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Abstract:

A contemporary review of quantum models of chemical reactions is presented. At low temperatures tunneling prevails over thermally
activated transitions and results in non-Arrhenius behavior of the rate constant, which cannot be described in terms of classical
transition state theory and requires explicit incorporation of environment dynamics. The correlation between the quantum rate constant
and spectral properties of the heat bath and dynamics of intramolecular vibrations is considered. The spectroscopic evidence of
tunneling in molecules is also discussed. The theoretical consideration is illustrated by a number of experimental examples.
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1. Introduction
1.1. Historical background

Any elementary chemical reaction is a conversion of reactant molecules, which are stable on the
time scale of their vibration frequencies, to the product molecules. This process is associated with
surmounting an energy barrier dividing the quasistationary states. Stability of reactants implies in
particular that the transition proceeds so slowly that the populations of energy levels in the initial
state are close to the equilibrium ones. In order for this stability to take place, the barrier height
should be greater than both the thermal energy and the energy level spacing in the initial state,

Vo> hwo,  PVo>1, B=(kseT)'. (1.1)

Under the conditions (1.1) the rate constant is determined by the statistically averaged reactive flux
from the initial to the final state.
The quintessence of the classical chemical kinetics is the Arrhenius law

k(T) = koexp(— BVo) , (1.2)

which means that those initial states mostly contribute to the rate constant, which lie in the vicinity
of the barrier top. The prefactor k, depends on the statistical weight of these states. The classical
transition state theory (CLTST) [Eyring 1935; Glasstone et al. 1941; Eyring et al. 1983] developed,
in the first place, by Eyring, takes into account solely the over-barrier transitions with energy
E > V,. The history of CLTST has been written up by Leidler [1969]. The Arrhenius law
particularly requires that, even for the lowest barrier still satisfying the first of the conditions (1.1),
the rate constant should vanish at sufficiently low temperature. For instance, even for a very fast
reaction with ko = 10135~ !, I, = 5kJ/mol, k = 10*2s™ ! at 300K, the rate constant decreases to
below 107°s~! at T = 10K. Such a low value of k means the full absence of any conversion on
a time scale available in a measurement.

Quantum mechanics has brought new essential features into the chemical reaction theory. First,
the nature of the chemical bond itself has been established, and the concept of potential energy
surface (PES) on which the chemical reaction occurs has emerged. Second, the quantum partition
functions (for discrete energy spectra) are calculated in CLTST for both the initial and transition
states; the transition state is chosen from the condition that a classical trajectory of free motion
along the reaction coordinate, having once crossed the transition state, does not return
[Wigner 1938; Miller 1976]. Third, quantum mechanics allows for tunneling, i.e., penetration of
particles through the classically forbidden areas. This possibility has been considered within
CLTST only as giving rise to small corrections to the rate constant. Wigner was the first to
calculate this correction for a parabolic barrier [Wigner 1932, 1938]. He discovered that the
apparent activation energy,

E, = kgT*01nk/0T, (1.3)

197



198 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

becomes less than the barrier height and decreases with decreasing temperature,

E, = Vo — 2 pho™)?, (1.4)
where w* is the upside-down parabolic barrier frequency,

V(Q) = Vo —imw*’Q*, (1.5)

and the reaction coordinate Q is considered separately from the remaining degrees of freedom.

Earlier investigations [Hund 1927; Roginsky and Rozenkevitsch 1930] had pointed out that the
tunneling corrections should be observable in the case of high and narrow barriers, and that they
should be taken into account for reactions involving transfer of light particles, and in particular, for
hydrogen atoms. Although Bell’s solution [Bell 1933, 1935,1937] to the Wigner problem for low
temperatures ( fhw®/2n > 1) has demonstrated that at 7 — 0 the rate constant is no longer subject
to the Arrhenius law, this result has passed unnoticed for two reasons primarily: partly because of
exoticity of that situation which could not be implemented given the experimental perspective
at the moment, and partly because the parabolic barrier model (1.5) was apparently incorrect at
E < V,, when the initial and final states should be explicitly considered.

The next three decades were a period of overwhelming domination of CLTST, which has become
the basis of a universal description of various gas- and liquid-phase chemical reactions. Tunneling
was drawing just a little attention in the context of chemical kinetics during those years. Only Bell’s
prolonged investigations, summarized in his renowned books [Bell 1973, 1980], have ascertained
the two main consequences of proton tunneling in liquid phase reactions, i.e., the lowering of the
apparent activation energy and the growth of the isotope H/D effect (ratio of the rate constants of
H and D atom transfer) with decreasing temperature. The same results had been found by the early
60s in the gas-phase reactions of the H atom [Johnston 1960]. In both cases tunneling was
considered to occur from thermally activated reactant states and to give rise to only small
corrections to the Arrhenius law.

In 1959 Goldanskii showed [Goldanskii 1959, 1979] that at low enough temperatures, when
the population of thermally activated energy levels vanishes, only tunneling from the ground
state contributes to the transition, and the rate constant approaches its low-temperature quantum
limit k., becoming temperature-independent. According to [Goldanskii 1959], the Arrhenius
dependence k(T') evens out at the low-temperature plateau in a relatively narrow temperature
domain determined by the characteristic temperature 7T,, which was later called the “cross-
over temperature”. It depends not only on V,, but also on the barrier width and tunneling
mass m,

B = kT = a(W*Vo/2md*)V/? (1.6)
where d is the barrier width corresponding to the zero-point energy in the initial state, and a is
a factor of order unity, depending on the specific barrier shape. It equals %, 2/n, 3 and 1 for

rectangular, parabolic and triangular barriers, and for the barrier constructed from two shifted
paraboloids, respectively. For the parabolic barrier (1.5), eq. (1.6) assumes the equivalent form

ks T, = ho*2m . (1.7)
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Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has
been observed: 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16); 2. molecular reorientation in
methane crystal; 3. internal rotation of CH, group in radical (6.25); 4. inversion of radical (6.40); 5. hydrogen transfer in “halved”
molecule (6.16); 6. isomerization of molecule (6.17) in excited triplet state; 7. tautomerization in the ground state of 7-azoindole dimer
(6.1); 8. polymerization of formaldehyde in reaction (6.44); 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and
(c) bromination of ethylene; 10. isomerization of radical (6.18); 11. abstraction of H atom by methyl radical from methanol matrix
[reaction (6.19)]; 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].

The quantum limit k, relates to ¥, and T, through the approximate formula
ke = Akoexp(—BcVo), A~ (BVo) ™', (1.8)

where the factor 4 accounts for the decrease in k(7T) in the intermediate region between the
Arrhenius dependence and low-temperature plateau. As follows from (1.6)—(1.8), the rate constant
of the tunneling reaction, unlike the classical case, depends not only on the barrier height, but also
on the additional parameter #2/2md? (or w*), which does not show up in CLTST. As a function of
this parameter, the rate constant changes in a range which is not narrower than when it is
considered a function of V;. Typical values of d and m (d = 0.5-2.5 A, m/my = 1-20) at a fixed
barrier height correspond with a variation of k. over more than 10—12 orders of magnitude, thus
covering the entire experimentally permissible range of the rate constant.

The experimental studies of a large number of low-temperature solid-phase reactions under-
taken by many groups in 70s and 80s have confirmed the two basic consequences of the Goldanskii
model, the existence of the low-temperature limit and the cross-over temperature. The aforemen-
tioned difference between quantum-chemical and classical reactions has also been established,
namely, the values of k. turned out to vary over many orders of magnitude even for reactions with
similar values of ¥, and hence with similar Arrhenius dependence. For illustration, fig. 1 presents
a number of typical experimental examples of k(7") dependence.

At T < T, tunneling occurs not only in irreversible chemical reactions, but also in spectroscopic
splittings. Tunneling eliminates degeneracy and gives rise to tunneling multiplets, which can be
detected with various spectroscopic techniques, from inelastic neutron scattering to optical and
microwave spectroscopy. The most illustrative examples of this sort are the inversion of the
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ammonium molecule and the rotations of the methyl group. In this case it is impossible to prepare
the initial nonstationary state, i.e., one cannot talk about reactants and products. The tunneling
splittings A involved in spectroscopy range from 10° to 10'%2s~!. Surprisingly, they can be
measured at temperatures for which the thermal energy is several orders greater than 4. At T > T,
tunneling splittings are not detected, because the over-barrier transitions from the energy levels
belonging to the continuous spectrum compete with tunneling.

The data presented in the following sections of this review demonstrate, however, that k. and
T, taken from the experimental curves k(7') are usually at dramatic variance with crystallographic
and spectroscopic data concerning the geometric configuration of the initial state, from which the
tunneling distance is usually inferred. In contradiction with (1.6), 7, was found to depend weakly on
the mass of the tunneling particle. The explanation for this lies in realizing that the PES of any, even
the simplest, chemical reaction is multidimensional (of dimension N > 2), and the potential barrier
V(Q) corresponds to the saddle point, which is the energy minimum on the (N — 1)-dimensional
surface dividing the reactant and product valleys. All of the N degrees of freedom participate in the
classical motion of the system, and in the vicinity of the initial minimum on the PES this motion is
composed of the normal vibrations, including the ones with sufficiently low frequencies. In
particular, when an atom or fragment is transferred between the crystal lattice nodes, intermolecu-
lar vibrations may have low frequencies, compared to the other characteristic frequencies of the
problem. When the frequencies of these vibrations w are less than ®®, then the Arrhenius
dependence, although with smaller activation energy, will persist at T < T, until these vibrations
freeze out at kgT < 3hw or cease to participate in the transition.

In the first case the cross-over temperature is given by

kBTé = %hw < kBTc . (1.9)

and is not related with w*. In the case of “switching-off” of the low-frequency modes, the tunneling
trajectories should differ from the classical ones, so that they do not pass through the saddle point.
Consequently, the height of the barrier through which the particle tunnels is greater than that for
the classical transition. Both effects take place in tunneling reactions and this explains why k. and
T, differ from the values calculated within one-dimensional static-barrier models. This leads one to
recognize the need for multidimensional tunneling models in which the muitidimensional reactant
motion creates a dynamical barrier whose parameters differ considerably from those of the static
barrier.

A simple dynamical model of a low-temperature reaction, referred to as the “fluctuational barrier
preparation” model (or “vibration-assisted tunneling”), was put forth in the beginning of the 80s
[Ovchinnikova 1979; Benderskii et al. 1980; Trakhtenberg et al. 1982]. Only later was the pro-
ximity of this model to the contemporary quantum transition state theory (QTST) realized. QTST
has been under intensive development since the 70s as the problem of multidimensional tunneling
trajectories [Truhlar and Kuppermann 1971; Miller 1974, 1983; Babamov and Marcus 1981]
stimulating both theoretical and experimental studies of quantum-chemical reactions. Since these
reactions, unlike the classical ones, correspond to low transition probabilities and they are
observed in the absence of thermal activation, the results, which were earlier obtained in low-
temperature chemistry and to which not much attention was paid for a long time, have at last been
incorporated into the mainstream of development of fundamental concepts in chemical kinetics.
The advance of the last decade in quantum-chemical dynamics has enabled one to describe from
a unique perspective such, at first glance, distant phenomena as spectroscopic tunneling splitting
(with transition probabilities 101°-10"! s~ ') and slow low-temperature chemical conversions (with
rate constants up to 107 °s™ 1),
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Computations have shown that in the quantum region it is possible to have various most
probable transition paths (ranging from the classical minimum energy path (MEP) to the straight-
line one-dimensional tunneling of early models), depending on the PES geometry.

The quantum effects in low-temperature chemistry are discussed in a book [Goldanskii
et al. 1989] and in reviews [Jortner and Pullman 1986; Benderskii et al. 1989; Benderskii and
Goldanskii 1992]. In the last two reviews the current state of affairs in low-temperature chemistry is
considered in connection with advances in quantum-chemical dynamics in general. However, all
these reviews except [Benderskii and Goldanskii 1992] relied only on radiationless transition
theory [Kubo and Toyasava 1955], developed for studying impurity centers in crystals, and did not
reflect the rampant progress in the general quantum theory of chemical reactions.

Judging from our present knowledge, such a description is far from the whole story. The article
of Benderskii and Goldanskii [1992] addressed mostly the vast amount of experimental data
accumulated thus far. On the other hand, the major applications of QTST involved gas-phase
chemical reactions, where quantum effects were not dominant. All this implies that there is a gap
between the possibilities offered by modern quantum theory and the problems of low-temperature
chemistry, which apparently are the natural arena for testing this theory. This prompted us to
propose a new look at this field, and to consistently describe the theoretical approaches which are
adequate even at T = 0.

1.2. Routes of simplifying the problem

The main problem of elementary chemical reaction dynamics is to find the rate constant of the
transition in the reaction complex interacting with its environment. This problem, in principle, is
close to the general problem of statistical mechanics of irreversible processes (see, e.g., Blum [1981],
Kubo et al. [1985]) about the relaxation of initially nonequilibrium state of a particle in the
presence of a reservoir (heat bath). If the particle is coupled to the reservoir weakly enough, then the
properties of the latter are fully determined by the spectral characteristics of its susceptibility
coefficients.

Moreover, in this linear-response (weak-coupling) limit any reservoir may be thought of as an
infinite number of oscillators {q;} with an appropriately chosen spectral density, each coupled
linearly in g; to the particle coordinates. The coordinates g; may not have a direct physical sense;
they may be just unobservable variables whose role is to provide the correct response properties of
the reservoir. In a chemical reaction the role of a particle is played by the reaction complex, which
itself includes many degrees of freedom. Therefore the separation of reservoir and particle does not
suffice to make the problem manageable, and a subsequent reduction of the internal degrees
of freedom in the reaction complex is required. The possible ways to arrive at such a reduction are
summarized in table 1.

By convention, we divide the total system characterized by nuclear coordinates and composed of
a reaction complex and the environment into the PES coordinates and the heat bath, by using the
weak-coupling criterion. Thus the set of PES coordinates will not in general be identical to the
reaction complex because it contains only those degrees of freedom which cannot be split off and
put into the harmonic heat bath because of their strong coupling. On the other hand, the PES
coordinates may include the intermolecular vibrations strongly coupled to the motion of the
transferred atom or fragment.

Since the calculation of multidimensional PES is a very difficult task, in most cases the choice
of the internal PES coordinates is based on models, which take into account the information
about the structure, barrier height and characteristic frequencies of the reaction complex and
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Table 1
Reduction of the general quantum dynamics problem

V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

Reduction steps Problems
Initial electron-nuclear system
Bom-Oppenheimer Adiabatic vs non-adiabatic
approximation Y transition
| Initial system (nuclear coordinates) |
[Reaction complex | environment
Separation of harmonic I [
linearly-coupled bath ‘
Y Linear . Dissipative
PES coordinates p AP Harmonic bath I tunneling
l ping (quantum Kramers
problem)
. Y
Separation o Reaction coordinate . Harmonic bath
reaction coordinate. | | in \ibrationally Linear, omic ba
Vibrationally adiabatic potential | CPME [ 9> | @<
adiabatic
approximation. Renarmalization of
tunneling splitting \
Y
Linear Low frequency
T ] ] syst PRI~ Lo AR -
[ Two-tevelsystem | =5 = | emmonc bai
[ ] (R o
Reaction coordinate | . . .. | Slow subsystem Vlb'ranon-
Sudden of fast system Averagin over coordinates ﬁ:ﬁi
approximatrion slow subsystem &
Y configurations
I Multidimensional
Multidimensional tunneling

non-separable PES

environment. In fact, at this stage simplifications come about, which allow one to choose a PES

with a restricted number of degrees of freedom.

Often the consideration of low-temperature chemical reactions is restricted to a single-sheet
PES. In gereral, a chemical reaction is the passage between two (or several) electronic states, each
characterized by its own PES (reactant and product “diabatic terms”). The interaction between
these states (“diabatic coupling”) eliminates their intersection and creates two new adiabatic PES
one of which (the lower one) connects the reactant and product states in a continuous way. The
upper and lower adiabatic terms are separated by the adiabatic splitting. In the usual case for
low-temperature chemistry, this splitting is large enough, and the influence of the upper term is
immaterial, so that tunneling occurs on a single adiabatic PES; the effect of nonadiabaticity is to

modify the preexponential factor.
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The obtained PES forms the basis for the subsequent dynamical calculation, which starts with
determining the MEP. The next step is to use the vibrationally adiabatic approximation for those
PES degrees of freedom whose typical frequencies ; are greater than o and w*. Namely, for the
high-frequency modes the vibrationally adiabatic potential [ Miller 1983] is introduced,

Viaa(Q) = V(Q) + X 3 hoo;(Q) - (1.10)

j

If all the PES coordinates are split off in this way, the original multidimensional problem reduces
to that of one-dimensional tunneling in the effective barrier (1.10) of a particle which is coupled to
the heat bath. This problem is known as the dissipative tunneling problem, which has been
intensively studied for the past 15 years, primarily in connection with tunneling phenomena in solid
state physics [Caldeira and Leggett 1983]. Interaction with the heat bath leads to the friction force
that acts on the particle moving in the one-dimensional potential (1.10), and, as a consequence, »*
is replaced by the Kramers frequency A* [Kramers 1940] defined by

M = 0*{[1 + (020*)]V2 — n20*} (L11)

where 7 is the friction coefficient. The cross-over temperature decreases to [Hanggi 1986; Hanggi
et al. 1990]

kT, = hA* /27 . (1.12)

In order that CLTST be valid, in addition to conditions (1.1) it is necessary that friction, while
leaving the transition rate unaffected, should maintain thermal equilibrium in the initial state. This
leads to the additional requirement

(BVo) ! < n20* < 1. (1.13)

At low temperatures ( fhwo > 1) only the lowest initial eigenstate actually participates in the
transition, and the problem permits further reduction to the two-level system Hamiltonian
[Leggett et al. 1987; Suarez and Silbey 1991a]. In doing so, one separates the high-frequency part
of the bath spectrum (vibrations with frequencies @ > w, where w, is a characteristic cutoff
frequency). The tunneling is considered instantaneous on the time scale of the low-frequency bath
vibrations (w < w.) and thus it is described by a tunneling matrix element 444, which is renor-
malized by the high-frequency vibrations [Leggett et al. 1987]. In essence, the rate theory version
based on the model of a two-level system (TLS) coupled to a low-frequency heat bath is
a golden-rule approach, exploiting the basic formula

k = (2n/h)(h4/2)? psFC , (1.14)

where h4 is the tunneling splitting in the isolated TLS, p, the density of energy levels in the final
state and FC is the Franck—Condon factor (square of the overlap integral of oscillator wave
functions in the initial and final states).
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This model permits one to immediately relate the bath frequency spectrum to the rate-constant
temperature dependence. For the classical bath (fhAw, < 1) the Franck—Condon factor is propor-
tional to exp(—2 BE,) with the reorganization energy equal to

E. =1Y miwiAqg} (1.15)

where Ag; is the shift of the jth oscillator due to the transition. The heat bath reorganization creates
the barrier V, = %E,. At Bhw, > 1 the contributions from one-phonon, two-phonon processes, etc.,
can be systematically extracted from the general expression for the rate constant, and the type of
the dominant process is determined by the bath spectrum. The results of Leggett et al. [1987] show
that the quantum dynamics of a TLS crucially depends upon the spectrum of the bath and, in
particular, the bath may dramatically slow tunneling down and even localize the particle in one of
the wells at sufficiently strong coupling. The strong dependence on the bath spectrum is inherent to
the quantum dynamics and it does not show up in classical transitions.

Aside from the reorganization of the bath, there is one more phenomenon which has to be
accounted for in description of a chemical reaction. Namely, there are vibrational modes which are
not reorganized in the transition, but which efficiently modulate the barrier thereby dramatically
increasing the tunneling rate. The dissipative tunneling model, formulated by Leggett et al.
[1987], does not properly account for such “promoting” vibrational modes which are strongly
coupled to the particle, and which, in fact, do not belong to the heat bath in the above weak-
coupling sense.

As an example of such a situation consider the tunneling of the hydrogen atom in an OH --- O
fragment (fig. 2). The height and width of the barrier for the H atom depend on the O-O distance.
On the other hand, the O-O distance is the same in the initial and final states, i.e., the reorganiza-
tion energy corresponding with the O-O vibration equals zero. If the promoting vibration has
a high frequency, it can be incorporated by using the vibrationally adiabatic potential along MEP
(1.10). In the opposite case tunneling occurs instantaneously on the timescale of the promoting
vibrations of the heavy fragments, and its rate results from averaging over the slow subsystem
configurations [Ovchinnikova 1979; Benderskii et al. 1980; Trakhtenberg et al. 1982]. The most
probable tunneling path in this case differs from the MEP.

This idea, christened later as the sudden approximation, has recently been developed in detail by
Levine et al. [1989], in connection with dissipative tunneling in the framework of quantum

0-H | 0
q

Fig. 2. Transfer of a hydrogen atom in an OH .- O fragment promoted by stretching O-O vibration. Solid line corresponds to
equilibrium O-O distance, g=4,, dotted line g < g5.
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transition state theory. For the TLS model the promoting vibrations (g,) are incorporated by
introducing the tunneling matrix element dependence on g, [Suarez and Silbey 1991a; Bogris et al.
1989; Siebrand et al. 1984]

4 = Agexp(—74,) , (1.16)

where y~ ! is small compared to the tunneling distance. For OH --- O fragments the value of y is in
the range 25-35 A~ ! [Bogris et al. 1989].

In realistic systems, the separation of the modes according to their frequencies and subsequent
reduction to one dimension is often impossible with the above-described methods. In this case an
accurate multidimensional analysis is needed. Another case in which a multidimensional study is
required and which obviously cannot be accounted for within the dissipative tunneling model is that
of complex PES with several saddle points and therefore with several MEPs and tunneling paths.

While the goal of the previous models is to carry out analytical calculations and gain insight into
the physical picture, the multidimensional calculations are expected to give a quantitative description
of concrete chemical systems. However at present we are just at the beginning of this process, and
only a few examples of numerical multidimensional computations, mostly on rather idealized PES,
have been performed so far. Nonetheless these pioneering studies have established a number of novel
features of tunneling reactions, which do not show up in the effectively one-dimensional models.

The most general problem should be that of a particle in a nonseparable potential, linearly
coupled to an oscillator heat bath, when the dynamics of the particle in the classically accessible
region is subject to friction forces due to the bath. However, this multidimensional quantum
Kramers problem has not been explored as yet.

To conclude this section, it is worth pointing out one more basic peculiarity of quantum
dynamics, as opposed to classical dynamics. Since in classical mechanics trajectories with energies
E < V, are banned, the treatment of tunneling necessitates considering a phase space in which the
coordinates are real and the conjugate momenta imaginary. This is being done by introducing
imaginary time for motion in classically inaccessible regions. An appropriate language for these
trajectory studies is the Feynman path-integral formulation of quantum mechanics [Feynman and
Hibbs 1965; Feynman 1972], where the probability amplitude of the transition equals the path
integral over all the ways connecting the initial and final states.

This review largely follows the above reduction scheme. In section 2 we discuss the main
peculiarities of tunneling reactions, as compared to thermally activated ones. The most salient
theoretical conclusions are given without derivation. The next three sections pursue the pedagogi-
cal task and systematically deal with the theoretical imaginary-time path-integral approach. In
section 6 some illuminating experimental results are selected in order to illustrate the previous
discussion. The reader who is not interested in the details of the theory may skip sections 3-5,
because the conclusions that are necessary for understanding the last section are presented in
section 2.

2. From thermal activation to tunneling

2.1. Cross-over temperature

Although the inadequacy of the one-dimensional model [Goldanskii 1959, 1979] is well by now
understood, we start with discussing the simplest one-dimensional version of the theory, since it
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will permit us to elucidate some important features of tunneling reactions inherent in more realistic
approaches. The one-dimensional model relies on the following assumptions:

(i) the reaction coordinate is selected from the total set of PES coordinates;

(i) the energy spectra of reactants and products are continuous;

(iii) the thermal equilibrium is maintained in the course of the transition;

(iv) tunneling and over-barrier transitions proceed along the same coordinate.

Assumptions (i)—(iii) form, according to Wigner, the basis of CLTST; in a sense, the one-
dimensional model straightforwardly extends the CLTST to the subbarrier energy region. These
assumptions necessitate in particular the validity of condition (1.13).

The rate constant is the statistical average of the reactive flux from the initial to the final state

k=2Zy1 JdEp(E)w(E)exp(— BE), (2.1)

where p(E) is the density of the energy levels in the initial state, w(E) is the barrier transparency at
the energy E, and Z, is the partition function in the initial state included in (2.1) in order to
normalize the flux. In this formula the reader will readily recognize the traditional CLTST
expression (see, e.g., Eyring et al. [1983]), in which the transformation from the (P, Q) phase space
to the (E, t) variables (where ¢ is the time of motion along the classical trajectory with the energy E)
has been carried out,

ka=2Z5" JdP do 2 exp[—BE(P,Q)]16(E — V0)d(Q)6(P) . 22)

Equation (2.2) defines the statistically averaged flux of particles with energy E = P?/2m + V(Q)
and P > 0 across the dividing surface with Q* = 0. The step function 8(E — V;) is introduced
because the classical passage is possible only at E > V. In classically forbidden regions, E < V5,
the barrier transparency is exponentially small and given by the well known WKB expression (see,
e.g., Landau and Lifshitz [1981])

p(E)w(E) = 2nh)™" exp[ — 2S(E)/h] , (2.3)

where S(E) is the quasiclassical action in the barrier,

Q2(E)
S(E) = J do [2m(V(Q) — E)]'2, (2.4)

Q1(E)
and Q,(E) and Q,(E) are the turning points defined by V(Q,) = V(Q,) = E (see fig. 3).
After substituting (2.3) and (2.4) for (2.1), the integral can be evaluated with the method of
steepest descents. The stationary point E = E, is given by the equation derived by Miller and
George [1972]

Q2(E,)
0S(E) m vz
-2 -2 | (s —gg) e @9

Q1(E,)
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Fig. 3. One-dimensional barrier along the coordinate of an exoergic reaction. Q,(E), Q' (E), Q,(E), Q5(E) are the turning points, ®, and
* initial well and upside-down barrier frequencies, V, the barrier height, — AE the reaction heat. Classically accessible regions are 1, 3,
tunneling region 2.

where 7(E,) is the period of vibrations of a classical particle at energy E, in the inverse barrier.
Finally, (2.1) reduces to

k = koexp[ — 2S(E,)/k] exp(— BEJ) , 26)

where the prefactor is given by

- s 12 20°S 0t (0’[2S(E)+ BhET\™*
ko =2, 1(2nh)+<—|628/6E2|E:E_) , T =3 = ( 0B ) . (2.7)

According to (2.6), when the temperature is decreased, both the apparent activation energy
E, and the apparent prefactor k, = ko exp[ — 2S(E,)/h] decrease. The rate constant k given by (2.6)
goes to a finite value k. at T — 0 when E, = 0, while 7(E,) goes to infinity. When the temperature
grows, the period 1 decreases. It is evident, though, that it cannot be smaller than 2n/w*, where

w* =[m™'d*r(Q)dQ?]1"* . (2.8)

This means that there is a cross-over temperature defined by (1.7) at which tunneling “switches
off ”, because the quasiclassical trajectories that give the extremum to the integrand in (2.1) cease to
exist. This change in the character of the semiclassical motion is universal for barriers of arbitrary
shape.

The relative contribution of over-barrier (E > V) transitions and tunneling (E < V;) to the
integral (2.1) is governed by the dimensionless parameter

& =61/60 = ke Thw*)?, 62 = kyT/mw*?, 62 = h/2mw* (2.9)

where o¢ is the amplitude of thermal vibrations and J, is the zero-point amplitude for the
upside-down barrier. When £ > 1, the thermal vibration amplitude prevails over 8., and thermal
fluctuations result in Arrhenius behavior with the activation energy equal to the barrier height.
When ¢ < 1, the thermal fluctuations are small, and k(7T") approaches the low-temperature limit
k. with E, = 0. At intermediate values of £ ~ 1 the major contribution to the integral (2.1) comes
from an energy in the range 0 < E < V,, and tunneling occurs from thermally activated energy
levels.
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Of special interest is the case of parabolic barrier (1.5) for which the cross-over between the
classical and quantum regimes can be studied in detail. Note that the above derivation does not
hold in this case because the integrand in (2.1) has no stationary points. Using the exact formula for
the parabolic barrier transparency [Landau and Lifshitz 1981],

w(E) = {1 + exp[(2n/hw*)(Vo — E)]} 71, (2.10)

which holds above the barrier as well as below it, and taking the integral (2.1) with infinite limits,
one finds

k=Zo'(2nhp)~ ! [3hBw*/sin (3hw*)] exp(—BVo) . (211)
When $hBw* <1, we recover the basic CLTST relation,

k(T)= Zy* (kgT/2nh) exp(—BVo) . (2.12)
In the harmonic approximation for the initial state,

Zy ' = 2sinh(3 hfw,) , (2.13)

and at $hBw, <1 we arrive at the classical limit of the rate constant,

ka(T) = (wo/2m)exp(—BV5) - (2.14)

Expression (2.11) has been derived by Wigner [1932], who pointed out that the factor
f=3%hpw?*/sin(Fhpw*) (2.15)

modifying CLST, corresponds to quantum corrections. Equation (1.4) follows from (2.11) when
expanding the sine to third order in 1ABw®. The prefactor in (2.11) diverges at the cross-over
temperature (1.7). This artefact occurs because the parabolic approximation is acceptable only near
the top of the barrier, and at T < T;, when the particle explores the bottom of the well, this
approximation does not suffice. For this reason the Eckart barrier has been used by Goldanskii
[1959] instead of a parabolic one, and the role of the zero-point vibrations at 7 < 7, has been
noted. Since the harmonic oscillator period is independent of energy, dt/0E = O for a parabolic
barrier, and eq. (2.5) has no solution. Thus at T < T the apparent activation energy falls abruptly
until it reaches the region where the potential is no longer parabolic. '

Figure 4 demonstrates that in order to variationally describe a realistic barrier shape (Eckart
potential) by an effective parabolic one, the frequency of the latter, w., should drop with
decreasing temperature. At high temperatures, T > T, transitions near the barrier top dominate,
and the parabolic approximation with w.; = @* is accurate.

Let us now turn to the case T— 0. First of all, somewhat suspicious is the combination of the
continuous integral (2.1) with the discrete partition function Z, (2.13), usual for CLTST. This
serious deficiency cannot be circumvented in the framework of this CLTST-based formalism, and
a more rigorous reasoning is needed to describe the quantum situation. Introduction of adequate
methods will be the objective of the next sections devoted to the path-integral formalism, so here we
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Fig. 4. Variationally determined effective parabolic barrier frequency wf for the Eckart barrier in units of 2r/hff [Voth et al. 1989b].
The dotted line is the high-temperature limit w2 = w*.

just note that, fortunately, egs. (2.6) and (2.7), combined with (2.13) still turn out to be correct in the
quasiclassical sense [Waxman and Leggett 1985; Hanggi and Hontscha 1988, 1991].

In order for the prefactor in (2.6) to be finite, the exponential increase in Z; ' should be
compensated by a decrease in | 0t/0E |~ /2. As shown in appendix A, for g satisfying (2.5) at f — oo
the following equation holds:

—h 0B/OE = —0t/0E = 1/woE . (2.16)
The formal solution of this equation is
E = Eoexp(—fwo) , (2.17)

where E, is the characteristic energy which depends on the barrier shape and is of the order of V5.
When substituting (2.16) and (2.17) in (2.6), the exponents exp( + 3 fw,) cancel out in the prefactor
and k, takes the form

k, = (00/27) (2nEo/hwo)'/? exp( — 2So/h) , (2.18)

where S, is the action S(E) (2.4) at E = 0. The square root in (2.18) is responsible for the zero-point
vibrations in the initial well and is of the order of (So/A)* /%

Exploration of the region 0 < T < T, requires numerical calculations using egs. (2.5)—(2.7). Since
the change in k, is small compared to that in the leading exponential term [cf. (2.14) and (2.18)], the
Arrhenius plot k(p) is often drawn simply by setting k, = wo/27 (fig. 5). Typical behavior of the
prefactor k, and activation energy E, versus temperature is presented in fig. 6. The narrow
intermediate region between the Arrhenius behavior and the low-temperature limit has width

ATIT, ~ kyT./Vy . (2.19)

The above discussion concerning eq. (2.1) implied that tunneling transitions were incoherent and
characterized by a rate constant. This is predetermined by assumption (ii) mentioned at the
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Fig. 5. Arrhenius plot of k(T) for one-dimensional barrier with w*/w, = 1, 0.5, 0.25 for the curves 1-3, respectively; 2nVo/hw, = 10,
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Fig. 6. Apparent activation energy (1,2) and logarithm of apparent prefactor Ink, (1’,2’) versus temperature. The value 2nV,/ho* is
taken 40 and 20 for the curves 1, 1’ and 2, 2', respectively.

beginning of this section. Studying the spectral manifestations of tunneling requires giving up this
assumption. In a symmetric double well tunneling results in the splitting of each ene#gy level of
a bound state, semiclassically given by

hA = [ho(E)/n] exp[ —S(E)/H] , (2.20)

where E is the eigenenergy in the isolated well. This splitting shows up as a doublet of spectral lines,
for example, in neutron scattering spectroscopy or optical spectroscopy of high resolution. With
increasing temperature these lines are broadened and tend to collapse onto one central line. This
central line is observed only at high temperatures, and its width is determined by incoherent
thermally activated hopping between the wells. So there should be a characteristic temperature at
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the boundary between the two different regimes: incoherent hopping and coherent probability
oscillations between the wells. The former is characterized by the rate constant k with Arrhenius
behaviour (2.14), while the latter by the oscillation frequency 4.

Although, strictly speaking, these two quantities are incomparable, one may suggest the follow-
ing spectral criterion. The doublet disappears when the thermal hopping fully “smears out” the
two spectral lines, i.e., 4 = k. The temperature T* at which this happens comes directly from
exp(—S/h) = exp(— Vo/kgT*). If we compare T* with T, given by (1.6), we see that T* is twice T.
This reflects the difference between the incoherent tunneling transition, whose rate is proportional
to exp(— 2S/h), and oscillations with frequency proportional to exp(— S/A). In the one-dimensional
model at hand, the mechanism of destruction of coherence is connected with the interference of
amplitudes in the continuous energy spectrum above the barrier. Interaction with the reservoir
provides a more efficient mechanism for this destruction, and it will be considered in section 2.3.

The previous treatment applies to exoergic chemical reactions (with positive energy difference
between the minima of the initial and final states AE = EY — E > 0). For endoergic reactions
(AE < 0) the lower bound on the integral (2.1) should be replaced by — AE, since tunneling is
possible only at E > — AE. When T < T, the apparent activation energy of endoergic reactions
approaches its low-temperature limit equal to — AE < V,. The Arrhenius plot consists of two
nearly straight lines corresponding with the activation energies V, and —AE at T > T, and
T < T, respectively.

2.2. Tunneling and dissipation

The classical motion of a particle interacting with its environment can be phenomenologically
described by the Langevin equation

md?Q/dt? + nQ(t) + 0V (Q)/0Q = f (1) , (2.21)

where f(t) is a Gaussian random force. The most remarkable advance in analysing chemical
transitions governed by (2.21) lies in the idea that the effect of friction is equivalent to that of linear
coupling to a bath of harmonic oscillators (see, e.g., Hanggi et al. [1990], Dekker [1991]). The bath
is characterized by its spectral density

J)=4ndY m o 'C}Héw — w)), (2.22)

where C; is the parameter of coupling to the oscillator with frequency w;. No information is
actually available about the coupling constants in molecular crystals, and introduction of the
integral characteristic J(w) is a phenomenological way to account for environment effects. In order
to obtain (2.21) one has to choose

J(o) = no . (2.23)

Other spectral densities correspond to memory effects in the generalized Langevin equation, which
will be considered in section 5. It is the equivalence between the friction force and the influence
of the cscillator bath that allows one to extend (2.21) to the quantum region; there the friction
coefficient  and f(¢) are related by the fluctuation—dissipation theorem (FDT),

@

j dt {f(2) f(0)> expliwt) = nho coth(} fhw) , (2.24)

=0
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where { f(t)f(0)) is the symmetrized correlation function [Chandler 1987]. In the classical limit
f(t) is é-correlated,

fOLE) =28""nd — 1) (2.25)

As first shown by Caldeira and Leggett [1981], in the tunneling regime friction reduces the
transition probability by the factor

exp[—An(AQ)Y*/H] , (2.26)

where AQ is the tunneling distance and A is a factor of order unity depending on the shape of
barrier. How friction affects k(7") can be illustrated by a simple example of a cusp-shaped parabolic
term depicted in fig. 7. This potential models a strongly exothermic chemical reaction with a sharp
descent to the valley of products. The rate constant is proportional to the probability to reach the
barrier top @ = Q*, which, in turn, is described by a Gaussian

k oc exp(— Q*2/26%), (2.27)

where the damped harmonic oscillator spread may be found from the FDT,

nw

do (0§ — 0 + (n/m)* w?

82m, B)=n"'m 'k coth(} phw) . (2.28)

01—38

This relation may be interpreted as the mean-square amplitude of a quantum harmonic
oscillator 62(w) = (2mw)~ ! h coth(3 Bhw) averaged over the Lorentzian distribution of the system’s
normal modes. In the absence of friction (2.27) describes thermally activated as well as tunneling
processes when 4Bhw, < 1, or 4Bhw, > 1, respectively. At first glance it may seem surprising
that the same formula holds true for the damped oscillator. This statement, borne out in
the work of Grabert et al. [1984a], can be explained by the aforementioned averaging. The

Q

Q

Fig. 7. Cusp-shaped potential, made up of parabola and a vertical wall.
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Fig. 8. Arrhenius plot of dissipative tunneling rate in a cubic potential with ¥, = Shw, and n/2w”* = 0, 0.25 and 0.5 for curves 1-3,
respectively. The cross-over temperatures are indicated by asterisks. The dashed line shows k(T) for the parabolic barrier with the same
o”* and V,.

asymptotic expressions for 62 are

ks T/mw? kgT > hwy
8% ={ h(2mwe) *(1 — g/amwe) , T=0, n/m < w, (2.29)
2h(mn)™ " In(n/mao) , T=0, n/m> wo

According to (2.29), dissipation reduces the spread of the harmonic oscillator making it smaller
than the quantum uncertainty of the position of the undamped oscillator (de Broglie wavelength).
Within exponential accuracy (2.27) agrees with the Caldeira—Leggett formula (2.26), and similar
expressions may be obtained for more realistic potentials.

A few comments on (2.27), (2.29), (1.11) and (1.12) are in order. The activation energy in the
Arrhenius region is independent of #, since friction changes only the velocity at which a classical
particle crosses the barrier and thus affects the prefactor. Friction reduces k. along with T, thereby
widening the Arrhenius region. Dissipation visibly affects the k(7") dependence when # is strong
enough, namely when 5/m is comparable to, or greater than w*. The function k(T) at various
friction coefficients calculated from the data [Grabert et al. 1987] is shown in fig. 8.

Friction also changes the way k(f) approaches its low-temperature limit and widens the
intermediate region between the two asymptotes of k( ). At temperatures far below the cross-over
point k(T') behaves as

k(T) = k(0)exp[A(T)], A(T)oc T", (2.30)

where n depends on the spectrum of the bath. In particular, for the frequency-independent friction
(2.23) n = 2, for the deformation potential model (defects in a 3D crystal lattice with Debye phonon
spectrum) J(w) oc w3, n = 4, while in the absence of friction A(T)oc exp(—hwo/ksT).
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Thus far we have discussed the direct mechanism of dissipation, when the reaction coordinate is
coupled directly to the continuous spectrum of the bath degrees of freedom. For chemical reactions
this situation is rather rare, since low-frequency acoustic phonon modes have much larger
wavelengths than the size of the reaction complex, and so they cannot cause a considerable relative
displacement of the reactants. The direct mechanism may play an essential role in long-distance
electron transfer in dielectric media, when the reorganization energy is created by displacement of
equilibrium positions of low-frequency polarization phonons. Another cause of friction may be
anharmonicity of solids which leads to multiphonon processes. In particular, the Raman processes
may provide small energy losses.

More pertinent to the present topic is the indirect dissipation mechanism, when the reaction
coordinate is coupled to one or several active modes which characterize the reaction complex
and, in turn, are damped because of coupling to a continuous bath. The total effect of the active
oscillators and bath may be represented by the effective spectral density J ¢ (w). For instance, in the
case of one harmonic active oscillator with frequency w,, mass m; and friction coefficient #, J ¢¢(®)
is proportional to the imaginary part of its susceptibility and equals [Garg et al. 1985]

Jere(@) = myoty" (@) = nootl(] — o) + @H/mPo’]™" . (2.31)

Since the susceptibilities can be extracted from the optical spectra of these active modes,
a quantitative description based on dissipative tunneling techniques can be developed. Such
a program should include the analysis of the motion of the reaction complex PES, with the
dissipation of active modes taken into account. The advantage of this procedure is that it would
allow one to confine the number of PES degrees of freedom to the relevant modes, and incorporate
the environment phenomenologically.

2.3. Coherent versus incoherent tunneling

Aside from merely calculational difficulties, the existence of a low-temperature rate-constant
limit poses a conceptual problem. In fact, one may question the actual meaning of the rate constant
at T = 0, when the TST conditions listed above are not fulfilled. If the potential has a double-well
shape, then quantum mechanics predicts coherent oscillations of probability between the wells,
rather than the exponential decay towards equilibrium. These oscillations are associated with
tunneling splitting measured spectroscopically, not with a chemical conversion. Therefore, a simple
one-dimensional system has no rate constant at 7 = 0, unless it is a metastable potential without
a bound final state. In practice, however, there are exchange chemical reactions, characterized by
symmetric, or nearly symmetric double-well potentials, in which the rate constant is measured. To
account for this, one has to admit the existence of some external mechanism whose role is to
destroy the phase coherence. It is here that the need to introduce a heat bath arises.

In this section we shall consider in some detail the mechanism of coherence breakdown due to
the bath, in order to clarify the physical assumptions which underlie the concept of rate constant at
low temperatures. The particular tunneling model we choose is the two-level system (TLS) with the
Hamiltonian

Ho = hdo, + Sheo, (2.32)

where o, and o, are the Pauli matrices, /4, is the “tunneling matrix element”, and ke is the energy
“bias” between the two wells. The Hamiltonian (2.32) includes only the lowest energy doublet of the
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actual double well. Given a double well, one is able to approximate it by a TLS (2.32) when ¢ < w,
40 <€ wg, and, moreover, the temperature is so low that the higher energy levels are not populated,
ie., kgT < hw,.

The most complicated case is of no asymmetry, i.e., ¢ = 0, and it is specially this problem that we
shall investigate. At ¢ = 0 the system, described by H,, has two energy levels E. = F 1h4,. If the
particle is initially put into the left well, the amplitudes of the particle being in the left and right
wells oscillate, respectively, as

cL(t) = cos(34ot) , cg = sin(4ot) , (2.33)
and the probability of the particle being in the left well equals
P (t) = |cL|? = [1 + cos(det)]/2 . (2.34)

The simplest scheme that accounts for the destruction of phase coherence is the so-called
“stochastic interruption” model [ Nikitin and Korst 1965; Simonius 1978; Silbey and Harris 1989].
Suppose the process of free tunneling is interrupted by a sequence of “collisions” separated by
time periods vy ! = to < 4¢ !. After each collision the system “forgets” its initial phase, i.e., the off-
diagonal matrix elements of the density matrix p go to zero, resulting in the density matrix p”

letl®  crer p lec|? 0
”"(wi‘ |cR|2)’ g ‘( 0 |cR|2)' (2.352,5)
The density matrix p describes the pure state, as seen from the equality p? = p, while p’ does not.
The transition from (2.35a) to (2.35b) describes a “strong collision”, which fully localizes the
particle, but in general the off-diagonal elements may not completely vanish. This however does
not affect the qualitative picture.
After each strong collision the system, having been localised in the left or right well, resumes free

tunneling from the diagonal state. Thus, after N collisions the probability to survive in the left
well is

Py(t) = [cos’(G4ot0)]" = [1 — $(doto) 1" = exp(—44to1) , (2:36)
where t = Nt,. Therefore, the rate constant is

k= Ab/4v, . (2.37)

This simple gas-phase model confirms that the rate constant is proportional to the square of the

tunneling matrix element divided by some characteristic bath frequency. Now, in order to put more

concretness into this model and make it more realistic, we specify the total (TLS and bath)
Hamiltonian

ﬁ=ﬁ0+ﬁb+ﬁint’ ﬁint =fdz (238)
where H, is the free bath Hamiltonian and f acts on the bath variables only. The environment, as it

were, “observes” whether the particle is on the right or on the left, through the interaction fo,, thus
destroying the interference between the two eigenstates of the matrix o,.
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Of particular interest is the model of a bath as a set of harmonic oscillators g; with frequencies
w;, which are linearly coupled to the tunneling coordinate

Hy =Y p}/2m; + dmotq?, f=3 C;Qo4;, (2.39)

where 2Q,, is the interwell distance. The quantity Q = Q.0 is nothing but the particle’s coordinate,
which, in the present approximation, takes two values, + Qo. The bath is characterized by its
spectral function J(w) (2.22), which is proportional to the mean square of force acting on a particle
from oscillators with frequency w, and it is related with the phonon density p(w) by

J(w) = 1 nC?*(w) p(w)/mw . (2.40)

This model, called the spin-boson Hamiltonian, is probably the only fully manageable problem of
this kind (with the possible exception of some very artificial problems) with a transparent solution.

The equation of motion for the expectation (o) in the weak-coupling limit has a Langevin-like
form

d*¢a;)/dt? + nrisd<a,)/dt + 45<a.> =0, (2.41)

where the damping coefficient is determined by the spectral density at w = 4, [Silbey and
Harris 1983],

H1Ls = h™ 1 nQé COth(%BhAo) Z CJZ(S(G)J — Ao)/ijl)j =2h" IQ%J(Ao)COth(%BhAo) (242)

This damping coefficient g is nothing but the rate constant of transitions between the energy
levels of the doublet, and it may be represented as

ﬂTLS = kT + kl ) (243)

where k;, is the probability (per unit time) to escape from the lower energy level to the upper one,
and k| is the probability of the reverse transition. The explicit form for k; and k| is the golden rule,

ki =2mh" 1Y Y |<n—1|C;Qoq;|n)|? 8(hdo — hw) Z] P exp[— fhw;(n + 3)]
j n=1
= 2h™1Q3J(40) [exp(Bhdo) — 1171 (2.44)
where Z; is the partition function of jth oscillator. From the detailed balance condition we have
k, = exp(fhdo)k; . (2.45)

As required by the energy-conservation law reflected by the é-function in (2.44), each intradoublet
transition is accompanied by emission or absorption of a phonon with energy #4,.

Equation (2.41) describes either damped oscillations (at #y.5 < 24,) or exponential relaxation
(1rLs > 24). Since nis grows with increasing temperature, there may be a cross-over between
these two regimes at * such that 24~ 1Q3J(4,)coth(3 f*hAo) = 24,. If the friction coefficient
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exceeds by far 24,,* the long-time behavior of the solution to (2.41) is determined by the exponent
exp(—43t/nLs). That is, the rate constant equals

k= A3/nrs - (2.46)

Expression (2.46) has the same form as (2.37) if we define the collision frequency as v = % #7.s. Both
these formulae can be expressed in the golden-rule form [cf. eq. (1.14)],

k = 2nh(40/2)*ps ,  pr = 2/nhnyLs = 1/2nhvg (247a,b)

where p;, the density of final states, was set equal to the expression (2.47b).

The identities in (2.47b) are very illuminating. The first of them indicates that the coupling to the
bath broadens the energy levels of the TLS leading to a density of states inversely proportional to
the damping coefficient. The second shows that the mean level spacing of the system is formally
equal to 2mhv,, where vo is the characteristic bath frequency. Finally, the same result (2.46),
(2.47a,b) obtains if one formally supposes that the energy level in the right well (in the original
basis, before the Hamiltonian was diagonalized), has an imaginary part i4I' = i3y [Rom
et al. 1991]. Such an imaginary part may be interpreted as caused by a process removing the
products from the final state. If the width of the energy level associated with this process exceeds the
tunneling splitting 4, the tunneling becomes irreversible.

The solution of the spin-boson problem with arbitrary coupling has been discussed in detail by
Leggett et al. [1987]. The displacement of the equilibrium positions of the bath oscillators in the
transition results in the effective renormalization of the tunneling matrix element by the bath
overlap integral

Agr = Aoexp(—4®o), Do =2% Q3Cin 'mj 'w; > = 4Q%(nh)™" dew_zj(w), (2.48)
0

whereas the quantity exp(— @) is nothing but the bath Franck—-Condon factor. This relation
expresses the fact that oscillators cause a dynamical asymmetry of the initial and final states, and
tunneling occurs only when a bath fluctuation symmetrizes the potential.

We just quote the main results of [Leggett et al. 1987], which cover most of the possible
situations. The spectral density is taken in the form

J(w) oc 0" é(w/w,) , (2.49)

where ¢ is the cutoff function which equals unity at w < w. and vanishes at w » w. [e.g.,
¢ = exp(— w/w.)]. The cutoff frequency is supposed to be greater than both the bare tunneling
splitting and thermal energy, 4¢ < w,, kg T < hw,. The case n = 1 [cf. eq. (2.23)] is referred to as
ohmic, n < 1 subohmic and n > 1 superohmic dissipation. The distinction between these cases is
due to different lobes of low-frequency vibrations in J(w), which is evident from the divergence of
Pyatn< 1.

* Our conclusions about the case of large #1.s have a rather speculative character, and pursue merely an illustrative goal, since (2.41)
and (2.42) are obtained in the weak-coupling limit.



218 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

Coupling to these low-frequency modes (at n < 1) results in localization of the particle in one of
the wells (symmetry breaking) at T = 0. This case, requiring special care, is of little importance for
chemical systems. In the superohmic case at 7 = 0 the system reveals weakly damped coherent
oscillations characterised by the damping coefficient # g from (2.42) but with 4, replaced by 4.
If 1 < n < 2, then there is a cross-over from oscillations to exponential decay, in accordance with
our weak-coupling predictions. In the subohmic case the system is completely localized in one of
the wells at 7 = 0 and it exhibits exponential relaxation with the rate Ink ¢ —(hw,/kgT)* "

The ohmic case is the most complex. A particular result is that the system is localised in one of
the wells at T = 0, for sufficiently strong friction, viz. > nh/2Q(2). At higher temperatures there is
an exponential relaxation with the rate Ink oc (4yQ3/nh — 1)In T. Of special interest is the special
case = nh/4Q3. It turns out that the system exhibits exponential decay with a rate constant which
does not depend at all on temperature, and equals k = n4g/2w.. Comparing this with (2.37), one
sees that the “collision frequency” turns out to be precisely equal to the cutoff vibration frequency
Vo = w./2m.

In the biased case coherent oscillations are completely suppressed by the bath when the bias ¢ is
large enough compared to the renormalized tunneling splitting, ¢ > A.. It therefore may be
concluded that the increase in both temperature and asymmetry results in a shift from coherent to
incoherent behavior. The low-temperature limit of the rate constant, k., has meaning mostly for
biased systems. The needed asymmetry, though, is actually very small, smaller than the level
spacing hwg, and it is this circumstance that permits one to study exchange reactions, like strongly
exoergic reactions, with the golden rule approach.

Note in passing that the common model in the theory of diffusion of impurities in 3D Debye
crystals is the so-called deformational potential approximation with C(w) oc w, p(w) oc w? and
J(w) oc w*, which, for a strictly symmetric potential, displays weakly damped oscillations and does
not have a well defined rate constant. If the system permits definition of the rate constant at 7 = 0,
the latter is proportional to the square of the tunneling matrix element times the Franck-Condon
factor, whereas accurate determination of the prefactor requires specifying the particular spectrum
of the bath.

The coherent tunneling case is experimentally dealt with in spectroscopic studies. For example,
the neutron-scattering structure factor determining the spectral line shape is

S(k, w) = cos?(k- Q) 6(w) + n~ sin?(k- Qo) [1 + exp(Bhw)]~*
X J dtexp(iwt) C(t) , (2.50)

where & is the wavevector, Aiw the absorbed energy; the displacement of the scatterer is represented
as Q = Qoo.. The function C(t) is the symmetrized correlator,

C(t) = #<a:(0)a.(t) + 0.(t)0.(0)) . (2.51)

The é-part in (2.50) is responsible for elastic scattering, while the second term, proportional to
the Fourier transform of C(¢), leads to the gain and loss spectral lines. When the system exercises
undamped oscillations with frequency 4o, this leads to two delta peaks in the structure factor,



V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry 219

|
)
|
1
2 2 2 2
rooo
o

8

0 . ; .
) -1 0 1 2
w/T
Fig. 9. Spectral line shape for tunneling doublet at different Fig. 10. Energy levels in symmetric double well. Arrows indi-
dimensionless temperatures, A = T/T*, as indicated. cate interdoublet transitions induced by vibrations.

placed at w = + 4,. Damping results in broadening of the spectral line. For spectral theory
clearly a different object from {o,(t)) is needed, the correlation function [Dattaggupta et al.
19891].

Nevertheless, Leggett et al. [1987] have argued, with some provisos,* that {a,(f)) [with the
initial condition ¢,(0) = 1] and C(t) may be practically taken the same. If C(t) then obeys the
damped oscillator equation (2.41), then the inelastic part of the structure factor has the Lorentzian
form with the peaks at w = (Aé — &n%Ls)” % and linewidth I' = inrLs. With increasing temperature
the peaks come closer to each other, and the lines become broadened. An example of the
dependence of the structure factor on w is given in fig. 9 for the special exactly soluble case of ohmic
friction with 5 = nh/4Q% [Sasetti and Weiss 1990]. In accord with our predictions, the peaks
become indistinguishable, and thus the system fully loses coherence above a certain temperature
T* = hA3/Akgo, .

At temperatures such that kg7 ~ hw, the two-state approximation breaks down, and the
interdoublet dynamics starts to play an essential role in broadening the tunneling splitting spectral
line [ Parris and Silbey 1985; Dekker 1991]. The energy level scheme for a symmetric double well is
presented in fig. 10. In each well we have a vibrational ladder with spacing between the levels
AE ~ hw,, and each level is split into a doublet with tunneling splitting 4,, < AE. The contribution
of interdoublet transitions into the linewidth may be found with the golden-rule approximation in
analogy with (2.44). Namely, in the case of linear coupling the transitions from the ground state |0)
to the Ith excited doublet |I) with absorption of one phonon are characterized by the overall rate
constant

ky =Y ki0,0)=2hr"" Y [KO|QIID|?J(E, — Eo)A(E, — Eq) , (2.52)
1>1

121

* The long-time behaviour of {o,(f)> may essentially differ from that of C(z), but this affects mostly the form of the spectral line at
w ~ 0, and seemingly this is immaterial for determining the tunneling splitting [Sasetti and Weiss 1990].
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with the mean number of phonons of energy E, — Eo,
n(E) = [exp(BE) — 1] *. (2.53)

The corresponding level broadening equals half k, . In fact k, is the diagonal kinetic coefficient
characterizing the rate of phonon-assisted escape from the ground state [Ambegaokar 1987].
In harmonic approximation for the well the only nonzero matrix element is that with
I =1,]<0|Q|I>|* = &5, where &, is the zero-point spread of the harmonic oscillator. For an
anharmonic potential, other matrix elements contribute to (2.52).

From a comparison between (2.44) and (2.52) one sees that at T =0 only the intradoublet
broadening mechanism works. At higher temperatures, wg ! < A < 44 ', the interdoublet contri-
bution provides exponential growth of the linewidths oc exp(— Bhwo). When A8 < wg'!, the
relative contributions from both mechanisms depend on the spectral density,

ki fky = (hdo/2me 6 Q5)J (w0)/J (4o) - (2.54)

The interdoublet transitions may prevail over the intradoublet ones if the spectral density J(w)
grows with  faster than w?.

The situation drastically changes, when the coupling to the oscillators is symmetric, C;f(Q)g;,
where f(Q) is an even function, or, in the two-state model, when the coupling is proportional to a,.
In this case the intradoublet matrix elements are identically zero due to symmetry, and, therefore,
the intradoublet broadening may appear only in higher orders of perturbation theory, i.e., for
multiphonon transitions. Note that the vibrations coupled in this way have the property that they
do not contribute to the Franck-Condon factor, because their equilibrium positions are the same
in the initial and final states. As we shall see later in subsection 2.5, it is these vibrations
that modulate the barrier thereby enhancing tunneling. When the intradoublet transitions are
forbidden, the tunneling splitting may be observed even at temperatures close to kg T, >~ hw,. This
situation is realized, in particular, for tunneling rotations, when the symmetry of the potential is not
violated by phonons.

2.4. Vibronic relaxation and electron transfer

Let us return to the nonadiabatic chemical processes. When a PES has been built, a part of the
total Hamiltonian may remain unaccounted for, and this part, acting as a perturbation, induces
transitions from the initial to the final state. There are several types of such a perturbation, namely:
(i) an unaccounted part of the electronic interaction; (ii) non-adiabaticity; (iii) spin—orbit coupling.

The first type of interaction, associated with the overlap of wavefunctions localized at different
centers in the initial and final states, determines the electron-transfer rate constant. The other two
are crucial for vibronic relaxation of excited electronic states. The rate constant in the first order of
the perturbation theory in the unaccounted interaction is described by the statistically averaged
Fermi golden-rule formula

2n
k= 72 | Vie|* exp(— BE:)O(E; — Ey) , (2.55)
it

where the matrix element Vs equals

Vie = C (@i QIVIYEC Qve(Q)) (2.56)
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a) b)

Fig. 11. (a) Diagram of energy levels for a polyatomic molecule. Optical transition occurs from the ground state A, to the excited
electronic state A; . A,, are the vibrational sublevels of the optically forbidden electronic state A ,. Arrows indicate vibrational relaxation
(VR) in the states A; and A,, and radiationless transition (RLT). (b) Crossing of the terms A; and A,. Reorganization energy E, is
indicated.

and the wave functions are taken in the Born-Oppenheimer approximation as products of
electronic (°) and nuclear functions.

The reactions of electron transfer and vibronic relaxation are ubiquitous in chemistry and many
review papers have dealt with them in detail (see, e.g., Ovchinnikov and Ovchinnikova [1982],
Ulstrup [1979]), so we discuss them to the extent that the nuclear tunneling is involved.

The fundamental problem that is to be solved is formulated as follows. There are initial and final
electronic terms which cross at some surface, which lies in the classically forbidden region.
According to the Born—-Oppenheimer principle, the transition occurs at fixed nuclear configuration
which brings the system to the crossing region. It is tunneling that creates such a configuration.
This situation, as shown by Robinson and Frosh [1963], is typical of vibronic relaxation in
polyatomic molecules. A diagram of energy levels is shown in fig. 11a. The vertical optical
transition to the excited electronic state A; is accompanied by rapid vibrational relaxation [Hill
and Dlott 1988], which results in populating the lowest vibrational sublevels only. These sublevels
lie below the point at which the term A, crosses the term of the final state A,. The minimum of
A, E S , 1 situated much lower than that of A;, E (1),

AE=E?—E{> how, (2.57)

and the transition A, « A; entails creation of many vibrational quanta.

Because of the dense spectrum of the highest vibrational sublevels and their rapid vibrational
relaxation in the A, state, this radiationless transition (RLT) is irreversible and thus it may be
characterized by a rate constant k. The irreversibility condition formulated by Bixon and Jortner
[1968] reads

R = 2mhpe > k1, (2.58)
where 1R is recurrence time, i.e., the time it takes the system with a density of the energy levels p; to

return to the initial state. This inequality, called statistical limit of the RLT rate constant, is
a quantitative embodyment of the second key assumption of TST (see section 2.1).
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When the characteristic time of vibrational relaxation z, is much shorter than zgz, the rate
constant is independent of z,. For molecules consisting of not too many atoms, the inequality (2.58)
is not fulfilled. Moreover, 7, may even become larger than 7g. This situation is beyond our present
consideration. The total set of resonant sublevels partaking in RLT consists of a small number of
active “acceptor” modes with nonzero matrix elements (2.56) and many inactive modes with
Vie = 0. The latter play the role of reservoir and insure the resonance E; = E;.

For aromatic hydrocarbon molecules, in particular, the main acceptor modes are strongly
anharmonic C-H vibrations which pick up the main part of the electronic energy in ST conversion.
Inactive modes are stretching and bending vibrations of the carbon skeleton. The value of
pr provided by these intramolecular vibrations is so large that they act practically as a continuous
bath even without intermolecular vibrations. This is confirmed by the similarity of RLT rates for
isolated molecules and the same molecules imbedded in crystals.

Owing to the separation of the active and inactive modes, in the Condon approximation the
matrix element (2.56) breaks up into the product of overlap integrals for inactive modes and
a constant factor V responsible for interaction of the potential energy terms due to the active
modes. In this approximation the survival probability of A; develops in time as

P;(t) = exp(— kt)cos®(2nt/tR) , (2.59)

k=Qn/mV?2pFC, FC= Z(H I<¥(Q) l//f,,.k(Q)>|2) : (2.60a,b)

where k is the RLT rate constant, and FC is the statistically weighted Franck—Condon factor. The
sum in (2.60b) is over all sets of vibrations n, such that Yn, hw, = E 9 EY.

The reorganization of the nuclear configuration in exoergic electron-transfer reactions is usually
considered in the same framework. A typical diagram of the terms is depicted in fig. 12.

Comparison of (1.14), (2.47a) and (2.60a) reveals the universality of the golden rule in the
description of both the nonadiabatic and adiabatic chemical reactions. However, the matrix
elements entering into the golden-rule formula have quite a different nature. In the case of an
adiabatic reaction it comes from tunneling along the reaction coordinate, while for a nonadiabatic

At

Fig. 12. Marcus model of two harmonic terms in the limit of strong coupling. Reorganization energy E, is shown.
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reaction it originates from the electronic interaction discussed above. The constant matrix-element
approximation usually used in RLT theory virtually reduces the problem of transition in a strongly
asymmetric potential, as shown in figs. 11 and 12, to that of a two-level system. For the
nonadiabatic problem the reduction to a TLS stems from the perturbation theory in electronic
interaction, while the adiabatic tunneling theory has no good small parameter; therefore this
reduction requires invoking rather delicate reasoning [Leggett et al. 1987].

While being very similar in the general description, the RLT and electron-transfer processes
differ in the vibration types they involve. In the first case, those are the high-frequency intramolecu-
lar modes, while in the second case the major role is played by the continuous spectrum of
polarization phonons in condensed 3D media [ Dogonadze and Kuznetsov 1975]. The localization
effects mentioned in the previous section, connected with the low-frequency part of the phonon
spectrum, still do not show up in electron-transfer reactions because of the asymmetry of the
potential.

Another conventional simplification is replacing the whole vibration spectrum by a single
harmonic vibration with an effective frequency @. In doing so one has to leave the reversibility
problem out of consideration. It is again the model of an active oscillator mentioned in section 2.2
and, in fact, it is friction in the active mode that renders the transition irreversible. Such an
approach leads to the well known Kubo-Toyozawa problem [Kubo and Toyozava 1955], in which
the Franck-Condon factor FC depends on two parameters, the order of multiphonon process
N and the coupling parameter S

N =AE/h®, §=E,/hd> = md(AR;)%/2h , (2.61)

where the reorganization energy E, indicated in figs. 11b and 12 is determined by the displacement
of the vibration equilibrium position.

In this model there is a quantitative difference between RLT and electron transfer stemming
from the aforementioned difference in phonon spectra. RLT is the weak-coupling case S < 1, while
for electron transfer in polar media the strong-coupling limit is reached, when S > 1. In particular,
in the above example of ST conversion in aromatic hydrocarbon molecules § = 0.5-1.0.

In the strong-coupling limit at high temperatures the electron transfer rate constant is given by
the Marcus formula [Marcus 1964]

k = (1/h) ¥V *(nB/E,)"* exp[ — B(E, — AE)*/AE,] . (2.62)

The transition described by (2.62) is classical and it is characterized by an activation energy
equal to the potential at the crossing point. The prefactor is the attempt frequency @/2n

times the Landau-Zener transmission coefficient B for nonadiabatic transition [Landau and
Lifshitz 1981]

B =2n6(v), 6 = V?2/ho|AF| , (2.63)
where ¢ is the Massey parameter depending on the mean thermal velocity, and AF is the difference
in slopes of the initial and final terms at the crossing point. Of course, (2.62) is of typical TST form.

It straightforwardly generalizes to an arbitrarily large electronic interaction by replacing B by the
Zener transmission factor

B=1—exp[—2n5()] . (2.64)
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Fig. 13. Arrhenius plot of k(T) for electron transfer from cytochrome c to the special pair of bacteriochlorophylls in the reaction center
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Fig. 14. Energy-gap dependence of the rate constant of intersystem ST: conversion for 1. aromatic hydrocarbons; and 2. their totally
deuterated substitutes.

Adiabatic reactions, occurring on a single-sheet PES correspond to B = 1, and the adiabatic
barrier height occurs instead of E,. The low-temperature limit of a nonadiabatic-reaction rate
constant equals

k. = (2n/h®)V 2 exp {(AE/h@)[1 — In(AE/E,)] — E./hid)} . (2.65)

This formula, aside from the prefactor, is simply a one-dimensional Gamov factor for tunneling in
the barrier shown in fig. 12. The temperature dependence of k, being Arrhenius at high temper-
atures, levels off to k. near the cross-over temperature which, for AE = 0, is equal to kg T, ~ 2ho.

As an illustration of these considerations, the Arrhenius plot of the electron-transfer rate
constant, observed by DeVault and Chance [1966] (see also DeVault [1984]), is shown in fig. 13.
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Note that only E,, which is actually the sum of the reorganization energies for all degrees of
freedom, enters into the high-temperature rate constant formula (2.62). At low temperature,
however, in order to preserve E,, one has to fit an additional parameter @, which has no direct
physical sense for a real multiphonon problem.

By contrast with the Marcus formula, in the RLT case the barrier height increases with
increasing AE. As seen from fig. 11b, the classically available regions for both terms lie on the same
side of the crossing point, and the tunneling behavior at Aof > 1 is due to the large disparity of the
imaginary momenta in the initial and final states. The low-temperature limit for RLT is given by

k. = (2n/h) V2 (2n/AE hi>)'"? exp[ —(AE/hd) In (AE/hi) — E, /hd] . (2.66)

The exponent in this formula is readily obtained by calculating the difference of quasiclassical
actions between the turning and crossing points for each term. The most remarkable difference
between (2.65) and (2.66) is that the electron-transfer rate constant grows with increasing AE, while
the RLT rate constant decreases. This exponential dependence k. (AE) [Siebrand 1967] known as
the energy gap law, is exemplified in fig. 14 for ST conversion.

Within CLTST the activation energy E, depends on AE according to the empirical
Broensted—Polanyi-Seminov (BPS) rule (see, e.g., Eyring et al. [1983]),

EJAE) = E,(0) — xqAE, O<ay<l. (2.67)

The symmetry coefficient ay = —pB~ ' dlnk/0AE is usually close to %, in agreement with the
Marcus formula. Turning to the quantum limit, one observes that the barrier transparency
increases with increasing AE as a result of barrier lowering, as well as of a decrease of its width.
Therefore, k. grows faster than the Arrhenius rate constant. At T=0

Ink.(AE) ~ Ink.(0)[1 + (AE/E,)(In|AE/E,| — 1)] . (2.68)

This relationship is the analogue of the BPS rule for tunneling reactions. The quantum symmetry
coefficient a, = — B ! 0ln k. /OAE is greater than «, and it may exceed 1.

The origin of the isotope effect is the dependence of w, and w® on the reacting particle mass.

Classically, this dependence comes about only via the prefactor w, [see (2.14)], and the ratio of the

rate constants of transfer of isotopes with masses m; and m, (m, > m,)is temperature-independent
and equal to

ki(my)/kp(ma) = wo(my)/we(my) = (mz/ml)l/2 . (2.69)

In CLTST there appears a kinetic isotope effect owing to the difference in partition functions in the
initial state [see eq.(2.12)], and at 3Bhw, > 1,

k(my)/k(my) = exp{}phwo[(my/m)'* — 17} . (2.70)

That is, the exponential increase of the isotope effect with f is determined by the difference of the
zero-point energies. The cross-over temperature (1.7) depends on the mass by

To(my)/To(mz) = 0 (my)/w® (m2) = (my/my)'1? . (2.71)
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Fig. 15. Arrhenius plot of the rate constant for the transfer of H and D atoms in the CH-O fragment for the reaction (6.17).

In the H/D isotope effect case, m,/m; = 2, the interval of temperatures between 7.(H) and T;(D)
is wider than AT as predicted by (2.19), and in this interval the H atom tunnels while the D atom
classically overcomes the barrier. For this reason the isotope effect becomes several orders larger
than that described by (2.70). At T < T.(m,) the tunneling isotope effect becomes independent of
the temperature,

ke(my)/ke(my) = exp[ B Vo((ma/my)'? — 1)] . (2.72)

The Arrhenius plot of k(7) for H and D transfer is presented in fig. 15. Qualitatively, the
conclusions about the isotope effect drawn here on the basis of the one-dimensional model remain
correct for more dimensions, but k. turns out to depend more weakly on m than In k. oc m*/2. This
enables observation of transfer of much heavier masses (m < 20my).

2.5. Vibration-assisted tunneling

In early papers devoted to the analysis of low-temperature experimental data, the barrier height
Vo was supposed to be the same as in gas-phase reactions, and the barrier widths d were being
found by fitting the experimental curves and the theoretical form (2.1). The values of d calculated in
this way disagreed with the well known spectroscopic data on the bond lengths in crystals. On the
other hand, the experimentally known inter-reactant distances would suggest barriers so large that
any reactions would be impossible. Therefore V, and d could hardly be reconciled within the
one-dimensional model of section 2.1, because the van der Waals distances between reactants in
a lattice are usually much longer than in the gas-phase reaction complexes.

To circumvent this difficulty, one has to take into account that the reactants themselves take part
in intermolecular vibrations, which may bring them to distances sufficiently short so as to facilitate
tunneling, as well as classical transition. Of course, such a rapprochement costs energy, but,
because the intermolecular modes are much softer than the intramolecular ones, this energy is
smaller than that required for the transition at a fixed intermolecular distance.

As an illustration, let us consider the collinear reaction AB + C — A + BC. It is known that the
collinear motion of the linear system ABC relative to its center-of-mass reduces to the motion of the
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Fig. 16. PES of the collinear exchange reaction AB + A — A + BA in the case my < m,. The asterisk indicates the saddle point. One of
possible realizations of a cutting-corner trajectory is shown. The unbound initial state corresponds to gas-phase reactions.

effective mass
m = [mamgmc/(ma + mg + mc)]'?, (2.73)

on the two-dimensional PES V(r, R) obtained from V(Rup, Rpc) by scaling the distances R, and
Rjc, and reducing the angle between the axes from 3x to B (fig. 16) [Baer 1982],

B = tan™(mg/m) . (2.74)

When my < my, mc, the angle f§ between the product and reactant valleys becomes small. The
longitudinal motion along the reactant valley implies the corresponding displacement of heavy
atoms A and C, while the transverse motions are the intramolecular vibrations of B near A. In view
of the smallness of mg, tunneling along the intramolecular coordinate is a fast process on the time
scale of slow A—C motion, and, therefore, it may be supposed to occur at fixed A-C distances. This
is presented in fig. 16 by a line that cuts straight across the angle between the reactant and product
valleys. The overall rate constant then comes from averaging of the tunneling transmission factor
over the probability distribution of R,c.

This reasoning was set forth by Johnston and Rapp [1961] and developed by Ovchinnikova
[1979], Miller [1975b], Truhlar and Kupperman [1971], Babamov and Marcus [1981], and
Babamov et al. [1983] for reactions of hydrogen transfer in the gas phase. A similar model was put
forth in order to explain the transfer of light impurities in metals [Flynn and Stoneham 1970;
Kagan and Klinger 1974]. Simple analytical expressions were found for an illustrative model
[Benderskii et al. 1980] in which the A-B and B-C bonds were assumed to be represented by
parabolic terms.

In the case of a strongly exothermic reaction the final term turns into an absorbing wall, and the
transition is completed whenever the distance AB reaches a certain value and the A-B bond is
broken. The intra- and intermolecular coordinates Q and g are harmonic and have frequencies
wo and w,, and reduced masses m, and m,. At fixed intermolecular displacement the tunneling
probability equals

w(Qo,q) = woexp[ —(Qo — 4)*/2631 , (2.75)

where Q, is the total distance the particle B should overcome, &, the rms amplitude for the
intramolecular vibration.
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As we have argued above, this probability is to be averaged over the equilibrium distribution for
the g-oscillator

p(q) = 67 ' (2m)~ > exp(— q*/87) . (2.76)
The result is
k= wo[80/(83 + 61)21exp[—Q5/2(65 + 61)1, 67 = (h/2m;e;) coth } fhev; . (2.77a,b)

A typical situation is when d; > d,, so that the tunneling distance @ is overcome mostly at the
expense of intermolecular vibration g. The probability p(q) is exponentially small, but it is to be
compared with the exponentially small barrier transparency, and reduction of the tunneling
distance Qo — g by promoting vibrations may be very large.

For example, in the case of H tunneling in an asymmetric O,-H --- O, fragment the O,-O,
vibrations reduce the tunneling distance from 0.8—1.2 A 10 0.4-0.7 A, and the tunneling probability
increases by several orders. The expression (2.77a) is equally valid for the displacement of
a harmonic oscillator and for an arbitrary Gaussian random value q. In a solid the intermolecular
displacement may be contributed by various lattice motions, and the above two-mode model may
not work, but once g is Gaussian, eq. (2.77a) will still hold, however complex the intermolecular
motion be.

The two-mode model has two characteristic cross-over temperatures corresponding with
the “freezing” of each vibration. Above T, = hw,/2kg the dependence k(T') is Arrhenius, with
activation energy equal to

V* = 3mowsQomiwi/(mews + mywi) . (2.78)

The transition is fully classical and it proceeds over the barrier which is lower than the static one,
Vo = %mow(z)Q(z). Below T, but above the second cross-over temperature T,, = hw,/2kg, the
tunneling transition along Q is modulated by the classical low-frequency g vibration. The apparent
activation energy is smaller than V,. The rate constant levels off to its low-temperature limit k. only
at T < T,,, when tunneling starts out from the ground state of the initial parabolic term. The
effective barrier in this case is neither V' * nor V5,

Veee = V*[1 + (0o /1) 81 /(65 + 61)] . (2.79)

It is noteworthy that it is the lower cross-over temperature T, that is usually measured. The
above simple analysis shows that this temperature is determined by the intermolecular vibration
frequencies rather than by the properties of the gas-phase reaction complex or by the static barrier.
It is not surprising then, that in most solid state reactions the observed value of T, is of order of the
Debye temperature of the crystal. Although the result (2.77a) has been obtained in the approxima-
tion w; < wy, the leading exponential term turns out to be exact for arbitrary w [Benderskii
et al. 1990, 1991a]. It is instructive to compare (2.77a) with (2.27) and see that friction slows
tunneling down, while the ¢ mode promotes it.

Let us now turn to the influence of vibrations on exchange chemical reactions, like transfer of
hydrogen between two O atoms in fig. 2. The potential is symmetric and, depending on the
coupling symmetry, there are two possible types of contour plot, schematically drawn in fig. 17a,b.
The O atoms participate in different intra- and intermolecular vibrations. Those normal skeleton
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Fig. 17. Contour plots for a g vibration coupled symmetrically (left) and antisymmetrically (right) to the reaction coordinate Q. The
cross indicates the saddle point. Lines 1, 2 and 3 correspond to MEP, sudden trajectory, and to the path in the static barrier. Below
a sketch of the potential along the tunneling coordinate Q is represented at different q.

vibrations that change the O-O distance keeping the position of the O—O center constant are
symmetrically coupled to the proton coordinate, while the other modes that displace the O-O
fragment as a whole have antisymmetric coupling. The second case is associated with the
Franck—Condon factor introduced in subsections 2.3 and 2.4, while the vibrations of the first type
do not contribute to the reorganization energy because their equilibrium positions stay unchanged.

For this reason these vibrations influence tunneling in an entirely different way. For a model in
which the reactant and product valleys are represented by paraboloids with frequencies w, and w,,
the transition probability has been found to be [Benderskii et al. 1991a, b]

ks oc exp[ — Qo /(85 cos?p + 81sin*p)],  k, ocexp(—Q5/85 — 45/63) (2.80a,b)

for symmetric and antisymmetric cases, respectively. Here 2¢ is the angle between the reactant and
product valleys, 24, is the displacement of the vibration equilibrium position, and the thermally
averaged amplitudes §; are those from (2.77b), but taken at 8.

Let us discuss in some detail the reaction path in both cases. At T > T, since only the barrier
height enters into the Arrhenius factor, the transition always passes through the saddle point where
the barrier is lowest. In the tunneling regime, the barrier transparency depends on both the height
and width of the barrier, and the optimum reaction path is a compromise of these competing
factors. Consider first the symmetric case. From what we have said above it is clear that the
reaction path (at 7 = 0) should lie between the two extreme lines, the MEP, minimizing the barrier
height, and the static barrier, minimizing the path length. For the transfer of light particles, when
the angle between the valleys is small and the MEP is strongly curved, the length factor prevails
over that of the height, and the reaction path cuts straight across the angle between the valleys.
The probability to reach the saddle point is roughly Inw, cc —w, q}, where g, is the distance from
the minimum to the saddle point, while the probability to “cut the corner”, Inw, oc —woQ3.
Therefore, this cutting corner path is realized when w, > w, that is,

1 > w;/we > sin?¢, sing = Qo/q, . (2.81)
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Fig. 18. Rate constant k. calculated with the use of (2.80a) plotted against (m/my)"/%. The hydrogen transfer rate is assumed to be
10*s™ 1, the effective symmetric vibration mass 125my,. The ratio of force constants corresponding to the intra (K,) and intermolecular
(K,) vibrations is (K,/Ko)'"* =2.5x 1072, 5x 10”% and 1.0x 10! for curves 1-3, respectively.

Physically the cutting-corner trajectory implies that the particle crosses the barrier suddenly on
the time scale of the slow g-vibration period. In the literature this approximation is usually called
“sudden”, “frozen bath” and “fast flip” approximation, or large curvature case. In the opposite case
of small curvature (also called adiabatic and “slow flip” approximation), w, /we < sin?¢, which is
relevant for transfer of fairly heavy masses, the MEP may be taken to a good accuracy to be the
reaction path.

In the antisymmetric case the possible reaction path ranges from the MEP (when w, and w, are
comparable) to the sudden path (w; < wy), when the system “waits” until the g vibration
“symmetrizes” the potential (the segment of path with Q = Q,) and then instantaneously tunnels in
the symmetric potential along the line g = 0. All of these types of paths are depicted in fig. 17.%

When the mass of the tunneling particle is extremely small, it tunnels in the one-dimensional
static barrier. With increasing mass, the contribution from the intermolecular vibrations also
increases, and this leads to a weaker mass dependence of k., than that predicted by the one-
dimensional theory. That is why the strong isotope H/D effect is observed along with a weak k.(m)
dependence for heavy transferred particles, as illustrated in fig. 18. It is this circumstance that
makes the transfer of heavy reactants (with masses m < 20-30) possible.

A beautiful experimental piece of evidence of the different roles of antisymmetric and symmetric
modes is the vibrational selectivity of tunneling splitting [ Fuke and Kaya 1989; Sekiya et al. 1990].
The tunneling splitting 4 in progressions of vibrational levels behaves in different way as a function
of the vibrational quantum number n for modes symmetrically and antisymmetrically coupled to
the tunneling coordinate. In the former case the splitting increases several times with increasing
n from n = 0 to n = 1-2, while in the latter a decrease of 4 is observed.

This effect can be explained by referring to fig. 17. If the coupling is strong enough so that the
q vibration undergoes a displacement g* greater than its zero-point amplitude, then when moving
along the two-dimensional tunneling trajectory, exciting the vibrations of both types changes 4 in

* It is to be remembered that when the frequencies wg, v, and the angle ¢ are given, only one type of trajectory is actually realized.
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a similar way, namely
InA(n) = In4(0) + 2n + 1)In(g*/61,) — In(g*/010), 01n = (n + Hh/mi; . (2.82a,b)

This increase in A with increasing n is simply due to shortening of the tunneling distance with
increasing vibration amplitude J,,, and it is equivalent to the effect of increasing the temperature
for the incoherent tunneling rate [ Benderskii et al. 1992b]. For the symmetric case, the qualitative
picture does not change in the weak-coupling limit, because all the vibration can do is to modulate
the barrier thus facilitating tunneling.

The situation is more subtle for the antisymmetrically coupled mode. As shown in fig. 17, this
vibration, in contrast to the symmetric mode, asymmetrizes the potential and violates the reson-
ance. This should lead to a decrease in the splitting. Consider this problem perturbatively. If the
vibration and the potential V(Q) were uncoupled, each tunneling doublet E,, E; (we consider only
the lowest one) of the uncoupled potential V(Q) would give rise to a progression of vibrational
levels with energies

Eo 1(n) = hwy(n + %) + Eo 4 (2.83)
Antisymmetric coupling V;,, = CQq has the nonzero matrix elements

(n,01CqQ|n + 1,1> = Cé,4(n + 1)}*Q,, (n,01CqQ|n — 1,1> = Cé,0n**Qy .  (2.84)
In the second order of the perturbation theory the shift of the lower level equals

AEo(n) = C262,03[n/(hw, — hdo) — (n + 1)/(hw, + hAy)], hdg=E, — Eq . (2.85)

The shift of the upper level, AE, (n) obtains from (2.85) on changing 4, —» — 4. Since 4, < w,, we
finally obtain the renormalized splitting as a function of n,

A(n) = Ao[1 — 2C%(n + $)Q2 /hm, 3] . (2.86)

Therefore, the tunneling splitting decreases with increasing n, in accord with experiment. The
weak-coupling formula holds for C2Q3/hm,;w; < 1.

Both the weak- and strong-coupling results (2.82a) and (2.86) could be formally obtained from
multiplying 4, by the overlap integral (square root from the Franck—Condon factor) for the
harmonic g oscillator,

FC!? = qu Ya(@ + g*)Wa(q — g*) = exp(—q*2/2670) L,(q**/6%0) (2.87)

where ¢* = CQo/m, w?, and L, is the Laguerre polynomial. When n # 0, the harmonic-oscillator
wavefunctions have nodes, and for g* < 6,4, the overlap of the functions with opposite signs
reduces the integral [ Huller 19807].

2.6. Is there an alternative to tunneling?

Of course, there is no other explanation to spectroscopic manifestations of tunneling. Such an
alternative can be suggested only in the case of an irreversible chemical reaction. We shall discuss
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the possibilities to explain large deviations from the Arrhenius law and the existence of a low-
temperature limit within CLTST. At T < T, the apparent prefactor decreases along with the
activation energy. In CLTST small prefactors are due to large negative activation entropy AS*
(see, e.g., Eyring et al. [1983]). In this language (2.6) formally gives

AS* = — 2h™ VkgS(E,) , (2.88)

although the reason for the appearance of small prefactors in the case of tunneling has nothing
to do with the ratio of the partition functions in transition and initial states, which determines
AS* in CLTST. The typical value of k. = 107'-10"5s~! corresponds to a drop in AS* of
65-85 cal/mol K.

Since only the vibrational degrees of freedom take part in a solid-state reaction, the sole reason
for this change may be the increase in their frequencies in the transition state

AS* = kg i In(w,/0}), (2.89)

n=1

where N is the total number of transverse vibrational modes with frequencies w, and w/ in the
initial and transition states. In order to obtain the indicated values of AS*, one has to suppose
N > 10%, o} > w,. Even this somewhat artificial assumption cannot explain the temperature
dependence of AS* shown in fig. 6, because CLTST at w; > w, predicts a rise instead of a decrease
in AS* when the vibrations become quantum 4 ghw, ~ 1. Therefore, an additional assumption is
needed to account for the sharp increase of the number of vibrations involved in the reaction when
the temperature approaches T..

This model of classical cooperative transitions has been speculated about as an alternative
to tunneling. No confirmation for such a scheme exists now. The possibility of representing the
experimental form of k(7T') as

k(T) = ko exp(—BE,) + k, (2.90)

has also been considered, where the rate k; < ko is associated with passing through an activa-
tionless channel with a very small transition probability. The origin of such a channel can hardly be
substantiated within the framework of CLTST, in view of the above entropy arguments. Although
these hypotheses do not clash with any basic principles and they cannot be discarded a priori, they
hardly pretend to be a universal explanation to the abundant experimental evidence of the
low-temperature limit.

3. One-dimensional models

In this section we shall expand upon the problem of one-dimensional motion in a potential V(x).
Although it is a textbook example, we use here the less traditional Feynman path-integral
formalism, the advantage of which is a possibility of straightforward extension to many dimen-
sions. In the following portion of the theory we shall use dimensionless units, in whichh = 1, kg = 1
and the particle has unit mass.
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3.1. The main path-integral relations
The path-integral quantum mechanics relies on the basic relation for the evolution operator of

the particle with the time-independent Hamiltonian H(x, p) = 1p* + V(x) [Feynman and
Hibbs 1965],

Cxclexp(—iHto)|x:> = K (xe, Xilto) = JD[X(t)] exp(iS[x(®)]) , (3.1

with the normalization
K(x,x'|0) = o(x — x'), (3.2)

where the path integral sums up all the paths connecting the points x(0) = x; and x(to) = x;,
each path having the weight exp(iS). If we discretize time by introducing the points
O=t, <ty < -+ <tj_; <t =ty, 1> 00, the symbol D[x(t)], indicating summation over all
realizations of path x(t), may be thought of as D[x(t)] = Ndx(t;) --- dx(t;-), where N is the
normalization factor providing the validity of (3.2). The action § is defined via the classical
Lagrangian,

= JdtL(x, x), L(x,x)=4%4x*—V(x). (3.3)

o

The Fourier transform of the propagator (3.1) gives the energy Green function,

GmxwqumK@xmmmmm (3.4)

o

which provides a solution to the time-independent Shrédinger equation
(H— E)G =6(x — x) . (3.5)

The poles of the spectral function
g(E)=Tr(H —E)"' = de G(x, x|E) (3.6)

correspond to the energy eigenvalues, E2. This function can also be represented as

g(Ey=1 fdt exp(iEt)de,— J D[x(t)]exp(iS[x(z)]) . (3.7)
0

Xi= Xf
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As seen from (3.7), the closed paths with x(t,) = x(0) fully determine the energy spectrum of the
system. Propagator K has, in terms of the energy eigenfunctions |n), the form

K(x¢, xilto) = X exp(—1iERto)<xelnd (nl x> . 3-8)

The statistical operator (density matrix),

exp(—BH) = Y. exp(—BE;)|n)<nl, (3.9)

formally obtains from the quantum mechanical evolution operator on replacing it, by f. This
change of variables t = —ir, called Wick rotation [Callan and Coleman 1977], “turns upside-
down” the potential and therefore replaces the Lagrangian in (3.3) by the classical Hamiltonian

t——ir, xX—x, X —ix, Vix})—> —V(x),
L—H=4%1x2+V(x), E—~ —E. (3.10)

The resulting Eucledian action equals

xf

B
—iS = Sg[x(1)] =JdrH(x,3&)= dex+Eﬁ. (3.11)
(4]

The density matrix is [Feynman 1972]

x(B)=x¢
p(xe, x;1 B) = Cxelexp(— pH)|x; > = J D[x(r)]exp(—Se[x(7)]), (3.12)

x(0)=x;

and, consequently, the partition function is

Z =exp(—pF)=Tr exp(—Bﬁ) = de(O) J D[x(r)]exp(— Se[x(?)1), (3.13)
x(0)=x(f)

where F is the free energy. As in (3.7), only the closed paths enter into the expression (3.13). The
density matrix p(x¢, x;| f) obeys the differential equation

dp/o = —Hp (3.14)
with the initial condition p(x, x'|0) = é(x — x’) [cf. eq. (3.2)].
In conclusion of this section, we write out the expressions for the density matrix of a free particle

and a harmonic oscillator. In the former case p(x, x'| 8) is a Gaussian with the half-width equal to
the thermal de Broglie wavelength

p(x, x'|B) = (2mp) "2 exp[ — (x — x')*/2p] . (3.15)
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For the harmonic oscillator with frequency w,
p(x, x'| B) = [w/(2n sinh fw)]'?
x exp{ — [w/(2 sinh Bw)] [(x* + x'*)cosh B — 2xx']} (3.16)
Z = exp(—pBF) = [2sinh (4 fw)] ! . (3.17)
3.2. Decay of metastable state

Consider a potential V(x) having a single minimum separated from the continuous spectrum by
a sufficiently large barrier satisfying (1.1), e.g., a cubic parabola (fig. 19)

V(x) = dx3(1 — x/x0) . (3.18)

Since the Hamiltonian is unbounded, the energy of each state is complex [ Landau and Lifshitz
1981]

E,=E?—iir,, (3.19)
whence the wave function falls off exponentially with time,
(Y| oc exp(—T,t). (3.20)

Metastability implies that I', < E¢, so that the wave function inside the well is close to that of
a stationary state with energy E?. Strictly speaking, the energy spectrum in this case is quasi-
discrete with the density of states

p(E)=Qn)"' Y IJI(E— EJ)* +%I3]. (3.21)

—

Fig. 19. Cubic parabola potential. Turning points are shown. The dashed line indicates the stable potential with the same well
frequency.
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We seek the poles of the spectral function g(E) given by (3.7). In the WKB approximation the
path integral in (3.7) is dominated by the classical trajectories which give an extremum to the action
functional

0 = 8S[x(£)]/8x = dx/dt? + dV(x)/dx . (3.22)

In fact, (3.22) is the usual stationary phase approximation, performed however for an infinite-
dimensional path integral, which picks up the trajectories with classical action S,;. Further, at fixed
time t we take the integral over x; again in the stationary phase approximation, which gives

0 = 8S,1/0x; = 0S¢ /0x(0) + 8Sq1/0x(t) = %(t) — %(0) . (3.23)

This equation shows that only the closed classical trajectories [x(f) = x(0) and x(t) = x(0)]
should be taken into account, and the energy spectrum is determined by these periodic orbits
[Gutzwiller 1967; Balian and Bloch 1974; Miller 1975a; Rajaraman 1975].

Finally, the stationary phase integration over time yields the identity

E = —3S,/0t = Ey(t), (3.24)

which means that the classical periodic orbits should have energy E. Therefore, with exponential
accuracy the spectral function is represented by the sum over all periodic orbits,

g(Eyec > exp[i(W(E)—3in)], W(E)=S,+Et= §p dx, (3.25a,b)

periodic
orbits

where W(E)is the short action and the additional phases 4ir, | being the number of turning points
encountered along the trajectory, emerge because of the breakdown of the WKB approximation
near the turning points [Gutzwiller 1967, McLaughlin 1972; Levit et al. 1980a, b]. The vibrations
with energy E in the well and the short action of (3.25b) have periods given, respectively, by

1, =2 f dx[2(E — V(x))]1" V2, Wy(E)=2 f dx[2(E — V(x))]'72, (3.26a,b)

where x| and x, are the turning points (see fig. 19). If the state in the well were stable (the potential
in fig. 19 shown by a dashed line), these classical vibrations would be the only possible periodic
orbits entering into (3.25a).

Summing up the series (3.25a) over the number of passages back and forth, n, we get

g(E) oc i exp[in(W, (E) — m)] = {exp[— (Wi (E) — ;] — 1} ™" . (3.27)

Thus g(E) has an infinite number of poles at

W,(E) =2n(n+1%). (3.28)
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This expression is nothing but the Bohr—-Sommerfeld quantization rule (see, e.g., Landau and
Lifshitz [1981]). In the metastable potential of fig. 19 there are also imaginary-time periodic orbits
satisfying (3.22) and contained between the turning points inside the classically forbidden region. It
is these trajectories that are responsible for tunneling [McLaughlin 1972; Levit et al. 1980a, b].
They have imaginary period and action,

i, =2 f dx[2(E — V(x))]" Y2,  iW,(E)=2 f dx[2(E — V(x))]"2 . (3.29)

The classically accessible region to the right of the turning point x, does not contain any closed
trajectories. An arbitrary periodic orbit which includes n “swings” inside the well and m barrier
passages has complex period t,,(E) = nt,(E) + imt,(E) and action nW,(E) + imW,(E). Each
orbit with given n and m (m + n > 1) enters into the sum (3.25a) with the combinatorial coefficient
Cr+m, and direct summation gives

exp[i(W; — )] + exp(—W3)

E) - , 3.30

) T " exp[iW; — ] — exp(— W) (39
whence the quantization condition is

expli(W(E) —n)] + exp[—WL(E)]=1. (3.31)

Since exp(— W;) < 1, this equation can be solved iteratively by using (3.28) as a zeroth approxima-
tion, whence

T, = (0W,/0E)g g exp[ — W2(ER)] = [1/t(ER)Texp[ — Wa(ED)] - (3.32)

Equation (3.32) demonstrates that the decay rate for a metastable state is equal to the inverse
period of classical vibrations in the well (“attempt frequency”) times the barrier transparency.

3.3. The ImF method

Now we take up the calculation of the rate constant for the decay of a metastable state. In
principle it can be done by statistically averaging I', from (3.32), but there is a more elegant and
general way which relates the rate constant with the imaginary part of free energy. Recalling (3.19)
we write the rate constant as

k=2Z5'Y Iyexp(—BES) =28"'ImZ/Zo = 2ImF , (3.33)

where Z, is the real part of the free energy in the well which is calculated by neglecting the decay.
This expression enables one to use the path-integral expression (3.13).

Again, as in the previous section, we look for the stationary points of the path integral, i.e., the
trajectories that extremize the Eucledian action (3.11) and thus satisfy the classical equation of
motion in the upside-down barrier,

0 = 8S[x(£)]/8x = — d?x/dr? + dV(x)/dx , (3.34)
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Fig. 20. The bounce trajectory in the cubic potential at fw, — 0.

with the periodic boundary condition x(t + ) = x(t). These trajectories have the integral of
motion

E = 4(dx/dr)? — V(x), (3.35)

in accordance with the prescription (3.10). There are two trivial solutions to (3.34), x = 0, and
x = x*. The first of these corresponds to Z,; the second, to the transition-state partition function.

In addition to the trivial solutions, there is a f-periodic upside-down barrier trajectory called
instanton, or “bounce”* [Langer 1969; Callan and Coleman 1977; Polyakov 1977]. At f — oo the
instanton dwells mostly in the vicinity of the point x = 0, attending the barrier region (near x*)
only during some finite time 7;,,, ~ w* ' (fig. 20). When B is raised, the instanton amplitude
decreases until the trajectory collapses to the point x(t) = x*. As follows from the arguments of
subsection 2.1, this happens at B. = 2n/w®. In other words, the cross-over phenomenon is
associated with the disappearance of the instanton.

Unlike the trivial solution x = 0, the instanton, as well as the solution x(r) = x¥, is not the
minimum of the action S[x(t)], but a saddle point, because there is at least one direction in the
space of functions x(t), i.e. towards the absolute minimum x(t) = 0, in which the action decreases.
Hence if we were to try to use the approximation of steepest descents in the path integral (3.13), we
would get divergences from these two saddle points. This is not surprising, because the partition
function corresponding to the unbounded Hamiltonian does diverge.

Langer [1969] proposed to extend the integration to the complex space and then use the
approximation of steepest descents. This procedure makes the partition function converge, and the
latter acquires the sought imaginary part Im Z coming from the above two saddle-point solutions.
Accordingly, working with exponential accuracy, one has two contributions to Im Z, proportional
to exp[—Sins(B)], where Sj, is the instanton action, and to exp(—fSV,). These contributions
correspond with tunneling and thermally activated over-barrier transitions. While being crucial at
high temperatures 8 < ., at § > f. the second contribution becomes negligible, compared to the
contribution of the instanton.

The uncertainty principle necessitates that any extremal trajectory should be “spread”, and the
next step in our calculation is to find the prefactor by incorporating the small fluctuations around

*) Langer, who was the first to introduce the Im F method in his original paper [Langer 1969] on nucleation theory called it
“bubble”.
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the extremal trajectory, in the spirit of the usual method of steepest descents. Following Callan and

Coleman [1977] let us expand the action functional around the extremal trajectory up to quadratic
terms,

B
S[x(1)] = Sins + 3 fdr 8x(1)[— 02 + d2 V(x(r))/dx2] 8x(1) , (3.36)
0

where 02 is the second-derivative operator. The linear terms are absent from (3.36) due to the
extremality condition (3.34). Suppose that we have found the basis of eigenfunctions of the
differential operator — a2 + d2V(x(r))/dx?,

[=0% + d2V(x(1))/dx2 ] Xu(T) = ExXn(T) . (3.37)
Expanding an arbitrary path x(t) in this basis,

3x(t) =Y. caxnlt) , (3.38)
we rewrite (3.36) as

S = Sins + 3, 3eac? . (3.39)

The path integration reduces to integration over all coefficients ¢, with the measure

D[x(1)] = N [] dc,./(2m)"/? (3.40)

We shall not have to worry about the normalizing factor N because it will eventually cancel out
in the ratio (Im Z)/Z,. The integral (3.13) with the action (3.39) is Gaussian and equal to

den ) —1/2
fN n chp(_sins)exp< _Z%gncr%> = _2L1N<n|8n|> exp(_sins)
= 4iN|det(—02 + d?V/dx?)|” 2 exp(— Sins) » (3.41)

where we have defined the determinant of a differential operator as the product of its eigenvalues.
Since the instanton is a saddle point, one of the eigenvalues, say ¢,, must be negative, and,
according to Langer, the integration contour for ¢, should be distorted in the ¢, plane, as shown in
fig. 21. This makes the integral (3.41) imaginary and provides an additional factor 3.

A more vexing issue is that one of the ¢, in (3.37) equals zero. To see this, note that the function
Xins(t) [Where x;,, is the instanton solution to (3.34)] can be readily shown to satisfy (3.37) with
go = 0. Since the instanton trajectory is closed, it can be considered to start arbitrarily from one of
its points. It is this “zero mode” which is responsible for the time-shift invariance of the instanton
solution. Therefore, the non-Gaussian integration over c, is expected to be the integration over
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Fig. 21. Integration contours in the complex plane for the unstable mode. Contours L, and L, are used to calculate Im Z and the
barrier partition function, respectively.

positions of the instanton center 7, (see fig. 20). The eigenfunction x, is the properly normalized
xins(r)a

Xo(t) = NoXins(1) - (3.42)

The normalization condition % x5(r)dt = 1 yields
B
No=85'%, So= fx?.,sdr , (3.43)
0

and the integration over ¢, is replaced by
(2m)~ " deo = (So/2m)"/ dr. (3.44)

where integration over . simply gives the factor f. Eliminating the zero-mode from (3.41) by use of
(3.44), and recalling that Z, may be represented in the same way as (3.41),

Zo = N[det(—02 + w2)]~ 2 = [2sinh(3Bwe)] (3.45)

one obtains finally

1/2
k=2ImF = <&>
2n

det'(— 02 + d2V/dx?);ns| ~1/2
det(— 02 + w})

exp (— Sins) » (3.46)

where the prime means that the zero-mode is omitted from the determinant.

Callan and Coleman [1977] have obtained this formula in the limit § — c0 by summing up all
multi-instanton contributions to Im F, ie., taking into account the trajectories that pass through
the barrier more than twice. These trajectories enter into Im F with factors exp(— nS;,,)/n! (where
n is the number of passes) and, therefore, they can be neglected when Sj,; > 1.
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Equation (3.46) has been applied to the cubic parabola (3.18) at T'= 0 by Caldeira and Leggett
[1983]. The result is

36V,

47
o (347)

C\172 v
kc = 601/2w0<S2—l;§> exp(_sins) s Sins = f[z V(x)]l/z dx =
0

and the cross-over temperature equals 7, = w,/2n. The same result has been obtained with a more
traditional quantum-mechanical treatment by Schmid [1986], by directly solving the Shrodinger
equation in the WK B approximation. The calculation of I'y = k. with the aid of (3.31) and (3.32) for
the same potential [Wartak and Krzeminski 1989] leads to a result larger than (3.47) by a factor
3.34. This discrepancy is due to the use of the semiclassical quantization condition (3.31) for the
lowest energy level, while the instanton method, as well as Schmid’s calculation, exploits in fact the
exact harmonic oscillator wavefunction in the well.

Meanwhile, eqs. (3.31) and (3.32) may work better than the instanton approach (3.29) when
anharmonicity is substantial, even for the ground state [Hontscha et al. 1990]. As shown by
Rajaraman [1975], and Waxman and Leggett [1985], the basic instanton relationship (3.29) is
equivalent to eqs. (2.6) and (2.7) obtained by the extension of CLTST to the quantum region.
Comparing (2.6) and (2.7) with (3.29) gives the semiclassical estimate for Im Z,

2ImZ = B(2m)”~"?|dB/dE| ™ /? exp(— Sins) = B(2m) ™ V/?|d?S;s /dB?|V2 eXp(— Sins) . (348)

The identity of egs. (2.6) (at T = 0) and (3.47) for the cubic parabola is also demonstrated in
appendix A. Although at first glance the infinite determinants in (3.46) might look less attractive
than the simple formulas (2.6) and (2.7), or the direct WKB solution by Schmid, it is the instanton
approach that permits direct generalization to dissipative tunneling and to the multidimensional
problem.

Gillan [1987], in studying tunneling of a particle interacting with a classical oscillator bath, has
proposed a physically transparent CLTST-based approach to the quantum rate using the centroid
approximation. This idea has been developed and tested by Voth et al. [1989b]. Following Voth
et al. [1989b], we wish to modify the CLTST formula (2.12) rewritten as

kcurst = 3uaZotZ* (x*), Z*(x*)=(Qnp)~ V2 deexp[—ﬂV(x)] 8(x — x*), (3.49a,b)

where Z#(x* ) is the constrained transition-state partition function, so as to incorporate tunneling
effects. The velocity factor u,, = {|X|> = (2/zf)''? in (3.49a) represents the reactive flux for those
trajectories that have reached the transition state.

The original idea of approximating the quantum mechanical partition function by a classical one
belongs to Feynman [Feynman and Vernon 1963; Feynman and Kleinert 1986]. Expanding an
arbitrary f-periodic orbit, entering into the partition-function path integral, in a Fourier series in
Matsubara frequencies v,

x(t)=p"! i X, exp(ivat), v,=2nn/B, (3.50)

n= —oo
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it is easy to see that the kinetic-energy term in the action S[x(r)] takes the form

n=—aw

B
f%xzdr =371 Y vix,x_,. (3.51)
0

For small § the contribution of paths with large x, (n # 0) to the partition function Z is
suppressed because they are associated with large kinetic-energy terms proportional to v2. That is
why the partition function actually becomes the integral over the zeroth Fourier component x,. It
is therefore plausible to conjecture that the quantum corrections to the classical TST formula
(3.49a) may be incorporated by replacing Z* by

Z¢(x*) = ID[X(T)] exp(— S[x(r)]) d(xc — x*), (3.52)

where the “centroid” coordinate equals

B
X, =xo/B=p"" fx(r)dr . (3.53)
0

To show that this guess is actually consistent with the Im F approach and to see what happens to
the velocity factor u,, at low temperatures let us study the statistics of centroids. We introduce the
centroid density

Z(R) = <O(R — xc)) = ID[X(r)] exp(—S[x(t)])d(xc — R)

- f g—i f D[x()]exp{—S[x(t)] — iA(xc — R)} , (3.54)

where we have used the integral representation of the é function. Apart from integration over 4 and
a constant factor, (3.54) is the partition function Z; in the complex potential V;(x) = V(x) + iAx,

8
Z,= ID[X(T)] exp(=Silx(1)]), Silx(1)] = fdf [3x* + V0], (3.55)

0

so that Z (R) is the Fourier transform of Z;,

Z(R) = f %exp(iiR)Z,l. (3.56)

— 0
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In fact, Z, is twice Im Z defined above,* taken for V; [Stuchebrukhov 1991], and, therefore
Z, = BRn)~Y2|d?S,/dB?|V? exp(— S, ins) - (3.57)
Expanding the action S, ;,s around 4 = 0 one obtains
Siins = Sins + (A/B)S1 + (A/B)Sz + -+, S; = iB<{XDins » (3.58)
Sz = (2d%Sias/dB?) ™ [(d/dB)BLX? Dins + (dS1/dB)*] , (3.59)

where (x);,s and (x?);,, are imaginary-time averages over the instanton trajectory. Neglecting
higher-order terms in (3.58), one finds from (3.56) that the centroid density is gaussian

ZJR)=2ImZ 1~ Y2 Ax~ L exp[(R — {xDie)*/Ax?], Ax = —4S,/8?, (3.60a, b)

where Ax is the characteristic length. Tt is obvious from (3.60a) that the modified “transition state”
position in the quantum region is given by

X% = (XDins » (3.61)
and comparison of (3.33) with (3.60a) gives
k=nr'2AxB 1Z(X*)/Z, . (3.62)
This formula looks like the CLTST one (3.49a), if we introduce the quantum velocity factor
u=2mn"2Axp"'. (3.63)

At high temperatures (f — 0) the centroid (3.53) collapses to a point so that the centroid partition
function (3.52) becomes a classical one (3.49b), and the velocity (3.63) should approach the classical
value u,,. In particular, it can be directly shown [Voth et al. 1989b] that the centroid approxima-
tion provides the correct Wigner formula (2.11) for a parabolic barrier at T > T, if one uses the
classical velocity factor u. A direct calculation of Ax for a parabolic barrier at T > T gives

AxZy = 2/Bw*? . (3.64)

That is, the centroids are distributed according to the classical function Z (R) oc exp[3pw™?
x (R — x*)?].

Substituting (3.64) in (3.63), however, does not give the correct value of u,,. To fit smoothly the
high- and low-temperature regions, Voth et al. [1989b] have written u = 2n'/2 Ax ™' ¢, where
¢ =1 at low temperatures, and ¢ = T,/T = Bw*/2n at T > T, [Affleck 1981]. This correction
factor recovers the correct behavior of u at high temperatures, when the eqgs. (3.59) and (3.60a, b)
do not work. For the Eckart barrier (eq. 3.65a), a simple empirical formula for the velocity factor

*'In the semiclassical evaluation of the barrier partition function Z, the integration goes along the whole imaginary axis in the
¢, plane (see fig. 21).
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(eg. 3.65b) has been shown by Voth et al. [1989b] to work within the accuracy of 1% at
AT. < T < T,, where

V(x) = Vosech?(x/x0),  u=uy[l+ In(fw*/2n)]. (3.65a,b)

While being very attractive in view of their similarity to CLTST, on closer inspection
(3.61)—(3.63) reveal their deficiency at low temperatures. When § — oo, the characteristic length Ax
from (3.60b) becomes large, and the expansion (3.58) as well as the gaussian approximation for the
centroid density breaks down. In the test of ref. [Voth et al. 1989b], which has displayed the success
of the centroid approximation for the Eckart barrier at T > 4T, the low-temperature limit has not
been reached, so there is no ground to trust eq.(3.62) as an estimate for k..*

Furthermore, the situation becomes even worse for an asymmetric potential like that in (3.18),
because at low temperature nearly the entire period f is spent on dwelling in the potential well (see
appendix A), so that limg_, ,, {X)i,s = 0. In other words, unless the potential is strictly symmetric,**
the “transition state position” X* tends to the minimum of the initial state! It is natural to expect
that the centroid approximation will work well when X* does not deviate too far from x*. To
summarize, the centroid method is an instructive way to describe in a unique TST-like manner
both the high (7 > T.) and fairly low (T < T,) temperature regions, but it does not give a reliable
estimate for k..

3.4. Tunneling splitting in a double well

Coleman’s method can be applied to finding the ground state tunneling splitting in a symmetric
double well [Vainshtein et al. 1982], for some

V(x) = A(x? — x2)2 . (3.66)

It is expedient again, as in the previous subsection, to study the partition function Z in the limit
B — oo, which is now real. The extremal trajectories satisfying (3.34) are composed of “single passes”
or “kinks” and “antikinks”. During a single kink the particle spends an infinite time on sliding from
the upside-down potential top x = — x,, crosses the barrier region x ~ 0 during some finite time
and then approaches the point x = x, during an infinite time. The same event reiterated in the
reverse order is antikink. For the potential (3.66) the kink (antikink) is described by

X(1) = + xotanhJwo(t — 1),  wo = 8Ax3)V?, O<1.<f, (3.67)

where w, is the frequency of classical vibrations in the well near x = + x,, and 1, is an arbitrary
position of the kink center. The single kink action Sy is independent of t:

S, = f dx [2V(x)]*? = w3/12) . (3.68)

- x0

* Strictly speaking, the concept of k. itself makes no sense for a potential like the Eckart one, unless one artificially introduces Z, as
the partition function of a bound initial state, which is not described by this potential. That is to say, it is reasonable to consider the
combination kZ,, not k alone.

** [t is the symmetric situation that has been studied by Gillan [1987] and by Voth et al. [1989b].
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X
0 T, L b T, T
%o

Fig. 22. “Instanton gas”.

Each extremal trajectory includes n kink—antikink pairs, where n is an arbitrary integer, and the
kink centers are placed at the moments 0 <1y < --- < 1,5, < f§ forming the “instanton gas”
(fig. 22). Its contribution to the overall path integral may be calculated in exactly the same manner
as was done in the previous subsection, with the assumption that the instanton gas is dilute, i.e., the
kinks are independent of each other,

B B
2n

Z,= Jdn J dta,(24)* = m(%ﬁ)z" , (3.69)

0 2n-1

Sk 1/2
4= <ﬂ)

With Z, given by (3.45), summation of all the terms in (3.69) gives

dgt/( 52 dziéldﬁz)m —-1/2
det( — 0% + wd)

exp(—Sy) . (3.70)

N

Z= ZO<1 + i Z,,) = Z,cosh(384) . (3.71)
n=1

What we obtained in (3.71) is the partition function of a two-level system, the levels having
energies 3w, + 34. Hence (3.70) gives us the desired ground state tunneling splitting 4. The
analytical continuation of relation (3.71) to real time (imaginary f) leads to the two-level system
propagator oscillating as cos(34¢t). This picture corresponds to coherent oscillations of the
probability to find a particle in one of the wells with frequency 4.

Consider in more detail the calculation of the determinant in (3.70) for the potential (3.66). The
eigenvalue equation

(=02 + d?V/dx?)x,(t) = — 0%x,/0t* + w3[1 — 3sech?(Fwot)]1X, = €,%a(T) (3.72)

is formally equivalent to the stationary Schrodinger equation for the inverted Eckart potential, the
exact solution of which is well known [Landau and Lifshitz 1981]. The spectrum of bound states
satisfies the relation (w — ¢,)!/> =wo(l —4n), n=0,1, ..., and, therefore, there are only two
bound states n = 0, 1 with eigenvalues ¢, = 0and &, = 2w3. The normalized zero mode with ¢, = 0
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is given by
Xo(t) = (Fwo)"/? sech? [Fwo(t — )] - (3.73)

Equation (3.73) may also be obtained from (3.42). The contribution of x; to the ratio of
determinants in (3.70) is equal to 2. Apart from the bound states, there is a continuous spectrum of
eigenvalues ¢, whose contribution to (3.70) may be shown [Vainshtein et al. 1982] to equal
i5. Finally (3.70) gives

A = (wo/7)2r w3/A) 2 exp(—w3/12)) . (3.74)

A disadvantage of this method is that it applies to the lowest energy doublet only. It is natural to
calculate the tunneling splittings of the highest energy levels with the same method as in section 3.2.
Following Miller [1979], we consider a more general situation of a double well, which is not
necessarily symmetric. The spectral function g(E) in (3.25a) comes from summation over closed
classical trajectories with energy E. Each such trajectory is composed of the vibrations in the
classically accessible regions (1) and (3) and the imaginary-time orbits in the barrier region (2) (see
fig. 3, replacing Q by x).

Introducing the phases

X1 X2
~

W(E)=2 | dx[2(E — VO)]'2 —n, iW,=2 de [2(E — VO]'/?,

{ e

X3 X1
,
x2

WA(E) =2 [ [2(E — V(x)]V? — =, (3.75)

J
*2

and, in view of exponential smallness of exp( — W) neglecting the multiple crossings of the barrier,
one obtains for g(E)

exp(iW;) exp[i(W; + W3)]
9E) < T expamy ~ P T exp W)L = expGWa) (3.76)

For a symmetric potential W, = W3 = W(E). Approximating W(E) near the nth energy level E, of
an isolated well by

W(E) = 2nn + [dW/dE]gz (E — E,) , (3.77)

so that the Bohr—Sommerfeld condition holds at E = E,, one gets g(E) as

1 dWw] 2 exp(—W,) 1 1 1
= R .2 V. = = , 378
g(E)“E—E,,“L[dEjL:E" (E—E) 2\E—E,~14,VE_E, +14, (378)
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and the tunneling splitting of the nth energy level equals
4, = [2/W'(E)]exp(—3 W3) = (2/1,)exp(—3W3), (3.79)

where 1, is the period of classical vibrations in the well with energy E,.

This formula resembles (3.32) and, as we shall show in due course, this similarity is not
accidental. Note that at n = 0 the short action 1 W,(E,) taken at the ground state energy E, is not
equal to the kink action S, (3.68). Since in the harmonic approximation for the well 7, = 2n/w,,
this difference should be compensated by the prefactor in (3.74), but, generally speaking, expres-
sions (3.74) and (3.79) are not identical because eq. (3.79) uses the semiclassical approximation for
the ground state, while (3.74) does not.

Let now the potential be asymmetric. If E; and E, are the individual energy levels in each well so
that W,(E,) = 2nn, and W,(E,) = 2an,, then (3.76) becomes

1 exp(—W,)
) < g E, Y E—EE: - Ey)

[WUE )W (E)]! . (3.80)

Comparing this with g(E) oc (E — E; — AE)™! at AE < |E, — E,| one obtains for the shift of the
energy level

AE = [(E, — E))W\(E\) Wi(E;)]™ ' exp(— W3) = [(E; — E;)117,] ' exp(—W>)
= (0/27)(w,/27)(E, — E,) " lexp(—W3), (3.81)
where w, and w, are the frequencies of vibrations in the wells. The same procedure performed near
E = E2 giVCS AEl = —AEz.

To gain physical insight into the asymmetric situation let us compare Miller’s result (3.81) with
that obtained by considering a formal two-state problem with the matrix Hamiltonian,

E, V12>
. 3.82
(VZI E, ( )

If |Vy,| < |E; — E,|, then the shift of an energy level appears in the second order in V;,, and it
equals

AE = |V12|2/(E1 - Ez) . (3-83)

Comparing this expression with (3.81), one obtains the formal definition of the quasiclassical
tunneling matrix element

[V1al? = (@1/2m)(w/2m) exp( — W) . (3.84)

This definition is also valid in the symmetric case (E, = E,) when V;, =414 =(Q2n)"!
X w, exp( —3W>).



248 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

In the time-dependent perturbation theory [Landau and Lifshitz 1981] the transition
probability from the state 1 to 2 is related with the perturbation by the golden rule,

I = 27[' V12|2P2 . (3.85)

Inserting V;, from (3.84) into (3.85) and taking into account that the density of the energy levels in
the final state p, is equal to w5 ! one obtains eq. (3.32) for the decay of the metastable state. Strictly
speaking, the solution for the time-dependent Shrodinger equation for a double well would provide
coherent oscillations of probability to find the particle in the chosen well, rather than exponential
decay. Expression (3.85) comes about either for a metastable state or when there is an additional
mechanism destroying the phase coherence, resulting from interaction with other degrees of
freedom (the bath). We shall further discuss this problem in section 5.

3.5. Nonadiabatic tunneling

The previous treatment relied on the assumption that the transition occurs on a single potential
energy surface V(x) characterized by a barrier separating two wells. This potential is actually
created from the terms of the initial and final electronic states. The separation of electron and
nuclear coordinates in each of these states gives rise to the diabatic basis with nondiagonal
Hamiltonian matrix

iy (VR Vel
o=ty (Vd(x) Vf(x)) ’ (389

where 1 is the 2 x 2 unit matrix. The off-diagonal matrix elements are significant in the vicinity of
the crossing point x, such that V;(x.) = V;(x.). Diagonalization of (3.86) gives the adiabatic terms

Ve () = 2[Vi(®) + V()] £ 2{lVi(x) — Ve(0)]* + 4VE(0}' 2, (3.87)
which are separated at the crossing point by the adiabatic splitting 2|V (fig. 23).

The usual tunneling problem we considered earlier is associated with the situation when this
splitting is so large that the influence of the upper term V. can be neglected, and tunneling occurs in

Fig. 23. Diabatic terms of initial and final states (solid lines) and adiabatic terms (dashed lines). Adiabatic splitting is 2V;.
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the potential V_. It is obvious, however, that when V3 = 0, any transition between non-interacting
terms cannot occur at all. Therefore, the relationship between adiabatic splitting and the tunneling
probability requires a special study. For a classical transition this is the well known Landau-
Zener—Stueckelberg problem [Landau 1932; Zener 1932; Stueckelberg 1932], which has been in-
vestigated in detail in molecular collision theory (see, e.g., Child [1974], Nakamura [1991]).
With the assumption that near x, the diabatic terms are linear, and Vj is independent of x, the
probability of transition between the diabatic terms at E > V, (x.) depends on the parameter

5 = |Val*/olFy — Fal , (3.88)

where F, and F, stand for the slopes of the terms, and v is the velocity of classical motion at x = x,,
given by

Bo(d) = 1 — exp(—2nd) . (3.89)

At > 1, By ~ 1 and the transition occurs along the lower adiabatic term V_. At d < 1, By = 274,
and there is a large probability that the particle passes the crossing point remaining on the initial
diabatic term. This is the case when the perturbation theory in ¥V, is valid yielding the golden rule
formula. With increasing energy, the parameter J decreases thus enhancing non-adiabatic effects.

The problem of nonadiabatic tunneling in the Landau-Zener approximation has been solved
by Ovchinnikova [1965]. For further refinements of the theory beyond this approximation see
Laing et al. [1977], Holstein [1978], Coveney et al. [1985], Nakamura [1987]. The nonadiabatic
transition probability for a more general case of dissipative tunneling is derived in appendix B. We
quote here only the result for the dissipationless case obtained in the Landau-Zener limit. When
E < V_(x,), the total transition probability is the product of the adiabatic tunneling rate, calculated
in the previous sections, and the Landau—Zener-Stueckelberg-like factor

B =2n6"te 2°5%°/I'%(9), (3.90)

where ¢ is defined by (3.88) but the classical velocity is replaced by the absolute value of imaginary-
time instanton velocity,

v={2[V_(x.) — E]}. (3.91)

According to (3.91), non-adiabaticity increases with decreasing energy, as opposed to the classical
case. This is a straightforward consequence of the Wick rotation (3.10).

According to the general ideas formulated in sections 2.3 and 3.4 [see especially egs. (3.84) and
(3.85) and appendix B], the incoherent tunneling rate is proportional to the square of the tunneling
splitting. Therefore, when the diabatic terms are symmetric with respect to the crossing point, the
tunneling splitting is the product of the factor B!/ and the splitting in the lower adiabatic potential,
| ’ Aad9

A = A,4(2m)26 Y2 728%/I(5) . (3.92)
In the nonadiabatic regime A is proportional to the adiabatic splitting 2|V,|. The instanton

trajectory crosses the barrier twice, each time bringing the factor 4/4,, associated with the
probability to cross the nonadiabaticity region remaining on the same adiabatic term (and thus
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jumping from one diabatic term to the other). These two crossings result in the prefactor (3.90)
when tunneling is incoherent.

3.6. Quantum transition state theory

So far we have considered two limiting cases of transition, the decay of a metastable state and
quantum probability oscillations in a double well, of which only the first case permits the use of the
concept of the rate constant. The latter, in general, describes the relaxation of a chemical system
initially deviated from its equilibrium between reactants and products. According to the Onsager
regression hypothesis (see, e.g., Chandler [1987]), this relaxation may be expressed in terms of
fluctuations in the equilibrium system. The regression hypothesis together with the fluctu-
ation—dissipation theorem (FDT) leads to the Kubo linear-response theory [Kubo 1957; Kubo and
Nakajima 1957], which was first applied to chemistry by Yamamoto [1960]. The decay of the
reactant concentration a(t) is characterized by the time-correlation function

[a(t) — a(0)]/a(0) = {Ba(t) 8a(0)>/{[8a(0)]*> = exp(—kt) . (3.93)

Since the decay is associated with passing through the barrier, the quantity a(t) is nothing but
the step function a = 6(x* — x). Differentiating (3.93) and finally setting t =0 one obtains
[Chandler 1987] the expression for the rate constant,

k= —{a>~ 1 {x(0)d(x — x*)(x* — %)) . (3.94)

CLTST follows from (3.94) after totally neglecting correlations between the flux x(0) and the
concentration,

kevrsr = 3<a> T IKXO0)) (3(x — x¥)),  (X(O)O(x* — X)) = — 3{x(0) (3.95)

where the identity of the second equation in (3.95) shows that the 8 function selects the direction
of the flux. The relation (2.2) that we gave earlier is nothing but (3.95) written for a canonical
ensemble.

A consistent quantal TST (QTST) has been worked out by Miller and coworkers [Miller 1974;
Miller et al. 1983; Tromp and Miller 1986; Voth et al. 1989a]. In quantum mechanics the classical
flux x is replaced by the symmetrized flux operator

F=2L[ps(x — x*) + 8(x — x*)p], p= —id/dx . (3.96)
It is readily checked that the matrix elements of the flux operator between two states are
KnlFIn D1 = 5 1Wa (W (x*) — Walc™ W ()12

Further, the step function 6(x(t) — x*) is replaced by the projection operator p selecting the states
which evolve finally to the product valley at t — oo,

P = lim exp(iH1) 0(x — x*)exp(—iH1) . (3.97)

t— o0
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Its equivalent representation is [Miller et al. 1983]

P = lim exp(iHt)0(p)exp( —iHz) . (3.98)

t— o0

The identity of (3.97) and (3.98) means that the particle hits the product valley only having crossed
the dividing surface x = x* from left to right. If we were to use simply the step function 6(x — x*),
we would be neglecting the recrossings of the dividing surface.

At last, the formally exact quantal expression for the rate constant is

k = Z5 ' lim Tr[exp(—BH)FP] . (3.99)

t— oo

Using the fact that the symmetrized flux operator commutes with the density matrix, and
representing the latter as exp(— fH) = exp( —AH)exp[ —(f — /I)H ], one may rewrite (3.99) as

k= Zy'lim Tr{Fexp[iH(t + i})]0(x — x*)exp[ —iH(t — i(f — )1} . (3.100)

t—

It is usual to take A = f/2, and, after some manipulations, the following expressions for k can be
obtained:

[eo]

k=251 J dt C(t) = lim Cry(t) = lim % C,(t) (3.101)
t— oo t— oo
[}

where the flux—flux correlation function C; is defined by

Ci(t) = Tr[F exp(iHt*) Fexp(—iHt,)], t.=t—iif. (3.102)
The cross correlation function of position and flux C;,,

Cio(t) = Tr[F exp(iHt*) 0(x — x*)exp( —iHt,)] , (3.103)
and the left-right spatial correlation function C,,

C,(t) = Tr[0(x* — x)exp(iHt*)8(x — x*)exp( —iHt,)] (3.104)
are related with C; by

Ci(t) = dCy,/dt = d2C,/dt? . (3.105)

According to (3.95), CLTST approximates C;(t) by the d-function, being, in a sense, a zero-

time limit of the first of the equations (3.101). In the representation of eigenfunctions |n), [n’> the
flux—flux correlation function equals

Ci(t) = 3 exp[ — 3B(E, + E,)]cos[(E, — E,)t] Kn|Fln')|? (3.106)
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so that the rate constant is
k=nZ5' Y exp(—BE,)Kn|Fln)*S(E, — Ey) . (3.107)

The correlation functions (3.102)—(3.104) may be written out explicitly in terms of the propagator
K(x¢, x;|t.) [Miller et al. 1983] and, in particular, for a parabolic barrier one has

1 Bw*p2 w” sin?(3pw*)cosh(w*t)
Cf - ﬂ sin(%ﬁw#) CXP( _ﬁVO) [sinz(%ﬁw#) + sinhz(w#t)]3/2 ’ (3108)

which after integration over time gives the Wigner formula (2.11). The function C; falls off
exponentially with a characteristic time close to 1/w®.

The introduced correlation functions may be expressed with the use of path integrals. Consider,
for one, the function C,. Its explicit form is

C(t) = — Tr{exp(—BH) 6(x — x*)exp[iH(t + i1)] 0(x — x*)exp[ —iH(t + i})]}
= — (h(OVh(t + M), (3.109)

where h(t) is the 6(x — x*) operator in the Heisenberg representation h(r) = exp(iHD) 8(x — x*)
x exp(—1iHt). Since the result does not depend on 4, it can be rewritten by the use of the Kubo
transform [Kubo 1957]

B
C.(t)=—p* J di ChO)h(t + id) . (3.110)
[}

For purely imaginary time ¢t = it the correlator in (3.110) is expressible via the path integral

<hO)h()> = Zo'! JD[X(T)] exp(+~S[x(1)]) 0(x(0) — x*)B(x(c) — x*), (3.111)

where the integration is performed over all closed f-periodic paths. The complex-time correlation
function then may be looked for by analytically continuing (3.111). For example, this correlator is
readily calculated for a symmetric double well by use of the instanton method of section 3.4 to give
[Gillan 1987]

Ch(0)h(t)> = cosh[LB4 — i(z + il)A]/cosh( f4) (3.112)

This correlation function oscillates in real time thus providing no rate constant, as it should be
expected for coherent tunneling. This reveals the deficiency of the one-dimensional model, in which
the rate constant, strictly speaking, can be obtained only for an unbound initial or final state, i.e.,
for a gas-phase reaction. In general, the analytical continuation of the imaginary-time correlator is
hardly justifiable, especially for long times ( § — co). The real-time correlation function, represented
by a triple path integral, has been given by Voth et al. [1989a, b].
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Although the correlation function formalism provides formally exact expressions for the
rate constant, only the parabolic barrier has proven to be analytically tractable in this way.
It is difficult to consistently follow up the relationship between the flux-flux correlation function
expression and the semiclassical Im F formulae at § — co. So far, the correlation function approach
has mostly been used for fairly high temperatures in order to accurately study the quantum
corrections to CLST, while the behavior of the functions C¢, C;, and C, far below T, has
not been studied. A number of papers have appeared (see, e.g, Tromp and Miller
[1986], Makri [1991]) implementing the correlation function formalism for two-dimensional
PES.

For example, the rate constant of the collinear reaction H + H, has been calculated in the
temperature interval 200-1000 K. The quantum correction factor, i.e., the ratio of the actual rate
constant to that given by CLTST, has been found to reach ~ 50 at 7= 200 K. However, in the
reactions that we regard as low-temperature ones, this factor may be as large as ten orders of
magnitude (see introduction). That is why the present state of affairs in QTST, which is well suited
for finding quantum contributions to gas-phase rate constants, does not presently allow one to use
it as a numerical tool to study complex low-temperature conversions, at least without further
approximations such as the WKB one.¥

4. Two-dimensional tunneling

The discussion so far has dealt with one-dimensional models which as a rule do not directly
apply to real chemical systems for the reasons discussed in the introduction. In this section we
discuss how the above methods can be extended to many dimensions. In order not to encumber the
text and in order to make physics more transparent, we confine ourselves to two dimensions,
although the generalization to more dimensions is straightforward.

From the very simple WKB considerations it is clear that the tunneling rate is proportional to
the Gamov factor exp {—2{[2(V(s(Q)) — E)]'/*ds}, where s(Q) is a path in two dimensions
(0 =1{0,,0,}) connecting the initial and final states. The “most probable tunneling path”, or
instanton, which renders the Gamov factor maximum, represents a compromise of two competing
factors, the barrier height and its width. That is, one has to optimise the instanton path not only in
time, as has been done in the previous section, but also in space. This complicates the problem so
that numerical calculations are usually needed.

4.1. Decay of metastable state

Again we use the Im F method in which the tunneling rate is determined by the nontrivial
instanton paths which extremize the Eucledian action in the barrier. Let for definiteness the
potential V(Q) have a single minimum at @ = 0, V(0) = 0, separated from the continuous spectrum

* Near completion of this review, we learned of very promising QTST results obtained by Topaler and Makri [1993] based on the
recently developed quasiadiabatic propagator techniques [Makri 1992; Topaler and Makri 1992]. If the multidimensional Hamiltonian
can be formulated as that of a system interacting with a harmonic bath, and if it exhibits an exponential relaxation towards equilibrium,
their method permits one to advance much further into the low-temperature domain, and to consider tunneling from the ground state of
the system, staying within the flux—flux autocorrelator formalism.
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Fig. 24. Instanton trajectory on two-dimensional upside-down PES.

by a high barrier. The extrema of the action,

B

S[Q()] = de [301 +10% + V(Q1,02)1. 4.1)

0

are the instanton trajectories subject to the equations
d2Q;/dt? = 0V/oQ; . 4.2)

These equations form a fourth-order system of differential equations which cannot be solved
analytically in almost all interesting nonseparable cases. Further, according to these equations, the
particle slides from the “hump” of the upside-down potential — V(Q) (see fig. 24), and, unless the
initial conditions are specially chosen, it exercises an infinite aperiodic motion. In other words,
the instanton trajectory with the required periodic boundary conditions,

01 =0(x+ p), (4.3)

is unstable with respect to all deviations except the time shift.
Once the instanton trajectory has been numerically found, one proceeds to the calculation of
prefactor, which amounts to finding determinants of differential operators. The direct two-

dimensional generalization of (3.46) is
k= So 121 det'(— 021 + 0*V/0Q; 0Q;)ins | 112
“\ 2z det(— 0?1 + Ky)

where 0?1 is the second-derivative operator multiplied by the unit 2 x 2 matrix, K, the matrix of the
form

2
Ko = (“; ¥ ) , @)

exXp ( - Sins) s (44)
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with the squares of the well eigenfrequencies, @2 > w?, on the diagonal. This matrix is simply the
diagonal form of the matrix 6V/0Q; 0Q;, taken at the point @ = 0. The same matrix enters into the
numerator in (4.4) where it is taken on the instanton trajectory. The action S, is

So

B
j de(0F + 02) . “6)
[4]

It is interesting to pause now and to highlight some features of the two-dimensional instanton.
Let us introduce the local normal coordinates about the potential minimum Q. and Q_,
corresponding to the higher and lower vibration frequencies @, and @ _. The asymptotic behavior
of the instanton solution at § — oo, T — 0, is described by Q+ = Q% cosh(w 1) (see appendix A),
where Q% goes to zero faster than Q2 so as to keep Q; finite. Therefore, the asymptotic instanton
direction coincides with Q_. The conclusion we have arrived at is what may be called a “gener-
alized Fukui theorem” (see Tachibana and Fukui [1979]) stating that the reaction path near
the minimum goes along the direction of the lowest eigenfrequency. When the temperature is
raised, i.e. the period decreases, the instanton amplitude decreases until the trajectory collapses
to a point (the saddle point). At the saddle point Q* the potential has two normal frequencies,
the imaginary longitudinal i®*, and transverse ;. Thus we expect the cross-over temperature
to be

T.=w*2n, 4.7)

This formula, however, tacitly supposes that the instanton period depends monotonically on its
amplitude so that the zero-amplitude vibrations in the upside-down barrier possess the smallest
possible period 2n/w*. This is obvious for sufficiently nonpathological one-dimensional potentials,
but in two dimensions this is not necessarily the case. Benderskii et al. [1993] have found that
there are certain cases of strongly “bent” two-dimensional PES when the instanton period has
a minimum at a finite amplitude. Therefore, the cross-over temperature, formally defined as the
lowest temperature at which the instanton still exists, turns out to be higher than that predicted by
(4.7). At T > T, the trivial solution @ = Q* (Q¥ is the saddle-point coordinate) emerges instead of
instanton, the action equals S = BV * (where V' * is the barrier height at the saddle point) and the
Arrhenius dependence k oc exp(— BV *) holds.

Although eq. (4.4) gives the formal instanton expression for the rate constant, it is hard to apply
directly, because the numerical evaluation of an infinite product of eigenvalues of the differential
operator is a rather challenging problem. It is very tempting to reduce the ratio of determinants in
(4.4) to something like (3.48). That formula, however, is written solely for one dimension. The way
out is to divide (4.4) into transverse and longitudinal parts and to deal with them separately.
Namely, we introduce the coordinate s, running along the instanton path, and x, measuring the
deviation away from the instanton path. The fluctuations around the instanton trajectory are of
two types. The “temporal” or “longitudinal” fluctuations affect only the s-motion keeping x zero. It
is this sort of fluctuations that is present in one dimension, leading to (3.46) and (3.48). The
transverse fluctuations, lead, as it were, to a finite spatial width of the instanton trajectory,
spreading it to a “channel”. If this channel is narrow enough, one may use the local harmonic
expansion around the points of the instanton trajectory, and it is this expansion that results in the
ratio of determinants in (4.4).
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In the new coordinates the action, expanded up to quadratic terms, reads
] ]
S = Sins + %sz(r) [ 0% + 0*V/0s*] 8s(r)dt + %fo(r) [—0? + wi(s(1))]dx(t)dr, (4.8)
0 0

where , is an s-dependent “transverse vibration frequency”, which results from the canonical
transformation from the coordinates {Q;,Q,} to {s,x}. Its explicit expression in terms of the
original potential ¥ (Q) can in principle be obtained by the method of Someda and Nakamura
[1991], but, as will be seen later, one does not actually need it. There is also an important case when
the coordinates s and x are known in advance, without solving the instanton equations of motion,
so that the potential is approximately separable, and ®, is the actual transverse frequency with
respect to the reaction path s, w,(s) = 0°V/ox>2.

The most remarkable feature of expression (4.8) is that it does not contain any cross terms 8x 8s.
This is a consequence of time-shift invariance of the instanton solution (d2s/dz? = d¥/ds, x = 0).
This fact can be expressed as invariance of the action with respect to the infinitesimal transforma-
tion s> s+ c¢$, c >0 [cf. eq. (3.42)]. In the new coordinates the determinants break up into
longitudinal and transverse parts and (4.4) becomes

k = Btle N (4.9)

where the “one-dimensional” rate constant equals

SO 1/2
ko= (52)

and the transverse prefactor is

_ [ det(—87 + w?) \"?
B'_<det(—6,2+a)i) ’ (4-11)

-1/2

(A2 2 2y,
det ( af + a V/aS )ms exp(_sins) (410)

det(— 0 + w?)

The zero mode, associated with the longitudinal fluctuations, is now put into (4.10), while, when
w, > 0, the determinants in (4.11) do not suffer from the zero-mode problem. The value k,p is
nothing but the rate of tunneling (3.46) in the dynamical one-dimensional barrier V'(s) along the
instanton trajectory. As for B,, it incorporates the effect of transverse vibrations around the
instanton trajectory. In order to calculate (4.10), one may employ the apparatus of section
3 designed for one-dimensional tunneling. In particular, now it is possible to make use of (3.48)
together with (3.45), which gives

kip = (2/m)"/? sinh (o> B) [OE/OB|"* exp(— Sins) - (4.12)

We proceed now to the calculation of B,, following [ Benderskii et al. 1992a]. The denominator
in (4.11) (apart from normalization) is equal to the harmonic-oscillator partition function
[2sinh(3w, B)]~ . The numerator is the product of the ¢, satisfying an equation of the Shrodinger

type

[ 07 + 0} ()] %a(1) = &aXn() s Xult + B) = xu(7) . (4.13)
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Consider a more general eigenvalue equation without imposing the periodic boundary condition,
[—07 + 0 (D)]x(r) = e(2)x(7) - (4.14)

According to the Floquet theorem [Arnold 1978], this equation has a pair of linearly-independent
solutions of the form x(z, t) = u(z, £ 1) exp(+2rizz/f), where the function u is B-periodic. The
solution becomes periodic at integer z = +n, so that the eigenvalues ¢, we need are ¢, = e(+n). To
find the infinite product of the ¢, we employ the analytical properties of the function &(z). It has two
simple zeros in the complex plane such that

[-0? + w(t)]x(zx) =0, x(t + B) = exp(£ A) x(7) . (4.15a,b)

It is noteworthy that eq.(4.15a) is nothing but the linearized classical upside-down barrier
equation of motion (8S/8x = 0) for the new coordinate x. Therefore, while x = 0 corresponds to the
instanton, the nonzero solution to (4.15a) describes how the trajectory “escapes” from the instanton
solution, when it deviates from it. The parameter A, referred to as the stability angle [Gutzwil-
ler 1967; Rajaraman 1975], generalizes the harmonic-oscillator phase w, which would appear in
(4.15), if @, were a constant. The fact that 4 is real indicates the aforementioned instability of the
instanton in two dimensions. Guessing that the determinant det(—06? + w()is a function of 4 only,
and using the Poisson summation formula, we are able to write

[e e}

_ A2 2 © ©
d[Indet(—0; + o{)] _ _1de, j dza(z)_ldg(z)

i _z By = _zo:o i exp(2ninz) , (4.16)

which after residuating reduces to

det(—0? + w?) = (2sinh $4)% . (4.17)
Finally we arrive at

B, = (sinhiw, B)/(sinh %7) . (4.18)

Equation (4.9) together with (4.12) and (4.18) is the semiclassical TST result first obtained by Miller
[1975a] and developed later by Chapman et al. [1975] and Hanggi and Hontscha [1988, 1991].

As a simple illustration of this technique consider the case of high frequency w,, viz.
w; 20w, /0t < 1 for the instanton trajectory (but e, is still small compared to the total barrier
height V' *). Then the quasiclassical approximation can be invoked to solve eq. (4.15a), which yields
for A

B
J= f w(s (7)) dr . (4.19)
0

It is readily seen that when p is large enough and the hyperbolic sines in (4.18) can be replaced by
exponents, the effect of the prefactor B, is to replace the potential V' (s) by the vibrationally adiabatic
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potential
Viaa(s) = V(s) + 3o (s) . (4.20)

Since usually the transverse vibration frequency at the barrier top is lower than w ., the vibra-
tionally adiabatic barrier is lower than the bare one V.

In order to study the deviations from the vibrationally adiabatic approximation Benderskii et al.
[1992b] have considered the situation when the transverse frequency w, switches instantaneously
between two values, w, and @, (@, > ®;). If 7, and 7, = B — 7, are the times of occurrence of the
frequencies w; and w5, respectively, then the stability parameter is given by

sinh 44 = 4[4sinh? (3¢, + $¢,) + (0, /0, + w,/w, —2)sinh ¢, sinh ¢p, ]V,

where ¢; = w;7;. When @, > w,, this result differs from the adiabatic approximation, sinh 44,4 =
sinh(3¢, + 3¢,), by a factor 4(w,/w,)"? > 1. In other words, nonadiabaticity caused by the
stepwise frequency dependence reduces B, by this factor, as compared to the vibrationally adiabatic
approximation.

As another illustration, note that above the cross-over point 7, the temperature dependence
k(T) displays an activation energy equal to

E,~V*+io! —to,, (4.21)

where V'* and o are the barrier height and transverse vibration frequency at the saddle point,
and we have neglected the effect of the zero-point energy of the low-frequency vibration @ - . Unlike
eq. (4.20), for (4.21) to hold, no vibrational adiabaticity is needed, and the only requirement is that
w, be quantal, i.e., fw, > 1. In particular, this situation is usually realized in hydrogen transfer
reactions, because the intramolecular vibration frequency for hydrogen remains quantal for room
temperatures and higher.

The functional (4.8) permits one to study the set of paths which actually contribute to the
partition-function path integral thereby leading to the determinant (4.17). Namely, the symmetric
Green function for the deviation from the instanton path x(z) is given by [ Benderskii et al. 1992a]

G(z,7) = {(x(1) x(r')) = W sinh$2)~ ' [x(2) X(z')exp (3 4) + x(7) X(t)exp(— $4)],
O<t<17 <8, 4.22)
where the functions x(z) and X(z) satisfy (4.15a,b), and W is their Wronskian. The equal-time
correlator then gives the “fluctuational width of the tunneling channel”, inside which the relevant
paths lie,
(x*(1)> = W lx(t)X(r)coth($4) . (4.23)

In the vibrational-adiabatic limit this formula reduces to the familiar form

(x*(1))> = [2w(7)] ! coth (% fw,(s(r)) dr) i 4.24)

0
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Equation (4.24) indicates that the quantum number {n)> of the transverse x-vibration is an
adiabatic invariant of the trajectory. At T =0 {(x?(r)) becomes the instantaneous zero-point
spread of the transverse vibration (2w,)”!, in agreement with the uncertainty principle.

The practical way of calculating 4 is different from that used in the derivation of (4.18). Since 4 is
invariant with respect to canonical transformations, it is preferable to seek it in the initial
coordinate system. Writing the linearized equation for deviations from the instanton solution 6Q,

(=071 +[02V/0Q:00;1ins) 32 = 0, (4.25)

we define the monodromy matrix M through which the solution to (4.25) is transformed over the
period,

3Q:(t + B) 3Q:(7)
00+ 5| _ py| 9%0) | (4.26)
8Q,(z + B) 80, (1)
80 (z + p) 80, (1)

This matrix has two unit eigenvalues corresponding to the zero mode, and the other two
eigenvalues are exp(+ /) entering into (4.18). The general formulae remain the same when the
number of degrees of freedom N is greater than 2. The 2N x 2N monodromy matrix has 2N — 2
eigenvalues exp(+4;) and a doubly degenerate unit eigenvalue resulting from the time-shift
invariance of the instanton. The transverse prefactor then becomes

B, = [](sinh $o; B)/(sinh 4 4;) , 4.27)

where the w; are the normal frequencies in the well except for the lowest frequency.
In Benderskii et al. [1993] the numerical instanton analysis of tunneling escape out of the
metastable well with the Hamiltonian

H(Q,q) = Vo[$0% + 14° + $Q*(1 + (C*/Q%) — Q") + CQq + 12%¢°] (4.28)

has been carried out. The coordinates, “coupling parameter” C and frequency Q in (4.28) are
dimensionless, and time is measured in dimensionless units wqt, where @, is the frequency of small
vibrations in the well for the “adiabatic” potential V,(Q), taken along the MEP ¢,(Q), defined by

0Vjog=0, q.=-CQ/Q*, V,=1V,0*(1-Q"). (4.29)

For convenience of notation we accept from here on, that each frequency of the problem w; has
a dimensionless counterpart denoted by a capital Greek letter, so that w; = @y Q;. The model (4.28)
may be thought of as a particle in a one-dimensional cubic parabola potential coupled to the
q vibration. The saddle-point coordinates, defined by d¥V/0Q = dV/dq = 0, are

Q¥ =[2/(n+21'",  q* =—(C/})[2/n +2)]'", (4.30)
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Fig. 25. Contour plot and instanton trajectories at fw, = 6.4, 7.8, 10.2 and 25.0 for PES (4.28) with C = Q = 0.5, n = 2. Greater length
of trajectory corresponds to greater 8.

and the barrier height is
V* =v(Q% q%) = Voln/2(n + )1[2/(n + 2)]*" . (4.31)

In the limit of large n the potential (4.28) tends to a harmonic well with an absorbing wall placed at
Q = 1, which has been discussed in section 2.5.

Figure 25 demonstrates the instanton trajectories at different temperatures for C = 0.5, 2 = 0.5,
n = 2. For the temperature close to the cross-over value, the trajectory runs near the saddle point,
and it deviates from the saddle point with increasing f. The Hamiltonian (4.28) with n = 1 has
recently been studied numerically within the complex scaling method [ Hontscha et al. 19907]. Using
those data we can estimate the accuracy of the instanton method. Note however that the method of
Hontscha et al. [1990] was suited for not too high barriers, namely V */w, < 3, while the instanton
method is expected to work best at higher barriers. The ratio wo/V * may be regarded as the
parameter of “quantumness”, and the smaller it is, the better the instanton approximation works.

In fig. 26 the Arrhenius plot In[k(7')/w, ] versus Ty /T = B/2n is shown for V' */wq = 3, @ = 0.1,
C = 0.0357. The disconnected points are the data from Hontscha et al. [1990]. The solid line was
obtained with the two-dimensional instanton method. One seces that the agreement between the
instanton result and the exact quantal calculations is perfect. The low-temperature limit found with
the use of the periodic-orbit theory expression for k,p, (dashed line) also excellently agrees with the
exact result. Figure 27 presents the dependence In(k./wo) on the coupling strength defined as
C?/Q% The dashed line corresponds to the exact result from Hontscha et al. [1990], and the
disconnected points are obtained with the instanton method. For most practical purposes the
instanton results may be considered exact.
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Fig. 26. Arrhenius plot [In(k/w,) against wyB/2n] for the PES (4.28) with @ = 0.1, C = 0.0357, n = 1, V*/w, = 3. Solid line shows
instanton result; separate points, numerical calculation data from Hontscha et al. [1990]; and dashed line, low-temperature limit using
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Fig. 27. Logarithm of normalized rate constant In(k/w,) versus dimensionless coupling strength C2/Q? for PES (4.28) with Q = 0.1,
n =1, V*/wy = 3. Separate points and dashed line correspond to instanton result and numerical data [Hontscha et al. 1990].

Figure 28 shows an instanton trajectory for the parameters chosen in fig. 26. It is very instructive
to see that, in contrast to fig. 25, the trajectory consists of two fairly straight segments, the angle
between which is nearly 90°. This sharp “bend” of the tunneling path becomes more salient with
decreasing Q. This phenomenon can be understood on the basis of the sudden theory of tunneling,
developed in Benderskii et al. [1980], Pollak [1986a, b], Levine et al. [1989]. This theory exploits
the fact that when Q <« 1, the tunneling event may be considered instantaneous on the time scale of
the g-vibration.

More accurately, one rewrites the problem in terms of the coordinates Q. and Q_. The
probability to be at a certain point Q_ is given by the diagonal element of the density matrix
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Fig. 28. Contour plot and instanton trajectory for PES (4.28) with the parameters of fig. 25, wo f = 35.

P(Q_)=p(Q_,Q-,B), which in the harmonic approximation is described by (3.16),
pn(Q_,0_,B) o exp(— w_Q2 tanh 4 Bw _ ). Having reached the point Q_, the particle is assumed
to suddenly tunnel along the fast coordinate Q , with probability k,p(Q - ), which is described in
terms of the usual one-dimensional instanton. The rate constant comes from averaging the one-
dimensional tunneling rate over positions of the slow vibration mode,

k =fdQ_ p(Q-,0-,Bkin(Q-) . 432)

In the light of the path-integral representation, the density matrix p(Q_,Q_, ) may be semi-
classically represented as oc exp[—S,(Q-)], where S,(Q_-) is the Eucledian action on the
p-periodic trajectory that starts and ends at the point Q _ and visits the potential minimum Q- =0
for T = 0. The one-dimensional tunneling rate, in turn, is proportional to exp[ —S,(Q-)], where
S, is the action in the barrier for the closed straight trajectory which goes along the line with
constant Q _. The integral in (4.32) may be evaluated by the method of steepest descents, which
leads to an optimum value of Q- = Q*. This amounts to minimization of the total action S, + S,
over the positions of the “bend point” Q _.

In fact, in the sudden approximation one looks for the minimum of the barrier action taken on
a certain class of paths, each consisting of two straight segments. If the actual extremal path is
close to one of the paths from this class — and this is indeed the case for low enough Q — then the
sudden approximation provides accurate results. In particular, the sudden approximation has been
shown [Hontscha et al. 1990] to provide accuracy within less than 10% for the rate constant at
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V*/we =3, Q=0.1, C <0.05. For the cubic parabola [n = 1 in eq. (4.28)] at small values of the
coupling parameter, the rate constant in the sudden approximation may be evaluated analytically
by using the one-dimensional instanton result (3.47) for k,p,

ke, suaden = 60'2wq (S1p/2m)'2(1 + 7C*/4w*)exp {—Sip[1 + (5C?20?)(1 —3Q)]}, (4.33)
where Sp is the one-dimensional instanton action defined in (3.47).

4.2. Tunneling splitting

The formula for the tunneling splitting in two dimensions is a simple generalization of (3.70),

1/2 1 A2 2 A0 . -1/2
4= Sx )" (9ot (= 0:1 + 07V/00: 00, Jum | exp(—Sy) (4.34)
2% )\ det(—o: T+ K3) 7
where Sy is the one-kink action at f§ — o,
Sy = j de [$07 + 303 + V(Q:,22)], (4.35)

and K| is the eigenfrequency matrix in the well. In order to apply the Floquet procedure of the
previous subsection, it is expedient to “double” the kink, i.e., to use the periodic instanton
trajectory with the action S;,; = 28, at  — co. When the kink and antikink on this trajectory are
separated by an infinite time, each eigenvalue of the operator — o7 + 82V/0Q; 8Q; will be doubled
in the spectrum of the same operator taken for the whole instanton. Thus we may rewrite (4.35) as

g o ((Sine |2 dRV(= 321 + 0*V/3Q: 00 ) \ 1

_1q.
T X (=0T K eXP(—2Sins) » (4.36)

where the operators are taken now for the full periodic trajectory, and the double prime indicates
that two zero eigenvalues are left out.
Now we are in position to use the results of the previous section to get

A = AIDBt (4.37)

where 4,p is the “one-dimensional” tunneling splitting given by (3.79) or (3.70),

Sins \!/ [ det’ (=02 + 02V/3s?) \ 14
= Zins i
A <n ) ( det(— tar) ) P(T25m) (438)

and B, is the transverse prefactor

B, = lim exp{4[Bw+ — A(B)]} = lim B}*. (4.39)

B -
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Fig. 29. Contour plot and instanton trajectory for PES (4.40) with 8 = o0, C = 0.185, Q = 0.163.

A similar expression was obtained by Auerbach and Kivelson [1985] based on quite a different
methodology, the so-called path-decomposition expansion, which allows one to join semiclassical
propagators in the barrier regions with exact (or perturbatively calculated) propagators near the
potential minima. Because the joining point lies far outside the classically accessible region, that
procedure rids one of the problem of turning points (or, more generally, caustics) inherent to the
more traditional semiclassical treatments [ Huang et al. 1990; Razavy and Pimpale 1988] and leads,
in the limit of # — O, to the instanton. It should be mentioned that the above papers provide also
semiclassically obtained numerical data on some model potentials.

An example of a numerically calculated trajectory in a symmetric double well is presented in
fig. 29 for the Hamiltonian

H(Q q) = Vo[30% + 347 + 0* —20° — CQ*q + 1 Q* (g + C/Q*)* + 1 —C?2Q*]  (4.40)

with © = 0.163, C = 0.185. All the parameters but V¥, are dimensionless here. The time is gauged in
dimensionless units r = wqt, where 8'/%w, is the vibration frequency in the well of the one-
dimensional potential taken at g =0,

Vin(Q) = Vo(Q* —1)* . (4.41)

Since we are going to rather extensively use the Hamiltonian (4.40) in the sequel, as a simplest
two-dimensional model for an exchange chemical reaction, it is beneficial to establish some of
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its salient features in advance. The minimum energy path (MEP) is determined by dV/dq = 0,
whence

4. = C(Q* —1)/Q*, (4.42)
and the adiabatic barrier along this path is

Vi@ = Vo(1 =b)(Q@* -1, b=C?/2Q%. (4.43)
The dimensionless upside-down barrier frequency equals Q* = 2(1 — b)'/?, and the transverse

frequency 2 = Q. The instanton action at § = oo in the one-dimensional potential (4.41) equals
[cf. eq. (3.68)]

Sins, 1D = 27/2 V0/3(D0 . (444)

The situation presented in fig. 29 corresponds to the sudden limit, as we have already explained
in the previous subsection. Having reached a bend point at the expense of the low-frequency
vibration, the particle then cuts straight across the angle between the reactant and product valley,
tunneling along the Q-direction. The sudden approximation holds when the vibration frequency
Q is less than the characteristic instanton frequency, which is of the order of Q *. In particular, the
reactions of proton transfer (see fig. 2), characterised by high intramolecular vibration frequency,
are being usually studied in this approximation [Ovchinnikova 1979; Babamov and Marcus 1981].

At high transverse frequency Q2 > Q* there is another possibility to dispense with actually
solving the instanton equations. In this case the factor of the barrier height becomes prevalent over
that of its width, because any deviations of the trajectory from the MEP (4.42) entail a great rise of
the barrier. Therefore, the g vibration adiabatically follows the motion along the Q coordinate,
according to eq. (4.42), and the trajectory of tunneling is the MEP. This is the adiabatic (“small-
curvature”) approximation [ Miller 1983]. Projected onto the Q axis, this motion looks like that of
a particle with kinetic energy 3 0?(1 + «Q?), « = 4C%/Q*, and thus with variable effective dimen-
sionless mass M * = 1 + xQ?. The evaluation of the instanton action is straightforward and it gives
[ Benderskii et al. 1991a—c]

Saa = 3Sims,1p(1 B2 [(1 + 0)'2(3 — 1/2) + &~ ¥2[1 + (40)"'Isinh ™' @) .  (4.45)

It is not hard to show that the inequality Q < Q7*, which should be met for the sudden
approximation to hold, is equivalent to (2.81), if we introduce the angle 2¢ between the reactant
and product valleys tan ¢ = Q2/C. The regions of applicability of the sudden and adiabatic
approximations in the (C, ) plane are symbolically drawn in fig. 30.

Naturally, neither of these approximations is valid near the border between the two regions.
Physically sensible are only such parameters, for which b < 1. Note that even for a low vibration
frequency £, the adiabatic limit may hold for large enough coupling parameter C (see the “bill” of
the adiabatic approximation domain in fig. 30). This situation is referred to as strong-fluctuation
limit by [Benderskii et al. 1991a—c], and it actually takes place for heavy particle transfer, as
described in the experimental section of this review. In the section 5 we shall describe how both the
sudden and adiabatic limits may be viewed from a unique perspective.
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take-off points (T) are indicated.

4.3. Periodic orbits in symmetric double well

Here we shall describe how the periodic-orbit theory of section 3.4, relating the energy levels with
the poles of the spectral function g(E), can be extended to two dimensions. For simplicity we shall
exemplify this extension by the simplest model in which the total PES is constructed of two
paraboloids crossing at some dividing line. Each paraboloid is characterized by two eigenfrequen-
cies, w, and w_. As explained in section 2.5 (see fig. 17), the paraboloids are placed either
symmetrically with respect to the dividing line (symmetric case), or they are symmetric with respect
to a point (antisymmetric case). Our discussion draws on the work of Benderskii et al. [1992b].

In accordance with the one-dimensional periodic orbit theory, any orbit contributing to g(E) is
supposedly constructed from closed classical orbits in the well and subbarrier imaginary-time
trajectories. These two classes of trajectories are bordering on the turning points. For the present
model the classical motion in the well is separable, and the harmonic approximation for classical
motion is quite reasonable for more realistic potentials, if only relatively low energy levels are
involved.

Consider for definiteness the antisymmetric case. We choose the origin of the coordinate system
in one of the wells, and the center of symmetry has the coordinates (Q %, 0 %) (fig. 31). Inside the
well the classical trajectories are Lissajous figures bordering on the rectangle formed by the lines
Q: =04, and Q; = — @', where Q'; are the turning-point coordinates,

Q. =0 cos(wst +y¥s). (4.46)
The energy equals

E=E +E,=30%0%?4+302 0%~ E% +E° =(ny + Hos +(n_ +Ho_, (4.47)
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where tunneling is neglected in the zeroth approximation.

Equation (4.46), however, regardless of the phases ¥ .., does not describe periodic orbits, unless
the frequencies w. are commensurate. Thus the first question that is to be answered is, how to
semiclassically quantize a separate well. Furthermore, because of symmetry, a tunneling orbit
should pass through the point Q% = (Q%, 0 7). However, if it sets out from the turning point Q, at
7 = 0, it will not necessarily hit the point Q*, because it is impossible to satisfy simultaneously two
imaginary-time equations of motion

Q + = Qt:t cosh ((D + T) (4.48)

when setting Q = Q7.

The way out is to sacrifice the classical trajectories. The crux of the matter is that we are trying to
solve the variational problem for the action S with given energy and fixed end points, while in the
instanton theory the ends of the path are allowed to be free. The solution of the problem at hand is
not a classical trajectory but a path which consists of segments of classical trajectories and caustics.
The caustics are the envelopes of families of classical trajectories [ Arnold 1978]. Both the classical
trajectories and caustics, and only they, possess a property which distinguishes them from all other
paths. Namely, if we find for each point Q the momentum P(Q) of a trajectory that passes through
this point, then, for a caustic or a classical trajectory, P is directed along its tangent. Moreover, the
manifold P(Q) is single-valued in the regions bordering on caustics. The absolute value of
momentum is obviously equal to [2(V — E)]'? and, therefore, the Eucledian action equals
S = Et + [ds[2(V — E)]"/?, where s is the coordinate along the path.

In the parabolic model the equations for caustics are simply Q. = @%, and Q_ = Q'. The
periodic orbits inside the well are not described by (4.46), but they run along the borders of the
rectangle formed by caustics. It is these trajectories that correspond to topologically irreducible
contours on a two-dimensional torus [Arnold 1978] and lead to the quantization condition (4.47).

The semiclassical picture of tunneling then looks as follows (fig. 31). The particle starts out from
one of the turning points*’ and runs along a subbarrier caustic, say that with @, = Q',, until it
reaches a “take-off” point @_ = Q'_, from which it begins to exercise the classical (upside-down
barrier) motion. The coordinate and momenta are continuous on the whole path. From each
turning point a pair of caustics comes out, and the correct caustic and the position of the “take-off”
point are picked up so that the path hits the point @ *. When moving along the caustic, the “faster”
degree of freedom is frozen, so as to eventually “synchronize” the arrival at the point Q* for
both degrees of freedom. The explicit equation for the take-off point coordinate is [ Benderskii
et al. 1992b]

Q- =Q cosh[w_(r- —74)], 74 =owz'cosh™ (Q%/Q%), (4.49)

where 7, is the time of motion from the turning point to Q7% for each coordinate.

In the symmetric case the requirement to cross the point Q* is replaced by the requirement to
cross the dividing line at right angles.

For an N-dimensional paraboloid in the space Q = {Q;, ..., Oy} let us order the times to reach
the point Q%, 7; = w; * cosh~1(Q7/Q}), as follows: 7, > 7, > --- > . Then the tunneling path

* There are actually four turning points in each well. It does not matter from which one we start, because the straight-line segments
between the turning points are incorporated into that part of g(E) which is responsible for the single well quantization.
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consists of segments separated by “take-off” points. At the kth segment classical motion in the
k-dimensional space of “slow” coordinates occurs, while the other N — k degrees of freedom are
“frozen”. The genuine classical motion takes place only at the last segment, when all the times z; are
“equalized”.

In conclusion note that for a sufficiently dense energy spectrum the caustic segments have been
shown [Benderskii et al. 1992b] to disappear after statistical averaging, which brings one back to
the instanton and, for the present model, leads to egs. (2.80a, b).

5. Chemical dynamics in the presence of a heat bath

When the system has a very large number of degrees of freedom the multidimensional method
treating all of them as having equal rights is no longer of use. There is usually just one (or several)
reactive coordinate that is of primary interest, while the other may be considered as a heat bath
coupled to this tagged degree of freedom. For example, in the OH --- O fragment drawn in fig. 2
such a relevant degree of freedom is the proton coordinate, i.e., the position of the H atom relative
to the O-O center. The O atoms, in turn, may participate in various intermolecular vibrations in
a condensed medium. These vibrations are nonreactive and they may be considered a bath. The
choice of the bath is rather conventional, because, for example, one could consider the two-
dimensional reaction complex with one more relevant coordinate, say the O-O distance, and
relegate the rest of the degrees of freedom to the bath. Once the total Hamiltonian has a
system-bath form, the main objective of the theory is to eliminate the bath degrees of freedom in
order to write down the problem in terms of the reactive coordinate only. This is done by
introducing the so-called influence functionals.

As seen from our discussion concerning the one-dimensional problems, in many relevant
cases, in order to find the rate constant, one does not actually need the knowledge of the behavior
of the system in real time. As a matter of fact, the rate constant is expressible solely in terms of
equilibrium partition-function imaginary-time path integrals. This approximation is closely related
with the key assumptions of TST, and it is not always valid, as mentioned in section 2.3.
The general real-time description of a particle coupled to a heat bath is the Feynman—Vernon
influence functional theory [Feynman and Vernon 1963] which expresses the particle’s reduced
density matrix as a double path integral over the paths developing in real time*. The only
dissipative tunneling problem that has so far been thoroughly studied in real time is that of
a two-level system coupled to a harmonic oscillator bath [Leggett et al. 1987], and those results
have provided an opportunity to estimate the accuracy of much more feasible imaginary-time
methods.

As long as the system can be described by the rate constant — this rules out the localization as
well as the coherent tunneling case — it can with a reasonable accuracy be considered in the
imaginary-time framework. For this reason we rely on the Im F approach in the main part of this
section. In a separate subsection the TLS real-time dynamics is analyzed, however on a simpler but
less rigorous basis of the Heisenberg equations of motion. A systematic and exhaustive discussion
of this problem may be found in the review [Leggett et al. 1987].

* The influence functional theory, as it was formulated by Feyman and Vernon, relies on the additional assumption concerning
factorization of the total (system and bath) density matrix in the past. Without this assumption the theory requires a triple path integral,
with one “thermal” integration over the imaginary time axis [Grabert et al. 1988].
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5.1. Quasienergy method

The total space of system coordinates consists of a tagged coordinate Q (conjugate momentum
P) and a set of mass-scaled bath coordinates ¢ (conjugate momenta p). The Hamiltonian reads

H(P’ Q,P,q) = HO(Pa Q) + Hb(pa ‘I) + Vint(Q’ q) ’
Ho(P,Q)=4P*+ V(Q), Hu(p.q)=Y.3pi + V(g). (5.1)

Following the Im F method, one looks for the partition function of the system

8
Z= quiin JD[Q(T)] D[q(7)] eXP( - J(Ho + Hy + Vim)df> ; (5.2)
0

where the path integral is taken over the closed paths with the periodic boundary conditions

Q) =0(+h, 4q@=qc+p, QO=0, ¢O)=4q. (5.3)

If we fix a realization of the path Q(r), then, when performing the path integration over ¢, the
particle may be treated as acted on by a time-dependent potential V;,,(Q(z), ¢). From traditional
quantum mechanics it is clear that this integration is equivalent to the solution of the time-
dependent Shrodinger equation in imaginary time,

—0¢(q,7)/0t = (Hy + Viu(Q(1), 9))0(4, ) , (5.4)

which allows one to find the bath propagator,

B B
Ko(ge, @il —if) = fexp( - j de(Hy + m) - j D[q(r)]exp< - j de (H, + m) . 59)
0 0

where the time-ordering operator T has appeared in the expression for the propagator because the
Hamiltonian is now time-dependent, unlike the problems we have discussed so far. The trace of
K, may be expressed in an elegant form if we exploit the periodicity of the potential V;,, in (5.4).
Namely, there is the so-called Floquet basis of solutions ¢, to (5.4) [Casati and Molinari 1989]
satisfying condition

Ga(t + B) = exp(—E.) pa(7) . (5.6)

The parameters &, called quasienergies play the same role for periodic motion as the usual energies
do for time-independent Hamiltonians. By using the definition (5.6) it is easy to obtain [ Benderskii
and Makarov 1992]

TrK, = qui Ky(gi,4il —1B) = Z[Q()] = Y exp(—fZ&[Q(D)]) - (5.7)
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This equation defines the quasienergy partition-function functional. Its use results in the total
partition function written in terms of the coordinate Q alone

Z= Jin JD[Q(T)] exp{— S [Q(D)]} ,
; (5.8)
Seer [Q(D)] = jHo dt —InZ[Q()], Q(1)=Q(c+B).
0
If one expressed the bath Hamiltonian as an N x N matrix, egs. (5.4)—(5.7) may be represented as
follows. Let F be a fundamental N x N matrix of the equation
—0F/ot = (Hy + Vi) F. (5.9)
Then define the monodromy matrix M [Shirley 1965],
Fiz+ B)= MF(7), M=F@z+BF@)™*. (5.10)

The matrices F and M can be found from straightforward integration of (5.9) with the initial
conditions being N linearly independent vectors. Then the quasienergy partition function equals

Z[0(0)]=Tr M. (5.11)

Note also that M meets the Wronsky theorem,

det M = exp< — JTr(H,, + \/i,,,)dt) . (5.12)

0
Thus for Hamiltonians of finite dimension the effective action functional can be found

by immediately integrating a system of ordinary differential equations. The simplest yet very
important case is a bath of two-level systems,

Hy + Vip = 34(Q)0 + 3¢(Q)o. . (5.13)
The quasienergy partition function equals

Z = 2cosh (%), (5.14)
where + & correspond to the Floquet solutions to the Shrédinger equation

—20c¢, /0t = ecy + dc, , —20c, /0t = —&cy + dcy . (5.15)
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That is, ¢y (7 + B) = ¢y, 2(z)exp(+ PE). In fact, when the temperature is less than the separation
between the two lowest energy levels of the bath, the latter can be approximated by a set of
two-level systems [Caldeira and Leggett 1983; Mermin 19917.%

Generally speaking, the calculation of quasienergies is itself a very complex problem. There are,
however, several limiting cases when it may be done at low cost.

5.1.1. Adiabatic approximation
Suppose that typical frequency of the environment is greater than that of the Q-system. Then
eq. (5.4) can readily be solved in the adiabatic approximation and the quasienergies are

8
=" IJE"(Q(r))dr ; (5.16)
0

where Q(z) is considered a parameter, that is, the ¢, are the energy levels corresponding to (5.4) at
constant values of Q. At sufficiently low temperatures when only the ground state [with energy
£0(Q)] survives in the partition function, the latter renormalizes the effective potential from V(Q) to

Vet (@) = V(Q) + £0(Q) - (5.17)

At arbitrary temperatures and in the perturbative limit the energy can be estimated as the matrix
element taken over the unperturbed ¢-functions &,[Q ()] ~ ¢, + B! j’(’, [Vint(Q(7))]an dz. Inserting
this equality into the partition function one obtains to first order in Vi,

B

In(Z[Q(%)1/Zo) = — J( Viat (¢, (7)) Dparn d7 (5.18)

0

where the partition function Z, and averaging correspond to the unperturbed bath. Thus we arrive
at the adiabatically renormalized effective potential

Veee (@) = V(Q) + { Vine(9, (D)) Dbarn - (5.19)

The adiabatic approximation in the form (5.17) or (5.19) allows one to eliminate the high-
frequency modes and to concentrate only on the low-frequency motion. The most frequent
particular case of adiabatic approximation is the vibrationally adiabatic potential

Veaa(Q) = V(Q) + Y 3h0:(Q), (5.20)
where the w; are the frequencies of transverse vibrations.
* Therefore, at extremely low temperatures one may equally choose between TLS and say oscillator bath. The latter is usually

supposed to be simpler to handle, but the TLS bath model, apart from its apparent relevance for glass theory, has some very attractive
features [Mermin 1991; Suarez and Silbey 1991b; Shimshoni and Cefen 1991].
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5.1.2. Classical low-frequency heat bath

In the opposite case of very low-frequency bath degrees of freedom there is a wide range of
temperatures in which the bath is classical while the Q-coordinate is quantum. If w, is the
characteristic frequency of the bath, the latter remains classical so long as fw. < 1. The right-
hand side of the Shrodinger equation (5.4) contains now a rapidly oscillating potential V;,, and the
most evident way to treat it is simply to average it over the period. A more accurate approach is
based on Kapitsa’s method of effective potential for fast oscillations (see, e.g., Bas’ et al. [1971]).
Expanding V;,, in a Fourier series in the Matsubara frequencies v, = 2nn/8,

V@@ ) =B Y Vi[Q@] @)explivy) , (5.21)

n=-ow

we get the effective interaction potential V. (g) as

8
Vet (@) = B _IJVam(Q(T), q)dz — ; @V, /0g)1*/(2nn)* . (5.22)
0

The classical bath “sees” the quantum particle potential as averaged over the characteristic time,
which - if we recall that in conventional units it equals #/ks T — vanishes in the classical limit # — 0.
The quasienergy partition function for the classical bath now simply turns into an ordinary integral
in configuration space,

Z[Q()] qu exp[—BVer(g)] (5.23)

where V,; is a functional of path Q(z) and we have omitted the integration over the momenta as
a constant factor which is canceled out when the ratio of Im Z and Re z is taken. Inserting the latter
expression into (5.8) one obtains

B
© 2
2~ [aq [s0fproeens( - o+ Vm@.n1ar + 5 £ CIAE) - (5230
0

Except for the nonlocal last term in the exponent, this expression is recognized as the average of
the one-dimensional quantum partition function over the static configurations of the bath. This
formula without the last term has been used by Dakhnovskii and Nefedova [1991] to handle a bath
of classical anharmonic oscillators. The integral over ¢ was evaluated with the method of steepest
descents leading to the most favorable bath configuration.

5.2. Bath of harmonic oscillators

There are just a few Hamiltonians for which the path integration can be carried out
exactly, and the best known case is the driven harmonic oscillator [Feynman and Hibbs, 1965;
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Feynman 1972],

Hy(p,q) = 230 +10jdj, Viu(@ @) = AR (5.24)

A usual, but not always valid, assumption about f; is f;(Q) = C;Q. A great deal of the literature is
devoted to the analysis of this Hamiltonian, both classical and quantum mechanical.

Two most appealing features of this model draw so much attention to it. First, although
microscopically one has very little information about the parameters entering into (5.24), it is
known [Caldeira and Leggett 1983] that when the bath responds linearly to the particle motion,
the operators ¢ and p satisfying (5.24) can always be constructed, and the only quantity entering
into the various observables obtained from the model (5.24) is the spectral density

J(w) = %nZwIICf(S(a) —w;). (5.25)

Second, the classical dynamics of this model is governed by the generalized Langevin equation of
motion in the adiabatic barrier [Zwanzig 1973; Hanggi et al. 1990; Schmid 1983],

[e o)

d? dg dv, _ t
L [arne-0F+ G2 -r0. a0 =207 [0s) =),
o ° (5.26)
c;Q?
V@ = V(@) - X Z’f; ,
where the fluctuating force f(t) satisfies the usual fluctuation—dissipation relation
IO fO)+fO) f())=n""1 Jda) J(w) coth (4 Bw) cos (wt) . (5.27)
0

From the quantum-mechanical point of view the Langevin equation (5.26) describes the evolu-
tion of the Heisenberg operator Q(t). The simplicity of this equation is, however, deceptive. For
example, it is usually impossible to write down the equation of motion for the mean position {Q )
in a closed form, because averaging of (5.26) leads to the term {dV,q/dQ >, which is not equal to
dV,qa(<Q>)/d<Q>, unless V,4(Q) is a harmonic-oscillator potential. That is why the quantum
Langevin equation, being at first glance similar to the classical Langevin equation, may describe
tunneling, i.e., penetration to classically forbidden regions.

The situation simplifies when V(Q) is a parabola, since the mean position of the particle now
behaves as a classical coordinate. For the parabolic barrier (1.5) the total system consisting of
particle and bath is represented by a multidimensional harmonic potential, and all one should do is
diagonalize it. On doing so, one finds a single unstable mode with imaginary frequency iA* and
a spectrum of normal modes orthogonal to this coordinate. The quantity A* is the renormalized
parabolic barrier frequency which replaces @* in a multidimensional theory. In order to calculate
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it we rewrite the Langevin equation (5.26) in terms of Fourier components. Namely, if we take
0 =Y 0, exp(ivt), then

_(v2 + (D#z)Qv + ivr’va =fv s (528)

where the subscript v indicates the corresponding Fourier component.
If we further define the susceptibility y of the system as

1) =<QOKLY> =[-0? + 0®) +ivy,] 71, (5.29)

then the eigenfrequency 4* will correspond to the resonance, i.e., to the pole of y. Setting v = i1*
we thus find

= o*[* + ()], (5.30)

where #(4*) is the Laplace transform of #(t) [Pollak 1986a, b; Ford et al. 1988]. Use of conven-
tional TST now will give the following result for the classical rate constant [Grote and Hynes 1980;
Pollak 19864, b]

k = (wo/2m)(A* /™ )exp(— BVo) - (5.31)

For Ohmic friction n(t) = né(t), A* = [w*? + (3n)*]'? — 4y, and (5.31) goes to the celebrated
Kramers’ formula for classical escape out of a metastable well in the case of moderate and strong
damping [Kramers 1940]. In accord with the multidimensional theory predictions, the cross-
over temperature should be equal to

T,=)*2n . (5.32)

If the potential is parabolic, it seems credible that the inverted barrier frequency A* should be
substituted for the parabolic barrier transparency to give the dissipative tunneling rate as

koc [1 + exp(2rE/A*)]7! . (533)

Such a treatment, while being accurate above T, suffers from the total neglect of the actual form of
the potential near the well. It can be the basis for a variational procedure with a parabolic reference
[Pollak 1986a].

Proceeding now to the instanton treatment of the Hamiltonian (5.24) we observe that the
spectrum of quasienergies differs from that of the unperturbed harmonic oscillator, f(Q) = 0, only
by a shift independent of n [Bas’ et al. 1971],

8
& =(n+Ho +(2h)" 1Jf.-(Q(T))é(f) dz, (5.34)
0
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where £ is the periodic solution to the classical equation,
—0%¢/00* + 0}l = —fi(Q(1)). (5.35)

As shown by Benderskii and Makarov [1992], one could consider an even more general problem
with oscillator frequencies w; dependent on Q. The result would be

B
= (n+ 2)4/B + (213)_‘Jf.-(Q(T))€(T)dT (5.36)

where 4, is the stability parameter of the ith oscillator defined precisely as in the previous section. In
particular, when f; = 0, the bath partition function would be 7= [1Q2 sinh 34;)"*. For not very
large 4;/B, the dependence of the quasienergy partmon function is relatively weak and the factor
Z could be removed from the path integral. This gives another derivation of the prefactor (4.27) in
the multidimensional instanton theory.

Substituting (5.34) and (5.35) for (5.8) and dropping in Z the constant partition function of
unperturbed harmonic oscillator we get the nonlocal effective action derived by Feynman (see also
Caldeira and Leggett [1983]),

B
Setr = So — % szf d7' G;(r — ) [N ALY (5.37)

where S, is the particle action in the bare potential V(Q), Gi(t — ') are the phonon Green’s
functions, whose Fourier components are (w? + v2)™' in the expansion in the Matsubara frequen-
cies v, = 2zn/p. For linear functions f;(Q) = C;Q eq. (5.37) takes the form

B B
= Jdr <%Q" + Vaa(Q) + % de’K(f - T’)Q(T)Q(T’)) , (5.38)
0 0
CZ 2
K(7) = ‘Z Z @l + v z)eXp(ivnf) = B~ 2 A(Ival) [val explivar) -

In the derivation of (5.38) we have extracted the J-function term from the phonon Green’s
function which, in turn, renormalized the bare potential ¥ to the adiabatic one V4. An expression
similar to (5.37) can be obtained for an arbitrary bath whenever the coupling is sufficiently weak
and the functional Z[Q(r)] can be expanded into the series

. YA 1 827 , :
Zio(n)]l = Z, + Jgé QO(n)dr + 3 JJW 0(t)Q(t)drdr' .

The first-order term in this expansion renormalizes the potential V(Q) while the bilinear term is
analogous to the last term in (5.38). This is the linear-response theory for the bath. In fact, it shows
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that, to the extent that the bath quasienergy partition function is approximated by a quadratic
functional, any bath is representable as a set of effective harmonic oscillators.

However, the Green’s function of the bath G(, t') = 82Z/8Q(r) 8Q () may have a form quite
different from a single-phonon Green’s function and may exhibit a strong temperature dependence.
It would be interesting, for example, to see explicitly how this kernel, say, for a liquid, reduces to
the phonon Green’s function but with temperature-dependent parameters so that the friction
coefficient n depends on temperature. To the authors’ knowledge this has not been done as yet.

Returning to the tunneling, we assume a metastable state like that in fig. 19 and use the Im F
method. The extremal trajectories for S satisfy the instanton equation of motion (8S./3Q = 0),

B
+ Jdt'K(t —17)Q(r)=0. (5.39)

0

_d’0 + dh.a(Q)
dr? do

In the same way as is done in the absence of dissipation, one obtains the instanton formula for the
rate constant,

S 1/2
k=2ImF = <—°>
2n

-1/2

Mot Llas | (= Sine) (5.40)

(det L),

where L is the integro-differential operator defined by

d*Vaq
dQ?

B
) (1) + Jdt/ K(r — t)Q(1), (5.41)

0

o= <—6,2 +

and the subscripts “ins” and 0 indicate that the operators are taken on the instanton trajectory and
on the static path Q = 0, respectively. The action S;, is the action from (5.38) on the instanton
trajectory, and S, = {# d¢ 02.

At temperatures above T there is no instanton, and escape out of the initial well is accounted for
by the static solution Q = Q* with the action S.;; = BV, (Where V; is the adiabatic barrier height
here) which does not depend on friction. This follows from the fact that the zero Fourier
component of K(t) equals zero and hence the dissipative term in (5.38) vanishes if Q = constant.
The dissipative effects come about only through the prefactor which arises from small fluctuations
around the static solution. Decomposing the trajectory into Fourier series,

Q@ =0%+ 87" Y Quexp(iv,7), (542)
and using the harmonic approximation for the potential near Q = Q* one gets for the action
1 & 2
Seff=BV0+2_B Y, i — o™ +a(va)val107 (5.43)

n=—o

where we recall that Q, = Q_, because Q(t) is real-valued.
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A similar expansion can be written in the vicinity of Q = 0. Path integration amounts to the
Gaussian integration over the Q,, whereas the integration over the unstable mode Q, is understood
as described in section 3.3. In that section we also justified the correction factor ¢ = T,/T = Bi*/2n
which should multiply the Im F result in order to reproduce the correct high-temperature behavior.
Direct use of the Im F formula finally yields

ImZ  w, \* © y2 4 vh(v,) + wd

k=2B_1¢m_E?eXp(_BVO),,UI E—" vt (5.44)

The last term in (5.44) accounts for quantum corrections to the classical escape rate (5.31) [Wolynes
1981; Melnikov and Meshkov 1983; Grabert and Weiss 1984; Dakhnovskii and Ovchinnikov
1985].

In the case of ohmic dissipation the product in (5.44) can be calculated explicitly and one obtains
for the quantum correction factor

k L(1—BAZPRry (1 — A% 2m)

K___| 5.45
Kiamen - [0 — B4 20) (1 = BA_27)" 64
where Kk amers 18 the Kramers’ rate constant (5.31) and
Ae ==+ (GNP — 0§)?, AL = -+ (Gn)* + o) (5.46)

Interestingly, the correction factor is to a good accuracy approximated by the Wigner formula
(2.15) and it is practically independent of friction [Hanggi 1986], by contrast with the relatively
strong dependence of T, on 7.

The situation changes when moving on to low temperature. Friction affects not only the
prefactor but also the instanton action itself, and the rate constant depends strongly on #. In what
follows we restrict ourselves to the action alone, and for the calculation of the prefactor we refer the
reader to the original papers cited. For the cusp-shaped harmonic potential

V@) =:050*, 0<0Q*; V(Q—-o, 0>0%, (5.47)

the instanton equation (5.39) can be solved exactly in the Fourier representation for Q(r) to give
(Grabert et al. 1984a]

k oc exp(—Q3/25%), (5.48)

where d(n, B) is the zero-point spread of the damped harmonic oscillator,

P =F" Y [+ 0d+ valdllvh] " (5.49)

n= —ao

For ohmic friction this sum reduces to

6%(n, B) = 2(w8B) ™" + 2m)"HA-— A4) T [P(L — AL B2m) — ¥(1 — A_B/27)], (5.50)
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where ¥ is the digamma function, A, are defined in (5.46). In the case of the undamped oscillator,
0% = (2wo) ! coth(3 Bwy). Else the following asymptotic formulae hold:

T/w(z) s T> o,
02 ={ 2wo) (1 = n/nwo), T=0, 5<w,, (5.51)
2(nn) ™ n(n/w)o , T=0, 7> w,.

As seen from (5.48) and (5.51), at high temperatures the leading exponential term in the
expression for k is independent of n and it displays the Arrhenius dependence with activation
energy E, = V, = 3w3Q*2. Formally, because of the cusp, the instanton in this model never
disappears and the cross-over temperature defined by (5.32) is infinite. Practically, however, it is
natural to define T, as the temperature at which the dependence Ink(1/T), or 6%(1/T) levels off.
That is, T, = 3w, in the absence of dissipation, and T, decreases with increasing 7. At strong
friction and zero temperature 67 oc 1/, apart from the weak logarithmic dependence, and the
instanton action increases linearly with increasing #. This behavior is universal for different barrier
shapes, as can be shown for more realistic potentials from the scaling properties of the instanton
solution [Grabert et al. 1984b].

Specifically, let us rewrite (5.39) at § = oo, having integrated the dissipative term by parts,

oo}

:d_zQ dI/ﬂd(Q) ’ NP
— V=0 .52
a2 T 40 + |dt'g(r — 1)Q(x) =0, (5.52)
0
where the Fourier components of the new kernel g(t — 1) are g, = — if(|v,|) sign n. In the ohmic

case the explicit form for g is

gy =n(nr)~*. (5.53)

If we scale time as t = 7z, then the frst term in (5.52) decreases as 1/7%, while the other two are
independent of friction. Therefore, at large n the second derivative term in (5.52), as well as the
kinetic energy term in the action, can be neglected, and the entire effect of friction is to change
the timescale. That is, the solution to (5.52) is Q(r) = Q(t/n) where Q is a function independent
of 5. The instanton velocity is scaled as Q oc 7!, and the action (5.38) grows linearly with 7,
Sins o .

The exact solution of the instanton equation in the large ohmic friction limit has been found by
Larkin and Ovchinnikov [1984] for the cubic parabola (3.18). At T =0

Qins(r) = %QO [1 + (60(2)1'./'7)2]_1 s Sins = %an% . (554)

The instanton action behaves in accord with the scaling predictions and is independent of w,.
Loosely speaking, the frequency w, is replaced by the friction coefficient n. Grabert et al. [1984b]
have studied the energy loss AE;, in the dissipative tunneling process and found that AE;, is
saturated at large friction and becomes independent of n. For a cubic parabola, the maximum
energy loss has been found to be AE s = 4V5.
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5.3. Dynamics of the dissipative two-level system

When the potential V(Q) is symmetric or its asymmetry is smaller than the level spacing w,, then
at low temperature (T < w,) only the lowest energy doublet is occupied, and the total energy
spectrum can be truncated to that of a TLS. If ¥(Q) is coupled to the vibrations whose frequencies
are less than w, and w?, it can be described by the spin-boson Hamiltonian

Hy =3400, + 320, + Y $0?q? + 3p? + Q00,C;q; , (5.55)

where 4 4, is the tunneling matrix element and ¢ the energy bias. The tunneling matrix element may
be found from the instanton analysis, as described in section 3.4. The extended coordinate Q is
replaced in the spin—boson model by the matrix Qy0, which has two eigenvalues, + Q,, corres-
ponding to the minima of the original potential. If there are high-frequency vibrations among the
bath oscillators (w; > w,, w*), their effect is to renormalize 4, [Leggett et al. 1987], so we can
assume that (5.55) contains only the low-frequency vibrations. Since we expect the coherence effects
to show up in a symmetric potential, it is not obvious in the least that the Im F method can be used
for the spin-boson model. Yet the truncation we have done has simplified the model to such an
extent that the explicit real-time dynamics can be investigated.

There is a vast field in chemistry where the spin—boson model can serve practical purposes,
namely, the exchange reactions of proton transfer in condensed media [Borgis et al. 1989; Suarez
and Silbey 1991a; Borgis and Hynes 1991; Morillo et al. 1989; Morillo and Cukier 1990].

The early approaches to this model used perturbative expansion for weak coupling [Silbey and
Harris 1983]. Generally speaking, perturbation theory allows one to consider a TLS coupled to an
arbitrary bath via the term fo,, where fis an operator that acts on the bath variables. The
equations of motion in the Heisenberg representation for the & operators, 36/0t = ih~'[H, 67, have
the form

0"x= —zo'yf, O"y= _A00'2+20'xf, 0"2=A00'y~ (5'56)

Note that, since the von Neumann equation for the evolution of the density matrix, 0p/0t =
—ih~'[H, p], differs from the equation for & only by a sign, similar equations can be written out
for p in the basis of the Pauli matrices, p = o,p, + 6,p, + 0,p, + 31. In the incoherent regime this
leads to the master equation [Zwanzig 1964; Blum 1981]. For this reason the following analysis can
be easily reformulated in terms of the density matrix.

From (5.56) one can obtain an integro-differential equation for operator ¢,. What we need is the
mean particle position, {o,), and in order to find it two approximations are made. First, in taking
the bath averages we assume free bath dynamics. Second, we decouple the bath and pseudospin
averages, guided by perturbation theory. The result is a Langevin-like equation for the expectation
{o,> [Dekker 1987a; Meyer and Ernst 1987, Waxman 1985],

t

d*¢a,>/de* + 43 a.) + 4Jdt’ SO )L6.0)) =0, (5.57)

0

where {f(1)f(t'))s is the symmetrized autocorrelation function for 7, taken for the free bath.
A damped oscillator equation of this type was obtained for the first time by Nikitin and Korst
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[1965] for the gas-phase model of a stochastically kicked TLS. For the spin—boson Hamiltonian
this correlator becomes

oo}

FOFE)D, = Q%n_‘de J(w) coth( Bw) cos [w(t — t)] . (5.58)

0

In the limit of extremely weak coupling, eq. (5.57) becomes Markovian and takes the form (2.41),
(2.42). As discussed in section 2.3, for strong enough coupling (g, ) exhibits exponential fall off with
the rate constant proportional to 43, and a prefactor dependent on the bath spectrum. This
perturbative treatment however cannot be counted on in the strong friction case, and it applies
rather to the spectroscopic problem of broadening of the tunneling splitting spectral line due to
dissipation.

The weak-coupling scheme breaks down when the reorganization energy of jth oscillator
E,; =2Q%C}w; ? exceeds its levels spacing w;. If E; > w ;» when the tunneling particle changes its
position, the oscillator equilibrium positions shift through a considerable distance, so that the bath
cannot be considered as unperturbed by the particle. It is impossible then to write down the
perturbation series by using coupling as a small parameter. This obstacle may be circumvented
with the aid of the so-called polaron transformation, which partially diagonalizes the Hamiltonian
in the shifted oscillator basis [Silbey and Harris 1984; Leggett et al. 1987]. The new Hamiltonian is

H = U0 = }do(0.e 2+ 0_¢'®) + Jeo, + Y iwia} +1p} ,
U=exp(—1ic,), Q=2%Yp0Ci/w}, 0. =% tia). (5.59)

The operator U shifts the g ; oscillator coordinate to its equilibrium through the distance
+ QoC;/w?, the sign depending on the state of the TLS. All the coupling now is put into the term
proportional to the tunneling matrix element and the small parameter of the theory is 4, rather
than C;.

In order to better understand the origin of the first term in (5.59) we separate from the
Hamiltonian the part proportional to o, and average it over the equilibrium oscillators. This gives
rise to an effective tunneling splitting A,

30, = 240<e "0 + €9 = S Ag0,exp (—3(Q2)

= %Aoo'xeXP< -2 %@) = 3400.exp(—39), (5.60)

J

P=30;= ZZQ%C}w;%Oth(%ij) =4Q%in! jdw J(w)w ™2 coth(} phw) .
J J
0

The term proportional to g, after averaging goes to zero. It is easy to verify that exp(—3®;) is the
statistically averaged overlap integral for the jth oscillator [cf. eq. (2.87)],

exp(—2®;) = Zj ' Yexp[— fory(n + 2)] quj Vald; + 2Q0C;/wf Win(g;) » (5.61)
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where Z; is its partition function. In the strong-coupling case (in which we are interested at present)
the absolute value of the overlap integral increases with increasing n (see section 2.5). Nevertheless,
as seen from (5.60), the average exp(—3®;) decreases with increasing temperature because of the
alternating sign of the summand in (5.61). Yet the transition probability should increase with
increasing temperature, because, according to the golden rule, it is the thermal average of a positive
quantity, the square of the overlap integral (Franck—-Condon factor).

Solving now the Heisenberg equations of motion for the ¢ operators perturbatively in the same
way as in the weak-coupling case, one arrives (at ¢ = 0) at the celebrated “non-interacting blip
approximation” [Dekker 1987b; Aslangul et al. 1985]

d<{o,(t))/dt + Jf(t — Yo, (t)>dt =0, (5.62)
0

f(t) = A3 cos[4QF R, (t)/n] exp [—4QF R, (t)/n] ,
Ri(t) = Jw"d(w)sin wtdw,  Ry(t)= Jw‘ZJ(w)(l — cos wt) coth § phow dw . (5.63)
0 0

This approximation has been originally derived and extensively explored in the path-integral
techniques (see the review [Leggett et al. 1987]). Most of the results cited in section 2.3 can be
obtained from (5.62) and (5.63). Equation (5.62) makes it obvious that only when the integrand f(f)
falls off sufficiently fast, can the rate constant be defined, and it equals

oo}

k = Jdt 1) . (5.64)

0

Moreover, eq. (5.64) is nothing but the omnipresent golden rule. To see this just notice that the
density of final states is identically equal to

pr=20(Ei — E)=(2m)~ '} J dtexp[i(E; — E)t] . (5.65)
f f

— oo

Substitution of this for the golden-rule expression (1.14) together with the renormalized tunneling
matrix element from (5.60) gives (5.64), after thermally averaging over the initial energies E;. In the
biased case the expression for the forward rate constant is

a©

k= j dt cos(et) () . (5.66)

0

So far we took the tunneling matrix element 4, to be independent of the vibration coordinates.
In terms of our original model with extended tunneling coordinate Q this assumption means that
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the vibrations asymmetrize the instantaneous potential ¥(Q, {g;}) but do not modulate its height
or width. This model does not describe the effect of fluctuational barrier preparation dealt with in
section 2.5.

For example, consider the OH --- O fragment shown in fig. 2. The relative O—-O distance is
clearly the same in the initial and final states, and hence the O—O vibration cannot be considered
linearly coupled to the reaction coordinate. Such a mode (call it ¢,) is not associated with any
reorganization energy, and this necessitates C, = 0. However, the O-O vibration, changing the
tunneling distance, strongly modulates the barrier transparency and facilitates tunneling. For an
asymmetric potential one also has to give up the condition C; = 0. To describe the effect of such
“promoting modes” within the spin-boson Hamiltonian the latter is to be modified by replacing
Ay with

4= Agexp(yq) (5.67)

[Borgis et al. 1989; Suarez and Silbey 1991a], where ¢, is a particular “coupling” coordinate from
the set {g;} which modulates the barrier (we assume for simplicity that there is only one such
coordinate), and the exponential form of 4 is accounted for by the Gamov-factor nature of this term.

A similar approach which does not use explicitly the spin—boson Hamiltonian but exploits the
assumption that tunneling is sudden in the time scale of the bath vibration period was developed in
quantum diffusion theory [Flynn and Stoneham 1970; Kagan and Klinger 1974] and in chemical
reaction theory [Goldanskii et al. 1989; Siebrand et al. 1984] within the method of radiationless
transition theory [Kubo and Toyazava 1955]. Carrying out the same polaron transformation one
gets the effective tunneling matrix element for the case (5.67),

At = Ao exp[(y* /4w, )coth(zfw, )] exp(— 1) . (5.68)

The promoting effect of the g, vibration is represented in this formula by the first exponent,
which has the sense of the tunneling matrix element (5.67) averaged over the gaussian distribution
of g, with a spread equal to {(g?> = (2w,)” 'coth(;fw,). The effect of reorganization of the heat
bath in transition, which always hinders tunneling, is described by the second exponent. Integrals
like (5.64) and (5.66) are usually calculated with the method of steepest descents by deforming the
integration contour to the imaginary axis.

The analytic results for the spin-boson Hamiltonian with fluctuating tunneling matrix element
(5.67) are investigated in detail by Suarez and Silbey [1991a]. Here we discuss only the situation
when the g, vibration is quantum, i.e., @, > 1. When the bath is classical, w;f < 1,j # 1, the rate
constant for the transition from left to right is given by

k =3A3explGy* — Ep)/w,)(nB/E)? exp[ — B(E; — &)*/4E[] (5.69)

where E; means the reorganization energies for all oscillators but q,, E; =Y+, E,;. The rate
constant (5.69) exhibits Arrhenius behavior associated with the activation of classical degrees of
freedom, and the tunneling rate is enhanced by the factor exp(y?/2w,). At y = 0 the result (5.69) is
readily recognized as the well known Holstein formula [Holstein 1959], and it is formally equiva-
lent to the Marcus formula (2.62) for a radiationless transition, except that the matrix element ¥ in
(2.62) corresponds with diabatic coupling between the terms rather than with tunneling in an
adiabatic potential. This analogy suggests that (5.69) is equally valid for electronically adiabatic
and nonadiabatic chemical reactions, once the matrix element is properly defined.
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At low temperatures, when the bath is quantum (fw; > 1), the rate expression, expanded in series
over the coupling strength, breaks up into the contributions from the various processes involving
the bath phonons

k=kip+kp+kp+kp+ -, (5.70)

where k;p corresponds to one-phonon emission or absorption, k,p to two-phonon emission and
absorption, kg to two-phonon Raman processes and ki to the Raman processes involving one
phonon and one quantum of the g, vibration. The one-phonon contribution, e.g., for an exothermic
reaction (¢ > 0) at zero temperature equals

kip = 2enQ§ Al/r? (5.71)

in the deformational potential approximation J(w)= nw’w; 'exp(— w/w.). With increasing
temperature k,p increases linearly with T at fe > 1, while k,p and kg manifest, respectively, 7>
and T3 dependences. The low-temperature limit k. is proportional to A2, while the prefactor
depends on the concrete spectral properties of the bath.

A disadvantage of the two-state methods is that modelling of a real potential energy surface
(PES) by a TLS cannot always been done*. Moreover, this truncated treatment does not cover the
high-temperature regime since the truncation scheme does not hold at 7 > w,. With the assump-
tion that transition is incoherent, similar approximations can be worked out immediately from the
nonlocal effective action, as shown in Sethna [1981] and Chakraborty et al. [1988] for T = 0, and
in Gillan [1987] for the classical heat bath.

Consider the T = 0 case. Integrating the nonlocal term in (5.38) by parts, we recast it in the
form

Sert = J de [%QZ + V(@ +3 Jdr'(Z(Cf/zw,?)exp(—wjlr —r'n) Q(r)o:(r')} (572)

In the case of a symmetric (or just slightly asymmetric) potential the instanton trajectory consists of
kink and antikink, which are separated by infinite time and do not interact with each other.** In
other words, we may change the boundary conditions, namely, suppose that the time spans from
— o to + oo for a single kink, and then multiply the action in (5.72) by factor 2.

Sethna [1981] considered two limiting cases. The calculation of action in the fast flip approxima-
tion (w; < w®) proceeds by utilizing the expansion exp ( — w;|t]) >~ 1 — w;|t|. After substituting the
first term, i.e. the unity, in (5.72) we get precisely the quantity 3@, which yields the Franck-~Condon
factor in the rate constant. The next term cancels the adiabatic renormalization and changes ¥,4(Q)

*) Leggett et al. [1987] have set forth a rigorous scheme that reduces a symmetric (or nearly symmetric) double well, coupled linearly
to phonons, to the spin—boson problem, if the temperature is low enough. However, in the case of nonlinear coupling (which is necessary
to introduce in order to describe the promoting vibrations), no such scheme is known, and the use of the spin—boson Hamiltonian
together with (5.67) relies rather on intuition, and is not always justifiable.

**) This approximation is not valid, say, for the ohmic case, when the bath spectrum contains too many low-frequency oscillators.
The nonlocal kernel falls off according to a power law, and kink interacts with antikink even for large time separations. We assume here
that the kernel falls off sufficiently fast. This requirement also provides convergence of the Franck—Condon factor, and it is fulfilled in
most cases relevant for chemical reactions.
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back to the bare potential V(Q). Thus, with exponential accuracy one gets the rate constant
proportional to the Franck—-Condon factor times the tunneling rate in the potential V(Q), in
agreement with (5.60) and (5.71).

In the opposite case of slow flip limit, w; > w®, the exponential kernel can be approximated by the
delta function, exp(— wj|t|) ~ 2(t)/w;, thus renormalizing the kinetic energy and, consequently,
multiplying the particle’s effective mass by the factor M* = 1 + ¥ C?/w}. The rate constant equals
the tunneling probability in the adiabatic barrier V,4(Q) with the renormalized mass M*,

1/2
k oc exp|: - Sins,lD<1 + ZC}/C{);‘) :' . (5.73)

As discussed before, the mass renormalization is a reflection of the fact that the particle traces
a distance longer than 2Q, in the total multidimensional coordinate space.

The promoting vibrational modes, like g, in the above spin-boson treatment, cannot be
introduced within the Hamiltonian (5.24) with the linear coupling functions f; = C;Q, because such
couplings suppress tunneling via the Franck—Condon factor, and in order to study vibration-
assisted tunneling in symmetric potentials it is necessary to introduce couplings of a more general
form. Due to the symmetry, the coupling functions f;(Q) are either even or odd in Q. The
symmetrically coupled vibrations corresponding to the even functions f}, such as f; = C;Q?, are not
reorganised in transition (their equilibrium positions do not shift) so that they do
not contribute to the Franck—Condon factors [in Sethna’s language this means that the first term
in the expansion of the exponent exp(—w;j|t|) after substitution to the formula for the action
gives zero]. On the other hand, they can strongly modulate the potential V(Q) and
promote tunneling. The antisymmetrically coupled vibrations (with odd functions f;) lead to
Franck—-Condon factors in the usual way described in Sethna [1981] and Chakraborty
et al. [1988]. For the situation presented in fig. 2, for instance, the normal lattice modes that shift
the O-atoms in opposite directions, are symmetrically coupled to the H-coordinate, while those
vibrations that move both O-atoms as a whole are coupled antisymmetrically.

The symmetric coupling case has been examined by using Sethna’s approximations for the kernel
by Benderskii et al. [1990, 1991a]. For low-frequency bath oscillators the promoting effect appears
in the second order of the expansion of the kernel in w;|t], and for a single bath oscillator in the
model Hamiltonian (4.40) the instanton action has been found to be

Ssud = Sins,lD(Qt3 + 2_3/2 3aQ'2) » 4= C2/4Q i (574)

Q.= —2"Y2%q(1 —b) ' 4 [1+1a2(1 —b) 212, Q< (1 —b)2.

This is the sudden approximation for a symmetric potential. According to (5.74), the tunneling
distance decreases from 2Q,* to 2Q,. The corresponding tunneling trajectory in (Q,q) space is
shown in fig. 17. In the opposite limit of high bath oscillator frequency the action is given by (4.45),
and the trajectory is shown in the same figure. The exact instanton action value is compared in
fig. 32 with both the sudden and adiabatic approximations. For definiteness, the adiabatic barrier
height has been taken to be half the one-dimensional barrier ¥* = 4¥;,so that b =3, C = Q. One
sees that the sudden approximation is realized only for fairly low vibration frequencies, while the
adiabatic approximation becomes excellent for Q > 2.

* 0o = 1 in dimensionless units of (4.40).
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Fig. 32. Dimensionless instanton action S,/ ¥V, plotted against the g-vibration frequency Q = C for PES (4.28). Solid line corres-
ponds to exact instanton solution, dashed lines, to sudden and adiabatic approximations.
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Fig. 33. Three-dimensional instanton trajectories of a particle in a symmetric double well, interacting with symmetrically and
antisymmetrically coupled vibrations with coordinates and frequencies q,, @, and g,, ,, respectively. The curves are: 1, w,, w, > wq
(MEP); 2. w,, 0, <€ , (sudden approximation); 3. @; € Wg, W, > Wg; 4. 0 > Wy, W, € Wg.

Suppose now that both types of vibrations are involved in the transition. The symmetric modes
decrease the effective tunneling distance to 2Q,, while the antisymmetric ones create the
Franck—Condon factor in which the displacement 2Q, now is to be replaced by the shorter
tunneling distance 2Q, [Benderskii et al. 1991a]

®=2Y Q*Ciwj>. (5.75)

Thus the promoting vibrations reduce the Franck—Condon factor itself, which is not reflected in the
spin-boson model (5.55), (5.67). As an illustration, three-dimensional trajectories for various
interrelations between symmetric (w,) and antisymmetric (w,) vibration frequencies, and w, are
shown in fig. 33.
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When both vibrations have high frequencies, w, , > wy, the transition proceeds along the MEP
(curve 1). In the opposite case of low frequencies, w, s € w,, the tunneling occurs in the barrier,
lowered and reduced by the symmetrically coupled vibration ¢, so that the position of the
antisymmetrically coupled oscillator g, shifts through a shorter distance, than that in the absence of
coupling to ¢, (curve 2). The cases w, > w,, W, € Wy, and W, € Wy, ®, > W,, characterized by
combined trajectories (sudden limit for one vibration and adiabatic for the other) are also presented
in this picture.

5.4. Dissipative nonadiabatic tunneling

The problem of nonadiabatic tunneling has been already formulated in section 3.5, and in
this subsection we study how dissipation affects the conclusions drawn there. The two-state
Hamiltonian for the system coupled to a bath is conveniently rewritten via the Pauli matrices

H = {3P? + 3[W(Q) + V(Q)1}1 + 3[%(Q) — V(Q)]o.
+ Va(Q)ox + Y [3p7 + 30}(g; + C;Q/w})*]1 . (5.76)

Here V; and V; are the terms of initial and final states, ¥ the diabatic coupling. We have explicitly
added the counterterm ¥ C}Q?/2w? in order to cancel the adiabatic renormalization caused by
vibrations. We shall consider the particular case of two harmonic diabatic terms,

H =3P% + 303(Q + Fo./w})* + Vio, + 3eo, + Y [3p} + 307 (q; + C;Q/w})*], (5.77)

where the diabatic coupling ¥, is supposed to be constant, F is half the difference of the slopes of the
terms,

F = }[d¥/dQ — d¥/dQlg-q, » (5.78)

and the crossing point has the coordinate Q. = — ¢/2F.

The formal structure of (5.77) suggests that the reaction coordinate Q can be combined with the
bath coordinates to form a new fictitious “bath”, so that the Hamiltonian takes the standard form
of dissipative TLS (5.55). Suppose that the original spectrum of the bath is ohmic, with friction
coefficient #. Then diagonalization of the total system (Q, {g;}) gives the new effective spectral
density [Garg et al. 1985]

Jerr(@) = 0§ 1" (©) = nwo§/[(@d — v?)? + *o’], (5.79)
where y” is the imaginary part of the susceptibility of the damped harmonic oscillator with
frequency w, and friction coefficient #. After formal substitution Qo = F/w3, 34, = V; for (5.55),
the Hamiltonian (5.77) becomes formally equivalent to (5.55) with the spectral density (5.79).

It is to be emphasized that, despite the formal similarity, the physical problems are different.
Moreover, in general, diabatic coupling ¥, is not small, unlike the tunneling matrix element, and
this circumstance does not allow one to apply the noninteracting blip approximation. So even
having been formulated in the standard spin—boson form, the problem still remains rather
sophisticated. In particular, it is difficult to explore the intermediate region between nonadiabatic
and adiabatic transition.



V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry 287

When V is small so that the transition is nonadiabatic, the usual golden-rule analysis based on
(5.66) can be performed to give [Garg et al. 1985; Wolynes 1987]

k= de(nﬂeff/EO)l/z exp(— Q#2/252) s Q# = Qo — &/2F ,
Ey, = 20503 = 2F*/w} , (5.80)

where Q* is the distance from the minimum of the initial well to the barrier top. The “effective
temperature” is defined as

Tee = ﬂe—ffl = wcz)(sz(’?, B, (5.81)

where ¢ is defined in (5.50). At high temperatures T = 7, and (5.80) is nothing but the Marcus
formula, irrespective of friction.

As the temperature drops, (5.80) starts to incorporate quantum corrections. When friction
increases, T.¢ decreases and the prefactor in (5.80) increases. This means that the reaction becomes
more adiabatic. However, the rise of the prefactor is suppressed by the strong decrease in the
leading exponent itself. The result (5.80) may be recast in a TST-like form. If the transition were
classical, the rate constant could be calculated as the average flux towards the product valley

k= % fdv dQ B(v)vpa(v, Q)5(Q — %), (5.82)

where v is the velocity, B(v) is the Landau-Zener prefactor (3.88) B(v) = nV3/vF, p.(v, Q) is the
classical equilibrium distribution function in the initial well.

In the quantum case this function is to be replaced by its quantum counterpart, the Wigner
function [Feynman 1972; Garg et al. 1985; Dakhnovskii and Ovchinnikov 1985] expressed via the
density matrix as

W, Q) =(@2m)™" fdQ’ exp(iQ'v)p(Q — 30, 0 + 20 (5.83)

Substitution of this in (5.82) gives
k=nVip(@*, Q*)2F, (5.84)

identical to (5.80). The effect of friction is to slow down the motion, ie., to decrease v, thereby
increasing the Landau-Zener factor.

In the deep tunneling regime, 7 — 0, the velocity entering into the Landau-Zener factor is
formally imaginary. For an asymmetric potential this limit can be studied with the usual Im F
techniques. In order to explore the whole range of Landau—Zener parameters it is more expedient
to deal with the original Hamiltonian (5.76). Further, the o operators, as well as the g oscillators,
can be integrated out of the problem by use of the quasienergy method, leading to the problem
formulated in terms of the reaction coordinate alone. This program is realized in appendix B, and
here we just write out the final result,

k = Bk, , (5.85)
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where k.4 is the rate of dissipative tunneling in the lower adiabatic term V_ (fig. 23), found
according to the recipe of section 5.2, and B is the prefactor

B =215"le~®8%/I(©5), 6= V32Fv,,, (5.86a, b)

where v, is the imaginary-time instanton velocity.

In the nonadiabatic limit (6 < 1) B = nV3/v;, F, and at § > 1 the adiabatic result k = k.4 holds.
As shown in section 5.2, the instanton velocity decreases as # increases, and the transition tends to
be more adiabatic, as in the classical case. This conclusion is far from obvious, because one might
expect that, when the particle loses energy, it should increase its upside-down barrier velocity.
Instead, the energy losses are saturated to a finite #-independent value, and friction slows the
tunneling motion down.

6. Examples of quantum chemical reactions

Low-temperature chemistry has originated as a branch of solid state chemistry, and major
attention has been paid to studying incoherent chemical conversions at cryogenic temperatures.
Spectroscopic studies of tunneling splittings in cryogenic matrices of noble gases appeared after
suitable laser techniques were developed. In the 80s this field was given impetus by the new
supersonic cooling technique, which permitted one to study gas-phase reactions with low transla-
tional and internal temperatures of reactants. Use of supersonic beams of heavy noble gases with
seeded molecules made the vibrational temperatures below 50K available. The translational
temperature is as low as 5-7 K, so that the reactant molecules form van der Waals complexes even
with noble gas molecules [Amirav et al. 1980]. In this regard these reactions differ from the usual
gas-phase reactions with continuous energy spectrum, being closer to solid-state reactions with
bound initial and final states.

By now, numerous examples of tunneling in chemistry have been studied. The exhaustive list of
these pieces of evidence may be found in the review by Benderskii and Goldanskii [1992], and here
we confine the discussion to just a number of the most typical examples.

6.1. Hydrogen transfer

We start with the reaction of abstraction of a hydrogen atom by a CH radical from molecules of
different matrices (see, e.g., Le Roy et al. [1980], Pacey [1979]). These systems were the first to
display the need to go beyond the one-dimensional consideration. The experimental data are
presented in table 2 together with the barrier heights and widths calculated so as to fit the
theoretical dependence (2.1) with a symmetric gaussian barrier.

The one-dimensional model assumes that tunneling occurs when the C-C distance, R, is fixed.
This distance corresponds to the sum of the van der Waals radii, and the distance the tunneling
particle should overcome equals d = R2c — 2Ry, where R is the equilibrium CH bond length.
The calculated PES for the methyl radical reactions analogous to those given in table 2 predicts
that the length of the CH bond in the transition and initial states is 1.23—1. 284 and 1. 07-1.08 A,
respectively [Sana et al. 1984]. The C-C distance in the reactlon complex is 2. 7-2.8 A and the
displacement of the hydrogen atom does not exceed 0.54-0. 58 A. It is this displacement that is
consistent with the barrier height measured for the gas-phase reactions.
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Table 2
Effective parameters of the one-dimensional gaussian barrier for the H atom in the
reactions (6.18) (see below)

Matrix k. [s71] T. [K] Vo [keal/mol] Effective tunneling
distance [A]

CH;0H 2x 1074 45 11.9 1.08

C,Hs;OH 3x107¢ 47 12.1 1.04

CH,;CN 1.4x1073 44 14.3 0.93

bo

Fig. 34. PES cuts for the reaction (6.19) C*"H; + CPH;0H — C'"H, + C'H,0OH for the C-C distance corresponding to the
hydrogen atom tunneling distance 1.0A. 1,1’ are the diabatic Morse terms, 2 the corresponding adiabatic potential, 3 the one-
dimensional parabolic barrier fitted to the experimental data, 4 potential along MEP for the exchange gas-phase reaction
CH; + CH, —» CH, + CH; [Hipes and Kupperman 1986].

However, for these parameters of the barrier, the cross-over temperature would exceed 500K,
while the observed values are T, ~ 50 K. If one were to start from the d values calculated from the
experimental data, the barrier height would go up to 30-40kcal/mol, making any reaction
impossible. This disparity between V,, and d is illustrated in fig. 34 which shows the PES cuts for the
transition via the saddle-point and for the values of d indicated in table 2.

In view of the correlation between V,, and d, it is important to remember that the van der Waals
distances between the reactants in a lattice are much longer than the inter-reactant distances
in gas-phase reaction complexes. For instance, for the reactions in question the C-C
distance corresponding to the minimum of the atom-atom potential is 37A [Pertsin and
Kitaigorodskii 1987], so that the tunneling distance for the H-atom in the fragment C‘*V-H ... C®
should exceed 1.5 A (1.3 A if the zero-point energy is taken into account). Therefore, the problem
lies not only in explaining the k(7") dependence from the relationship between V, and d, but also in
reconciling these values with the inter-reactant distances in the lattice.
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Table 3
Tunneling splittings of different vibrational levels in the excited A'B, elec-
tronic state of the tropolon molecule

Band assignment Vibration frequency Tunneling splitting [cm ™ ']
[em™']
TrOH TrOD
09 - 18.942 22

11} 511 13 -

123 640 17 -

133 414 320 3

143 296 304> 11

143 2 %296 28 13

192 2% 269 9 -

25% 2x171 4.2% -

263 2x39 7.2% -

263 4x39 4.7 -

26§ 6x39 35 -

268 8 x 39 0.8 -

» Data from [Redington et al. 1988], other values are taken from [Sekiya et
al. 1990a].

Vyy (&)

Fig. 35. Normal modes of tropolon molecule participating in tunneling tautomerization. Symmetry of modes is given in brackets.
For the off-plane vibrations v,s and v, the symmetry plane is shown. The equilibrium bond lengths are indicated in the leftmost
diagram.

Obviously, these requirements cannot be met in the framework of a one-dimensional model. As
explained in section 2.5, these difficulties are naturally circumvented in the vibration-assisted
tunneling model. This model has been directly confirmed by the elegant experiments with super-
cooled jets [Redington et al. 1988; Redington 1990; Sekiya et al. 1990a,b; Fuke and Kaya 1989,
Tsuji et al. 1991]. Redington et al. [1988] and Redington [1990] have observed the vibrational
selectivity of tautomerization of the tropolon.

The hydrogen-atom tunneling (observed spectroscopically as tunneling splitting 4) in the
OH --- O fragment connected to the seven-membered carbon atom ring, is enhanced in progres-
sions of the symmetrically coupled vibrations, v;3 and v,4, and it is suppressed by the antisym-
metrically coupled vibrations v, and v, (table 3). The kinematics of these vibrations is featured in
fig. 35. The explanation to the vibrational selectivity and relevant formulae (2.82a) and (2.86) are
given in section 2.5.
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Fig. 36. Laser fluorescence excitation spectrum of 7-azoindole dimer (6.1).

Fuke and Kaya [1989] studied the vibrational selectivity of concerted two-proton transfer in
7-azoindole in the excited electronic state

/
A
|

—

—_——

(6.1)

A A
7 V4

Tunneling in the NH--- N fragments leads to broadening of certain vibrational bands. This
broadening disappears after deuteration. As shown in fig. 36, the tunneling is promoted by the
symmetric vibration with frequency 120cm ™ !. The widths of bands with n = 0, 1,2 are equal to 5,
10 and 30cm ™', respectively. The bending vibration 98cm™! rather reduces the transition
probability. Reaction (6.1) has been studied by Tokumura et al. [1986] (see fig. 1 for the temper-
ature dependence of the rate constant.

It is noteworthy that this example of proton exchange presents a spectroscopic manifestation of
incoherent tunneling, which gives rise to spectral line broadening rather than its splitting. This
problem is reminiscent of the spin-exchange problem known in magnetic resonance spectroscopy.
In the latter problem there are two Zeeman frequencies, w, and w,, corresponding to two spin
types, and a frequency of double flip-flop exchange between these spins, w,,. The latter is analogous
to the rate constant of the exchange reaction in the problem of proton transfer.

In order to describe the incoherent exchange, in the pulse collision model [Lynden-Bell
1964; Johnson 1967; Stunzes and Benderskii 1971] an effective exchange term, whose real part is
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proportional to ®,,, is introduced in the von Neumann equation,

9p/ot = —ih™'[H,p] + (9p/00)cx 62)
This results in two Lorentzian spectral lines with positions

@1,2 = 3w, + 03) + [Ho; — 0,)* — 0i]'?, (6.3)

and widths I = I'y + w.x, Where I is the intrinsic width. Therefore, due to incoherent exchange
the lines tend to merge and to widen, in contrast with the coherent case, when the lines move apart
without broadening [cf. eq. (3.83)].

Sato and Iwata [1988] solved straightforwardly the Shrodinger equation in two dimensions and
found the increase in tunneling probability in a three-atom fragment ABA, resulting from an
increase in the quantum number of the low-frequency A-A vibration, n. For a barrier height equal
to 1300 cm ~! (3.72 kcal/mol), a vibration frequency of 450cm ™!, and m,/mg = 100, the tunneling
splitting was found to be 111, 133, 151, 166, 193 and 202cm ™! at n = 0,1, ... 5, respectively. The
two-dimensional picture of the wavefunctions showed that at large » the tunneling particle became
delocalized. This result is in agreement with the semiclassical picture set forth in sections 2.5, 4.2
and 4.3.

This simulation performed on the borderline of up-to-date computational capabilities is beyond
the framework of the semiclassical approximation, since 4 is comparable with w,. As far as real
systems are concerned, such simulations are often hardly feasible for higher barriers and more
degrees of freedom. On the other hand, as tests show (see section 4.1 and sequel), semiclassical
methods cost incomparably less, being at the same time quite accurate, even when the barrier is not
too high.

One of the most thoroughly studied examples of intramolecular tunneling is isomerization of
malonaldehyde involving the transfer of an H atom in an OH --- O fragment,

H H
0/ (l) 0 \0

- ppp— R (64)
NV N/

which gives rise to tunneling splitting observable in microwave and IR-spectra. In the ground
vibrational state this splitting equals 21.6 and 3cm ™! for the transfer of H and D, respectively
[Banghcum et al. 1984; Turner et al. 1984]. The calculation of the one-dimensional tunneling
probability [de la Vega 1982] between two equivalent equilibrium states at fixed positions of the
O atoms gives the value of 4, which is nearly two orders smaller than the experimental one.

The cause of this discrepancy, as was pointed out by Bicerano et al. [1983], and Carrington and
Miller [1986], is that the transition is accompanied by a considerable displacement of heavy atoms
and it cannot be reduced to tunneling in the static barrier. The self-consistent calculation of PES for
multidimensional tunneling has been made by Shida et al. [1989]. The transfer of a hydrogen atom
is accompanied by a number of large-amplitude motions, including, in addition to OH-bond
stretching, the bending vibrations COH and OCC and the stretching vibration CO. All these
vibrations supply the dynamical shortening of the tunneling distance.

A major role is played by vibrations with frequencies 318cm ™! and 1378 cm ™ !. The tunneling
splitting increases by several times as the quantum numbers of these vibrations increase. The



V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry 293

Fig. 37. Geometry of (a) equilibrium and (b) transition state of malonaldehyde (6.4).

deformation of the molecular skeleton in the transition state in comparison with the initial state is
shown in fig. 37. As suggested by Shida et al. [1989], Makri and Miller [1987, 1989], Bosch et al.
[1990], and Rom et al. [1991], the major multidimensional features of this system can be
represented by a two-dimensional PES (4.40). The PES parameters, taking into account the
vibrational-adiabatic corrections from high-frequency degrees of freedom, are [Bosch et al. 1990]
Vo = 18.01 kcal/mol, C = 0.86, Q = 0.71, wy = 1.79x 10**s™ 1, V* = V(1 — b) = 4.98 kcal/mol.
The contour plot is presented in fig. 38.

A number of empirical tunneling paths have been proposed in order to simplify the two-
dimensional problem. Among those are MEP [Kato et al. 1977], sudden straight line [Makri and
Miller 1989], and the so-called expectation-value path [Shida et al. 1989]. The results of these
papers are hard to compare because slightly different PES were used. As to the expectation-value
path, it was constructed as a parametric line g(Q) on which the vibration coordinate g takes its
expectation value when Q is fixed. Clearly, for the PES at hand this path coincides with MEP, since
q is a harmonic oscillator.

The results for the tunneling splitting calculated with the use of some of the earlier pro-
posed reaction paths for a single PES (4.40) (with the parameters adopted here) are collected
by Bosch et al. [1990]. All of them underestimate by at least an order of magnitude the numer-
ically exact value 10.6cm™!, which is also given in that paper. The parameters C and
hit the intermediate region between the sudden and adiabatic approximations, described in
sections 2.5 and 4.2, and neither of these approximations is quantitatively applicable to the
problem.
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Fig. 38. Contour plot, MEP and instanton trajectory for isomerization of malonaldehyde (6.4). The instanton is drawn for large but
finite B; in the limit f = co it emanates from the potential minimum.

The tunneling trajectory has been numerically calculated by using the instanton techniques
of section 4.2 [Benderskii et al. 1993], and it is shown in fig. 38 together with the MEP.
The extremal trajectory reveals that tunneling is essentially a two-dimensional process, which
involves both degrees of freedom in a manner which is not described by the aforementioned
approximate methods. The value of the prefactor obtained is B, = 110, and the tunneling splitting
is 13cm ™!, which compares well with both the experimental value and with the quantal calcu-
lations of Bosch et al. [1990] (10.6 cm ™). The large value of the prefactor is due to the fact that the
transverse vibration frequency w, strongly softens down from the initial to the transition state.
It is to be noted that this is a common feature of the proton transfer, and for this reason the
primitive semiclassical calculations done with exponential accuracy underestimate the tunneling
splitting.

Unlike in the case of the gas-phase measurements, no tunneling has been detected in the IR
spectra of the malonaldehyde molecule in the noble matrices at 15-30K [Firth et al. 1989]. The
lack of tunneling is caused by “detuning” of the potential as a result of weak antisymmetric
coupling to the environment.

In contrast to malonaldehyde, in the tropolon molecule the tunneling splitting is almost the same
in the gas phase and in the neon matrix [Rosetti and Brus 1980]. Note that in both cases there is
a similarity not only in 4 but in the equilibrium distances in the O,HO, fragment. The analysis
[Redington 1990] of the tropolon IR spectra in the neon matrix, based on the crystallographic data
of Shimanouchi and Sasada [1973] for the change of the bond lengths upon transfer of the H-atom
(fig. 35), has shown that the displacements of non-tunneling heavy atoms are comparable with the
zero-point amplitude, or are even larger. The transfer of hydrogen is strongly coupled with
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Fig. 39. Contour plot, MEP and instanton trajectory for isomerization of hydrogenoxalate anion (6.5).

the plane vibrations C=0/C-O and C-C=C/C=C-C (coordinates R and S, respectively). The
projection of the three-dimensional PES V(r,R,S) onto the R-S plane is characterized by two
saddle points.

Such a configurational degeneracy of the reaction path, typical also of two-proton transfer as
well as the transfer of the interstitial H-atom between the neighboring sites of a lattice, will be
considered below. Since the motion of the H-atom entails strong skeleton deformation, the barrier
is higher than for the malonaldehyde (13.7 kcal/mol). The energy bias equals 2-3 cm ™ *. Unlike the
excited state, in the ground state the isotope effect is small, in agreement with the model
of vibration-assisted tunneling for the case when the chief contribution comes from the R-S
displacements of heavy atoms.

To feature the vibration-assisted tunneling, a convenient object for simulations, is the hydrogen-
oxalate anion

_ ¢ (6.5)
/ \

In this case the adjustable parameters of PES (4.40) are V,, = 18.52 kcal/mol, V'* = 5.62kcal/mol,
C =107,2=091,w, = 1.50 x 10145~ ! [Bosch et al. 1990]. Again, as for malonaldehyde, the PES
parameters fall between the sudden and adiabatic regimes. The PES contour map and the
instanton trajectory for this case are shown in fig. 39. Benderskii et al. [1993] have obtained
through the instanton analysis a value for the prefactor, B, = 54, and for the tunneling splitting
1.4cm™1, in excellent agreement with the quantal calculation value of Bosch et al. [1990],
1.30cm ™!,
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The two-proton exchange in pairs of OH --- O fragments of various carbonic acid dimers

0 .... =0
—c/ \c (6.6)

N /7

O—H .... 0

is well studied with NMR relaxation measurements (T;-NMR) [Meier et al. 1982; Nagaoka
et al. 1983; Idziak and Pislewski 1987], incoherent inelastic neutron scattering (IINS) [Horsewill
and Aibout 1989a], impurity fluorescence of high spectral resolution [Rambaud et al. 1989, 1990].
In these systems, as well as in other cases of translational tunneling, the energy bias imparted by the
asymmetry of crystalline fields precludes proton delocalization. In carbonic acid crystals the bias
¢ is usually about 60cm ™!, being two orders larger than 4. For this reason tunneling splitting is
hard to observe.

A unique example of observation of tunneling splitting is given by Oppenlander et al. [1989].
Upon replacing the host benzoic acid dimer by a thioindigo molecule of nearly the same size, the
resulting bias accidentally turns out to be small, of order of 4. The 4 x4 Hamiltonian of the
complex of two dimers and the guest molecule is

ae aff Pa BB
—A4 34 44 0
ia4 B 0 14
H=| | Rl (6.7)
14 0 B i4
0 14 14 4

where a and f enumerate two possible states of a single dimer, A4 is twice the bias of a bare dimer,
and B is the shift in energy due to the guest molecule. Although B,4 > 4, |B — A| ~ 4. The
eigenfunctions of the three lowest energy levels are

0.82]aa — 041(Jaf> + |Bad) + 005188,  0.71(laBd> — |Bad),
0.58| oty + 0.57(|aB) + |Bad) — 0.10( BB , (6.8)

whence delocalization is seen. The “hole burning” spectra measured by Oppenlander et al. [1989]
are presented in fig. 40, giving tunneling splitting 4 = 8.4 + 0.1 GHz, |4 — B| = 4.8 + 0.3GHz.

The other two methods, T;-NMR and IINS, allow measuring the thermal hopping rates. For
different acids in the temperature interval from 40 to 160 K the hopping rate constant, k, ranges
from 108 to 2x 10'°s™1, and the apparent activation energy is 1-2 kcal/mol. For benzoic acid
cyrstals, where both tunneling splitting and thermal hopping were observed, the transition between
these two regimes occurs at ~ 40K. Formally it is the cross-over temperature introduced in
section 2.1 on the basis of the spectral criterion.

As argued in section 2.3, when the asymmetry ¢ far exceeds 4, phonons should easily destroy
coherence, and relaxation should persist even in the tunneling regime. Such an incoherent
tunneling, characterized by a rate constant, requires a change in the quantum numbers of the
vibrations coupled to the reaction coordinate. In section 2.3 we derived the expression for the
intradoublet relaxation rate with the assumption that only the one-phonon processes are relevant.
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Fig. 40. Hole-burning spectra of thioindigo in benzoic acid crystal at 1.35 K. The scanning laser frequency w is measured with respect to
the burning laser frequency w,; Aw, is detuning of the burning laser frequency relative to the center of absorption line.

Working in the same weak-coupling approximation, it takes little effort to produce the expression
for the rate constant in the asymmetric case, by simply replacing 4 in (2.42)—(2.44) by the energy
bias .

This exp_gession has been obtained by Skinner and Trommsdorf [1988]. The rate constants for
the direct (k) and reverse (k) transition at fe > 1 are proportional to fi(e), and fi(e) + 1, respectively,
and the relaxation rate equals

k=Fk + k= kq coth(3pe), (6.9)
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where 7(e) is the equilibrium number of phonons with energy ¢ (2.53), and k, is determined by the
coupling coefficient (see section 2.3). The crossover temperature predicted by (6.9) is associated with
the bias (7, ~ ¢/2kg). This model is based on the weak-coupling approximation and it takes into
account neither reorganization, nor vibration assistance in the sense of section 2.5. Although the
term “vibration-assisted tunneling” is also applied to the Skinner—Trommsdorf model, this “assist-
ance” signifies that vibrations supply the energy needed to provide resonance.

The role of two-phonon processes in the relaxation of tunneling systems has been analyzed by
Silbey and Trommsdorf [1990]. Unlike the model of TLS coupled linearly to a harmonic bath
(2.39), bilinear coupling to phonons of the form C;;q;q;0, was considered. In the deformation
potential approximation the coupling constant C;; is proportional to w;w;. There are two
leading two-phonon processes with different dependence of the relaxation rate on temperature
and energy gap, 4 = (42 + ¢%)"/2. Two-phonon emission prevails at low temperatures, and it is
temperature-independent and proportional to A%, when g4 > 1.

In the opposite case, B4 < 1, the Raman process with the rate constant proportional to 77/42 is
dominant. At 84 < 1 the rate of this process is proportional to AT*. The nonmonotonic depend-
ence of k on A predicted by this model has not been observed experimentally because this effect is
pertinent to inaccessibly low temperatures. The T* dependence has actually been borne out by
Oppenlander et al. [1989].

Quantum-chemical calculations of PES for carbonic acid dimers [ Meier et al. 1982] have shown
that at fixed heavy-atom coordinates the barrier is higher than 30kcal/mol, and distance between
O atoms is 2.61-2.71 A. Stretching skeleton vibrations reduce this distance in the transition state to
2.45-2.35 A, when the barrier height becomes less than 3 kcal/mol. Meier et al. [1982] have stressed
that the transfer is possible only due to the skeleton deformation, which shortens the distances for
the hydrogen atom tunneling from 0.6-0.7A to ~ 0.3 A. The effective tunneling mass exceeds 2m,,.

A calculation of tunneling splitting in formic acid dimer has been undertaken by Makri and
Miller [1989] for a model two-dimensional polynomial potential with antisymmetric coupling. The
semiclassical approximation exploiting a version of the sudden approximation has given
A4 = 09cm ™!, while the numerically exact result is 1.8 cm ™. Since this comparison was the main
goal pursued by this model calculation, the asymmetry caused by the crystalline environment has
not been taken into account.

Semiempirical two-dimensional PES for O-H:--O, O-H---N, N-H.-- O, and N-H --- N can
be inferred from the experimental dependence of stretching vibration frequencies and bond lengths
on the distance between the heavy atoms. These parameters were extracted from the spectroscopic
and crystallographic data for various species containing these fragments [Lippincott and
Schréder 1955, 1957]. A further analysis along these lines has been carried out by Sokolov and
Savel’ev [1977], Lautie and Novak [1980], and Saitoh et al. [1981]. In fig. 41 taken from the last
reference the relationship between V,, transfer distance (d = roo — 2ron) and rgg is presented.
Using this correlation and the experimental values of roo and ¥#, one can immediately estimate the
coupling parameter. In particular, for the model PES (4.40)

b=C22Q*=1—V*/Vy, Q=2% woo/won - (6.10)

In addition, the frequency woo, as well as the tunneling distance can also be extracted from the
same empirical data. Thus all the information needed to construct a PES is available. Of course, this
PES is a rather crude approximation, since all the skeleton vibrations are replaced by a single mode
with effective frequency wgo and coupliniparameter C. From the experimental data it is known
that the strong hydrogen bond (rgo < 2.6 A) is usually typical of intramolecular hydrogen transfer.
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Fig. 41. Empirical correlation between O—O distance, barrier height and hydrogen-atom transfer distance in OH-O fragment.

In this case the parameters C and Q are of order of unity, and therefore they correspond to the
intermediate situation between the sudden and adiabatic tunneling regimes. Examples are mal-
onaldehyde, tropolon and its derivatives, and the hydrogen-oxalate anion discussed above. For
intermolecular transfer, corresponding to a weak hydrogen bond, the parameters C, 2 and b are
typically much smaller than unity, and the sudden approximation is valid. In particular, carbonic
acids fulfill this condition, as was illustrated by Makri and Miller [1989].

Let us now turn to the incoherent case. In the 2-hydroxyphenoxyl radicals

(6.11)

the hydrogen-atom hopping in the fragment O,HO, occurs with the rates 10°-107 s~ !, ensuring
changes in the hyperfine structure of the electron paramagnetic resonance spectra [Loth
et al. 1976]. The distance O,H --- O, here is much longer than in the above compounds, so that
the strong angular deformation is responsible for the transfer. The adiabatic barrier height equals
~ 17kcal/mol. The bending C-O-H and C-C-O vibrations reduce the tunneling distance from
1.26 A to 0.36 A. The transition state corresponds to strong angular deformations (up to 11°).

In the genuine low-temperature chemical conversion, which implies the incoherent tunneling
regime, the time dependence of the reactant and product concentrations is detected in one way or
another. From these kinetic data the rate constant is inferred. An example of such a case is the
important in biology tautomerization of free-base porphyrines (H,P) and phtalocyanins (H,Pc),
involving transfer of two hydrogen atoms between equivalent positions in the square formed by
four N atoms inside a planar 16-member heterocycle (fig. 42).

In the stable trans-form the H atoms lie along the diagonal of the square. The energy of the
cis-form, in which the atoms are positioned on one of the edges, is 3—5 kcal/mol higher than that
of the trans-form [Smedarchina et al. 1989]. The transition state energies for trans—cis and
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Fig. 42. Two-proton transfer in porphyrine.
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Fig. 43. Contour plot of potential (6.13) with two transition states. V(Q)=(Q*—-20%)V,, C=20V,, A=90V,, Q,=0.5. MEPs are
shown.

trans—trans isomerization, calculated in that paper with semiempirical quantum-chemical
methods, are equal to V, = 36-42kcal/mol and V' = 60-66 kcal/mol, respectively.

The temperature dependence of the rate constant for the two-proton exchange in H,P, HDP and
D,P has been measured with NMR methods in the interval 160-320K, where k grows from 10 to
10°s ™1 [Hening and Limbach 1979; Schlabach et al. 1986; Crossley et al. 1988; Frydman et al. 1988;
Limbach et al. 1982]. In the range 95-110K the rate constants of H and D transfer, ky and kp,
measured by Buttenhoff and Moore [ 1988] with the method of “hole-burning” in the fluorescence
spectrum, are 10~ #-10"2s™ . Comparison of the data of both methods shows that the dependence
of ky(T) and kp(T) on T does not obey the Arrhenius law (EY varies from 10.4 kcal/mol at
T = 200-320K to 6.4 kcal/mol at 95-110K). The activation energy for the D-atom exchange is
3.3kcal/mol greater than for H-atom. The isotope effect is ~ 25 and ~ 250 at 250K and 111K,
respectively. Schlabach et al. [1986] have concluded that at 7> 200K tautomerization corres-
ponds to stepwise transfer of the two H atoms, because the rate constants for HDP and D,P are
similar, i.e., in both species the same stage of D-transfer is rate-limiting.

The PES found by Smedarchina et al. [1989] has two cis-form local minima, separated by four
saddle-points from the main trans-form minima. The step-wise transfer (trans—cis, cis—trans)
— because of endoergicity of the first stage — displays Arrhenius behavior even at T < T.. The
concerted transfer of two hydrogen atoms was supposed to become prevalent at sufficiently low
temperatures. However, because of too high a barrier for the concerted trans—trans transition, this
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region was experimentally inaccessible. According to Sarai[1982], hydrogen transfer is accom-
panied by a strong deformation of the heterocycle.

The total reorganization energy equals 7.4 kcal/mol. Owing to the skeleton vibrations, the
tunneling distance at the energy E_ of the local minimum of cis-form is decreased to 0.6 A,
while the geometric tunneling distance between the global minima is 1.7 A. Buttenhoff and Moore
[1988] have explained the persistence of the Arrhenius behavior with a small activation energy
together with a large isotope effect at low temperatures by supposing that tunneling occurs via
a thermally activated state with energy E.. Accordingly, as in the endoergetic reaction, there are
two apparent activation energies E, and V, at T < T, and T > T, respectively. To obtain an
estimate, they have made use of the simple one-dimensional formula (2.6).

Two-proton transfer has also been observed in naphtazarin crystals in the NMR spectra of C'2.

' ' (6.12)

The rate constants ky and kp were equal to 3 x 10° and ~ 10*s™!, respectively [Shian et al. 1980;
Bratan and Strohbusch 1980]. There are two equivalent ways of stepwise transfer, and, therefore,
the transition state and MEP are two-fold, if the stepwise transfer is energetically preferable. On the
other hand, there is only one way of concerted transfer, which lies between the saddle points. Based
on this reasoning, de la Vega et al. [1982] have found that the barrier for stepwise transfer
(25 kcal/mol) is 3.1 kcal/mol lower than that for concerted transfer. These authors have proposed
a model two-dimensional PES,

V(Q,9)=V(Q) +1Cq*(Q* — Q8) + 4 Aq* . (6.13)

One-dimensional motion along Q corresponds to concerted transfer, while the two MEPs, corres-
ponding with stepwise transfer, are

q= % (C/A)" Q35— Q). (6.14)

The energy difference between the saddle point and the maximum of the potential (at Q = g = 0)
equals

AV = C?Q%/44 . (6.15)

The contour plot is given in fig. 43. As remarked by Miller [1983], the existence of more than one
transition states and, therefore, the bifurcation of the reaction path, is a rather common event. This
implies that at least one transverse vibration, g in the case at hand, turns into a double-well
potential. The instanton analysis of this PES has been carried out by Benderskii et al. [1991b]. The
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Fig. 4. Bifurcational diagram for the potential (6.13) in the (Q3, f) plane. Domains (i), (ii) and (iii) correspond to Arrhenius dependence
(stepwise thermally activated transfer), two-dimensional instanton and one-dimensional instanton (concerted transfer), respectively.

existence of a one-dimensional extremal trajectory with g = 0, corresponding to concerted transfer,
is evident.

On the other hand, it is clear that in the classical regime, T> T,, (7., is the crossover
temperature for stepwise transfer), the transition should be step-wise and occur through one of the
saddle points. Therefore, there should exist another characteristic temperature. 7,, above which
there exist two other two-dimensional tunneling paths with smaller action than that of the
one-dimensional instanton. It is these trajectories that collapse to the saddle points at 7= T,. The
existence of the second crossover temperature, T,,, for two-proton transfer has been noted by
Dakhnovskii and Semenov [1989].

Earlier, a similar instanton analysis for a PES with two transition states had been performed by
Ivlev and Ovchinnikov [1987], in connection with tunneling in Josephson junctions. In the language
of stability parameters introduced in section 4.1 the appearance of two-dimensional tunneling
paths is signalled by the vanishing of the stability parameter. As follows from (4.23), the one-
dimensional tunneling path formally becomes infinitely wide, i.e., it loses its stability, and inclusion
of the higher order terms in g results in splitting of the unstable instanton path. Formally, the small
stability parameter A < 1 is equivalent to the existence of a classical transverse degree of freedom,
and this mode contributes an Arrhenius dependence with a small activation energy E, < AV.

The bifurcational diagram (fig. 44) shows how the (Q,, f) plane breaks up into domains of
different behavior of the instanton. In the Arrhenius region at 7 > T, classical transitions take
place throughout both saddle points. When T < T, the extremal trajectory is a one-dimensional
instanton, which crosses the maximum barrier point, @ = g = 0. Domains (i) and (iii) are separated
by domain (ii), where quantum two-dimensional motion occurs. The crossover temperatures, T,
and T,,, depend on AV. When AV < V, domain (ii) is narrow (T,; ~ T,,), so that in the classical
regime the transfer is stepwise, while the quantum motion is a two-proton concerted transfer. This
is the case when the tunneling path differs from the classical one. The concerted transfer changes
into the two-dimensional motion at the critical value of parameter Q¥ = (2/C)~ /4. That is, when
AV > 2C/A, two-dimensional behavior, which corresponds to an intermediate case between the
stepwise and concerted regimes, persists up to zero temperature.

An Arrhenius plot of the rate constant, consisting of the three domains above, is schematically
shown in fig. 45. Although the two-dimensional instanton at T, < T < T, for this particular
model has not been calculated, having established the behavior of k(T)at T > T, and T < T,,
one is able to suggest a small apparent activation energy (shown by the dashed line) in this
intermediate region. This consideration can be extended to more complex PES having a number of
equivalent transition states, such as those of porphyrines.
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Fig. 45. Action (in units V,/w,) versus g for potential (6.13) at Q, = 0, 0.33, 0.346, 0.350 for the curves 1-4, respectively; C = 16V,
A = 90V, Dashed line corresponds to the two-dimensional instanton region.

Fig. 46. Scheme of optical transitions, explaining the dual fluorescence resulting from proton transfer in excited electronic state.

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved
spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition,
induced by a picosecond laser pulse, populates the initial well of the excited S, state. The reverse
optical transition, observed as the fluorescence band F,, is accompanied by proton transfer to the
second well with lower energy. This transfer is registered as the appearance of another fluorescence
band, F,, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of
the relative intensities of these bands in dual fluorescence. The experimental data obtained by this
method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen
transfer in the excited state of

DR -
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The temperature dependence of the rate constant of rapid hydrogen transfer, measured by
Mordzinski and Kuhnle [1986], is given in fig. 1. A similar dependence has been found by
Grellmann et al. [1989] for one-proton transfer in “half” of the above molecule (6.16), which does
not include the two rightmost rings.

Slower rates (k = 10'~10°s~!) are measured with the method of time-resolved triplet-triplet
absorption of the product after flash-photolysis (see, e.g., Grellmann et al. [1983]).

The keto-enol tautomerization in the excited triplet state of 2-methylacetophenone involves the
transfer of an H atom in the CHO fragment

H C....H-O H C
2| I 3

‘ am 7N N, 617)

ANV \

The measured dependence of ky(7') and kp( T') consists of an Arrhenius region (E, = 9.6 kcal/mol)
going over to the low-temperature plateau below 110K, where ky ~ 105s~ 1. The isotope effect
grows as the temperature drops, ky/kp >~ 20 at T = 100K (fig. 15). Tunneling is promoted by the
torsional vibrations of the OH and CH groups, as well as the oxy-group bending vibration.

In the trans-enol form the transition does not occur because of the large tunneling distance for
the hydrogen atom (2.8 A) In the cis-form this length decreases to ~ 1 A, but the transition to this
form is unfavorable energetically ( — AE ~ 3kcal/mol). In the transition state the OH bond lies out
of plane of the ring. Siebrand et al. [1984] have demonstrated that the experimental curves ky(7T)
and kp(7T') can be fitted by the golden-rule formula [see egs. (5.67) and (5.68)], with the tunneling
matrix element modulated by a collinear vibration of frequency 120cm ™ ! and reduced mass 15 my.
The evaluated tunneling distance for the H atom is 1.8 A. In the framework of the golden-rule
approach Siebrand et al.[1984] have also considered several other systems.

The transfer of a hydrogen atom resulting in isomerization of the radical

—0

H.C H,C
o
CH CH
3 3
(H,0) C c\ (H,0)C \ /c\
CH CH
3 ‘ 3 (6.18)
W " H / “H
C(CH,), C(CH,),

has been studied by Burton et al. [1978]. As in the previous example, the transfer is promoted by
internal rotation (see Siebrand et al. [1984]). The temperature dependence of the rate constant for
(6.18) is presented in fig. 1.

Abstraction of an H atom from crystalline and glass-like matrices of saturated organic com-
pounds (RH) gives rise to formation of a matrix radical R,

CH; + RH-CH, +R. (6.19)
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Fig. 47. Arrhenius plot of diffusion coefficient for (a) H and (b) D atoms on the (110) face of a tungsten crystal at coverage degree 0.1-0.9
as indicated. The cusps on the curves correspond to the phase transition.

This is one of the most thoroughly studied examples of intermolecular tunneling. The reaction
in the y-irradiated matrices of aliphatic alcohols is registered with the EPR method by observing
the decrease in intensity of the lines of the primary CHj; radical and the increase in intensity
of the lines of the matrix radical (CH,OH and C,H,OH in methanol and ethanol, respectively)
[Le Roy et al. 1972, 1980; Sprague and Williams 1971; Campion and Williams 1972; Hudson
et al. 1977; Bolshakov et al.1980; Doba et al. 1984]. The cross-over temperature is 40-50K,
k. = 1073-10" s~ 1. The apparent activation energy at T = 50-100K is far lower ( < 2kcal/mol)
than in the gas-phase reaction, where E, coincides with the barrier height V', = 11.5-12.5 kcal/mol
[Furue and Pacey 1986]. In the y-irradiated crystalline methanol at 4.2 K the CH; radical dies out,
forming the new radical CH,OH, with a characteristic time of ~ 3 x10®s [Toriyama and
Iwasaki 1979].

Historically, it was this class of reactions, that fostered the development of the vibration-
assisted tunneling model. The tunneling dynamics has been studied by Ovchinnikova [1979] and
Trakhtenberg et al. [1982] (see also the review by Goldanskii et al. [1989]). The sudden trajectory
bypasses the saddlepoint (see figs. 16 and 29) so that the height of the barrier along it is
~ 15kcal/mol. Owing to the intermolecular vibrations, the “cutting-corner” trajectory corres-
ponds to a C—C distance 3.0-3.1 A, which is only 0.2-0.3 A longer than the corresponding distance
in the transition state of the same reactions in the gas phase.

Difoggio and Gomer [1982] and Wang and Gomer [1985] have discovered tunneling diffusion
of H and D atoms on the (110) face of tungsten. They saw that the Arrhenius dependence of
the diffusion coefficient D sharpy levels-off to the low-temperature limit (D = D) at 130-140K
(fig. 47); the values of D depend but slightly on the mass of the tunneling particle: D, for the D and
T atoms is just 10 and 15 times smaller than that for H. The value D, ~2x 107!3cm?/s
corresponds to the rate constant of transfer between two adjacent sites, k. ~ 10°s~! (k. = 4D_/d>
where d is the distance between equilibrium positions equal to ~ 2.7 A).

It follows from the spectrum of the electron energy losses that the hydrogen atom on the (110)
face of a tungsten crystal participates in vibrations with frequencies 1310cm ™!, 820cm ™! and,
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probably, 660cm ~! [Blanchet et al. 1982]. The last two vibrations are the motions along the face
and, therefore, they could be candidates to promote tunneling. However, the Debye frequency of
the surface vibrations corresponds better to the observed value of T.. The D(T) dependence
undoubtedly testifies to the quantal character of the surface diffusion of hydrogen isotopes.
However, the weak dependence of D, on the mass apparently disagrees with the one-dimensional
model.

Jaquet and Miller [1985] have studied the transfer of hydrogen atom between neighbouring
equilibrium positions on the (100) face of W by using a model two-dimensional chemosorption
PES [McGreery and Wolken 1975]. In that calculation, performed for fairly high temperatures
(T > T.) the flux—flux formalism along with the vibrationally adiabatic approximation (section 3.6)
were used. It has been noted that the increase of the coupling to the lattice vibrations and decrease
of the frequency of the latter increase the transition probability.

More realistic PES were used in the calculations of Lauderdale and Truhlar [1985] and Truong
and Truhlar [1987]. The Franck—Condon factors entering into the golden-rule formula (1.14) have
been analysed by Tringides and Gomer [1986] and Auerbach et al. [1987]. Muttalib and Sethna
[1985] have demonstrated that the weak dependence D(m) may be explained with the aid of the
adiabatic (slow-flip) model, where the effective mass is the sum of the bare mass and the vibration
contributions (see section 5.3). The analysis of the experimental data within this model has shown
that the effective H-atom mass spans from 10my to 6my, depending on the change of the transverse
vibration frequency along the trajectory. Since M* includes the bare mass, m, as only a small
component, and S ~ M*!/2 [see (eq. 5.73)] the rate constant is a weak function of m.

Muttalib and Sethna[1985] have explained the non-monotonic dependence of D on the
coverage degree 3 discovered by Wang and Gomer [1985], by the change in the adsorption
potential. When some of the neighboring nodes are occupied by the adsorbate and, hence, shifted
from the equilibrium positions, an additional reorganization energy is involved in the transition.
The increase in D with increasing $ for § < 0.5 is due to decrease in the vibrationally adiabatic
barrier. As 3 further increases, the diffusion of vacancies in the two-dimensional adsorption layer
replaces the H-atom diffusion, reducing D.

The diffusion of H and D atoms in the molecular crystals of hydrogen isotopes was explored with
the EPR method. The atoms were generated by y-irradiation of crystals or by photolysis of
a dopant. In the H, crystals the initial concentration of the hydrogen atoms 4 x 10~ 8 mol/cm? is
halved during ~ 10*s at 4.2K as well as at 1.9 K [Miyazaki et al. 1984; Itskovskii et al. 1986]. The
bimolecular recombination (with rate constant ky = 82cm®mol ~!s™ 1) is limited by diffusion,
where, because of the low concentration of H atoms, each encounter of the recombinating partners
is preceded by 10°-10° hops between adjacent sites.

The diffusion coefficient corresponding to the measured values of ky (D = ky/4nRy, Ry is the
reaction diameter, supposed to be equal to 2 A) equals 2.7 x 10 6cm?s ™! at 42K and 1.9K. The
self-diffusion in H, crystals at 11-14K is thermally activated with E, = 0.4 kcal/mol [ Weinhaus
and Meyer 1972]. At T < 11 K self-diffusion in the H, crystal involves tunneling of a molecule from
the lattice node to the vacancy, formation of the latter requiring 0.22 kcal/mol [Silvera 1980], so
that the Arrhenius behavior is preserved. Were the mechanism of diffusion of the H atom the same,
the diffusion coefficient at 1.9 K would be ten orders smaller than that at 4.2 K, while the measured
values coincide. The diffusion coefficient of the D atoms in the D, crystal is also the same for 1.9
and 4.2K. Itis ~ 4 orders of magnitude smaller (3 x 10~ 2° cm?/s) than the diffusion coefficient for
H in H, [Lee et al. 1987].

This clearly indicates quantum diffusion of H and D atoms, rather than molecular diffusion. In
mixed crystals of D, and HD (with the H,/D, ratio being from 20:1 to 7:1) the concentration of



V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry 307

the D atoms decreases in time, while that of H increases, while the total concentration remains
unchanged [Miyazaki and Lee 1986; Miyazaki et al. 1989]. This points to the exchange reaction

HD+D=H+D,, (6.20)

with the exoergicity of 2 kcal/mol caused by the difference in the zero-point energies. The reaction
(6.20) does not occur until the D atom encounters an HD molecule as a result of diffusion. The
diffusion coefficient for D in D, is inferred from the measured rate constant of the exchange
reaction in the same way as for H in H,.

Miyazaki et al. [1984] and Itskovskii et al. [1986] have supposed that the mechanism of diffusion
consists in the exchange reactions

H+H,=H,+H, D+D,=D,+D, (6.21a,b)

causing the atom’s transfer to the nearest equilibrium site. The rate constants of reactions (6.21) are
related with the diffusion coefficients by the simple formula: k = 6D/d*V,, where d is the jump
distance equal to 4.6 A for the H, crystal, ¥, is the crystal molar volume equal to 20.0, 20.6 and
22.2cm?/mol for H,, HD and D,, respectively. For the reactions (6.21a), (6.20) and (6.21b) k. is,
respectively, 0.9s7 1, 1.1 x107%s" ! and 7.8 x 10735~ 1,

The spatial localization of H atoms in H, and HD crystals found from analysis of the hyperfine
structure of the EPR spectrum, is caused by the interaction of the uncoupled electron with the
matrix protons [Miyazaki 1991; Miyazaki et al. 1991]. The mean distance between an H atom and
protons of the nearest molecules was inferred from the ratio of line intensities for the allowed
(without change in the nuclear spin projections, Am; = 0) and forbidden (Am; = £ 1) transitions. It
equals 3.6-4.0 A and ~ 2.3A for the H, and HD crystals respectively. It follows from comparison
of these distances with the parameters of the hcp lattice of H, that the H atoms in the H, crystal
replace the molecules in the lattice nodes, while in the HD crystal they occupy the octahedral
positions.

The intermolecular distance in the H, crystal (3.79 A) is almost five times longer than the H-H
bond length, being close to the equilibrium distance in the linear van der Waals complex H;3 (3.5 A)
[Silvera 1980]. The hydrogen atom, as a substituting impurity, moves almost freely in the cavity
with radius ~ 0.6 A. This allows one, when looking for the rate constants of reactions (6.20) and
(6.21), to use the gas-phase model, studied quite thoroughly (see, e.g., Garrett and Truhlar [1983,
1991]), as a first approximation.

Such calculations have been performed by Takayanagi et al. [1987] and Hancock et al. [1989].
The minimum energy of the linear H; complex is only 0.055 kcal/mol lower than that of the isolated
H and H,. The intermolecular vibration frequency is smaller than 50 cm ™', The height of the
vibrational-adiabatic barrier is ~ 9.4 kcal/mol, the H-H distance 0.82 A. The barrier was approx-
imated by an Eckart potential with width 1.5-1.8 A. The rate constant has been calculated from
eq. (2.1), using the barrier height as an adjustable parameter. This led to a value of V, similar to
that of the gas-phase reaction H + H,.

The temperature dependences of k, calculated by Hancock et al. [1989], are given in fig. 48. The
crossover temperature equals 25-30 K. The weak increase of k(T) with decreasing temperature
below T is an artefact caused by extending the gas-phase theory prefactor to low temperatures
without taking into account the zero-point vibrations of the H atom in the crystal. For the
same reason the values of the constants differ by 1-2 orders of magnitude from the experi-
mental ones.
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Fig. 48. Calculated temperature dependence of the rate constant of exchange reactions: 1. H, + H; 2. H, + D; and 3.
HD + D—- H + D,.

The exchange reactions (6.20) and (6.21) have been among the basic objects of chemical-reaction
theory for half a century. Clearly further investigation is needed, incorporating real crystal
dynamics. It is worth noting that the adiabatic model, upon which the cited results are based, can
prove to be insufficient because of the low frequency of the promoting vibrations.

6.2. Tunneling rotation of methyl group

The fine structure of torsion—vibration spectra of small symmetric molecules and groups such as
CH,, CH,, NH,, and NH, is one of the most illustrative manifestations of tunneling. This problem
has been discussed in detail in several reviews and books (see, e.g., Press [1981], Heidemann
et al.[1987]).

The CH; group connected to the rest of the molecule by the fourth C-atom bond can rotate
around this bond. The potential V' (¢) the rotating group experiences is three-fold. In the extreme
case when the barrier is absent, the group rotates freely, while in the opposite limit of an infinite
barrier, it oscillates in one of three minima. How the energy levels change when moving on from
free rotation to torsional vibration is shown in fig. 49. Tunneling partially eliminates the triple
degeneracy of each vibrational level creating a singlet (A) and doublet (E,, E;) in accordance with
the irreducible representations of the C; symmetry group, which is isomorphous to the permuta-
tion group. Figure 49 shows that the A and E levels alternate in the progression of torsional
multiplets n = 0,1,2, ..., and the sign of the tunneling splitting is (— 1)".

The potential V() may be expanded in a Fourier series, and usually the first harmonic suffices,

V(p) =3 Vo(l — cos 39) , (6.22)

where ¢ is the dihedral angle of rotation of the CH; group. The frequency of small torsional
vibrations is related with the barrier height by

Vo=3%lwg, I"''=I7"+15", (6.23)
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Fig. 50. The INS spectrum of acetylacetone recorded at 4.5K.

where I is the reduced moment of inertia, and I, and I, stand for the moments of inertia of the CH,
group and the remaining molecules.

The magnetic interaction of neutrons with protons or deuterons of the CH; (CD3) group leads to
the appearance of peaks of quasielastic and inelastic scattering, corresponding to AE and E,E,
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Fig. 51. Zeeman splitting of the lowest AE octet of the CH; group. Levels of the E state with m = +1/2 are twice degenerate.

transitions, respectively. At liquid helium temperature the energy separation between the elastic
central peak and the sidebands of inelastic scattering is equal to the tunneling frequency 4.
A typical example of spectrum is given in fig. 50 taken from Horsewill et al. [1987]. The spectrum
dramatically changes when moving on from tunneling to thermally activated rotation (hopping).
The sidebands disappear, and the quasielastic peak becomes Lorentzian, with halfwidth y = 37, 1,
where 7, is the hopping time, i.e., the inverse rate constant 7, ! = k.

In spin relaxation theory (see, e.g., Zweers and Brom [1977]) this quantity is equal to the
correlation time of two-level Zeeman system (7.). The states A and E have total spins of protons 3
and 1, respectively. The diagram of Zeeman splitting of the lowest tunneling AE octet n =0 is
shown in fig. 51. Since the spin wavefunction belongs to the same symmetry group as that of the
hindered rotation, the spin and rotational states are fully correlated, and the transitions observed in
the NMR spectra Am = + 1and Am = + 2include, aside from the Zeeman frequencies, sidebands
shifted by 4. The special technique of dipole-dipole driven low-field NMR in the time and
frequency domain [Weitenkamp et al. 1983; Clough et al. 1985] has allowed one to detect these
sidebands directly.

Horsewill and Aibout [1989b] have also observed the transitions with Am = 0. These
transitions with conserved spin projection are due to the coupling of the tunneling and spin
reservoirs in the vicinity of crossing of the Zeeman levels belonging to the tunneling states (A, 3)
and (E, — %), (A,4) and (E, — %) (see fig. 51). The NMR spectrum of thioanisole [Horsewill and
Aibout, 1989b] is shown in fig. 52 demonstrating the change of the resonance frequencies with the
magnetic field.

A more traditional technique for measuring the temperature dependence of the longitudinal
spin-lattice relaxation time 7'; of methyl-group protons is also widely used for determining the
tunneling frequencies 4 and t,. The interrelation between T,,4 and 1, emerges due to
dipole—dipole interactions between randomly moving protons, and it is described by Clough et al.
[1982],

Ti! = Cy [/l + w31d) + 41,/(1 + 40313)] , (6.24)

where w7 is the Zeeman frequency supposed to be greater than 4, C, is the dipole-dipole lattice
sum. The Arrhenius behavior of 1, leads to the minimum of T, as a function of temperature at
wzt, = 1. The frequent observation of several minima in this function imply that there are several
inequivalent methyl groups with different tunneling frequencies.
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Fig. 52. (a) The frequency swept dipole—dipole driven NMR spectra of thioanisole recorded at a variety of magnetic fields. (b) The NMR
and sideband transitions observed in the thioanisole data presented as a plot of magnetic field versus transition frequency. The
transitions are defined in fig. 51.

A typical temperature dependence of T is shown in fig. 53. Clough et al. [1981] have found
a universal correlation between the temperature at which 7, has a minimum, 7;,, and 4, when the
measurements are performed at the same Zeeman frequency. This correlation, demonstrated in
fig. 54, holds for all molecular solids studied so far, with 4 covering a range of four orders



312 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

Temperature(K)
20 25 40 70 330

T T T T

1

5

=
=
—

10"

|

10°

- T,(seconds)
o
!
TTTTTI
Lo el

Lyl

T

10—2 1 1 1 1 1 1

0.06 0.05 0.04 0.03 0.02 0.01

Inverse temperature (1/K)

Fig. 53. The temperature dependence of T in tiglic acid.
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Fig. 54. Universal correlation between T, and tunneling frequency 4. The values of 4 are given in peV (1peV =
8.066 x 10" cm ™! = 2.42 x 10® Hz). The Zeeman frequency equals 21 MHz. The points correspond to different chemical species.

of magnitude. The deviations are within a factor of 2. This correlation is the consequence of the
fact that the barrier shape is approximately the same for different species. The barrier is overcome
either by hopping [with the rate constant (2.14)], or tunneling [with frequency (2.20)], so that
InA4 oc — Thpin-
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It is noteworthy that the above rule connects two quite different values, because the temperature
dependence of T; is governed by the rate constant of incoherent processes, while 4 characterizes
coherent tunneling. In actual fact, 4 is not measured directly, but it is calculated from the barrier
height, extracted from the Arrhenius dependence k(7). This dependence should level off to
a low-temperature plateau at 7T < T,,;,. This non-Arrhenius behavior of 7, has actually been
observed by Punnkinen [1980] in methane crystals (see fig. 1). A similar dependence, also depicted
in fig. 1, has been observed by Geoffroy et al. [1979] for the radical

H C CH
3 \C/ 3
o Do
o—<|: (I:—o (625)
\c yd
|

CH
3

by using double electron—electron resonance. The values of k. turn out to be several orders smaller
than 4, as should be expected from comparison of eqs. (2.18) and (2.20).
The WKB formula for the tunneling splitting is

2n/3 -1

1
4=73 %exp( — J do {21[V(0) —%hwo]}”2> : (6.26)

o1

where ¢; = $cos ™! (1 — hwo/V,) is the turning point. The results of (6.26) are compared with the
exact ones in table 4 taken from Peternelj and Jencic [1989].

As seen from this table, the WKB approximation is reasonably accurate even for very shallow
potentials. At 7 = 0 the hindered rotation is a coherent tunneling process like that studied in
section 2.3 for the double well. If, for instance, the system is initially prepared in one of the wells,
say, with ¢ = 0, then the probability to find it in one of the other wells is P( + %7, t) = §sin?(3 Ar),
while the survival probability equals 1 — § sin?(4At). The transition amplitude A(t), defined as
P( £ %m, t)=|A(t))? is connected with the tunneling frequency by

lim¢™ ! A(t)] =44 . (6.27)

t—0

The treatment of section 2.3 concerned with the destruction of coherence by the environment
applies to this case.

Rotation of an end methyl group of a large molecule (I & I,) implies transfer of the reduced mass
m = 3mymc(3my + mc) ™! = 2.4 (m = 4.0 for CD;) through the distance 1.74-1.79 A. This tunnel-
ing distance is much greater than that typical of hydrogen transfer, and therefore tunneling rotation
can be observed if the barrier is lower. The zero-point amplitude entering into (6.26),
©? ~ %hw,y/V,, is 0.2rad even for barriers as high as 3.5 kcal/mol (0, ~ 220 cm ™ '), so that the
zero-point linear displacements of H atoms are 0.20-0.22 A. Thus the torsion vibrations are
actually the motions with large amplitudes, as compared with stretching modes. The temper-
ature dependence of the zero-point angular amplitude, extracted from INS measurements, is
described by (2.29). The tunneling frequencies detectable with INS and NMR lie in the intervals



314 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

Table 4
Tunneling frequencies of hindered rotation, in the potential
(6.22)
Vo/hwe d/w,, exact value A/wq from (6.26)
1.234 291x 1072 3.79x 1072
1.744 504x10°3 576 x 1073
2.467 3.53x1074 377x10°4
3.020 436x107° 4.54x 1075
3429 7.26x10°¢ 7.46 x 10~¢
V Keall/pmote

96 |

94 [

Q2

0 4

80 120 180

Fig. 55. The potential of hindered rotation of the CH; group in nitromethane (CH;NO,) crystal, (a) calculated from INS data,
V3 = 0.586 kcal/mol, V¢ = 0.356kcal/mol, = 30°, and (b) calculated with the atom—atom potential method [Cavagnat and Pesquer
1986]. The barrier height is 0.768 kcal/mol.

108-10*! and 10°-108s~!. This corresponds to barrier heights ranging from 0.3 to 3.5 kcal/mol.
Incoherent transition occurring in the same barrier would have the rate constant k. ranging from
107 to 107357, as follows from (2.18) and (2.20) with a typical prefactor wo/2n = 10!3s~ 1. Most of
hydrogen-transfer reactions actually lie in this interval. Thus the spectroscopic data correspond to
the same barrier transparencies as tunneling chemical reactions.

Among numerous examples of the role of the chemical structure in tunneling rotation we select
just one, connected with the effect of intramolecular hydrogen bond. In acetyl acetone in stable enol
form

I I (6.28)

HC - C=CH - C - CH
3 3

there are two chemically inequivalent methyl groups, with barrier heights equal to 045 and
1.18 kcal/mol [Horsewill et al. 1987]. If there were no proton tunneling at all, there would be two
different static configurations of CH; fragments, each characterized by its own tunneling frequency,
4,,,. In the opposite extreme case when the proton tunneling frequency 4, is much greater than
|4, — 4,], only one tunneling frequency should be observed. Seemingly the intermediate situation
is actually observed.
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Fig. 56. Contour plots of (a) shaking and (b) breathing vibrations coupled to hindered rotation around the three-fold axis. The MEP is
shown.

Although the rotation barrier is chiefly created by the high-frequency modes, it is necessary
to consider coupling to low-frequency vibrations in order to account for subtler effects such as
temperature shift and broadening of tunneling lines. The interaction with the vibrations g, (with
masses and frequencies m,, w,) has the form

Hip =Y. C,q,c083¢ + C,q,sin3¢. (6.29)

The two terms correspond to different polarization of phonons. The cosine term corresponds to
displacements along the rotation axis or the direction ¢ = 0. The sine contribution arises from the
phonons polarized along the line ¢ = 4#. The interaction (6.29) does not change the symmetry of
the ¢ potential, and, in this respect, it is symmetric coupling, as defined in sections 2.3 and 2.5.
Nonetheless, the role of the cosine and sine couplings is different. The former (“breathing modes™)
just modulate the barrier (6.22), while the latter (“shaking modes”) displace the potential.

The contour plots and MEPs for both cases are demonstrated in fig. 56. The MEP in the total
configuration space obeys the equation

gn = —(C,co83¢ + C,sin 3(P)/2mnw3 > (6.30)

and the adiabatic potential along the MEP is

Vaa(@) = V(@) — T (C,c08 3¢ + Cjsin 3¢)2/2m,w? . (6.31)

n

From (6.31) it follows that coupling contributes to the Vs potential, even if the latter term is absent
from the bare potential. Both shaking and breathing vibrations promote tunneling, but in



316 V.A. Benderskii et al., Quantum dynamics in low-temperature chemistry

temperature (K)
30 20 15
27 K 100 10

21K 0 ;
2 S
D b
e SV 2 2
L -
15K 5 E
; [
] } - E 3
9K r
i iy o
L N A ! " L L L A ) n
100 0 100 2 4 6
neutron energy gain (peV) 1/temperature {1/100K5
Fig. 57. The INS structure factor at different temperatures for Fig. 58. Lower left-hand scale: Arrhenius plot of the linewidths
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respectively). Upper right-hand scale: Arrhenius plot of the shift
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a different way. The former make the effective barrier narrower, while the latter lower it. One may
define similarly to section 4.2 the parameter that characterizes the relative barrier modulation for
the breathing modes (C, = 0) as

b=V5'Y C22m,0? (6.32)

and there is a similar expression for shaking modes. For nitromethane crystal (fig. 55) a rough
estimate gives this parameter in the range 0.1-0.2.

The problem of temperature dependence of INS spectra is dealt with in many papers (see,
e.g., Wirger [1989], Hewson [1984], and Whittall and Gehring [1987]). An example of an
INS spectrum at different temperatures is shown in fig. 57 taken from Wirger and Heidemann
[1990]. The shift of tunneling sidebands, their broadening, as well as the width of the quasielastic
central peak display Arrhenius behavior with different activation energies (fig. 58). The quasielastic
peak is narrower than the inelastic ones. In fact, we have already found the general expression
for the linewidth, having noted that it appears only due to intermultiplet transitions [see
eq. (2.52)].

In order to adapt that expression to the problem at hand, we note that interaction matrix
elements for shaking and breathing modes are different. Namely, the matrix element
Mj, ., =<l o|sin3¢|l’,0), where | denotes the multiplet number, ¢ is the symmetry index (A or E),
is very small for even [ + I, while the cosine matrix element, M, , = {l,o|cos3¢|l',c) is minor
for odd ! + I’ [Wirger 1989]. At low temperatures, when only !’ = [ is accessible, the shaking
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vibrations with sine matrix elements are dominant. The ensuing expression for the linewidth is

Fap = (IMoy al* + Moy l*)J (Eoy)exp(—BEoy) »

Igg, =2|Mgel* J(Eor)exp(—BEoy) (6.33)

for elastic and quasielastic lines, respectively. Here J(E,, ) is the spectral density for shaking modes.
Incorporation of breathing modes is straightforward, and they entail larger activation energies
associated with participation of high multiplets.

The shift of the spectral line appears in the second order of the perturbation theory, and, with the
assumption that the barrier is high enough, it equals

A(T) - 4 z. ,)|Mm|<l_b_,l_yz S TS Tyt ) (634)

where A4, is the tunneling splitting in the first excited multiplet (I = 1), which, as argued before, is
negative, and fi(w;) is the average phonon occupation number [cf. eq. (2.53)].

Hiller and Baetz [1988] have undertaken a numerical study of the role played by shaking
vibrations. The vibration was supposed to change the phase of the rotational potential V(¢ — a(t)).
The phase a(t) was a stochastic classical variable subject to the Langevin equation

L d2a/dt? + ndo/dt + dU/da + Y (0)|0V/daly(t)> =f(t), (6.35)

where I, and U(a) are, respectively, the moment of inertia and angular potential for the o coordi-
nate, f(t) is the stochastic torque obeying the FDT relation (2.24). The matrix element is taken for
the rotor wavefunction, which is subject to the Shroédinger equation,

ihoy (o, t)/ot = [ — (h*/21)(0%/09?) + V(e — a(®)1¥ (e, t) . (6.36)
Adlt)
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Fig. 59. Time dependence of phases A, and A for a realization of stochastic force at T =1T.. Also shown are the straight lines of the
zero-temperature behavior of A, (solid line) and Ag (dashed line). Time is measured in units 21/h.
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The evolution of a state with a certain symmetry was described as

W )1Y,(0)) = A (t)exp (i4,t) . (6.37)

The time dependence of the phases A, and Ag is shown in fig. 59. Despite the erratic nature of these
phases, it is seen that states of different symmetry develop in parallel. The states E, and E,
show almost no difference. Moreover, at T ~ 3T., the difference of phases in the E and A
states is to a good accuracy the same as at 7 = 0. That is why the coupling to the stochastic
reservoir violates coherence only slightly, and the tunneling splitting may be observed at temper-
atures up to T..

6.3. Tunneling in molecular dimers

In dimers composed of equal molecules the dimer components can replace each other through
tunneling. This effect has been discovered by Dyke et al. [1972] as interconversion splitting of
rotational levels of (HF), in molecular beam electric resonance spectra. This dimer has been
studied in many papers by microwave and far infrared tunable difference-frequency laser spectro-
scopy (see review papers by Truhlar [1990] and by Quack and Suhm [1991]). The dimer consists of
two inequivalent HF molecules, the H atom of one of them participating in the hydrogen bond
between the fluorine atoms (fig. 60). PES is a function of six variables indicated in this figure.

The experimental data as well as ab initio calculations show that the intramolecular HF
distances are practically constant, and the dimer has a planar structure, so that practically the set of
variables consists of the van der Waals stretch coordinate, R, and two angles, 8, and 6,. The
structure in the minima on the PES have C, symmetry, while in the saddle point the symmetry is
C,,. The MEP turns out to be rather close to the linear path of geared transfer, 8, + 8, = constant;
that is, the reaction path has small curvature, suggesting use of the vibrationally adiabatic
approximation in order to calculate the splitting. Figure 61 shows how 8, 6, and R change along
the MEP calculated by Hancock et al. [1986] for the model PES of Barton and Howard [1982].
For this PES the interconversion barrier height is 302cm™!. Later another PES was used with
barrier height 385c¢cm ™! and a smaller tunneling distance [Hancock et al. 1988; Hancock and
Truhlar 1989]. Figure 61 displays the promoting effect of the stretching intermolecular vibration at
the initial part of MEP, where the angles are nearly constant while the F-F distance is decreased.
The subsequent concerted rotation is accompanied by a slight increase in R.

Fig. 60. Configuration and relevant coordinates of the planar HF dimer in stable and transition configurations. The angles and
intermolecular distance are 8, = 9°, 6, = 116°, R = 2.673 A in the stable configuration; 8, = 8, = 54.9°, R = 2.567 A in the transition
configuration. The HF bond lengths are constant within an accuracy of 0.003 A.
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Fig. 61. Variation of angles 6, and 6, (curves ! and 2) and intermolecular distance (b) along MEP for (HF),.

According to the Fukui theorem (see section 4.1) the initial part of the reaction path coincides
with the direction of R, because it corresponds with the lowest frequency 174 cm ™!, whereas
the disrotary combination of in-plane liberations (68, + 6, ~ constant) has a larger frequency,
221cm™!. However, after passing this initial segment, the direction of concerted libration becomes
the reaction coordinate with barrier frequency w* = 197cm ™!, while the stretching vibration is
transverse with respect to the reaction path, with w, = 164cm~!. This leads to a sharp drop in the
transverse frequency when moving on from the initial to the transition state, which, according to
predictions of section 4.1, should lead to some decrease in the prefactor. This effect is still
insignificant in this case, because w, does not change so strongly. The calculation gives a tunneling
splitting 4 = 0.6-0.8 cm ™, in excellent agreement with the experimental value 0.66 cm ™.

Pine and Lafferty [1983] have discovered that tunneling splitting decreases by a factor three
when intramolecular vibrations of hydrogen-bonded or free HF units are excited to the first level.
Since the difference in frequency of these modes (about 60 cm ') is much greater than 4, exciting
one of them seems to lead to an energy bias that destroys any resonant tunneling, and it is
surprising that splitting is still observed. Mills [1984] and Fraser [1989] suggested the vibrational
exchange between two HF units, which symmetrizes the potential.

In essence, the initial asymmetric terms are analogous to the diabatic terms in the electronically
nonadiabatic tunneling problem, while the vibrational exchange is the analogue of diabatic
coupling. The diabatic and adiabatic terms are shown in fig. 62. As shown in section 3.5
and appendix B, diabatic coupling makes the adiabatic potential symmetric thus recovering
the resonance. However, nonadiabaticity decreases the tunneling splitting, which is reflected in
the prefactor in (3.92). Since the tunneling splitting in the adiabatic potential, 4,4, is just
weakly dependent on the coupling ¥V, the decrease in 4 should be ascribed to the Landau—Zener
factor.

A straightforward calculation of 4 has been performed by Fraser [1989] within the framework of
the one-dimensional model of concerted interconversion. The diabatic terms were taken in the form

V1,2(Q) = V(Q) + 3h (w1 + w)) £ 30 — ©)0/Q0, Q=0,-10,, (6.38)
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Fig. 62. HF dimer potentials as a function of %(02 - 8,) [; (8, — 0) in the figure] in (A) ground state, (B) diabatic, ¥, and ¥, and (C)
adiabatic, V, and V_ terms of excited states. Diabatic terms correspond to excitation of stretching vibrations of hydrogen-bonded and
free HF molecules. The energy levels for these potentials are shown.

where V(Q) is the symmetric ground state potential, w, , are the intramolecular vibration
frequencies for the hydrogen bonded and free HF units, + Q, are the equilibrium positions. It was
supposed that the major contribution to the diabatic coupling came from the transition—dipole
interaction. It can be represented by a Fourier series,

Va= (#31/R3)Z cacosn@ .

(6.39)
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When V; varied within the interval 1-8 cm ™!, the tunneling splitting was found to depend nearly
linearly on ¥, in agreement with the semiclassical model of section 3.5 [see eq. (3.92)], and the
prefactor 4/4,4 ranged from 0.1 to 0.3, indicating nonadiabatic tunneling. Since this model is
one-dimensional, it fails to explain the difference between splittings in the states with the w; and w,
vibrations excited.

Usually nonadiabatic tunneling is considered to occur between electronic terms. We do not
actually know any direct experimental evidence of the nonadiabatic regime, and it is difficult to
estimate V4 and to separate the Landau—-Zener prefactor from the leading exponential term, which
is strongly dependent on the parameters of the problem. In the present case one deals with different
nuclear (not electronic) states. Moreover, the barrier is relatively low, and coupling, having an
electrostatic origin, can be estimated directly. A similar decrease of 4 in vibrationally excited states
is observed in many other dimers, such as (H,O), [Huang and Miller 1988], (HCl), [Blake
et al. 1988] and (C,H,), [Ohshima et al. 1988].

Tunneling interconversion is observed not only in hydrogen-bonded dimers but also in van der
Waals bonded ones. In the latter very large masses may tunnel giving rise to small tunneling
splittings. In particular, in (SO,), studied by Nelson et al. [1985] the tunneling splitting is 70 kHz.

In the recently studied dimer H,O-NH; [Fraser and Suenram 1992] all the features of
multidimensional nuclear tunneling show up. In the ground state the tunneling interconversion of
the water molecule, resulting from the permutation of the hydrogen-bonded and free H atoms,
leads to splitting of rotation-internal rotation levels. This process is promoted by nearly free
rotation of NHj. Since the N atom participates in the hydrogen bond OH --- N, the inversion of
NH; is suppressed by the asymmetry of the potential. However, excitation of the umbrella NH;
vibration makes the inversion possible due to tunneling in the H,O molecule, which symmetrizes
the potential. That is, tunneling in both molecules is concerted and the transition state is two-fold,
similarly to the situation considered in section 6.1.

The intensely developing technique of high-resolution IR-spectroscopy of dimers composed of
two different molecules in supersonic cooled jets offers a new promising approach to the quantum
dynamics of reaction complexes. In essence, this is a unique possibility of modelling low-temper-
ature chemical reactions.

6.4. Tunneling of heavy particles

In the previous sections we have already encountered tunneling of particles with reduced masses
greater than my. One more well-known example of this kind is the inversion splitting in am-
monium. The planar transition state separates two equilibrium pyramid-shaped mirror-symmetric
configurations of NH;. The barrier height equals V* = 5.94 kcal/mol, w, equals 950 and
745 cm ™! for NH; and NDj, respectively. The inversion splitting 4 equals 0.8 cm ™! (0.053 cm ™!
for ND;) in the ground state and 36.5 cm ™! (3.9 cm ™! for ND;) in the first vibrational state (see,
e.g., Townes and Schawlow [1955]). The reduced mass that tunnels is 2.54my for NH; and 4.45my
for NDj;. The tunneling distance, i.e., the displacement of the N atom with respect to the H; plane,
equals 0.77 A. The coupling of the tunneling coordinate with the rotations of the symmetric top
leads to a promoting contribution as well as a reorganization energy because of centrifugal forces.
Rotation around the symmetry axis flattens the pyramid thus lowering the barrier, while rotation
around the perpendicular axis increases the barrier. Note that inversion of NDj is tunneling of
a rather heavy mass throughout the barrier with the height and width typical of cryochemical
reactions and with the tunneling amplitude 4/wq ~ 1073, It is natural then that, for the cryochemi-
cal reactions whose rates are 5-10 orders smaller than A4 (even allowing for the fact that the
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incoherent tunneling rate is proportional to 42), it is possible to observe tunneling of reduced
masses (15-25)my.

The non-Arrhenius behavior of the inversion rate constant has been detected by [Deycard et al.
1988] for the oxyranyl radical,

o PN
e (6.40)

H H

As stated by inequality (2.81) (see also section 4.2 and fig. 30), when the tunneling mass grows, the
tunneling regime tends to be adiabatic, and the extremal trajectory approaches the MEP. The
transition can be thought of as a one-dimensional tunneling in the vibrationally adiabatic barrier
(1.10), and an estimate of k. and T, can be obtained on substitution of the parameters of this barrier
in the one-dimensional formulae (2.6) and (2.7). The rate constant k. falls into the interval available
for measurements if, as the mass m is increased, the barrier parameters are decreased so that the
quantity d(V,m/my)'/? remains approximately invariant.

Thus far the only known example of tunneling exchange of heavy particles is automerization of
cyclobutadiene [Dewar et al. 1984; Carsky et al. 1988],

HC | ———CH
HC
HC CH . HC CH

CH
(6.41)

The automerization barrier arises, when passing from the initial rectangular configuration with the
alternating bonds with lengths 1.56 A and 1.33 A to the transition square configuration with the
bond length 1.45 A, and has height 8-12 kcal/mol. In the space of the relevant coordinates (the C—C
and C=C bond lengths) the transferred reduced mass equals 6.53my. Owing to the weakness of the
coupling of the reaction coordinate to other vibrations, the one-dimensional model is a good
approximation giving sufficiently accurate results. For the same reason 4 changes only slightly for
the excited vibrational levels (4 = 4.2, 4.6 and 5.1 cm ™! for n = 0, 1, 2, respectively). The ground
state splitting drops to 2.35 cm ™! for !3C,D,. Since the barrier is narrow, even at 350 K tunneling
prevails over thermally activated hopping.
The low-temperature limit of the rate constant for the isomerization of the biradical

/ \ Hzc————CH\
", N\ / : .HZC——(‘:H/

has been measured by Buchwalter and Closs [1979]. The cross-over temperature equals 15K,
k. =6x10"*s™ !, Above 20K the apparent activation energy equals 2.3 kcal/mol; and the small
apparent prefactor, according to (2.6), indicates the tunneling character of the transition. The
smallness of isotope effect signifies that the contributions of the individual hydrogen-atom dis-
placements to this reaction are immaterial. This is due to the off-plane bending vibration of the
S-membered ring. The experimental value of k. corresponds to tunneling of reduced mass
~ Tmy 4 (m. + 2my), associated with this vibration, through a distance 1.2 A, which is approxim-
ately equal to the relative displacement of the CH, group needed to form the 4-membered ring.

CH, (6.42)
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In the numerous studies of the IR-spectra of the matrix-isolated reactants (see, e.g., Frei and
Pimentele [1983]) there have been found a number of chemical conversions. Among them, from
the point of view of the present review, the reaction NO with O; [Lucas and Pimentele 1979],

NO + O3 - NO, + O, , (6.43)

is of interest. This reaction in the gas phase has enthalpy —47.1kcal/mol and activation energy
2.3kcal/mol. In the N, matrix at 10-20 K E, is smaller than 0.11 kcal/mol, and k = 1.4x 10735~ !
at 12 K. Experiments on ozon enriched with 180 have revealed no isotope effect.

The structure of the van der Waals 1:1 complexes of NO-O; has been studied by Arnold et al.
[1986]. In the planar complex (1) with symmetric position of the NO molecule relative to the
O;-symmetry axis the distance between the centers-of-mass of O3 and NO is R, = 2.30 A, the
bonding energy is 2.42 kcal/mol. In the complex (2) in which NO bond is perpendicular to the O3
plane and R, = 2. 154, the bonding energy goes up to 2.73 kcal/mol. The PES of the gas-phase
reaction has been calculated by Viswanathan and Raff [1983].

The vibrationally excited products in the ground electronic state are created when the end
O atom is abstracted from the O; molecule as a result of the approach of the NO molecule at an
ONO angle of 110°. The barrier height equals 3.57 kcal/mol. The activation energy 2.13 kcal/mol is
close to the measured one. In the transition state the saddle point is shlfted towards the reactants
valley and the distances Rop and Ryo are equal, respectlvely, to 1.277 A and 1 957A, while the
equilibrium bond lengths in O; and NO are 1.272 Aand 1.150A. Comparison of the configurations
of the van der Waals complex (1) and of the transition state shows that the arrangement of the
reactants provides the same attack angle as in the gas- -phase reaction. The O-O bond stretches by
less than 0.2 A. The O-NO length becomes reduced by 0.45 A Seemingly, intermolecular vibrations
as well as the hindered rotation play a promoting role. Because of the low frequencies of these
modes the low-temperature limit is not reached even at 10K.

The chain polymerization of formaldehyde CH,O was the first example of a chemical conversion
for which the low-temperature limit of the rate constant was discovered (see reviews by Goldanskii
[1976, 1979]). As found by Mansueto et al. [1989] and Mansueto and Wight [1989], the chain
growth is driven by proton transfer at each step of adding a new link

(CH,0),_,CH,0OH" + CH,0 — (CH,0),CH,OH" . (6.44)

The primary cation CH,OH™ is created in the cage reaction under photolysis of an impurity or
y-radiolysis. The rate constant of a one link growth, found from the kinetic post-polymerization
curves, is constant in the interval 4.2-12 K where k. = 1.6 x 1025~ !, Above 20K the apparent
activation energy goes up to 2.3 kcal/mol at 140K, where k ~ 10°s ‘1

So the results obtained by different groups and with different methods display the existence of
a completely unusual chemical conversion, polymerization at very low temperatures. Similar effects
have been found in y-irradiated acrylonitrile and acrolein [Gerasimov et al. 1980].

The mechanism of ion polymerization in formaldehyde crystals proposed by Basilevskii et al.
[1982] rests on Semenov’s [1960] assumption that solid-phase chain reactions are possible when
the arrangement of the reactants in the crystal “prepares” the configuration of the future chain. The
monomer crystals capable of low-temperature polymerization fulfill this condition. In the initial
equilibrium state the monomer molecules are located in the lattice sites and the creation of
a chemical bond requires surmounting a high barrier. However, upon creation of the primary
dimer cation, the active center shifts to the intersite, and the barrier for the addition of the next link
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diminishes. Since the intersite distance in the monomer lattice is much greater than that between
the links of the polymer chain, the chain end-group has to shift towards the next monomer link, as
a result of the previous reaction event. This diplacement, along with the reorientation of the
monomer link, leads to the formation of a low-barrier configurations facilitating the next reaction
event.

When it is added to the chain, the formaldehyde molecule rotates through ~ 45° with respect to
its axis. The C-~O—C angle in the cation is ~ 180° and it decreases to 120° after the addition of the
next link, which involves overcoming a barrier of 2-3 kcal/mol. As a result of the two mentioned
motions (rotation of the monomer molecule and isomerization of the end-group of the cation), the
chain growth is associated (at 7 < T,) with tunneling of the CH; group through the distance 0.6 A
This mechanism is realized only in one of the possible crystalline structures of formaldehyde. In
other structures the chain length is limited by the number of “suitably packed” molecules and it is
below 8-10. This value agrees with the structure of crystalline formaldehyde found by Weng et al.
[1989]. In this structure there are spatially selected groups, where the intermolecular distance is
reduced to ~ 2.75A compared to the van der Waals one (3.22 A).

The growth of long chains (» > 10?) in the perfectly mixed 1:1 crystals of ethylene with chlorine
and bromine at 20-70K was studied in detail by Wight et al.[1993]. Active radicals were
generated by pulse photolysis of Cl, or Br,. The rate constant was found to be k. = 8—12s~!
below T, = 45K. The chain grows according to the well known radical mechanism including the
reactions

C,H,Cl + Cl, - C,H,Cl, + C1, Cl+ C,H, - C,H,Cl. (6.45a,b)

The first slower reaction gives the product, while the second recovers the active radical.
Reactions (6.45) in the gas phase result in formation of two stereo-isomers, gauche- and trans-
1,2-dichloroethane C,H,Cl,. In the low-temperature solid-state reaction only the trans-form is
created. A specific feature of the mixed halogen—ethylene crystals is the alternating quasi-one-
dimensional arrangement of reactants, which is due to the donor—acceptor interaction [Hassel and
Romming 1962]. The stereo-specificity (formation of just one isomer) is due to the fact that the
radical, created in reaction (6.45b) turns solely into the trans-form, abstracting the second halogen
atom from the neighboring molecule.

If the lattices of reactants and products were incommensurate, the conversion would lead to
accumulation of strains, which would stop the chain growth. As shown by simulations [ Benderskii
et al. 1991c; Wight et al. 1993], these lattices are however commensurate, and this fact permits
propagation of chains along the direction in which the inter-reactant distance is shortest: the
shortest diagonal of the (q, ¢) plane. The arrangement of reactants, active center of reaction (6.45a)
and products in this plane are shown in fig. 63. Because of commensurability, the formation of the
line of products does not preclude the growth of the chain along the neighbouring diagonals. In
[Wight et al. 1993] 60—70% conversion was observed with mean chain length 260 + 70 in the
temperature interval 17—45 K. It has also been noted that the length is limited by defects randomly
distributed in the bulk of crystal.

The k(T') dependences for the reactions of C,H, with Cl,, Br, and HBr [Barkalov et al. 1980]
practically coincide (fig. 1), despite the difference in the reactant masses. At 50-80 K the apparent
activation energy is 1 kcal/mol, coinciding with E, for the gas-phase reaction of C,H,Cl with Cl,.

A multidimensional PES for the reaction (6.45a) has been calculated by Wight et al. [1993] with
the aid of the atom-atom potential method combined with the semiempirical London-
Eyring-Polanyi-Sato method (see, e.g., Eyring et al. [1983]). Because of high exoergicity, the PES
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Fig. 63. Molecular arrangement in (a, ¢) plane of a mixed ethylene—chlorine binary crystal illustrating (a) radical pair formation,
(b) single chain growth and (c) chain growth in the vicinity of product line. Molecules labelled 1-4 are ethylene (C,H,), chlorine,
chloroethyl radical (C,H,Cl) and anti 1,2-dichloroethane (C,H,Cl,), respectively.

is characterized by an early descent to the product valley; that is, the saddle point is strongly shifted
towards the reactant valley, so that the reaction barrier is overcome practically without lengthen-
ing of the CI-Cl broken bond. Since the angle between the valleys is greater than 90° and the
intramolecular vibration frequencies are much greater than w,, the criterion (2.81) indicates the
vibrationally adiabatic regime for these modes.

Analyses of MEP have shown that the displacement of the center-of-mass of the reactant is
much smaller than the tunneling length, and the environment reorganization energy is just
0.12-0.17 kcal/mol, being considerably smaller than ¥ * ~ 2kcal/mol. This permits reduction of
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/ / //?/f \

Fig. 64. The cut of PES and MEP of the reaction (6.45a) in coordinates q, and q. The coordinate g is a linear combination of qs—q-.

Q4
(A)

the number of freedom degrees to N = 7 by considering the CI-Cl --- C—-C—Cl complex immersed in
a fixed crystalline environment. Among the normal modes of the complex there are three high-
frequency stretching vibrations of the chlorine molecule and radical (q,—¢3), which in practice do
not mix with the other modes. This allows further reduction of the dimension to four modes. The
g, mode with the intermediate frequency is mainly due to bending of the radical. The low-frequency
vibrations g,—q are assigned to intermolecular stretching and libration. The main contribution to
the reaction path comes from the g5 and g¢ vibrations, which correspond to the simultaneous
relative approach and rotation of reactants.

It has been shown that there is a two-dimensional cut of the PES such that the MEP lies
completely within it. The coordinates in this cut are g4, and a linear combination of gs—¢q-. This cut
is presented in fig. 64, along with the MEP. Motion along the reaction path is adiabatic with
respect to the fast coordinates ¢q,—¢g; and nonadiabatic in the space of the slow coordinates g4—¢q-.
Nevertheless, since the MEP has a small curvature, the deviation of the extremal trajectory from it
is small. This small curvature approximation has been intensively used earlier [Skodje et al. 1981;
Truhlar et al. 1982], in particular for calculating tunneling splittings in (HF),. The rate constant
of reaction (6.45a) found in this way is characterized by the values 7, =20-25K, k.=
1072-10"'s™ ! E, = 1.4 kcal/mol above T, which compare well with the experiment.

7. Summary and perspectives

The low-temperature chemistry evolved from the macroscopic description of a variety of
chemical conversions in the condensed phase to microscopic models, merging with the general
trend of present-day rate theory to include quantum effects and to work out a consistent quantal
description of chemical reactions. Even though for unbound reactant and product states, i.e., for
a gas-phase situation, the use of scattering theory allows one to introduce a formally exact concept
of the rate constant as expressed via the flux—flux or related correlation functions, the applicability
of this formulation to bound potential energy surfaces still remains an open question.

This question is closely related to the coherent—incoherent transition problem absent from the
standard situation in the gas phase; namely, a “true” rate constant can be defined only when the
tunneling dynamics is incoherent, i.e., once prepared in the initial state (reactant valley), the system
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performs exponential relaxation to the equilibrium. Because the typical time scale of the flux—flux
correlator (Bh) is shorter than the relevant time of tunneling transition, this quantity cannot tell
directly whether the transition is coherent or incoherent. In this respect, the rate theory based on
the flux—flux correlator goes no further than the imaginary-time instanton-type theories; they infer
the long-time dynamics from propagators, calculated at much shorter times (real or imaginary),
which are of the order of $A. So one may expect a correct answer only if one knows in advance that
the system possesses a rate constant, as is the case for unbound problems.

Therefore one can be much more successful in calculating the rate constant knowing in advance
that it exists, rather than in answering the question whether it exists. Considerable progress in
investigating this question was provided by the solution of the spin-boson problem [Leggett
et al. 1987], which, however, has only a restricted relevance for any practical problem in chemistry,
because it neglects the effects of interdoublet dynamics (vibrational relaxation) and does not
describe thermally activated transitions. A number of attempts to go beyond the two-level system
approximation have been undertaken [Parris and Silbey 1985; Dekker 1991] but the basic question
how the vibrational relaxation affects the transition from coherent oscillations to the exponential
decay awaits its quantitative solution, which may be expected to be obtained by numerically
computing real-time path integrals for the density matrix using the influence functional technique.

Two-dimensional semiclassical studies described in section 4 and applied to some concrete
problems in section 6 show that, when no additional assumptions (such as moving along a certain
predetermined path) are made, and when the fluctuations around the extremal path are taken into
account, the two-dimensional instanton theory is as accurate as the one-dimensional one, and for
the tunneling problem in most cases its answer is very close to the exact numerical solution. Once
the main difficulty of going from one dimension to two is circumvented, there seems to be no
serious difficulty in extending the algorithm to more dimensions; that becomes necessary when the
usual basis-set methods fail because of the exponentially increasing number of basis functions with
the dimension.

Another attractive feature of the instanton method, as distinct from other semiclassical ap-
proaches, is that it shows a direct connection between tunneling trajectories and the temperature
dependence of the rate constant; certain types of trajectories correspond to certain types of
behavior of k(7). For example, the presence of two-dimensional trajectories always extends the
Arrhenius dependence to the region of low temperature making the transition from activated to
tunneling dynamics less sharp. This explains the experimentally observed coexistence of tunneling
(indicated by a strong isotope effect) with the Arrhenius-like behavior of k(7). In general, for
potentials with several saddle points like (6.13) there exist critical temperatures for which the
behavior of the tunneling trajectories changes qualitatively.

In instanton picture, when the potential has only one saddle point, the transition from the
thermally activated regime to tunneling comes about as the appearance of a nontrivial 2D
trajectory, which deviates from the saddle point with decreasing temperature. At the same time, the
old trivial solution proceeds to give exponentially decreasing contributions, because its action is
inversely proportional to the temperature. Looking at this simplest 2D model, one may formulate
the general requirement which a trajectory should satisfy in order to be a tunneling path at 7 = 0: it
should spend infinitely long time in the initial state having potential V' = 0; otherwise its action will
be infinite at 7= 0.

Keeping this in mind one may proceed to classify tunneling trajectories in the following way:
choose a certain known trajectory at a given T then decrease T by 87, linearize the problem near
that trajectory, and continuously transform to a new trajectory with a longer period. This way
a family of trajectories arises which is parametrized by the period, i.e., by the temperature. In the
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case of one saddle point [e.g., potentials (4.40) and (4.28)] there is only one such a family of 2D
solutions below the cross-over temperature.® Generally speaking, the above transformation may
be singular at some points. These points correspond to the appearance of new tunneling pathways.
An example is the potential (6.13) with two saddle points, for which two 2D trajectories eventually
merge into a single 1D trajectory at a certain critical temperature.

In general, there may be several families of trajectories, so that they cannot be obtained from one
another by a continuous transformation. The number of these families should be determined by the
topology of the PES, i.e., by the number and positions of saddle points, minima and mixima. The
problem of determining these families remains a challenge. The present status of instanton theory
suggests relying on physical intuition in picking up relevant families of trajectories rather than on
an exact topological treatment. (Although one might imagine a numerical scheme which would not
miss any solutions, the numerical effort expended by this scheme would probably be too large for
a complicated PES.)

For T = 0 the above requirement restricts the choice. For example, consider the potential for
two-proton transfer, which is characterized by two global cis-minima, two local trans-minima, and
four saddle points between them [Smedarchina et al. 1989]. At T = O there is a trajectory which
starts out at the local minimum and which corresponds to the family of solutions that continuously
collapse to the saddle point when the temperature rises. However, this trajectory cannot describe
a tunneling event between the global minima, because its energy is always no less than the energy of
the local minimum and it does not satisfy the above requirement of finite action. Nevertheless, it is
this family that describes thermally activated transitions at higher temperatures. That is, the
finite-action requirement suggests looking for another family of trajectories, which play a dominant
role at sufficiently low temperatures.

Another problem which awaits its quantitative study is photochemical quantum dynamics, in
particular tunneling dynamics in excited electronic states. From a theorist’s point of view, this
implies solving the curve-crossing tunneling problem for a multidimensional case. The methods
described in section 4 together with the quasienergy ideas for integrating the pseudospin variable
out of the problem may prove useful in this case. We believe that the experimental examples and
theoretical ideas demonstrated in this review may foster new efforts towards studying the quantum
dynamics of low-temperature chemical conversions, that is, the processes which are quantal in the
full sense of these words.
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Appendix A. Derivation of egs. (2.16) and (2.17)

Consider a potential like that in fig. 19. In the vicinity of the parabolic well (t — 0) at > wg*
the instanton solution (3.34), corresponding to a harmonic oscillator in imaginary time, is given by

x = rcosh(wg1) , E =3iwir*, (A.1a,b)

where E is the instanton energy (we use mass-scaled coordinates and set A= 1,kg = 1). Let ro > r
be the coordinate of an arbitrary point still lying in the region where the harmonic approximation
for V(x) is correct within the (arbitrary) given accuracy. Then, if instanton starts out at T = 0, the
time it takes to reach point r, equals

7, = wg ' InQro/r) , (A.2)

where we have replaced the hyperbolic cosine in (A.1a) by an exponent.
The total instanton period may be represented as

B =21+ 12, (A.3)

where 1, is the time during which the particle crosses the barrier and returns to the point ro. The
gist of the derivation is that, when f — oo and, consequently, » — 0, the time of lingering near the
point x = 0, t,, goes to infinity, while the barrier passage time, t,, tends to some finite value, so
that t; > 1, for large enough f. Neglecting 1, in (A.3) and differentiating f ~ 2t with respect to E,
we immediately obtain from (A.2) and (A.3) the following equation in E (A.4a) and its solution
(A.4b):

0B/OE = (woE)™',  E = Egexp(—PBwo) . (Ada,b)

E depends on the constant E, which is determined by the actual shape of V(x).
In order to find E, we study first the auxiliary problem of a cusp-shaped harmonic potential with
a wall placed at x = x,, (see fig. 7),

V() =4wox®, x<x,; V(x)=—0w0, x>x,. (A5)

For this particular potential eq. (A.1a) is exact throughout the whole range of # and thus we can
take ro = x, so that 1, = 0. From (A.1b)—(A.3) it is easy to see now that

Eo = 2w3x; =4V, . (A.6)

Then, given an arbitrary potential, we compare it to the reference potential (A.5) adjusting the
width of the latter x, such that the instanton periods § are equal when the energies E are the same.
In other words we require

lim ( f dx [2(V(x) — E)]™ V2 — f dx (w2x? — 2E)‘”2> -0, (A7)

E-0
r r
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where r is related to E by (A.1b) and ' is the second turning point for the potential V(x) at given E.
Equation (A.7) implicitly defines x, for which the value of E, is the same for the both potentials.

Thus for an arbitrary potentlal we have E, = 2cu0x with x, defined by (A.7). In particular,
for the cubic.parabola V(x) = 3wix*(1 — x/x,) d1rect use of (A 7) leads to x, = 4x, so that
E, = 32wZx?. Insertion of this into (2.6) and (2. 7) gives (3.47).

Appendix B. Dissipative nonadiabatic tunneling at 7 = 0

In this appendix we shall show how the quasienergy ideas developed in section 5 can be applied
to the problem of nonadiabatic tunneling. We use the Im F approach of section 3.3 for the
multidimensional system with Hamiltonian

H = {}P? + 1[Vi(Q) + Vi(Q)1}1 + 3[V(Q) — Vil@)]o: + Va(Q) o
+ Y [4p] +30i(x; + C;Q/w)*11, (B.1)

where V, and V} are the initial and final potential energy terms, V; is the diabatic coupling between
them, 1 is the unit 2 x 2 matrix and the ¢ are the Pauli matrices. Formally this is a Hamiltonian of
a single particle with potential (¥, + ¥;) (which may have no barrier at all) coupled to a two-level
system and a bath of harmonic oscillators.

Following the Im F method, we study the partition function of the system with the aim to present
it as a path integral over the Q(t) paths solely. The oscillator degrees of freedom are traced out in
a standard way producing the nonlocal action term, while integration over the TLS paths results in
the quas1energy partition function Z= 2 cosh(BE[Q(r)]). After taking the f — oo limit only the
lower quasienergy survives in Z, and one obtains

8
= §D[Q(t))] CXP[ - fdf<%Q'2 +IKQ + K@] - [ViQ + @1 -
(o]

8 8
+ fdr'K(T - T')Q(T)Q(T'))]€=xp<ﬁ§[Q(t)] - fdt [ViQ() + SZ(Q(t))]m) ,» (B2)
(o] 0

&(Q) = 3[M(Q) — V(Q)]. (B.3)

We have multiplied and divided the path integral in (B.3) by the same factor exp(f£,q), where

8
ga[Q@]=5"" fdt [ViQ@) + Q)] (B4
0

is the quasienergy in the adiabatic approximation for TLS. Without the last exponent (B.2) would
give the standard formula for dissipative adiabatic tunneling with the rate constant obtained in
section 5.
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Now we make the usual assumption in nonadiabatic transition theory that non-adiabaticity is
essential only in the vicinity of the crossing point Q. where &(Q.) = 0. Therefore, if the trajectory
does not cross the dividing surface @ = Q., its contribution to the path integral is to a good
accuracy described by adiabatic approximation, ie., € = &,4. Hence the real part of partition

function, Z is the same as in the adiabatic approximation. Then the rate constant may be written
as

k = Bk,4 , (B.5)
where k.4 is the rate of adiabatic tunneling in the potential

V_(Q) =3V(Q) + @] - Vi@ + (@1, (B.6)

and the prefactor B equals

B = (B[Q(1)])s.4 = <exp(BEL2(D)] — £aa) D50 » (B.7)

where the symbol ¢ --- )g , means averaging over the paths with weight exp(— S.q4),

8 8
S.a[Q(@] = fdt <%Q2 +V-(Q+ JdT’K(T - T')Q(T)Q(T’)) - (B.3)

(o] (o]

The equations for the quasienergies + ¢ are

de;/dr = —e(@())er + Va(@(®))ez,  dez/dr = &(Q(7))e; + Va(Q(7))ey (B.9)
with the condition

ci(t + B) = exp(x fé)ci(t) . (B.10)
Let c;(z) be an arbitrary solution to (B.9) which does not necessarily satisfy (B.9). Then it can be
represented as a linear combination of exponentially increasing and decreasing linearly indepen-

dent solutions (B.10). When  — oo, only the increasing solution survives after a long time, and one
may write

exp(Bé) = ci(f + 1)/cil7) , (B.11)
where c; is an arbitrary solution to (B.9) which is not subject to (B.10), and 7 in (B.11) is sufficiently

large. For this reason one does not have to take into consideration the boundary conditions (B.10).
Define the “phase” ¢ as

explo(r2]t1)] = ci(t2)/c1(ty) - (B.12)

Then € may be thought of as the phase accumulated by the function ¢, (z) during the period 8. To
find B we should compare the phase ¢(f + t|t) to that calculated in the adiabatic approximation
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¢.4- According the standard arguments of the Landau—Zener—Stueckelberg theory, this difference
emerges mostly from passing the point Q(t*) = Q. where the adiabaticity is violated. In the vicinity
of this point egs. (B.9) simplify to

de,/dt = — Fo(t — t™)c; + Va(Q.)c, , dcy/dT = Fo(t — t*)c; + Vi(Q.)c, (B.13)
F =1[dVi/dQ — d¥;/dQlo-o., v =[dQ/dc].-. (B.14)
Adopting the dimensionless units t — t* = (2Fv)~'/27’, ¢; = (2Fv)~ ! ¢}, we rewrite (B.13) as
dey/dv = —31v'cy + 6Y%¢h, dey/dt = 47'ch, + 8% ¢) (B.15)
8 = V3(Q.)/2Fv . (B.16)

Equations (B.15) are exactly the same as those derived by Holstein [1978], and the following
discussion draws on that paper. The pair of equations (B.15) may be represented as a single
second-order differential equation

'—dzcl/dTZ + (%TZ +6— %)C] =0 s (B17)

where we have omitted for simplicity the primes. Its increasing solution at t — oo is a parabolic
cylinder function D_;(— 1) with the asymptotic solutions

ci(t)oc tlexp(—31?), 1<0; (1) 2n)t2r® texp(3t?)/I(5), >0, (B.18a,b)
where I'(9) is the gamma function. By using the definition (B.12) we obtain
exp(@(t| — 1)) = c1(r)/er(— 1) = 2m)'*2** " L exp (377)/T'(6) (B.19)

This should be compared with the adiabatic result. To do this we look for a solution ¢; of (B.15)
in the form

¢i(t) = u(t)exp < f(éz + 112172 dt) . (B.20)

Substituting this in (B.15) and neglecting the derivatives one gets
us it + (7% + 0)1%] = 6%u, (B.21)
whence for |1 > 61/2 the functions u, and u, are related by

uy ~8?uy/t, 1>0; u, ~ 8"y /Itl, 1<0 (B.22)
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If we were to replace T by — tin (B.15), the solution u; would replace u, and vice versa. Therefore,
one may write at t > 0

u (1) = 6Y2uy(v)/r = 62 u(— 1) /1 . (B.23)
Thus for the adiabatic phase ¢,4 one obtains

explaa(t] —1)] = c1(1)/e1(—7)
=17 1§12 exp< f (6% + 41%)112 dt) ~ %9 %2 lexp(31?). (B.24)

Comparing (B.19) with (B.24) one finds

B[Q(7)] = exp[B(E — &a)] = exp(nd(t] —1) — naa(t| — 1))
= [(2n/8)V2e~%8%/T(8)]", (B.25)

where n is the number of times the trajectory crosses the point Q..

The functional B[Q(r)] actually depends only on the velocity dQ/dr at the moment when the
non-adiabaticity region is crossed. If we take the path integral by the method of steepest descents,
considering that the prefactor B[Q(r)] is much more weakly dependent on the realization of the
path than S,4[Q(tr)], we shall obtain the instanton trajectory for the adiabatic potential V,4; then
B[Q(r)] will have to be calculated for that trajectory. Since the instanton trajectory crosses the
dividing surface twice, we finally have

B =2ns"le~20522/1%(5), (B.26)

where the instanton velocity should be inserted for é into eq. (B.16).

The ground state tunneling splitting for two symmetrically placed diabatic terms can be found in
the same manner, as described in sections 2.4 and 4.2. Since the kink trajectory crosses the barrier
once, we shall obtain

A= A4B'?, (B.27)

where 4,4 is the tunneling splitting in the adiabatic potential and B is defined by (B.26). In the
nonadiabatic regime, 0 < 1, the tunneling splitting is proportional to ¥, and inversely proportional
to the square root of the instanton velocity.
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