has
remainder 2 when divided by 3, remainder 1 when divided by 5, and is
divisible by 7.

(c) Find the smallest integer greater than 1,000 that has remainder 2 when
divided by 3, remainder 3 when divided by 5, and remainder 4 when
divided by 7.

5. Use Formula 7.3 to find the smallest positive integer that is ≡ 1 (mod 7), 0
(mod 11), and 5 (mod 13)?

6. What is the closest 2 × 2 square that is invisible from the origin.

7. Verify that the 3×3 square with southwest corner (1,274, 1,308) is invisible
from the origin.

Administrator
v



8 Tic-Tac-Toe, Magic Squares,
and Latin Squares

Mathematical games and amusements can be intellectually stimulating and fun.
As you get older and/or more sophisticated some of the easier games lose their
interest. One example of this is tic-tac-toe, where two competitors alternately
place X’s and O’s in a 3 × 3 matrix until one of them completes three in a row,
vertically, horizontally, or diagonally. After a fair number of games, it becomes
apparent that perfect play by both players always results in a draw. Even so, the
strategy of tic-tac-toe can be applied to seemingly more intricate games as we
will see shortly.

A more interesting game is the Fifteen Game. Nine cards are removed from a
deck of playing cards—the ace through nine of some suit. The cards are laid out
face up, available to each of two players. The players take turns choosing a card
from the central pile and adding it to their own collection. The first player to
have three cards that total 15 wins. Try a few rounds of this game with a friend
and see how you do. Can you come up with any good strategies?

Here’s another good game. I call it Eat Bee, but it’s actually a version of
the game Hot, invented by the Canadian mathematician, Leo Moser. As in the
Fifteen Game, nine cards are laid out in a central pile and two players alternate
in selecting cards. This time the cards have words written on them—Eat, Bee,
Less, Via, Bits, Lily, Soda, Boo, and Loot. The first player to obtain three cards
sharing a common letter wins the game. Give it a try.

Now we turn briefly to three by three magic squares. It may seem that we’re
jumping around haphazardly, but soon we’ll see how everything relates together.
A magic square is an n×n array of the numbers 1, 2, . . . , n2 where each column
and row adds up to the same sum (called the magic sum). Magic squares have
been known for millennia and at one time may have been thought to have magic
powers. For example, the magic square (Fig. 8.1) was known to the Emperor Yu
of China who reigned approximately 2200 B.C.E. and purportedly saw it written
on the back of a divine turtle. Notice that in this case, each row and column
(and even the two main diagonals) add up to 15. By the way, it’s very easy to
remember this magic square if you just recall the placement of the numbers 1,
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4 9 2

7

618

3 5

Figure 8.1 Oldest known magic square called the Lu Shu.

4, 9, 2 (think Christopher Columbus). Once those four numbers are placed, the
rest of the numbers are forced into their proper slots.

We now see the best strategy for the Fifteen Game. The magic square in
Figure 8.1 includes the nine card values in the Fifteen Game. The eight different
winning hands in the Fifteen Game are listed as its rows, columns, and main
diagonals. Hence playing the Fifteen Game is identical to playing tic-tac-toe on
this magic square. Since perfect play in tic-tac-toe results in a draw, the same is
true of the Fifteen Game. In practice, of course, your opponent might not know
all of this and you should still have an advantage.

What about the Eat Bee game? It’s the same story all over again. List the
words as shown in Figure 8.2 and then play tic-tac-toe on the array of words.
Note that there is a row for E, a row for I, and one for O. There’s columns for A,
B, and L and finally diagonals for S and T. Again the game should end in a draw.

Before moving on, take another look at Figure 8.1. If we read the numbers
left to right as if they were three-digit numbers, then the three rows become 492,
357, and 816. If we read the numbers backwards we obtain 294, 753, and 618.
It turns out that the sum of the squares of the two sets of numbers are equal;
namely that 4922 +3572 +8162 = 2942 +7532 +6182. In addition, we can do the
same for the three columns. That is, 4382 + 9512 + 2762 = 8342 + 1592 + 6722.
Maybe that turtle was divine after all!

We now discuss magic squares in a bit more detail. An n × n magic square
contains the numbers 1 through n2 arranged in n rows. Since the sum 1+2+. . .+
n2 = n2(n2+1)

2 and each row has the same sum, the magic sum of an n×n magic

square must be n(n2+1)
2 . For example, a 3 × 3 magic square has magic sum 15.

Similarly, a 4×4 magic square has magic sum 34. An interesting example of such
a square appears in the work of the German painter and engraver Albrecht Dürer
(1471–1528). In his work, “Melancholia,” along with a host of mathematical and
scientific tools, the magic square shown in Figure 8.3 appears. Note that the date
of the engraving appears in the middle of the bottom row! And this square has
some extra magic as noted by the mathematician, Hossein Behforooz. If we add

LESS

LILY

LOOT

EAT

SODA

VIA

BEE

BOO

BITS

Figure 8.2 Strategy square for Eat Bee game.
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Figure 8.3

the numbers along the two main diagonals, the sum is easily seen to be the same
as the sum of the rest of the entries. So 16+10+7+1+13+11+6+4 = 68 =
3+2+8+12+14+15+9+5. However, it is also true that the sum of the squares
of the terms have equal sums; that is, 162 +102 +72 +12 +132 +112 +62 +42 =
748 = 32 + 22 + 82 + 122 + 142 + 152 + 92 + 52. And, believe it or not, the
same is true for the sum of cubes: 163 + 103 + 73 + 13 + 133 + 113 + 63 + 43 =
9, 248 = 33 + 23 + 83 + 123 + 143 + 153 + 93 + 53. Dürer’s artistry seems to
extend well beyond his woodblocks.

One might think that the larger the square, the more difficult it is to construct
such an example. But actually the number of distinct magic squares grows very
rapidly as the size of the square increases. In fact, there are 880 different 4 × 4
magic squares, as was shown by the French mathematician Frenicle de Bessy
(1605–1675). We will discuss the creation of another such square when we
discuss Latin squares.

Magic squares are often classified as being either odd-ordered or even-ordered
depending on whether the number of rows is odd or even respectively. There is
a very convenient algorithm for creating odd-ordered magic square which we
now describe. It is due to De la Loubère from the late 17th century. Here is the
algorithm for creating an odd-ordered magic square of any given size:

1. Write the number 1 in the center square of the top row.
2. Each successive number is written by moving one space in a northeast

direction (up and to the right) to the next vacant square. But you must
think of the magic square as being written on a torus (the surface of a
doughnut). Hence if you move off the magic square to the right, you show
up in the same row on the left. If you move off the top of the magic square,
you arrive in the same column at the bottom.

3. If you are at the top right corner or if the next square is already full, then
move down one space from your last entry. Again, if you’re already in
the bottom row, then you must move “down” to the same column in the
top row.

Example (3×3 magic square): Using De la Loubère’s algorithm we obtain the
following square shown in figure 8.4, equivalent to our first example.

Example (5 × 5 magic square): Figure 8.5 gives an example of a 5 × 5 magic
square.
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8 1 6

7

294

3 5

Figure 8.4 3 × 3 magic square.

922511 18

3211910 12

158117 24

2220134 6

1614723 5

Figure 8.5 5 × 5 magic square.

To be honest, magic squares are generally considered rather uninteresting by
most serious mathematicians. After all they don’t seem to be especially applicable
to anything else. However, in the summer of 1988, for the start of a sabbatical
my father and I drove cross-country from Middlebury, Vermont, to Sunnyvale,
California. At a diner in Joliet, Illinois, our waitress noticed me doodling some
mathematics on a napkin. She came over and said, “If you want a real tough
problem, write out the numbers from 1 to 9 in a square so that all the rows and
columns and diagonals add up to same thing. I’ll give you until I come back for
your order.” Of course, we just had to write out a 3×3 magic square as in Figure
8.4. She was so impressed with how quickly we solved the problem, we each
had apple pie à la mode for dessert—on the house. Now that’s an application of
magic squares, isn’t it?

Benjamin Franklin
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I now mention two of my favorite examples of magic squares. The first one
is due to the celebrated American scientist and statesman Benjamin Franklin
(1706–1790). As reported by him, he spent a fair amount of time as a young
clerk for the Pennsylvania Assembly amusing himself by making such squares.
Figure 8.6 shows one of his examples, and I think you’ll agree he had quite a
talent for it.

There are many interesting patterns within Franklin’s 8 × 8 magic square. In
addition to all rows and columns adding up to 260, if we break up the full square
into four 4×4 quarter squares, then each of the quarter squares are pseudomagical
in the sense that each has equal row and column sums of 130. The sum of the
main diagonal going from the northwest corner to the southeast corner is 252. The
sum of the other main diagonal going from the northeast corner to the southwest
corner is 268. Interestingly, the sum of all the “broken” diagonals starting from
the top (or bottom or left or right) and moving diagonally up or down to the
left or to the right is also always 252 or 268 in an alternating pattern. A broken
diagonal must still include one entry from each row and column. Again think of
the square as being drawn on a torus. For example, 47 + 19 + 20 + 44 + 11 +
55 + 56 + 16 = 268 = 8 + 55 + 59 + 12 + 36 + 19 + 31 + 48. Analogously,
21 + 38 + 42 + 25 + 49 + 2 + 14 + 61 = 252 = 33 + 18 + 62 + 13 + 5 + 54 +
26 + 41.

Figure 8.7 shows my other favorite. This is an order eight magic square due
to Leonhard Euler. What makes Euler’s magic square so endearing is one spe-
cial property it has in addition to possessing equal row and column sums. The
numbers 1, 2, 3, . . . , 64 form a knight’s tour of the chessboard! Each suc-
cessive number is an “L” step from the preceding number. Knight’s tours had
been studied by mathematicians such as Brook Taylor (1685–1731) and Abra-
ham DeMoivre (1667–1754), but in 1759 Euler vastly extended their work and
determined for which values of n such tours existed on n × n chessboards. Even
so, the combination of magic square and knight’s tour displayed in Figure 8.7 is
quite striking.
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Figure 8.6 Franklin Square (not a street address).
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Figure 8.7 Euler’s Knight’s tour magic square.

In a similar vein, mathematicians, computer scientists, and various puzzlists
have sought to exhibit a magic square where the diagonal sums are also magic
that forms a knight’s tour of an 8x8 chessboard. Recently software written by J.C.
Meyrignac was widely distributed via a website organized by Guenter Sterten-
brink. A total of 140 distinct magic knight’s tours with magic row and column
sum were eventually found. However, after the equivalent of over 138 days of
computation at a rate of 1 gigahertz (GHz), in August of 2003 it was determined
that no magic knight’s tour with the same row, column, and diagonal sums is
possible. (The extremely fatigued horse is happy to hear about this and is now
comfortably resting in his stable.)

Another interest of Euler’s was the study of what he called Latin squares. A
Latin square of order n is an n × n matrix where each row and column contains
every natural number from 1 to n. Euler originally used Latin letters rather than
numerals and hence the Latin square moniker has remained. Figure 8.8 contains
two examples.

It is quite easy to construct a Latin square, but the example of the pair of Latin
squares in Figure 8.8 has an additional property. They form a pair of orthogonal
Latin squares. In general, denote the entries of square A by (aij ) and the entries
of square B by (bij ) where i represents the row of the square and j its column.
A and B are orthogonal Latin squares of order n if for every ordered pair (s,
t) with 1 ≤ s ≤ n, 1 ≤ t ≤ n, there is a location ij (ith row, j th column)
such that (aij , bij ) = (s, t). That is, all n2 possible ordered pairs actually occur.
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Figure 8.8 A pair of orthogonal Latin squares.
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Check it on the example in Figure 8.8. By the way, the superposition of a pair of
orthogonal Latin squares is sometimes called a Graeco-Latin square since Euler
used Latin letters for one square and Greek letters for the other.

Latin squares have proven to have real-world applications. In agriculture, dif-
ferent fertilizers can be tested on different sets of soil in a manner designed by an
appropriate-sized Latin square to see which combination works best in growing,
say, a particular variety of corn. If we want to test several varieties of corn with
the different fertilizers, then a Graeco-Latin square provides the experimental
design. Similarly, Latin squares have found use in medical experiments and drug
testing. In the world of pure mathematics, Latin squares are an integral part of
the study of finite projective planes.

Here’s how Euler utilized Latin squares to create magic squares. From
Figure 8.8, convert the ordered pairs into two-digit numbers (forming the Graeco-
Latin square below): 


11 22 33 44
23 14 41 32
34 43 12 21
42 31 24 13




Notice that by our construction, each number is unique and each row and column
has the same sum, in this case 110. This is a pseudomagic square since the entries
are not the first 16 numbers.

However, it is now an easy matter to transform it into a bona fide magic square.
Switch each digit to its equivalent modulo 4. We then have another pseudomagic
square, but with all digits 0, 1, 2, or 3.




11 22 33 00
23 10 01 32
30 03 12 21
02 31 20 13




Now treat these as numbers in base 4 and find their base 10 equivalents. For
example, 334 = 3 · 4 + 3 = 1510.




5 10 15 0
11 4 1 14
12 3 6 9
2 13 8 7




This is nearly a magic square, but the numbers run from 0 to 15 consecutively.
Just add one to each entry and we have a 4 × 4 magic square (Fig. 8.9).

Let’s go a bit further. Consider an additional 4 × 4 Latin square (Fig. 8.10).
Notice that the three squares, A, B, and C are pairwise orthogonal Latin squares.
Could there be more pairwise orthogonal Latin squares of order 4? Our next
proposition says no.
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Figure 8.10 A, B, and C are pairwise orthogonal Latin squares.

Proposition 8.1: There exist at most n − 1 pairwise orthogonal Latin squares
of order n.

Proof of Proposition 8.1: For any set of pairwise orthogonal Latin squares,
we may assume without loss of generality that in each square the first row is the
numbers 1, 2, . . . , n in consecutive order. The first rows then account for the
ordered pairs (1, 1), (2, 2), . . . , (n, n) in each pair of orthogonal Latin squares.
Now the entry in the (2, 1) position of each Latin square must be different from
one another and none can be a 1 (since we already have a 1 in the first column).
There are n − 1 choices for the (2, 1) position, accounting for at most n − 1
pairwise orthogonal Latin squares. �

By definition, n − 1 pairwise Latin squares of order n form a complete set
of orthogonal Latin squares. Hence, the three squares A, B, and C comprise a
complete set of order 4 orthogonal Latin squares.

Proposition 8.1 provides a limit on how many Latin squares there could be
of a given order. But note that it does not guarantee that there really are any
particular number of such Latin squares. A significant amount of mathematics
has been developed to actually construct pairwise orthogonal Latin squares of
various orders. Our next theorem is a modest step in this direction.

Proposition 8.2: If p is prime, then there is a complete set of p − 1 pairwise
orthogonal Latin squares of order p.

Proof of Proposition 8.2: We will explicitly construct a family A1 , A2 , . . . , Ap−1
of pairwise orthogonal Latin squares of order p as follows: If Ar (i , j ) denotes the
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entry in the ij th position of square Ar for some r(1 ≤ r ≤ p − 1 ), then let

Ar (i , j ) = r(i − 1 ) + j (mod p). (8.1)

Here we use the complete set of residues 1, 2, . . . , p modulo p.
For any r, to see that Ar is a Latin square, suppose that two entries in the same

row are identical. Then Ar (i , j1 ) = Ar (i , j2 ) for appropriate row i and columns
j1 and j2 where 1 ≤ j1 ≤ j2 ≤ p. Hence by Formula 8.1,

r(i − 1 ) + j1 ≡ r(i − 1 ) + j2 (mod p)

from which it follows that j1 ≡ j2 (mod p). But since 1 ≤ j1 ≤ j2 ≤ p, it must
be that j1 = j2 . Hence no two entries in the same row can be identical. Next
suppose that two entries in the same column are identical. In particular, assume
that Ar (i1 , j ) = Ar (i2 , j ) for appropriate column j and rows i1 and i2 where
1 ≤ i1 ≤ i2 ≤ p. By Formula 8.1,

r(i1 − 1 ) + j ≡ r(i2 − 1 ) + j (mod p).

This implies that ri1 ≡ ri2 (mod p). But since 1 ≤ r ≤ p − 1 , the numbers r
and p are relatively prime. Hence we can divide the last congruence by r without
disturbing the modulus. Thus i1 ≡ i2 (mod p). But again 1 ≤ i1 ≤ i2 ≤ p and
so i1 = i2 . It follows that each of the squares are Latin squares.

Now we must show that they are pairwise orthogonal Latin squares. Suppose
on the contrary that for some r �= s, Ar and As do not form an orthogonal pair.
Then there is an ordered pair of numbers (x, y) that appears twice among the
pairings of entries in Ar and As . Let

x = Ar (i1 , j1 ) = Ar (i2 , j2 ), and
y = As(i1 , j1 ) = As(i2 , j2 )

where i1 �= i2 and j1 �= j2 (since Ar and As are Latin squares). The numbers x
and y can be explicitly computed using Formula 8.1, so

r(i1 − 1 ) + j1 ≡ r(i2 − 1 ) + j2 (mod p), and
s(i1 − 1 ) + j1 ≡ s(i2 − 1 ) + j2 (mod p).

Simplifying, we get

r(i1 − i2 ) ≡ (j1 − j2 )(mod p), and
s(i1 − i2 ) ≡ (j1 − j2 )(mod p).

Hence
r(i1 − i2 ) ≡ s(i1 − i2 )(mod p).

But since i1 �= i2 , p � (i1 − i2 ) and hence r ≡ s (mod p). But this implies that
r = s since 1 ≤ r, s ≤ p −1 . This contradicts our assumption that Ar and As are
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distinct. Therefore, A1 , A2 , . . . , Ap−1 form a complete set of pairwise orthogonal
Latin squares of order p. �

Example: Mimicking the proof of Theorem 8.2, we can construct a pair of
orthogonal Latin squares of order three (which is necessarily a complete set.) In
this case, A1(i, j) = i+j −1 and A2(i, j) = 2i+j −1 for 1 ≤ i ≤ 3, 1 ≤ j ≤ 3.
The two Latin squares are

A1 =

1 2 3

2 3 1
3 1 2


 , A2 =


1 2 3

3 1 2
2 3 1


 .

Using a little finite field theory, Theorem 8.2 can be extended to show that
for n = pa where p is prime and a ≥ 1 that there is a complete set of pairwise
orthogonal Latin squares of order n. But for several other values of n, large sets
of pairwise orthogonal Latin squares are harder to come by.

Euler discovered algorithms to generate pairs of orthogonal Latin squares of
order n for many values of n except for those n ≡ 2 (mod 4). He was convinced
that there were no pairs of orthogonal Latin squares of order 6 (confirmed by
Gaston Tarry in 1901 through an exhausting and exhaustive search) and used this
result as a basis for his Thirty-six Officers Problem. The problem states that there
are 36 military officers of six different ranks and from six different regiments.
Each combination of rank and regiment is represented among the 36 officers.
Line up the officers in six rows of six so that each rank and file has an officer
of each rank and every regiment. Of course, by Euler’s previous result such an
arrangement is impossible.

In 1782, Euler conjectured that there are no orthogonal Latin squares of order
4k+2 for any k ≥ 1. Unfortunately, Euler was as wrong about this as Fermat had
been about Fermat primes. In 1959, E.T. Parker, R.C. Bose, and S.S. Shrikhande
constructed an order 10 pair of orthogonal Latin squares. They then showed how
to make similar constructions for all 4k+2 for any k ≥ 2. Since then, many order
10 orthogonal pairs have been constructed. However, no one has been able to
construct a complete set of order 10 orthogonal Latin squares. In fact, no one has
even constructed a set of three mutually orthogonal Latin squares of order 10.

We complete this chapter with an example of a pair of orthogonal Latin squares
of order 10. 



1 8 9 10 2 4 6 3 5 7
7 2 8 9 10 3 5 4 6 1
6 1 3 8 9 10 4 5 7 2
5 7 2 4 8 9 10 6 1 3
10 6 1 3 5 8 9 7 2 4
9 10 7 2 4 6 8 1 3 5
8 9 10 1 3 5 7 2 4 6
2 3 4 5 6 7 1 8 9 10
3 4 5 6 7 1 2 10 8 9
4 5 6 7 1 2 3 9 10 8



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


1 7 6 5 10 9 8 2 3 4
8 2 1 7 6 10 9 3 4 5
9 8 3 2 1 7 10 4 5 6
10 9 8 4 3 2 1 5 6 7
2 10 9 8 5 4 3 6 7 1
4 3 10 9 8 6 5 7 1 2
6 5 4 10 9 8 7 1 2 3
3 4 5 6 7 1 2 8 10 9
5 6 7 1 2 3 4 10 9 8
7 1 2 3 4 5 6 9 8 10




WORTH CONSIDERING

1. Use De la Loubère’s algorithm to generate a 7 × 7 magic square.

2. Investigate the existence of a knight’s tour on n×n chessboards for n = 3, 4,
and 5.

3. Show that there are no orthogonal Latin squares of order 2.

4. Find all pairs of orthogonal Latin squares of order 3.

5. (a) Find a pair of orthogonal Latin squares of order 5.

(b) Can you find a complete set of orthogonal Latin squares of order 5?

6. Explain how a 4×4 Latin square might be useful in planning the tire rotation
for your car.

7. Arrange the numbers 1 to 27 in a 3 × 3 × 3 magic cube so that each row,
column, and “pillar” adds up to 42.

8. Golf Problem (Steve Abbott): Arrange for a group of 16 golfers to golf for
five days, each day in four groups of four, so that each golfer plays exactly
once with every other golfer.

9. An r × n Latin rectangle has r rows and n columns with the numbers
1, 2, . . . , n in each row with no number repeated in any column. The number
of 2 × n Latin rectangles is known as the derangement number of order n,
denoted by Dn. Calculate Dn for n = 2, 3, 4, and 5.

10. (a) Let Ln = the total number of Latin squares of order n. Show that n!(n−
1)!|Ln by considering those Latin squares having first row and first
column in consecutive order 1, 2, . . . , n.

(b) Let ln = Ln/n!(n − 1)!. Find ln for 1 ≤ n ≤ 4. (For the record,
l5 = 56, l6 = 9, 408, and l7 = 16, 942, 080.)



9 Mathematical Variations
on Rolling Dice

In addition to their recreational value in games of chance, dice play a role (or is
it roll?) in several interesting mathematical problems. In this chapter, we present
a few nice problems involving dice. As usual, we start with easier problems
and develop the requisite mathematics as we go. Please do make the effort. The
results are quite intriguing!

An ordinary die consists of a cube (regular hexahedron) with the numbers
one through six inclusive inscribed on the sides. The ordering of the numbers is
fixed so that the sum of opposite sides is always seven. To view a die in two
dimensions, we can flatten out the surface of the die and represent the sides as
shown in Figure 9.1.

If we roll two dice and note their sum, there are 11 different outcomes. How-
ever, the probability of the outcomes vary depending on the number of ways that
a given sum can be created. For example, the most likely single outcome is a
sum of seven which can occur as 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2, or 6 + 1.
It’s this variation in the likelihood of different outcomes which adds interest and
complexity to games of chance involving dice. Below we tabulate the probability
of obtaining each of the possible sums for a pair of fair dice (Table 9.1).

Let P (r) denote the probability that the sum of the two dice is r . Two basic
facts about probability distributions are the following:

1. P(r) ≥ 0 for all r = 2, 3, . . . , 12.

2.
∑12

r=2 P(r) = 1.

Example #1: Can we weight two dice so that all possible outcomes (of sums)
are equally likely?

We have already handled the analogous problem with two coins (Problem #4,
Chapter 2), but this is a good warm-up and we will present a slightly different
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Figure 9.1 Ordinary die flattened.

TABLE 9.1 Likelihood of sums for a pair of dice

Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

solution than the one given previously. We first make a small algebraic obser-
vation:

For any real numbers x and y with xy �= 0 , x2 + y2 > xy .

To see this, note that (x −y)2 = x2 −2xy +y2 ≥ 0 , and hence x2 +y2 ≥ 2xy. But
if xy > 0 , then 2xy > xy and x2 + y2 > xy. If xy < 0 , then again x2 + y2 > xy
since the left-hand side is positive.

Solution to Problem #1: Let p1 , p2 , . . . , p6 denote the probabilities of rolling
a 1 , 2 , . . . , or 6 on the first die, respectively. Similarly, let P1 , P2 , . . . , P6 denote
the probabilities of rolling a 1 , 2 , . . . , or 6 on the second die. Suppose that all
sums are equally likely. Then the probability of any particular sum is 1

11 . In
particular, P(2 ) = p1 · P1 = 1

11 and thus p1 = 1
11P1

. Analogously, P(12 ) =
p6 · P6 = 1

11 and thus p6 = 1
11P6

. Now

P(7 ) = p1 P6 + p2 P5 + p3 P4 + p4 P3 + p5 P2 + p6 P1

≥ p1 P6 + p6 P1

= P6
11P1

+ P1
11P6

= 1
11 (

P6
P1

+ P1
P6

)

= 1
11 (

P2
1 +P2

6
P1 P6

).

But by letting x = P1 and y = P6 in our algebraic observation above, we deduce
that P(7 ) > 1

11 since the fraction in the parentheses above is greater than one.
Hence no equiprobable-sum weighting of the two dice is possible. �
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Figure 9.2 Efron’s dice.

Example #2: (Efron’s Dice) The next example is a fascinating set of four non-
standard dice created by the Stanford statistician Bradley Efron in 1970. These
four funny dice have a surprising nontransitive property that we will describe
fully. The four dice are colored green (G), orange (O), red (R), and yellow (Y)
(Fig. 9.2).

Many mathematical systems satisfy the transitive property. For example, if x ,
y, and z are three real numbers and x > y and y > z , then it must follow that
x > z . The transitive property is so nearly ubiquitous that we tend to take for
granted that it always applies. However, here is one setting where we would be
mistaken to assume transitivity.

With the four dice just described, two players play the following game: Each
chooses a different one of the four dice, rolls it, and the winner is the one with
the larger number. Ties cannot occur since no two dice share a common number.
Let’s see what happens with certain choices of dice. (We refer to the players by
the color of the die they choose.)

If green (G) plays against orange (O), then G wins as long as a 4 is rolled
and loses if a 0 is rolled. Hence the probability that G beats O is 4

6 or 2
3 . We

denote this by P(G > O) = 2
3 . Similarly, P(O > R) = 2

3 since a 3 will beat
any of the four 2’s, but loses to either of the 6’s. What happens when red plays
yellow? Red has 1

3 chance of rolling a 6, in which case red wins. If red rolls a
2 (which happens with probability 2

3 ), then red has a 3
6 = 1

2 chance of beating
yellow (depending on whether Y rolls a 1 or a 5). So P(R > Y) = 1

3 + 1
2 · 2

3 = 2
3 .

And now, how about yellow versus green? Yellow has a 1
2 chance of rolling a 5,

in which case yellow has a guaranteed win. If yellow rolls a 1 (which occurs with
probability 1

2 ), then yellow has two chances in six or probability 1
3 of winning.

Hence P(Y > G) = 1
2 + 1

2 · 1
3 = 2

3 . Summarizing our results,

P(G > O) = 2
3 , P(O > R) = 2

3 , P(R > Y) = 2
3 , and P(Y > G) = 2

3 .

The outcomes of these four dice is highly nontransitive. In practice, you could
politely let your opponent choose first. Once your opponent has chosen a die,
you always have the opportunity of choosing a remaining one which gives you a
significant chance of winning. With a frustrated opponent the situation could get
a bit gory, which is why I chose the colors GORY to help you remember which
die to choose.
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Example #3: Is there a way to renumber a pair of ordinary dice so that the
probability distribution for the sum is identical to that for a normal pair of dice?

By way of background we need to introduce a very important topic, namely
that of generating functions. Rather than thinking of the outcomes of a die’s roll
as being a 1, 2, 3, 4, 5, or 6 we now think of rolling an x1, x2, x3, x4, x5, or
x6 respectively. So the generating function for a single normal die is the function
f (x) = 1x1+1x2+1x3+1x4+1x5+1x6. In each term, the exponent represents a
possible outcome and the coefficient indicates the number of sides with that value.

If we roll two dice, then each die has its own generating function, f1(x) =
1x1+1x2+1x3+1x4+1x5+1x6 and f2(x) = 1x1+1x2+1x3+1x4+1x5+1x6.
The sum of two dice is represented by the product f1(x) · f2(x). By the law
of exponents, add exponents when multiplying monomials with the same base,
the coefficient of each term gives the number of ways that sum can occur. In
particular,

f1(x) · f2(x) = 1x2 + 2x3 + 3x4 + 4x5

+ 5x6 + 6x7 + 5x8 + 4x9 + 3x10 + 2x11 + 1x12.

To answer the question of whether a standard pair of dice can be renumbered
and still have the same probability distribution, it is necessary and sufficient to
find two other generating functions g1(x) and g2(x) such that:

1. g1(x) · g2(x) = f1(x) · f2(x),
2. g1(1) = 6 = g2(1), and
3. g1 and g2 have no constant terms.

Condition (1) ensures that the sum of a roll of the renumbered dice behave
the same way as do our standard dice. Condition (2) checks that the new dice
are still six-sided. The last condition says that on any given roll, some side must
come up. In other words, there is no chance that either die ends up balanced on
an edge or a corner. In addition, we don’t have any blank side, that is, a side
with value zero.

To proceed, factor f1(x) ·f2(x) as far as possible into a product of irreducible
polynomials. Each die factors identically as

x + x2 + x3 + x4 + x5 + x6 = x(1 + x + x2 + x3 + x4 + x5)

= x

(
x6 − 1

x − 1

)

= x(x3 + 1)(x3 − 1)

x − 1

= x(x3 + 1)(x2 + x + 1)

= x(x + 1)(x2 − x + 1)(x2 + x + 1).
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Figure 9.3 Odd dice that behave like normal dice.

Thus
f1(x) · f2(x) = x2(x + 1)2(x2 − x + 1)2(x2 + x + 1)2 (9.1)

By condition (1), together g1(x) and g2(x) must comprise all the factors in
the right-hand side of Equation 9.1. By condition (2) both g1(x) and g2(x) must
contain the factors x + 1 and x2 + x + 1 since there is no other way to make
g1(1) = 6 = g2(1). By condition (3) each generating function must contain a
factor of x. But now all that remains is to assign the remaining (x2 − x + 1)2.
However, if we assign one copy of this polynomial to each of g1 and g2, then
g1 = f1 and g2 = f2. Hence there is only one other possibility, namely assign
(x2 − x + 1)2 to one of the g’s , say g1. Therefore, g1(x) = x(x2 + x + 1)(x2 −
x + 1)2(x + 1) and g2(x) = x(x2 + x + 1)(x + 1). Expanding the products
we obtain

g1(x) = x8 + x6 + x5 + x4 + x3 + x and g2(x) = x4 + 2x3 + 2x2 + x.

The resulting dice are shown in Figure 9.3.
Furthermore, if we are willing to have dice which are not cube-shaped, then

there are other possibilities created by relaxing condition (2). For example, we
can define h1(x) = x(x + 1)2 and h2(x) = x(x2 − x + 1)2(x2 + x + 1)2. In this
case, expanding produces

h1(x) = x3 + 2x2 + x and h2(x) = x9 + 2x7 + 3x5 + 2x3 + x.

This produces a four-sided die with values (1, 2, 2, 3) and a nine-sided die
with values (1, 3, 3, 5, 5, 5, 7, 7, 9). A tetrahedron can be used to provide a
regular four-sided polyhedron, but there is no regular polyhedron with nine sides.
What can be done? Make a cylinder with each face a regular nine-sided polygon
(nonagon). More generally, if an n-sided die is needed, a cylinder with each face
a regular n-sided polygon works. Each roll, however, is the number which faces
down once the roll is complete. Which side is facing up may be ambiguous.
There is another way to assign two polynomials that will result in a four-sided
and a nine-sided die with the same product as h1(x) · h2(x), but we will leave it
for the exercises.

We complete this chapter with a cute problem involving a five-sided and a
six-sided die.
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Example #4: Roll two dice, a standard six-sided die numbered 1 through 6 and
a “regular” five-sided die numbered 1 through 5. What’s the probability that the
number on the six-sided die is larger than that on the five-sided die?

Solution: Roll the dice and let R be the number on the six-sided die and r be the
number on the five-sided die. The complementary number to R (on the flip side of
the six-sided die) is the number 7 − R. Note that the complementary numbers are
just 1 through 6 again, this time written in reverse order. Analogously, define the
complementary number to r to be 6 − r. Here again the complementary numbers
comprise 1 through 5 appearing in reverse order.

We must find the probability that R > r. It must be the case that either R−r > 0
or that R − r ≤ 0 . These cases are mutually exclusive (they can’t both happen)
and exhaustive (nothing else can happen). Since the numbered faces are all whole
numbers we can rewrite the two possibilities as either R − r > 0 or R − r < 1 .
The first possibility can be rewritten as R > r and the second (after adding 6 to
both sides and rearranging) as 7 − R > 6 − r. Hence either the number on the
six-sided die is larger than that on the five-sided die or the complementary number
on the six-sided die is larger than the complementary number on the five-sided die.
These two possibilities are exhaustive and, by symmetry, they are equally likely
as well. (We could have defined each roll by its complementary number in the first
place.) Hence each has probability one-half and so P(R > r) = 1

2 .

WORTH CONSIDERING

1. Determine how to weight two dice so that the probability of rolling a sum
of 2, 3, 4, 5, or 6 is 1

16 in all cases.

2. With Efron’s dice in Example #2, which one would you choose if the goal
is to have the highest total after five rolls of a single die?

3. In Example #2, what is the chance of winning if all competitions are best-
of-three?

4. Use generating functions to determine the number of ways three dice can
sum to ten.

5. Find another way besides (1, 2, 2, 3) and (1, 3, 3, 5, 5, 5, 7, 7, 9) to
assign positive integers to a four-sided and a nine-sided die that has the
same probability distribution as a pair of standard dice.

6. How would our analysis of Example #3 be modified if we did allow for sides
with value zero?

7. (R.M. Shortt, S.G. Landry, L.C. Robertson, 1988) Consider the two ten-sided
weighted dice given by the generating functions

f1(x) = x + 1+√
5

2 x3 + x5 + x6 + 1+√
5

2 x8 + x10 and f2(x) = x + 2x2 +
5−√

5
2 x3 + (3−√

5)x4 + (4−√
5)x5 + (4−√

5)x6 + (3−√
5)x7 + 5−√

5
2 x8 +

2x9 + x10. Compute f1(x) · f2(x) and interpret the result.
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8. Roll a five-sided die and a six-sided die. What’s the probability that the
six-sided die has a smaller roll? What about the two dice having the same
roll?

9. (a) Roll a six-sided die and a seven-sided die. What’s the probability that
the seven-sided die has the larger roll?

(b) Roll a four-sided die and a six-sided die. What’s the probability that the
six-sided die has the larger roll?

10. Design three six-sided dice having nontransitive pairwise outcomes.



10 Pizza Slicing, Map Coloring,
Pointillism, and Jack-in-the-Box

In his book, The Teaching of Geometry (1911), D.E. Smith said, “Geometry is
a mountain. Vigor is needed for its ascent. The views all along the paths are
magnificent. The effort of climbing is stimulating. A guide who points out the
beauties, the grandeur, and the special places of interest commands the admiration
of his group of pilgrims.” Even though this quote might be a bit over the top,
I invite you to be your own guide as we discuss four different problems, each
with a different geometric view.

Problem #1 (Pizza Slicing Problem): How many regions can the plane be
separated into with n straight lines?

We can think of the plane as a gigantic pizza and the straight lines as the cuts
made across the pie. To get a feel for this problem, make some sketches with
small values of n and see if a pattern emerges. This problem appears so natu-
rally; if you’re like me you’ve probably doodled with this problem on place mats
and scraps of paper since childhood. Its mathematical formulation was stated and
solved by the great synthetic geometer, Jakob Steiner (1796–1863), in an article
in Crelle’s Journal (1826). Steiner was Swiss, but was educated in Heidelberg and
spent most of his career as a professor at the University of Berlin. It may be of
interest to note that the man who created so many beautiful geometric theorems
didn’t learn to read or write until he was 14 years old. To mention just one of
his accomplishments: The Danish mathematician Georg Mohr (1640–1697) had
shown that all Euclidean constructions (those involving straightedge and compass)
could actually be accomplished with compass alone, as long as we consider a line
to exist once two of its points are so constructed. In the other direction, Steiner
showed that all Euclidean constructions can be accomplished with one fixed circle
plus a straightedge, that is, with a straightedge and a compass that’s stuck!

Problem #2 (Map Coloring Problem): Slice up the plane with any number
of straight lines. How many colors are required so that adjoining regions have
different colors?

Mathematical Journeys, by Peter D. Schumer
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Problem #2 begins where Problem #1 left off. Once we have sliced up the
plane, we now want to color the “map” that we’ve created.

For comparison’s sake, a much more difficult and appropriately celebrated
problem is the question of how many colors are needed to color any map in
the plane so that adjoining regions have different colors. Boundaries need no
longer be just straight lines. This significant problem confounded amateur and
professional mathematicians alike from the mid-1800’s until 1976, when Kenneth
Appel and Wolfgang Haken of the University of Illinois, assisted by an enormous
amount of computer time (about 1,200 hours), established that four colors suffice.
The fact that five colors suffice was established by P.J. Heawood in 1890 and he
didn’t need any computational assistance, but the step from five colors to four
colors is a large one indeed.

Problem #3 (Pointillism Problem): If every point of the plane is colored either
red, green, or blue, are there necessarily at least two points of the same color one
unit apart?

This problem reminds me of the paintings of Georges Seurat and hence the
allusion to pointillism. Notice that we have not defined what our units are. Inter-
estingly, it makes no difference. To get a feel for this type of problem, consider
the situation where every point of the plane is colored either red or green. Would
there be two points of the same color one unit apart? The answer is “yes” as can
be easily seen by considering any equilateral triangle in the plane with sides of
unit length. If one vertex is red and another green, what color could the third
vertex be? If it is red, then there are two points one unit apart both of which
are red. If it is green, then there are two green points one unit apart. Either way,
there are two points of the same color a unit apart.

Problem #4 (Jack-in-the-Box Problem): Consider Figure 10.1, where four unit
circles in the plane bound a smaller circle placed within them so that the inner
circle is tangent to the four unit circles. The inner circle lies well within the
black square containing the four unit circles. In three-dimensions, eight unit balls
surround a ball that remains within the cube containing the eight unit balls. What
happens in higher dimensions? Does the “inner ball” remain within the outer
hypercube or does it somehow pop out like a wind-up jack-in-the-box?

Solution to Problem #1: Instead of working in the entire plane, we limit our view
to a large circle. Let Ln = the maximum number of regions created by drawing
n straight lines. Certainly the lines must be in general position, that is, no three
lines intersect at a point and no two lines are parallel to each other. Figure 10.2
shows the situation with five straight lines. In this case, the circle is separated
into 16 distinct regions. In Table 10.1 we chart the growth of Ln for n from 0 to 5.
Analyzing Table 10.1, we see for 1 ≤ n ≤ 5 that Ln = Ln−1 + n. If we can show
that this pattern continues indefinitely, then it would follow that for all n ≥ 1 :

Ln = 1 + 1 + 2 + . . . + n = 1 + n(n+1 )
2 = n2 +n+2

2 .
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Figure 10.1 Circle bounded by four unit circles.
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Figure 10.2 Five lines separate the plane into sixteen regions.

We now show that Ln = Ln−1 + n for all n ≥ 1 by induction on n.
For n = 1 , L1 = 2 = L0 + 1 . Now assume the result holds up to n − 1

lines. Since a line is determined by two points, in order to place the n th line so
as to maximize the number of new regions, it suffices to choose two points on
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TABLE 10.1 Number of regions created
by n straight lines

n 0 1 2 3 4 5

Ln 1 2 4 7 11 16

2

1

1

2

Figure 10.3 Placement of n th line.

the circumference of the circle that lie directly between the same two lines (as in
Fig. 10.3), thus avoiding parallelism. Furthermore, we must make sure that the
new line does not go through any previous points of intersection. This can be
easily done since avoiding such points only reduces our infinitely many choices
on the circumference by a finite number.

By construction, the new line must intersect each and every one of the previous
lines exactly once (since they are straight lines). But the new line divides previous
regions into two parts for each consecutive pair of lines that it meets. Counting the
circumference of the circle among these lines, the new line creates n new regions.
Hence Ln = Ln−1 + n as desired. �

Solution to Problem #2: The answer is two colors. To get a feel for this problem,
look at Figure 10.4, where we have sliced up a large circle with four slices (line
segments) and then colored the resulting regions with just two shades (dark and
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Figure 10.4 Four slices can be two-colored.

light). I invite you to check the cases with one, two, or three lines to check that
two colors suffice in those cases.

Assume that for any map with n lines that two colors are all that is needed.
Now consider Figure 10.5 with n + 1 lines. If the dotted line l is removed, there
remains n lines. By our inductive assumption, the remaining figure can be two-
colored as shown. If we now add in the dotted line, it separates the diagram into
two parts—call them top and bottom. Keep the top colored as before, but switch
all the colors in the bottom region (Fig. 10.6). We have now two-colored the new
map. To see why this must work, we consider three possible cases in turn:

1. Regions that border line l used to be one color on each side, but now are
separated into two colors at the boundary of l.

2. Top regions not bordering line l have the same color as before, but these
regions only border other top regions and our previous map was properly
two-colored.

3. Similarly, bottom regions not bordering line l have all colors flipped. But
these regions only border other bottom regions and the previous two-color-
ing is preserved by switching all such regions. �

Solution to Problem #3: Assume that the answer is “no,” namely that there is
some way to color the plane with no two points of the same color exactly one unit
apart. Hence, any unit equilateral triangle will have vertices of all three colors.
Consider such a triangle, �RGB as in Figure 10.7. If we use line segment GB
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Figure 10.5 Original coloring with n lines.

Figure 10.6 New coloring with bottom color switched.
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Figure 10.7 Two triangles with vertices red, green, and blue.

as one side of a new equilateral triangle, we can form another unit equilateral
triangle, �R∗GB with vertices colored red, green, and blue.

Now “bolt down” vertex R and spin the diamond-shaped region RGBR∗ coun-
terclockwise as a rigid motion with R as the pivot point. Continue until R∗ moves
to a point R1 that is one unit away. Call the points where vertices G and B end up
G1 and B1 , respectively. The situation is diagrammed in Figure 10.8. The point
B1 must be either blue or green since B1 is one unit away from the red point R.
Analogously, the point G1 must be either green or blue (whichever color B1 is
not). In either event, R1 must be red since it is one unit from both B1 and G1 . But
then both R∗ and R1 are red and one unit apart. �

At this point, the following question is a natural one. Is there a coloring of the
plane with any finite number of colors such that no two points a unit apart have
the same color? If so, by Problem #3, the answer must be greater than three. The
answer is “yes” and it can be shown that seven colors suffice, as in Figure 10.9.
The key idea is to tile the plane with regular hexagons of side length 2

5 and then
color them with seven colors as shown. It can then be shown that no two points
of distance d with 4

5 < d <
√

28
5 have the same color. Since 4

5 < 1 <
√

28
5 , this

seven-coloring of the plane does the trick.
The next question, known as the chromatic number problem for the plane,

is still unresolved. What is the minimum number of colors needed to paint the
plane so that no two points at unit distance have the same color? The answer
conceivably could be four, five, six, or seven. It’s time to get out your palette
and start painting!
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Figure 10.8 Rhombus RGR*B pivoted to RG, R, B.

5

2

4 7 6 2 1

1 5 3

3 4 7 6

2/5

Figure 10.9 Tessellation of the plane with black-bordered 18-sided polygon of side
lengths 2

5 .

Solution to Problem #4: Let R
n represent n-dimensional Euclidean space and

let rn denote the radius of the inner n-dimensional ball contained within the outer
unit balls. Figure 10.1 shows the situation in the plane when n = 2 . Here the four
unit outer circles have centers at the points (1, 1), (1, −1 ), (−1 , 1). and (−1 , −1 ).
They are contained within the square bounded by the lines x = 2 , x = −2 , y = 2 ,
and y = −2 of side length four. Since the center of the outer balls lie at a distance
of

√
2 from the origin and each has radius one, being tangent to the four outer
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Figure 10.10 Ball bounded by eight unit balls.

circles, the inner circle has radius r2 = √
2 − 1 and is certainly bounded within

the outer square.
In R

3 the eight outer balls are centered at (±1 , ±1 , ±1 ). You can make a
model of the situation with eight tennis or lacrosse balls with a golf ball squeezed
in the middle (Fig. 10.10). In this case, the outer cube is bounded by the planes
x = ±2 , y = ±2 , and z = ±2 . The outer balls have radius one, and hence the
inner ball has radius r3 = √

3 − 1 , keeping it well within the containing cube.
By analogy, the general situation is easily described. In R

n there are 2 n unit
outer balls centered at (±1 , ±1 , . . . , ±1 ). They are contained within a hypercube
bounded by the 2 n hyperplanes x1 = ±2 , x2 = ±2 , . . . , and xn = ±2 . The inner
sphere has radius rn = √

n − 1 . Notice for n = 9 that r9 = √
9 − 1 = 2 , and

so the “inner” ball just touches the hypercube on all its faces. When n ≥ 10 ,
the inner ball actually pokes out of the hypercube. Pop goes the weasel! So in
dimension ten, although the round inner ball is surrounded by over a thousand unit
balls, it somehow manages to squeeze out beyond them. If this seems pretty weird,
it may be because all the experiences in our local world involve substantially
fewer dimensions. Even so, the result is both perplexing and wonderful. Don’t
you agree? �

WORTH CONSIDERING

1. Consider n pizza slices in general position as in Problem #1. How many
of the regions border the circumference of the circle? In other words, how
many such pizza slices have a crust?
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Figure 10.11 Equilateral triangle with six internal slices.

2. If every point on a straight line is colored either red or blue, must there be
two points one unit apart having the same color?

3. (a) If all points in three-space are colored either blue, green, or red, must
there be two points one unit apart that are the same color?

(b) What about four colors in three-space?

4. (Problem from Quantum, January, 1990) Consider a pizza in the shape of an
equilateral triangle. Pick any point inside it and make six slices by cutting
from the chosen point to each of the three vertices and from the chosen point
perpendicularly to each side (Fig. 10.11). Show that if two people consume
the pizza by eating alternating slices, each gets exactly half the pie.

5. (Green Chicken Contest, 1986) Suppose six points are given, no three
collinear. If all 15 line segments are drawn joining pairs of points, how
many segments can be colored black without forming any black triangles?

6. You have a job promising a bar of gold for seven days’ work. However, you
may elect to stop working at the end of any one of the seven days. Can the
bar be sliced at the beginning of the week with just two cuts to guarantee
that you can be paid the appropriate amount owed you?



11 Episodes in the Calculation
of Pi

Since prehistoric times, human beings have known well the shape we call a circle,
based on the extreme importance of the sun and moon in everyday life. Many
ancient cultures attempted to measure the circumference of a given circle and
some standard values were long accepted. In this chapter we will get an overview
of some of the efforts mathematicians from different epochs and various cultures
have made at the somewhat elusive mensuration of the circle. If we consider a
circle with unit diameter, we now denote its circumference by the Greek letter π

(pi). By 2000 B.C.E. several cultures we collectively call the Babylonians (living
in what is present day Iraq and Syria), used 3 1/8 as the value of π . In the Old
Testament I Kings vii. 23, it is stated, “Also he made a molten sea of ten cubits
from brim to brim, round in compass, and five cubits the height thereof; and
a line of thirty cubits did compass it round about.” The above passage refers
to a vessel to be constructed by the bronze worker, Hiram of Tyre, who was
hired by King Solomon. Here π is given as 30

10 = 3. Furthermore, there is little
indication in either the Babylonian writings or in the Bible that the values of π

are understood to be just approximations.
The realization that the area of a circle of unit radius is also π seems to be

nearly as ancient. The Egyptians had a highly developed knowledge of geometry,
which no doubt proved useful in their monumental pyramid constructions. Again
there seems to be little or no distinction made between approximations and exact
values. In the Rhind papyrus dated circa 1850 B.C.E., the scribe Ahmes stated
that the area of a circle of diameter d is the same as the area of a square with
sides of length 8

9d . Since the area of the square is 64
81d2 and the area of the circle

is π(d
2 )2, it follows that the value for π was taken to be 256

81 . For practical usage,
this is not a bad approximation. Furthermore, it led to one of the famous Greek
problems of antiquity.

The three famous problems of antiquity were the following: 1) squaring the
circle, 2) duplicating the cube, and 3) trisecting an angle. In all three the challenge
is to construct a specified geometric object using only Euclidean tools, namely an
unmarked straightedge and a collapsible compass. Squaring the circle involves
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the construction of a square of area equal to a given circle. Duplicating the cube
requires the construction of a cube of volume precisely twice that of a given
cube. The last problem demands a method to exactly trisect any given angle.
These were three significant challenges that tested the resources and ingenuity
of countless mathematicians from many lands over the course of the centuries.
In fact, definitive solutions were not given until the 19th century! Furthermore,
all answers turned out to be negative ones. That is, none of the three problems
can be solved in general using just Euclidean tools. Nonetheless, many clever
solutions have been found by other means with additional resources. But let’s
not get too far ahead of ourselves.

The ancient Greeks formalized much of geometry and further developed math-
ematics as a deductive science based on definitions, axioms, rules of logic,
theorems, and explicit and verifiable proofs. The greatest of all the Greek geome-
ters was Archimedes of Syracuse (287–212 B.C.E.). Archimedes made significant
advances to all areas of mathematics and most areas of pure and applied science
known in his time. In fact, the fields of hydrostatics and mechanics were essen-
tially created by him. Most pertinent here is Archimedes’s work, “Measurement
of the Circle.” In it the following proposition is rigorously proved: “The area of
any circle is equal to that of a right triangle in which one of the sides equals the
radius and the other side equals the circumference of the circle.” What a beautiful
theorem! Archimedes then proceeds to find a good approximation for the value
of π . His method is intricate. Given a unit circle, he begins by inscribing and
circumscribing it with regular hexagons and then calculates their perimeters. The
inscribed hexagon has perimeter 6 and the circumscribed hexagon has perime-
ter 4

√
3. It follows that 3 < π < 2

√
3. Rather than work with square roots,

Archimedes approximates them with fractions. In this case, Archimedes used the
“fact” that 265

153 <
√

3 < 1,351
780 . How he came up with this particular estimate

has baffled mathematics historians ever since. (But it should be noted that both
fractions appear as convergents in the infinite continued fraction for

√
3; and

the notion of finite continued fractions is implicit in the Euclidean algorithm
for finding greatest common divisors.) Next, Archimedes doubled the number
of sides and got closer bounds for π by utilizing inscribed and circumscribed
dodecagons (12-sided polygons). But Archimedes did not stop there. He contin-
ued his calculations with 24-sided polygons, then with 48-sided polygons, and
finally with 96-sided polygons. For some reason, he felt satisfied stopping there.
His final estimates squeezed π between the fractions 6,336

2,017 1
4

and 14,688
4,673 1

2
. Since

the first fraction is larger than 3 10
71 and the second fraction is smaller than 3 1

7 ,
Archimedes summarized his result as

3 10
71 < π < 3 1

7 .

What a spectacular result! Even today the Archimedean value 3 1
7 = 22

7 is no
doubt the most popular fractional approximation to π . Archimedes’s value also
gives us the decimal estimation of π ≈ 3.14, accurate to two decimal places. In
fact, in my experience a fair number of elementary school teachers seem to think
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that either 22
7 or 3.14 is the actual value of π —or even worse, that both are

exact values. Perhaps we aren’t so different from the ancient Babylonians and
Egyptians who failed to distinguish between exact and approximate formulas.

Archimedes

The idea of using multisided regular polygons to either inscribe or circum-
scribe a given circle was used by many subsequent mathematicians to make
improvements on Archimedes’s estimate. The Chinese scholar Liu Hui (ca. 260
C.E.) used a circle of radius 10 and inscribed polygons starting with a hexagon
and working up to a 192-sided polygon. His work leads to π ≈ 3.1416, accurate
to four decimal places. A couple centuries later, the Chinese mathematician Tsu-
ching Chih (ca. 480 C.E.) proceeded from where Liu Hui had left off, doubling
the number of sides six more times. With a 12,288-sided polygon, he was able
to establish that π lay between 3.1415926 and 3.1415927. He stated a slightly
weaker, but visually striking result: π ≈ 355

113 . This can be remembered by simply
writing 113,355 and separating the number in the middle. For nearly 800 years
this was the most accurate value known for π .

The polygon used by Tsu-Chih had 3 · 212 sides. In 1430, the Arab scholar
Al-Kashi continued with calculations working up to a polygon with 3 · 228 sides
and derived 16 accurate decimal places for π . The most impressive feat in this
direction was undertaken by Ludolph van Cuelen, professor at the University of
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Leyden. In 1596, he used a 60 · 233-sided polygon to surpass Al Kashi’s record.
But his obsession was not satisfied. After several years’ progress, he announced
a value of π accurate to 35 decimal digits based on a 262-sided polygon! When
he died in 1610, his widow had the digits engraved on his tombstone.

The technique of using polygons with an ever-increasing number of sides is
tiresome, arduous, and has its limitations. No matter how far we carry out this line
of attack, we can only get an approximation to the value of π . Mathematicians
began to wonder whether there was an exact formula for π as some infinite sum
or product. Indeed there are many such results.

François Viète

The first such formula was due to the great French mathematician François
Viète (1540–1603). Though by profession a lawyer and later member of parlia-
ment, Viète devoted his spare time to mathematics and had astonishing algebraic
and analytical skills. He wrote on arithmetic, algebra, geometry, and trigonome-
try. He successfully met a challenge from the Dutch ambassador to France that
required the solution of a 45th-degree polynomial. In addition, he deciphered
a 400-character Spanish code which gave the French the decisive advantage in
its war with Spain (1589–1590). King Phillip II of Spain allegedly complained
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to Pope Gregory XIV that the French were employing magic “contrary to the
practice of the Christian faith.” Viète was a tireless worker and for fun calcu-
lated π to ten decimal place accuracy by using polygons with 6 · 216 = 393,216
sides. However, his main contribution in this direction was the first exact formula
involving π , which we now present.

Theorem 11.1 (Viète, 1593): 2
π

=
√

1
2

√
1
2 + 1

2

√
1
2

√
1
2 + 1

2

√
1
2 + 1

2

√
1
2 · · ·

Our proof of Theorem 11.1 utilizes a couple of more modern notions, but
essentially all the basic ideas are those of Viète. One formula that we need is
the double-angle formula from trigonometry, an area that Viète helped develop.
The double-angle formula for sines states that

For any angle θ, sin 2θ = 2 sin θ cos θ. (11.1)

Another formula that we’ll require is the half-angle formula for cosines. In
particular,

For any angle θ, cos

(
θ

2

)
= 1

2

√
1 + cos θ. (11.2)

The final element that we will need is L’Hôpital’s rule from calculus. It states
that if f and g are differentiable functions in some neighborhood of a point c

(including infinity) and if limx→c f (x) = limx→c g(x) = 0, then limx→c
f (x)
g(x)

=
limx→c

f ′(x)
g′(x)

where f ′ and g′ are the derivatives of f and g, respectively. Here
I have skipped a couple of technical conditions so as not to get completely
side-tracked.

Proof of Theorem 11.1: Let 0 ≤ x ≤ π
2 . Letting x = 2 θ in Equation 11.1

we get

sin x = 2 sin
( x

2

)
cos

( x

2

)
.

But we can apply Equation 11.1 to sin( x
2 ) obtaining sin( x

2 ) = 2 sin( x
4 ) cos( x

4 ).
Repeated application of Equation 11.1 leads to

sin x = 2 n sin
( x

2 n

)
cos

( x

2

)
cos

( x

4

)
· · · cos

( x

2 n

)
for all n ≥ 1 (11.3)

Next we evaluate limn→∞ 2 n sin( x
2 n ). To evaluate this limit, let r = 2 n and note

that as n approaches infinity, so does r. Hence

lim
n→∞ 2 n sin

( x

2 n

)
= lim

r→∞ r sin
(x

r

)
.

Now let t = 1
r . Then as r approaches infinity, t approaches zero (from the

right). Thus

lim
r→∞ r sin

(x

r

)
= lim

t→0 +
sin(xt)

t
.
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This last limit is of the indefinite form 0
0 . So we can apply L’Hôpital’s rule to it.

Hence

lim
n→∞ 2 n sin

( x

2 n

)
= lim

t→0 +
sin(xt)

t
= lim

t→0 +
x cos(xt)

1

= x (since the derivative of sine is cosine).

Next we repeatedly apply Equation 11.2:

cos
( x

2

)
=

√
1

2
(1 + cos x)

cos
( x

4

)
=

√
1

2

(
1 + cos

x

2

)

=
√√√√1

2

(
1 +

√
1

2
(1 + cos x)

)

cos
( x

8

)
=

√
1

2

(
1 + cos

x

4

)

=

√√√√√1

2


1 +

√√√√1

2

(
1 +

√
1

2
(1 + cos x)

)
, etc.

Now let x = π
2 in Equation 11.3. Then

1 = sin
π

2
= π

2
·
√

1

2

√
1

2
+ 1

2

√
1

2
· · ·

Multiplying both sides by 2
π

,

2

π
=

√
1

2

√
1

2
+ 1

2

√
1

2

√√√√1

2
+ 1

2

√
1

2
+ 1

2

√
1

2
· · · �

Although Viète’s result is not especially helpful in computing a good decimal
value of π , it did usher in a new era for the discovery of beautiful formulas
involving π . In England, John Wallis (1616–1703), a charter member of the
Royal Society and holder of the prestigious Savilian chair of geometry at Oxford
University, developed several trigonometric formulas that would later become
a standard part of the corpus of integral calculus. In particular, in his Arith-
metica Infinitorum (1655), reduction formulas for the integrals of arbitrarily high
integer powers of sine are derived. From these, Wallis derived the following
incredible result:

2

π
= 1

2
·
(

3

2
· 3

4

)
·
(

5

4
· 5

6

)
·
(

7

6
· 7

8

)(
9

8
· 9

10

)
· . . . . (11.4)
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The first president of the Royal Society, William Brouncker (1620–1684), manip-
ulated Wallis’s result to obtain a rather startling infinite continued fraction involv-
ing π . The regularity and clear sense of pattern in formulas 11.4 and 11.5 fueled
the debate of whether π was an algebraic quantity (a root of some polynomial)
or not (a transcendental number). Here is Brouncker’s formula:

4

x
= 1 + 12

2 + 32

2+ 52

2+ 72
2+···

(11.5)

Another noteworthy contribution is due to Gottfried Wilhelm Leibniz
(1646–1716), a universal genius and co-founder (along with Newton) of the
calculus. Leibniz’s result is more of an observation based on other known work.
From the geometric series

1

1 − s
= 1 + s + s2 + s3 + · · ·

valid for |s| < 1, substitute −s2 for s, obtaining

1

1 + s2
= 1 − s2 + s4 − s6 + · · · .

Next integrate termwise,

x

∫
0

1

1 + s2
ds = x − x3

3
+ x5

5
− x7

7
+ · · · .

Since the derivative of the arctangent function was known to be 1
1+x2 , it fol-

lows that

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · .

This is known as Gregory’s series, which appears in the work Geometriae
pars universalis (1668) authored by the Scotsman James Gregory (1638–1675).
Knowing that tan π

4 = 1, all Leibniz had to do was let x = 1 and argue why the
resulting alternating series converges. Hence the Leibniz series becomes

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · · (11.6)

Again the wonderful series above is of little practical use, given the slow con-
vergence of the series, but as a work of art it’s a masterpiece!

The beginning of the next era for π computations can be dated to 1706, the
year that John Machin (1680–1751) published his ground-breaking research on
calculating π . (By the way, Machin is pronounced ma-chan.) Probably aware of
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Leibniz’s work, Machin studied the arctangent function more carefully. Here’s
what he did:

Let α = arctan

(
1

5

)
= 1

5
− 1

3 · 53 + 1

5 · 55 − 1

7 · 57 + · · · .

By the angle addition formula for tangent,

tan 2α = 2 tan α

1 − tan2 α
= 2/5

1 − 1/25
= 5

12
.

Similarly,

tan 4α = 2 tan 2α

1 − tan2 2α
= 5/6

1 − 25/144
= 120

119
.

So 4α is approximately π
4 since tan π

4 = 1. But Machin didn’t stop here. Let
β = 4α − π

4 , the slight angle difference between 4α and π
4 . Applying the angle

addition formula for tangent again,

tan β =
tan 4α − tan

π

4

1 + tan 4α · tan
π

4

=
120

119
− 1

1 + 120

119
· 1

= 1

239
,

so β = arctan
1

239
= 1

239
− 1

3 · 2393
+ 1

5 · 2395
− · · · .

Since π
4 = 4α − β, Machin’s series becomes

π

4
= 4

[
1

5
− 1

3 · 53
+ 1

5 · 55
− 1

7 · 57 + · · ·
]

−
[

1

239
− 1

3 · 2393
+ 1

5 · 2395
− · · ·

]
(11.7)

Machin’s formula is not only attractive, it is also highly practical for computing
π . The arithmetic required to divide by ascending powers of 5 is easily handled
due to the simple terminating decimal expansions of such fractions. The decimal
expansions of the terms beginning with 1

239 are much more cumbersome, but the
rapid growth of their denominators means that fewer of their terms must be taken
into account in any particular computation. Machin now had a practical formula
that could compete with and defeat all previous methods dependent on multisided
polygons. In fact, after significant effort, Machin calculated π to 100 decimal
places. At this point, he probably thought that would be the end of the story. Why
would anyone endeavor to go further? Well, human nature being what it is . . . .

Other mathematicians soon derived other arctangent formulas, several of which
had practical application to the computation of π . One fine example is due to
the prolific Leonhard Euler, who played a prominent role in so many areas of
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mathematics (as evidenced throughout this book). Euler developed a family of
series for the arctangent function, namely

arctan x = y

x

[
1 + 2

3
y + 2 · 4

3 · 5
y2 + 2 · 4 · 6

3 · 5 · 7
y3 + · · ·

]

where the dependent variable y = x2

1+x2 .

If x = 1
7 , then y = 1

50 = 0.02, and calculations are readily done. Better yet,
let x = 3

79 so that y = 144
10,000 = 0.0144. With this value, Euler calculated 20

decimal places of π in less than half an hour—no doubt just a little diversion
before getting down to some real work!

During the 18th and 19th centuries, a host of new arctangent formulas were
developed with hopes of extending the decimal expansion of π . One noteworthy
success was made in 1844 by the phenomenal lightning calculator, Zachariah
Dase (1820–1861), who computed π to 200 decimal places. Dase was a human
calculator and had been hired by the Hamburg Academy of Sciences to extend
current logarithm tables. In addition, Gauss himself had suggested that Dase
might be useful in extending the table of known primes, a task he accepted
and successfully completed for primes up to 9,000,000. For the π calculation,
Dase used a new arctangent formula due to the Austrian Lutz von Strassnitzky
(1803–1852), who derived this nice formula:

π

4
= arctan

1

2
+ arctan

1

5
+ arctan

1

8

By this time, much more was known about the arithmetic nature of the number
π . In 1761, Johann Lambert (1728–1777) proved that both π and π2 were
irrational. Lambert was a man of enormous talents who made contributions to
astronomy, cartography, the nature of heat, philosophy, acoustics, and several
areas of mathematics in over 150 published scholarly papers. He even named
the hyperbolic sine and cosine functions. His contribution to π showed that
no rational fraction would ever equal π exactly. But the ancient question of
whether or not a circle could be squared with Euclidean tools still remained
open. That question was disposed of negatively in 1882 by the German Ferdinand
Lindemann (1852–1939) when he demonstrated that π is transcendental. Hence
no polynomial with rational coefficients has π as a root. A more modern open
question asks whether π is normal. In other words, do all sequences of decimal
digits appear in the expansion of π to the degree statistically expected? If so, then
π is a normal number. For example, does the digit 7 ultimately appear one-tenth
of the time in the decimal expansion of π? Interestingly, this reasonable question
is still an open one.

Modern digit hunters of π use very sophisticated mathematics that generally
was not available to earlier mathematicians. In addition, the awesome speed and
power of present-day computers (sometimes working together simultaneously)
must be employed. But there is an exception to the notion that the right
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Carl Friedrich Gauss

mathematics didn’t exist earlier. The work of Carl Friedrich Gauss (1777–1855)
on the arithmetic-geometric mean inequality has proven extremely amenable to
modern computational methods. In the years 1791–1792, while investigating the
arclength of the lemniscate, Gauss began to develop an algorithm which in theory
would give quadratic convergence to π , that is, the number of accurate decimal
places doubles after each iteration. Here are some details.

Let a0 = a and b0 = b be our initial values. Furthermore, for k ≥ 1, let ak+1 =
ak+bk

2 be the arithmetic mean of the previous values and let bk+1 = √
akbk be their

geometric mean. Then both ak and bk converge very rapidly to a number denoted
AGM (a, b), where AGM stands for “arithmetic-geometric mean.” By letting
a = √

2 and b = 1, Gauss calculated a4 and b4 obtaining the following values:
a4 = 1.198140234735592207441 . . . and b4 = 1.198140234735592207439 . . . .
Notice the amazing agreement up to the 20th decimal place! Later Gauss was able
to show that

π

2
∫ 1

0 dz/
√

1 − z4
= AGM (1,

√
2) (11.8)

Though Gauss did not have the computer resources we now enjoy, his work
provided the theoretical key that would later allow researchers to calculate
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hundreds of millions—even billions—of digits of π . In fact, the current world
record is held by two Japanese computer scientists, Yasumasa Kanada of the Uni-
versity of Tokyo together with assistance from Daisuke Takahashi. In October of
1999, using a version of Gauss’s AGM formula, they calculated 206,158,430,000
digits of π! The computation took about 80 hours on a Hitachi SR 8000 super-
computer. But more impressive is that it relied on some nearly forgotten pure
mathematics of a brilliant German mathematician from 200 years earlier. Great
ideas do not go out of date.

Srinivasa Ramanujan

Another example of a mathematician who was frighteningly ahead of his time
is Srinivasa Ramanujan (1887–1920), an Indian mathematician of incomparable
perspicacity. In fact, modern-day mathematicians are still unraveling the deep
and sometimes enigmatic mathematics left in his notebooks. Ramanujan grew up
in poverty in southern India, had precious few mathematical resources (books
or teachers), and little encouragement from family or friends. Yet with aston-
ishing determination and single-mindedness, his genius blossomed, trampled all
impediments in its way, and propelled Ramanujan to become one of the fore-
most creative mathematicians of the early 20th century. Much of his best work
was done at Cambridge University between 1913 and 1919, a substantial portion



112 MATHEMATICAL JOURNEYS

together with G.H. Hardy. Ramanujan’s work includes significant discoveries in
analytic number theory, the theory of primes, the partition function, the represen-
tation of numbers as sums of squares, new definite integral formulas, and error
bounds in lattice point problems. He also made highly original contributions to
the esoteric area of elliptic and modular forms and to a new class of functions he
called mock theta functions. Here I simply report two of his results that related
directly to the number π .

One such startling result is the following:

1

π
=

∞∑
n=0

(2n)!3

n!6

42n+5

212n+4 .

In a 1914 paper, “Modular Equations and Approximations to π ,” Ramanujan
gave 30 different formulas for π , including this one, which gives about eight
new decimal places for each term of the series:

1

π
=

√
8

9801

∞∑
n=0

(4n)!

n!4

1,103 + 26,390n

3964n
.

Such formulas have inspired the most talented modern-day mathematicians,
who have built upon and extended Ramanujan’s work. Among the most ardent
of π digit hunters are the brothers David and Gregory Chudnovsky, Russian
immigrants in the United States. Here is one of their Ramanujan-like formulas,
which gives 15 decimal places of π per term:

1

π
= 12√

640,3203

∞∑
k=0

(−1)k
(6k)!

k!3(3k)!

13,591,409 + 545,140,134k

(640,320)3k
.

At one point the Chudnovskys had turned Gregory’s apartment into a veritable
supercomputer built by the brothers themselves from parts they purchased at a
local Radio Shack and dedicated solely to cranking out ever more digits of π . In
fact, the Chudnovskys have been in a back and forth race with Yasumasa Kanada
since the early 1980s. The Chudnovskys were the first to break the billion mark
for π digits, and have held the world record at least six times. Though it’s a bit
difficult to really keep track since both the Chudnovskys and Kanada are rather
private about their techniques and latest pursuits.

Another pair of brothers who have made enormous strides in our understanding
of ways to compute π are the Canadians Jonathan and Peter Borwein, both
currently at Simon Fraser University in British Columbia. In 1994 they published
a complicated Ramanujan-type formula that gave 50 digits per term. Of even
greater utility to π digit hunters was an iterative algorithm they had developed
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in 1987 known as Borweins’s Quartic Formula. Specifically, let y0 = √
2 − 1

and a0 = 6 − 4
√

2 be the initial values. For k ≥ 0, let

yk+1 =
1 − 4

√
1 − y4

k

1 + 4
√

1 − y4
k

and ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2

k+1).

Then ak+1 converges very rapidly to 1
π

. In fact, each iteration quadruples the
number of accurate digits, hence the moniker “quartic” formula. This was the
specific formula that Kanada used in several of his record-breaking computations
of π , including a 68 billion digit computation in early 1999. It’s interesting
that just a few months later he switched back to Gauss’s AGM formula for the
current record.

Our last episode in π calculation involves new formulas that allow individual
bits of π to be computed without having to find all the preceding bits. By bit we
are referring to binary digits. After all, for a computer, base two is more natural
than base ten. The startling discovery that such computations were even possible
was due to David Bailey, Peter Borwein, and Simon Ploufe—all of Simon Fraser
University. In 1995 they announced the following formula for π , now called the
BBP algorithm:

π =
∞∑

n=0

1

16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
.

The occurrence of 16n in the denominator of every term allows for the remarkable
ability to jump to any hexadecimal (base 16) digit of π . But each hexadecimal
digit can be expanded to four bits since 24 = 16, and so four times as many bits
of π can be so obtained. Even though no such formulas involving powers of ten
have been discovered, similar identities to BBP have been developed with the
aid of computer algebra systems. One especially aesthetically appealing one is
due to Victor Adamchik and Stan Wagon (1997):

π =
∞∑

n=0

(−1)n

4n

(
2

4n + 1
+ 2

4n + 2
+ 1

4n + 3

)
.

How far out can we go and grab a single bit of π? The formula that’s been
used the most often is the following one involving powers of 1,024 = 210 due
to the French mathematician Fabrice Bellard:

π = 1

64

∞∑
n=0

(−1)n

1,024n

( −32

4n + 1
− 1

4n + 3
+ 256

10n + 1

− 64

10n + 3
− 4

10n + 5
− 4

10n + 7
+ 1

10n + 9

)
.
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A graduate student at Simon Fraser University (now studying at Oxford Uni-
versity) holds the current world record. Colin Percival learned all his high school
mathematics before completing seventh grade. That year he took the 12th grade
“Euclid Contest” and got the highest score in British Columbia. By tenth grade,
Percival was competing in the Putnam Examination. His score that year placed
him among the top 60 college finishers in all of United States and Canada. The
next year he ranked 12th and his last year of high school he became a Putnam
Fellow, scoring one of the top six scores in North America.

Percival’s audacious project involved cleverly pooling the resources of thou-
sands of computer users over the Internet. By farming out the calculations and
sharing the capabilities of 1,734 computers from 56 different nations, Percival
was able to productively use 1.2 million CPU hours of what would otherwise
be computer idle time. The project itself lasted from September 5, 1998, until
September 11, 2000. On that day, Percival was able to complete the calculation
of the 250 trillionth hexadecimal digit of π . By converting it into binary, the
quadrillionth bit of π was thus determined! It’s a zero. Some may quip that
that’s a lot of work, all for nothing. But I find it highly appropriate that the long
search to understand the circle has ended up with the perfect digit, namely the
one we denote with just such a round circle.

WORTH CONSIDERING

1. Convert to decimal expansions the ancient approximations of π : Baby-
lonia–3 1

8 , Egypt– 256
81 , China–

√
10, India–4 · ( 9,785

11,136 )2, Ptolemy– 377
120 ,

Archimedes– 22
7 , Tsu-ching Chih– 355

113 .

2. Plato is credited with discovering the approximation
√

2 +√
3 for π . Derive

this result by averaging the perimeters of an inscribed square and a circum-
scribed hexagon of a given circle. What decimal place accuracy do we get?

3. (Due to Franz Gnädinger)

(a) Approximate π by taking a circle of radius 5 centered at the origin
and inscribing it with an irregular dodecagon (12-sided polygon) with
vertices at (0, ±5), (±5, 0), (±3, ±4), and (±4, ±3).

(b) Expand the circle in part (a) five-fold to obtain one of radius 25 centered
at the origin. The points corresponding to (0, 5), (3, 4), (4, 3), and (5,
0) now have coordinates (0, 25), (15, 20), (20, 15), and (25, 0). In the
first quadrant add in the points (7, 24) and (24, 7) and do the same
in the other three quadrants. Now use this irregular inscribed icosagon
(20-sided polygon) to estimate π .

(c) Expand the circle again five-fold. In addition to the expanded vertices,
add in the points (±44, ±117) and (±117, ±44). Approximate π once
again. This clever method, based on Pythagorean triplets, can be contin-
ued indefinitely. Note that all calculations depend only on knowing the
expansion of

√
2,

√
5, and their product.
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4. Use the angle addition formulas for sine and cosine to derive

(a) sin x = 2 sin( x
2 ) cos( x

2 ) and

(b) cos x
2 =

√
1
2 (1 + cos x), two formulas required in Viète’s derivation.

5. Verify Leonardo da Vinci’s (1452–1519) construction: Roll a wheel of radius
r and tire width r

2 one revolution over an impressionable surface. The result-
ing rectangle has area πr2.

6. (a) Use the angle addition formula for tangent, namely tan (a + b) =
tan a+tan b

1−tan a·tan b
, to verify the following arctangent formula:

arctan
1

a − b
= arctan

1

a
+ arctan

(
b

a2 − ab + 1

)
.

(b) Use the formula above with a = 2 and b = 1 to derive an arctangent
formula of Euler’s (1738).

(c) Use (b) plus the formula above with a = 3 and b = 1 to derive an
arctangent formula due to Charles Hutton (1776).

7. Use Gauss’s AGM formula to calculate ak and bk for k = 1, 2, and 3 with
a0 = 1 and b0 = √

2.

8. Determine the number of accurate decimal places obtained from the follow-
ing estimates of π .

(a) (Ramanujan) 355
113 (1 − 3

35,330,000 )

(b) 473+203

303 − 1.

9. (R.G. Duggleby) Comment on the value of 6
√

π4 + π5.

10. (Daniel Shanks)

(a) Show that if pk is an approximation to π accurate to n decimal places,
then pk+1 = pk + sin pk is accurate to at least 3n decimal places.

(b) Use the above method with p0 = 3 to obtain at least nine decimal place
accuracy for π .

11. Continued Fraction for π : Let a0 = 3, a1 = 7, a2 = 15, a3 = 1, a4 = 292,
a5 = 1, a6 = 1, a7 = 1, a8 = 2, a9 = 1, and a10 = 3. Define the convergents
to π by c0 = a0, c1 = [a0; a1] = a0 + 1

a1
, . . . , ck = [a0; a1, . . . , ak−1 + 1

ak
]

for k ≥ 2. Calculate the first ten convergents to π .



12 A Sextet of Scintillating
Problems

There are few pleasures as delicious and yet enduring as a really good mathemati-
cal problem. In this chapter, I present six interesting problems from different areas
of mathematics. None of them are trivial; yet luckily, none are at all inaccessible.
Better yet, each can serve as an entrée to other related problems and new, signif-
icant areas of mathematics. Try to solve them yourself first, then carefully read
the solutions. I think you will agree that each one is both fun and instructive.
At the International Congress of Mathematicians in 1900, David Hilbert said,
“A mathematical problem should be difficult to entice us, yet not be completely
inaccessible, lest it mock at our efforts. It should be a guide post on the mazy
path to hidden truths, and ultimately a reminder of our pleasure in the successful
solution.” Hopefully, these problems will share some of these lofty attributes.

Problem #1: Given a positive integer m, does there exist a circle in the plane
having exactly m interior lattice points?

Recall that the lattice points are the points (a, b) where both a and b are
integers. This question was asked by the outstanding Polish mathematician Hugo
Steinhaus (1887–1972) in 1957. Steinhaus was born in Jaslo, Galicia, to a Jewish
intellectual family. He did his graduate work at the University of Göttingen in
Germany under the direction of Hilbert. Steinhaus did highly original work in
functional analysis and was especially interested in its applications to orthogonal
series and to probability. He helped develop measure theory and wrote the first
papers on game theory as well. But his greatest contributions might be his influ-
ence on fellow mathematicians and his love of sharing mathematical insights with
friends and colleagues. In 1916 he formed the Polish Mathematical Society in
Kraków with several like-minded young mathematicians. From a humble begin-
ning of weekly group discussions in a local park, their collaborations eventually
led to the development of new areas of analysis and a great number of pub-
lications. Even more famous were the mathematical meetings years later at the
Szkocka Café, commonly known as the Scottish Cafe, in Lvov (then Poland, now
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Ukraine). Beginning in 1935 and extending well into 1941, Steinhaus together
with S. Banach, S. Ulam, S. Mazur, M. Kac, and several other mathematicians
met and discussed significant mathematical problems several evenings a week
at this cafe. Once solved, the problems were written up in a notebook that was
kept there by a headwaiter at the cafe. When the Russians invaded, the meetings
continued and some contributions to the Scottish book were even made by sev-
eral visiting Russian mathematicians. To a get a taste of one of the problems, a
famous one due to Steinhaus is the fair apportionment problem. If n people want
to share a cake, how can they cut it so that all persons are satisfied that they
have a fair-sized piece. Steinhaus provided a solution for n = 3, but a general
solution was not worked out until the 1990s. The last entry, number 193, was
made on May 31, 1941, just before the German invasion. Despite the fact that
more than half of the Polish university mathematicians died or were killed during
the next four years, the Scottish book survived the war and has since been trans-
lated into several languages. Fortunately for humanity’s sake, great ideas don’t
die so easily.

Problem #1 is not part of the Scottish book, but is rather a later problem.
It was solved almost immediately by Waclaw Sierpinski (1887–1969), a noted
Polish mathematician and no slouch himself. Sierpinski did significant work in
real analysis, number theory, topology, and set theory. His first paper, completed
in 1904, dealt with Gauss’s famous Circle Problem. Let R(r) be the number of
lattice points inside the circle centered at the origin with radius r . In 1837, Gauss
had proved that |R(r) − πr2| < Cr for some constant C. Sierpinski made the
first significant improvement to this inequality by proving that |R(r) − πr2| <

Cr2/3. Since then, many new techniques have been developed leading to further
improvements to the exponent in the upper bound. However, it should be noted
that there is a limit due to a result of Hardy and Landau that says |R(r)−πr2| >

Cr1/2. In any event, Sierpinski’s theorem resulted in his receiving the Gold Prize
that year from the University of Warsaw together with a college degree. Over the
course of an illustrious career, Sierpinski published 724 papers, 50 books, and
managed a great deal of editorial work for several eminent journals, including
Acta Arithmetica, which he founded in 1958.

Solution to Problem #1: The answer to the question is “Yes.” In fact, we will
show that the particular point p = (

√
2 , 1

3 ) has different distances from all lattice
points. Thus we can choose an appropriate radius so that such a circle centered
at p will contain exactly m lattice points for any given m. In particular, if the set
of lattice points Z2 = {p1 , p2 , . . . } is ordered by increasing distance from p, then
the circle consisting of the set of all x for which |p − x | < |p − pm+1 | contains
exactly the lattice points p1 , . . . , pm. Here |x − y | means the distance between x
and y. Figure 12.1 illustrates this for m = 3 .

To prove that the lattice points can be so ordered, for the sake of argument let
us assume otherwise. Then there would be two distinct lattice points a = (a1 , a2 )

and b = (b1 , b2 ) such that |p − a| = |p − b| with a1 , a2 , b1 , and b2 all integers.



A SEXTET OF SCINTILLATING PROBLEMS 119

p
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2

1

−2 −1 1 2 3
x

y

−1

Figure 12.1 Circle centered at (
√

2, 1/3) containing exactly three lattice points.

But then

(a1 −
√

2 )2 + (a2 − 1
3 )2 = (b1 − √

2 )2 + (b2 − 1
3 )2 .

This implies that

a2
1 + a2

2 − b2
1 − b2

2 − 2
3 a2 + 2

3 b2 = 2 (a1 − b1 )
√

2 . (12.1)

But the number
√

2 is irrational, and hence so is the right-hand side of Equation
12.1 as long as 2 (a1 − b1 ) is nonzero. But the left-hand side is rational. Hence
the only way to rectify this is if a1 −b1 = 0 , that is, a1 = b1 . Hence, the left-hand
side of Equation 12.1 is zero as well. Thus

a2
2 − b2

2 − 2
3 (a2 − b2 ) = 0 . (12.2)

If a2 = b2 , then the points a and b are not distinct. Hence assume a2 �= b2 . But
Equation 12.2 can be rewritten as

(a2 − b2 )(a2 + b2 − 2
3 ) = 0 .

It follows that a2 + b2 − 2
3 = 0 , or that a2 + b2 = 2

3 . But this contradicts the
fact that a2 and b2 are integers. The result follows. �
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Isn’t it beautiful that the solution is so concrete and constructive. Further-
more, the only preliminary mathematics needed was the result, well-known by
the ancient Greeks, that

√
2 is irrational. Several related results were established

shortly after Sierpinski proved this one. Steinhaus extended the result by show-
ing that for each m there is a circle of area precisely m containing exactly m

lattice points. Then A. Schinzel proved that for all m there is a circle Cm with
m lattice points on its circumference. Next T. Kulikowski established an anal-
ogous result on the surface of a sphere. Such is the way of mathematics and
mathematicians. You might find it of interest to investigate what other values of
p work in Sierpinski’s proof. In addition, instead of circles, what about squares
or other polygonal shapes or cubes in three dimensions? Generalizing the result
from lattice points to “rational points,” where both coordinates are rational num-
bers, leads in all sorts of new directions and can serve as an introduction to the
wonderful world of algebraic geometry. Needless to say, Problem #1 can be one
step toward an endless journey.

Problem #2: Can the natural numbers be partitioned into two subsets so that
each contains arithmetic progressions of every finite length, but neither contains
an arithmetic progression of infinite length?

Play around with this one for a bit before proceeding. You may find a solution.

Solution to Problem #2: List all the natural numbers consecutively in a tri-
angle as shown in Figure 12.2. Partition the positive integers into two sets, A
and B, as follows. Counting the top row as row number one, let A consist of all
integers in the odd-numbered rows and let B consist of all the integers in the
even-numbered rows. Hence A = {1 , 4 , 5 , 6 , 11 , 12 , 13 , 14 , 15 , 22 , 23 , . . . }
and B = {2 , 3 , 7 , 8 , 9 , 10 , 16 , 17 , 18 , . . . }. Clearly each has an arithmetic
progression (of difference 1) of length n for each n. However, no arithmetic pro-
gression in either A or B goes on indefinitely. The reason is that for any arithmetic
progression of difference d, say, eventually there will be a gap exceeding d and
gaps continue to get larger. So all arithmetic progressions will reach a void they
can’t jump across. �

22 23 24 25 26 27 28

16 17 18 19 20 21

11 12 13 14 15

7 8 9 10

4 5 6

2 3

1

Figure 12.2 Natural numbers listed in triangular fashion.
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Problem #2 provides a good example of the distinction between “arbitrarily
large” versus “infinite.” Although the arithmetic progressions can be as large or
larger than any prescribed number, they never go on forever.

A deeper and more difficult problem was conjectured by the Dutch mathe-
matician P.J.H. Baudet in 1926. He conjectured that if the positive integers are
partitioned into any two subsets, then at least one of the subsets must contain an
arithmetic progression of length l no matter how large l is. This problem imme-
diately attracted the attention of several mathematics professors and students at
the University of Göttingen. With some insights provided by E. Artin and O.
Schreier, a young Dutch graduate student, B.L. van der Waerden (1903–1996)
solved the problem later that same year, validating Baudet’s conjecture. Since
then an entire area of mathematics known as Ramsey theory has grown out of
the study of similar problems. Van der Waerden taught widely in Germany, the
United States, Switzerland, Holland, and elsewhere. He had over 40 doctoral
students during his time in Zurich alone. Van der Waerden was a true polymath,
publishing significant results in algebraic geometry, abstract algebra, topology,
number theory, geometry, combinatorics, analysis, probability theory, mathemat-
ical statistics, and quantum mechanics. In addition, he wrote a great deal on the
history of mathematics and astronomy and made important discoveries about the
origins of algebra and geometry.

Problem #3: What is the largest integer not expressible as the sum of five nonzero
squares?

Problem #3 might seem a bit odd without proper motivation, but it’s a natural
number theoretic question. If you pick a few natural numbers and write them as
the sum of as few squares as possible, you’ll soon notice that every one can be
expressed as the sum of four or fewer squares. This observation is implicit in
the work of Diophantus (ca. 250 C.E.) and that of many mathematicians from
that time on. Interestingly, it wasn’t until 1770 that anyone actually proved that
every positive integer is expressible as the sum of at most four squares. Joseph
Louis Lagrange (1736–1814) provided the first proof, followed by several others
by Euler. The additional condition of expressing integers with nonzero squares
changes the nature of the problem. Even though every positive integer can be
expressed as the sum of four squares allowing zero as a perfect square, many
integers cannot be expressed as the sum of three, four, five, or some other number
of nonzero squares. In fact, there are infinitely many integers not expressible as
the sum of k nonzero squares for any fixed k ≤ 4. Note that the number 2 is not
representable as the sum of four nonzero squares. Furthermore, if n is odd and
2n is not representable as the sum of four nonzero squares, then neither is the
number 4a · 2n for all a ≥ 1. (We leave this assertion as an interesting exercise.)
Hence there are infinitely many such integers.

From the preceding discussion, it isn’t a priori clear that there even is a largest
integer not expressible as the sum of five nonzero squares. Conceivably the list
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of integers not so representable might be infinite, as was the case for four or
fewer squares. However, we will see that this is not the case. Problem #3 and its
solution is due to E. Dubouis (1911).

Solution to Problem #3: The first few integers representable as the sum of five
nonzero squares are 5, 8, 11, 13, 14, and so on. There are many gaps in our
list, including the number 33, which cannot be written as the sum of five nonzero
squares (which you should verify). After that, all numbers seem to have such a
representation. But how do we prove that such a condition is satisfied forever?

It is necessary to check all numbers up to and including 169 verifying that 33 is
the last number not expressible in the desired manner. For any integer n > 169 ,
we can write n − 169 as a2 + b2 + c2 + d2 for integers a, b, c, d ≥ 0 by
Lagrange’s theorem. There are four cases to consider depending on the number
of nonzero entries among a, b, c, and d.

(i) If a, b, c, d �= 0 , then n = 13 2 + a2 + b2 + c2 + d2 .
(ii) If only d = 0 , then n = 12 2 + 5 2 + a2 + b2 + c2 .

(iii) If only c = 0 and d = 0 , then n = 12 2 + 4 2 + 3 2 + a2 + b2 .
(iv) If only b = 0 , c = 0 , and d = 0 , then n = 10 2 + 8 2 + 2 2 + 1 2 + a2 .

Therefore, 33 is the largest integer not expressible as the sum of five nonzero
squares. �

As you can well imagine, Problem #3 is just the tip of the iceberg, and unlike
the voyagers aboard the Titanic, I invite you to crash into it and safely explore.
Here are some questions that come to mind: What is the smallest integer express-
ible in two ways as the sum of five nonzero squares? How about three ways
or four ways, etc.? What, if any, is the largest integer not expressible in two
(three, four, . . . ) ways as the sum of five nonzero squares? What about sums
of six squares, or seven squares, etc.? It turns out that for all k ≥ 5, all but a
finite number of integers are sums of k nonzero squares. What’s the situation
with sums of distinct squares? Roland Sprague (1948) proved that every integer
greater than 128 is the sum of distinct squares. And what about cubes, triangular
numbers, primes, etc.? There’s lots to investigate and the only tool you need is
your imagination.

Problem #4: Competing in the world professional go championship are 60 play-
ers from Tokyo, 20 from Beijing, 15 from Seoul, 10 from Osaka, 5 from Shanghai, 2
from Taipei, 1 from London, 1 from Paris, and 1 from San Francisco. Where should
the championship be held to be the fairest from a collective players’ prospective?

We must first agree on what is meant by fairest. We could somehow average all
the latitudes and longitudes of all the participants. Perhaps even take a weighted
average since some cities have larger representation. We might instead pick the
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point on the earth that minimizes the maximum distance traveled by all the
contestants. However, we choose an even simpler definition, and arguably the
best. We will assume that the fairest location is the one that minimizes the total
intercity travel of all the participants.

This problem is a classic math puzzle usually cloaked as a chess championship
problem where most of the competitors come from New York City. Much to
the consternation of the non-New Yorkers, it turns out that having the chess
championship in New York is the fairest location. Similarly, in our version the
answer is Tokyo. I enjoy playing go more than I do playing chess, so I’ve
changed the problem to suit my interests. But other hobbies are fair game as
well. Checkers anyone?

Solution to Problem #4: Let T1 , . . . , T60 be the Tokyo players and let P1 , . . . ,

P55 be the others. Pair up the players (T1 , P1 ), (T2 , P2 ), . . . , (T55 , P55 ) leaving
T56 , . . . , T60 . (This pairing has nothing to do with match play itself.) Now let
Ti Pi be the distance from Tokyo to player Pi ’s city for 1 ≤ i ≤ 55 . For each i ,
players Ti and Pi must together travel at least Ti Pi since that is the distance the
two must travel at any point directly between or at either of their home cities. Any
other location would require the pair of them to travel even further. So the total
distance traveled by all the players is at least the sum T1 P1 + . . .+T55 P55 . If the
site is Tokyo, then this is the exact total distance traveled since T56 , . . . , T60 do
not have to travel at all. Anywhere else will increase the total distance. So Tokyo
is the fairest site after all. �

Problem #5: A skyscraper has 101 floors numbered 1 to 101. Suppose that an
elevator stops 51 times as it descends from the top floor. Show that it stops at two
floors whose sum is 101.

The solution to Problem #5 uses one of the simplest, but surprisingly useful,
techniques in all of mathematics, namely the pigeonhole principle. The pigeon-
hole principle states that if there are n pigeonholes holding more than n pigeons,
then there must be at least one pigeonhole with more than one pigeon. Even a
bird brain could understand that. Equivalently, if n sets collectively contain more
than n elements, then at least one of the sets contains two or more elements.
And, oh yes, our building does have a floor number 13.

Solution to Problem #5: Suppose that the elevator stops at floors numbered
f1 , . . . , f51 where 1 ≤ f1 < f2 < . . . < f51 < 101 . Now consider the numbers
f1 , f2 , . . . , f51 , 101 − f1 , 101 − f2 , . . . , 101 − f51 . These 102 numbers all lie
between 1 and 100 inclusive. By the pigeonhole principle, they cannot all be
distinct. But none of the fi ’s are equal to each other, and so none of the 101 − fi ’s
are equal either. It necessarily follows that there is an i and j with fi = 101 − fj .
Hence fi + fj = 101 as desired. Finally, note that fi and fj are in fact distinct,
for otherwise they would both be equal to 50 1

2 , not a place where anyone but a
pigeon would want to get off the elevator. �
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Problem #6: Call a positive integer square-full if each of its prime factors
appears to at least the second power (e.g., 108 = 2 2 · 3 3 is square-full). Prove
that there are infinitely many pairs of consecutive square-full numbers.

This is a delightful problem with a surprisingly brief solution. So you might
want to begin by seeing if you can list some square-full numbers and then look
for at least one such consecutive pair. It shouldn’t take too long. Hint: the smallest
such pair are each one digit numbers!

Solution to Problem #6: We prove the result inductively. Notice that 8 = 2 3 and
9 = 3 2 are consecutive square-full numbers. Now if n and n + 1 are square-full,
then so are 4n(n + 1 ) and 4n(n + 1 ) + 1 = 4n2 + 4n + 1 = (2n + 1 )2 . �

Notice that 8 and 9 are, in fact, both perfect powers. In 1962, A. Makowski
proved that there do not exist three consecutive perfect powers. However, it is
an open question whether there are any “triples” of square-full numbers, that
is, three consecutive integers all of which are square-full. How about any pairs
of consecutive cube-fulls? No one yet knows, though Erdös conjectured that
the answer is “no.” In general, a number having prime factorization with all
exponents of degree k or higher is called a k-powerful number, a term coined by
S.W. Golomb in 1970. Our square-full numbers are thus often called powerful
numbers in the literature. The distribution of k-powerful numbers was first studied
by Erdös and Szekeres in 1935, and by many researchers ever since. In 1985,
R. Heath-Brown proved that all but a finite number of positive integers can
be expressed as the sum of three powerful numbers. The exceptional set is not
known, however. At present the only known exceptions are 7, 15, 23, 87, 111,
and 119. It has been conjectured (R. Mollin, P.G. Walsh, 1986) that these are all
the exceptions. What do you think?

WORTH CONSIDERING

1. Find another point besides p = (
√

2, 1
3 ) that works in Problem #1.

2. Modify Problem #2 to n subsets for any given n ≥ 2.

3. (a) Show that there are an infinite number of positive integers that are not
expressible as the sum of three nonzero squares.

(b) Show that there are an infinite number of positive integers that are not
expressible as the sum of four nonzero squares.

4. Show that for k ≥ 5, all but a finite number of positive integers are sums of
precisely k nonzero squares.

5. Show that every integer greater than 33 can be written as the sum of distinct
triangular numbers (H.E. Richert, 1949).

6. Given a set of 2,005 natural numbers, show that there is a subset whose sum
is divisible by 2,005.
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7. Show that if nine points are placed on or in a cube having sides of length 2,
then there must be two points that are at most

√
3 units apart.

8. Verify that 12,167 and 12,168 are a pair of consecutive numbers, with one
being 2-powerful and the other 3-powerful. (Other than 8 and 9, this is the
only other known such example.)



13 Primality Testing Below
a Quadrillion

Carl Friedrich Gauss exclaimed, “The problem of distinguishing prime numbers
from composite numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic . . . The dignity
of the science itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.” Though the substance
of what Gauss said 200 years ago is as true today as it was then, great progress
has been made in the field of primality testing.

Most of us are well aware that trial division by all primes at most the square
root of a given test number is an accurate way to determine its primality. In
addition, if the number is not prime, this ancient method due to Eratosthenes
(276–190 B.C.E.) will provide us with its prime factorization. If we aren’t as
interested in actually factoring the given number, but rather simply want to know
if it is prime or not, there are many techniques that are far more efficient than the
sieve of Eratosthenes. In this chapter we will not study the latest algorithms that
are the absolute fastest or most efficient for determining the primality of huge
numbers. However, we will gain a solid understanding of methods that can be
easily implemented for numbers of size, say, less than a quadrillion. We will then
mention some of the more recent methods to gain familiarity with them. When
I first gave a talk on a similar topic in 1995, I asked if the current population of
the United States was prime or not. The number then was 264,323,869, a number
that may have been accurate at some point in time, for a few seconds at least. In
any event, we’ll be able to answer that particular question shortly.

A central theorem in this area is Fermat’s Little Theorem. Pierre de Fermat
(1601–1665), by profession a legal counselor and jurist, was also known as the
“prince of amateur mathematicians.” Make sure not to mistake him with C.F.
Gauss, “prince of mathematicians”—or for that matter either Prince Charles, son
of Queen Elizabeth, or The Artist Formerly Known as Prince. Fermat helped
create the field of analytic geometry and made profound discoveries in what is
now differential and integral calculus. His contributions include finding tangents
and normals to curves, rectification of several plane curves, finding areas of plane
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regions and volumes of various three-dimensional solids. But the work he cher-
ished most was in number theory where his discoveries were just as astonishing
and penetrating. His discoveries were announced to friends by letter, but proofs
generally were not as forthcoming. Many of his pronouncements waited a hun-
dred years or more to be reproved (or disproved) by later generations. Fermat’s
Little Theorem is a prime example of one such result.

Theorem 13.1 (Fermat’s Little Theorem): Let p be prime and suppose that
p � |b. Then bp−1 ≡ 1 (mod p).

Fermat’s Little Theorem was stated by Fermat in a letter to his colleague, Frenicle
de Bessy, in 1640. The moniker Fermat’s Little Theorem is intended to distin-
guish this theorem from the perhaps more famous (but less useful) Fermat’s Last
Theorem. Euler generalized Theorem 13.1 and provided the first published proof
in 1736. It is significant to note that oftentimes a mathematical observation can be
better understood once it’s been placed in a larger context. But before proceeding
further, let’s see in what way Euler generalized Fermat’s result.

If n is a positive integer, define φ(n) to be the number of positive integers less
than or equal to n that are relatively prime to n. The function φ is known as the
Euler phi function. For example, please verify that φ(1) = 1, φ(2) = 1, φ(3) =
2, φ(10) = 4, and φ(20) = 8 by listing all appropriate numbers relatively prime
to the argument. Additionally, φ(p) = p − 1 since every positive integer less
than a given prime is relatively prime to it. For fun, you might want to check
that φ(666) = 6 ·6 ·6. We are now ready to state Euler’s result, commonly called
the Euler-Fermat Theorem.

Theorem 13.2 (Euler-Fermat Theorem): If gcd(b, n) = 1 , then bφ(n) ≡
1 (mod n).

For example, gcd(3, 10) = 1 and hence 3φ(10) = 34 ≡ 1 (mod 10). In addition,
125 and 666 are relatively prime. Thus 125φ(666) = 125216 ≡ 1(mod 666),
though this would be more difficult to check if it were not for our theorem.
In addition, notice that Fermat’s Little Theorem is a special case of the Euler-
Fermat Theorem by simply constraining n to be prime. Hence Theorem 13.1 is
a corollary to Theorem 13.2.

First, we need a preliminary result from elementary number theory. Then we
will proceed to the demonstration of the Euler-Fermat Theorem.

Proposition 13.3: If gcd(b, c) = 1 , and b|cd, then b|d.

For example, gcd(10, 19) = 1. Since 10|380 and 380 = 19 · 20, it must be the
case that 10|20. Proposition 13.3 is an extension of a result known as Euclid’s
Lemma, which appears as Proposition 30 in Book VII of the Elements. Euclid’s
Lemma states that if p is prime and p|cd , then either p|c or p|d . Proposition 13.3
extends Euclid’s Lemma by relaxing the hypothesis that b be prime. Even so, it
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is easy to see why Proposition 13.3 is true. Since b and c are relatively prime,
all the prime factors of b must also appear in d and to high enough exponents
so that b divides cd. Hence b divides d itself.

Proof of Theorem 13.2: Let r1 , . . . , rφ(n) be a reduced set of residues modulo n.
So every integer relatively prime to n is congruent to exactly one of r1 , . . . , rφ(n).
In addition, since gcd(b, n) = 1 , each of br1 , . . . , brφ(n) is relatively prime
to n. Furthermore, if bri ≡ brj (mod n) for some i �= j , then n|b(ri − rj ).
But gcd(b, n) = 1 implies that n|(ri − rj ) by Proposition 13.3. But then ri ≡
rj (mod n), contrary to our assumption that r1 , . . . , rφ(n) form a reduced set of
residues, necessarily pairwise relatively prime. Hence r1 , . . . , rφ(n) and br1 , . . . ,

brφ(n) are simply rearrangements of each other modulo n. It follows that

(br1 )• . . . •(brn ) ≡ r1 • . . . •rn (mod n).

Recombining,

bφ(n)r1 • . . . •rn ≡ r1 • . . . •rn (mod n).

So n|r1 · . . . · rn · (bφ(n) − 1 ). But r1 · . . . · rn is relatively prime to n. Thus, by
Proposition 13.3, n divides bφ(n) − 1 . Therefore, bφ(n) ≡ 1 (mod n). �

Fermat’s Little Theorem is a great aid in computation. For example, suppose
that we wish to determine 21,000 (mod 13). To multiply 2 by itself a thousand
times and then to divide that huge number by 13 to obtain its remainder would
be unwieldy indeed. However, by Fermat’s Little Theorem we know that 212 ≡
1 (mod 13). Furthermore, 1, 000 = 12 ·83+4, which we obtain by simply divid-
ing 1,000 by 12. Hence 21,000 = 212·83+4 = (212)83 · 24 ≡ 183 · 16 = 16 ≡
3 (mod 13). We’ve taken advantage of the fact that one to any power is still one.

Does Fermat’s Little Theorem somehow give us a primality test? For example,
to check if an odd integer n is prime, does it suffice to evaluate whether or
not 2n−1 ≡ 1 (mod n)? For example, what can we deduce about the num-
ber n = 264,323,869, which we mentioned at the beginning of this chapter?
Though the computation is somewhat tedious, we find that in this case 2n−1 ≡
214, 721, 964 �≡ 1 (mod n). By Fermat’s Little Theorem, it follows that n must
be composite. It turns out that 264,323,869 = 2, 879 · 91,811; but factoring is
another matter altogether that we’ll happily avoid here. The key point is that we
already knew that n was composite without having found any factors whatsoever.
Let’s investigate the applicability of Fermat’s Little Theorem further.

We begin by noting that 23−1 ≡ 1 (mod 3), 25−1 ≡ 1 (mod 5), and 27−1 ≡
1 (mod 7) as guaranteed by Theorem 13.1. In addition, 29−1 = 256 (mod 3) ≡
4 (mod 9). Hence, 9 must be composite by Theorem 13.1 as well. (Of course
this is a silly way to show that 9 is a composite number.) Continuing, 211−1 =
1024 ≡ 1 (mod 11) and 213−1 = 4096 ≡ 1 (mod 13), indicating that 11 and 13
are both prime. Furthermore, 215−1 = 16384 ≡ 4 (mod 15), proving that 15 is
indeed composite. Testing 2n−1 (mod n) in this way works fine until n = 341.
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Notice that 210 = 1024 = 3 · 341 + 1 and so 210 ≡ 1 (mod 341). Thus
2341−1 = 2340 = (210)34 ≡ 134 = 1 (mod 341). Yet 341 = 11 · 31 is composite.
This doesn’t mean that Fermat’s Little Theorem is somehow wrong. But it does
mean that the converse of Fermat’s Little Theorem is not true. Namely, the fact
that bn−1 ≡ 1 (mod n) does not imply necessarily that n is prime. Thus, Fermat’s
Little Theorem alone is not a primality test. It will not determine in all cases
whether a given number is prime. But it is still extremely useful. Anytime 2n−1 �≡
1 (mod n), that is, 2n−1 is incongruent to 1 modulo n, then n must be composite.

Our previous discussion leads us to the next definition. If n is a composite
number relatively prime to b and bn−1 ≡ 1 (mod n), then n is called a base b
pseudoprime, denoted by psb(b). Roughly speaking, pseudoprimes behave pretty
much like primes in that they obey the converse of Fermat’s Little Theorem since
they pass the test bn−1 ≡ 1 (mod n).

By way of example, 25 is a base 7 pseudoprime, psp(7). Note that 25 = 52

is composite and relatively prime to 7. Yet 724 = (72)12 = 4912 ≡ (−1)12 =
1 (mod 25). In addition, we have already shown that 341 is a psp(2).

Base 2 pseudoprimes are usually referred to as simply pseudoprimes, being
the archetype for the other classes of pseudoprimes to other bases. For this
reason, they have been studied the most carefully. Here is a chart that shows the
preponderance of pseudoprimes versus actual primes up to ten billion.

Let π(x) be the number of primes less than or equal to x and let Pπ(x)

be the number of pseudoprimes less than or equal to x. The function π(x) has
been calculated accurately for some enormous values of x, for example, M.
Deleglise and J. Rivat have determined that π(1018) = 24,739,954,287,740,860.
In addition, R.G.E. Pinch has computed the number of pseudoprimes less than
10 trillion, specifically Pπ(1013) = 264, 239. However, we won’t search nearly
as far. We are more interested to get some idea of the relative frequency of
pseudoprimes versus real primes as x increases. The last row of Table 13.1, r(x ),
gives the ratio of integers n less than x that pass the test 2n−1 ≡ 1 (mod n), which

are actually pseudoprimes. Specifically, r(x) = P
∏

(x)∏
(x)+P

∏
(x)

. This gives us some
sense of the likelihood that a successful candidate is the real McCoy. The closer
r(x ) is to zero, the more likely it is that a successful candidate is really prime.

We now have a “probabilistic” primality test. If n < 1010 is a randomly chosen
odd integer that satisfies the congruence 2n−1 ≡ 1 (mod n), then the probability
that n is prime is greater than 0.999967. This is purer than Ivory soap! Because
of the very high likelihood that a successful candidate is indeed prime, integers
passing this test have been called “industrial grade” primes.

TABLE 13.1 Ratio of pseudoprimes to actual primes up to 1010

x 102 103 104 105 106 107 108 109 1010

π(x) 25 168 1,229 9,592 78,498 664,579 5,761,455 50,847,534 455,052,512
Pπ(x) 0 3 22 78 245 750 2,057 5,597 14,887
r(x ) 0 0.017543 0.017586 0.008066 0.003111 0.001273 0.000357 0.000110 0.000033
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But mathematicians, being the purists that they are, soon wondered whether
there was some base b other than 2 that works better—perhaps even all the
time. Unfortunately, the answer is no. In 1903, a mathematician by the name of
E. Malo proved that there are infinitely many pseudoprimes (to base 2) and the
following year M. Cipolla extended the result to any given base. So no matter
which base b we choose, we can never make a complete list of pseudoprimes to
that base.

Okay then, what else can we try? Maybe the “compositeness” of a given
integer n will always be revealed if we evaluate bn−1 (mod n) for a handful of
different b’s until we find one for which bn−1 �≡ 1 (mod n). That is, n can run,
be he can’t hide. For example, although 2340 ≡ 1 (mod 341) and so 341 is a
psp(2), it happens that 3340 ≡ 56 �≡ 1 (mod 341). Hence 341 is not a psp(3). We
would thus discover that 341 is composite if we hadn’t already known. Sounds
promising? Guess what, even this general notion fails.

There are composite integers n that are pseudoprimes to all bases b relatively
prime to n. The smallest example isn’t even that large a number. The number
n = 561 is one such number. Let’s demonstrate why this is so.

The integer 561 = 3 · 11 · 17 is certainly composite. Now suppose that b is
any natural number relatively prime to 561, hence necessarily relatively prime
to each of 3, 11, and 17. Let’s compute b561−1(mod p) for p equalling 3, 11,
and 17 in turn. By Fermat’s Little Theorem (our handy little theorem), b560 =
(b2)280 ≡ 1280 = 1 (mod 3), b560 = (b10)56 ≡ 156 = 1 (mod 11), and b560 =
(b16)35 ≡ 135 = 1 (mod 17). Since 3, 11, and 17 are pairwise relatively prime, it
follows that 3 · 11 · 17|(b560 − 1). Equivalently, b560 ≡ 1 (mod 561). Therefore,
561 is a psp(b) for any one of the infinitely many b relatively prime to 561.

The American mathematician R.D. Carmichael (1879–1967) made a careful
study of such numbers. In fact, we now define a Carmichael number to be an odd
composite n which is a psp(b) for all b relatively prime to n. Carmichael himself
exhibited the first 15 such examples. Not to be outdone, here are the first 16: 561,
1,105, 1,729, 2,465, 2,821, 6,601, 8,911, 10,585, 15,841, 29,341, 41,041, 46,657,
52,633, 62,745, 63,973, and 75,361. The number 1,729 stands out as the number
made famous by G.H. Hardy in reference to Ramanujan. Hardy wrote, “It was
Littlewood who said that every positive integer was one of Ramanujan’s personal
friends. I remember going to see him once he was lying ill in Putney. I had ridden
taxicab number 1729, and remarked that the number seemed to me rather a dull
one, and that I hoped that it was not an unfavorable omen. ‘No,’ he replied, ‘it
is a very interesting number, it is the smallest number expressible as the sum of
two cubes in two different ways.’ ” Indeed, 1, 729 = 103 + 93 = 123 + 13, and
no smaller number has such a property. But what neither Hardy nor Ramanujan
noted was that 1,729 is also a Carmichael number!

Robert Daniel Carmichael was himself an accomplished and versatile math-
ematician. He grew up in Alabama, the eldest of 11 talented children. After
receiving his Ph.D. at Princeton under George Birkhoff in 1911, he held several
posts, eventually spending the bulk of his career as longtime chair and then dean
at the University of Illinois. His scientific and mathematical writings include the
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areas of relativity theory, differential equations, group theory, number theory,
and Diophantine equations.

A very pretty result stated by O. Korselt in 1899 and rediscovered and proved
by R.D. Carmichael in 1912 can be formulated as follows:

Proposition 13.4: The number n is a Carmichael number if and only if n is a
product of three or more distinct odd primes where (p − 1 )|(n − 1 ) for all primes
p dividing n.

By way of illustration, 1,729 = 7 · 13 · 19. Note that 6|1,728, 12|1,728, and
18|1,728. Thus, 1,729 satisfies the conditions of Proposition 13.4 and hence 1,729
is a Carmichael number. But how many Carmichael numbers are there? If there
were just finitely many, then perhaps a list of them could be made and a primality
test could still be pieced together by referring to this list together with an appro-
priate number of pseudoprimality tests to various bases. Let CN(x ) represent the
number of Carmichael numbers less than or equal to x. Table 13.2 presents a
brief chart.

In 1990, Gerhard Jaeschke determined that CN(1012) = 8,238 as opposed
to π(1012) = 37,607,912,018. More recently, R.G.E. Pinch has computed
CN(1015) = 105,212 and CN(1016) = 246,683. This compares with π(1015) =
29,844,570,422, 669 and π(1016) = 279,238,341,033,925. So the prevalence of
Carmichael numbers among the integers seems very rare as compared with the
primes. But how prevalent are they?

The answer to that question was finally disposed of by R. Alford, A. Granville,
and C. Pomerance in 1992. There are infinitely many Carmichael numbers! In
fact, there are plenty of them. Alford, Granville, and Pomerance proved that there
is a constant N0 such that for any N > N0, there are at least N2/7 Carmichael
numbers less than N.

Despite all this seemingly bad news, there is also plenty of good news for
those of us looking for a completely reliable primality test. Here is a nice result
due to the French mathematician Edouard Lucas (1842–1891), published in 1891.
You may be familiar with his perennially popular children’s toy, the Tower of
Hanoi puzzle.

Proposition 13.5 (Lucas’s Primality Test): Given an odd integer n, if there
is a base b for which bn−1 ≡ 1 (mod n), but for all primes p dividing n − 1 ,

b(n−1 )/p �≡ 1 (mod n), then n is prime.

Lucas’s Primality Test is sort of a “partial converse” to Fermat’s Little Theorem.
It has many attributes. It is a bona fide primality test rather than a probabilistic

TABLE 13.2 Abundance of Carmichael numbers up to 1010

x 102 103 104 105 106 107 108 109 1010

CN(x ) 0 1 7 16 43 105 255 646 1,547
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one. It is an “all-purpose” primality test in that it can be applied to any integer, not
just to a limited set of some special form. And its implementation is fast. In fact,
when it works it’s a polynomial-time algorithm in the language of computational
number theory and computer science. Namely, the number of steps needed to
apply Lucas’s Primality Test grows no faster than some polynomial with argument
the input size (number of bits) of n.

But there are some obvious drawbacks as well. Here are two significant prob-
lems: One, we must first find an appropriate b, a task that is not guaranteed to be
completed no matter how long we look. And two, we must be able to completely
factor n−1. Oftentimes that’s pretty easy, especially if n is known to be of some
special form. However, other times knowing the factorization of n − 1 may be
just as remote.

Even so, here’s an example. We will prove that n = 7, 919 is a prime. After
some work, the number 7, 919 − 1 = 7, 918 can be factored as 2 · 37 · 107.
Lucas’s Primality Test does not work on this n for b = 2, 3, or 5. However,
next we compute 7(n−1)/p (mod n) for p = 2, 37, and 107 in turn. The results
are that 7(n−1)/2 ≡ −1 (mod n), 7(n−1)/37 ≡ 755 (mod n), and 7(n−1)/107 ≡
5, 549 (mod n). Since 7(n−1)/p (mod n) was never one and 7n−1 ≡ 1 (mod n),
the number n = 7, 919 must be prime.

Drawing on ideas from Lucas’s Primality Test, we can proceed further. Let p
be a prime and b an integer for which p � |b. Fermat’s Little Theorem implies that
p|(bp−1 − 1). But bp−1 − 1 = (b(p−1)/2 + 1)(b(p−1)/2 − 1). By Euclid’s Lemma,
either b(p−1)/2 ≡ 1 (mod p) or b(p−1)/2 ≡ −1 (mod p). If b(p−1)/2 ≡ 1 (mod p)

and 4|(p−1), then again either b(p−1)/4 ≡ 1 (mod p) or b(p−1)/4 ≡ −1 (mod p).
If b(p−1)/4 ≡ 1 (mod p) and 8|(p − 1), then either b(p−1)/8 ≡ 1 (mod p) or
b(p−1)/8 ≡ −1 (mod p), and so on. This process terminates when either the
modulus is −1 (mod p) or we have exhausted all factors of 2 in the number
p − 1.

For example, consider the prime p = 1, 951. In this case, p − 1 = 1, 950 and
21,950 ≡ 1 (mod 1, 951). Next (p − 1)/2 = 975 and 2975 ≡ 1 (mod 1, 951). The
process stops here since 1,975 is odd. Consider a second example, the Carmichael
number n = 561. Remember that 561 is not prime, but behaves very much like
one. In this case, n − 1 = 560 and necessarily 2560 ≡ 1 (mod 561) because 561
is a Carmichael number. Next (n− 1)/2 = 280 and 2280 ≡ 1 (mod 561) as well.
Continuing this process, (n−1)/4 = 140. This time 2140 ≡ 67 (mod 561). Since
67 �≡ ±1 (mod 561), it must be case that 561 is composite. Amazingly, even
this Carmichael number, which can cleverly double as a prime for every one of
the pseudoprimality tests, was unable to fool this seemingly simple test.

The details of this primality test were formalized by Gary Miller in 1976.
Miller’s Test: Given a number n whose primality we wish to check, let n−1 =

2rm where r ≥ 1 and m is odd. Let b and n be relatively prime. If either
bm ≡ ±1 (mod n) or b2km ≡ −1 (mod n) for some k with 1 ≤ k ≤ r , then we
say that n passes Miller’s test to base b.

Notice that, unlike Lucas’s Primality Test, in Miller’s Test we don’t need to
completely factor n − 1. This is a big virtue. Also note that if p is prime, then p
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will pass Miller’s Test for any b relatively prime to p. It follows that if n fails
Miller’s Test for some b, then n must be composite.

If n is an odd composite that passes Miller’s Test to base b, then we say that
n is a base b strong pseudoprime, denoted by spsp(b). Strong pseudoprimes base
2 are referred to simply as strong pseudoprimes. It should be mentioned that if
n is a spsp(b), the n is a psp(b). So being a strong pseudoprime really is more
stringent than “just” being a pseudoprime.

As it happens, there are no strong pseudoprimes below 2,046. Consequently,
Miller’s Test correctly identifies the primality of all calendar years (so far). That
is, if n is number of any year so far (C.E. = A.D.) and n passes Miller’s Test,
then n is in fact prime. But, unfortunately perhaps, the set of strong pseudoprimes
is not empty. The first example is the number 2,047.

The number 2,047 is an interesting number, being a Mersenne number (see
Chapter 5). In fact, 2,047 = 211 − 1. However, 2,047 is not a Mersenne prime
since it’s composite. In particular, 2, 047 = 23 · 89. But for now, let’s pre-
tend that we didn’t know the nature of the number 2,047. To apply Miller’s
Test, we rewrite 2,047 − 1 = 2,046 as 2 · 1,023. We must check the value of
21,023 (mod 2,047). In this case, there’s a bit of a short cut. Since 211 = 2,048 ≡
1 (mod 2, 047) and since 1, 023 = 11 · 93, it follows that 21,023 = (211)93 ≡
1 (mod 2, 047). Hence 2,047 passes Miller’s Test to base 2. But since 2,047 is
composite, it is a strong pseudoprime, in fact the smallest.

It’s natural to wonder, how many strong pseudoprimes are there? Table 13.3
provides a partial answer. Naturally, we let SPπ(x) be the number of strong
pseudoprimes less than or equal to x. If we compare Table 13.3 with Table 13.1,
it is clear that there are far fewer strong pseudoprimes than there are primes (and
necessarily fewer strong pseudoprimes than ordinary pseudoprimes). So Miller’s
Test to base 2 is an excellent tool as a probabilistic primality test. For example,
the probability that a randomly chosen odd integer less than 1010 that passes
Miller’s Test to base 2 is indeed prime equals 455,052,511

455,052,511+3,291 > 0.99999. That
is, if such a number n passes just this single Miller’s Test, then the chance that
n is prime is greater than 99.999%.

If we compare Table 13.3 with Table 13.2, to the level that we have checked,
it appears that there are somewhat more strong pseudoprimes than there are
Carmichael numbers. Still, the paucity of strong pseudoprimes is somewhat
remarkable given that we just work with base 2 rather than with all bases as
in the case of Carmichael numbers. Since our goal is to isolate the primes pre-
cisely, we might hope that there is no overlap between Carmichael numbers and
strong pseudoprimes. If this were the case, then we could combine Proposition
13.4 with Miller’s Test base 2 and be done. As you’ve probably guessed, in fact

TABLE 13.3 Abundance of strong pseudoprimes up to 1010

x 102 103 104 105 106 107 108 109 1010

SPπ(x) 0 0 5 16 46 162 488 1,282 3,291
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there are numbers that are both Carmichael numbers and strong pseudoprimes.
The smallest example is the number 15,841. Even so, could it still be that there
are only finitely many strong pseudoprimes or finitely many strong pseudoprimes
to base b for some b? The following result is a clear “no.”

Proposition 13.6 (C. Pomerance, J. Selfridge, S. Wagstaff, 1980): There are
infinitely many strong pseudoprimes base b for any base b.

Despite the fact that there are infinitely many strong pseudoprimes to any base,
it has been shown that there are no odd composite integers n that are strong
pseudoprimes to all bases relatively prime to n. Thus, there is no such thing as a
“strong Carmichael number.” In addition, M.O. Rabin has proven that if n is an
odd composite, then n will pass Miller’s Test for at most (n−1)/4 bases b with 1 <

b < n−1. So the fact that n is composite will eventually be discovered. In practice,
a random selection of bases is chosen to test the primality of a candidate. Such
a Miller-Rabin Test works well in practice, with demonstrably high probability.
In fact, from the combined work of Miller (1976) and Bach (1985), subject to an
unproved but widely believed hypothesis concerning the zeros of zeta functions
known as the Generalized Riemann Hypothesis (GRH), we can be much more
precise. Assuming GRH, if n is a spsp(b) for all b ≤ 2(log n)2, then n is prime.

In 1980, Pomerance, Selfridge, and Wagstaff verified the following:

1. The smallest integer that is a spsp(b) for b = 2 is 2,047.
2. The smallest integer that is a spsp(b) for b = 2 and 3 is 1,373,653.
3. The smallest integer that is a spsp(b) for b = 2, 3, and 5 is 25,326,001.
4. The smallest integer that is a spsp(b) for b = 2, 3, 5, and 7 is 3,215,031,751.
5. The only odd composite below 2.5 · 1010 that is a spsp(b) for b = 2, 3, 5,

and 7 is the number 3,215,031,751.

These calculations were extended by Gerhard Jaeschke in 1993. He found that

6. The smallest integer that is a spsp(b) for b = 2, 3, 5, 7, and 11 is
2,152,302,898,747.

7. The smallest integer that is a spsp(b) for b = 2, 3, 5, 7, 11, and 13 is
3,44,749,660,383.

8. The smallest integer that is a spsp(b) for b = 2, 3, 5, 7, 11, 13, and 17 is
341,550,071,728,321. It is also a spsp(19), but not a spsp(23).

By combining the works cited so far, we have the following useful result for
checking the primality of any number less than 300 trillion:

Proposition 13.7 (Miller-Jaeschke Primality Test): If n is an odd integer less
than 3 · 10 14 and n passes Miller’s Test for bases b = 2 , 3, 5, 7, 11, 13, and 17,
then n is prime.

Let n be an odd composite number. An integer b relatively prime to n is called
a witness (to the fact that n is composite) if n is not a spsp(b). For example, the
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integer n = 25,326,001 may masquerade as a prime as far as Miller’s Test is
concerned for bases 2 and 3, but 5 is a witness to the fact that that n is composite.
Once you’ve been caught, there’s no denying it.

Perhaps with enough computational power, a long enough list of bases could
be made so that every composite could be identified by some base from among
the finite list. The bases 2, 3, 5, 7, 11, 13, and 17 catch all composites less than
300 trillion. Could it be that the set of bases consisting of say the first thousand
primes would be sufficient to check any number? Again, you better take a seat
before I give you the disappointing news. In 1994, W.R. Alford, A. Granville,
and C. Pomerance proved that there are odd composites having least witness
arbitrarily large. Hence for any finite list B of bases there are odd composites
that pass Miller’s Test for all b in B.

Primality testing is a very active area of current mathematical research. What
we have discussed in this chapter admittedly just scratches the surface. For the
sake of giving some sense of the breadth of this field, I’ll simply name some
important primality tests without giving any details. There are many special
purpose primality tests that work specifically on numbers of a special form, for
example, Mersenne numbers 2p − 1 (Lucas-Lehmer Test) or Fermat numbers
22n + 1 (Proth’s Test). There have also been tremendous progress on general
purpose primality tests applicable to all numbers and quite effective for testing
the primality of numbers up to about 100 digits. These include the quadratic sieve
and number field sieves of Carl Pomerance, the quadratic Frobenius primality test,
and even the use of elliptic and hyperelliptic functions. On a theoretical level,
however, these algorithms grow exponentially and so could become infeasible as
the size of the input gets really large.

A major theoretical, if not actually practical, breakthrough was made in 2002
by a team of computer scientists at the Indian Institute of Technology in Kanpur.
The researchers M. Agrawal, N. Kayal, and N. Saxena developed an algorithm
that tests for primality in polynomial time! A number n has approximately log
n digits. Their algorithm has been proven to have running time of order log12 n,
and may run in order of log3 n subject to unproven but widely believed number
theoretic hypotheses. Even though the algorithm may not yet be of significant
aid for the numbers typically used in practice, it is a very significant, clever, and
elegant addition to the field of primality testing.

Since we began this chapter with Fermat’s Little Theorem, it’s fitting to end
with some further comments on it. If p is a prime number and b is any number
with 1 ≤ b ≤ p − 1, Fermat’s Little Theorem says that bp−1 ≡ −1 (mod p). So
by adding all of them, we obtain

1p−1 + 2p−1 + . . . + (p − 1)p−1 ≡ p − 1 ≡ −1 (mod p).

In 1950, the Italian mathematician, Giuseppe Giuga, asked whether the converse
is true. Namely, given an odd number n, if it turns out that 1n−1+2n−1+. . .+(n−
1)n−1 ≡ −1 (mod n), must n be a prime? Guiga conjectured that the converse
is true and he verified the truth of the converse for n up to 101,000. If so, then
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Guiga’s conjecture would be another bona fide primality test, though admittedly
more of aesthetic rather than practical value. In 1985, E. Bedocchi extended
the verification to 101,700. More recently, in 1996 D. Borwein, J. Borwein, P.
Borwein, and R. Girgensohn have extended this bound to 1013,887. These bounds
are the result of a wonderful cooperation between mathematicians and machines.
Modern computers can calculate at awe-inspiring speed, but the basis for those
calculations and the development of efficient uses of the computer remain the
domain of human beings.

Recall that n is a Carmichael number if and only if for all p dividing n, that
p − 1 divides n − 1. Similarly, we define n to be a Giuga number if for all p
dividing n, that p also divides the number n

p
− 1. The smallest example is the

number 30. Guiga proved that if n is a counterexample to his conjecture, then n
must be both a Carmichael number and a Guiga number. Such a number would
necessarily have at least eight prime factors. Guiga’s conjecture remains open.
Progress could be made by anyone. Care to try?

WORTH CONSIDERING

1. Evaluate the Euler phi function, φ(n), for the following values of n: 3, 5,
15, 24, 48, 101, 105, 1,000.

2. (a) Show that the function φ is multiplicative, that is, if gcd (m, n) = 1,
then φ(mn) = φ(m)φ(n).

(b) Show that φ(pt ) = pt−1 (p − 1) for p prime.

(c) Conclude that if n =
m∏

i=1
p

ti
i , then φ(n) =

m∏
i=1

p
ti−1
i (pi − 1).

(d) How many positive integers one billion or less are not relatively prime
to one billion?

3. Use the Euler-Fermat Theorem to show that is n is relatively prime to 10, then
there is an integer consisting solely of a string of 9’s that is a multiple of n.

4. Show that
n∑

d|n
φ(d) = n.

5. (a) Factor the Carmichael number 15,841.

(b) Verify that 41,041 is a Carmichael number. In fact, it is the smallest such
number consisting of four distinct prime factors.

6. (a) Apply Lucas’s Primality Test to n = 67.

(b) What does Lucas’s Primality Test say about the number n = 91?

7. Verify that 1,105 is a psp(2) and psp(3). (It is the smallest such example.)

8. C. Malo’s proof of infinitely many pseudoprimes (1903):
(a) Let r be a pseudoprime and let r ′ = 2r − 1. Show that r ′ is composite.

(b) Show that 2r ′−1 ≡ 1 (mod r ′)
(c) Conclude that there are infinitely many pseudoprimes.



14 Erdös Number Zero

Paul Erdös

There once lived a man who ate, drank, and breathed mathematics all day long,
day in and day out, year after year. He thought only about mathematics—solving
interesting problems, challenging others with countless new arcane puzzles, lis-
tening and sharing his thoughts with anyone who was interested (and even with
those who were not). He had almost no personal possessions and no permanent
residence. For nearly 60 years, he traveled from city to city and continent to
continent sharing his love of mathematics, inspiring countless young mathemati-
cians, and collaborating with hundreds of fellow practitioners. In all he wrote
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or co-wrote over 1,500 mathematical articles. He walked among us until quite
recently. Here is a bit of his story.

Paul Erdös was born in Budapest, Hungary, on March 26, 1913, the son of
math and physics teachers, Anna and Lajos Erdös. Paul’s two older sisters died
of scarlet fever while his mother convalesced in the hospital following his birth.
This family tragedy resulted in a very close but overly protective home envi-
ronment where Paul was home schooled while his mathematical genius quickly
flowered. Unfortunately, it also resulted in a socially awkward and eccentric
individual who depended heavily on the care and goodwill of his friends and
colleagues.

Like the mathematical giant Carl Friedrich Gauss, Erdös’s mathematical tal-
ents blossomed early. At age three Paul discovered negative numbers when he
correctly subtracted 250 from 100. By age four he could multiply two three-digit
numbers in his head. He often entertained family friends by asking them for their
birthday and then telling them the day of the week on which it occurred. To top
that, he would then let them know how many seconds they had been alive!

At a young age Paul’s father taught him two theorems about primes: (i) that
there are infinitely many primes (Theorem 1.1), while at the same time (ii) there
are arbitrarily large gaps between successive primes (Theorem 1.2). To Paul, the
results seemed almost paradoxical, but they led to a deep fascination with the
prime numbers and to a quest for a better understanding of their complicated
arrangement. Again, like Gauss, an early fascination with number theory was the
impetus for Erdös’s lifetime dedication (some might say addiction) to the world
of mathematics.

Another early mathematical influence was the Hungarian Journal for Sec-
ondary Schools, commonly called KoMal. The most popular part of the journal
was a regular problem section where student solutions were published and indi-
vidual credit was given for correct solutions. At the end of the year the pictures
of the most prolific problem solvers were included in the journal. In this way, the
most ingenious mathematics and science students were introduced to one another.
In this sense, Paul’s “publications” began when he was barely 13 years old.

Erdös’s first significant result was a novel elementary proof of Bertrand’s
Postulate. In 1845, the French mathematician Joseph Bertrand (1822–1900), a
child prodigy himself who was attending lectures at the Ecole Polytechnique
at age 11, conjectured that for any natural number n > 1, there was always
a prime between that number n and its double 2n. Bertrand himself verified
the conjecture for all n up to three million, but he was unable to prove it in
general. Five years later, the Russian Pafnuti Lvovich Chebyshev (1821–1894)
proved the result, though the name Bertrand’s Postulate seems to have stuck in
perpetuity. Chebyshev’s proof was brilliant, but it was also difficult and relied
heavily on analytic methods (advanced calculus). At age 18, Erdös created a
wholly new proof, which, though quite intricate, was elementary in the sense that
no calculus or other seemingly superfluous analytical methods were employed. In
fact, this proof together with other related results on primes in various arithmetic
progressions constituted his doctoral dissertation.



ERDÖS NUMBER ZERO 141

Another early success was a generalization of a fascinating observation by
one of his close friends. Esther Klein noticed and proved that for any five points
in the plane, no three collinear, it must always be the case that four of them can
be chosen, forming the vertices of a convex quadrilateral. (A convex shape is
one in which if any two points within it are chosen, then the line joining those
two points lies entirely within the shape itself.) Paul Erdös and George Szekeres
were able to extend this to a more general result. They demonstrated that for
any number n there is a corresponding number N , so that any N points in the
plane (with no three collinear) have a subset of n points that form a convex
n-sided polygon. Since Esther and George became romantically involved during
this period and later married, the result was dubbed the Happy End Problem.
Furthermore, Erdös and Szekeres conjectured that in fact the smallest such N

will always be equal to 2n−2 + 1. Interestingly, the more general conjecture still
has not been proven. However, the Happy End Problem was a harbinger of much
of Erdös’s later work—fruitful collaborations, beautiful theorems, and tantalizing
conjectures. A good theorem often spawns more questions than it answers.

Erdös also proved a neat result about abundant numbers. Let s(n) represent
the sum of all the proper divisors of n (i.e., all positive divisors except n itself).
Then n is called deficient, perfect, or abundant, depending on whether s(n) is
less than, equal to, or greater than n, respectively. Such numbers have been
studied since the time of Pythagoras. (See Chapter 5 for more background.)
The German mathematician Issai Schur (1875–1941) conjectured that the set
of abundant numbers had positive density. That is, let A(x) be the number of
abundant numbers less than or equal to x, then Schur’s conjecture states that
limx→∞ A(x)

x
exists and is strictly greater than zero. Erdös gave a wonderful

proof of this. When Schur heard about the success of the young Hungarian, he
dubbed him “the magician of Budapest.”

With life in Hungary ever worsening for Jewish intellectuals, Erdös obtained a
fellowship at the University of Manchester in England. Luckily, Erdös cancelled
his original plan, which was to tour Germany. So in 1934, he headed off for
England, first visiting Cambridge University and then on to Manchester. Thus
began his mathematical travels and worldwide collaborations, an adventure that
did not abate until the day he died.

It would be 14 years before Erdös was able to return to Budapest and be
reunited with his mother, who had miraculously survived the war. Unfortunately,
Paul’s father died during this period and four out of five of his aunts and uncles
perished in the Holocaust. Paul’s beloved mother spent much of the rest of her
life traveling with her son and utilizing her apartment as a repository for his
ever-increasing mountain of reprints.

Though Erdös’s relationship with the American government was generally
harmonious, things soured during the McCarthy era. In 1954 while on a temporary
faculty position at Notre Dame, Erdös wished to attend the International Congress
of Mathematicians being held in Amsterdam. Knowing that he came from a
Communist country, an agent from the Immigration and Naturalization Service
interviewed Erdös and asked him what he thought of Karl Marx. Erdös replied
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forthrightly, “I’m not competent to judge. But no doubt, he was a great man.”
Perhaps due to this incident, Erdös was denied a re-entry visa to the United States
after attending the Congress. Fortunately, strong support and numerous letters to
senators and congressmen finally resulted in Erdös being allowed to return to the
United States in 1959. From that point on, he could come and go freely—and
he certainly did.

To all who knew Erdös, it appeared as though he spent 99 percent of his wake-
ful hours obsessed with doing mathematics (although he somehow developed a
deceptive skill at both table tennis and the game of go). Twenty hours of work
a day was not at all unusual. Upon arriving at a professional meeting, he would
announce in his thick accent, “My brain is open.” At parties, he would often
stand apart, deep in thought pondering some abstruse mathematical argument.
When being introduced to a math graduate student still struggling to complete
a dissertation, Erdös would typically ask, “What’s your problem?” One would
normally be taken aback by such a remark if it were uttered by a stranger in
less friendly surroundings, but with Erdös it was clearly meant as a genuine
open-armed welcome. It meant he took you seriously as a fellow dweller in his
mathematical world.

One of Erdös’s greatest triumphs was his elementary proof of the Prime Num-
ber Theorem (PNT). The PNT describes the asymptotic distribution of the prime

George Bernhard Riemann
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numbers and variants of it were conjectured by both Gauss and Legendre in the
late 1700s. Specifically, let π(x) be the number of primes less than or equal to
x and let Li(x) = ∫ x

2
1

log t
dt where log is the natural logarithm function. The

PNT states that the limx→∞ π(x)
Li(x)

= 1, that is, the number of prime less than x

is asymptotic to Li(x).
Significant progress toward a proof of the PNT was made by Chebyshev in

the 1850s and by George Bernhard Riemann (1826–1866) in 1859. Riemann’s
contribution was based on a deep and careful study of the complex-valued zeta
function, now celebrated as the Riemann zeta function. Finally, in 1896 the
French mathematician Jacques Hadamard (1865–1963) and the Belgian math-
ematician Charles Jean de la Vallée Poussin (1866–1962) each independently
proved the result using delicate arguments from complex function theory. Indeed
many feel that the proof of the PNT was the mathematical capstone of the nine-
teenth century.

In the first half of the 20th century, the search for an “elementary” proof of
the PNT seemed completely hopeless. However, in 1949 Paul Erdös and the Nor-
wegian mathematician Atle Selberg, working in tandem but not together, found
such proofs. Selberg appropriately won a Fields Medal for his work while Erdös
won the prestigious Cole Prize in algebra and number theory for his contri-
bution.

Another area that fascinated Erdös was classical Ramsey theory, which descri-
bes the number of ways of partitioning a set into a given number of subsets
under certain particular constraints. The party problem is the classic example:
at least how many people must there be so that there are either three mutual
friends or three mutual strangers at a party? Here we make the amicable assump-
tion that whoever you know is a friend. (Equivalently, we could discuss mutual
acquaintances and nonacquaintances.)

A little graph theory background is helpful. A graph G consists of a set
of vertices together with some set of lines, each of which adjoin two vertices.
Vertices are said to be adjacent if there is a line adjoining them. Furthermore,
the degree of a vertex is the number of lines emanating out from that vertex,
equivalently it’s the number of adjacent vertices. Given a graph G, a closely
related graph is its complementary graph, G. The complementary graph has the
same vertex set as G. However, two vertices are adjacent in G if and only if
they are not adjacent in G. Finally, define the complete graph on n vertices to
be the graph Kn, which consists of n vertices each of degree n−1, that is, every
vertex is connected to every other one.

We can represent the relations among people at a party by a graph. Each vertex
stands for an individual party-goer. If two people are friends, then they are joined
by a line. If they are strangers, then no line is drawn. In Figure 14.1a we have
drawn a “friendship” graph G for a party involving five people. Notice that there
are no triangles, and hence no set of three mutual friends. (Not much of a party,
huh?) The graph G is shown in Figure 14.1b. Again there is no triangle. Hence
there is no set of three mutual strangers at the party either. However, with six
people present at the party the situation changes.
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Amy

Peter Andrew

Lucy Gabrielle

Figure 14.1a Five person friendship graph G with no triangle.

Amy

Peter Andrew

Lucy Gabrielle

Figure 14.1b Complementary graph G.

Theorem 14.1: A party with six or more people will consist of a set of three
mutual friends or three mutual strangers.

Proof of Theorem 14.1: Let G be the friendship graph for any particular party
with six people and let G be its complementary graph. For any given vertex v , the
sum of its degrees in G and G is five because everyone else is either a friend or a
stranger. Without loss of generality, assume that the degree of v in G is at least
three. Let v be adjoined to v1 , v2 , and v3 . If any of those vertices are adjacent,
then there would be a triangle in G formed from v and the two other points
corresponding to three mutual friends. Otherwise, v1 , v2 , and v3 are mutually
nonadjacent corresponding to three mutual strangers. To complete the proof, note
that any larger party contains a subset of six people which we have shown satisfies
the theorem. �

More generally, define r(m, n) to be the smallest integer r such that if the edges
of a complete graph on r vertices are colored one of two colors, then there must
be a complete subgraph on m vertices of one color or a complete subgraph of
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n vertices of the other color. So Theorem 14.1 can be rephrased to assert that
r(3, 3) = 6. The values of r(3, n) are also known for n = 4, 5, 6, 7, and 9. In
addition, with significantly more work it has been shown that r(4, 4) = 18. So
a party with 18 or more people must contain a group of four mutual friends or
four mutual strangers. Erdös proved that r(m, n) ≤ (m+n−2)!

(m−n)!(2n−2)! , the number of
combinations of m + n − 2 objects chosen m − n at a time. Furthermore, Erdös
offered $250 to anyone who could prove that limn→∞ r(n, n)1/n exists. If the
limit does exist, it is known to be between

√
2 and 4. Interestingly, the value

of r(5, 5) is still unknown, though it must be at least 43 and at most 49. Erdös
was fond of saying that if an evil spirit was going to destroy the world unless
r(5, 5) could be determined, then it would be prudent for all nations to devote
all its resources to this problem. On the other hand, if the evil spirit insisted on
knowing r(6, 6), then it would make better sense to devote all our resources to
destroy the evil spirit!

Erdös not only loved working on difficult problems and proving challenging
theorems, but he always strived for the most elegant and direct proof. He had
unusual religious views and referred to the Almighty as the SF (for Supreme
Fascist). Erdös felt that he was forever in the midst of an ongoing personal
battle with the SF. However, one positive aspect of this was the SF kept a secret
book, The Book, which had all the theorems that would ever or could ever be
discovered along with the simplest and most elegant proofs for each one. The
highest compliment Erdös would give was that someone’s proof was “one from
The Book.”

Here are a sampling of some his theorems, and although the proofs would be
inappropriate here, many certainly would qualify as being one from The Book.

1. There are infinitely many odd integers that are not expressible as the sum
of a prime number and a power of two.

2. The product of two or more consecutive positive integers is never a square
or any other higher power.

3. A connected graph with minimum degree d and at least 2d +1 vertices has
a path of length at least 2d + 1.

4. Let d(n) be the number of divisors of n. Then the series
∑∞

n=1
d(n)
2n con-

verges to an irrational number.
5. Let g(n) be the minimal number of points in general position in the plane

needed to ensure a subset exists that forms a convex n-gon (from the Happy
End Problem). Then 2n−2+1 ≤ g(n) ≤ (2n−4)!

(n−2)!2 +1. (Fan Chung and Ronald
Graham have recently removed the “+1” from the upper bound!)

To keep this chapter from being overwhelmingly expository, we can include one
beautiful theorem with a truly elementary proof. The result itself deals with basic
properties of finite real-numbered sequences. We begin with a question for you.

Can you somehow jumble up the sequence 1, 2, 3, 4 so that there is no 3-
term increasing subsequence nor any 3-term decreasing subsequence? Note that
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a subsequence does not have to consist of consecutive elements of the original
sequence; rather we only insist that their order remain unchanged. For example,
1, 3, 2, 4 has no 3-term decreasing sequence, but it does have 1, 2, 4 as a 3-term
increasing sequence. No doubt you’ve discovered that 3, 4, 1, 2 (or its reverse
2, 1, 4, 3) has no 3-term subsequence that either strictly increases or decreases.
There is another pair that I’ll let you find for yourself. Also note that this problem
made no use of the arithmetic properties of the natural numbers. It just seemed
more natural to introduce the problem this way.

What about the same question for the sequence 1, 2, 3, 4, 5? Can you mess up
the numbers somehow so that there is no 3-term increasing nor 3-term decreasing
subsequence? After a short while, you should be amply convinced that in this
case the answer is no. In fact, all rearrangements of 1, 2, 3, 4, 5 will have some
3-term subsequence that either increases or decreases. A quick way to verify
this is to take all the 4-term sequences of 1, 2, 3, 4 that had no such 3-term
subsequence and insert the number 5 in all possible positions (intermediate or
at either end). For example, take the sequence 3, 4, 1, 2. Both sequences 5, 3,
4, 1, 2 and 3, 5, 4, 1, 2 have decreasing subsequence 5, 4, 2. In addition, the
sequences 3, 4, 5, 1, 2 and 3, 4, 1, 5, 2 and 3, 4, 1, 2, 5 all have increasing
subsequence 3, 4, 5. Now check this on the other cases.

Ready for a tougher challenge? Can you jumble up the sequence 1, 2, 3, 4, 5,
6, 7, 8, 9 so that there is no 4-term increasing subsequence or 4-term decreasing
subsequence? There are 9! = 362,880 ways to rearrange the first nine digits, but
even so you may hit on a solution. If you’re ready to take a look, here’s one
solution: 3, 7, 2, 1, 9, 5, 4, 8, 6.

Okay then, what about the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10? Now there are
10! = 3,628,800 permutations and things are getting a bit unwieldy. Here’s where
a good mathematical theorem is needed. The following theorem was proved by
P. Erdös and G. Szekeres in an article entitled, “A Combinatorial Problem in
Geometry,” Compositio Math., 1935. As a consequence, all permutations of the
numbers 1 to 10 must have either a 4-term increasing subsequence or 4-term
decreasing subsequence.

Theorem 14.2: In any sequence a1 , a2 , . . . , amn+1 of mn +1 distinct real num-
bers, there always exists either an increasing subsequence of length m + 1 or a
decreasing subsequence of length n + 1 (or both).

Proof of Theorem 14.2: Consider the sequence a1 , a2 , . . . , amn+1 . For each
ai (1 ≤ i ≤ mn + 1 ), let si be the length of the longest increasing subsequence
starting at ai . To check your understanding, here is the chart for the sequence 1,
5, 3, 4, 2:

ai 1 5 3 4 2

si 3 1 2 1 1

If si ≥ m + 1 for some i , then we are done since there would be an increasing
subsequence of length at least m + 1 . Otherwise, si ≤ m for all i . In this case,
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consider the function f (ai ) = si defined for all i . The domain of f is the set
{a1 , a2 , . . . , amn+1 }, and the co-domain of f is the set {1 , 2 , . . . , m}. Recall
that the co-domain of a function is the set from which the range of f must choose.
No matter how equally distributed the values of f are, by the pigeonhole principle
there is a value t from among {1 , 2 , . . . , m} such that f (ai ) = t for at least
mn+1

m = n + 1
m such ai . But the number of such ai must be an integer. Thus

there is a value t for which f (ai ) = t for at least n + 1 such arguments. In
particular, let aj1 , aj2 , . . . , ajn+1 with j1 < j2 < . . . < jn+1 be these numbers.
For i = 1 , 2 , . . . , n, it must be the case that aji > aji+1 or else there would
be an increasing subsequence of length t + 1 beginning at aji , contradicting the
assumption that f (aji ) = t . But then it must be the case that aj1 > aj2 > . . . >

ajn+1 , a decreasing subsequence of length n + 1 . �

Nothing was more exciting to Erdös than to discover a mathematically talented
child and to excite him or her about doing mathematics. In 1959, Erdös arranged
to have lunch with a very precocious 11-year old, Lajos Posá. Erdös challenged
the youngster to show why if n+1 integers are chosen from the set {1, 2, . . . , 2n},
then there must be two chosen numbers that are relatively prime. Clearly the set
of even numbers less than or equal to 2n does not have this property, showing
that just choosing n integers is insufficient. According to Erdös, within half a
minute Posá solved the problem by making the striking observation that two
consecutive integers must always be chosen and they are necessarily relatively
prime. Erdös commented that rather than eating soup, perhaps champagne would
have been more appropriate for this occasion!

Erdös’s greatest influence on fellow mathematicians, young and old alike,
was his continual outpouring of new conjectures coupled with various mone-
tary rewards. Some problems had a price tag of just a few dollars while others
went for several thousand dollars. To solve an Erdös problem is considered a
great accomplishment, and the larger the reward the more difficult Erdös con-
sidered the problem to be. Erdös was often asked what would happen if all his
problems were solved simultaneously. Could he possibly pay up? His answer
was that of course he could not. Then he’d add, “But what would happen if
all the depositors went to every bank and demanded all their money?” Cer-
tainly the banks could not pay; and yet this latter scenario is far more likely to
occur.

Here are a few outstanding conjectures and open problems from Erdös:

1. Do there exist infinitely many primes p such that every even number less
than or equal to p−3 can be expressed as the difference between two primes
each at most p? For example, 13 is such a prime since 10 = 13 − 3, 8 =
11 − 3, 6 = 11 − 5, 4 = 7 − 3, and 2 = 5 − 3. The smallest prime not
satisfying this condition is p = 97.

2. For every integer n are there n distinct integers for which the sum of any
pair is a square? For example, for n = 5, the numbers −4,878, 4,978,
6,903, 12,978, and 31,122 have this property.
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3. Is there a polynomial P (x) for which all sums P(a) + P(b) are distinct
for 0 ≤ a < b? For example, P(x) = x3 doesn’t work since 103 + 93 =
123 + 13. However, P(x) = x5 is considered to be a likely candidate.

4. Are there infinitely many primes p for which p − n! is composite for all n

such that 1 ≤ n! ≤ p? For example, for p = 101, p − n! is composite for
n = 1, 2, 3, and 4. (Erdös conjectured that the statement is false.)

5. A natural number is pseudoperfect if it is abundant and also expressible as a
sum of some subset of its proper divisors. For example, 66 is pseudoperfect
since 66 is abundant and yet 66 = 11+22+33 where all terms are divisors
of 66. A number is weird if it is abundant but not pseudoperfect. For ten
dollars, are there any odd weird numbers?

6. A system of congruences ai (mod mi) for 1 ≤ i ≤ k where m1 < m2 <

. . . < mk is a covering system if every integer satisfies at least one of the
congruences. For example, 0 (mod 2), 0 (mod 3), 1 (mod 4), 5 (mod 6), and
7 (mod 12) form a covering system. Given any positive integer c, is there
a covering system with m1 ≥ c? (Currently c = 24 is the largest value that
has been constructed.) Another open question of Erdös and John Selfridge
asks whether there is a covering system with all moduli odd integers.

7. A $5,000 conjecture: Let A = {ai} be any sequence of natural numbers
for which

∑∞
i=1

1
ai

diverges. Is it true that A must contain arbitrarily long
arithmetic progressions? If so, one corollary would be that the set of primes
contains arbitrarily long arithmetic progressions. Currently the record is 22
primes in arithmetic progression (due to A. Moran and P. Pritchard, 1993).
Additionally, a set of 10 consecutive primes in arithmetic progression is
known (H. Dubner et al., 1998). Each prime is 93 digits long!

Erdös was almost as well-known for his eccentricities as he was for his brilliant
mind. By his own admission, Erdös never attempted to butter his own toast until
he was already an adult. “It turned out not to be too difficult,” he admitted. Many
mathematicians have had the experience of either walking or driving Erdös to
his next commitment, only to learn after some time that he assumed you knew
where he was supposed to be going.

Erdös had an aversion to old age and its concomitant infirmaries as well as
an obsession with death itself. When breaking off work for the night he would
say, “We’ll continue tomorrow—if I live.” At age 60, Erdös started appending
acronyms to his name. The letters pgom stood for “poor great old man.” Five
years later he added ld for “living dead” and so on. Eventually he got to cd,
denoting “counts dead.” This was explained as follows: The Hungarian Academy
of Sciences has a strict limit on the total number of members that it can have at
one time. However, once you reach the age of 75, you can still remain a member
but you are no longer counted among the total. Therefore, at that point, you are
counted as if you were dead.

When asked, “How old are you?,” Erdös would answer that he was two-and-a-
half billion years old. After all, when he was a child he was taught that the earth
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was two billion years old and now they say that it’s four-and-a-half billion years
old! Some say that Erdös was the Bob Hope of mathematicians. Not only did he
share his humorous stories and witticisms, but he traveled widely and through his
lectures raised the morale of the mathematical troops. He called such lecturing
“preaching,” an appropriate term for someone so dedicated to the importance of
spreading the good mathematical word.

The shorthand language that Erdös used is oft referred to as Erdösese. An
epsilon was a child, poison meant alcoholic drink (which he scrupulously avoi-
ded), noise referred to music, boss was wife, and slave was husband. If someone
was captured that meant he or she was married, while liberated stood for
divorced. If a mathematician stopped publishing he died, while actually dying
was referred to as having left. Nothing bothered Erdös more than political stric-
tures that did not allow for complete freedom of expression and the ability to
travel unhindered. The Soviet Union was called Joe (for Joseph Stalin) and the
United States was known as Sam.

No account of Paul Erdös would be complete without mentioning the con-
cept of Erdös numbers. Erdös himself had Erdös number zero. Anyone who
co-authored a paper with him (there are 507 such people) have Erdös number
one. Those who did not, but who co-authored a paper with Erdös number one
are assigned Erdös number two (of which there are currently at least 5,019 such
people), and so on. Like golf, the lower the number, the more prestigious the
result. The largest Erdös number believed to exist is seven. Erdös himself added
an interesting twist for those with whom he directly collaborated. Instead of
all having Erdös number one, he claimed that someone co-authoring n papers
should be assigned number 1/n. The lowest Erdös number in this case would be
held by Andras Sarkozy with number 1/57—just edging out Andras Hajnal with
number 1/54.

Paul Erdös received countless honorary degrees and his work was and contin-
ues to be the focus of many international conferences. In 1984, Erdös received
the highly prestigious Wolf Prize for his lifetime’s contributions to the world
of mathematics. Of the $50,000 awarded, he immediately donated $49,280 to
an Israeli scholarship named in memory of his mother. On other occasions, he
donated money to Srinivasa Ramanujan’s widow, to a student who needed money
to attend graduate school, to a classical music station, and to several Native
American causes. Always traveling with a single shabby suitcase that doubled as
a briefcase, he had little need or interest in the material world. He had no home
and precious few possessions. Without hesitation, he once asked the versatile
Canadian mathematician Richard Guy for $100 adding, “You’re a rich man.”
Richard Guy gladly gave him the money. Later Guy poignantly noted, “Yes, I
was. I knew Paul Erdös.”

Paul Erdös was an extremely creative and versatile mathematician. His work
spanned number theory, geometry, graph theory, combinatorics, Ramsey theory,
set theory, and function theory. He helped create new areas of inquiry—probabili-
stic number theory, extremal graph theory, the probabilistic method, and much
of what is now broadly referred to as discrete mathematics. The vast quantity of
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his research output alone qualifies him as the Euler of our age. He far surpassed
Einstein’s litmus test for success, which was to be highly esteemed by one’s
colleagues rather than to be popularly well-known. Once during a lecture by
the late number theorist Daniel Shanks, a long computer-generated computation
resulted in a 16-digit number. Shanks, who was not known for sprinkling praise
lightly said, “I don’t know if anyone really understands numbers like these—well,
maybe Erdös.”

A fantasy that Paul Erdös had was that he’d die in the midst of giving a
lecture. After proving an interesting result, a voice from the audience would
pipe up, “But what about the general case?” Erdös would reply, “I leave that to
the next generation,” and then immediately drop dead. In fact, Erdös left us on
September 20, 1996, while attending a mathematics conference in Warsaw—not
so different from his fantasy.

So . . . was he one of the greatest mathematicians of the last century? Echoing
Erdös himself, I’m not competent to judge. But no doubt he was a great man.

WORTH CONSIDERING

1. Prove that there are infinitely many primes of the form 4k+3. Hint: Assume
otherwise and consider the number N = 4p1 · · · pn − 1 where p1, . . . , pn

are all primes congruent to 3 modulo 4.

2. Verify Bertrand’s Postulate for 1 < n < 1,000.

3. (a) Verify that the number 945 is an abundant number. In fact, it is the
smallest odd abundant number.

(b) Show that there are infinitely many odd abundant numbers.

4. Find all values of n for which σ(n) = 12.

5. (a) Show that any multiple of a perfect or abundant number must be abun-
dant.

(b) Verify that 46 cannot be expressed as the sum of two abundant numbers.

(c) Show that any even number greater than 46 can be expressed as the sum
of two abundant numbers. (Hint: Use the fact that 12, 20, 40, and all
multiples of 6 are abundant numbers.)

6. Verify that for every prime p less than 97, every even number at most p − 3
can be expressed as the difference between two primes, each at most p.

7. A related pair of unproven conjectures:

(a) In 1948, P. Erdös and E.G. Straus conjectured that the equation 4
n

=
1
x

+ 1
y

+ 1
z

is solvable in positive integers for all n > 1. Verify the result
for n ≤ 12.

(b) In 1956, W. Sierpı́nski conjectured that the equation 5
n

= 1
x

+ 1
y

+ 1
z

is
solvable in positive integers for all n > 1. Verify this result for n ≤ 12.
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8. Rearrange the numbers 1, 2, 3, 4, 5, 6 so that there is no 4-term increasing
subsequence nor 3-term decreasing subsequence.

9. Give an example of a weird number, namely one that is abundant but not
pseudoperfect.

10. (a) In 1937, Erdös asked the following, “What is the largest number of
elements that can be chosen from the set S = {1, 2, . . . , 2n} so that
none divides any other?” What is the answer?

(b) What is the largest number of elements from the set {1, 2, . . . , n} that
can be chosen so that no member divides two of the others?



15 Choosing Stamps to Mail
a Letter, Let Me Count the Ways

Suppose you wish to mail a 20-cent postcard and have an inexhaustible supply
of stamps of all denominations. How many choices do you have in selecting the
stamps? For example, you might choose one 20-cent stamp, or you might choose
three 5-cent stamps and five 1-cent stamps, or you might choose a 10-cent stamp
and five 2-cent stamps, etc. In addition to the three possibilities just listed, you
might be surprised to learn that there are 624 additional possibilities. That’s right,
there are 627 ways to choose stamps to mail a 20-cent postcard. And what about
a 37-cent first-class letter? Here there is a whopping 21,637 possible selections!
Maybe it’s really easier to just stick with e-mail after all.

Mathematically, we don’t really care about physical stamps, but rather about
the number of ways to sum to a given total. In the 17th century, G.W. Leibniz
fiddled around with this for awhile. He attempted to discover a formula that
would give the number of ways of summing to any given natural number n. After
some time, he gave up in frustration, but did write to Johann Bernoulli that the
problem was certainly “difficult and interesting.” The function was soon called the
partition function and many mathematicians and other natural philosophers began
to study it. In particular, let n be an integer. A partition of n is a representation of
n as a sum of positive integers; the terms are called the parts of the partition. The
total number of essentially distinct partitions is denoted by p(n). In distinguishing
among partitions, order doesn’t matter. So 5+3+2 and 2+3+5 are considered to
be the same partition of the number 10. Hence p(n) is known as the (unordered)
partition function.

In the 18th century, Leonhard Euler made a host of wonderful discoveries
about the partition function. With his usual commanding insight, he discovered
several interesting connections between partitions of different forms. Though he
did not discover an actual formula for p(n), he did develop a clever method
of calculating the number of partitions of n based on knowing the answer for
smaller arguments. In this chapter we will discuss and amplify some of Euler’s
discoveries. But first let’s dispose of the much easier problem of counting all
the ordered partitions. The analogous function is the composition function c(n),
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Gotifried Wilhelm Leibniz

which stands for the number of ways of summing to n with the order of the parts
counting. In this case, 5 + 3 + 2 and 2 + 3 + 5 would constitute two different
compositions of the number 10. There is a straightforward method of representing
compositions which will provide the solution to our problem.

Given a composition of n, we can represent it graphically by placing n dots in
a row and divide them appropriately. For example, the composition of 10 given
by 5 + 3 + 2 would be drawn as

• • • • •|• • • |• •

while the composition 2 + 3 + 5 would be represented this way:

• •|• • •|• • • • •

Each composition of 10 consisting of three parts corresponds to a diagram with
ten dots and two lines placed among them. In addition, we can’t place the two
lines next to each other since each part must be a number greater than or equal
to one. Conversely, any choice of two separated lines corresponds to a unique
composition of 10. Since there are nine gaps between the ten dots and two lines
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to be placed, the total number of compositions of 10 consisting of three parts is
the binomial coefficient

(9
2

) = 9!
2!7! . Similarly, the number of compositions of 10

consisting of four parts is
(9

3

)
, and the number of compositions of 10 consisting

of n parts is
( 9
n−1

)
. But compositions of 10 could have any number of parts from

just one (the composition 10) to ten (the composition consisting of the sum of ten
ones). Therefore, the total number of compositions of 10 is

(9
0

)+. . .+(9
9

)
. But this

is the sum of all entries across the ninth row of Pascal’s triangle corresponding
to the total number of subsets of the number 9. We know this number is 29.
Similarly, the number of compositions of the number n, c(n), is 2n−1.

We now return to our main concern, that of (unordered) partitions. Since the
order of terms does not matter, we may assume that for any given partition that
the terms are listed in nonincreasing order. For example, the partitions of 5 are 5,
4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1. A clever idea of
N.M. Ferrers (1829–1908), one-time Senior Wrangler at Cambridge University,
is to depict partitions visually as an array of dots, now called Ferrers’s graphs.
For example, the partition 3 + 2 is represented as

• • •
• •

while the partition 2 + 1 + 1 + 1 is given by

• •
•
•
•

A Ferrers’s graph of a partition can be read from top to bottom or from left
to right. Hence the first partition of 5, namely 3 + 2, can also be interpreted as
2+2+1. This is known as the conjugate partition. Similarly, the second partition
of 5, that is, 2 + 1 + 1 + 1, has conjugate partition 4 + 1. Thus, two immediate
consequences of Ferrers’s graphs are the following:

Proposition 15.1: The number of partitions of n into k parts is equal to the
number of partitions of n with largest part k.

Proposition 15.2: (a) The number of partitions of n into an even number of parts
is equal to the number of partitions of n with largest part an even number.

(b) The number of partitions of n into an odd number of parts is equal to the
number of partitions of n with largest part an odd number.

For example, the partitions 3 + 2 and 3 + 1 + 1 are the two partitions of 5
with largest part 3. Their conjugate partitions, 2 + 2 + 1 and 3 + 1 + 1, are the
two partitions of 5 into three parts. By the way, the partition 3 + 1 + 1 is known
as a self-conjugate partition.
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Next we introduce the notion of generating functions, a key concept in many
areas of mathematics. Recall that the geometric series 1+x +x2 + . . . converges
absolutely to the function 1

1−x
for |x| < 1. Similarly, the geometric series 1 +

xk + x2k + . . . converges absolutely to 1
1−xk for |x| < 1. If we multiply the two

series together corresponding to k = 1 and k = 2, then we obtain

1

(1 − x)(1 − x2)
= (1 + x + x2 + x3 + x4 + . . . )(1 + x2 + x4 + . . . ).

Since each series converges absolutely we can multiply and collect like terms.
We obtain

1

(1 − x)(1 − x2)
= 1 + x + 2x2 + 2x3 + 3x4 + 3x5 + . . . (15.1)

Let us denote the number of partitions of a number n with largest part at most
k by p(n, k). For example, the partitions of 5 with largest part at most 2 are the
three partitions 2+2+1, 2+1+1+1, and 1+1+1+1+1. Hence p(5, 2) = 3. If
we look at the coefficient of x5 in Equation 15.1, we will see that it is 3. That is
due to the fact that each occurrence of x5 there corresponds to a sum of products
of x’s and x2’s. By the law of exponents, we add exponents when multiplying
quantities with the same base. For example, the partition 2+2+1 corresponds to
the product x2 ·x2 ·x1 while the partition 2+1+1+1 corresponds to the product
x2 · x1 · x1 · x1. Thus the left-hand side of Equation 15.1 is a generating function
for the partition function p(n, 2). We can thus rewrite Equation 15.1 as follows:

1

(1 − x)(1 − x2)
=

∞∑
n=0

p(n, 2)xn (15.2)

Here we define p(0, k) = 1 for any k ≥ 1. Analogously, we can extend our
product to contain m factors, thereby yielding a generating formula for p(n, m):

1

(1 − x)(1 − x2) · · · (1 − xm)
=

∞∑
n=0

p(n, m)xn (15.3)

If we extend the product so that k → ∞, then we obtain the generating function
for the partition function.

Proposition 15.3 (Generating Function for the Partition Function): Let P(x)

=
∞∏

k=1

1
1−xk . Then P(x) =

∞∑
n=0

p(n)xn for 0 < x < 1 . So P(x) is the generating

function for the partition function, p(n).

It’s quite instructive to actually use P(x) to calculate the first few terms of the
series. Let’s use the generating function to calculate the values of p(n) up to and
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including n = 6. In order to do so we can ignore any factors beyond x6:

P(x) = (1 + x + x2 + x3 + x4 + x5 + x6 + . . . )(1 + x2 + x4 + x6 + . . . )

(1 + x3 + x6 + . . . )(1 + x4 + . . . )(1 + x5 + . . . )(1 + x6 + . . . ) · . . .

Multiplying and simplifying carefully, we get

P(x) = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + . . .

Oftentimes we are more interested in special subclasses of partitions. Gen-
erating functions prove useful in describing and understanding them as well.
We begin with two definitions: Let pu(n) be the number of partitions of n into
unequal parts and let p(n, o) be the number of partitions of n containing odd
parts only. For example, the partitions of 5 into unequal parts are 5, 4 + 1, and
3 + 2. All other partitions of 5 include some repetition. Thus pu(5) = 3. The
partitions of 5 containing odd parts only are 5, 3 + 1 + 1, and 1 + 1 + 1 + 1 + 1.
Hence p(5, o) = 3 as well. Euler was the first to prove that in fact, for any n,
pu(n) equals p(n, o). I think you’ll agree that the result is hardly obvious.

It is an easy matter to determine the generating functions for each of these
special partition functions. Again, it is convenient to define pu(0) and p(0, o) to
be one. The justification for Proposition 15.4 is saved as an exercise. But please
multiply out the first few factors of each generating function in order to fully
understand what’s going on.

Proposition 15.4:

(a)

∞∏
k=1

(1 + xk ) =
∞∑

n=0

pu(n)xn .

(b)

∞∏
k=1

1

1 − x2k−1
=

∞∑
n=0

p(n, o)xn .

Proposition 15.5: For all n ≥ 0 , pu(n) = p(n, o).

We will provide two proofs of Proposition 15.5. The first one is really slick
and quite elegant. Even so, one might feel unsatisfied not really understanding
why there is a one-to-one correspondence between partitions with unequal parts
and partitions consisting solely of odd parts. The second proof is more direct in
that it sets up such a correspondence between the two types of partitions. In any
event, both proofs are very instructive and a joy to read and absorb.
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First Proof of Proposition 15.5 (L. Euler): By Proposition 15.4, it suffices to
show that ∞∏

k=1

(1 + xk ) =
∞∏

k=1

1

1 − x2k−1
.

But (1 + xk )(1 − xk ) = 1 − x2k . Hence

∞∏
k=1

(1 + xk ) =
∞∏

k=1

1 − x2k

1 − xk
.

On the right-hand side, the numerator contains all the even exponents, while
the denominator contains all exponents, odd and even alike. Hence all the even
exponent factors divide out. Thus

∞∏
k=1

1 − x2k

1 − xk
=

∞∏
k=1

1

1 − x2k−1
.

The result follows. �

The second proof we offer is due to the immensely versatile and talented
mathematician James Joseph Sylvester (1814–1897). Sylvester was born in Lon-
don and studied at Cambridge University, earning the rank of Second Wrangler.
However, being Jewish, he was barred from receiving a degree. Instead he earned
a degree at Trinity College in Dublin. Sylvester was a very prolific scholar and
held teaching posts at the Royal Military Academy at Woolrich as well as at
the University of Virginia and Johns Hopkins University. Sylvester contributed
several fundamental ideas in algebra and number theory—even coining the word
matrix, now ubiquitous even in the movies! Sylvester also delighted in sprinkling
apt quotations from ancient Greek and Latin literature within his papers. Though
as well known for his eccentricities and absentmindedness, Sylvester encouraged
and helped mold a new generation of mathematicians and was the principle force



CHOOSING STAMPS TO MAIL A LETTER, LET ME COUNT THE WAYS 159

behind the emergence of an American mathematical community. He made sev-
eral contributions to our understanding of the partition function, publishing his
final result in this area in 1896 at the age of 82.

Second Proof of Theorem 15.5 (J.J. Sylvester): On the one hand, let p be a
partition of n into unequal parts. For each part r of the partition p, we can express
r uniquely as 2 k m where m is odd. Now rewrite r as a sum of 2 k copies of m. By
then adding all the rewritten parts of p in this manner, we obtain a partition p′ of
n having odd parts only. Two different partitions of n into unequal parts cannot
be transformed to the same partition with odd parts only. If so there would have
to be two different sums of distinct powers of 2 being equal. But if we write the
numbers in binary, each power of 2 consists of a single one followed by all zeros.
When we then add distinct powers of 2, there are no carry overs, and thus the two
sums could not be equal.

On the other hand, let p′ be a partition of n into odd parts only. Suppose p ′
contains odd part m a total of k times (and perhaps other parts of other odd
sizes). Write k uniquely as a sum of distinct powers of 2. Then create new parts
by multiplying m by each such power of 2. Do the same for all odd parts of p′.
In this way, we create a new partition p of n consisting of unequal parts. By the
Fundamental Theorem of Arithmetic, 2 am1 �= 2 bm2 for distinct odd m1 and m2 .
Thus no two partitions of n with odd parts only can be transformed into the same
partition of n with unequal parts.

Therefore, for any given n we have constructed a one-to-one correspondence
between the partitions of n with odd parts only and partitions of n with unequal
parts. The result follows. �

An example to illustrate our second proof may be helpful. For example, con-
sider the partitions of n = 6 into unequal parts. They are 6, 5 + 1, 4 + 2, and
3 + 2 + 1. The partition 6 can be rewritten as 2 ·3. As such 6 gets transformed to
3+3, a partition with odd parts only. Similarly, 5 and 1 are rewritten as 1 ·5 and
1 · 1, and thus 5 + 1 becomes itself, 5 + 1. The partition 4 + 2 is 4 · 1 + 2 · 1, and
so becomes 1 + 1 + 1 + 1 + 1 + 1. Finally, 3 + 2 + 1 = 1 · 3 + 2 · 1 + 1 · 1, and
thus transforms to 3 + 1 + 1 + 1.

Here’s an example of how the construction works in the opposite direction.
Consider the partitions of n = 5 into odd parts only. They are 5, 3 + 1 + 1, and
1+1+1+1+1. The partition 5 contains only one copy of the odd part 5. Since
5 · 1 = 5, the partition 5 gets transformed to itself. Next consider 3 + 1 + 1. The
number 3 remains as 3, but 1 + 1 becomes 2. Hence 3 + 1 + 1 becomes 3 + 2.
Finally, 1 + 1 + 1 + 1 + 1 consists of five ones. Since 5 = 4 + 1, we rewrite
1 + 1 + 1 + 1 + 1 as 4 + 1. To check your understanding, you might wish to
reverse the process in our two examples.

Now we introduce another pair of functions based on two disjoint but distin-
guished subclasses of partitions. We have already discussed pu(n), the number
of partitions of n into unequal parts. Define the even partition function E(n) to be
the number of partitions of n into an even number of unequal parts, and define
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Figure 15.1 Pentagonal numbers.

the odd partition function O(n) to be the number of partitions of n into an odd
number of unequal parts. For example, E(5) = 2 since the two appropriate par-
titions are 3 + 2 and 4 + 1. Analogously, O(5) = 1 since 5 is the only partition
of 5 into an odd number of unequal parts. Similarly, E(6) = 2 corresponding to
the partitions 4 + 2 and 5 + 1, and O(6) = 2 to account for the partitions 6 and
3 + 2 + 1. Necessarily, E(n) + O(n) = pu(n) for all n ≥ 1.

Next we turn our attention to a wonderful result of which tells us when
E(n) and O(n) are equal, and if not, when and by how much do they differ.
Miraculously it happens that the functions E(n) and O(n) are related to a set of
numbers called pentagonal numbers, so named because of their relation to simple
five-sided geometric designs. Furthermore, our result will lead immediately to a
fairly useful way to extend our calculations of p(n). We begin by recalling the
pentagonal numbers g(n) = 1 + 4 + 7 + . . . + (3n − 2) for any n ≥ 1. The nth

pentagonal number can be graphically displayed as a group of dots arranged in
a pentagon (Fig. 15.1).

By induction it can readily be shown that g(n) = n(3n−1)
2 for all n ≥ 1. Hence

the sequence of pentagonal numbers begins 1, 5, 12, 22, 35, etc. We now extend
the definition of pentagonal numbers to include negative values of the argument
as well. The numbers g(−n) for n ≥ 1 no longer correspond to a five-sided group
of dots, but thus is the nature of mathematical generalization. Just go with the
flow. The additional numbers are g(−n) = −n(−3n−1)

2 = n(3n+1)
2 . These yield the

numbers 2, 7, 15, 26, 40, etc. There is no overlap between the new pentagonal
numbers with negative argument and those with positive. The reason is that for
each n, g(n) < g(n) + n = n(3n−1)

2 + n = n(3n−1)+2n
2 = n(3n+1)

2 = g(−n) <

g(n) + (3n − 2) = g(n + 1). So our full list of pentagonal numbers becomes 1,
2, 5, 7, 12, 15, 22, 26, 35, 40, etc.

So how do E(n) and O(n) relate to pentagonal numbers? And who would ever
notice such a thing anyway? Drum roll, please . . . .

Theorem 15.6 (Pentagonal Number Theorem): For all n ≥ 1 , E (n) = O(n)

unless n = k(3k±1 )
2 is a pentagonal number, in which case E (n)+(−1 )k = O(n).
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Leonhard Euler discovered the Pentagonal Number Theorem after carrying out
extensive calculations. The Pentagonal Number Theorem was stated and proved
by him in 1742. The proof was intricate. We will end the chapter with a proof
dated 1881 due to F. Franklin, a student of J.J. Sylvester’s, and later an influential
professor in his own right at Johns Hopkins University. But before we get to the
proof, let us see how Euler made good use of this result.

Consider the difference function defined by d(0) = 1 and d(n) = E(n)−O(n)

for n ≥ 1. Notice that d(n) is always −1, 0, or 1 by the Pentagonal Number
Theorem. In fact, we can make a brief table of values of d(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d(n) 1 −1 −1 0 0 1 0 1 0 0 0 0 −1 0 0 −1 0 0

Recall that the function pu(n) = E(n)+O(n) had generating function
∞∏

k=1
(1+xk)

since each exponent in the product appears exactly once, corresponding to each
partition having unequal parts. If we tweak things slightly, we can obtain the
generating function for d(n) = E(n) − O(n). In particular,

∞∏
k=1

(1 − xk) =
∞∑

n=0

d(n)xn.

All even partitions contribute positively while all odd partitions contribute neg-
atively. Next notice that the generating function for d(n) is the reciprocal of the
generating function for the partition function, p(n). So it follows that

( ∞∑
n=0

d(n)xn

)( ∞∑
n=0

p(n)xn

)
= 1.

By equating corresponding coefficients of xn, we get d(0)p(0) = 1 and

n∑
k=0

d(k)p(n − k) = 0 for n ≥ 1. (15.4)

By the Pentagonal Number Theorem, most of the terms in the sum in Formula
15.4 are zero. This makes it especially useful in calculating a particular partition
number based on those with smaller argument. In particular, Formula 15.4 can
be rewritten to give us

p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) + . . . + (−1)k+1

{
p(n − k(3k − 1)

2
) + p(n + k(3k + 1)

2
)

}
+ . . .
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For example, suppose we know the values of p(n) for n ≤ 6 and wish to compute
p(7). We have that p(7) = p(6)+p(5)−p(2)−p(0) = 11+7−2−1 = 15. This
is a lot less work than that of listing all 15 partitions of 7. Next we compute the
eighth partition number. By Euler’s Identity, p(8) = p(7)+p(6)−p(3)−p(1) =
15 + 11 − 3 − 1 = 22. In this way, we could extend our list of partition numbers
indefinitely.

Proof of Theorem 15.6: Let n ≥ 1 and let p be a partition of n into unequal
parts. Let s be the smallest part of p and let t1 > t2 > . . . be the largest parts in
descending order. Let k be the maximum number for which t1 = t2 + 1 = . . . =
tk + (k − 1 ). Thus k is the length of the string of numerically consecutive parts
in p beginning with the largest part. There are two possibilities: (i) s ≤ k , or (ii)
s > k .

(i) If s ≤ k, then transform p to another partition p′ of n by removing the part
s and adding one to each of the parts t1, . . . , ts . By our construction, the partition
p′ is also a partition of n into unequal parts. Furthermore, p′ has one fewer part
than p. Hence they are of opposite parity, namely one has an even number of
parts and other an odd number of parts. Thus the two partitions contribute equally
to the totals E(n) and O(n), maintaining equity between them. Note further that
if we define s′ and k′ analogously for the partition p′, then s′ > k′. So if p is of
type (i), then p′ is of type (ii).

There is a possible exceptional case where our construction from a type (i) to
a type (ii) partition cannot be completed. In the situation where both s = k and
s = tk , when we remove s there are no longer k consecutive large parts to which
we can add 1. Namely, part tk is missing. In this situation, we know the exact
form of p. It is the partition n = (2k − 1) + (2k − 2) + . . . + k consisting of
k consecutive integers beginning with k. But we can readily simplify to obtain
n = [1 + . . . + (2k − 1)] − [1 + . . . + (k − 1)] = (2k−1)2k

2 − (k−1)k
2 = k(3k−1)

2 , a
pentagonal number.

(ii) If s > k, then transform p to p′ by subtracting 1 from each of t1, . . . , tk
and adding an additional part k. Notice that the new part k is necessarily the
smallest part of p′ since s, the smallest part of p, satisfied s < k. So p′ is a
partition of n into unequal parts. The number of parts of p and p′ differ by one.
So one is an even partition, the other one odd. Furthermore, by our construction
p′ satisfies s ≤ k.

Again there is a possible exceptional case where our construction fails. Sup-
pose that s = k + 1 and s = tk . In this case, the permutation p′ would have
two equal smallest parts s − 1 and hence not be a partition with unequal parts.
In this situation n is the pentagonal number 2k + (2k − 1) + . . . + (k + 1) =
k(3k−1)

2 + k = k(3k+1)
2 .

Since (p′)′ = p in all but the exceptional cases, barring them there is a one-to-
one correspondence between unequal partitions of n into an even or odd number
of parts, respectively. In the two exceptional cases, k is the number of parts of p.
Thus in the case when n is the pentagonal number k(3k±1)

2 , there is an additional
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odd permutation when k is odd and there is an additional even permutation
when k is even. No value of n has more than one exceptional case. Therefore,
E(n) = O(n) unless n = k(3k±1)

2 , in which case E(n) − O(n) = (−1)k . �

WORTH CONSIDERING

1. Show that the number of partitions of n into an even number of parts is equal
to the number of partitions of n with largest part an even number.

2. Show that the number of partitions of n containing no part k is p(n)−p(n−k)

for any k ≤ n.

3. (a) What is the generating function for the function p(n, 3), the number of
partitions of n with largest part at most 3?

(b) Use the generating function to calculate p(6, 3). Compare with computing
p(6, 3) directly.

4. (a) Let p(n, e) be the number of partitions of n having even parts only.
Compute p(n, e) for 1 ≤ n ≤ 10.

(b) Determine the generating function for p(n, e).

(c) What is the relation between p(n, e) and the standard partition function,
p(n)?

5. Let pu(n, e) be the number of partitions of n into even and unequal parts,
and let pu(n, o) be the number of partitions of n into odd and unequal parts.
Determine the generating functions for both pu(n, e) and pu(n, o).

6. (a) Make a table for pu(n, o) for 1 ≤ n ≤ 10.

(b) Recall that a self-conjugate partition is one for which its conjugate is
identical. Let sc(n) be the number of self-conjugate partitions of n. Make
a table for sc(n) for 1 ≤ n ≤ 10. Discuss the result.

7. Let c(n) be the number of compositions of n. Show that the number of
compositions of n with no part 1 is Fn−1 where Fn is the nth Fibonacci
number.

8. Use Euler’s Identity to calculate p(9) and p(10).

9. Twins can be either fraternal or identical. Triplets can be all identical, two
identical and one fraternal, or all fraternal. How many possibilities are there
for quadruplets? Quintuplets? Sextuplets? Septuplets?



16 Pascal Potpourri

Blaise Pascal

In this section we will present several interesting properties of what is commonly
called Pascal’s triangle, hence the title of this chapter. Blaise Pascal (1623–1662)
was a great mathematical prodigy, despite his father’s firm insistence that he
devote himself only to the study of languages and the classics. As a youngster he
discovered the theorem that the sum of the angles of any triangle is 180 degrees.
He then went on to rediscover many of the first 32 propositions of Euclid’s
Elements. At this point, his father recanted his ban on Blaise’s mathematical
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studies and presented him with a copy of the great geometric work. By the age
of 12, the young Pascal had mastered it completely and was making his own
discoveries to boot. By age 14, he had begun attending the weekly gatherings
of the French mathematicians and was discussing and debating with the likes
of René Descartes, Marin Mersenne, and G.P de Roberval. At age 16 he wrote
a treatise On Conics, which added important new discoveries to a field thought
to be so well trodden by the great Apollonius (ca. 250–175 B.C.E.) and other
mathematicians from ancient times. Pascal’s essay, which included his “mystic
hexagram theorem,” was a precursor to the development of projective geometry.
He enjoyed practical invention and designed something still widely used, namely
the one-wheeled wheelbarrow. At age 18 he invented a mechanical calculating
machine to help with his father’s bookkeeping. The invention was a success
and Pascal built and sold over 50 such machines. (It is for this reason that the
modern computer language Pascal was named in his honor.) Pascal also made
some interesting discoveries about fluid action under air pressure and studied
many geometric shapes, including the Archimedean spiral.

But Pascal was tormented by an unremitting religious fervor and also by ill
health, chronic insomnia, and dyspepsia. Unfortunately for the development of
mathematics, a great deal of his time was devoted to religious contemplation and
masochistic self-injury. He wished “to contemplate the greatness and the misery
of man,” as he put it. His well-deserved acclaim as a great French philosopher and
writer is due less to his mathematics and more to his Provincial Letters, directed
against the Jesuits, and his Pensées, written later in his brief life. He only returned
to mathematics fitfully when he took personal events as religious signs. In 1658,
while thinking about the cycloid during one of many sleepless nights, he noticed
that his toothache completely went away. The cycloid is the curve sketched by a
point on the circumference of a circle as it moves along a straight line. Interpreting
this sudden burst of good health as divine intervention, he spent the next eight
days on nothing but mathematical studies before returning to his other devotions.

Together with Fermat, Pascal helped develop the mathematical theory of
probability via their famous correspondence concerning a gambling problem.
In particular, the problem dealt with the fairest way to divide a pot of money to
two contestants involved in an uncompleted game involving several rounds. The
details of the problem are not important here, but the triangular array of numbers
that Pascal introduced to solve the problem is relevant. The nth row of this numer-
ical triangle consists of the number of ways to choose a set of k items from a set
of n distinguishable objects for all k with 0 ≤ k ≤ n. The top of the triangle is the
zeroth row consisting of the number 1. Figure 16.1 shows how the triangle begins.

For example, the third row consists of the numbers 1, 3, 3, 1. If we have three
marbles colored red, white, and blue, there is just one way to not choose any of
them. Hence the first entry is the number 1. The second entry is 3, corresponding
to the three ways to choose one marble. Similarly there are three ways to choose
two marbles out of three, and finally just one way to choose all three marbles.

Pascal’s triangle had actually been studied by many people long before Pas-
cal himself rediscovered it. The triangular array of numbers and its use in
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 16.1 The arithmetic triangle.

combinatorial matters was certainly known by the medieval Jewish mathematician
and astronomer, Levi Ben Gerson (1288–1344). But before him, in the 11th
century, the Chinese mathematician Jia Xian used the triangle at least implicitly
to further develop and generalize procedures for finding square and cube roots.
Jia Xian’s works have been lost, but they are referred to in extant work by Yang
Hui dated about 1261. Certainly the use of the arithmetic triangle to expand
polynomials was fully understood by then. For example, to expand (x + y)3, the
third row of the triangle provides the coefficients to 1x3 + 3x2y + 3xy2 + 1y3.
We formalize this observation below as the binomial theorem, but its basic idea
must go back to the Chinese. Or does it? There is reliable documentation that
the Persian scholar Omar Khayyam (ca. 1044–1123) used the arithmetical trian-
gle. Even more distant, the Islamic scientist, Ibn al-Haytham (965–1039), better
known in the West as Alhazen, seems to have had some facility with the triangle
at least for small values. His formulas for summing cubes and fourth powers
relied on it. And there seems to be some similar work done by Abu Bakr al-
Karaji (d. 1019). The point of all of this discussion is that the study of the origins
of great ideas is never ending. The deeper mathematics historians dig, the more
treasures they discover.

The term Pascal’s triangle is certainly inappropriate if we want to give credit
to the first person to discover it. So why does the arithmetic triangle continue to
be named after Pascal? Certainly a lack of knowledge of ancient cultures, ancient
languages, and an ignorance of the histories of non-Western peoples together with
a Eurocentric mind set are largely to blame. But Pascal’s use of the triangle was
completely explicit and he did make several important discoveries with it. So
perhaps honoring him by name is not wholly inappropriate as long as we are
fully cognizant that his truly substantial contributions are but a small part of the
fuller story.

Recall the binomial coefficient
(
n
k

) = n!
k!(n−k)! defined for n ≥ 1 and 0 ≤ k ≤ n.

The binomial coefficient
(
n
k

)
counts the number of different ways that k items can

be chosen from a set of n distinguishable objects. The term binomial coefficient
comes from its use in the following key result:

Binomial Theorem: For n ≥ 1 , (x + y)n = ∑n
k=0

(n
k

)
xn−k yk .
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The theorem is fairly intuitive. In multiplying (x + y) times itself n times,
the sum of the exponents for x and y must be n. In addition, for each k the
coefficient of xn−kyk derives from choosing k factors of y out of n possible
choices. There are precisely

(
n
k

)
such choices. But then there is just one way to

choose the remaining x’s.
For example, (x + y)4 = (4

0

)
x4 + (4

1

)
x3y + (4

2

)
x2y2 + (4

3

)
xy3 + (4

4

)
y4 =

x4 + 4x3y + 6x2y2 + 4xy3 + y4. Hence the coefficients can be read off the
appropriate row of Pascal’s triangle. Furthermore, with proper choice of x and y

we can make some interesting discoveries.

Proposition 16.1: For n ≥ 1 and m ε Z,

(a)
∑n

k=0

(n
k

) = 2 n

(b)
∑n

k=0 (−1 )k
(n

k

) = 0

(c)
∑n

k=0

(n
k

)
mk = (m + 1 )k .

Proof of Proposition 16.1:

(a) In the binomial theorem, let x = 1 and y = 1 .
(b) Let x = 1 and y = −1 .
(c) Let x = 1 and y = m. �

Result 16.1 (a) can be interpreted as expressing the fact that the total number
of subsets of a set of n objects is 2n as long as we include the empty set and
the set itself as legitimate subsets. (Of course, another way to see that there are
2n subsets is by noting that for each of the n elements, we must make a yes or
no decision when deciding whether or not to include the item. Hence there are
2 · 2 · . . . · 2 = 2n possible decisions, one for each possible subset.) Part (b) says
that the alternating sum across any row of Pascal’s triangle is zero. Equivalently,
in any row, the sum of the entries in the odd-numbered positions equals the sum
of the entries in the even-numbered positions. Result (c) is an extension of part
(b) in the sense that (b) is the special case for m = −1.

The combinatorial aspects of Pascal’s triangle is further exposed by noting
that each interior entry (i.e., any entry not a 1) is the sum of the two entries
just above it. For example, 35 in the seventh row of the triangle is the sum of
15 and 20. In general, this is how additional rows of Pascal’s triangle are easily
generated. To verify this, we need to show that

(
n
k

) + (
n

k+1

) = (
n+1
k+1

)
for any

k < n. We can verify this directly via algebraic manipulation:

(
n

k

)
+

(
n

k + 1

)
= n!

k!(n − k)!
+ n!

(k + 1)!(n − k − 1)!

= (k + 1)n! + (n − k)n!

(k + 1)!(n − k)!
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= (n + 1)n!

(k + 1)!(n − k)!

=
(

n + 1

k + 1

)
.

Alternatively, we gain additional insight by arguing from a combinatorial per-
spective. There are

(
n+1
k+1

)
subsets of the set of numbers S = {1, 2, . . . , n + 1}

which contain k + 1 elements. Some of these subsets contain the number 1 and
some do not. The number of such subsets of S that do not contain the number
1 is

(
n

k+1

)
since we must choose k + 1 numbers from among the n numbers

2, . . . , n + 1. The number of such subsets of S that do contain the number 1 is(
n
k

)
since once we include the number 1, then we must choose an additional k

numbers from among 2, . . . , n+1. These comprise all the k +1 element subsets
of S, and hence the result follows.

Here is a cute result due to an observation of Paul Erdös, published in 1972.
No doubt, others have noticed the same property, but I am not aware of an earlier
reference.

Proposition 16.2: Excluding the two 1’s, any two entries in the same row of
Pascal’s triangle are not relatively prime.

Proof of Proposition 16.2: Let 0 < i < j < n. We will show that gcd
((n

i

)
,
(n

j

))
> 1 . We begin by multiplying

(n
j

)
by

(j
i

)
.

(
n

j

)(
j

i

)
= n!

j !(n − j )!

j !

i !(j − i)!

and upon rearranging and multiplying numerator and denominator by (n − i)!

= n!

i !(n − i)!

(n − i)!

(n − j )!(j − i)!

=
(

n

i

)(
n − i

j − i .

)

If the gcd
((n

i

)
,
(n

j

)) = 1 , then
(n

i

)|(n
j

)
since

(n
i

)|(n
j

)(j
i

)
as shown above. But

(
n

i

)
= n!

i !(n − i)!

= n(n − 1 ) · · · (n − i + 1 )

i !

>
j (j − 1 ) · · · (j − i + 1 )

i !
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= j !

i !(j − i)!

=
(

j

i

)
.

This contradicts the assertion that
(n

i

)|(j
i

)
, since a larger natural number cannot

divide evenly into a smaller one. Hence gcd
((n

i

)
,
(n

j

))
> 1 . �

Next we make some interesting, but fairly transparent observations about Pas-
cal’s triangle. If we look down the first diagonal column starting at the top and
moving down and to the left, all entries are 1. The second diagonal column
contains all the counting numbers in order. The third diagonal column contains
all the triangular numbers 1, 3, 6, 10, etc. The reason is that for k ≥ 2, the
kth entry is

(
k
2

) = k(k−1)
2 = 1 + 2 + . . . + (k − 1). The fourth diagonal column

contains the tetrahedral numbers 1, 4, 10, 20, 35, etc., which can be viewed as
three-dimensional analogs of the triangular numbers (Fig. 16.2).

Here’s a nice little combinatorial result.

Proposition 16.3: For n ≥ 2m − 1 , the number of m-element subsets of the set
S = {1 , 2 , . . . , n} not containing two consecutive numbers is

(n−m+1
m

)
.

Proof of Proposition 16.3: Consider n markers of which m are purple and n −m
are brown. Set aside m − 1 brown markers. This is possible since m − 1 =
(2m−1 )−m ≤ n−m. Now place the remaining n−(m−1 ) = n−m+1 markers
arbitrarily from left to right. There are

(n−m+1
m

)
ways to arrange them since m

are purple and the rest are brown. Finally, intersperse the remaining m −1 brown
markers between the m purple ones. There is only one distinguishable way to do
this. So there are

(n−m+1
m

)
ways to place the n markers with m purple, the rest

brown, and no two purple markers adjoining one another. Now think of the purple

1 1 + 3 1 + 3 + 6 1 + 3 + 6 + 10

Figure 16.2 Tetrahedral numbers.
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markers as representing chosen numbers from S and brown markers as numbers
not chosen. There is a one-to-one correspondence between m-element subsets
of S with no two consecutive numbers and arrays of m purple and n − m brown
markers with no two purple markers juxtaposed. The result follows immediately.�

Now we combine Pascal’s triangle with the Fibonacci numbers!

Proposition 16.4: The total number of nonempty subsets of the set S = {1 , 2 , . . . ,

n} not containing two consecutive numbers is Fn+2 − 1 .

Proof of Proposition 16.4 (Induction on n): If n = 1 , then there is just one such
subset of S , namely S itself. Since 1 = F3 − 1 , the proposition holds in this case.
Next assume the result is true for all sets up to order n−1 . For S = {1 , 2 , . . . , n},
consider all nonempty subsets not containing two consecutive numbers. Let us
separate these subsets into those that contain the number n and those that do not.
If a subset contains the number n, then it cannot contain the number n −1 . Hence
the number of subsets of S containing n and not having consecutive members
is in one-to-one correspondence with the subsets of {1 , 2 , . . . , n − 2 } having
no consecutive numbers, but with the empty set included (corresponding to the
subset {n} of S ). By our inductive assumption, the number of such nonempty sets
was Fn − 1 . Thus the number of nonempty subsets of S containing n with no
consecutive numbers is Fn . The nonempty subsets of S not containing n with no
consecutive numbers is identical to the nonempty subsets of {1 , 2 , . . . , n − 1 }
with no consecutive elements. By our inductive assumption, the number of such
subsets is Fn+1 − 1 . Therefore, the total number of nonempty subsets of S is
Fn + Fn+1 − 1 = Fn+2 − 1 . �

Combining Propositions 16.3 with Proposition 16.4, we have the following
result. Note that [x] represents the greatest integer less than or equal to x.

[ n+1
2 ]∑

m=1

(
n − m + 1

m

)
= Fn+2 − 1. (16.1)

We can interpret this as a sum of appropriate entries in Pascal’s triangle. For
example, for n = 7, we have

(7
1

) + (6
2

) + (5
3

) + (4
4

) = 33 = F9 − 1. Graphically,
we are adding the bold-faced entries in Figure 16.3.

Now we move on to a fun problem concerning food preparation at a summer
camp!

Problem: A summer camp has 250 campers. For every pair of campers, A and
B, there is an item of food that A is willing to eat but B is not and vice versa.
What is the smallest total number of food items that could conceivably be made
available at mealtime so that every camper will eat something?
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 16.3 Fibonacci numbers occur as sums within the arithmetic triangle.

Certainly with really rotten luck, the kitchen staff might have to purchase
250 different types of food if there were no overlap in tastes among any of the
campers. But here we want the best possible scenario under the given condition.

At first, this problem may seem to be completely unrelated to all that we
have discussed so far. But binomial coefficients provides the key. If we continue
Pascal’s triangle through row 10, the central number in the bottom row is the
number

(10
5

) = 252. Hence there are 252 ways to choose 5 food items out of a set
of 10. So if each of the 250 campers likes a different subset of 5 food choices,
then our conditions are met. Hence the answer is a measly 10.

While we’re in the neighborhood, there are some interesting questions about
these central binomial coefficients. In 1978, Erdös conjectured that the binomial
coefficient

(2n
n

)
was never squarefree for n > 4. The conjecture was correct and

was established for n sufficiently large by A. Sárközy in 1985 and in general by
A. Granville and O. Ramaré in 1993. In 1975, P. Erdös, R.L. Graham, I.Z. Ruzsa,
and E. Straus proved that for any two primes p and q, there are infinitely many
values of n for which gcd(

(2n
n

)
, pq) = 1. However, so far no one can prove

a similar result for three primes, in fact for any three primes. In this regard,
Ron Graham has offered $100 to anyone who can show that gcd(

(2n
n

)
, 105) = 1

infinitely often.
Our final result is a stunning primality test due to Daniel Shanks (1917–1996)

and H.B. Mann. A few words about the first author might be in order here. Shanks
worked as a physicist at both the Aberdeen Proving Grounds and later at the
Naval Ordnance Laboratory (NOL). While there he wrote his Ph.D. dissertation
despite not having attended any math graduate school. Since no university seemed
prepared to grant a degree to a nonmatriculant, he didn’t receive his graduate
degree for several years, until he took the requisite courses at University of
Maryland. By this point he headed the Applied Mathematics Laboratory at the
NOL. Subsequent to that he had a long stint as Senior Research Scientist at
the Naval Ship R&D Center at the David Taylor Model Basin, followed by a
distinguished career as an Adjunct Professor to the Mathematics Department at
University of Maryland, College Park. Shanks’s main work dealt in numerical
analysis, number theoretic problems, and particularly in computational methods
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in number theory. In all he published over 80 papers, many of which were
highly influential regarding such areas of inquiry as calculating π , searching
for primes of the form n2 + 1, factoring large integers, primality testing, and
calculating number theoretic invariants such as the class number of algebraic
number fields. He named his algorithms with suggestive six-letter titles such as
CLASNO, SQUFOF, REGULA, WHEEL8, EPZETA, SUMJAC, and EUPROD.
He also had quite a sharp wit. At a number theory conference held at Howard
University in 1979, one of the speakers gave a very nice lecture on the proof of
one of his recent results. As soon as the lecture ended, someone in the audience
stood up and explained that in fact he, the audience member, had already proved
the same result. The paper was now being refereed and he didn’t want anyone
at the conference to think that he had stolen the result from the current speaker
at the conference. At this point, Dan Shanks begrudgingly stood up and said,
“While we’re at it perhaps I should mention that this very result is in my 1962
book, Solved and Unsolved Problems in Number Theory,” and he proceeded to
cite the page and theorem number. Through his writing, teaching, and lifetime
dedication to mathematics, he inspired many a budding mathematician, including
the author of this book.

The primality test that we consider here makes direct use of Pascal’s triangle.
Actually, we need to distort the triangle a bit by sliding each row to the right
two places farther than the row above. We then circle some numbers based on
whether they are divisible by their row numbers, and then voilà, we have a simple
necessary and sufficient primality test for the column numbers. Appropriately,
the primality algorithm was called SHMAPT by Shanks—a nifty name for a
nifty primality test. Here are the details.

Theorem 16.5 (Shanks-Mann Primality Test, 1972): Make a rectangular table
of values beginning with row and column zero in which the entries in the nth row
consist of the binomial coefficients

(n
j

)
for 0 ≤ j ≤ n placed in column positions

2n + j . Circle all the entries divisible by their row number. Then the column
number is prime if and only if all entries under it are circled.

Here is how the table of values begins in the Shanks-Mann Primality Test
(Fig. 16.4).

Proof of Theorem 16.5: Figure 16.4 verifies the claim for columns k = 1 , 2 ,
and 3 (in fact, up to k = 17 ). Assume in what follows that k > 3 . Either k is
even or k is odd.

k even: If k = 2m with m > 1 , the first entry of row m in column k = 2m
is

(m
0

) = 1 . Hence it is not circled. So all even numbers greater than 2 are
determined to be composite.

k odd: We will show that if k is prime, then all entries in the k th column are
circled. Furthermore, if k is composite, then there is at least one uncircled entry
in column k.
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10 2 3 54 6 7 8 9 10 11 12 13 14 15 16 17row/column

0

1

2

3

4

5

6

7

8

1

1 1

1 2 1

1 3 3

1

1

4 6

1

4

5

1

10

1

10

6

5

15

1

1

20

7

15

21

1

6

35

8

Figure 16.4 Shanks-Mann primality test.

The rows n which put entries in column k are those for which 2n ≤ k ≤ 3n,
that is, k

3 ≤ n ≤ k
2 . In fact, the entry in row n and column k is

( n
k−2n

)
. We

distinguish two cases depending on whether the column k is prime or an odd
composite:

k = prime p: In this case the entries in column k are
( n

p−2n

)
for all n satisfying

the inequalities p
3 ≤ n ≤ p

2 . Since p > 3 , we have that 1 < n < p. Hence
gcd(n, p) = 1 for all such n. In fact, gcd(n, p −2n) = 1 as well. Next we rewrite
the binomial coefficient

( n
p−2n

)
.

(
n

p − 2n

)
= n!

(p − 2n)!(n − [p − 2n])!

= n!

(p − 2n)!(3n − p)!

= n

p − 2n

(n − 1 )!

(p − 2n − 1 )!(3n − p)!

= n

p − 2n

(
n − 1

p − 2n − 1

)
.

Thus

(p − 2n)

(
n

p − 2n

)
= n

(
n − 1

p − 2n − 1

)
.

Hence n divides (p − 2n)
( n

p−2n

)
. But since gcd(n, p − 2n) = 1 , in fact n divides( n

p−2n

)
. Therefore, every entry in the p th column is circled.

k = odd composite: Let p be an odd prime divisor of k . So k = p(2r + 1 )

for some integer r ≥ 1 . Thus p ≤ pr and 2pr < k = 2pr + p ≤ 3pr. Hence row
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n = pr contributes of column k and its entry there is
( n

k−2n

) = ( pr
2pr+p−2p

) = (pr
p

)
.

We next show that n = pr does not divide
(pr

p

)
, resulting in an uncircled entry in

column k as claimed. To see this we expand 1
pr

(pr
p

)
.

1

pr

(
pr

p

)
= (pr − 1 ) · · · (pr − p + 1 )

p(p − 1 ) · · · 2 · 1
.

Note that p divides the denominator, but p does not divide the numerator. Hence
1
pr

(pr
p

)
is not an integer and pr does not divide

(pr
p

)
. �

Albert Einstein (1879–1955) once said, “How can it be that mathematics,
being after all the product of human thought independent of experience, is so
admirably adapted to the objects of reality?” How true and how wonderful that
the natural, outer world somehow seems destined to follow a mathematical logic
that we humans can in our limited way penetrate and appreciate. Einstein was
echoing the thoughts of another brave and great thinker from several centuries
earlier. Galileo Galilei (1564–1642) wrote in his Opere il Saggiatore, “Philoso-
phy is written in that great book which ever lies before our gaze—I mean the
universe—but we cannot understand if we do not first learn the language and
grasp the symbols in which it is written. The book is written in the mathematical
language, and the symbols are triangles, circles and other geometrical figures,
without the help of which it is impossible to conceive a single word of it, and
without which one wanders in vain through a dark labyrinth.”

But the Shanks-Mann Primality Test is a piece of pure mathematics and even
there is not especially useful or practical. But it is certainly a very pretty result
which expands the mind, lifts the spirit, and reminds us that seeking truth in
mathematics is one sure path to the very heart of our most inner worlds. As Carl
Gustav Jacobi (1804–1851) wrote, “. . . the only goal of Science is the honor
of the human spirit, and that as such, a question of number theory is worth a
question concerning the system of the world.”

WORTH CONSIDERING

1. How many ways are there to deal n playing cards to two people? (Assume
that the players may each receive any number of cards including none at all.)

2. How many ways are there to deal n playing cards to m people?

3. Does any row of Pascal’s triangle have three consecutive entries in the ratio
1:2:3?

4. (Green Chicken Contest, 1998): Six boxes are numbered 1 through 6. How
many ways are there to put 20 identical balls into these boxes so that none
is empty?
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5. How many ways can you distribute 40 identical candy bars to 10 children if
each child must get at least one candy bar?

6. Prove that n is prime if and only if all binomial coefficients
(
n
k

)
for 1 ≤ k ≤

n − 1 are divisible by n.

7. (Green Chicken Contest, 1986): How many South-East paths are there spell-
ing MATHEMATICS? (One example is given below.)

M A T H E M

A T H E M A

T H E M A T

H E M A T I

E M A T I C

M A T I C S

8. (F. Mariares, 1913): Show that
n∑

k=1
(2k − 1)2 = (2n+1

3

)
.

9. (Chu Chi-kie, 1303): Show that
r∑

k=0

(
n
k

)(
m

r−k

) = (
n+m

r

)
for r ≤ n + m.

10. Show that
n∑

k=0

(
n
k

)2 = (2n
n

)
.



APPENDIX Comments and
Solutions to Problems Worth
Considering

1.1: 2 · 3 · 5 · 7 + 1 = 211 is prime, 2 · 3 · 5 · 7 · 11 + 1 = 2,311 is prime, but
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30,031 = 59 · 509.

1.2: 211 − 1 = 2,087 = 23 · 89.
1.3: If a prime p|PA then p PB and so p (PA + PB). Similarly, if a prime

p|PB then p PA and so p (PA+PB). Thus any prime dividing PA+PB

must be an additional prime.
1.4: 7! + 2 = 5,042, . . . , 7! + 7 = 5,047 are six consecutive composites. But

so are 114, . . . , 119. In fact, 114, . . . , 126 are all composite.

1.5: (a) tn−1 + tn = (n−1)n
2 + n(n+1)

2 = n2.

n n n n n n

n−1 n−1 n−1 n−1 n−1 1

.

.

.

.

.

.

.

.

.
2 2

.

.

.

.

.

.
3 3 3

2 2 n−2 n−2 n−2 n−2

1 n−1 n−1 n−1 n−1 n−1

(1 + . . . + (n−1)) + (1 + . . . + n ) = n2

Figure A.1 (1 + . . . + (n − 1)] + (1 + . . . + n] = n2.

(b) t2
n−1 + t2

n = (n−1)2n2

4 + n2(n+1)2

4 = n2(n2+1)
2 = tn2

Mathematical Journeys, by Peter D. Schumer
ISBN 0-471-22066-3 Copyright c© 2004 John Wiley & Sons, Inc.

177



178 MATHEMATICAL JOURNEYS

1.6: n(3n−1)
2 + (3n + 1) = (n+1)(3n+2)

2 = pn−1.

221251

Figure A.2 Pentagonal numbers.

1.7: (a) Inductive step involves (F1+. . .+Fn)+Fn+1 = (Fn+2−1)+Fn+1 =
(Fn+1 + Fn+2) − 1 = Fn+3 − 1.

(b) (F2 + . . .+F2n)+F2n+2 = (F2n+1 −1)+F2n+2 = (F2n+1 +F2n+2)−
1 = F2n+3 − 1.

(c) (F1 + . . . + F2n−1) + F2n+1 = F2n + F2n+1 = F2n+2.
1.8: Proof by induction is direct since FnFn+1 +F 2

n+1 = Fn+1(Fn +Fn+1) =
Fn+1Fn+2. In addition, the following diagram gives a geometric proof
(A. Brousseau, Fibonacci Quarterly, 1972):

1

2
3

5

8

13

1

Fn+1

Fn

F1
2 + . . . + Fn

2 = Fn Fn+1

Figure A.3 F 2
1 + . . . + F 2

n = FnFn+1.
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1.9: (a) Let s(n) be the number of ways to place n stones in the bowl either
one or two at a time. Note that s(1) = 1 = F2 and s(2) = 2 = F3.
Generally, to place n stones in the bowl the first placement is either
one stone or two stones. If we begin with one stone, then there are
s(n − 1) ways to continue. If we begin with two stones, then there
are s(n − 2) ways to continue. Thus s(n) = s(n − 1) + s(n − 2), the
same recurrence as the Fibonacci numbers.

(b) This problem is equivalent to part (a). Hence the answer is Fn+1.

1.10: Let A =
[
a1 b1
c1 d1

]
and B =

[
a2 b2
c2 d2

]
. Then det(AB) = (a1a2 +

b1c2)(c1b2+d1d2)−(a1b2+b1d2)(c1a2+d1c2) = a1a2b2c1+a1a2d1d2+
b1b2c1c2 + b1c2d1d2 − a1a2b2c1 − a1b2c2d1 − a2b1c1d2 − b1c2d1d2 =
a1a2d1d2 − a1b2c2d1 − a2b1c1d2 + b1b2c1c2 = (a1d1 − b1c1)(a2d2 −
b2c2) = detA · detB.

1.11: 19 = 13 + 5 + 1, 32 = 21 + 8 + 3, 232 = 144 + 55 + 21 + 8 + 3 + 1.
1.12: L-shaped dominoes cannot cover a 3n × 3n chessboard with or without

one missing square. Since 4n = 22n, a 4n×4n chessboard with any single
missing square can be covered with L-shaped dominoes.

1.13: The following figure shows two different decompositions of a square into
ten smaller squares. There are 16 decompositions like the one in Figure
A.4a and six like the one in Figure A.4b for a total of 22 decompositions.

(a) (b)

Figure A.4 Square decomposed into squares.

1.14: A 2 × n chessboard can be covered with n 2 × 1 dominoes in Fn+1
distinct ways.

1.15: The ten primes 2, 3, 5, 11, 23, 29, 41, 53, 83, and 89 are Germain primes.
1.16: f (n) = n2 − n + 41 is prime for n = 1, . . . , 40. But f (41) = 412.

2.1: Check initial case and then note that (n+1)3

3 + (n+1)2

2 + n+1
6 = n3

3 + n2

2 +
n
6 + (n2 + 2n + 1).

2.2: Note that n5 − n = n(n − 1)(n + 1)(n2 + 1). Now argue why n5 − n is
divisible by 2, 3, and 5.

2.3: Mimic solution of Problem #1 modulo 10.
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2.4: Twenty-three chocolate-covered strawberries cannot be ordered exactly,
but all larger orders can be accomplished.

2.5: (a) Each handshake involves two people, so the total number must be
even.

(b) If an odd number of people shook hands an odd number of times,
then the total number of handshakes would be odd, contradicting
part (a).

2.6: See Example #1 of Chapter 9.
2.7: In the first case, if all the British and Chinese history students talk to one

another, then all 25 students could end up in American history. Similarly,
in the second case, all 28 students could end up in American history. First
two students must add British history and then the solution is the same.

2.8: This is the first theorem that I “discovered” and proved in college. Work
modulo 3.

2.9: (a) The same proof that
√

2 is irrational works to show that
√

3 is irra-
tional (or

√
n for that matter where n is not a perfect square).

(b) In mimicking the proof of the irrationality of
√

2, we arrive at the
step 4b2 = a2. So 4|a2. But this does not imply that 4|a.

(c) Show that
√

5 is irrational and then explain why a rational plus
irrational is irrational and a rational times an irrational is irrational.

2.10: Since 27 = 128 is approximately equal to 53 = 125, it follows that 210 is
approximately equal to 103. Hence log10 2 is approximately equal to 3

10 =
0.3. (In fact, log10 2 = 0.30103 . . . ) Of course a better understanding of
what is meant by the term approximately is required to make a deeper
study of rational approximations of irrationals.

2.11: Let s = √
2+√

3. Then s2 = 5+2
√

6 is irrational since
√

6 is irrational,
and hence s itself must be irrational. But s4 = 49 + 20

√
6. Thus s4 −

10s2 + 1 = 0. Hence s is algebraic.
3.1: Since 41 = 25 + 9, the last person’s position is J (41) = 2 · 9 + 1 = 19.
3.2: The children from the first marriage were placed in positions 3, 7, 8, 9,

10, 11, 14, 15, 20, 22, 23, 24, 26, 27, and 30. The child in position 25
was chosen.

3.3: J (50) = 37, J (199) = 143, J (512) = 1, J (1,000,000) = 951,425.
3.4:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

J(n,4) 1 1 2 2 1 5 2 6 1 5 9 1 5 9 13 1 5 9 13 17 21 3 7 11 15

3.5: 200 = 110010002, 356 = 1011001002, 10,000 = 100111000100002.
3.6: 10010012 = 73, 101011100002 = 1,492, 110111100002 = 1,776.

3.7: P(8,9) =
(

1 2 3 4 5 6 7 8
1 3 6 4 5 2 7 8

)
.

3.8: Shuffle n cards and let Xi = 1 if ith card ends up in ith position and
Xi = 0 otherwise for 1 ≤ i ≤ n. The expected value of Xi is E(Xi) =



COMMENTS AND SOLUTIONS TO PROBLEMS WORTH CONSIDERING 181

1(1/n) + 0(1 − 1/n) = 1/n. Since expectation is linear, E(
∑

Xi) =∑
E(Xi) = n(1/n) = 1.

3.9: J (9, 5) = 8, J (11, 5) = 8, J (12, 5) = 1, J (15, 5) = 1, J (17, 5) =
11, J (18, 5) = 16, J (19, 5) = 2.

4.1: There are three alternative winning moves. Take one from the 8-pile, take
three from the 9-pile, or take seven from the 11-pile.

4.2: Remove 28 counters from the 40-counter pile leaving 20 counters and
12 counters, respectively.

4.3: Every move will result in at least one 1 changing to a 0. In that column,
the sum goes from even to odd.

4.4: For each pile there is at most one way to change all column sums to even
numbers.

4.5: Make the total 100 − 11k for some k and then add 11 − r counters each
time your opponent adds r counters.

4.6: Northcott’s game is identical to Nim with eight piles, each with six
counters.

4.7: (a) Leave k(m+1) counters for some k. Then remove m+1−r counters
whenever your opponent removes r counters.

(b) In the misère version, leave k(m+ 1)+ 1 counters and proceed as in
part (a).

4.8: Note that you can force multiples of seven unless a face value is depleted.
5.1: 211 − 1 = 2,087 = 23 · 89. The converse of Observation 1 is not true.
5.2: 223 − 1 = 47 · 178,481.
5.3: an − 1 = (a − 1)(an−1 + an−2 + . . . + 1).
5.4: σ(100) = 217, σ (1,000) = 2,340, σ (22,021) = σ(192 · 61) = σ(192).

σ (61) = 381 · 62 = 23,622.
5.5: 2p−1(2p − 1) = n(n+1)

2 for n = 2p − 1.

5.6: Use induction to show that 13 + 33 + . . . + (2n − 1)3 = 2n(2n+1 − 1).
5.7: σ(945) = 1,920 > 2 · 945.
5.8: n = 2 : a = 220, b = 284; n = 4 : a = 17,296, b = 18,416; n = 7 : a =

9,363,584, b = 9,437,056.
5.9: s(2,620) = 2,924, s(6,232) = 6,368, s(122,368) = 123,152.

5.10: (b) 12,496 → 14,288 → 15,472 → 14,536 → 14,264 → 12,496.
5.11: Use induction on n.
6.1: Let Sn = a + ar + . . . + arn = a(rn+1−1)

r−1 . If |r| < 1, then rn+1 → 0 as
n → ∞ and Sn converges to a

1−r
.

6.2: Rewrite the sum so that each term has denominator equal to the least
common multiple of 2, 3, . . . , n. Let 2m ≤ n < 2m+1. Then each term
will have an even numerator except the single term equal to 1

2m , which
necessarily will have an odd numerator. So the sum of numerators will
be odd and hence not divisible by the denominator. Hence the sum is not
an integer.



182 MATHEMATICAL JOURNEYS

6.3: The bug travels two miles since it takes one minute before the cars collide.

6.4:
∑∞

n=1
1

(2n−1)2 = ∑∞
n=1

1
n2 − ∑∞

n=1
1

(2n)2 = π2

8 .

6.5: 1 = ∑∞
n=1(−1)n π2n−1

22n−1(2n−1)!
.

6.6: B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 , B7 = 0,

B8 = − 1
30 .

6.7: D6 = 42 since 6 is divisible by 2 − 1, 3 − 1, and 7 − 1.

6.8: ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 , ζ(8) = π8

9,450 .
6.9: We get a “telescoping sum” where all but the first and last terms of the

partial sums collapse.∑∞
n=1

1
tn

= ∑∞
n=1

2
n(n+1)

= 2 · limN−>∞
∑N

n=1
1

n(n+1)

= 2 · limN−>∞
∑N

n=1[ 1
n

− 1
n+1 ] = 2 · limN−>∞(1 − 1

N+1 ) = 2.
7.1: Since N ≡ 3 (mod 4), there must be a prime p ≡ 3 (mod 4) that divides

N . But p is not one of p1, . . . , pr .
7.2: 3(17−1)/2 ≡ −1 (mod 17).
7.3: 23
7.4: (a) m1 = 70, m2 = 21,m3 = 15.

(b) 56
(c) 1,103 ≡ 53 (mod 105).

7.5: 330
7.6: Southwest corner at (14, 20).
7.7: gcd (1274 + j, 1308 + k) > 1 for 0 ≤ j ≤ 2, 0 ≤ k ≤ 2.

8.1:




30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45

13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20




8.2: There are no knight’s tours on 3 × 3 or 4 × 4 chessboards, but there are
on 5 × 5 chessboards as long as the knight starts in a corner.

8.3: The only Latin squares of order 2 are

[
1 2
2 1

]
and

[
2 1
1 2

]
. They are not

orthogonal.

8.4: Start with the orthogonal pair A =

1 2 3

2 3 1
3 1 2


 and

B =

1 2 3

3 1 2
2 3 1


 and transpose the same pair of rows or columns in both

A and B.
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8.5: (b) A1 =




1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4


 , A2 =




1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3


 ,

A3 =




1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2


, A4 =




1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1




8.6: Let the columns represent positions and the numbers the tires.
8.7:

2

22

18

23

1

17

24 8

19

15 26

6

10

12

25

521

14

7

3

16

20 4

11

2713

9

Figure A.5 A 3 × 3 × 3 magic cube.

8.8: Here is one option for 16 golfers 1–16:
Day 1—(1 2 3 4), (5 6 7 8), (9 10 11 12), (13 1 4 15 16), Day 2—(1
5 9 13), (2 6 10 14), (3 7 11 15), (4 8 12 16),
Day 3—(1 6 11 16), (2 5 12 15), (3 8 9 14), (4 7 10 13), Day 4—(1 7
12 14), (2 8 11 13), (3 5 10 16), (4 6 9 15),
Day 5—(1 8 10 15), (2 7 9 16), (3 6 12 13), (4 5 11 14).

8.9: D2 = 1, D3 = 2,D4 = 9, D5 = 44.
8.10: (a) For every normalized Latin square with first row and column in

consecutive numerical order, every rearrangement of the n columns
followed by rearrangement of all but the first row results in a distinct
Latin square. There are n!(n − 1)! ways to do this.

(b) l1 = 1, l2 = 1, l3 = 1, l4 = 4.
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9.1: p1 = P1 = 1
4 , p2 = P2 = 1

8 , p3 = P3 = 3
32 , p4 = P4 = 5

64 , p5 = P5 =
35
512 , p6 = P6 = 217

512 .

9.2: Choose the red die since its expectation for each roll is 10
3 , the highest

of the four dice.
9.3: In this case, with proper choice of dice, your chance of winning goes

up to 20
27 . Verify by calculating the probability of WW, WLW, or LWW

where p(W) = 2
3 and p(L) = 1

3 .
9.4: 24
9.5: Either (1, 2, 4, 5) and (1, 2, 3, 3, 4, 5, 5, 6, 7) or (1, 4, 4, 7) and (1, 2,

2, 3, 3, 3, 4, 4, 5) have standard probability distribution.
9.6: In this case, not all generating functions would require a factor of x.
9.7: These two weighted dice have a fair sum.
9.8: p(R < r) = 1

3 , p(R = r) = 1
6 .

9.9: (a) 1
2

(b) 7
12

9.10: One possibility is the following three dice:

2
6 2 6

2
2

,

4
4 4 4

4
4

,

5
1 5 1

5
5

.

10.1: 2n

10.2: No, for all integers n, color points in the intervals [2n, 2n + 1) blue and
color all points in the intervals [2n − 1, 2n) red.

10.3: (a) Yes. Consider the vertices of a unit tetrahedron.
(b) Yes. Mimic solution to Problem #3 using a unit tetrahedron.

10.4: In Figure A.6, three lines through the chosen point parallel to the three
sides of the triangle have been added. But now A + C + E = (r + s) +
(t + u) + (v + w) = (s + t) + (u + v) + (w + r) = B + D + F.

w
w

v
v

u

u

t

tssr

r

Figure A.6 Pizza with three additional slices parallel to the three sides.
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10.5: Nine line segments can be colored black without forming a black triangle
as shown in the figure below.

Figure A.7 Nine line segments with no black triangle.

10.6: Yes, cut the bar one-seventh from the left and two-sevenths from the
right. Then every multiple of one-seventh from one-seventh up to seven-
sevenths can be dispensed.

11.1: 3 1
8 = 3.125, 256

81 = 3.16049382716 . . . ,
√

10 = 3.16227766017 . . . , 4 ·
( 9785

11136 )2 = 3.08832649 . . . , 377
120 = 3.141666666 . . . ,

22
7 = 3.142857142857 . . . , 355

113 = 3.14159292035 . . . .

11.2: For a unit circle, the inscribed square has sides of length
√

2 and the
circumscribed hexagon has sides of length 2

√
3

3 . So the square has perime-
ter 4

√
2, while the hexagon has perimeter 4

√
3. Now take the mean to

approximate the circumference of the circle.

11.3: (a) 10π ≈ 4[2
√

10 + √
2]. So π ≈ 3.09550755 . . . .

(b) 50π ≈ 4[15
√

2 + 8
√

5]. So π ≈ 3.12814 . . . .
(c) 250π ≈ 4[125

√
2 + 6

√
10]. So π ≈ 3.13200 . . . .

11.4: (a) Let A = B = x
2 in the formula sin(A + B) = sin A cos B +

cos A sin B.
(b) Let A = B = x

2 in the formula cos(A + B) = cos A cos B −
sin A sin B. Then the use the fact that cos2( x

2 ) = 1 − sin2( x
2 ).

11.5: The length of the rectangle is the circumference of the wheel, namely
2πr .

11.6: (a) Take the tangent of both sides of the arctangent formula and use the
fact that tangent and arctangent are inverse functions on appropriately
restricted domains.

(b) π
4 = arctan(1) = arctan( 1

2 ) + arctan( 1
3 )

(c) arctan( 1
2 ) = arctan( 1

3 ) + arctan( 1
7 ). Now substitute this into the

answer in part (b).
11.7: a1 = 1.20710678118, b1 = 1.189207115, a2 = 1.19815694809, b2 =

1.19812352149, a3 = 1.19814023479, b3 = 1.19814023467.



186 MATHEMATICAL JOURNEYS

11.8: (a) 15 decimal place accuracy
(b) 8 decimal place accuracy

11.9: 6
√

π4 + π5 is approximately e (the base of the natural logarithm function)
to 8 decimal place accuracy. Coincidence? I do think so!

11.10: The error caused by truncating a convergent alternating series is less than
the first neglected term. Let pk = π + ε where ε is the error in using
pk to estimate π . Then pk+1 = pk + sin pk = (π + ε) + sin(π + ε) =
π + ε − sin ε = π + ε − ( ε

1! − ε3

3! + ε5

5! − . . . ) = π + ε3

6 − . . . Hence if

ε < 10−n, then ε3

6 < 0.2 · 10−3n. It follows that pk+1 has at least three
times as many accurate decimal places as does pk .

11.11: c1 = 22
7 , c2 = 333

106 , c3 = 355
113 , c4 = 103993

33102 , c5 = 104348
33215 , c6 = 208341

66317 , c7 =
312689
99532 , c8 = 833719

265381 , c9 = 1146408
364913 , c10 = 4272943

1360120 . The tenth convergent
provides 13 decimal place accuracy to π .

12.1: The same proof works for any point p = (
√

n, 1
r
) for any nonsquare n

and r ≥ 3 as well as for many other carefully chosen points.
12.2: For n sets, let Ai consist of the entries in all rows congruent to i modulo

n for 1 ≤ i ≤ n.
12.3: (a) Since all squares are congruent to either 0, 1, or 4 (mod 8), the sum

of three such squares could never be congruent to 7 (mod 8). Hence
all integers that are congruent to 7 (mod 8) cannot equal the sum of
three nonzero squares.

(b) Notice that there is a one-to-one correspondence between represen-
tations of 2n as a sum of four squares (not all nonzero necessarily)
and representations of 8n as a sum of four squares. In one direction,
if 2n = a2 + b2 + c2 + d2, then 8n = (2a)2 + (2b)2 + (2c)2 + (2d)2.
In the other direction, if 8n + A2 + B2 + C2 + D2, then each of A,
B, C, D must be even (since odd squares are congruent to 1 mod-
ulo 8). But then 2n = (A/2)2 + (B/2)2 + (C/2)2 + (D/2)2, a sum
of integral squares. Since 2 is not representable as the sum of four
nonzero squares, neither are the numbers 2 · 4r for all r ≥ 1.

12.4: The solution to Problem #3 provides a proof for k = 5 where it is
shown that any integer greater than 33 can be expressed as the sum of
five nonzero squares. If k ≥ 6 and n ≥ 29 + k, then n + 5 − k ≥ 34.
Thus n + 5 − k = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 for nonzero xi . But then
n = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + 12 + . . . + 12 with k − 5 terms of 12. The
result is a representation of n as the sum of k nonzero squares.

12.5: Verify that if 34 ≤ n ≤ 78, then n is representable as the sum of distinct
triangular numbers less than or equal to 36. Now add 45 to the representa-
tions for 34, 35, . . . , 78 to obtain expressions for n with 79 ≤ n ≤ 123 as
the sum of distinct triangular numbers. Next add 55 to the representations
for 69, 70, . . . , 123 to get expressions for n with 124 ≤ n ≤ 178 as the
sum of distinct triangular numbers. Next add 66 to the representations for
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113, 114, . . . , 178, and so on. This algorithm extends indefinitely since
each triangular number ≥ 6 is less than twice the one before.

12.6: Let the set consist of the numbers a1, . . . , a2,005. Consider the particular
sums s1 = a1, s2 = a1 + a2, . . . , s2,005 = a1 + . . . + a2,005 and form the
set {0, s1, s2, . . . , s2,005}. By the pigeonhole principle, two elements of
the set belong to the same congruence class modulo 2,005. If si ≡ sj
(mod 2,005) with i < j , then 2,005 divides sj − si = ai+1 + . . . + aj . If
0 ≡ si (mod 2,005) for some i, then si is the appropriate sum.

12.7: Mentally slice the cube with three orthogonal slices down the center of
each side, thereby creating eight unit subcubes. By the pigeonhole prin-
ciple, two of the points lie in or on the same subcube. But the farthest
apart they could be would occur if they were at opposite diagonal cor-
ners. By applying the Pythagorean Theorem twice, it is readily seen that
the opposing corners are

√
3 units apart.

12.8: The number 12,167 = 233 and 12,168 = 23 · 32 · 232.
13.1: φ(3) = 2, φ(5) = 4, φ(15) = 8, φ(24) = 8, φ(48) = 16, φ(101) =

100, φ(105) = 48, φ(1,000) = 400.
13.2: (a) Since m and n are relatively prime, if r|mn, then there are unique

integers d|m and e|n for which r = de.
(b) Note that φ(p) = p−1 since every integer less than a prime p is rel-

atively prime to it. Similarly, every number that is not a multiple of
p is relatively prime to pt . Hence φ(pt ) = pt − 1

p
·pt = pt−1(p−1).

(c) The number of integers less than or equal to one billion that are not
relatively prime to one billion is 109 − φ(109) = 109 − φ(2959) =
109 − 2858 · 4 = (10 − 4)108 = 600,000,000.

13.3: By the Euler-Fermat Theorem, if gcd(10, n) = 1, then 10φ(n) ≡ 1 (mod
n). Hence n divides the number consisting of a string of φ(n) nines. Of
course n will also divide a string of k · φ(n) nines for any k ≥ 1.

13.4: Consider the n fractions 1
n
, . . . , n

n
. Reduce each one to lowest terms. For

each d|n, there are φ(d) reduced fractions with denominator d .

13.5: (a) 15,841 = 7 · 31 · 73
(b) 41,041 = 7 · 11 · 13 · 41

13.6: (a) 266 ≡ 1 (mod 67), 233 ≡ −1 (mod 67), 222 ≡ 37 (mod 67), and
26 ≡ −3 (mod 67). By Lucas’s Primality Test, 67 is prime.

(b) 290 ≡ 64 	≡ 1 (mod 91). Hence 91 cannot be prime by Fermat’s
Little Theorem. If we had chosen base b = 3 instead though, then
390 ≡ 1 (mod 91). Furthermore, 345 	≡ 1 (mod 91). However, 330 ≡ 1
(mod 91). Hence Lucas’s Primality Test would confirm that 91 is
composite.

13.7: 1,105 = 5·13·17. Hence reason modulo 5, 13, and 17. 21,104 = (24)276 ≡
1276 = 1 (mod 5), 21,104 = (26)184 ≡ (−1)184 ≡ 1 (mod 13), and
21,104 = (24)276 ≡ (−1)276 = 1 (mod 17). Thus 21,104 ≡ 1 (mod 1105)
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since 5, 13, and 17 are pairwise relatively prime. Hence 1105 is a psp(2).
In addition, 31,104 = (34)276 ≡ 1276 = 1 (mod 5), 31,104 = (33)368 ≡
1368 = 1 (mod 13), and 31,104 = (38)138 ≡ (−1)138 = 1 (mod 17).
Hence 31,104 ≡ 1 (mod 1,105) and so 1,105 is a psp(3).

13.8: (a) Since r is composite, there exist integers a, b with 1 < a ≤ b < r

such that r = ab. Hence r ′ = 2r − 1 = 2ab − 1 = (2a − 1)(2a(b−1) +
. . . + 2a + 1). Thus r ′ is composite.

(b) Since 2r−1 ≡ 1 (mod r), 2r−1 − 1 = rd for some integer d . Hence
2r ′−1 = 22r−2 = 22(2r−1−1) = 22rd = (2r )2d ≡ 12d = 1(modr ′).

(c) Since 341 is a pseudoprime, the set of pseudoprimes is nonempty. If
r is a pseudoprime, then r ′ = 2r − 1 is a pseudoprime. Hence we
can construct pseudoprimes indefinitely.

14.1: The number N = 4p1 · · · pn−1 ≡ 3 (mod 4). But the product of integers
all of which are congruent to 1 modulo 4 is itself congruent to 1 modulo
4. So N must be divisible by a prime p ≡ 3 (mod 4). But p cannot be
among p1, . . . , pn since none of them are divisors of N .

14.2: Reason why the list of primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631,
and 1,259 establishes Bertrand’s Postulate for 1 < n < 1,000.

14.3: (a) Let σ(n) be the sum of the divisors of n. Then σ(945) = 1,920 >

2 · 945.
(b) Note that if d is a divisor of n, then 3d is a divisor of 3n. Hence

σ(3n) ≥ 3σ(n). Since 945 is abundant, the numbers 3n · 945 must
necessarily be abundant as well.

14.4: σ(6) = σ(11) = 12.

14.5: (a) Given an integer n and k > 1, note that if d is a divisor of n, then
kd is a divisor of kn. In addition,1 is a divisor of kn not of the form
kd . Hence σ(kd) > kσ(n). If σ(n) ≥ 2n, then σ(kn) > 2kn.

(b) The abundant numbers less than 46 are 12, 18, 20, 24, 30, 36, 40,
and 42. No two sum to 46.

(c) Let n be an even number greater than 46. If n ≡ 0 (mod 6), then
n = 12+(n−12) is such a representation. If n ≡ 2 (mod 6), then write
n = 20 + (n − 20). If n ≡ 4 (mod 6), then write n = 40 + (n − 40).

14.6: For example, for p = 89 : 86 = 89−3, 84 = 89−5, 82 = 89−7, and even
integers less than or equal to 80 have already been verified for p = 83.

14.7: (a) 4
2 = 1

1 + 1
2 + 1

2 , 4
3 = 1

1 + 1
4 + 1

12 , 4
4 = 1

2 + 1
3 + 1

6 , 4
5 = 1

2 + 1
4 + 1

20 , 4
6 =

1
2 + 1

9 + 1
18 , 4

7 = 1
2 + 1

21 + 1
42 , 4

8 = 1
3 + 1

9 + 1
18 , 4

9 = 1
3 + 1

12 + 1
24 , 4

10 =
1
3 + 1

45 + 1
90 , 4

11 = 1
3 + 1

99 + 1
198 , 4

12 = 1
9 + 1

9 + 1
9 .

(b) 5
2 = 1

1 + 1
1 + 1

2 , etc.

14.8: 3, 1, 5, 4, 6, 2.
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14.9: 70 is a weird number since it is abundant, but no subset of its proper
divisors sum to 70. (Notice that the word “weird” is weird as well in that
it does not obey the usual “i before e” rule.)

14.10: (a) If the numbers n+1, . . . , 2n are chosen then none divides any other.
Hence the answer must be at least n. Interestingly, Erdös showed
this is the actual answer. Let T be the largest subset of S with
no member dividing another. Consider the [n+1

2 ] pair of numbers
(2n, n), (2n − 2, n − 1), . . . (2[n+2

2 ], [n+2
2 ]). The set T can contain

at most one member from each pair. To maximize its size, assume
that it does. In addition, T cannot contain any of the numbers 1, 2,
. . . , [n

2 ] since each of them divides evenly into some number of the
set {[n+2

2 ], . . . , n}. But for each such number, either T contains a
multiple of it among {[n+2

2 ], . . . , n} or double that number. Finally,
T can contain all [n

2 ] odd numbers n + 1, n + 3, . . . , 2n + 1. Thus
T contains at most [n+1

2 ] + [n
2 ] = n elements.

(b) No one knows the answer. By taking the numbers m + 1, m +
2, . . . , 3m + 2 for m as large as possible, we see that the answer
must be at least [2n/3]. In some instances, the answer seems a bit
larger. For example, for n = 29, D.J. Kleitman has shown that the
set 11, 12, . . . , 29 with 18 and 24 omitted and then 6, 8, 9, and 10
appended satisfies the conditions. There’s certainly more to learn.

15.1: Use Ferrers’s graphs and consider the conjugate partition.
15.2: There is a one-to-one correspondence between partitions of n containing

at least one part k and partitions of p(n − k).

15.3: (a)
∏3

k=1
1

1−xk = ∑∞
n=0 p(n, 3)xn.

(b) p(n, 3) = 1+x+2x2+3x3+4x4+5x5+7x6+. . . . Hence p(6, 3) = 7.
The partitions are 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1,
and 2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1

15.4: (a)
n 1 2 3 4 5 6 7 8 9 10

p(n, e) 0 1 0 2 0 3 0 5 0 7

(b)
∏∞

k=1
1

1−x2k = ∑∞
n=0 p(n, e)xn.

(c) p(n, e) = p(n/2) for all even n.
15.5:

∏∞
k=1(1 + x2k) = ∑∞

n=0 pu(n, e)xn,
∏∞

k=1(1 + x2k−1) = ∑∞
n=0

pu(n, o)xn.

15.6: (a)
n 1 2 3 4 5 6 7 8 9 10

pu(n, o) 1 0 1 1 1 1 1 2 2 2
(b) pu(n, o) = sc(n) for all n. To see why, do the following. For any par-

tition p of n into unequal odd parts, create a new Ferrers’s graph of
n by laying out the parts of p in nested L-shaped strings. Figure A.8
shows the transformation for the three relevant partitions of n = 12.
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11 + 1 

9 + 3

7 + 5

6 + 2 + 1 + 1 + 1 + 1

5 + 3 + 2 + 1 + 1

4 + 4 + 2 + 2

Figure A.8 pu(12, σ ) = sc(12).

15.7: Let C(n) = the number of compositions of n with no part 1. Note that
C(2) = 1 = F1. It suffices to show that C(n) = C(n− 1)+C(n− 2) for
n ≥ 3 since that is the same linear recurrence satisfied by the Fibonacci
numbers. For arbitrary n, let r1, . . . , ri be the compositions of n−2 with
no part 1, and let s1, . . . , sj be the compositions of n−1 with no part 1.
By adding “+2” to the right of each of the r’s, we get compositions of n

with no part 1. (For example, 3 + 4 + 5 becomes 3 + 4 + 5 + 2.) Also by
adding one to the right-most part of each of the s’s gives other composi-
tions of n with no part 1. (For example, 4+3+6 becomes 4+3+7.) The
two sets of compositions of n are disjoint since the first set has right-most
part 2, while none of the second set do. Furthermore, these are all the
compositions of n with no part 1. Hence C(n) = C(n − 1) + C(n − 2)

as desired.
15.8: (a) p(9) = p(8) + p(7) − p(4) − p(2) = 22 + 15 − 5 − 2 = 30.

(b) p(10) = p(9) + p(8) − p(5) − p(3) = 30 + 22 − 7 − 3 = 42.
15.9: n-uplets come in p(n) different varieties.
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16.1: For each k with 0 ≤ k ≤ n, there are

(
n

k

)
ways to choose k cards for

Player #1. But each hand choice for Player #1 corresponds to a unique
hand for Player #2 made up of the remaining cards of the deck. Hence

the total number of ways to deal two hands is
∑n

k=0

(
n

k

)
= 2n. If each

player must receive at least one card, then the answer would be 2n − 2.
16.2: There are mn ways to distribute n cards among m players. This follows

from a multinomial theorem, a natural extension of the binomial theorem.

16.3: Yes, suppose that

(
n

r

)
,

(
n

r + 1

)
,

(
n

r + 2

)
are three consecutive entries

in the ratio 1:2:3. Then

(
n

r + 2

)
= 3

(
n

r

)
and so r!(n − r)! = 3(n −

r − 2)!(r + 2)! after clearing denominators. Thus (n − r)(n − r − 1) =
3(r + 1)(r + 2). But

(
n

r + 1

)
= 2

(
n

r

)
, and so n − r = 2(r + 1). That

is, n = 3r + 2. Thus (2r + 2)(2r + 1) = 3(r + 1)(r + 2) and we get that
r = 4. It follows that n = 14. Hence the consecutive binomial coefficients(

14
4

)
= 1,001,

(
14
5

)
= 2,002, and

(
14
6

)
= 3,003 are in the ratio 1:2:3.

16.4: The number of ways of placing the 20 balls into the six numbered boxes
is the same as the number of sequences of 20 1’s, 2’s, . . . , 6’s containing
all six numbers and written in nondecreasing order. But the latter can be
described by placing 20 markers and then placing 5 dividers among the

19 spaces between the markers. There are

(
19
5

)
such choices.

16.5: This solution to this problem is analogous to that of Problem 16.4. Think
of the candy bars as being the balls and the children as being the boxes.

The answer is

(
39
9

)
.

16.6: For 1 ≤ k ≤ n − 1,

(
n

k

)
= n(n−1)···(n−k+1)

k! . If n is prime, then n

divides the numerator but not the denominator. Hence n|
(

n

k

)
. If n is

composite, then we can write n = rs where 1 < r ≤ s < p. Then(
n

r

)
= rs(rs−1)···(rs−r+1)

r! = s(rs−1)···(rs−r+1)
(r−1)! . But r does not divide any

of the factors rs−r+1, . . . , rs−1. Hence rs cannot divide the numerator.

Therefore

(
n

r

)
is not divisible by n.

16.7: Each south-east spelling of MATHEMATICS corresponds to a ten-letter
word consisting of five letters S and five letters E corresponding to the
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five times we move south and five times we move east. The number of
such words is 10!

5!5! = 252.

16.8:
∑n

k=1(2k − 1)2 = ∑2n
k=1 k2 − ∑n

k=1(2k)2 = ∑2n
k=1 k2 − 4

∑n
k=1 k2 =

2n(2n+1)(4n+1)
6 − 4n(n+1)(2n+1)

6 = 2n(2n+1)[4n+1−2(n+1)]
6 =

(2n+1)(2n)(2n−1)
6 =

(
2n + 1

3

)
.

16.9: Many combinatorial identities can be best understood by telling an appro-
priate story. Suppose you have n + m distinguishable balls and wish to

choose r of them. The number of ways to do so is

(
n + m

r

)
. But one

method to make a selection is to first put n of the balls in one container
and m in another. Then for some k with 0 ≤ k ≤ r , choose k balls from
the first container. Having done that, choose the rest (r − k balls neces-
sarily) from the second container. The total number of such selections is∑r

k=0

(
n

k

)(
m

r − k

)
.

16.10: We establish the result by induction on n. For n = 1, we

have that
∑1

k=0

(
1
k

)
=

(
2
1

)
. Now assume that the proposition

is true for arbitrary n. We will show that
∑n+1

k=0

(
n + 1

k

)2

=(
2n + 2
n + 1.

)
. Since

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
, it follows that

∑n+1
k=0

(
n + 1

k

)2

= ∑n+1
k=0

((
n

k − 1

)
+

(
n

k

))2

where we define
(

n

−1

)
=

(
n

n + 1

)
= 0. Thus

∑n+1
k=0

(
n + 1

k

)2

= ∑n+1
k=0(

n

k − 1

)2

+ ∑n+1
k=0

(
n

k

)2

+ ∑n+1
k=0

2
(

n

k − 1

)(
n

k

)
= 2

(
2n

n

)
+

∑n+1
k=0 2

(
n

k − 1

)(
n

k

)
by our inductive hypothesis.

But

(
n

k − 1

)
=

(
n

n − k + 1

)
for all k with 0 ≤ k ≤ n + 1. Thus

∑n+1
k=0 2

(
n

k − 1

)(
n

k

)
= ∑n+1

k=0 2

(
n

k

)(
n

n − k + 1

)
. We now apply the

result from Problem 16.9 with m = n and r = n+1 to obtain
∑n+1

k=0 2

(
n

k

)
(

n

n − k + 1

)
= 2

(
2n

n + 1

)
. Therefore,

∑n+1
k=0

(
n + 1

k

)2

= 2

(
2n

n

)
+

2

(
2n

n + 1

)
= 2

(
2n + 1
n + 1

)
= 2(2n+1)!

n!(n+1)! = 2(n+1)(2n+1)!
(n+1)!(n+1)! =

(
2n + 2
n + 1

)
.
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