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Preface

The fourth CAMDA conference. held in November 2003, focused on
lung cancer data sets with a survival endpoint. In this volume, we highlight
three tutorial papers to assist with a basic understanding of lung cancer, a
review of survival analysis in the gene expression literature. and a paper on
replication. In addition, 14 papers presented at the conference are included
in this volume. Each paper was peer-reviewed and returned to the author for
further revision. As editors. we have provided comments to the authors to
encourage clarity and expansion of ideas.

As always, we do not propose these methods as the de facto standard for
analysis of microarray data. Like the conference, they provide a point for
continued discussion in an evolving field. Please join us for a future
CAMDA conference to add your ideas to this discussion.

Jennifer 8. Shoemaker

Simon M. Lin
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INTRODUCTION

After years of development since late nineties, microarray has become an
established platform for high-throughput query of the transcriptome. The
Critical Assessment of Microarray Data Analysis (CAMDA) conference
continues serving as an annual forum for practitioners to exchange ideas and
compare notes [Wigle et al., 2004]. The fourth CAMDA was held in
November. 2003 with 145 researchers from |l countries in attendance. As
always, we were amazed by the new insights gained from reanalyzing
published data sets. Following the CAMDA tradition, all papers analyzed the
same designated data set, and the Best Presentation was voted by attendees
and Scientific Committee members at the end of the conference. The
CAMDA™03 Best Presentation went to:

Jeffrey S. Morris, Guosheng Yin, Keith Baggerly, Chulei Wu, and Li
Zhang, from M.D. Anderson Cancer Center for their paper “Pooling
Information Across Different Studies and Oligonucleotide Chip Types to
Identify Prognostic Genes for Lung Cancer™.

With the help of the Scientific Committee, we compiled 14 papers from
CAMDA"03 into this volume. In addition to research papers, we added three
tutorials for beginners. In Chapter 1. Dr. David Beer (University of
Michigan) summarized the research goals and challenges of lung cancer. Dr.
Peter Park (Harvard) discussed the basic ideas and practical difficulties of
associating microarray data with survival data in Chapter 2. Drs. Sue-Jane
Wang and James Chen (FDA) discussed the importance of replicates in
experiment design for reliable statistical evaluation in Chapter 3.

CAMDA 03 DATA SET

Lung cancer is the leading cause of cancer death worldwide [Jemal et al.,
2003]. In contrast to survival improvements of breast cancer and prostate
cancer in the past three decade, the five-year survival rate of lung cancer
remained below 15% [Borczuk et al.. 2003]. Experiments utilizing
microarrays are expected to contribute to discoveries of biological
mechanisms of lung cancer that might contribute to its poor outcome. The
scientific committee of CAMDA selected four representative data sets
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published between 2001 and 2002 (Table 1) as the challenge data set for
CAMDA’03.

Table 1. Microarray profiling of lung cancers.

Paper Title Author and Year

CAMDA 03 data sets
“Harvard"  Classification of human lung carcinomas by Bhanacharjee et al.,
mRNA expression profiling reveals distinct 2001
adenocarcinama subclasses.
“Sanford”  Diversity of gene expression in Garber et al,, 2001
adenocarcinoma of the lung

“Michigan”  Gene-expression profiles predict survival of Beer et al., 2002
patients with lung adenocarcinoma

“Ontario™ Molecular profiling of non-small cell tung Wigle et al,, 2002
cancer and correlation with disease-free
survival
Other recent studies
Non-small-cell lung cancer molecular Borczuk et al., 2003
signatures recapitulate lung developmental
pathways

Gene expression profiling of normal human Fromigue ¢t al., 2003
pulmonary fibrablasts following coculture with

non-small-cell lung cancer cells reveals

alterations related to matrix degradation,

angiogenesis, cell growth and survival

Expression profiles of non-small cell Jung Kikuchi et al., 2003
cancers on cDNA microarrays: identification

of genes for prediction of lymph-node

metastasis and sensilivity Lo anli-cancer drugs

¢DNA microarray analysis of gene expression ~ Nakamwra et al., 2003
in pathologic Stage 1A nonsmall cell lung

carcinomas

Transcriptional gene expression profiling of Pedersen et al., 2003
small cell lung cancer cells

pRB2/p130 target genes in non-semall lung Russo et al_, 2003
cancer cells identified by microarray analysis

Differentially expressed apoptotic genes in Singhal et al., 2003
early stage Jung adenocarcinoma predicted by

expression profiling

MMP expression profiling in recurred stage IB- Cho et al., 2004
lung cancer
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From the recent studies in Table 1, we can see the research trend shifting
from proof-of-concept study of the technology platform to more detailed
investigation of lung cancer biology and its therapeutic implications. In
addition to the continued investigation of lung cancer by transcriptional
profiling, lung cancer has been studied with other high-throughput
techniques, such as proteomics [Chen et al., 2003; Howard et al., 2003], loss
of heterozygosity test [Massion et al., 2002; Janne et al., 2004] and tissue
microarrays [Sugita et al., 2002; Haedicke et al., 2003]. All these advances
in experiment biology continue to challenge bioinformatics in terms of data
volume, complexity and integration.

FROM CLASSIFICATION TO SURVIVAL
MODELING

In the previous years of CAMDA, discussions focused on classification
[Lin and Johnson, 2002], pattern extraction [Lin and Johnson, 2002], and
data quality control [Johnson and Lin, 2003]. CAMDA’03 initiated a new
line of investigation of modeling survival data. Survival data adds
complexity to the already complicated data analysis problem with censoring
(see more discussion in tutorial Chapter 2). A comparison of this new task
with previous tasks is summarized in Table 2. The goal of biomarker
discovery is to find a small number of genes for developing rapid and low-
cost clinical tests, whereas the goal of prediction is for diagnostics and
prognostics.

Table 2. Tasks of classification and survival modeling.

Biomarker discovery Prediction

Classification Find genes associated witha  Predict the class given an
class of tumor expression profile

Survival Modeling Find genes associated with Predict the patient survival
survival time given an expression profile

In Chapter 4, Morris et al. noticed an increased statistical power when
combining data from different studies into a larger cohort. Warnock et al
(Chapter 5) proposed a meta-analysis approach to aggregate p-values from
different studies. To associate gene expression with survival, investigators
used different methods, including the Cox proportional hazard model
[Tableman and Kim, 2004]. Lin et al. used survival tree in Chapter 6; Hu et
al. proposed a weighted (-test to take both the cancer v.s. normal difference
and cancer survival into consideration (Chapter 7); and Jung et al. (Chapter
8) used a nonparametric measure between a continuous variable and a
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survival variable and discussed the control of family-wise error rate in
multiple testing. The paper of Jung et al. established a foundation for future
studies of sample size estimation. This experimental design issue is of
particular interest to clinical researchers who are planning to use microarrays
in clinical trails. In Chapter 9, Shedden et al. associated clinical outcome
with a novel differential correlation measure; and Friedman et al.
approached the problem with developed tools and theories in econometrics
(Chapter 10).

Berrar et al. (Chapter 11) and Zheng et al. (Chapter 15) investigate
machine learning techniques to predict survival risk groups. Jones et al.
applied model-based clustering to microarray data and demonstrated the
association between the patient cluster and survival time (Chapter 12). In
Chapter 13, Zhou et al. studied k-medians and approximate distance
clustering in the context of survival analysis. In Chapter 14, the same group
investigated the cancer-type classification problem. Zheng et al. further
studied gene selection problem and compared the performance of different
classifiers in Chapter 15. Langston et al. modeled the patient and gene
relationship using edge-weighted graphs (Chapter 16). Kossenkov et al. used
Bayesian Decomposition to find expression signatures related to patient
prognosis in Chapter 17.

FROM DATA MODELING TO KNOWLEDGE
MODELING

Discussion of biological relvevance is a key component of the CAMDA
challenge. Previous reports in the literature of tumor biology were
extensively used as supports for statistical findings. In addition, gene
ontology (Chapter 5, 15, 16, and 17), GeneAtlas and OMIM database
(Chapter 11) were used to assess the biological relevance.

To model biological knowledge formally in terms of signaling pathways.
protein-protein interactions, and protein-drug interactions has been on the
new roadmap of NIH [Zerhouni, 2003]. A recent study from Creighton et al.
[2003] successfully utilized Locuslink and KEGG to suggest the loss of
differentiation as a mechanism in lung adenocarcinomas. However, public
resources, such as the LocusLink and KEGG, are still lacking in terms of
quality, structure, and coverage for primetime use of knowledge modeling.
Commercial entities are trying to fill in the gap by providing hand-annotated
databases with higher quality, well defined ontology structure, and broader
coverage. Such systems include Ingenuity Pathways Knowledge Base from
Ingenuity (Mountain View, CA) and PathArt database from Jubilant Biosys
(Columbia, MD). PathArt has been integrated into the PathwayAssist
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product from Ariadne (Rockville, MD) and the microarray analysis package
from SpotFire (Somerville. MA). These integration tools provide a
convenient way for end-users to model the functional pathways.

With the aid of these tools and many ongoing projects to develop similar
tools, we will expect to see more efforts in modeling signaling pathways in
the near future,

GRID-ENABLED SCIENCE

To address new research challenges in the post-genomic era. the National
Cancer Institute launched the Cancer Biomedical Informatics Grid (caBIG)
project, Dr. Kenneth Beutow from NCI introduced this project in the
keynote address of CAMDA03. CaBIG is an informatics platform to
connect organizations and individuals by a data and computational grid
[Nature News, 2004]. Many attendees were excited by its design principle
of open access and common standards in bioinformatics. We are expecting
to see the caBIG project nurturing transdisciplanry team science by sharing
genomics data, tools, and computational infrastructure.

The caBIG project, together with the e-Science program of the United
Kingdom, reflects the need from the scientific community to have access to
large data sets and high-performance computing resources by grid
computing [Butler, 2000]. We shall see early fruits from these projects in the
future CAMDAS 10 come,

SUMMARY

Bioinformatics plays a key role in analyzing genomics data to fight life-
threatening diseases. Our next CAMDA conference will focus on microarray
studies of malaria. According to data from the Center of Disease Control of
vear 2000, malaria put 40% people in the world at risk; 300-500 million
cases of infection were estimated yearly. We will see how microarrays help
contribute to solving this public health problem. and how bioinformatics can
help make sense of the data.

WEB COMPANION

Additional information can be found at the CAMDA website.
http://camda.duke.edu
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You can try out algorithms in this book by following the download link
from the authors: or. you can download the CAMDA’03 benchmark data set
and run you new algorithms against it. In addition, conference slide
presentations with color version of several figures can be found. Please also
check the website for call for papers and announcements about the next
conference.
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Chapter 1

CANCER: CLINICAL CHALLENGES AND
OPPORTUNITIES

Lung Cancer Gene Profiling

David G. Beer
General Thoracic Surgery. University of Michigan, Ann Arbor MT 48109

Abstract: Lung cancer is the leading cause of cancer death. Gene expression profiling of
lung cancer may provide one method to increase our understanding ol this
very heterogeneous disease and potentially identify new approaches for early
diagnosis, prognosis or treatment. This briel review examines some of the
issues that are associated with the clinical presentation of this disease and
some important questions that might be addressed using gene expression
profiling experiments when applied to human lung cancer.

Key words:  Lung cancer; non-small cell lung cancer; mRNA: gene expression; gene
profiles

1. INTRODUCTION

Gene expression profiling allows the examination of thousands of genes
in a cell or tumor sample. The analysis of the patterns of gene expression
and the identification of specific genes and pathways has the potential to
help uncover biologically meaningful information. Recently published
studies have utilized these technologies and applied these tools to lung
cancer [Petersen et al., 2000; Garber et al., 2001; Bhattacharjee et al., 2001:
Nacht et al., 2001; Beer et al.. 2002; McDoniels-Silvers et al., 2002;
Heighway et al.. 2002: Miuri et al.. 2002: Wigle et al.. 2002 Wikman et al..
2002: Nakamura et al., 2003: Kikuchi et al, 2003: Difilippantonio et al..
2003; Yamataga et al., 2003; Borczuk et al., 2003]. Many of these analyses
have revealed gene expression pafterns that correlate with known
histological patterns as well as reveal potential subgroups among lung
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adenocarcinomas that differ based on patient outcome. The ability to
identify gene expression patterns or profiles that correlate with the biological
ageressiveness of lung adenocarcinomas [Garber et al., 2001; Bhattacharjee
et al., 2001: Beer et al., 2002: Wigle et al.. 2002] suggests that these
approaches may allow extraction of clinically useful information beyond that
provided by a pathological assessment of the cancers alone.

Given the tremendous interest in the research community and the great
potential for gene expression analyses to uncover new information about
lung cancer. it is important to identify the clinical questions that are relevant
to this disease and where these experimental approaches may prove useful in
addressing these challenging questions. In this brief review some of these
questions will be discussed with the goal that analytical approaches might be
developed that focus on these biologically and clinically relevant problems
in lung cancer.

1.1 Lung Cancer: A World Wide Problem

Lung cancer is the leading cause of cancer deaths in both men and
women in the U.S. with nearly 160,000 cases per year [Jemal et al., 2003].
Importantly, this cancer is also one of the leading types worldwide
accounting for 921,000 or 17.8% of all cancer deaths and greater than the
mortality associated with breast, prostate, colon and pancreatic cancer
combined [Ferlay et al., 2001]. There is a close relationship between lung
cancer incidence (new cases/year) and mortality (deaths/year) due to the
poor overall 5-year median survival. which is approximately 15% in the U.S.
and only 8% in Europe and developing countries. As has been extensively
demonstrated, the main cause of lung cancer is the consumption of tobacco
products especially cigarette smoking. Of particular concern is that the rate
of active smoking is increasing among high school students [US DHHS.
1998]. Since there is a long latency period between carcinogen exposure and
cancer development, even if the total removal of all cigarettes were possible
today there would still be an epidemic of lung cancer for many decades.

The majority of lung cancers occur in the upper lobes of the lung and
most often present at a relatively advanced stage at first diagnosis. Stage 1
tumors account for approximately 13%. stage Il for 10%, stage I1I for 44%
and stage 1V for 32% of all new lung cancers [Bulzebruck et al., 1992]. Thus
most of these tumors when first seen by a physician have already
metastasized either within the lung to associated lymph nodes (stages Il and
III) or to distant sites (stage IV). Given that the 5-year survival rates of
patients dramatically decreases with increasing stage. the best hope for
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increasing patient survival is the early detection of lung cancer. This is one
area that gene expression profiling may play a major role. Genes that are
highly expressed in lung cancers, or that may be specific to each of the
various types may be useful in defining new markers for monitoring patients
at greatest risk and identifying cancer early when it is most effectively
treated.

1.2 Multiple Types of Lung Cancer

Lung cancer is an extremely heterogeneous disease potentially more so
than other cancer types. The World Health Organization histological
classification divides lung cancer into two main types. small cell and non-
small cell lung cancer [Brambilla et al., 2001]. The small cell type is
characterized by small cells with a high nuclear to cytoplasmic ratio and the
expression of a number of neuroendocrine gene products. These cancers can
either be of the pure or mixed varieties. The non-small cell lung cancers
account for the majority of lung cancer and include large cell. squamous cell,
adenocarcinoma, adenocystic and carcinoids as the major subtypes [Travis et
al., 1995]. Within large cell tumors there are both giant and clear cell types.
within the squamous cancers there are epidermoid and the spindle cell types,
and among adenocarcinomas there are the acinar. papillary. mucinous and
bronchioloalveolar types. Often there may be tumors that display mixtures
of these histological patterns. The lung is comprised of a large number of
different cell types. The varying types and subtypes of lung cancer likely
reflect these varied cell origins as well as histological and morphological
features that may change during the loss of differentiated functions and
genomic alterations associated with tumor growth and progression.

Although the histological features used to pathologically classify lung
cancers have allowed some understanding of this disease., morphological
features alone are insufficient to define the behavior of these tumors, The
survival of patients with small cell. large cell, squamous cell and
adenocarcinoma is very poor and unfortunately. these are the lung cancer
types with the highest age-adjusted incidences [Zheng et al., 1994].
Analyses of gene expression profiles that have included the different
histological types of lung cancers revealed gene expression patterns that
appear to recapitulate these main pathological types [Garber et al., 2001:
Bhattacharjee et al.. 2001]. This indicates that as expected. the different
lung cancer types have distinct genes that can distinguish them from the
other lung cancers. Importantly, among the adenocarcinomas, several
subgroups were also identified that appear to differ not only in gene



|2 Beer

expression but also as related to the patients overall survival [Garber et al.,
2001; Bhattacharjee et al., 2001; Beer et al., 2002]. It is possible that it is
because adenocarcinomas have been examined in the greatest numbers that
subgroups of tumors with different clinical behaviors have been identified.
as significant heterogeneity is not restricted to adenocarcinomas. These
studies suggest however. a number of important points that could be the
basis for more extensive analyses in the future. Firstly, by examining the
gene expression of lung cancers it may be possible to not only define the
genes that are unique and distinguish each of the various types or subtypes.
Secondly. this information may also help determine the genes that may be in
common. and help to determine the relationships between these tumors and
their potential cells of origin. Thirdly, the analysis of a sufficiently large and
robust set of tumors carefully annotated in regards to the clinical behavior of
each tumor, as has been done for lung adenocarcinomas, may provide more
insight into the biological processes that underlie these tumor metastatic and
aggressive behavior.

Over the last four decades. the age-adjusted incidence of the different
types of lung cancer [Zheng et al.. 1994] indicates that among both men and
women, a steady increase in all of the major types were observed except for
bronchioloalveolar carcinomas, which remained relatively constant. In the
mid 1980's squamous cell carcinomas and small cell cancers among men
decreased slightly, whereas a steady increase was observed in these cancers
among women. The incidence of adenocarcinomas has continued to
increase in both sexes but this has increased more significantly among
women. The basis for these trends is likely to be related to use of tobacco
products. as cigaretle smoking is the major risk factor for the development of
lung cancer. Women have a 1.2 to 1.7 fold higher odds ratio of developing
lung cancer of all types than men even though women tend to start smoking
later and inhale less deeply than men [Zang et al., 1996]. This is a very
important and interesting difference and may relate to a higher susceptibility
due to nicotine metabolism. cytochrome P450 enzyme variations. or
hormonal influences on tumor development. A study by Ryberg et al.
[1994] suggested that DNA adduct levels are higher among women than
men after adjusting for smoking dose. Therefore gene expression profiling
may have the potential to uncover additional reasons for the gender-related
differences in lung cancer susceptibility.

Although smoking is most strongly associated with squamous cell and
small cell lung cancer, and historically adenocarcinomas have been most
common among non-smokers, most patients who develop adenocarcinomas
of the Tung have a smoking history [Brownson et al., 1992]. Interestingly.
the increased incidence in adenocarcinomas and the decrease in squamous
and small cell lung cancers is thought to reflect the changed manufacturing
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from unfiltered to filtered cigarettes [Lubin et al.. 1984: Wynder and Kabat,
1988]. At least one study by Miura et al. [2002] has compared the gene
expression profiles of lung tumors among smokers and non-smokers. They
found expression differences and abnormal expression of genes involved in
spindle checkpoint and genomic stability in lung adenocarcinomas from
smokers. These studies suggest that gene expression studies may not only
be able to determine those differences that may be directly related to
cigarette smoking but may also be able to provide biological insight into
tumors associated with the other major risk factors for lung cancer. This will
require accurate clinical histories and exposure data however. For example,
occupational exposure to radon. asbestos, diesel engine exhaust, silica.
arsenic. chromium, cadmium, nickel are all associated with an elevated risk
of lung cancer [Rivera et al., 2001]. Careful analysis of the lung cancers
associated with a given patient cohort may define previously unappreciated
differences between tumors caused by different agents, or alternatively
identify similar underlying mechanisms between various agents.

13 Gene Profiling as an Adjunct to Tumor Staging

The best predictor of patient outcome is tumor stage. Tumor staging is
used to define groups of patients that are distinct from one another. The 1997
American Joint Commission for Cancer and the UICC defined the TMN
classification system for tumor staging that is based on the definition of the
anatomic extent of the disease [AJCC. 1998]. The T concept reflects both the
size and location of the tumor, the N concept defines the lymph nodal
involvement in terms of the tumor location. and the M concept defines the
presence of distant metastasis. Stage I lung cancers may include la and Ib.
Stage Ia tumors (TINOMO) are small (< 3em) with no nodal involvement
and no evidence of distant metastasis. Stage Ib (T2NOMO) are larger (>3 cm)
and may show pleural involvement or are located centrally in lobar
bronchus. Stage II tumors include I1a and IIb. Stage Ia (TINIMO) and IIb
(T2NIMO) both involve nodes within the lung but differ in the tumor size.
Stage Ila (T1-3N2MO) can include tumors that differ in size and location in
the lung but involve ipsilateral mediastinal lymph nodes. Stage I[1Ib (T1-
3N3MQ0) involve the contralateral mediastinal or supraclavicular nodes.
Stage IV tumors are those that are metastatic to distant sites (M1). Clinical
stage refers to pretreatment and pathologic stage is following resection and
detailed assessment of the lesion. The tools that may be utilized for staging
include chest radiography (CXR), computed tomography (CT), magnetic
resonance  imaging (MRI). positron-emission tomography (PET).
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mediastinoscopy (sampling nodal stations), and thoracotomy with lymph
node dissection.

The size of a tumor is used in lung cancer staging and an association of
increasing tumor size with decreasing survival has been observed [AJCC,
1998]. The growth rate of lung tumors is a highly dynamic process that can
vary during the natural history of each lesion and mathematical models have
been developed to help understand tumor growth and plan proper treatment
[Norton et al., 1976; Calderon et al.. 1991]. The doubling times differs
among the various cancer types with small cell lung cancers having
relatively short doubling times of only 30 days. and non-small cell lung
cancers having doubling times of approximately 100 days [Geddes et al..
1979]. Within the non-small cell lung tumors there are also differences as
large cell and squamous tumors have a doubling time of 90 days whereas for
adenocarcinomas it is approximately 160 days. There are large variations
observed even within each subtype of lung cancer yet proliferation rates of
lung cancers may be one measure of their potential sensitivity to
chemotherapeutic agents but unfortunately not the only factor.

The nodal involvement of lung cancers also directly correlates with the
survival of patients with this disease [AJCC. 1998]. Lung cancers that
spread to the different nodes within the lung or mediastinum are defined
either as N1, N2 or N3, NI are nodes within the lung (stations 10-14), N2
nodes are ipsilateral mediastinal (stations 1-9) and N3 are nodes in the
contralateral mediastinum (stations 2,.4). The five-year survival of patients
with no nodal involvement (NO) is approximately 60%. NI is 40%, N2
below 20%. N3 is about 10% and with distant metastasis it is less than 5%
[Naruke et al.. 1993]. Lung tumors that do metastasize to distant sites are
most often observed in decreasing order, in the liver, bone, lung. brain,
adrenal and kidney [Notter and Schwegler, 1989].

Although tumor stage incorporates information regarding aspects of the
size of the tumor and it's potential spread to lymph nodes or to distant sites,
stage itself may be insufficient to fully explain the behavior of all lung
cancer especially for early stage lung tumors. This may be due to the fact
that definitive identification of every potential metastatic cell may not be
possible. For example most tumors that are only 1-2 cm may not have
metastasized. yet some may already have and even careful pathological
examination of dissected lymph node might fail to identify a small number
of disseminated cells. Thus as indicated in Table 1 there are many clinically
important questions that might be addressable using gene expression
profiling approaches including the following. Are lung tumors within the
same pathological-based stage a homogenous group? Are lung tumors of the
same histological type but differing in tumor size, or metastasize to N1. N2
or N3 positions different? Are tumors that show hematogeneous metastasis
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different from those that spread via the lymphatics? Are tumors that
metastasize to different organ sites discernable? To accurately answer these
questions it will require appropriately designed studies with sufficiently
large numbers of well-annotated tumors with information regarding many of
these critical biological properties.

14 Critical Issues Affecting Gene Expression Profiling

The challenge to the research community is to identify and interpret the
important information that may be present in the gene profiles of lung
tumors pertaining to the clinically relevant questions raised above. The
extensive heterogeneity of lung cancer has been long appreciated especially
from the analyses of genomic alterations detected using genomic and
karyotype-based approaches [Luk et al., 2001]. These alterations
undoubtedly underlie much of the observed heterogeneity at the mRNA or
protein level. This heterogeneity is important since multiple areas of a
tumor could differ in characteristics such as cell differentiation, drug
responsiveness. tumor invasion or metastatic behavior. Thus an assumption
is that the primary tumor used for mRNA isolation and gene expression
analysis, will have at least some component that reflects the properties that
are most clinically relevant. This may not always be the case, and if only a
very small region of a given tumor is sampled for gene profiling analysis this
potential confounding factor may become very important. In contrast to
this, there is also the possibility that the primary tumor and the metastatic
tumor cells are quite similar in regards to gene expression so that such a
sampling issue is not a significant problem. Studies by Garber et al. [2001]
have noted that when 918 genes are used for hierarchical clustering of lung
tumors, both primary and metastatic tumors clustered immediately adjacent
to one another in the clustering dendrogram. This would appear to suggest
that although large number of genes detected by gene expression analyses
that differ quite dramatically may be present, a subset of similarly expressed
genes exist which is sufficient in identifying the relatedness of the metastatic
cells and the original primary tumor.

The analysis of genes that correlate with patient survival may also be
subject to variables that may complicate assessment of a direct involvement,
For example, the age or the performance status of the patient with lung
cancer may influence overall survival. A very elderly patient or one with a
reduced performance status may not survive quite as long as a younger,
healthier individual with a similarly aggressive cancer. Patients may also die
for reasons unrelated to their disease but it may be difficult to separate these
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events. It is only by examination of a sufficiently large group of lung cancer
patients that these potential complications may be minimized. Although
survival associated genes representing important biological processes may
be shared by lung tumors of diverse histological type or containing diverse
genetic alterations, it is possible that there may be unique sets of genes that
may be specific for individual or similar groups of lung cancers. For
example, a somatic alteration resulting in the high level amplification of a
gene such as a growth factor receptor may be a relatively rare event in lung
cancer however, for individuals whose tumors demonstrate this alteration,
this gene may be highly associated with the overall survival. This was
observed for the erbB2 gene in the analysis of survival of lung
adenocarcinomas [Beer et al., 2002]. as were other outlier type genes that
may reflect gene alterations that are more unique for individual patients
tumors. Only by examination of a large number of tumors of similar type
(i.e. adenocarcinomas) however, may it be possible to determine whether
there are smaller subsets of recurring genes that are strongly influencing
tumor behavior and patient survival.

1.5 Conclusions

The application of gene expression profiling to lung cancer has begun
to provide large amounts of information that when properly interpreted may
provide new insights into this disease that continues to represent a
significant health problem. The types of questions that are being asked
should influence the design of the studies. Because early detection may
actually be one of the most effective mechanisms to increase the survival of
patients with lung cancer, gene expression profiling studies that are focused
on identifying highly expressed genes or those unique to specific lung
subtypes are appropriate. The question becomes what are the correct
comparison tissues for these analyses? Ideally the diagnostic genes will be
highly expressed in the lung cancer and not expressed or only show low-
level expression in the cells of origin in the normal lung. This is a difficult
problem due to the many cell types present in the normal lung. Comparison
of the normal bronchiolar squamous mucosa to squamous cell carcinomas
would be ideal, yet few other comparisons are easily made for the other lung
cancer types without using laser capture technologies.

Many studies to date have examined multiple types of lung tumors and
identified unique sets of gene expression characteristics. Because of the
potential variation in the analyses from one study to another and the use of
separate gene analyses platforms, the pooling of these data is challenging,
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but may be useful for testing hypotheses generated from one individual set
of lung tumors to another. The comparisons that may prove most useful for
answering the many important, clinically relevant questions raised in this
review will be when sufficient numbers of well-annotated tumors are
compared to each other. To date lung adenocarcinomas have been the most
extensively examined yet much larger sets of samples will be needed to
more completely characterize this tumor type and address the most important
questions. There is a need to provide a further understanding of the genes
and processes that underlie a tumor’s hematogenous or lymphatic route of
meltastasis or those genes that might predict this behavior even in early stage
tumors. It is also hoped that these studies will also uncover new targets for
therapeutic intervention or predict which patients may respond best to
specific chemotherapeutic agents. In this latter aspect, the design of the
studies requires annotation of the tumor’s gene expression profile with the
patient’s treatment and response to specific agents. This will be most
effectively accomplished in the setting of clinical trials and obtaining
pretreatment biopsies will need to be incorporated in the protocols to allow
such studies to be effective and informative. At present most studies that
have examined gene expression of lung cancer are from patients with
surgically resectable disease. Since most lung cancer patients present with
advanced disease there will be the need to adapt analysis methods to use
either pretreatment biopsies or cytological preparations from this patient
population. This is especially important if we are to identify expression
patterns that are associated with favorable or unfavorable response to
specific therapeutic regiments. The potential of gene expression analyses to
be utilized in the clinical setting may be on the horizon and could provide a
basis forindividualized patient therapy.

Gene expression analyses of lung cancer and the extraction of clinically
relevant information using bioinformatics represent a promising yet
challenging endeavor. Given the appropriate experimental design and
attention to those factors that are most critical to providing gene expression
data of high quality, these approaches have significant promise in helping to
address many clinically important problems associated with lung cancer.
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Table 1. Questions representing opportunities for investigation.

Are lung tumors within the same pathological-based stage a homogeneous group?

Are lung tumors of the same histological type but differing in tumor size, or metastasize ©
N1, N2 or N3 positions different?

Are the pene expression patterns of tumoars that metastasize to different organ sites
discernable?

What are the reasons for the gender-related differences in lung cancer susceptibility?

Are the survival-related genes amaong the different subtypes of lung cancer similar or
differem?
What genes/profiles are associated with response or resistance (o therapeutic agents?
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GENE EXPRESSION DATA AND SURVIVAL
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Abstract: Finding associations between expression profiles and simple phenotypic data
such as class labels has been studied extensively, including prediction
algorithms for new samples based on these relationships. However, much
work is needed to link expression profiles to more complex response variables,
most notably survival data with censoring. Reducing the survival data (o a
short-term versus long-term survival indicator or using survival curves merely
to demonstrate the difference between clusters of samples is not an efficient
use of the data. We review some of the progress and challenges in this area,
We discuss the need for more consistent results among studies done on
different microarray platforms, for development of sample-specific predictive
scoring schemes, and for a more comprehensive analysis that incorporates
other prognostic Tactors and clearly demonstrates the added value of
expression profiling over current protocols.

Key words:  Cluster analysis; dimensionality reduction: censored data; Kaplan-Meier
analysis; cross-platform comparisons

1. INTRODUCTION

From the beginning, one of the most exciting areas of application
envisioned with the microarray technology has been its use in the clinic. By
obtaining a ‘molecular portrait” of diseases, we would gain fresh
understanding of the disease processes at the molecular level, which would
allow us to improve our classification of diseases and aid in discoveries of
new subtypes. This would quickly lead, it was advertised by some, to the
realization of ‘personalized medicine,” in which diagnosis and prognosis, as
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well as treatment plan, would depend on the individual's genetic
information.

In the past few years, there has been a great effort in many aspects of this
endeavor, to a varying degree of success. Although much is left to be
desired, there has been substantial improvement in the quality of the
transcript measurements, both for spotted c¢DNA arrays and for
oligonucleotide arrays by Affymetrix. There have been some alternative
technologies as well, especially the spotted or printed oligonucleotide arrays
with longer probes. In terms of analysis, much of the initial work has been
in associating expression data with a binary response variable such as the
labels indicating cancer or normal tissue. The common tasks have been to
identify genes that are highly correlated with the disease classification and
then to use these genes to build a prediction scheme. Numerous methods of
varying complexity have been applied to this problem. Starting with the
‘signal-to-noise’ metric and “weighted-voting’ prediction scheme in Golub et
al. [1999], a seemingly countless number of methods from numerous
disciplines has been applied to this problem, ranging from traditional
statistical techniques to the latest computer-intensive techniques.
Unfortunately, it is still unclear which method performs the best in general
because too many methods have been applied to few relatively easy datasets,
all claiming superiority against a method known to be less than optimal. A
subset of these methods was subsequently expanded to the case of multiple
classes, in order to deal with many subtypes of diseases [Bhattacharjee et al.,
2001; Ramaswamy et al., 2001; Pomeroy et al., 2002; Rifkin et al., 2003].
Many modifications to the multi-class problem, however, have been
relatively simple extensions of the binary case. in which a series of one
versus many comparisons are combined.

There are other types of data besides these nominal ones that will be
important in more comprehensive studies in the future. In ordinal data, the
order is important in the categories, such as ‘minor’, ‘moderate’, ‘severe’, or
‘fatal” for a disease progression; in discrete data, both the order and the
magnitude are important, such as the number of relapses of a disease; and in
continuous data, the measurements are not restricted to specified values.
Effective methods are yet to be determined or developed in most of these
cases.

An important phenotypic variable which has received more attention
recently is the patient survival times. It has been gradually recognized that
gene expression must be considered in the context of all other patient
characteristics and that it can provide more information than simple disease
classification. Survival times are obviously an important characteristic that
has direct and immediate implications. Survival analysis is a collection of
statistical methods for describing the distribution of survival/failure times or
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any other time-to-event, and a large number of tools exist in that literature.
However, there has not been a strong link yet to the high-dimensional setting
encountered with expression data. Some properties and methods of analysis
for survival data will be described briefly in the next section, but it suffices
to note that the number of studies correlating gene expression with survival
data has increased dramatically. Well represented already are different types
of cancers, but now there are studies involving other clinical aspects, such as
renal allograft rejection [Sarwal et al., 2003].

With survival data, careful analysis is imperative [Altman and Royston,
2000]. For example, many earlier studies may be flawed in their claims of
high prediction rate in classification of samples due to a selection bias
[Ambroise and McLachlan, 2002; Simon et al., 2003]. A simple simulation
in Simon et al. [2003] shows that a high classification rate can be achieved
in the popular leave-one-out cross-validation even for randomly generated
data if the sample that is left out for testing has been used in generating the
list of genes used in prediction. While this may appear obvious, the mistake
happens surprisingly often. It is common, for example, to normalize the data
and filter the genes to get a manageable number of genes, in the order of few
hundred or a thousand genes, before the main analysis including cross-
validation is carried out. The estimation of correct leave-one-out prediction
rate, however, requires that the whole process including normalization and
filtering be repeated each time a sample is left out. The effect of
normalization while including the validation sample may not be large, but
the effect of a filtering in the same way is often larger than expected. This
error is no longer prevalent in the literature, but other subtle issues still
remain. In some instances, the estimation of the prediction rate involves
some circularity, with genes used as predictors having been used in the first
place to define the groups [Sorlie et al., 2003].

2, CURRENT USE OF SURVIVAL DATA

The main difficulty with patient survival data is the presence of
censoring, Censoring occurs when the outcome is not observed for a patient.
For example, in a cancer trial, a group of patients is followed prospectively
for a period of time and the outcome variable may be time to death. At the
end of the study period, however, mostly likely not all patients will have
died: also, some patients may have left the study early for reasons unrelated
to the disease or trial. We may know that a patient has lived at least two
years, for instance, but do not know the exact time of death. Death is one
example of an event; in general, the response variable can be any time-to-
event data. Common variables include time to relapse of a disease, number
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of occurrences of a disease. and time to disease-free state after a treatment.
Censoring can be either left-censored or right-censored or both. In a
prospective study, a group of patients with a particular disease may be
recruited and followed. For some patients, the date of diagnosis may be
known but they may be considered left-censored if the disease was
contracted at some unknown time prior to the diagnosis. Unless this effect is
severe or can be corrected in the analysis, however, we assume that the time
of diagnosis is close to the start of disease and do not consider them as
censored. Right-censoring is generally the more serious problem and cannot
be ignored if unbiased estimates are to be obtained. We usually assume
uninformative censoring, that the censoring is not related to the effects under
investigations, For example, if a patient drops out of a study because he has
moved to another location, that is considered uninformative; if he drops out
due a deteriorating condition, that is not uninformative.  Without this
assumption, the analysis becomes more difficult if not impossible.

In most clinical studies, censoring is a serious issue that must be dealt
with efficiently. Observed endpoints are desirable from the analysis point of
view, but censoring inevitably occurs; it is not unusual to have more than
half the patients censored in a trial. In gene expression studies, survival
endpoints have not been used in an efficient manner so far. In the simplest
approach. patients were roughly divided into two categories. for short-term
and long-term survival. This reduced the problem into the dichotomous
variable case, for which numerous methods are available. The problem with
this, however, is that much information is thrown away, as may be
evidenced in large within-group heterogeneity. If a two-year survival is used
as a cut-off in a study. for example, a patient who survived just over two
years may be put in the same group as someone who survived ten years
while he is put in the different group from someone who survived just under
two years.

In a more popular approach, many of the studies employed the strategy of
clustering the patients according to their expression profiles first and then
showing that the patients in different clusters have statistically significant
differences in survival outcomes. Hierarchical clustering has been the
favored clustering scheme and using Kaplan-Meier curves and log-rank tests
for patient survival have been the common methods for demonstrating the
differences among clusters so far. The Kaplan-Meier method is a
nonparametric technique for estimating the probability that an individual
survives beyond a given time; the idea behind the log-rank test is to
construct a series of contingency tables for group versus survival status at
each time at which a failure occurs and then to combine the information
from the tables using the Mantel-Haenszel statistic.
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While this approach has been fruitful in demonstrating that there is a
relationship between expression profiles and survival, it is an indirect and
inefficient use of the data. Prediction is made only in that a patient may be
put in one group which. on the average, has a different survival function
from the others. In a sense, survival data are used merely to verify the
effectiveness of the clustering algorithm. In fact, further separation in the
Kaplan-Meier curve has been used as a criterion for judging the quality of
clustering algorithms at times. A more effective use of the data would be to
build a predictive model that will make direct profile-specific estimates on a
continuous scale. There have been some progress in this direction and some
examples are mentioned in the next section.

3. CHALLENGES

3.1 Technological limitations

One of the major problems in expression analysis has been the lack of
consistency and reproducibility in the data. If, for instance, the relationship
between an expression profile and its survival prediction holds only within a
particular study, it is not clear how much of the conclusion was real and how
much was an artifact of the analysis method. Before microarrays can be
used more routinely for diagnostic or prognostic purposes. this issue of
reproducibility must be better understood.

Some have suspected early on that there may be substantial difference in
the results from the cDNA arrays manufactured in small-scale laboratories
and from the oligonucleotide arrays. especially the high-density Affymetrix
arrays with multiple 25-mer probes for each target sequence. This lack of
concordance was first reported in Kuo et al. [2002] using the data from a
panel of 60 cancer cell lines from the National Cancer Institute that were
hybridized onto both ¢cDNA and Affymetrix arrays. Subsequently, there
have been other studies describing similar discordance for platforms
including the spotted or printed oligo arrays [Yuen et al.. 2002: Tan et al..
2003].

This issue is serious even within the same platform. Much of the work
with clinical application has been done with Affymetrix arrays, starting with
HuFL arrays and continuing with U95A-E, followed by U133A-B and U133
2.0 Plus series. However. while the basic fabrication technology has stayed
the same, there have been important differences among the different
generations of arrays, for example, with different number of probes in a
probe set for each gene. Improvements have come most notably in the probe
selection algorithms and in the calculation of summary expression measures.
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In Nimgaonkar et al. [2003]. it is observed that there is substantial
disagreement among the Unigene matched genes between the HuFL and
U95A platforms, with greater agreement when more probes are shared
between the two probe sets for a gene. We have recently carried out a more
extensive and quantitative comparison using a dataset in which each sample
was hybridized both to U95A and to U133A (manuscript in submission).
With several commonly used methods of matching genes across the arrays
and preprocessing them, we were unable to reduce the dominant effect of the
array type: an unsupervised clustering results in a separation by array type
rather than disease type and there is substantial difference in the genes
identified as differentially expressed.

Given the difficulties of comparing data even among succeeding
cenerations of arrays within the same technology platform, it is not
surprising that data generated with differences in samples, instruments,
institutions, protocols, and platforms do not agree. Three prominent cases of
diseases with multiple data sets are diffuse large B-cell lymphoma [Alizadeh
et al., 2000; Rosenwald et al., 2002: Shipp et al.. 2002]: lung carcinoma
[Bhattacharjee et al., 2001; Garber et al., 2001; Beer et al., 2002; Wigle et
al., 2002]; and breast cancer [Perou et al., 2000; Hedenfalk et al., 2001;
Sorlie et al., 2001: West et al., 2001; van de Vijver et al.. 2002: van "t Veer et
al., 2002; Huang et al., 2003]. While the general conclusions of these
studies are the same. specific results can vary substantially. In particular, the
overlap of the marker gene lists is surprisingly small in general [Sorlie et al.,
2003].

Another reason for the disagreement in the results is the different
algorithms and their lack of robustness in data analysis. In Sorlie et al.
[2001], genes useful for classification were determined using patient survival
as the supervising variable in Significance Analysis of Microarrays [Tusher
et al., 2001]; in Jenssen et al. [2002], the same dataset was analyzed using a
variation on the univariate log-rank test on each gene. However, only 29
genes were common between the two lists containing 264 and 95 genes.
Compared to a different data set [van 't Veer et al., 2002] that was analyzed
with the occurrence of metastasis as the patient outcome, only two genes
were in common between the lists with 174 and 95 genes.

This is in some respects reminiscent of the lack of reproducibility in
association studies that look for common genetic variants, such as single
nucleotide polymorphisms (SNPs), that contribute to disease susceptibility.
In these studies, most associations claimed do not appear to be robust
[Hirschhorn et al., 2002; Lohmueller et al., 2003]. In one study. a meta-
analysis showed that of the 166 putative associations which have been
studied three or more times, only six have been consistently replicated
[Hirschhorn et al., 2002]. The underlying problem is similar in both
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expression studies and genetic association studies: there are many factors
that contribute the phenotype but each with only a modest contribution,
Well-controlled studies with large samples and robust analysis are needed to
verify the results in both cases.

There has been at least some success in comparing independent data sets.
In Sorlie et al. [2003]. class prediction using a variant of nearest-centroid
classification method [Tibshirani et al.. 2002] was performed. with one
dataset as a training set and two independent datasets as testing sets.
Although the number of genes shared in the informative gene lists was small
and using a set of marker genes found in one study only to predict the
outcomes in another does not perform well. using a set of common markers
performed better and similar subtypes were observed in all cases [Sorlie et
al., 2003].

3.2 Dealing with high-dimensionality

Any correlative analysis of survival data with gene expression inherits all
the problems associated with high-dimensional datasets in addition to the
problems caused by censoring. This is a fundamentally difficult problem,
and there are no simple solutions that are both mathematically rigorous and
offer biologically meaningful interpretation. A large part of current analysis
consists of exploratory analysis based on experience and available software.

After some initial filtering to eliminate non-expressed genes and genes
with small variability. the next step is to further reduce the number of
predictors to find informative genes. One approach is to use a well-known
mathematical technique for dimensionality reduction, Principal component
analysis and singular value decomposition are typical methods in this
category [Alter et al., 2000]. While mathematically atiractive, the two main
disadvantages of these are that principal components or singular vectors may
not highly correlated with the outcome variable and that it is difficult to
assign meaning to them except in few simple cases. Sometimes the
coefficients of principal components or singular vectors can be examined to
determine those genes with large contributions. but usually a small subset of
dominant genes does not exist. If the goal of an expression profiling project
is to simply devise the most accurate prediction scheme regardless of its
interpretability, such a dimensionality reduction method followed by a
machine learning technique may give good results [Khan et al., 2001].
There are many machine learning methods such as neural networks and
genetic algorithms, but support vector machines appear to perform especially
well for that purpose [Brown et al., 2000].
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For a more complex analysis involving survival phenotype, a better
approach is to reduce the number of variables by grouping genes that are
similar in some measure, creating what some have referred to “metagenes’ or
‘supergenes.” There are many variations on this idea. Based on Tukey’s
idea of compound covariates [Tukey. 1993], one can form a linear
combination of genes with similar expressions with weights corresponding
to the statistic from the two-sample t-test. This is the approach taken in
Hedenfalk et al. [2001] and discussed further in Radmacher et al. [2002].
including its relationship to the weighted-voting method [Golub et al.. 1999].
In the tree-harvesting method [Hastie et al., 2001], a step-wise regression is
used to select gene clusters of varying sizes that are related to the phenotype.
based on the Cox proportional hazard model. The clusters may be derived.
for example, from hierarchical clustering. In Rosenwald et al. [2002], Cox
proportional hazard model was apply on individual genes and these were
clustered into ‘signature groups.” From this a smaller set was chosen as
representative genes and averaged values of similar genes were included in a
multivariate Cox model. The model was then used to compute a risk score
for each patient. In this work. gene annotations were considered in grouping
of the genes in addition to expression similarities and, as a result, the new
reduced set of variables provides convenient biological interpretations.
Multivariate Cox model was also fit in van de Vijver et al. [2002], but in this
work expression profiles was reduced to an indicator variable as ‘good-
prognosis’ versus ‘bad-prognosis’ signature. There are other methods of
erouping genes for prediction, such as model-based clustering of genes
[McLachlan et al., 2002]. In all these methods, the goal is to reduce the
number of genes in a reasonable manner such that a conventional tool for
survival analysis such as the multivariate Cox model can be used. A model
with biological interpretation such as in Rosenwald et al. [2002] appears
especially helpful.

For the purpose of prediction, approaches based on partial least squares
have been explored with considerable promise. While principal component
analysis has been popular in an unsupervised setting, principal components
capture the variability in the gene expression space only and may not be
highly correlated with the response variable. On the other hand, variable
selection in linear regression chooses genes that are highly correlated with
the response variable but do not account for the variability in the gene space.
Partial least squares lies in between, producing a set of orthogonal linear
combinations of genes that are predictive of the response while capturing the
variability in the predictor space. The popularity of partial least squares has
been due to its adaptability in the presence of a large number of variables.
even when it exceeds the number of cases. It appears to work well when the
number of predictors exceeds the number of cases moderately, but it is not
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clear how scalable this result is for extreme cases. This approach has been
applied in gene expression analysis [Nguyen and Rocke. 2002a; Johansson
et al., 2003; Perez-Enciso and Tenenhaus, 2003] for nominal phenotype. For
the censored phenotype, partial least squares was used as a dimension
reduction tool [Nguyen and Rocke. 2002b]. In Park et al. [2002]. the partial
least squares approach was reformulated to an equivalent problem in the
generalized linear regression setting for which partial least squares was
already worked out in Marx [1996]. This formulation circumvents the issue
of censored data. at the cost of increased dimension in the problem. and
appears to perform very well. A related approach is based on kernel Cox
regression models [Li and Luan, 2003] in the framework of support vector
machines. This method is based on the reformulation of support vector
machine as a penalization method in function estimation, with the negative
partial likelihood in the Cox model as the loss function. As in partial least
squares, a large number of genes may be included in the set of potential
predictors.

3.3 Incorporating other patient data

While there has been much progress in showing association between
expression profiles and disease subtypes or even patient survival, its
practical value in the clinical setting over current protocols and guidelines
has not been demonstrated as convincingly in most instances. This may be
one reason for the absence of microarray experiments in the clinic at this
point, even after numerous studies over many years claiming the usefulness
of expression profiling.

There are several reasons for this. The first is that much initial work may
not have been as practical as they might have appeared at first. In some
cases, it 1s not surprising that certain types of tumors can be distinguished
with expression data, since gene expression simply reflects the features of
the different cell type or other underlying characteristics. Sometimes the
main distinguishing feature of expression profiles in different groups may
reflect a mutation in a gene, such as in breast cancer. in which case a
screening for the mutation directly would be more cost-effective and as
accurate. A main conclusion of Hedenfalk et al. (2001). for example, was
that mutations of BRCA1 and BRCA?2 influence the expression of a group of
genes. In other cases. expression profiling has not been shown conclusively
to be better than immunohistochemical staining that are easier to perform
and less expensive.

Even when gene expression patterns are useful for classification of
disease types and stages, only a small number of such studies have
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demonstrated that it is superior to current set of clinical parameters. Often,
to show clinical relevance, a subclass of patients considered to be in the
same stage of a disease under a standard protocol is shown to have varying
survival times depending on their expression profiles.  Substantial
heterogeneity within a same category implies that further refinement using
expression may be desirable. For example, in the case of diffuse large B-cell
lymphoma patients, those with similar International Prognostic Index (IPI)
still showed significantly different Kaplan-Meier curves when classified
based on their expression profiles [Rosenwald et al., 2002]. In breast cancer,
those patients with the same lymph-node status or risk group status showed
significant differences in expression profiles with respect to both metastasis-
free period and overall survival [van de Vijver et al., 2002]. This evidence
of heterogeneity within a same group provides strong evidence:; however, it
may be, for example, that heterogeneity also exists in terms of the existing
clinical parameters within those grouped by expression profiles.

To clearly demonstrate that expression profiling indeed contributes to a
better classification and prediction after the effect of other prognostic factors
are accounted, a multivariate model with other potential predictors should be
considered. This was done, for example, in van de Vijver et al. [2002],
although expression signature is entered only as an indicator variable in that
work. Another method is to have a large enough cohort within a single
stratum of patients with similar characteristics. In metastatic renal cell
cancer, the current prognostic indicators are stage, grade, and Eastern
Cooperative Oncology Group status and among stage IV tumors, no clinical
parameters exist for predicting time to failure [Vasselli et al.. 2003]. By
considering only similarly staged patients with no other known prognostic
indicator. clinical relevance of expression profiling was evidenced clearly in
Vasselli et al. [2003]. More careful, integrative analysis in similar directions
would be an important contribution.

4. CONCLUSIONS

We have briefly reviewed the use of survival data in the context of
analyzing and utilizing gene expression data. While distinct expression
profiles have been correlated with many disease types and this has resulted
in much insight into the biological mechanism underlying these diseases, a
more direct way to demonstrate their usefulness for patient care is by linking
them to patient survival. Much of the work so far, however, has not utilized
the survival data efficiently. In some cases, the survival data were used
simply to divide the patient samples into short-term and long-term survival
groups, so that previous methodologies for binary classification and
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prediction can be used: in other cases, the survival information was used
merely to demonstrate that the groups obtained through a clustering method
were sufficiently different. In order to take full advantage of the expression
data, it is important to develop new statistical methodologies that are suited
for survival data analysis in the high-dimensional setting, especially in the
area of effective prediction algorithms involving censored data. Simple
validation techniques also need to be developed. similar to the n-fold cross-
validation approach that dominates the expression literature. It is also
important to carry out careful analysis to demonstrate not simply that
expression profiles are correlated with survival but that they are valuable
when added to the information contained in more mundane covariates and
currently available prognostic factors.

We have focused mostly on dealing with the case of censored response
variable here, but there are more difficult cases that will become important
in future studies. In some cases, the questions have been addressed already
in the survival analysis or the clinical trials literature and need to be
modified for use with genomic data; in other cases, new methods need to
developed to answer fresh questions. When microarrays become part of
longitudinal studies, methodologies will be needed to deal with repeated
measurements [Laird and Ware, 1982]. Also, there may be more than a
single phenotypic response in future studies and methods for multivariate
response variables need to be studied. Incorporating other genomic data
other than microarrays effectively also remains an issue. Finally. it is
important in these cases that the more traditional statistical approach with
emphasis on model building followed by model-checking with residuals and
outlier detection needs to be reconciled with the more algorithmic approach
driven by prediction rates and functional minimization from the computer

science community.
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Abstract: Microarray technology provides exciting tools for monitoring expression
levels of hundreds or thousands of genes simultancously, Good microarray
studies have clear objectives. To make meaningful statistical interpretation of
study results obtained from microarray experiments, the design of the
experiments must consider some degree of replication to allow for the
description of sources of variations. In this article, we present an overview ol
replicate designs that incorporate measurement variability to address its study
objectives.

Key words:  Differentially expressed genes: level of significance; power; sample size:
standardized effect size; study objective

1. INTRODUCTION

The problem of calculating the number of arrays needed in microarray
experiments is similar to the problem of calculating the sample size and
power in clinical trials or other scientific experiments, with the caveat that
microarray experiments involve hundreds or thousands of genes, only a
fraction of which is expected to be differentially expressed or termed altered.

Replicates allow for assessment of variation in expression data so that
formal statistical analysis methods can be applied. Without replicates, one
cannot distinguish between true differences in gene expression versus
random fluctuations. Replicates can take place at different levels of the
experiment. For example, replicates can be conducted for different tissues or
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different cell lines. Each one can be hybridized to more than one array and
each array can consist of replicated spots of the same gene. Yang and Speed
[2002] described two types of replication: biological replicates and technical
replicates. An example of biological replicates is a set of hybridizations that
involve mRNA from different extractions. The biological samples are the
experimental units. Statistical tests should be based on the biological
replicate samples to determine the effects of a treatment on different
biological populations. Technical replicates include replicates in which the
mRNA is from the same pool (the same extraction). Technical replicates are
used to detect variation within the experimental groups. In general, an
experimenter will use biological replicates to obtain averages of independent
data and to validate a generalization of the conclusion and technical
replicates to assist in reducing experimental variability.

In the classical (or frequentist) approach, the sample size estimation for
planning a comparative scientific experiment requires specification of two
hypotheses (a null hypothesis and an alternative hypothesis), the Type I error
(o-error), the Type Il error (B-error), the corresponding power level, and a
targeted effect size. For instance, the effect size may be an n-fold change of
a gene tested under two conditions. Using clinical trials as an example, the
sample size is the number of patients needed to conduct a clinical trial aimed
at demonstrating a better treatment regimen relative to some standard of care
or placebo vehicle. This number is calculated based on a fixed Type I error
rate and a pre-specified power level to detect a pre-specified treatment effect
size. Table 1 contains a glossary of terms often used in statistical inference
and in the design of an experiment in sample size estimation.

Table 1. A glossary of key terms used for statistical inference, sample size estimation, and

power analysis for a scientific experiment.
GLOSSARY

clinical hypothesis an assumption stated in plain text describing its intended
objective(s)

statistical hypothesis an assertion or conjecture about the probability distribution for
the designated population parameter(s) with respect to clinical
abjective(s)}

null hypothesis the status quo statement about the parameter value under

investigation, ¢.g., the log mean expression inlensity of a genc
is no different between the treated and the control tissues

alternative hypothesis any admissible conjecture that does not overlap with the oull
hypothesis; the study objective of interest ts generally
designated as the alternative hypothesis, ie., the claim to be
proved



Methods of Microarray Data analysis IV

GLOSSARY

hypothesis test

population

sample
random sample

parameter
statistic
type I error { e-error)

a-risk
type Il error (B—error}

B risk
level of significance

p-value

power of the test
test statistic

effect size

sample size

multiplicity
familywise error rate

false discovery rate

a procedure driven by a data-based rule for deciding whether to

accept the null hypothesis or to reject it in favor of the

alternative hypothesis

# collection of all individuals (units) of interest

the subset of a popularion that is actually observed

a collection of dats of experimental units selected from a

population. Each member of the population has an equal pre-

assigned chance of being selected

a numerical characieristic of a population

a summary numerical characteristic calculated from a semple

that is used 1o infer values of parameters

an error made by rejecting a null hypothesis when the null

hypothess is true

the probability of making a type [ error

an error made by accepting a null hypothesis when the

alternative hypothesis is true

the probability of making a type If error

the upper bound on probability of type I error, which is usvally

a small nomber, e.g., 0.01, 0.05

the observed significance level

the probability of rejecting the null hypothesis when it is false

a summary numerical characteristic ealculated from a sample,

whose value is used to decide which of two statistical

hypotheses should be accepted as true

the targeted distance between the parameters of two populations

designed 10 detect, e.g., the difference in population means, the

ratio in population variances

the number of experiment units, e.g , arrays or biological

replicates in a microamray experiment

multiple hypotheses tested simultaneously in an experiment

the probability of making a1 least one false rejection among all

hypotheses tested

the expected proportion of false rejections among the rejected
__null hypothesis

In comparative experiments, assume that there are two experimental
conditions (e.g., normal tissue vs. diseased tissue, placebo group vs. treated
group, etc.) under investigation. Among hundreds or thousands of genes
simultaneously studied in a microarray experiment, a gene either expresses
equally in the two conditions or it expresses differently (up- or down-
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regulated). The true state of affairs and the decision to accept or reject a null
hypothesis can be summarized in a 2x2 table (Table 2).

Table 2. A microarray experiment to detect the up-regulation or down-regulation of one
gene between two experimental conditions.

Decision based on one hypothesis test
Do not reject “equal Reject “equal
expression” expression”
Equal expression | {cannot conclude that a gene
batween two is vp or down regulated) Type [ Errox
True State conditions Correct Decision
of Affairs Up or down (conclude that & gene is
regulated gene Type 1 Error differentially expressed)
Correct Decision

Consider a microarray experiment with adequate power to detect altered
(up- or down- regulated) genes, if a gene is truly non-differential, the
decision will likely be that stated in the upper left box. Conversely, if gene
expressions differ between the two conditions, the decision will tend to be
that described in the lower right box. These are correct decisions, When the
decision being made is inconsistent with the true state of affairs, errors occur
usually with small probabilities, e.g., incorrectly concluding a non-
differential gene as differential (Type I error) or a differential gene as non-
differential (Type Il error).

2, TYPICAL SAMPLE SIZE ESTIMATION IN
PLANNING A COMPARATIVE EXPERIMENT

The decisions in hypothesis testing rely on a specific statistical approach
to formulate the probability function under the two hypotheses in delineating
its likelihood function. Below, we illustrate the sample size estimation for a
single gene.

2.1 Statistical Models

Denote the background-subtracted normalized intensity (e.g., in log
based-2 scale) for control and treated samples by ¥, and Y,, respectively, for
the spot (gene) ¢ (g = 1, ..., G) and replicatej (j = 1, .... J). For simplicity,
we drop the subscripts g and j and consider a balanced design. That is, the
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number of arrays needed in the control and treated sample is the same.
When the variances of the two groups are equal, the balanced design is
optimal in terms of the total sample size needed at the desired power level. A
model for Y. and Y,is Y. =p + & Y, = W+ &, where W and p, are true
expression levels for control and treated samples, respectively. For each
gene g in replicate, the errors € and & are assumed to be independently and
identicallybivariate-normallydistributed (g,.¢, ) ~ N(0,L), where

2

c P99,

2
pOPy Ty

L=

The correlation p can be non-zero for the two-color fluorescence
experiment.  The random variable T = ¥, - ¥, is normally distributed with
mean (M - W) and variance o’ =0.’-2p0.0, +0,.

Identifying differentially expressed genes between the control and the
treatment can be formulated in terms of the hypotheses

Hog e — =0 versus  HjgiHe— M # 0,

for g = 1, ..., G. The unstandardized sampling statistic ¥, =¥, is used to test
the hypothesis Hpg, where ¥, and ¥, are the means of the J replicates in the
control group and J replicates in the treatment group. respectively. The
hypothesis test is commonly done by computing the two-sample
(standardized) r-statistic (¥, -¥,)/8,, where @&, is the standard error estimate
of (1"; - F’;). The standard error estimate can be computed in two ways, one
is to assume that the population standard deviation from the two groups are

the same, &, =s,+/(2/J), where S,:-‘/(s‘ﬁs,’)ll, and %, and 57, are the

sample variances for the respective samples, and the standard error estimate
is simplified to @&, =4/(s’, +s%;)/J . The other is that the true standard
deviations are assumed to be different. In general, if the sample sizes are

different between the two groups, say, n; for the treated group and n;, for the
control  group, then, the standard error estimate  becomes

&, =¥ /n, +s*2/n) l(n +n, -2). Under the model of an equal
variance var(Y.) = var (Y)), if there is no difference between the two groups,
then (¥, -¥,)/@, has a r-distribution with 2J - 2 degrees of freedom. For

unequal variances, an approximate 7-distribution with degree of freedom v
can be computed, known as the Welch-Satterthwaite method.

S | -l
w=5,/n,w, =5, /n,.

v=(w, +w) i(w?l(n,—1)+w, Kn, = 1)), where
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When the number of replicates is the same for the two groups. the degrees of
freedom become v=(J —1)(s* +5%2)/(s* +5*2). The comparison between
the control and treatment groups can also be tested by a one-sample 7-
statistic. Let T be the mean of the Ty, ..., Tj, where T = ¥, - ¥, as defined
previously, If there is no difference between the two groups, then the one-
sample standardized statistic (¥ -¥,)/8, has a t-distribution with J -/
degrees of freedom, where &, is the standard error estimate of 7. Under the
assumption of an equal variance in the two groups, the variance is
6" =[2(1- p)/ Jlo*. One-sample r-test is a more powerful test if the

correlation p> 0.
22 Sample Size Calculation

For a given significance level o, the power of the two-sample rtest for
gene ¢ is y=F{JJ/2A,~1,,,], where A,=(u, —-p)lo, and F is the
cumulative t,;., distribution (Student’s t-distribution with 2/ - 2 degrees of
freedom) and taz is the 100(a/2)th percentile of the t2,, distribution. For
specified @, ¥ and A, the sample size needed in each group to detect a
significance for gene g is

J=2t,, ~1,) 1A} (1

The power and the sample size given above are for the gth gene with a
specified standardized effect size Ay, ¢ = I, ..., G for the two-sample r-test
approach. They can be similarly obtained for the one-sample t-test. The
power for the one-sample r-test for any gene g is y= F[JJA, -1, 1, where F
is the cumulative r-distribution with (J - 1) degrees of freedom and A, is the
standardized effect size for one-sample approach. The corresponding sample
size needed to detect significance for a gene g is

J =y, —1,) 1A} @

Instead of s-distribution. a standard normal distribution, also called z-
distribution. is often applied to Equations (1) and (2) for the two-sample
approach and the one-sample approach. respectively, by assuming that the
true variability of the distribution of interest can be reasonably
approximated. It is imperative to note that the exactquantities f,,, and ¢,

with their corresponding degrees of freedom in Equations (1) and (2) are
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obtained using iterative simulation procedure. viz., the concept described in
the Appendix of Elston et al. [1999].

3. STATISTICAL APPROACHES TO NEEDED
REPLICATES IN MICROARRAY EXPERIMENTS

The experimental design and statistical analysis for a microarray
experiment should reflect the overall objectives of the study. A common
objective is the identification of differentially expressed genes, e.g.,
investigating differences in gene expression profiles from different tissue
types or from the same tissue with and without exposure to a specific drug or
toxicant. Another common objective is to develop multi-gene predictors of
class for a sample using its gene expression profile. In both class
comparison and class prediction objectives, the classes being compared or
used to predict the class membership on the basis of influential gene
expressions are predefined. Other examples of common objectives include
studying relationships between genes and gene clusters or relationships
between genes and clinical predictors or outcomes. and studying changes in
expression profiles over time or dosage, etc. Most of the statistical methods
in the literature for estimating array replicates center on the objective of
identification of differentially expressed genes.

3.1 Multiple Testing Context

As microarray studies typically monitor expression levels of thousands of
genes simultaneously, the probabilities of making incorrect test conclusions.
false positives and false negatives should be considered. Table 3 is an
extension of Table 2 involving the entire gene set tested.

Type 1 error probability is one of the most important error measures in
statistical significance testing. Type | error conventionally refers to rejection
of the true null hypothesis. There are many possible Type 1 error measures
under multiple hypotheses testing. The expected number of false positives is
E(V). The expected proportion of false positives among the G tests is
E(V)/G. the per comparison error rate (CWE). When G = 1, the CWE is the
arisk. Since hundreds or thousands of tests are conducted. simply using the
CWE significance level without adjusting for multiple tests will increase the
chance of false positive findings. The traditional approach is to control the
probability of rejecting at least one true null hypothesis, the familywise error
rate, FWE = PHV > 0) [Hochberg and Tamahane, 1987, Westfall and
Young, 1993]. That is, the FWE approach guarantees that the probability of
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one or more false positives is not greater than a pre-determined level,
regardless of how many genes are tested. When the number of genes is very
large such as microarray data, the use of FWE criterion may require a large
number of samples.

Table 3. A microarray experiment to detect genes that are differentially expressed between
two conditions in multiplc testing framework.

Test declwration
Reject “equal Do not reject Number of
expression” “equal expression” genes
Equal expression

between two v 5 Gy
True State conditions
of Affars Up or down

regulated gene 17 T G,

Total R A G

R: Total number of genes the test concludes altered (H) rejected)

V: Number of false positives declared by the test (type I errors)

£: Number of true positives and the test declares as differentially expressed

A: Total number of genes that the test concludes not differentially expressed between the two
conditions (H, accepted)

§: Number of true negatives and the test declares as not differentially expressed

T: Number of false ncgatives declared by the test (type Il errors)

G: Total number of genes tested

Gp: Number of genes that are truly not differentially expressed

G;: Number of genes that are truly differentially expressed

Benjamini and Hochberg [1995] proposed the false discovery rate (FDR)
as an alternative error measure. FDR is the expected proportion of the null
hypotheses that are falsely rejected E(V/R), if R > 0. If all null hypotheses
are true (Gp = G), the FDR is equivalent to the FWE. When Gy < G, the FDR
is smaller than or equal to the FWE. This implies that if a procedure controls
the FWE, then it controls the FDR. Thus, the FDR is a less stringent criterion
than the FWE, therefore it leads to an increase in the power of identifying
differentially expressed genes. However, the exact number of true null
hypotheses is usually unknown, so the number of errors amongst the rejected
hypotheses is also unknown; the use of the FWE-controlled approach in
sample size calculation will ensure controlling either the FDR or FWE.
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Sensitivity and specificity are two commonly used measures for
evaluating the accuracy of a diagnostic test for a disease marker. Sensitivity
of a test is defined as the probability that the test is positive, given a disease
is present. Specificity is the probability that the test is negative, given a
disease is absent. In the context of Table 3, the sensitivity is U/@,; and the
specificity is 5/Gy. Wang and Chen [2004] formulated a sample size
calculation method for microarray experiments by building in the sensitivity
parameter for the overall power in addition to individual gene power. Zien et
al. [2002] presented a sample size estimation procedure using a
mathematical model, which incorporates variability parameters that capture
additive and multiplicative measurement errors, and biological variability.
Through simulation. they showed a few combinations on the number of
replicates, signal-to-noise ratio, and fold ratio of expression between two
classes. and their impact to the sensitivity and specificity. Lee and Whitmore
[2002] tackled the power as the expected proportion of truly expressed genes
that are correctly declared as expressed = E(UVG;.

3.2 Sample Size Calculation

For specified & ¥ and A (A or Ap), the sample sizes needed in each
group to detect significance for gene g are given in Equations (1) and (2). In
practice, only a fraction of the genes will be affected by a treatment in the
experiment, viz., genes that are differentially expressed between the two
groups. Wang and Chen [2004] formulated the sample size problem as: the
number of arrays needed to detect at least 100A% ofthe truly differentially
expressed genes at the desired overall power (1-#), where A is a pre-
specified fraction, 0 < A < 1. For illustrative purpose, let’s assume an equal
effect size for all altered genes, and the effect size is standardized by its
standard deviation. This assumption can be relaxed in application. For a
specified significance level @, a standardized effect size A (the desired
change of a gene to detect between the treatment and control samples
divided by the estimated standard deviation), and J replicates per group. the
power of detecting a truly altered gene is given in Equation (3). Let & (i.e.,
Gy in Table 3) denote the number of truly differentially expressed genes, and
the notation [7] = b denote the largest integer less than ¢ The power for
identifying at least [kA+1] = b altered genes can be computed by summing
the binomial probabilities:

1-B=Y, ,kk=D) Y(1-p* &)
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Recall that yis the power level for any gene g described in Section 2.
Given k, 4, and f, the ycan be estimated by solving the above equation.
Thus. the power and the sample size for the two-sample #-test or the one-
sample 7-test can be obtained. Here, the sample size is calculated so as to
achieve the objective of identifying at least 1004% of truly altered genes at
the overall power /-4 It is important to note that Equations (1) and (2) are
now utilized to compute the replicate numbers needed, in which ¥ may not
be the usual individual power level, such as, 80% or 90% level, but. the
power level for a given gene g required in order to reach the overall power
level, say, 80% or 90%. For the two-sample z-test or the one-sample z-test,
the sample sizes are to be estimated by substituting the 1 distribution function
by the z distribution function in Equations (1) and (2). respectively.

Clearly. the sample size depends on the choice of significance level o.
The selection of an overall a-level will have impact on the sample size
calculation when more than one gene is differentially expressed. There are
two underlying approaches to the choice of @ the FWE-controlled
Bonferroni approach using @ = 0.05/G and the unadjusted CWE = a The
Bonferroni approach is known to lack power when the number of genes is
large or the genes are correlated.  An FWE approach can be improved by
incorporating the dependent structure among genes, such as the resampling
techniques of Westfall and Young [1993], in the analysis. However, the
dependency of data structure is not available at the time of sample size
planning. The Bonferroni approach guarantees the controlling of the FWE,
regardless of the true correlation structure, which is usually unknown. The
Bonferroni approach explicitly accounts for the number of genes tested.
With the unadjusted CWE approach. though it ignores the multiple testing,
the @ level can be chosen to reflect experimental objectives. Investigators
might be more interested in identifying potential genes that are differentially
expressed with a limited number of false positive findings. For example,
using @=0.001 willresult in false positives of | per 1,000 non-differentially
expressed genes. This paper takes the same principle of fixing a rejection
level @ for individual hypotheses beforehand; the choice of @ can be based
on either the Bonferroni or the CWE approach depending on the objective of
the experiment.

33 Numerical Results

Two practical scenarios to illustrate sample size calculation are
presented. The first scenario considers an initial exploration intent on
analyzing ten thousand genes for the purpose of examining as many
interesting genes as possible, treating the experiment as a screening tool. The
second scenario considers a more focused exploration on (selected) one



Methods of Microarray Data analysis IV 45

thousand genes. The parameters used for Scenario 1 are as follows. Suppose
1007% out of the 10,000 genes studied are truly differentially expressed. To
account for a large number of tests (genes), we did the analysis for two
significance levels: (a) the Bonferroni adjustment with an overall
significance level (FWE) at 005 (@ = 0.05/10,000 for any individual gene)
and (b) a constant comparison-wise error rate (CWE) set at 0.001 regardless
of the number of hypotheses tested. At the given significance level, we target
an overall power of 80% to detect at least A= 0.5, 0.7, 0.9 and 1.0 of the
altered genes for effect sizes A= 2 and 4.

The numbers of replicated arrays nceded are tabulated in Table 4 for n=
0.05, 0.10 and 0.20 using r-test approach versus using z-test approach, As an
example, for A =0.9, n=0.05, and A = 2.0 (10 detect at least 450 genes of
the 500 truly altered genes, with the effect size 2, from 10000 genes
studied). using the one-sample t-test with CWE @ = 0.001, the number of
arrays needed in each group is 10. This number is six using the z-test
approach. For scenario 2. only 1000 genes are studied. The proportions of
truly altered genes considered are 7= 0.1, 0.2, 0.5 and 0.8. The remaining
parameters are the same as those in Scenario 1. The patterns observed for
Scenario | and Scenario 2 are similar (results not shown). Results tabulated
in Table 4 were validated via Monte Carlo simulations assuming the log-
intensity data are normally distributed.

To illustrate how the number of replicates can be planned for an
experiment aiming for identification of differentially expressed genes, a pilot
study based on a cDNA experiment for a toxicogenomic study of gene
expression levels of kidney samples from rats dosed with a drug was used to
estimate the standardized effect size.

Briefly. the experiment included six arrays from the 700 gene rat Phase-1
chip. In addition, sequences of five genes from other species different from
the one of 700 genes were also spotted on the array to monitor non-specific
background binding of labeled mRNA serving as the housckeeping genes.
The normalized data using the approach of Chen et al. [2002] was adopted to
estimate the standardized effect size.

Consider the two-sample approach applicable to a reference design of a
microarray experiment. (In the reference design, all samples of interest
(control and treatments) are hybridized on different arrays labeled with the
same color dye. while a reference sample labeled with the other color dye is
used on every array to hybridize with either a control or a treatment sample.)
Using the example data set, the estimated standardized effect sizes are -1.7
using the 95¢h percentile for the down-regulated genes and 2.1 using the 5th
percentile for the up-regulated genes. One could consider an estimated
absolute standardized effect size of 2. If the number of genes to be studied is
10.000. then one can use Table 4 to estimate the number of arrays. Using the
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CWE criterion as an example, to identify at least 90% of truly altered genes
for the two-sample case, 14 arrays are needed. If dye-swap in a two-color
system is designed, the one-sample approach may be adopted. One may
consider an estimated absolute standardized effect size of 6. With the same
criteria as above, the estimated number of arrays would reduce to five.

Table 4. The number of replicates needed to detect at least 2 = 0.5, 0.7, 0.9 and 1.0 truly
aliered genes with standardized effect sizes A= 2 and 4, and desired power /-f=08.

Two-sample -test™* One-sample -test
Benferroni CWE Bonferroni CWE

A A 5%* 0% 20% 5% 10%20% 5% 10% 20% 5% 10% 20%

20 05 17 17 16 9 9 9 14 14 14 8 8 8
07 19 19 19 11 11 11 15 15 15 S 9 9
69 22 22 22 14 14 14 17 17 17 10 10 10
1.0 36 38 39 2 21 28 24 25 26 17 18 19

40 05 8 B B 5 5§ 5 g 9 ¥ 5 5 5
07 9 & 9 6 6 6 9 9 9 6 6 6
09 10 10 10 6 6 6 10 10 10 6 6 6
1.0 13 13 14 2 10 10 12 12 12 g 6 9

Two-sample z-test** One-sample z-test
Bonferroni CWE Bonferroni CWE

A A 5%* 10% 20% 5% 10% 20% 5% 106 20% 5% 10% 20%

20 05 12 12 12 7 7 6 6 6 6 4 4 4
067 14 14 14 1 8 8 8 R 8 5 5 5
09 18 18 I8 12 12 12 10 10 10 6 6 ©
1.0 32 34 35 23 24 25 17 17 18 12 13 13

40 05 4 4 4 2 2 2 2 2 2 2 2 2
07 4 4 4 3 3 3 3 3 3 2 3 2
g 5 5 5 4 4 4 i 3 3 2 2 2
109 9 10 6 7 7 5 5 5 4 4 4

** Bonferroni: a=0.05/10000, CWE: a=0.001.

* Assuming 5% (500 genes), 10% (1000 genes), and 20% (2000 genes) truly altered genes
among the 10,000 genes and A is the desired fraction of truly altered genes to identify. Ten
thousand genes are studied.

In application, the assumed equal standardized effect size can be replaced
by the minimum, mean or some percentile of the standardized effect size
among all genes. When it is the minimum, the approach gives conservative
estimated number of replicates. Depending on the study objective, the
standardized effect size can also be the expected log intensity ratio divided
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by a pre-specified variability or by maximum variability resulting in
conservative sample size estimation.

4. DISCUSSION

In clinical trials, sample size estimation often uses z-test approach
assuming a known targeted variability learned from earlier clinical
experience. In microarray experiments, however, the variability of gene
expression intensity measurements is difficult to assume and is usually
estimated from limited preliminary experiments. Thus, the r-test approach is
generally recommended for estimating the needed replicates in microarray
experiments. Using the same criteria and parameter estimates, the number of
replicates is less with the one-sample approach in a dye-swap two-color
design than with the two-sample approach in a reference design.

By and large, two general approaches are utilized in sample size
calculation: a parametric modeling approach and a non-parametric approach.
The sample size formulae presented above are derived from the parametric
normal model and is applicable primarily for biological replicates with no
gene replicates within an array. Tsai et al. [2003] showed in a Monte Carlo
simulation that when the number of replicates is eight or more, the Type |
errors and powers of the parametric f-test and permutation test are very
similar for normally distributed log-intensity data. When the number of
replicates is small, e.g., three or less. the power with r-test is very low. Black
and Doerge [2002] proposed a parametric approach using the log-normal
ANOVA model to estimate the minimum number of spots needed within an
array. Pan et al. [2002] proposed a nonparametric normal mixture model
approach to calculate the number of replicates required to detecting changes
in gene expression. Because of the specific statistic (s-type test statistic
defined as difference in the means represented in unit of standard
deviations). their approach assumed the number of arrays needed is an even
integer. From a mixture model analysis, Lee et al. [2000] suggested that
three replicates might be sufficient in view of large nose-to-signal ratio. In
general. if the distribution is not normally distributed. then the needed
sample size can be estimated by a simulation method [Wang and Chen,
2004)]

Ideker et al. [2000] Herwig et al. [2001], Simon et al. [2002] offered
advice on the number of array replicates of the same biological sample
required in order to reliably identify differences. It is noted that no method
is unanimously optimal for all kinds of data. Thus, selection of a method for
sample size estimation should be subject to the intended study objectives, the
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characteristics of the data including the anticipated sources of variations. and
the extent of violation of the underlying assumptions,

A few authors proposed methods for replicate estimation to save costs.
Their intents are not necessarily to increase the number of arrays, rather, to
make use of the existing arrays more efficiently. Donovan and Becker
[2002] considered an experimental approach, termed double-round
hybridization of membrane based ¢cDNA arrays, to providing replicate data
sets without the need of additional arrays and additional probe labeling. This
adds little extra cost. Essentially, their ideas to use double round
hybridization are to rescue the lost experiment if it occurred. improved
background reduction, and may help produce reliable replicate data when the
first round hybridization is successful or when a precautionary first round
hybridization is performed with a blank nylon membrane.

When the replicates planning hinge on the trade-off of costs between the
number of experimental subjects versus the number of arrays, Cui and
Churchill [2003] provided a formula to compute the optimum number of
arrays per mouse so as to minimize the total cost of the experiment. Chen et
al. [2004] gave guidance on optimizing the number of subjects and on
between and within array replicates. CAMDA 2003 provides four lung
cancer datasets. Many authors investigated the prognostic ability of the gene
expressions to the survival of lung cancer patients. Jung et al. [2004] (see
Chapter 8 of this book) presented power analyses by setting the first D genes
to be prognostic with some correlation, say, r, with log survival time and
suggested that this inferential method should serve as an helpful tool for
sample size and power calculations in designing microarray experiments for
which association to survival endpoints are to be studied.

In the case of concerns with tissue sample availability to study
transcriptional profiling using microarray and its connection to disease
classification, Hwang et al. [2002] proposed a method to determine the
minimum array replicates based on the linear combinations of individual
genes as variables in the disease classifier using Fisher discriminant analysis,
where the individual genes were first selected to be differentially expressed
across disease subtypes, the so-called discriminatory genes, using Wilks’
lamda score and leave one out cross-validation. Essentially, they estimated
the sample size using the combination of a much smaller number of genes
(dimensions) involved and allowed refinement of sample size estimation by
looping through the process using updated estimated effect sizes and
correlations, an adaptive sample size estimation approach.
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S, SUMMARY

Variability in microarray data is expected and unavoidable. Replication is
the key to the accuracy and reliability of the data. Replication enables us to
understand and interpret the significance of observed changes for thousands
of genes. It is noteworthy to point out that replication is not to duplicate the
results; rather it is to understand the sources of noise so as to control it or
reduce it for performing sensible statistical analyses and for drawing reliable

inferences.

REFERENCES

Benjamini, Y., Hochberg, Y., 1995, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, Journal of Roval Statistical Society B 57: 289-3()0.

Black, M.A.. Doerge. R.W., 2002, Calculation of the minimum number of replicate spots
required for defection of significant gene expression fold changes for cDNA microarrays.
Technical Report, Department of Statistics, Purdue University, IN.

Chen, Y-I.. Kodell, R.L., Sistare, I, Thompson, K.. Morris, S., Chen, 1.1., 2002,
Normalization methods for cDNA microarray data analysis. Jowrnal of Biopharmaceutical
Statistics 13: 56-74.

Chen, 1.1, Delongchamp, R.R., Tsai, C.. Hsueh, H-M., Thompson, K.L.. Desai, V.G., Fuscoe.
J.C.. 2004, Analysis of variance components in gene expression data, Bioinformarics 20,
in press.

Cui. X.. Churchill, G.A., 2003, How many mice and how many arrays? Replication in mouse
¢DNA microarray experiments, Johnson KI5, Lin SM. Methods of Microarray Data
Analysis 1, Kluwer Academic Publishers, 139-154.

Donovan, D.M., Becker, K.GG., 2002, Double round hybridization of membrane based cDNA
arrays: improved background reduction and data replication. Journal of Neuroscience
Methods 118:59-62.

Elston, R.C., Idury, R.M., Cardon, L.R., Lichter, 1.B., 1999, The study of candidate gene in
drug irials: sample size considerations, Sraristics in Medicine 18:741-751.

Herwig, R.. Aanstad, P., Clark, M.. Lehrach, H., 2001, Statistical evaluation of differential
expression on cDNA nylon arrays with replicated experiments, Nucleic Acids Research
29(23): el 17.

Hochberg, Y., Tamahane, A.C.. 1987, Multiple Comparison Procedures, John Wiley Sons:
NY.

Hwang. D., Schmitt, W.A., Stephanopoulos, G., 2002, Determination of minimum sample
size and discriminatory expression patterns in microarray data, Bioinformarics 18(9): 1184
93.

Ideker, T, Thorsson, V., Siegel. AL, Hood, L., 2000, Testing for differentially-expressed
genes by maximum-likelihood analysis ol microarray data, Jowrnal of Computational
Biology 7(6):805-817.

Jung. S-H.. Owzar, K., George, S. 2004, Associating microarray data with a survival
endpoint. Shoemaker. J. Lin SM. eds. Methods of Microarray Data Analysis 1V, Kluwer
Academic publishers, 109-120,

Lee, ML T.. Kuo, FC., Whitmore, G.A., Sklar, J.. 2000, Importance of replication in



50 Wang and Chen

microarray gene expression studies: statistical methods and evidence from repetitive
c¢DNA hybridizations, Proceeding of National Academy Science USA 97:9834-9839.

Lee, M.LT., Whitmore, G.A., 2002, Power and sample size for DNA microarray studies,
Statistics in Medicine 21:3543-3570.

Pan, W., Lin, 1., Le, C.T,, 2002, How many replicaies of arrays are required 1o detect gene
expression changes in microarray experiments? A mixture model approach Research,
Genome Biology 3(5):0022.1-0022.10.

Simon, R., Radmacher, M.D., Dobbin. K., 2002, Design of studies using DNA microarrays,
Genetic Epidemiology 23:21-36.

Tsai, C.A., Chen, Y1, Chen, LJ., 2003, Testing for Differentially Expressed Genes with
Microarray Data, Nucleie Acids Research 31(9), e52.

Wang. 8.1, Chen, 1J.. 2004, Sample size for identifying differentially expressed genes in
microarray experiments, Journal of Computational Biology, in press.

Westiall, P.H., Young, S.S., 1993, Resampling-Based Multiple Testing, John Wiley Sons:
NY.

Yang, Y.H.. Speed. T.. 2002, Design issues for cDNA microarray experiments, Nature
Reviews Genetics 3:579-587.

Zien, A., Fluck, 1., Zimmer, R., Lengaver, T., 2003, Microarrays: How many do you need?
Journal of Computational Biology 10 (3-4):653-667.



Chapter 4

POOLING INFORMATION ACROSS
DIFFERENT STUDIES AND
OLIGONUCLEOTIDE CHIP TYPES TO
IDENTIFY PROGNOSTIC GENES FOR LUNG
CANCER

leffrey S. Morris, Guosheng Yin, Keith Baggerly, Chunlei Wu, and Li Zhang
The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 447,
Houston, TX, 77030-4009

Abstract:

Key words:

Our goal in this work was to pool information across microarray studies
conducted al different institutions using two different versions of Affymetrix
chips to identify genes whose expression levels offer information on lung
cancer patients” survival above and beyond the information provided by
readily available clinical covariates. We combined information across chip
types by identilying “matching probes™ present on both chips, and then
assembling them into new probesets based on Unigene clusters. This method
yielded comparable expression level quantifications across chips withoul
sacrificing much precision or significantly altering the relative ordering of the
samples.  We fit a series of multivariable Cox models containing clinical
covariates and genes and identified 26 genes that provided information on
survival after adjusting for the clinical covariates, while controlling the false
discovery rate at 0.20 using the Bela-Uniform mixture method. Many of these
genes appeared o be biologically interesting and worthy of [uture
investigation. Only one gene in our list has been mentioned in previously
published analyses of these data. It appears thal the increased statistical power
provided by the pooling was key in finding these new genes, since only nine
out of the 26 genes were detected when we apply these methods 1o the two
data sets separately. i.e., without pooling.

Cox regression; meta-analysis; NSCLC; oligonucleotide microarrays
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1, INTRODUCTION

The challenge of this CAMDA competition was to pool information
across studies to yield new biological insights, improving medical care and
leading to a better understanding of lung cancer biology. We selected
adenocarcinoma, since most of the available data are from this type of
histology. and it is most prevalent in the general population; we decided to
focus on the survival outcome. We chose to focus our efforts on the
Michigan and Harvard studies. Both studies used Affymetrix
oligonucleotide arrays, but they used different versions of Affymetrix chips:
the Michigan study used the HuGeneFL while Harvard used the U95Av2.

Our first goal in this work was to pool the data across different studies to
identify prognostic genes for lung adenocarcinoma. By prognostic genes, we
meant those whose expression levels offer information on patient survival
over and above the information already provided by known clinical
predictors. We predicted that by pooling the data as opposed to merely
pooling the results, we would have more statistical power to detect
prognostic genes.  Accomplishing this goal required us to develop
methodology to pool information across different versions of Affymetrix
chips in such a way that we obtained comparable expression levels across
the different chip types.

2, ANALYTICAL METHODS

2.1 Pooling Information across Studies

Before pooling the studies, we checked to see if they had comparable
patient populations, and we found comparable distributions of age, gender,
smoking status, and follow-up time in the studies (p>0.05 for all). The stage
distributions were slightly different, since the Michigan study contained only
stage | and stage Il cancers (67 and 19, respectively), while the Harvard
study contained patients at all four disease stages (76, 23, 11, and 15,
respectively).  However, the proportions of advanced (stage Il and 1V)
versus local (stage T and IT) disease were similar in the two groups (0.22 vs.
0.78 for Michigan, 0.21 vs. 0.79 for Harvard, p>0.05). In spite of these
similar characteristics, the patients in these two studies demonstrated
significantly different survival distributions, with the Harvard patients
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Figure 1. Kaplan-Meier plots for Harvard and Michigan Studies. The p-value coresponds o
the institution factor in a multivariable Cox model which also includes age and stage of
disease (local/advanced).

tending to have worse prognoses. Figure | contains the Kaplan-Meier plots
for these two groups. This difference was statistically significant (p=0.005,
Cox model) even after adjusting for age and stage, so we included a fixed
institution effect in all subsequent survival modeling to account for apparent
differences in the patient populations for these two studies.

22 Pooling Information across Different
Oligonucleotide Arrays using “Partial Probesets”

A major challenge in pooling these studies was that different versions of
the Affymetrix Oligonucleotide chip were used in the microarray analyses.
The Michigan study used the HuGeneFL Affymetrix chip. This chip
contains 6,633 probesets, each with 20 probe pairs. By contrast, the Harvard
study used the newer U95Av2 chip. This chip contains 12,625 probesets,
each with 16 probe pairs. This difference in chip types raised two problems.
First, some genes were represented on one chip but not the other. Second,
genes present on both chips were represented by different sets of probes on
the two chips. Since the two chip types did not contain the same probesets,
we did not expect standard analyses on these Affymefrix-determined
probesets to yield comparable expression level quantifications across chips.
However, there are some probes that both chips share in common, which we
call “matching probes”. These probes share common chemical properties on
the two chips. and so should yield comparable intensities across the two chip
types. Our method focused on these matching probes.

Our first step was to identify the matching probes present on both the
HuGeneFL and U95Av2 chips. We next recombined these probes into new
probesets using the current annotation of U95Av2 based on Unigene build
160. We refer to these recombined probesets as “partial probesets”. Note
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that because they are explicitly based on Unigene clusters, these probesets
will not precisely correspond to the Affymetrix-determined probesets.
Frequently, multiple Affymetrix probesets map to the same Unigene cluster.
We then eliminated any probesets consisting of just one or two probes,
because we expected the summaries from these probesets to be less precise.
This left us with 4,101 partial probesets. Most of the probesets (84%) of the
probesets contained 10 or fewer probes and the median probeset size was
seven. We had several probesets that contained more than 20 probes.

23 Preprocessing and Quantifying Gene Expression
Levels

We converted the raw intensities for each microarray image to the log
scale and re-plotted them to check for poor-quality arrays. We removed
from consideration several arrays that have apparent quality problems. From
the Michigan data set, samples L54, L88, L89, and L90 contained a large
dead spot at the center of the chip, which was obvious when looking at our
log-scale plot, shown in Figure 2. These dead spots may have been bubbles
caused by inadequate hybridization from using less than the specified 200ul
of hybridization fluid. Samples 122, 130, 1.99, L81, LI00, and L102
contained a large number of extremely bright outliers according to MASS.0.
For the Harvard data set, two outlier chips were detected using dChip
(CL2001040304 and CL2001041716) and removed. For the Harvard
samples with replicate arrays, we kept only the most recently run chip. The
remaining data was matching clinical and microarray data for 200 patients,
124 from the Harvard study and 76 from the Michigan study.

Figure 2. log intensity plot for four Michigan samples (154, L88, 189, and LY0,
respectively) with inadequate hybridization in the middle of the chips.

For each patient, we obtained log-scale quantifications of the gene
expression levels for each partial probeset using the Positional Dependent
Nearest Neighbor (PDNN) model. This method was introduced in last
year's CAMDA competition [Zhang, Coombes, and Xia, 2003}, and uses
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probe sequence information to predict patterns of specific and nonspecific
hybridization intensities. By explicitly using the sequencing information,
this model was able to borrow strength across probe sets while doing the
quantification. This method has been shown to be more accurate and
reliable than MAS 5.0 (Affymetrix, Inc.) or dChip [Schadt, et al. , 2001],
using the Latin-square test data set provided by Affymetrix for calibrating
MAS 5.0 [Zhang, et al., 2003].

We also performed other preprocessing steps. We removed the half of
the probesets with the lowest mean expression levels across all samples, then
normalized the log expression values by using a linear transformation to
force each chip to have a common mean and standard deviation across
genes. We next removed the probesets with the smallest variability across
chips (standard deviation <0.20), since we considered them unlikely to be
discriminatory and more likely to be spuriously flagged as prognostic.
Finally, we removed the probesets with poor relative agreement (<0.90)
between the partial probeset and full probeset quantifications (see Section 3).
After this preprocessing, 1036 probesets remained and were considered in
our subsequent analyses.

24 Identifying Prognostic Genes

Our main goal was to identify prognostic genes offering predictive
information on patient survival. We were interested not primarily in finding
genes that were simply surrogates for known clinical prognostic factors like
stage. since these factors are easily available without collecting microarray
data. Rather, we were interested in finding genes that explain the variability
in patient survival that remains after modeling the clinical predictors. Thus.
we fit multivariable survival models, including clinical covariates in all
survival models we used to identify prognostic genes.

We applied Cox regression models to the survival data combined across
both institutions. Our best clinical model included age and disease stage
(dichotomized as low, stages I-II, and high, stages I1I-1V). Smoking status
was only marginally significant for survival; therefore, we removed it from
the model. Thus, we screened the 1036 genes to find potentially prognostic
ones by fitting a series of multivariable Cox models containing age, stage,
institution, and the log-expression of one of the genes as predictors. We
obtained the exact p-values for each gene’s coefficient using a permutation
approach. In this approach, we first generated 100,000 datasets by randomly
permuting the gene expression values across samples while keeping the
clinical covariates fixed. Subsequently, we obtained the permutation p-value
for each gene by counting the proportion of fitted Cox coefficients that were
more extreme than the coefficient for the true dataset. We also obtained p-
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values using asymptotic likelihood ratio tests (LRT) and the bootstrap to
assess robustness of our results. The results were generally concordant; see
Section 4. A small p-value for a given gene indicated potential for that gene
to provide prognostic information on survival beyond the clinical covariates.

If there were no prognostic genes, statistical theory suggests that a
histogram of these p-values should follow a uniform distribution. An
overabundance of small p-values would indicate the presence of prognostic
genes. We fit a Beta-Uniform mixture model to this histogram of p-values
using a method called the Beta-Uniform Mixture method (BUM, Pounds and
Morris, 2003), which partitions the histogram into two components, a Beta
component containing the prognostic genes and Uniform component
containing the non-significant ones. Various criteria can be used along with
this method to determine a cutpoint between these components. We used the
false discovery rate (FDR, Benjamini and Hochberg, 1995), which estimates
the proportion of genes flagged as prognostic that are in fact not prognostic.
Given a choice for FDR, the BUM method yields a p-value cutoff below
which a gene is flagged as significant.

We also identified genes differentially expressed by cancer stage by
applying the BUM model to p-values from nonparametric Wilcoxon tests
comparing median expression levels for early- (stages I-1I) and late-stage
(stages lI-IV) lung adenocarcinoma.

3. ASSESSING “PARTIAL PROBESET” METHOD

Before analyzing the microarray data to identify prognostic genes, we
assessed whether our method for combining information across different
Affymetrix chip types performed acceptably. First, we checked whether the
expression levels were indeed comparable across chip types. Figure 3
contains plots of the median and median absolute deviation (MAD) log
expression level for each partial probeset across the Michigan samples run
on the HuGeneFL chip against those from the Harvard samples run on the
U95Av2 chip. The concordance between these values was 0961 for the
median and 0.820 for the MAD, so it appears that our method yielded
reasonably comparable expression levels across the two chips.
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Figure 3. Median (a) and median absolute deviation (b) expression levels for each partial
probeset based on the Harvard samples run on the UY5Av2 chips vs. the Michigan samples
run on the HuGenel'L chip. The high concordance in these measures suggests we obtain
reasonably comparable expression levels by using the matched probes.

Recall that our methed used only the matching probes, while completely
ignoring expression level information for the non-matching probes. This
means that our probesets are generally smaller than the Affymetrix-defined
probesets. The median size of our “partial probesets” was seven, while the
Affymetrix-defined probesets for the HuGeneFL and U95Av2 chips have 20
and 16 probes, respectively. Since additional probes can increase the
precision in measuring the expression level of the corresponding gene, one
might expect a loss of precision when using the partial probesets to quantify
expression levels. To investigate this possibility, we quantified the
expression levels for the full probesets of the Harvard samples using the
PDNN model. The full probesets consisted of all probes on the array
mapping to the Unigene cluster, i.e., not just the matching ones. We plotted
the standard deviation for each gene using the full probeset versus the
standard deviation for the partial probeset, given in Figure 4. If the partial
probeset quantifications were considerably less precise, we would expect
measurement error to cause the standard deviation to be larger for the partial
probesets. There was no evidence of significant precision loss in this plot, as
there is strong agreement between the standard deviations for each gene
using the two methods (concordance=0.942). This may seem surprising at
first, but upon further thought is reasonable, since we expect that the probes
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Affymetrix chooses to retain in formulating new chips may be in some sense
the “best’” ones.

S ir ol Dres

Figure 4. Standard deviation across Harvard samples for cach gene based on full and
partial probesets, A “lull probeser”™ contains all probes on the UYSAv2 chip mapping 10 a
unique Unigene ID, while the corresponding “partial probeset” contains only the subset of
probes contained on both the U95Av2 and HuGenel'L chips.

We computed Spearman correlations between the partial and full probeset
quantifications for each probeset to confirm that our method preserved the
relative ordering of the samples, i.e., the ranks. For example, we expect that
a sample with the largest expression level for a given gene using the full set
of probes will also demonstrate the largest expression level for that gene
when using only the matched probes. The median Spearman correlation
across all probesets was 0.95, suggesting that our method did a good job of
preserving the relative ordering of the samples. Interestingly, but not
surprisingly, most of the lower Spearman correlations occur for probesets
with less heterogeneous expression levels across samples and/or probesets
containing smaller numbers of probes. Thus, it appears that our partial
probeset method worked quite well. We expect it to perform even better if it
is used to combine information across U935 and U133 chips, since these
chips share more probes in common than the HuGeneFL and U935 chips.

4. RESULTS

Figure 5(a) contains the histogram of permutation test p-values assessing
the prognostic significance of each gene. The overabundance of probesets
with very small p-values indicates the presence of some genes providing
information on patient prognosis beyond what is offered by the modeled
clinical factors. Table 1 contains a set of 26 genes that are flagged by the
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BUM method using FDR<0.20, which are those genes with permutation p-
values less than 0.0025. Our analogous BUM analyses found that 16 of
these genes are also flagged based on the LRT, and 18 using the bootstrap.
We also identified a set of genes that appear to be differentially expressed by
clinical stage (early vs. late). Figure 5(b) contains the histogram of stage p-
values from the Wilcoxon test, with the extreme right skewness indicating a
very large number of significant genes. Using the BUM method with
FDR<0.20, more than 1/3 of the genes (346/1036) were flagged as
differentially expressed by stage. This was in contrast to the very small
number (26) of genes flagged as prognostic with the same settings. This is
not surprising, since one might expect that it is easier to identify genes
related to an easily identifiable biological factor like stage than to predict
how long the patient will live. There were 71 genes flagged using
FDR<0.05, which corresponded to a p-value cutoff of 0.0064. Only one of
the 26 genes we flag as prognostic is in the set of 71 genes flagged as related
to stage using FDR<0.05 (STK25).
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Figure 5. (a) Histogram of p-values [rom permutation test on gene coefficient in Cox madel
containing clinical covariates and each one of the 1036 candidate genes. The corresponding
histogram for the LRT is nearly identical (b) Histogram of p-values from Wilcoxon test
comparing median expression levels for carly and late stage cancers.

5 INTERPRETATION OF RESULTS

We were able to link 10 of our 26 prognostic genes to lung cancer based
on the existing literature. Four others could be linked to cancer in general or
other lung disease in the literature. These genes are in boldface in Table 1.
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Table 1. Set of genes flagged as prognostic by applying the BUM on the permutation p-values
with FDR<0.20. Also included are the LRT and bootstrap p-values and estimates of the Cox
model coefficient. A "*" indicates the p-value was below the BUM significance threshold.
The identity of the genes is also given, with boldface type indicating we were able to find
existing literature linking that gene with lung cancer, cancer in general, or other lung disease.
A negative coefficient indicates that larger expression levels of that gene corresponded to a
better survival outcome.

Prognastic P-values
Gene Permut. LRT Bootstrap
Identlty Coef
FCGRT; Fc fragment of igG receplor 2.07 | <0.00001" | 0.00014° | 0.0006°
ENOZ2; Enclase 2 146 | 0.00001° | 0.00002* | <0.0001"
NFRKB;Nuclear factor for kappaB binding | -281 | 0.00001° 000435 | 0.0040°
RAMT; Ribonucleotide reductsse M1 | &1 | o.0002 | 0.00008° | <0.0001*
polypeptide
TBCE; Tubulin-spacific chaperone @ -2.35 | 0.00004" | 0.000689 0.0006"
Similar to phosphoglycerate mutase 1 102 | 0.00008" | 0.00020° | 0.0004"
ATIC; IMP cyclohydrolase 181 | 0.00009" | 0.00153* | 0.0004*
CHKL; Choline kinase-like -1.43 | 0.00010° | 002305 [ 0260
DDX3; DEAD/H box polypeptide 3 | 237 | 0.00017* | 0.00012* | 0.0002"
OST; oligosaccharyliransferase 164 | 000020° | 0.00010° | 0.0010°
CPE; Carboxypeptidase E 072 | 0.00031° | 0.00053° | 0.0010°
ADRBKT; Adrenergic, bets, raceplor | ,20 | 0.00044* | 000678 | o.003¢0*
kinase 1
BCLS; B-cell CLLAymphoma 9 -1.64 | 000087 | 003602 | 00460
;m'zwn;m ?m loucine  zipper and W2 | o3 | ocooser | 000279 | 0.0006"
TPS1; Tryptase, alphs 064 | 000108 | 0.00217° | <0.000t"
CLU; Clusterin 052 | 000109 | 0.00239° | 0.0024"
OGDH; Oxoglutarale dehydrogenase 219 | 000118* | 0.00405 | 0.0020°
STK25; Serinefthreanine kinase 25 220 | 000122 | 0.00152° | 0.0080
KCC2; potassium-chioride transporter 2 170 | 000143 | 000888 | 0.0220
SEPW1;Selenoproteln W, 1 120 | 000145 | 0.01026 | 0.0160
FSCN1; Fascin homalog 1, actinbundiing | o5 | cootser | coo2arr | oo103
protein
MRPL15; Mitochondrial ribosomal protn L19 | 1.12 | 0.00211* | 0.03213 | 00340
ALDHS; Aldehyde dehydrogenase @ family | -1.18 | 0.00223° | 0.00378" | _0.0020°
PEN2: Profilin 2 063 | 000248" | 0.00351* | 0.0020°
BTG2; BTG family, member 2 075 | 0.00232° | 000880 | 00140
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Prognostic P-values
Gene Permut. LRT Bootstrap
ldentity Cosl
FCGRT; Fc fragment of IgG recsplor -2.07 <0.00001* | 0.00014" 0.0006*

The top gene in our list, FCGRT, is induced by Interferon y in the
treatment of SCLC [Pujol, et al., 1993]. The negative sign on our coefficient
indicates that it is a positive prognostic factor, i.e., patients with high levels
of this gene tend to have better prognoses. According to our model, every
doubling of expression level of this gene corresponded to an 8-fold reduction
in risk for death (hazard). RRMI has been shown to be overexpressed in
NSCLC, and one study found that patients with NSCLC who are treated
with gemcitabine/cisplatin with low RRM1 mRNA levels show significantly
longer survival times [Rosell, et al., 2003]. The positive sign on the
regression coefficient indicates that our analysis also considered this gene to
be a negative prognostic factor, meaning that higher expression levels
corresponded to a poorer prognosis. Every doubling of the expression level
corresponded with a 6-fold increase in the hazard.

Overexpression of selenoprotein W, 1 (SEPWI1) has been shown to
markedly reduce the sensitivity to HyO, eytotoxicity in NSCLC cell lines
[Jeong, et al., 2002]. This gene appeared as a positive prognostic factor in
our analysis. FSCNI has been demonstrated to be a prognostic marker of
invasiveness in Stage [ NSCLC [Pelosi, et al., 2003]). and appeared as a
negative prognostic factor in our analysis.

Some genes are lung cancer markers, either for NSCLC [CHKL, Ramirez
de Molina, et al., 2002; ENO2, Ferrigno, Buccheri, and Giordano, 2003] or
SCLC [CLU, Koyama, et al., 1998; CPE, North and Du, 1998). ADBRK is
co-expressed with Cox-2 in lung adenocarcinoma [Schuller, et al., 2001].

Some genes have been linked to other cancers. While it is possible that
the connections between genes and lung cancer are circumstantial, we
mention them here because some may be interesting and may turn out to be
relevant to lung cancer. BCLY is over-expressed in some cases of ALL
[Katoh and Katoh, 2003], and NFRKB is amplified in AML. BTG2 has
been demonstrated to inhibit cell proliferation in primary mouse embryo
fibroblasts lacking functional p53, and is a positive prognostic gene in our
analysis [Kuo, et al., 2003]. ATIC is a fusion partner of ALK that defines a
subtype of anaplastic large cell lymphoma (ALCL) [Cheuk and Chan, 2001],
and ALK itself has been linked with lung cancer. TPS1 is a unique protease,
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released from mast cell secretory granules into the respiratory tract of
patients with inflammatory disease of the airways [Cairns and Walls, 1996].

None of the genes we identified appeared in the list of top 100 genes
from the Michigan analysis [Beer, et al., 2002], and we have only found one
(CPE) that was mentioned in the Harvard paper [Bhattacharjee, et al., 2001].
CPE was one of the genes defining a neuroendocrine cluster that they
identified and associated with poor prognosis.

We repeated our analysis separately for the Harvard and Michigan data
sets, i.e.. without pooling, and only eight and one of the 26 genes,
respectively, were flagged as having p-values less than 0.0024, while 17 are
not flagged. including the top gene in our list (FCGRT). It is clear that we
obtained significant gains by pooling information across the two studies.

6. DISCUSSION

It may seem curious that our list of prognostic genes had almost no
overlap with the genes mentioned in other publications based on these data,
but this is reasonable for several reasons. First, we addressed a different
research question than the analyses done in those publications. We used
multivariable Cox models to search for genes offering prognostic
information above and bevond what has been provided by known clinical
predictors. In the study of Beer, et al. [2002], researchers looked for
prognostic genes, but they fit single-factor Cox models containing the gene
expressions, but not clinical predictors. Thus, they were effectively
searching for genes that provided information on survival, irrespective of
whether the prognostic value of the gene was due to a possible association
with known clinical factors like disease stage. Bhattacharjee. et al. [2001]
approached the survival question indirectly by performing unsupervised
clustering on the samples, testing which clusters had survival ditferences,
then identifying the genes that were driving the clustering. Second. and
perhaps more importantly, we gained increased power to detect prognostic
genes as a result of pooling the data from the two studies.

There are clear benefits to be reaped by pooling information across
microarray studies. Most microarray studies have small to moderate sample
sizes, which means a relatively low statistical power that translates into a
limited ability to detect significant relationships between gene expression
levels and outcomes of interest. By pooling information across data sets, we
can obtain additional sensitivity and specificity in identifying important
genes. This may allow us to identify gene-outcome relationships that are
undetectable in any one study alone. Of the 26 prognostic genes found in
our analysis, 17 of them would not have been flagged by analogous methods
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in either the Harvard or the Michigan data without pooling. Given that many
researchers make their data publicly available after publication, this suggests
exciting possibilities for pooled analyses of existing data that could reveal
important new insights into cancer biology.

Note that combining data across studies as we have done is
fundamentally different from the pooling of results across studies that is
typical in many meta-analyses. Pooling the data results in an increase in
statistical power to detect differences, while simply pooling the results does
not. However, one must be careful in combining data across studies. First,
one must account for any study-to-study heterogeneity that may be caused
by differences in the studies’ patient populations or conditions. In this work,
we dealt with this by incorporating a fixed effect for study in our survival
models. If there are more than two studies available to pool, we recommend
using either Bayesian hierarchical models (see Stangl [1996]) or frailty
models (see Therneau and Grambsch [2000]), which both treat the study
effect as random instead of fixed. These methods may not be as effective
when pooling just two studies because they involve estimation of a variance
component {rom a sample of size two.

Second, one must normalize the measurements to make them comparable
across studies. In our case, this involves finding a way to effectively
combine information across different microarray platforms. Here we have
presented a new method that is applicable to oligonucleotide arrays in which
we identify probes present on both platforms then combine them into new
probesets based on Unigene clusters. Our investigations suggested that this
method is reliable and precise. and yielded comparable gene expression
quantifications across two different versions of Affymetrix chips. the
HuGeneFL and HG-U95Av2, used in the Michigan and the Harvard studies.
We expect that this method may perform even better in combining
information across U95 and U133 chips, since these chips have more probes
in common. We feel that this approach is stronger than simply trying to
normalize the expression levels across chips using quantile normalization,
for example, since it is actually extracting measurements from the arrays that
have scientific reasons to be comparable, and not just trying to make an
arbitrary adjustment on non-comparable measurements.

Our specific biological goal in this analysis was to identify prognostic
genes, meaning genes that offered information on patient survival beyond
what is provided by known clinical predictors. We accomplished this by
fitting multivariable Cox models that contained the clinical predictors along
with the genes. It is important to adjust for these factors, since a gene that is
simply a surrogate for a known clinical predictor is not as useful to us since
we can gain the prognostic information directly from the clinical predictor
without the additional time and expense required to collect microarray data.
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While this type of multivariable analysis may result in fewer flageed
prognostic genes, we feel that this list has the potential to be more interesting
biologically because we know that the flagged genes explain variability in
patient survival not already explained by the clinical predictors. Many genes
in our short list seem biologically interesting and have been linked with lung
cancer in the existing literature.

T CONCLUSIONS

We have introduced a method based on partial probesets that appears to
be effective for combining expression data from different oligonucleotide
arrays. Using this method, we have pooled information across the Harvard
and Michigan studies and identified a set of genes that appear to be
prognostic for lung adenocarcinoma, providing information above and
beyond known clinical predictors. Many of these genes would not have
been found without pooling, and a large proportion of them appear to be
biologically interesting and are worthy of future investigation.
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Chapter 5

APPLICATION OF SURVIVAL AND META-
ANALYSIS TO GENE EXPRESSION DATA
COMBINED FROM TWO STUDIES

Linda Warnock, Richard Stephens, JoAnn Coleman
GlaxoSmithKline

Abstract:

Key words:

1.

The application of gene expression microarray technology has the potential 1o
have a large impact in the arca of oncology, There is a need 1o be able to
identify genes associated with prolonged or reduced survival, to aid decisions
regarding palient treatment and care. Tn addition these genes can be targeted in
drug research to aid discovery and development of novel treatments. This
paper uses two published Affymelrix dalasets and combines the information
from adenocarcinoma lung tumors 10 identify genes associated with survival.
Kaplan-Meier survival analysis, Cox proportional hazards models and analysis
of variance are used for the data analyses. The resulls are combined across the
two datasets using Fisher's chi-squared meta-analysis based on p-value
aggregation. The false discovery rate (FDR) adjustment is made to the final p-
values,

Affymetrix, principal component analysis. Kaplan-Meier analysis, Cox
proportional  hazards model, meta-analysis, false discovery rate, lung
adenocarcinoma

INTRODUCTION

Gene expression data and clinical information have been collected from
two experiments designed to investigate the relationship between gene
expression and survival in patients with lung cancer. Expression data has
been collected from studies run in association with Harvard [Bhattacharjee et
al., 2001] and Michigan [Beer et al., 2002] universities. The two studies used
different Affymetrix chip types to produce the gene expression data and
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have collected a variety of clinical information. This analysis combines the
information across these two datasets and focuses on lung adenocarcinoma
tumors to identify genes which are associated with survival.

2. METHODS

2.1 Combining Information

The data were downloaded from the CAMDA  website
[www.camda.duke.edu/camda03/] in the form of .CEL files. The .CEL files
contain the raw intensity data prior to normalization. The intensity data had
been generated from a total of 299 tumor samples (Harvard: 203, Michigan:
96). The Harvard data collected samples from adenocarcinoma (139),
squamous (21), small cell lung cancer (six), carcinoid (20) and normal (17)
tumors; however only 124 of the adenocarcinoma samples had clinical
information in addition to gene expression data. The Michigan data had 86
adenocarcinoma samples all with associated clinical information and gene
expression data.

The combining of the data across the two studies was complicated by the
fact that the expression data had been collected using different Affymetrix
chip technologies. The Harvard study used the U95A chip with 16 probe
pairs per probe set and 12,625 probe sets while the Michigan study used the
older HuGene FL chip with 20 probe pairs per probe set and 7, 129 probe
sets. The probe sets on the two chips are designed differently and do not
always target the same genes. Hence the two chips had a mixture of common
genes and completely different genes represented. The common genes may
also be represented by probe sets targeting different parts of the gene
sequence. The Affymetrix website provides comparison spreadsheets which
allows probe sets, targeting the same gene, to be matched from different chip
types. The HuGeneFL_to_U95_comp.xls spreadsheet
[www.affymetrix.com/support/technical/comparison_spreadsheets.affx] was
used to select probe sets which had a sequence relationship between the
two chips. This matching resulted in over 6,000 probe sets being defined as
common between the two datasets. This method of matching is more precise
than using gene names. The set of common probe sets (genes) was used in
all subsequent analyses.
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2.2 Pre-processing of the data

The Harvard and Michigan gene expression data were pre-processed and
normalized independently of each other. The .CEL files containing the raw
expression data were processed in MAS5
[www.affymetrix.com/products/software/specific/mas.affx] and DChip [Li
and Wong, 200la] software. The quality control (QC) process involved
identification of chip to chip variation using DChip and MASS algorithms.
Any chips with ‘probe set outlier %" greater than three (DChip) were
discarded. B-actin and Gapdh were housekeeper genes represented on every
chip. Any chip with the 3°/5" ratios greater than three for the housckeepers
were also discarded (MASS). Metrics related to the background intensity
and overall chip intensity such as ‘raw Q', ‘scale factor’, ‘background
intensity” were collected and used in a principal components analysis (PCA)
in SIMCA-P+ version 10 [www.umetrics.com/software_simcapplus.asp]
with the aim of identifying poor quality chips. Using these quality control
criteria, 20 chips were removed from the Harvard dataset (10 of which were
adenocarcinoma samples) and 16 chips from the Michigan dataset. The
Harvard data contained information on the in-vitro transcription (IVT) batch
which was used in the process of sample preparation. Through PCA analysis
of the Harvard QC data it was found that one batch (28 chips) of IVT
produced an overall lower average chip signal and lower background signal.
This created some bias in the expression data; however the effect did not
appear great enough to justify the removal of 28 chips. This finding showed
the importance of identifying technological variation and ideally repeating
the chip hybridizations.

The two datasets were normalized in DChip using the piece-wise linear
normalization algorithm on the perfect match (PM) data only. All of the data
exploration and analyses were performed on the PM data only. The data
could not be combined at this stage due to the different chip types (HuGene
FL: Michigan, U95A: Harvard).

23 Exploratory analysis of the clinical data

The effect of the variables sex, age and tumor stage on survival were
investigated using a Kaplan-Meier plot and Cox proportional hazards
regression model. The cancer staging handbook [Greene, 2002] was used to
classify each tumor as stage 1 (72), 1l (22). III (eight) or IV (11) in the
Harvard dataset (one sample did not have a stage classification), with stage
IV being metastasis or development of a secondary tumor. The Michigan
dataset only had patients with stage I (56) or stage Il (14) tumors. The
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Figure 1. Kaplan-Meier plot of the Michigan clinical data showing the effect of tumor stage
and sex on survival. Stage I'tumors have a greater survival rate than stage 111
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Figure 2. Kaplan-Meier plot of the Harvard clinical data showing the effect of tumor stage
and sex on survival. As seen for the Michigan data stage | tumors have a greater survival rate
than stage I+,

significance of the variables were determined using a forward selection Cox
regression model in SAS version 8 [Allison, 1995]. The analysis was
performed separately on each dataset, 114 Harvard adenocarcinoma samples
and 70 Michigan adenocarcinoma samples. Each sample was represented by
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over 6,000 genes which were identified as common between the two
datasets. Figures | and 2 showed that stage of tumor had a large effect on
survival rates with stage 1 having a greater survival rate. The significance of
the clinical variables were investigaled with a Cox proportional hazards
regression model. This confirmed that stage had a large, significant effect on
survival (Harvard p=0.0003, Michigan p<0.0001). There was slight evidence
of a difference between sex (Harvard p=0.4074, Michigan p=0.0362) and
slight evidence of an effect of age (Harvard p=0.2398, Michigan p=0.0526).

24 Exploratory Analysis of the expression data

Principal component analysis (PCA) was used to explore the quality
controlled, chip-normalized expression data to look for large sources of
variation across all the chips (Harvard and Michigan). The scores plot
(Figure 3) plotted the first principal component on the y-axis. This
component accounted for 89% of the total variation and showed the
separation of the expression intensity between Michigan and Harvard. There
were several possible reasons for this difference which are outlined in the
Section 4.
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Figure 3. PCA scores plot showing the separation between Harvard and Michigan gene
expression data (crosses = Michigan samples, circles = Harvard samples). The first
component is shown on the y-uxis and accounts for 89% of the variation. The x-axis is simply
an ordering of samples.

The loadings (not shown) for the first component showed that the
majority of eenes had high, positive loadings indicating that the majority
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were more highly expressed for one dataset than the other, although there
were a small number of genes where the converse was true.

Summary statistics showed the geometric mean expression for Harvard to
be 24 (raw average intensity of 250) with a standard deviation of 0.50 and
for Michigan to be 3.1 (raw average intensity of 1260) with a standard
deviation of 038 demonstrating an overall increase in intensity for the
Michigan expression data.

2.5 Identification of genes associated with survival

Cox proportional hazards regression model was used to identify genes
associated with survival. The effect of sex., age and tumor stage were
assessed in addition to log expression intensity. This analysis was performed
for every gene and a ranking based on the statistical significance of each
gene was used to identify the genes most associated with survival.

A forward selection process was used so that variables were entered in
order of greatest association with survival. A p-value entry of 1 was used to
ensure that every variable was entered into the model. Using this approach
the significance of each variable was assessed after accounting for the
previous variable entered. If two variables were correlated with each other,
and also with survival, then only one of the variables was necessary for
survival prognosis as the prognosis effect of the second variable will be
negligible after taking into consideration the first variable. In this analysis
tumor stage was usually the most highly correlated with survival and hence
was entered first into the model. Only five genes from the Michigan data and
one from the Harvard data showed the gene intensity variable as more
important than the stage variable. Two of these genes showed a significant
association with survival in both datasets (probe sets 34777_at and
40507 _at). These genes can be found in Table 1.

An important aspect of the analysis was the combination of results across
the two datasets. Although the two datasets could have been normalized to
remove the large source of variation between them, it was decided to keep
the two datasets separale and combine the results using the chi-squared
meta-analysis method developed by Fisher [1932] and applied by Rhodes et
al. [2002] to gene expression. This method allowed the two datasets to be
analyzed separately and the final p-values (o be aggregated into a new meta-
analysis p-value using chi-squared distribution theory.

A false discovery rate adjustment [Benjamini and Hochberg, 1995] was
used on the meta-analysis p-values across all the genes. The volcano plots
[Wolfinger et al., 2001] in Figures 4 and 5 summarize the results for the two
datasets prior to p-value aggregation. Minus log base 10 of the p-value was
plotted against the parameter estimate of the expression intensity for every
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Figure 4. Volcano plot summarizing the Cox regression results from the Harvard dataset for
all the genes. Minus log base 10 of the p-value was plotled against the parameter estimate of
the expression intensily for every gene thus allowing the size of the effect (o be assessed
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Figure 5. Volcano plot summarizing the Cox regression results from the Michigan dataset for
all the genes, Minus log base 10 of the p-value was plotted against the parameter estimate of
the expression intensity for every gene thus allowing the size of the effect to be assessed
alongside the statistical significance. Values of 1.3, 2 and 3 on the y-axis cormespond (o p-
values of 0,05, 0.01 and 0,001 respectively.
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gene. The parameter estimate of the expression intensity was taken from the
Cox regression analysis and can be thought of as an indication of the
biological significance of the gene. The larger the parameter estimate
(positive or negative) the greater the association with survival (decrease or
increase respectively). The exponential of the parameter estimate can be
interpreted as the increase in hazard (risk of death) for every unit increase in
log gene expression or in other words the increase in hazard for every 10-
fold increase in gene expression.

The volcano plots showed that the Michigan results (Figure 5) had a
larger range of effect with the parameter estimates ranging from -20 to 35
whereas the range of effect in the Harvard data was from -10 to 15. The
Michigan results also showed a greater number of significant genes. Any
gene which had a positive association in one dataset but negative in the other
were discarded. Two hundred and forty-one genes had a meta-analysis p <
0.05, 67 with meta-analysis p < 0.01, nine with meta-analysis p < 0.001
(shown in Table 1) and two with a FDR adjusted meta-analysis p £ 0.05
(Table 1).

2.6 Identification of genes associated with tumor stage

An alternative analysis approach used the tumor stage as a surrogate
marker for survival as patients with a stage 1 tumor were more likely to
survive than patients with more advanced tumors. This approach used
analysis of covariance (ANCOVA) with log gene expression as a response,
tumor stage (classified as stage 1 or stage II+) and sex as explanatory
variables and age as a covariate. This approach addressed the same problem
of identifying genes associated with survival but from a different angle. The
previous analysis identified genes which were associated with survival after
accounting for the effect of tumor stage whereas this analysis looked directly
for genes associated with tumor stage (acting as a surrogate for survival). As
a result the genes identified were likely to be different from the previous
analysis, however there were some overlapping genes mentioned below.
Fisher’s meta-analysis was also used with this approach to combine the p-
values from the two datasets and the FDR p-value adjustment was made.

It is interesting to note that there were very few genes with a two-fold
change or greater. A filter was placed on the genes so that only genes with a
1.5 fold change in at least one dataset were considered meaningful. This
resulted in 43 genes with meta-analysis p < 0.05, 36 with meta-analysis p <
0.01, 27 withmeta-analysis p < 0.001, 22 with FDR adjusted meta-analysis p
<0.01 (shown in Table 2) and 32 with FDR adjusted meta-analysis p < 0.05.
There were four genes with meta-analysis p < 0.05 which also had meta-
analysis p < 0.05 from the Cox analysis (201_s_at, 36780_at, 37006_at.
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37394 _at). Genes 201_s_at and 37394 _at appear in Table 2 but were not
significant enough to appear in Table 1. Genes 36780 _at and 37006_at were
not significant enough to appear in either table.

The genes which had a significant effect on survival were looked at in
more detail by using gene ontology (GO) [www.geneontology.org],
discussed in Section 3.

3. RESULTS

Table 1 showed a subset of the results of the Cox regression analysis by
providing a list of the nine most significant genes in descending order of
meta-analysis p-value. The genes were potential prognostic markers of
survival with meta-analysis p < 0.001 (Cox analysis), however only two of
the genes had FDR adjusted meta-analysis p < 0.05. The parameter estimate
for gene intensity gave an indication of the size of association between gene
intensity and survival. A value of 1 implied that the risk of death increased
by approximately 2.7 times (exponential of 1) for a 10-fold increase in gene
expression. Table 2 showed a subset of the results of the ANCOVA analysis
by providing a list of the 22 most significant genes in descending order of
meta-analysis p-value. Only genes which had more than a 1.5 fold-change in
at least one of the datasets were listed. The genes were potential markers of
tumor stage and hence of survival with FDR adjusted meta-analysis p <0.01.
There were many significant genes however few had a meaningful fold-
change between stage | and stage I+ The first gene in Table 2, CD37
antigen, had a negligible fold-change in the Harvard dataset and a -1.57 fold-
change in the Michigan dataset. The negative sign indicates down-regulation
which means that the gene expression intensity has decreased from stage 11+
to stage L
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Table 1. List of genes, with meta-analysis p-value £ (.00] identified by Cox regression
enalysis as prognostic for survival. The FDR adjusted meta-analysis p-value, the hazard
parameter estimates and the standard error (SE) of the estimate for each gene are given.
Genes highlighted in italics have appeared in cancer literature.

probe_set meta- FDR Harvard Michigan Gene name
analysis  adjusted  intensity intensity
p-value  p-value  parameter  parameter
estimate estimate

(SE) (SE)

34777 _at 248E-07 0.0015 1.00{0.9) 567 (.2) adrenomedullin

40507 _at 2.59E-06 0.0077 8.07(3.6) 1034(2.8) solute carrier family 2
(facilitated glucose
transporter), member |

1649_at 6.33E05 0.0656 568(3.3) 2278(6.2) chromosome 20 open
reading frame 16

32300_s_at  0.0002 0.1582 5.23 (1.7) 1399(5.6) tyrosine hydroxylase

38544 _at 00003 02286 210 (0.8) 499 (24) inhibin, alpha

1269_at 00005 03053  -271(L1) -7.04 (22) phosphoinositide-3-
kinase, regulatory
subunit, polypeptide 1

35693 _at 0.0006 03195 248 (34) 1687(43) huppocalcin-like 1

36133 _at 0.0007 03428 0.46 (0.4) 8.33 (2.6) desmoplakin (DPI, DPI)

32593 _at 0.0009 03680 0.17(0.8) -1060(26) KIAADOBS protein

Table 2. (continued on next page). List of genes, with FDR adjusted meta-analysis p < 0.01
identified by ANCOVA as prognostic for tumor stage. The fold-change estimates indicate the
size of the difference between stage I and stage I+ tumors with associated 95% confidence
intervals.

probe_set mela- FDR Harvard fold  Michigan fold Gene name
analysis  adjusted change change
p-value p-value between between
stages (95% stages (95%
confidence confidence

interval) interval)
3IB70_at  1.25E-09 7.48E-06 -1.06 -1.57 CD37 antigen
(-1.12,-1.01)  (-1.79,-01.79)
1288_s_a1  3.54E-07 0.0003 -1.06 -1.51 Jo4617
(-1.12,-1.01)  (-1.75,-130) /FEATURE=cds
/DEFINITION=HU
MEFIA Human
elongation factor
EF-1-alpha gene,
complete cds
31962 _ar 1.55E-06 0.0006 -1.03 -1.54 ribosomal protein
(-1.1,-097) (-1.78.-132) L37a
32466_at  5.34E-06  0.0011 -1.01 -1.61 ribosomal prolcin
(-1.05,-097y  (-1.91.-136) L4
36792_at  G.89E-06 0.0013 1.65 L.o7 Lropomyosin 1

(1.37, 2.00) (0.79,1.43)  (alpha)
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probe_set meta- FDR Harvard fold ~ Michigan fold Gene name
apalysis  adjusted change change
p-value p-value between between
stages (95% stages (95%
confidence confidence
interval) interval)
37892 at  9.69E-06 0.0016 179 1.64 collagen, type XI,
(134,2.37) (1.15,232) alpha ]
1385_at 291E-05 0.0027 1.70 1.35 transforming
(1.31,2.19) (1.04, 1.76)  growth factor, beta-
induced, 68kDa
38111_at  330E-05 0.0028 1.70 1.71 chondroitin sulfate
(1.24,232) (1.22,240) proteoglycan 2
1237_at 342E-05 0.0028 15 1.27 immediate early
(1.25, 1.81) (0.95,1.71)  response 3
1179_at 4.25E-05 0.0031 1.01 1.56 Heat Shock Protein,
(091, 1.12) (131,1.86) 70Kda
31775 S79E-05  0.0039 -15 -1.53 Cluster Incl.
(-1.86,-1.2))  (-2.13,-1.10)  X&65018:H.sapicns
mRNA for lung
surfactant protein D
32305_at  6,84E-05 0.0041 1.94 1.63 collagen, type 1,
(1.35,2.77) (1.11,239)  alpha2
34760_at 7.60E-05  0.0043 -1.52 -1.27 KTAAD022 gene
(-187,-123)  (-1.61,-1.00) product
658_at 7.81E-05 (0.0043 1.92 1.34 thrambospondin 2
(1.41.2.63) (0.96, 1.88)
37004_at  0.0001 0.0051 22 -1.57 surfactant,
(-323,-1500 (-2.70,-0.92) pulmonary-
associated protein B
201_s_at  0.0001 0.0051 -1.02 -1.59 beta-2-
(-1.14,-092)  (-1.93,-1.31) microglobulin
39337_at  0.0001 0.0056 1.is 1.57 H2A histone
(098, 1.35) (1.26,1.96)  family, member Z
35730_at  0.0001 0.0060 -1.25 -1.92 alcohol
(-146,-1.07)  (-2.89,-127) dehydrogenase [B
{class 1), beta
polypeptide
33754t 0.0001 0.0060 -2.18 -1.09 thyroid
(-3.08,-1.55) (-1.61,-0.74) transcription factor
|
39945_at  0,0003 0.,0093 1.58 1.28 fibroblast activation
(1.23,203) (0.99, 1.66)  protein, alpha
37394_at  0.0003 0.0094 -1.43 -1.74 complement
(-1.BE,-1.09)  (-2.46,-1.22) component 7
38744 _al 0.0003 0.0094 1.1 1.55 Deleted in split-
(0.98, 1.24) (1.24,194)  hand/split-foot |

region
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These analyses have identified a number of genes as being associated
with survival, either through Cox regression analysis or by using ANCOVA.
A literature search was performed on the most significant genes obtained
from the Cox regression analysis. Of the top nine genes, six were found in
literature searches to be related to cancer and these genes have been
highlighted in italics in Table 1. The Cox analysis (Table 1) showed that
adrenomedullin had a negative association with survival (positive parameter
estimates) with an estimate of | in the Harvard dataset and 5.67 in the
Michigan dataset. This implied that the risk of death increased by
approximately 2.7 and 290 times respectively for every 10-fold increase in
intensity. It is questionable whether an increase in risk of 2.7 times for a 10-
fold increase in expression was big enough to be biologically meaningful.
This gene was found in a literature search to be an “important tumor survival
factor in human carcinogenesis’ [Cuttitta et al., 2002]. The only other gene
which had a significant FDR adjusted meta-analysis p-value was solute
carrier. glucose transporter. This gene was one of the few to show consistent
results between the two datasets with parameter estimates of 807 and 10.34
(Table 1). The analysis of covariance showed many genes to be statistically
significant but fewer to be biologically significant. The first gene in Table 2
to show a change in gene expression between stage | and stage I+ is
collagen. type XI with fold changes of 1.79 (Harvard) and 1.64 (Michigan),

The tables present the combined meta-analysis p-value alongside the two
individual study effects. Showing the effects from the two studies provided
the opportunity of assessing the biological agreement between Harvard and
Michigan results. If the data had been aggregated prior to analyses this
assessment could not have taken place. Over all the genes. the analysis
showed very little agreement of results. The Michigan data tended to give
more favourable results from the Cox analysis with larger parameter
estimates and smaller p-values (as seen by comparing Figures 4 and 5).

Gene ontology (GO) is a way of assessing a gene's function in three
arcas: the biological process, the cellular component and the molecular
function. The 241 genes identified from Cox regression with meta-analysis p
£ 0.05 were investigated for GO groupings. Thirty-one genes were involved
in the biological process of signal transduction, 14 in oncogenesis. 10 in
immune response, 10 in inflammatory response. 10 in cell proliferation, nine
in cell motility and eight in cell-cell signalling. which included
adrenomedullin. The molecular function assessment gave 17 genes involved
in transcription factor, nine in DNA binding, eight in cell adhesion and eight
in protein binding. The cellular component assessment gave 32 genes active
in the integral plasma membrane protein. 18 in the plasma membrane, 14 in
the nucleus, eight in the cytoplasm and eight in the extracellular space.
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4. DISCUSSION

The task of combining data across chip types and different data sources
was challenging. The PCA plot (Figure 1) demonstrated heterogeneity
between the data sets. Some possible explanations for this clear separation
are different scanning intensities used for the different chip types. different
methods used for processing the data within the two sites or differences
between the probe sets across the Harvard and Michigan datasets used to
target the same sequences. This paper showed how a meta-analysis
technique could be used to take this issue into account instead of the more
normal approach of normalizing across the datasets prior to analyses. It
allowed the results of the two datasets to be assessed both independently and
together, and can be thought of as using the results from one dataset to
validate the results from the other.

Two approaches were used to analyze the data: Cox regression and
analysis of covariance. The Cox method was essential when using censored
survival times as there were in these studies, As expected, the different
approaches identified different gene sets but both methods were useful for
identifying genes to aid decisions regarding patient care and to aid discovery
and development of novel treatments. Overall there was little agreement
between the results from the two datasets and so it was difficult to put too
much faith on the results without further validation or follow-up work on the
cenes identified. A possible reason for the lack of agreement is the
variability introduced from the tumor samples. Very little was known about
the collection of the samples or about the patients. Sources of variability
could include: patient treatment. date of the collection of clinical
information, date of collection of gene expression data, date of prognosis,
date of dissection, quality of hospital resources such as equipment and
training of staff, race of patient, occupation of patient. These are just a subset
of variables which could add variability thus overshadowing changes in
survival due to gene expression. It would not be possible to account for all
these variables in an analysis but these variables could be taken into
consideration when recruiting patients to take partin a study.
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Chapter 6

MAKING SENSE OF HUMAN LUNG
CARCINOMAS GENE EXPRESSION DATA:
INTEGRATION AND ANALYSIS OF TWO
AFFYMETRIX PLATFORM EXPERIMENTS

Xiwu Lin, Daniel Park. Sergio Eslava, Kwan R. Lee. Raymond L.H. Lam,

and Lei A. Zhu
Biomedical Data Sciences. GlaxoSmithKiline, 1250 8. Collegeville Rd.,Collegeville PA 19426

Abstract: High throughput technologies such as microarray, mass spectrometry and
nuclear magnetic resonance, have generated large volumes of valuable data for
hivlogy research. Researchers often face the challenges of integrating data
from dilTerent sources and of identilying potential biomarkers that are highly
associated with disease, drug safety. and efficacy. We presentl several
solutions o these challenges through two Affymetrix microarray studies
aimed at providing new insights into lung cancer biology. The Harvard dataset
and the Michigan datasel were integrated to identify genes that were predictive
ol cancer survival. Quantile normalization of expression measures was applied
to make the (wo datasets comparable. Genes highly associated with survival
were idenltified and survival tree analysis on the combined data was performed
to predict mortality, The candidate genes could be useful for lung cancer
disease prediction and cancer therapy. The methodologies for integration and
analysis ol multiple gene expression data have been shown Lo perform well
and could be generalized o broader applications.

Key words:  Gene expression, integration, Affymetrix MAS., principal component analysis.
partial least squares, survival tree

1 INTRODUCTION

The data sets for the 2003 CAMDA focused on lung cancers. Four
microarray platform data sets were released for integration and combined
analysis. In this paper we present several solutions to integrate the Harvard
[Bhattacharjee et al.. 2001] and the Michigan [Beer et al.. 2002] data sets
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and to identify potential biomarkers that are highly associated with lung
cancer.

The two platform data sets were independently acquired from two
different studies that used different sets of samples and two different
Affymetrix gene chips. There are several challenges in integrating across the
two platforms. Firstly, appropriate data processing is required to make the
raw data (ie the probe level data in the form of CEL files) ready for analysis.
There are issues with the existing processed data such as negative values
and large variability among the low expressed genes. It is possible that the
data were generated using an earlier version of Affymetrix MAS software
(version 4.0).  Re-processing the probe level data with a newer version
MAS 5.0 [Affymetrix, 2001] will overcome these issues. Secondly, the two
different chips lead to two different sets of genes (clones). Merging the two
platforms by gene names alone could result in very few common genes. An
alternative approach is to merge the two platforms by probe set ID, using the
Affymetrix array comparison spreadsheet (www. Affymetrics.com), Thirdly,
data for the same genes are not comparable across studies, We modify the
quantile normalization to make samples comparable across different
platforms for each gene. The modification aims to remove differences due
to different platforms.

In Section 2 we compare the original processed data and the MASS5.0
data, evaluate two ways of merging the two platforms, and describe the
modified quantile normalization method. In Section 3 we examine the
integrated data using PCA (principal component analysis) and PLS-DA
(partial least squares discriminant analysis). In Section 4 we evaluate the
validity of the integration and the prediction performance of several data
mining methods. This is done by treating the Harvard data as a training set
and the Michigan data as a test set in the discrimination of normal lung
samples from the adenocarcinomas. In Section 5, we identify genes highly
associated with survival and perform survival tree analysis on the integrated
data to predict mortality. Section 6 provides some conclusions and a
discussion of further work.

2. DATA PROCESSING AND INTEGRATION

In this section, we describe the detailed approaches to the data
integration. The work flow from data processing to final integrated data is
shown in Figure 1 and is described in the following subsections.
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Harvard CEL files % 6:' Michigan CEL files

BIOCONDUCTOR

pr—

Harvard MAS 5 data & % Michigan MAS 5 data

L1l

Replicate samples are
averaged across genes

oy

Two different platform datasets are combined by two different ways

1. Affy comparison spreadsheet
2. Gene names

Il

(QUANT[LE NORMALIZATION)

Figure 1. Flow chart for preprocessing of the data.

2.1 Processed Data vs. Raw Data

Processed data from Harvard and Michigan are available but it is possible
that they could have been generated by version 4 of Affymetrix MAS. It is
well known that MAS 4.0 has many shortcomings compared to the newer
version, MAS 5.0 [Affymetrix, 2001]. Those shortcomings include negative
expression measures and large variability for genes with low expression
values. We have compared the existing Harvard data (processed) with our
MAS 50 generated data using PCA (principal component analysis)
projection. The MAS 5.0 data had better separation of disease groups
compared to the existing processed data (Figure 2). Clearer separation of
normal lungs and adenocarcinomas from the rest can be seen from MAS 5.0.
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Figure 2. Harvard processed data (top) and MASS.0 data generated from CEL files (bottom):
AD =lug adenocarcinomas and other adenocarcinomas, CO =pulmonary carcinoids, SM
=8SCLC cases, SQ = aquamous cell carcinomas, and NI.= normal.

22 Data Integration

We start with the probe level .CEL files. MAS 5.0 expression level data
are created by using the affy package [Gautier et al., 2003] in BioConductor
(www.bioconductor.org). This summarizes probe level data from each of the
Harvard and Michigan data sets. Fifty-one sample pairs in the Harvard data
are replicates. For such cases, we average the data across the replicates, and
as a result, 254 samples are reduced to 203 samples. However none of the 96
samples in the Michigan data set are replicates.

To integrate the MAS 5.0 data from Harvard and Michigan, we use two
different merging methods. As the two experiments used different chips,
one-to-one matching is not possible. The first approach matches the probe
set 1D from the Harvard data (U95a) with the probe set ID from the
Michigan data (HuGene FL) using the Array Comparison Spreadsheets
(ACS) obtained from Affymetrix homepage (www.Affymetrics.com). We
then select those probe sets common to both the Harvard and Michigan data.
The second approach integrates the data sets using gene names. The
housekeeping genes are not used in this approach. The gene names are
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obtained from the Affymetrix website. Although probe set names are unique
at this point, different probe sets could in some cases correspond to the same
gene. When this is true, we average expression levels across the probe sets.
The two data sets are then merged by gene name, and we select those genes
common to both the Harvard and Michigan data sets.

There are 203 samples (127 lung adenocarcinomas, 12 other
adenocarcinomas, 20 pulmonary carcinoids, six SCLC cases, 21 aquamous
cell carcinomas, and 17 normal samples) and 12,600 probe sets in the
Harvard data set. For the Michigan data, there are 96 samples (86 lung
adenocarcinomas and 10 normal samples) and 7,129 probe sets. The
integrated dataset combined by using ACS has 6,041 probe sets. while the
dataset combined by using gene names, which has 4.837 genes. As
mentioned in the preprocessing step. different probe sets could in some cases
correspond to the same gene.

We perform PCA to see differences between the two data merging
approaches and find that both methods result in approximately the same
information. Hence. the integrated data set using gene names will be used
for the following analysis.

23 Quantile Normalization of Combined Data from
Different Platforms

In the final part of the integration, it is necessary to make data from
different platforms comparable. Current application of normalization focuses
on making the expression distribution of each array comparable. We modify
the quantile normalization to make samples comparable across different
platforms for each gene. The modification aims to remove differences due
to different platforms. The algorithm for the modified quantile-normalization
(Q-normalization) is given below.

Q-Normalization Algorithm:

a) Denote X=(X', ..., X*), where X" represents data from the m™ platform
with g genes and n, subjects. m=1. ..k

b) Rank each row of X" to give X rnee m=1, ...k

¢) Calculate P"(ij)=(X"rank(ij)-1 Y(n.-1) where i=1..g and j=1,....n, for
each platform, m=1,...k

d) For the s platform, derive Q™*(ij)=P"(i,j)-quantile of the i row of X',
s=1l...k, and m=1, ..k

e) The quantile-normalized value Q"(ij) of X"(ij) is the average of
Q™ (i), -.,.Q™ G m=1, .. .k
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Without proper normalization, the integrated Harvard and Michigan data
are shown to be completely separated (Figure 3), which means the
distributions of the two data sets are not comparable. Figure 4 shows that
after Q-normalization, the Harvard and Michigan samples cover the
approximately the same projected space by PCA.

Lol
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Figure 3. PCA plot of combined data before Q-normalization. The Harvard data are plotied in
empty circles and the Michigan in filled squares,
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Figure 4. PCA plot of combined data after Q-normalization. The Harvard data are plotied in
empty circles and the Michigan data in filled squares.
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Figure 5. Plot of mean expression values of the Harvard data versus the Michigan data,
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Figure 5 shows the scatter plot of the mean expression measures of the
Harvard data versus those of the Michigan data before (two plots in the tops)
and after (two plots in the bottom) Q-normalization. Each point in the scatter
plot corresponds to a gene. The scatter plots confirm that the Q-
normalization has made the two data sets comparable with approximately the
same distribution. The left two plots are for normal samples while the right

two plots are for cancer samples.
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5 DISCRIMINATION OF NORMAL LUNGS FROM
THE CARCINOMAS

One interesting property of the final data (MAS 5.0, integrated and
normalized) is the clear separation of normal lung samples from the rest of
the carcinomas. The PCA scores plot in Figure 6 shows the separation of
normal lung samples (empty circle) from the adenocarcinomas samples
(filled square). One supervised learning projection method is partial least
squares (PLS) and its related discriminant analysis (PLS-DA). Figure 7
shows the projection of PLS-DA results. Again normal lung samples have
clearly separated themselves from the rest. Using PLS-DA, we can select
genes that are responsible for the discrimination of the two classes. Top 20
genes in the Table 1 below is obtained from ranking the genes by their
absolute value of PLS-DA regression coefficients.

L18] s
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Figure 6. PCA plot of the normal lungs (empty circles) and the adenocarcinomas samples
(filled squares).
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%

Figure 7. PLS-DA plot of the normal lungs (empty circles) and the adenocarcinomas samples
(lilled squares).

Table |. Top 20 genes from ranking of absolute value of PLS-DA regression coefficients.

Gene Coefficient Gene Coefficient
AGER -0.004889 FABP4 -0.004192
TNA -0.004784 PTPRB -0.004157
FHLI -0.004753 X123 <0.004099
CAV1 -0.004726 GATA2 -0.0040908
GPRKS -0.004576 FMO2 -0.004044
EMP2 -.004514 GPC3 -0.004033
TNNC] -0.00M476 HYAL2 -0.004022
CA4 -0.004467 FOXFI -0.003996
PECAMI -0.004422 CDH5 -0.003963
CLDNS -0.004254 DF -0.003912

4. PREDICTION OF ONE PLATFORM FROM
ANOTHER

Further validation of integrated data can be done by building predictive
models using one of the four lung cancer dataset and then validating those
models with one or more of the remaining data sets. Specifically our
objective is to build a predictive model to classify lung tissue samples into
adenocarcinomas (AD) and normal lung (NL) based on the Harvard data
alone and then validate this model by classifying new cases from the
Michigan data. Three well-known classification tools, CART, C5 and neural
networks (NN), are used to build the predictive models. CART
(Classification and Regression Trees) and C5 are two widely used tree-based
methods and Neural Networks (NN) is a machine learning method capable
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of modeling complex, nonlinear functions using a structure consisting of
layers of interconnecting nodes or neurons.

We take the integrated data with 4,837 common gene names from the
Harvard and Michigan studies. We delete all the observations from tumors
other than AD and then create a new binary column (our dependent variable)
named AD that indicates whether a tissue sample histologically corresponds
to adenocarcinoma (1 = AD, 0 = NL). Then we split the data set into a
training data set containing 156 samples (139 AD and 17 NL) from the
Harvard study and a test data set containing 96 samples (86 AD and 10 NL)
from the Michigan study.

The high dimensionality of our data set (4,837 independent variables)
makes it very difficult for the NN to handle. Therefore we have applied a
feature selection algorithm based on CHAID (Chi-squared Automatic
Interaction Detector) to the training data, to initially select the 50 best
predictors. To be consistent, the same 50 predictors are used in all three
models to classify the 96 samples in the test data. The performance of each
model is summarized in Table 2.

All the models show very high sensitivity (98.84 -100%) but variable
specificity (80 — 90%) for classifying new cases. The best performing model
is NN with 100% sensitivity and 90% specificity, for an overall accuracy of
98.96%. Both classification tree models (CART and C5) obtain similar
results with 98.84% sensitivity and 80% specificity for an overall accuracy
of 96.88%.

Table 2, Summary of performance for the three predictive models on the test data. PPV is the
positive predictive value and NPV is the negative predictive value.

C5 CART NN
Sensitivity  98.84% 98 B4% 100.00%
Specificity  80.00% 80.00% 90.00%
PPV 97.70% 97.70% O8.85%
NPV 88.89% B8.89% 100.00%
Accuracy 96.88% 96.88% 98.96%

5. SURVIVAL ANALYSIS

Here we consider the time to death as the dependent variable for
prediction and use survival analysis to identify those genes associated with
high risk of mortality. We use a total of 211 patients (125 from the Harvard
data and 86 from the Michigan data) that have both lung adenocarcinoma
cancer and survival information.
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Since the samples came from two totally independent studies, some study
specific factors (known or unknown) might contribute to the risk of
mortality. Consequently we need to consider the effect of the different
studies in the model when we examine the gene effects. For each gene, we
use a frailty (mixed effects) Cox proportional hazard model [Therneau and
Grambsch, 2000] with gene as a fixed effect and study effect (Harvard vs.
Michigan) as random. Clinical factors might also be used in the model
although we do not include them in our model. Genes with significant FDR
(false discovery rate) adjusted p-value (at 0.05 level) are listed in Table 3.

Table 3. Gene list with FDR adjusted p-value less than 0.05.

Gene Name Coefficient Raw p-Value FDR adjusted p-Value
KIAAOZ]1 -0.0025069 0.000001 0.0054
CTSL 0.0002727 0.000037 0.0313
KRT18 0.0601400 0.000049 0.0313
LHXI 0.0019983 0.000036 0.0313
PGK] 0.0001655 0.G00043 0.0313
FRKCBPFPI 0.0034%64 0.000028 0.0313
STXI1A 0.0009447 0.000052 0.0313
VEGFC 0.0026009 0.000031 0.0313
P4HAI 0.0010053 (.000065 0.0347
INHA 0.0009011 0.000104 0.0484
RALA 0.0025610 0.000110 0.0484

The above model examines one gene at a time. To examine multiple
genes simultaneously, the survival tree method [Therneau and Atkinson,
1997] is used. For efficiency, the genes are first screened using the raw p-
value from the Cox model above, resulting in 480 genes at 0.05 level. The
survival tree results are shown in Figure 8 which displays the number of
samples and the predicted time-adjusted relative event rate (RR, time-
adjusted and relative to the whole data set) defined by each node. Based on
the tree results, the samples are grouped into high risk (oval) and low risk
(hexagon) groups. The Kaplan-Meier plot by risk group is shown in Figure
9. We can see that the mortality behavior is quite different between the two
eroups.
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N=211
RR=10

Figure 8 Tree diagram for the results from survival tree method.
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Figure 9. Kaplan-Meier plot of the two risk groups based on the predicted relative risk. There
are 108 subjects in the low risk group and 103 in the high risk group. Marked points (+)
indicate censored subjects.

6. DISCUSSION AND CONCLUSION

We have demonstrated some effective approaches to overcoming
challenges encountered in integrating multiple platform data. These
challenges include data processing, data merging, normalization, and data
validation. Statistical and data mining methods for survival data were used to
analyze the infegrated data and it has been shown that we can use the
integrated gene expression data to classify the adenocarcinoma samples into
different mortality risk groups. Results obtained from this survival analysis
would be of biological interest and need further investigation.

For illustratitive purposes we used only two of the four platform data
sets. The approaches described in this paper can be generalized to two or
more platforms and applied to complicated applications such as integrating
data from clinical blood chemistry, gene expression, protein, lipid, NMR,
etc. targeted at the same disease. Integrated analysis can provide new insight
into the biology of the particular disease by combining information
measured from different angles.

The quantile normalization assumes that subjects in different studies have
similar characteristics. Otherwise, further modification may be required to
take into account of the characteristic differences.
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Combining data sets from several studies would provide more samples
and give more statistical power in the analysis. However, due to differences
in the design of probe sets for different Affymetrix chips. useful information
may be lost when we use the combined data sets to do the analysis. For
example. only 6.041 probe sets from the Harvard data were kept in the
integrated data. About half of the total probe sets in the Harvard data was not
used. One possible way to maximize the information would be to integrate
the results from the combined data with the results from individual data sets.
We are planning to look at the individual data sets in the future and compare
the results with the published information.
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TO COMBINE AFFYMETRIX ARRAY TYPES
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Abstract:

Key words:

In order to comprehensively identify genes with expression levels that
correlate with survival for patients with lung adenocarcinoma. we combined
data across the Harvard and Michigan studies. Two different versions of
Affymetrix oligonucleotide microarrays were used in these two studies. We
proposed combining arrays of different platforms by assigning weights o the
expression levels of each gene across data sets based on the entropy of the
residual matrix. In each data sel. the expression level of each gene is
quantified by the “reduced” model proposed by Li and Wong [2001], which is
equivalent to a method using the singular value decomposition. We combined
information across different chip types by first identifying common genes on
the two chip types, and then assigning weights based on residual entropy for
each gene. To incorporate clinical information. especially survival data. in
detecting important genes, we proposed a new method based on weighted (-
tests (wil). The survival information can be absorbed into a set of weights
assigned 1o the expression intensities across all the arrays or subjects, based on
the predicted median survival time using the Cox proportional hazards model.
Important genes can be identified by comparing the survival-weighted (-tests
with another (-test comparing the cancer patients (o the reference group, and
error rates can be controlled by permutation procedures.

Entropy; lalse discovery rale; median survival lime; SVD; weighted 1-test
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L INTRODUCTION

DNA microarray technology has been increasingly used and is beginning
to play an important role in many areas of biomedical research. This
technology allows us to monitor the expression levels of very large numbers
of genes simultaneously and repeatedly in cell lines, human tissues and a
wide range of organisms. The two popular types of platforms are the spotted
c¢DNA microarrays and oligonucleotide arrays.

The distinctive feature of the oligonucleotide array technology is the
effective utilization of multiple probes. Multiple oligonucleotides of
different sequences are hybridized onto different regions of the same RNA
that are complementary to the oligonucleotides. The other source of
redundancy is the use of mismatch (MM) probes, which are each identical to
a corresponding perfect match (PM) probe, except for a single base that is
mutated at the central position (typically the 13th position). The design of
oligonucleotide arrays with PM/MM probe sets can help to distinguish
whether a detected signal is real or only a chance artifact due to nonspecific
cross-hybridization or other measurement errors. It may have improved
differentiating ability compared to that of the cDNA array, which uses a
single spot probe.

The two studies with oligonucleotide array data are chosen for our
exploration. The Michigan data set [Beer et al., 2002] uses the HU6800
platform with 20 probe pairs, which produces 7,129 probe sets. The Harvard
[Bhattacharjee et al, 2001] data set uses a different and newer type of
platform, the U95A, which contains 12,625 probe sets with 16 probe pairs
each. Issues arising in microarray experiments include the preprocessing of
raw data. normalization techniques. and the experimental design. A recent
tendency in research is to incorporate other information such as sequence
data and clinical data into the analysis of gene expression data. Here, the
Harvard and Michigan studies follow in this trend. One of their common
objectives was to identify important genes that are related to lung
adenocarcinoma. a disease that is the leading cause of cancer deaths in the
United States. The survival data of patients in the studies were used together
with the gene expression profiles to achieve this goal.

Our research objective was to further combine information from the two
different studies, and identify genes that have significant impact on primary
lung adenocarcinomas. We focused on the non-cancer samples and on the
histologically-defined lung adenocarcinoma samples, since they represent
the most common histology and are accompanied by relatively complete
survival data. We proposed a novel method to combine the two gene
expression data sets based on the singular value decomposition (SVD)
method and “entropy”. Moreover, we proposed a new weighted t-test for
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incorporating the clinical information into the procedure of identifying
important genes.

2. EXAMINING SURVIVAL AND GENE
EXPRESSION DATA

2.1 Survival Data

To examine the homogeneity of the two populations across the Harvard
and Michigan studies, we started by comparing the clinical variables,
including survival data. Patient data from the two studies had comparable
distributions of age, sex, and smoking status. However, only tumors of
stages 1 and 3 were represented in the Michigan study, while tumors of
stages 1, 2, 3 and 4 were represented in the Harvard data. We dichotomized
the stage variable by combining the local stages (1 and 2) and the advanced
stages (3 and 4). Figure | contains the Kaplan-Meier curves for the two
studies. There is a significant difference in survival between the two studies
based on the log-rank test (p-value = 0.01). We included an indicator
variable to account for an institution effect in the analysis, and otherwise the
populations seemed comparable for a common pooled analysis

Surweal bnesn
0t
|

Harvard

Figure 1. Kaplan-Meier plots for Harvand and Michigan studies.
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22 Gene Expression Data

We log-transformed raw intensities of gene expression for each array and
plotted them to remove bad chips. Samples 1.54, L88, L89, and 1.90 in the
Michigan arrays contained a large round dark spot at the center of the chip
(see Figure 2), and samples L.22, 1.30, 1.99, L81, L.100, and L.102 contained
a large number of extremely bright outliers according to MASS.0
(Affymetrix, Inc.). Two outlier chips were detected and removed in the
Harvard dataset using dChip (CL2001040304 and CL.2001041716). We kept
the most recently dated run among the Harvard samples with 48 replicate
arrays (the arrays had been duplicated due to a bad first run).

Figure 2. Tmage plot of log-expression for sample L88 in Michigan data set. Green and red
indicate log-expression levels below and above the median forthe chip, indicating a bad chip.
Samples L54, L8, 189, and 1.90 have similar plots.

This preprocessing resulted in a data set with matching clinical and
microarray data for 229 patients, which includes control and primary lung
adenocarcinomas samples, 143 from Harvard with 17 references, and 86
from Michigan with 10 references.

3 NORMALIZATION AND EXPRESSION INDEX
ESTIMATION

Microarray normalization is an important issue. It is a process to remove
the unwanted variation in microarray experiments that affects the measured
gene expression levels. Because scanned images may have a different level
of overall brightness, it is important to normalize arrays such that they have
comparable levels of brightness before analyzing gene expression levels.
Because the model-based expression index analysis involves different arrays
simultaneously, the comparable brightness of the arrays needs to be assured.
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Although still an active research area, this issue has been extensively
discussed and explored in the literature.

Li and Wong [2001] developed an iterative procedure to determine an
“invariant set”, namely, the set of non-differentially expressed genes.
Keeping the array that has the median overall brightness (the baseline array)
as the invariant one. all the other arrays are normalized to it. Instead of
using a real array as the baseline array, we computed the median expression
intensity across all the arrays for each gene and defined the reference array
as the collection of all the median intensities. Then, we normalized all the
arrays to it by fitting the usual linear regression models.

The term “expression index™ describes a statistic used to represent an
expression level for a particular gene that is estimated from raw
hybridization intensities on the array. Estimation of the expression index
becomes an important issue because all the statistical tests and inferences are
made based on the indices. In recent years. various statistical methods for
modeling the gene expression levels have been proposed, including
nonparametric approaches and parametric models. A multiplicative model
proposed by Li and Wong [2001] is feasible and popular with biologists. and
is advantageous because of higher efficiency of the estimates than others.
We performed the Li-Wong reduced model (LWR) using the SVD technique
[Hu et al.. 2003]). because of the direct connection between the two
techniques. The first characteristic mode (see Holter et al, 2000 for
definition) of the data matrix for each gene. i.e. PMpy-MMpy, is proportional
to the corresponding LWR estimates, where I and J denote the numbers of
arrays and probes, respectively. The new method is more efficiently and
closely related to the method of combining different platforms that is
described below.

4. COMBINING DATA FROM DIFFERENT
AFFYMETRIX ARRAYS

Determining how to combine the different types of Affymetrix
oligonucleotide chips in the two studies was one of our main challenges.
The Hu_FL Affymetrix chip with 20 probe pairs was used in the Michigan
study, while the newer version HG_U95aV2 chip with 16 probe pairs was
used by the Harvard group. A list of common probe sets representing the
same gene between these two different chip types is available at the
following dChip URL:
http:/hwww.biostat. harvard.edu/complab/dchip/info_file.him#commaon_prob
eser_file.
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There are 5987 probe set pairs representing the same genes across the
two studies. However, due to differences in probe densities and probe
sequences, the expression levels of the genes in these two chip types are not
directly comparable. In order to obtain comparable gene expression levels
across the two chip types. we introduced a technique for assigning weights
to each expression index in the two data sets.

An important concept involved in our approach is entropy [Shannon,
1948]. The entropy H(f) of an absolutely continuous density f(x) is defined

H(f)= If(x)]ogf(x}dx. H can be viewed as a measure of randomness

or unpredictability of a random variable X, and has been applied in a variety
of hypothesis testing problems. Some papers. e.g., Vasicek [1976] and
Dudewicz and Meulen [1981] discussed the construction of hypothesis tests
on normality or uniformity based on [0,1] using this concept. Another
important application of entropy is in combination with SVD for genome-
wide expression data [Alter et al.,, 2000]. Using ideas from Alter et al.

g,

2.0

where J is the number of probes and gj denotes the ith eigenvalue from the
SVD decomposition. It indicates the degree of structure in the data matrix
that can be captured by the ith eigenvector for arrays and probes. The
discrete analogue of the Shannon entropy of a given data set is

[2000], we defined “fraction of eigenintensity™ as p; =

(1)
v (J)EP’ og(p,)

where the entropy is scaled so that 0€e<1. ¢ describes the “randomness™ of
the data matrix. in the sense that SVD cannot meaningfully discern structure
in fitting the data. In particular, e=0 corresponds to an ordered and
redundant data set where all the expression is captured by a single
eigenvalue, and e= 1 corresponds to a disordered and random data set.
Assuming that the LWR is the true model from which the underlying
expression index can be estimated. there should be no systematic pattern left
in the residual matrix after fitting the model. This procedure is equivalent to
subtracting the product of the first set of eigenvalues of the data matrix and
two eigenvectors from it using the SVD. The randomness of the residual
matrix can be assessed by the distribution of its eigenvalues. quantified by
the entropy. We reasoned that the data that better fit the model should have
a higher entropy. First, in each study, the expression intensity matrix of each
gene was standardized to a mean of 0 and a variance of 1 (to avoid one
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source of bias in the SVD). After applying the SVD, we obtained the
eigenvalue entropies of the residual matrices for each gene. The distribution
of the entropies across all the common genes in each data set is shown in
Figure 3. Overall, the Harvard data appears much better, with entropies
centered around 0.9, while those from Michigan are widely spread from 0 to
1. However, a few genes from the Harvard study were assigned very low
weights (some even close to 0).

The two studies have different dimensions in their data matrices for each
gene. However, this fact has little impact on the entropies of the residual
matrix, as demonstrated in some limited simulations. For each gene, the two
entropy values (Harvard and Michigan) were then standardized to make
them sum up to 1, and then within each study the appropriate weight was
multiplied by the expression index to obtain a new entropy-weighted
expression index. The weight is proportional to the entropy value, with a
larger weight being assigned to the model-based expression index estimate
in the study that has higher entropy for the specific gene.

To assess the performance of the entropy weighting strategy, we used the
false discovery rate (FDR) as a comparison criterion. The FDR is defined as
the expected proportion of false rejections (truly null) among the rejected
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Figure 3. Distributions of entropies in the Harvard and Michigan studies.

hypotheses [Benjamini and Hochberg, 1995]. We followed the permutation
procedures as implemented in the software SAM [Tusher et al., 2001] to
estimate the FDR. We computed ordinary t statistics based on both the
unweighted and weighted expression data, and also conducted 5000
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permutations of the t-tests. In each permutation, we randomly drew 27
samples from the total of 229 patients to be treated as the “reference™ and
treated the rest as the “cancer” patients. We estimated the FDR as a function
of the number of genes that can be detected. Figure 4 shows the relationship
between the FDR and the number of rejected genes up to 300. Clearly, the
weighted data yielded a dramatically lower FDR level than the unweighted
one.

Moreover, we examined the correlation among the samples. Ideally, the
correlations within the reference or disease samples should be higher than
between the reference and disease samples, if indeed gene expression can be
used to discriminate between the groups. Examining the within-reference
and within-disease samples in each data, we found the weighted method can
increase the correlations over the unweighted. We calculated the differences
of the pairwise correlations between the weighted and unweighted
expression data, where 26.5% differences are between 0.1 and 0.5. The rest
of the correlation differences vary around 0. We also compared the
correlations between the reference and disease groups across the two data
sets, and found that 78.8% pairwise correlations are lower in the weighted
expression data, though the differences were not dramatic.
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Figuie 4. Comparison of FDR between weighted and unweighted expression data.
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5. IDENTIFYING IMPORTANT GENES

51 Weighting Based on Survival Data

Another major goal in this analysis is to combine the gene expression
data with the patient survival data. To find those genes that either directly
affect or can help predict patient survival, we needed to take into account
clinical information other than survival time and censoring, such as, tumor
stage, age, sex, and smoking status. Clearly, the Cox proportional hazards
model is readily applicable. However, adding both the clinical variables and
the gene data into the Cox model may cause a high-dimensionality problem.
To address this issue, we introduced a new method of the weighted t-test
(wtt). To incorporate the clinical information. some form of weight needed
to be constructed for gene expression intensity data. Due to censoring, the
construction of appropriate weights for each subject was quite challenging.
In order to obtain reasonable weights, we proposed using the predicted
median survival time, as described below.

A total of 229 subjects were in the pooled sample. 188 of which were
cancer patients with available recorded survival information. Our analysis
included the institution, age. sex. smoking status, and tumor stage as
covariates. The institution was examined because the survival curves were
very different between the studies performed at Harvard and at Michigan.
For the ith subject with a covariate vector Z;, the Cox proportional hazards
model is given by

At Z)= ﬂu(t)cxp(ﬂrZ,.) . 2

where Ag(f) is the unknown and unspecified baseline hazard function and 4 is
the regression parameter of interest. For the ith subject, the survival function

is given by
S(t1Z,)=exp(-A,()exp(B7Z,)), 3)

where Ag(#) is the cumulative baseline hazard function. The parameter
estimates are listed in Table [.

We constructed the predicted survival curve for each subject based on the
clinical information only. from which we estimated the median survival
time: m;, = inf{r:S(+1Z,) <0.5}.
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Table 1. Parameter estimates under the Cox proportional hazards model (H.R. is the hazard
ratio and 8.E. is the standard errer).

Covanate Regresson Coefficient H.R. S.E. p-value
Institution 0.6392 1.89 0.2501 0011
Age 0.0267 1.03 0.0120 0.027
Sex 0.1292 1.14 0.2288 0.570
Smoking Stas  0.0063 1.01 0.0032 0.048
Tumor Stage 1.5552 4.74 (.2666 <0.001

We assigned an averaged median survival time to those subjects with
missing survival information. For a given subject, regardless of whether an
observation is a failure or is censored, m; is determined by the covariate Z;,
which circumvents the potential bias caused by the censored data. Based on
the predicted median survival time, we calculated the weights that were
proportional to m;, for each cancer patient accordingly,

m.

xn {4)

pig

Moreover, for subjects in the reference sample, we did not assign any
weights because they were controls and were all alive at the end of the study.
Thus, we computed the weights using all the common clinical variables
provided in the two studies.

With the survival-weighted expression data, we conducted a two-sample
t-test for each gene to measure the difference in expression levels between
the control group and the cancer patients. We also performed t-tests on the
expression data with no weight adjustment. In order to find the genes related
to survival information, we examined the difference between the t-test
statistics after and before the survival-weight adjustment, i.e., di=lyperthefores
for the kth gene, k=1..,5,987. Note that by substracting the e values, dy
was constructed to be sensitive to effects of expression on survival, and not
on mere differences in expression in cancer vs. reference. We again
performed 5,000 permutations. In each permuted dataset, we implemented
the ordinary t-test and survival wtt, and recorded their statistics together with
d; for each gene. We ordered d for each permutation, and let dy, denote the
ordered d;. Then, we calculated the averaged order statistics, dy, across all
the 5000 permutations. A gene was deemed to be related to survival when
duy-duy (if dy) was positive) was larger than an appropriate threshold, or
when dyy-dy) (if dg was negative) was smaller than some threshold. We
thus obtained a list of the most significant genes.

To accommodate the multiple testing issue in our analysis, again we
applied the FDR criterion and identified the 12 genes most significantly
related to survival as described above, while controlling for the FDR at 0.05.
Furthermore, the statistical significance of the detected genes could be

W, =
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measured by p-values obtained from the permutation procedure, defined as
the proportion of the difference dg at least as extreme as that observed. A list
of the 12 genes is shown in Table 2, along with the names of probe sets in
U95a and Hu6800 platforms, gene descriptions and corresponding p-values.
Here, as with Table 3 described below, we found an intriguing number of
sex-specific genes and hormones. Sex was specifically included in the Cox
model, and these results suggested taking a closer look at expression of these
genes within each sex, and also for any possible lack of proportional hazards
across the two sexes. Several other genes, including ribosomal proteins and
those involved in immune response and cell differentiation, are typical of
broad functional characteristics that have appeared in other cancer studies.

Table 2, List of 12 most important genes related to survival, ordered from the mast ko the Jeast
significant to the least using SAM.

U9SA Hu6800 Gene Annolation p-value

725 i_at 303071 _cds3_f  Chorionic Somatomammotropin Hormone  <0.001
Cs-5

35281 _at U31201_cdsl laminin, gamma 2 (nicein, kalinin, BM600,  <0.001
Herlitz junctional epidermolysis bullosa)

34961 _at MER282 T cell activation, increased late expression ~ <0.001

31838_at U79274 protein predicted by clone 23733 <0.001

37174_at D14660 mitochondrial ribosomal protein L19 0.035

530_at U16258 ribosomal protein 87 0.005

41643_at XB3301_s cluster includes X83301:11.sapiens SMAS <0.001
mRNA/eds=(319,741)/gb=X83301
/gi=603029

35894 _at X14362 complement companent (3b/4b) receptor 1, <[.001
including Knops blood group system

32864 _at L10102_mmal sex determining region Y 0.002

32686_at DB6096_cdsé  prostaglandin E receptor 3 (subtype EP3) <0.001

722_at D87957 red| (required for cell differentintion, 0.009
Spombe) homolog 1

1338_s_at X13930_f X 13930 JFEATURE=cds Human CYP2A4  0.008
mRNA for P<450 [1A4 protein

5.2 Differentiating between reference and cancer
subjects

The wtt method can be used to identify the important genes that are
differentially expressed in the two groups of reference and cancer patients.
We had more confidence in choosing for further biological validation the
genes found to have significant results under both tests. The rationale is that
such genes show both a difference between cancer vs. reference and also
have an apparent effect on survival. Again, we used the SAM-like



106

Hu et al.

Table 3. The 15 most significant genes differentiating between reference and cancer groups,
ordered from the most to the least significant according to the sum of ranks using SAM.

U9sA Hu6800 Gene Annotation ank(4(k)-4(K))  rank(id(k)-ak)D)
in t-test in wit
T25_0_a HG1751- Chorionic 1 1
HT1768 Somatomammotropin
33780_at M36200 vesicle-associated 5 2
membrane protein |
{synaptobrevin 1)
40081 _at HG3945- phospholipid transfer 3 8
HT4215 protein
220_r_at $76756_s S76756 4R- 12 4
MAP2=microtubule-
associated protein,
isoform
35281 _at U3120]_cds  laminin, gamma 2 2 15
1
38150_at U22233 methylthioadenosine 8 10
phosphorylase
32461 _f at  HG3137- zinc finger protein 81 13 6
HT3313 (HFZ20)
37263 _a US5206 gamma-ghutamyl 11 13
hydrolase (conjugase,
folylpolygammagl-h)
37975_at X04011 cytochrome b-245, 17 9
beta polypeptide
{gramulomatous
discasc)
37399_at DI17793 aldo-keto reductase 21 7
family 1, member C3
(3-alpha h-d)
36287_at X83I68 phosphoinositide-3- 18 11
kinase, catalytic,
gamma polypeptide
1197_at D00654 DO0654 1 25 5
DEFINITICN=HUM
ACTSG7 Homo
sapiens gene
1482 g a1 123808 matrix 27 3
metalloproteinase 12
(macrophage elastase)
36617 _at HG3342- inhibitor of DNA 20 12
HT3519_s binding 1, dominant

negative h-1-h protein



Methods of Microarray Data analysis {V 107

U9SA Hu6R00 Gene Annotation rank(ld(k)-d(k)  rank(ld(k)-d(k)N)
in t-test in wtt
35462_at uU17033 phospholipase A2 10 2
receptor 1, 180kD

procedure to identify significant positive genes. By sorting My-dyl and
taking into consideration the sign of dy, in both the ordinary t-test and wit,
the 15 most significant genes with the smallest sums of ranks of ldgy;-dy)l
across the two t-test statistics were identified. Table 3 shows the names of
the 15 probe sets in U95a and Hu6800 platforms, gene annotations and the
ranks using the two different statistics.

6. CONCLUSIONS

In this study, we conducted the expression data analysis by using LWR
estimates as the underlying gene expression index estimates. We
implemented LWR based on the SVD method due to its efficiency and
consistency with the method that we proposed for combining different array
types. We imposed a SVD entropy weight on the expression of each gene,
thereby demonstrably achieving a lower FDR level in comparison of cancer
vs. reference samples. The approach of using residual entropy to judge the
quality of expression estimates can be applied in a much more general
context. We incorporated survival data by imposing another weighting
scheme based on the predicted median survival time to each subject. To
identify important genes having significant impact on patient survival, we
compared a survival weighted t-test to the corresponding ordinary (-test,
with both tests using the entropy-weighted combined expression values. We
assessed the significance test of the difference between the weighted and
unweighted t statistics by permutation procedures. Moreover, based on the
two t-tests, we identified those genes that were differentially expressed
between the reference and cancer groups. Clearly, the proposed method can
be extended to more general situations, for instance, to an F-test in the case
of dealing with multiple samples. And the power property of the survival
weighted t-test method needs to be explored. Regarding normalization
procedures, certainly nonlinear or nonparametric models are more flexible
and may fit better. This will be explored in our future research.
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Abstract:

Key words:

1.

In many microarray studies the primary objective is to identify. from a large
panel of genes, those which are prognoestic markers of a censored survival
endpoint such as time to disease recurrence or death. These genes are
considered prognostic in that their respective expressions are associated, in an
appropriate sense, with the survival endpoint of interest. From a practical point
of view. this requires not only specifying a appropriate measure of association
and a suitable statistic thereof, but also. as the number of genes is large. proper
handling of the consequential issue of multiplicity. In this paper, we will
address the aforementioned issues by utilizing a general correlation measure
and a non-parametric statistic, and by controlling the family-wise error rate by
employing permutation resampling. Comprehensive simulation studies are
conducted to investigate the statistical properties of the proposed procedure.
The proposed procedure is demonstrated with microarray data.

Censoring. lamily-wise error rate, rank correlation, multiple testing

INTRODUCTION
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In early microarray studies, for example [Golub et al., 1999], the primary
objective focused on identifying genes which express differentially in
different phenotypes. More recently the objectives have expanded to include
discovering the relationship between gene expression level and
aggressiveness of a disease (such as cancer) or the existence of tumor
residue after tumor resection. The most popular and often useful endpoint in
this type of study may be time to a clinical event, such as disease recurrence
or death. In this context, a gene is considered to be prognostic if its
expression level is associated with the survival endpoint. The times to such
events are usually subject to censoring due to loss to follow up or
termination of the study.

When considering or devising a statistical method for analysis of such
studies, the following issues need to be taken into account. Firstly, one needs
to choose a measure of association which properly quantifies the dependence
between the survival endpoint and each of a large number of genes.
Secondly, one needs to specify a statistic which robustly estimates this
measure of association for each gene. Finally, given that the number of
genes under consideration is large, it is imperative to ensure that the overall
error-rate is, in some appropriate sense, adequately controlled.

A simple heuristic approach to this end is to partition the subjects into
two groups: event versus no event, and proceed by using a standard
approach, such as a two-sample t-test, to identify genes differentially
expressing between the two groups (see for example André et al. [2002] and
Shannon et al. [2002]). This approach, however, can be biased as the
subjects in the study usually have different follow-up periods and some
patients may not have had enough follow-up period to observe events,

Park et al. [2002] and Nguyen et al. [2002] reduce the dimension of gene
expression data using a method like principal component analysis and fit a
Cox’s regression model using the derived components as covariates.
However, this approach fails to test on the marginal correlation of a gene (or
a principal component) and the survival variable and fails to adjust for the
multiplicity of the testing procedure.

Dhanasekaran et al. [2001] identified a prognostic gene based on p-
values calculated by fitting a Cox’s regression model without adjusting for
multiplicity of the original genes. Wigle et al. [2002] fit an univariate Cox
regression model on each gene expression level and applied the approach
discussed in Dubey [1993] to the resulting univariate (or unadjusted) p-
values to adjust for the multiple testing procedure, Sgrlie et al. [2001] also fit
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univariate Cox’s regression models on gene expression levels and applied a
method called SAM (Significance Analysis of Microarrays), as for example
discussed in Tusher and Tibshirani [2001]. to discover prognostic genes.

For each gene. Jenssen et al. [2002] sort the expression level
observations and partition all patients into two groups using each order
statistic as a cutoff: one group for those patients who have gene expression
levels smaller than the cutoff and the other for those who have gene
expression levels equal to or larger than the cutoff. The (standardized)
logrank statistic is calculated to compare the survival distribution between
the two groups. They take the largest logrank statistic with respect to all
possible cutoffs for each gene and apply a Bonferroni correction to identify
prognostic genes adjusting for multiple testing. They argue that the choice of
maximum logrank test statistics yields an anti-conservative procedure, but
the conservative Bonferroni adjustment works in the opposite direction. This
method does not provide an accurate control of the family-wise error rate
(FWER).

In this paper. we use a measure of rank correlation between a continuous
variable and a survival variable. This measure was originally proposed by
O’Quigley and Prentice [1991] and was subsequently used by Jung et al.
[1995] to compare two correlated surrogate markers which are prognostic for
patient’s survival time. We use this rank correlation measure to associate
each gene expression level with a survival variable, and discover prognostic
genes using a single-step multiple testing method outlined by Jung [2003],
which uses a permutation method to derive adjusted p-values for the genes.
Simulation studies are conducted to evaluate the performance of the
proposed procedure. To demonstrate the applicability of the procedure to
real microarray data a case study is presented.

2. MULTIPLE TESTING USING A RANK
CORRELATION

First, we describe a rank correlation between the expression level of a
gene (a continuous variable) and a survival endpoint. Suppose that there are
n subjects. For patient i, 7T, denotes the time to an event (such as tumor
recurrence or death), called survival time hereafter. The survival time may
be censored due to loss to follow-up or study completion, so that we observe
X, =min(T;,C;) together with censoring indicator A, = I(T; £C,), where
C, is the censoring time which is assumed to be independent of 7, given
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gene expression level. Let Y, (1) =1(X, 21) and N, (£)=A (X, <t) be
the at-risk process, that takes 1 if the subject / is at risk at time t and 0
otherwise, and the death process, that takes 1 if the subject / has an event at
or before t and 0 otherwise , respectively. Let Y(t) = :_i Y.(1).

Let m denote the number of genes (or multiple tests) under
consideration and (Z;,1< j <m) denote the expression levels of the ni
genes from patient /. Usually the gene expression data within each subject

are correlated.

As a general measure of association between the expression level for
gene j and the survival data, we use

2 > RYe()
W =  ki=l T AN
=2 [ Bl ()

R (X, 2 X)) M

= ZR:A,. Ry =5 *
= YI(X,2¥)
i'=l

where R; is the rank of Z, among (Z,,...,Z,;). Note that W, has a
form of covariance between R..} and death process N,(t). W takes a large
positive (negative) value if the gene tends to overexpress in the high (low)
risk patients, and distribute around O if the gene expression does not have
any impact on the survival,

W is rank-invariant with respect to Z as well as 7. Furthermore, W is
the same as the score test based on Cox’s partial likelihood for a
proportional hazards model in which the rank of Z, is used as a time-
independent covariate (see [O'Quigley and Prentice 1991]).

Jung et al. [1995] used this measure to compare two correlated markers
(*genes’ here) which are prognostic for survival time. Contrary to O'Quigley
and Prentice [1991], we do not assume any (semi-)parametric model
between survival and gene expression level in this paper.

We want to identify genes that are associated with survival time. We
consider hypotheses,
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H,:T and Z, are not associated, 2)

Versus
H;:T and Z, are negatively associated, 3)

ie., gene j tends to overexpress in high-risk patients. Then, we may
reject M, in favor of F{; for a large value of W,. Let Hy=N_H ,
under which no genes are associated with survival time. Given FWER &,
we want to find a common critical value ¢, that satisfies

Feln

W, zca)lﬁﬂlzP(jr_qame,- 2¢, | Hy) s 4)

.....

In order to solve (4), we need to know the joint distribution of
(Z,,....,Z,) under H,. However usually this is not available in a closed
form, especially due to the extremely high dimension of the random vector.
So. we propose to use a permutation method to approximate the null
distribution of the test statistics.

In order to maintain the correlation structure among m genes, we keep
the m gene expressions (Z,,...,Z,,) together. We generate permutation
data under H, by separating the survival data (X;,A;) from the gene
expression data (Z,,,...,Z,,) , and randomly matching the survival data with
the gene expression data. For a permutation (j,...,j,) of (l.n). a
permutation sample is generated as {(X,,A,,Z,,..,Z,),i=1,..,n}.
Since our test statistics depend on the gene expression data only through
their ranks, we may replace the gene expression data with their ranks, ie. a
permutation sample is given as {(X_,._ ’AJ, yRyen Ry )i=1,...,n).

From the b -th permutation sample, we calculate the test statistics
w,“”,..., wf:’) and w® = l‘l‘lax'}'_I w;b). The number of possible permutations.
n!. as for example for a moderate sample size n=10, we have
n!= 3,628.800, is typically rather largce. We may choose a reasonably large
number of these permutations, say B = 10,000. Then, from(1). ¢, is
approximated by the [B(1 —a) +1]-st order statistic of '";...,w'>", where

[a] is the largest integer that is smaller than a.

An adjusted p-value for gene j is defined as the minimum FWER at
which HJ- will be rejected. So, with an observed test statistic value
WJ. =w; for gene j, the adjusted p-value is given as
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p; = P(,Tlaxm WJJ > W, | Hn ) (5)

which can be estimated from the permutations:

= Z::l {(W(N < wj)

P, 5 . (6)

Jung [2003] investigated a similar testing procedure for multiple two-
sample t-tests.

If we want to identify the genes either positively or negatively associated
with survival time, then we may use two-sided tests. For marginal two-sided
tests, we want to find a common critical value &, that satisfies

P(jrrtlaﬁf" W, 2é.|H) <. (7
We can approximate ¢, using the same permutation method described
above except that we obtain

‘T;l‘bl = jl;rilalxm I Wfb) I (8)

from the b-th permutation data. Adjusted p-value for gene j, with
observed test statistic W; = w/, also should be modified as

Py= P(}R?ﬁ. (W, 2w, Il H,), ®)

which is approximated as

S IED < w, )
P, = 5 -

(10)

Given FWER @, we may reject HJf if W:‘ >c, or p; <@, Calculation
of ¢, involves sorting of (i'vm,leSB). so that the testing procedure
using adjusted p-values requires less computing time.
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3. NUMERICAL STUDIES

We investigate the performance of the proposed single-step multiple
testing procedure with a large number of genes, m . We generate gene
expression data from a multivariate normal distribution and survival time
from a lognormal distribution, which is negatively correlated with prognostic
genes, In type I error analyses, we generate the data as follows. For iid
N(0,1) random numbers T, &4, E;,---, E,,, We set

log(7)) =71,

Z,=€,\1 - p+g,[p for 1< j<m,

Then, the survival time is not associated with any genes, and the gene
expression data have a multivariate normal distribution with zero means,
unit variances and a compound symmetric correlation structure with
coefficient p. We consider m = 1,000, n = 20 or 50, p=0, 3 or .6, and
20% or 40% censoring. A censoring time is generated from U(0,¢,) with
¢, chosen for 40% censoring. With ¢, fixed at this value, a censoring
variable for 20% censoring is generated from U(c,,¢, +¢;) by choosing a
proper ¢; value. Null distribution of the test statistic is approximated from
B = 1,000 random samples of n! possible permutations. Empirical FWER
is computed as the proportion of samples rejecting H, by our testing
procedure  with one-sidled FWER=05 among N = 1000 simulations.
Simulation results are reported in Table 1. Our procedure overall has an
empirical FWER close to the nominal level.

(n

Table 1. Empirical FWER for nominal 5% FWER with m=1,000, B=1,000 and N=1,000.

n=20 n=50
Censoring  p=0 3 6 p=0 3 6
20% .055 054 052 053 4B 045
40% 044 035 M6 053 057 054

For power analyses, the first D genes are sel to be prognostic with
correlation coefficients r with log(7). The data are generated as follows.
For iid N(0,1) random numbers %, 7,, &, & -y £, » We Obtain

log(T,)) =z 1—r —z,Vr (12)

and
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_|ei-p+efp+r,r fori<jsp

i ) (13)
E\1-p +£n\/;_3 for D+I<j<m
It can be shown that corr(log7},Z;) =—r/Nl+r=spfor 1< j<D
and =0 for D+1<js<m; corm(Z,Z;)=(p+r)/(+r) for
1€j<j'sD, =pNl+r for 1SjSD<jSm and =p for
D+1< j<j'<m. Note that 7 is the parameter of interest. We sel
n=50, D=5,10o0r 15; 7=.3 or .6 in addition to the parameters set for
the type T error analyses. The simulation results are summarized in Table 2.

Table 2. Empirical rejection rate of each H; under #=50, ne=1,000, £=1,000 and N=1,000.
Genes are grouped for prognostic ones (j=1,...,.D) and non-prognostic ones (j=D+1.....m). The
numbers in parentheses are empirical rejection rate of any of these hypotheses, called global

power.
n D Censoring  Genes p=0 3 6
3 5 20% Jj<D 001-006  001-.003  .002-.009
D 000-002 000002 .000-.003
(.G76) (.062) (.071)
40% <D 000-003 001004 003-012
(.049) (.063) (.079)
15 20% j<b 000-006  .000-.006 .003-.009
D 000-002  000-002  .000-003
(.084) (.081) (.092)
40% J<D 000-.003 .001-007  .003-012
D L000-.002 000-.003 000-.004
(.061) 077 {090)
6 5 20% j<D .042-059  051-.071 098-.120
D O00-001 000-.002  .000-003
(.259) (-268) (307)
40% jsn 024-043  035-048 .069-090
D 000-002  000-.002 .000-.003
(.186) (-199) (.228)
15 20% <D 041-066  051-072  097-.129
=D 000-.001 000-002  000-.003
(502) {.448) (459)
40% <D 023-044  030-050  .070-096
=D 000-002  .000-.002 000-.004

(.343) (322) if-347;




Methads of Microarray Data analysis 1V 117

As illustrated in Table 2, for non-prognostic genes the false rejection rates,
i.e. the probability that H ; is rejected when H; is true, are very low. Global
power, i.e. the probability that any H is rE_]ECtEd and true rejection rate, i.e.
the probability that H is rejected when H,. is true, increase in 77. With
n=.3, global power ‘and true rejection rate are low. But with 7=.6,
global power and true rejection are very high. True rejection rate increases in
£, but global power does not seem to change in g.

Beer et al. [2002] used oligonucleotide arrays to generate gene
expression data for m = 4966 genes from n = 86 patients with lung
adenocarcinoma. We applied our multiple testing method to their data to
identify prognostic genes. Analysis results are summarized in Table 3.

Table 3. Analysis results for Michigan Data (n=86,m=4966) with B=10,000 permutations.
Genes with at least one adjusted one-sided p-value smaller than .B are listed. (- meaning a
one-sided adjusted p-value of 1.0000)

Adjusted p-value Unadjusted p-value
st "ok pd pa0 pa0
S1P - 125 - 0000 0000
KIAADIS3 7131 - .3794 0006 - 000
KIAA0263 — 7714 9145 — 0004 0011
NULL - 6767 8490 - 0003 0006
NP 0426 - .0769 0001 - 0001
SLC2Al 5555 - 7504 0003 - 0005
STXIA 1976 - 3229 10000 - 0002
GPC3 - 7423 8961 - 0007 0010
TMSB4X  — 3387 5101 - 0004 0004
SELP - 5421 7314 - 0000 .0003
VEGF 6509 - 8300 0002 - 0005
FUCA} - 7022 8687 - L0007 0010
PREKACB - 2588 4099 - 0000 0002
HPIP - 4986 6919 - 0001 0003
SERPINBS 3894 - 5720 0001 - 0002
FUT3 6065 - 7926 0004 - 0010
NUCBI - 7530 9043 - 0007 0009
P2RX5 - AT31 6666 - 0002 0006
NULL 3148 - 4847 0001 - 0004
MS4A2 - 6863 8571 - 0004 0008
GRO3 3781 -~ 5570 0000 - 0000

SORT! = 2987 4593 - 0000 0000
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In Table 3. the columns with p<0 (p>0) are for testing the one-
sided alternative hypotheses that a gene tends to overexpress in high (low)
risk patients. The columns p #0 are for two-sided tests. Adjusted and
unadjusted p-values are listed for those genes with either one-sided adjusted
p-value smaller than 0.8. We observe that Gene SIP underexpresses and
Gene NP overexpresses in high risk patients. For all other genes listed in
Table 3, the unadjusted p-values are very small. The corresponding adjusted
p-values for these genes, however, are not small enough for statistical
significance after adjusting for multiplicity of the testing procedure.

4. CONCLUSIONS

This paper presents a comprehensive non-parametric procedure for
analyzing microarray studies whose primary outcome measure is censored
survival time. For a method to be useful in these types of microarray data
analysis. it must address the following three issues:

a) The ability to quantify the degree of association and the corresponding
statistical significance between each gene and the survival variable.

b) The ability to control the overall error rate.

¢) Robustness against outliers and model misspecification.

As illustrated in the literature review presented in the introductory
section, there is a sizable literature on analyzing microarray studies whose
primary endpoint is a censored survival variable. What the proposed method
attempts to accomplish is to address simultaneously all of the three
aforementioned issues. Furthermore, as this method is inferential. rather than
data-driven, it will not only be useful from the point of view of exploratory
data analysis, but should also serve as an invaluable tool for sample size and
power calculations in designing experiments for which microarray studies
with survival endpoints are planned.

To demonstrate the performance as well as applicability of the method.
we have presented simulation as well as case studies. The simulation studies
suggest that the false-rejection rate (i.e.. incorrectly declaring a non-
prognostic gene as prognostic) for this method is virtually negligible. For
moderately sized studies (e.g., n =50), the method will have very good
global power (i.e., probability of detecting at least one of the prognostic
genes) as long as the hypothesized effect size is reasonably large (e.g..
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17 =0.6). Also. in such cases. the method enjoys good true-discovery rates
(i.e., correctly declaring a prognostic gene as prognostic). Furthermore, the
method adequately controls the FWER,

The amount of association between the survival endpoint and the
expression level of gene j was quantified estimated by W:" One can
generate variations of the proposed method by employing other types of
association measures and statistics. Such extensions are subject to active
pursuit by the authors.
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We propose a simple data analysis procedure that aims to uncover an
association between gene expression and the status of a clinical outcome
variable. Rather than focus on dilferences in group means, as is usually done,
we search for pairs of genes such that the strength or direction of their
association is linked to the value of the outcome variable. This more complex
pattern of gene expression, which we call “differential correlation™, may be
especially relevant in studying clinical outcomes such as survival and grade,
since it has often been difficult o identily marker genes whose mean
expression varies directly with such outcomes. In applying our method to two
lung cancer microarray data sets, we discovered that a substantially greater
number of genes are likely to be associated with clinical outcomes such as
tumor stage via differential correlation than are associated via changes in mean
expression.

Differential correlation, gene expression, interaction

INTRODUCTION

Important clinical disease characteristics such as survival times and
tumor stage often fail to exhibit strong associations with gene expression.
One possible reason for this may be that complex clinical responses are
biologically manifested in subtle ways, and hence may not be easily
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detectable using conventional statistical measures that look for expression
shifts in the average levels of single “marker genes™.

We propose a simple analysis method for relating gene expression levels
to binary response variables that aims to detect a link between the degree of
association within a pair of genes and the clinical response. This
“differential correlation” is a more subtle form of association compared to
differences in mean expression (“differential expression™). Although
differential correlation is a more complex statistical measure, from a
biological viewpoint it resembles a simple gene regulatory interaction. As
such regulation is known to be altered in the progression of many cancers,
the idea that differential correlation may occur for cancer-related endpoints
is well supported biologically.

The organization of this article is as follows. Section 2 contains a
ceneral description of our proposed differential correlation methodology,
and Section 3 contains the results of applying the method to two lung cancer
gene expression datasets. In Section 4 we discuss some limitations and
possible future directions.

2. DIFFERENTIAL CORRELATION

Complex clinical assessments such as survival or tumor stage do not
always exhibit clear associations with gene expression. In many cases, the
number of genes with significant mean difference between two groups of
samples is comparable to the number of significant differences found under
randomization. This may be due to low statistical power in the study design,
but more fundamentally it may be due to a small or vanishing number of
genes whose mean expression level varies directly with the levels of the
response variable.

Nevertheless, there may be marked effects on expression covariation
related to the clinical outcome. Here we investigate the most simple such
effect -- a change in the association between two genes as the outcome
varies. In the case of binary outcomes, this suggests identifying pairs of
genes whose correlation coefficient differs significantly between the two
levels of the response variable.

Ideally, one can propose a mechanistic explanation for any particular
instance of differential correlation. For example, a pair of genes whose
expression is more tightly correlated for the less severe state of the outcome
variable compared to the more severe state may reflect a decoupling of
expression associated with disease progression, perhaps resulting from loss
of a common regulator. A pair of genes whose co-expression increases with
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disease progression may reflect genes acting in concert to produce tumor
phenotypes such as vascularization or rapid growth.

To identify genes exhibiting differential correlation, for each pair of
cenes 1i,j, we calculated the robust correlation coefficient (biweight
midcorrelation, Wilcox [1997]) between the expression levels of the two
genes within each group. Suppose this yields correlation coefficients p, and
py. The difference Aj; = py - p; measures the increase or decrease in
correlation between the two groups. We selected genes where |A,[> 0.6 for
further analysis. The Ay statistic could also be constructed using standard
Pearson correlations, but we found that with relatively small sample sizes,
large shifts in Pearson correlation were often due to a single outlying
sample.

Randomization was used to assess whether all candidate gene pairs
exhibiting differential correlation can be explained by random variation.
Specifically, the outcome variable levels were uniformly permuted across
the samples, and the A, values were recomputed for each pair of genes in the
permuted data. If the number of A, values in the actual data exceeding a
given threshold (we use 0.6) was greater than the 95" or 99" percentile
under randomization. we deemed it likely that at least some of the gene pairs
exhibiting differential correlation are biologically significant.

3 ANALYSIS OF THE LUNG TUMORS

31 Data Integration

We analyzed data collected using two Affymetrix microarrays. The
University of Michigan data (originally reported in Beer et al. [2002]) were
obtained using the full length (HuFL) array that has 7.129 probesets. The
Harvard data (originally reported in Bhattacharjee et al. [2001]) were
obtained using the U95A array that has 12.625 probesets. Our analysis
focused on the adenocarcinoma samples, of which there are 79 in the
Michigan dataset and 84 in the Harvard dataset (after averaging duplicates
and removing samples with low tumor cellularity).

Both datasets were obtained using Affymetrix microarrays, where the
perfect match (PM) and mismatch (MM) intensities for a set of probes (a
“probeset”) carry the expression information for one transcript. We used the
trimmed mean of the PM-MM differences (across the probes) as the
numerical summary for a probeset. A detailed discussion of data processing
can be found online: http://dot.ped.med.umich.edu:2000/pub/index.html.

We mapped each probeset to a Unigene accession number using the array
annotation files available from the Affymetrix web site. There were 5.141



124 Shedden et al.

distinct Unigene accession numbers that mapped to at least one probeset on
both arrays. The majority of the Unigene numbers mapped to a single
probeset on each array, but some mapped to as many as eight probesets.

To construct a numerical summary for each Unigene accession number,
we averaged the probeset summaries within each sample across the
probesets that map to a common Unigene accession number. These averages
(henceforth referred to as gene expression levels) were then left-truncated at
zero, right-shifted by 50. log; transformed. and quantile normalized (for
details, see the above reference to our data processing methods). The gene
expression levels exhibited reproducible aggregate characteristics between
the two datasets -- within-dataset means had correlation 0.52 across genes.
and within-dataset standard deviations had correlation 0.56 across genes.

The most variable genes were considered for subsequent analysis. We
selected the 1,102 genes having standard deviation greater than 0.5 in both
data sets. This is a rather high standard deviation threshold, leaving only
highly variable genes. TFor purposes of illustrating our methodology, we
selected genes according to this strict rule, but a more complete biological
investigation might use a lower threshold.

Clinical outcome variables that were measured in similar ways in the two
studies and that could easily be dichotomized were selected for analysis.
These variables were survival (24 months survival vs. death before 24
months, omitting censored cases), stage (I vs. III), grade (well and moderate
vs. poor), smoking status (less than 10 pack years vs. 10 or more pack
years), and K-Ras mutation status (wild type vs. mutant). Table | contains
the number of samples at each level. for each outcome variable in the two
data sets.

Information from the two datasets was combined by requiring that
differential correlation thresholds be met independently in both data sets,
with consistent direction of change. That is, for a pair of genes i.j to be
considered differentially correlated with respect to a particular outcome
variable, it was required that the condition lAyt> 0.6 be met in both datasets,
and that the sign of A;; be the same in both datasets.

32 Baseline Analysis

We began by carrying out a baseline analysis using standard methods for
detecting differential mean expression. For each clinical response variable,
the samples from each dataset were stratified into two groups, which were
subsequently compared at each gene using two sample (-tests and fold
changes. For each dataset, three sets of genes were identified: (i) genes
having a t-test p-value smaller than 0.05, (ii) genes having a 2-fold or greater
change in mean expression. and (iii) genes having a 1.5-fold or greater
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change in mean expression. Next the genes satisfying (i) for both datasets
were selected, and from these only the genes with consistent direction of
expression change in the two datasets were retained. Similarly, genes
satisfying (ii) or (iii) and having consistent direction of expression change in
the two datasets were considered. The numbers of such genes for each
outcome are given in Table 2. Next to each observed number are the 95th
and 99th percentiles under randomization, estimated from 300
randomizations.

Table 1. Sample sizes for the Michipan and Harvard data sets.

Outcome Level L. Mich. Harvard
Early Death <=24 months 17 a0
>24 months 60 53
Stage I 60 62
I 19 B
Grade Well/Moderate 58 29
Poar 20 14
Smoking <10 pack years 14 12
>=10 pack years 63 72
K-Ras Wild type 42 39
Mutant 37 24

Table 2. Three differential mean expression measures (i-test and two levels of fold change)
compared to differential correlation for five clinical ouwtcomes.

Outcome t-test 2-fold 1.5-fold Diff. Corr.

Early Death 1X(5,16) oo, 2(5,16) 62{115,165)
Stage 1(6,14) X13) 9(6,14) 1444(1328,1361)
Grade 75(6,12) 20.1) 22(6,12) 920(641 .889)
Smoking 19(5,8) 16(5,8) 16(5,8) 98(82,100)
K-Ras 21(5,12) 0,00 6(5,12) 210(190,255)

The results of the baseline analysis (Table 2, columns 2-4) indicated that
a small number of genes were differentially expressed for each outcome,
except for grade, which produced a moderate level of differential expression.
An even smaller number of genes exhibited differences that were large in
magnitude. Nevertheless, based on the randomization analysis, the t-test
results were statistically significant for all five outcome variables, and it is
unlikely that more than half of the identified genes are false positives.

Many of the genes identified in the baseline analysis as being associated
with the clinical outcomes do not have known biological functions that are
easy to relate to the biological nature of the outcome. However several
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genes associated with proliferation exhibit significant association with tumor
grade. PCNA, Cyclin Bl, TOPIA, and BOPI are upregulated in poorly
differentiated tumors, reflecting the likely faster growth rate of poorly
differentiated cancer cells.

3.3 Results of the differential correlation analysis

3.3.1 Randomization analysis and global significance

We identified pairs of genes with differential correlation greater than 0.6
in both datasets, or smaller than -0.6 in both datasets. These pairs were
identified from among the =6x10° distinct pairs that can be formed from the
1.102 genes meeting the variability conditions. The fifth column of Table 2
shows the results of this analysis. Compared to the randomized results.
stage. grade, smoking, and K-Ras show an excess of differentially correlated
pairs. while early death does not.

The biological significance of this finding is that it suggests that some of
the clinical outcomes have a much broader relationship with gene expression
than is indicated by differential mean expression. For example, while only
10 genes exhibit strong evidence of differential mean expression with stage,
the 1444 pairs showing significant differential correlation with stage include
858 distinct genes (60% of all genes considered). While the randomization
analysis suggests that many of the 1.444 pairs may be false positives, even if
only 100 pairs are truly differentially correlated (taking a very conservative
view of the randomization results), these pairs are likely to contain far more
than 10 distinct genes.

332 An example — negative interaction of BENE and Hs. 143288 is
specific to poorly differentiated tumors

Focusing now on a specific example, Figures | and 2 show a pair of
genes that are differentially correlated with respect to grade in both data sets.
Figure 1 shows that the genes BENE and Hs. 143288 have little association
in well or moderately differentiated samples (perhaps there is a positive
trend in the Harvard data. but this is quite weak). On the other hand. Figure
2 shows a strong negative trend between the two genes in the poorly
differentiated samples. For both data sets. high levels of Hs. 143288
expression are associated with low levels of BENE expression. Adding to
the potential biological significance of this relationship is that both genes
vary widely across the tumors in both datasets — BENE undergoes five
doublings between the least and greatest expression, and Hs.143288
undergoes more than two doublings.
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This pair of genes also illustrates the value of selecting genes based on
differential correlation in addition to inspecting genes with differential mean
expression. Neither BENE nor Hs. 143288 is significantly differentially
expressed in mean between the two classes of samples, thus neither would
be considered to be related to grade, based on usual measures of differential
mean expression such as t-tests or fold-change statistics.

The BENE gene codes for a membrane-bound protein with unknown
molecular function, and the Hs, 143288 gene codes for a hypothetical protein
with sequence similarity to mouse, rat. and C.elegans collagen. With little
biological information, it is difficult to propose a mechanistic explanation
for this relationship. One hypothetical explanation might be that advanced
tumors segregate into two distinct clusters — one exhibiting high BENE
expression and low Hs.143288 expression, and the other exhibiting high
Hs.143288 expression and low BENE expression. This would suggest a
permanent silencing of either BENE of Hs.143288 expression in all
advanced tumors (but not a silencing of both genes in any one tumor). An
alternative hypothetical explanation would be that both genes are transiently
expressed in advanced tumor cells, but the expression is coordinated so that
the two genes are never expressed simultaneously. This coordination may
be associated with phenotypes such as proliferation. invasiveness, or
vascularization that are more prominent in advanced tumors.

333 Genes participating in widespread differential correlation

Although many genes are differentially correlated with at least one other
eene. we found that a few genes dominate all others. in that they participate
in widespread differential correlation with many other genes. These genes
may potentially play a more global role in reporting, or causing, widespread
alterations in the interaction of gene expression levels. At a more practical
level, they may serve as biomarkers for detecting dramatic shifts in
correlation structure associated with a clinical endpoint,

For example, using tumor stage as the outcome. five genes engage in
differential correlation with at least 20 other genes. Two of these genes are
implicated in other epithelial adenocarcinomas, specifically. disease of ovary
(WFDC2/HE4; Hs.2719) and colon (galectin-4; Hs.5302). Among the
remaining three genes are a gene associated with female fertility (NRIPI:
Hs.155017). a widely-expressed enzyme (MTHFD2: Hs.154672), and a gene
of unknown function (Hs.380833).

Although galectin-4 is generally reported as being expressed only in
colon, many of the lung tumors exhibit moderate expression of this
transcript.  While cross-hybridization of a different transcript is a likely
explanation for this. given that we identified galectin-4 based on its
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differential correlation with respect to stage, it is notable that galectin-4 has
been specifically noted as being associated with stage in colon cancer [Nagy
et al., 2003].

The WFDC2/HE4 gene has been reported to be a biomarker for ovarian
cancer [Hellstrom et al., 2003). Expression in other tissues has been
observed as well. Notably, high expression of WFDC2Z/HE4 is primarily
found in malignant ovarian tumors, and it is expressed at much lower levels
in non-malignant tumors, Since degree of malignancy is roughly associated
with tumor stage, the specific expression of WFDC2Z/HE4 in malignant
ovarian tumors may possibly be related to the fact that we found
WFDC2/HE4 to be differentially correlated with stage in lung tumors.
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Figure 2. Poorly differentiated samples show negative association between Hs 143288 and
BENE expression.

4. DISCUSSION

We have proposed a statistical analysis strategy for gene expression data
that aims to uncover subtle associations between gene co-expression and
important clinical outcomes. Our investigation of two lung-cancer data sets
sugoests that widespread statistically significant effects can be discovered
based on differential correlation that would be missed using an analysis
strategy focusing exclusively on differential mean expression. In particular,
numerous genes may be associated with stage, grade, smoking status, and K-
Ras mutation status that would not be detected using conventional measures
of differential expression.

Differential correlation may be considered either in the context of a
single data set, or, as we have done here, when looking at multiple data sets.
In the latter case, we identified pairs of genes that are consistently
differentially correlated in the two data sets. As with any statistical analysis,
genes identified by differential correlation will be less likely to be
attributable to experimental bias or noise if the results are reproduced in
multiple data sets. In addition, differential correlation may be especially
suitable for use with multiple data sets - since differential correlation
depends only on relationships between the expression levels of two genes,
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and not on absolute levels of gene expression, it is likely to be less sensitive
to certain types of scaling artifacts that may produce systematic differences
between results obtained in different laboratories or different microarray
platforms.

We note that we have not had success in one of our primary goals, which
was to enlarge the set of genes associated with survival using the differential
correlation technique. Our baseline analysis suggests that only a small
number of genes are associated with early death in both data sets, and none
of these genes has a magnitude change greater than 1.5. No pair of genes
shows significant differential correlation associated with early death.

One practical drawback of our method is that the response variable must
be dichotomous, so that it can be used to stratify the samples into two
classes. In some cases, such as when the response variable is survival time,
this requires coarsening the resolution of the measurement, perhaps leading
to a loss of relevant information. We note that a similar, but more general
methodology called Liguid Association [Li, 2002] has recently been
developed that has similar goals as our method, but is formulated so that a
continuous rather than a binary outcome variable controls the changes in
correlation,
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A number of quantitative methods have been applied to the classification and
clustering of microarray data (see, for example, [Tibshirani et al., 2001]). In
this article, we describe a statistical learning theory-based method to construct
lung cancer probability models that are conditioned on gene expression
microarray data. Our models do more than classify—they indicate an estimate
ol the probability. ~ We find our estimate for the conditional probability
distribution by choosing a model that balances consistency with the training
data and consistency with a prior distribution, This formulation leads to an
oplimization problem that has a mathematically equivalent problem with an
objective function that is a penalized log-likelihood. We discuss three
particular estimation problems: 1) find the conditional probability that a
sample is adenocarcinoma or normal, given gene expression levels, 2) find the
conditional probability for each ol six disjoint categories related to lung
cancer, given gene expression levels, and 3) find the conditional probability
distribution for survival time, given gene expression levels. We describe the
features that we select and measure the performance of the models that we
create in economic terms. For the conditional probability of adenocarcinoma,
we condition on probeset identifiers common to both the Harvard and
Michigan data sets. When we trained on either data sel, we were able to
nearly perfectly classify adenocarcinoma on the other set.

Microarray, ontology, adenocarcinoma, conditional  probability, gene
expression, leatures
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1 INTRODUCTION

DNA microarrays can be used to characterize the molecular variations
among tumors by monitoring gene expression profiles on a genomic scale.
Supervised learning (including classification. discriminant analysis, and
supervised pattern recognition) of DNA microarray gene expression data
may prove useful in cancer research for the purpose of tumor classification.
Popular supervised learning methods include linear discriminant analysis, k-
nearest neighbor classifiers, nearest centroid classification, classification
trees, and support vector machines [Dudoit et al., 2002]. A set of labeled
objects (training set: a group of patients with known gene expression profiles
and clinical outcomes) is used to build a learning machine that can predict
the class of future unlabeled objects (testing set: patients with known gene
expression profiles. but without clinical outcomes).

In this paper, we use a utility-based approach to estimate the conditional
probability of human lung cancer, given DNA microarray gene expression
levels. Our method incorporates automated feature selection. The models
produced by this method provide more information than mere
classification—they explicitly produce probabilities estimates, which
quantify our confidence in the classification. The threshold for the
classification is flexible: this may lead to a more reliable and precise
identification of tumors and provide more specificity for diagnosis and
treatment, like personalized medicines.

We have used two of the four CAMDAOQO3 contest data sets for our study:
the CAMDAOQO3 Harvard data set [Bhattacharjee et al.. 2001], and the
CAMDAO3 Michigan data set [Beer et al., 2002]. The Harvard data set was
measured by the Hu_U95Av2 Affymetrix chip, while the Michigan data set
was measured by the HG_GeneFl. Affymetrix chip. The Hu_U95Av2 chip
contains 12,625 probesets, each with 16 probe pairs. The HG_GeneFL chip
is older than the Hu_U95Av2 chip, and only contains 6.633 probesets, each
with 20 pairs.

2, PROBLEMS AND SOLUTION METHODOLOGY

In this section, we describe the probabilistic models that we seek. our
solution methodology. and the features that we use for three specific models:
1) a conditional probabilistic model for adenocarcinoma or normal tissue,
given gene expression level data. 2) a conditional probabilistic multicategory
model for six disjoint categories of tissue (normal lung. adenocarcinoma,
small-cell lung carcinomas, squamous cell lung carcinomas, pulmonary
carcinoids, and other adenocarcinomas--which were suspected to be
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extrapulmonary metastases) and 3) a conditional survival time model.
given gene expression level data.

Let x denote our vector of explanatory variables and the random variable
Y denote the state of the random variable for which we seek the conditional
(on x) probability. We seek models for the probability distribution of Y,
given x.

For our first numerical experiment, Y€ {0,1} indicates adenocarcinoma
(Y=1) or normal lung (Y=0). We seek the conditional probability measure
p(1ix)=Prob(Y=1Ix).

For our second numerical experiment, there are six states:

¥ ={(0.0.0.0.0,1).(0.0.0,0.1,0)...., (1.0,0.0.0,0)}. which represent
normal lung, adenocarcinoma, small-cell lung carcinomas, squamous cell
lung carcinomas. pulmonary carcinoids. and other adenocarcinomas (which
were suspected to be extrapulmonary metastases), respectively. We seek the
conditional probability measure p(ylx)=Prob(Y=ylx), where yeY .

For our third numerical experiment, Y € (0,e) indicates survival time.
In this case, we seek the conditional probability density p(ylx).

In each case, we use the maximum expected utility (MEU) methodology
(described in the Appendix) to estimate p(y/x). This method requires that we
specify features, which are functions of x and y that can be thought of in two
ways described more precisely in the Appendix: 1) they are akin to a basis
set of functions that we can search over and combine to form models, and 2)
they are used to enforce consistency of the model with the data--the
introduction of more and more features allows for more and more feature
constraints, which induces more and more consistency of the model with the
data. In this article. we use three particular types of features: linear features.
quadratic features, and Gaussian kernel features. which are described
precisely in the Appendix. Linear and quadratic features are akin to the first
two term types in a multidimensional Taylor expansion. The Gaussian
kernel features allow for local behavior and depend on a bandwidth
hyperparameter. Another hyperparameter. @, also defined in the appendix.
is used to mitigate overfitting.

3. EXPLANATORY VARIABLES AND FEATURES

For the conditional adenocarcinoma (or normal) model, we use three
types of features: linear features, quadratic features, and Gaussian kernel
features. In order to integrate information between different versions of
chips. while performing out-of-sample tests in a natural way. we trained (wo
models. One model was trained on the Harvard data set and tested on the
Michigan data set (the Harvard-Michigan experiment); the other was trained
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on the Michigan data set and tested on the Harvard data set (the Michigan-
Harvard experiment). The Harvard data set contained data for 127 lung
adenocarcinoma samples, 12 suspected extrapulmonary metastases samples,
and seven normal lung samples. The Michigan data set contained data for 86
lung adenocarcinoma samples and 10 normal lung samples. In order to find
the correspondence between the two data sets, we first mapped probesets to
UNIGENE ID’s by using the current annotation files for HG_GeneFL. and
Hu_U95Av2 chips. Then, we grouped probesets with the same UNIGENE
ID together. We found 5,001 groups for the Michigan data set, and 8,778
groups for the Harvard data set. In the third step, we calculated expression
levels for each group by averaging the expression levels of all probesets
belonging to the same group. Finally, by using UNIGENE ID’s, we found
groups common to both the Michigan and Harvard data sets. Ultimately, we
obtained 4,822 groups common to both the Michigan and Harvard data sets.
In order to compensate for the measurement differences associated with the
different chips, we rank transformed the expression levels.

Xp— @

Xy (X1, X2, X4}

for m + from 1 to ndo
Select one component from X, which can be used with

components in Xj to achieve highest log-likelihood, say x

Xo—Xow Ix}
Xy — XV xa}

end

return X,

Figure I. Algorithm for selecting significant genes,

In order to choose prognostic genes, we followed the following
procedure: in the first step, we chose the explanatory variable with the
greatest log-likelihood. In the second step, we choose another one which can
be used with the already chosen ones to achieve the highest log-likelihood.
We repeated this procedure until a certain number of components of X (the
set of explanatory variables) had been selected. Pseudo-code for this
algorithm is given in Figure 1. In Figure 1, Xy is the set of selected
components, X, is the set of all candidate components to be selected, and n
is the number of components we want to select. Initially X, was an empty set
and X, contained all of the components of X. For computational efficiency,
we used linear features only in the selection procedure. Using this
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algorithm, we selected the 10 and eight most significant genes for Harvard-
Michigan experiment and Michigan-Harvard experiment, respectively (see
Table 1 and Table 2). Three genes, TNA, POLR2H, and CMRF35 appear in
the selected gene lists for both experiments. Consequently, we have 76
features for Harvard-Michigan experiment, of which 11 are linear features,
55 are quadratic features, and 10 are Gaussian features; we have 55 features
for Michigan experiment, of which nine are linear features, 36 are quadratic
features, and 10 are Gaussian features.

Table 1. Selected genes in Harvard-Michigan experiment.

Rank Gene Symbol Gene Name

i TNA tetranectin {plasminogen binding protein)

2 POLR2H polymerase (RNA) I (DNA direcied) polypeptide H

3 CMRF15 CMRF35 letukocyte immunoglobulin-like recepior

4 F8 cosgulation factor VI, procoagulamt  componens
themephilia A)

5 HLCS holocarboxylase synthetase (biotin-[proprionyl-Coenzyme
A-carboxylase (ATP-hydrolysing)) ligase)

6 HILA-DRB3 major histocompatibility complex, class Il. DR beta 3

7 MEST mesoderm specific transcript homolog (mouse)

8 HSPAIB heat shock 70kDa protein 18

9 CEBPG CCAAT/enhancer binding protein (C/EBP), gamma

1o LILRB4 leukocyte immunoglobwlin-like recepror, subfamily B (with
TM and ITIM domains ), member 4

Table 2. Selected genes in Michigan-Harvard experiment.

Rank Gene Symbol Gene Name

1 TNA tetranectin (plasminogen binding protein)

2 POLR2H polymerase (RNA) I (DNA directed) polypeptide H

3 CMREF35 CMRF35 leukocyte immunoglobudin-like receptor

4 TICH tetratricopepride repeat domain 1

3 CDHI8 cadherin 18, rype 2

6 MGP matrix Gla protein

7 ROSI v-ros UR2 sarcoma virus oncogene homolog 1 (avian)
8 RBMS RNA binding motif protein 5

For the conditional six state multicategory model, we use three types of
features: linear features, quadratic features, and Gaussian kernel features.
The Harvard data set contains six different types of data. Three were
mentioned above; the other three types are: squamous cell lung carcinomas
(21 samples), pulmonary carcinoids (20 samples), and small-cell lung
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carcinomas (six samples). We built a six state conditional probability model
that generates probabilities for each of the six different types of data, given
gene expression levels.

Selecting prognostic probesets from 12,600 candidates is very time-
consuming. To reduce the time complexity of the selection procedure, we
first divide 12,600 probesets into 630 groups, each with 20 probesets; from
each group, the two most significant probesets are selected by the algorithm
described above. In the second step, we divided the 1,260 selected probesets
from the first step into 63 groups, each with 20 probesets; again, we selected
the two most significant probesets from each group. In the third step, we
chose the 10 most significant probesets from 126 chosen ones from the
second step. Of these 10 chosen probesets, we removed two that correspond
to non-human genes and one that corresponds to a housekeeping gene. (It is
possible that such bacterial gene expression data may reflect different
handling of tumor and normal tissues; this possibility was suggested to us by
Michael Ochs and attributed to Giovanni Parmigiani.) Finally we selected
seven  probesets (see Table 3) as input for our conditional six state
multicategory model. From these seven probesets, we generated 276
features: 48 linear features, 168 quadratic features, and 60 Gaussian features.

Table 3. Selected probesets and their UniGene ID"s and LocusLink’s

Rank Gene Symbol Gene Name

1 KCNK3? potassism channel, subfamily K, member 3

2 RFC# replication facror C (activator 1} 4, 37kDa

2 DSpP desmoplakin

4 GPX3 glutathione peroxidase 7 (plasma)

5 INSM1 inswlinama-associated 1

6 FCGRT Fe fragment of IgG, recepior, transporter, alpha

7 tankyrase, TRFI-interacring ankyrin-related ADP-ribose
TNKS polymerase

For the conditional survival time model, using the clinical history
information from the Michigan data set, we performed an experiment to
predict the conditional probability density for survival time for each patient.
We selected ten probesets from 7,129 by a procedure similar to that
described in above. After removing two  probesets that corresponded to
non-human genes, we had eight probesets (see Table 4). Since only 79
samples were available, we used only linear features in our numerical
experiment. We used only nine linear features.
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Table 4. Selected probesets, and their UniGene 1D°s and LocusLink’s

Rank Gene Symbol Gene Name

I TRAZA transformer-2 alpha

2 PPP5SC protein phosphatase 5, catalytic subunit

3 MATNI matrifin 1, cartilage matrix protein

4 CA4 carbonic anhydrase IV

5 ZNF1 zinc finger protein 3 (A8-51)

& RPL27A ribosomal prorein L27a

7 Homp sapiens cONA FLJ30561 fis, clone
- BRAWH2004580.

& UROD uroporphyrinogen decarboxylase

4. MODEL PERFORMANCE MEASUREMENT AND
RESULTS

To measure the performance of our model, p, we use A, the scaled log-
likelihood difference between our model and a benchmark model as
estimated on an out-of-sample dataset

For the conditional adenocarcinoma (or normal) model, to compute our
performance measure, we frain on one of the data sets (Harvard or
Michigan) and calculate the performance measure on the other. For each
model, we also display the area under the receiver operator characteristic
(ROC) curve a popular, rank-based performance measure. We take as a
benchmark model the linear logistic regression. We note that linear logistic
regression is a special case of our approach when the prior is flat, a=0, and
the features are linear. Thus, our approach can be viewed as a generalization
which is better able to handle nonlinearities and overfitting. It is easy to
show that, for the linear logit model, the level sets of the conditional
probability of adenocarcinoma surface must satisfy a rather strict
geometrical condition: they must be linear. This imposes a severe restriction
on the model, which may not be sufficiently flexible to conform to the story
told by the data.

Our model depends on hyperparameters (the regularization factor a and
bandwidth ©) and parameters (the £ vector). We test a discrete set of
(a.0) pairs. For each pair, we trained our model on either the Harvard
data set or the Michigan data set, and calculated A on the same data set. We
selected hyperparameter values corresponding to the greatest entry in the A
table. We then used the resulting model to evaluate performance measures
on the other data set. We display model performance statistics (against the
noninformative model) in Table 5 and model-produced probabilities for the
Harvard-Michigan experiment in Figure 2. The MEU method produces high
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ROC values on either data set. We note that though MEU has good
performance on both data sets, the logistic regression has better performance
on Harvard-Michigan, perhaps due to the fact that the populations are, in
fact, not the same and logistic regression, though not as precisely tuned to
the Harvard set, performs better on the Michigan set. The difference might
reflect the need for a platform normalization to adjust for the batch bias.

Table 5. Model performance statistics for MEU V.S. lopistic regression

Experiment Mode! Measurement  MEU Logistic Regression
Harvard-Michigan A 0.1552 0.3335
ROC 0.9837 1.0
Michigan-Harvard A 0.2719 -17.8833
ROC 0.9928 0.8324
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Figure 2. Conditional probability of adenocarcinoma given 10 selected genes (Harvard-
Michigan experiment).

According to Hosmer and Lemeshow [2000], the area under the ROC
curve can be interpreted as the percentage of (AD.NL) outcome pairs that
are ranked correctly by the model, and, “As a general rule: If ROC = 0.5:
this suggests no discrimination.... If ROC 20.9: this is  considered
outstanding discrimination. In practice it is extremely unusual to observe
areas under the ROC curve greater than 0.9.”

We have produced two models, one trained on the Harvard data, the
other trained on the Michigan data. In either case. the MEU model produced
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nearly perfect classification on the out of sample data sets, as is evident from
Table 5 and Figure 2.

For the conditional six state multicategory model, we randomly
designated 80% of the Harvard data as training data and the remaining 20%
as test data. For each given regularization factor, @, and bandwidth, ©, we
trained our model on the training data and calculated A on the test data. We
selected hyperparameter values corresponding to the greatest entry in the A
table. We then used the resulting model to evaluate performance measures
on the test data set. We repeated this procedure 30 times and reported A as
the mean value of all 30 A's_This model was benchmarked against the
noninformative model and produced A = 0.8012 (A = -2.2166 for using
linear features only. without regularization). We display model probabilities
in Figures 3 and 4.
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Figure 3. Conditional six state multicategory experiment (1Legend description: normal lung
(NL): dot; lung adenocarcinomas (AD): plus; small-cell lung carcinomas (SMCL): circle;
squamous cell lung carcinomas (SQJ: asterisk; pulmonary carcinoids (COID): diamond; other
adenocarcinomas (OA): pentagram).

For the conditional survival time model, survival time., measured in
months, is the patient’s survival time from the operation date to death or last
follow up as of May, 2001. We randomly designated 80% of the Michigan
data as training data and the remaining 20% as test data. We then trained
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our model, without regularization, on the training set and calculated the
performance measure A on the test data. We repeated this procedure 30
times, and reported A= 0.3057 as the mean value of all calculated A's. We
display a few conditional survival time probability distributions in Figure 4.
Without regularization, our model is equivalent to a maximum likelihood
exponential model and we handle this censored type I data via maximum
likelihood estimation (see NIST/SEMATECH [2004]). It was not necessary
to regularize since there were sufficiently many data, given the number of
features. With more features, regularization might have been beneficial.

Figure 4. Conditional PDF as a function of selected probesets and data. (values for probesets
other than US3209_at are taken as median of their rank-transformed values).

s. DISCUSSION

In the course of our automated training on the Harvard data set and
testing on the Michigan data set, 10 genes with predictive power were
selected. In the course of our automated training on the Michigan data set
and testing on Harvard data set, eight genes with predictive power were
selected. There are three common genes.
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Table 1 and Table 2 list these genes: a number of them have received
attention and have been previously reported in human lung carcinoma
research [Bhattacharjee et al., 2001:Berglund and Linell. 1972; Gure et al.,
1998]. We also observed several previously uncharacterized biomarkers for
lung cancer, which we believe deserve further study and validation.

In order to measure gene expression, we must preprocess the probe level
intensity data from high-density oligonucleotide arrays. Different expression
summarization methods yield different results. We have used the gene
expression data sets preprocessed by Harvard and Michigan, respectively.
We do not know if they used the same expression summarization method. At
the same time. systematic biases due to different sample preparation and
experimental protocols followed by different labs might have been present.
In future work, should tissue samples be characterized by gene expression
levels culled from more than one type of microarray, we would start with the
raw data and preprocess it with the same expression summarization method:
this would remove the variations caused by different preprocessing
algorithms.
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APPENDIX: MEU METHODOLOGY

We follow the maximum expected utility (MEU) modeling approach
from [Friedman and Sandow, 2003a]. This methodology is designed to take
into account the decision consequences for a decision maker who relies on
the model to make decisions, with a hyperparameter, &, governing the
balance between consistency with prior beliefs (the model that we believe
before we observe data) and consistency with the data. This methodology
admits models that are flexible enough to conform to the data, yet avoid
overfitting. Under this methodology. we estimate p(ylX) by maximizing,
over B=(B......B,)T. the regularized maximum likelihood

1 & a
h(B)=—> log p” (y, 1x,)-—p"LS ()
N k=1 N
with
p"’(ylx):-—l——e"’rf""'p"(ylx) and (2)

z,(8)

2.(8)= X5 (12"

¥ (3)

(if there are an infinite number of Y states, as for the survival time problem,
we can replace the sums in Eq. (7) by an integral—see, for example,
Friedman and Sandow [2003b]) where the (Xi, yi) are the observed (x.y)-
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pairs, N is the number of observations, t'(y.x):(f.(y,x)...‘,f,(y,:rc))T is the
vector of features and Z is the empirical covariance matrix of the features.
The features are functions of x and y that can be thought of in two ways: 1)
from Egs. (2) and (3). we see that our solution can be expressed in terms of
[ — weighted linear sums of features. so the set of features is akin to a basis
set of functions that we can search over to form models, and 2) they are used
to enforce consistency of the model with the data, since model expected
feature values are forced to be approximately equal to empirical feature
expectations (see Friedman and Sandow [2003a], Problem 1)--the
introduction of more and more features allows for more and more feature
constraints, which induces more and more consistency of the model with the
data. In this article. we use at most three particular types of features: linear
features f;(y,x)=(y—c)(x);(where (x); denotes the i coordinate of x
with the convention that (x),=1, and c=0 for the survival time problem and
.5 otherwise), quadratic featuresf (yx)=(y- 5)(x) (%), and Gaussian
kernel features f,(y,x)=(y— 5)cxp(—0' llx—x*II*) (where x*is one of
K centers selecled via the method of k-mean centers and @ is abandwidth
hyperparameter). Linear and quadratic features are akin to the first two
types of terms in a Taylor expansion. The Gaussian kernel features allow for
local behavior,

In our numerical experiments, the results were somewhat insensitive to
the prior measure: the results described were obtained for the noninformative
prior measure (the observed unconditional probability that ¥ = v).
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INTEGRATION OF MICROARRAY DATA FOR A
COMPARATIVE STUDY OF CLASSIFIERS AND
IDENTIFICATION OF MARKER GENES

Daniel Berrar. Brian Sturgeon, lan Bradbury. C. Stephen Downes, and
Werner Dubitzky

School of Biomedical Sciences, University of Ulster at Coleraine, Northern Ireland

Abstract: Novel diagnostic tools promise the development of patient-tailored cancer
treatment. However, one major step towards individualized therapy is 1o use a
combination of various data sources, e.g. lranscriplomic, proteomic. and
clinical data. We have integrated clinical data and lung cancer microarray data
that were generated on two different oligonucleotide platforms. We were
interested in the question whether the prediction of survival outcome henefits
from the integration of clinical and transcriptomic data, In addition. we
attempled to identify those genes whose expression profiles correlate with
survival outcome. We applied five machine learning techniques to predict
survival risk groups, and we compared the models with respect to their
performance and general user acceplance. Based on quantitative and
qualitative evaluation criteria, we chose decision trees as the most relevant
technique for this type of analysis. Our in silico analysis corroborates the role
of numerous marker genes already described in lung adenocarcinomas. In
addition, our study reveals a set of highly interesting genes whose expression
profiles correlate with genelic risk groups of unexpected survival outcomes,

Key words:  Microarray, lung cancer, survival analysis, machine learning

1. INTRODUCTION

Modern high-throughput technologies produce growing amounts of
biomedical data. Transcriptional profiling using microarray technology
promises to uncover unprecedented insights into the pathogenesis of
complex diseases such as cancer. Recent studies on cancer profiling have
demonstrated that gene expression patterns of cancer can be successfully
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used for survival prognosis, e.g., in childhood leukemia [Yeoh et al.. 2002].
lung cancer [Bhattacharjee et al., 2001: Beer et al., 2002], and breast cancer
[van't Veer et al.. 2002]. Delineating cancers based on their specific
expression profiles may provide the breakthrough required to develop a
patient-tailored therapy. Currently, it is unclear how individual patients
respond to chemotherapy. Existing chemotherapies have in general severe
side effects for the patients, but sometimes low efficacy.

Supervised machine learning techniques are a promising approach for
analyzing microarray data in the context of patient outcome prediction. For
example, Shipp et al. [2002] reported on the successful survival prediction of
patients suffering from large B-cell lymphoma. They employed machine
learning techniques (support vector machine, k-nearest neighbor) to predict
the survival periods of a group of patients. It was shown that the predictive
accuracy based on the expression profiles was higher than that based on
simple clinical parameters.

Despite  the undisputable credentials of microarray technology.
transcriptional profiling alone is insufficient to explain the whole spectrum
of alterations involved in cancer genesis. Combining gene expression data
with proteomic data, cytogenetic data (e.g., from fluorescence in situ
hybridization experiments), and clinical patient data might be a promising
approach for developing new prognostic tools [Ochs et al. 2003].
Particularly in the context of cancer outcome prediction, the integration of
heterogeneous data sources is considered to be a promising new approach.
The question whether decision support systems based on machine learning
approaches and microarray data will find their way into clinical practice is
still open, and many other problems remain unresolved. One of the main
bioinformatics challenges is the integration of heterogeneous data sources
and the development of methods and tools for analyzing high-dimensional
microarray data.

2. STUDY OUTLINE

In the present study. we have analyzed the Harvard lung cancer data set
[Bhattacharjee et al., 2001] and the Michigan lung cancer data set [Beer et
al., 2002]. Both data sets were generated on Affymetrix platforms. The data
sets comprise a different number of genes and clinical parameters for the
patients, but there exists a subset of genes that is contained in both data sets.
The Harvard data set comprises expression data from 12,600 transcript
sequences for 186 patients, including 139 adenocarcinomas. The Michigan
data set contains 86 primary lung adenocarcinomas as well as 10 non-
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neoplastic lung samples. Furthermore, various clinical data are provided.
such as tumor stage and anamnestic data (e.g.. smoking habits, sex, age).

In the first part of our study, the classification task. we are interested in
the question whether the combination of both data sets in conjunction with
the clinical data can improve the prediction of the 5-year survival chance of
patients. We decided to consider the 5-year survival prediction task because
this question is clinically motivated and of practical relevance. The question
is: Can we predict the survival risk group of the patients (survival < 5 years
orsurvival 25 years)? Thus, we are essentially formulating the problem as
two-class classification task. To address this task, we compare five state-of-
the-art machine learning techniques.

In the second part. we are concerned with a regression task. We use a
survival tree as an exploratory tool. Here, we are interested in the question of
whether we are able to discover novel, non-trivial, and potentially useful
(with clinical impact) insights into the correlation between gene expression
and survival outcome,

3. DATA INTEGRATION

We developed a relational database to facilitate the integration and
preprocessing of the heterogeneous data. The gene expression data for both
sets was integrated using the common attribute or key gene name. In total,
3,588 genes are in common in both the Harvard and the Michigan data set.
We selected only these genes for further analysis. Furthermore. we selected
the following clinical and anamnestic parameters: age, sex, TNM
classification, tumor stage. survival time in months, and censor index. For
some patients in the Harvard data set no survival information was given. We
excluded these patients from further analysis, so that the data set for analysis
contained a total of 211 patients (125 from Harvard data set, 86 from
Michigan data set). For the classification task., we excluded all patients that
were censored before 5 years (75 patients). In the next step, we discretized
the continuous values of the patients’ survival data into two classes, high
risk and low risk. Patients in the group high risk died before the 5 year mark.
whereas patients in the group low risk survived at least 5 years after
diagnosis. For the regression task, we included all 211 patients, ie. both
censored and uncensored observations.
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4. DATA NORMALIZATION

Although both Harvard and Michigan data have been generated on an
Affymetrix platform, the measured gene expression values are not directly
comparable. The arrays used in the two studies have different probe sets,
making a direct comparison of transcript abundance problematic. Beer et al.
[2002] uwsed HuGeneFL chips, containing 6,633 probesets, each with 20
probe pairs. Bhattacharje et al. [2001] used HG_U95Av2 chips, with 12,625
probesets and 16 probe pairs each. In addition, the survival outcome in the
two data sets is significantly different (p = 0.0049, comparison of Kaplan-
Meier curves). The Harvard data set contains 15 patients of tumor stage IV,
while the Michigan data set contains no patients with metastasis.

A global normalization approach using a simple mean or median
centering method is probably not sufficient because of the significantly
different survival outcomes. It is therefore crucial to make the data of the
two sets as comparable as possible by removing any set-dependent bias;
otherwise, we cannot exclude the possibility that the marker genes are
discriminating with respect to the data sets and not with respect to the
survival outcome.

Bolstad et al. [2002] compared different normalization methods for
oligonucleotide arrays and identified quantile normalization as a method of
choice, both with respect to speed and variance and bias considerations.
Using this method, it is possible to make the distribution of probe intensities
for each array in a set of arrays approximately the same. We therefore
adopted a quantile normalization method for integrating the two data sets.
This normalization scheme consists of four steps. Let v; and v; be column
vectors of expression values generated on two different oligonucleotide

platforms.

(1) Sort v;and v; in ascending order and determine the quantiles.

(2) Using linear regression, impute the values for the quantiles that are in
v; but notin v;, and vice versa.

(3) For all k quantiles of expression values, compute the mean, my, of
values in v; and v; in the K quantile, and assign my to the K™ element
in v; and v,

(4) Rearrange v; and v; to the original order.

The vectors v; and v; are quantile-normalized expression vectors. The
data were further normalized by standardizing each expression profile to
mean 0 and variance 1. We performed a principal component analysis on the
quantile-normalized expression data. The scatter plot of the first three
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principal components showed that the data cover approximately the same
space.

S. DATA ANALYSIS

5.1 Material

To address the classification task, we split the data set of 136 patients
randomly into a learning set of 96 patients (70.0%) and a test set of 40
patients (30.0%). The learning set comprises 63 (65.6%) patients of class
high risk and 33 (34.4%) patients of class low risk. The test set comprises 26
(65.0%) patients of class high risk and 14 (35.0%) patients of class low risk.
We include different variables in the data sets:

(1) Patient Data: age. sex, TNM-status, and tumor stage.
(2) Expression Data: quantile-normalized expression values.
(3) Patient+Expression Data: both Patient Data and Expression Data.

We trained the classifiers on the learning set and applied them to the test
set with the corresponding set of variables.

5.2 Methods

In the classification task, we investigated the performance of five state-
of-the-art machine learning methods: decision trees (C5.0), support vector
machines (SVMs), probabilistic neural networks (PNNs), k-nearest neighbor
classifier (k-NN), and artificial neural networks (multilayer perceptrons,
MLPs). Recent studies have reported successful application of these methods
to classification of microarray data. e.g.. decision trees [Zhang et al.. 2001],
SVMs [Brown et al., 2000]. PNNs [Berrar et al.. 2003], ~-NN [Shipp et al.,
2002], and MLPs [Khan et al., 2001].

We assessed the models’ performance on the basis of two criteria.
Firstly, based on a quantitative criterion, the classification accuracy with
respect to the survival risk groups. Secondly. on the basis of a qualitative
criterion, the output interpretability, i.e. we are interested in the question:
"How intelligible is the model’s output to humans?” In the following, we
briefly describe the classifiers.

SVMs belong to the family of binary statistical classifiers [Burges,
1998]. The basic principle of a SVM consists of finding the optimal
separating hyperplane between two distinct classes.
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MLPs belong to the family of artificial neural networks. In the present
study. we use SPSS Clementine’s implementation of MLPs and train the
networks using the backpropagation algorithm.

A PNN is the parallel implementation of the Bayes-Parzen classifier
[Specht, 1990].

Like the PNN. the k-NN classifier needs to access all learning data at the
time when a new test case is to be classified. In its simplest implementation.
the k-NN classifier computes a measure of similarity between the new case
and all learning cases, and the new case is classified as a member of the
same class as the most similar case. In the present study. we implemented a
weighted &-NN that takes into account the similarity of the nearest neighbors
for classifying a new case.

Based on some measure of “purity” such as information gain, decision
trees recursively split the data set by selecting the features (genes) that are
most discriminating with respect to the classes [Zhang et al., 2001]. For the
present study, we applied SPSS Clementine’s implementation of the decision
tree C5.0. Survival trees belong to the family of classification and regression
trees (CART), which operate similarly to the decision tree algorithm. The
CART methodology builds a binary decision tree by recursively partitioning
the elements of a data set according to some splitting rule. For an overview
of classification and regression trees. see e.g. Breiman et al. [1984]. The
splitting criterion for C5.0 is the information gain. whereas CART uses a
measure of diversity, for example, the sum of squared errors for normally
distributed data. This approach is motivated by the idea of likelihood-
maximization. Survival trees extend this approach to exponentially
distributed data with censored observations. We used the publicly available
R implementation of rpart for the analysis.

6. RESULTS

The &-NN and the PNN implemented various distance metrics. including
the fractal distance [Aggarwal et al., 2001]. which is particularly suitable for
high-dimensional data. The distance metric was considered an optimization
parameter, i.e. we chose that distance metric that provided for the lowest
training error rate. The support vector machines implemented three different
kernels: linear. radial. and polynomial. The topology of the MLP consisted
of one hidden layer with five neurons: the training algorithm was
backpropagation (with momentum and adaptive learning rate).

The SVM, PNN, and £-NN models were trained in leave-one-out cross-
validation (LOOCYV) on the learning set. Those model parameters that
resulted in the smallest LOOCV error were used for the final model to
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predict the test cases. The decision tree C5.0 was trained in a 10-fold cross-
validation procedure: the learning set was 10 times randomly split into a
training set (~70%) and a validation set (~30%). The decision tree used the
training set to generate the classification rules and applied them to the
validation cases. The tree was pruned in such a way that the classification
error on the validation set was minimal. The MLP was trained on the
learning set until the accuracy reached 90% or the maximum number of
epochs (10,000) was reached. The resulting model was then applied to the
test set. Table 1 summarizes the classification results.

Table 1. Correct classification rates in % of the models for the learning (L} and test sets (7).

Madel Patient Expression | Patient+Expression Tumar Stage+Top Genes
& T L T L T L T
50 | 708 715 (572 615 802 675 80.2 67.5
SVvM | 740 650 | 656 65.0 65.6 65.0 74.0 750
MLP 896 650 | 656 725 65.6 65.0 BB.O 65.0
PNN | 73.0 725 | 646 615 64.6 62.5 719 60.0
NN | 740 650 | 656 725 65.6 725 792 72.5

The decision tree C5.0 achieved the overall best test set accuracy of
77.5% using the Patient Data only. The average accuracy in the leaming
phase in 10-fold cross-validation was 70.8% (with a standard error of 3.1).
Using the expression data only, the average accuracy in the learning phase
was 57.2% (with a standard error of 5.6). Using both Patient+Expression
Data, the tree was able to achieve a higher accuracy in the learning phase
(80.2%, standard error of 4.0), but the test accuracy decreased to 67.5%,
which might be explained by an overfitting effect.

The PNN achieved the second best performance on the Patient Data with
a test accuracy of 72.5%. Using the Expression Data or Patient+Expression
Data, the model’s performance decreased to 62.5%. The PNN in this study
is not able to ignore irrelevant or redundant features, which might explain
this degradation. To assess the significance of the result on the Patient Datia,
we performed a random permutation test. In this test, we randomly permuted
the class label (ie., the risk group) of each patient in the learning set, and
trained the classifier again. This procedure was repeated 10000 times to
obtain the distribution of the correct classifications under the null hypothesis
of random gene expression profiles. The p-value (p = 0.0009) for the result
of the PNN is statistically significant.

The decision tree identified the tumor stage and a set of nine genes (Top
Genes) as the most relevant variables (data not shown). Based on these
variables, the SVM with radial kernel achieved a test set accuracy of 75.0%.
The number of correct classifications in the learning set for the unpermuted
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class labels is 74.0%: this result is statistically significant (p = 0.0062. based
on a random permutation test involving 10000 permutations).

With respect to output interpretability and general usability, we believe
that the decision tree is the most suitable model in the present study.
Decision trees generate classification rules that are easy to understand for
humans. The generated classification rules can provide new insights into the
structure of microarray data by describing the interrelation between gene
expression with respect to the class variable.

We built a survival tree on the set of 211 patients using the variable
tumor stage and the quantile-normalized expression values. For each
terminal node of the tree, we performed a Kaplan-Meier analysis and used
the median of the survival curve to predict the survival time of the patients in
this node. For example, let the median survival time in a terminal node be
17.5 months. Then for each patient who falls into this node, we predicted a
death event and assumed a survival time of 175 months. If the median
survival time did not exist in a terminal node (for example. if the node did
not contain any death events), then we assumed that the patients in this node
were alive. Pruning involves the removal of terminal nodes in a decision tree
and is a method for improving the generalization ability of the model. We
pruned the survival trees as follows: If two neighboring terminal nodes
would both result in the prediction of death events, then these two nodes
were merged. If two neighboring nodes both resulted in the prediction of
alive, then these two nodes are merged as well. We did not merge two
neighboring nodes if they led to different predictions (i.e., one node results
in dead. the other one results in alive). This pruning procedure was repeated
until no nodes could be merged anymore. Figure 1 shows the resulting
survival tree. Node 21 contains 12 patients of early tumor stages (seven
patients of tumor stage IA and five patients of tumor stage IB). The mean
survival time in this group is 42.4 months; the median survival time is 34.6
months. Node 17 contains 11 patients of early tumor stages as well (two
patients of stage IA and nine patients of stage 1B). The mean survival time in
this group is 158 months with a median of 142 months. Both node 21 and
node 12 contain only death events. Node 6 contains 15 patients of advanced
tumor stage (one patient of stage IIA, six patients of 1IB, two patients of
[ITA. three patients of IIIB, and three patients of [V). The mean survival time
is 68.1 months. and the median does not exist. In this group. we observe only
four death events. Node 12 contains seven patients of advanced tumor stage
(one patients of stage IIA, two patients of 1IB, three patients of IIIA, and one
patient of IV). We observe only one death event in this group. The mean
survival time is 50.2 months: the median does not exist. Figure 2 depicts the
Kaplan-Meier survival curves in the four groups.
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The survival outcomes in these four groups are surprising, because we
would expect that the rather poor outcomes would be associated with
advanced tumor stages, while the relatively long survival times would be
associated with the early stages. A different distribution of age or sex could
possibly explain the observed paradox phenomenon. However, the analysis
of the distribution of age and sex in the four groups revealed that neither of
these variables is a confounder. Therefore, it can be hypothesized that the
surprising outcomes are due to differences in the transcriptional profiles.
Table 2 shows the genes that are involved in the groups with unexpected
survival outcomes.

Table 2. Genes involved in the groups with unexpected survival outcomes.

Name  Synonyms, protein nantes Location GenBank/  gop woords
OMIM no. )
NEOL  Neogenin, NGN 15q22.3-q23  U61262; Tissue growth
601907 regulation, cell-cell
recogsition, and cell
migration
PLOD2  Pracollagen lysime 2- 3g23-q24 AY026757;,  Collagen maturation
oxoglutarat S-dioxygenase 2, €0186S8
lysine hydroxylase 2, lysyl
hydroxylase 2
PSMBI0  Proteasome subunit beta-type  16q22.1 AHOU134:  Proteolysis and
10, MECLI, LMP10, PSBA 176847 peptidolysis, bumoral
defense mechanism
EYA2 Homologue of Eyes Absent 20q13.1 AF387364;  Development of eye:
Drosophila 2, DRES12, EAB! 01654 Lriggers rapid
apoptosis in
interleukin-3-
dependent 32D.3
murite myclowd cells
DGKa  Diacylglycerol kinase alpha, 12q13.3 AY335740; Inwracellular signaling
DAGK, B0-KD 125855 pathway
FUBPt  Far upstream element-binding ~ 19p13.3 AHCOT695,  Neuron-specific
protem 1, FUSE-binding 603444 splicing of the N1
protein, KHSRP, FBP2, KSRP exon of SRC
7. DISCUSSION

In the following, we briefly discuss the biology of the six genes whose
expression profiles might be associated with the outcome of the “surprising”
survival groups.

The most important gene is NEOI. The protein encoded by this gene,
neogenin, shares 53% amino acid identity with DCC (Deleted in Colorectal
Cancer), a candidate tumor suppressor gene [Vielmetter et al., 1997]. DCC is
important for the maintenance of normal tissue differentiation in multiple
tissues, and its deletion has been shown to result in proliferation of various
cancers [Vielmetter et al., 1997]. Based on their sequence conservation and
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similar expression during development. Meyerhardt et al. [1997]
hypothesized that DCC and neogenin have related functions. However.
while the loss of DCC expression is frequent in various cancers, the
researchers found out that the expression of neogenin is not altered in more
than 50 tumor types. Due to its chromosomal location (15¢22.3-q23) and
ubiquitous expression, neogenin seems to be infrequently altered in cancer.
Neogenin is also highly expressed in various embryonic tissues, suggesting a
more general role in developmental processes such as tissue growth
regulation, cell-cell recognition, and cell migration [Vielmetter et al., 1997].
Although no direct link between neogenin and tumor suppression has been
found yet. Vielmetter el al. [1997] hypothesized that NEOI encodes a
regulatory protein in the transition of undifferentiated proliferating cells to
their differentiated state. Other recent studies have revealed that the
expression of neogenin is associated with esophageal squamous cell
carcinoma [Hu et al., 2001] and breast cancer [Srinivasan et al., 2003].
According to the survival tree. underexpression of neogenin is associated
with the low survival groups of the early lung cancer patients in node 17 and
node 21, If neogenin acts as a tumor suppressor, then the underexpression of
neogenin might have an impact on the survival outcome of the patients. It
might be possible that some rare aggressive forms of early lung
adenocarcinomas are associated with the loss of expression of neogenin,
while other, less aggressive subtypes, are not. The question whether the loss
of expression of neogenin is causal for the poor survival outcome of the
patients in nodes 17 and 21 remains open. However, the results of the
survival tree corroborate the hypotheses of Vielmetter et al. [1997] and
Meyerhardt et al. [1997]

PLOD2 encodes for Procollagen-lysine 2-oxoglutarat 5-dioxygenase 2
and is located on 3q23-q24; this protein catalyzes the hydroxylation of lysyl
residues in collagens [OMIM no. 601865]. Denko et al. [2003] observed an
overexpression of PLOD2 in hypoxic epithelial cells. The researchers
hypothesized that the differential expression of PLOD2 could contribute to
hypoxia-induced metastasis. Hypoxia is known to be a potent factor for
tumor angiogenesis in lung adenocarcinomas [Sato et al.. 2002]). The
survival tree suggests that overexpression of PLOD2 correlates with a poor
clinical outcome for patients of early tumor stages.

PSMBI10 (aka LMPI0) is located on 16q22.1 and is involved in
proteolysis and peptidolysis, the humoral defense mechanism, and in an
ATP/ubiquitin-dependent non-lysosomal proteolytic pathway [GenAtlas.
2003]. Some cancerous cells are able to alter the expression of proteins that
are involved in antigen processing, so that cytoxic T-cells do not recognize
the tumor. Using human cancer cell lines, Johnsen et al. [1998] investigated
multiple genes that are differentially expressed in the class I MHC antigen-
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processing pathway. including several proteasome subunits that have been
implicated in antigen processing. They observed a complete loss of
expression of TAP1, TAP2, LMP2, and LMP7, as well as PSMB10, which is
encoded outside the MHC pathway. Johnsen et al. [1998] hypothesized that
some tumors may alter the immune surveillance by simultaneously down-
regulating multiple components of the MHC-I antigen-processing pathway,
which results in an alteration of the processing and presentation of tumor
antigens. According to the results of the survival tree, underexpression of
PSMBI0 is associated with a very poor survival outcome (cf. node 17).
Some aggressive types of lung adenocarcinomas might suppress the
expression of PSMB10 and thereby altering the MHC antigen-processing
pathway, so that cytoxic T-cells are no longer able to recognize the cancer
cells. This “camoutflage effect” is not observed in the case that PSMBI0 is
not underexpressed, leaving the possibility of a better survival outcome (cf.
node 20). Recently, Huang et al. [2003] have identified PSMB10 as a gene
associated with metagene predictors of breast cancer recurrence.

EYA?2 is located on 20ql3.1 and is the human homologue of the Eyes
Absent gene in Drosophila. This gene plays a pivotal role in the
development of the Drosophila eye; without this gene, progenitor cells in the
eye imaginal disc undergo programmed cell death [Clark et al., 2002]. If
EYA2 has a functional homology to Drosophila EYA, then it may be
involved in apoptosis as well. Clark et al. [2002] recently reported that a
misexpression of members of the Eyes Absent family triggers apoptosis.
According to the results of the survival tree in our analysis. the expression of
EYA2 is crucial for dividing the patients into a group of good clinical
outcome (node 20), and the group of poor clinical outcome (node 21).

Some patients suffering from an advanced type of lung adenocarcinoma
have a surprisingly good clinical outcome, e.g. the patients in node 6. An
overexpression of DGKa is associated with this group. The average survival
time of these patients is over 5 years. DGKe is Diacylglycerol kinase o, and
is located on 12q13.3. Diacylglycerol (DAG) functions in intracellular
signaling pathways as an allosteric activator of protein kinase C [OMIM no.
125855]. Furthermore, DAG appears to be involved in regulating RAS
family proteins [OMIM no. 125855]. Topham et al. [2001] reported that the
regulation of DAG is crucial to maintain cellular homeostasis. DAG kinases
phosphorylate DAG to phosphatidic acid (PA), thereby suppressing the
function of DAG. In cancer cells, DAG is often overexpressed. and also PA
can lead to abnormal cell division and cancer. Apparently, the tight
regulation of these kinases is crucial for the normal cell development. In
their investigation, Topham et al. [2001] focused on the impact of DGKE on
the regulation of the gene Ras. Guanine nucleotide exchange factors (GEFs)
activate Ras by facilitating GTP binding. RasGRP, an exchange factor. was
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recently identified as a potential leukemia disease gene. An overexpression
of this protein in cultured cells leads to a transformed phenotype. According
to Topham et al. [2001], these observations indicate that abnormally high
RasGRP activity can lead to malignant transformation. RasGRP has a
diacylglycerol (DAG)-binding domain, and its activity as exchange factor
depends on local concentration of DAG. Since DAG kinases remove DAG
from the cell by converting it to PA, they are able to reduce the
concentration of DAG. Consequently, these kinases might serve as an "off-
mechanism” for RasGRP, and thereby reduce the activation of Ras. DGK
kinases may play a pivotal role in the Ras signaling pathway. However,
Topham et al. found that only one DGK isoform. namely DGKJ, is able to
affect RasGRP activity significantly. The survival tree in our analysis
identified the expression level of DGKa as an important discriminator for
the patients with advanced tumor stages: whereas an overexpression of
DGKao is associated with a rather good clinical outcome, an underexpression
is associated with a rather poor outcome.

Most patients suffering from an advanced tumor stage and showing an
underexpression of DGKo have a rather poor clinical outcome (cf. node 7.
containing 53 patients and 44 death events). However. for some of these
patients, we observe an overexpression of FUBPI. These patients have a
remarkably better survival outcome (cf. node 12). FUBPI is a fuse-binding
protein. and the encoding gene is located on 1p31.1 [OMIM no. 603444].
FUBPI is a transcriptional activator of c-myc [Kim et al., 2003]. Kim et al.
[2003] have recently shown that overexpression of c-myc is frequently
associated with cancers in various tissues and organs, including lung, and its
expression is suppressed during lung differentiation. Binding of the tRNA
synthetase cofactor p38 stimulates ubiquitination and degradation of FUBPI,
leading to downregulation of myc. which is required for differentiation of
functional alveolar type Il cells. Adenocarcinomas are known to arise in
distal portions of the airway and alveolus. [Borczuk et al., 2003]. ¢c-myc is
known to play a pivotal role in cell growth, and an overexpression of c-mye
is oncogenetic [Takahashi et al., 1998; He et al., 2000]. The tight regulation
of c-myec is crucial for normal cell growth, and the expression of FBP1 at a
proper level is therefore required. Liu et al. [2001] have shown that
mutations of the TFIIH helicase that impair regulation by FBPI affect proper
regulation of c-myc expression and have implications in the development of
malignancy. Interestingly. Borczuk et al. [2003] have recently identified
FUBP1 as one of the top-100 marker genes in large cell lung carcinoma.

The survival outcome of lung cancer patients depends from various
different factors and is certainly very difficult to predict. In the present
study. integrating clinical and transcriptional data did not result in an
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improved prediction of the 5-year survival outcome. Here, the tumor stage is
the most important predictor.

However, the regression study revealed that gene expression profiling of
cancer specimens might contain some information about the clinical course.
Using survival trees as exploratory tools rather than prediction models. it
was possible (o gain new insights in the structure of the data set. Whether the
identified genes play a key role in the clinical course of Jlung
adenocarcinoma patients remains an open question and requires adequate
validation by molecular experiments. But the present study illustrated how
survival trees could be used as exploratory tools, similarly to hierarchical
clustering approaches that are already widely used to structure and visualize
microarray data.
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Abstract: We applied a model-based clustering approach to classify tumor tissues on the
basis of microarray gene expression. The impact of this classification on
cancer biology and clinical outcome was studied. In particular, the association
between the clusters so formed and patient survival (recurrence) times was
examined. The approach was illustrated using the four CAMDA'03 lung
cancer datasets. We showed that the gene expression-based clustering is a
powerful predictor of the outcome of disease, in addition to current systems
based on histopathology criteria and extent of disease al presentation.

Key words:  Mixture models, EMMIX-GENE algorithm, selection  bias, microarrays,
survival analysis, Cox proportional hazards, Kaplan-Meier survival curve

1. INTRODUCTION

Lung cancer patients with the same stage of disease can have markedly
different treatment responses and clinical outcome. Recent studies have
suggested that information from gene expression profiles can be used to
classify cancer tissues by type and subtype: see, for example, Mateos et al.
[2001] and Wigle et al. [2002]. The aim of our analysis was to demonstrate
that the gene expression data provided additional information on survival
beyond that provided by the histopathology of the tumors. We applied a
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model-based approach to cluster tumor tissues on the basis of gene
expression, implemented in the EMMIX-GENE algorithm [McLachlan et
al., 2002]. The impact of this clustering of tissues on cancer biology and
clinical outcome was investigated. The association between clusters formed
and patient survival (or recurrence) times was examined. We analyzed each
of the four CAMDA’03 datasets, referred to here as Ontario [Wigle et al.,
2002], Stanford [Garber et al.. 2001], Harvard [Bhattacharjee et al.. 2001]
and Michigan [Beer et al., 2002] datasets. The first two used cDNA arrays,
while the latter two used different versions of Affymetrix oligonucleotide
arrays. We analyzed each dataset individually in order to determine whether
we could make conclusions from a particular dataset in its own right.

2. ANALYTICAL METHODS

2.1 Data Selection

We downloaded the processed data from the CAMDA’03 contest web
site (http://www.camda.duke.edu/camda03). For the cDNA arrays, we took
the 2880 (Ontario dataset) and 918 (Stanford dataset) genes. For the
Affymetrix arrays. we started with the 3312 (Harvard dataset) and 4965
(Michigan dataset) genes. but these had outlier values. Thus, for the Harvard
dataset, we imposed a floor (lower bound) of 1 and a ceiling (upper bound)
of 3000 (leaving 3190 genes), and the data were then log transformed. For
the Michigan dataset. we imposed a floor of -1 and a ceiling of 26,000
(reducing to 4728 genes) and then applied the generalized log
transformation, log(x++/c? +x?). The microarray data matrix for each
dataset was formed where each row of the data matrix represents a single
gene and each column a tumor tissue. Each column of the data matrix was
standardized to have mean zero and unit standard deviation. Finally. each
row of the consequent matrix was standardized to have mean zero and unit
standard deviation. In all the datasets. we imputed missing values using the
method in Dudoit et al. [2002]. By comparing Unigene identifiers, we found
that the cDNA arrays had at least 105 genes in common, while the
Affymetrix arrays had at least 1257 genes in common in the input datasets.

2.2 Model-Based Clustering Approach

The EMMIX-GENE algorithm has been developed for the specific
purpose of the clustering of tissue samples on a very large number of genes
[McLachlan et al., 2002]. The first step of the algorithm considered the
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selection of a subset of relevant genes from the available set of genes. This
selection process was undertaken in the absence of tissue samples that were
of known classification with respect to the clinical outcome. Briefly. we
tested for each gene separately whether there was genuine grouping in the
tissues. Based on the likelihood ratio test statistic, relevant genes that
revealed the group structure for clustering tissue samples were retained. In
the second step. we clustered the retained genes into a user-specified number
of groups so that highly correlated genes were placed in the same cluster.
Each gene-cluster (metagene) was represented by the sample mean of the
cluster. The final step concerned the clustering of the tissues by fitting
mixtures of factor analyzers [McLachlan et al., 2000]. It was undertaken on
the basis of the metagenes [McLachlan et al., 2002].

23 Survival Analysis

In the survival analysis, only tissues from patients with known clinical
characteristics and survival times were considered. With the Ontario dataset,
we defined the outcome as the time between surgery and the recurrence.
This is equivalent to the definition in Wigle et al. [2002] because patients
free from recurrence are all still alive at the end of follow-up period. There
were 37 patients with 15 censored. For the Stanford dataset, there were 26
Adenocarcinoma (AC) tissues with four tumor pairs derived from the same
patients. In the analysis, each tumor pair was treated as one observation.
This gave 22 observations in total, with 10 censored. With the Harvard
dataset. there were 115 patients and 64 died before the end of the follow-up.
For the Michigan dataset, there were 86 patients and 24 died before the end
of the follow-up.

The Kaplan-Meier method was used to estimate the overall survival (or
being recurrence-free) of patients for each cluster formed by the gene
expression-based clustering. Kaplan-Meier survival curves of the clusters
were compared using the log-rank test. The impact of the gene expression-
based clustering of tissues on patient survival was studied using the Cox
proportional hazards model [Cox, 1972]. It was determined by examining
the relative hazard ratios with respect to the clusters of the tissues. The
significance ol estimated hazard ratios were tested using the Wald test. A
significant result implies that clinical outcomes on the basis of patient
survival are different between clusters. All calculations were performed with
the S Plus statistical package.
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3. RESULTS

3.1 Clustering of Tumor Tissues

We ran EMMIX-GENE for all the tumor types within each dataset. We
retrieved the histological classification for at least the non-AC tumors in all
datasets. except for the Ontario dataset. For the other three datasets we
focused on the AC tumors, since the clinical data were available only for this
type of tumor. Each row of the reduced data matrix was then standardized to
have mean zero and unit standard deviation. We re-ran EMMIX-GENE on
the reduced set of AC tumors only.

For the Ontario dataset, we retained 766 genes. The top genes (as
indicated by the likelihood ratio statistic) included immunoglobulin lambda
light chain IGL. hypothetical protein FLJ10404, HLA-B  associated
transcript 2 D6SS1E, Friend leukemia virus integration 1 FLII and ATP-
binding cassette ABCD3. The heat maps (not given here) were adopted to
exhibit similarities between clusters of the tissue samples. They present a
grid of colored points where each color represents a gene-expression value
for a gene in the tissue sample. It was found that several metagenes clearly
separated tissues into two clusters, which we termed poor- and good-
prognosis clusters. The former cluster comprised 23 of the 24 patients with
recurrence, plus eight patients with censored survival data, suggesting that
these might have poorer outcome. Wigle et al. [2002] also found five of
these in their “early recurrence™ cluster. The good-prognosis cluster
comprised the remaining seven recurrence-free patients, and also a patient
known to recur (P171 ADC). Wigle et al. [2002] also found this, and this
patient was still alive at the end of the follow-up.

For the Stanford dataset. we clustered a subset of 35 AC tumors (we
removed the tumors which classified into non-AC clusters when clustering
the full dataset). We retained 219 genes. of which the top genes included
CD36 antigen, signal transducer and activator of transcription 4, aldo-keto
reductase family 1 member CI and kynureninase. We clustered the tissues
into two clusters. corresponding to the poor-prognosis and good-prognosis
clusters. Our poor-prognosis cluster corresponded to the Garber et al. [2001]
AC group 3 (worst clinical outcome), while the good-prognosis cluster
corresponded to AC groups | and 2. The only exception was tissue from
patient 218 (AC group 3). which appeared in our good-prognosis cluster.

For the Harvard dataset, we clustered 127 AC tumors and retained 858
genes. The top five genes were: tubulin-specific chaperone e. thioredoxin
reductase 1. UDP-glucose dehydrogenase. Cluster Incl AL096723 and the
gene protein kinase, interferon-inducible double stranded RNA dependent.
We obtained three AC clusters, which did not appear to correspond to those
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of Bhattacharjee et al. [2001] (AC subtypes C1-C4), but rather were spread
throughout their clusters.

For the Michigan dataset. we clustered 86 AC tumors and retained 1394
genes. The top genes were: MUC3A (mucin 3), TRAPI (heat shock protein
75). HLA-DQAL (major histocompatibility complex class IT), RPS4Y
(human ribosomal protein) and POU2AFI (POU domain class 2 associating
factor). We obtained three tissue clusters, and these overlapped with those
of Beer et al. [2002], with 25 tissues differing between our results and theirs.

3.2 Identification of Prognostic Genes for AC Tumors

We wanted to see if we could unify our AC tumor clusters, by finding
common genes important in identifying clusters between the datasets. For
the Affymetrix arrays (Harvard and Michigan datasets), the EMMIX-GENE
procedure retained at least 108 genes common to both. (These included
interesting genes involved in metabolism, transcription and translation, cell
signaling and cell cycle control.) We matched these by gene name to the
retained genes (219) with the Stanford dataset. We found at least six
common genes, four of which are involved in cellular metabolism
(thioredoxin reductase 1, ornithine decarboxylase 1, S100 calcium-binding
protein A10 and kynureninase). We also identified full-length proliferating
cell nuclear antigen (PCNA), a DNA binding protein involved in control of
replication and epithelial membrane protein 2 (EMP2), a reported tumor-
associated gene. Several of the metabolic enzymes were also found to be
important in the original papers on these datasets, for example kynureninase
appeared as a top gene in our retained genes (Stanford dataset) and was
found by Beer et al. [2002] in the top 100 marker genes. Also, Garber et al.
[2001] found ornithine decarboxylase and thioredoxin reductase as markers
to differentiate their long-term survivor and poor-prognosis groups. PCNA
was mentioned in Bhattacharjee et al. [2001] as a marker gene for cluster
CI1, though this cluster was not associated in their study with clinical

outcome.
33 Impact of Classification on Outcomes

For the Ontario dataset, the Kaplan-Meier curves (Figure 1) showed a
significant difference in the probability of recurrence-free survival between
the good-prognosis and poor-prognosis clusters (p-value=0.027). The mean
(SE) times between surgery and recurrence were 1388156 and 665186
days, respectively. The results of the multivariate Cox regression analysis
are given in Table |. The gene expression-based cluster indicator variable
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was the only factor near to significance at the conventional 5% level (p-
value=0.06).
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Figure 1. Kaplan-Meier curves of recurrence-free survival for the two clusters (Ontario data).

Table 1. Muoltivariate Cox hazards analysis of the risk of recurrence (Ontario data).

Variable Hazard ratio (95%CI) p-value
Poor-prognosis cluster {vs. good prognosis) 6.8 (0.9-51.8) 0.06
Stages 2 or 3 (vs. Stage 1) 1.1 (04-2.7) (.88

For the Stanford dataset, the Kaplan-Meier survival curves (Figure 2)
showed a significant difference in the probability of overall survival between
the good-prognosis and poor-prognosis clusters (p-value<0.001). The mean
(+SE) survival times were 37.5+5.0 and 5.2+2.3 months, respectively. The
results of the multivariate Cox regression analysis are given in Table 2. It
was evident that the two prognosis clusters were different after the
adjustment for the clinical factors (p-value=0.002). The estimated hazard
ratio for overall survival in the poor-prognosis cluster as compared with the
good-prognosis cluster was 15.5 (95% Cl: 2.7 to 90.2).
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Figure 2. Kaplan-Meier survival curves for the two prognosis clusters (Stanford data).

Table 2. Multivariate Cox proportional hazards analvsis of the risk of death (Stanford data).

Variable Hazard ratio (95%CI) pvalue
Poor-prognosis cluster (vs. good-prognosis) 155(2.7-90.2) 0.002
Tumor grade 3 (vs. grades | or 2) 18(0.4-92) 0.47
Tumor size 1 (vs. sizes 2 to 4) 0.5(0,03-74) 0.59
Presence of tumor in lymph nodes 4.4 (0.448.6) 0.23
Presence of metastases 4.3 (0.8-24.0) 0.10

With the Harvard dataset, the mean (£SE) survival times were 62.2+5.7,
50.9+5.8, and 26.5+4.7 months for Clusters 1 to 3, respectively. The
Kaplan-Meier survival curves for the three clusters are displayed in Figure 3.
They indicated that survival in Cluster 3 differed significantly relative to that
in Cluster 1 (p-value=0.014) and in Clusters | and 2 combined (p-
value=0.043).

The gene expression-based clustering was significantly associated with
the clinical outcome on the basis of survival. The results of the multivariate
Cox regression analysis (the variable presence of metastases was not
included in the analysis due to too many missing data) are shown in Table 3.
It was found that the patient survival for Cluster 3 was different from
Clusters 1 and 2 combined, after adjustment for the clinical factors (p-
value=0.008).
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Figure 3. Kaplan-Meier survival curves for the three clusters (Harvard data).

Table 3. Multivariate Cox proportional hazards analysis of the risk of death (Harvard data).

Variable Hazard ratio (95%CI) p-value
Cluster 3 (vs. clusters | or 2) 2.7(1.3-54) 0.008
Age 1.041.0-11) 0.086
Female vs. Male 0.6(03-1.1) 0.078
Smoking frequency 1.3 (D.6-2.5) 0.520
Tumor size | {vs. sizes 2to 4) 1.7(09-3.3) 0.110
Presence of tumor in lymph nodes 24(1.34.7 0.009
Grade | (vs. grades 2 to 4) 1.5 (0.7-3.1) 0.260

For the Michigan dataset, the mean (=SE) survival times were 86.2+7.1,
60.3+8.0, and 48.0+7.9 months for Clusters 1 to 3, respectively. The Kaplan-
Meier survival curves presented in Figure 4 showed that survival in Cluster |
differed relative to that in Cluster 2 (p-value=0.056) and approached
significance for Clusters 2 and 3 combined (p-value=0.069).

The results of the multivariate Cox regression analysis are given in Table
4, As the tumor stage and the number of tumors in lymph nodes were highly
correlated (Spearman’s rank correlation: 0.93), only the former was included
in the analysis. It can be seen that the tumor stage was the only significant
factor affecting survival.
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Figure 4. Kaplan-Meier survival curves for the three clusters (Michigan data).

Table 4. Multivariate Cox proportional hazards analysis of the risk of death (Michigan data).

Varable Harard ratio (95%CT) p-value
Clusters 2 or 3 {vs. Cluster 1) 1.8 (0.7- 4.5) 0.220
Age L1{1.0= 1.1) 0.064
Female (vs. Male) 0.5(0.2- 1.3) 0.160
Stage 3 (vs. stage 1) 5.3(1.B-16.1) 0.043
Tumor sizes 3 or 4 {vs. sizes 1 or 2) 1.6{04- 6.5) 0.510
Moderate or Poor differentiation (vs. well) 1.4(03- 55 0.660

4. DISCUSSION

We used a mixture-model based approach to identify patient clusters. The
advantage of this method is that it provided a sound statistical basis for
clustering and for assessing what is the right number of clusters. Our
analysis was limited by the small numbers of tumors available (especially
for the Ontario and Stanford datasets). In addition, clinical data were
available for only subsets of the tumors (often only for one tumor type, AC),
and the high proportion of censored observations limited the comparison of
survival curves among clusters (for example, with the Michigan dataset, the
percentage of censored observations was 72%).
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We focused here on the use of cluster analysis (unsupervised
classification) to link gene-expression data with survival. We also used
discriminant analysis (supervised classification) to illustrate the prognostic
value of the clusters obtained on the basis of the gene expressions. We
proceeded on the basis that the clusters so formed represented training data
of known origin from the classes with varying degrees of survival and
formed a support vector machine (SVM) for the prediction of the class of
origin of a new tumor. This was somewhat self-serving in taking the clusters
to be random samples from the underlying prognostic classes, but it at least
provided a lower bound on the error rate that could be expected of a
prediction rule based on genuine training data. We used the SVM with
recursive feature elimination (RFE) of Guyon et al. [2002] to eliminate
genes in a backward selection procedure from the SVM, using (10-fold)
cross-validation [Ambroise and McLachlan, 2002] with allowance for the
selection bias. It was found that the error in predicting the clinical outcome
of a new lung cancer tumor was approximately 6% (Ontario dataset), 3%
(Stanford dataset), 5% (Harvard dataset), and 26% (Michigan dataset). Also,
the prediction rule provided a method for revealing potential marker genes,
as it can be noted how many times a gene was selected in the final form of
the SVM on each of the ten sub-samples during the 10-fold cross-validation.

5. CONCLUSIONS

We applied a model-based clustering approach to classify tumor tissues
using their gene signatures into (a) clusters corresponding to tumor type and
(b) clusters corresponding to clinical outcomes for tumors of a given
subtype. In (a) we found almost perfect correspondence between cluster and
tumor type, at least for non-AC tumors, except in the Ontario dataset. The
clusters in (b) were identified with clinical outcomes such as recurrence
versus non-recurrence and death versus long-term survival. Except for the
Michigan dataset. we were able to show that gene expression data provided
prognostic information. beyond clinical indicators such as stage.
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Chapter 13

MICROARRAY DATA ANALYSIS OF SURVIVAL
TIMES OF PATIENTS WITH LUNG
ADENOCARCINOMAS USING ADC AND K-
MEDIANS CLUSTERING

Wenting Zhou, Weichen Wu. Nathan Palmer, Emily Mower, Noah Daniels,

Lenore Cowen, and Anselm Blumer
Computer Science, Tufts University. Medford, MA 02155 USA

Abstract: We experiment with two types ol clustering, K-medians and a dimension-
reduction technique known as approximate distance clustering (ADC) [Cowen
and Pricbe 1997], for classilying lung adenocarcinomas into high-risk and
low-risk groups according to gene expression values from microarray data.
The microarrays were Affymetrix oligonucleotide arrays used in studies at
Michigan and Harvard, with 12.600 and 7129 probesets respectively. We show
that we can obtain accurate classification based on a reduced set of genes
obtained by nearest shrunken mean (NSM) [Tibshirani et al. 2002] or a
combination of a variance-based approach with hierarchical clustering. The
quality of the clustering 1s measured by using the p-values from log-rank lests,
and the results are confirmed using cross-validation and by using the reduced
set of genes obtained from one dataset (o cluster the other.

Key words:  Microarray: ADC clustering: K-medians: adenocarcinoma; survival time

1. INTRODUCTION

This paper investigates clustering and dimension-reduction techniques on
two of the four CAMDA 2003 datasets of gene expression values and
survival times of patients with lung adenocarcinomas. We chose the
Michigan [Beer et al. 2002] and Harvard [Bhattacharjee et al. 2001] data due
to the reasonably large sample sizes (n = 86 and 84) and lack of missing
values. We use approximate distance clustering (ADC) maps [Cowen and
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Priebe 1997] to project the data into one or two dimensions so we can use
very simple clustering techniques, then follow this with nearest shrunken
mean (NSM) [Tibshirani et al. 2002] to reduce the number of genes used to
predict the clusters. We contrast this with more classical techniques of
variance ratios and hierarchical clustering.

2. METHODS
2.1 Approximate Distance Clustering (ADC)

Approximate distance clustering (ADC) is a method that reduces the
dimensionality of data by calculating the distances from data points to
subsets of the data points called “witness sets” [Cowen and Priebe 1997].
One witness set is chosen for each desired output dimension.

It is defined as follows:

a) Let X be a collection of datain R™ In this case, each data point
corresponds to a gene chip. so mis 12,600 or 7,129 initially.

b) Define Dy, Dy,..., D4 to be subsets of X of sizes k;, Ka,..., kg These are
the witness sets.

¢) The associated ADC map, fp1.p2...pay: R™ = R’ maps X (0 (Y1, ¥2,.+-»
Ya)» where y; = min{ Il x;— x ll : x; & D;}.

In other words, data point x maps to a point in m-dimensional space with
i" coordinate equal to the distance from x to the nearest point in the i"
witness set. A good witness set is a small set of points that produces a
mapping that preserves inter-cluster distances. In this paper, we look at the
simplest cases of ADC projection on the microarray data: the case where the
number of dimensions we project to is one or two, and the size of all witness
set is one. Note that ADC does not in itself produce a clustering: the
resulting points in one or two dimensions must still be classified or clustered
using some method that works for low-dimensional data. In one dimension
we just pick a cutoff value and assign all points below the cutoff to one
cluster and all points above to the other. In two dimensions. we add the
coordinates together before comparing to the cutoff. We use the following
criterion to choose a good clustering from the set of allowable clusterings:

Compute the Kaplan-Meier survival curves and the p-value from the log-
rank test. then use the following w-criterion:

w=5500 * a + 4000 * b + 450 * (1-c) + 50 * d (1)
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where

a is the p-value

bis | if the size of smaller group is less than 2/8, and 0 otherwise

¢ is the difference between the final survival rates of the low-risk and high-
risk groups

dis the high-risk group’s final survival rate

This criterion is designed to select cluster separations with low p-values
where neither cluster is too small and the final survival rates are reasonable.
We use leave-one-out cross-validation to validate selecting the witnesses and
cutoffs according to this criterion.

2.2 Nearest Shrunken Mean (NSM) Gene Reduction

After choosing the high-risk and low risk clusters using ADC clustering
according to the w-criterion, we use nearest shrunken mean (NSM)
[Tibshirani et al. 2002] to eliminate genes (or probesets) that have all their
cluster means close to their overall mean.

Let:

x;, be the expression of gene 7 for tissue sample j
Ci be class (or cluster) k

my be the mean expression of gene 7 in C;
x; be the mean of gene i

n be the sample size

K be the number of clusters

ne be the size of Gy

si = (U(n-K)) T culxy-ma)’

5g be the median of the s;

M, = sqri(1/m+1/n)

dy = (my — x;) | (m*(s7+50)), so

M = X + di «m*(si+s5p)

In this expression, dix can be reduced by 4 in absolute value or replaced
by zero if its absolute value is smaller than 4. If it is replaced by zero, the
cluster mean becomes the overall mean: if this happens for all clusters, the
gene can be eliminated.
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23 K-medians Clustering

K-medians clustering is a variation of K-means clustering where the
cluster centers must be chosen from among the data points. It is an
unsupervised method, so the quality of the clustering is measured just using
the distances between the data points without looking at their classifications.
It selects K points to be cluster centers and calculates the quality of the
clustering as the sum of the distances of data points to their nearest cluster
center. In this paper. we use K=2 so it is feasible to calculate the quality of
all n(n+1/2 clusterings and choose the optimal one.

24 Minimal Variance Ratio (MVR) Gene Reduction

The variance ratio is the sum of the within-cluster variances divided by
the total variance of expression values for that gene. Using the notation from
the NSM section above, let

a) 0‘2,1 = (1/ m) Eieck (Xi-my)®  be the within-cluster variance for
gene i in cluster k.
byok = (1/n) Z;(x;4-%;) %  be the total variance for gene i, then

¢) (I, 0%%) 6% is the variance ratio for gene i.

Genes with large variance ratios are thought to contribute less to the
cluster definitions and are eliminated.

2.5 Dimension Reduction With ADC and NSM

One set of experiments involved using one or two dimensional ADC
clustering with a witness set of size one, followed by NSM to obtain a set of
genes of the desired size. The w measure above was used to select the
witness and the cutoff point between the two clusters. In the case of two
dimensional ADC clustering we summed the values of the distances along
the two axes to determine whether a point was below the cutoff. We also
experimented with survival-time cutoff clustering (STCC), sorting the
patients according to survival time and splitting them 50-30 or 60-40 into
high risk — low risk clusters to replicate the results of [Beer et al. 2002].
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2.6 Dimension Reduction With MVR, K-Medians, and
Hierarchical Clustering

A second set of experiments involved starting with high-risk and low-risk
clusters of equal size according to survival times (50% STCC), then using
MVR to select a subset of genes to approximate this clustering. Some genes
in this subset may have similar expression profiles, so a form of hierarchical
clustering was used to obtain a desired number of clusters of these genes and
one gene was selected from each cluster. This doubly reduced gene set was
then used (after normalizing each gene profile to have vector length one) to
obtain a K-medians clustering with K=2 and the p-value from the log-rank
test was calculated.

3. EXPERIMENTAL RESULTS

We experimented with these methods on adenocarcinoma examples
(patients) from the Michigan [Beer et al. 2002] and Harvard [Bhattacharjee
et al. 2001] data that had survival times (both censored and uncensored).
The Michigan data had expression values for 7,129 probesets for each of 86
examples, while the Harvard data had expression values for 12,600 probesets
for each of 84 examples.

31 ADC on Harvard and Michigan data

Tables 1 through 4 give the results of using the w-criterion to select the
best ADC witnesses and cutoffs, then reducing the set of probesets to the
specified size with NSM. In all cases the witness sets had size one. The p-
values were obtained from leave-one-out cross-validation on the reduced set
of probesets. Specifically, ADC clusters were formed based on the reduced
set of probesets. leaving out one patient. with the best ADC clustering being
selected according to the w-criterion. The excluded patient was then
classified as high-risk or low-risk according to which cluster mean was
closer. The values for STCC  were obtained by following the same
procedure but substituting clusters formed of the 50% or 60% highest risk
patients for the ADC clusters.
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Table ]. p-values for onc and two dimensional ADC and STCC on Michigan data (n = 86).

Genes 1D ADC 2D ADC 50% STCC 60% STCC
7128 0.0028 0.0500 0.0086 0.0126
1000 0.0275 0.009 00111 0.0158
500 0.0495 0.0048 0.0046 0.0089
200 0.0019 0.0033 0.0075 0.0056
100 0.0058 00154 0.0023 0.0048
50 0.0019 0.1442 0.0064 0.0048
40 0.0009 0.0268 0.0011 0.0048
30 0.0009 0.0356 0.0029 0.0067
20 0.0021 0.0189 0.0029 0.0090
10 0.0061 0.0618 0.0059 0.0049
5 0.0086 0.3559 0.0151 0.0024

Table 2. Low risk/high risk group sizes for one and two dimensional ADC and STCC on
Michigan data (n = 86).

Genes 1D ADC 2D ADC 50% STCC 60% STCC
7129 5531 54/32 46M40 46/40
1000 5927 60/26 45/41 43/43
500 52134 57129 47139 45/41
200 58728 SB28 4739 48/38
100 5129 55731 49/37 46/40
50 58128 42/44 50/36 47739
40 58128 44142 5036 47139
30 58/28 43/43 5135 46/40
20 57129 42/44 51135 46/40
10 56/30 37/49 5036 47139

5 58/28 41745 49/37 4947
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Table 3. p-values for one and two dimensional ADC and STCC on Harvard data (n = E4).

Genes 1D ADC 2D ADC 50% STCC 60% STCC
12600 0.0646 0.0046 0.1946 0.0741
10060 0.0124 0.0013 0.0381 0.0038
500 0.0023 0.0116 0.0021 0.0027
200 0.0121 0.0037 0.0007 0.0004
100 0.0201 0.0027 0.0213 0.0004
50 0.0332 0.0090 0.0120 0.0047
40 0.0332 0.0019 0.0100 0.0033
30 0,0898 0.0010 0.0065 0,0098
20 0.0448 0.0039 0.0083 0.0015
10 0.0424 00011 0.0034 0000
5 0.0321 0.0032 0.0053 0.0196

Table 4. Low risk/high risk group sizes for one and two dimensional ADC and STCC on
Harvard data (n = 84).

Genes 1D ADC 2D ADC 50% STCC 60% STCC
12600 25/59 24160 39/45 4143
1000 20464 15/69 44140 3846
500 21/63 2226 4242 36/48
200 21/63 21/63 4744 3252
100 24460 26/58 42/42 30454
50 21/63 21163 40444 35/49
40 21/63 27157 40744 35/49
30 28/56 26/58 39/45 35149
20 27/55 26/58 IRi46 24450
10 2262 20/64 37447 33451
5 20/64 25/59 36/48 28/56

Since these datasets contained multiple probesets corresponding to the
same genes, we then selected the top 50 probesets corresponding to distinct
genes. Tables 5 and 6 give the probeset names, gene symbols, and mean
expression values in the low-risk and high-risk group for each probeset
selected. It is interesting to note that in the Michigan dataset most of these
50 (all except IGKC, IGL@, IGHG3, NPC2, HLA-A, CD74, HLA-B., MGP,
NBL1, GRN, and the two with NULL symbol) have lower mean expression
values in the low-risk group, while in the Harvard dataset all except GAPD,
CLDNY, MIF, and PSMB3 have higher mean expression values in the low-
risk group.
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Cross-validation of the classification based on these expression values
gave p-values of 0.0074 on the Michigan dataset and 0.0331 on the Harvard
dataset. Figures | and 2 give the Kaplan-Meier curves corresponding to
these p-values.

Table 5. Top 50 distinct genes from Michigan data. Underlined genes are also found in Table
6. bold genes are among the top 100 in [Beer et al. 2002].

Probeset Symbol Low-Risk High-Risk
M63438_s_at IGKC 29936.2 14461.4
M34516_at NULL 237713 7285.7
X57809_s_al 1GL@ 23693.4 6952.74
MB87789_s_et IGHG3 41259.8 86712
L19437_ot TALDOI 1352.48 2566.89
X01677_f_at GAPD 882027 120186
L10678_at PFN2 775.93 1462.43
X67698_at NPC2 8877.69 6543,1
M21388_r_at NULL 3370.06 2362.68
X00274_at HLA-A 141159 11346.3
MI3560_s_at CD4 B951.48 6846.82
M17886_at RPLPI 13417.8 19409.6
D49387_at LTB4DH 372.44 1068.32
M37583_at H2AFZ 1557.07 2302.42
X67951_at PRDX1 42288 5964.1
X02152_a1 LDHA 6607.16 8852.83
D13630_at KIAA0005 11299 1655.69
D14874_at ADM 368.88 624.67
X15940_al RPL3| 704857 8760.57
J03934_s_at NQOI1 4813 1309.43
X91247_at TXNRDI 1369.52 2603.73
X69654_at RPS26 S012.86 614886
M22382_at HSPDI 2687.07 3960.79
X77584_at TXN 3019.61 444759
M26730_s_at UQCRB 1783.05 2319.47
D49824_s_at HLA-B 24959.3 18358.9
X15183 _at HSPCA 4756.56 6527133
U09813_at ATPSG3 2284.24 3336
X56468_at YWHAQ 1832.02 2488.57
X13238_at COX6C 1824.35 2530.02
D14657_at KIAA0101 311.29 536.96
M22760_at COXSA 111269 1458.31
DOG762_at PSMA3 12439 1629.8

JO4823 _rnal_at COXRB 4599.03 572232
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Probeset Symbol Low-Risk High-Risk

X53331_at MGP 7151.91 4174.75
M24485_s_at GSTPI 578836 842277
LOB666_at VDAC2 1480.34 2011.719
X65614_at S0P 2495 6197.89
L37043_at CSNKIE B58.41 1145.46
J04444_m CYCI 1042.34 1524.23
MI19961 _at COXSB 1631.52 2097.81
L19686_rnal_at MIF 7390.13 BRO7 46
D28124_at NBLI 4359.21 2358.11
X62320_at GRN 3043.87 2825.88
Z14244_at COX7B 461.46 705.04
Z49099_al SMS 1017.55 1426.29
V00572_at PGKI 3705.16 5137.71
URB4573 _a PLOD2 55549 710.12
U31B14_ a1 HDAC2 421.74 611.64
HGA074-HT4344_at FENI 248.57 394.65

Table 6. Top 50 distinct genes from Harvard data. Underlined genes are also found in Table

5, bold genes are amang the top 100 in [Beer e1 al. 2002],

Probeset Symbol Low-Risk High-Risk

36627_at SPARCLI 513.74 298.01
41723 _s_at HLA-B 18454 1001.59
38833_at HLA-A 1936 1066.85
216_at PTGDS 89554 494.11
32905_s_at TPSB2 45499 193.21
39220 _at SCGBIAI 687.17 135.19
31525_s_at HBA2 697.61 380.52
35905_s_at GAPD 45419 516053
38691 _s_at SFTPC 4873 1276.4
32052_at HBB 10323 580.4%
32542_at FHL1 121.61 5295
1288_s_at EEFIAl 5176.5 4636.86
35016_at CD4 26415 1740.34
36097_at ETRI01 504.53 341.97
34363 _at SEPPI 32225 182.02
1005_az DUSP1 675.19 421.52
36634 _at BTG2 574.35 393.16
649 _s_al CXCR4 310.64 231.84
37394 _at c7 125.46 37.66
37021 _at CTSH 1988.2 1009.38
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Probeset Symbal Low-Risk High-Risk
33383 _f_at SFTPB 22326 1179.78
39864 _ar CIRBP 353.61 276.04
35521 _a CLDNS -91.05 1498
31870_at CD37 197.08 114.42
37168 _at LAMP3 304.36 B4.97
41382 _at DMBTI 462.34 199
40607 _at DPYSL2 296.13 19557
36495 _at FBP1 443.57 265.59
36669 _at FOSB 357.53 170.15
8095 _at MIF 12702 175825
36680 _at AMY2B 24238 5631
534 s a1 FOLR1 7825 449.16
36452_at SYNPO 604.05 480.65
35183_at ABCA3 376.66 152.54
428 s_at B2M 31524 2805.04
39066_at MFAP4 108.89 35.79
1915_s_at FOS 1010 75243
35926_s_at LILRB1 12125 834.49
32321 _at HLA-E 481.98 365.18
34793 _s_at PLS3 3217 217.19
35842 at IL6ST 281.29 206.09
32786_at JUNB 458.56 329
35730_ar ADHIB 43.05 15
31775 _m SFTPD 743.05 260.13
7 _at CDA 312.02 209.11
1309_ar PSMB3 223.86 28594
39345 _at NPC2 2083.5 1352.04
32597_a RBL2 160.27 121.24
35868 _at AGER 139.54 5472
33295_at FY 124.02 79.66
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Figure 1. Kaplan-Meier curves for cross-validation of probesets comesponding to 50 distinct
genes selected from Michigan dataset, validated on Michigan dataset. Low-risk and high-risk

groups were separated using ADC and the w-criterion, then the top 50 distinct genes
(according 10 NSM) were retained. See Table 5 for probeset names and gene symbols.
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Figure 2. Kaplan-Meier curves for cross-validation of probesets corresponding to 50 distinct
genes selected from Harvard dataset, validated on Harvard dataset. Low-risk and high-risk

groups were separated using ADC and the w-criterion, then the top 50 distinct penes
(according 1o NSM) were retained. See Table 6 for probeset names and gene symbols,
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3.2 Validating ADC between Harvard and Michigan
data

We also validated the groups of 50 probesets described above across
datasets. Since the Michigan and Harvard studies used different gene chips,
we used the probeset link table from affymetrix.com (filename
PN600444HumanFL.Comp.zip) to find corresponding probesets in the two
datasets. Starting from the top 50 probesets in the Michigan data we found
the 57 matching probesets in the Harvard dataset, since the link table is not
one-to-one. We then averaged probesets with the same gene symbol
(including three with NULL symbol), leaving 48 distinct genes (plus
NULL). We used those 49 as in the internal leave-one-out cross-validation to
classify each example as low-risk or high-risk. Testing the top Michigan
probesets on the Harvard data in this way gave a p-value of 0.0254. We then
reversed this procedure, starting with the top 50 Harvard probesets. This
gave 42 distinct genes in the Michigan dataset (plus NULL). Using those 43
for cross-validation on the Michigan data gave a p-value of 0.0307. Figures
3 and 4 give the Kaplan-Meier curves corresponding to these p-values.

Michigan distincl top 50 genes on Harvard dalaset, p=0.0254

- -~ low risk
& censored
—high nisk
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|
!
{
1

| Time (Monih)

Figure 3. Kaplan-Mcier curves for cross-validation of probesets corresponding (o 50 distinet
genes selected from Michigan dataset (see Table 5), validated on Harvard dataset by using
equivalent probesets from the Harvard data.
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Fignre 4. Kaplan-Meier curves for cross-validation of probesets corresponding to 50 distinct
genes selected [rom Harvard dataset (see Table 6), validated on Michigan dataset by using
equivalent probesets from the Michigan data.

33 MVR and K-medians

We used minimal variance ratio (MVR) to select 200 probesets from the
Michigan and Harvard data based on an initial 50-50 clustering according to
survival times (50% STCC), then used hierarchical clustering to group these
probesets into 40 clusters. We selected one probeset from each cluster and
performed a K-medians clustering of the patients into a high-risk and low-
risk group using these 40 probesets after normalizing their expression
profiles so that the clusters wouldn’t be influenced unduly by probesets with
high mean expression values. On the Michigan data this gave a p-value of
0.00002 with cluster sizes of 36 and 50, while on the Harvard data the p-
value was 0.0417 with cluster sizes of 47 and 37. Kaplan-Meier curves for
these are given in Figures 5 and 6.

We used leave-one-out cross-validation to verify this whole procedure.
After clustering, the remaining patient was classified as high-risk or low-risk
according to which cluster had the smaller average distance to that patient.
For the Michigan data, this gave a p-value of 0.0219 and for the Harvard
data the p-value was 0.0696.
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Figure 5. Kaplan-Meier curve for classifying Michigan data according 1o 40 probesets
selected using MVR, K-medians, and hierarchical clustering of probesets.
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Figure 6. Kaplan-Meier curve for classifying Harvard data according 1o 40 probesets selected
using MVR, K-medians, and hicrarchical clustering of probesets,
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4, CONCLUSIONS

On the Michigan data one-dimensional ADC clustering obtained results
very comparable in terms of the p-values of the Kaplan-Meier curves to
those obtained by Beer using Cox model regression, and we were able to
reduce the set of genes further than they reported [Beer et al. 2002]. Beer
reported a p-value of 0.0006 for leave-one-out cross-validation based on a
set of 50 genes. whereas in Table 1 we show p-values of 0.0009 for sets of
30 or 40 genes. On the Harvard data we obtained good results using two
dimensional ADC, as reported in Table 3. We also obtained rcasonable
cross-validation between the Harvard and Michigan data.

Our reduced sets of genes differed significantly from those reported by
Beer et al. [2002]. This is perhaps not surprising since our MVR and K-
median experiments found that hierarchical clustering of the genes could
often significantly reduce the number of genes without much of a decrease in
the quality of the clustering as measured by the p-value. This probably
indicates that the data contained many genes with closely related biological
function. The following genes that have been associated to cancer appear on
one or both of our top 50 lists, but were not among the top 50 reported by
Beer:

a) SPARCLI (also known as MAST9 or hevin) - down regulation of

SPARCLI also occurs in prostate and colon carcinomas, suggesting that
SPARCLI inactivation is a common event not only in NSCLCs but also
in other tumors of epithelial origin.
(http://www.ncbi.nlm.nih.gov:80/entrez/query .fcgi 7cmd=Retrieve&db=P
ubMed&list_uids=11179481&dopt=Abstract)

b) CD74 - well-known for expression in cancers
(http://biz. yahoo.com/prnews/031120/nyth078_1.html)

c) PRDXI - linked to tumor prevention
(http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?’cmd=Retrieve&db=P
ubMed&list_uids=12891360& dopt=Abstract)

d) PEN2 - seen as increasing in gastric cancer tissues
(http://cancerres.aacrjournals.org/cgi/content/full/62/1/233)

e) SFTPC - responsible for morphology of the lung; a mutation causes
chronic lung disease
(http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=P
ubMed&list_uids=14525980&dopt=Abstract)

f)  HLA-DRA (HLA-A) - lack of expression causes cancers
(http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve &db=P
ubMed&list_uids=12756506&dopt=Abstract)
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Not much is known about the function of the following genes: PTGDS,
H2AFZ, KIAAOOOS (also called BZW1), EEF1A1, TXNRDI, RPS26. The
fact that appeared on our lists indicates that they may be worth further
investigation.

These techniques provide computationally efficient ways to reduce a
large set of genes or probesets to find ones of potential biological interest or
to apply further statistical techniques that would be computationally
infeasible on the larger dataset.  We have suggested a couple of
combinations, but others (such as ADC and NSM followed by hierarchical
clustering) are also potentially useful and should be investigated further.

Source code for our programs (in C++) and further results are available
from http://camda.cs.tufts.edu
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Chapter 14

HIGHER DIMENSIONAL APPROACH FOR
CLASSIFICATION OF LUNG CANCER
MICROARRAY DATA

F. Crimins, R. Dimitri, T. Klein, N. Palmer and L. Cowen
Departiment of Computer Science, Tufts University

Abstract: A lung cancer microarray dataset is re-examined using simple techniques, but
retaining more of the high-dimensional structure. In particular, instead of
discarding genes that look uninformative when considered in isolation. pairs,
triples and quartets of genes are selected using kNN classifiers, Genes of
potential biological importance are also uncovered.

Key words:  Lung cancer, microarray, classification, high-dimensional data

1. INTRODUCTION

The CAMDA 2003 competition involved the re-analysis of lung cancer
microarray datasets. Four separate studies sought clusters that correlated
with survival among patients diagnosed with adenocarcinoma. the most
common type of lung cancer. We shall consider here two of the datasets.
those of Bhattacharjee et al. [2001] and Garber et al. [2001], that included
samples not only from adenocarcinoma, but also microarray data from
several other types of lung cancer tumors, as well as normal lung tissue. A
secondary goal was to construct a classifier that could distinguish between
expression data for each of several different lung-cancer types plus normal
lung tissue, and, in addition. find a small set of expression vectors that could
account for the difference. It is this easier classification problem that is the
subject of the present paper, and we reanalyze the results of both
Bhattacharjee et al. [2001] and Garber et al. [2001]. A second paper by
Zhou et al. [2004], also published in this volume, represents our approach to
the more complicated question of predicting survival outcomes.
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Bhattacharjee et al. [2001] obtained a dataset of 186 patients with four
clinically distinct types of lung cancer plus normal lung tissue. The data
consisted of expression values for 12600 transcript sequences for each
patient. The dataset of Garber et al. [2001] consisted of expression levels for
73 samples over 23,100 transcript sequences (representing 17.108 unique
genes). Of these samples. 67 were taken from tumors of four different
cancer types, five were from normal tissue and one was taken from fetal lung
tissue. We have included all of the normal tissue samples, and excluded the
fetal Tung tissue sample. Eleven of the tumors were sampled twice. In these
instances, we omitted the samples taken from peripheral Dbiopsies.
intrapulmonary metastases. and metastatic lymph nodes in favor of those
taken from central biopsies and primary tumors. One of these 11 pairs
consisted of two intrapulmonary metastases from the same patient, who was
also represented by a primary tumor sample; in keeping with our practice of
examining only primary tumor samples, both of these intrapulmonary
metastases were omitted in favor of the primary tumor sample. Finally. one
of the remaining 56 tumor samples was diagnosed as combined LCLC and
SCLC; this sample was omitted because there was no clear rule for
determining correct class prediction. This resulted in a dataset consisting of
expression information for 59 samples: 34 AD, four LCLC, five Normal. 12
SCC and four SCLC (three of which were equivalent to three of the four
considered by Bhattacharjee et al. [2001]).

Because the number of transcript sequences was very large. both groups
of researchers first identified a subset of transcript sequences that had
“meaningful™ expression data. In particular, Bhattacharjee et al. [2001]
identified a subset of 3,312 "most variable” genes over the five different
lung tissue types, and then used a subset of 675 of these to construct
subclusters of the adenocarcinoma subtype. Garber et al. [2001] searched
transcript sequences that were similar among tumor pairs. but varied most
widely among all tumor samples, yielding a subset of 918 (representing 835
unique genes).

In this paper. we show that there is something to be gained by studying
the entire dataset without first doing such preliminary dimension
reduction—that such an approach can yield better results than immediately
restricting to a small subset of transcript vectors whose values, considered
individually, appear to contain the most discriminatory information. In this
sense, our work supports the study of Li et al. [2001] in CAMDA 2000,
which also cautioned against looking at single expression vectors in
isolation. in order to determine their discriminatory power.

While processing 12.600-dimensional data is beyond the scope of most
commercial software packages designed for these problems, it is only a
minor headache to code simple non-parametric classifiers that can handle the
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full dimensionality of the dataset in C++. First we show that perhaps the
simplest non-parametric classifier. k-nearest-neighbor, performs extremely
well on the 5-class problem considered by Bhattacharjee et al. [2001] in
cross-validation. That this is such an easy problem is perhaps not too
surprising, given that these classes of lung tissue are also clinically
identifiable as distinct. We then go on to the more interesting question of
finding a small set of transcript sequences whose expression profiles can, by
themselves, discriminate among the five classes. This is important because
small sets of transcript sequences that distinguish among the classes may
correspond to genes that are biologically important toward understanding the
underlying lung-cancer pathology. Combinatorial complexity quickly
prohibits an exhaustive search of all r-element subsets of transcript sequence
responses, for even small values of r. We show, however, that by moving
from r=1 to r=2. and considering pairs of expression vectors in concert. we
achieve interesting results and identify seemingly biologically important
genes that were not identified by previous analyses. When the approach is
bootstrapped to r=3 and then r=4, we find. for the dataset of Bhattacharjee et
al. [2001] nine 4-tuples of transcript sequences that each yield 97% correct
classification for the 5-class problem. We show that the same method
applied to the dataset of Garber et al. [2001] yields five 4-tuples of transcript
sequences that each yield at least 97% correct classification among the six
classes of lung cancer tumor contained in that dataset. Again, these results
can be seen as validating the method of Li et al. [2001] presented at
CAMDA 2000: Li et al. [2001] use a genetic algorithm to heuristically
explore the space of r-element subsets. For the data dimensionality and the
small value of r considered here. we were able to find the best subsets
exactly, using exhaustive search. However, for larger datasets or larger r, a
genetic algorithm or other heuristic search approach such as Li et al. [2001]
use, becomes appropriate.

1.1 k-Nearest Neighbor Classifiers

The k-nearest-neighbor classifier, first introduced by Fix and Hodges
[1951]. is the simplest and best-known non-parametric classifier. It is based
on a distance, or dissimilarity measure d, that is assigned to all pairs of
observations; for this study we used the L1 metric, where if X =(x,, ... , X, ),
and y=(y,, ..., ¥,) are observations, then d(x,y)=Z 1%, - y; .

The kNN classifier is typically defined as follows. Suppose training
data T ={t;, ... , t;} are a set of observations labeled by their class labels
from C={c,, ..., Cm}. Let x be an observation whose class label is unknown.
Define S, € T to be the set of x’s k closest neighbors according to the
distance metric d in T. Assuming no ties, let ¢, be the class label that appears
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most frequently in the set S,. Then x is assigned the class label ¢; (notice in
the case that there are two classes and K is odd, there will be no ties). In the
case that more than one class label appears with equal frequency in S,, we
regress 1o the (k-1)NN classifier; if there is again a tie we regress (o the (k-
2)NN classifier, and so on. This must result in a unique class name, no
matter how many classes there are, since when k=1 there can be no ties.

Given the raw 12,600-dimensional dataset provided by Bhattacharjee et
al. [2001], patients were divided into five groups, with each patient assigned
to the group corresponding to his index mod 5. (Since the patients were
grouped by class in the data set this was not a random partition, but rather
had the effect of spreading out the number of patients of each class in each
eroup as close to evenly as possible). We first show that, without any re-
normalizing, pre-processing, or scaling, the 5-nearest-neighbor classifier
correctly classifies 94% of the patients by lung tissue type in a 5-fold cross-
validation (see Table 1). From this we conclude that the 5-class problem of
separating tissue samples into adenocarcinomas, squamous, SCLC,
pulmonary carcinoid, and normal lung, is at most a problem of moderate
difficulty. This is not surprising, given that the different classes are
considered clinically distinct [Bhattacharjee et al., 2001],

Table 1. KNN 5-fold cross-validation on the entire 12,600-dimensional data sel.

1 kNN % 3kNN % SKNN % 7kNN %
correct correct correct correct
Group 1 95.1219 926829 95.1219 92.6829
Group 2 85.3659 87.8049 _ B5.3659 85.3659
Group 3 90.2439 90.2439 926829 90.2439
Group 4 90,0000 97.5000 975000 90.0000
Group 5 95.0000 97.5000 100.0000 92.5000
Average 91.1330 93.5961 94.0887 00.1478
2. TWO CLASS SUB-PROBLEMS

We can also ask about the best genes for distinguishing each of the five
individual classes from their complements. These problems vary in
difficulty. In particular, there are six different transcript sequences that
individually separate the pulmonary carcinoids from the other classes with
1009% accuracy, and another three that achieve 99.5% accuracy, using INN
in a leave-one-out cross-validation. Similarly, the gene Hs.181163 —
described as high-mobility group (non-histone chromosomal) protein 17,
gives complete separation with INN between the SCLC class and all the
rest, while an additional five transcript sequences give > 99.5% correct
classification. The best individual sequence to separate the normal samples
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from all tumorous classes achieves 99% classification using the same
method, while the top ten sequences all achieve > 97% classification. For the
squamous class, there is one individual transcript sequence that achieves
98% correct classification (it is gene Hs. 137569, tumor protein 64 kDa with
strong similarity to p53, previously known to be a signature for squamous
tumors [Bhattacharjee et al., 2001]), and then there is a gap in discriminatory
power. However, the top ten individual transcript sequences all achieve >
93% classification. With respect to the adenocarcinoma class, the best
individual transcript sequence still achieves slightly less than 81% correct
classification when separating the adenocarcinomas from the other four
classes using 5-nearest-neighbor.

A list of the top individual genes and their corresponding gene names for
classifying each of these tumor types appears below.

Tabie 2. The best individual transcript sequences to indicate membership/nonmembership in
the pulmonary carcinoid class.

UNIGENE ID Description % Correct
Hs.124411 chromogranin A (pasathyroid 100.0%
secretory protein 1)
microtubule-associated
Hs.172740 protein, RP/EB family, 100.0%
member 3
Cluster Inci
AL050223:Homa sapiens
Hs.25348 mRNA: cDNA 100.0%
DKFZpS86L1323
Cluster Incl U48437:Human
Hs. 74565 amyloid precursor-like 100.09%
| protein | mRNA
cutaneous T-cell lymphoma-
Hs. 136164 associated tumor antigen 100.0%
se20-4
Hs 89655 | protein tyrosine phosphatase, 100.0%
{ receptor type, N
Hs.323833 [ syntaphilin 99 59
Hs.304330 KIAADES6 gene product 99.5%
Hs. 148258 KIAAQ430 gene product 95.5%
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Table 3. The best individual transcript sequences to indicate membership/nonmembership in
the SCLC class.

UNIGENE ID Description % Correct
high-mobility group
Hs.181163 (noshistone chromosomal) 100.0%
protein 17
Cluster Incl U75968:Human
Hs. 443960 clong C3 CHLI protein 99.5%
(CHLR1) mRNA
ISL1 transcriplion factor,
Hs.505 LIM/Mhamendamain, (isler-1) 99.5%
t
centromere protein F
Ha T (350/400kD, mitosin) 9%
CDCT (cell division cycle 7,
Hs.28853 S. cerevisiae, homolog)-like 99.5%
1
Hs, 396393 ubiquitin carrier protein 99.5%

Table 4. The best individual vanscript sequences 1o indicate membership/nonmembership in
the normal lung sample class, 1 indicates thal the transcript sequence was previously
identified as biclogically important in Garber et al. [2001]; # that it was identified in
Bhattacharjee et al. [2001]. A probe set identifier in brackets indicates that no UNIGENE I
was available for the probe set,

UNIGENE ID Description % Correct
Cluster Incl
Hs. 78146 AA100961:zn40b06 51 99.0%
Homo sapiens cDNA
36569 at tetranectin
Hs.65424 {plasminogen-binding 98.5%
protein) §
advanced glycosylation end
Hs. 184 ) 98 0%
product-specific receptor }
Hs.511911 bt ‘mz RS 98.0%
cadherin 5. type 2, VE-
Hs. 76206 cadherin (vascular 97.5%
epithelium)
Hs.421383 four and a hnlf1 LIM domains 975%
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UNIGENE ID Description % Correct
transforming growth factor,
[1814_at] beta receptor 1 (70- )t 97.5%
receptor (calcitonin) activity
A5 pl
Hs. 155106 modifying in2 97.0%
ficolin (collagen/fibrinogen
Hs.333383 domain-containing) 3 97.0%
(Hakata antigen)
) TEK tyrosine kinase,
Hs.B9%640 ol ) 97.0%

Table 5. The best individual transcript sequences to indicate membership/nonmembership in
the squamous class. 1 indicates that the transcript sequence was previously identified as
biologically important in Garber et al.[2001]; § that it was identified in Bhatterjee et al.
[2001]. A probe set identifier in brackets indicates that no UNIGENE ID was avaitable for

the probe sel.
UNIGENE 1D Description %o Correct
tumor protein 63 kDa with
He 3T strong homology 1o pS3 1 i
Cluster Incl
Hs.349499 AL031058:Human DNA 94.5%
sequence
Cluster Incl
Hs, 501990 AAQ10777:2e2206.r1 Homo 93.5%
sapiens cDNA, 5 end
Cluster Incl
Hs.4129%9 AAST0193:nf38c11.51 93.1%
Homo sapiens cDNA
Hs.443518 """"”]‘ (’;"‘m"z’:ﬁg?"m 93.1%
novel putative protein sim. (o
Hs.355827 YILO9IC yeast hyp. 84 kD 93.1%
! prot.
{ Cluster Incl
AF035315: Home sapiens
Hs.291385 clone 23664 and 23905 9.1%
mRNA seq.
ataxia-telangiectasia group
Hs.82237 Dsstenciatei firotia 1 93.1%
Hs.55279 serine (or cysteine) 93.1%




198 Crimins et al.
UNIGENE ID Description % Correct
proteinase inhibitor, clade B
(ovalbumin), member S
keratin 16 (focal non-
[601_s_a1) epidermolytic palmoplantar 93.1%
keratoderma)

Table 6. The best individual transcript sequences to indicate membership/nonmembership in
the adenocarcinoma class. T indicates that the transcript sequence was previously identified as
biologically important in Garber et al. [2001]; that it was identified in Bhatterjee et al. [2001].
A probe set identifier in brackets indicates that no UNIGENE ID was available for the probe

seL.

UNIGENE ID

Description

% Correct

Hs. 446352

v-erb-h2 avian erythroblastic
leukemia viral oncogene
homolog 2

80.8%

Hs.75243

bromodomain-containing 2

80.3%

Hs.129729

ligand of neuronal nitric
oxide synthase w/carboxyl-
terminal PDZ domain

79.3%

[1814_at]

transforming growth factor,
heta receptor 11 (70-80kD)

78.8%

Hs.3192

Cluster Incl
AAGI1698:np79208.51
Homo sapiens cDNA

78.3%

Hs.446352

v-erb-b2 avian erythroblastic
leukemia viral oncogene
homolog 2

78.3%

Hs.386467

intercellular adhesion
molecule 1 {CD54), human
rhinovirus receptor ©

77.3%

Hs.446375

microtubule-associated
protein, RP/EB family,
member 2

77.3%

Hs.87417

cathepsin L2

77.3%
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3. IDENTIFYING GENES THAT JOINTLY
DISCRIMINATE

Constructing a good classifier is not the only problem one wants to solve
with microarray data, particularly for this problem where the different
classes are clinically distinct. A more interesting biological problem is to
identify a small subset of genes whose expression signatures themselves
distinguish among different classes. Then these genes can be hypothesized to
be involved biologically in the cancer pathology of the cell. We discuss this
problem now.

As discussed in Section |, both prior studies on the multiple classes of
lung cancer [Bhattacharjee et al., 2001; Garber et al., 2001] began by pre-
filtering individual transcript sequences to come up with a subset of relevant
genes. In contrast, Li et al. [2001], suggested that additional power in feature
selection for microarray data can be obtained by considering small subsets of
transcript sequences that jointly discriminate. This approach has
demonstrably more power; however the computational obstacles grow
quickly as the size of these subsets grow. In particular, to examine all pairs
of transcript sequences in the 12.600-dimensional array requires 79.373,700
significance calculations. while to examine all triples of transcript sequences
requires 333,316.624.200 significance calculations. For this reason, Li et al.
[2001] suggest a genetic algorithms approach to intelligently search this
space, and give results and sensitivity of their methods to initial starting
conditions in Li et al. [2001].

We take a more elementary bootstrapping approach to identify these joint
discrimination sets as follow, First we examine all unique pairs of transeript
sequences in the dataset, and retain the 1024 best pairs. Then those 1024 best
pairs are matched with all unique third transcript sequences in the dataset,
and the best 512 triples are maintained. Finally, the strongest 512 triples are
matched with all unique fourth transcript sequences to obtain the best 4-
dimensional classifier.

In the above description, “best”™ must be determined based on some
measure of discriminatory power. We employ k-nearest-neighbor again, and
look at the percentage of correct classification based on a [-nearest-neighbor
classifier in a leave-one-out cross-validation to determine the quality of each
low-dimensional projection. We first tried the method on the dataset of
Bhattacharjee et al. [2001]. As we raised the dimensionality of the model,
the classification rate improved. The best of the transcript sequence pairs
was capable of classifying 89% (182/203) of the observations correctly in a
leave-one-out cross-validation, Of the 3-dimensional classifiers examined,
six were found capable of correctly classifying 94% of the observations.
Finally, of the 4-dimensional models examined, nine 4-tuples were found
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that were capable of correctly classifying 97% (197/203) or more of the
observations. Due to computational issues, we did not test all triples or 4-
tuples: rather, the subset of triples that we tested was based on the best
performing pairs, and the subset of 4-tuples we tested was based on the best
performing triples (in a leave-one-out cross-validation). That is, while the
triples chosen were based on an analysis of all possible gene pairs, the 4-
tuples examined were based on selected triples. There is, therefore, a
possible issue of selection bias aiding us in locating these best 4-tuples so
quickly, as they were chosen based on the triples that performed the best
over the entire dataset.

The list of the twelve most frequent genes occurring in the set of the 512
strongest triples appears in Table 7. The set of the nine best 4-tuples appears
in Table 8. Information about the biological significance of some of these
genes appears in Section 4. A longer version of Table 7 and more biological
information canbe found athttp://www.cs.tufts.edu/~cowen/camda.

Table 7. Frequently occwrring transcripl sequences among top triples, with their frequency
the top triples and pairs. A probe sei identifier in brackets indicates that no UNIGENE ID
was available for the probe set.

UNIGENE ID quuencym in top 512 Frequency !n top 1024
ples pairs
[1814_at] 273 197
_Hs24040 108 161
Hs.137569 3% 10
Hs. 74624 48 — 18
Hs.74565 37 i 7
Hs. 78146 27 23
Hs. 154658 26 24
Hs. 75667 20 4
Hs.25640 19 13
Hs.349499 16 19
Hs.7979 16 12
Hs.184 15 28

(We remark that two of the best 4-tuples do very poorly on the SCLC
class; whereas we showed that distinguishing SCLC observations from the
others was among the easiest of the 2-class problems. Thus, by separately
classifying non-SCLC and SCLC observations first, we could improve the
classification rate to 98.5% (200/203). Alternately, combining one of these
best 4-tuples (the first one in Table 8) with the single gene Hs.505 (a good
classifier for SCLC), results in a 5-dimensional subset for which |-nearest-
neighbor classifies 98% (199/203) correctly.)
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Table 8. List of the nine best 4-dimensional trapscript sequence classifiers. A probe set
identifier in brackets indicates that no UNIGENE ID was available for the probe set.

Classifier (tal;} (T; 5‘(—'61)13 uS% (i(z):)n rotal
H&ﬁfw&e‘%ﬁl_g 138 17 3 20 0 | 975%
Jis?i;?s?g'.}l:ssﬂﬁ?}. | 136 | 16 6 19 0 | 9%
}:lil;;os%?;-:s{ﬁmk 1 137 17 3 20 20 976
fonit e | 9 | 18 6 18 0 | 9%
P e | w7 [ e | & | 0 | 20 | om
?12’;33‘29“;3‘;‘52‘1‘ 137 | o1s ¢ I8 w | 9%
[13:44_;%0?:592&;;1 137 | 16 6 18 20 | 9%
l::sl-;?i% :11;;347{;5 136 16 6 19 20 97%
Hs:slg;’;fg e | 16 | 6 19 20 | 9%

The nine best 4-tuples in Table 8 contain within them 22 unique
transcript sequences; of these Hs. 137569, Hs24040, Hs.446352, Hs.77204,
and probe set 1814_at occur multiple times across the nine 4-tuples (in fact,
Hs.137569 and Hs.24040 occur as a pair in six of the nine best 4-tuples).
This argues for the biological importance of these genes in lung-cancer,
particularly those that occur multiple times on the list, and in fact Hs.137569
is tumor protein 63 kDa with strong similarity to p53, involved in cell
growth regulation, known to be involved in lung cancer pathology, and
previously identified as critical by both Bhattacharjee et al. [2001] and
Garber et al. [2001] . On the other hand, based on these results, we
conjecture that Hs.24040, identified as potassium channel, subfamily K,
member 3, that encodes one of the superfamily of potassium channel
proteins [Duprat et al.,, 1997] is also of biological importance, and this gene
was not flagged in any previous study. The biological meanings of the other
genes that make up the classifiers in Table 8 is discussed briefly in Section
4, more details can be found at http://www.cs.tufts.edu/~cowen/camda.

The results in Table 8 represent the best 4-tuples selected by leave-one-
out cross validation on the entire dataset. To address the issue of selection
bias, we re-ran this expeiment, partitioning the data evenly into a training
and a test set. The results were quite stable: the top two 4-tuples located in
this analysis, both of which achieved 100% correct classification on the
training data, achieved 94% and 93% correct classification on the test set,
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and included the genes Hs.74565 and Hs.24040. In fact, of the 1520 top 4-
tuples that scored above 98% on the training data, 920 contained genes
previously identified in Table 8.

To validate the method, we turned to the second data set of Garber et al.
[2001]. We show that our method has similar performance on the 6-class
problem of dataset 2. Table 9 shows the performance of the top five 4-
dimensional classifiers by gene accession number, each of which correctly
classifies 58 of the 59 patients, greater than 98% correct classification rate
on the 5-class problem considered.

Once again, we suggest that the genes that show up multiple times in this
table have biological significance for lung cancer pathology. In particular,
we discuss what is known about R70462, H65075 and T84152 in Section 4.

Table 9. List of the five best 4-dimensional transcript sequence classifiers.

R';;?Qﬁ,zﬂ%%a 34 3 s 12 4 9R.3%
S N I AT A =
RT':%.;;’;:]&:;& n 4 5 12 4 98.3%
4, BIOLOGICALLY SIGNIFICANT GENES

We suggest that the transcript sequences that occur most frequently in
Tables 7, 8, and 9, are biologically significant in lung cancer pathology. A
full description of what is known about these genes for both datasets appears
in supplementary information at http://www.cs.tufts.edu/~cowen/camda,

Two of the genes we find are also explicitly identified not only by our
methods, but also in the papers of Bhattacharjee et al. [2001] and Garber et
al. [2001]. These are probe set 1814 (transforming growth factor, beta
receptor II), and gene Hs. 137569 (tumor protein 63 kDa with strong
homology to p53). Both are known to be involved in the pathology of
multiple cancers [Hibli et al., 2000; Markowitz et al., 1995].

We additionally find the gene Hs.446352, which occurs in one of the top
4-tuples for the dataset of Bhattacharjee et al. [2001], and is the same as
R70462, which occurs in all the top triples in the dataset of Garber et al.
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[2001]. The paper of Bhattacharjee et al. [2001] does not list this as an
important gene at all: in the paper of Garber et al. [2001] it is on a list of
nearly 500 genes that they identity as having a high expression value in all
adenocarcinomas, but a low expression value in all squamous samples. The
gene is v-erb-b2 erythroblastic leukemia viral oncogene homolog 2.
neuro/glioblastoma derived oncogene homolog (avian). It encodes a tumor
antigen. pl85, which is serologically related to EFGR. the epidermal growth
factor receptor [Yang-Feng et al., 1985]. Its role in cancer has been studied
in several other papers, for example, van de Vijver et al. [1988] found that
its over-expression in cancers corresponds to poor prognosis, enhanced
metastatic potential, and chemoresistance.

Most of the frequently occurring genes in Tables 7, 8. and 9 are not
identified as important in either of the papers of Bhattacharjee et al. [2001]
and Garber et al. [2001], since they were excluded during the preprocessing
done in each analysis. However, T84152. caveolin 2. has recently been
implicated to have some role in cancer in the biology literature. Fong et al.
[2003] show a positive correlation of the expression of caveolin 1 and
caveolin 2 with tumor grade and squamous features of urothelial carcinoma.
They suggest that caveolin | and caveolin 2 be studied further to determine a
possible role in tumor progression and squamous differentiation. Other
genes that appear important in our analysis but have not been previously
identified as such by Bhattacharjee et al. [2001] and Garber et al. [2001] are
Hs.24040. identified as potassium channel. subfamily K., member 3, that
encodes one of the superfamily of potassium channel proteins [Duprat et al..
1997] and H65065. visinin-like 1. also referred to as VILIP1. which Lin et
al. [2002] show modulates the surface expression and agonist sensitivity of
the alpha 4 beta 2 nicotonic acetylcholine receptor in response to changes in
levels of calcium. Minna [2003] links the alpha 4 beta 2 acetylcholinic
receptors to lung cancer directly. claiming that smoking addiction is a result
of the action of nicotine on these receptors.

3. CONCLUSIONS

We have shown that the simplest non-parametric classifiers can have
some utility for some microarray classification problems, acting on the entire
non-dimension reduced dataset. For the problem of determining small sets of
transcript sequences that have discriminatory power (and thus possible
significance in the biological pathway), we show that increasing the
dimensionality of these sets (considering pairs, triples or 4-tuples, rather than
individual transcript sequences one by one) can lead to significant
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improvements with each dimension gained. As a result, we caution the
practitioner against reducing the dimensionality of the data too quickly.
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Abstract: Different research groups have conducted independent gene expression studies
on tissue samples Irom human lung adenocarcinomas [Bhattacharjee et al,
2001: Beer et al. 2002]. In this paper we (a) investigate methods to integrale
dala obtained from independent studies, (b) experiment with different gene
selection methods (o find genes that have significantly differential expression
among different (umor stages, (¢) study the performance of neural network
classifiers with correlated weights, and (d) compare the performance of
classifiers based on neural networks and ils many variants on gene expression
data. Raw cell intensity data were preprocessed for our analyses. Affymetrix
array comparison spreadsheets were used to extract the overlapping probe sets
for the data integration study. We considered neural network classifiers with
random weights selected from a univariate normal distribution and oplimized
using Bayesian methods. The performance of the neural network was further
enhanced using ensemble techniques such as bagging and boosting.  The
performance of all the resulting classifiers was compared using the Michigan
and Harvard data sets from the CAMDA website.  Three gene selection
methods were used 1o find signilicant genes that could discriminate between
the various stages of lung cancer, Signilicanl genes, which were mined from
the Gene Ontology (GO) database using the GoMiner and AmiGO packages.
were found (o be involved in apoplosis. angiogenesis, and cell growth and
differentiation. Neural networks enhanced with bagging exhibited the hest
performance among all the classifiers we tested.

Key words:  Microarray. lung adenocarcinoma, robust multiarray averaging. gene selection.
neural network classifiers. gene ontology
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L. INTRODUCTION

Human lung cancer is a major public health problem. More recently,
different research groups have conducted independent and systematic
microarray-based gene expression studies on a large number of human lung
cancer tissue samples [Bhattacharjee et al., 2001; Beer et al., 2002]. The
objectives of this paper are (a) to investigate methods to integrate data
obtained from independent studies, (b) to experiment with different gene
selection methods to find genes that have significantly differential
expression among different tumor stages. (c) to study the performance of
neural network classifiers with correlated weights when applied to human
lung adenocarcinoma gene expression data, and (d) to compare the
performance of classifiers based on neural networks and its many variants on
the same data.

Data integration is necessary because often, different laboratories,
possibly using different microarray technologies and different probe designs,
carry out independent investigations. The experiments are expensive and
tumor tissues are a precious research resource. It is possible to gain more
insight by integrating all the information carefully.

Gene selection methods are important in order to identify critical genes
that deserve further biological investigations. They also are useful to reduce
the size of the computational problem that is faced when handling enormous
microarray data sets.

Classitiers for microarray data for lung cancer tissue samples, if
efficacious, can be as a clinical tool (a) to decide whether a new lung tissue
sample is cancerous or not, (b) to identify the type of lung cancer. (c) to
identify the stage and progress of the disease, and (d) to predict prognosis
and survival information about the patient. Classifiers also help to model the
data and to identify hidden correlations in them.

Once a list of differentially expressed genes is generated from the
microarray data, it is important to understand the relationships among the
genes in question. The Gene Ontology (GO) Consortium [Ashburner et al.,
2000] maintains databases that help to obtain biological and functional
annotations of these genes. GO organizes genes into hierarchical categories
based on biological process. molecular function and subcellular localization.
Two mining tools AmiGO [www.godatabase.org] and GoMiner [Zeeberg et
al. 2003] were used in this study to obtain functional annotations of the
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significant genes. All the experiments were performed with implementations
using the R statistical package [www.cran.r-project.org].

2. DATA ANALYSIS

2.1 Preprocessing

For our analysis, we started with Affymetrix raw cell intensity data.
Bioconductor Affy package [www.bioconductor.org] was used to read cell
intensity files. All the image files were obtained and the chips with
remarkable spatial artifacts were removed from the study.

The popular methods to obtain expression values from Affymetrix cell
intensity files are MAS 4.0 AvDiff [www.affymetrix.com], MAS 5.0 Signal
[www.affymetrix.com], Li and Wong's Model-Based Expression Index
(MBEI) [Li et al. 2001]. and robust multiarray averaging (RMA) [Irizarry et
al. 2003]. RMA uses only background-corrected perfect match (PM) values,
followed by probe level normalization and robust multiarray averaging.
RMA was the method chosen for this study because it gives the best
summary of bias, variance, and model fit [Irizarry et al. 2003].

22 Data integration

We used two data sets described by Bhattacharjee et al. [2001] and
Beer et al. [2002]. We refer to the two data sets as the Harvard data sets and
the Michigan data sets, respectively. The two studies used different types of
Affymeirix chips for their experiments. The Michigan study used the
HuGeneFL type chips, while the Harvard study used the HG_U95Av2 type
chip. Array Comparison Spreadsheet HuGeneFL to Human Genome U95A
[www.atfymetrix.com/support] was used to obtain a list of probe sets with 3
or more overlaps for the two Affymetrix chip types. Cell intensity files were
read into an AffyBatch object. Invariant set normalization was then
performed at the probe level for the AffyBatch object followed by RMA to
obtain the expression values. Expression values of the selected probe sets
were extracted from both Michigan and Harvard data sets and combined
after matching their IDs using the Array Comparison Spreadsheet mentioned

above.
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23 Gene selection

We were interested in identifying genes that could discriminate advanced
tumor stages from early tumor stages. Analysis of variance (ANOVA),
significance analysis of microarrays (SAM) and a robust gene selection
method referred to as GS-Robust, proposed by us, were the three gene
selection methods employed in this study.

For the ANOVA model on the data from the individual studies. stage.
gender and smoking information were used as fixed factors. For the model
on the integrated data. stage. gender and smoking information were used as
fixed factors, while the study (i.e., Harvard vs. Michigan) was used as a
random factor. Genes were ranked based on their P-values.

Significance analysis of microarrays (SAM), developed by Tusher et al.
[2001]. was also used to identify significant genes from microarray data. It is
more accurate (lower false discovery rates) than conventional methods
[Singhal et al., 2003].

GS-Robust was proposed by us as a robust variant of the F-ratio used in
ANOVA. Like F-ratio, it too is a measure of the ratio of between groups and
within group wvariations. Larger GS-Robust values indicate higher
discrimination power. For the i gene, the GS-Robust statistic is defined by

MADImedian(g).,..., median(gj_ )

k
2 MAD(g;)

i=l

GSRobust, = (1

where g is the vector of gene expression values for the i® gene in the j"

class. and k is the total number of classes. Unlike F-ratio. GS-Robust uses
median absolute deviation, and substitutes mean with median measures. GS-
Robust is, therefore, less sensitive to outliers. A disadvantage of the GS-
Robust statistic is that it does not have a standard null distribution. As such
statistical significance (p-values) may be evaluated by using a bootstrap or
permutation resampling procedure. Another disadvantage of GS-Robust (and
also SAM) is that there is no obvious approach to extend it to models with
multiple factors. However the degrees of freedom for the statistic are the
same for all the genes, we can use this measure to rank the discriminative
power of the genes. In this paper, a comparative study was performed on the
three gene selection methods mentioned above.

Principal component analysis (PCA), a data reduction method, was also
used in this study to select the desirable input features for classification.
PCA was performed on the correlation matrix. As 1is customary, in
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measurements that have different scales. we used the correlation matrix
because of the intrinsic heteroscedastic nature of gene expression. Moreover,
although principal components are not scale invariant, the principal
components generated from correlation matrices are more tractable and
allow for more meaningful comparisons of genes. The principal components
contributing to at least 75% of the variation were used for classification.

24 Neural network classifiers

A neural network implements a non-linear function y(x, w), where v is
the output function for input x and network parameters (or weights) w.
Given a training set, i.e.. set of pairs of the form (x,..y,.).r'= l,...,N, the
neural network can be trained to model the given data as closely as possible,
and thereby determine the weight vector w that best describes the given
data. The training procedure involves minimizing an appropriale error
function. Once the optimal weight vector is determined, the neural network
acts as a classification or regression tool, depending on whether the output is
from a discrete or continuous set of values. For the sake of comparison,
support vector machines (SVM), K nearest neighbor (KNN). and random
forest classifiers were also implemented and tested.

Neural networks have been used to model gene expression data, where
the output function may represent a medical condition or some clinical or
biological event such as the recurrence of a disease or prognosis of certain
cancers [Khan et al., 2001: Ando et al., 2002: Mateos et al., 2002; Grey et
al., 2003]. However in these papers. the network parameters w are assumed
fixed deterministic constants.

In such models where the weights are not random, the correlations that
exist between outputs are artificially induced through the iterative process of
the neural network itself. However, these correlations need to be explicitly
incorporated into the model. One way to do this is through weight vector
(network parameters). Using random weight components induces correlation
among genes, since the posterior weights become correlated and account for
the fact that genes act in concert with a collection of other genes forming
gene networks. In this paper we assume a simple correlation model, i.e., that
components of the weight vector are random under a univariate model.

24.1 Bayesian regularization of network weights

In regular neural networks, after initializing the network parameters by
choosing randomly from a univariate model. the (raining set is used to
optimize the network parameters. The method can be further improved by
determining the parameters of the univariate model using standard Bayesian
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techniques. This is achieved by choosing the optimal weights as the modes
of the posterior probability density functions P(wl{x,,y,)), ie. by
maximizing P(wl{x,y,)). Here P(wl(x;,y;)) is the posterior
probability of network weights given the input data. In this paper, we report
on experiments comparing the performance of regular neural networks to
that of its Bayesian counterpart using lung cancer gene expression data.

2.4.2 Ensemble techniques

More recently, it has been shown that using ensemble techniques such as
bagging and/or boosting can enhance the performance of classifiers. Both
these techniques are termed as “ensemble” techniques because they
correspond to designing a “committee” of classifiers such that their
collective performance surpasses their individual performance.

Bagging: Bagging is an acronym for “bootstrap aggregating” [Breiman
1996]. The idea is to design k data sets (denoted by D\, D,,....D,) by a
process of repeated bootstrap sampling from the original data set. and to
design k independent classifiers using them as the training sets. For any
given test data, all the & classifiers vote to give a resulting classification,
Breiman has noted that neural network classifiers tend to be unstable
[Breiman 1996], and that bagging tends to improve unstable classification
methods more than stable ones. In this paper., we report on experiments
comparing the performance of regular neural networks and their Bayesian
counterparts with and without bagging.

Boosting: Boosting was designed to boost the performance of weak
classifiers [Schapire 1990]. As in bagging, k classifiers are successively
designed. Unlike with bagging, the training samples are weighted with all
samples having equal weights initially. In successive classifiers, weights are
iteratively modified so that higher weights are assigned to samples
misclassified in previous classifiers and the expected error over different
input distributions is minimized. After the classifiers are designed. they are
assigned weights based on their performance on the training data. A
weighted voting scheme is then used to determine the resulting classification
for a given test sample. In this paper, we report on experiments comparing
the performance of regular neural networks and their Bayesian counterparts
with and without the enhancement of boosting.

2.4.3 K-fold cross-validation
In order to compare the performance of the various classifiers mentioned

above, we used the standard statistical method of K-fold cross-validation.
According to this method, the data was divided into K groups and K separate
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tests were run. When testing samples from each of the groups, the classifier
was trained with the K-1 remaining groups. The error rate was reported after
averaging over all the groups.

24.4 Practical issues

When designing classifiers for data sets with two or more categories. the
training data set may not be balanced in the sense that the number of samples
in each category may not be the same. This may cause a bias in the
classifiers that are designed. To address this problem, one could create
bootstrap copies of samples from the underrepresented classes until a
balance is achieved [Japkowicz 2000]. or one could randomly remove
samples from the overrepresented classes. The first approach suffers from
oversampling. The second approach tends to lose potentially significant
information. Choosing the lesser of the two evils, we adopted the first
approach to adjust the classifiers. It was not used in our gene selection
study.

3. RESULTS AND DISCUSSIONS

Al Preprocessing

Five of the chips from the Michigan data set, namely LOI, L54, L88,
.89, and 190, had remarkable spatial artifacts (Figure 1), and were removed
from the study. Data on 81 patients were used in the study, of which 64
patients had stage 1 adenocarcinoma, and 17 had stage 3 adenocarcinoma.
Of the 81 individuals, 48 were women and 33 were men. Only eight of the
81 were non-smokers while the rest were smokers. Gene expression values
for the 7129 probe sets were generated using RMA.

In the Harvard data set. four chips, namely CL2001032701AA,
CL2001032709AA, CL2001032634AA, and CL2001032623AA had
remarkable spatial artifacts (Figure 1) and were removed from the study.
Expression values from the replicates were averaged. After this step, 76
stage | adenocarcinoma tumor samples, 24 stage 2 adenocarcinoma tumor
samples, and 10 stage 3 adenocarcinoma tumor samples were used for our
analyses. Sixty-five of the patients were women, and 45 samples were men.
Only 12 of the 110 were nonsmokers. Expression data for the 12625 probe
sets were generated using RMA.

To produce an integrated data set from the two data sets, we chose 3742
probe sets that had five or more overlaps in the two data sets. The overlap
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information was obtained using the Array Comparison Spreadsheet available
on the Affymetrix website [www.affymetrix.com/support]. Corresponding
subsets of data (corresponding to the 3742 chosen probe sets) from the
Michigan and Harvard studies were also generated for our experiments on
individual data sets. The perfect match and mismatch intensities from the
subsets were normalized using invariant set separately. Robust multiarray
averaging method was applied to the AffyBatch object resulting from
invariant set normalization to generate the expression values for the 3742
probe sets.

Figure 1. Images of the chips from the Michigan (top row) and Harvard (bottom row) data
sets with remarkable spatial artifacts.

32 Identifying genes discriminating the tumor stages

Three lists of top 500 genes were generated using multifactor ANOVA,
GS-Robust and SAM. Figure 2 shows the intersections of the three groups.
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Figure 2. The intersection of the top 500 genes obtained using the three gene selection
methods on the (2) Harvard, (b) Michigan, and (c) integrated data sets.

GS-Robust (for the Michigan data set) and the SAM method (for the
Harvard data set) selected a list of significant genes that were considerably
different from the ones picked by the other methods. For the integrated data
set, the overlap in the top 500 lists generated by the three methods was
greatly reduced.

321 Querying significant genes against GO Database

The Gene Ontology (GO) database was queried using GoMiner [Zeeberg et
al., 2003]. Significant genes selected using ANOVA were fed into GoMiner
and p-values were computed for each GO term based on Fisher’s exact tests
[Zeeberg et al., 2003] as follows: Let p; be the probability that a gene will be
flagged under the GO term and p; be the probability that it will not. The null
hypothesis Hy: py = pa, will be true if genes are flagged under the GO term
purely by chance, and there is no significant difference in the two categories.
We use the Fisher’s exact test to test this hypothesis. This is a conditional
test given the sufficient statistics (ngn,(Neng/(N-n)) where ny is the number
of flagged genes under the GO term, n is total number of genes under the
GO term, N¢is number of flagged genes on the microarray, and N is the total
number of genes on the microarray.

Identifying significant genes: With the help of GoMiner and the
Unigene Ids, some of the significant genes (for each of the three sets) and
the biological process they are involved in are given below in Table 1.

The analysis of the Michigan data set resulted in five molecular function
(MF) GO terms (and their relationships) with p-value less than 0.01 (see
Figure 3). A similar analysis of the Harvard data set resulted in 12 MF GO
terms (and their relationships), as shown in Figure 4.

Finally, an analysis of the integrated data set gave 6 MF GO terms (and
their relationships), as shown below in Figure 5.
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Table 1. SiEniﬁcanlﬁenu identified from the three data sets.

Zheng et al.

Study Bialog_icnl Process Induced Repressed

Apopltosis BIRC2 BBC3, MUC2, PLG

- Angiogenesis FGF2, POFUTI, VEGF EPAS

Michigan (il orowth TGFB

Cell Cycle CDC27, CDCT, CDK7, CKS2

Apopiosis PRKAAI, GSK3B CASP3, PLG
Harvard Angiogenesis VEGF

DNA Replication DNTT, SSBP1

Apoptosis CASP3
Integrated Angiogenesis VEGFC

Cell differentiation MYFS5, PAX6
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Figure 3. Relationships among signilicant GO terms identified from the Michigan data set.
Note that the significant terms with more overexpressed genes (dark circles), more
underexpressed genes (gray circles), and with insignificant changes (white circles) are marked

appropriately.



Methods of Microarray Data analysis 1V 217

/I“
[P

'.‘ Ry
e

2

Figure 4. The relationships among the significant MF GO terms identified from the
Harvard data set. Note that the significant terms with more overexpressed genes (dark
circles), more underexpressed genes (gray crcles), equal number of overexpressed and
underexpressed genes (dotted circles), and with insignificant changes (white circles)
are marked appropriatcly,

Figure 5. The relationships among the significant MI' GO terms identified from the
integrated data set. Note that the significant lerms with more overexpressed genes (dark
circles), more underexpressed genes (gray circles), and with insignilicant changes
(white circles) are marked appropriately.
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33 Classification results

Tables 2, 3, and 4 show the results from our experiments with neural
network classifiers using stage information from the Michigan, Harvard, and
integrated data sets. Additional classifiers such as SVM, KNN, and random
forests were also used for comparisons purposes. In all three sets of
experiments, genes were selected using three different ranking schemes and
PCA, and the results shown are the mean = SD of 5-fold cross-validation
error from 10 independent runs.

Table 5 shows the results of our cross-validation experiments. When
trained with the Michigan data set and tested with the Harvard data set, an
accuracy of up to 88% was achieved using bagged neural network classifiers
with genes selected using ANOVA. When the roles of the data sets were
reversed, an accuracy of only 80% was achieved with most of the gene
selection and bagged neural network classifiers, Note that the Michigan data
set did not have any data from patients with stage 2 tumors. Only stages |
and 3 (T1 and T3) were available. Therefore, when we trained with the
Michigan data set, all stage 2 data from the Harvard set were left out of the
testing. However, when we trained with the Harvard data set, data from all
the stages was used (T1, T2 and T3).

Table 2. Experiments on NN classifiers on stage information from the Michigan data set.

CGene Selection Methods

ANOVA SAM GS-Robust | GS-PCA
nnet | 185+3.2% | 30.8+6.2% | 20042.7% | 1B.5+2.0%
nnet.hag | 16942.7% | 23.542.6% | IBOX2.1% | 14.743.1%
mnet boost | 19.7+2.2% | 29.248.0% | 188424% | 21 244.4%
baycsian | 15.122.8% | 42.346.7% | I1R343.1% | 17.243.5%
bayes.bag | 14.1£2.8% | 30.942.0% | I1R4223% | 14.0+£2.8%
bayes.boost | 17.3x24% | 38.744.19% | 19.242.4% | 17.113.0%
SVM | 21.4406% | 208+1.4% | 205+1.0% | 21.5+0.4%
KNN | 253+0.0% | 26.740.0% | 18.7:0.0% | 253+0.0%
RandomForest | 24.740.7% | 19.6405% | 185+13% | 204+1.7%
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Table 3. Experiments on NN classifiers on stage information from the Harvard data set.

Gene Selection Methods

ANOVA SAM GS-Robust | GS-PCA
nnet | 14.632.4% | 14.042.9% | 17.745.6% | 15.143.1%
nnetbag | 12.221.6% | 12441.0% | 13.8424% | 12.383.3%
nnctboost | 14.243.0% | 15443.1% | 18.333.3% | 19.R+5.7%
bayesian | 17.1%2.7% | 14.942.5% | 20843.3% | 21.044.5%
bayesbag | 12.9£22% | 13.6:1.8% | 17.1x1.8% | 18.242.1%
bayes.boost | 17.143.0% | 16.1+2.5% | 21.332.6% | 23.3423%
SVM | 19.040.0% | 19.0+03% | 18.940.0% | 19.640.4%
KNN | 21.8+1.3% | 22.7£1.0% | 13.4%)1.3% | 29.2£1.5%
RandomFarest | 17940.7% | 17.740.1% | 18.740.1% | 203£1.1%

Table 4. Experiments on NN classifiers on stage information from the integrated data set.

Gene Selection Methods

ANOVA SAM | GS-Robust | GS-PCA
nnet | 13.142.0% | 17.441.9% | 12.4%1.7% | 13.6+2.5%
nnethag | 11.3+1.1% | 133+1.6% | 9.3+14% | 12.1408%
nnetboost | 13.342.9% | 18.8+4.8% | 11.542.1% | 15.413.9%
bayesian | 16.7£2.9% | 18.8+4.7% | 10.9+2.6% | 15.1322%
bayes.bap | 14.2424% | 24.7424% | 10.6422% | 14.6426%
bayesboost | 16.744.8% | 19.335.1% | 13.1432% | 17.145.5%
SVM | 148+07% | 15.240.4% | 14.2402% | 14.540.7%
KNN | 18.5305% | 15.130.9% | 10940.6% | 18.1409%
RandomForest | 14.420.7% | 14.7+0.6% | 14.8409% | 14.4%1.1%
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Table 5. Cross-validation experiments.

7.3 . Classifier Gene Selection Methods
Training Set | Testing Set Method ANOVA SAM G5 Robost
nnet 39.5149% 28. 144,15 259+1.4%
onet.bag 11.643.3% 20.045.6% 13.945.7%
nnet.boost 174+4.7% 22.444.7% 21.7+8.9%
o o Bayesian 18.8+£3.0% 25.0+5.3% 26.616.7%
(,?':‘;hn:f%} ['er“l"';‘% bayes bag 12880.1%  21.0H05%  20.1406%
! bayes.boost 255+04% 29.8+1.7% 28.9£1.5%
SVM 14.7403% 15.2404% 14.240.2%
KNN 1B.5H0L.5% 15.1+09% 18.1+0.9%
RandomForest 14 430.7% 14.7+0.69 14441 1%
nnet 27.4+17.8% 21.(H0.5%: 21.0+0.6%
noet bag 23143%  209+03%  21.1+04%
nnet. boost 423+25.5% 21.040.5% 26.7£18.0%
Harvard | Michigan | Bayesian | 3374179%  222439%  21.0:0.1%
(T1, T2, T3) | (T1and T3) bayes.bag 323+23.0% 20910.7% 21.2H0.5%
bayes.boost 33.7+14.3% 21.1304% 21.1:0.7%
SVM 29.0+0.2% 24.4+03% 203:03%
KNN 29943 1% 23,641 5% 21.943.2%
RandomForest 30.745.0% 223+ 7% 204+1.7%

4. CONCLUSIONS

Bagging consistently and significantly improved the performance of
feed-forward neural network classifiers in all our experiments.  Since
bagging incurs only a small amount of computational overhead, it is feasible
to apply this ensemble technique to enhance most classifiers. Boosting, on
the other hand, showed erratic behavior. Bayesian neural networks did not
show any appreciable improvement over the regular neural networks.

The performance of all the gene selection methods was comparable, with
two exceptions. It was not clear why SAM performed poorly only on the
Michigan data set. GS-Robust performed particularly well on the integrated
data set. We conjecture that GS-Robust was better able to cope with the
extra noise that must have been introduced during the data integration
process. With gene expression data preprocessed using a robust method such
as RMA, the performance of ANOVA and GS-Robust were comparable.
Without RMA, GS-Robust outperformed ANOVA (data not shown).

Genes significant for carcinoma stage differentiation were identified
from the Michigan, Harvard, and the integrated data sets based on our results
from analysis of variance at a significance level of 0.05. Among the
significant genes identified from the Michigan data set were three apoptosis
activators that were repressed significantly, while one apoptosis inhibitor
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was induced significantly (Table 1). Interestingly. several cell cycle genes
(CDC27, CDC7, CDK7, and CKS2) were induced. In contrast, the cell
growth gene TGFB, which is related to lung development, was repressed.
Three angiogenesis genes were induced significantly, while only one
angiogenesis gene was repressed.

In the advanced stage tumors in the Harvard data set. apoptosis
activators. PLG and CASP3. were repressed. while apoptosis inhibitors.
PRKAA1 and GSK3B. were induced. Genes involved in DNA replication
(DNTT and SSBP1), and the angiogenesis-related gene, VEGF., were
induced significantly in the advanced stage tumors of the Harvard data set.

Cell differentiation genes, MYF5 and PAX6, were induced significantly
in advanced stage tumors of the integrated data set, as did the angiogenesis-
related gene, VEGFC. In contrast, CASP3 (which was also identified from
the Harvard data set) was repressed. In summary, genes PLG (apoptosis),
CASP3 (apoptosis). and VEGF (angiogenesis) were identified as significant
from two independent data sets.

Acknowledgements

Research of E.O.G. & G.N. was supported by NIH Grant POl DA15027-01.

REFERENCES

Ando, T., M. Suguro, T. Hanai, T. Kobayashi, H. Honda and M. Seto (2002). “'IF'uzzy ncural
network applied to gene expression profiling for predicting the prognosis of diffuse large
B-cell lymphoma.” Japanese Journal of Cancer Research 93(11): 1207-12.

Ashburner. M., C. A. Ball, 1. A. Blake, D. Botstein. H. Butler, J. M. Cherry. A. P. Davis, K.
Daolinski, 8. 8. Dwight. 1. T. Eppig. M. A. Harris, [. P. Hill, L. Issel-Tarver. A. Kasarskis.
S. Lewis, J. C. Matese, ). E. Richardson, M. Ringwald. G. M. Rubin and G. Sherlock
(2000). “*Gene Ontology: ool for the unification of biology.” Nature Genetics 25: 25 - 29,

Beer, D. G.. §. L. R. Kardia, C.-C. Huang. T. J. Giordano, A. M. Levin, D. E. Miseck. L. Lin,
(3. Chen. T. G. Gharib. D. G. Thomas. M. L. Lizyness, R. Kuick. S. H. Hayasaka, J. M. Gi.
Taylor, M. D. lannettoni, M. B. Orringer and S. Hanash (2002). “Gene-expression profiles
predict survival of patients with lung adenocarcinoma.” Nature Medicine 8(8): 816-24,

Bhattacharjee, A., W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd. J. Beheshti.
R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark. E. S. Lander, W. Wong. B. E.
Johnson, T. R. Golub, D. J. Sugarbaker and M. Meyerson (2001). “Expression profiling
reveals distinct adenocarcinoma subclasses.” PNAS 98(24): 13790-13795,

Breiman, L. (1996), “Bagging predictors.” Machine Learning 1. 24(2): 123-40,

Grey. S.. S. Dlay, B. Leone, F. Cajone and G. Sherbet (2003). “Prediction of nodal spread of
breast cancer by using artificial neural nerwork-based analyses of S100A4. nm23 and
steroid receptor expression.” Clin Exp Metastasis 20(6): 507-14,



222 Zheng et al.

Irizarry, R.. B. Hobbs, F. Collin, Y. Beazer-Barclay, K. Antonellis. U. Scherf and T. Speed
(2003). “Exploration, normalization, and summaries of high density oligonucleotide array
probe level data.” Biostatistics 4(2): 249-264.

Japkowicz, N, (2000). Class imbalance problem: significance and strategies. International
Conference on Artificial Intelligence (1C-AI'2000): Special Track on Inductive Learning.
Las Vegas.

Khan, I, J. S, Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M.
Schwab, C. R. Antonescu, C. Peterson and P. 8. Melizer (2001). “Classification and
diagnostic prediction of cancers using gene expression profiling and artificial neural
networks.” Nat Med 7(6): 673-9.

Li, C. and W. H. Wong (2001). “Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection.” PNAS 98(1): 31-36.

Mateos, A.. ). Herrero, J. Tamames and J. Dopazo (2002). Supervised Neural Networks for
Clustering Conditions in DNA Array Data after Reducing Noise by Clustering Gene
Expression Profiles. Methods of Microarray Data Analysis 1. §. M. Lin and K. I%.
Johnson. Boston. Kluwer Academic Publishers.

Schapire, R. L. (1990). “The strength of weak learnability.” Machine Learning J. 5(2): 197-
227

Singhal, S, C. G. Kyvernitis. S. W. Johnson, L. R. Kaiser, M. N. Licbman and 5. M. Albelda
(2003). “MicroArray Data Simulator For Improved Selection of Differentially Expressed
Genes.” Cancer Biology & Therapy 2(4): 383-391,

Tusher, V. G.. R. Tibshirani and G. Chu (2001). “Significance analysis of microarrays applied
1o the ionizing radiation response.” PNAS 98(9): 5116-5121.

Zeeberg, B. R, W, Feng, G. Wang. M. D. Wang. A. T. Fojo, M. Sunshine. 8. Narasimhan, D,
W. Kane. W. C. Reinhold, S. Lababidi, K. J. Bussey. I Riss, J. C. Barrett and J. N.
Weinstein (2003). “GoMiner: A Resource for Biological Interpretation of Genomic and
Proteomic Data.” Genome Biology 4(4): R28.



Chapter 16

A COMBINATORIAL APPROACH TO THE
ANALYSIS OF DIFFERENTIAL GENE
EXPRESSION DATA

The Use of Graph Algorithms for Disease Prediction and
Screening”

Michael A. Langston', Lan Lin', Xinxia Peng’, Nicole E. Baldwin',
Christopher T. Symons', Bing Zhangq and Jay R. Snoddy"'

ID(’[J(H'HI‘."(’H! of Computer Science, University of Tennessee, Knoxville, TN 37996-3430;
“Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
37996-0845; * Life Sciences Division. Oak Ridge National Laboratory, P.O. Box 2008, Oak
Ridge, TN 37831-6124.

Abstract:

Key words:

Combinatorial methods are studied in an effort to gauge their potential utility
in the analysis of differential gene expression data.  Patient and gene
relationships are modeled using edge-weighted graphs. Two algorithms with
different, but complementary approaches are devised and implemented, One
is based on linding optimal cliques within general graphs, the other on
isolating near-optimal dominating sets within bipartite graphs. A main goal is
to develop methodologies for training algorithms on patient populations with
known disease profiles, so that they can be employed to classify and predict
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1. INTRODUCTION

A fundamental problem in cancer treatment is early and reliable
detection. Identification of a set of genes whose expression levels serve as
an accurate discriminator among normal and cancerous tissue samples would
not only represent significant progress towards developing more reliable
cancer diagnosis protocols, but might also identify novel therapeutic targets.
With this motivation in mind, we investigated the hypothesis that only a
modest number of genes may suffice for this task. We sought to develop
algorithms and software for this purpose, and introduced a graph theoretical
method of differential gene expression analysis. The goals of this method
were to identify a set of genes useful in discriminating among tissue
samples, and to use these genes in disease prediction and screening.

One of the important features of our algorithms was the computation of
discrimination scores for each gene represented in a microarray. These
scores estimated a gene’s relative ability to distinguish among sample tissue
classes. We then selected the highest-scoring genes, and used them to
calculate a pairwise similarity metric between patients’ tissue sample
expression profiles. Genes that failed to discriminate among a defined
percentage of the samples were eliminated using a dominating set algorithm
as a high pass filter. With this information, we constructed a complete
weighted graph, in which the vertices represent the tissue samples and the
edges are weighted by the similarity metric between sample vertices. A
user-defined threshold was then used to transform the complete weighted
graph into an incomplete unweighted graph where the weights were ignored.
The combination of these tools produced some very encouraging predictive
results.

In the sequel, we describe the datasets we chose to study, the algorithms
we devised, and the results we obtained. We also draw some conclusions
from this effort.

2. DATA EMPLOYED

We used the Harvard [Bhattacharjee et al., 2001.], Michigan [Beer et al.,
2002], and Stanford [Garber et al., 2001] datasets in this study. We did not
include the Ontario dataset due to a lack of overlap in annotated genes with
the other datasets. Since the log-expression image plots for Samples L54,
L88. L89 and L90 in the Michigan dataset showed large. round dark spots at
the center of the arrays [Hu et al., 2003] indicative of poor data quality, they
were removed from the dataset. This left us with 92 samples from the
Michigan dataset. Because the Harvard and Michigan datasets were
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cenerated by different institutes using different Affymetrix array types
(HG_U95A and HUGeneFL. respectively). the distributions of the two
datasets may not be comparable. Thus, we chose to normalize the two
datasets separately. The log-scale quantifications of the gene expression
levels for each probe set were obtained by robust multi-array average
(RMA) [Irizarry et al.. 2003] using Bioconductor.

Since we intended to train and test our algorithms on different datasets,
we needed a mapping schema among the different datasets,. However. the
three datasets came from different array platforms using different gene
identifiers; hence, direct mapping is not possible. We chose to use
LocusLink IDs (LL_IDs) for gene mapping, because the NCBI LocusLink
Database is both relatively reliable and stable. For the Harvard and
Michigan datasets. we mapped each probe set ID to its corresponding LL_ID
using array annotation files from Affymetrix. For the Stanford dataset, we
mapped each UNIGENE ID to its corresponding LL_ID using our local
database, GeneKeyDB. To construct a gene expression summary for each
LL_ID, we averaged the values within each sample across the original gene
identifiers that map to a common LL_ID. The final datasets used in this
study include: the Harvard dataset, which has expression profiles for 8509
unique genes among 254 samples: the Michigan dataset, which has
expression profiles for 4985 unique genes among 92 samples: and the
Stanford dataset. which has expression profiles for 8829 unique genes
among 73 samples.

3. A CLIQUE-BASED STRATEGY

3.1 The Clique Problem

Clique is a well-known NP-complete problem (informally, this means
that the best solution procedures possible seem to require time exponential in
the size of the input), and is typically formulated as in Garey and Johnson

[1979]:

Input: A graph G=(V,E) and a positive integer K <IV1.
Question: s there a subset V' < V for which V'l 2k and such that
every pair of vertices in V' is joined by an edge in E.

Thus. a clique is a subgraph each of whose nodes is pairwise related.
Clique is rapidly becoming recognized for its relevance in bioinformatics. It
can be roughly viewed as a clustering algorithm based on graph theory. In
our own work, for example, we used clique in the following ways. In Abu-
Khzam et al. [2003], we devised and applied fast parallel algorithms for
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clique to extremely large microarray datasets in an effort to help identify
putatively co-regulated genes in murine neural regulatory networks. In
another application [Baldwin et al., 2004], we employed high performance
implementations of clique in the study of cis-regulatory elements to discover
putative motifs.

32 Scoring Method

Our goal in (raining was to develop graph-theoretic tools to help
distinguish among sample groups (such as normal and adenocarcinoma).
Ideally, we hoped to be able to construct an unweighted graph in which
edges connected mainly members of the same group. At that point, clique
analysis was an attractive approach for testing our methods against
additional data.

In order to pinpoint a modest number of genes out of thousands from the
original dataset, our first step in training was to determine which genes
appear to discriminate best among sample types. To accomplish this, a
discrimination score was calculated for each gene. Only the best genes
(those with the highest scores) were retained for subsequent steps. Since the
distributions of the expression values of these genes would be expected to be
bimodal with respect to two distinct sample classes, the differences between
class medians gave us a general measure of the difference of expression
between two classes. Subtracting the sum of the standard deviations of a
gene within each group allowed us to eliminate, or at least diminish, the
importance of any gene whose expression levels vary excessively.

The data was obtained as in Section 2 as an n x m matrix, A, of
expression values. Rows represent test samples, and columns denote genes.
When training on the Michigan dataset in order to learn to distinguish
between normal (group 1) and adenocarcinoma (group 2) samples and using
a lower limit of zero, our method delivered a collection of 105 genes for
further evaluation.

An assignment of inter-sample weights helped demonstrate the degree to
which these genes and their respective scores delineated normal samples
from adenocarcinoma. Here, the weight between samples i and j represented
the degree of similarity in their respective expression profiles and could be
viewed as equivalent to the distance function for clustering. We computed
this weight as a sum over all genes selected in the previous step, because it
was these genes that seemed to have the greatest potential to serve as good
discriminators. Accordingly, we set weight(i,j) to:

(1) Zscorc{genc, )e(i—|expression_value, — expression_value,kb
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As is shown in Figure 1, higher-weighted sample pairs tended to be
homogeneous. That is, either both tissue samples were normal or both were
adenocarcinoma. Conversely, lower-weighted pairs tended to be
heterogeneous, where one sample was normal and the other was
adenocarcinoma. While this seemed to confirm our gene scoring and
selection procedure, other scoring approaches appeared to be viable as well.
Therefore, we investigated several other alternatives before settling on this
approach.

Two of these alternative approaches are worthy of note in the
computation of gene discrimination scores. One is the elimination of
outliers before computing the scores, which was motivated by the fact that
outliers might affect both the median and the standard deviation. The other
involves changing our original scoring function to a variant of the t-test
function, a standard statistical measurement of population similarity. This
test is realized wsing division rather than subtraction within our scoring
function. Neither of these appeared to improve upon our original results.
We also experimented with Pearson’s correlation coefficients and
Spearman’s rank correlation coefficients, two popular methods of weighting.
Neither of these methods was helpful. In fact, neither even revealed the
bimodal distribution we observed using our weight function.

In addition to confirming the validity of our approach, Figure 1 also
sugeests an initial threshold weight below which we delete edges in a later
step. Call this threshold 7. For example, based on the figure, we chose as a
somewhat informed but still rather arbitrary starting value 7=7.6. We used
our restricted set of genes to build an edge-weighted graph. In this graph,
samples were represented by vertices and the weight of an edge between a
sample pair was set using the simple summation formula already described.
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Figure 1. Weights between sample pairs using 105 genes from the Michigan dataset,
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Any edge whose weight was less than T was removed. The resulting
unweighted graph was then searched for all maximal cliques. Our aim was
to train our codes so that we could find appropriately sized cliques to cover
all groups.

Because we know which samples are normal and which are
adenocarcinoma in the Michigan dataset, we were able to iterate our method
until we had a reasonable set of covering cliques. The optimal threshold
seemed to be centered at around 7=8.1. We were not completely satisfied,
however. with the lingering presence of overlapping cliques. Additional
experimentation with gene cutoff scores seemed to indicate that the presence
of genes with low scores is problematic. But neither raising the cutoff score
nor additional modification of the threshold was of much use.

4. REFINEMENT VIA DOMINATING SET

What seemed to be missing in our estimates of gene discrimination was a
way to determine which genes impact the greatest number of samples and to
eliminate the rest. For this. we turned to another graph metric. dominating

set.
4.1 The Dominating Set Problem

Dominating Set. another well-known NP-complete problem. can be
stated as follows.

Input: A graph G=(V,E) and a positive integer & IV
Question: Is there a subset V' < V for which IV'| £k and every vertex
ve V- V'is joined to a vertex in V' by an edge in £.

Using the W hierarchy from the theory of fixed-parameter tractablility
(FPT), dominating set may be even more difficult than clique. This is
because clique, which is W[l]-complete, can be solved using graph
complementation and vertex cover. Practical, efficient kernelization
techniques are known for vertex cover [Abu-Khzam et al., 2004]. The same,
however, may not hold for dominating set. The dominating set version we
address here is nonplanar red/blue dominating set, which is W[2]-complete.
Although its complement problem is FPT. there are currently no practical
kernelization techniques known for it. Thus. we only approximated
solutions to dominating set. For technical definitions and discussion of the
W hierarchy, see [Downey and Fellows, 1999].
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4.2 Scoring Method

We first assumed a normal distribution of the expression values of each
gene, and estimated for it the mean and standard deviation. We did this
separately for each of the sample groups. Then. based on the estimated
normal distribution. we calculated the p-values for the original individual
expression values. It is perhaps easiest to formulate our approach by
constructing a bipartite graph. In this graph, one set of vertices represents
the genes, and the opposing set represents the samples. We placed an edge
between a gene and a sample if and only if the p-value of the expression
value corresponding to that gene-sample combination was greater than 0.05.
Following statistical convention. we considered a p-value below this cutoff
to indicate an outlier.

In this setting, we wanted to identify the genes that dominate (or nearly
dominate) all the samples. Therefore. we winnowed out from consideration
any gene vertex not adjacent to at least 9% of the sample vertices. For
example, in the Michigan dataset. a gene was eliminated if it was connected
to fewer than 74 of the adenocarcinoma samples or fewer than nine of the
normal samples. The choice of 90% was arbitrary: it was selected only after
extensive testing.

Nexl, in an effort to remove any remaining genes with a low possibility
of discriminating between the two groups. we calculated the p-values for
tests of equal means using both the Wilcoxon and t-test methods. We used
both since the t-test assumes a normal distribution, while the Wilcoxon test
does not. Only genes for which both p-values are less than 0.05 were
retained.

For those genes that remain, we generated scores based on the previously
calculated p-values from the Wilcoxon tests. We then filtered out genes
using an adjusted p-value cutoff by means of the Bonferroni method.
Specifically, we chose a significance level of o = 0.01 and only kept genes
with a p-value less than @/N, where N is the total number of genes we began
with at this step. Since a smaller p-value indicates a greater probability that
the groups™ expression values are different for a given gene, we used
-logl0(p-value) for the gene score.

Finally, and most importantly, we computed the intersection of the genes
identified by the clique-based approach described in the last section with the
genes chosen by the dominating set method as described in this section. We
were left with a set of genes that passed both the clique and the dominating
set tests. We found that this refinement of our gene lists gave us improved
results in the testing phase of our experiments.
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5. RESULTS

Having completed the training phase, we proceeded to testing on a new
dataset under the assumption that we did not know sample classification in
advance. We evaluated our approach with the following three experiments.
First, we trained on the Michigan dataset as explained in section 3 in order to
learn to distinguish between normal and adenocarcinoma samples. We
proceeded to test our ability to classify samples on the Harvard dataset.
Second. we reversed this process, applying our training algorithms to the
Harvard dataset to distinguish between cancerous and normal samples. We
tested our method on the Michigan dataset. Third, we trained on the
Harvard dataset to learn to separate adenocarcinoma from squamous
samples, and tested on the Stanford dataset.

5.1 Experiment One

Clique-based training on the Michigan dataset identified 105 genes that
distinguished between adenocarcinoma and normal samples. Our
dominating- set-based refinement reduced this to 84 genes, 78 of which were
available in the Harvard data. Functional classification of the selected 84
cenes was performed using the web-based tool Gene Ontology Tree
Machine (GOTM) [Zhang B et al., 2004]. The results are shown in Figure 2.
Figure 3 shows the distribution of the edge-weight scores generated using
these genes on the normal and adenocarcinoma samples from the Harvard
dataset. If our method is to be predictive, we expected to see something of a
bimodal distribution, although peak height would be dependent on the
relative populations of the two groups. This is because weights between
members of the same group are expected to be high, while weights between
members of different groups are expected to be low. Such a distribution is
in fact what we observe in Figure 3.
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Figure 2. The 84 genes (Michigan data) categorized under gene ontology. Black bars
represent observed gene numbers. White bars represent expected gene numbers in the
categories. The graph is derived from the Tfourth annotation level under biological process.

We exploited this property when carrying out threshold selection. We
chose an initial threshold slightly to the right of the median edge-weight
value. We then enumerated all maximal cligues in the unweighted graph,
and checked to see whether every sample is in at least one clique. If not, we
chose lower and lower threshold values until we had full coverage (that is,
until every sample was in at least one clique). If, on the other hand, our
initial threshold gave us full coverage, we incrementally selected higher and
higher thresholds until we generated an unweighted graph for which there
was at least one sample that was missing from every maximal clique. Al this
point, we went back one step and used the highest threshold with full
coverage. Naturally, this was only one possible method for selecting the
threshold; other methods may work equally well. After a suitable threshold
was determined, we analyzed the data by testing the supposition that all
cliques of significant size were uniform in the sense that they contained
samples from adenocarcinoma samples only or from normal samples only.
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Figure 4. Unweighted graph of the Harvard data set resulting from a threshold of 79. Black
vertices represent adenocarcinoma samples. While vertices represent normal samples.

When this iterative process was carried out on the Harvard dataset
without the use of any previous knowledge pertaining to its sample
classifications, we were effectively able to separate the subjects into
adenocarcinoma cligues and normal cliques. In fact, at our chosen threshold
of 7.9, only one sample out of the 207 combined adenocarcinoma and
normal samples was misclassified according to the Harvard dataset using
this approach. See Figure 4. This sample is 2001032848AA.CEL. Because
it was originally classified as adenocarcinoma but appeared in multiple
normal cliques and no adenocarcinoma cliques, we suspected the original
classification may have been incorrect. The enumerated cliques histogram is
shown in Figure 5. The largest mixed clique was of size six. There were
only five mixed cliques in total.
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Figure 5. Clique frequency distribution from Harvard data set (adenocarcinoma and normal
samples) using 78 genes and a threshold of 7.9.

Of course, we were able to check the quality of our results because the
tissue samples represented in the Harvard study were previously classified.
To use our methods in the absence of such information, one needs merely to
examine the expression values of the highest-scoring genes to determine
whether a clique represents a set of adenocarcinoma or normal samples.

52 Experiment Two

In this case, we initially identified 195 genes that differentiated cancerous
and normal samples. This was reduced to 180 (characterized by gene
ontology in Figure 6) using our refinement technique, and 109 of these genes
were available in the Michigan dataset.

After following the process we have detailed, we selected a threshold of
8.7. We enumerated maximal cliques on the resulting unweighted graph
shown in Figure 7. Our methods were able to sort the samples into
cancerous and normal cliques almost flawlessly. In fact, out of the 235
cliques of size three or greater in the resulting graph, only one clique had
both cancerous and normal samples, and it was very small (size three). The
resultant frequency distribution of these cliques is depicted in Figure 8.
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Figure 6. The 180 genes (Harvard data) categorized by gene ontology. Black bars represent
observed gene numbers. White bars represent expected gene numbers in the categories.

Figure 7. Unweighted graph of the Michigan data set resulting from a threshold of 8.7. Black
vertices represent adenocarcinoma samples. White vertices represent normal samples,
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Figure 8, Clique distribution from Michigan data set using 108 genes and a threshold of 8.7,

53 Experiment Three

Training on the Harvard dataset to discriminate between adenocarcinoma
and squamous cell carcinoma initially gave us 37 genes. After refinement,
35 were left, 26 of which were found in the Stanford data set. In this case,
the results given by our method were not as compelling as in the previous
two experiments. By using the largest clique containing each sample, we
classified 41 out of 47 samples comectly according to the Stanford
classifications. Nevertheless, there were still too many mixed cliques. This
was not unexpected. Our methods isolated a set of 35 genes as a good
discriminator. However, with only 26 of these available in the test dataset,
their use provided at best a crude classification tool.

6. CONCLUSIONS

There is no apparent consensus as to the best approach for mining
microarray data. Popular methods in current use include Bayesian analysis
[Friedman et al., 2000; Sok et al., 2003], hierarchical clustering, and scale-
free networks [del Rio et al., 2001], to name just a few. We believe that the
novel methodology we have described here can be used to complement these
techniques, and also be of independent interest. Deliverables accompanying
this effort include the algorithmic framework of our overall strategy, the
software tools we have developed and implemented, and of course the
resultant gene sets themselves.

A key feature of our approach is the use of two distinct gene-scoring
systems, each coupled with a different combinatorial algorithm. One was
based on finding optimal cliques within general graphs, the other on
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isolating near-optimal dominating sets within bipartite graphs. Used in
tandem. these algorithms appear to provide an effective means for
identifying and ranking predictive genes whose expression levels serve as an
accurate discriminator between adenocarcinoma and normal tissues. We
emphasize that the use of clique and dominating set together seems to
produce better results than would be possible with either approach alone.

The high fidelity with which the resulting cliques partitioned cancerous
and normal samples, as illustrated in Figures 6 and 8. prompts us to posit
that our methodology has the potential to become the basis for a highly
reliable tool for cancer prediction. No a priori knowledge of the number of
classes contained in the dataset is required. Moreover. it is known that
tumor tissue samples are frequently a mixture of multiple types of cells. and
that the exact ratio of this mixture is not necessarily consistent, even among
samples from the same tumor. Therefore, it is expected that tissue samples
might have significant similarity to more than one class, such as
adenocarcinoma and normal. This is, in fact., what is observed. Using our
method, the classification of the sample is not limited to one class. Nor is
the classification based on the highest similarity score. Instead. it is based
on the largest (maximal) clique to which the sample belongs. This should
result in a higher degree of confidence in our classification.

As a further proof of principle. several of the genes we have identified as
discriminators in the Michigan data are known or suspected to play a role in
oncogenesis, Among these are: CYP4BI1, a cytochrome P450 enzyme that
has been implicated in both bladder and lung cancer in humans [Czerwinski
et al. 1994; Imaoka et al., 2000]: FHLI, shown to have cytotoxic effects on
melanoma cell lines and to possibly play a role in cellular differentiation [de
Vries et al., 1975]; the p85 alpha subunit of phosphoinositide-3-kinase,
which plays a role in human breast cancer [Das et al., 2003.; Mahabeleshwar
et al, 2003]; and tetranectin, which has already been shown to have
prognosticative value for survival rates at certain stages of ovarian cancer
[Hogdall et al., 2002]. Space limitations prevent us from including a full
listing of the genes we have identified here. Thus, we have made this list
and additional, extensive details available in the form of a technical report
[Langston et al., 2004].

A number of opportunities for future research beckon. For example. the
formula we are currently using to assign edge weights relies only on the
gene scoring algorithm of our clique-based strategy. This can perhaps be
refined by incorporating into it the gene scores computed during our
dominating set analysis. Another idea we believe holds promise relies on
the use of clique intersection graphs. These are computed as follows.
Suppose we are given a filtered, unweighted sample similarity graph. G.
The vertices of its associated clique intersection graph are the maximal
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cliques in G. Each pair of vertices in the clique intersection graph is
connected by an edge if and only if the intersection of the two respective
cliques they represent is nonempty. Thus. a clique intersection graph may
help to discern the overall structure of relationships contained within sample
data. Moreover, cliques within a clique intersection graph may serve to
tighten the focus on discriminating factors and act as an aid in quantifying
the salient characteristics of archetypical diseased or healthy tissues.
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Abstract: Cancer is a complex disease. comprising many different specific malfunctions
within the body. Because many biological processes occur simultaneously
within all cells. the gene expression related Lo tumor behavior is gencrally
confounded with expression due to routine metabolic processes and additional
processes unrelated to tumorigenesis. Bayesian Decomposition has been used
10 isolate expression signatures related to these processes as well as signatures
related o patient prognosis. The signatures related o prognosis have been
analyzed to identify biological processes as well as specific genes whose
presence appears related o outcome in all studies.

Key words:  Bayesian methods, gene expression, gene ontology. cancer

1. INTRODUCTION

Although treatment regimens undergo constant improvement, cancer
remains the second leading cause of death throughout the Western world
[Alison et al., 1997]. Targeted treatment and individualized medicine offer
hope for improved outcomes. However, a deep understanding of cancer
development in individual malignancies is required. This demands
information on the process that led to the specific cellular malfunction
present in the cancer cells. Since the development of cancer generally
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involves the cellular signaling networks that control cell growth,
differentiation, apoptosis. and motility [Kolch, 2000: Jacks et al., 2002], the
extreme complexity of these pathways and the multiple failure points and
checkpoints lead to the reality that observed cancers arise from a myriad of
different cellular malfunctions [Cooper. 1992; Macdonald et al.. 1997]. It is
from this complex background that microarray analysis attempts to glean
insight to improve cancer treatment.

Identifying cellular malfunctions in cancer at early stages remains a
critical issue for improving patient survival. The studies in the CAMDA
2003 data set are primarily focused on refinement of the identification of the
type of cancer using computational and statistical approaches. as was the
focus of a number of early studies using microarrays [Golub et al., 1999
Alizadeh et al., 2000; Zhang et al.. 2001]. These methods can also be
extended to the discovery of biomarkers in the form of differential levels of
production of mRNA [Carr et al., 2003; Kikuchi et al., 2003; Williams et al.,
2003], which has the advantage of providing a more viable clinical protocol.
These methods generally apply microarray technology to detect disease state
from tissue samples. aiming to refine identification of suspect tissues after a
biopsy has been performed. The additional information can aid in tailoring
treatment, as histologically different cancers require substantially different
therapeutic regimens to maximize patient survival.

While the techniques noted above are useful, they have certain
limitations as regards more advanced uses in cancer research. Cancer is
primarily a disease of signaling, and newer therapeutics specifically target
proteins involved in cellular signaling [Mauro et al.. 2001: Repka et al..
2003: von Mehren, 2003]. It is therefore highly desirable to understand the
key genes that have triggered tumorigenesis, especially in cases where these
genes might be shared across multiple individuals. providing a useful target
for therapeutic development. Genes playing a role in prognosis in multiple
individuals are also more likely to encode proteins serving as triggers to
cancer development than genes not shared, if indeed specific cancers, such
as adenocarcinoma. arise from common events. Microarray measurements
are being used to provide insight into these questions. Here we focus on the
use of Bayesian Decomposition [Bidaut et al., 2002: Moloshok et al., 2002:
Moloshok et al., 2003], together with construction of relational trees
between multiple analyses and gene ontology information, in order to
understand the processes at work and the pivotal genes triggering the
development of adenocarcinoma and poor prognosis.
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2 METHODS

2.1 Data Processing

The initial data were downloaded from the CAMDA web site
(http://www.camda.duke.edu/camda03/). These data included Affymetrix
CEL files for Harvard and Michigan data sets and files in GenePix format
for the Stanford data set. The Ontario data was also downloaded but was not
used in the analysis due to a lack of overlap in annotated genes with the
other sets. Only adenocarcinoma and normal samples were used in the
analysis. CEL files of Harvard and Michigan data sets were processed with
dChip software. and expression levels were calculated using the PM/MM,
i.e. perfect match to mismatch, difference model with the median overall
intensity array method defining the baseline [Cheng et al., 2001]. The
standard error across a probe set was used as the uncertainty of the
measurement of each expression level in Bayesian Decomposition. For the
Stanford data set, the mean background and foreground intensities of
channel | and channel 2 from the GenePix measurements were used.
Normalization was performed with the Functional Genomics Data Pipeline
[Grant et al.. 2004], using LOESS with a smoothing parameter of 0.9 to
equalize the channels, and expression ratios were calculated. Due to the lack
of replicates in this data, the uncertainty of each measurement had to be
estimated and was set to 30% of the expression level based on previous
experience. For those data points where the ratio was negative or data was
missing, the ratio was set to 1.0 and the uncertainty to 289 (equal to
maximum ratio across all data points). effectively insuring that these data
points would not affect the model.

2.2 Data Annotation

The genes present in the Harvard, Michigan and Stanford data sets were
annotated for gene ontology information [Ashburner et al., 2000] using the
Automated Sequence Annotation Pipeline [Kossenkov et al.. 2003] as
depicted in Figure 1. Since the goal was to identify genes consistently
linked to outcome across all studies, only genes with annotations in all three
data sets were retained for analysis. As the analysis also focused on
differences in expression between tissue types, the coefficient of variation
was calculated for each transcript in all three data sets (expression levels for
Affymetrix data, expression ratios for spotted array data), and only genes for
which these exceeded an arbitrary cutoff of 35% were retained. The final
data comprised 1216 transcripts from the Harvard data. 1088 from the
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Michigan data, and 1337 transcripts from the Stanford data, representing 987
unique Unigene clusters.

The samples from the three data sets were classified by tumor stage
according to the information provided. The Harvard data set comprised four
classes (76 first stage, 24 second stage, 13 third and fourth stage, 17 normal),
the Michigan data set comprised three classes (67 first stage, 19 third stage,
10 normal) and the Stanford data set comprised three classes (17 second
stage, 15 third stage, five normal).

Kopwerd
SwigsProt S
Yoo
. ENSEMBL GO
Mo
INTERPRG >+ GO

Figure 1. The annotation method used to annotate genes and determine the Gene Ontology
information. For each sequence spotied on the array, updated Unigene information was
retrieved. The Unigene Keyword was used to search the Swiss-Prot database. 11a match was
Tound the Swiss-Prot ID was used to retrieve gene ontology information for the clone from
Ensembl or Interpro databases,

2.3 Bayesian Decomposition

Bayesian Decomposition was used to analyze these data sets separately,
exploring different potential numbers of patterns. Bayesian Decomposition
is a matrix decomposition algorithm that allows the encoding of additional
prior information within a Bayesian framework [Besag et al., 1995]. The
input is a set of data in the form of a matrix, D, which describes the
measurements of expression levels for genes (rows) across different lissues
(columns). In addition, there is a matrix £ that provides estimates of the
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uncertainty or noise for each individual measurement in D. From these data,
two matrices are constructed such that

D=AP+¢e (1)

where P contains k rows giving k patterns within the data across the tissues,
and A provides a measure of how strongly each gene contains each pattern.
The Markov chain sampling provides both mean value and standard
deviation (o) estimates for each matrix element in A and P. The rows of P
are normalized to sum to one, in order to resolve the inherent scale

invariance.

Figure 2. The decomposition performed by Bayesian Decomposition on the data, The tissues
are separate samples and the patterns explain variations across the samples. The first three
patterns depicted here are enforced (o be related 1o the tumor staging or type, but this number
will vary depending on the data set.

Two separate full analyses were preformed. In the first, the tumor
staging was included by enforcing the existence of patterns related to each
stage. In the second, there were no enforced patterns, so that staging
information was ignored. For both cases, the Harvard data were analyzed
positing from four to 13 patterns, while the Michigan and Stanford data were
analyzed positing from three to 12 patterns. The number of patterns was



244 Kossenkov et al.

chosen to provide between zero and nine additional patterns to explain the
non-tumor stage related behaviors (e.g.. routine metabolism) present in the
data, as demonstrated in model organisms previously [Moloshok et al.,
2002]. The use of additional patterns provides freedom for outcome-related
patterns not determined by tumor staging to emerge.

The results were analyzed across different numbers of posited patterns
independently for each data set to identify stable patterns linked to
prognosis. Pearson correlation coefficients between outcome and pattern
amplitudes for each pattern were calculated. and genes linked o these
patterns were identified. The patterns were considered robust if they showed
correlation across different numbers of posited patterns. A gene was
considered associated with a pattern if its amplitude in the column of the A
matrix linked to the pattern was 3G above zero as determined by Bayesian
Decomposition. Gene ontology was used to explore the roles of the patterns
linked with prognosis. In addition. the individual genes were then compared
to identify only those present in all patterns linked with prognosis.

3. RESULTS

3.1 Pattern Trees

The analysis of the Bayesian Decomposition output was performed using
ClutrtFree [Bidaut and Ochs. 2004]. a visualization tool allowing global
comparison of patterns and clusters in terms of shapes and robustness of
gene assignment. For the Harvard, Michigan and Stanford data, pattern trees
were created by ClutrFree (Figures 3 and 4). The pattern tree represents
links between different BD analyses. Each level represents a single BD
analysis, with the connections between levels being determined by Pearson
correlation values between individual patterns. The links are created in a
greedy way. with the overall highest correlation connected first. then the
highest for remaining patterns, etc. The thickness of the line connecting
nodes (i.e., patterns) shows the strength of the correlation. In Figure 3, the
first few patterns in each run are locked to tumor staging in a way analogous
to Figure 2. For instance. for the Michigan data (Figure 3a), the first group
(all 1 in nodes in Figure 3) is stage | tumor, the second group (2) is stage 3
tumor, and the third group (3) is normal tissue. Additional patterns are free
to contain any of the samples at any strength (i.c.. amplitude).

In order to find the gene expression patterns related to survival data,
Pearson correlation coefficients between outcome and pattern amplitudes for
each pattern of each Bayesian Decomposition run were calculated. For
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example, Table 1 provides all correlation coefficients for patterns in all
analyses of the Michigan data set. Then the pattern trees were examined to
find patterns with largest outcome correlations that appeared in one
persistent branch. This is shown in Figure 3a for patterns from the Michigan
data, where highlights indicate pattern 5 from 9 posited patterns, pattern 8
from 10 posited patterns, pattern 11 from 11 posited patterns and pattern 9
from 12 posited patterns.

il L

Figure 3. Trees relating the multiple analyses performed by Bayesian Decomposition
including twmor staging. Results for Michigan are shown in (a), Harvard in (b), and Stanlord
in (), with all patterns correlated with survival and persistent in the tree highlighted with
black rectangles. Comparison with Table 1 shows that in (a), pattern 6 of 7, two above the
uppermost black rectangle, is also correlated with outcome, However, because pattern 4 of 8
is not. pattern 6 of 7 is excluded for not being persistent. The numbers are for housekeeping
purposes, allowing columns of the A matrix to be linked o rows of the P matrix.

Thus, for each data set persistent patterns within branches were
identified. Persistent patterns comprise a linked series of nodes that all
correlate with outcome. Five such patterns were found in the Harvard data,
four patterns in the Michigan data, and three patterns in the Stanford data (as
denoted by the black rectangles in Figure 3). Lists of genes linked to these
expression patterns were then generated for each of the patterns, and the
gene ontologies for these genes were analyzed.
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Table i. Correlation coefficients between outcome and pattern amplitudes for the Michigan
data. Coefficients greater than 0.6 are in bold. Rows are the number of patterns posited in a
run (corresponding 10 rows in the tree in Figure 3a), columns are the pattern ordinal numbers
in the run {corresponds (o the number in an oval from FiEure 3).

4 5 6 7 B 9 10 11 12
4 0.3§
3 0.44 0.00
6 0.46 0.39 -0.12
7 23 042 D.65 0.22
8 0.43 025 047 0.49 -0.08
9 0.27 0.66 0.13 0.13 0.34 023

10 0.44 019 0.05 006 @474 001 0l6
11 012 -017 007 0.30 005 0.0 0.43 0.62
12 0.13 0.01 020 D34 0.09 0.72 0.02 0.39 -0.23

The same procedure was performed for the Bayesian Decomposition
analyses that did not include staging information. The results of these
analyses are shown in Figure 4 in a manner matching that used in Figure 3.

Figure 4. Trees relating the multiple analyses performed by Bayesian Decomposition
excluding wmor staging. Resulis for Michigan are shown in (a), Harvard in (b), and Stanford
in (¢), with all patierns correlated with survival and persistent in the tree highlighted with
black rectangles.
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32 Analysis of Gene Ontology

For persistent patterns with significant correlation with outcome, we
explored enhancements in terms of gene ontology using ClutrFree.
Enhancement is computed as a ratio of the number of genes with a gene
ontology term in a patlern normalized by the total number of genes in the
pattern and the number of genes with the gene ontology term in the full data
set normalized by the total number of genes studied.

A gene ontology term was considered as ‘occurred’ in a pattern if the
enhancement was greater than | in at least 10 of the 12 patterns linked to
prognosis and as ‘removed’ if the enhancement was less than 1 in at least 10
of the 12 patterns. Table 2 comprises a portion of that gene ontology list.
The list shows that the patterns linked to prognosis include terms related to
development (tumors often have activation of normally silent developmental
genes), cell migration, signaling activity, and RAS and EGF activity (both
linked to tumorigenesis). Terms that have low representation include the
regulation of cell proliferation, negative regulation of NF-kappaB, and
inactivation of MAPK activity, all of which can be considered related to
control of unconstrained cell growth and oncogenesis.

Table 2. ‘Occurred’ and ‘removed’ Gene Ontologics. The number of patterns where the GO
term oceurred or was removed is shown in parantheses,

Occurred Removed
GO:0008406 GO0:0042127
gonad development (12) regulation of cell proliferation (12)
GO:0016477 GO:0008543
cell migration (11) FGF receptor signaling pathway (11)
GO:0001701 GO:0008283
embryonic development (11) cell proliferation (11)
CO:0000187 GO:0007253
activation of MAPK (11) cyloplasmic sequestering of NF-kappaB (11)
GO:0016055 GO:0042347
Wit receptor signaling pathway (10} negative regulation of NF-kappaB (10}
GO:0007265 GO:0007261
RAS protein signal transduction (10) STAT proicin dimerizaton (10)
GO-0007186 GO0007229

G-protein coupled receptor protein signaling : :
pathway (10) integrin mediated signaling pathway (10)

GO:0007173 GO:0000188
EGF recepior signaling pathway (10) inactivation of MAPK (10)
GO:0000074

regulation of cell cycle (10)
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33 Genes Associated with Prognosis

From the 12 patterns linked to prognosis in the analysis including staging
information, consistent genes were identified. First, genes that were robust in
assignment along the highlighted branches in Figure 3 were identified. The
sets contained 238 genes for Michigan, 397 genes for Harvard, and 366
eenes for Stanford. These lists were then compared to identify those genes
linked to prognosis in all studies.

The intersection of the three studies yielded 45 genes that were suspected
to be associated with survival in adenocarcinoma, of which 27 had
annotations, as shown in Table 3. As can be seen, most of these genes have
previously been shown to be involved in cancer. A number of them are
known to specifically modulate cell motility (EDG2. LAMA3., ADD3,
CD38, SELE, PTPRR), a key issue in metastasis, which naturally has a
major impact on prognosis. Others have been implicated in apoptosis (VDR)
and prognosis in various cancers (ILI15, SULTICI. PTHLH). PTHLH is of
special interest as it has been linked to tumor progression in lung cancer.
Another gene of interest is XRCC4 that encodes a double strand break repair
enzyme. Such enzymes serve with important checkpoint control proteins to
cuarantee that cells with substantial DNA damage do not continue division.

34 Results without Inclusion of Staging Information

As noted above, the Harvard. Michigan and Stanford data were also
analyzed without using information about tumor stage. Figure 4 shows the
results, with one branch in each case being linked to outcome just as in the
analysis using information on staging. For the Affymetrix data sets (ie.,
Michigan and Harvard). the patterns linked to prognosis appear at fewer total
patterns, perhaps because they can emerge earlier without the constraints.

For Michigan, 330 genes were consistent in these patterns, with 202 of
these in common with the 238 genes identified when staging information
was included. For Harvard 399 genes were consistent in these patterns. with
323 genes in common with the 397 genes identified when staging
information was included. However, for Stanford only 22 genes were
consistent in these patterns, with only eight in common with the 366 genes
identified with staging information included.

Because of the small number of genes from Stanford. the intersection of
all three studies included only two genes. QDPR (quinoid dihydropteridine
reductase) and TCF7 (transcription factor 7. T-cell specific). Only QDPR
was in the original list.
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Tuble 3. Genes identificd by intersection of the 12 gene lists. There are six immune system
genes, |8 genes with links or potential links 1o cancer, and six genes directly linked to cell

adhesion or metastasis,

GENE RE%S?E KNOWN GENE FUNCTIONS
tysophosphatidic acid (LPA) receptor, link to G protein and

EDG2 activation of sigoaling cascade, essential for normal
development in mice, modlulate cell motility under
pathological conditions

SURB7?
laminin 5 gene, essential in stability of cutaneous basement

LAMAS membrane zone

QDPR

ILISRA TL1S receptor  binding activates JAK-STAT pathway active in many cancers

IL15 LIS post translational modifications critical, errors in IL-15
control in mice lead to lethal lenkemia

TDO?2 possible candidate in serotonin metabolism difficulties with
link to alcoholisrn, ADHD, Tourette's syndrome

NCF4

ADD3 adducm. component of aclin cytoskeletal cortex, stabilized
integral membrane proteins

MBL2 ;::‘;‘:ni y  manmose binding lecin,

SULTIC 1 converts estrogens to sulfated forms, key role in breast cancer
due to effect on hormones and response to tamoxifen

PPID

CNR1 brain recepior protein, suspected (o dictate formation of
synaplic connections in the brain

DPYD variant forms cannot metabolize 5-FU, critical role in
breaking down 5-FU

XRCC4 double stranded break repair enzyme

CDS8 5;‘;‘;.‘:1";’1::' may play a role in cell-cell adhesion

ITGAL

SELE E selectin, specific adhesive molecule for cell-vascular
endothelial cells, linked to metastasis

CTH

PTHLH significanily linked to tumor progression in lung cancer

WNTSA signaling protein involved in development, WNT signaling
linked to wmor formation when aberrantly activated

IRE7 IFN regu- linked to activation of pumerous IFN-alpha family members

latory factor  including possible NF-kappaB and c-jun

BTN3Al

ILIRI ILI receptar linked to rheumnatoid arthritis, polent activator of iranscription

GALNT]

VDR vdr signaling linked to growth arrest, differentiation, and
mduction of apoptosis in breast cancer

PTPRR tyrosine kinase receptors linked to induction of signaling

cascades linked to cell division, migration, and survival
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Focusing only on the Harvard and Michigan results, 21 genes are in
common between this analysis ignoring staging and the analysis including
all three data sets with staging information. These are SELE, QDPR, CNRI,
ADD3, BTN3Al, MBL2, CTH, PTPRR, NCF4, TDO2, IL15, DPYD,
WNTSA, and ILISRA.

4. DISCUSSION

Adenocarcinoma of the lung continues to take a heavy toll in mortality
despite improved diagnostic techniques and treatments. New technologies.
such as microarrays and proteomics, can potentially enhance our
understanding of this disease and aid in diagnosis and treatment planning.
Many applications of these new technologies aim to refine diagnosis through
identification of patterns or signatures linked to specific phenotype, such as
response to therapy. While these techniques can be valuable, they have
serious limitations, especially in microarray applications.  Microarray
techniques for tumors are presently invasive, requiring at minimum a biopsy
sample and more typically a tumor mass. As such, it must be the case that
cancer is already at minimum suspected. a mass has been identified. and a
biopsy obtained. Therefore for diagnostic approaches, serum proteomics is a
far more promising domain, since it provides a minimally invasive
procedure and the potential for identification of signatures of early
tumorigenesis [Petricoin et al., 2002].

However, in other regards microarrays provide far more detailed insights
into cellular state than proteomics. With a microarray the full genome can
now routinely be explored in terms of production of mRNA, increasingly
including splice variants. Proteomics remains a field where only high
abundance proteins (e.g.. in 2D gels) or highly studied proteins (e.g., those
with monoclonal antibodies) can be explored presently. The deep view of
the cellular machinery provided in microarrays offers the opportunity to
identify cellular processes through the linking of changes to activity of
signaling pathways, gene ontologies, and potentially gene networks, As
such, microarrays provide a global view of how the cellular machinery
responds in different tumor cells, what genes appear significantly changed in
these cases, and therefore they can provide information on potential targets
for new therapeutics.

Here we have relied on the assumption that adenocarcinoma is a disease
whose key underlying physiology is independent of the specifics of the
center treating the patient. We have then applied Bayesian Decomposition
to identify groups of genes linked together in patterns, relying on its ability
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to handle multiple groupings, since genes encode proteins that serve multiple
purposes in cells. These patterns have been correlated with survival, which
is possible as each pattern also has a strength of association with each
patient. Patterns which appear to stably relate to prognosis as the number of
potential patterns increase were then chosen for exploration of gene
membership. We have used gene ontology information to explore the
potential biological purpose of the patterns associated with prognosis. Gene
ontology indicates losses in processes regulating cellular proliferation and
increases in developmental processes and some key signaling processes. In
addition, a group of 47 genes having a strong link to prognosis in all centers
was identified, providing a list for validation and potential followup as
therapeutic targets. Known genes in this list include a number of known
cancer- and prognosis-related proteins.

We also applied Bayesian Decomposition in a way that did not include
known pathology. Here the results were minorly different for the centers
relying on Affymetrix technology, however they changed rather dramatically
for the one study using spotted arrays. It is possible that this reflects an
inherent problem with the use of nonreplicated spotted arrays. since we have
little information on the uncertainty of individual gene expression
measurements and rely on a global uncertainty estimate. However, since it
is also the smallest study in this analysis, it is possible that the inclusion of
tumor staging information provides added statistical power. Since staging
effectively links individual samples. patterns with these enforced links
effectively average over samples during analysis. This may provide enough
additional power to provide better insight.

The work presented here represents an approach to microarray analysis
that stresses exploration of potential biologically significant areas
determining phenotype. The next step with such an approach is validation of
key genes by real-time PCR analysis and generation of hypotheses for
testing in cell lines and model organisms.
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