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Preface

This book has had a strange history. It was originally started in 1969
based on lecture notes from an aerosol course I was teaching at the
Harvard School of Public Health. In 1972 I moved to the University of
North Carolina and brought the course and my work on the book
along with me. The new setting and new responsibilities did their part
to delay things, and it was not until 1984 that the book was finally
published by Macmillan. It was well received. However, in the inter-
vening years there has been a great spurt in the growth of the field of
aerosol science: There are a number of universities offering courses in
aerosol science, and at one English university it is possible to receive
a master’s degree in aerosol science; a whole new field has grown up
around the concept of using controlled aerosol-producing reactions to
create exotic new materials; aerosols are being seen as an effective
method for administration of some drugs and may someday replace
many intravenous procedures; the ultimate answers to the greenhouse
effect appear to be intimately associated with the property of aerosols
to absorb some radiation wavelengths better than others; and finally
the relative importance of aerosols to the microelectronics industry
has been widely recognized, in both a positive and a negative sense.

Accordingly I felt that an update of the 1984 book was in order. New
developments in sampling equipment design, refinements in funda-
mental background information for aerosols, the emergence of fractal
geometry as an aerosol tool, and my recognition that several impor-
tant areas were completely ignored in the first edition all made com-
pelling reasons for this revision. New chapters have been added cov-
ering thermophoresis, viable aerosols, and dust explosions; several
other chapters have been substantially rewritten.

Finally, at the request of many of my former students, more infor-
mation on units has been added, many of the worked examples have
been clarified, and a number of the figures have been replaced with
better illustrations.

In the meantime, much of what was good about the earlier book has
been retained, including the original introduction, which still, I think,
says it all.

Parker C. Reist
Chapel Hill
March 5, 1992



Preface to the
First Edition

From dust we came and to dust we shall
return.

This book is about dust, dust and all the myriad tiny things that hang
suspended in the air. These clouds of fine particles, or aerosols, can
cheer us up when we look at a spectacular sunset, or they can be de-
pressing, such as on a gray day in a smoky town. Particles suspended
in air act as sites on which water can condense and thus play a prin-
cipal role in the water cycle and the formation of rain. Dust clouds on
a back road allow us to follow a vehicle at great distances, and smoke
screens promise protection in an electronic war. We use fine particles
suspended in air to kill mosquitoes, treat allergies, control underarm
odor, and even oil machinery. High concentrations of some particles
are extremely explosive, and low concentrations of other particles are
extremely toxic. Whether we realize it or not, we are at all times sur-
rounded by literally thousands of small particles, and their impor-
tance to the natural functioning of the earth is incalculable.

Considering the importance of airborne particles, one might think
that they would have attracted the attention of modern scientists and
that fundamental knowledge of particle behavior would be widespread
and well known by now. This is not the case. Rather, aerosol science is
a much neglected stepdaughter of physics or perhaps physical chem-
istry and is only now beginning to blossom and provoke the interest it
deserves.

Systematic study of the fundamental properties of airborne particles
has been intermittent in the past. For some reason we, as a society,
tend to look on everyday phenomena with blind acceptance, regarding
what we see as so common that it never occurs to us to ask why. Why
does a cloud remain airborne—and where does it come from and where
does it go? What is “smoke”—a solid or a gas? (When asked this ques-
tion on the first day of class, many of my students erroneously think
that smoke is a gas.) Why are some dusts harmful and others not? Or
similarly, why is the same dust sometimes harmful while at other
times it is not?
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For centuries people have suspected that dust could be harmful. At
least, early writers indicated in their works a general connection be-
tween lung diseases and dust inhalation, even though they didn’t dis-
tinguish between the various types of respiratory diseases. For exam-
ple, Pliny refers to inhalation of “fatal dust,” and Agricola speaks of
the “pestilential air” and “the corrosive dust.” In his book published in
1700, Ramazzini describes the effect of dust on the respiratory organs
and describes numerous cases of fatal dust disease.

With the industrial revolution in the 19th century and the advent of
high-speed machinery, dust exposure increased dramatically, as did
dust-caused diseases. In the latter part of the 19th century, interest
focused on dust exposure of miners, especially in the gold mines of
South Africa and the tin mines of Cornwall. As a result of these stud-
ies and others, it was found that high exposure concentrations gave
rise to more cases of lung disease.

Even with evidence showing the relationship of dust levels in the
air to disease, only the simplest effort was made by the medical pro-
fession to study the properties of dust in the air—how to sample it,
how to control it, what its important physical properties were, how it
was proHucem where it ultimately went. The focus of the medical
profession was primarily on gross effects.

In the natural sciences, however, aerosols were in the forefront in
the 19th century because these small particles represented the small-
est divisions of matter known at the time. Many individuals whom we
now consider the intellectual giants of that time contributed to our
understanding of aerosols, and the names Tyndall, Lister, Kelvin,
Maxwell, Aitken, and Einstein, to name a few, are familiar in the
aerosol literature as well as in the fields for which they are most fa-
mous.

However, with the discovery of radioactivity and the development of
quantum mechanics, the passion for finding the smallest division of
all matter drove scientists away from studies of aerosols, and the field
as a scientific discipline lay dormant, despite continuing discoveries in
medicine regarding the relationship between dust and disease. Only
in the area of occupational health were aerosol studies continued, and
these were of an applied nature. The use of aerosols in warfare and
screening smokes led to some effort to study their properties between
World War I and World War II, but it was not until World War II that
aerosol problems again began to attract the attention of the main sci-
entific community. The reasons for this increased interest were sev-
eral. First, production of fissionable materials involved working with
radioactive aerosols, potentially dangerous materials. Second, the ad-
vent of radar created the need for understanding the effect of clouds on
the transmitted and reflected signals and how this effect could be ei-
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ther minimized vr maximized, depending on whether one wanted to
hide or seek. Finally, the threat of chemical and biological warfare
needed to be dealt with on the basis of knowledge, not guesswork, and
since aerosols represent the chief means for dispensing these agents,
study of aerosol behavior was essential.

In the past 20 years, work relating directly to the study of aerosols
has increased greatly with at least two journals specifically devoted to
aerosol studies and numerous others regularly publishing articles on
various aspects of particulates in air. Aerosols appear to play a major
role in the removal of pollutant gases from the atmosphere either by
absorbing them on existing particles or through the creation of new
particles. A knowledge of aerosol properties is useful in studying the
atmosphere of planets other than earth. Many air pollutants originate
in particulate form or become particulates soon after discharge and
must be dealt with as such. Acid rain is an example of an aerosol prob-
lem where gas is transformed to a liquid—in this case sulfur dioxide is
transformed in the air to sulfuric acid.

As many frustrated investigators have noted again and again, the
study of aerosols is by no means easy. Particles in air behave differ-
ently from the ajr in which they are suspended and behave differently
among themselves depending on their size, shape, and composition.
Collecting a representative sample of an aerosol for any purpose can.
be a frustrating and time-consuming task, and a knowledge of aerosol
properties and behavior is essential to maximize chances for adequate
sample collection. This is especially true when many of the automated
sampling devices available today are used. The device generates the
numbers, whether they are accurate or not, and it is up to the inves-
tigator to interpret and understand what is being generated.

This book is an attempt to present, in a rigorous but illustrative
manner, introductory information on the study of aerosol properties
and behavior so that an individual desiring to learn the mysteries of
the field will not be completely discouraged. The text has evolved out
of more than 15 years’ experience in teaching an introductory course
on aerosol science to numerous first-year graduate students, some of
whom picked at the edges of the course and were sufficed, others who
digested all the material and developed an insatiable appetite for
more. I hope in this book to reach both groups. Many examples are
given of aerosol studies which can be applied almost directly to other
situations without much attention being paid to the underlying theo-
ries. However, for the more inquiring mind, equations have been de-
veloped to attempt to illustrate the thought process used to arrive at a
particular solution. Some solutions may not be the most accurate or
up to date. I have no apologies. In learning the simpler approximate
solution, one develops the terminology, conventions, and methods of
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thinking which lead to greater understanding of the more rigorous
complex solutions.

This book is a textbook. If it helps individuals to better read and un-
derstand the current aerosol literature and to extend the field on their
own, then it will have served its purpose.

Acknowledgments

I would like to thank my friends and students at the University of
North Carolina for the assistance they have provided during prepara-
tion of the manuscript for the current edition, especially Doris
Mitchell, Delores Plummer, and Don Fox; my patient editors at
McGraw-Hill, Gail Nalven and Carol Levine; and of course my family,
particularly my wife Jan, for her constant encouragement even when
nothing seemed to be going right.

In addition, no book can be written without much assistance from
others who may never realize the help they give. Consider the vast
number of researchers whose efforts often go unacknowledged, aside
from a citation in a scientific journal. Without the labor of these indi-
viduals, a book such as this could not be written—we build, after all,
on the work of others. Realizing this, I would like to thank all those
scientists and engineers, both past and present, whose interest in
aerosols and related subjects founded, developed, and enlightened a
new field of study. May those who follow continue to add to our store of
information and understanding of the world around us.

Parker C. Reist
Chapel Hill
April 4, 1983
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Chapter

Introduction and Definitions

Aerosols are ubiquitous in our environment. Haze particles are
formed over vegetation; dust clouds are blown up by the wind; volca-
noes erupt, spewing dense smoke into the atmosphere; and, of course,
in their many activities people mark their way by the particles they
discharge into the air. This book is about aerosol particles, their phys-
ical properties, and the scientific basis that has been developed for
predicting their behavior.

Units

Aerosol sizes are usually referred to in terms of the micrometer (pm)
(previously called the micron p). One micrometer is equal to 10™* cen-
timeters (cm), 10~ meters (m), or 10* angstrom units, abbreviated A
In working problems it is necessary to use a consistent set of units.
Since most physical constants are available either in cgs or mks units
(English units are too cumbersome to use), aerosol sizes given in mi-
crometers very often must be converted to either centimeters or
meters for computations (depending on the system of units chosen).
When you are working problems involving ratios of particle size, this
conversion is not necessary.

Example 1.1 A basketball is 12 in in diameter. Express its diameter in mi-
crometers.

lin = 254 cm
lem = 10% pm
Diameter = 12 in x 2.54 cm/in x 10* pm/cm
= 3.05 x 105 um
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Definitions

To begin the systematic study of particles, it is first necessary to con-
sider several commonly used definitions of various types of aerosols.

Aerosol A suspension of solid or liquid particles in a gas, usually air; a
colloid. Included in this definition would be:

Dust Solids formed by disintegration processes such as crushing, grinding,
blasting, and drilling. The particles are small replicas of the parent material,
and the particle sizes can range from submicroscopic to microscopic. Very of-
ten sizes are specified by screen mesh size. For example, the percentage pass-
ing or retained on a given mesh is indicative of size.

Example 1.2 How many spherical particles just passing through a 200-mesh
screen are required to equal the mass of a single spherical particle that just
passes through a 50-mesh screen? Assume that the diameter of the particle
passing through the mesh equals the mesh opening and a particle density of
2.65 glemS.

Mass of particle passing 50-mesh screen = Td% = §'é—4 (0.0297)® (2.65)
=364x105¢g
Mass of particle passing 200-mesh screen = gdsp = %1—4 (0.0074)3 (2.65)
=562x1077g
. . 3.64 x 1078 .
No. particles required = =———————— = 64.7, say 65 particles
P red 562 x 10~7 yoop

Fumes Solids produced by physicochemical reactions such as combustion,
sublimation, or distillation. Typical fumes are the metallurgical fumes of
PbO, Fe,0jg, or ZnO. Particles making up fumes are quite small, below 1 pm
in size, and thus cannot be sized on screens. The particles appear to flocculate
readily.

Smoke A cloud of particles produced by some sort of oxidation process such
as burning. The optical density is presupposed. Generally, smokes are consid-
ered to have an organic origin and typically come from coal, oil, wood, or other
carbonaceous fuels. Smoke particles are in the same size range as fume par-
ticles.

TABLE 1.1 Openings of Some Typically Small Mesh Sizes*

Mesh Opening, mm
50 0.297
100 0.150
200 0.074
400 0.038

*From Handbook Chem. Phys., 54th ed., CRC Press, Cleve-
land, 1978, p. F147.
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Mists and fog Aerosols produced by the disintegration of liquid or the con-
densation of vapor. Because liquid droplets are implied, the particles are
spherical. They are small enough to appear to float in moderate air currents.
When these droplets coalesce to form larger drops of about 100 wm or so, they
can then appear as rain.

Haze Particles with some water vapor incorporated into them or around
them, as observed in the atmosphere.

Smog A combination of smoke and fog, usually containing photochemical reac-
tion products combined with water vapor to produce an irritating aerosol. Smog
particle sizes are usually quite small, being somewhat less than 1 pm in diameter.

These definitions have arisen from popular usage, so there is little
wonder that they overlap. What one person might call smog someone
else could call haze, and both would be correct. Therefore we should
generally use the more precise, if less colorful, definition of aerosol
and then fill in the details on a more qualitative basis.

Since an aerosol is a collection of particles, it is often desirable to
indicate whether the particles are all alike or are dissimilar. Thus
there are several other descriptions of aerosols that must also be
taken into account.

Monodisperse All particles exactly the same size. A monodisperse aerosol
contains particles of only a single size. As might be expected, this condition is
extremely rare in nature.

Polydisperse Containing particles of more than one size.

Homogeneous Chemical similarity. A homogeneous aerosol is one in which
all particles are chemically identical. In an inhomogeneous aerosol different
particles have different chemical compositions.

Morphoiogical Properties of Aerosols
Shape

It is convenient to think of all aerosol particles as spheres for calculation,
and this also helps visualize the processes taking place. But, with the ex-
ception of liquid droplets, which are always spherical, many shapes are pos-
sible. These shapes can be divided into three general classes.

1. Isometric particles are those for which all three dimensions are
roughly the same. Spherical, regular polyhedral, or particles ap-
proximating these shapes belong in this class. Most knowledge re-
garding aerosol behavior pertains mainly to isometric particles.

2. Platelets are particles that have two long dimensions and a small
third dimension. Leaves or leaf fragments, scales, and disks fall
into this class. Very little is known about platelet behavior in air,
and care must be exercised in applying knowledge derived from
studying isometric particles to platelets.
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3. Fibers are particles with great length in one dimension compared
to much smaller lengths in the other two dimensions. Examples are
prisms, needles, and threads or mineral fibers such as asbestos. Re-
cent concern over the health hazard posed by inhalation of asbestos
fibers has prompted study of fiber properties in air. There is still
not as much known about fibers as isometric particles.

Example 1.3 An asbestos fiber is 10 pm in length with a circular cross-section of 0.5-
pm diameter. Find the diameter of a sphere that has the same volume as the fiber.

Volume of fiber = %(0.5)2(10)

=1.96 pm3

Volume of sphere = %rda

d®=196% = 3.75
v

d =155pum

Particle shape can vary with the formation method and the nature of the
parent material. Particles formed by the condensation of vapor molecules
are generally spherical, especially if they go through a liquid phase during
condensation. Particles formed by breaking or grinding larger particles,
termed attrition, are seldom spherical, except in the case where liquid drop-
lets are broken up to form smaller liquid droplets.

Size

A particle is generally imagined to be spherical or nearly spherical.
Either particle radius or particle diameter can be used to describe par-
ticle size. In theoretical discussions of particle properties, the radius is
most commonly used, whereas in more practical applications the di-
ameter is the descriptor of choice. Thus one should carefully ascertain
which definition is being used when the term particle size is used. In
this text particle diameter is used throughout.

Once a choice of diameter or radius is made, there are a number of
ways that this diameter or radius can be defined which reflect particle
properties other than physical size. For a monodisperse aerosol, a sin-
gle measure describes the diameters of all the particles. But with
polydisperse aerosols a single diameter is not sufficient to describe all
particle diameters, and certain presumptions must be made as to the
distribution of sizes. Other parameters besides diameter alone must
be used. This is discussed in more detail in Chap. 2.

Two commonly encountered definitions of particle size are Feret’s
diameter and Martin’s diameter. These refer to estimates of approxi-
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mate particle size when determined from viewing the projected im-
ages of a number of irregularly shaped particles. Feret’s diameter is
the maximum distance from edge to edge of each particle, and Mar-
tin’s diameter is the length of the line that separates each particle into
two equal portions. Since these measures could vary depending on the
orientation of the particle, they are valid only if averaged over a num-
ber of particles and if all measurements are made parallel to one
another. Then, by assuming random orientation of the particles, an
average diameter is measured.

This measurement problem can be simplified somewhat by using
the projected area diameter instead of Feret's or Martin’s diameter.
This is defined as the diameter of a circle having the same projected
area as the particle in question. Figure 1.1 illustrates these three def-
initions. In general, Feret's diameter will be larger than the projected
area diameter which will be larger than Martin’s diameter.

Equivalent >
area diameter

Martin's

diameter

Feret's
diameter

Figure 1.1 Illustration of three common definitions gf
particle diameter. In general, Martin’s diameter is
less than the equivalent area diameter, which in turn
is less than Feret's diameter.
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Example 1.4 Figure 1.2 shows a collection of five irregularly shaped particles.
By measuring along lines parallel to the scale line, determine Martin’s, Feret's,
and the projected area diameter for this collection of particles.

The measured values are

Feret’s diameter = 15 scale units
Martin’s diameter = 10 scale units
Projected area diameter = 13 scale units

Sometimes a diameter is defined in terms of particle settling veloc-
ity. All particles having similar settling velocities are considered to be
the same size, regardless of their actual size, composition, or shape.
Two such definitions which are most common are

Aerodynamic diameter Diameter of a unit density sphere (density = 1 glem®)
having the same aerodynamic properties as the particle in question. This means
that particles of any shape or density will have the same aerodynamic diameter
if their settling velocity is the same.

Stokes’ dlameter Diameter of a sphere of the same density as the particle in
question having the same settling velocity as that particle. Stokes’ diameter

and aerodynamic diameter differ only in that Stokes’ diameter includes the
particle density whereas the aerodynamic diameter does not.

VAR
N

0 S 10 IS 20

L 1 1 1 J
Scale units
Figure 1.2 Illustration for Example 1.4.
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Example 1.5 A sodium chloride cube (density = 2.165 g/cm®) settles at a rate of
0.3 em/s. Find the aerodynamic diameter of this cube.

Appendix A gives a corrected sedimentation velocity of 0.306 cm/s for a 10-
wm-diameter unit-density sphere. Hence 10 pm is the aerodynamic diameter of
this particular salt cube.

Particle diameters of interest in aerosol science cover a range of
about four orders of magnitude, from 0.01 pm as a lower limit to ap-
proximately 100 um as the upper limit. The lower limit approximates
roughly the point where the transition from molecule to particle takes
place. Particles much greater than about 100 um or so do not normally
remain suspended in the air for a sufficient length of time to be of
much interest in aerosol science. There are occasions where particles
that are either smaller or larger than these limits are important, but
usually most particle diameters will fall within the limits of 0.01 to
100 pm.

Particles much greater than 5 to 10 um in diameter are usually re-
moved by the upper respiratory system, and those smaller than 5 pm
can penetrate deep into the alveolar spaces of the lung. Thus 5 to 10
pm is often considered to be the upper diameter for aerosols of physi-
ological interest.

Within the size range of 0.01 to 100 pm lie a number of physical
dimensions which have a significant effect on particle properties. For
example, the mean free path of an “air” molecule is about 0.07 pm.
This means that the air in which a particle is suspended exhibits dif-
ferent properties, depending on particle size. Also the wavelengths of
visible light lie in the narrow band of 0.4 to 0.7 pm. Particles smaller
than the wavelength of light scatter light in a distinctly different
manner than do larger particles.

Particle size is the most important descriptor for predicting aerosol
behavior. This is apparent from the above discussion and will become
even more apparent in later chapters. Typical particle sizes of selected
materials are given in Table 1.2.

TABLE 1.2 Typical Particle Diameters, um

Tobacco smoke 0.256 Lycopodium 20
Ammonium chloride 0.1 Atmospheric fog 2-50
Sulfuric acid mist 0.3-5 Pollens 15-70
Zinc oxide fume 0.05 “Aerosol” spray products 1-100
Flour dust 15-20 Talc 10

Pigments 1-5 Photochemical aerosols 0.01-1
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Structure

Aerosol particles may occur by themselves or may be formed into
chains of spheres or cubes. These are called agglomerates or flocs. Ag-
glomerates are usually formed from highly charged small particles
such as are found in dense smokes or metal fumes.

Particles may also occur as gas-filled hollow drops or as particle-
filled hollow particles. Fly ash is an example of this latter type of ma-
terial. Thus particle density can be significantly different from the
density of the parent material.

Fractal properties

Since Mandelbrot’s original description (1977, 1983), fractal geometry
has found relevance in a number of scientific disciplines including
aerosol technology and science [e.g., see Lovejoy (1982), Meakin
(1983), Kaye (1984), Sheaffer (1987), Reist et al. (1989)]. Many appli-
cations are covered in some detail by Kaye (1989), so only a brief de-
scription of fractals is given here.

There are some geometric shapes which have an infinite boundary
even though the area enclosed by that boundary is finite. These anom-
alies were dismissed by most 19th-century mathematicians as insig-
nificant oddities, but Mandelbrot, drawing on the work of Richardson
(1961) and others, showed that these shapes were extremely common
in nature and were part of a generalized geometric system which he
termed fractal geometry.

Clouds, trees, plant root systems, and even the human lung are all
examples of structures which can be described as fractals, as are ran-
dom agglomerates of many small spherical particles which form into
one large particle of a highly irregular shape. Many metal fumes are
observed to be large numbers of these large, irregular particles. Be-
cause these fume particles lack a specific definable shape, it is hard to
describe them quantitatively by diameter or area and even more dif-
ficult to predict their aerodynamic properties. Fractal geometry offers
a method whereby descriptors can be assigned to these particles, thus
permitting their quantitative study.

There are several ways to consider the definition of a fractal. For
example, consider the line, square, and cube shown in Fig. 1.3. The
total length of the line 7 is

T = na!

where n is the number of segments and a the length of one segment.
For the square, the total area T is

T = na?



Introduction and Definitions 9

Line T = na' —————

Area T = na® ___E

Volume T = na

= " =7 Figure 1.3 Simple shapes and
i‘L, /T fractals.

and for the cube, the total volume 7T is

T = na®

In each case the shape can be considered to be completely “filled"—the
line filled with line segments, the area with squares, and the volume
with cubes. These three equations could be written as

T = na®

where 8 could be 1, 2, or 3.

But now consider what a noninteger value for 8 means. This implies
that the shape is only partially filled, the degree of filling being
greater as the value of 8 becomes greater. Thus an irregular particle
with many internal interstices could have its volume described by the
factor 8, which would imply something about how loosely or tightly
packed the particle was. The factor & in this case is called by
Mandelbrot the fractal dimension of the particle.

A perfectly filled geometric shape such as a sphere or cube has a
fractal dimension of 3, whereas an irregular shape such as the ag-
glomerate shown in Fig. 1.4 might have a fractal dimension of 2.43,
indicating that there is some openness in the particle.

A second method of defining fractal dimensions is to consider an ir-
regular boundary around a finite area (the coastline of Britain is often
used as an example). If the coastline is measured with a ruler 1 m
long, it will measure longer than if it were measured with a ruler 1
km long. This is because in using the longer ruler many little twists
and kinks in the coastline will be missed. Thus the length of the coast-
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Figure 1.4 Electron micrograph of agglomerates, 0.1 atm. Sample taken at 30 min after
explosion. (a) 20,000X, (b) (c) 4000X.

line is dependent on the length of the ruler. Plotting the logarithm of
the coastline length as a function of the logarithm of the ruler length
gives a straight line, as shown in Fig. 1.5. And 1 minus the slope of
this line gives the fractal dimension, as defined above. Again the
fractal dimension & is indicative of the space-filling ability of the
curve.

Mandelbrot defines the surface area fractal dimension 8 as

( As)l/ﬁ « Vlla

where A, is the surface area of a fractal object of volume V. For nat-
ural objects this relationship holds only over some range or “struc-
tural range,” with the upper limit related to the finite size of the
structure of the agglomerate and the lower limit related to the size of
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Figure 1.5 Richardson’s empirical data. (From Mandelbrot, 1983.)

the fundamental units that make up the object. For agglomerated
aerosols that are natural fractals, the lower size limit is thought to be
the size of the primary particles (Kay, 1984).

One important quality of fractal objects with the same fractal dimen-
sion is that they are all self-similar; i.e., they possess no descriptive
length scale at all (Herrmann, 1986). Thus for a set of fractal objects hav-
ing the same source and same fractal dimension, it is impossible to say
which are the big ones or which are the small ones without some other
frame of reference. Thus fractal dimensions must be used in conjunction
with some other, more familiar particle measure.

Surface Properties

Aerosol particles, because of their small size, present a large amount
of surface for chemical reactions such as burning, adsorption, absorp-
tion, or other chemical reactions or for such physical properties as
wettability or electrostatic effects. The amount of area per gram of
material increases as the particle size decreases, and for a given av-
erage size, increasing polydispersity decreases the surface area per
gram. As particle size becomes very small, the boundary conditions
between the particle and the air around it become confused, but also
become more important.

Example 1.6 What is the surface area of 1 g of a monodisperse water aerosol if

the particle diameter is 10 and 1 pm?
Let n = particles per gram

1g= (g)(d3)(1)(n)



12 Chapter One

If A = surface area per gram

Then A = md’n

6

A ( d2) -

&.

(1)(6/)
a3

For 10-pum particles
A=-2_ - 6000 cm?
10

For 1-pm particles
A = 60,000 cm?

Probiems

1 What is the ratio of the volume of a spherical particle that will just pass
through a 200-mesh screen compared to a sphere that will just pass through a
400-mesh screen?

2 It is given that 0.2 g of particles is passed through a 325-mesh sieve but
retained on a 400-mesh sieve. Assuming the particles are spheres and are all
the same size, estimate the maximum and minimum number of particles
present. Assume a particle density of 2.65 g/cm®.

3 Express the earth’s equatorial diameter in micrometers (d = 7912 mi). Ex-
press the diameter of an electron in micrometers (d = 10~'2 cm). Express the
diameter of a hydrogen molecule in micrometers (d = 2.9 A).

4 Compare relative dimensions of a sphere, platelet, and fiber, assuming
that the fiber element diameter and platelet thickness are one-tenth the
sphere diameter and that the volumes of the sphere, platelet, and fiber are
equal. Assume a circular cross-section.

5 If the sphere in Prob. 4 is a 1-um-diameter silica particle (p = 2.65 g/cm®),
what are the equivalent platelet dimensions and fiber length?

6 The settling velocity of a 5-pum-diameter sand particle can be estimated
from the expression
vg = (8 x 1073)d%

where g is the settling velocity in centimeters per second, d the particle di-
ameter 1n micrometers, and p the density in grams per cubic centimeter. Find
the aerodynamic diameter of this particle.

7 Show that for a constant mass of particles, decreasing the particle size by
a factor of 10 increases the surface area by a factor of 10.

8 How many 0.1-pm-diameter H,SO, droplets can be produced by splitting
up one 10-pm-diameter H,SO, droplet?
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Particle Size Distributions

Introduction

As mentioned in Chap. 1, most frequently aerosol particles are present
in a variety of sizes; i.e., the aerosol is polydisperse.

Most aerosols are polydisperse when formed, some more than oth-
ers. For example, an examination of sawdust would reveal particles of
various sizes, as would that of any material formed by attrition. Since
raindrops could grow by condensation or by a series of collisions with
other drops, they would also be expected to be polydisperse. In fact,
monodisperse aerosols are very rare in nature, and when they do ap-
pear, generally they do not last very long. Some high-altitude clouds
are monodisperse, as are some materials formed by condensation.
Sometimes it is satisfactory to represent all the particle sizes by only
a single size. Other times more information is needed about the dis-
tribution of all particle sizes. Of course, a simple plot of particle fre-
quency versus size gives a picture of the sizes present in the aerosol,
but this may not be enough for a complete quantitative analysis.

Polydisperse aerosols can be described in a number of ways using
mathematical or visual methods. Some of the more common methods
are discussed in this chapter.

Mean and Median Diameter
The simplest way of treating a group of different particle diameters is to
add all the diameters and divide by the total number of particles. This gives
the average diameter. Mathematically this can be expressed as
znidi

2.1

2

This is known as the mean particle diameter.

d =

13
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The median particle diameter can be determined by listing all diam-
eters in order from the smallest to the largest and then finding the
particle diameter that splits the list into two equal halves.

Example 2.1 Given the following particle diameter data, determine the mean
and median diameters of the aerosol.

Interval, pm No. n;
1-2 30
2-3 90
3-5 50
5-10 20
10-20 10

By using Eq. 2.1 the following table can be formed. The midpoint of the size in-
terval is chosen as the best estimate of the size of all particles in that interval.

Midpoint d; n; n;d;
1.5 30 45

2.6 90 225

4.0 50 200

7.5 20 150

160 _10 160
200 770

The mean value is 770/200 = 3.85 um.

By inspection of the table, the median value can be seen to lie somewhere be-
tween 2 and 3 um in diameter. With the given data a more precise evaluation of
this number is not possible.

Although they are simple in concept, neither the mean nor the me-
dian diameter alone conveys much information about the general
range of particle diameters present. Usually more information is re-
quired describing the spread of the particle size distribution. This
gives some indication of how well the mean or median value repre-
sents all particles in the aerosol.

It is common practice to describe an aerosol solely by some average
value, completely ignoring considerations of particle size distribution.
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When this is done, estimates of aerosol properties are much less accu-
rate than they would have been if all particle sizes had been taken
into account.

Histograms

Besides their use in determining a mean or median value, the num-
bers of particles in various size intervals can be plotted as bar charts
or line charts. These plots are pictures of the size distribution of the
aerosol. This is useful in envisioning the range and frequency of the
sizes present.

Example 2.2 Plot the data given in Example 2.1 first by plotting the midpoints
of the size intervals as a function of particle diameter and then by plotting a bar
chart of number of particles per unit size interval against each size interval.

Interval n; per
Interval, pm Midpoint d size, pm n; micrometer
1-2 1.5 1 30 30
2-3 25 1 90 90
3-5 4.0 2 50 25
5-10 75 5 20 4
10-20 15.0 10 10 1

Figure 2.1a shows a line chart of the midpoints of the data. Al-
though the particle diameter distribution is plainly shown, it is possi-
ble to alter the shape of the distribution by changing the interval size.

When a bar chart is plotted instead of a line chart, as in Fig. 2.15,
this problem is not as severe. The ordinate or height of each bar is nor-
malized by dividing the number of particles in an interval by the
width of that interval. The width of each bar represents the actual
width of each size interval. Then the area of each block represents the
relative frequency of particles in that particular size interval.

Charts or graphs of this sort have the advantage of showing at
a glance what the particle size distribution of an aerosol looks like
and is perhaps the best way of visually representing complex size-
distribution data.

For atmospheric aerosols, a wide range of particle sizes may be
present in numbers which can vary by several orders of magnitude. In
these cases the typical bar graph will not be satisfactory since the
large numbers of small particles can completely overwhelm the dis-
play of other sizes, even though the larger sizes may be most signifi-
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Figure 2.1a Simple plot of distribution data.
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Figure 2.1b Bar graph of particle distribution data.
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cant in terms of mass or surface area. Or the larger particle diameters
will be displayed more prominently than the smaller ones, even
though the smaller sizes may be of primary interest.

One solution is to plot the logarithms of particle diameter on the ab-
scissa instead of the diameters themselves. This spreads out the pre-
sentation of distribution data so that a much broader range of particle
sizes can be visualized. However, to maintain the relationship that the
area between two particle size intervals is proportional to the total
number of particles present, the ordinate scale must be altered. This is
done by dividing the number of particles in each interval by the dif-
ference in the logarithms of the largest and smallest particle sizes of
that interval, or, in mathematical terms,

An
Alogd

Ordinate value = 2.2)

This relationship is found for each size interval. Similar expressions
can be written for particle surface area or particle mass or volume. (It
should be stressed again that particle volume converts directly to par-
ticle mass by multiplication of volume and particle density. Hence in
plotting size distribution data, either one can be used to represent the
other.)

Example 2.3 Plot the data given in Example 2.1 in the form of An/A log d ver-
sus log d.

Interval Midpoint No. An Alogd An/Alogn
1-2 15 30 0.30 100
2-3 2.5 90 0.18 511
3-5 4.0 50 0.22 225
5-10 7.5 20 0.30 66

10-20 15.0 10 0.30 33

The data are plotted in Fig. 2.2. A continuous distribution is assumed
in order to develop a smooth plot.

Continuous curves of the type illustrated in Fig. 2.2 are often used
to show the difference in size distributions of aerosol number, surface
area, or mass, with the same aerosol. These differences arise when
there are large numbers of small particles present in an aerosol. These
particles contribute greatly to total particle count but little to total
particle mass or surface area.
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Figure 22 Plot of data from Example 2.3. A continuous distribution is assumed.

Example 2.4 Plot surface and volume distribution for the aerosol given in Ex-
ample 2.1 in the same fashion as plotted in Example 2.3. However, in this case
normalize the linear ordinate so that the relative areas and volumes under sim-
ilar interval limits will be comparable.

For particle surface area S, values in the AS column are determined by mul-
tiplying the number of particles in each interval by the square of the midpoint
diameter of that interval. For particle volume V, values in the AV column are
found by multiplying the number of particles in each interval by the cube of the
midpoint particle diameter. It is not necessary to multiply the AS values by « or
the AV values by /6 since these constants will cancel when the AS and AV
quantities are normalized by dividing by the sum of all values.

AS/ Av/

Interval AS Sz Alogd) AV (Vp Alogd)
1-2 67.5 0.047 101.3 0.007
2-3 562.5 0.650 1,406.3 0.170
35 800.0 0.757 3,200.0 0.308
5-10 1,125.0 0.778 8,4375 0.598
1020 2,250.0 1.556 33,750.0 2391

Sz = 4,805.0 Vr = 46,895.1
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Figure 2.3 Similar plot as in Fig. 2.2 except particle surface area S and particle
volume V are plotted. These curves are normalized by dividing by S and V7,
respectively.

Comparison of the data plotted in Fig. 2.3 shows how surface area and
volume (mass) tend to be associated mainly with the larger-size particles
whereas in general the smaller particles contribute mainly to the total
numbers present. Therefore in presenting size distribution data it is im-
portant to consider the purpose of the presentation and which feature
[number, surface area, or volume (mass)] is to be stressed.

Mathematical Representation of Distribution

If the size interval of the aerosol is permitted to become very small,
the resulting histogram begins to approximate a smooth curve. Then
it is possible to represent the distribution by a smooth curve or, better



20  Chapter Two

still, by some mathematical function, i.e.,

dn; = f(d)dd (2.3)

where dn; is the number of particles lying in the interval between
sizes dd; _ , and dd,.

Obviously, to plot this sort of curve requires analysis of the sizes of
a great number of particles. Or, if it were possible to specify some
identifying parameters of the distribution, a functional form could be
used to represent a whole family of curves. There have been many at-
tempts to find such a functional form. Usually these equations have
been satisfactory for aerosols from the same specific sources but are
not generally applicable to all aerosols.

One widely used form which is applicable to many different aerosols
from a variety of sources is the lognormal distribution. To understand
the utility of the lognormal distribution, it is first necessary to review
the concept of a “normal” distribution.

Normal distribution

Many phenomena which appear to occur on a more or less random ba-
sis exhibit certain characteristics which can be used to predict future
trends. For example, although it is impossible to tell on any single toss
whether a coin will come up heads or tails, if the coin is unbiased,
heads will come up approximately 50 percent of the time. The more
tosses made, the closer one usually comes to this approximation.

Suppose 100 tosses were made and the number of heads was re-
corded, and the experiment is repeated many times. It would be ob-
served that although usually there would be about 50 heads for every
100 tosses, occasionally there would be substantially greater or fewer.
If the frequency of heads were plotted as a function of the number of
heads observed in 100 tosses, a curve shape would be found that is en-
tirely predictable. This shape, known as a normal distribution or nor-
mal curve, is shown in Fig. 2.4a. The primary virtue of a normal dis-
tribution is that because it is predictable, it can be described with two
characteristic numbers, a mean value and a standard deviation. These
are shown in Fig. 2.4a and are defined mathematically as

i ll,-d,'

i=0

«
2
i=0

d= (2.4)

and
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Figure 2.42 The normal distribution.

o=} ——— (2.5)

Example 2.5 Compute the value of the standard deviation o for the data given
in Example 2.1.

From Example 2.1 the mean value was determined to be 3.85 pm.

Interval Midpoint No. n; d-d, d - d))%n;
1-2 15 30 2.36 165.68
2-3 2.5 90 1.35 164.03
3-5 4.0 50 -0.15 1.13
5-10 7.5 20 - 3.65 266.45

10-20 15.0 ﬂ -11.15 1243.23
200 1840.52

The standard deviation o = [1840.52/(200 — 1)]“ = (9.25) = 3.04
pm.

Means and standard deviations can be calculated for any set of data.
For data which are normally distributed, however, the mean value
lies at the midpoint of the data (hence it is also the median), and 67
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percent of the distribution falls between the range of plus or minus
one standard deviation.

Normal distributions occur with a variety of statistical data includ-
ing average height and weight of children, grade distributions of large
groups of students, and even frequency of underweight or overweight
candy bars on a production line. One might guess that aerosol particle
sizes would also be normally distributed.

Unfortunately, this is generally not the case. For many aerosols a
plot of frequency versus size results in a graph similar to that shown
in Fig. 2.4b, in which there are proportionally many more smaller par-
ticles than larger ones. The curve is said to be skewed toward the
larger particle sizes.

Lognormal distribution

It was observed many years ago that particle size data which were
skewed and did not fit a normal distribution would very often fit a
normal distribution if frequency were plotted against the logarithm of
particle size instead of particle size alone. This tended to spread out
the smaller size ranges and compress the larger ones. If the new plot
then looked like a normal distribution, the particles were said to be
lognormally distributed and the distribution was called a lognormal
distribution. By analogy with a normal distribution, the mean and
standard deviation became

E’l,‘ lOg d,'
logd, = < ——— 2.6)

2

Frequency =——»

Diameter —»
Figure 2.4b The lognormal distribution.
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known as the geometric mean diameter, and

172
En,-(log d, - log d,)*
logo, = 2.7

Sh -1

where o, is known as the geometric standard deviation.

Example 2.6 Compute the geometric mean diameter d, and geometric standard
deviation o, for the data given in Example 2.1.
To compute the geometric mean

No.

Interval d; n; log d; n; log d;
1-2 1.5 30 0.176 5.283
2-3 2.5 90 0.398 35.815
3-5 4.0 50 0.602 30.103
5-10 7.5 20 0.875 17.501

10-20 15.0 _E 1.176 11.761
200 100.463

The geometric mean d, = log™" (100.463/200) = log™" 0.502 = 3.18 pm.
To compute the geometric standard deviation

d; No. n; log de - log d; n; log dg - log d,)?
1.5 30 0.326 3.195
2.5 90 0.104 0.983
4.0 50 - 0.100 0.496
7.5 20 -0.373 2.777
15.0 LO - 0.674 4.538
200 11.989

The geometric standard deviation

_1 (11.989)%5
Og = log 1—99—

=log~1 0.245 = 1.760

Notice that o, is a pure number. Unlike the regular standard deviation, it has
no units. Thls is because it represents a ratio of diameters.
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With a lognormal distribution, one geometric standard deviation rep-
resents a range of particle sizes within which lie 67 percent of all sizes. In
this case the range is from d,/o, to d 0, unlike the simple additive case
for a normal distribution. Ninety-five percent of all particles would lie in
a range d/o,” to o, °d,. Thus for a monodisperse aerosol, o, is equal to 1
whereas ¢ is equal to 0 for a normal distribution.

The functional form of the lognormal distribution can be written as
(Herdan, 1960)

(2.8)

Ind - Ind,y
f - et

d In 0, (2m)°® P [ 2In’o,
where
[ fiarad =1 2.9)

Example 27 Given d, = 1 pm and o, = 2. Find fld) when d = d,.
solution

1 (Ind - In dg)2
d)=———"—"— -——
f) dIn o, (2m)°5 P [ 21In? o,
- 1 exp| - dnl-In 1)?
11n 2 (2m)05 2 (In 2)2
= 0.576 pm™!

Letting dd = 0.1, the approximate fraction of particles lying within the range
of 0.95 to 1.05 pm would be 0.576 x 0.1 = 0.058 = 5.8 percent.

Log Probability Paper

Because a lognormal distribution can be expressed as a distinct math-
ematical function, it is possible to construct graph paper on which a
cumulative lognormal distribution plots as a straight line. An exam-
ple of such a plot is shown in Fig. 2.5. Data are plotted as cumulative
percentage of particles equal to or less than the largest size of each
size interval versus the upper size of that size interval. A straight line
on such a plot implies a lognormal distribution.

If a straight line can be fitted to the plot, then the median particle
diameter can be determined as being the 50 percent value on the plot
(remember that when you are plotting number distribution, geometric
mean and median for the number distribution are the same if there is
a lognormal distribution). The geometric standard deviation is deter-
mined by the ratio
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Figure 25 Log probability plot using the data from Example 2.1.

o = 84.13% diameter _ 50% diameter
& 50% diameter 15.87% diameter

Use of log probability paper is the simplest way to determine the
mean and geometric standard deviation provided the distribution does
indeed follow a lognormal shape or at least approximates it.

(2.10)

Other Definitions of Means

There are a number of different mean or median values which can be
defined for a particle size distribution. These means or medians are
useful depending on where the data came from or how the data are to
be used. For example, the diameter of average mass (volume) can be
defined as representing the diameter of a particle whose mass (vol-
ume) times the number of particles gives the total mass (volume) of all
the particles. Similarly, the diameter of average surface represents
the diameter of a particle whose surface times the number of particles
gives the total surface.

Choice of which average diameter to use in a given situation de-
pends on how the diameter was measured or how it is to be used. For
the case where aerosol mass is measured and the fractions collected
are associated with specific particle diameters, the resulting average
value is the mass median diameter. In studying chemical reaction
rates, the volume-surface mean diameter may be more important than
just the arithmetic mean or geometric number mean.
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Table 2.1 gives definitions for various “average” diameters. For a
lognormally distributed aerosol the different diameters defined in Ta-

ble 2.1 can be related by the equation (Raabe, 1971)

d, = d exp (p In® o)

TABLE 2.1 Definitions for Varlous “Average’” Diameters

(2.11)

Indicated diameter

Symbol

Definition

Description

Mode

Geometric mean

Arithmetic mean

d of average surface

d of average volume
(mass)

Surface median di-
ameter

Surface mean diam-
eter (Sauter diame-
ter)

Volume median di-
ameter (mass)

Volume mean diam-
eter (mass)

do
p=-1

PGS

p =n£.5

p=35

d at maximum n;

log' 1(2"-,- lOg d,/ Zn.)

Znd/f>n;

\/Snd¥Zn;

\3/ SndifEn;

log™*CGnd? log d;/Znd?

Snd?Znd?

log'CGnd?® log d;/Znd®)

2nd;‘fZnd?

p values assume a lognormal distribution.

Di ated
with the maximum
number of particles
in a distribution
The Znth root of the
product of all parti-
cle diameters, also
for a lognormal dis-
tribution the me-
dian diameter

The sum of all di-
ameters divided by
the total number of
particles

The diameter of a
hypothetical parti-
cle having average
surface area

The diameter of a
hypothetical parti-
cle having average
volume or mass
The geometric mean
of the particle sur-
face areas or for a
lognormal distribu-
tion the area me-
dian diameter

The average diame-
ter based on unit
surface area of a
particle

The geometric mean
of particle volumes
(mass) or for a log-
normal distribution
the volume (mass)
median diameter
The average diame-
ter based on the
unit volume (mass)
of a particle
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where p is a parameter which serves to define the various possible di-
ameters. Values of p which are associated with the different diameters

are listed in Table 2.1.

Example 2.8 Given the particle size distribution shown in the table below, com-
pare values for different diameters, using the definitions in Table 2.1 with val-

ues computed with Eq. 2.11.

Size Distribution Data and Computations

d fid) (1) (2) 3) 4) 6) 6) (7
0.12 2 0.240 0.029 0.003 0.000 - 1.842 - 0.027 - 0.003
0.17 5 0.850 0.144 0.025 0.004 - 3848 -0.111 - 0.019
0.24 14 3.360 0.806 0.194 0.046 - 8.677 - 0.500 - 0.120
0.32 60 19.200 6.144 1.966 0.629 - 29.691 - 3.040 - 0973
048 100 48.000 23.040 11.059 5308 - 31876 - 7.344 - 3.525
0.68 190 129.200 87.856 59.742 40.625 -31.823 -14.716 - 10.006
1 250 250.000 250.000 250.000 250.000 0.000 0.000 0.000
14 160 224.000 313.600 439.040 614.656 23.380 45.826 64.156
1.9 110 209.000 397.100 754.490 1,433.531 30.663 110.693 210.317
2.6 70 182.000 473.200 1,230.320 3,198.832 29.048 196.365 510.550
3.6 28 100.800 362.880 1,306.368 4,702.925 15.576 201.871 726.736
5.1 10 51.000 260.100 1,326.510 6,765.201 7.076 184.039 938.5699
7.2 1 7.200 51.840 373.248 2,687.386 0.867 44.444 319.998

1,000 1,224.850 2,226.740 5,752.9656 19,699.144 - 1.156 767.501 2,755.709

1) -d f@)

@) -d* f(d)

(3) -d® f(d)

@) ~d* f(d)

(5) ~-fd) logd
6) ~f(d) & log d
(D -fd) d®log d

Results
Definition Computed from data From Eq. 2.11

Count mean 1.22 1.21
Geometric mean 1.00 1.00
Diameter of average mass 1.79 1.76
Diameter of average area 1.49 1.46
Area median 2.19 2.13
Mass (volume) mean 3.42 3.76

Figure 2.6 shows the relative location of each of the diameters com-
puted in Example 2.8 on a typical lognormal distribution plot.
Equation 2.11 is a more general form of a well-known relation-
ship used for converting particle number measurements to mass mea-
surements and vice versa known as the Hatch-Choate equation

(Drinker and Hatch, 1954).
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Count mode (0.68)

| dg =1.0 |
Geometric mean (1.00) { Oy =185 |

Count mean (1.21)

Diam. of avg. area (1.46)

>
(8]
S l Diam. of avg. mass (1.76)
3. Area median (2.13)
Q Area mean (2.58)
Lt l V'olume median (3.11)
1 l lVolume mean (3.76)
o (I 2 3 4 5 €

Diameter, um
Figure 26 Example of lognormal distribution.

In its original form the Hatch-Choate equation for conversion of
number to mass is given by
log dpyma = log d, + 6.9 log’ o, (2.12)
where d__ is the mass median diameter and for surface median di-
diameter d .4
log d e = logd, + 4.6 log® o, (2.13)

These equations can be derived from Eq. 2.11. It is important to note
that o, will be the same regardless of the definition of diameter used.
That is, with a lognormal distribution o, will be the same whether
number, surface, or mass median diameters are being measured.

Example 2.9 Given a lognormally distributed aerosol with a geometric mean
diameter of 1.6 pm and a o, of 2.3, what are the surface-area median diameter
and the mass median diameter of this aerosol?

Using the Hatch-Choate equation for surface median diameter gives

log dema = log dg + 4.6 log” 0,
= 0.176 + (4.6)(0.362)
=0.176 + 0.602 = 0.778
dgma = 6.0 pm

Mass median diameter will be the same as volume median diameter (since par-
ticle density cancels in computing the means). Thus we can use the Hatch-
Choate relationship directly:
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logdyma = logd; + 6.9 log? oy
= 0.176 + (6.9)(0.362)2
= 1.080
dypa = 12.0 pm

Note that this result can also be found by using Eq. 2.11. With a lognormal dis-
tribution, the volume or mass median diameter will always be greater than the
surface median diameter which will in turn be greater than the number median
diameter.

Problems
1 Given the following data:

Size interval, pm Number
0.1-0.5 120
0.5-0.8 380
0.8-1.4 146
14-2.7 96
2.7-5.6 53
5.6-8.9 22
8.9-12.6 8

Construct a histogram showing number per unit size interval for each size in-
terval. Show that the area of each block is proportional to the number of par-
ticles represented by that block.

2 Using the data in Prob. 1, compute the mean particle diameter and stan-
dard deviation of this distribution.

3 Using the same data, compute a geometric median size and geometric
standard deviation. What would be the numerical value of the geometric stan-
dard deviation if the particles were all the same size?

4 With the data given in Prob. 1, plot the number distribution function An/
(ng A log d) and the mass distribution function Am/(m A log d) as a function
of the logarithm of the particle diameter. Assume all particles within a size
interval are spheres having a diameter equal to the midpoint of the size in-
terval. The density of the particles equals 1 g/em®.
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5 Plot the data from Prob. 1 on log probability paper. Find the line of best fit
for these data, and then determine the geometric mean and geometric stan-
dard deviation from this line.

6 Using the Hatch-Choate equation, compute the mass median diameter
from the information developed in Prob. 5. If the aerosol contains 1 million
particles per cubic foot and the particle density is 1 g/cm®, find the aerosol con-
centration in micrograms per cubic meter.

7 Show that the Hatch-Choate equations are just special cases of the general
equation for lognormal distributions, Eq. 2.11.

8 Show that the integral of fix) for a lognormal distribution (Eq. 2.8) does
equal 1 when flx) is integrated over the limits of zero to infinity.
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Fluid Properties

An aerosol is a suspension of particles in a gaseous medium. Without
the medium there would be no aerosol. The medium acts to restrain
random particle motion, supports the particles against the strong pull
of gravity, and in some cases acts as a buffer between particles. It is
impossible to properly study aerosol behavior without first consider-
ing the medium in which the particles are suspended.

Medium behavior can be visualized in two ways. First, it can be con-
sidered to be a large collection of small spheres (molecules) that are in
random motion with each other but may be in ordered motion overall.
A general treatment of matter from a molecular point of view is called
statistical mechanics, and the nonequilibrium gaseous portion is re-
ferred to as kinetic theory.

A second way to visualize gas behavior is by considering the gas to
be a continuous medium, i.e., similar to some sort of interlocking
syrup such as molasses or water. Study of medium properties in this
case is known as fluid dynamics or for air aerodynamics. In the first
case, the microscopic (small) properties of the gas are important. In
the second, it is the macroscopic (large) properties which are of inter-
est. Since aerosol particles can span the range from near-molecular
sizes up to hundreds of micrometers, the gas in which the particles are
suspended must be considered both from a molecular point of view and
as a continuous medium.

In studying aerosols it is important to develop in one’s mind’s eye a
picture of the process taking place. By visualizing the problem (even if
it is in a simplified form) it is easier to find a method of solution, since
most problems are more difficult to set up than they are to solve, once
stated. To carry out this visualization, one must have an understand-
ing of the physical phenomena that come into play and a means for
estimating their effect. Thus when one is considering a pitched base-
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ball, it is only necessary to visualize how hard the ball is thrown and
whether any spin is imparted to it. If this baseball were 1 pm in di-
ameter, it would also be extremely important to consider the proper-
ties of the air through which the baseball travels. Why? Because
the medium looks different to the baseball-sized baseball than to the
micrometer-sized baseball. In this chapter various properties of the
medium (usually air, but it could be any other gas) are discussed from
both a microscopic and a macroscopic viewpoint, so that visualization
skills can be enhanced and important medium properties introduced.

Kinetic Theory

The following represents only the briefest discussion of kinetic gas
theory. For more information there are many good texts on the subject
[e.g., see Ladd (1986), Barrow (1973), or Daniels and Alberty (1979)].
In considering a gas from the molecular point of view, three main
assumptions can be made initially (Daniels and Alberty, 1979):

1. The gas volume of interest contains a very large number of mole-
cules.

2. The molecules are small compared to the distances between them
and are in a state of continuous motion, traveling in straight lines
between collisions.

3. The molecules are spherical and do not interact with each other ex-
cept by elastic collisions. Elastic collisions represent no energy loss
due to rearrangement of the interior of the molecule.

With these assumptions it is possible to simplify molecular behavior
to a point where the gas can be treated statistically.

Example 3.1 Determine the number of molecules in 1 cms of air at 760-mmHg
pressure and 20°C.
Let V = volume of gas occupied by 1 mol = 22.4 L at standard conditions.
For 20°C this volume must be increased in proportion to the increase in abso-
lute temperature.
Zero degrees Celsius on the absolute scale is 273 K. Thus
278° + 20°
Ve = 22-4( 75

then, since the number of molecules in 1 mol is 6.02 x 1023, i.e., Avogadro’s
number N,

) =2404L

Na _ 6.02 x 10%
V. 2404 x10°

Example 3.1 illustrates the large number of molecules that are
present in even a fairly small volume of gas. Thus the first assumption

= 2.50 x 10'9 molecules/cm?®
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holds. In dealing with very low pressures (small numbers of molecules
per unit volume) or small volumes, statistical assumptions may not hold;
in these cases it is important to consider the medium properties quite
carefully before applying any generalities about aerosol behavior.

Example 3.2 Assuming all molecules are regularly spaced within a 1-cms vol-
ume, determine the average distance between them.
If there are 2.50 x 10'® molecules per cubic centimeter, then there would be
one molecule for each
1 3

—_— cm
2.50 x 10'°

=4.0 x 10720 ¢m3

This represents a cube surrounding a single molecule. The length of one side of
the cube or the distance between two molecules is

Distance = (4.0 x 10~20)13
=842x 10 "cm
= 3424

Typical molecular diameters for gas molecules range from about
2 to 5 A. Hence it can be concluded that the second assumption holds,
since even with this simplistic analysis the average distance between
molecules is at least 10 times the molecular diameters.

For aerosols, the smallest particle diameters are about 0.005 pwm, in-
creasing to 100 pm or so (50 to 1,000,000 A). At the smallest sizes,
aerosol particles begin to approach some very large molecules in size.

Gas Behavior

Some of the basic properties of gases can be deduced by using fairly
simple logic. Since this same sort of reasoning is used later to deduce
aerosol properties, it is instructive here to give two examples of the
types of thought processes that yield great insight into physical phe-
nomena.

Molecular speeds (Bernoulli)

This is a very simple approach to the question of how fast the mole-
cules are moving in a gas.

Let N molecules be enclosed in a cubical box, as illustrated in Fig.
3.1, the length of each edge being L. We assume that one-third of the
molecules move back and forth so that they strike face A, one-third
move in a similar manner so that they strike face B, and one-third
move similarly so that they strike face C.
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— | ————]

Figure 3.1 Box envisioned for molecular speed estimates.

After a molecule strikes one of the faces, say, face B, it must travel
a distance 2L before it strikes face B again. Therefore it makes C/(2L)
hits per unit time, where C is the velocity of the molecule. If the mass
of the molecule is m, at each hit the molecule imparts a momentum of
2mC. (The factor 2 comes from the molecular velocity changing from
+Cto -C)

The change in momentum per unit time, dp/dt is the change per hit
times the number of hits:

dp _ C\ _mC?
D - 2mC(2L) = @.1)
The total momentum transferred to face B in unit time is

NmC?

3L (3.2)

Newton’s second law of motion states that force is proportional to the
rate of change of momentum. Therefore the total momentum trans-
ferred to the wall per unit time is equal to the force acting on that
wall.

_1Nm(C?
=3 L 3.3
2 2
Pressurep = force _ NmC” _ NmC (34a)

area 812 3V

where V is the volume of the box.
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Since Nm/V is the density p of the gas,

p= E;-pC2 (3.4b)

or

C- (3?”)"2 3.5)

Thus it is possible to compute the average speed of gas molecules
merely from a knowledge of the pressure p and gas density p. For hy-
drogen under standard conditions, C = 1696 m/s, approximately the
speed of a bullet. This simple derivation is reasonably accurate, even
though the assumption is made that all molecules are traveling at the
same velocity. Often simplifying assumptions permit the parameters
in an equation to be identified, even if the values of the constants may
be somewhat inaccurate.

Example 3.3 Compute the estimated speed of an “air” molecule at 20°C and nor-
mal pressure.

=1.21 x 1073 g/em®
Atmospheric pressure = 760 mmHg
= 1013.25 mbar

[, (1013.25 x 10%)]"2

c
1.21 x 1073

= (2.51 x 10%)V2

= 502 x 102 cm/s

The derivation presented above gives a reasonably close estimate of actual av-
erage molecular velocities, despite its obvious simplifications.

In actuality, molecular velocities are not all the same. At any time
some molecules are moving much faster than the average while others
are moving more slowly than the average. For a perfect gas the veloc-
ity distribution (in one dimension) is given by the Maxwell-Boltzmann
distribution function,

-mu?

1/2
Av) dv, = (#) exP(_2TT_) dv, (3.6)
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A plot of this equation is shown in Fig. 3.2a. The & is Boltzmann’s

constant: £ = 1.38 x 10 '€ er, erg/K.
The most probable velocity in the x direction is zero with positive

and negative velocities having equal probabilities.

Example 3.4 Find the most probable value of flv,) for an “air” molecule. Assume
normal temperature and pressure.
The most probable value of flv,) occurs when v, = 0. Hence

Aoy = (2m |2 o [ 205602 x 10% T2
x 2wkT (2m)(1.38 x 10~16y293)

=138 x 1075

Although Eq. 3.6 represents molecular behavior in a single direc-
tion, when all three directions are taken into account simultaneously,
the probability that an arbitrarily selected molecule will have a veloc-
ity between v and v + dv is

2

3/2
flv)dv = (#) exp( kT ) 4mv? du 3.7

Equation 3.7 says that the ptobability of having zero velocity is
zero. That is, there is no chance that at any time a molecule will com-
pletely stop in its motion. Figure 3.2b shows a plot of Eq. 3.7 for air.

Frequency

0

Velocity in One Direction, }',
Figure 3.2a One-dimensional Maxwell-Boltzmann velocity distribution.
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Frequency —

Velocity —»
Figure 3.2b Three-dimensional Maxwell-Boltzmann velocity distribution.

There are several ways in which the representative velocity of the
ensemble of molecules can be defined.
The arithmetic mean velocity is

- _ L _ %‘ 05
7= f uf(w) dv = (1Tm 3.8)

The most probable velocity is obtained by taking the derivative of flv)
dv with respect to v and setting it equal to zero.

0.5
v, = (%T) 3.9)
The root-mean-square velocity is
— © 3ET\05
= 0.5 _ 2 05 . fOR1
Uy = (0) [ . fow dv] ) (3.10)

Example 3.5 Compute the most probable velocity of an air molecule at standard
pressure and 20°C. Remember that m = MW/N ,.

= (%15

% = ( m )
_ [2(1.38 x 10~16293)]°5
L 482x107%

= 40,972 cm/s
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Each average value of velocity can be used to best describe some
particular property of the ensemble of molecular velocities. For exam-
ple, in a gas all molecules have the same average kinetic energy.
Hence, the root-mean-square velocity is the best estimate of velocity
to use for computing parameters that are a function of kinetic energy

= _mv® _ m3kT _ 3kT
E="—"—=——=— 3.11
2 2m 2 ( g
The term E is the average energy of a molecule in a gas. Interestingly,
an aerosol particle suspended in the gas will acquire this same aver-
age kinetic energy from the molecules in the gas.

Example 3.6 What is the average kinetic energy of a 1.0-pm unit-density
sphere which is in equilibrium with its surroundings? The air temperature is
20°C.

—  8kT (3X1.38 x 10716)(293)

E = — =

2 2
=6.07 x 10 ¥ erg

Mean free path

The mean free path is defined as the average distance a molecule will
travel in a gas before it collides with another molecule. This is related
to molecular spacing but takes into account the fact that all molecules
are in a constant state of motion and thus are more widely separated
than they would be if they were firmly bound to each other. Mean free
path can be estimated by using the following simple argument.

Consider a molecule traversing the centerline of a tunnel whose di-
ameter 20 is equal to twice the molecule diameter o (Fig. 3.3). The
molecule will collide with all molecules whose centers lie within a dis-
tance o of the centerline of the tunnel and will miss all others.

If a molecule travels 1 cm, it sweeps out an imaginary volume of
wo?(1). With n molecules per unit volume, the number of molecules
struck per centimeter is wo®n, and the mean free path is then the re-
ciprocal, or 1/(nwo®). If it is assumed that the molecular velocities are
distributed according to maxwellian theory rather than having a sin-

v/
Figure 3.3 Schematic of tunnel to estimate mean
free path.
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gle value, the mean free path equation is decreased by a factor of V2, or

1
AN=—F7—"— 3.12)
V2nmo?
Typical molecular diameters for various gases are given in Table 38.1. The
value given for air represents an average value considering the relative
proportions of oxygen, nitrogen, and trace gases in standard dry air.
Example 3.7 1

x -
V2(2.688 x 10'%(w)(3.617 x 10~8)2

=6.40 x 1076 cm = 0.064 pm
This is the mean distance between collisions at 0°C. At 20°C this distance would be

T _ (0.064)(273 + 20)

A= )\07_'0 = 273 = 0.0687 pm

The values for mean free path calculated by using Eq. 8.12 represent
approximations because measurements of typical molecular diameters
are not very accurate.

Accurate measurements of the mean free path of air molecules have
been compiled by Jennings (1988), and these values are presented in
Table 3.2. Because the mean free path is dependent on gas density,

TABLE 3.1 Typical Molecular Diameters

Gas o A
H, 2915
N, 3.681
0, 3.433
Air (dry) 3.617

source: R. B. Bird, W. E. Stewart, and E. N.
Lightfoot, Transport Phenomena, Wiley, New York,
1960, p. 744.

TABLE 3.2 Mean Free Path in Alr, pm

Relative Humidity
Temperature, K 0 50 100
288.15 0.06391 0.06389 0.06386
293.15 0.06543 0.06544 0.06548
296.15 0.06635 0.06538 0.06647
298.15 0.06691 0.06701 0.06714

Pressure = 1.01325 x 10° Pa

source: After Jennings (1988).
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Jennings considered conditions of both dry and moist air since at the
same temperature and pressure there will be density differences be-
tween these two cases, depending on the amount of moisture present.

The mean free path for dry air at other temperatures and pressures
can be determined from the relationship

- ()"
== S (3.13)
Ao (on PN\T,

where the subscript 0 represents a standard temperature, pressure,

and viscosity. If the effect of temperature on gas viscosity is consid-
ered to be proportional to the square root of the temperature ratio,

then Eq. 3.13 becomes
A _9)(_2)
= (P T (3.14)

i.e., the mean free path of a gas increases directly with the absolute
temperature and inversely with the pressure.

Gas Viscosity, Heat Conductivity,
and Diffusion

The three properties of viscosity, heat conductivity, and diffusion rep-
resent, respectively, the transfer of momentum, energy, and mass
within a gas. The gas diffusion coefficient indicates the relative ability
of one gas molecule to move with respect to its surroundings—the
greater the value of the diffusion coefficient, the more rapid this
movement. The diffusion coefficient D, , for a gas of species 1 diffusing
into a gas of species 2 can be estimated from the expression

1 Urme1
87 nlo'u"’\/é + nyoRi(1l + my/my)'?

D,, (3.15)

where v,,,, is the root-mean-square velocity, n, and n, are the number
of molecules per cubic centimeter of species 1 and 2, and oy, and oy,
are the collision diameters of molecule 1 with molecules 1 and 2.

Example 3.8 Show that for self-diffusion (a gas diffusing into itself) Eq. 3.156
can be simplified to
AUrms

3
Letting n; = n/2, n, = n/2, and oy, = 0y, = o, Eq. 3.15 reduces to

D:
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Dyg = 1 Urmsl _ Urms
T 3T (n/2)02V2 + (n/2)0%(2)2  3V2nma?
Ay,
Do = ;m = (3.16a)

If three dimensions are considered, the factor Vs above is replaced in
Egs. 3.15and 3.15a by 3V/2x/64 = 0.208. From these equations it isseen
that the diffusion coefficient of a gas varies inversely with pressure if
the temperature is held constant; i.e., the diffusion coefficient varies
in proportion to the mean free path.

The viscosity of a gas can be estimated from the expression (Alberty
and Daniels, 1979):

_ 5(rmkT)*s
" 16mo?

The term m represents the mass of a single molecule. The equation
does not include a pressure term or depend on molecular concen-
tration. This is confirmed with real gases at moderate pressures and
normal temperatures where the viscosity is essentially independent of
pressure.

Jennings (1988) reviewed the literature on viscosity with regard to
compiling exact measurements for the mean free path of air mole-
cules. He considered both dry air and moist air. At 20°C Jennings
gives a value of 1.8193 x 10™* cP for the viscosity of dry air,
1.815 x 10™* cP for air at 50 percent relative humidity, and
1.8127 x 10* cP for air at 100 percent relative humidity. These fig-
ures indicate that for most aerosol work, a value for viscosity at 20°C
of 1.82 x 10™* cP is reasonably accurate regardless of the humidity.

According to Perry and Chilton (1973), the relationship of the vis-
cosity of a gas at two different temperatures is given by

n (3.16)

" ( T )3/2 T, + 1.47T,

e \To) T +147T,
where T}, represents the normal boiling point of the gas. For air over

the temperature range of 0 to 100°C, Eq. 3.17 can be approximated by
the expression

3.17)

T \05
[
— = | (3.18)
Ko (To)

with a maximum error no greater than 0.11 percent.



42  Chapter Three

From Eq. 3.18 it can be seen that viscosity will increase as the tem-
perature increases! This is just the opposite of what is observed for the
behavior of typical liquids (e.g., with motor oil the viscosity increases
as the temperature decreases).

Example 3.9 Determine the viscosity of helium gas at 20°C. Use 1.90 A as the
molecular diameter of helium.
Using Eq. 3.14, we get
~ 5(,“,ka)0.5
16ma?
5[(3.14)(4/6.02 x 10%°)(1.38 x 10~16)273 + 20)]°-5
(16)(3.14)(1.90 x 10~8)2

[

= 253 P

For the aerosol scientist the main point to remember about the me-
dium from a kinetic theory point of view is that mass, energy, and mo-
mentum can be transferred within the gas—mass by diffusion, energy
by heat conduction, and momentum by viscosity.

Mean free path indicates the transfer of momentum, energy, or
mass a distance A. In the steady state, the net transport equals zero.
These forces, or transfer functions, always act to bring a system back
to the steady state. This implies (1) diffusion from high concentration
to low concentration, (2) heat conduction from hot to cold, and (3) mo-
mentum flow—mass motion energy to molecular motion (hence ac-
companied by a rise in temperature of the gas).

Problems

1 How many molecules of a gas are there per cubic centimeter at 20°C? At
100°C?

2 At 20°C the vapor pressure of water is 17.5 mmHg. How many molecules of
H,O are there per cubic centimeter of air when the relative humidity is 50
percent and T = 20°C?

3 Derive the most probable gas molecule velocity.

4 Derive the arithmetic-mean gas molecule velocity.

§ Derive the root-mean-square (rms) gas molecule velocity.
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6 What is the magnitude of the rms velocity associated with a 0.1-pm-
diameter unit-density spherical aerosol particle if it is in thermal equilibrium
with its surroundings?

7 Compute the mean free path of a hydrogen molecule in hydrogen at 0°C,
using simple theory and then using a maxwellian velocity distribution.

8 Using the equation given for viscosity, compute the viscosity of air at 20°C.
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Macroscopic Fluid Properties

Reynolds Number

So far the properties of the medium have been discussed from a mo-
lecular point of view. Generally, however, the medium can be thought
of as a continuum, i.e., as a fluid where all molecules act in harmony
with each other. This is the way one normally pictures a gas or liquid,
and with this view of the medium the rules of aerodynamics can be
applied.

Suppose it is desired to visualize the flow around a 1-pm sphere by
studying the flow around a 1-cm sphere. One could ask, Under what
conditions is it reasonable to assume that a 1-um-diameter sphere
moving in a continuous medium will behave in a manner similar to a
1-cm sphere moving in the same medium? Or more generally, under
what conditions will geometrically similar flow occur around geomet-
rically similar bodies? The answer, fundamental to fluid mechanics, is
that in similar fields of flow, the forces acting on an element of eitl:er
body must bear the same ratio to each other at any instant.

If the medium is considered incompressible and neglecting gravity,
the main forces present are the inertial force due to the acceleration or
deceleration of small fluid masses near the body and the viscous fric-
tion forces which arise due to the viscosity of the medium. For simi-
larity these forces must be in the same ratio at any instant. Then

Inertial force _ pmv¥d _ pmtd
Viscous force  |,v/d? no

where v is the relative velocity between the fluid and the body, p,, is
the density of the medium, p. is the medium viscosity, and d is the
body (or particle) diameter (Prandtl and Tietjens, 1957). The result is
Reynolds number, abbreviated Re, a dimensionless number which de-
scribes the type of flow occurring around the body.

Kinematic viscosity v can be defined as

(4.1)
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v="t 4.2)
Prm
Then
Re = vd (4.3)

is a convenient form for computing the Reynolds number in air at nor-
mal conditions. For air at normal pressure and 20°C, the kinematic
viscosity v is equal to 0.151 cm?/s.

Example 4.1 A 1-in diameter sphere moves through air with a velocity of 10
in/min. Find its Reynolds number.

_vd _ (10 x 2.54/60)(1 x 2.54)
v 0.151

It is also possible to derive the Reynolds number by dimensional
analysis. This represents a more analytical, but less intuitive, ap-
proach to defining the condition of similar fluid flow and is essentially
independent of particular shape. In this approach, variables in the
Navier-Stokes equation (relative particle-fluid velocity, a characteris-
tic dimension of the particle, fluid density, and fluid viscosity) are
combined to yield a dimensionless expression. Thus

Re =713

vidPp,,u® = FPL°T° = 1

Leta=1
(25 (&) -

Then
y+3=0
1+B-4y-25=0
2y+8-1=0
B=1
y=1
5= -1

50
Re=vdp'"
"

Table 4.1 gives typical values for viscosity, density, and kinematic
viscosity for air at 0 and 20°C.
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TABLE 4.1 Useful Constants for Air*

Property 0°C 20°C Units
Viscosity 1.76 x 1074 1.82 x 107 P = g/cm - 8)
Density 0.001295 0.001206 = glem®
Kinematic viscosity 0.136 0.151 St = cm?s

*P = 760 mmHg.

The Reynolds number is useful in describing the type of flow that is
taking place. At high Reynolds numbers, inertial forces will be much
greater than viscous forces, while at low Reynolds numbers the oppo-
site is true. Laminar or streamline flow is the result of the predomi-
nance of viscous forces. Thus at low Reynolds numbers the flow is
laminar. Streamlines persist for great distances both upstream and
downstream of the body, and little mixing takes place. When inertial
forces predominate, streamlines disappear and the flow is turbulent.
With turbulent flow there is rapid and random mixing downstream of
the body, and streamlines are relatively undisturbed in front of the
body until they almost reach the body surface. In the range where the
Reynolds number increases from laminar flow to turbulence, the flow
is said to be intermediate since at any time it can either be laminar or
turbulent. Laminar flow can also be known as Stokes’ flow or viscous
flow.

Reynolds number can be applied to either a fluid flowing around a
body or a fluid flowing inside a pipe. The transition from laminar to
turbulent flow occurs at different Reynolds numbers for these two
cases. The Reynolds numbers at which different flow conditions pre-
vail are tabulated in Table 4.2. Since v is the relative velocity between
the medium and the body, the Reynolds number is the same whether
the body is moving through a stationary fluid or the fluid is flowing
around a stationary body.

Schematic representations of these different flow conditions are il-
lustrated in Fig. 4.1. As a gas enters a long pipe, turbulence will de-
velop within the pipe if the Reynolds number exceeds the values given
in Table 4.2.

TABLE 4.2 Values of Re for Various Conditions of Fiow*

A sphere of diameter Fluid flowing in a

d in a still fluid pipe of diameter d
Upper limit, laminar flow 1 2100
Intermediate region 1-1000 21004000
Turbulent flow > 1000 > 4000
*It should be kept in mind that these values are approximate.
UNIVERSITY
OF _BWSTOL

LiBRARY
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(a) Low Reynolds number
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(b) Intermediate Reynolds number

(Turbulent)

(c) High Reynolds number
Figure 4.1 Sketch of flow types.

Reynolds number is a fundamental parameter used to describe the
fluid properties associated with an aerosol. Equations describing the
resistance offered by a particle depend on whether the flow is laminar
or turbulent, and the Reynolds number provides knowledge of the type
of flow present.

Example 4.2 An aerosol comprised of 1.0-pm-diameter spheres flows through a
16-in-diameter duct with a velocity of 3500 ft/min. Determine the Reynolds
number of the air flowing in the duct and of the particles in the air.

Re in duct = (duct diameter)(relative (;'cil;i:ity of air in duct to duct)

_ (16 x 2.54)(3500)(30.5/60)
- 0.151

=4.79 x 10°




This is clearly turbulent flow.

(particle diameter)(relative velocity of particles to air)

Re of particles = 0.151

_ (1 x107%0) _ 0
T 0151

Since the particles are moving at the same velocity as the air in the duct, their
Reynolds number is zero.

Drag

We can now consider the resistance offered by the medium to the mo-
tion of an aerosol particle. Some of the earliest interest in the motion
of a body moving through a fluid arose from the desire to know where
a cannonball, once fired, would land.

This problem can be treated by using the approach of Newton. Sup-
pose the medium is composed of a large number of particles which
have mass but no volume. These particles are everywhere at rest and
are not connected. A body moving through this medium would expe-
rience impacts from the particles making up the medium and would
impart momentum to them. The mass of particles impacting per sec-
ond on the body is p,,Av, where p,, is the density of the particles per
unit volume (and thus also the density of the medium), A is the cross-
sectional area of the body normal to the direction of motion, and v the
body velocity. Each impacting particle is given some velocity v’ on im-
pact which is proportional to v. Thus the momentum “created” per sec-
ond is p,, Avv’.

Since the time rate of change of momentum is a force, this is also
equal to the resisting force of the medium to the motion of the particle,
often called the drag, or

Fp = pAvv’ = kp,Av?

where & is a constant. The momentum transferred to the medium ac-
tually depends on whether the impacts of the gas molecules on the
body are elastic or inelastic. This is reflected in the value used for the
constant k. Also early estimates of k& were incorrect because only the
cross-sectional area of the body was considered, not the entire surface
area. Depending on the type of flow, molecules can receive or impart
momentum to the rear of the body, and the sides can have an influ-
ence so that the entire shape of the body is important, and not just its
projected area.
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There are three kinds of resistance which can be associated with the
motion of a body as it passes through a medium. Deformation or vis-
cosity drag represents the force necessary to deform the medium so
that the body can pass through it. This deformation can occur at great
distances both up- and downstream of the body. A second source of
drag is frictional resistance which occurs at the surface of the body.
The third type of resistance, pressure drag, represents compression of
the medium. These latter two types make up the “skin friction” of the
body. At small Reynolds numbers, deformation drag predominates,
and forces that act over the entire body surface must be taken into ac-
count. At large Reynolds numbers, frictional resistance and pressure
drag predominate. The drag in this case is primarily associated with
the cross-sectional area normal to the fluid flow.

In cases involving high Reynolds numbers, Newton's approach
(given above) agrees with experimental evidence, even though the un-
derlying assumptions implying a constant value for k are wrong.

It is customary to write the drag equation as (Sutton, 1957)

F, = (some constant) Ap,,v®

If a v%/2 term (similar to the velocity head term in Bernoulli’s equa-
tion) is used, then
F, = CpAp,v¥2

where the constant Cp, is now formally known as the coefficient of
drag, or drag coefficient. For a sphere of diameter d,

A=T
4d2

and then

Cprp,dv?
Fp= _D_S._

Example 4.3 In turbulent flow the coefficient of drag is a constant with a value
of about 0.4. What is the resisting force offered by air to a 6-in cannonball mov-
ing through the air with a velocity of 500 ft/s?

4.4)

_ Cpmpmd®?

Fp 8

_ (0.4)(3.14)(0.0012)(6 x 2.54)*(500 x 30.5)
- 8

=1.02 x 107 dyn
It was originally thought that for a given shape, body position, and
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relative velocity, Cp would be a constant. This is not the case, and it is
not surprising in view of the many ways in which resistance to flow
can arise, depending on the Reynolds number. The coefficient of drag
is a constant for a given shape and body position in those cases where
the total drag is predominantly pressure drag (high Reynolds num-
ber). It is not a constant when deformation drag predominates (low
Reynolds number).

Similarity of flow will occur around similarly shaped bodies in those
cases where the ratio of forces over the bodies’ surfaces is the same;
this is equivalent to saying that there will be similar resisting forces
when the Reynolds numbers of the two bodies are the same. But then
the drag coefficients for the two cases are also the same, i.e.,

CD = f(Re)

a statement which is true for each shape and body position. Figure 4.2
shows the relationship of Cp, versus Re for spheres. In some ranges of
Reynolds numbers, Cp can be determined analytically. In others, it
must be estimated empirically. For laminar flow (Re < 1),

24

Cp = Re (4.5)
1000 - ST = e
= ==Ft == = =T TR {351
ji=EE =i ST T
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§ 0.1 ’ - -_S s ——r s
S I SR =E
° 0.01|= : \\4\31 SEah
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Reynolds’ humber
Figure 4.2 Coefficient of drag for spheres.
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In the intermediate region (1 < Re < 1000) there are many empiri-
cal formulas for Cj, such as (Crawford, 1976; Orr, 1966)

= 2_4 0.687 4.6
Cp Re (1 + 0.15Re"*) (4.6)
Cp = Re%® for 2 < Re < 800 4.7
24 4
Co = 2o * Roo® (4.8)
18.5
CD = ReO.G (4'9)

Example 4.4 Compare values of Cp, as computed from Egs. 4.6 through 4.9 for
Re = 2. Which one is most nearly correct?

Estimated Values of Cp, from Eq.:
4.6 4.7 48 4.9
Re =2 14.90 9.90 15.18 12.21

The reported measured value for C,, for spheres with Re = 2 is 14.6. Equations
4.7 and 4.9 are not very accurate, but they can be useful because of their sim-
plicity. Where greater accuracy is needed, Eq. 4.6 or 4.8 should be used.

In the lower turbulence region (1000 < Re < 2 x 10°)
Cp =0.44 (4.10)
and in the upper turbulence region (Re > 2 x 10°)
Cp =0.10 (4.11)

Table 4.3 gives computed values_for Cp, for various values of Re based
on these different equations, compared to actual measurements of
drag coefficients for spheres.
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TABLE 4.3 Experimental and Computed Values of C,, as a Function of Re

Experi- Approximations

Re mental Eq. 4.6 Eq. 4.7 Eq. 48 Eq. 49

0.1 240 2474 44.3 248.6 73.6

0.2 120 126.0 31.3 126.8 48.6

0.3 80 85.3 25.6 86.0 38.1

0.5 49.5 52.5 19.8 53.0 28.0

0.7 36.5 38.3 16.7 38.8 22.9

1.0 26.5 27.6 14.0 28.0 18.5

2 14.6 14.9 99 15.2 12.2
3 10.4 10.6 8.1 10.8 9.57
5 6.9 70 6.3 7.14 7.04
7 5.3 5.4 5.3 5.52 5.76

10 4.1 4.2 443 4.26 4.7
20 2.55 2.61 3.13 2.67 3.07
30 2.00 2.04 2.56 2.09 2.40
50 1.50 1.54 198 1.57 1.77
70 1.27 1.30 1.69 131 1.45
100 1.07 1.09 1.40 1.10 1.17
200 0.77 0.81 0.99 0.80 0.77
300 0.65 0.68 0.81 0.68 0.60
500 0.55 0.56 0.63 0.55 0.44
700 0.50 0.50 0.53 0.48 0.36
1,000 0.46 0.44 0.44 0.42 0.29
2,000 0.42 0.35 0.31 0.33 0.19
3,000 0.40 0.30 0.26 0.29 0.15
5,000 0.385 0.26 0.20 0.24 0.11
7,000 0.390 0.23 0.17 0.21 0.09
10,000 0.405 0.20 0.14 0.19 0.07
20,000 0.45 0.16 0.10 0.15 0.05
30,000 0.47 0.14 0.08 0.13 0.04
50,000 0.49 0.12 0.06 0.11 0.03
70,000 0.50 0.11 0.05 0.10 0.02

source: R. H. Perry and C. H. Chilton, Chemical Engineers Handbook, 5th ed., McGraw-
Hill, New York, 1973, pp. 5-64.

Example 4.5 A particle of diameter d and density p settles under the influence
of gravity. What is its terminal settling velocity?

For terminal settling the drag force F), equals the force due to gravity Fg.
Hence

Fp=Fg

v2
mg = CDApm E
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for spheres

v

§4°@p -~ pmlg = Cp g d%om

o2 = 4d(Pp = pm)g
3Cppm

Unfortunately, Cp, depends on Re which depends on v.
To circumvent this difficulty, use the relationship

2,72, 2
vid®p,,
CDR2= D

[T}
then substituting for v? gives

CpRe? = Cp

dzpm2 [é de(Pp - pm)g ]
Pc2 3 3Cme

dsm =~ Pm
C,Re* =4 Pm(Pp ~ Pm)E

R 4.12)

And CpRe? can be computed from Eq. 4.12 since the v term has been
eliminated; from a plot of CpRe? versus Re (Fig. 4.3) a value of Re can

8 | |
T—— A
° |
.5 | e
g3l 4 | l//
2| 1. -
1 |/
ofF——— '

-1-05 0 056 1 156 2 25 3 35 4
Log Reynolds’ number
Figure 4.3 Plot of CpRe? versus Re.
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be found which yields v. This method, although crude, is valid for de-
termining settling velocities for any size particle in either a gas or a
liquid. For most aerosol particles a simpler method is available, as dis-
cussed in the next chapter.

Example 4.6 Determine the settling velocity of a 100-pm-diameter gold sphere
(p = 19.3 g/em®) when it settles in air and water.
The density of air is 0.0012 g/em®, so using Eq. 4.12 gives

3
9 _ 4d°%mpp ~ Pm)g

(100 x 10~4)3(0.0012)(19.3 - 0.0012)(980)
(1.82 x 1074)2

-4
"3

=918
From Fig. 4.3, CpRe? = 918 gives a value of Re = 19.95. Hence

Re =&
v

19.95(0.151
v =BV _ 19.95(0.181) 301.0 cm/s

For water, p,, = 1 and p. = 0.01 so that
4(100 x 107%3(1)(19.3 - 1)(980)
3 (0.01)2
= 239
Again, from Fig. 4.3, CpRe? = 239 gives a value of Re = 6.31. Hence

CDR82 =

Example 4.7 Given particle density and settling velocity, how can the particle
diameter be determined for a settling particle?
Again, equating forces,

Fg=Fp
o2
mg = CDAme
so that for spheres

302Cme
B 4g(Pp = pg)
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®
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Figure 4.4 Plot of C/Re versus Re.

The term Cp, can be eliminated by taking the ratio

Cp _Cpr  Cppdle, — pmlg

Re ~dvpn 3v3Cppm?
- 4Pg(9p ~ Pm) (4.13)
303"m2

Here Cp/Re can be computed from Eq. 4.13. By using Fig. 4.4 (a plot of Cp/Re
versus Re), Re can be found, which then yields d. For small particles settling in
the Stokes region, this involved process is not necessary.

Problems
1 Calculate the density of CO, at 20°C.

2 Calculate the Reynolds number of a 1-um spherical sand particle moving
in air at a velocity of 10 cm/s (assume NTP).

3 Calculate the Reynolds number of a 10-in ball moving in air at a velocity
of 10 cm/s. Is the flow around the ball laminar or turbulent?

4 Calculate the Reynolds number for air flowing through a 10-in-diameter
pipe at a velocity of 10 cm/s. Is the flow through the duct laminar or turbu-
lent?

5 A 10-pm-diameter particle settles in air with a velocity of 0.30 cm/s. If the
settling of this particle is to be modeled by a 1-in-diameter steel ball moving
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in glycerol (viscosity = 1756 cP), what should be the ball’s velocity in the glyc-
erol? (Density of glycerol = 1.26 g/cm®.)

6 Air flows through a 4-in-diameter duct at a rate of 100 ft®/min. Determine
whether this flow is laminar or turbulent within the duct.

7 A 10-pm-diameter particle falls in still air with a velocity of 0.30 cm/s. If
the drag coefficient is given by 24/Re, what is the force developed by the fall-
ing particle?

8 Using Eq. 4.8, calculate Cp,, CpRe?, and Cp/Re for Re values of (a) 0.8,
(b) 80, (c) 8000.

9 Using a plot of Cp/Re and CpRe? versus Re, find (a) the settling velocity of
a 200-um sand sphere (p = 2.65 g/cm®) and (b) the size of a water droplet that
settles at a velocity of 10 cm/s.
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Viscous Motion
and Stokes’ Law

Introduction

For the case of low-Reynolds-number flow (viscous flow) it is possi-
ble to develop an expression for the force resisting the motion of a
sphere moving through a fluid based purely on mathematical rea-
soning. This problem was originally solved by G. G. Stokes, and the
expression for force since has become known as Stokes’ law. For
those interested in the mathematics of this problem, Stokes’ deri-
vation is given in App. B. Although one doesn’t have to understand
the derivation to use Stokes’ law correctly, it helps to be aware of
the assumptions that were made in order to understand how devi-
ations from these assumptions can affect results of calculations
made by using Stokes’ law.

For Stokes’ solution, it was necessary to assume a continuous, in-
compressible, viscous, and infinite medium with rigid particles and
spherical particles. With these assumptions, Stokes found that the re-
sisting force exerted by air on a moving particle, equivalent to the
force exerted by moving air on a stationary particle, is

F = 3wmpvd (5.1)

where F is the force on the particle, in dynes, . is the viscosity of the
medium in poises, v is the relative velocity between the air and the
particle in centimeters per second, and d is the diameter of the sphere
in centimeters.

The best proof of the validity of Stokes’ law (although indirect) was
the Millikan oil drop experiment. Stokes’ law has been shown to give
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a reasonable approximation of the resisting force on spheres in many
other situations, and the only stipulation is that the assumptions
listed above not be violated.

Example 5.1 A 1-um unit-density sphere moves through air with a velocity of
100 cm/s. Compute the magnitude of the resisting force offered by the air. As-
sume T = 20°C and 760-mmHg atmospheric pressure.

F = 3mpvd
= 3(3.14)(1.82 x 1074X100)(1 x 107%)
= [g/(cm - s)l(cm/s)(cm) = g - cm/s?
=172 x 10"5dyn

Stokes' law becomes incorrect when assumptions used to derive it
cannot be met. It is possible in some cases to develop correction factors
broadening the conditions under which Stokes’ law is applicable. How-
ever, the assumptions may be so broad for the types of problems which
are of interest that corrections are not necessary or are impossible to
make. In any case, it is useful to examine each assumption in detail to
determine when it may or may not be valid.

Continuous Medium

When the diameter of a particle is very small, approaching the mean
free path of the molecules in the medium, Cunningham (1910) and
also Millikan (1910) showed that because the medium is no longer a
“perfect” continuum, the resisting force offered to the particle should
be smaller than that predicted by Stokes’ law. The difference in the
dependence of resistance on particle diameter corresponds to the con-
ditions prevailing at the two extreme particle ranges. For large parti-
cles the primary source of resistance is the viscosity of the medium,
whereas with small particles or with a highly rarefied medium, vis-
cosity is no longer important and the predominant resisting mecha-
nism is due to the inertia of the gas molecules which the particle en-
counters. As particle size decreases to near molecular size, the
resisting force offered by the medium becomes a function of the cross-
sectional area of the particle, consistent with Newton’s model for drag
(Millikan, 1923).

To correct for this effect, a factor, commonly known as the
Cunningham correction factor, slip, or Millikan resistance factor, de-
noted C,, must be introduced into the Stokes equation, yielding

_ 3wpud
C

<

F (5.2)




where

or

C.=1+Kn
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A+ Qexp (-g%)] (5.30)
| b

A + Qexp (— ﬁ)] (5.3b)

The term \ represents the mean free path of the gas molecules. The
ratio
2\
Kn = d
is known as the Knudsen number, being the ratio of the gas mean free
path to the particle radius. Values for the constants A, @, and b have
been subject to slight correction over the years so that depending on
the age of the reference cited, differences can appear. Table 5.1 lists
these constants as presented by several references, and Fig. 5.1 is a
plot of C, versus d using the different values of A, @, and b. These val-

TABLE 5.1 Definitions for Varlous Cunningham Correction “Constants™

Allen and Jennings
Constant Davies (1945) Fuchs (1964) Raabe (1982) (1988)
A 1.257 1.246 1.155 1.252
Q 0.400 0.418 0.471 0.399
b 1.100 0.867 0.596 1.100
A+Q 1.657 1.664 1.626 1.651
100 ; - ==
T b R E
T A fﬁtr; T
! [
B L l il
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LSS Figure 51 Variation of C, with
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ues are tabulated in Table 5.2. As can be seen, despite seeming dis-
similarities, the actual differences in the computed values for C, are
negligible.

The Cunningham correction factor C, is always equal to or greater
than 1. When d > 2), then C, can be approximated by the expression

C.=1+ % A) (5.4)

When d < 2\, then
C.~14+ %)-‘(A + Q) (5.5)

The Cunningham correction factor is an important correction to
Stokes’ law and should always be used when particles are less than 1
pm in diameter.

TABLE 5.2 Computed Values for C_ at T = 20°C

Allen and Jennings
Davies (1945),  Fuchs (1964), Raabe (1982), (1988),
d, pm A = 0.065 pm A=0065pm \=0.066 pm A = 0.066 pm

0.01 22.258 22.161 22.206 22.266
0.02 11.435 11.417 11.472 11.439
0.03 7.838 7.842 7.898 7.841
0.04 6.046 6.060 6.113 6.049
0.05 4.977 4.994 5.045 4.979
0.06 4.268 4.287 4.334 4.269
0.07 3.765 3.784 3.828 3.766
0.08 3.390 3.408 3.449 3.391
0.09 3.100 3.118 3.156 3.101
0.1 2.870 2.887 2.922 2.871
0.2 1.871 1.876 1.889 1.871
0.3 1.562 1.561 1.562 1.562
04 1.416 1.412 1.407 1.416
0.5 1.330 1.326 1.318 1.331
0.6 1.275 1.270 1.261 1.275
0.7 1.235 1.231 1.222 1.235
0.8 1.206 1.202 1.193 1.206
0.9 1.183 1.179 1171 1.183
1 1.164 1.161 1.153 1.164
2 1.082 1.081 1.076 1.082
3 1.055 1.054 1.051 1.055
4 1.041 1.040 1.038 1.041
5 1.033 1.032 1.031 1.033
6 1.027 1.027 1.025 1.027
7 1.023 1.023 1.022 1.023
8 1.021 1.020 1.019 1.021
9 1.018 1.018 1.017 1.018
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Example 5.2 Compute the Cunningham correction factor for a silica dust particle
(p = 2.65 glem®) having a diameter of 0.5 wm. Assume a spherical shape and 20°C.
From Eq. 5.3

A bd
C¢=1+% A+Qexp(—§)‘-)]

The gas mean free path (from Chap. 3) is 0.687 um, so

Cc=1+ w{l.%7 + 0.4exp[—

(110)0.5)
5 |

2(0.687)

=135

As mentioned earlier, the slip, or Cunningham correction factor,
represents the mechanism for transition from the continuum to the
molecular case. For large values of d, the resulting force F is propor-
tional to d whereas for small values of d, F is proportional to dZ.

Incompressible Medium

Air is compressible, but compression is not important for motion in the
Stokes region. This assumption can be considered to always be valid.

Viscous Medium

In the derivation of Stokes’ law, the assumption of a perfectly viscous
medium means that no inertial forces are considered. This was done to
linearize the Navier-Stokes equation. If these inertial effects are in-
cluded in a first-order approximation, it is possible to extend the ap-
plicability of Stokes’ law up to a Reynolds number of about 5. Then the
resisting force can be expressed as

F = 3mpvd(1 + %6 Re) (5.6)

Above a Reynolds number of about 5, Stokes’ law, even with this cor-
rection, is no longer applicable.

Example 5.3 A 100-pm urit-density sphere moves through air with a velocity
of 30 cm/s. Compute the resisting force offered by the air, in dynes. Assume nor-
mal temperature and pressure.

_dv _ (100 x 107%)(30) _
v 0.151 1.99

F = 3mpuud(1 + %6 Re)
= 3(3.14)(1.82 x 10~4)(30)(100 x 1074)[1 + %46 (1.99)]

= (5.15 x 107%Y(1.37) = 7.06 x 10™*dyn
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Infinite Medlum

In viscous flow, perturbations caused by a particle extend large dis-
tances into the medium. The presence of other particles moving
nearby will have the effect of reducing the resistance of the medium to
that particle by setting the medium near the particle in motion. Hence
an ensemble of particles will settle faster than they would as isolated
entities, and when two equal-sized particles fall along the same axis,
the upper of the two will fall faster than the lower, so that they will
eventually collide. If the particles are of different diameters, the aero-
dynamic interaction between the two particles will result in an in-
crease in settling velocity for both particles. When the leading particle
is smaller than the trailing particle, its increase in velocity will be
greater than the increase for the trailing one. Particle-induced inter-
actions are usually neglected in making estimates of settling rates
since with the exception of the most extreme cases particle-particle
spacing is relatively large.

Example 5.4 Typical concentrations for condensation nuclei are 30,000 to
50,000 nuclei per cubic centimeter. If each nucleus is 0.01 pm in diameter and
particles are present in a concentration of 40,000 per cubic centimeter, estimate
average particle spacing, in particle diameters.

3 N |
cm®/particle = 70,000

o Y1
cm/particle = 20,000

= 0.029
__ 0.029
0.01 x 1074

This spacing is sufficiently large that particle-particle interactions can be ne-
glected.

= 29,240 particle diameters

When particles move parallel to a flat surface, resistance is in-
creased due to the drag induced by the surface. This increase is so
small and extends such a small distance into the medium (several par-
ticle diameters at most) that the effect can be neglected without sig-
nificant error.

For aerosols in a confined space, other interaction effects are possi-
ble. For example, a cloud of sedimenting particles could completely fill
a finite volume. Then the downward motion of each single particle cre-
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ates a downward flow field that tends to pull along neighboring par-
ticles. But in a confined space this downward flow is balanced by an
upward airflow that tends to lift the entire cloud. The net result is
that the downward velocity of the cloud in a finite container will be
less than that of a similar cloud in an infinite medium. Figure 5.2 il-
lustrates the two cases of confined and unconfined aerosol sedimenta-
tion. For a complete discussion of noninfinite medium effects, see
Happel and Brenner (1965).

Rigld Particies

Although rigid particles are assumed, often Stokes’ law is applied to
nonrigid or liquid droplets. In the case where the drops are large, they
are deformed by the motion of the air and will no longer be spherical.

Unconfined Sedimentation

O O
O ol o0 O I
O O o
O 1 ©lo _
Figure 5.2 Sketch of generalized

O'\C)— O JO Oj flow patterns for cases of uncon-

fined and confined settling.

Confined Sedimentation
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TABLE 5.3 Terminal Velocities of Water
Droplets In Still Alr (NTP)

Drop diameter, pm Vg, CM/S
100 25.6
120 34.5
160 52.5
200 \71
400 160
600 246
800 325

1000 403
2000 649
3000 806
4000 883
5000 909
5400 914
5800 917

source: B. J. Mason, The Physics of Clouds, 2d
ed., Clarendon Press, Oxford, 1971, p. 594.

Since they tend to flatten out, they offer more resistance to falling and
have lower terminal velocities than spherical particles. This effect is
not important for freely falling particles having diameters less than a
few hundred micrometers. Table 5.3 gives terminal settling velocity
data for raindrops of various diameters. Above about 6 mm in diame-
ter the drops fracture and break up while falling.

More important, nonrigid particles can undergo internal circulation
as they move through a medium. This circulation reduces the friction
at the drop surface so that the resistance offered by the medium to the
motion of the drop is reduced. The resisting force then becomes

1+ 2u.,./(3up)]
1+ p,/p,

where p,, is the viscosity of the liquid making up the drop and ,, is
the viscosity of the medium. For water droplets in air, the correction
factor is for all practical purposes equal to 1, since the viscosity of wa-
ter is so much greater than that of air. In general, for liquids in air
this effect can be neglected.

F= 3-n-u,,,vd[ (5.7

Example 5.5 Compare the resisting force of air on a 1-pm water droplet falling
freely if the liquid nature of the droplet is considered.
Resistance allowing the liquid nature of droplet

1 + 2ppmf(31p)

F =
3mpm vd 1+ iy
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Resistance neglecting the liquid nature of droplet
F = 3wp,vd
Taking the ratio gives

Corrected F _ 1 + 2pm/(3pp)
Uncorrected F 1+ pw/up

Ifu,, = 1.83 x 107 P and y,, = 0.01 P, then

Corrected F _ 1+ 2 x 1.82 x 107%(3 x 1073
Uncorrected F 1 + 1.82 x 10741 x. 1072

_ 10121
1.0182

It is clear that this effect can be neglected.

= 0.9940

If the viscosity of the medium greatly exceeds that of the droplet,
the correction factor tends to a limiting value of two-thirds. In this
case the resisting force becomes

F = 2mp,vd (5.8)
which is the resisting force a liquid offers to a bubble rising through
it.

Example 5.6 How fast will a 0.1-mm bubble rise in a glass of beer?
If the positive direction is considered to be down, then a negative result would
indicate upward motion. Equating the forces gives

Fr=Fg = 2mp,vd = mg

v = (‘rr/G)da(Pp - Pmlg _ _l_dz(Pp - pmlg _ 10-4(-1)(980)
- 2w, d T 12 Em 12(1)

= -0.817 cm/s

Check:

dvp _ (0.01)(0.817)(1)
" 0.01

This indicates laminar flow, 8o assumptions are all right.

Re = = 0.817

When the viscosities of the medium and the particle are thet same,
then the correction factor has a value of %, and the Stokes resistance
is

F= g—:ru.,,.vd 5.9)
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equivalent to the case of a cloud of particles being considered as a sin-
gle particle having the same viscosity as the air. In this case d is the
diameter of the entire cloud.

Example 5.7 Wind blowing on an aerosol can either move it as a cloud or blow
through it and dissipate it. Find the concentration of an aerosol made up of 5-
pm water droplets which will be just dissipated by the wind.

The force on an individual particle is

FS = 317;1,,,,0(1

The force on an ensemble of particles (assuming spherical cloud of 10-m diameter D)
is

Fg = g wpmvD
Since resisting forces tend to a minimum value, if the sum of the forces acting
on all the particles is greater than the single force acting on the ensemble of
particles, the particles will remain as an aerosol cloud. Otherwise, the cloud will
dissipate.
Letting ¢ equal the aerosol concentration (particles per cubic centimeter),
when the forces are just equal,

5 wp,vD = 3wp,, vde gDs

2
Solving for ¢ gives 5
c=—
wdD?
Withd =5 pmand D =10 m,
c=—2  -318x1073 particles/cm3

o x 1074 x 108

Concentrations greater than this value will result in the cloud’s remaining in-
tact. This indicates that it is quite difficult to dissipate a cloud without some
external aid other than mere blowing.

Spherical Particle

A final assumption made in the derivation of Stokes’ law was that the
particles of interest were spheres. In many cases this is not true. Par-
ticles may have irregular shapes, depending on how they were formed
and the amount of agglomeration which may have taken place. Liquid
aerosols are always spherical, so that for liquid aerosols the assump-
tion of sphericity holds. For isometric particles this assumption can
also be used with little error. For long chains of particles or flocculated
particles, large deviations from Stokes’ law are possible.

To use Stokes’ law with chains or fibers, several approaches are
available. Traditionally a correction factor x, known as the dynamic
shape factor, is defined such that
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F = 3wpud x (5.10)

The term d, is the diameter of a sphere having the same volume as the
chain or fiber, i.e.,

Volume (chain or fiber) = %dea (5.11)

For a cluster of n spheres of diameter d, d, = Vnd. When the aggregate
particle size is small, the Cunningham correction factor should be consid-
ered.

Quite good estimates of the numerical value of k have been made exper-
imentally (Stober and Flachsbart, 1969), and Table 5.4 shows some of these
data. For tightly packed clusters, the maximum value for  is about 1.25.

TABLE 5.4 Values of « for Different Chain Configurations

n Configuration K
2 00 1.12
3 000 1.27
o
3 oo 1.16
4 0000 1.32
o
4 00 1.25
o
00000 1.45
000000 1.57
00
4 00 1.17
7 0000000 1.67
5 oooo 1.30
o
6 00000 1.43
o
8 00000000 1.73
000000
8 o 1.64
o
5 ©0° 1.19
oo
o
8 000000 1.56
o
6 o0 117

[el¢]

source: Adapted from W. Stober and H. Flachsbart, Environmental
Science and Technology, 3, 1280 (1969).
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Example 5.8 Determine the aerodynamic diameter of a particle made up of four
spheres of 10-pm diameter (unit density) and formed into a tight cluster.
By equating forces, Fp = Fg,
4)(n/6) d*,
vr=3‘"m€ _ (4)(n/6) d"ppg
rde 3o (Vad)x

The aerodynamic diameter d, can be defined as

18pvr
dia =
A g

1)

Hence
& = 18(4)(n/6) d°ppgp  4d%pp

31rp.(\3/ad)ug Vi
_[® 172
ax = (%) Vi

For unit-density spheres, p = 1, so that

Jaa
dp = ——=——d = 1.468d = 14.68
A Vi V117 wm

With fibers, measurements are usually in terms of fiber length L
and diameter d. Writing the aerodynamic diameter as

18v
a3 = —%& (5.12)
g
and replacing v, with an expression derived from equating gravita-
tional and resisting forces

JA)dPL

1/3

T 311'},!,(% dzL) K

yield

_ 3 1/3(pp)112(L)1/3
dy = (2) " q d (5.14)
Stéber (1972) noted that for chainlike aggregates of spheres

d, = 1.077p"2Nved (5.15)

where N is the number of spheres in the aggregate and d is the diam-
eter of a single sphere. For a fiber the term N could be considered to be
proportional to the aspect ratio L/d,; and the term d to the fiber diam-



Viscous Motion and Stokes’ Law 7

eter d. This implies that fiber length has very little influence on the
fiber aerodynamic diameter.

Example 5.9 Using Eq. 5.15, estimate the aerodynamic diameter of an asbestos
ﬁberahaving a length of 15 um, a diameter of 0.4 pm, and a density of 2.65
g/em”.

From Eq. 5.15 Lue
da = ]..077[)1/2 (‘Tf) d

= (1.077)(2.65)2 (3—‘2)”6 ©.4)

= 1.283 pm

As mentioned above, Eq. 5.15 implies that the aerodynamic diame-
ter of a rod or fiber will be influenced very little by its length, being
much more dependent on its cross-sectional diameter. Hence fibers of
different lengths but similar cross-sections will have similar aerody-
namic properties, despite large differences in mass.

A relatively new way to consider the shape factor correction starts
from a more fundamental point of view. According to Stokes’ law, the
pressure on the surface of a sphere (form drag) amounts to about one-
third of the total drag with the remainder coming from the tangential
shear stress on the surface of the sphere, the so-called friction drag.

Leith (1987) pointed out that for a moving nonspherical object, form
drag should be associated with the projected cross-sectional area of the
object normal to its motion. He considered friction drag as being asso-
ciated with the object’s surface area. Thus according to Leith, Stokes’
law can be written as

Fp = 3wuu(Ysd, + %d,) (5.16)

where d,, is the diameter of a sphere whose projected area is the same
as the normal projected area of a moving object and d, is the diameter
of a sphere whose effective surface equals that of the object. Then writ-
ing Stokes’ law in terms of d,, gives

Fp = 3wpvd,x, 5.17)

where the theoretical value for k,, is

K, =~ +

d
] 5.18
Z (5.18)

CO | =
[JL3] )

Using experimental settling measurements of a numbe.r of irre‘glflar
particle shapes, Johnson (1985) developed the following empirical
equation for the factor k,:
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d,
K, = 0.357 + 0.684_" + 0.00154¥ + 0.01044 (5.19)

where V¥ is the length ratio, defined as

- (axis parallel to direction of motion)?
projected area normal to direction of motion

and A = the ratio of the longest axis to the shortest axis in the pro-
jected area normal to the direction of motion. In terms of the “volume
equivalent” k, that is, the classical case is

_ & 20
K, = (TK (5.20)

n

For the case of a sphere, Johnson's equation gives a value of
k,, = 1.053; that is, there is about a 5 percent error in the empirical
estimate. This error appears to persist for many other shapes as well
but for most problems is not particularly significant.

In many practical cases Leith's approach to the definition of the
aerosol shape factor has greatly simplified the understanding of this
correction to Stokes’ law. For example, consider again the aerody-
namic diameter of a fiber having a cross-sectional diameter dy, length
L, and density p;. This can be approximated by using Eqs. 5.17 and
5.18 for the case of long axis motion parallel to the flow as

3 (L\ve
du=~2q, (E,) o (5.21)
or for the case of long axis motion perpendicular to the flow
V4
da = 1.199d, (g) o (5.22)
f

Example 5.10 Estimate the aerodynamic diameter of the asbestos fiber in Ex-
ample 5.9, using Eq. 5.21.

1/4
da ~ 3(0.4) (%) (2.65)"2

= 2.42 pm

Both of these approximations differ from Eq. 5.15 in the value of the
coefficient and in the value of the exponent of the aspect ratio (¥ ver-
sus ¥4). Spurny et al. (1978) reported experimental measurements of
asbestos fiber aerodynamic diameters which indicate a range of expo-
nential values of 0.116 to 0.171 with a coefficient of about 1.34. How-
ever, even if the details are still not clear, it is clear that for fibers the
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effect of fiber length on aerodynamic diameter is of much less impor-
tance than fiber diameter. This means, e.g., that fibrous aerosols will
persist in air much longer than isometric ones for equal fiber and par-
ticle mass.

Problems

1 Compare the force resisting the movement of a 100-pm-diameter sphere as
it moves through air at a velocity of 1 cm/s to a sphere moving in water at the
same velocity.

2 Compute the force on a 10-pm unit-density sphere as it settles at a velocity
of 0.3 cm/s.

3 At a Re value of 4, the measured value of Cp, for a sphere is 8.472. Deter-
mine the error in using Stokes’ law with and without the appropriate correc-
tion factor.

4 Determine an expression for the force resisting the movement of an air
bubble in water (assume Stokes' law holds). Find the value of Cp, for such a
system when Re = 1.

5 Compute the value of C, for a 0.5-pm-diameter sphere (a) in air at 20°C
and 760 = mmHg pressure and (b) in air at 0°C and 0.25-atm pressure.

6 Show, using Stokes’ law and the slip correction factor, that for very small
particles the resisting force is proportional to d2.

7 Given a particle made up of a two-sphere cluster, each sphere having a
density of 2 g/cm® and a diameter of 1 pm, find the aerodynamic and Stokes’
diameter of the cluster.

8 What length of 1-pm-diameter fiber will have the same aerodynamic di-
ameter as a 10-um unit-density sphere? Assume the fiber density is 2.65
glem?®.

9 Show that Egs. 5.20 and 5.21 can be derived from Eq. 5.17 and the defini-
tion of aerodynamic diameter. In this derivation, assume that the aspect ratio
is sufficiently large that

d 1/2
(g + d,L) = (d;L)"?
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Particle Kinetics

Settling, Acceleration, and Deceleration

Kinetics is the study of changes in particle motion due to various
forces acting on the particle. Particle motion can be rectilinear, i.e.,
along a straight line, with the particle perhaps accelerating or decel-
erating as it moves, or the motion can be curvilinear, caused by forces
acting to make a particle change its direction of motion. Rectilinear
motion is covered in this chapter, curvilinear motion in the next.

When a force is applied to a particle at rest, the particle begins to
accelerate. If the particle is in air, the force of the air resisting the
motion is zero when the particle is at rest but increases as the motion
of the particle increases. As discussed in Chap. 5, at low Reynolds
numbers this resisting force is given by Stokes’ law. If the accelerat-
ing force is constant, eventually a point will be reached where the re-
sisting force and accelerating forces are equal, and the particle will
then move at a constant velocity. Often it is important to know how
long it will take before a particle starting from rest will reach this
constant velocity or, if it has some initial velocity, how long it will
take to reach its final velocity. This is important in determining the
velocity necessary for capture of particles by a ventilation system and
is of interest in determining how quickly particles attain a constant or
terminal settling velocity after they are dropped.

Example 6.1 Carbon particles in the exhaust of a diesel truck traveling at 55
mi/h are discharged into the atmosphere. Assuming that as these particles leave
the exhaust they have the same velocity as the truck, how far will they travel in
air before their motion is essentially that of the air in which they were dis-
charged?

For all practical purposes, they lose their initial velocity immediately on dis-
charge. This will become apparent later in the chapter.

75



76  Chapter Six

Equation of Motion of an Aerosol Particle

By determining the path of a single particle when it is acted upon by
a variety of forces, it is possible to predict particle position and behav-
ior. This can be done by solving force balance equations which then
give acceleration, velocity, and position of the particle.

The net difference of the forces acting on the particle is equal to the
rate of change of particle momentum. Thus

m & F 4P+ Fy+Fo 4 6.1)

where m is the mass of the particle. The forces i’l, 13'2, etc., may in-
clude those which are generally functions of time and the position
of the particle, such as electric or magnetic forces, or they can be
forces which are constant, such as gravity. These forces are gener-
ally balanced against the drag force, which depends on the proper-
ties of the medium, field of flow, particle shape, and instantaneous
particle velocity. For many aerosol problems, this force is taken to
be equal to the Stokes resistance 3mwpvd, with the appropriate cor-
rections, and it always acts in a direction opposite to the instanta-
neous particle motion.

If all forces are balanced, that is, m dv/dt = 0, the particle is not ac-
celerating and moves with a uniform velocity if it moves at all. When
the Stokes resistance is equal to zero. the particle velocity with re-
spect to the airstream is zero.

Equation 6.1 represents a system of three differential equations for
the coordinates x, y, and z (or for some curvilinear coordinates q;, g5,
g3) expressed as functions of time ¢ Solution of these equations defines
a trajectory of the particle for certain initial conditions of position and
velocity. Several examples will be examined.

Example 6.2 Write a force balance equation for a particle which is acted upon
by gravity in an electric field.

Since the direction of motion of the particle is unspecified, our equation must
be flexible in terms of direction. This is done by writing the equation in vector
notation (the arrow over the variable indicates that the variable is a vector, it
has both magnitude and direction).

Electric force is given by . .

F, E= qE
where q is the charge on the particle and E is the field strength (a vector quan-

tity).
The gravitational force is given by

Fg = mgG
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Here m is the mass of the particle, g is the acceleration due to gravity (both non-
vector quantities), and & is a unit vector which establishes the direction in which
gravity acts.

An integral part of the system will be a series of policy interpretations is a
unit vector which establishes the direction in which gravity acts.

Then (since velocity is also a vector quantity)

dﬁl > > -
ma = mgG + qE + 3mpdi,

Notice that each set of terms in the equation contains one vector quantity (i.e.,
each term specifies a direction as well as a magnitude). Also notice that , rep-
resents the absolute particle velocity whereas 52 is the particle velocity relative
to the medium velocity. Thus if , is the medium velocity, Uy =1~ 0y.

Particie Motion in Air in the Absence
of Externai Forces Except Gravity

Consider the case of a spherical aerosol particle in a homogeneous air-
stream with no forces acting on the particle except gravity. For simplic-
ity the motion will be assumed to occur only in the Stokes region (in most
cases this assumption is valid). Then (similar to Example 6.2),

do _
dt

m Swpd(@ - 0) mgC (6.2)
where m is the particle mass, ¥ the velocity of the center of gravity of
the aerosol particle, i the velocity of the airstream near the particle,
and G the unit vector of the force of gravity. Dividing by 3wud and
rearranging terms give

-r‘(ll—l:+ﬁ=ﬁ+'rgé (6.3)
where
m___m
TS 3o wd ~ Folo (6.4)

The factor = is an extremely important parameter in aerosol studies,
as will be shown later. Properties of the particle (diameter and den-
sity) and of the medium (viscosity and density) are incorporated in
this parameter, which has units of seconds. It represents a relaxation
time for the aerosol particle.

For spherical particles of mass m, with m = (w/6) d*(p, - p,,), T becomes

1 d*pp — pm)
18 I
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>
720

Figure 6.1 Vecto_{ diagram show-
ing definition of 1,.

Since for air p, > p,,, 7 is usually written as

1d?

T = ﬁ:p”

(6.5)

The terms # and -rgé in Eq. 6.3 represent two constant vectors which

can be added to form a single constant vector #, This addition is
shown schematically in Fig. 6.1.

Exampie 6.3 Air flows in a horizontal duct with a velocity of 4 cm/s. If the ac-
celeration due to gravity is 980 cm/s?, determine the numerical value of the con-
stant vector i, for a 30-um-diameter particle (+ = 2.75 x 1073 5),

(u0)? = u? + (1g)?
= (42 + (2.77 x 1073 x 980)2 = 16 + 7.25 = 23.25
ug = 4.82 cm/s

Expressing the equation of motion in terms of = and &, gives

dav
T E + 6 = lio (6.6)
Suppose the cartesian coordinates are aligned such that at ¢ = 0 the

particle is at the origin. In addition, the coordinates are rotated so
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that the x axis is parallel to #,. Finally, the initial velocity vector of
the particle is oriented such that it lies in the xy plane. Then this ini-
tial velocity vector can be broken down into x and y velocity compo-
nents 9, and . by,; that is, o, + v = ?;. Figure 6.2 illustrates the gen-
eral orientation for solution of Eq 6.6.

It should be realized that this coordinate system can be rotated at
will. Although the orientation chosen is for convenience in solving the
equation, it does not necessarily reflect the actual physical orientation
of the problem (gravity may not be down, e.g.). Hence in using this
development, it is helpful to keep actual particle orientation in mind.

Equation 6.6 in its vector form represents two scalar differential
equations, one representing motion in the x direction and the other
representing motion in the y direction:

dv,

THT + v, = U (6.7a)
dv,

TEt— +tu,=0 (6.7b)

Integration of these equations with the initial conditions that x = 0
andy = 0 and v, = v, and v, = v, at ¢ = 0 gives two equations for the
velocity of the aerosol partlcle at any time

v, = Up + (U, — ugle™ (6.80)
v, = vy,,e"’T (6.8b)

Figure 6.2 General onentatlon
of solution of Eq. 6.6. Vector o
is aligned so it is parallel to the
x axis.
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and two equations for the particle’s position
x = ugt + (v, — U)(1 ~ &™) (6.9a)
y=v,7(1 - e™*) (6.9b)

These four equations completely describe the position and trajectory of
the particle at any time, provided particle motion is in the laminar
flow (Stokes’) region.

Example 6.4 A 30-pm-diameter unit-density sphere (s = 2.75 x 103 s) falling
at a terminal settling velocity of 2.7 cm/s is captured by a horizontal airflow of
100 ft/min which is flowing into a hood. Find its velocity 1 ms later, relative to
the point at which it was captured.

First it is necessary to rotate axes so that vector &, lies along x axis. Then i,
will have a value of

up = 'V (50.83)% + (2.7)? = 50.90 c/s
The rotation required is arcsin (2.7/50.90) = 0°. Then
Uy, = 2.75in 3" = 0.14
vy, = 2.7 cos 3° = 2.70
-3
e~ = exp (”5—1(’“)73) = 0.695
and the velocity in the x and y directions can be calculated as follows:

Uy = U + (Uy; — Uug) ™"
= 50.90 + (0.14 - 50.90)(0.695)
= 15.63 cm/s

_ ~tlt
Uy =Uye

= (2.70)(0.695) = 1.87 cm/s

It is now necessary to switch back from the artificial coordinate system to the
real one. This can be done as follows:

vy = 15.63 sin 3° + 1.87 cos 3° = 2.70 cm/s

vp = 156.63 cos 3° - 1.875in 3° = 15.61 cm/s

To get the particle position, a similar approach would be taken.

Notice that for typical aerosol particle sizes, the exponential terms rapidly
disappear. Note also that the particle is rapidly acquiring the velocity of the
horizontal airflow.
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Terminai Settling Veiocity

Equations 6.8 and 6.9 can now be applied to the case of a particle falling
under the influence of gravity in still air (u = 0). Since the direction of the
gravitational force is along the x axis, Eq. 6.8a shows that even with an
initial velocity component in some other direction, eventually the only ve-
locity the particle will have will be in the direction of the gravitational
force. The velocity in the direction of gravity is given by

v, =18 + (U, ~ tgle™

As time progresses, the particle will attain a constant velocity given
by 1g. If a particle is initially given a velocity greater than this, it will
decelerate until it has reached 7g. If the particle’s initial velocity is
less, it will increase to a value of 1g. If a particle falls from rest, it will
accelerate until 7g is attained. Thus 1g represents the terminal settling
velocity of the particle v,

v, =18 (6.10)

Example 6.5 An asbestos fiber is reported to have an aerodynamic diameter of
1.79 um. Determine its terminal settling velocity.

1 dg? (1.79 x 10™42

=—1))s—
T (18Y1.82 x 1079

=978 x 1076
v = 7g = 9.78 x 1076 x 980

=958 x 10"3 cm/s

For particles with diameters smaller than about 10 um (actually, 1 pm is
often taken as the cutoff point), it is necessary to include the Cunningham
correction factor in calculating the terminal settling velocity. Then

v, = 18C, (6.11)

The practice of neglecting C, is only for convenience in calculations.
With the advent of programmable calculators or personal computers,
it is now best to always include C, in the computation of 7 wherever
possible. In the case of nonisometric particles it is sometimes difficult
to determine the appropriate value of C, to apply. Dahneke (1973a,b,c)
has proposed a method for computing C, for some nonspherical parti-
cles, and this approach has been confirmed by Cheng et al. (1988).

Example 6.6 Determine the terminal settling velocity of a 0:5-p1n-dial}1eter sil-
ica sphere (p = 2.65 g/cm®). Include the Cunningham correction factor in the es-
timate.
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From Eq. 5.3, .
21 (@7 x 109

Ce=1+2 2 =1+20 7" 1257

‘ a 420 0.5 x 104 280

=1.35

=202 x 10°¢s

1d2 1 (56 x 10~52(2.65)
7 = ———— —_—m———e— e,
18

PP~ 18" 182 x 10-*

v = 78C, = (2.01 x 1076)(980)(1.35) = 2.67 X 1073 cm/s

Equation 6.11 is often derived by merely equating Stokes’ resis-
tance with the gravitational force. Although conceptually simpler, it
does not provide the insights into the time-dependent cases of acceler-
ation or deceleration of the particle to terminal velocity. The rapidity
with which the terminal settling velocity is reached is given by the
factor e *". Thus the smaller the value of 7, the more quickly an aero-
sol particle will reach equilibrium or steady-state conditions. For ex-
ample, for a 2-pm-diameter unit-density sphere 7 has a value of
1.305 x 1075, Since e 7 is about 0.001, equilibrium values are essen-
tially reached when t/r = 7 or for the 2-um sphere within about 100
us. Table 6.1 gives values of T and 77 for unit-density spheres of other
diameters. It is clear that particles smaller than several micrometers
in diameter will rapidly accelerate or decelerate to equilibrium condi-
tions, so that generally for these sizes of particles it is possible to ne-
glect the inertial term in Eq. 6.1.

TABLE 6.1 Reiaxation Times + and Equiilbrium Time 7z for Unit-Density Spheres
at Atmospheric Pressure and 20°C

Diameter Relaxation time, s Equilibrium time, s
0.01 6.77 x 10°° 4.74 x 1078
0.02 1.39 x 1078 9.73 x 1078
0.04 294 x 1078 2.06 x 10°7
0.06 4.67 x 1078 327 x 1077
0.08 6.60 x 1078 4.62 x 1077
0.1 8.73 x 1078 6.11 x 10”7
0.2 2.28 x 107 1.59 x 10°¢
0.4 6.90 x 107 4.83 x 107
0.6 1.40 x 10°¢ 9.78 x 1076
0.8 2.35 x 10°° 1.65 x 10°°

1 3.55 x 10°¢ 2.48 x 1075
2 132 x 107° 9.23 x 1078
4 5.08 x 1075 3.55 x 104
6 1.13 x 107* 7.89 x 107¢
8 1.99 x 10~* 1.39 x 10°2
0 3.10 x 104 2.17 x 1073
0 1.23 x 1073 8.60 x 1072
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Stop Distance

Consider the case of a particle having an initial velocity v, in the y
direction when Uo is zero. This is equivalent to a particle bemg pro-
jected into still air. If gravity is neglected, it can be seen from Eq. 6.8b
that the particle rapidly decelerates to zero velocity. While decelerat-
ing, the particle traverses a distance which can be found in Eq. 6.95
when ¢ goes to infinity. This distance

Y=, (6.12)

is known as the stop distance or horizontal range of the particle. Equa-
tion 6.12 indicates that small particles move very short distances be-
fore coming to rest; a 1-pm-diameter particle projected into air at an
initial velocity of 1000 cm/s, for example, moves a distance of only
0.0036 cm before stopping.

Example 6.7 Determine the stop distance of a 1.5-pm-diameter unit-density
sphere which is projected into still air with an initial velocity of 1000 cm/s. (Ne-
glect gravity.)

1d?
=18 5 PoCe

1 (1.5 x 10742 [ 2x7x10°¢ ]
== |1+ =125
18 182x10'4() 1.5 x 10“( 7

= (6.87 x 10764(1.12) = 7.66 x 10765
y = (1000)(7.66 x 1076) = 7.66 x 103 cm

Particle Acceieration or Deceleration

For particles injected into a moving airstream (similar to acceleration

under the influence of gravity and similar to problems of particle de-

celeration), it can be seen that the difference between particle velocity

and stream velocity decreases by a factor of e for each time period
= 7. Thus within 77 steady-state conditions are reached.

Example 6.8 A 40-pm-diameter unit-density sphere falls across a slot opening
for a ventilation system into which air is being drawn. How long will it take the
particle to achieve the velocity of the in-rushing air?

1d4? _ 140X 10742

1) = 488 x 1073
18 7 T 187 g2 x 10‘4( )

T =—

t=74.88 x 10"3)s = 0.034 5
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This indicates that within 0.034 s the particle will be caught up and transported by
the moving airstream. Although a fairly short time, it may be too long to ensure cap-
ture of the particle. It should be apparent from this analysis that small particles ought
to be easier to capture with a ventilation system than large particles.

Limitations

Equations of motion presented here were developed for cases of uniform
medium velocity and are oversimplified for many other cases regarding
aerosols. In addition, evaluation of the equations for the trajectories of aero-
sol particles is sometimes impossible because of the difficulty in accurately
describing the field of flow. Although for laminar flow Eq. 6.6 can be sepa-
rated into x and y components, with increasing Reynolds number the
nonlinearity of the resisting force prevents separation of the vector equa-
tion. Fortunately, most aerosol problems can be treated in the low-
Reynolds-number regime.

Example 6.9 Determine the diameter of a unit-density sphere that has a
Reynolds number equal to 1 at terminal settling velocity.

_ _vd
~ 0.151
v = o = L
t Tg 18 N ppg
Substituting and rearranging give

_ (0.151)18)(Re)() _ (0.151)(18X1)(1.82 x 10~%)

d3
Ppg (1)(980)

= 5.04 x 1077

d =79.60 x 10™% = 80 um

This represents a rough guide for the upper size of particles for which Stokes’
law applies. This size will be different for particles of different densities.

One-Dimensional Motion at High Reynolds Numbers

There are occasions when particle motion is so great or particle diam-
eter so large that Stokes’ law is no longer applicable. Then some other
simplifying approach must be taken. In Chap. 4 this problem was
treated for the case of sedimenting particles through the use of plots of
CpRe? versus Re and Cp/Re versus Re.

For the generalized case of one-dimensional particle motion, recall that
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v2
Fp = ACppng (6.13)
vdp,,
Re = (6.14)
18
dv _ p
e od (6.15)
From Eq. 6.1
dv _
me = F (6.16)
so, for spheres, using Eq. 6.13
1'_" s, AU _ 2 v
d p dt 4 d Cme2 (6.17)
dv _ 3Cppnv®
dt 4dp,
Expressing Eq. 6.17 in terms of the Reynolds number
dRe _ 3Cpp-
——=——Ré? (6.18)
dt 4p d?
gives, on inverting,
4p,d?
dr = < _dRe. (6.19)
3r CyRe
On integration from Re; to Reg, Eq. 6.19 yields
_ 4"*""2 f " _dRe (6.20)
i CpRe?
Similarly, for displacement, since s = ut,
s=4Pd [ dRe nRe 6.21)
3 [ CDR82 pmd
5= 40 d Rer dRe (6.22)

3p Re; CDRB
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The utility of Eqs. 6.20 and 6.22 lies in their generality. All that is
required is an expression for Cp, for the range of Reynolds numbers
over which the particle is moving. Keep in mind that this solution is
applicable only to one-dimensional flow or to those cases where one-
dimensional flow can be approximated.

Exampie 6.10 A 6-in-diameter grinding wheel is operated at 1750 revolutions per
minute (r/min). How far will a 0.1-mm-diameter particle be thrown from the wheel if
gravity is neglected? Assume a spherical particle having a density of 3 glem®.

Initial velocity = wr = 1750 X 65 X 27 X 6 X 2.54 X % 1396 cm/s

dv__ (0.01)(1396)

Re: = 0151 = 0.151

= 92.55

From Eq. 4.7

This equation is applicable over the range of Reynolds numbers 2 < Re < 800.

s=58 g [ RSN - LB g [ I Re-05 aRe

8 Pm 14Re 42p,
Integrating gives
4 0.5 _
210. 0012 2= (0.01)Re®53; o = ~38.87 cm
To go from Re = 2 to Re = 0, use Cp, = 24/Re. Then
= Re 33 33
s = 3333 ) Re g - 3883 g
-8 33( -2) = -2.76

Total stop distance = 38.87 + 2.76 = 41.63 cm

Notice that the particle travels the greatest distance at the higher Reynolds
numbers. The laminar flow contribution to the stop distance is small compared
to the intermediate or turbulent flow contribution.

Ideal Stirred Settling

Although with an aerosol each particle will settle at its own terminal
settling velocity, settling rarely takes place in absolutely still air
since there is always some circulation and mixing. This mixing has
the effect of producing a uniform aerosol concentration which de-
creases with time because of sedimentation.

Consider a cylinder of uniform cross-sectional area A and height H,
filled with a monodisperse aerosol having an initial concentration of
n, particles per cubic centimeter. With mixing, but in the absence of
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any other external forces, the average number of particles per square
centimeter moving in an upward direction and crossing a horizontal
plane L which cuts the cylinder at some arbitrary height will equal
the average number moving downward. That is,

AH dn = YenAv, dt - YanAv,dt = 0 (6.23)

where v, and v, are the particle velocities up and down, respectively.

Now suppose a negative force field is included (i.e., include the
force due to gravity which imparts an additional downward velocity v,
on the particles; this is the terminal settling velocity). Then

AH dn = YenA(u, - v,)dt - YenA(v, + v,) dt (6.24)
since v, = vy
AH dn = —nAv, dt (6.25)
and then
dn U,
= _Hdt (6.26)

Assuming that v, is independent of time, position, and concentration,
Eq. 6.26 can be integrated to give

n = nyexp (— %t) 6.27)

Equation 6.27 implies exponential decay of an aerosol concentration
in a closed chamber. This is observed in practice.

Since n and ny have the same units, they can have any units—par-
ticles per cubic centimeter, milligrams per cubic meter, etc.

Example 6.11 The smoke concentration in a room is found to be 50 mg/m3, If

this aerosol is made up of 0.75-um-diameter spherical particles (unit density),

estimate the concentration in the room 3 h later. The ceiling height is 8 ft.
For 0.75-pm spheres,

U = l(szpccg
18 u

0.75 x 10742
5 g x 074 D)
=207 x 1073 cm/s

H = 8ft x 30.6 cm/ft = 244 cm

vt 2.07 x 1073 x 3 x 60 x 60
n=noexp\-g =50exp |- 244

= 45.62 mg/m?
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For a polydisperse aerosol Eq. 6.27 can be solved for each size incre-
ment and the results summed to get the total aerosol concentration.
This approach assumes that each size of particles is independent of ev-
ery other size. This assumption is valid with moderate mixing and
moderate to low aerosol concentrations.

Probiems
1 Show that if v, = v, at ¢ = 0, the solution to

dv,
"7&?*”’=°

Uy, = vya(l - et

ify=0att=0.

2 Compute the value of 7 for a 15-pm-diameter sand particle (p = 2.65
g/cm®). Then compute (a) its terminal settling velocity, (b) its Reynolds num-
ber at this velocity, and (c) its stop distance.

3 a. What are the diameter and the terminal settling velocity of a unit-
density sphere having Re = 0.5 at its terminal settling velocity?
b. Assuming the particle initially started from rest, how long will it take
to reach one-half its terminal settling velocity?

4 A 10-um gold sphere (p = 19.3 g/cm®) is dropped from a 10-ft-high plat-
form. Estimate the time it takes to strike the ground (a) neglecting air resis-
tance and (b) including air resistance.

5 A 200-pm-diameter raindrop falls freely in the atmosphere. Determine
its terminal settling velocity. Compare this to the measured value given in
Table 5.3.

6 What is the diameter of a unit-density particle which falls with a termi-
nal settling velocity of 200 cm/s?

7 Using Stokes’ law, show that
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8 An approximate formula sometimes used to estimate the settling velocity
in feet per minute of airborne dust particles is

Y~ 100

where d is the particle diameter in micrometers. Compare the estimate
given by this equation to the terminal velocity given by Stokes’ law for 10-,
1.0-, and 0.1-um particles with a density of 2.3.

9 Given three unit-density spherical particles of 2-, 0.2-, and 0.02-pm di-
ameter, compute the sedimentation velocity for each (a) neglecting C, and (b)
correcting for C..

10 Examine the settling velocity of a 100-pm unit-density sphere with and

without the correction
1 + %eRe

applied. How much error is introduced by neglecting this correction?

11 Determine the position of the particle described in Example 6.4 at 1 ms
after it is captured.
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Impaction

Curviiinear Motion

When particles are transported by air currents, changes in the direc-
tion of these currents give rise to accelerating forces on the aerosol
particles. Thus spinning of air tends to move the aerosol away from
the axis of rotation, or rapid changes of airflow around an obstacle can
result in aerosol particles being deposited on that body. This may be
one of the principal mechanisms by which particles are removed by
nature from the atmosphere. Sampling and collection devices such as
impactors or impingers are based on the use of centrifugal forces, as
are such other devices as “cyclones” and aerosol centrifuges.

The magnitude of the accelerating force that acts on a particle in
curvilinear motion depends on the particle inertia. The greater the in-
ertia of the particle, the greater will be the displacement. Inertia de-
pends on particle mass and velocity. Heavy particles will be displaced
more from the streamlines in which they are traveling than light
ones, and increases in velocity will increase displacement for a parti-
cle of given mass.

When a particle is moving in a circular path around a point a dis-
tance r away with an angular velocity of o, it experiences a radial ac-
celeration of

a, = or (7.1)

and a tangential velocity of
v, = or (7.2)
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Consider a particle being carried by a volume of air (or other gaseous
medium) which is moving in a circular orbit. The particle will have a
constant tangential velocity—that of the air mass in which it is con-
tained—and will also experience an outward, accelerating force which
at low radial velocities can be approximated by the Stokes resistance.
Equating the radial accelerating force with this resisting force gives

F, =Fy (7.3
B 3mpdv,
ma, = C.
Solving for v, assuming a spherical particle yields
(m/6)dPp,w’rC, .
v, = "W = TOT (7.4)
v
v, =—1 (7.5)
r

an expression for the radial velocity of a particle.

Example 7.1 A 10-um-diameter unit-density sphere is held in a circular orbit
by an electric field. The orbit is 25 cm in radius, and the particle moves around
the center of the circle at a rate of 100 r/min.

a. What is the radial velocity of the particle at the instant the electric field is
removed? From Eq. 7.4

Uy 7wr=—pch

_1 (10 x 10~%2
18 182 x 1074
= 0.851 cm/s

b. How far will the particle move until its radial velocity is dissipated?
The distance the particle will move is just the stop distance s:

a )(1)(5’9 x 27) (5)

s =1, = (3.11 x 10~4Y0.851)
=264 x 1074 cm

impaction of Particles

When air carrying particles suddenly changes direction, the particles,
because of their inertia, tend to continue along their original paths. If
the change in air direction is caused by an object placed in the air-
stream, particles with sufficient inertia will strike the object. This
process is known as impaction. It is the mechanism by which many
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large particles are removed from the atmosphere, it is one of the im-
portant mechanisms for removal of particles by the lungs, and it is im-
portant in air cleaning as well as aerosol sampling. The process of im-
paction can be modeled by using the equation of motion of an aerosol
particle, if an appropriate choice is made of the velocity field. Often
compromises have to be made in this choice. In any theoretical devel-
opment, however, certain factors seem to be important.

Consider a simple model of impaction. Air issues from a long slot of
width W at a velocity u. A surface is placed normal to the discharging
flow a distance S away. With this configuration, air leaving the slot
must make a 90° turn before it escapes. Particles that fail to make this
turn strike or “impact” on the surface and are assumed to be retained
by that surface.

As a crude first approach (Fuchs, 1964), it can be assumed that the
streamlines of the air issuing from the slot are quarter-circles with
their centers at C (see Fig. 7.1a) and that S = W/2. At point B a par-
ticle has a tangential velocity given by v, = u and a radial velocity
given by

U= = —1 (7.6)
r

-« —

', <

\ Arr path l
N > S

|

. v

Particle path

Centerline

Figure 7.1a  Sketch of simple “ideal” impactor.
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In a time dt the particle will be displaced toward the surface a dis-

tance
2

ds = frfsind; dt 1.7

where ¢ is the angle formed by the line connecting points B and C and
the plane normal to the airflow which passes through point C (Fig.
7.1b). As the streamlines turn from the slot to be parallel with the sur-
face & goes from 0° to 90°. This change in angle ¢ can be expressed as

dé = %dt 7.8)

In traversing the full 90°, the particle will be displaced a distance &

2
S = f:l v sinddd = v, T = ur (7.9)

That is, the particle will move one stop distance out of its initial
streamline while losing all its original velocity parallel to the slot.

Since all particles that lie within a distance  of the slot centerline

are considered to be removed, the overall removal efficiency € of the

impactor will be

LB 2w

w2 w

This is, of course, only a very crude approximation for impactor effi-

ciency, since the actual flow field is much more complex, varying in

(7.10)

—_—— ____,.__

2
J ds = Yo" sing¢ ot
/! d¢= \r/n) dt

Point B dd = v, 1sin ¢ do

Ve=vVlt/r

Figure 7.1b Diagram of velocities at point B.
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configuration depending on the slot Reynolds number. In general,
S # W/2. This sample model does give some idea of how effective a
particular impactor configuration can be, the estimate being reason-
ably good when € 2 1 but rapidly losing accuracy for € < 0.7.

Example 7.2 A rectangular slot impactor has slot dimensions of 2.08-cm length
and 0.358-cm width.

Estimate the flow in liters per minute required for this impactor so that 15-

pm-diameter unit-density spheres can be collected with near 100 percent effi-
ciency.
14
18 p Pp
_1(15x 10742

18 1.82 x 1074

Ce

T =

(1X1.01)

=6.95x 10745

ur

G—W—/z

u = W2 _ (1X0.358/2)
T 6.95x107¢

= 258 cm/s
Q@ = Au = (2.08)(0.358)(258) = 192 cm®/s
= 11.51 L/min

The quantity 2u1/W is an important dimensionless parameter in im-
pactor studies, known as the Stokes number

2ut
Stk = W (7.11)
This dimensionless parameter is used to describe impactor behavior.
For impactors with rectangular openings, W is the slit width; for cir-
cular openings W represents the diameter of the impactor opening.
Thus the Stokes number is the ratio of the stop distance to the impac-
tor opening half-width.

Some authors prefer to use the impaction parameter , rather than
the Stokes number, to describe impactor properties (e.g., Green and
Lane, 1964; Ranz and Wong, 1952). The impaction parameter is de-
fined as ur

=W (7.12)

a factor which is one-half the Stokes number.
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Example 7.3 Compute Stk, V Stk, ¢, and \/$ for a circular jet impactor when
Tu = 0.004 cm and the jet diameter is 0.1 mm.

T _4x107%
Stk = 2 = 0005 - 08
ViE = 0.89
Stk _
v=2t =04

Vi = 0.63

It is common practice to plot impactor efficiency as a function of ei-
ther VStkor V{ (e.g., Rao and Whitby, 1978). This is done because
the particle diameter is present in either term as d?, making the
square root of the term proportional to the particle diameter.

Impactor operation

The characteristic behavior of impactors depends on factors such as
nozzle-to-plate distance, nozzle shape, flow direction, and Reynolds
numbers for both the jet and the particle. Other factors of importance
include the probability that the particles will stick to the impaction
surface and particle loss to the walls of the impactor. It is not surpris-
ing that with such a variety of possible variables it is quite difficult, if
not impossible, to accurately predict impactor characteristics on
purely theoretical grounds.

Calculation of the jet or nozzle Reynolds number is straightforward
for a round jet; thus Re = Wu/v, where W is the jet diameter, v the ve-
locity in the jet, and v the kinematic viscosity. For a flow of @ cm®/s,

_4Q
Re = W (7.13)
For a rectangular jet the “wetted perimeter” concept must be used
(Marple, 1970). That is, the opening width () to be used in computing
the Reynolds number is defined as €} = 4 (area/perimeter). For a rect-
angle of length L and width W, Q = 2WL/(W + L). When L > W,

Re = 2Q (7.14)

For a well-designed impactor, a typical plot of impactor efficiency
versus VStk is shown in Fig. 7.2. It can be seen that the efficiency
curve may deviate from the ideal case. In the ideal case, for all effi-
ciencies there would be a single value of V/Stk and hence a sharp size
cut of the impactor. All particles larger than this size would be col-
lected, and all smaller sizes would be passed. In actuality, this is not
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100

Ideal case

«—— Actual case

Efficiency, %
wn
o
—1
|
1
1

50% cut-point

Stk —
Figure 7.2 Typical impactor stage efficiency curve.

the case, and a range of particle sizes are collected with varying effi-
ciencies. To represent the impactor stage collection characteristic, it is
often the practice to choose the 50 percent efficiency point as the rep-
resentative cut point. The maximum slope at this point most nearly
represents the ideal case. In Fig. 7.2 both the actual and ideal cases
would be considered to have the same characteristic cut size.

What constitutes a well-designed impactor? According to Marple
and Rubow (1986), the minimum value of S/W should be no greater
than 1 for a round impactor and 1.5 for a rectangular impactor. As an
upper limit, S/W ratios several times greater than these minimums
are possible, but design values as close to the minimum as possible are
preferred. However, some commercially available impactor designs
use S/W ratios of about 0.5 [e.g., the Hering design (Hering and
Marple, 1986)].

Figure 7.3 shows theoretical impactor performance when a number
of parameters are varied, including jet-to-plate spacing, jet Reynolds
number, and throat length-to-width ratio. These curves indicate that
impactor efficiency is fairly insensitive to Reynolds number in the
range 500 < Re < 3000 and that impactor efficiency is also relatively
independent of S/W and T/W ratios, except for small values of S/W.

The calculations that produced the curves in Fig. 7.3 were repeated
in more detail by Rader and Marple (1985), who also included the ef-
fect of the physical size of the particle (interception distance) as it ap-
proaches the collection plate. Figure 7.4 shows similar curves from
this more recent work. Although differences in the results of the two
sets of calculations are small, the newer curves are steeper and show a
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Figure 7.3 Impactor efficiency curves for rectangular and round impactors
showing effects of jet-to-plate distances in Reynolds number Re and throat
length 7. W is impactor width or impacter jet diameter. (From Marple and
Willeke, 1979.) (a) Effect of jet-to-plate distance (Re = 3000). (b) Effect of jet
Reynolds number (T/W = 1). (¢) Effect of throat length (Re = 3000).
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Figure 7.4 Revised impactor efficiency curves. (From Rader and Marple, 1985.)

characteristic S shape that is found in experiment and is most .likely
due to the inclusion of the interception distance in the calculations.

Example 7.4 A round jet impactor is operated such that the jgt Reyx.lolds num-
ber is 3000. Using Fig. 7.3b, find the particle diameter (}mlt-den'slty sphere)
that will be collected with 50 percent efficiency if the jet diameter is 0.3 cm.

av__ (0.3)v) _
0.151 0151 3000

v = 1509 cm/s

Re:
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From Fig. 7.3b, at efficiency = 50 percent and V Stk = 0.46,

TV
0.3/2
_(0.21)(0.15)
- 1509

Stk = 0.21 =

=210 x 10758

_1d?
= ig;(P) (neglect C)

_18rp  (18)(2.10 x 1075)1.82 x 1074
P 1

dZ

d =263 x10"%*cm = 2.61 pm

The theoretical impactor performance data can also be expressed in
terms of the 50 percent cut size. Figure 7.5a shows \/Stk;, plotted as
a function of the S/W ratio, and Fig. 7.5b shows the same ordinate
plotted as a function of Re. These curves again illustrate that Stk is
quite insensitive to changes in either S/W or Re, except in the ex-

tremes.
QStksopLW
dgo = —_— (7.15)
©= V7 CoQ

0.9 T T T T
08 - ]
Rectangular (T/W = 1)
07 | -
0.6 I~ ]
0s Round (T/W=12) —
VSlk‘r,o
04 | -
0.3 ]
02 - ]
Re = 3000
o1} -
| | | |
0 1 2 3 4 5

S/W

Figure 7.5a The 50 percent cutoff Stokes number as a function of jet-to-
plate distance. (From Marple, 1970.)
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Figure 7.5b The 50 percent cutoff Stokes number as a function of Reynolds number.
(From Marple, 1970.)

Impactor 50 percent cut points can be estimated from the equation
for rectangular jets of length L and width W or

9Stk o W?
dy, = \/ _'J'FJ’:Q— (7.16)

for round jets of diameter W. These are rearrangements of Eq. 7.11. As
shown in Fig. 7.5a, theoretical estimates of \/Stk;, are 0.71 for rect-
angular jet impactors and 0.46 for round jet impactors.

Particle bounce

The surface on which particles impact is also an important factor in
determining impactor efficiency. Particles which bounce off the impac-
tion surface can be carried through the impactor and can distort mea-
surement data. Particle bounce will lower the collection efficiency of a
given impactor stage and will lower the apparent mean diameter of
the aerosol measured.

Another way of considering the effect of particle bounce is shown in Fig.
7.6. A plot of collection efficiency versus substrate loading indicates effi-
ciencies which never reach 100 percent. Particle bounce can be minimized
by using collection media coated with such materials as Vaseline, L and H
high-vacuum greases, stopcock grease, oil, or Apiezon (Moss and Kenoyer,
1986).

Internal deposition of material may take place within the impactor
and not on the impactor stage. Consider the following experiment:
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Figure 7.6 Dependence of solid particle sticking efficiency for various surface
treatments and substrate loading. (From Turner and Hering, 1987.)

An impactor is operated such that there is no rebound and internal
deposition can be halted by the presence of an electric field. If, when
the impactor is operated with the field on, a certain slot velocity gives
a downstream concentration of a monodisperse aerosol that is 50 per-
cent of the upstream concentration, what happens when the field is
shut off so wall deposition can take place?

Since deposition is occurring, the downstream aerosol concentration will
drop. To increase this concentration so that C/C, will again be 50 percent,
the impactor flow must be reduced. Thus wall deposition has the effect of
raising the value of \/Stk;, compared to the case of no wall deposition.

Impactors for very small particle sizes

By their very nature, impactors are high-pressure drop sampling de-
vices. Air is drawn at high velocity through a fairly small nozzle to
remove small aerosol particles. The particle diameter which can be
collected with a 50 percent cut efficiency for a specific set of operating
conditions can be determined by recalling that
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W (7.17)
Rearranging in terms of d gives
9nWStk
d? = -';W (7.18)
P ¢

Then using the 50 percent Stokes number for the 50 percent cut size
produces
9 WStk

dso® = —p—CT (7.19)
p ¢

Since the value of Stk_ is nearly constant for similar impactor designs
and since the viscosity and particle density are constant, the only way
to change the 50 percent cut size for an impactor is to vary the jet ve-
locity, the jet width, or C,.

The traditional cascade impactor is constructed with a series of jets
of decreasing diameters, so that both W and v are varied. Air flows
through one jet (or group of jets of the same diameter), removing par-
ticles with a certain 50 percent cut size, and then proceeds to a smaller
size jet (or series of jets of the same diameter) where particles with a
smaller cut size are removed. This process can be repeated until the
velocity in the jet approaches sonic velocity, at which point a backup
filter catches the remaining small particles which have penetrated the
impactor. The practical lower limit for an impactor of this type is
about 0.4 pm.

Within the past few years there has been growing interest to mea-
sure the diameters of very small particles, i.e., particles with diame-
ters less than about 0.5 pm. As discussed by Hering and Marple
(1986), although traditional impactors are not adequate for this task,
either low-pressure or microorifice impactors can collect particles with
substantially smaller particle diameters than 0.4 pm.

With microorifice impactors W is made very small, on the order of
50 to 150 pm. Velocities are still kept somewhere below 100 m/s
(Re = 500 to 3000), but the number of orifices is increased to provide a
reasonable total flow so that an adequate amount of sample is col-
lected.

Low-pressure impactors utilize the fact that C, is a function of not
only particle diameter but also, through the gas mean free path, pres-
sure. Therefore at low pressures C, can be substantially larger than
for the same size particle at atmospheric pressure.
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Example 7.5 A Hering impactor operates at a flow rate of 1 L/min. Both stage 3
and stage 6 of this single-jet impactor have jet diameters of 0.99 mm and an S/'W
ratio of 0.5. Air enters stage 6 at 0.185 times atmospheric pressure and leaves
with a p/p, ratio of 0.146 (Hering and Marple, 1986). Assuming Stky, = 0.22
and a unit-density particle, calculate the appropriate dg,.

The average velocity in the jet is found by using Q/A adjusted for expansion
and the lower or downstream pressure ratio. Then

_ Polp 1000, 1 .= 2 _
v—ﬂowxarea— 0 x—0.146 4(0099) 14,830 cm/s

Recalling Eq. 7.19

All factors on the right-hand side of this equation are known except C, which
depends on dg,. Thus C, is moved to the left-hand side of the equation, a.nd the
right-hand side is computed

9uWStkso _ (9)(1.82 x 10~ 4)0.099)(0.22)
ppY (1)(14,830)

dso’C, = =241 x10°°

Since C, also depends on dg, to find d, it is necessary to use an iterative pro-
cedure. A value for dg, is assumed and the associated C, calculated by using the
equation

2\

=1
C. +d50p/

1.1d
[1.252 +0.399 exp ( ——%’m)]

For A\ use a value of 0.0687 wm. The correct pressure ratio to use for computing
C, is the upstream pressure ratio since that is where the effect of slippage on
impaction will be most pronounced. However, as noted above, the jet velocity is
computed by using the downstream pressure ratio since this represents the
increased volume of air gomg through the impactor nozzle.

After C, is computed, dg,2 C, is calculated and compared to that found by using
Eq.7.19 (2.41 x 10~%). With several iterations the following values are determined:

C.=1745 dgo = 0.180 pm

Pressure drop In impactors

In evaluating impactor operation it is important to know (or estimate)
the pressure loss across each of the impactor stages. A simple ap-
proach is to assume that all the velocity pressure in the impactor jet is
lost due to turbulence. Then the pressure drop AP across an orifice can
be written as

2 P (7.20)

AP = Pup ~ Pdown = 2pl)
Paown
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Hence p, p, and v refer to the density, pressure, and velocity at atmo-
spheric or some reference condition. The subscripts up and down refer
to the pressure just upstream and downstream, respectively, of the
impactor nozzle. For the first stage of an impactor, Pup = p- For sub-
sequent stages, the calculated py.wn Of stage n is set equal to the
upstream pressure of stage n + 1. If v is in units of centimeters per
second and p in units of grams per cubic centimeter, then the units of
p will be dynes per square centimeter.

Analysis of impactor data

The most common configuration for impactors used for aerosol sam-
pling is to have a series of jets of decreasing size, arranged so that the
air passes in series from the largest through the smallest slot. This
cascade arrangement permits the aerosol to be fractionated into a
number of size intervals, depending on the number of impactor stages
used. Aerosol mass collected on the different impactor stages is then
analyzed to provide size distribution information.

Particle distribution data can be presented as a bar chart where the
mass of material collected in the ith stage, denoted m,, is taken as the
mass of particles in the size range (dgp); , ; to (dgp);- The height of the bar
then represents the percentage of mass in that interval, and the size
range gives the width of the bar.

Example 7.6 A six-stage impactor yields the following data (a filter is placed
downstream of the impactor as a final stage to collect all particles which might
otherwise escape):

Particle mass  Percentage in

Stage no. dgo, pM collected, pg interval

1 18 0 0
2 11 15 3.30
3 4.4 35 7.69
4 2.65 110 24.18
5 1.7 190 41.76
6 0.95 80 17.58

Filter — 25 5.49

Plot a histogram showing the particle size distribution.

By computing the percentage in each interval and assuming that the lower
collection limit of the filter is 0 pm, Fig. 7.7 can be plotted. A second method is
to plot the data in a form similar to Example 2.3.
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Figure 7.7 Histogram of impactor data.

In many cases a mean (or median) particle size and a standard de-
viation are desired.

The most common method of data reduction is to plot the stage data
on log probability paper. If a straight line can be fitted to the data, a
lognormal distribution is assumed. For this plot, the 50 percent cut di-
ameter or median size for a given stage is taken as the characteristic
size for that stage. That is, all particles equal to or larger than (dg);
are retained on the ith stage; all smaller particles pass through the
stage. Cumulative percentage less than a given size is plotted on log
probability paper as a function of particle size, and a line of best fit is
drawn through the points. From this line a median diameter and geo-
metric standard deviation can be determined. If particle mass mea-
surements are used as estimates of material deposited on the various
stages, and the cut diameters are in terms of aerodynamic diameter,
the resultant median value is the mass median aerodynamic diameter,
sometimes abbreviated as MMAD.

Example 7.7 Given the following impactor data, using a log probability plot, de-
termine MMAD and o,
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Mass, ng,
Stage no. Aerodynamic (dgo); collected on stage
0 20 0
1 10 0
2 5 10
3 3 35
4 2 70
5 1 190
6 0.8 60
7 0.5 85
Filter 0 50

Compute the cumulative percentage collected for each stage.

Cumulative
percentage less

Diameter interval, Percentage than upper

pm in interval interval size
0-0.5 10 10
0.5-0.8 17 27
0.8-1.0 12 39
1.0-2.0 38 77
2.0-3.0 14 91
3.0-5.0 7 98
5.0-10.0 2 100

From the plot (Fig. 7.8) an MMAD of 1.2 pm is found and a g, of 2.0 determined.
This is a mass median diameter because the weight or mass of aerosol collected
on each stage was used in the analysis.

Errors associated with impactor data

As mentioned earlier, particles can be deposited within the impactor
housing or can be reentrained from an impactor stage after collection.
Both phenomena can give rise to errors in impactor measurements.

Impactor calibrations must be done carefully to minimize error. In
many cases this is not done, and one should be wary of unsub-
stantiated claims of impactor performance.

Finally, the methods of data analysis presented here are quite
crude. Fitting a straight line to data on log probability paper requires
the assumption that the data are lognormally distributed, which may
not be the case. However, more detailed and sophisticated methods
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Figure 7.8 Lognormal plot of impactor data given in Example 7.7.

such as the use of iterative calculational schemes seem unwarranted
unless very accurate calibration and measurement data are available
(Fuchs, 1978).

Impactor Analysis Using Phase Trajectories

The complex flow within an impactor can be studied by using the con-
cept of phase trajectory analysis where the paths of particles with dif-
ferent initial locations and velocities are determined. By analyzing
these paths, conclusions can be drawn about a particle’s fate as it trav-
els through an impactor. Because in this analysis ideal streamline
flow conditions are assumed (which actually may not be the case),
phase trajectory analysis helps show how predictions from ideal as-
sumptions may be modified by real-world conditions. A fairly simple
case is chosen to illustrate the method.

Suppose an aerosol is flowing from an opening and impacting
against an infinite wall with the air moving in a so-called hyperbolic
stream. The velocity components of the air will have the form

Uy, = ax and uy,=by wherea,b, >0

With a planar stream as illustrated in Fig. 7.9, ¢, = b,. The current
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Figure 7.9 Example of a planar stream.
lines are hyperbolas given by

x,y; = constant

If gravity is neglected, the equation of motion for the aerosol particles
flowing in the airstream is

av -0 = 21
'rdt+v u=0 (7.21)

where v is the particle velocity. For phase analysis, this equation is
broken down into components and put in a dimensionless form by let-
ting u equal a unit velocity and w equal a unit length, so that ¢ =
tu/w, @ = a,wfu, and b = b,w/u. The terms u and w are chosen to be
fixed but arbitrary quantities. For example, u could be the average ve-
locity of air leaving the impactor jet and w the jet half-width. Then,
recalling that v = ds/dt and dv/dt = d®s/dt?, the equation of motion,
Eq. 6.6, can be expressed in dimensionless quantities as
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dy  dy
de? dt

Equations 7.22 and 7.23 are linear second-order differential equations
having as general solutions

') -bx=0 (7.23)

x = C,exp \t + Cyexp \;t (7.24)

and
y = Csexp pt + C,exp pot (7.25)

where the arbitrary constants C,, C,, C3, and C, are to be determined
from the initial conditions and the eigenvalues \, , and p, , are

My = —1E 5 1-4a¢ (7.26)
0]
P12 = -1 izd)l +b¢ (7.27)

So far the method of solution is standard. With a great deal of effort
the constants in Eqgs. 7.24 and 7.25 can be evaluated from the initial
and boundary conditions of the problem, and the flow trajectories of
the aerosol particles determined. Phase analysis permits the bypass-
ing of this laborious task, so that something can be learned from these
equations without having to evaluate the constants.

Recalling that

the equations of motion, Egs. 7.22 and 7.23, can be rewritten as

l x )
al'ld
d]' y

Rearranging Eq. 7.28 gives

d.  cox v (7.30
e .30)

and rearranging Eq. 7.29 gives
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do, by -,
dy v,

With these two equations it is possible to plot the fields of flow (veloc-
ity as a function of position). For example, by picking an initial y; and
v,, and plotting these initial points on a graph of v, versus y, Eq. 7.31
is solved for dv,/dy. Then by assuming some small increment for dy, a
new (v,, y) can be plotted and the process repeated. Such a plot for v,
as a function of y is shown in Fig. 7.10. Trajectories on this plot can be
estimated by knowing that v, = p,y and v, = p,y will be asymptotes
(e <0 and 0 < p, < b). Also all trajectories must cross the v, =by
line with a slope of zero.

Several observations about particle flow patterns can be made from this
plot. First, although particles can enter the impactor with any y velocity at
any location, their subsequent paths are quite well determined depending
on initial velocity and location. Particles with an absolute value of initial y
velocity greater than p.;y or p,y have the potential for crossing the impac-
tor centerline. Particles inside this range may reverse their direction but
will never cross the impactor centerline.

Efficiency calculations for impactors are often based on the assump-
tion that a particle’s location relative to other particles never changes
so that all particles initially lying within some arbitrary distance
from the impactor centerline will be collected, while all those outside

(7.31)

Figure 7.10 Phase diagram, Y axis.
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of this boundary will not. Clearly, this is only strictly true if the ini-
tial y velocity of all particles is zero.

In all cases, however, particles will eventually be moved away from
the impactor centerline with increasing absolute velocity in the y di-
rection as y becomes greater. This is, of course, an obvious conclusion
of the analysis.

For motion in the x direction the analysis is more involved because
\ can exist as either a real or complex number, depending on whether
& > 1/(4a) or ¢ < 1/(4a). For the case ¢ > 1/(4a) the plot is of the sta-
ble focus type (Fig. 7.11). The right-hand side of Figure 7.11 has been
lightly shaded since this is an imaginary zone—this is the space be-
hind the infinite plane.

For any particle starting in the second or third quadrants with any
x velocity (either direction), the particle will eventually cross the x
axis, implying that sooner or later the particle will deposit on the im-
paction surface at x = 0.

On the other hand, when ¢ < 1/(4a), the phase diagram is of the
singular-node type, Fig. 7.12, similar to free vibration with viscous
damping. Under these conditions it is possible that some particles
starting in the second or third quadrants will have trajectories that
terminate at the origin. This means that the x = 0 surface is reached
after an infinite time. The practical implication of this observation is
that these particles will never be collected.

The conditions for not being collected are if ¢ < 1/(4a) and v, <

Vx

]

—_ \x“ /_\\“\\,\\~ Z )
//\ S

]
Case ¢ > Ta

Vx

Figure 7.11 Phase diagram, X axis.
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Vx

Figure 7.12 Phase diagram, X axis.

- ax. But ¢ is just the Stokes number ¢ = tu/w, so that this analysis
implies the existence of a critical Stokes number Stk which describes
the conditions under which very small particles will not be collected
by impaction. Because this analysis assumes all particles are points
and does not take the particle’s physical dimensions into account,
there is a legitimate question whether in actuality this lower limit
does exist. Even so, the method of analysis reveals that the collection
efficiency of impactors for small particles may be impaired, illustrat-
ing the utility of using phase trajectories for analyzing certain aerosol
dynamics problems.

Problems

1 Using simple impaction theory, estimate the minimum particle diameter
that will be collected with 100 percent efficiency by a plate placed at a right
angle to the flow and 4 in in front of a 4-in-diameter duct out of which air
containing an aerosol is flowing at a rate of 100 ft3/min.

2 In the first stage of the Lundgren impactor, air issues at a flow of 85 L/min
through a number of round jets 0.82 cm in diameter at a Reynolds number of
3700.
a. Determine the number of jets in the first stage of the impactor.
b. Using the data in Fig. 7.5a, estimate the effective cutoff aecrodynamic di-
ameter for this stage.

3 The Andersen sampler is a six-stage circular :iet il.npactor. .Each ota.ge has
400 jets of a certain diameter. For stage 3, the jet diameter is 0.038 in. For
stage 4, the jet diameter is 0.021 in. Assuming a flow rate of 1 ft°/min and
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particles of unit density, determine the range of particle diameters removed
by the stage 4 impaction surface. Use the impaction data given in Fig. 7.5b.

4 If we assume that the critical Stokes number for a 1-in-diameter circular
orifice is ¥ and that the pressure drop for an orifice and collecting plate in
series in milliatmospheres is AP = 1.25 x 10~ %, U, where p,, = fluid density
(g/em®), and U = orifice gas velocity (cm/s), determine the diameter of the
smallest size unit-density spherical particle that can be collected at a pressure
drop of 2 in of water.

5 Marple and Rubow (1986) state that the jet Reynolds number in an impactor
can be expressed in terms of the air mass flow rate m. Show that for a round jet
impactor Re = mW/p. and for a rectangular jet impactor Re = 2mW/p. Marple
and Rubow point out that this is a useful form for the Reynolds number since m
is constant for all stages of the impactor.

6 As air flows through an impactor nozzle, it expands since this is a near
adiabatic process. According to Hering and Marple (1986), the pressure drop
through an orifice with a cross-sectional area A is

=90 _ 2yl
plpo = Av (1 v 2‘YRTO)

where P is pressure, T is temperature, R is the gas constant, v is the ratio of
the heat capacities, and ¢ is the volumetric flow through the nozzle. The sub-
script O indicates that the quantity is measured upstream of the nozzle; quan-
tities without a subscript are measured below the nozzle. The core velocity can

be computed from
(- V2
=6
y-1 Po

_ 2yRT, 2
Veore = v + 1

Ucore =

for subsonic flow and

for sonic flow. Calculate the temperature at the exit of the jet and the core
velocity for the Hering impactor stage 6 in Example 7.5.

7 Suppose trajectory analysis yields an equation of the form

dv, vz

dz z-v,

Plot v, as a function of 2.
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Particle Kinetics

Centrifugation, Isokinetic Sampling,
and Respirable Sampling

Centrifugation of Particles

As discussed previously, terminal settling velocities of aerosol parti-
cles are generally quite small. Under normal circumstances it is un-
reasonable to expect that simple sedimentation as such will be an ef-
fective removal mechanism.

One way to remove these particles from air is to subject them to
high centrifugal forces. If an aerosol particle is caused to move in a
circular path, it will have a radial acceleration given by Eq. 7.1. This
radial acceleration can be likened to the acceleration due to gravity in
a gravitational field. By rotating the aerosol, accelerations many
times that of gravity can be achieved.

Example 8.1 A centrifuge has a radius of 50 cm and is operated at 500 r/min. De-
termine the ratio of radial acceleration to gravitational acceleration in this case.

Radial acceleration - [(500/60)(2m))2(50) - 1.40 x 102
Gravitational acceleration 980 )

As can be seen from Example 8.1, quite large radial accelerations
are possible, indicating that very small particles can be removed in
this manner.

In an aerosol centrifuge, particles are made to follow circular paths
until they strike the outer wall of the unit. The distance from the inlet
that a particle is deposited is indicative of particle size. This can be
shown as follows:

11§
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Consider a centrifuge having an inner radius R, and an outer ra-
dius R,. A particle enters at R, and travels across the annulus to be
deposited somewhere on the surface at R,. The radial velocity of the
particle is given by Eq. 7.4:

v, = 107 8.1)
that is,
% = 10 (8.2)

The tangential velocity of the particle will be that of the airstream
moving through the centrifuge. With a flow of @ cm®s and a centri-
fuge channel depth of A,

- _Q Q
=2 = (8.3)
“ A h(Rz - R1)

This represents an average velocity. In actuality the velocity distribu-
tion in the channel at any point r across the radius will be parabolic of

a form given by

4ki
=————(r - R)(R,; - 84
u R, - Rl)z(" DBy - 1) (8.4)

The factor k& can range in value from 1.5 for deep, narrow channels to
about 3 for rectangular ones (Tillery, 1979).

If I, is the tangential distance the particle travels downstream be-
fore being deposited, then

In terms of r this becomes

4ku 1
dlp = ——m - R)(R, - r)d 8.6
D (R, - R, u)"’-rr(r (R, - r)dr (8.6)
Integrating Eq. 8.6 between the limits R, and R, gives

; =_2@'[R2 +R1+ 2R\R, n—lE
P R,-R, (R,-R,)’ R,

(8.7

w’r

Example 8.2 Using Eq. 8.7, find the diameter of unit-density spheres that
would be deposited 2 cm from the entrance of a centrifuge that is operated at
300 r/min with an average channel velocity of 100 cm/s. The centrifuge inner
radius is 15 cm, and the channel width is 1 cm. Assume & = 2.
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Ip = 2ku [Ry + Ry 2R;R, n&
o’ |R2-R1 (R, -Ry)2 Ry

_ __2%2)100) 16 + 15 = 2(16)15) 15
[(300/60)2m)f*r | 16 - 16 * (16 - 1512 16

2

- 1d
T = 4.36 x 10 38=E:pp

d? = (4.36 x 1073)(18)(1.82 x 107%) = 1.43 x 105
d = 37.8pum

Aerosol centrifuges are useful in the laboratory but have little ap-
plication in air cleaning. When care is taken so that the aerosol enters
the rotating annulus at a single point, the units are often called aero-
sol spectrometers. A discussion of the calibration and operation of the
popular Stober spectrometer design (Stober and Flachsbart, 1969) is
given by Martonen (1989).

Cyclones

An accurate theory to predict cyclone behavior has yet to be achieved.
In a cyclone, particle-laden air is introduced radially into the upper
portion of a cylinder so that it makes several revolutions inside the
cylinder before leaving axially along the cylinder centerline. While
making these revolutions, the particles in the air are accelerated out-
ward to the cylinder walls where they either stick and are retained
(low particle loading) or are swirled down to a collection port at the
bottom of the cylinder (high particle loading). Overall gas motion in
the cyclone consists of an inner vortex moving toward the cyclone exit
containing the smaller-sized particles and an outer vortex moving in
the opposite direction and carrying the larger particles.

Important parameters in cyclone operation can be established by
considering simple cyclone theory. Figure 8.1 shows a sketch of a typ-
ical cyclone. Air at a flow of @ cm®/s enters tangentially, revolving N,
times in the cyclone before it is discharged. Dust that is removed from
the air spirals down into the dust discharge port.

Assuming that the gas moves through the cyclone as a rigid airstream
with a spiral velocity equal to the average velocity at the cyclone inlet,
the retention time for an element of gas within the cyclone is

. N,(2mR)

r

8.8)

Ue
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Figure 8.1 Sketch of a cyclone particle collector.
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where v, is the inlet velocity. During this retention time a particle can
move a distance x across the width of airstream B,. Since the particle

radial velocity is
v;
v, ==
r R T
the time to go a distance x is
, 2R
vk
and the time to go a distance B, is
B.R
t= 2
vit

(8.9)

(8.10)

(8.11)

Equating this time with the transit time through the cyclone gives
B.R N(2nR)

l)c2 T Uc
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Terit = v ,,-N¢2'TT

This is the 7 of the smallest particles that simple theory says should be
collected with 100 percent efficiency. In terms of particle diameter

9B,
deie = \/— .
‘ PV N ©.13)

Cyclone efficiency e is estimated from the ratio x/B,:

8.12)

vt

€= 'nN,B 72 (8.14)
Since v7/(B/2) = Stk, the cyclone efficiency can be expressed as
€ = wN,Stk (8.15)

The factor Nz varies from 0.5 to about 10, depending on cyclone shape
and size.

Example 8.3 Estimate the collection efficiency for 5-pm unit-density spheres
in a small cyclone having a square entrance of 0.3 cm on a side when operated at
a flow rate of 1.7 L/min. Use N = 1.

ty
o

= 073 =0.15cm

1 dzpp 1 (5 x 10742 -5
=== ———=763x 107°s
TT18 p 18182 x 1074

Q _ (L7 x 1000)/60

A~ 03x03 ~ oiA8emk
Ut
Stk = 575 = 0.160

€ = mN7Stk = 0.50 = 50%

The efficiency predicted by Eq. 8.15 is only a rough estimate; the
equation estimates a shape in the efficiency-versus-particle-size curve
that is different from what is actually observed. There are a number of
factors not considered in this elementary derivation. First, laminar
flow is assumed, but turbulent flow is often observed in practice. The
effect of turbulence will be to move particles away from the cyclone
walls or resuspend deposited ones. Hence, turbulence will decrease cy-
clone efficiency. Second, the width of the cyclone inlet is not as impor-
tant a parameter as overall cyclone diameter, since it is the width of
an element of gas within the cyclone that determines particle deposi-
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tion, and this width is not strongly controlled by inlet width. Finally,
overall cyclone configuration will affect efficiency. This is not taken
into account in the simple theory. Equation 8.15 does illustrate the
general approach which has been followed in refining cyclone theory,
and like the impactor and centrifuge equations, it permits rough esti-
mates of system performance to be made. As can be seen in Fig. 8.2,
however, the shape of the efficiency curve as predicted by simple the-
ory is not consistent with experimental observations, the former being
concave upward and the latter concave downward. Despite the appar-
ent good fit of some theories to experimental data (e.g., Leith and
Licht, 1972), in general, equations developed to predict cyclone effi-
ciency disagree with experimental data (Abrahamson, 1981). In addi-
tion, theories that are developed for large, industrial-type cyclones do
not give good predictions when applied to small, personal sampling
type of cyclones. Chan and Lippmann (1977) present a summary of cy-
clone collection theories, as applied to small cyclones.

Aerosol concentrations affect cyclone performance with increased
concentrations increasing efficiency (Ranz, 1985). Wheeldon and
Burnard (1987) showed improved cyclone performance with very high
particle concentration (50 g/m?®). Detailed criteria for cyclone design
have been summarized by Licht (1980) and include many of the con-
siderations mentioned above.

Isokinetic Sampling

In aerosol sampling, the measured concentration and size distribution
should represent as closely as possible the concentration and size dis-
tribution of the original aerosol. There are several reasons why the

1.0 Dietz (1981)
i Iozia@rég)l.edh v
0.8 ( . S 7
\\', ,/
- X Simple theory
06 <«— Equation (8.15)
> Y° I~ Barh J
2 (1956) i R =125cm
> 5 ’ No= 4
S 0.4l B, = 125¢cm
&= 0.4 B: ~25¢cm
L
0.2 O lozia and Leith (1990)
/ o Kessler (1990)
0.0 |- * o o
G

0.0 . é.O ‘ 1‘1 0 ‘ 6‘.0 . é.o ' 10‘ 0
Aerodynamic diameter (um)
Figure 8.2 Comparison of simple theory with de-

tailed theoretical efficiency and experimental data.
(Adapted from Kessler, 1990.)
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measured concentration can differ from the true concentration. One is
that gravitational or inertial deposition of the sample as it flows into
the sampling tube can result in loss of larger-sized particles. Also,
deposition or selective collection at the mouth of the sampling tube
can yield either greater or lesser amounts of larger particles.

Consider the three cases shown in Fig. 8.3. In case a the probe is not
aligned with flow. Because of inertia some particles may be lost by im-
paction, giving a sample concentration which would be less than the
actual. In case b, when the collection velocity is greater than stream
velocity, some particles, because of their inertia, may fail to follow
streamlines and therefore will not be collected, giving a sample con-
centration that is less than the actual. Finally, in case c, the collection
velocity would be less than the stream velocity—the opposite of case
b—and the sample concentration might then be greater than the ac-
tual.

If the probe is aligned with the flow and the sample velocity is equal
to the stream velocity, sampling is said to be isokinetic, and the sam-
ple as collected should match the actual concentration. If sampling ve-

~. \\\\——?’
\\\ \\ _— U R
\'\\\~>. mm——
\‘\
CASE A
Ro| ii t}-—\;-:—:_:_;' —_— R
i > U —_— > U ‘ )
o S
\./44,»/
CASE B

CASEC
Figure 8.3 Types of anisokinetic sampling.
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locity differs from stream velocity, known as anisokinetic sampling,
particle inertia can give rise to errors in the measured concentra-
tions.

Error from anisokinetic sampling can be investigated theoretically
(Davies, 1966). Suppose an aerosol of concentration ¢, flowing with a
velocity of u, is drawn with a velocity u into a sampling tube of radius
R (assume infinitely thin tube walls, sample collected parallel to
flow). Gas streamlines entering the tube at some distance away are
confined within a cylinder of radius R, such that

wR*u = nRu,

Ifuy > u, then R > R, and the streamlines diverge (Fig. 8.3c). All par-
ticles moving within the circular cross-section wR,’ enter the tube.
The number entering per second = mwRy%uoco, Where ¢, is the stream
concentration. Streamlines from the annulus which lie between the
cylinders of radii R, and R will pass outside the sampling tube. How-
ever, a fraction of particles from this space may enter the tube because
of their inertia. If a is this fraction, then the number entering per sec-
ond and from the annulus is equal to am(R? ~ Ry?)cou. The sum of
the two fluxes, that from the center and that from the annulus, is the
total flux entering the tube, equal to wR%cu, where ¢ is the number
concentration in the sample:

R Uy + am(R? — Ryeouy, = wR2cu (8.16)
Hence
ou
Le1-at+— 8.17)
Co u

When u > u,, then ¢ < ¢p. When u < u,, then ¢ > ¢

The factor a varies from 0 for small particles to 1 for large ones. The
exact value of a is not known. A rough estimate for « has been pro-
posed by Davies (1966):

o= 25tk
T 1+ 2Stk

where
TUg
Stk = 53 (8.18)
This estimate, although rough, does predict the following experi-
mental observations:
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1.£ = 1whenu, =0
Co

2. £ = 1 when u, > 0 but Stk < 1

Co
c U

3.~ =—whenStk>1
Co U

4% =1whenu = Uy
Co
The effect of anisokinetic sampling is plotted in Fig. 8.4. This anal-
ysis indicates that isokinetic sampling is not necessary when very
small particles are sampled. Sometimes, in an effort to be precise,

c/Co
@ 2.0

10 08 06 04 02 0 02 04 06 08 1.0
| —[u/is] A

>
Air velocity greater Air velocity less than
than sample velocity sample velocity

J

Isokinetic
sampling

Figure 8.4 Effect of anisckinetic sampling on measured sample
concentration.
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isokinetic sampling will be required when it is known that all parti-
cles to be sampled are well below 1 pm in diameter. Examples would
be sampling of fumes or aerosols formed from condensation processes.
The result is much added complexity and usually cost, without any in-
crease in the accuracy of the result.

Example 8.4 It is desired to sample fume particles (d = 0.1 um) that are emit-
ted from a stack at a velocity of 100 cm/s and a temperature of 200°C. (Assume
a particle density of 1 g/cm® and a sample probe diameter of 1 ¢cm.) Determine
the sampling error when the sampling velocity is 0.01 of the stream velocity.

TUp
Stk = &
At 200°C,

200 + 273)0-5

o see -4
Viscosity = 1.82 x 10 ( 20 + 273

=231 x 1074P

200 + 273)

A= 0.065( 573

= 0.111 pm

Ce

T=ﬁipp

_1(01x107%%  (4.33)
18 933 x 104 ) 01

=104 x 10°78
-7
Stic = (1:04 X 1079(100) _ 5 10 10-6
0.5
__ 28tk _ -5
@ =1 oo = 416 10

U
£=1—a+a——°=l—(4.16x10'5)(1-M)
co u 1

= 1.0041

That is, there will be a negligible increase in sample concentration.

Respirable Sampling

For the purpose of estimating the toxic dose of an aerosol, the respi-
ratory system can be divided into a number of functional regions:
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1. Alveolar region (for both nose and mouth breathing)

2. Tracheobronchial tree (for both nose and mouth breathing)

8. a. Oral cavity, pharynx, and larynx (for mouth breathing)
b. Nasopharynx, pharynx, and larynx (for nose breathing)

4. Ciliated nasal passages (for nose breathing)

5. Anterior unciliated nares (for nose breathing)

Regional deposition is dependent on the aerodynamic properties of
the particles, usually described in terms of the aerodynamic particle
diameter, airway dimensions, and such respiratory characteristics as
flow rate, breathing frequency, and tidal volume.

A number of models have been developed to attempt to predict re-
spiratory deposition, especially in the lower airways—the alveolar re-
gion. Experimental studies have tended to confirm the validity of the
models, recognizing that there is much individual variation and thus
a great spread in the results. The results have been clear enough,
however, to indicate that all else being equal, deposition of particles in
the lungs is greatly influenced by particle size and particle density.

In many cases the dose from airborne toxic materials is dependent
on regional deposition in the lungs. A good estimate of this dose is pos-
sible if the size distribution of the aerosol is known. For this reason it
is important to know mass concentrations within various size frac-
tions. This information can be obtained by (1) carrying out a size dis-
tribution analysis of the airborne aerosol or (2) carrying out a size dis-
tribution analysis of the collected sample or (3) separating the aerosol
into size fractions corresponding to anticipated regional deposition
during the process of collection.

With mass respirable sampling, an attempt is made to separate the
aerosol into two fractions representing the mass that would be depos-
ited in the alveolar region and the mass that would not be deposited in
this region. To do this, it is necessary to define the size distribution of
particles deposited in the alveolar region. This material is defined as
respirable dust.

There are several definitions of respirable dust (Lippmann, 1970).
In 1952 the British Medical Research Council (BMRC) defined the re-
spirable fraction in terms of the terminal settling velocity (free-falling
speed) by the equation

£_,-t (8.19)
Co vc

where c is the concentration of particles of falling speed v or less, ¢, is
the total concentration, and v, is a constant equal to twice the termi-
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nal settling velocity in air of a unit-density sphere having a diameter
of 5 pm. This definition was considered to be unsatisfactory in the
United States because it was tied to terminal settling velocities.

In 1961 the U.S. Atomic Energy Commission (AEC) established a
standard defining respirable dust as that portion of the inhaled dust
that penetrates to the nonciliated portions of the lung (the alveolar
region). This application of the concepts of respirable dust was in-
tended only for “insoluble” particles exhibiting prolonged retention in
the lung, and not for soluble particles, nor for those which are prima-
rily chemical intoxicants (Aerosol Technology Committee, 1970).

Respirable dust was defined as follows with sizes in terms of aero-
dynamic diameters:

Size, pm l 10 | 5 ‘ 3.5 | 2.5 | 2
Respirable, % | 0 | 25 | 50 | 75 | 100

In 1968, the American Conference of Governmental Industrial Hy-
gienists (ACGIH) defined respirable dust as follows:

Aerodynamic diameter, pm | 10 | 5.
Respirable, % | 0 |25 |5o |75 |90

Example 8.5 Compare the definitions of respirable dust as given by the BMRC,
AEC, and ACGIH.
Neglecting C,, terminal settling .velocities for other sizes of unit-density
spheres can be estimated from
d\2
Veq = "6'5(3)

so Eq. 8.19 can be written as
Ve (d/5)2 2
c_;._2% -1 d

co 20, 50

when d is expressed in micrometers.

Percentage Aerodynamic diameter, pm

respirable

defined by: 2 25 3.5 5 10
BMRC 92 88 76 50 0
AEC 100 75 50 25 0
ACGIH 90 75 50 25 0
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Figure 85 Pictorial representation of various definitions of
respirable dust.

Figure 8.5 shows a plot of these definitions.

As can be seen from the above table, the ACGIH definition of respi-

rable dust is almost identical with that of the AEC, differing only for
a 2-pm-aerodynamic-diameter particle. Lippmann (1989) points out
that this difference appears to be a recognition by the ACGIH of the
characteristics of real particle separators.

Although there are some differences in the three definitions, under

field conditions samples collected using instruments designed to meet
any of these three criteria should be comparable. For a more thorough
discussion of size-selective sampling, the reader is referred to
Lippmann’s all-inclusive article (1989) and its 183 references.

Example 8.6 An aerosol made up of unit-density spheres is lognormally distrib-
uted with a geometric mean diameter of 2.0 um and a geometric standard devi-
ation of 2.2. Calculate the respirable fraction of this aerosol as sampled by a
sampler which follows the BMRC curve and a sampler which follows the ACGIH
curve.

For this comparison the aerosol is broken down into 15 size increments, as
shown in Table 8.1. Respirable fraction is considered to be the fraction of parti-
cles falling into the respirable category as defined above. Hence the respirable
fraction in a size interval is the product of the fraction in that size interval and
the percentage respirable for that size interval as defined either by the ACGIH
or BMRC. The overall respirable fraction is the sum of these products over all
size intervals.

The BMRC respirable fraction (RF) is calculated from

d?

RF; _pMrc =1 - 50



128  Chapter Eight

TABLE 8.1 Computational Data

Average BMRC ACGIH Estimated Estimated
diameter, Count resp. resp. deposition, deposition,
pm frequency fraction fraction BMRC ACGIH
0.108 0.000 1.00 1.00 0.00 0.00
0.164 0.001 1.00 1.00 0.00 0.00
0.250 0.007 1.00 1.00 0.01 0.01
0.380 0.023 1.00 1.00 0.02 0.02
0.579 0.062 0.99 1.00 0.06 0.06
0.882 0.124 0.98 1.00 0.12 0.12
1.343 0.187 0.96 1.00 0.18 0.19
2.044 0.213 0.92 0.88 0.19 0.19
3.113 0.182 0.81 0.56 0.15 0.10
4.740 0.117 0.55 0.28 0.06 0.03
7.218 0.057 0.00 0.10 0.00 0.01
10.992 0.021 0.00 0.02 0.00 0.00
16.737 0.006 0.00 0.00 0.00 0.00
25.487 0.001 0.00 0.00 0.00 0.00
38.809 0.000 0.00 0.00 0.00 0.00

and the ACGIH respirable fraction is calculated from

RF; _ acGIH = 10(0.325 - 0.185d;)

The mass respirable results are BMRC, 80.1 percent; ACGIH, 73.3 percent. This
result indicates that for the given aerosol the BMRC definition will indicate
slightly more respirable mass than the ACGIH definition.

Problems

1 What is the minimum particle diameter collected with 100 percent effi-
ciency by a cyclone precollector of a mass respirable sampler? Assume R = 0.5
cm, B, = 0.25 cm, @ = 1.7 L/min, N, = 5, p = 1 g/cm®, opening is square.

2 A l-in-diameter tube is used to collect a stack sample from a stack in
which air is flowing at a velocity of 30 ft/s. The sampling pump available can
pump only at a rate of 1 ft>min. Estimate the error in sampling for (a) 10-
pm-diameter spheres with p = 2 g/em® and (b) 0.1 pm-diameter spheres with
p = 10 glem®,

3 A high-volume sampler has an airflow rate of 30 ft3/min. Design a hori-
zontal elutriator (settling chamber) that could be placed upstream from the
sampler to eliminate those particles greater than 10 pm in diameter. Assume
a particle specific gravity of 2.3. What diameter particles would be reduced by
a factor of 50 percent in this unit?

4 A mass respirable sampler cyclone is designed to operate at a flow rate of
1.7 L/min. Will the mass respirable concentration that is measured be over-
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estimated or underestimated if the sampler is actually operated at a flow rate
of 2.0 L/min? Why?

5 Explain why it is not necessary to consider isokinetic sampling when a
sample is being collected from still air.

6 Determine the mass respirable sample flow rate to use if a sample is to be
collected in a space cabin where the cabin pressure is one-half atmospheric
pressure.

7 In the past 20 years size-selective sampling has been applied to ambient
sampling as well as personal sampling [John (1984), EPA (1987)]. A method
known as the PM-10 method samples particles into two size segments, one
greater than 10 pm and the other less than 10 pm (the thoracic fraction). If a
conventional mass respirable sampler operates at a flow rate of 1.7 L/min to
collect 3.5-um particles with a 50 percent efficiency, what flow rate would be
necessary to collect 10-um particles with a 50 percent efficiency? Assume
unit-density spheres.



Chapter

Brownian Motion and
Simple Diffusion

There are two principal ways that extremely small aerosol particles
can be removed from an aerosol. The particles can collide with other
particles and grow into ones large enough to be removed by gravity or
aerodynamic forces (impaction, centrifugal, etc.), or they can migrate
to surfaces, stick to those surfaces, and thus be removed.

The process by which these particles migrate, either to a surface or
to one another, is called diffusion, and their motion is described as
brownian motion. Diffusion is important in aerosol studies because it
represents the major dynamic effect acting on very small particles
(d < 0.1 pm) and must be considered when the dynamics of these
small particles are studied.

Brownian Motion

Small particles suspended in a gas undergo random translational mo-
tion because they are being buffeted by collisions with swiftly moving
gas molecules. This motion appears almost as a vibration of the en-
semble of particles, although there is a net displacement with time of
any given particle. Observation of this motion in a liquid was first
made in 1828 by the British naturalist Robert Brown (1828), and the
phenomenon thus has been called brownian motion (also known as
brownian movement). Bodaszewski (1883) studied the brownian mo-
tion of smoke particles and other suspensions in air and likened these
movements to the movements of gas molecules as postulated by the
kinetic theory. The principles governing brownian motion are the
same, whether the particles are suspended in a gas or in a liquid.
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Fick’s Laws of Diffusion

When particles are uniformly dispersed in a gas, brownian motion will
change the position of the individual particles but will not change the
overall particle distribution. When the particles are not uniformly dis-
persed, brownian motion tends eventually to produce a uniform con-
centration throughout the gas, the particles moving away from areas
of high concentration to regions of low concentration. This process,
known as particle diffusion, follows the same two general laws that
also apply to molecular diffusion, known as Fick’s laws of diffusion.

Fick’s first law of diffusion states that the concentration of particles
crossing unit area in unit time ¢/ is proportional to the concentration
gradient normal to the unit area dc/dx. The constant of proportional-
ity D is known as the diffusion coefficient. Symbolically, for the cur-
rent through a plane set at right angles to the x direction,

- _pd
J=-Dg 9.1)

Example 9.1 Particles move by diffusion across a gap 2 cm wide. If the concen-
tration on the left-hand side of the gap is such that it is always 10 times the
concentration on the right-hand side (the right-hand side concentration being
10%p per cubic centimeter) and 100 particles per second per square centimeter
crosses the gap, determine the value of the diffusion coefficient D.

- _pd
J=-DI
de _ 1 x 10° - 10 x 106 _ (1 - 10) x 10° _ 6
dx_ 2 = 2 = -45 x 10
I
p=__d___100 cm? -8
de/dx 45 x 108 p_. 1
cm3 cm

= 2.22 x 10~5 ecm?s

Notice that the units of D are centimeters squared per second (in cgs units).

Fick’s second law represents the time-dependent case in which the
change in concentration of an aerosol, with respect to time at a point
in space, is proportional to the divergence of the concentration gradi-
ent at that point, the constant of proportionality again being D, the
diffusion coefficient (Jost, 1952).

— = DV% 9.2)
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The term V? is the laplacian operator, which in cartesian coordi-
nates (given by x, y, and 2) is

v, o, (9.30)

in spherical coordinates (given by r, 6, and ¢) is

¥ 29 1 ? 14 1 F]
=—+-—+ —+ 55+ 5cotb— .
ot T ror T Panredd ragr 2% (030

and in cylindrical coordinates (given by r, 6, and 2) is

VZ

V2=3_2+_1__a_+li2_+a_2

arr ror 250 92

Thus in cartesian coordinates Fick’s second law of diffusion would
be written

(9.3¢c)

ac act 9% 9%
—=D(——+—+—) 9.4
ot a? gy oax? ©4)

These equations, with appropriate boundary conditions, permit in the-
ory the solution of any aerosol problem involving pure diffusion.

Early investigators using a liquid medium found that a particle in
brownian motion moves with uniform velocity (Svedberg, 1909), that
smaller particles move more rapidly than larger ones (Exner, 1867),
that particles travel more rapidly as the viscosity of the medium de-
creases, and that at constant viscosity the amplitude of the motion is
directly proportional to the absolute temperature (Seddig, 1908).
These observations are consistent with a theory of brownian motion
developed by Albert Einstein (1956) in 1905 and 1906.

Einstein’s Theory of Brownian Motion

Consider a cylinder of unit cross-sectional area in which diffusion of
particles is taking place along the axis of the cylinder in a single di-
rection. Within the cylinder are two membranes, E and E’, a distance
of x from one end and a distance dx apart, as shown in the sketch in
Fig. 9.1.

Diffusion in the cylinder gives rise to a force from the particles
(which could be likened to an osmotic force) acting on the two mem-
branes. The force acting on E is F, whereas the resisting force acting
on E’ in the opposite direction is F'. The resultant of these forces is
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X direction

Direction
of diffusion

Figure 9.1 Sketch of imaginary cylinder.

F - F'. This force acts on the cylinder volume A dx, but the cross-
sectional area of the cylinder A is equal to 1. Thus the force per unit of
enclosed volume is (F - F')/dx. This is also equal to the osmotic pres-
sure gradient within the enclosed volume dP,/dx, that is, the pressure
gradient between planes E and E’. Letting 3.F, be the osmotic force
per unit volume, we have

F-F _ -dP,
3Fp = A = (9.5)
The osmotic pressure of a solute in a solvent is given by the expression
P, = nRT (9.6)

where P, is the osmotic pressure, R the gas constant, T' the absolute
temperature, and n the number of particles expressed as gram-
molecules per unit volume.

Differentiating with respect to n gives

dP, = RTdn 9.7)
which, when substituted in Eq. 9.5, gives for the osmotic force
- _ppin
3F, = -RT ax 9.8)

This is the osmotic or diffusional force acting on all the particles per
unit volume. If there are n gram-molecules of particles present in the
unit volume, then the actual number of particles in the unit volume is
determined from the product of n and Avogadro’s number N,. Since
nN,4 = c is the number of particles per unit volume, the force acting
on each particle Fp, is
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SF,
nN,

Fp = 9.9

The resistance offered to the motion of a spherical particle by the
medium in which it is moving is given by Stokes’ law for small values
of the Reynolds number. Equating this resistance with F, gives

_RT dn/dx _ Swpdy

Fy = N, C. (9.10)
Then rearranging terms gives
Ny o ~BT_Cc_dnNy)
A N, 3mpud dx
or
RT Cc dC
cv = "N, Smpd dx 9.11)

The product cv represents a diffusion current, i.e., the number of par-
ticles crossing a unit area in unit time. But Fick’s first law of diffusion
states that the diffusion current is proportional to the concentration
gradient, the constant of proportionality being the diffusion coefficient
D. Thus the diffusion coefficient for an aerosol particle is, from Eq.
9.11,

_RT C C.
" N, 3mwpd kT31'rp,d

9.12)

where k is the Boltzmann constant.

A new term—particle mobility B—can be defined. Mobility repre-
sents the velocity given to a particle by a constant unit driving force
and is

C.

= 9.13a
B 3mpd ( )

which for a sphere of mass m becomes
B== (9.13b)

m

Then the diffusion coefficient is just

D = BRT = r—;—kT (9.14)
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Example 9.2 Determine the diffusion coefficient of a cigarette smoke particle
(spherical shape, d = 0.25 pm, p = 0.9 glem®). Assume T = 20°C.

L 2 _1ud)|_
C°_1+d 1.257+0.4exp( TN )]—1‘72

Cc 1.70

B= - = 4.0 x 10" cm/!
3mpd  (3)()(1.82 x 1074)(0.25 x 10~ %) cm/s

D = BRT = (4.01 x 107)(1.38 x 10~16)(293)
= 1.62 x 1076 em%s

The diffusion coefficient has units in the cgs system of cm?/s and is
a function only of particle diameter, gas viscosity, and pressure for a
given temperature. At normal conditions of temperature and pressure,
a 1-um diameter particle has a diffusion coefficient of 2.76 x 10~
cm?/s, about 10° times smaller than the diffusion coefficient for a typ-
ical gas molecule. Diffusion coefficients for other particle sizes are
given in Table 9.1.

Brownian Displacement

When a particle moves in brownian motion, the chance that it will
ever return to its initial position is negligibly small. Thus, there will
be a net displacement with time of any single particle, even though
the average displacement for all particles is zero. For example, during
a short time interval one particle may move a distance s,, another a
distance s5, and so on. Some of these displacements will be positive,
others negative; some up, others down; but with equilibrium condi-
tions the sum of the displacements will be zero. It is possible to esti-
mate the displacement of any particle in terms of its root-mean-square
displacement.

Suppose for simplicity, particles are considered to move only for-
ward or backward along a single axis. Particles moving forward are

TABLE 9.1 Diftusion Coefficlents of Spheres of Varlous Sizes at Normal
Temperature and Pressure

Diameter, cm C. B D, cm/s?
10-¢ 23.35 1.36 x 10'° 5.50 x 10™*
1075 2.97 1.73 x 108 7.01 x 107°
1074 1.17 6.84 x 10°® 2.76 x 1077

103 1.02 593 x 10° 240 x 1078
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those considered to have positive velocities. We can denote the root-
mean-square displacement of the forward-moving particles as s, this
displacement taking place over the time interval ¢. During this time
interval, on average, only those particles lying a distance of s or less
from a plane E will pass through it. The total number of particles dis-
placed per unit area through FE is Y2c;s, where c, is the mean concen-
tration of particles within volume V;, lying to the left of plane E.

By the same arguments, the concentration of particles going the
other way from volume V;, (on the right of plane E) is Y2c,s. Thus the
net flow from left to right is Y2(c; — c¢y)s.

However, for very small values of s we can write

de €C2—¢C
dx- s (9.15)
the definition of a differential. Then
dc
€y —Cy= —§ dx (9.16)

and the net flow can be written as 1%s% dc/dx. In a unit of time the
quantity J diffusing through a unit area of plane E is

J=-5=== 9.17)

But Eq. 9.17 again resembles Fick’s first law of diffusion, giving an-
other expression for D, the diffusion coefficient. In this case

2

s
== .18
D o (9.18)

The mean square displacement is then
s? = 2Dt 9.19)

When movement in three dimensions is considered, the displacement
over any given time period will be less than in the one-dimensional case,
since during part of the elapsed time the particle moves at right angles to
the direction of interest. For three-dimensional motion the mean square
displacement is

s2=2ps (9.20)
k)

Example 9.3 An aerosol made up of 0.25-pm-diameter smoke particles is col-
lected in a spherical flask 5 cm in diameter. How long will it take, on average,
for a particle to travel from the center of the flask to its outer edge?
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From Example 9.2, for a 0.25-um spherical particle D is 1.62 x 10~6 cm%s.
s = ‘/iDt
™
25 = \/5(1 62 x 107y
o - ﬂ .

t=303x10%s
= 85.0 days

This problem illustrates that particles move relatively short distances by diffu-
sion. Thus diffusion is important only when one is considering particles in very
small volumes, close to surfaces, or when particle size is so small that the value
of D approaches molecular diffusion coefficients.

Brownian Motion of Rotation

Particles comprising an aerosol move randomly in brownian motion
because of the gas molecules impacting on them. The random nature
of the molecules striking the particles can also cause the particles to
rotate, this brownian rotation being described by the equation (Fuchs,
1964)

02 = 2kTBt (9.21)

The term 62 is the mean square angle of rotation of the particle about
a given axis in time ¢. For a spherical particle Fuchs (1964) gives the
rotational mobility By as

1
By = 9.22
0 (9.22)
so that Eq. 9.21 becomes
=, _ 2kT
6% = t 9.23
o (9.23)

Example 9.4 Determine the average number of revolutions a 5-um spherical
particle will make per minute in air at 20°C.

52 2kT , _ _ 21.38x 10716)(293) (60)
mpd®  (w)1.82 x 1074)(5 x 10~%3
= 67.89
\/542 = 8.24 rad
= 1.31 r/min

For smooth spherical particles, brownian rotation is of no interest
because it produces no observable effect. For particles with some ir-
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regularities brownian rotation produces the twinkling effect which is
often observed when a beam of light is passed through a cloud of par-
ticles. Although Eq. 9.23 was derived for spheres, it can also be ap-
plied to isometric particles. For particles smaller than about 1 wm in
diameter, the frequency of rotation is faster than the eye can see. On
the other hand, with particles having diameters greater than 20 pm
or so, brownian rotation is very slow. Thus the twinkling normally ob-
served in a cloud arises only from particles whose diameters lie
roughly between 1 and about 20 wm, but since particles smaller than
about 10-pm diameter cannot be seen with the unaided eye, the actual
range of sizes of twinkling particles is very small.

“Barometric” Distribution of Particles

One consequence of kinetic theory is that particles will have the same
average translational energy as molecules when the gas is in equilib-
rium. Thus it is possible to compute the average velocity of a particle
as it moves in brownian motion. Denoting this velocity as v,

1 2_3

5 Mo = 5 kT 9.24)
where m is the mass of the particle and 3kT/2 is the average energy of
a particle in the gas. Rearranging terms gives

UO = ‘l%' (9.25)

exactly the same as Eq. 3.10, the equation for the root-mean-square
velocity of a gas molecule. Aerosol particles, in their random motion,
follow a Maxwell-Boltzmann velocity distribution similar to the mol-
ecules. But if they behave similarly to gas molecules, they should also
be distributed vertically in equilibrium according to the barometric or
Boltzmann equation. This indeed appears to be the case. Monodisperse
particles which do not coagulate will be distributed vertically accord-
ing to the expression

¢ = co €xp (;;%Z) (9.26)

where Z is the height above some reference point at which the concen-
tration ¢ is measured and c, is the concentration of particles at the
reference height. This effect is of no importance for particles larger
than 0.3 um. For particles with 0.1-pm diameter, at equilibrium es-
sentially all particles will be contained in a band approximately 0.8
mm thick above a given surface. With particles of 0.01-um diameter,
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the bandwidth is approximately 50 cm. Thus many very small parti-
cles (less than 0.1-pm diameter) will never be removed by sedimenta-
tion on their own accord, being constantly buffeted upward by
brownian motion. Their removal from air must be carried out by some
other mechanism.

Example 9.5 Extremely fine polonium-210 particles (0.01-pm diameter, p = 9.4
g/em®) are spilled on a laboratory bench. Assuming a barometric distribution is
established, at what height will c/c, = 0.1?

. _mgZ
co = exp kT )
InS - —mgZ
()] kT
7= -kT In (c/cg)
mg

_ -(1.38 x 10716)(293)(In 0.1)
(r/6)(10~18)(9.4)(980)
= 19.30 cm

Very fine particles will migrate over a surface, possibly as a result of “baromet-
ric” resuspension.

Effect of Aerosol Mass on the
Diffusion Coefficient

Equation 9.12 indicates that the diffusion coefficient of an aerosol par-
ticle is independent of particle density and hence is independent of
particle mass. But is this really so? Since particle mass is so much
greater than molecular mass and the particles are continually under-
going bombardment by the molecules, one would expect changes in
the direction of the particle to be gradual, compared to the rapid
changes in direction with molecular diffusion. But if this is true, then
particle momentum (mass) should be considered in the particle diffu-
sion coefficient equation.

Two-dimensional trajectories of a typical gas molecule and a typical aero-
sol particle can be compared in Fig. 9.2. The molecule shows sharp changes
in direction, each change occurring when it strikes another molecule. As
discussed in Chap. 3, the average distance between hits is defined as the
mean free path of the molecule. For the particle, a hit by a single molecule
does not appreciably affect its motion. Therefore, its path is not character-
ized by sharp changes in direction, but by smooth curves representing the
combined effect of hits by many molecules.

The problem can be treated by considering the average particle dis-
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Gas Molecule Aerosol
particle
Figure 9.2 Gas molecule trajectory compared to aerosol
particle trajectory.

placement under the influence of a force whose magnitude and direc-
tion vary in a random fashion but whose average magnitude is equal
to zero. According to Fuchs (1964), the mean square displacement of
an average particle considered in this way is

s?= %E%[t - (1 - e)] 9.27

The term v? is equal to 3kT/m, the mean square Boltzmann velocity.
In terms of the diffusion coefficient, Eq. 9.27 becomes

s? = 2D[t - 7(1 - e™*)] (9.28)

Whent » 7, Eq. 9.28 reduces to Eq. 9.19, an expression for the displacement
of a particle at constant velocity. Since our observation times will generally
always be greater than 1, we can conclude that in most instances particle
inertia can be neglected in considering particle diffusion.

Example 9.6 Find the ratio of /v such that the root-mean-square displacement
estimated considering particle inertia (Eq. 9.28) is 10 percent less than the es-
timate when inertia is not considered (Eq. 9.19).

Eq.9.28 2D[t -1 -]
Eq.919 2Dt -

0.90
=1- %(1 -e v =0.90

%(1 -e ) =01

By trial and error,
=0.1

~ 1

i.e.,, when ¢ > 107, this correction is unnecessary.
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Aerosol Apparent Mean Free Path

Since aerosol particles are continually undergoing molecular bom-
bardment, their paths are smooth curves rather than segments of
straight lines. It still is possible to define an apparent mean free path
for the aerosol particles (Fuchs, 1964). This is the distance traveled by
an average particle before it changes its direction of motion by 90°.
The apparent mean free path represents the distance traveled by an
average particle in a given direction before particle velocity in that
direction equals zero. But this is just the stop distance.

At any time, a particle may be considered to be moving in a specific
direction with a velocity v = /8kT/wm. From a definition of the stop
distance, the pseudo mean free path Iy is

lp=Tv="1 8kT 9.29)
wm
At normal pressure and temperature, Iz reaches a minimum at an
aerosol particle diameter of 2 x 10~° c¢m, but increases only by about
a factor of 5 for particles 2 orders of magnitude larger or smaller than
this size. Thus, the pseudo mean free path is essentially constant over
the size range of interest, having a value of about 10~€ cm.

Example 9.7 Compute the apparent mean free paths for unit-density spheres of
0.01-, 0.1-, and 1-um diameter. Assume T = 20°C.

I = o [BET
B=7 mm
d, pm C. T m
0.01 23.35 7.13 x 10°° 5.24 x 10~
0.1 2.97 9.08 x 1078 5.24 x 1016
1.0 1.17 357x10°° 5.24 x 10713

15(0.01 um) = 3.16 x 10~ cm
15(0.1 pm) = 1.27 x 10"6cm

15(1.0 pm) = 1.59 x 10 6 cm
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Probiems

1 Compute the diffusion coefficient in air of a 5-um unit-density sphere at
20°C.

2 Repeat Prob. 1 for a 0.5-um unit-density sphere.
3 Repeat Prob. 2 for temperatures of 0 and 100°C.

4 Estimate the root-mean-square displacement for a 2-um silica dust parti-
cle (p = 2.65 glcm®) over a 10-min period.

5 How long on average will it take a 0.25-pm cigarette smoke particle (as-
sume sphere, p = 0.9 g/cm®) to diffuse (a) 1 ft and (b) 10 ft?

6 Assuming that a person can distinguish individual flashes of light appear-
ing at a frequency of 5 per second or less, estimate the minimum size of a par-
ticle that will appear to twinkle in a beam of sunlight.

7 Using Eq. 9.26, determine the height at which nitrogen molecules, molec-
ular weight = 14, will have a concentration that is one-tenth the concentra-
tion at £ = 0; hence, estimate the height above the earth where p/p, = 0.1
atm.

8 What is the significance (if any) of the observation that the apparent mean
free path goes through a minimum value at about 0.2 pm?
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Particle Diffusion

In particle diffusion the migration or movement of aerosol particles down
a concentration gradient is considered. Since particles will always tend
to move from regions of high concentration to regions of low concentra-
tion (Chap. 3), there will always be a tendency for aerosols to migrate to
walls or other surfaces where the concentration, because of deposition, is
essentially zero. As discussed in Chap. 9, the range over which this mi-
gration occurs is quite small. In those cases where the aerosol is in a
fairly confined space to begin with, such as in the lung or in a small sam-
pling tube, loss of the aerosol by diffusion can be significant. In this chap-
ter, methods for estimating this loss are described.

Steady-State Diffusion

Consider the case of the diffusion of particles in a gas where the con-
centration of particles, although varying at different points within a
gas, does not change with time. An example is the diffusion of parti-
cles from a zone of constant concentration ¢ = ¢, to a wall, where the
airborne concentration is assumed to be zero. Suppose it is desired to
know the deposition rate of particles on the wall due to diffusion.
From Fick’s first law, the diffusion current oJ is

dc
= D= (10.1)

If 5 is the distance from the zone of constant concentration to the wall,
then the concentration gradient dc/dx will be

dc_O—Co-

ax 5 (10.2)

x|
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so that number of particles striking a unit area of the wall in unit
time is
Dc,

5 (10.3)

Example 10.1 An aerosol flowing through a tube is kept at a constant concen-
tration inside the tube to within 1 mm of the tube wall. If the aerosol is made up
of 0.5-um-diameter spheres and the concentration in the tube is 102 particles
per cubic centimeter, estimate the wall deposition rate, in particles per square
centimeter per second. Assume T = 20°C.

2\ 1.1d
Cc=1+ 7[1.257 + 0.4 exp (— TN )] =1.35

Ce
3mpd
__(1.85)(1.38 x 10716)(293)
" (3m(1.82 x 1074(5 x 10°5)

D =BT =

(kT)

= 6.35 x 10~7 ¢cm?¥/s

De -7 3
J=20_635x10° X107 _¢ga5, 1078 particles/(cm? - 5)

Except for very long tubes, this is a negligible deposition rate. Unfortunately, it
is quite difficult to estimate 3, the concentration boundary layer thickness.

Non-Steady-State Diffusion

In Example 10.1 the case where the aerosol concentration does not
change with time was considered. In many practical situations, how-
ever, the aerosol concentration does change with time, possibly as a
result of diffusion and subsequent loss of particles to a wall or other
surface. In this event, Fick’s second law, Eq. 9.2, must be used. Solu-
tion of this equation is possible in many cases, depending on the ini-
tial and boundary conditions chosen, although the solutions generally
take on very complex forms and the actual mechanics involved to find
these solutions can be quite tedious. Fortunately, there are several ex-
cellent books available which contain large numbers of solutions to
the transient diffusion equation (Barrer, 1941; Jost, 1952). Thus, in
most cases it is possible to fit initial and boundary conditions of an
aerosol problem to one of the published solutions. Several commonly
occurring examples follow.

Infinite volume, plane vertical wall

Consider the case of a plane vertical wall that is in contact with an
infinitely large volume of aerosol having the same initial concentra-
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tion throughout. It is desired to estimate the rate of deposition of aero-
sol on a unit area of wall, assuming that all particles hitting the wall
stick to it. The conditions of the problem make it one-dimensional. By
letting x be the distance from the wall, Eq. 9.2 becomes

ac %

== p=

at o (10.4)
since the concentration gradients in the y and z directions are zero.
With the initial concentration ¢(x, 0) = ¢; and the boundary condition
c(0,t) = 0 for ¢t > 0, the solution to Eq. 10.4 is

) = —220 f " exp (— ‘—2) dt (10.5)
V4nDt"° 4Dt

or

x
V4Dt
where erf represents the probability or error function, a tabulated
function (see App. C). When the argument of this function is small,
the function is small and erf(0) = 0. For arguments greater than about
2.6, erf(x) = 1. Steep concentration gradients occur initially close to
x = 0, gradually decreasing with time (Fig. 10.1).

Recalling that the diffusion current J, which is the number of par-
ticles crossing unit area in unit time, is equal to the diffusion coeffi-
cient times the gradient (Fick’s first law), we see that evaluating the
gradient at x = 0 gives the number of particles deposited in time in-
terval dt

c(x,t) = cq erf ( ) (10.6)

Jdt = -D X d
ox

x=0
From Eq. 10.6 and App. C,

dc 2¢0 1 ( x2 )
—=— exp| -~ (10.7)
% \/xVaDt 4Dt
which is to be evaluated at x = 0. Then
D
Jdt =dN = co‘/——dt (10.8)
Tt

at x = 0, which on integrating from¢ = O tot = t gives N, the number
of particles deposited per unit area in the time interval ¢:
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Figure 10.1 Plot of solution of ac/at = D(8%c/ax®) (semi-infinite case).
Solution: c/cy = erf(x/4Dt).

c/co

N = Co 4_3}' (10.9)

Example 10.2 Estimate the number of 0.1-pm-diameter particles deposited per
square centimeter per hour on a wall placed next to a semi-infinite aerosol con-
taining 100 particles per cubic centimeter.

From Table 9.1, D for 0.1-um-diameter particles is 6.96 x 10~¢ cm%/s;

4)(6. ~6)60 x 60)]V2
N = gy _ 10041696 X 10760 x 60

v

= 17.86 particles = (cm? - h)

It is interesting to compare Egs. 10.3 and 10.9. Equation 10.3 rep-
resents steady-state conditions, in which the concentration a distance
3 away from the wall is always constant, while Eq. 10.9 relates to the
case where the concentration near the wall decreases as particles are
lost to the wall.

Two vertical walls a distance H apart

Suppose, instead of being semi-infinite, the cloud is contained between
two vertical walls spaced a distance H apart. With the same initial
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conditions as before and the boundary condition that ¢ = 0 at both
x = 0 and x = H when ¢ = 0, the solution to Eq. 10.4 becomes

_C_=e x _le H+x _ H-x
o) o) )] oo

Figure 10.2 shows a plot of c/c, as a function of 4Dt/H? for the cases
where x = H/2 and x = H/20. When H is large compared to x, the so-
lution is equivalent to the single-wall infinite-medium case.

Figure 10.3 is a plot of c¢/cy versus time, measured at x = H/2 for
monodisperse particles having a diameter of 1 um when H = 2 cm.
Note that there is essentially no change in concentration until some-
time after 10° s, and then a fairly rapid decrease in concentration
takes place. It can be concluded that except for very small particles or
very small tubes, pure diffusion will have a small to negligible influ-
ence on the concentration changes in an aerosol flowing through a
tube.

But concentration change, and hence “diffusive” deposition, is ob-
served. Thus, there must be an additional mechanism operating which
tends to enhance deposition of small particles by “diffusion.”

1.0

0.9

0.8

0.7

0.6 K=4D/H

0.5

C/Co

0.4

0.3

0.2

0.1

1 1 1 ] |
02 04 06 08 1.0 12 14 1.6 18 20

Kt

Figure 10.2 Finite case. Change in concentration by diffusion occur-
ring between two walls spaced a distance H apart; Eq. 9.10.
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Flgure 10.3 Diffusion of monodisperse 1-pm-diameter spheres. Concen-
tration measured at center of two plates spaced 2 cm apart.

Diffusion in Fiowing Airstreams—
Convective Diffusion

Thus far, only models for diffusion of particles in still or stagnant air
have been investigated. Often, however, the air in which the particles
are suspended is not stagnant but has some overall motion. As an ex-
ample, consider the smoker in a room full of people. Although there
may be no perceptible air movement, when a cigarette is lighted, the
odor of tobacco smoke is quickly detectable throughout the room. Even
if molecular diffusion coefficients were used to describe the motion of
the tobacco smoke particles, transport rates by diffusion are too small
to explain the appearance of smoke so quickly in all parts of the room.
What occurs is that particles are entrained and transported by the
moving air within the room. Convective diffusion describes this phe-
nomenon,

General Equations of Convective Diffusion

First, consider the flux of particles in a fluid through unit area in unit
time. Particles can be transported by molecular diffusion or by the
moving fluid. For molecular diffusion, from Fick’s first law, Jp, = =D
grad ¢, whereas if particles are entrained in a moving liquid,

ooy = €U (10.11)

The total mass flux is the sum of the two fluxes and is expressed as
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J =cu-Dgradc (10.12)

From Eq. 10.12 it can be shown (Levich, 1962) that the time rate of
change of concentration—similar to Fick’s second law—is

;;_0: = DV% - uVe (10.13)
This is the general convective diffusion equation for particles in an
isothermal gas when the particles are not subjected to any forces other
than the convective motion of the gas and the molecular motion of the
gas molecules.

If a volume source is present, such as a gas-phase reaction which
produces @, particles per cubic centimeter throughout the volume, Eq.
10.13 becomes

a ; = DVi - uVc + @, (10.14)

In rectangular cartesian coordinates, Eq. 10.13 can be written

+ +—+— (10.15)

ot Tty T T e Ty T a2

When u, = u, = u, = 0, indicating no convective motion of the gas,
Eq. 10.15 reverts to the “pure” diffusion case. The terms u,, u,, and u,
are not necessarily equal, nor are they usually constant, since convec-
tive velocities decrease as a surface is approached. Equation 10.15
thus represents a second-order partial differential equation with vari-
able coefficients. These types of equations are usually quite difficult to
solve. However, often it is sufficient to consider only the steady-state
solution, i.e., the case where ac/dt = 0, indicating that the concentra-
tion at any point within the system is not changing with time. Then
Eq. 10.15 becomes

dc ac ac ac D( ¥ ¥ a"c)

ac ac a“c
wGr Ut G = D( ay2 C 22) (10.16)

Convective diffusion defined by
the Peclet number

If u, is the average velocity in a system where both molecular diffu-
sion and convective diffusion are taking place, L is a characteristic
length, and c, is a representative concentration, then Eq. 10.16 can be
put in dimensionless form by making the following substitutions:
U, = ufug, X = x/L, C = clcy, etc. Equation 10.16 becomes
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2 2 2
ac ac ac L(ac+£+gg

U<+, U,—= 10.17
+6+ aXzaWaZ?)(O)

*oX Y *9Z Pe

where Pe defines the dimensionless ratio

uoL

Pe = 53 (10.18)
known as the Peclet number. It is clear that one side of Eq. 10.17 rep-
resents molecular motion while the other side represents convective
motion. Since all the dimensionless terms in Eq. 10.17 are essentially
1 (Levich, 1962), the Peclet number describes the relationship be-
tween diffusion and convection in a manner similar to the role played
by the Reynolds number in fluid flow. When the Peclet number is
small, molecular diffusion predominates. When it is large, convective
transport predominates and diffusion can be neglected.

Example 10.3 Determine the Peclet number for 0.25-pm-diameter spheres be-

ing mixed in a room 10 ft wide, 20 ft long, and 10 ft high if air is circulating in
the room at a rate of 6 air changes per hour.

Volumetric flow rate = volume x _L.ng_ 10 x20 x 10 x 6

= 12,000 ft3/h = 200 ft3/min

Using room cross-sectional area,

_ 200 _ o
%0 =710 x 0 2 ft/min = 1.01 cm/s
D for 0.25- heres = BET = C"‘l kT
or 0.25-um spheres =

=1.62 x 10% cm?/s

uoL _ 1.01(20 x 30.5)

Pe = =
D 1.62 x 1076

= 3.81 x 108

Pe is very large; hence convection predominates and diffusion can be ignored.

In this solution 20 ft was chosen for L because we were interested in mixing
along the entire length of the room. However, if either the width or the height
were chosen for L, the resulting conclusion would be exactly the same!

Tube Deposition

For the special case of aerosol deposition in a tube in which both mo-
lecular and convective diffusion are important, several mathematical
expressions have been derived from the convective diffusion equation,
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Eq. 10.13, by assuming laminar flow, steady-state conditions (dc/
ot = 0), diffusion in the direction of the aerosol flow to be negligible,
and 100 percent sticking of the aerosol particles that reach the tube
surface. Then Eq. 10.13 becomes

%  dc ac
D + u(R) R

R TR (10.19)

where u(R) is the velocity profile along the z or axial direction and R
is a radial distance.

It is possible to make a rough estimate of the diffusional deposition
in a tube of radius R by assuming a residence time of ¢ = L/u, where u
is the velocity in a tube of length L:

area of tube
volume of tube

e - % /%(2RL‘IT)
" *Vau\xR2L

Cout 4 DL

Cin T '\/; uR?
From the simple approach given above, it appears that deposition is
controlled by a dimensionless ratio of terms

Cout = Cin — N(

(10.20)

_DL _=DL
uR? Q

Furthermore, the result is interesting because it indicates that for
diffusional deposition with a fixed flow rate, deposition is the same
whether one uses a large tube with a low velocity or a small tube with
a high velocity.

Cheng (1989) has summarized solutions to Eq. 10.19 for various ge-
ometries, as shown in Fig. 10.4. The general solution of Eq. 10.19 is
expressed as a series of exponential functions

¢ (10.21)

cout c
o " 21A, exp (- Bad) (10.22)
where A,, and B, are constants. Figure 10.4 shows solutions to Eq.
10.22 for round and rectangular channels.

For penetration through a series of screens Cheng (1989) points out
that the solution can be likened to the filter fan model of Kirsch and
Stechkina (1978). In this case
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EQUATION A-1
for ¢ > 0.02

% = 0.81905 exp (-3.6568 ¢) + 0.09753 exp(-22.305 ¢)
+0.0325 exp(-56.961 ¢) + 0.01544 exp(-107.62 ¢)

EQUATION A-2
for < 0.02
CLO =1.0-2.5638¢2° + 1.2 ¢ + 0.1767 ¢*°
-
He<< W EQUATION B-1
« for$>0.05
L —— =0.9104 exp (-2.8278 ¢) + 0.0531 exp(-32.147 ¢)
+0.01528 exp(-93.475 ¢) + 0.00681 exp(-186.805 ¢)
—
EQUATION B-2
W for ¢cs 0.05
—— =1.0-1.5265¢?° + 1.5 ¢ + 0.0342 ¢*°
v o BDLW T 0T +1.56+0.0342¢
|<+‘ 3QH
H

Figure 10.4 Particle deposition equations. (From Cheng, 1989.)

Cout = exp[—x"(2.7Pe""'3 + 1%2 + %Pe'm%%)] (10.23)

Cin K K

where
doh
= — 10.2
X =1 - o)d, ( 3a)
2

k= -0.5In 2?“ + 217_(1 - 0.75 - 0.25 (2_a) (10.23b)

with n as the number of screens; dj, the diameter of a single fiber; A,
the thickness of a single screen; «, the solid volume fraction of the
screen; R, the interception parameter d,/d; and Pe, the Peclet num-
ber.

Example 10.4 An aerosol made up of 0.1-um-diameter particles (D = 7.01 x
106 cm?/s) flows through a 1-cm-diameter tube at 15 L/min. If the tube is 100 ft
long, estimate c,/c;,..

First ¢ is found by using Eq. 10.21:
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&= DL _wDL
uR? @
_wDL _ wx 7.01 x 10~6 x 100 x 80.5 _ —a
¢="g *© 15 x 1000/60 = 2.69x 10

Then, from Eq. 10.20 . 4
out
= =-1--V$=0.963
Cin Ve ¢
Using Eq. A-1 from Fig. 10.4,
Cout

— = 0.962
Cin

and using Eq. A-2 from Fig. 10.4,
Zout _ 0.990
Cin

As shown earlier, particle diffusion coefficients are fairly small (on
the order of 10™* to 10™® cm?/s), resulting in large Peclet numbers un-
less u, (the average velocity in the system) is quite small or the char-
acteristic length is quite small. In most cases of interest, average con-
vective velocities are 0.01 cm/s or greater, not sufficiently small by
themselves to ensure a small Peclet number (and hence a diffusion-
controlled problem). Thus, whether diffusion or convection predomi-
nates generally depends solely on the definition of the characteristic
length L. This has already been defined as the length over which the
major change in concentration takes place.

Consider air flowing over a flat surface. If the average concentration
of particles in the air is ¢, and the concentration at the surface is 0, it
is expected that the concentration change from ¢, to 0 would occur
mainly near the surface. This has already been shown to be the case
for molecular diffusion alone. The distance over which this concentra-
tion change occurs is the characteristic length. In other words, molec-
ular diffusion is important in convective diffusion only in the small
region close to surfaces. Here it is extremely important, since not only
are concentration gradients decreasing sharply but also velocity gra-
dients are decreasing.

The zones where these gradients occur are often called boundary
layers. For example, the aerodynamic boundary layer is the region
near a surface where viscous forces predominate. Boundary layers ex-
ist with both laminar and turbulent flow and may be either solely
laminar or turbulent with a laminar sublayer themselves (Landau
and Lifshitz, 1959).

Laminar boundary layer

With air flowing over a surface, the boundary layer thickness 3 in-
creases along the surface in the direction of flow (Davies, 1966):
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3=5,4/— (10.24)

The term § represents distance from the surface to the point where 99
percent of u,, the mainstream velocity, is reached (see Fig. 10.5). In
Eq. 10.24q, x is the distance measured in the direction of flow from the
starting point to the point of interest, and v is the kinematic viscosity.
If a linear Reynolds number Re, is defined as ugx/v, Eq. 10.24a can be
written as *

(10.24b)

For laminar airflow in a tube, when 3§ approaches the tube radius,
Poiseuille flow or a parabolic flow profile is fully developed. This is
accomplished by the acceleration of the central portion of the flow.
However, when Re, exceeds a value lying somewhere between 10* and
10, the laminar boundary layer becomes so thick that it is no longer
stable, and a turbulent boundary layer develops.

Example 10.5 Twenty liters of air flows per minute into a 2-in-diameter tube of
circular cross-section.

a. Find the boundary layer thickness a distance of 1 cm into the tube.
To determine the boundary layer thickness at 1 cm,

_ Uox 4(20,000/60) 1 _ 16.45
*T v T m(2.54 x 2)20.151 ~ 0.151

= 109.0
Given Re,, the thickness 8 can be determined.

Laminar boundary-
layer

Directi ’
of ﬂol\fvm
¢ x >

Laminar
boundary layer

Figure 10.5 Development of laminar boundary layer (not to scale).
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bx 5(1)
§=—==-——--=048cm
VRe, V109
b. At what distance into the tube will a parabolic laminar flow profile be

fully established?

Let 8 = tube radius = 1 x 2.54 cm. Then

-5y
Ug

8% = 522
Up

8%up (1 x 2.54)%(16.45)

52,  (25)0.151)
= 28.13cm

With fully developed laminar flow, the velocity at any point r in a
circular tube of radius R can be expressed by the equation

’.2
u(r) = u,,,(l - E) (10:25)
where u,, is the maximum centerline flow velocity, or twice the aver-
age tube velocity.

Turbulent boundary layer

A turbulent boundary layer is actually made up of three zones, a vis-
cous or laminar sublayer immediately adjoining the wall, a buffer
zone, and finally a turbulent zone making up the main boundary layer
(Schlicting, 1968). Generally speaking, turbulent boundary layers are
thicker than laminar boundary layers.

Concentration boundary layer

Since both laminar and turbulent boundary layers contain laminar or
viscous layers, it would seem logical that diffusion would primarily
take place across these regions. If the boundary layer thickness were
known, assuming a linear decrease in concentration, Eq. 10.3 could be
used to estimate diffusion current. Unfortunately, the point of uni-
form velocity is not necessarily the point of uniform concentration.
This is because particles, with their large inertia compared to air, can
be carried into laminar boundary regions by mixing as well as by dif-
fusion. The value for § in Eq. 10.3 will always be less than the equiv-
alent value for the aerodynamic boundary layer thickness, in some
cases being only one-tenth or even smaller (Levich, 1962).

Thus, there are actually two boundary layers of interest: the aero-
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dynamic boundary layer which is a result of the velocity gradient es-
tablished at the boundary and the diffusion or concentration boundary
layer resulting from the concentration gradient which exists near the
surface.

For turbulence it is convenient to describe particle flux in terms of
an eddy diffusion coefficient, similar to a molecular diffusion coeffi-
cient. Unlike a molecular diffusion coefficient, however, the eddy dif-
fusion coefficient is not constant for a given temperature and particle
mobility, but decreases as the eddy approaches a surface. As particles
are moved closer and closer to a surface by turbulence, the magnitude
of their fluctuations to and from that surface diminishes, finally
reaching a point where molecular diffusion predominates. As a result,
in turbulent deposition, turbulence establishes a uniform aerosol con-
centration that extends to somewhere within the viscous sublayer.
Then molecular diffusion or particle inertia transports the particles
the rest of the way to the surface.

As particle size increases, particles tend to lag behind the eddy mo-
tion of the turbulent air. Particle size may be so large that particles
are influenced only slightly or not at all by the turbulence. In this case
particles will not be deposited by turbulent motion. Smaller particles
that follow turbulence, even though they might lag behind, can be de-
posited by being projected across the boundary layer if the boundary
layer thickness is less than the particle stop distance (Sehmel, 1968).
Since increasing turbulence tends to increase particle motion, in-
creases in turbulence will tend to enhance particle deposition for a
given size particle. But at a given level of turbulence (Reynolds num-
ber), calculations made by Davies (1965) indicate that there exists a
particle size having a maximum rate of deposition, as shown in Fig.
10.6. These deposition rates can be expressed in terms of a “deposi-
tion” or “diffusion” velocity.

The diffusion velocity

If a concentration boundary layer § can be defined, then the number of
particles deposited per unit area in unit time becomes

J= % (10.26)

By dividing J by c,, a term having the units of velocity results. This
function vy, is called the diffusion velocity, defined as

_J4._D »
w=2=3 (10.27)



Particle Diffusion 159

Particle Diameter —»

) 10.6 Schematic diagram of deposition velocity as a function
rticle diameter (Reynolds number fixed).

llowing this same logic, a diffusion “force” can be defined as

3wpupd _kT

dir = C. 5 (10.28)

*h is dependent on particle and medium properties only as & is de-
lent on these properties.

ication of diffusion velocity

sider a well-mixed ensemble of particles flowing through a tube of
us R with no other factors but diffusion tending to remove the par-
s from the flow. With diffusion velocity considered as a net move-
t of particles to the tube surface, in an interval of 1 s there will be
R) particles deposited per unit length of tube. In a time dt = dx/
. 1-cm length of aerosol traverses a distance dx. Thus in this time
R) dx/u, particles are removed, and the change in concentration
e number of particles removed divided by the volume from which
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J(@2nR)dx 1 2dx
dc = ” R chu R (10.29)
Integrating, with the initial condition that ¢ = ¢, at the entrance of
the tube, gives

2
In€ = - 2oL (10.30)

. Co uOR

where L is the overall length of the tube. If deposition velocity is con-
stant over the length of the tube considered, it is possible to estimate
deposition within the tube from Eq. 10.30.

Conversely, this equation can be used to determine deposition ve-
locities from experimental data.

Example 10.6 Unit-density 2-pm spheres are deposited while flowing at a rate
of 24 L/min through a 0.21-in-diameter tube. If the concentration downstream of
a 100-cm tube length is 87 percent of the initial or upstream concentration, es-
timate the particle deposition velocity.

In<= 2UDL
¢ uoR
3
= 24 x 10 = 1.79 x 103 cm/s
(607)(0.21 x 2.54/2)%
R =021 X254 _ 967 cm
vp = 0.332 cm/s

Experimental determinations of vy are complicated by entrance ef-
fects as well as by the effect of gravity, which is usually ignored. As a
result, only order-of-magnitude accuracy has been achieved from pre-
dictions made by using the equations of this section. Even so, it should
be clear that deposition is largely determined by the properties of the
fluid flowing near the wall. Factors such as surface shape or rough-
ness, since they affect this fluid flow, will have a marked effect on de-
position, even at low stream velocities.

Problems

1 Using the barometric equation, compute the height at which 50 percent of
0.05-pm unit-density spheres would be suspended by molecular impacts.

2 Estimate the apparent mean free path of 0.1-pm,_ umt-densnty spheres in
air at 20°C and 760-mmHg pressure.
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3 For a 0.01-pm unit-density sphere, how short must a diffusion experiment
be to have as much as 1 percent error in distance measurements? How much
shorter for a 10 percent error?

4 A cloud of 0.05-pm spheres is held in a large container. The initial concen-
tration is 10* particles per cubic centimeter. After 20 min, what is the aerosol
concentration (in particles per cubic centimeter) 0.1 mm from the wall? How
long will it take the aerosol to decrease to a concentration of 10° particles per
cubic centimeter 1 cm from the wall?

5 A sheet of glass 4 cm by 4 cm is inserted into a cloud containing 10° 0.02-
wm spherical particles per cubic centimeter. If a microscope is used with a
viewing area of 50 um x 50 um to view these particles and 100 particles are
observed per field, what is the average areal density of particles on the glass?
How long must a sample be collected to achieve this density?

6 Compare Eq. A-1 in Fig. 10.4 given by Cheng (1989) to that of Gormley
and Kennedy (1949), also given in Fig. 10.4 as Eq. A-2, by determining the
value of ¢ for which c_,/c;,, = 0.5.

7 Compare the equation given in Fig. 10.4 for a rectangular channel, Eq.
B-1, to Eq. A-1 in the same figure for values of c,,/c;, of 0.2, 0.4, 0.6, and 0.8.
Use the same cross-sectional area for the channel and the tube and have
W = 3H. Does deposition appear to be related to surface area?

8 In the portable diffusion battery of Sinclair (1972), air is flowed through a
porous cylinder 1.38-in in length, 1%4-in in diameter containing 14,500 holes,
each 0.009 in in diameter. Samples can be drawn out at different points along
the length. Show that the equivalent length (i.e., the length of a battery con-
sisting of one tube) is equal to the actual length times the number of holes.

9 For the diffusion battery of Prob. 8, determine the maximum particle di-
ameter which can be collected with 50 percent efficiency with a total flow
through the unit of 1 L/min. For penetration use Eq. A-1 in Fig. 10.4.
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Thermophoresis

introduction

Thermal gradients either within particles or in the supporting me-
dium can be responsible for motion of aerosol particles by creating
forces which act on the individual particles. Here the discussion is not
about convective motion of the medium set up by thermal gradients
which carries particles with it, but with thermal forces which act di-
rectly on individual particles to cause motion.

Tyndall (1870) first reported the existence of a dust-free space sur-
rounding a hot body, and other investigators subsequently demon-
strated that under the influence of a temperature gradient, aerosol
particles move from hot to cold regions, i.e., they move away from the
source of heat (Rayleigh, 1882, 1884). The dust-free zone surrounding
a hot body is well defined, with particles not crossing the seemingly
impenetrable barrier of the dust-free zone. Figure 11.1 illustrates the
type of dust-free zones formed by various shapes, and Fig. 11.2 is a
photograph of the dust-free zone surrounding a cylindrical rod.

PLATE VERTICAL

Figure 11.1 Types of dust-free
zones formed by thermophoresis.



Figure 11.2 Photograph of the dark space surrounding a heated brass rod.
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Early Observations of Thermophoresis

Early observations on the width of the dust-free space were made by
Aitken (1884a, b) and Lodge and Clark (1884). Later Watson (1936)
and Miyake (1935) developed an empirical formula which fit experi-
mental observations that the dust-free space increases with increasing
temperature of the body and decreasing air pressure, and decreases
with increasing molecular weight of the surrounding gas. For exam-
ple, Watson found an empirical relationship between the width in cen-
timeters of the dust-free space o4 and temperature in the form

oy = LAT H™°% (11L.1)

where AT is the temperature difference in degrees Celsius between
the surface of the hot body and free air, L is a constant having a value
of about 1.56 x 10™* for vertical plane surfaces or 7.3 x 10~° for hor-
izontal rods, and H represents the convective heat loss of the body in
calories per square centimeter per second. The term H can be roughly
approximated by H = 1 x 10™* AT"%®

It was also found that the magnitude of the dark space depends on
the size and shape of the body as well as inversely on the pressure of
the medium.

Example 11.1 A vertical heating element is held at a temperature of 100°C
higher than the surrounding air. Estimate the width of the dust-free space
around the surface of the element.

oar = LAT H™%38 = (1.56 x 1074)(100) [1 x 10-%(100)1-25]-0-38

= (1.56 x 10~4)(100)(3.72) = 5.80 x 10”2 cm

Thermophoretic forces produce very obvious effects near areas of
significant temperature gradients. For instance, one can often observe
a black deposit on the wall just above a hot-water radiator or pipe.
Convection currents conduct the warm gas and particles over the ra-
diator, but since the cooler surfaces nearer the radiator are not pro-
tected by a dust-free space, deposition takes place. On a ceiling or on
walls of rooms heated by convection, one can often see a replica of the
construction behind the plaster formed by deposited particles. Again,
the dust is deposited on the cooler portions of the surface: on spaces
between the laths if the laths are poor heat conductors and directly
opposite the laths if they are good conductors. In a room that is heated
by direct radiation, such as by an open fire, the walls and furniture of
the room are warmer than the air, so that particles suspended in the
air are not deposited by thermal forces (Lodge, 1883; Gibbs, 1924).

Thermal deposition of particles inside boilers or heat exchangers
can lead to reduced efficiency of the units (Fuchs, 1964) whereas



166 Chapter Eleven

thermophoresis taking place in ducts or chimneys before equilibrium
temperatures are reached can account for an appreciable fraction of
the total deposition which occurs. Thermophoresis may protect sur-
faces against particle deposition (Stratmann et al., 1988).

Thermophoretic forces can be used in sampling aerosols; the parti-
cles are passed through the dark space surrounding a hot body and are
collected with nearly 100 percent efficiency on a cold surface placed
nearby. To date, however, there has been no successful utilization of
thermal forces for large-scale air cleaning.

Theory

There have been many attempts to devise a suitable theory which de-
scribes thermophoresis, but as yet a complete solution has not been
found. In principle the approach is quite simple.

Consider molecular motion in a temperature gradient. The move-
ments will be more vigorous at higher temperatures. When a particle
is placed in this gradient, the momentum transferred to one side of the
particle exceeds that transferred to the other side, so that a net force
results. To determine this net force, it is necessary to know exactly the
velocity distribution of the molecules at the particle surface. Among
other things this depends on the ratio of particle size and pressure of
the medium, the Knudsen number (Kn = 2\/d), because, depending on
this ratio, the particle itself can have very little or a significantly
great influence on the velocity distribution of nearby molecules. A
complete theory must take this varying influence into account. At
present it is most convenient to consider several size ranges (or
Knudsen numbers) when one is attempting to predict the magnitude
of the thermal force.

Thermophoresis in the Free Molecule
Region (Kn > 1)

Consider first the case when the particle is much smaller than the
mean free path of the gas molecules. This represents the condition
where Kn » 1 and is often called the free molecule region.

In the free molecule region, molecules colliding with a particle will
travel on average many particle diameters away from the particle be-
fore colliding with another molecule. Thus it is extremely unlikely
that the molecule and particle will ever meet again or that the mole-
cule will affect other molecules which may collide with the particle.
Therefore, the effect of the collision of the molecule with the particle is
immediately lost, and the particle itself exerts virtually no influence
on the velocities of the surrounding gas molecules.
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Simple theories describing the thermal force when Kn > 1 were
first put forth by Einstein (1924) and Cawood (1936), and although
they have since been shown to be inexact, they are accurate enough to
illustrate the method of approach.

Suppose a small particle of diameter d is placed in the middle of a
cylinder having the same diameter as the particle and a length equal
to twice the mean free path of the gas, or 2\. Gas molecules traversing
this cylinder from either direction, then, on average, strike the parti-
cle without colliding with each other. Now consider only the motion of
molecules parallel to the axis of the cylinder. The momentum im-
parted to the right-hand side of the particle per unit time is

1
(Enlvl)(%dz)(mvl) (11.2q)
and to the left-hand side is

(%nzvz) (Tzrdz)(mvz) (11.2b)

where n, and n, represent the number of molecules per unit volume at
the right- and left-hand faces of the cylinder, respectively, v; and v,
the respective mean molecular velocities, and m the weight of the gas
molecule. Then the net change of momentum per unit time is

(1= 2)(n1mv§ _ ngmvﬁ)
(3)(4d 2 2 (11.3)

Assuming that there is little difference in the number of molecules per
unit volume on either side of the particle, n, = n, = n. Since the
change in momentum per unit time is the force on the particle,

(3)(%2)("”"1 - "mvz) (11.4)

Now if ¥emu? is replaced by (3/2)kT and the equation is multiplied by
M\ = 1, then

B e

Here T, and T, represent the temperatures at the two face:s of the cyl-
inder. Thus the temperature gradient across the cylinder is

of Th—-T:

— = =VT
ox 2\
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In addition, nk = p/T, the gas pressure divided by the average gas
temperature. By making substitutions, the thermal force acting on
the particle becomes, for large Kn,

1
Fp= —4d2p)\ T (11.6)
Since the product (p)\) is a constant, this equation implies that the
thermal force at large Knudsen numbers should be independent of the
pressure of the medium.

Thermal force is often given in terms of the thermal conductivity of
the gaseous medium. Assuming that the thermal conductivity of a gas
Kg can be given by the expression

Ky = aminC,\

and that the relationship C, = 5/2%k holds for diatomic gases (such as
0O, and N,), the expression for thermal force can be written in terms of
heat conductivity as

vr

Fr= - e, (11.7)

LT 125
where v is given by Eq. 3.8.
Using the momentum transfer method, Waldmann (1959) and
Derjaguin and Bakanov (1959) found the following expression for the
thermal force on a particle when Kn » 1:

F; = —%dzkng-T-T = --l'ﬂ'p,vd—-QE1 (11.8)
This is an equation of the same form as Eq. 11.7 but indicates a force about
2 times larger than the magnitude determined by elementary theory.
Subsequently others have refined Eq. 11.8 to account for the type
of molecular reflection from the particle surface (whether diffuse or
specular, elastic or inelastic). Mason and Chapman (1962), by as-
suming all molecules to be reflected elastically, suggest increasing
Eq. 11.8 by a factor of 1 + 47/9. More recently Talbot et al. (1980)
derived an expression of the same form as Eq. 11.8 but increased by
a factor of

5w
1+ ) 1l-a)
where a, is the thermal accommodation coefficient. For most purposes,

however, it is sufficient to assume a value of 1 for q,.
Although strictly valid only for the case Kn = «, according to Schmitt
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(1959) and Jacobsen and Brock (1965), Eq. 11.8 is in error only by
about 5 percent when Kn = 10 and by 10 percent when Kn= 5.

Example 11.2 Compute the ratio of the thermal force to the gravitational force
for a 0.05-um-diameter particle (p, = 1 g/em®) in ambient air (T = 20°C) if the
temperature gradient across the particle is 1000°C/cm.

F,= ’édS = g(o.os x 10"43(980) = 6.41 x 10~ dyn

F=1-rrv£Y1
TN T

(0.05 x 10")2](1000)

n -4
= T(1.82 x 10~4)(0.151
2 X ) [0.0687 x 10~4J\ 293

=5.36 x 107194yn

% = 8.35 x 103

To determine the thermophoretic velocity, Stokes law can be uti-
lized by assuming that the Cunningham or slip correction factor (Eq.
5.3) is applicable for cases where Kn > 1. Thermophoretic velocity
will be independent of particle diameter since C, = Kn(A + @) when
Kn » 1. Then, equating the thermal force (Eq. 11.8) with the resisting
force (Stokes law) and solving for the thermophoretic velocity vy give
(Talbot et al., 1980)

vp = %v(A + Q)%1 (11.9)

where v is the kinematic viscosity. By using a value of (A + @) = 1.65,
Eq. 11.9 reduces to

vr = 0.55v yr (11.10)

T

It is also possible to derive an equation for the thermophoretic velocity
by considering that the suspended particles are a dilute suspension of
giant molecules mixed with a much greater number of smaller mole-
cules. This was done by Mason and Chapman (1962) who found essen-
tially the same form for F; as that given in Eq. 11.9.

Thermal Forces in the Continuum Regime
(Kn < 0.2)

When Kn < 0.2, the particles are described as being in t.he continu.um
regime. A theoretical description of particle motion in this flow regime
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is complicated by several phenomena which affect molecule velocities
and hence the particle motion. First, unlike the case of large Knudsen
numbers, the presence of the particle does influence molecular veloc-
ities near the particle surface. Molecules rebounding from the particle
surface are very likely to again strike that surface after one or several
molecular collisions. Thus a velocity distribution from “free” space
cannot be used for molecules but must be modified to account for the
effect of the particle surface nearby.

The particle surface itself can also affect molecular velocities in two
ways. First, molecular velocities of the rebounding molecules will de-
pend on the type of rebound (whether specular or diffuse). Since the
fraction of molecules rebounding either specularly or diffusively will
depend on both particle and gas composition, these two factors should
also be of importance in determining the thermal force.

Second, the particle surface may add to or subtract from the velocity
of the diffusively reflected fraction of molecules by acting as a heat
source or sink. Since the ability of a particle to act as a source or sink
of heat depends on its thermal conductivity, the thermal conductivity
of a particle should also influence thermal force.

Even with an adequate description of molecular velocities near the
particle surface, it is not possible to completely establish all variables in-
fluencing thermal force. This is because there also exists a so-called ther-
mal slip flow or creep flow at the particle surface. Reynolds (see Niven,
1965) and others have pointed out that as a consequence of kinetic the-
ory, a gas must slide along the surface of a solid from the colder to the
hotter portions. However, if there is a flow of gas at the surface of the
particle up the temperature gradient, then the force causing this flow
must be countered by an opposite force acting on the particle, so that the
particle itself moves in an opposite direction down the temperature gra-
dient. This is indeed the case, known as thermal creep. Since the velocity
appears to go from zero to some finite value right at the particle surface,
this phenomenon is often described as a velocity jump. A “temperature
jump” also exists at the particle surface.

Epstein’s Equation

The first theory of the thermal force acting on a particle which took
thermal creep into account was developed by Epstein (1929), using the
slip formula proposed by Maxwell (1880). Epstein’s equation was of
the form

2
Fp= - Egﬂ—‘i’w (11.11)
40, T
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TABLE 11.1 Thermal Conductivity of Several Materlals

Thermal Thermal
conductivity, conductivity,
Material callem-s-K) | Material cal/cm -8-K)
Air at 20°C 0.000056 Iron 0.16
Aluminum oxide powder 0.08* Magnesium oxide 0.0003
Asbestos 0.00019 Magnesium oxide powder 0.09*
Carbon 0.01 Mercury 0.02
Castor oil 0.00043 Paraffin oil 0.00030
Clay 0.0017 Platinum fume 0.167*
Fused silica 0.0024 Quartz 0.023
Glass 0.002 Silver fume 0.963*
Glycerol 0.00064 Sodium chloride 0.016
Granite 0.005 Stearic acid 0.0003
Zinc 0.265*

source: Values marked with * from Keng and Orr (1966); other values from Hinds (1982).

where the parameter Hy has the value

-1
T1+C2

and C = k,/k,, is the ratio of the thermal conductivity of the particle to
the thermal conductivity of the medium.
Table 11.1 lists thermal conductivity data for various materials.

Hg (11.12)

Example 11.3 Using Epstein’s equation, calculate the thermal force on a 1-pm-
diameter glycerol particle in air at standard pressure and temperature when it
is placed in a temperature gradient of 1000°C/cm.

From Table 11.1, C = 0.00064/0.000056 = 11.43. Then

9mp2d vr 1 9m(1.82 x 10"4H%(1 x 1079)

Fr=Hg 4p, T '~ " 1+11432 4(0.0012)(293)

(1000)

=9.87 x 10~ %dyn

It was initially thought that Epstein’s theory satisfactorily de-
scribed the thermal motion of large aerosol particles (Rosenblatt and
LaMer, 1946). The theory, however, predicted essentially no thermal
force acting on particles of high thermal conductivity (since Hg = 0).
Experiments by Schadt and Cadle (1957, 1961) and others showed
that thermal forces do indeed act on highly conductive as well as
poorly conducting particles.

Brock’s Equation

Brock (1962a) extended and improved Epstein’s equat'ion by taking
into account convective flow near the particle and by using more com-
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plete boundary conditions than Epstein. He then derived an equation for
thermal force which can be put in a form similar to Epstein’s equation:

2
Fp= _H97rp,d

540, T vT (11.13)

where Hj is defined as

4 C, 1+ CKnC
" 31+38C,Kn 1+ CKnC + CJ2
In his original derivation Brock used a value of 34 for C,, the thermal slip

coefficient. More recent data by Ivchenko and Yalamov (1971) have shown
that C, = 1.147 for complete thermal accommodation. In Brock’s equation

Hg (11.14)

15(2 - a,
C = _8_( Y ) (11.15)
and
2-a,
¢ C,= (11.16)
am

As mentioned earlier, the factor a, is the thermal accommodation co-
efficient and a,, the momentum accommodation or “reflection” coeffi-
cient. From the data of Rosenblatt and LaMer.(1946), Schmitt (1959),
and Keng and Orr (1966), as a first approximation a value of 1.25
seems reasonable for C,,, whereas for C, a value of 2 is a good approx-
imation (Brock, 1962b). These numbers then imply values of 0.89 for
a,, and 0.97 for q,.

On the other hand, Peterson et al. (1989) used values of C, = 2.20
and C,, = 1.146 for the coefficients in Brock’s equation. These values
would imply a, = 0.92 and a,, = 0.93.

For poorly conducting particles

Hy 4C,
Hy 31 + 3C,Kn)

so that Hy = Hp at Kn = 0.15. For the case of very small Knudsen
numbers, Kn < 1, Hg = H;, when C; is set equal to 4.

Derjaguin and Yalamov’s Equation

Derjaguin and his colleagues approached a theory of thermophoresis
for large particles somewhat differently than Brock and Epstein.
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First, they considered the aerosol particles to be large molecules im-
mersed in a cloud of smaller molecules. They also pointed out that
temperature stresses in a gas can give rise to very slight gas flows
which could possibly influence experimental results.

In addition, although Brock considered a temperature jump at the
particle-gas surface along with a velocity jump, Derjaguin and col-
leagues computed that the magnitude of this effect was so small that
it could be neglected. Derjaguin and Yalamov (1965) then derived an
expression for thermal velocity which can be given in the form

9mru’d
40, T

which is the same form as previous equations except that

24+ C/2 + CKnC
“ 81+ C/2+CKnC

Experimental data have been presented by Derjaguin et al. (1966)
which tend to show reasonably good agreement between Eq. 11.17 and
experimental data for particles having low heat conductivity (Vase-
line oil) and particles having high heat conductivity (sodium chloride).
But the variability in all experimental data presented to date indi-
cates that at present there exists no completely adequate theoretical
description of the physical factors which give rise to the thermal force
acting on particles in the case where Kn < 1. This remains a task for
future researchers in the field. [For a further discussion of this point,
see Fuchs (1982).]

Fr = —Hy vT (11.17)

Hp

(11.18)

Thermophoretic Velocity

To determine thermophoretic velocity, the Stokes resisting force is

equated with the thermal force. Then

_3ge - Sy, VT 11.19)
4Hme vTC, = 4Hv T C. (1L

with the value for H depending on whether one uses the equatif)n ?f

Epstein, Brock, or Derjaguin and Yalamov. If the thermal velocity is

by Epstein, then

Ur =

1 vC.

3
-3 et (11.20)
Ur="41+C2 T
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or by Brock [as modified by Talbot et al. (1980)], then
C, 1+ CKnC vC,

Ur= "1y 3C,Kn 1+CKaC+C2 T '& 12D
or by Derjaguin and Yalamov, then V
1 4+ C/2+ CKnC C,
vp = vT (11.22)

"21+C2+CKnC T

Example 11.4 Using Eqs. 11.20, 11.21, and 11.22, compute the thermophoretic
velocity for a 1.5-pm-diameter NaCl particle. Use C, = 2.20, C, = 1.147, and
C,, = 1.146. Assume T, = 30°C and VT = 1000°C/cm.

_ 27 2(0.0687)

Kn=9="15 =0092
_%__0016 _
C = 2 = 5000056 = 2857
C. =112
Using Eq. 11.20,
3 1
'T=41+C2 T vr
3 1 (0.159)(1.12)

- {
=31+28572 803 (1000

= (0.750)(6.95 x 10~3)(0.586) = 0.003 cm/s
Using Eq. 11.21,

C, 1+CEKnC vC,

U= {7 3C.Rn 1+ CRnC+C2 T %

_ ( 1.147 )
~ |1 + 3(1.146)(0.095)

1 + (2.20)(0.095)(286.7)  \(0.159)(1.12)
(1 + (2.20)(0.095)(285.7) + 285.7/2] 803

(1000)

= (0.865)(0.298)(0.586) = 0.151 cm/s
Using Eq. 11.22,

1 4 + C/2 + CiKnC chVT
T= T21+C2+CEnC T

14+ 285.7/2 + (2.20)0.092)(285.7) (0.159)1.12)
2 1 + 285.7/2 + (2.20)(0.092)(285.7) 303

(0.500)(1.015)(0.586) = 0.297 cm/s

(1000)

1
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Thermophoretic Velocity for
Ail Particle Sizes

Talbot et al. (1980) have shown that thermophoretic velocity deter-
mined from Brock’s equation (Eq. 11.14) degenerates into ther-
mophoretic velocity determined from Waldmann's equation (Eq. 11.8)
when the limit of Md — » (except for the multiplication factor
C,/C,, = 1). They point out that there appears to be no theoretical jus-
tification for this result except that it appears to fit the available ex-
perimental data quite well.

Figure 11.3 is a plot of “reduced” thermophoretic velocity as a func-
tion of Knudsen number showing some experimental data along with
curves for Brock’s and Derjaguin and Yalamov’s equations. It can be
seen that although these equations all predict the form of the data set,
there appears to be still much room for improvement in both data
analysis and theory.

A schematic plot of thermophoretic velocity (Eq. 11.21) as a function
of particle diameter for air at normal temperature and pressure is
shown in Fig. 11.4. It can be seen that the thermophoretic velocity de-
creases from a high value at small particle sizes to a somewhat lower
constant value for large particle sizes. The range of the region of
changing v, is approximately 0.01 < d um < 40, and the thermal con-
ductivity effect of a particle begins to become apparent above about
d = 0.2 pm.

The Dust-free Space

As mentioned earlier, thermal forces give rise to a dust-free space
around bodies. that are warmer than their immediate environment.
Formulation of an equation which describes the width of this dust-free
space appears to be quite difficult, generally involving numerical so-

Tnicresyl phosphare (Rosenblatt and LaMer 1946)
X et ar 100 v 1948)

»

N

o NaCl (Der n et al {976)

L) Dddropter [Derjaguin et al 1976)
»
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’—(’5},\::: .w)o .

ot e .o

v T/ (vyT)
o
o

p,‘-:-." o Waldmann
o

(a) - Eq 11 21 (il droplets)
(b) -EQ 1121 (NaCl)
(c) - Eq 11 22 (0l Groplets)
(@ Eq 1122 (NaC)

025

Figure 11.3 (From Talbot et al.,
- ! ! 30 1980.)
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Thermophoretic velocity, vy

— %=0.0003 "\\
- oxeooe Figure 11.4 Thermophoretic ve-
= locity for particles of two differ-
] “~-._.__| entthermal conductivities.
10* 102 10' 10° 10 10°

Particle diameter, um

lution of one or several second-order differential equations (e.g., see
Goren, 1977).

Stratmann et al. (1988) give an “approximate” equation for the par-
ticular case of flow normal to the surface of a heated flat plate.

v T, -T,
odf=o.9610(£) Hm( T

w

) Pro19 (11.23)

where Pr is the Prandtl number (Pr = c,vp,/x,) and a is a constant.
The term c, represents the heat capacity of the gas. For typical tem-
peratures in air the Prandtl number can be considered to be a constant
with a value of 0.7 (see Perry and Chilton, 1973). It is interesting that
in both this equation and Eq. 11.1 the thickness of the dust-free space
appears to be a function of the square root of the temperature differ-
ence between the surface and the region away from the surface.

Example 11.5 Using Hg for H in Eq. 11.23, compare the thickness of the dust-free

space predicted by Egs. 11.1 and 11.23. Use C, = 2.20, C, = 1.147, and C,,, = 1.146.

Assume 7T, = 30°C, 7, - T, = 100°C, Kn = 0.095, C = 285.7, and a = 10.
Using Eq. 11.23,

C, 1+ CKnC
+ 3C,Kn 1 + C,KnC + C/2

4

31

4 1.147 1 + (2.20)(0.095)(285.7)

3 1 + 3(1.146)(0.095) 1 + (2.20)(0.095)(285.7) + (285.7)/2

H=Hg=

= (45)(0.865)(0.298) = 0.343
1/2 T 1/2
odf=o.9610(3) HW(—) Pr0-189
a Tw

=0 9610(0 15912 343)112(0.248)1/%(0.7)0-159

= 0.033 cm
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By using Eq. 11.1
ogr = L AT H™%38 = (1.56 x 1074)(100)[1 x 10~4(100)!-25]-0-38

= (1.56 x 10™4)(100)(3.72) = 5.80 x 10~ 2¢m

Problems

1 Friedlander (1977) gives for thermophoretic velocity at large Knudsen
numbers the equation
vp = v VT
4(1 + ma,/8)T

and Derjaguin and Yalamov (1972) give for the same Kn range the equation

vp = -0.37%7 VT

Compare these two equations with Eq. 11.10 given above. By how much do
they differ?

2 Using Brock’s equation, determine the thermophoretic force on a 1-pm-
diameter glycerol particle. For this calculation use C, = 1.147, C, = 2.20, and
C,, = 1.146. How does this estimate of thermal force compare with the esti-
mate made by using Epstein’s equation (Eq. 11.11)?

3 Using Derjaguin and Yalamov’'s equation (Eq. 11.17), determine the
thermophoretic force on a 1-pm-diameter sodium chloride particle. For this
calculation use C, = 1.147, C, = 2.20, and C,, = 1.146. How does this estimate
of thermal force compare with the estimate made by using Epstein’s equation
(Eq. 11.11) and Brock’s equation (Eq. 11.14)?

4 Show that Eq. 11.10 becomes similar in form to Eq. 11.21 when Nd — =.

5 How much will the calculation of Hy be changed if the constants C, = 0.75,
C,=2 and C, =125 are used instead of C, = 1.147, C, = 2.20, and
C,, = 1.146?

6 Infrared lights are used to raise the surface temperature 20°C over ambi-
ent temperature of semiconductor chips during manufacture. Estimate the
width of the dust-free space above these chips.
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Aerosol-Charging Mechanisms

Introduction

Up to this point, aerosol particles have been considered to be un-
charged; i.e., electric forces acting on or between particles were
neglected. Most aerosols carry some electric charge which may be con-
tinually transferred between particles or gained or lost, depending on
a number of external factors. The role of electricity in aerosol behavior
is not completely understood, even though there is great interest in
this particular phenomenon for such diverse reasons as the prevention
of dust explosions or better prediction of particle behavior. It was mea-
surement of charge on aerosol particles that gave the first accurate
measure of the unit charge of an electron. Electric forces offer a highly
efficient air-cleaning method, and the study of very small particles is
most conveniently carried out by analyzing their mobility or move-
ment in an electric field. The possibility of electrostatic propulsion for
space vehicles has also generated interest in electrical phenomena of
aerosols.

Several electrical properties may be of interest in aerosol studies.
These could include the distribution of charges carried by aerosol par-
ticles and the velocity of a charged particle in an electric field. This
latter property, e.g., is important in determining such things as dep-
osition rates or charge transfer rates.

Definition of Force

Suppose a charged, dilute, monodisperse aerosol made up of spherical
particles is placed in a uniform electric field, and the movements of
the particles making up the aerosol are observed. Some particles will
rise, others will fall, and still others will remain suspended. From this
observation, the conclusion can be drawn that the electric field acts as
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a “field of force” that is superimposed on other forces already present,
in this case gravity. However, as seen from the different motions of
the particles, their trajectories (whether up or down) are determined
by an additional factor as well, in this case the charge carried by each
individual particle. Since the magnitude and direction of the electric
force acting on each particle appear to depend on not only the direc-
tion and strength of the field but also the charged state of the particle
(including the sign of the charge), a force vector i’E is defined which
is equal to the product of the field strength vector E (independent of
the charged state of the particle) and some scalar quantity called the
charge g, on the particle that is,

Fy=qk (12.1)

If e is the elementary unit of charge [in cgs units = 4.8 x 107 ° elec-

trostatic units (esu)}, then
g = ne (12.2)

where n is the number of elementary units of charge on the particle.
The algebraic sign of the charge is conventionally determined in such
a way that the particle is repelled by a charge of a similar sign.

Example 12.1 A 10-pm-diameter unit-density sphere carries a negative charge
equal to 100 electrons. If it is placed in an electric field having a strength of 10
statvolts/cm, determine the force in dynes acting on the particle.

>

> >
F = qE = neE
= (100)(4.8 x 10~19)(10)

=48 x 10”7 dyn

This is a very small force, less than one hundred-millionth of the force required
to lift a fly.

The cgs electrical units are such that when charge is given in electrostatic
units and field strength is in statvolts per centimeter, the resulting force is in
dynes. The direction of the force is the same as the field except that negatively
charged particles will be attracted toward the positive end of the field, and vice
versa.

It is customary that electrical parameters be given in terms of “practical”
units (volts, amperes, coulombs, etc.), so conversion factors are required. Prac-
tical units are used so that the numbers usually encountered will have values
which are not extremely large or small. See App. D for a more complete discus-
sion of electrical units.

Particle Mobility

The motion of a particle in an electric field depends on two electrical
factors: field strength and particle charge. The motion of particles
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having varying charges and sizes can be compared by considering
what their velocities would be in an electric field of unit strength. This
velocity, called the particle mobility Z, is defined by setting gE equal
to 3wuvd and solving for v. Then when E equals unity, v becomes the
particle mobility Z,, or

qC.

Z, = m (12.3)

Example 12.2 Determine the mobility of a 10-pm-diameter unit-density sphere
when it carries 100 unit charges. Remember, E = 1 statvolt/cm is included in
the definition of Z,

_ (100)(4.8 x 1071%1)
" (8)(3.14)(1.83 x 10~4)(1073)
= 0.028 cm

This represents the velocity the particle would attain when placed in an electric
field having a strength of 1 statvolt/cm.

If the particle mobility is known, it is easy to determine the electric
force acting on the particle, provided the field strength is also known.
However, the field strength may not be constant but may have some
spatial or temporal distribution, that is, k= fx,y,2,t). In addition, ¢
may vary from particle to particle and may vary on a single particle
with time in a discontinuous, stochastic manner. Thus, except for
quite simple cases, it is exceedingly difficult to predict particle motion
in an electric field with accuracy.

Some appreciation of the electrical behavior of aerosols can be gained,
however, by considering separately the two factors in Eq. 12.1, ¢ and E

Particle Charge q

Particles can be electrified by a number of different sources acting sin-
gly or in combination. The basic processes which give rise to a charge
on a particle are direct ionization, static electrification, collisions with
ions or ion clusters (either with or without an external electric field
present), or ionization of the particle by electromagnetic radiation
such as ultraviolet light, visible light, or gamma radiation. These pro-
cesses can be considered separately.

Direct ionization of the particle

Little is known of this electrification mechanism. For one thing, aero-
sol densities are generally so small that even though one would expect
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more ionization taking place in a particle than in an equal volume of
air, there are generally at least several orders of magnitude more air
mass than particle mass per unit volume of space. Since ionization is
primarily a mass-dependent phenomenon, there will be at least sev-
eral orders of magnitude more ionization taking place in the air than
in the suspended particles. Thus particle charging should result more
from attachment of air ions than by direct ionization. Direct ionization
of the particle is not an important particle-charging mechanism.

Static electrification

A second particle-charging mechanism is static electrification. This
mechanism arises from one or a combination of several other mecha-
nisms, making theoretical interpretation in terms of a single mecha-
nism very difficult, if not impossible (and most experimenters have
attempted to interpret their results in terms of a single mechanism).
Five basic mechanisms can result in static electrification. These are
examined for their importance in aerosol physics.

Electrolyte effects. In this case, solutions of liquids of high dielectric
constant exchange ions with metals or solid surfaces. For example, a
drop of a high-dielectric liquid swept from a metal surface will develop
and can carry away a high charge. For a given surface and liquid,
droplets will all have a net charge of the same sign, so that the drop-
lets will repel each other. This is probably an important mechanism in
aerosol charging, although its importance is not well established. Ta-
ble 12.1 lists dielectric constants for various materials.

Contact electrification. A second static electrification process is contact
electrification. Here electrons migrate from clean, dry surfaces of dis-

TABLE 12.1 Dlelectric Constants of
Liquids at Normal Temperature 20°C, esu

0il 2-22
Turpentine 22-23
Methyl alcohol 31
Ethyl alcohal 24.3
Sodium chloride 59
Water 78
Magnesium oxide 9.65
Glass 5-10
Polyethylene 225
Air 1
CCl, 2.2

pPVC 3.345




Aerosol-Charging Mechanisms 183

similar metals to metals with lower work functions. This process re-
quires that there be no impurities between surfaces and is strictly
electronic in nature. Because of this requirement, contact electrifica-
tion is probably not an important charging mechanism for aerosols.

Spray electrification. A third static electrification process is spray elec-
trification. Surface forces in liquids of high dielectric constants in-
crease the concentration of electrons or negative ions in the outer lig-
uid surface (Lenard, 1915). The disruption of these surfaces by
atomization or bubbling imparts a predominantly negative charge to
the smaller droplets, while the larger ones will be neutral, positive, or
negative in approximately equal proportions. The size of all droplets
produced may be altered by subsequent evaporation or condensation.
Dissolved salts generally reduce the magnitude of the charge com-
pared to charges produced in pure liquids, and the effect is usually re-
duced as the dielectric constant of the liquid is reduced, until a point is
reached as in the case of pure hydrocarbons where little charging is
observed. The charged droplets produced by spray electrification gen-
erally have only several units of charge per drop. Spray electrification
is important in aerosol charging and very often operates in conjunc-
tion with electrolytic effects. This tends to confuse and complicate any
attempt at analysis.

Tribo electrification. The fourth static electrification method is fric-
tional electrification or triboelectrification. In this mechanism charge
is imparted to dry nonmetallic particles when they come in contact
with metals or with other particles. Although triboelectrification is a
very common charging mechanism, reasons for its occurrence remain
fairly obscure. Some points are well known. For example, it is possible
to estimate the sign of each charge when two different materials come
into contact. This is shown in Table 12.2. Materials high on this table
will be most likely to develop a positive charge on contact, while those
on the lower end are most likely to develop a negative charge. These
charges can be produced by particle-particle interaction or by particle-
surface interaction, although particle-particle interaction seems to
produce more highly charged particles (Miller and Heinemann, 1948).

Example 12.3 Quartz particles flow through a glas§ tube. Estimate the sign of
the charge produced by static electricity on the particles and the tube. From Ta-
ble 12.2,

Charge on particles -

Charge on tube +
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If the tube were made of copper instead of glass, the signs would be

Charge on particles +
Charge on tube -

Many aerosol experiments have suffered because this relationship has not been
clearly understood.

TABLE 12.2 Charge Preference In
Frictional Charging

+ End

Asbestos
Mica
Glass
Calcite
Quartz
Magnesium
Lead
Gypsum
Zinc
Pyrite
Copper
Silver
Silicon
Sulfur
Rubber

- End

In the case of high concentrations of explosive dusts flowing through
an ungrounded duct, sufficient charge may accumulate on the duct to
produce a sparkling discharge and resulting explosion. This electrifi-
cation is inhibited when relative humidities exceed 50 or 60 percent,
thought to be due to the formation of a thin moisture layer on the par-
ticles. If the moisture contains sufficient dissolved material to make
this layer conductive, the charge will not accumulate. This explana-
tion is consistent with the observation that relative humidity, not ab-
solute humidity, is important in dust explosions, since deposition of
water on the particles, not the presence of water vapor, prevents
charging by triboelectrification.

Flame ionization. A final static electrification method is the ionization of
particles in a flame. This effect was first observed as early as 1600, and it
has recently become the subject of much interest because of potential ap-
plication in such diverse areas as direct generation of electricity, control
of combustion processes by applied electric fields, and the like (Lawton
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and Weinberg, 1969). In the reaction zones of hydrocarbon/air or hy-
drocarbon/oxygen flames, ion concentrations of 10° to 10'2 jons per cubic
centimeter have been measured. Positive ions are definitely present, but
there is some controversy as to whether negative ions or free electrons
predominate. The presence of particulate material in the flame (e.g., soot
particles) greatly enhances the concentration of free charge (Einbinder,
1957). Also, it appears that the smaller the particle size, the more free
charge that is developed. For example, carbon particles of about 0.02-pm
diameter produced in an oxyacetylene flame carried, on average, about
10 unit charges per particle, representing an overall charge of 1 x 10'$

charges per gram.

Collisions with ions or lon clusters

The best understood of the three main charging mechanisms for aero-
sols is that involving the collision of ions or ion clusters with aerosol
particles. Air ions or ion clusters arise from a number of processes.
They can be formed by attachment of either positive or negative
charges produced by alpha, beta, or gamma photons as they lose en-
ergy following emission from a radicactive source (Cooper and Reist,
1973) or from various types of electric discharges.

Two distinct processes are involved in charging that can act either
singly or in combination. In the first process, diffusion charging, par-
ticles are charged in the absence of an external electric field by colli-
sions with diffusing ions. With the second method, field charging, par-
ticles are charged by ions moving in an orderly direction in an
external electric field. The two processes can be considered analogous
to molecular diffusion and convective diffusion. Charging rates are
faster for field charging than for diffusion charging. For very small
particles, diffusion charging is important even in the presence of an
external field.

To study charging mechanisms theoretically for either diffusion
charging or field charging, it is necessary to make several assump-
tions regarding the aerosol. First, the particles are assumed to be
spherical. This assumption is reasonable for isometric particles. Sec-
ond, it is also assumed that the particles are monodisperse. The effect
of polydispersity complicates but does not invalidate theory. Third,
there are no interactions between individual particles. Finally, the ion
concentration and electric field near each particle are assumed to be
uniform. These last two assumptions are essentially true for all natu-
ral and industrial aerosols. Thus except in the most extreme cases,
theory should be adequate without other modification.
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Diffusion charging—unipolar ions

In diffusion charging, particles are charged by unipolar ions (ions hav-
ing the same sign) in the absence of an applied electric field. Collisions
of ions and particles occur as a result of random thermal motion of the
ions, the brownian motion of the particles being generally neglected.

A simple theory for diffusion charging was first proposed by White
(1963). He considered that ions diffuse in a gas in accordance with the
postulates of kinetic theory except that when an ion strikes a particle,
it stays, thus accumulating charge. However, this accumulation of
charge on the particle produces an electric field which tends to pre-
vent additional ions from reaching the particle. Thus in White’s the-
ory the rate of accumulation of charge on a particle decreases as the
charge on the particle increases.

The number of ions striking and attaching to a spherical particle of
diameter d per unit time is

%"t— = 4@ NV, (12.4)

where N is the number of ions near the particle and v, is the root-
mean-square velocity of the ions. From kinetic theory, the density of
ions in a potential field varies according to

N = Kfexp%, (12.5)

in which N is the average ion concentration and V is the potential en-
ergy per ion. For a particle accumulating charge, the potential energy
of an ion of the same charge a distance R from the center of the par-
ticle with n charges is V = —ne?R.

Very close to the particle surface, the ion concentration is given by

= —2ne?
N = Nexp ( ahT ) (12.6)
From Eq. 12.4, the rate of change of ions per unit time dn/dt becomes
dn = Y -2né*
- 4dzvm,sNexp( 5T ) a1z.7

For an initially uncharged particle, integration of Eq. 12.7 gives

(12.8)

n

dbT mdv,, Ne’t
= In{l1+ —m-——
2e? 2krT
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A characteristic charging time ¢’ can be defined as

t = %— (12.9)
1AV, NE?
such that Eq. 12.8 can be written as
dkT t
n = gln (1 + t-,) (12.10)
Furthermore, a characteristic charge n' can be defined as
dkT
= — 12.11
%2 ( )
so that Eq. 12.8 can be expressed in the dimensionless form
= =In (l + 5,) (12.12)
n t

Figure 12.1 is a plot of Eq. 12.12 showing charge accumulation by dif-
fusion charging as a function of time. It can be seen from Fig. 12.1
that there is a fairly rapid increase in particle charge initially, fol-
lowed by a much slower increase later on. No ultimate charge is in-
herent in the diffusion charging process, however, since the particle is
able to charge indefinitely. In actuality the charge on the particle is
limited by emission of charge from the particle. It is clear, though,
that the numerical value of the charge is relatively insensitive to ion
concentration and time, whereas it is quite dependent on particle size.

10

nn’ 1.0

; : Figure 121 Plot of dimension-
0.1 . less diffusion charging.
0.1 10 10 100 © Eing

tt’
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Example 12.4 Estimate the charge which would develop in 10 s by diffusion
charging if a 0.5-pm-diameter spherical particle were placed in an ion field con-
taining 5 x 10® ions per cubic centimeter. Assume 20°C temperature and use
Upms = 2 X 10* em/s.

_ dle 1 '“'dvrmsﬁezt
"= 2kT

_ (5 x 107°)(1.38 x 10~16)293)
- (2)(4.8 x 10~ 10y2

|1 4 B 10°5)(2 x 10%(56 x 108)(4.8 x 10719%(10)
(2)(1.38 x 10~ 16)(293)

= 4.891n 44,754 = (4.39)(10.71)
n = 46.98 = 47 charges

There has been criticism of White’s derivation because there are two
charging mechanisms at work during diffusion charging and White
ignores one of them. There is diffusion of ions directly onto the particle
(sometimes called the Coulomb effect), and this is the only effect con-
sidered by White. However, ions can also be attracted to the particle
by an image force (the image effect). Thus an ion passing near a par-
ticle which otherwise would not hit the particle may be attracted to it
by this image force.

The theory for diffusion charging given in Eq. 12.12 represents a
simple approximation for diffusion charging in which the image
force is neglected and only the Coulomb force is considered. Accord-
ing to Fuchs (1971), this approximation is valid when 2e%
(dkT) < 1, that is, when d = 0.2 pm. More accurate models for es-
timating diffusion charging which include the image force have
been given by Fuchs (1963), Gentry (1972), and Hoppel (1977)
among others, but these models are quite cumbersome and difficult
to use. Figure 12.2 shows a comparison of the various predictions
for a 0.018-um-diameter sphere. When 2¢%/(dkT) < 1, the models
should all give the same result.

Figure 12.3 shows a plot of the Fuchs (1963) theory for larger par-
ticle sizes along with the experimental points of Liu and Pui (1977).
Also shown on this figure is a plot of White’s equation, Eq. 12.12, with
Urms = 2 X 10* cm/s.

In the examples given a value of v, = 2 X 10* cm/s was used for
the mean thermal speed of the ions, as opposed to a value of 5 x 10*
cm/s for air molecules as used by White. This is because the ions
charging the aerosol particle are considered to be associated with mo-
lecular clusters, rather than with single molecules.
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Example 12.5 Estimate the ionic mean thermal speed which corresponds to ions
of the hydrated proton H*(H,0),. Use a temperature of 20° C.

From Eq. 3.8
Fq _ /8kT
Vg = _
wm

The term m is the ion mass = 6 x 18 + 1 = 109 amu.

me—109 -
6.02 x 1023
=181 x 10"2¢g
I_JG = 23,846 cm/s

What would this speed be if the hydrated proton were of the form H* (H,0),,?
Ion mass = 24 x 18 + 1 = 433 amu.

Toy = ve‘/%g =1.20 x 10* cm/s

A more serious fault in White’s derivation is the lack of apprecia-
tion of the stochastic nature of the charge acquisition process. For ex-
ample, Eq. 12.12 indicates that for small particles and short charging
times, fractions of charges are possible. This is clearly an impossibil-
ity. Thus results computed from these equations should be considered
to represent average rather than specific values (Boisdron and Brock,
1969; Natanson, 1960).

Field charging

Unlike diffusion charging, field charging takes place in an ordered
field of unipolar ions, i.e., in a region where the ions are in an electric

108
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field and hence have ordered motion (Rohmann, 1923; Pauthenier and
Moreau-Hanot, 1932). Suppose an uncharged spherical conducting
aerosol particle were suddenly placed in a uniform electric field. The
field near the particle would be distorted, as illustrated in Fig. 12.4, so
that gas ions, following the field lines, would immediately begin to
charge the particle. The dashed lines in the illustration indicate the
limits of the field which passes through the sphere. All ions traveling
within these limits are considered to strike the particle and charge it.

However, as the particle becomes charged, it will start to repel some
of the incoming ions. This repulsion results in an alteration of the field
configuration which accordingly reduces the charging rate. A point
will eventually be reached where no further charging of the particle
takes place. This point is known as the saturation charge of the parti-
cle. When one-half the saturation charge on the particle is reached,
the electric field surrounding the particle is similar to that shown in
Fig. 12.5. Notice that both the ions available to make contact with the
sphere and the particle area available for contact have been reduced.

The ion current to the particle at any time is a function of the ions
which are available to reach the particle and the particle area avail-
able to accept the ions. Symbolically this is written as

dg d(en)

YT a T at

= jA(n) (12.13)

where j is the ion current density in the undistorted field just away
from the particle and A(n) is the cross-sectional area of the undis-
turbed ion stream entering the particle when it is charged with n ions.

The value A(n) is computed from the total electric flux which enters
the particle when n ions are present, i.e.,

Figure 124 Electric field around an aerosol particle, particle
uncharged.



Aerosol-Charging Mechanisms 191

Figure 125 Electric field around a partially charged aerosol par-

ticle.

An) = (12.14)

Here ((n) is the electric flux entering the particle and E, the
undistorted electric field strength in the vicinity of the particle.

The electric flux entering the particle is equal to the product of the
field at the surface of the particle and the area perpendicular to it, or

on) = § EodA (12.15)

The electric field E; at any point on the surface of a sphere that is
placed in an initially uniform electric field can be shown to be

E, = xE,cos 6 (12.16a)

where x = 3¢y/(e, + 2) and ¢, is the dielectric constant of the sphere.
At the same time, however, charges which have collected on the
sphere produce a repelling field which acts to prevent the arrival of
additional ions. This repelling field E, can be given by

E, = - 2ne (12.16b)

d2
The net electric field is

4
E=E, +E, = xE,cos 6 - 7";25 (12.16¢)
When 6 = 6,, E = 0. ]
Thus the total electric flux entering the particle is

G .
U(n) = 2fo (xEo cos 6 — ‘tl—nze-) (-‘%d2 Slnﬂ) de (12.17)
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which on integration becomes

(12.18)

on) = X_Eo(l - e )2

XEod?
The assumption made here is that the particle is much larger than the
ion mean free paths, so that the ions can be considered to follow the
lines of force. For large particles (in the continuum region) this as-
sumption is valid. Also, since ion mobility is much greater than par-
ticle mobility, particle velocity can be ignored at this point.

The limiting or saturation charge occurs when {(n) = 0. Setting
U(n) = 0, replacing n with n,, and solving Eq. 12.18 for n, gives

xEd®
ns =2 (12.19)

This is the maximum number of charges which can be placed on a par-
ticle of diameter d by a field of strength E,,.

Example 12.6 Earth’s electric field is 1.28 V/cm over the ocean. What is the
maximum electric charge which can exist on a 10-pum spherical particle over the
ocean due to the earth’s electric field? Assume x = 3.

Ep=128V/em = % 4.27 x 1073 statvolts/cm

_ 3Epd®  (3)(4.27 x 107310732
T de  (4)4.8 x 10719

= 6.67 ions per particle, say 7 ions

Equation 12.18 can be rewritten in terms of the saturation charge
n,. Thus

n\2
U(n) = m,e (1 - ;) (12.20)
The saturation charge represents the maximum charge a particle can
attain with a given field strength. If the field strength is made suffi-
ciently intense, a particle will rid itself of excess charge by the spon-
taneous emission of either electrons or ions. For electrons a surface
field intensity of about 107 V/cm is required while for ion emission a
field about 20 times greater is needed (Whitby and Liu, 1966). The
number of charges which are implied by these fields thus represents
the absolute upper limit on particle charging.

Recalling Eq. 12.13, it is seen that the second factor to be evaluated
is j, the ion current density in the undistorted field. This is the product
of the charge per unit volume and the drift velocity of the ions. The
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charge per unit volume is Ne, where N is the average ion concentra-
tion. When the field energy of the ions is small compared with their
thermal energy, the drift velocity of the ions in the field direction is
proportional to the electric field intensity, i.e.,

v, = ZE, (12.21)

where Z, the constant of proportionality, is called the mobility of the
ions. Because of their difference in size, positive and negative ions
have different mobilities. For air a typical value for Z that is often
used to represent an average value is 1.4 cm? 57! V™! (McDaniel,
1964). In the cgs system of units this is 420 cm® s™! statvolt™'. This
mobility may not be a representative value, however. Figure 12.6
shows a typical distribution of mobilities in air. It can be seen that
although a mobility of 1.4 cm? s™! V™! appears to be an average
value, it is representative of neither positive nor negative ions. Thus
the choice of an average value for mobility can be expected to intro-
duce some error into field charging estimations.

Assuming that an average value for mobility can be used, the cur-
rent density becomes

j = Nev, = NeZE, (12.22)

Combining the current density with the total electric flux gives

d(ne
@ine) = NeZEgmn,e(1 - = /Eo (12.23)
dt n,
or
d n/n, —_— n\2
i) _  Nez (1 - —) (12.24)
dt n,
o —— - - Negatve 1ons
——  Postive 1ons 2
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which, on integration with the initial condition that n = 0 at £ = 0,

gives

nﬁ _ _miNezt (12.25)

o mNeZt + 1

The factor mNeZ has the dimensions of the reciprocal of time, so a new
time factor ¢; can be denoted as

ty = _1 (12.26)
mNeZ
and then ;
n
—= 12.27
ne t+ to ( )

The factor ¢, can be considered to be a time constant which determines
the rate or rapidity of charging; the smaller the value of ¢,, the shorter
the time it takes to approach saturation charge. Figure 12.7 shows a
plot of Eq. 12.27 indicating that with sufficient time n/n, reaches the
asymptotic value of 1.

One-half the final charge is reached at ¢ = ¢, and 91 percent at
t = 10¢,. Even though larger particles carry much higher saturation
charges, the time constant is not size-dependent, and relative charg-

I.O { \J T T v

o8} i

n/n,

04} 4

0.2 -

Al 1 1 1 L

s 10 15 20 25 30

1o
Figure 12.7 Plot of fractional saturation charge as a function of dimension-
less time. Note that as ¢ approaches infinity, n/n, approaches 1.
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ing rates of particles of different sizes are the same. Thus in an elec-
trostatic precipitator, particles of various sizes placed in the same
electric field will charge to the same degree of charge saturation in the
same time.

Example 12.7 The particle residence time in the charging section of an electro-
static precipitator is 0.4 s. If the ion concentration is 107 ions per cubic cen-
timeter, what fraction of the maximum charge on the particles will be
reached in that time?

1
07 aNeZ (m)(107y4.8 x 10-1°)(420)
= 01585
n t 0.4 0.4

ne i+l 04+0158 0558 OV

i.e., approximately 70 percent of the ultimate particle charge is achieved in 0.4 s.
Large particles will carry a much greater charge than their smaller counterparts.

Combined diffuslon and fleld charging

As particle size decreases, charging in an applied electric field results
from not only the ordered flow of ions but also the random motion of
the ions. Thus a complete charging theory should account for both dif-
fusion and field charging simultaneously. Several difficulties immedi-
ately appear. First, diffusion charging places no upper limit on the
number of charges a particle may acquire, whereas there is a definite
upper limit with field charging. Second, in field charging the particle
charge after a given charging period is a function of the square of par-
ticle size, while with diffusion charging the charge is approximately a
linear function of particle size. With a fairly high applied electric field
and small particles, the two mechanisms do give comparable results,
although when compared with experimental data, both mechanisms
taken separately tend to slightly underestimate particle charge.

lon production by corona discharge

The most commonly used method for field charging of aerosol particles
is by the use of the phenomenon known as corona discharge. Corona
discharge is discussed in detail by White (1963) and Miller and Loeb
(1951b, ¢) and is considered only briefly here.

Suppose two electrodes are arranged so that the field strength be-
tween them is not constant. (This could be done, e.g., with a wire and
tube electrode system or a point and plane system.) Then if the poten-
tial across the two electrodes is increased, a voltage will be reached
where electrical breakdown of the gas occurs nearest either the wire
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or the point. This breakdown is usually manifested by a blue glow,
called a corona discharge. With a corona discharge two distinct elec-
trical zones are produced (Fig. 12.8). In the first zone, immediately
around the corona wire and containing the corona glow, local electri-
cal breakdown of the gas takes place, caused by collisions with gas
molecules of ions leaving the corona wire. If these ions are sufficiently
accelerated, the collisions will free additional ions from the molecules.
These new ions are also accelerated and, in turn, produce even more
ions by collision. Oppositely charged ions are accelerated toward the
corona wire, where they produce additional ions on impact. This pro-
cess produces a large number of ions of one sign which rapidly move
out of the zone of corona glow toward the other electrode (Fig. 12.9).
As the ions leave the zone of high field strength, they tend to attach
themselves to gas molecules, producing a cloud of slow-moving ions all
having the same sign of charge as the center electrode, either positive
or negative. The corona is said to be negative if a cloud of negative
ions is formed and positive if positive ions are formed. The ions mov-
ing toward the passive electrode thus make up the unipolar charging

I Discharge

}/ wire electrode

Electrical
breakdown
(active zone)

Active
zone
I | Passive zone

Distance _'

Figure 12.8 Plot of field strength as a function of distance from the
discharge wire electrode for a corona discharge.

Field T
strength

Plate
electrode




Outer
electrode (+)

N

hS

Center
electrode (-)

Figure 12.9 Schematic diagram of negative corona discharge showing
negative ion motion away from center electrode, positive ion motion to-
ward center electrode.

field for aerosol particles. Ion concentrations are typically on the order
of 107 to 10° ions per cubic centimeter. Since electron attachment co-
efficients and ion mobilities vary greatly from gas to gas, corona char-
acteristics will differ greatly, depending on the predominant gas and
impurities present. For example, with nitrogen alone, negative ion
formation is not possible, so that the oxygen component of air is nec-
essary for effective negative particle charging.

With a wire-in-cylinder arrangement, a negative corona produces
tufts or beads of glow along the wire length while a positive corona
produces a continuous glow along the wire. Generally a negative co-
rona is preferred for particle charging because it is more stable than
the positive corona and can be operated at higher potentials and cur-
rent flow before sparking occurs, both of which are favorable to elec-
trostatic precipitation. On the other hand, with high electrical poten-
tials, ozone is produced. It appears that a positive corona produces less
ozone than a negative one. Thus for cleaning air that will subse-
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quently be supplied to a room or building, a positive corona for parti-
cle charging is preferred, since less ozone will be produced, even
though the air-cleaning efficiency will be somewhat lower.

Charge density in the zone of low field strength depends on ion mo-
bility, which depends on the constituents of the gas being ionized. Ni-
trogen, hydrogen, and the inert gases absorb few electrons on collision
ionization, so charges present in these gases are electrons, having
high mobilities and hence a high corona current. Gases such as oxy-
gen, water vapor, sulfur dioxide, and carbon dioxide have a high elec-
tron affinity so that negative ions consist almost entirely of gas ions.
These gases are called electronegative gases. The corona current for
these gases is relatively low.

Maximum attainable particie charge

In deriving the field charging equation, it was shown that for a given
field strength and particle size there exists a maximum possible par-
ticle charge. It was pointed out that when the field strength reaches
the surface field strength for spontaneous emissions of electrons, then
the upper limit of particle charging is established. For a solid spheri-
cal particle, this limit n,, is given by

_Ed’
T 4e

where E, is the surface field intensity at which emission of ions or
electrons occurs. For electrons E, =~ 3.3 x 10* statvolts/cm while for
ion emission E, =~ 6.67 x 10° statvolts/cm.

(12.28)

n,

Example 128 Determine the maximum positive charge on a 0.01-pm-diameter
sphere.
Ed®  (6.67 x 105107y

nm= =

4e 4x4.8x10710
= 347.4 units of charge

With a liquid droplet this maximum charge cannot be reached ex-
cept in the case of extremely small droplet sizes. This is because of
an additional charge limitation placed on liquid aerosols, known as
the Rayleigh limit. It has been known for many years that as a
highly charged droplet evaporates, a point will be reached where
the outward force of the electric field at the drop surface exceeds the
inward force of the droplet’s surface tension. At this point, the drop
will be torn apart by the close proximity of like charges and will
produce a number of smaller drops in order to create more surface
area for the charge. The number of electrons necessary for droplet
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disintegration was deduced by Rayleigh to be

n, = % V 21yd? (12.29)

where v is the surface tension of the liquid. Several experiments have
confirmed the validity of this expression (Whitby and Liu, 1966).

Example 12.9 Determine the Rayleigh limit for charge on a 1-pm-diameter wa-
ter droplet (y = 72.7 dyn/cm).

ny= % \V 27yd®
L \/2n(72.7)10 4}

T 48x10°10
= 4.45 x 10* units of charge

Table 12.3 lists the approximate maximum number of elementary
charges on particles of various sizes for the ion, electron, and Rayleigh
limits. For comparison a 1-cm-diameter raindrop in a thunderstorm
carries about 4 x 108 charges (Sartor and Atkinson, 1967) or about 1
percent of its maximum possible charge. Since for all but the smallest
particle sizes the Rayleigh limit gives the lowest charge, highly
charged drops which can evaporate will disintegrate until drop diam-
eters on the order of 0.01 um are reached.

Example 12.10 Considering both the ion and electron limits, find the droplet
diameters where the Rayleigh limit just equals these limits. Hence, find the
droplet diameter which cannot disintegrate upon evaporation.

E,d?

Rjon = 4e

1~/
"Rayleigh = 5 2myd®

TABLE 12.3 Approximate Maximum Number of Elementary Charges on Particles

Particle diameter, pm

Limit 0.01 1.0 100
Ion limit 3.47 x 102 3.47 x 10° 3.47 x 10;0
Electron limit 1.72 x 10" 1.72 x 10° 1.72 x 10
Rayleigh limit . .
v = 21 dyn/cm 2.39 x 10! 2.39 x 10 2.39 x 10

vy = 72.7 dyn/cm 4.45 x 10! 4.45 x 10* 4.45 x 107
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Equating and selving for d., give
do, = 32Ty
€q Esz
from which the following table can be computed:

Smallest droplet diameter, pm

Alcohol, y = 21 dyn/cm Water, v = 72.7 dyn/cm
Electron limit 0.019 0.067
Ion limit 0.00005 0.0002

Positive charge will continue to disintegrate the droplet to molecular size, neg-
ative charge will indeed produce a droplet with a finite lower diameter limit.

Charge equiiibrium

In previous sections, charging of aerosols by ions of one sign has been
discussed. Often, however, ions of both signs are present in essentially
equal numbers. In this case extremely high charges of one sign are not
likely to be found on any aerosol particles. However, the presence of
free ions suggests that some particles will carry charge. This is par-
ticularly true for atmospheric aerosols since there are always free ions
available for particle charging. Ion concentrations in the atmosphere
can vary over a wide range from about 200 up to 3000 ions per cubic
centimeter or more, of both polarities. Near ground level the ratio of
positive to negative ions is approximately equal, being about 1.2
(Bracken and Johnson, 1987).

Table 12.4 lists typical ambient ion concentrations over land for

TABLE 12.4 Measured Falr-Weather lon Concentrations

Location n, ,ions/em® n_, ions/em® Reference
Boston, Mass. 210400 180-345 Yaglou et al. (1931)
Bozeman, Mont. 770 520 Sharp (1972)
England 50-2000 50-2000 Hawkins (1981)
France 220 180 Schreiber and Peyrous (1979)
Georgia 300400 Perkins and Eisele (1984)
Haifa, Israel 700-1500 575-1100 Robinson and Dirnfeld (1963)
Minnesota 500 360 Hendrickson (1985)
Minnesota 380-800 40-1000 O'Brien (1983)
New Mexico 540 440 Wilkening (1984)
Uppsala, Sweden 700-1925 600-2350 Norinder and Siksna (1949)
Wisconsin 1030 790 Hawkinson and Barber (1981)

source: Bracken and Johnson (1987).
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fair-weather conditions. Maximum ion production in the atmosphere
tends to occur more in the warm summer months than in the colder
winter. With rain there will usually be more negative ions than posi-
tive ions. During thunderstorms the air ion concentration can in-
crease sharply to values on the order of 10* ions per cubic centimeter
for negative ions and slightly less for positive ions, while during rain-
fall the air ion concentration can range from around 1 x 10° to
2 x 103 ions per cubic centimeter of either sign. Ion production rates
1 m above the land portion of the earth’s surface have been estimated by
Wait (1934) to be about 10 ions/(cm?® - s), with 2 ions/(cm® - s) coming
from cosmic radiation and the remainder from the decay of natural ra-
dioactivity emanating from the ground. Since these emanations are
not present over oceans, ion concentrations over oceans are much
lower than those over land.

When ions are associated with molecular clusters, they are called
small ions; when attached to small aerosol particles, they are often
called large or Langevin ions (Fleagle and Businger, 1963). The aver-
age life of a small ion is roughly 100 s, that of a large ion about 10-fold
longer, or about 1000 s.

The relatively short lifetime of a charge on an aerosol particle im-
plies charge transfer or neutralization, whereas the continued produc-
tion of ions suggests a replenishment of the particle charge. Thus if
there is an equilibrium value of small ions in the atmosphere, there
should also be an equilibrium value of charge on aerosol particles
present. This equilibrium condition implies that for a given size aero-
sol particle, there should be a definite fraction having no charge, an-
other fraction having 1 charge, another having 2 charges, etc. Al-
though any given particle may be gaining or losing charge
continually, under equilibrium conditions the aerosol as a whole
should maintain the same proportion of charged particles.

Steady-state theory of charge equiiibrium

A theoretical approach defining bipolar charge equilibrium has been
developed by Keefe et al. (1959), and comparison with experimental
data suggests that it provides a reasonable model for particle sizes
from about 0.05 to at least 2 pm. Keefe et al. applied Boltzmann’s law
to the distribution of particle charges in dynamic electrical equilib-
rium. The usual statement of this law is that the number of particles
per unit volume having an energy E, denoted c(E), is given by

¢(E) = A exp (;—ﬁ) (12.30)
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where A is a normalization constant. In the case of a charged spherical
particle carrying n unit charges with a diameter d,
2,2
E=E,+ '—‘di (12.31)

Here E, represents the energy of the particle in the absence of any
charge whereas the second term represents the additional electro-
static energy. A particle will have the same energy whether it carries
a positive or negative charge since the square of the charge is used in
Eq. 12.31.

Substituting E given by Eq. 12.31 into Eq. 12.30 gives c,, the num-
ber of particles per unit volume having n elementary units of charge
(of one sign):

n’e?
Cn = Co XD (_dkT) (12.32)
The term ¢, represents the number of neutral particles per unit vol
ume, given by

-E,
co = A exp T

The number of particles per unit volume carrying n charges of both
signs is twice that given in Eq. 12.32, assuming the numbers of posi-
tive and negative particles are equal.

The total number of positively charged particles ¢, or negatively
charged particles c_ per unit volume is

c,=c_= 2c1+cz+c3+--~ (12.33)
and the total number of particles per unit volume is
cr=¢+c, +c. (12.34)

The fraction of particles having n units of charge of one sign, denoted
fin), is

2,2 dk
L o expl-n e {akT)] (12.35)

co + 2; 2¢, expl - n%*/(dkT)]

fin) =

$le

or
-n%*/(dkT
fin) = fo[ e NGk T)) (12.36)
> 7. expl-n%/(dkT)]
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It is interesting to note that according to Eq. 12.36, the equilibrium
charge distribution on aerosols is independent of both ion concentra-
tion and aerosol concentration. These factors are important, however,
in establishing the length of time necessary for equilibrium conditions
to develop.

Example 12.11 Determine the fraction of 0.5-pm-diameter aerosol particles (as-
sume spherical shape) at charge equilibrium which carry 2 units of positive
charge.

oo [2%2Y _ | n%(4.8 x 107102
P\ kT Pl ™ (5 x 1075)(1.38 x 10-1%203)

= exp [0.114n2]

n exp [n%*/(dkT)]
6 0.017
5 0.058
4 0.161
3 0.359
2 0.634
1 0.892
2 2.121

From Eq. 12.36
cn ___ expl-n?e?/(dkT)]

e 3%, expl-n2e(dkT)]

The denominator will equal 2.121 for all positively charged aerosol particles
n = +, 2.121 for all negatively charged aerosol particles n = -, and 1.0 for all
neutral aerosol particles n = 0. Then

fin) =

0.634

1+ 2212n) ~ 14

fin) =
or about 12 percent of the particles carry 2 units of positive charge.

If the term e?%/(dkT) in the exponential of Eq. 12.32 is set equal to y,
Eq. 12.33 can be written as
C.,. C_

—=——=e—y+e_4y+e-9y+"' (12.37)
€ Co
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When y is less than 1 (particles with diameter greater than 10”2 pm
at normal temperature and pressure), the series in Eq. 12.37 can be
approximated by

\/3 - 1) (12.38)
y

and the ratio of uncharged particles to total particles becomes

c, c. 1(
Co € 2

Co Co y

cr - co + 2c, T Vx (12.39)
Equation 12.36 can be rewritten by utilizing Eq. 12.39 as
o2 —nZ%?
fln) = \/dkT'rr exp ( 5T ) (12.40)

a much more convenient form for computing the equilibrium fraction
of charge on various aerosol particles. At temperatures roughly equal
to room temperature, this equation is applicable to all particles hav-
ing diameters greater than 5 x 10”2 pum.

Table 12.5 shows the equilibrium charge distribution on various
monodisperse aerosols as computed from Eq. 12.40.

As in the case of unipolar charging, when the particle size is
roughly equal to or less than the ionic mean free path, the Boltzmann
approach given above underestimates the equilibrium charge distri-
bution. Theories have been developed by Fuchs (1964) and Hoppel
(1977), among others, that correct for the failure of the Boltzmann
approach at small particle sizes. For example, Fig. 12.10 shows the
steady-state charge distribution computed from the Boltzmann,
Fuchs, and Hoppel approaches for small particles. It can be seen that
although all theories tend toward each other as particle size increases
or charge number increases, for singly charged particles in the

TABLE 12.5 Equilibrlum Charge Distribution Fraction of Charge of Elther Sign

Number of charges on particle
d 0 1 2 3 4 5 6 7 8
005 0602 038 0013 0.000 0.000 0.000 0000 0.000 0.000
0.10 0426 0482 0.087 0.005 0000 0000 0.000 0.000 0.000
0.20 0.301 0453 0.193 0.046 0.006 0.000 0000 0.000 0.000
050 0.190 0340 0241 0.137 0062 0.022 0.006 0.001 0.000
1.00 0.135 0.254 0.214 0.161 0.108 0.065 0.035 0.017 0.007
2.00 0.095 0.18 0.170 0.147 0.121 0.093 0.068 0.047 0.031
5.00 0.060 0.119 0.115 0109 0100 0.091 0.080 0.069 0.058
10.00 0.043 0.085 0.083 0.081 0.078 0.074 0.069 0.064 0.059
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0.001- to 0.1-pm-diameter range, there is a significant difference be-
tween the Boltzmann (Keefe et al.) prediction and the more accurate
predictions of Fuchs or Hoppel.

Unfortunately the more accurate predictions of Fuchs or Hoppel re-
quire quite intricate calculations compared to using the Boltzmann
approach. This has discouraged their use.

Wiedensohler (1988) developed an approximation for the Fuchs
model, taking advantage of the observation that for an aerosol in
charge equilibrium, the fraction of particles of any size with 3 or more
elementary units of charge of the same sign can be calculated from Eq.
12.40. Then, for small particles with up to 2 elementary units of
charge, he proposed the empirical equation

fin) = loza.'(n)(logd)i (12.41)

Values for the approximation coefficients a;(n) are given in Table 12.6.
Equation 12.41 is valid over the range of diameters 0.001 pm <d < 1
pmforn=-1,0,1and0.02 pm <d < 1 um forn = -2 and 2. Ascan
be seen in Fig. 12.10, for d less than 0.02 pm, particles carry at most
1 elementary charge.

TABLE 12.6 Approximation Coefficient a;(n)

a;(n) n=-2 n=-1 n=0 =1 n=2
ag ~26.3328 ~2.3197 -0.0003 -2.3484 -44.4756
a, 35.9044 0.6175 -0.1014 0.6044 79.3772
a, ~-21.4608 0.6201 -0.3073 0.4800 -62.8900
ag 7.0867 -0.1105 -0.3372 0.0013 26.4492
a, -1.3088 -0.1260 0.1023 -0.1544 -5.7480
as 0.1051 0.0297 -0.0105 0.0320 -0.5059

source: After Wiedensohler (1988S).



206 Chapter Twelve

Example 12.12 Using Wiedensohler’s approximation, compute the fraction of
0.1-pm-diameter aerosol particles carrying 1 positive charge under equilibrium
conditions.

Recalling Eq. 12.41,

fin) = 10%iwKIog &

we construct the following table.

i a;(+1) (from Table 12.6) (log d) a,(+1) (log d)*

0 -2.3484 1 -2.3484

1 0.6044 2 1.2088

2 0.4800 4 1.9200

3 0.0013 8 0.0104

4 -0.1544 16 -2.4704

5 0.0320 32 1.0240
~0.6556

*d expressed in nm.

Then
fin) = 1079655 = 0,221 fraction carrying 1 plus charge

The average number of charges per particle can be determined by
adding the charges on all the particles and dividing by the total num-
ber of particles; or in terms of the fraction of charged particles fir), the
average number of charges per particle n is

n= i[nl fin) (12.42)
By replacing the summation with an integral, Eq. 12.42 becomes
7= [ Inlfin)dn (12.43)
which yields, on integration,

n= dkT (12.44)

Te?

a convenient form for determining the average charge for all parti-
cles whose diameters are larger than 10~! um. Keep in mind that
n represents the average number of charges, regardless of sign. The
average number of positive or negative charges is one-half this
value.
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Exampie 12.13 Determine the average charge per particle for an aerosol com-
prised of 0.5-um-diameter spheres.
For these particles,

__ [dkT
n=l—

'ﬂ'€2

) \/(5 x 1075)(1.38 x 10~16)293)
(4.8 x 10710)2

1.67 charges per particle

Transient approach to charge equiiibrium

Experimental data indicate that given enough time and otherwise op-
timum conditions, an equilibrium charge will eventually develop on
an aerosol. Often, however, it is of interest to know whether this
charge distribution has in fact developed and to gain insight into the
factors which could be changed to hasten or retard its development.
Exact calculation of the transient approach to charge equilibrium is
extremely difficult. It is more appropriate to use an equilibrium half-
time, similar to the half-life in radioactive decay, the describe the rate
at which charge equilibrium is being reached. This represents the
time necessary for one-half the equilibrium charge to be attained and
is (Flanagan and O’Connor, 1961)

0.693¢,
fe = =g — (12.45)

where g, is the ion production rate. This equation indicates that with in-
creased ion production rates or decreased aerosol concentration, charge
equilibrium is more quickly reached, a fact borne out by experiment.

With an ion production rate of 10* ions/(cm® - 5) and an aerosol con-
centration of 5 x 10* particles/cm®, equilibrium would be achieved in
about 2 s. For atmospheric aerosols where the ion production rate may
be only 10 ions/(cm®-s), even though aerosol concentrations of
5 x 10* particles/cm® are not uncommon, it takes approximately 1700
s (or about 30 min) for equilibrium to be achieved. O’Connor and
Sharkey (1960) report that equilibrium conditions usually prevail in
air coming from the ocean. Over an industrial city, however, measure-
ments indicated that the equilibrium charge distribution is not at-
tained (Nolan and Doherty, 1950). This difference is attributed to
the shorter time span between the production of the aerosol over the
city and its measurement.

Since charge equilibrium can be quickly attained by using high ion
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production rates or large ion concentrations, it is not surprising to find
this method employed for aerosol charge neutralization. Here the idea
is to use the large number of free ions to reduce the excess charge on
highly charged aerosol particles to as low a value as possible. With a
mixture of bipolar ions, charge equilibrium as discussed in the previ-
ous sections will be rapidly attained. This method was developed by
Whitby (1961) and Whitby and Peterson (1965), and it has been sub-
sequently applied with great success.

Radioactive sources can also be used for charge neutralization, since
these produce large numbers of bipolar ions that can then rapidly neu-
tralize highly charged aerosols (Cooper and Reist, 1973).

Problems

1 A 5-pm-diameter unit-density sphere carries a negative charge equal to
200 electrons. If it is placed in an electric field having a strength of 1000 V/
cm, determine the force in dynes acting on the particle.

2 Determine the mobility of a 5-pm-diameter unit-density sphere when it
carries 200 unit charges.

3 Lead particles flow through a rubber tube. Estimate the sign of the charge
produced by static electricity on the particles and the tube.

4 Estimate the charge which will develop in 60 s by diffusion charging if a
0.25-um-diameter spherical particle is placed in an ion field containing
3 x 10® ions per cubic centimeter. Assume 20°C temperature.

5 The particle residence time in the charging section of an electrostatic pre-
cipitator is 0.6 s. What is the ion concentration such that one-half the maxi-
mum charge on the particles is reached during this residence time?

6 What fraction of 0.5-um particles will have an average of 3 charges on
them at equilibrium? What fraction will have an average of 4 charges?

7 Plot a curve showing charge as a function of time for diffusion charging,
using the terms 2¢°n/(dkT) on the y axis and the corresponding dimensionless
term on the x axis.

8 Plot a curve for field charging of a 1-pm sphere showing the fraction of
total charge as a function of dimensionless time.

9 Using Wiedensohler's approximation, Eq. 12.41, compute the fraction of
0.25-um-diameter aerosol particles carrying 1 negative charge under equilib-
rium conditions. Then compare this estimate to one made by using Eq. 12.40.
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Electrostatic Controlled
Aerosol Kinetics

Electric Fields

As pointed out in Chap. 12, both the number of electric charges car-
ried by the particle and the strength of the electric field acting on
these charges must be known to determine the electric force acting on
an aerosol particle. Electric field strength is a vector quantity having
both magnitude and direction. The strength of the field is indicated by
the number of lines of force passing through each unit area of orthog-
onal surface. As an example, Fig. 13.1 shows field direction lines (solid
lines) and lines of force (dotted for several different geometries). The

Orthogonai

surfaces are
spheres
'\:S; S5 oy

(a) (b)

Figure 13.1 (a) Lines of force for a singly charged aerosol particle. Since field strength is
force per unit area, field strength decreases as the square of the distance from the par-
ticle in this case. (b) Lines of force for two aerosol particles; one with a positive charge,
one with a negative charge. Orthogonal surfaces are no longer spheres.
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number of lines of force through a unit area is called the flux or in-
duction through that area.

Field Strength of a Point Charge

The flux through an arbitrarily oriented element of area ds can be
shown to be

dé = E ds (13.1)

so that the flux through any finite surfaces is

b = ﬁ: ds (13.2)

When this integral is taken over a closed surface, there may be an ex-
cess of lines of force leaving the enclosed volume compared to the
number entering. This indicates that a field is originating from within
the closed volume. If the integral is taken around an aerosol particle
having a charge q, then

g« §Eds (13.3)

indicating that the electric charge on a particle plays a double role.
Besides being the object on which an electric field acts, it is also active
as the generator of an electric field. This point is important in practi-
cal considerations of electrostatic precipitation.

When the particle is represented by a single point charge (Fig.
13.1), the lines of force are radial and equal in all directions. The or-
thogonal surfaces of equal field strength are spherical surfaces with a
common center at the center of the particle, with the flux through any
of these spheres of radius r being

o= §Eds (13.4)

Since the density of the lines of force is the same everywhere, the field
strength E must be constant over the surface of the sphere so that

& = §Eds = 4wr’|E] = vq (13.5)

Hence, the field strength for a point charge a distance r from the
charge is

|E| = YL (13.6)

44r?

where v is a factor of proportionality.
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Coulomb’s Law

Suppose a second particle of charge q is situated a distance R from the
first particle. Then the force acting on the second particle because of
the field generated by the first would be, from Eq. 12.1,

- o'E =99

F=q'E AR (13.7)
This is Coulomb’s law. The units for charge, field strength, and force
are made compatible by specifying the units of the factor of propor-
tionality vy. For example, if y = 41/, where € is the dielectric constant
of the medium, the units are in terms of cgs or absolute electrostatic
system (esu). Since the dielectric constant for air is essentially 1, for
aerosols using the cgs system of units, y = 4.

Example 13.1 Two 0.1-pm-diameter unit-density spheres, each carrying 1 pos-
itive charge, are situated in air a distance 1 cm apart. Estimate the repelling
force between these two particles.

From Egq. 13.7, recalling that ¢ = ne,

F = X

4nwR?
With cgs units 2
F= €
€R2

for air, e = 1 and so

(48 x 107102

2 =23 x 107 1%dyn

Electric forces between particles are negligibly small until the particles are al-
most touching. For comparison, the gravitational force on these particles is al-
most 6 orders of magnitude larger than this result. Hence interparticle electric
forces can generally be neglected in aerosol computations.

Electrical Units

Very often “absolute” units, rather than electrostatic or cgs units, are
used in dealing with electrical quantities. This is done to do away with
the very small and large numbers which occur with cgs units. For the
absolute system, vy is defined as

-1

v K

The constant K, has a value of 8.849 x 107'? A - s/(m - V). Table D.1
(see App. D) lists conversion factors for various electrical parameters

(13.8)
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to convert from absolute to electrostatic units. For example, the unit
of charge of an electron, 4.80294 x 1071 statcoulomb (esu), becomes,
in absolute units, 1.60219 x 10~'° coulomb.

General Equations for Field Strength

The electric field strength at any point is the spatial derivative or gra-
dient of the electrostatic potential at that point. The electrostatic po-
tential for various geometries and boundary conditions for regions
with no charge is given by Laplace’s equation

ViV=0 (13.9)

or for regions having a charge density

V2V = —yp, (13.10)

known as Poisson’s equation, where p, is the space charge per unit vol-
ume. The symbol V2 represents the Laplacian operator. The problem
of calculating the electrostatic field strength is solved by first finding
the distribution of potential within the field. Then the derivative of
this solution with respect to distance gives the field strength, i.e.,

E=-gradV (13.11)

Example 13.2 Write an equation for the electrostatic potential that would exist
within a wire and tube type of electrostatic precipitator (see Fig. 13.2) for (a) no
charge density and () charge density.

Figure 13.2 Schematic of wire and tube type of elec-
trostatic precipitator.
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a. Since a wire and tube type of precipitator is cylindrical, the choice of a cylin-
drical coordinate system is appropriate. Then

PV, 1V, 18V, Py
a?  rar  p2302 52
It is not expected that the potential will vary with the tube length. Hence 92V/

8z% = 0. Also, potential will not vary with 6. Thus a2V/a6? = 0, and since only
one independent variable remains, the equation becomes

ViV =0 =

2
BV 14V _

dr2 rdr 0

b. Here the solution is the same except that a space charge is now present:

These equations can be expressed in terms of the field strength by applying Eq.
13.11. Then

& 1p_o (13.11q)
dr r
and dE 1

Constant Field Strength

The field strength between two parallel plates is a constant, being
equal to the potential difference across the plates divided by distance
between them. Near the surface of the earth, an essentially constant
field exists between the negative earth and the positive ionosphere,
with field strengths ranging on the order of 0.67 to 3.17 V/cm over
land and about 1.3 V/em over sea (Mason, 1971; Pruppacher and
Klett, 1978).

Computation of the Electric Field
for Simple Geometries

Often the electric field is not constant (as in the case of parallel plates)
but is spatially dependent. Then it is necessary to determine the field
strength as a function of some characteristic distance. Consider a cyl-
inder of radius R having a fine wire running down its axis. This could
be a tube, e.g., through which an aerosol is flowing. A potential V is
established across the wire-tube geometry.

Negiigibie ionic space charge

When the charge on the center wire is relatively low, the ionic space
charge density is assumed to be negligible, and Laplace’s equation is
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applicable. In cylindrical coordinates assuming cylindrical symmetry,
with the axis along the axis of the two cylinders, Laplace’s equation
can be written as

dE [ E_, (13.12)
dr r
(See Example 13.2.) Integration gives
E = ¢ (13.13)
r
where the constant C has the value
Vv
= —_ln i) (13.14)

and r, is the radius of the inner electrode, r, the radius of the outer
electrode, and V the potential across the electrodes.

Example 13.3 An electrostatic precipitator sampler consists of a 0.020-in-
diameter wire placed along the axis of a 1.5-in-diameter tube. What is the max-
imum field strength (assuming negligible space charge) at the outer edge of the
tube when the precipitator voltage is 20 kV?

From Eq. 13.13,

c_1 \ 4

_ (20 x 103)/300
(1.5 x 2.54/2)In [1.5 X 12/(0.02 x %))

= 8.11 statvolts/cm

In practical units the field strength would be about 2430 V/cm. Under the con-
ditions of the problem, a corona discharge is likely to be found around the center
wire, so that the assumption of negligible space charge will not be met. How-
ever, the example does illustrate the calculation.

ionic space charge present

Now suppose the center wire charge is considered, and it is sufficient
to produce a corona discharge. This corona—or more exactly the re-
sulting ions produced—gives rise to an ionic space charge within the
outer cylinder. Assuming that the wire acts only as an ion source, the
current applied to the wire will be used to maintain this space charge,
or ionic current, which can be given as

t = 2urp,ZE (13.15)
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where Z is the ionic mobility, and p, the ion density.
Using Poisson’s equation with cylindrical coordinates gives (from
Example 13.2)

dE E 2 _
dr + r - ZrE =0 (13.16)
since
e
'Ypa I‘ZE
Integrating gives
2i  C*\?
E-(F+ Z) (13.17)

The constant C depends on corona voltage and current as well as on
the inner and outer cylinder diameters. For large values of i and r, Eq.

13.17 reduces to
pA
E = \/; (13.18)

implying a constant field strength over most of the cross-section away
from the inner electrode.

An approximation for the corona current i has been given by White
(1963) as

27
L =WV(V - Vo) —————— 13.19
l ( O)roz In(r,/r) ( )

Equation 13.19 represents a reasonably good approximation for rela-
tively low corona currents when V, the operating voltage, is slightly
above the corona starting point. The corona starting voltage can be es-
timated from the expression

T,
In— (13.20)
r.

0.3
Vo = 1008, 1 + —=
° ( \/r_)

where § is a correction factor for temperature and pressure

293 P
==X g (13.21)
® =" * 760
Temperature is expressed in kelvins and pressure in millimeters of
mercury. The factor f is a wire roughness fact:or, equ.al to 1l fora per-
fectly smooth round wire, but usually in practice having a value lying
somewhere between 0.5 and 0.7 (White, 1963).
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Example 13.4 Determine the field strength for the sampler in Example 13.3
considering ionic space charge. The precipitator voltage is 20 kV. Assume 20°C,
standard pressure, f = 0.6. Use Z = 2.2 cm?/(Vs -).

From Example 13.3, r; = 0.02 x 2.54 x ¥ = 0.025cm andr, = 1.5 X 2.54 x
% = 1.905 cm.

The corona starting voltage is
0.3 To
Vo = 1008 1 + —=\In-2
0 ﬁ z( _\/;') i
5=1
0.3 1.905
Vo = 100(1)(0.6)(0.025)( 1 +——) n =200
b = 100(1)0.6)0.025)( 1 + =) In o2
= (1.52)(2.88)(4.32)
= 18.97 statvolts
2Z
i=WVV-Vy)—22
( 0),.02 In (rp/ry)
- 20,000020,000 _ o o-) %22 x 300)
300 \ 300 71.9052 In(1.905/0.025)
= (66.67)(47.70)(84.25)

= 2.68 x 10° statamps/cm
Then

. \/‘ \/2 X 2. ggox 10°_ 28.49 statvolts/cm

Electric field—particles present

Finally, consider the case when there are particles present in the elec-
tric field. How is the field modified by the particle space charge? By
neglecting the ion space charge as compared to the particle space
charge, White (1963) showed by solution of Poisson’s equation that the
corona starting voltage V; would be increased by an amount equal to
wporl. Then, if V', is the corona starting voltage when particles are

present,
=V, + mporz (13.22)

For ¢ spherical particles of diameter d per cubic centimeter carry-
ing the saturation charge,

Po = NTnse (13.23)

Since m = cp(n/6)d®p, where m is the particle mass per cubic centi-
meter, p the particle density, and n.,e = xE,d?/4, Eq. 13.28 is equiva-
lent to
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_ 3XmEo
Po = 2wdp

Example 13.5 How much will the corona starting voltage increase in the pre-
cipitator of Example 13.4 when fly ash particles having an average diameter of
0.1 pm are present if they have been fully charged in a 5 kV/em field (assume
x = 3 and p, = 1 glem®).

The particle mass concentration is 0.5 g/m3.

(13.24)

gmkEy

PO =3 wdp

_(9X0.5 x 1076)X5/0.3)
2m(10-5)(1)

= 1.19 esu/cm?

mpoRo? = («)(1.19)(1.5 X 2'—254 2

Increase = 13.6 statvolts = 4080 V

The effect of the particle space charge is to reduce corona current by
increasing the corona starting voltage. Increases in aerosol mass con-
centrations will increase the effective corona starting voltage, as will
decreases in aerosol particle size for a given mass concentration. Thus
very fine fumes in high concentration can be quite difficult to remove
by electrostatic precipitation.

A second space charge effect is the mutual repulsion by particles
carrying charges of similar sign. The effect results in an apparent in-
crease in field strength near the collecting surface which can be ap-
proximated by the factor

3mro

dp

so that the field strength becomes

i / 3mr,
= +/= 13.25
E \/ Z 1+ dp ( )

In general, this increase in field strength does not offset f.he reduction
in corona current. Hence the net effect of small particles in an electro-
static precipitator is a lowering of collection efficiency.

Example 13.6 Compute the field strength for .the precipitatc{r in Example 13.4
when the fly ash of Example 13.5 is included in the calculations.
Corona starting voltage V, = 18.97 + 13.6, from Example 13.4 and Example

13.5:
Vp = 32.57 statvolts
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V=20kV = % = 66.67 statvolts

2Z

i=WVV-Vo)—0""—
° r,,2 In(r, /ry)

(2)(660)
1.9052 In (1.905/0.025)
= 1.91 x 10° statamps/cm

3 5 -7
£ JA \/1 , 3mro _ \/3.32 x 105 [ . (3)(5 x 1077)1.91)
z dpp 660 0.1 x 107%(2)

= 66.67 (66.67 - 32.57)

= V579V1.29 = 27.3 statvolts/cm

Perturbations in the Electric Field Caused
by a Particle or Other Object

Up to now, only coulombic force has been considered. This is the force
between a particle and collecting surface due to the net charge on each
surface and assuming that the charge on each surface is constant and
stationary. Additional electric forces can also be present. Consider two
conducting spherical particles, one with a net positive charge and the
other with no net charge. As the first particle approaches the second,
the positive charge attracts electrons from the back side of the second
to its front (Fig. 13.3), forming a dipole with a net negative charge
nearest the oncoming particle. This net negative charge sets up an at-
tracting force between the two particles. This force, which can also
arise between a charged particle and uncharged collecting surface or
vice versa, is known as a polarization, induction, or image force. It
generally tends to enhance the collection of charged particles by any
surface. It also enhances the collection of uncharged particles by a sur-
face placed in an electric field, although the enhancement is poor for
very small uncharged particles since this force is proportional to the
volume of each particle.

In many cases it is valid to neglect all electric forces acting on an
aerosol with the exception of the coulombic force. This greatly simpli-
fies most problems, but, if not used with care, can produce significant
errors or lead one to erroneous conclusions. For example, Fig. 13.4
shows the trajectories of small positively charged particles in an elec-
tric field as they flow around an uncharged fiber, in Fig. 18.4a where
the electric field tends to move the particles along with the air flow
and in Fig. 13.4b where the field imparts a force on the particles in an
opposite direction to the airstream. In the former case deposition can
take place; in the latter example it does not. Neglect of image forces
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Apart
Left. +charge; Right, neutral

Together
Dipole

Figure 13.3 Mechanism of charge alignment of conducting aerosol par-
ticles as they are brought together by an external force.

e | e |

U | 0 |
&

(b)

Figure 134 (a) Field in direction of particle motion. () Field in opposite di-
rection of particle motion.

would have these two cases equivalent, with deposition occurring only
through aerodynamic forces (Hochrainer et al., 1969).

Particle Drift in an Electric Field

The main reason for evaluating the charges on aerosol particles and
the electric fields that act on these charges is to develop models which
describe the effect on particle motion of the electric force.
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The equation of motion for an aerosol particle including an electric
force present Fip can be written as

m Z_: = Fp+ Fg + Fy (13.26)
which becomes
b, > »
i (u - v) + 1gG - EgqB (13.27)

where B is the particle mobility. When Z is a constant, Z, is the sum of
the constant vectors & + Tgé, and Eq. 13.27 becomes

>
>

L v =u,- EqB (13.28)

In terms of a dimensionless velocity v’ = v/u, we can write, for Eq.

13.28,

dv’

& iv=1-T i

T T 1 (13.29)

where the dimensionless parameter I', which can be either positive or
negative, is equal to EgB/u, and indicates the ratio of the particle ve-
locity in an electric field to the constant velocity u,. If |I'| » 1, then
electric forces predominate, whereas when |I] < 1, gravity and iner-
tial effects predominate and electric forces can be neglected. Since in
general 7 is quite small, when || > 1, the inertia term « dv'/dt can be
ignored and Eq. 13.29 can be written simply as

v =-T (13.30a)

or
v=-EqB (13.30b)

Consider the case where |I'| > 1. The electrical drift velocity is given
by Eq. 13.305. Denoting the particle velocity in an electric field as w
and assuming a saturation charge, for field charging Eq. 13.3056 be-

comes
o= 2% (ma)

_ XEEodCC
- 12

(13.31)
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The term E, is the field generating the particle charge, and E is the
collecting field strength.

Example 13.7 Determine the electrical drift velocity of the fly ash particles in
previous examples.

From Example 13.6, E = 27.2 statvolts/cm. From Example 13.5, E, = 5 kV/
cm = 16.67 statvolts/cm. Also x = 3,d = 10" cm, and C, = 2.97.

_ XEEodC,
T 12w

_ (3)(27.3)(16.67)(10~5)(2.97)
T (12m)(1.81 x 1079

= 5.92 cm/s

Efficlency of an Electrostatic Precipitator

The utility of the concept of aerosol particle electrical drift velocity
can be shown by using it to estimate the theoretical efficiency of an
electrostatic precipitator. For simplicity it is assumed that the collec-
tor is cylindrical, having a radius R (although this assumption does
not affect the results), and that an aerosol is uniformly distributed
across the entrance of the collector. In addition, turbulent flow in the
collector is assumed such that the uncollected aerosol remains uni-
formly distributed at any distance from the entrance of the tube. If the
electrical drift velocity is constant, the chance of a particle ¢ being col-
lected in a time At is

w(2nwR) 2w
= At = R At (13.32)
and the chance of its not being collected is 1 — ¢.

In n intervals of time, the chance of not being collected is (1 — ¢)".
When n is allowed to approach infinity during a residence time period ¢,
(1 - ¢)" approaches a value of exp (- ¢t). Denoting € as the collection ef-
ficiency,

e=1-exp ('—%‘95) (13.33)

In terms of the volumetric gas flow through the tube @, the efficiency
is

e=1-exp (——'2“’) (13.34)

where A is the total collecting area of the precipi!;ator. Equation 13.34
is applicable to both tube and plate type of precipitators. It is known
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as the Deutsch equation (1922), and its general form has been verified
many times in practice.

Example 13.8 If the precipitator of Example 13.7 is 6 in long and air flows
through it at a rate of 1 ft*/min, determine the efficiency of collection of this unit
for 1-um fly ash particles.

e-l—exp(ﬂ
- Q

Q@ = 1ft3min = 1 x 28.3 L/min = 472 cm%/s
= 15
A= (2)(3.14)( =2 x 2.54)(6 x 2.54)
= 182.4 cm?®

182 x 5.92
L-exp{-——m

€

1 - 0.101 = 0.849 = 89.9% efficient

It should be kept in mind that the derivation of Egs. 13.33 and 13.34
contains many simplifying assumptions which may or may not be
valid, depending on aerosol and precipitator characteristics. For ex-
ample, it is assumed that once a particle is collected, it remains col-
lected. This is not the case except for a liquid aerosol. Also, for dry
aerosols, when the particles are good conductors, they rapidly lose
their charge to the collecting electrode and pick up a new charge of
opposite sign from the electrode, causing them to be repelled. But if
the particles are poor conductors, they will lose their charges so slowly
that the rain of new charges should be sufficient to maintain the
charge on the particles and hold them to the collecting surface.

Theoretical calculations will always overestimate precipitator effi-
ciencies, probably because of reentrainment. This overestimation
could be as large as a factor of 2 or more (Rose and Wood, 1966). Even
so, drift velocity or “effective migration velocity” is the basis for all
precipitator calculations and does provide a good base for the compar-
ison of various designs.

Problems

1 A 0.1-pm-diameter unit-density sphere and a 0.2-pm-diameter unit-
density sphere, each carrying 2 positive units of charge, are spaced in air a
distance 1 cm apart. Estimate the repelling force between these two particles.

2 An electrostatic precipitator sampler consists of a 0.015-in-diameter wire
placed along the axis of a 1-in-diameter tube. What is the maximum field
strength (assuming negligible space charge) at the outer edge of the tube
when the precipitator voltage is 15 kV?



Electrostatic Controlled Aerosol Kinetics 223

3 Determine the field strength for the sampler in Prob. 2 considering ionic
space charge. The precipitator voltage is 15 kV. Assume 20°C, standard pres-
sure, and f = 0.6. Use Z = 2.2 cm®/(Vs *).

4 Determine the electrical drift velocity of 0.1-pm-diameter spheres having
a density of 2.65 g/cm® if they are carrying 200 units of charge each and are
placed in a collecting field of 70,000 V/m.

5 An electrostatic precipitator is to be used to control emission of 0.5-pm-
diameter particles from a paper mill. An efficiency for the collector of 99.6 per-
cent is desired. If the total design flow through the unit is to be 6500 ft/min,
how many square feet of collector surface are required? Assume w = 7.5 cm/s.



Chapter

14

Condensation and Evaporation
Phenomena in Aerosols

Condensation and evaporation of aerosols play a great part in hu-
man existence. The cycle of water in nature relies on the condensa-
tion of water to form cloud droplets, some of which then return to
earth in the form of rain or snow. Photographs of the earth’s surface
taken from outer space reveal that the most distinguishing charac-
teristic of the earth is its cloud cover. Clouds and fogs lower visi-
bility and can have a marked effect on air temperatures at the
earth’s surface. Fogs in combination with air pollution created by
people can result in aerosols which are quite irritating to humans
as well as being toxic to some forms of plant life (and, in some cases,
to human life as well). Many industrial pollutants appear as aero-
sols made up of condensed liquids.

Evaporation of liquid drops is equally important. For example, in
the application of a pesticide by spraying, it is desired that evapora-
tion be minimized to increase the amount of pesticide reaching the
plants. Yet in the production of such foodstuffs as powdered milk or
powdered coffee, product quality is improved when evaporation pro-
ceeds as quickly as possible. In sampling aerosols, evaporation or con-
densation may alter aerosol size distribution and affect operation of
the sampling instrument. In this case it is desired that static condi-
tions be maintained if at all possible.

Early Observations

Early investigators such as Coulier (1875) and Aitken (1880) found
that when they produced clouds by the adiabatic expansion of moist
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air (no heat transfer between the system and surrounding container),
the presence of small dust particles was necessary for cloud formation.
If the air were first made dust-free, clouds would not form. In this case
clouds appeared only when the expansion was very large. Wilson
(1897) extended these studies by defining the conditions under which
clouds could be formed without dust particles: spontaneously with
very high supersaturations or at lower supersaturations when ions
were present. It was these observations that led to the development of
cloud chambers for ion track visualization.

Types of Nucleation

Early investigators determined that the formation of an aerosol initially
required a surface for condensation. This surface could be made up of
a small cluster of vapor molecules, an ion or ionic cluster, or it could be a
small particle of some other material, termed a condensation nucleus.
When condensation of a vapor takes place solely on clusters of similar
vapor molecules, it is called spontaneous or homogeneous nucleation.
When condensation occurs on a nucleus or dissimilar material, it is
called heterogeneous nucleation.

In the case of homogeneous nucleation, supercooling of the liquid
making up the drop is common when the drop temperature is low-
ered below the freezing point, since there are no foreign bodies
present in the liquid. For water droplets, supercooling to tempera-
tures as low as —40°C is possible. With a single condensation nu-
cleus in the drop, its purity is such that supercooling is still quite
common. This implies that in the formation of any particle by con-
densation (solid or liquid) it goes through a liquid phase (although
the time the particle remains in this phase might be very short),
and thus the theory developed for condensation and evaporation of
liquid aerosols can also be applied to formation of solid aerosols by
gas-phase reactions (Amelin, 1967).

Homogeneous nucleation is thought to take place in three steps.
First, the vapor must be supersaturated to an extent that condensa-
tion will take place; second, small clusters of molecules or embryos
must form; third, the vapor must condense on these embryos so that
the embryo grows into a full-fledged nucleus which subsequently be-
comes a droplet. For heterogeneous nucleation only two steps take
place, the first and third.
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Saturation Ratio

The saturation ratio of a vapor in a gas can be given by the equality

s=-2£

T (14.1)
where p is the partial pressure of the vapor in the gas and p. (T is the
saturated vapor pressure of the vapor over a plane of the liquid at a
temperature 7. When S > 1, the gas is said to be supersaturated with
vapor; when S = 1, the gas is saturated; and when S < 1, the gas is
unsaturated with vapor. For adiabatic expansion of a gas-vapor sys-
tem, by using the first law of thermodynamics the saturation ratio of
a gas saturated prior to expansion can be given by (Amelin, 1967)

"/2 -K B V2 K-1
S‘(V,) e""{ﬁ[(ﬁ) 'l]} (14.2)

where V, and V), are the volumes before and after expansion, T, is the
gas temperature in kelvins prior to expansion, K is the ratio of the
constant-pressure specific heat to the constant-volume specific heat,
and B is a coefficient which comes from the integrated term of the
Clausius-Clapeyron equation.

Over a temperature range of —20 to 60°C for water vapor, K has a
value of 1.4 and B a value of 5367. Table 14.1 lists K and B values for
several other vapors in addition to water. The term B is also used in
the equation for approximating vapor pressure:

InP.(T)=A-BT (14.3)
Additional values for A and B are given in Table 15.2.

TABLE 14.1 Constants for Eq. 14.2 for Selected
Vapors-Noncondensing Gas Mixtures

Material K B
Air-water vapor 1.40 5367
Air-ethanol vapor 1.40 5200
Argon-water vapor 1.66 5367
CO,-water vapor 1.31 5367

N,O-iodine 1.30 7155
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Example 14.1 In an experiment, a chamber holding air saturated with water
vapor is rapidly expanding adiabatically to 1.25 times its volume. Determine
the value of S following the expansion. The initial temperature T, is 0°C.

o ()l

- (@) " einlw) )

(r2svi\ T [ssed[ (125w \™ .
\™w XPloT3 Vi

= 0.732 exp[(19.66)(0.093)]
= 0.732(6.27)
= 4,59

It has long been recognized that a small droplet will evaporate even
when the gas surrounding it is fully saturated. Supersaturation of the
gas 1is necessary to maintain the drop in equilibrium. Supersaturation
is required because the probability of a net loss of a molecule from a
convex surface is greater than the probability of net loss from a flat
surface of infinite extent. A molecule that has left a small spherical
droplet has a much more difficult time finding its way back than it
would in finding its way back to a flat surface of infinite extent. Thus
the high supersaturations necessary for spontaneous condensation are
related to the size of the drop produced.

From cloud chamber studies it was found that with dust-free air, ex-
pansion ratios of about 1.35 or so were required for cloud formation to
take place. Expansion ratios in this range imply saturation ratios or
supersaturations on the order of 700 to 800 percent. There have been
a number of theories advanced to explain the process of self-
nucleation, and although none is completely acceptable in all cases,
theory is sufficiently adequate to permit a prediction of aerosol param-
eters for practical implications.

Homogeneous Nucleation—Kelvin’s
Equation

Consider the energy balance of a nucleating (or condensing) drop. As
the droplet (or embryo) is formed, its surface free energy goes from 0
to md?y, where d is the diameter of the drop and v is the liquid surface
tension. If the free-energy potential per molecule is ¢, in the vapor
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phase and &, in the liquid phase, and n is the total number of mole-
cules contained in the drop growing to a diameter d, then the total
change in free energy AG of the droplet is

AG = (¢p - d)n + md?y (14.4)

Now suppose the partial pressure of the vapor near the droplet is
changed by a small amount dp (keeping the temperature constant).
This produces a corresponding change in the free energy per molecule
of vapor d¢, and in the free energy per molecule of droplet d¢,. If V,
is the volume occupied per molecule in the vapor phase and V;, the vol-
ume occupied per molecule in the liquid phase,

dé, = V,dp
and
dd, = V,dp
Since V,, » V3,
by — b, = =V, dp = dldy - bo) ~ —’Qd (14.5)

In this expression % is Boltzmann’s constant.
Integrating Eq. 14.5 with the pressure varying from p.(7) to p gives

b~ b= —kTIn—E—= -kTInS (14.6)
p«T)
The mass of a spherical drop is (w/6)d°p. Hence the number of mole-
cules n in the drop is

=— —d% 14.7
n M6d ( )

where N, is Avogadro’s number and M is the molecular weight of the
liquid making up the drop. Substituting Eqs. 14.6 and 14.7 in Eq. 14.4
gives

AG = wd?y - (kT In S)—(“ds ) (14.8)

an expression for the total free-energy change of the droplet as a func-
tion of both drop size and the saturation ratio.

Example 14.2 Compute the free energy change of a 10-A-diameter water drop-
let when S = 4. Assume 7' = 0°C, p = 1 glem®, and Yugeer = (76.1 - 0.1557)
dyn/cm, where T is in degrees Celsius.
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Na
= 2, _ - A T3
AG = wd%y (lenS)M 6d P
= (3.14)(10’7)2(76.1) - (1.38 x 10’16)(273 In 4)

6.02 x 10%%(3.14\ . _7.s
x SO (352 ooy

=239 x10712-915x 10713 = 1.48 x 10" 2 erg

Figure 14.1 shows a plot of AG as a function of the particle diameter
for various values of S. It can be seen from this plot that Eq. 14.8 implies
the existence of an energy barrier that acts to prevent the growth of drop-
lets smaller than some critical size. Drops greater than this critical size
will continue to grow, since with each slight increase in size the free en-
ergy of the system decreases (i.e., the droplet gives up energy). On the
other hand, drops smaller than the critical size evaporate, since with
these very small drops evaporation reduces their free energy.

The critical drop size can be determined by differentiating AG with re-
spect to d, setting the result equal to zero, and solving for d. This gives

oo M
pRTIn S

where R is the universal gas constant. When p is in grams per cubic
centimeter, y in ergs per square centimeter (or dynes per centimeter)

(14.9)

AG,
nx10"?
ergs

Droplet diameter, n x 10~ um

Figure 14.1 Plot of free-energy change as a function of particle diam-
eter for various saturation ratios.
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and the temperature is in kelvins, R has a value of 8.3144 x 107 erg -
K™ ! mol ™.
Rearranging terms gives Kelvin’s equation
M
pRTd*

A plot of Kelvin's equation is given in Fig. 14.2.

InS (14.10)

Example 14.3 Compute the value of S for a droplet diameter d* of 0.01 pm. As-
sume water at 0°C.

= M
InS oRTd>
_ (4)(76.1)(18) - 0.241
(1)(8.314 x 107)(273)(1076)
S =127

The curve shown in Fig. 14.2 is an equilibrium line. If for a given
drop of diameter d the value of S associated with it produces a point
lying to the left of the line, the drop will evaporate. If the point lies to
the right of the line, the drop will grow. It is not necessary for a drop
of a given size to be associated with a value of S which places a point
directly on the curve. The curve indicates the conditions of S and d

100
£ 0
«
(=4
[ =
.8
g
3
E -
1 1.0
72}
0.1 - ,
10 10" 107" 10 10" 10

d*, Droplet Diameter, um
Figure 14.2 Plot of Kelvin’s equation, Eq. 14.10.
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under which a droplet will evaporate or grow. According to Kelvin's
equation, a pure liquid drop will always evaporate when S < 1, that
is, for water drops in air, if the relative humidity of the air is less than
100 percent. Even with supersaturation, droplets smaller than the
critical size will also evaporate. This implies that small droplets of
pure liquids have short lifetimes under normal circumstances. With a
monodisperse cloud containing many small drops, lifetimes would be
longer since the evaporation of some drops results in increased
supersaturation, leading to growth of other drops.

In determining droplet free energy, it was assumed that the bulk
value for surface tension was applicable to all droplet diameters.
When the drop is very small, it is difficult to envision the meaning of
surface tension as it is usually defined, and this point is still the sub-
ject of much scientific speculation (Sutugin, 1969). Some authors still
consider the use of bulk values for very small droplets to be appropri-
ate (Mason, 1971).

Rate of Formation of Critical Nuclei

As mentioned earlier, experiments indicate that spontaneous conden-
sation is not significant until fairly high supersaturations are
achieved. For example, supersaturations of slightly less than 5 are
necessary with water vapor in particle free air for the formation of a
visible fog by adiabatic expansion of moist air at 0°C. This super-
saturation implies a critical droplet diameter of about 0.0015 pm and a
cluster of several hundred molecules.

Nucleation embryos for homogeneous nucleation are aggregates of
vapor molecules which are constantly being formed and disintegrated
by random processes. When a cluster is formed which exceeds the crit-
ical size, it grows; the likelihood of its formation is a function of the
degree of supersaturation. An expression for the number of clusters
reaching critical size per unit time is given by Pruppacher and Klett

(1978) as
o (2NAS"My\ 2 ( p. \? -AG
= ;u_,(_‘i—'f—) (RT) S exp ('ﬁ) (14.11)

Table 14.2 shows an estimate of the number of water embryos pro-
duced per cubic centimeter per second for various saturation ratios ac-
cording to Eq. 14.11. For these computations the following constants
were used: o, = 1, p, = 1 glem®, T = 273 K, p. = 4.58 mmHg, and
v = 76.1 dyn/cm. According to Pruppacher and Klett (1978), a value of
J = 1 is necessary for spontaneous condensation to occur.

In aerosol development, formed nuclei and embryos compete for
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TABLE 14.2 Nucleation Rates and Molecules per Embryo

S 3 4 5 6
AG 385 x 1072 242x 1072 179x10°'2 145 x 10712
J, embryos/(cm® - s) 141 x 107*® 578 x 102 1.10 x 10° 1.29 x 10
d*, pm 220x 107 1.74x10°° 150x 10" 1.35x 10~
Molecules per embryo 1388 691 442 320

available vapor molecules. The depletion of vapor caused by the
growth of small droplets reduces supersaturation, halting nucleation.
There have been a number of attempts to model aerosol formation
during the expansion of a gas containing a condensable substance
(Amelin, 1967), but most require simplifying assumptions and predict
droplet number and mean size, saying nothing about the resulting
aerosol size distribution. The effect of droplet coagulation is usually
neglected, although it is coagulation that leads to the variety of par-
ticle sizes formed, and not condensation alone (Fox et al., 1976).

lons as Nuclei

As mentioned earlier, Wilson (1897) observed that condensation of
water droplets in dust-free air took place at lower expansion ratios
when ions were present. As charge is placed on a droplet, the free en-
ergy of that surface is increased approximately by a factor

g(1_1
d (eo e)
where q is the charge on the droplet or ionic cluster, ¢, and € are the

dielectric constants of the gaseous medium and liquid, respectively,
and d is the droplet diameter. The total change in free energy becomes

RT

2
AG = -Td T InS + md'y + l(l - %) (14.12)

dEO

Similar to the case for homogeneous nucleation, Eq. 14.12 can .be dif-
ferentiated, set equal to zero, and used to determine an expression for
the saturation ratio at critical drop diameter:

_ M4y _ 3‘1_2(1 _ l)] 14.13
InS “RTold ~ mdi\e € ( )

Equation 14.13 is plotted in Fig. 14.3 for a single c.harge. Unlike the
pure-solution case, droplets carrying charges can exist even at satura-



234  Chapter Fourteen

60T 1

501 8 B 8

30 ( W
20f ¢ ¢ .
\
|

10F A
O /I Y E— | i 1 | 1

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

diameter, n x 1073 um

Figure 14.3 Saturation ratio for water as a function of critical particle di-
ameter, single ion, atmospheric pressure, T = 273°C.

tion ratios less than 1 (relative humidities less than 100 percent). Un-
der these circumstances the droplet size is quite small.

Example 144 Determine the equilibrium droplet diameter for a water droplet
containing a single charge at 80 percent relative humidity. Assume 7' = 70°F.

lnS_M_ﬂ_qu(_l__l)]

" RTold . dt\eo e
If eo(air) = 1.00 and e(water) = 80.00,

In0.8= 18 [ 473) 2(48x107192(1 4
"~ (8.31 x 102941 d T 1" 8
356 x 108 = 292 _ 145 x 10719

d d4
d=1769x 10 8cm = 7.69A

Similar to Fig. 14.2, Fig. 14.3 represents a plot of equilibrium val-
ues; droplets can be changing in size either away from or toward the
equilibrium line. Three distinct cases are possible for condensation or
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evaporation on an ion, represented by lines A, B, and C on the curve in
Fig. 14.3. To determine whether a droplet will grow or evaporate at a
given S, it is helpful to refer to Fig. 14.4, a plot of the equation for the
free-energy change on a nucleating ion, Eq. 14.12. Figure 14.4a shows
a free-energy plot for case A. Since In S is always negative for S < 1,
the first term in Eq. 14.12 will always be positive. However, when d is
very small, the 1/d term dominates. As d increases, the importance of
the 1/d term decreases while the importance of the d® term becomes
more apparent (the d? term also increases but not to as great a de-
gree). Finally a minimum is reached, and subsequently AG increases
for all increasing values of d. Therefore, droplets whose S value places
them along line A will either grow or evaporate toward the equilib-
rium line, since in this case the equilibrium line represents a stable
position.

Case B describes the condition where S is such that the curve of Fig.
14.3 is not intersected at all. The third term in Eq. 14.12 still domi-
nates when d is small, but since the first term is always negative, AG

100 p———————————rr ——r

T r 7T
o

_— T
1

10

AG x 10"

T T Y

1.0 ———

0.01 0.1 1.0

Number represents o x 10 2 ym.i.e..0.i =0.1 x 102 ym

Figure 14.42 Free-energy change as a function of drop diameter for droplet
containing a single ion (line A of Fig. 14.3).
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Figure 14.4b Free-energy change as a function of drop diameter for droplet

containing single ion (line B of Fig. 14.3).

is always decreasing (Fig. 14.4b). This means that when S exceeds the
maximum value as given in Fig. 14.3, any size charged droplet will
grow. This explains the formation of clouds in a cloud chamber. The
diameter at which this maximum in Fig. 14.3 occurs is given by

- [2q2(1/eo - 1/e)]”3
- [

Example 14.5 Compute the particle diameter at which S in Fig. 14.3 is maxi-
mum. Assume a water droplet at 0°C and 760-mmHg pressure.

From Eq. 14.14

ge [2q2(1/€o - 1/e)]”3
- yw

_ [2(4.8 x 107194 -

L

=124 x10"7cm = 1244
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Finally, there is case C, representing a combination of cases A and
B. The free energy shows a minimum and then a maximum (Fig.
14.4¢) as particle diameter increases. The minimum could be consid-
ered a metastable point. Drops tend to grow or evaporate toward this
point and away from the maximum free energy. Hence drops at satu-
ration ratios that place them above the curve in Fig. 14.3 will always
grow while those lying below the curve will always evaporate.

There has been good gross experimental verification of Eq. 14.13.
For example, droplets formed under conditions where the maximum
saturation ratio is just exceeded will continue to grow without bound
and become easily visible, while those formed when S is less than this
maximum will not be seen. Experimentally, the peak saturation ratio
in Fig. 14.3 has been found to be about 4.2 for water condensing on
negative ions, in good agreement with theory, but much greater,
about 6, for water condensing on positive ions. One possible explana-
tion for the difference in the behavior of positive and negative ions has
to do with the orientation of the water molecule. Since the water mol-
ecule dipole is thought to have its negative end oriented outward in

1000

- ERN
N\

AG x 10"

a

1
0.01 0.1 1.0 10

Particle diameter, um

Figure 14.4c Free-energy change as a function of drop diameter for droplet
containing a single ion (line C of Fig. 14.3).
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the outer several layers of the droplet surface, a negative nucleus
would permit the capture of water molecules in the correct orienta-
tion, whereas with a positive nucleus the molecules would have to
turn themselves around before capture, so that condensation, in this
case, would be more difficult.

Example 14.6 Determine the saturation ratio that corresponds to the diameter
in Example 14.5. Hence, predict the minimum saturation ratio at which spon-
taneous condensation on ions will occur. Assume 7' = 0°C. From Eq. 14.13

o May_2g}(1 1
"5 g oo 4

) 18 [ 476.1) 2(4.8 x 107192 ( _i)]
(8.314 x 10%(273)1){1.24 x 10~7 3.14(1.24 x 10-7)#\" 80

= (7.93 x 10719)(1.84 x 10%) = 1.46
S =431

Heterogeneous Nucleation
Condensation nuclel

In most practical cases, condensation of a vapor takes place in the
presence of small dust particles, making unnecessary the extremely
high supersaturations required for homogeneous condensation. These
small dust particles are given the generic name of condensation nu-
clei, and they can range in size from near molecular sizes to particles
greater than 1 um. A descriptive classification of these nuclei as often
used in atmospheric physics is shown in Table 14.3. Although this
classification is arbitrary, it corresponds roughly to particle size
ranges for different measurement techniques usually employed.

In the atmosphere, small condensation nuclei greatly exceed the
number of large ones, with particle number decreasing roughly as the
inverse of the cube of the particle diameter. Number concentration

TABLE 14.3 Condensation Nuclel Size
Classlfication Commonly Used in
Atmospheric Physics

Name Diameter range, pm
Aitken nuclei 0.001-0.4
Large nuclei 0.4-2.0
Giant nuclei > 2.0

SOURCE: Junge (1953).
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and particle size are influenced by such factors as topography, meteo-
rology, elevation, vegetative cover, density of human habitation, and
degree of industrialization. In addition, there are diurnal as well as
seasonal variations in condensation nuclei levels. Concentrations are
also influenced by wind speed and direction. Typical outside air con-
densation nuclei concentrations can range from as low as 100 to 108
particles per cubic centimeters or even higher.

In atmospheric physics the distinction is often made between conden-
sation nuclei (CN) and cloud condensation nuclei (CCN). Condensation
nuclei include the very small particles present in the air whereas cloud
condensation nuclei are only those particles on which condensation can
take place at relatively low supersaturations (0.1 to 10 percent). There
are substantially more CN in the atmosphere at any given time than
CCN. For example, Fig. 14.5 shows a comparison between CN (nuclei of
0.05-pm diameter and greater) and CCN (nuclei of 0.1-pm diameter and
greater) at various rural and urban locations.

nuclei/cm®
10 100 1000 10,000 100,000

T 1
1
|

CCN CN
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HON-FLI-HON
SOUTH PACIFIC
Ul ISLANDS
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Figue 145 Concentration range for CN and CCN. (Adapted
from Schaefer and Day, 1981.)
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The concentration of CN can vary by several orders of magnitude
depending on such factors as time of day, arrival of a fresh air mass,
precipitation, wind direction, proximity to anthropogenic sources, etc.
Thus the values given in Fig. 14.5 are only indicative of the general
range of average concentrations possible at a given location.

Sources of condensation nuclei

Condensation nuclei come from a variety of sources. Such processes as
photooxidation of natural organic materials over nonurban areas have
been suggested as a possible reason for the occurrence of the blue haze
usually observed over vegetated areas (Went, 1960). And although a
great deal of work remains to be done to explain the mechanisms of
photochemical production of aerosols, it is clear that these reactions
are also very important in the production of aérosols over uirban areas
(Goetz and Pueschel, 1967). Photooxidation of organic material may
be the most important natural source of condensation nuclei. Other
important sources include entrainment of dust particles by the wind,
the production of sodium chloride nuclei from sea salt spray, or such
spectacular occurrences as forest fires, explosions created by humans,
or volcanic eruptions. For example, the eruption of Krakatoa in 1883
released a reported 6.5 km? of fine dust (Cadle, 1966), equivalent to
approximately 1022 particles of 0.1-pm diameter. Meteors and inter-
planetary dust have also been listed by some authors as sources of con-
densation nuclei. And finally, organic material, both living and dead
(plant spores, microorganisms, feathers, skin tissue, hair, etc.), can act
as condensation sites.

Example 14.7 The eruption of Mount St. Helens in May 1980 resulted in the
aerosolization of 1 mi® of mountaintop. If the average density of the material
aerosolized was 2.6 glem® and 1.0-pm-diameter spheres were produced, deter-
mine the number of particles produced.

Volume of material aerosolized:
Va = 1 mi® = (6280 ft/mi x 30.5 cm/ft)’
= 4.18 x 10" cm®
Volume of one 1.0-pm-diameter sphere:
V, = 5d® = 5107 em)? = 5.24 x 10" em®
Number of particles produced:

Va

3~ = 7:98 x 107 particles
14
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If only 1 percent of the particles were 1.0 pm in diameter, there would have
been 7.98 x 10? particles of this size produced. This is still a lot of particles.

Composition of condensation nuclei

Condensation nuclei can be of organic or inorganic composition, can be
soluble or insoluble, or can be insoluble with a thin soluble coating (in
which case they are termed mixed nuclei). Because of the variety of
soluble material existing in the atmosphere, the chemical composition
of nuclei is not well defined. Studies of Los Angeles smog collected by
electrostatic precipitation indicated that about 60 percent was made
up of inorganic substances or minerals, and the remaining 40 percent
was a complex mixture of organic compounds, carbon, and pollen (Bill-
ings et al., 1980). These percentages would not be the same every-
where. However, a great difficulty in analyzing composition is the rel-
atively small mass of material available for analysis—mass contents
in a specific size range of 10 pg or less per cubic meter of air are usual.
And there may be different chemical fractions for various size ranges
of particles. For example, Junge (1963) found that most of the nuclei
with diameters between 0.4 and 2 pm collected in Germany and on the
east coast of the United States consisted mainly of ammonium sulfate,
whereas the particles whose diameters exceeded 2 pm had a less specific
chemical composition, sometimes containing considerable amounts of so-
dium chloride or sodium nitrate.

Adsorption of atmospheric gases on condensation nuclei can also al-
ter their chemical composition. The pickup of radioactive gases by
small particulates is only one form of adsorption, but one which can be
easily observed. The exact role of aerosols in the adsorption of gases is
an area where little is known at present.

Utilization of nuclei

It should be kept in mind that not all the atmospheric aerosol is avail-
able for the condensation process. In fact, it is only a small fraction of
the total. As might be expected from reference to Fig. 14.2, the largest
(and most soluble) nuclei are activated preferentially. Thus utilization
of a given size of nuclei for condensation depends to a large extent on
the degree of supersaturation present, and in the atmosphere this, in
turn, depends on the rate of cooling of the air.

Utilization also depends on the chemical composition of the nuclei.
There are two general classes of condensation nuclei to be considered:
soluble nuclei and insoluble nuclei. With soluble nuclei the condens-
ing vapor dissolves the nucleus, changing the properties of the embryo
drop from that of a pure liquid. With insoluble nuclei, surface charac-
teristics are important, since once the nucleus is coated with liquid, it
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behaves in a manner similar to a pure liquid drop. Figure 14.6 shows
a schematic illustration of the possible paths for droplet formation by
heterogeneous nucleation. These mechanisms are discussed in the fol-
lowing sections.

Insoluble nuclei

The two extremes of insoluble nuclei are nuclei which are easily wet-
ted and those which are not. Nuclei which are easily wetted rapidly
take on the appearance of a droplet and subsequently behave as one.
To predict droplet growth or evaporation, these particles with easily
wettable surfaces can be considered to be pure drop nuclei, and the
Kelvin equation can be used directly (but with a lower limit on nu-
cleus size).

In cases where the particle surfaces are not wettable, condensation
proceeds with much more difficulty. This is because the condensing
liquid tends to pull into small spheres on the particle surface, and only
when the entire surface is covered with these spheres is a liquid coat-
ing formed. Fletcher (1958a, b) has treated this problem by consider-
ing the contact angle between an embryo sphere formed on the parti-
cle and the particle surface. His results correspond to what has been
observed experimentally—it is very difficult to get condensation to
take place on nonwettable particles unless high supersaturations are
used. The role of insoluble nuclei in the condensation process is still in
question and remains another problem for future investigators to
solve.

Soluble nuclei
In many instances condensation takes place on soluble nuclei, produc-
ing solution droplets. An example is the condensation of water on a

Soluble or
insoluble nuclei
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Figure 14.6 Particle formation by heterogeneous nucleation.
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sodium chloride nucleus. Initially a saturated NaCl solution is
formed. As condensation proceeds, the solution becomes more and
more dilute until finally the drop behaves in a manner similar to a
droplet of pure liquid. In general, the equilibrium solvent vapor pres-
sure over a solution surface is lower than over a pure solvent surface,
the amount of decrease depending on the nature of the solvent and the
concentration and nature of the solute. A lower equilibrium vapor
pressure means that condensation occurs at lower saturation ratios.

For an electrolyte solution, Robinson and Stokes (1959) give for the
reduction in equilibrium vapor pressure over the solution surface the
relationship

w = exp (—BbIM) (14.15)
pT)

where p’,(T) is the equilibrium vapor pressure over an infinite plane
of solution, p.(T) is the equilibrium vapor pressure over an infinite
plane of pure solvent, M is the molecular weight of the solvent, b is a
coefficient known as the molal osmotic coefficient, and 8 is the num-
ber of ions per molecule available for complete ionization. Table 14.4
gives values of g and b for several electrolytes at various concentra-
tions. The factor ¥ is the number of moles of solute per gram of sol-
vent, which for a single spherical drop can be given by

miW

V= 14.16)
(w6)dp’ — m ‘
TABLE 14.4 Osmotic Coefficlient b of Some Electrolytes at 25°C
NaCl, MgCl,, (NH,),SO,, Ca(NOy),, AlySO,)s,

Molality B=2 B=38 B=38 B=38 B=5

0.1 0.932 0.861 0.767 0.827 0.420

0.2 0.925 0.877 0.731 0.819 0.390

0.4 0.920 0.919 0.690 0.821 0.421

0.6 0.923 0.976 0.667 0.831 0.545

0.8 0.929 1.036 0.652 0.843 0.718

1.0 0.936 1.108 0.640 0.859 0.922

1.2 0.943 1.184 0.632 0.879

16 0.96 1.347 0.624 0.917

2.0 0.983 1.5623 0.623 0.917

2.5 1.013 1.762 0.626 1.001

3.0 1.045 2.010 0.635 1.051

3.5 1.080 2.264 0.647 1.103

4.0 1.116 2.521 0.660 1.157

5.0 1.192 3.048 0.686 1.263

5.5 1.231 0.699 1.313

6.0 1.272 1.361

source: Abridged from R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworth,
London, 1959, p. 483.



244 Chapter Fourteen

where W is the molecular weight of the solute, m the mass of the sol-

ute per drop, and d the drop diameter. The primed values refer to the

solute-solvent mixture and unprimed values to the pure materials.
Recalling Eq. 14.10 for a pure droplet

InS = M
pRTd
this can be rewritten as
p “wM :
-e (14.17)
p(T) “F oRTd"
For a solution droplet Eq. 14.17 can be written as
Py M (14.18)
p(D) - TP oRTd

Combining Eqs. 14.18 and 14.15 gives

p_ p p«D) _ ex ( 4H'M

p«(T) pT) p«T) p'RTd’
an expression for the ratio of the vapor pressure above a solution drop-
let to the vapor pressure of an infinite plane of pure solvent (see
Byers, 1966a and b).

Close examination of various equations which have been proposed
for predicting saturation ratios over solution droplets reveals that
they differ only in detail and all give essentially the same results. Fig-
ure 14.7 is a plot of S versus d* for NaCl masses of various sizes with
water as the solvent, computed from Eq. 14.19. Curves similar to
these are very often referred to as Kéhler curves.

- BbﬁM) (14.19)

Example 14.8 Determine the value of p'/p(T) for a 0.01-pm (NH,),SO, nucleus
when d* for the solution droplet in which the nucleus is dissolved is 0.1 pm (T =
20°C). Assume a spherical shape, p e = 1.77 glem®, W = 132, and M = 18.

P [AYM o
p<(T) "p(p'nnr B

, _ _ Inass solute + mass solvent
P = Volume solute + volume solvent

_9.268 x 1079 + 5.231 x 10716
5.236 x 10716

_5.240 x 10716

5.236 x 10-16 = 1.00077
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Figure 14.7 Plot of saturation ratio or supersaturation as a function of critical
particle diameter for soluble nuclei of 10715 and 1076 g.

m' = (%)(0.1 x 107%)3(1.00077) = 5.240 x 10" 6 g

m= (%)(0.01 x 10743(1.77) = 9.268 x 10719 ¢

Molality = 103m/m’ __ 1000(9.268 x 107%/5.240 x 10716)
T T Wa - mim'y ~ 132(1 - 9.268 x 10719/5.240 x 10716

= 1.34 x 10~2 g - mol of solute per 1000 g solvent
From Table 14.4, say b = 0.767, 8 = 3. Then, using 14.16 gives

m/W

¥ = —————— mol solute/g solvent
(w/6)d3p' - m

-19
- 9268 X 10" 182 ____ 3454 1075
5.240 x 10716 - 9.268 x 10~
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Assume vy’ = 76.1 — 0.155T = 73 dyn/cm. Finally,

P exp 473)(18) - (0.767)(3)(1.345 x 1075)(18)
p=(T) (1)(8.314 x 107)(293)(1075)

= exp (2.156 x 1072 - 5.569 x 10~%)
= 1.021

Note that this value is the same as for the pure droplet case. There is a differ-
ence only when the drop size is close to the nucleus size.

Unlike the curve for condensation on a droplet of pure solvent, when
a solute is present, it is possible to have condensation taking place
even at relative humidities of less than 100 percent [when p'/
p.(T) < 1. The effect of a solute can be considered to be very similar
to the effect of an ion on droplet growth or evaporation except that the
basic nucleus size can be much larger.

Analogous to the case for condensation on ions, at a given p’/p.(T),
droplets will grow or evaporate away from the portion of the curve to
the right of the maximum and toward that portion lying to the left of
the maximum unless p’/p.(T) is so great that they grow without
bound. As a result, it is possible to have stable solution droplets whose
sizes are a function of only the mass of solute and the ratio p’'/p.(T).
For example, a 1-pm-diameter droplet containing 107 % g of NaCl will
rapidly evaporate to a diameter of about 0.6 pm in an atmosphere
where p'/p.(T) is 1.001, whereas if it were initially 3 pnm in diameter
on formation, the drop would grow without bound until it eventually
depleted the water vapor around it or was removed by some process
such as sedimentation.

The injection of soluble particles into humid air results in the al-
most immediate generation of stable droplets of a much larger size.
Figure 14.8 shows a plot of stable droplet diameter as a function of
NaCl particle diameter (assuming spherical particles) for various rel-
ative humidities. At 100 percent relative humidity, particle size is in-
creased about 5 times for NaCl masses of about 10~ *®g and about 10-
fold for masses of about 10~ g. It is this increase in particle size that
is responsible for the evolution of haze in the atmosphere when ade-
quate numbers of soluble nuclei are present in conjunction with high
humidities. Unlike completely pure droplets, because of hysteresis ef-
fects, slight changes in humidity will not significantly alter stable
drop size for some solutes.

Hysteresls in evaporation and condensation

Hysteresis describes a process in which a phase change occurs at one
humidity when the humidity is rising with the reverse change not oc-
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Figure 14.8 Stable droplet diameter as a function of soluble nuclei
diameter (NaCl) for various relative humidities.

curring at the same humidity value but at some different humidity
when the humidity is falling. A soluble hygroscopic particle in an at-
mosphere of vapor-laden solvent will initially pick up a solvent enve-
lope by adsorption. At some minimum “relative humidity,” the quan-
tity adsorbed becomes such that the soluble particle is dissolved and
becomes a liquid droplet. If the humidity is reduced to dry the droplet,
it has been observed that the drop remains a liquid even at relative
humidities less than that required for initial solution, implying
supersaturation of the solution making up the drop. With continued
reduction of the “relative humidity” the solute in the drop suddenly
crystallizes (Fig. 14.9).

This hysteresis effect was studied by Orr and his colleagues (1958a),
who found that solution takes place over a range of 68 to 80 percent
relative humidity for various inorganic salts, while recrystallization
does not occur until relative humidities are about 30 percent lower.
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For example, for NaCl solutions, crystallization occurs at a relative
humidity of 70 percent and recrystallization appears at 40 percent.
For nonhygroscopic materials, the effect does not occur. This phenom-
enon helps explain why smogs and hazes persist at relative humidities
well below those at which they originally were formed.

Problems
1 For a 0.01-pm water droplet, compute the value of AG when S = 4.

2 A volume of air at 80°F at sea level is expanded by rising to an elevation
750 ft above sea level. If the expansion is adiabatic and the air is initially sat-
urated with water vapor, what is the resulting value of S?

3 Determine the value of S at which a 0.03-um-diameter water droplet will
just continue to grow.

4 It was found by Wilsen (1897) that when air at 20°C, initially saturated
with water vapor and free of any condensation nuclei, was expanded with an
expansion ratio in excess of 1.37, homogeneous nucleation occurred. What is
the value of S implied by this expansion ratio?

5 Wilson (1897) found that the condensation of water vapor occurred on a
negative ion with an expansion ratio of 1.25, whereas for condensation on a
positive ion an expansion ratio of 1.31 was necessary. What is the expansion
ratio equivalent to the maximum of the S versus d* plot? (How well does the-
ory agree with experiment?) What is the value of d* associated with this ex-
pansion ratio?
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