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Preface

This book covers the recent applications of computational intelligence tech-
niques for modelling, control and antomation. The application of these techniques
has been found useful in problems when the process is either difficult to model or
difficult to solve by conventional methods. There are numerous practical applica-
tions of computational intelligence techniques in modelling, control, automation,
prediction, image processing and data mining.

Research and development work in the area of computational intelligence is
growing rapidly due to the many successful applications of these new techniques
in very diverse problems. “Computational Intelligence” covers many fields such as
neural networks, (adaptive) fizzy logic, evolutionary computing, and their hybrids
and derivatives. Many industries have benefited from adopting this technology.
The increased number of patents and diverse range of products developed using
computational intelligence methods is evidence of this fact.

These techniques have attracted increasing attention in recent years for solv-
ing many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed.
These modem techniques are taking firm steps as robust problem-solving mecha-
DiSmS.

This volume aims to be a repository for the current and cutting-edge applica-
tions of computational intelligent techniques in modelling control and automation,
an area with great demand in the market nowadays.

With roots in modelling, automation, identification and control, computa-
tional intelligence techniques provide an interdisciplinary area that is concerned
with learmning and adaptation of solutions for complex problems. This instantiated
an enormous amount of research, searching for learning methods that are capable
of controlling novel and non-trivial systems in different industries.

This book consists of open-solicited and invited papers written by leading
researchers in the field of computational intelligence. All full papers have been
peer review by at least two recognised reviewers. Qur goal is to provide a book



vifi

that covers the foundation as well as the practical side of the computational intel-
ligence.

The book consists of 17 chapters in the fields of self-learning and adaptive
control, robotics and manufacturing, machine leaming, evolutionary optimisation,
information retrieval, fuzzy logic, Bayesian systems, neural networks and hybrid
gvolutionary computing,

This book will be highly useful to postgraduate students, researchers, doc-
toral students, instructors, and partitioners of computational intelligence techniques,
industrial engineers, computer scientists and mathematicians with interest in mod-
elling and control.

We would like to thank the senior and assistant editors of Idea Group Pub-
lishing for their professional and technical assistance during the preparation ofthis
book. We are grateful to the unknown reviewers for the book proposal for their
review and approval of the book proposal. Our special thanks goes to Michele
Rossi and Mehdi Khosrowpour for their assistance and their valuable advise in
finalizing this book.

We would like to acknowledge the assistance of all involved in the collation
and review process of the book, without whose support and encouragement this
book could not have been successfully completed.

‘We wish to thank all the authors for their insights and excellent contributions
to this book. We would like also to thank our families for their understanding and
support throughout this book project.

M. Mohammadian, R, Sarker and X. Yao
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Chapter 1

Designing Neural Network
Ensembles by Minimising
Mutual Information

YongLiu
The University of Aizu, Japan

XinYao
The University of Birmingham, UK.

TetsuyaHiguchi
National Institute of Advanced Industrial Science and Technology, Japan

ABSTRACT

This chapter describes negative correlation learning for designing neural
network ensembles. Negative correlation learning has been firstly analysed
in terms of minimising mutual information on avegression task. By minimising
the mutual information between variables extracted by two neural networks,
they are forced to convey different information about some features of their
input. Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification
problems. The purpose of examining the decision boundaries and the correct
response sets is not only to illustrate the learning behavior of negative
correlation learning, but also to cast light on how to design more effective
neural network ensembles. The experimental results showed the decision
boundary of the trained neural network ensemble by negative correlation
learning is almost as good as the optimum decision boundary.

Copyright © 2003, Tdea Group Tnc,
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INTRODUCTION

In singleneural network methods, the neural network leaming problemisoften
formulated as an optimisation problem, i.e., minimising certain criteria, e.g.,
minimum error, fastest learning, lowest complexity, ete., about architectures,
Learningalgorithms, suchasbackpropagation (BP) (Rumelhart, Hinton & Williams,
1986), areused as optimisation algorithms to minimise an error function. Despite
the different error functions used, these learning algorithms reduce a learning
problemto the same kind of optimisation problem.

Leamingisdifferent from optimisation because we want the learned systemto
havebest generalisation, whichis different fromminimising anerror function. The
neural network withthe minimumerror onthetraining setdoes notnecessarily have
thebestgeneralisation unlessthereis anequivalence between generalisationand the
error function, Unfortunately, measuring generalisation exactly and accurately is
almostimpossible in practice (Wolpert, 1990), althoughthere are many theories
and criteria on generalisation, such as the minimum description length (Rissanen,
1978), Akaike’s information criteria (Akaike, 1974)and minimummessage length
(Wallace & Patrick, 1991). Inpractice, these criteriaareoften usedtodefine better
error fimctionsinthehopethatminimisingthe functions willmaximise generalisation.
While better error functions often lead tobetter generalisation oflearned systems,
there is no guarantee, Regardless of the error functions used, single network
methods arestill used as optimisation algorithms, They justoptimise differenterror
functions. Thenature of the problem is unchanged.

While there is little we can do in single neural network methods, there are
opportunities inneural network ensemble methods, Neural network ensembles
adoptthe divide-and-conquer strategy. Instead ofusing a single network to solve
atask, aneural network ensemble combines a set ofneural networks which learn
to subdivide the task and thereby solve it more efficiently and elegantly. A neural
network ensemble offers several advantages over amonolithic neural network.
First, itcanperformmore complex tasks thanany of its components (i.e., individual
neural networks in the ensemble). Secondly, it can make an overall system easier
tounderstand and modify. Finally, itis more robustthan a monolithic neural network
and can show graceful performance degradationin situations where only a subset
of neural networks inthe ensemble areperforming correctly. Giventhe advantages
ofneural networkensembles and the complexity ofthe problems thatare beginning
tobeinvestigated, itis clear thatthe neural network ensemble method willbe an
importantand pervasive problem-solving technique.

The idea of designing an ensemble leaming system consisting of many
subsystems can be traced back to as early as 1958 (Selfridge, 1958; Nilsson,
1965). Since the early 1990s, algorithms based on similar ideas have been
developed inmany differentbut related forms, such as neural network ensembles
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(Hansen & Salamon, 1990; Sharkey, 1996), mixtures ofexperts (Jacobs, Jordan,
Nowlan & Hinton, 1991; Jacobs & Jordan, 1991; Jacobs, Jordan & Barto, 1991;
Jacobs, 1997), various boosting and bagging methods (Drucker, Cortes, Jackel,
LeCun & Vapnik, 1994; Schapire, 1990; Drucker, Schapire & Simard, 1993) and
many others. There are a number of methods of designing neural network
ensembles. To summarise, there are three ways of designing neural network
ensemblesin thesemethods: independenttraining, sequential trainingand simultaneous
training,

A number of methods have been proposed to train aset of neural networks
independently by varying initial random weights, the architectures, the learning
algorithm used and the data (Hansen et al., 1990; Sarkar, 1996). Experimental
results have shown that networks obtained from a given network architecture for
differentinitial random weightsofiencorrectly recognize different subsets ofa given
test set (Hansen et al., 1990; Sarkar, 1996). As argued in Hansen et al. (1990),
because each network makes generalisation errors ondifferent subsets ofthe input
space, thecollective decision produced by the ensemble is less likely tobe inerror
than the decision made by any ofthe individual networks.

Mostindependent training methodsemphasised independenceamongindividual
neural networks in an ensemble. One of the disadvantages of suchamethod is the
loss of interaction among the individual networks during leamming. There isno
consideration of whether whatone individual learnshas already beenlearned by
otherindividuals. Theerrorsofindependently trained neural networks may still be
positively correlated. Ithasbeen found thatthecombining results are weakened if
the errors of individual networks are positively correlated (Clemen & Winkler,
1985). In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in aparticular order (Druckeret al., 1993; Opitz
& Shavlik, 1996; Rosen, 1996). Drucker etal. (1993) suggested training the neural
networks using the boosting algorithm. The boosting algorithm was originally
proposed by Schapire (1990). Schapire proved that it is theoretically possible to
convertaweak learning algorithm that performs only slightly better thanrandom
guessing into one that achieves arbitrary accuracy. The proof presented by
Schapire (1990) is constructive. The construction uses filtering to modify the
distribution of examples in such a way as to force the weak learning algorithm to
focus onthe harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow atwo-stage design process: first generating individual networks, and then
combiningthem. Thepossible interactions among the individual networkscamnotbe
exploited until the integration stage. Thereisno feedback fromthe integration stage
totheindividual network designstage. Itispossiblethatsome ofthe independently
designed networks do not make much contribution to the integrated system. In



4 Liu, Yao and Higuchi

ordertouse the feedback fromthe integration, simultaneous training methods train
a set of networks together. Negative correlation learning (Liu & Yao, 1998a,
1998b, 1999) and the mixtures-of-experts (ME) architectures (Jacobsetal., 1991;
Jordan & Jacobs, 1994) are two examples of simultaneous training methods. The
ideaofnegative correlation learningis toencourage differentindividualnetworksin
the ensemble to learn different parts or aspects of the training data, so that the
ensemblecan better learn the entire training data. In negative correlationleamning,
the individual networks are trained simultaneously rather than independently or
sequentially. This provides an opportunity forthe individual networks to interact
with each other and to specialise.
Inthis chapter, negative correlation learmning hasbeen firstly analysed interms
ofminimisingmutual information on aregressiontask. The similarity measurement
between two neural networks in anensemble can be defined by the explicit mutual
information of output variables extracted by two neural networks. The mutual
informationbetweentwo variables, output F ofnetwork i and outputFJ',of network
j.isgivenby

IF,; F) = h(F) + h(F) — h(F,, F) (1)

where A(F ) isthe entropy of ¥, h(Ff) 1stheentropy ofP;j and /(F, Ff) isthe joint
differential entropy of I, andﬁ}. Theequation shows thatjointdifferential entropy
canonly have high entropy ifthe mutual information betweentwo variables is low,
whileeach variable hashighindividual entropy. Thatis, the lower mutual information
twovariables have, the moredifferenttheyare. Byminimisingthe mutual information
between variables extracted by twoneural networks, they are forced to convey
different information about some features of theirinput. Theidea of minimising
mutual information isto encourage different individual networksto learn different
partsoraspects ofthe training datasothatthe ensemblecan learn the whole training
databetter.

Based on the decision boundaries and correct response sets, negative
correlationlearning has been further studied ontwopattern classification problems.
The purpose of examining the decision boundaries and the correct response sets is
notonlytoillustratesthe leaming behaviorofnegative correlation learning, butalso
to cast light on how to design more effective neural network ensembles. The
experimental results showed the decision boundary ofthe trained neural network
ensemble by negative correlation learningis almostas good asthe optimumdecision
boundary.

Therestofthischapterisorganised as follows: Next, the chapter explores the
connections between the mutual information and the correlation coefficient, and
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explains hownegative correlation learningcan be used tominimisemutual informa-
tion; thenthe chapteranalyses negative correlation learning via the metrics ofmutual
information onaregressiontask; the chapterthen discusses the decision boundaries
constructed by negative correlation learning on a pattern classification problem;
finally thechapter examines the correctresponse setsofindividual networkstrained
by negativecorrelation leaming and theirintersections, and the chapter concludes
with a summary ofthe chapter and a few remarks.

MINIMISINGMUTUAL INFORMATIONBY
NEGATIVE CORRELATION LEARNING

Minimisation of Mutual Information

Suppose the output F, of network i and the output F of network ; are
Gaussianrandom variables. Their variances are o *and 6.2, respectively. Themutual
information between £, and . canbe defined by Eq. (1) (van der Lubbe, 1997,
1999), The differential entnopy h(F )and h(F ) are givenby

hT)=[1+ log(2nc)]/ 2 2
and

h(F)=[1+ log(2rnc )]/ 2 3
Thejoint differential entropy A(F", Fj) isgivenby

hF,F) =1+ log(2) + logldet(Z)| C)]
where I is the 2-by-2 covariance matrix of 7, and F,. The determinantof Zis

def(Z)=c}6’(1-p) (%)

where p, isthe correlation coefficientof F and F
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p, =E[(F,~E[F])F,~B[E))]/(c252) ©
Using the formula of Eq.(5), we get

W(F, F) =1+ log(2m)+ log{?s?(1—p,)] /2 7

By substituting Eqs.(2), (3), and (7)in(1), we get

I(F,; F)=—log(1-p})/2 ®)

FromEq.(8), we may make the following statements:
[. IfF,andF areuncorrelated, the correlation coefficient p, isreduced tozero,
and the mutual information /(7 ; Ff) becomes very small.
2. IfF, andFj are highly positively correlated, the correlation coefficient Py 18
closeto 1, and mutual information /(F,; I } becomes very large.
Boththeoretical and experimentalresults (Clemenetal., 1985) haveindicated
thatwhenindividual networks in an ensemble areunbiased, average procedures are
most effective in combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors are uncorrelated.
There islittle tobe gained from average procedures when the errors are positively
correlated. In order to create a population of neural networks that are as
uncorrelated as possible, the mutual information between each individual neural
network andthe restofthepopulation should beminimised. Minimising the mutual
information between each individual neural network and the rest of the population
isequivalenttominimisingthecorrelation coefficient between them.

Negative Correlation Learning

GiventhetrainingdatasetD={(x(1),¥(1)), ..., (x(N),y(N))}, we consider
estimating y by forming a neural network ensemble whose output is a simple
averaging ofoutputs /*,ofa set of neural networks. All theindividual networks in
the ensemble aretrained on the same training data set

Fln) =+ X, Fi(n) ©9)
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where F(n) s the outputofindividual networki ontheath training pattem x (), F(n)
is the output of the neural network ensemble on the nth training pattern, and AMis
the number of individual networks in the neural network ensemble.

The idea ofnegative correlationlearning is to introduce a correlation penalty
termintotheerror function of eachindividual network so that theindividual network
canbe trained simultaneously and interactively. The errorfunction £ forindividual
ionthetraining data set Din negative correlation learning isdefined by

Ei= %X BF®) - ym))* + apin)] (10)

where Nisthe number of training pattens, E (#) is the value of the error function
ofnetwork / at presentation of the nth training pattern and y(n ) is the desired output
ofthe nth training pattern, The firstterm in the right side of Eq.(10) is the mean-
squared error ofindividual network £, The second termpp, isacorrelation penalty
function, The purpose of minimisingp, istonegatively correlateeachindividual’s
error witherrors forthe rest ofthe ensemble, Theparameter A isused to adjust the
strengthofthe penalty.
The penalty function p, has the form

pn) = —(Fm)-Fn)?/2 1

The partial derivative of . with respect to the output of individual i on the nth
training patternis

= Fi(n) - y(n) — MFi(n) - F(n)) (12)

where we have made use of the assumption that the output ofensemble F¢#) has
constant value withrespectto F'(»). The value of parameter ). lies inside therange
0<A<1sothatboth(1—4)and A have nonnegative values. BP (Rumelhartetal.,
1996) algorithm hasbeen used for weight adjustments inthe mode of pattern-by-
patternupdating. Thatis, weightupdating ofall the individual networksis performed
simultaneously using Eq.(12) after the presentation of each training pattern. One
complete presentation of the entiretraining setduring the leaming processis called
anepoch. Negative correlation learning from Eq.(12)is asimple extension to the
standard BPalgorithm. In fact, the only modificationthatisneededisto calculate
an extraterm ofthe form A(F () — F(n)) for the ith neural network.
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FromEqs.(10), (11)and (12), we may make the following observations:

1. Duringthetrainingprocess, all theindividual networks interact witheachother
through theirpenalty terms in the error functions. Eachnetwork F, minimises
not only the difference between F(n) and y(n), but also the difference
between Fn)and y(n). Thatis, negative correlation leaming considerserrors
whatall otherneural networks have learned while training a neural network.

2. ForA=0.0,thereare nocorrelationpenalty terms inthe error functions ofthe
individual networks, and the individual networks are just trained indepen-
dently using BP. Thatis, independent training using BP for the individual
networks is a special case of negative correlation learning,

3. ForA =1, from Eq.(12) we get

JE {n
SE= F(n) - y(n) (13)
Notethat the error of the ensemble for the nth training patternis defined by

E asembie = 37 2 o1 Fi(n) — y (n))? (14)

ThepartialderivativeofE__  withrespectto F¥ onthe nthtraining pattern is

IE
SR = wlF(n) - y(n)) (15)
Inthis case, we get
BEAN)  OF rembte (16)

aF (n) aFn)

Theminimisationofthe error function oftheensemble isachievedby minimising
the error functions ofthe individual networks. IFrom this point of view, negative
correlation learning providesanovel way to decompose the learning task ofthe
ensemble into anumber of subtasks for different individual networks.
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ANALYSIS BASED ONMEASURING
MUTUALINFORMATION

Inordertounderstand why and how negative correlation learning works, this
section analyses it through measuring mutual information on aregression task in
threecases: noise-free condition, small noise condition and large noise condition.

Simulation Setup
Theregression functioninvestigated hereis

f(x) = H10sin(mxx5) + 2003 —3)> + 10x4 + 5x5)] -1 (17)

where x=[x,, ..., x ] is aninput vector whose components liebetween zero and
one. The value of f(x)liesintheinterval [-1, 1]. Thisregression task hasbeenused
byJacobs (1997) toestimate the bias of mixture-of-experts architectures and the
variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x®? (1), »*(1),1=1,...,L,L=500,k=1,..,K,
K =25, were created at random. Each setconsisted of 500 input-output patterns
inwhich the components ofthe input vectors were independently sampled froma
uniformdistribution over theinterval (0, 1). In the noise-free condition, the target
outputs were notcorrupted by noise; in thesmall noise condition, the target outputs
werecreated by adding noise sampled from a Gaussian distribution with a mean of
zero anda variance of 62=0.1 to the function f{x); inthelarge noisecondition, the
target outputs were created by adding noise sampled from a Gaussian distribution
with a mean of zero and a variance of 6= 0.2 to the function f{x). A testing set of
1,024 input-output pattems, (t(n), d(n)), n=1, ..., N, N = 1024, was also
generated. For this set, the components of the input vectors were independently
sampled fromauniform distribution overtheinterval (0, 1), and the targetoutputs
werenot corrupted by noisein all three conditions. Each individual network in the
ensemble is amulti-layer perceptron with one hidden layer. All the individual
networks have 5 hidden nodes in an ensemble architecture. The hidden node
functionis defined by thelogistic function

20) = o (18)

The netwark outputis alinear combination of the outputs ofthe hidden nodes.
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Foreachestimation ofmutual information among an ensemble, 25 simulations
wereconducted. Ineach simulation, the ensemble was trained onadifferent training
set from the same initial weights distributed inside a smallrange so thatdifferent
simulations of an ensemble yielded different performancessolely duetothe use of
different training sets. Such simulation setup follows the suggestions from Jacobs
(1997).

Measurement of Mutual Information

Theaverage outputs ofthe ensemble and the individual networkion the nth
pattern in the testing set, (t(n), d(n)), n=1, ..., N, are denoted and given
respectively by

F(t(n) = £ 2 1=, FO1(n) (19)

and
Fit(n) = ¥ Z 1 FO(e(n) (20)

where F% (t(n)) andF}(") (t(n)} are the outputs of'the ensemble and the individual
network i on the nth pattern in the testing set from the kth simulation, respectively,
and X=25isthe number of simulations. From Eq.(6), the correlation coefficient
between network i and network jis givenby

B, EE, (FPteta)) — Futeta))) (Fein)) - Fiitla))) (21)

fag = 2 2
f ‘/:3{:1:;’:1 (FPtan - Fae) o=, (FPwan - Fren)

From Eq.(8), the integrated mutual information among the ensembles can be
definedby

Epi=— 5%, j:il,f log(1~ py) (22)
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Wemay also define the integrated mean-squared error (MSE) on the testing set as

Emse = 3 Z 021 2 g (FO( () — d(n))? (23)
Theintegrated mean-squarederror £ onthetraining setis givenby
Erainmis =T 2 11 ¥ 2 3 FOOW) -y H0)’ @4

Results in the Noise-Free Condition

Theresults of negative correlation leaming in the noise-free condition for the
different values of L atepoch 2000 are givenin Table 1. The results suggestthatboth
E__.andE_ appeared to decrease with the increasing value of A. The
mutualinformation E among theensemble decreased as the value of A increased
when 0 <2 <0.5. However, when A increased further 10 0.75 and 1, the mutual
informationZ hadlarger values. The reason ofhaving larger mutual information
at1=0.75 and =1 isthatsome correlation coefficients had negative values and
the mutual information depends on the absolute values of correlation coefficients.

Inordertofindoutwhy £ decreased with increasing value of A, the
concept ofcapability ofatrained ensemble is introduced. The capability ofatrained
ensemble is measured by its ability ofproducing correct input-output mapping on
the training setused, specifically, by its integrated mean-squarederror £, on
thetraining set. Thesmaller £ is,thelargercapability the trained ensemble
has.

Results in the Noise Conditions

Table2 and Table 3 compare the performance of negative correlation learning
fordifferentstrength parameters in both smallnoise (variance 6*=0.1) and large

Table 1: The results of negative correlation learning in the noise-free
condition for different | values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 0.3706 | 0.1478 [0.1038 [ 0.1704 | 0.6308
Erest mse 0.0016 | 0.0013 [0.0011 | 0.0007 | 0.0002
Eimin mee | 0.0013 | 0.0010 |0.0008 | 0.0005 | 0.0001
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noise (variance 0>= 0.2)conditions. Theresults show that there were same trends
forE ,E_  _andE, _ inbothnoise-free andnoise conditions whenA<0.5.

Thatis, Em_;E ot mse andew e APPeEared to decrease with the increasing value
appeared to decrease first and then increase with the

of .. However, E
increasing value of A.

Inordertofindoutwhy £, showed differenttrendsinnoise-free andnoise
conditions whenA,=0.75 and A=1, the integrated mean-squared errorE,
on the training set was also shown in Tables 1, 2 and 3. When A =0, the neural
network ensemble trained had relatively large £__ . It indicated that the
capability oftheneural network ensemble trained was not bigenoughto produce
correct input-output mapping (i.e., it was underfitting) for thisregressiontask.
WhenA=1, theneural network ensemble trained learned too many specific input-
outputrelations(i.e., it wasoverfitting), and itmight memorise the tfraining dataand
thereforebe less ableto generalise between similar input-output patterns. Although
the overfitting was notobserved for the neural network ensemble used in the noise-
free condition, too large capability of the neural network ensemble will lead to
overfitting for both noise-free and noise conditions because of the ill-posedness of
any fnite training set (Friedman, 1994).

Choosing apropervalue ofA is important, and also problem dependent. For
the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for 4, =0.5 among the tested

values of A in the sense of minimising the MSE on the testing set.

Table 2: The results of negative correlation learning in the small noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.5495 | 3.8761 | 1.4547 |0.3877 [0.243]
Etest mse 0.0137 | 0.0128 |0.0124 [0.0126 |0.0290
Binin mse | 0.0962 | 0.0940 | 0.0915 | 0.0873 |[0.0778

Table 3: The results of negative correlation learning in the large noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.7503 | 39652 | 1.6957 [0.4341 |0.2030
Etest mse 0.0249 | 0.0235 | 0.0228 |0.0248 | 0.0633
Eiain mse [ 0.1895 | 0.1863 | 0.1813 [0.1721 |0.1512
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ANALYSIS BASED ONDECISION BOUNDARIES

This section analyses the decision boundaries constructed by both negative
correlation leaming and the independent training, Theindependent training isa
special case of negative correlation learning for A=0,0in Eq.{12).

Simulation Setup

Theobjective of the pattern classification problem s to distinguish betweentwo
classes ofoverlapping, two-dimensional, Gaussian-distributed patterns labeled 1
and?2. LetClass 1 and Class 2 denote the set of events for whicharandom vector
xbelongs topatters 1 and 2, respectively. We may then express the conditional
probability density functions for thetwo classes:

= 1 1 2
/() = gzexp (= allx= wl ) 25)
where mean vector [, =[0,0]" and variance o *= L.
fxx) = goaexp (- gallx— wl ) (26)

where mean vectorp,=[0,0}" and variance 6,’=4. The two classes areassurmed
tobeequiprobable; thatisp, =p,=%2. Thecosts for misclassificationsare assumed
tobe equal, and the costs for correctclassifications areassumed to be zero. On this
basis, the (optimum) Bayes classifier achieves aprobability of correctclassification
p_=81.51 percent. The boundary ofthe Bayes classifier consists of'a circle of
center[-2/3,0]" and radius r=2.34; 1000 points from each of two processes were
generated for the training set. The testing set consists 0f 16,000 points from each
oftwo classes.

Figure 1 shows individual scatter diagrams for classes and the joint scatter
diagram representing the superposition of scatter plots of 500 points from each of
two processes. This latter diagram clearly shows that the two distributions overlap
eachother significantly, indicating thatthere is inevitably a significant probability of
misclassification.

Theensemble architectureused in the experiments has three networks. Each
individualnetwork inthe ensemble isamulti-layer perceptron withonehidden layer.
Allthe individual networkshave three hidden nodes in an ensemble architecture.
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Figure 1: (a) Scatter plot of Class 1, (b) Scatter plot of Class 2; (¢} Combined
scatter plot of both classes, the circle represents the optimum Bayes solution
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Both hiddennode function and output node function are defined by the logistic
function in Eq.(18).

Experimental Results

Theresults presented in Table4 pertain to 1 0differentruns ofthe experiment,
with each run involving the use of 2,000 data points for training and 32,000 for
testing. Figures 2 and 3 compare the decisionboundaries constructed by negative

Figure 2: Decision boundaries formed by the different networks trained by the
negative correlation learning (A = 0.73): (a) Network 1, (b) Network 2; (¢}
Network 3, (d) Ensemble; the circle represents the optimum Bayes solution
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Figure 3: Decision boundaries formed by the different networks trained by the
independent training (i.e., A = 0.0 in negative correlation learning). (a)
Network 1, (b) Network 2; (c} Network 3; (d) Ensemble, the circle represenis
the optimum Bayes solution
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correlation leaming and the independent training. Incomparison oftheaverage
cotrect classification percentage and the decision boundaries obtained by the two
ensemble leaming methods, itisclearthat negative correlation leaming outperformed
the independent training method. Although the classification performance of
individual networks in the independent training is relatively good, the overall
performance ofthe entire ensemblewas not improvedbecause different networks,
such as Network 1 and Network 3 in Figure 3, tended to generate the similar
decisionboundaries.

The percentage of correctclassification of the ensemble trained by negative
correlationis 81.41, whichis almostequal tothatrealised by the Bayesian classifier.
Figure 2 clearly demonstrates that negative correlation learning is capable of
constructing adecisionbetween Class 1 and Class 2 thatis almostas good as the
optimum decisionboundary. Itis evident from Figure 2 that different individual
networks trained by negative correlation leaming were able tospecialise to different
parts ofthe testing set.
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Table 4: Comparison between negativecorvelation learning (NCL) (A.=10.75)
and the independent training (i.e., A = 0.0 in negative correlation learning)
on the classification performance of individual networks and the ensemble;
the results are the average correct classification percentage on the testing set
over 10 independent runs

Methods Net 1 Net 2 Net 3 Ensemble
NCL g1.11 75.26 73.09 81.03
Independent 81.13 80.49 g1.13 80.59
Training

ANALYSIS BASED ON THE CORRECT
RESPONSE SETS

Inthissection, negative correlationlearning was tested on the Australian credit
card assessmentproblem. The problem ishow to assess applications for credit
cards based on anumber of attributes. There are 690 patterns in total. The output
hastwo classes. The 14 attributesinclude 6 numeric values and 8 discrete ones, the
latter having from 2 to 14 possible values. The Australian creditcard assessment
problemisaclassification problem which is different from the regression type of
tasks, whose outputs are continuous. The data set was obtained from the UCI
machine learning benchmark repository. It is available by anonymous fip at
ics.uci.edu (128.195.1.1)indirectory /pub/machine-learning-databases.

Experimental Setup

The data set waspartitioned intotwo sets: atraining set and atesting set. The
first 518 examples wereused for the training set, and the remaining 172 examples
for the testing set. Theinput attributes wererescaled tobetween 0.0 and 1.0 by
alinear function. The outputattributes ofall the problems were encoded usinga i-
of-moutputrepresentation for mclasses. The output with the highestactivation
designated the class. The aim ofthis section is to study the difference between
negativecorrelation learning and independent training, rather than to compare
negative correlation learning with previous work. The experimentsused sucha
singletrain-and-test partition.

The ensemble architecture used in the experiments has 4 networks. Each
individual network is a feedforward network with one hidden layer. Both hidden
node function and output node function are defined by the logistic function in
Eq.(18). All theindividual networks have 10hidden nodes. The number oftraining
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gpochs was setto250. Thestrength parameter A was setto 1.0, These parameters
were chosen after limited preliminary experiments. They are not meant to be
optimal,

Experimental Results

Table 5 showstheaverageresults of negative correlation leaming over 25 runs.
Eachrun ofnegative correlation learning was from different initial weights, The
ensemble with the same initial weight setup was also trained using BP withoutthe
correlationpenalty terms (i.e., A=0.0 innegativecorrelation learning), Results are
alsoshowninTable$. Forthisproblem, thesimple averaging definedin Eq.(9) was
firstapplied to decide the output of the ensemble, For the simple averaging, itwas
surprising that the results of negative correlation learning with A= 1.0 were similar
tothoseofindependent training. This phenomenon seems contradictorytothe claim
thatthe effectofthe correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts oraspects ofthe training data. In
order toverify and quantify this claim, we compared the outputs of the individual
networks trained with the correlation penalty terms to those of the individual
networks trained without the cotrelation penalty terms,

Table 5: Comparison of error rates between negative correlation learning (/.
= 1.0) and independent training (i.e., A= 0.0innegative correlation learning)
on the Australian credit card assessment problem; the results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning, Mean,
SD, Min and Max indicate the mean value, standard deviation, minimum and
maximum value, respectively

Error Rate | Simple Averageing | Winner-Takes-All

A=1.0 Mean 0.1337 0.1195
SD 0.0068 0.0052

Min 0.1163 0.1105

Max 0.1454 0.1279

A=0.0 Mean 0.1368 0.1384
SD 0.0048 0.0045

Min 0.1279 0.1279

Max 0.1454 0.1512
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Table 6: The sizes of the correct response sets of individual networks created
respectively by negative correlation learning (A = 1.0) and independent
training (i.e., A = 0.0 in negative correlation learning) on the testing set and
the sizes of their intersections for the Australian credit card assessment
problem; the resuits were obtained from the first run among the 25 runs

A=10 1=00
Q=147 ;=143 =138 |Q,=149 ,=147 ©,=148
Q=143 =138 Q3=124 | Q=148 Q=147 Q3 =147
Quu=141 =116 =133 | Q=147 Oy =147 Oy =146
Q=123 Q=115 Q=133 | Q=146 Qs =147 Q)3 =146
Qi3 =121 Q3 =113 Quz3=113 | Quza = 146 Q34 =146 Q235= 146

Two notions were introduced to analyse negative correlationlearning. They
are the correct response sets of individual networks and their intersections. The
correctresponse setS, of individual network i on the testing setconsists ofall the
patterns in the testing set which are classified correctly by the individual network i.
Let (2 denotethesizeofsetS, and €2, . denotethesizeofsetS, ~S, N5, .
Table 6 shows the sizes ofthe correctresponse sets ofindividual networks and their
intersections on the testing set, where the individual networks were respectively
created by negative correlationlearning and independent training, Itis evident from
Table 6 that different individual networks created by negative correlation learning
were able to specialise to different parts of the testing set. Forinstance, in Table 6
the sizes of both correct response sets S,and S, at A= 1.0 were 143, but the size
of theirintersection 8, S, was 133. Thesize of S, NS,NS,NS, wasonly 113.
[ncontrast, the individual networksintheensemble created by independent training
were quite similar. The sizes of correctresponsesets S , 5, 8,and S, at A=0.0
were from 147 to 149, while the size of their intersection set §, ~S,N§,NS,
reached 146. There were only three different patterns correctly classified by the
fourindividval networksinthe ensemble.

Insimple averaging, all the individual networkshave the same combination
weights and are treated equally. However, not all the networks are equally
important. Becausedifferent individual networks created by negative correlation
learning wereable to specialise todifferent parts ofthe testing set, only the outputs
of these specialists should be considered to make the final decision about the
ensemble for this part of the testing set. n this experiment, a winner-takes-all
method was applied to select such networks. Foreachpattern ofthe testing set,
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the output of the ensemble was only decided by the network whose output had the
highestactivation. Table 5 showsthe averageresultsofnegative correlation learning
over 25 runs using the winner-takes-all combination method. The winner-takes-
allcombinationmethod improvednegative correlationlearmingsignificantlybecause
there were good and poor networks foreach patternin the testing set, and winner-
takes-all selected the best one. However, it did not improve the independent
trainingmuch because the individual networks created by the independenttraining
wereall similartoeach other.

CONCLUSIONS

This chapter describes negative correlation learning for designing neural
network ensembles. If can be regarded as one way of decomposing a large
problem into smaller and specialised ones, sothat each sub-problem canbe dealt
withbyanindividualneural networkrelatively easily. A correlationpenalty termin
the error function wasproposedtominimisemutual information andencourage the
formation of specialists in theensemble,

Negativecorrelation learning hasbeenanalysedin termsofmutual information
onaregression taskin the different noise conditions. Unlike independent training
which creates larger mutual information amongthe ensemble, negative correlation
leaming can produce smaller mutual information among the ensemble. Through
minimisationofmutual information, verycompetitiveresults have been produced by
negative correlation learmning in comparison with independent training,

This chapter compares the decision boundaries and the correct response sets
constructed by negative correlation learning and the independent training for two
pattern classification problems. The experimental results show that negative
correlation learning has avery good classification performance, In fact, the decision
boundary formed by negative correlation learning isnearly close to the optimum
decision boundary generated by the Bayes classifier.

Thereare, however, someissuesthat needresolving. Nospecial considerations
were made in optimisation of the size of the ensemble and strength parameter A in
thischapter. Evolutionaryensembles withnegative correlation leaming foroptimisation
ofthesize ofthe ensemble hadbeen studied on the classification problems (Liu, Yao
& Higuchi, 2000).
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Chapter I1

A Perturbation Size-
Independent Analysis
of Robustness in Neural
Networks by Randomized
Algorithms

C. Alippi
Politecnico diMilano, Italy

ABSTRACT

This chapter presents ageneralmethodologyfor evaluating the loss inperformance
of a generic neural network once its weights are affected by perturbations. Since
weights represent the “knowledge space”™ of the neural model, the robustness
analysis can beusedtostudy theweights/performancerelationship. Theperturbation
analysis, whichis closelyrelatedtosensitivity issues, relaxes all assumptions made
in the related literature, such as the small perturbation hypothesis, specific
requirements on the distribution of perturbations and neural variables, the
number of hidden units and a given neural structure. The methodology, based on
Randomized Algorithms, allows reformulating the computationally intractable
problem of robustness/sensitivity analysis in a probabilistic framework
characterised by a polynomial time solution in the accuracy and confidence
degrees.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

The evaluation of the effects induced by perturbations affecting a neural
computation is relevant from the theoretical point of view and in developing an
embedded device dedicated toaspecific application.

Inthe first case, the interestisin obtaining areliable and easy tobe generated
measure of the performance loss induced by perturbations affecting the weights of
aneuralnetwork. The relevance oftheanalysis is obvioussince weights characterise
the “knowledge space” of the neural model and, hence, its inner nature. In this
direction, astudy ofthe evolution ofthe network’s weights over training time allows
forunderstanding the mechanism behind the generation of the knowledge space.
Conversely, the analysis ofa specific knowledge space (fixed configuration for
weights) provides hints about the relationship between the weights space and the
performance function, The latter aspectis of primary interestin recurrent neural
networks where even small modifications of the weight values are critical to
performance (e.g., think ofthe stability of anintelligent controller comprisinga
neural network and issues leading torobustcontrol).

The second case is somehow strictly related to the first one and covers the
situation where the neural network mustbe implemented ina physical device. The
optimally trained neural network becomes the “golden unit” to be implemented
withina finite precisionrepresentation environmentas ithappensinmission-critical
applicationsand embedded systerns. Inthese applications, behavioural perturbations
affecting the weights of aneural network abstractuncertainties associated with the
implementation process, suchas finite precision representations (e.g., truncation or
roundinginadigital hardware, fixed or lowresolution floating pointrepresentations),
fluctuations of the parameters representing the weights in analog solutions (e.g.,
associated with the production process of a physical component), ageing effects,
ormore complex and subtleuncertainties inmixed implementations.

The sensitivity/robustness issue has been widely addressed in the neural
network community with a particular focus on specific neural topologies.

More in detail, when the neural network is composed of linear units, the
analysis is straightforward and the relationship between perturbations and the
induced performance loss can be obtained in a closed form (Alippi & Briozzo,
1998). Conversely, whenthe neural topology isnon-linear, which ismostly the
case, several authors assume the small perturbation hypothesis or particular
hypothesis aboutthe stochasticnature of the neural computation, Inboth cases, the
assurnptions make the mathematics moreamenable with the positive consequence
that arelationship between perturbations and performance loss can be derived
(e.g., see Alippi & Briozzo, 1998; Piche, 1995), Unfortunately, theseanalyses
introduce hypotheses which arenotalwayssatisfied inall real applications.
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Anotherclassicapproachrequires expanding with Taylorthe neuralcomputation
around the nominal valueofthetrained weights. A subsequent linearearised analysis
follows whichallows for solving the sensitivity issue{e.g., Pichg, 1995). Anyway,
the validity of such approaches depend, in turn, on the validity of the small
perturbation hypothesis: how tounderstand apriori ifa perturbationis small fora
givenapplication?

In otherapplications the small perturbation hypothesis cannot be accepted
beingtheinvolved perturbations everything butsmall. As an example we have the
developmentofadigital embedded system. There, the designerhas toreduce as
possiblethedimension ofthe weightsby savingbits; this producesa positive impact
oncost, memory size and powerconsumption of the final device.

Differently, otherauthors avoid thesmall perturbation assumption by focusing
the attention on very specific neural network topologies and/or introducing
particular assumptions regarding the distribution of perturbations, internal neural
variables and inputs (Stevensen, Winter & Widrow, 1990; Alippi, Piuri & Sami,
1995).

Otherauthors have consideredthesensitivityanalysisunder thesmall perturbation
hypothesis to deal with implementation aspects. Inthis case, perturbations are
specifically related to finite precision representations of the interim variables
characterising the neural computation (Holt & Hwang, 1993; Dundar & Rose,
1995).

Differently fromthe limiting approaches providedin theliterature, this chapter
suggests a robustness/sensitivity analysis in the large, i.e., without assuming
constraints on the size or nature of the perturbation; as such, small perturbation
situations become only a subcase of the theory. The analysis is general and canbe
applied toall neural topologies, both static and recurrent in order to quantify the
performance loss of the neural model when perturbations affect the model’s
weights.

The suggested sensitivity/robustness analysis canbe applied to 47 neural
networkmodels involved in systemidentification, control signal/imageprocessing
and automation-based applications without any restriction. In particular, the
analysisallows for solving the following problems:

*  Quantify therobustness of agenerically trained neural network by means ofa
suitable, easily to becomputed and reliable robustness index;

*  Comparedifferentneural networks, solving a given application by ranking
themaccording to theirrobustness;

+  Investigate the criticality ofa recurrentmodel (“stability” issue) by means of its
robustnessindex;
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«  Study the efficacy and effectiveness oftechniques developed toimprove the
robustness degree of'a neural network by inspecting the improvement in
robustness.

Thekey elements of theperturbationanalysis are Randomised Algorithms—
RAs-(Vidyasagar, 1996, 1998; Tempo & Dabbene, 1999; Alippi, 2002), which
transform the computationally intractable problem ofevaluating the robustness of
a generic neural network with respect to generic, continuous perturbations, ina
tractable problem solvable with a polynomial time algorithm by reserting to
probability.

Theincreasing interest and the extensive use of Randomised Algorithms in
control theory, and in particular in the robust control area (Djavan, Tulleken,
Voetter, Verbruggen & Olsder, 1989; Battarcharyya, Chapellat & Keel, 1995; Bai
& Tempo, 1997; Chen & Zhou, 1997, Vidyasagar, 1998; Tempo & Dabbene,
1999, Calafiore, Dabbene & Tempo, 1999), make this versatile technique
extremely interesting also for the neural network researcher.

We suggest the interested reader torefer to Vidyasagar (1998) and Tempo
and Dabbene (1999) for a deep analysis ofthe useof RAs in control applications;
the author forecastsanincreasing useofRandomised Algorithms inthe analysisand
synthesis of intelligent controllersin the neural network commumity.

The structure of the chapter is as follows. We first formalise the concept of
robustness by identifyinganatural and general index forrobustness. Randomised
Algorithms are then briefly introduced to provide a comprehensive analysis and
adaptedto estimate the robustness index. Experiments then follow toshed lighton
the use of thetheory inidentifying therobustnessindex forstatic andrecurrent neural
models.

A GENERALROBUSTNESS/SENSITIVITY
ANALYSISFORNEURALNETWORKS

In the following we consider a generic neural network implementing the
$= f(g" , x) function where § is the weight (and biases) vector containing all the
trained free parameters of the neural model.

Inseveralneuralmodels, andinparticularinthose related to systemidentification
and control, the relationship between the inputs and the cutput of the system are
captured by considering a regressor vector ¢, which contains a limited time-
window of actual and past inputs, outputs and possibly predicted outputs.
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Of particular interest, in the zoo of neural models, are those which can be
represented by means ofthe model structures j(s) = () where function f() is
aregression-type neural network, characterised by N, inputs, N, non-linear
hiddenunits and asingle effective linear/non-linear output (Ljung, 1987; Hertz,
Krog & Palmer, 1991; Hassoun, 1995; Ljung, Sjoberg & Hjalmarsson, 1996).

The absence/presence of a dynamic in the system can be modelled by a
suitable number of delay elements (or time lags), which may affect inputs (time
history on external inputs ) system outputs (time history on y(#) ) onpredicted
outputs (time history on $(r)) or residuals (time history on e(#) = 3(t) — y(9) ).
Whereitisneeded y(¢), H(z) and e(r) arevectorial entities, acomponent foreach
independentdistinctvariable.

Several neural model structures have beensuggested in the literature, which
basically differ in the regressor vector. Examples are, NARMAX and NOE
topologies. NARMA X structure can be obtained by considering both past inputs
and outputs ofthe systemto infer y(¢). We have:

Pp= lu(t)9u(t - 1)! ’ 'su(t —n,,),y(t— ]),' ' ‘,)’(‘ —ny),...,e(t _I)!' ”’e(l_ nc)l

Differently, the NOE structure processes only past inputs and predicted
outputs,i.e.:
¢= [H(f),u(f.— 1)5 “u(t -nu)s J?’(I _1):' T j'}(t —AR, )I .

Static neural networks, such as classifiers, can be obtained by simply
considering externalinputs:
@ = [u(®),u(t 1), u(t —n)).

Of course, differentneural models canbe considered, e.g., fully recurrent
and well fitwiththe suggested robustness analysis.

A general, perturbation size independent, model-independent robustness
analysistequires the evaluation of the loss in performance induced by a generic
perturbation, in ouranalysis affecting the weights ofa generic neural network. We
denote by y, (x)= £, (8,A,x) the mathematical description of the perturbed
computation and by A e p - %7 a generic p-dimensional perturbation vector, a
componentforeach independent perturbation affecting the neural computation
#(r). The perturbation space Discharacterised in stochastic terms by providing the
probability density function pdf, .

Tomeasure the discrepancy between y, (x) and y(r) or $(7), weconsidera
generic losstunction U{A). Inthe following we only assume thatsuch performance
loss function is measurable according to Lebesgue withrespectto D. Lebesgue
measurability for U(A)allows us fortaking into account an extremely large class
ofloss functions.
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Commonexamplesfor {7 arethe Mean Square Erro—MSE—loss functions

1 N

U(a)- OG- FA) . (1)

T2 A and U)=3-2
Morespecifically, (1)-leftcompares the perturbed network with $ , whichis
supposed tobe the“golden” error-frecunitwhile (1)-rightestimates theperformance
of the error-affected (perturbed) neural network (generalisation ability of the
perturbed neural model).
The formalisation of the impact of perturbation on the performance function
canbe simply derived:

Definition: Robustness Index
Wesay that aneural network isrobustatlevel 7 in D, when the robustness
index ¥ is theminimum positive value forwhich

Immediately, from the definition of robustness index we have thata generic
neural network NN is more robust than NN, if ¥, < ¥, and the property holds
independently from the topology of the two neural networks.

Themainproblemrelatedto the determination of the robustnessindex ¥ isthat
wehavetocompute U (A), WA e D ifwewishatightbound. The 7 -identification
problem is therefore intractable from a computational point of view if we relax all
assumptions made in the literature as we do.

To deal with the computational aspect we associate a dual probabilistic
problemto (2):

Robustness Index: Dual Problem We say thata neural network is robust
atlevel ¥ in Dwithconfidence 77, when ¥ istheminimum positive value forwhich

PU(AY<y)zn  holds vAe D, Vy2¥ 3)

Theprobabilistic problemis weaker than the deterministic one since ittolerates
the existence ofa set of perturbations (whose measure according to Lebesgueis 1-
1) forwhich u{A) > ¥ . In other words, notmore than 1001 % of perturbations
Ae Dwill generatealoss inperformance larger than 7 .
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Probabilistic and deterministic problems are “close” to each otherwhen we
choose, aswedo, 7=1. Notethat ¥ depends only onthesize of D and the neural
network structure.

The non-linearity with respect to A and the lack of a priori assumptions
regarding the neural network donotallow computing (2) ina closed form for the
general perturbation case. The analysis, which would imply testing UA in
correspondence witha continuous perturbation space, canbe solved by resorting
to probability according to the dual problem and by applying Randomised
Algorithmsto solve therobustness/sensifivity problem.

RANDOMIZED AL.GORITHMS AND

PERTURBATION ANALYSIS

Inthisparagraph we briefly review the theorybehind Randomised Algorithms
and adapt themtothe robustness analysis problem,

Inthe following we deno‘oebypTz Pr{U(A)<y}  theprobabilitythatthe loss
inperformance associated withperturbationsin Disbelowagiven—butarbitrary—
value.

Probability p, isunknown, cannotbe computedina close form fora generic
[/ functionand neural network topology, and its evaluation requiresexploration of
the whole perturbation space D.

Theunknown probabilityp, canbeestimated by sampling Dwith N independent
andidentically distributed samples A ; extraction mustbe carried out according to
the pdf ofthe perturbation.

Foreach sample A we then generate the triplet

1#U@) <y
8, U(8),1(A)}i=1,N where I(A,)= 0ifUL) >y ©)
Thetrue probability p, cannow simply be estimated as
. 1 &
Py =§ZI (a,) (5)
i=l

Ofcourse, when Ntendstoinfinity, p,. convergesto p, Conversely, onafinite
data set of cardinality N, the discrepancy between p, andp, exists and canbe
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simply measured as | Py f)N| . ‘ P, - ﬁN| isarandom variable whichdependsonthe
particularextraction ofthe Nsamplessince differentextractions of Nsamples from
Dwillprovide different estimates for p,,. By introducing anaccuracy degree ¢ on
\ P, - ﬁNI and a confidence level 1—§ (which requests that the | P, — f:N| <g
inequality is satisfied atleast with probability | — § ), ourproblemcan be formalised
byrequiring thatthe inequality

Prlp, — b <ef21-8 ©

is satisfied for Vy = 0. Of course, we wish to control the accuracy and the
confidence degrees of (6) by allowing the user to choose the most appropriate
values for the particular need. Finally, by extractinganumber of samples from D
according to the Chernoffinequality (Chemoff, 1952)

Q)

we have that Pr{p}, —ﬁN‘ < 8}2 1-38 holds for Vy > 0,¥5,¢ < [0,1].

As anexample, by considering 5% in accuracy and 99% in confidence, we
haveto extract 1060samples from D; with such choice we canapproximate p. with
Py introducing themaximumerror0.05( g, —0.05< p, < p, +0.05)andthe
inequality holds atleast with the probability 0.99.

Other bounds canbe considered instead of the Chermoff s one as suggested
byBernoulliand Bienayme, (e.g., see Tempo & Dabbene, 1999). Nevertheless,
the Chernoff’sbound improves upon the others and, therefore, should be preferred
if we wish tokeepminimal the number of samples to beextracted. The Chernoff
bound grants that:

* Nisindependent fromthe dimension of D (andhence itdoesnot depend on the

number of perturbations we are considering inthe neural network);
]

3 and giz (henceitispolynomialintheaccuracy and confidence

* NislinearinIn
degrees).
Asaconsequence, thedual probabilistic problemrelated to the identification
oftherobustnessindex ¥ canbesolved withrandomisedalgorithms andtherefore
with a polynomial complexity in the accuracy and the confidence degrees
independently from the number of weights ofthe neural model network. Infact, by

expanding the (6) we have that
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<efp1-6 :Pr{

Pru(a)< y)—%ZI(Ai% 56}2 1-§  (8)

Pr{p? — Py

Ifaccuracy € andconfidence § aresmall enough, we can confuse p, and
P bycommittingasmallerror. As aconsequence, the dual probabilistic problem
requiring P, 27 becomes p, =7 . Wesurelyassume £ and § tobesmall
enoughinsubsequent derivations.
The final algorithm, which allows fortesting the robustness degree ¥ ofa
neural network, 1s:
1. Select & and § sufficiently smallto have enough accuracy and confidence.
2. Extract from D, according to its pdf a number of perturbations N as
suggested by (7).
3. Generate the indicator function I(A) and generate the estimate
Py = Px(¥) according to (5).
4. Select the minimum value 7y, from the p, = p,(y) function so that
ﬁN()’q) =1 is satisfled Vy 2 y,. ¥, is the estimate of the robustness
index 7 .

Notethatwith asimple algorithm we are able to estimate in polynomial time
the robustnessdegree ¥ ofageneric neural network. The accuracy in estimating
¥ canbemade arbitrarily good atthe expense of a larger number of samples as
suggested by Chernoff’sbound.

APPLYINGTHEMETHODOLOGYTOSTUDY
THE ROBUSTNESS OFNEURALNETWORKS

In the experimental section we show how the robustness index for neural
networks can be computed and how it can beused to characteriseaneural model.
Afterhavingpresentedandexperimentallyjustifiedthetheory supporting Randomised
Algorithms, we will focus onthe following problems:

» testtherobustness ofagiven static neural network (robustness analysis);

» study therelationships between the robusiness of a staticneural network and
the number ofhiddenunits (structure redundancy),

* analyse the robustness of recurrent neural networks (robustness/stability
analysis).

Inthe following experiments weconsider perturbations affecting weightsand
biases ofaneural network defined in D and subject to uniform distributions. Here,



Robustness in Neural Networks 31

a perturbation A, affecting a generic weight w, must be intended as a relative
perturbation withrespectto the weight magnitude according to the multiplicative
perturbationmodelw, =w(1+A), Vi=1,n. A %perturbation implies that A
; bp dv Tt 3T i
isdrawn from asymmetrical uniform distribution of extremes

ot
100°100 |

a 5% perturbationaffecting weights and biases composing vector ¢ implies
thateach weight/bias is affected by an independent perturbation extracted from the
[-0.05,0.05] intervalandapplied tothe norinal valueaccording tothe multiplicative
perturbationmodel.

Experiment 1: The impact of € 6 and N on the evaluation of the
robustness index
Thereference applicationtobe learned isthe simple error-free function

e-().?.S-x
y= -x-sin(x2)+1+7, xe[-33]

A set of 41 training data have been extracted from the function domain
according to a uniform distribution. We considered static feedforward neural
networks withhidden unitscharacterised by ahyperbolic tangentactivationfunction
andasinglelinearoutput. Training wasaccomplished by consideringa Levenberg-
Marquardtalgorithm applied toan MSE training function; a testset was considered
during the training phase to determine the optimal stopping pointso astomonitor
theupsurgence of overfittingeffects.

We discovered thatall neural networks withatleast6 hiddenunitsareableto
solvethe function approximation task with excellent performance,

Inthis experiment we focus the attention on the neural network characterised
by 10 hidden units. After training we run the robustnessalgorithm by considering
7.5% of perturbations (weights are affected by perturbations upto 7.5% of their
magnitude) and we chose £=0.02 and §=0.01 from which we have to extract
N=6624 samples from D, Wecarried out three extractions of Nsamples and, for
eachset, we computed therelated p,, = p,, (¥) curve.

The p,, = p,(y) curvesare giveninFigure 1. Aswe can seethe curves are
very close to each other. In fact, we know from the theory, that the estimated
probability belongs to a neighbourhood of the true one according to the



32 Alippi

Figure 1: Dy = Dx(¥) for three different runs
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Py —0.02< p, < By +0.02 relationship. A singlecurve is thereforeenough to
characterise the robustness of the envisaged neural network and there is noneed
to consider multiple runs. By inspecting Figure 1 we obtain that the estimate ofthe
robustness index 7 is ¥,=11which implies that {{A)<11, VA< Dwithhigh
probability.

Wewishnowtostudy theimpactofNon p,, = p, (¥) byconsideringthree
runs with different £ and § accordingtoTable1.

The p, = p, (¥) curvesaregiveninFigure 2. Itis interesting tonote, at least
for the specific application, that even with low values of A, the estimates for
Py = DPy(y) and ¥, are reasonable and not far from each other. We should
anyway extractthe number ofsamples according to Chernoff’s inequality.

Experiment 2: Testing the vobusiness of a given neural network

Inthe second experiment wetest the robustness ofthe 10 hidden unitsnetwork
by consideringits behaviouronce affected by stronger perturbations (larger 1) and,
in particular, for perturbations 1%, 3%, 5%, 10%, 30%. Weselected £=0.02 and
0=0.01.

The p, = P, (y) function corresponding to the different perturbations s given
inFigure 3.

Tablel: €, § and N

E o N
0.02 0.01 6624
0.05 0.05 738

0.1 0.1 150
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Figure 2: p,, = py(y) for different runs with parameters given in Table I
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Again, fromits definition, ¥ isthesmallestvalueforwhich p, =1, 7 > ¥ ;as
anexample, if we considerthe 5% perturbation case, ¥ assumesa value around
7. It is obvious, but interesting to point out that, by increasing the strength of
perturbation (i.€., by enlarging the extremes ofthe uniformdistributioncharacterising
the pdfofD), ¥ increases. Infact, stronger perturbations have aworse impact on

the performance loss function since the error-affected neural network diverges from
the error-free one. Conversely, we see thatsmall perturbations, e.g., the 1% one,
inducea very smallloss inperformance since the robustnessindex ¥,, is very small.

Figure 3: P, as a function of ¥ for the 10 hidden units neural network
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Experiment 3: Testing the robustness of a hierarchy of performance-
equivalent neural networks

Once we haveidentified the robustness degree of a neural network solving an
application, we can investigate whetheritispossible to improve the robustness
degree of the application by considering asortof structural redundancy ornot. This
issue can betackled by considering the neural hierarchy M:M, c M_...c M....
where M, represents a neural network with £hidden units.

Tothis end, we consider a set of performance-equivalent neural networks,
each of whichis able to solve the application with a performancetolerable by the
user. All neural networks are characterised by a different topological complexity
(number ofhidden units).

The p, = p, (v ) curves parameterised in thenumber ofhiddenunitsare given
inFigure4inthe case of 1 % perturbation. We cansee thatby increasing the number
ofhidden units, ¥ decreases. We immediately realise that neural networks witha
reducednumber othidden units are, for this application, less robust than the ones
possessing more degrees of freedom. Large networks provide, inaway, asortof
spatial redundancy: information characterising the knowledge space of the neural
networksis distributed overmore degrees of freedom.

We discovered cases where a larger neural network was lessrobust thana
smaller one: in suchacaseprobably the complex model degenerates intoasimpler
one.

Theevolutionof ¥ overthenumberofhiddenunits parameterised with respect
tothe different perturbations 5%, 10% and 30%is given in Figure 5. We note that
the minimal network, namely the smallestnetwork able to solve the application, is
not the morerobust one for this application (infactitpossesses large values forthe

¥ s).

Figure4: p, over ¥ and parameterised in the number of hidden units
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Thistrend—verified alsowith other applications—suggests thatthe robustness
degree of the neural network improves on the average by increasing the number of
hiddenunits (spatial redundancy). Anyway, witha smallincreaseinthe topological
complexity (e.g., by considering the 13 hiddenunits model instead of the 6 one), we
obtainasignificantimprovementaccordingtothe robustness level. There isnoneed
to consider more complex neural networks sincethe improvement in robustnessis
small.

Experiment 4: Testing the robusiness of recurrent neural networks

The goal ofthe lastexperimentis to study the robustness/stability of recurrent
neural networks with the suggested theory. The chosen application refers to the
identification of the open-loop stable, nonlinear, continuous system suggested in
Norgaard (2000). The input and the corresponding output sequence of the system
tobeidentifiedis giveninFigure 6.

We first considered an NOE recurrent neural network with 5 hidden units
characterised by the regressor vector ¢ = [u(z — 1), u(t — 2), $(2 1), p(t— 2))- The
non-linearcore of the neural network is a static regression type neural network as
the one considered inthe function approximationexperiments. Thetopology ofthe
NOE networkisgivenin figure 7.

Once trained, the network we applied the methodolegy to estimates the
robustness of the recurrent model. The p, = p, (v) curve, evaluated with
£ =& =0.05,forthe 0.1% perturbation case is given in Figure 8. As we could
haveexpected, differently from the static function approximation application, the
recurrent NOE neural network is sensitive evento small perturbations affecting the
knowledge space of the network.

Figure 5: ¥ as function of the hidden units, £ =0.04, § =0.01
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We identified the dynamic system with a NARMAX neural network
characterised by 5 hidden units and the structure given in Figure 9. For such
topology we selected the regressor vector

@ = [tt — 1)t —2), y(¢— Dyt — 2),6(t — 1), e(t - 2)]

Figure 10 shows the p, = p, (y) curve. It is interesting to note that the
NARMAX neural network is less robust than the correspondingNOE model. The
basicreason for such behaviouris dueto the factthat the recurrentmodel doesnot
receive directly as input the fed-back network output but only the residual e.

Duringtraining the NOE model must somehow learn more deeply the concept
of stability since even small variations of weights associated with the training phase
weights update would produce a trajectory diverging fromthe system output tobe
mimicked. Thiseffect is due tothe pure fed-back structure of the NOE model which

Figure 6: The input and the corresponding output of the dynamic system
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Figure 7: The considered NOE neural network
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Figure 8: The P, function for the NOE neural network
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Figure 9: The considered NARMAX neural network
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receives as inputs past predicted output and not direct information fromthe process.
Interestingly, this requires the neural model to implicitly leamn, during the training
phase, the conceptofrobustness asprovenby the p, = b, (7) curve.Conversely,
the NARMAX model has a smoother and less complex training phase since it
receives fresh information directly from the process (y values) which help the neural
model to be stable. As such, the training procedure will not search for weights
configuration particularly robust since small deviations, which could make the
systemunstable, will be directly stabilised by the true information coming fromthe

process.
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Figure 10: The D, function for the NARMAX neural network
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CONCLUSION

The mainresults of the chaptercan be summarised as follows. Once givena trained

neural network:

+ theeffects of perturbations affecting the network weights canbe evaluated
regardless ofthe topology and structure ofthe neural network, the strength of
the perturbation by considering aprobabilistic approach;

» therobustness/sensitivity analysiscanbe carried out witha Poly-timealgorithm
byresorting to Randomised Algorithms;

»  theanalysisis independent fromthe figure of meritconsidered to evaluate the
loss in performance induced by the perturbations.
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ABSTRACT

This chapter describes the application of a general regression neural network
(GRNN) to control the flight of a helicopter. This GRNN is an adaptive
network that provides estimates of continuous variables and is a one-pass
learning algorithm with a highly parallel structure. Even with sparse data in
a multidimensional measurement space, the algorithm provides smooth
transitions from one observed value to another. An important reason for
using the GRNN as a controller is the fast learning capability and its non-
iterative process. The disadvantage of this neural network is the amount of
computation required to produce an estimate, which can become large if
many training instances are gathered. To overcome this problem, it is
described as a clustering algorithm to produce representative exemplars
from a group of training instances that are close to one another reducing the
computation amount to obtain an estimate. The reduction of training data
used by the GRNN canmake it possible to separate the obtained representative

Copyright © 2003, Idea Group Inc,
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exemplars, for example, in two data sets for the coarse and fine control.
Experiments are performed to determine the degradation of the performance
of the clustering algorithm with less training data. In the control flight system,
data training is also reduced to obtain faster controllers, maintaining the
desired performance.

INTRODUCTION

Theapplicationof ageneral regression neural network tocontrol anon-linear
systemsuchasthe flightofa helicopteratornearhoverisdescribed. This general
regression neural network in an adaptive network that provides estimates of
continuous variables and is a one-pass learning algorithm with a highly parallel
structure. Even with sparse data in amultidimensional measurementspace, the
algorithm provides smooth transitions from one observed valueto another. The
automatic flight control system, through the longitudinal and lateral cyclic, the
collective and pedals are used to enable a helicopter tomaintain its position fixed
inspace foralong period of time. In order toreduce the computationamount ofthe
gathered data for training, and to obtain an estimate, a clustering algorithm was
implemented. Simulation resultsare presented and the performance ofthe controller
isanalysed.

HELICOPTERMOTION CONTROL

Recently, unmanned helicopters, particularly large-scale ones, have been
expected notonly for the industrial fields such as agricultural spraying and aerial
photography, butalso forsuch fields as observation, rescuing and fire fighting. For
monotonous and dangeroustasks, an autonomous flightcontrol of the helicopteris
advantageous.

Ingeneral, theunmannedhelicopteris anexample of anintelligentautonomous
agent. Autonomous flight control involves some difficulties due to the following:

+ itisnon-linear;

*  flightmodes arecross-coupled;

*  itsdynamics areunstable;

« itisamultivariate (i.e., there are many input-output variables) system;

+ itissensitivetoexternal disturbances and environmental conditions such as
wind, temperature, etc;

*  itcanbeused inmany differentflight modes(e.g., hoveror forward flight), each
of whichrequires different control laws;

+ it is often used in dangerous environments (e.g., at low altitudes near
obstacles).
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These characteristics make the conventional control difficult and create a
challengeto thedesign ofintelligentcontrol systems.

Forexample, although helicopters are non-linear systems, NN controllers are
capable of controlling them because they are also inherently non-linear. The
instabilities that result from time delays betweenchanges in the system input and
outputcan be addressed with the previous leamning of the network with asetof data
thatrepresents the pilots knowledge to stabilize the helicopter. Linear NN canbe
implemented to compensate the cross-couplings between control inputs, mainly
whenthe helicoptermakes asignificant changein its flight.

Therefore, a supervised general regression neural network can be used to
control the flight modes of anunmanned helicopter. The regressionis the least-
mean-squares estimation ofthe valueofa variable based on datasamples. The term
generalregressionimplies that the regression surface is notrestricted by being
linear. Ifthe values of the variables to be estimated are future values, the general
regression network (GRNN)isapredictor. [fthey are dependent variables related
to input variables in aprocess, system or plant, the GRNN canbe used to model
the process, system orplant. Once the system is modelled, a control surface can
bedefined interms of samples of contrel variables that, given a state vector of the
system, improvethe outputofthe system. [fa GRNN is trained using these samples,
it can estimate the entire control surface, becoming acontroller. A GRNN canbe
used to map from one set of sample points to another. Ifthe target space has the
same dimension as the input space, and ifthe mapping is one-to-one, aninverse
mapping caneasily be formedusing the same examples. Whenthe variables tobe
estimated are forintermediate values between givenpoints, then the GRNN canbe
used as an interpolator.

Inall cases, the GRNN instantly adapts to new data points. This couldbea
particular advantage for training roebots to emulate a teacher or for any system
whosemodel changes frequently.

SYSTEMMODELLING

Thehelicopter control is one of the popular non-linear educational control
problems. Due toitshighlynon-linear dynamics, it givesthepossibility to demonstrate
basic features and limits of non-linear control concepts. Sugeno (1997, 1998)
developed a fuzzy-logicbased control system toreplace theaircraft’s normal set
of control inputs. Other researchers, such has Phillips etal. (1994), Wade et al
(1994), and Wade and Walker {1994), have developed fuzzy logic flight controls
describing systemsthatinclude mechanisms for discovering and tuning fuzzy rules
inadaptive controllers. (Larkin, 1984) describeda model of an autopilotcontroller
based on fuzzy algorithms. An alternative approach to real-time control of an
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autonomous flying vehiclebased onbehavioral, orreactive, approachis proposed
byFaggetal. (1993). A recurrent neural network used to forward modeling of
helicopter flight dynamics was described by Walker and Mo (1994). The NN-
based controliers can indirectly model human cognitive performance by emulating
the biological processes underlying humanskill acquisition.

The main difference between NN-based controlters and conventional control
systemsisthat, inthe NN case, systems arebuilt from indirectly representations of
contro] knowledge similar to those employed by skilled humans, while in the
conventional designcase, adeep analytical understanding ofthe system dynamics
isneeded. Theability ofhumansto pilotmanned helicopters with only the qualitative
knowledgeindicatethat NN-based controllers with similar capabilities canalsobe
developed.

Thehelicopter can be modelled as a linear system around trim points, i.e.,a
flight with noaccelerations and nomoments. The state space equations areanatural
form, which canrepresent the belicoptermotion. The general mathematical model

isgivenby:
.;c =Ax+Bu,
y=Cx+Du,

where x, u_and y are the state vector, control vector and output vector,
respectively.

Thehelicopter used to simulate the flight in hover position was asingle main
rotor helicopter of 15,000 pounds. The control and state vectors are defined as:

u.' =[6, 8 5. 841 ¢
xT=[uvaqr¢9(pxyz] (2)
where

¢ isthecollective control [inches];
o, and ¢ _arethelongitudinal and lateral cyclic controls, respectively
[inches];



Helicopter Motion Control 45

Figure I : Helicopter coordinates
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¢,isthepedal contro] [inches];
u, v.and w are the perturbation linear velocities [fi/sec];
P,qandrare the perturbation angular velocities [rad/sec];

¢, 6 and @ are the perturbation euler angles for roll, pitch and yaw [rad];
x, ¥ and z aretheperturbation lineardisplacements over the ground [£].

Figure 1 shows thecoordinate systern to describe the motion ofthe helicopter.
The origin of the helicopter axes isplaced on thecenter of gravity.

The thrust of the mainrotor, thus mainly the vertical acceleration, is controlled
by the collectivecantrol ( ¢ ). The pitching moment, thatis, nose pointingup or
down, iscontrolledbythe longitudinaleyelic control ( 6, ). The rolling moment, that
is, right wing tip down, left wing tip up, and vice versa, is controlled by the lateral
cyclic control (4 ). The yawing moment, thatis, nose left and right, is controlled
by the pedal control ( 5,).

The corresponding differential equations that represent thebehavior of the
helicopter in hover position are:

du_ —0.0692 - 0.032v +116.8p +1168.5¢ - 6.15r-32.1960 + 0.1185,,

dt
—27798, — 0255, + 0.00435,,
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% =0.017u - 0.085v - 0.0021w—430.5p + 381.3¢ + 30.75» + 32.14¢
+0.0230 —0.148, — &, + 0.6655, —1.394,
dw
E =-0.0021v - 0.257w+ 7.99p + 46.744 + 1353+ +1.85¢ - 0.4048
-9.238, -0.1075, - 0.016,

% = 0.45 —0.687y — 0.002 1w — 6027 2 p + 5043.16¢ + 66427 — 1.825,
~13.75, +8.585, —5.155,

% = 0.665u +0.429v —0.043w — 1537.5p —~15744.5¢ ~ 12.3r - 0.9665,
+37.138, +3.435,_ + 0.755,

% = —0.0214u + 0.515v +0.0064w — 369.0p — 44.28q — 1266.97 + 25975,
-0.158, +0.0755, +40.783,,

dg _
a !
d8 _
a7
o _
dt

&
—=y
dt

Y _,
dl

dz

—_— =
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Sinceeach motionis notindependentof §, 6, & and 6, thereexistsacross-
coupling.

Figure 2 shows the root locus for the model described above. Figure 2(a)
shows theroot locus, considering the collective control as the input and the vertical
displacement as theoutput. In Figure 2(c), the longitudinal cyclic and the forward
displacement are the inputand the output, respectively. Figure 2(e) shows the root
locus consideringthe lateral cyclic as the input and the 1ateral displacement as the
output. Figures 2(b), (d) and (f) show the zoom ofthe regionnearthe imaginary axis
as well as the roots that dominate the transient response. In general, the contribution

Figure 2: Root locus of the helicopter model
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Figure 2: Root locus of the helicapter model (continued)
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inthetimeresponseof roots that lierelatively far to the leftin the s-plane will be small.
These three Figure sclearly showthat some ofthe eigenvalues corresponding to the
helicopter model are inthe rightside ofthe s-plane, with positivereal-part values,
making the systemunstable.
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Figure 2: Root locus of the helicapter model (continued)
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GENERALREGRESSIONNEURALNETWORK
The generalized regression neural networks arememory-based feed-forward
networks otiginally developed in the statistics literature by Nadataya (1964) and
known as Nadaraya-Watson kemel regression, Then the GRNN was ‘re-
discovered’ by Specht (1991) and Chen, C. (1996), with the desired capability of
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learning in a one-shotmanner from incoming training databeing independent upon
time~consuming iterative algorithms, This quick learning ability allows the GRNN
to adapt to changing system parameters more rapidly than other methods such as
genetic algorithms, back-propagation orreinforcement learning, Thisisachieved by
the estimation of continuous variables with a single training instance and refinig this
gstimationinanon-iterativemannersince thetraining dataisadded tothe network.
Therefore, this neural network can be used as an intelligent controller for the
autonomous helicopter.

GRNN Architecture

The GRNN isaspecial extension ofthe radial basis function network. This
neural network is based onnonlinearregression theory consisting of fourlayers: the
inputlayer, the pattern layer, the summation Jayer and the output layer (see Figure
3). It canapproximate any arbitrary mapping between theinputand output vectors.
While theneurons in the first threelayers are fully connected, each output neuron
isconnected only to some processingunitsin the summation layer. The summation
layerhas twodifferent typesof processingunits: the summation units and the division
unit. The number of summation units inthe summationlayeris alwaysthe same as
the number of GRNN output units. The division unit only sums the weighted
activations of the pattern units withoutusing any activation function. Each ofthe
outputunitsisconnectedonlytoits corresponding summationunitand tothe division
unit. There are no weights in these connections. The function ofthe output units
consistsofasimple division of the signal coming from the summation unitby the
signalcoming from the divisionunit.

Figure 3: Topology of the generalized regression neural network
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Consider Xand Yindependent and dependent variables respectively. The
regression of Yon Xis the computation of the most probable value of Yforeach
value of Xbased ona finite number of possibly noisy measurements of Xand the
associated values of Y. The variables X and Y can be vectors. In parametric
regression, some functional form withunknown parameters, g, s assumedand the
values of the parameters are chosen to make the best fit to the observed data. For
example, in lingarregression, the output Yisassumed to be a linear function of'the
input X, and the unknown parameters @, are linear coefficients. Innonparametric
regression, noassumption aboutthe statistical structure ofincoming training datais
made.

The equation form used for the GRNN is presented in (3) and (4) (Specht,
1991). Theresultingregression, whichinvolves summations over the observations,
isdirectly applicable toproblems involving numerical data.

Dl =(x-x.Y (x-x,) 3)

R — D.2
2. Y; exp —
il 202

n (-D? 4)
Eiexp[ 262 ]

X.and ¥; are earlier samples that compose the training data setand
represents thenumber oftraining data.

Theestimated output Y{X ) is a weighted average ofall the observed values
Y, where eachobserved value isweightedexponentially according to the Euclidean
distance between Xand X The smoothing parameter ¢ (orbandwidth)controls
how tightly the estimate ismade to fit the data. Figure 4 shows the shapes of the
i* pattern unit node in the pattern layer T, ofthe GRNN for three different values
ofthe smoothing parameter. Theoutput value in eachpatternunit 7' is given by the
followingexpression:

Y(X)=

Ty =exf X[ /207 ) ®)
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Figure 4. Structure of the i pattern unit
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where T, : " — 9% and i = 1,..., p representsall the pattern units in the pattern
layer.

When the smoothing parameter ¢ is made large, the estimate is forced tobe
smoothand in the limitbecomes amultivariate Gaussian with covariance 6°7. On
the other hand, a smaller ¢ allows the estimate to more closely fit the data and
assume non-Gaussian shapes (see Figure 5(a)). In this case, the disadvantage
happens when the wild points could have a great effect on the estimate. As o
becomes large, y(x) assumes the valueof the samplemean of the observed ; (see
Figure 5(c)). When ¢ goesto, y(x) becomesthe valueof the ¥, associated with
the dataclosestto X. Forintermediate values of & , all values of Y are used, but
those corresponding to observed values closer to Xare given heavier weight (see
Figure 5(b)).

If we have much confidence inthe inputdata, asmall ¢ canbeusedto give
greater weight to individual measurements. However, ifthere isuncertainty in the
inputdata due tonoise, alarge o must be used toreduce theeffect of spurious
measurements on an estimate. The optimisation of the smoothing parameter is
critical to the performance ofthe GRNN. Usually this parameter is chosen by the
cross-validation procedure or by esoteric methods that are not well known in the
neural netliterature.

Inthe nextsubsections itwill be shown the application of the GRNN to model
a piecewise linear function, and to control an unmanned helicopter. It is also
discussed theclustering algorithmto obtain the representative samples betweenthe
training data (Lefteri, 1997).
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Figure 5. Possible shapes for different smoothing parameter values
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Clustering and Adaptation to Nonstationary Statistics

For some problems, thenumber of sample points (X, ¥) may be notsufficient
since itisdesired to use all thedata obtainable directly inthe estimator (4). Inother
problems, thenumberofsamplepoints can besufficiently large, becomingno longer
practical toassign a separate nodeto each sample. Thereexist various clustering
techniques that can be used to group samples. Therefore the group can be
represented by only one node (Moody & Darken, 1989), (Burrascano, 1991),and
(Tou& Gonzalez, 1974). A sample pointbelongs toa group ifthe distance between
thissample pointand the cluster centerisless than aspecific value. This value, which
can be considered theradius of influence » ofthe cluster, mustneed to be specified
beforethe training starts.

In the developed clustering algorithm, representative samples are produced
from a group of training instances that arc close to one another. The training is
completed after presenting to the GRNN inputlayer, only once, each input-output
vectorpair fromthe training set. The Euclidean distance to obtain the representative
samples and to reject all the other data points was used in the algorithm.

Suppose that we have a set of » data samples {(X,Y)e (X, Y);i=1,...,n}
where Xand Y representthe input and output data sets, respectively. X and ¥ are
a2Dvector (x, ,x,)andasingle value, respectively. Initially, the firstsample point
(X, Y )inthe training setbecomes the center of the cluster ofthe firstpattern unit
atX_ Thenextsamplepointisthen compared with thiscenter of the first patternunit,
and itisassigned to the same cluster (patternunit) ifits distance from this center is
less than the prespecified radius of influence. Then, equation (7) should be updated
forthis cluster. Otherwise, ifthe distance | X — X;| ishigherthan, thenthe sample
becomes the center of the cluster of the next pattern unit. Figure 6shows howthe

clustering algorithm works considering three points (x ,,x,,), (x,,,x,,)and (x

21? 31?

Figure 6: Cluster generation
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x,,)- The firsttwo points belong to the same cluster because the distance between
themis less than 7. The third pointis the center ofthe new cluster since the distance
ishigherthanr.

Inthe same manner, all the other sample pointsare compared one-by-one with
allpatternunits already set, and thewhole pattern layer is thus gradually built. During
thistraining, the determined values of individual elements ofthe center clusters are
directly assigned to the weights in connections between the inputunits and the
corresponding patternunits.

Afterthe determination ofthe cluster centers, the equation (4) can then be
rewritten as (Specht, 1991):

p _D?
A 24 exp{ . ; ]
Y(X)_Fl a

- _D? (6)
iBi exp[ 20_2 ]

i=1

where

4; (k)= 4,k -1)+7;
{Bi(k)=8i(k—1)+l )

The value p(n represents the number of clusters. 4 (k) and B (k) are the
coefficients for the cluster iafterk samples. 4 (k) is the sum of the ¥ values and B (k)
isthe number of samples assigned to cluster ;. The 4 (k) and B (k) coefficients are
completely determined in oneiteration for each datasample.

Reducing the Number of Clasters in Dynamic Systems

Ifthe network isused to model a system with changing characteristics, itis
necessary to eliminate the clusters that were notupdated during a period of time,
Thejustification for thisis thatin the dynamicsystems appears new cluster centers
thatrepresent thenew behavior of the model. Then, the number of clusters will
increase and also the computation time to produce an cutput. Sincethe 4 and B
coefficients canbe determined by using therecursive equations (7), it is introduced
aforgetting function allowing to reduce the number of clusters as shown in the
followingexpressions,
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5.4)= 5, _I)exp[_t_f]+(l . exp[_ 4 J ®)

and

T

B, (k)= B,{k - l)em[— %‘J 9

4,(%)= Af(k—l)exp[—t—f}

Equation (8)1s theupdate expression when a new sample is assigned tothe
clusteri. Equation (9)is applied to all other clusters. The parameterstand tare the
time passed afterthe lastupdate of the cluster iand aconstant that determines when
the cluster disappears after the last update, respectively. Figure 7 shows the
exponential decay and increase functions represented by solid and dashed lines
respectively. Theexponential decay function will attenuate all the coefticients A and
Boftheclusters. The increasing exponential function allows the new sample data
to havean influence in the local area around its assigned cluster center.

When the coefficient B is zero then the corresponding cluster would be
eliminated. Forexample, considering Figure 7, if the cluster i isnot updated during
60 seconds then the cluster i (and its associated 4, and B, coefficients) will be
eliminated.

Comparison with other Non-Linear Regression Techniques
Theadvantages of GRNN relative to other non-linear regression techniques

are:

1. Thenetwork learns in one pass through the data and can generalize from
samples as soon as they are stored.

2.  Withtheincreasing number of observed samples, theestimates converge tothe
conditional mean regression surfaces. However, using a few number of
samples, itforms very reasonable regression surfaces.
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Figure 7. Exponential decay function
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3. Theestimateis limited withinarangedefined by the minimum and maximum
ofthe observations.

4. Theestimate cannotconvergeto poorsolutions corresponding to local minima
oftheerrorcriterion.

5. Asoftwaresimulationiseasytodevelopandtouse.

6. Thenetwork canprovide amapping fromone setof samplepoints toanother.
[fthe mapping is one-to-one, aninverse mapping can easily be generated from
the samesample points.

7. Theclustering versionof GRNN, equation (6), limits the numbers ofnodes.
Optionally itcan provide a mechanism forforgetting old data.

Themaindisadvantage of GRNN is the amount of computation required to
produce an estimate, since it can become large if many training instances are
gathered. Toovercome thisproblem itwasimplemented a clustering algorithm, This
additional processing stage brings the questions regarding when to do the initial
clustering and ifthe re-clustering should bedone after additional training data is
gathered.

GRNN-Based Model

Thedescribed GRNN type has many potential uses as models and inverse
models(seeFigure 8). A simpleproblem with one independentvariableisused as
anexampletoshowhowtheregressiontechniqueisappliedto modelling asystem.
Suppose that we have apiecewise linear functionand training instances taken from
this function (see Figure 9) (Montgomery, 1999). The samples X =[4,-3,-2,—
1,0,1,2,34]and ¥ =[-1,-1,-1,-1,-1,0,1,1,1] are represented by circles.
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Since GRNN always estimates using aweighted average ofthe givensamples,
the estimate is always within the observed range ofthe dependent variable. Inthe
inputrange, the estimator takes on asetof curves that depend on 6, each of which
isareasonableapproximationto the piecewise linear function (see Figure 9). Figure
10shows the GRNN estimates of this function for different sigma values. Foro =
0.5 the curve isthe bestapproximation. A small sigma allows theestimate to more
closely fitthe training data, while alarge sigma produces a smootherestimate. Itis
possible to over fitthe data with very small valuesof 6.

Besidesthe advantages of the GRNN when compared with othernon-linear
regression technigues, there existsanother fourbenefits from the use of the GRNN.
First, it hasanon-iterative, fast-leaming capability. Second, the smoothing parameter,
G, can be made large tosmooth outnoisy data ormade small toallow theestimated
regression surface to be asnon-linearas required to more closely approximate the
actual observed training data. Third, it isnot necessary to specify the form ofa
regressionequation. Finally, the addition of new samples to the training data set
doesnotrequire re-calibrating the model. The disadvantage ofthe network isthe

Figure 8: Modelling the system using GRNN
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Figure 10: Example of GRNN application
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difficulty toanalyze and to provide a clearunderstanding of how its behavior is
related toitscontents. Theinexistence ofan intuitive method for selecting theoptimal
smoothing parameteris alsoadifficult task to solve.

GRNN-Based Controller

Thenon-linear control helicopter and robotic systems are particularly good
application areas that can be used to demonstrate the potential speed of neural
networks implemented inparalle] hardware and the adaptability ofinstantlearning.
First, the GRNN learns therelation between the state vector ofthe system and the
control variables. After the GRNN-based model is trained, it can be used to
determine control inputs. One way in which the neural network could be used to
control asystemisshowninFigure 11.

The GRNN is not trained in the traditional neural network sense where weights
are adjusted iteratively. Rather, all training data is stored in memory (thus the term
memory-based nefwork)and only when the outputis necessary foradifferentinput

Figure 11: A GRNN controller
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Table 1: Vector prototype for each control input

Control Inputs State Vanables
Collective AT
Longitudinal cyclic 0p,%,1,0,q}
Lateral cyclic {5c,y,v,¢,p}
Pedals Bas0.rt

anew computation is performed. In controlling the helicopter each data training is
avector with theinput variables and the corresponding output foreach controller.
Only the samples that represent the cluster centers are used to populate the
network. Thereduction of training dataused by the GRNN isanimportantproblem
becanse we can obtain a faster controilermaintaininga good performance. [tisalso
possible to separate the obtained representative clusters' center, for example, in
two datasets for the coarse and fine control.

To control the helicopter flight mode in hover position, four data sets
corresponding to each input control were used. In each data set exists a set of
vectors that correspond to the representative clusters obtained after the clustering
algorithm isapplied. The vector structure in each datasetis given in Table 1.

SIMULATED RESULTS

Anexperiment was performed to determine the extent to which performance
ofthe clustering algorithm degrades with less training data. Figure 12 shows the
output of the sine function and the model when the identification procedure was
carried out for only nine patterns instead of the fifty-five used to represent the sine
function.

Figures 13 and 14 showthe openloopresponses ofthe helicopterdisplacements
and euler angles corresponding to impulse control inputs in the Jongitudinal and
lateral cyclic. Firstit was applied an impulse in thelongitudinal control and thenin
thelateral control input. Theinitial conditions forthe helicopter model are as follows:

ug =0, Vo ZO,WO =0, 1;?)0 =-0.0576, 90 =0.0126, @y = a.

Theinitial conditions corresponding to the derivatives ofthe state variables
described aboveare zero.
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Figure 12: Output of sine function (solid line) and of GRNN model (dotted
line) after training with only nine patterns
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Figures 1510 23 shows the systemresponse using the GRNN controller using
the data set for each controller. Each dataset contains the representative clusters
obtained afterthe clusteringprocess. Figures 15 to 17 showthe displacement ofthe
helicopterinthelongitudinal, lateral and vertical axis, respectively. These three
Figures show that the higher displacement changes occur inthe forward and lateral
axisrather thanin the vertical axis. This happens becausethe impulse control inputs
wereappliedtothelongitudinal and lateral cyclic which are thecommandsto control
the forward and lateral displacements ofthe belicopter.

Figure 18 showsthe trajectory of the helicopterin the 2D plan. The arrows
indicate the direction ofthe helicopter displacement after applied impulses in the
control inputs. Afterapproximately five minutes the helicopter is stabilized in the
initialposition(ie. x =y =2z =0).

Figure 13: Simulated results of (x,y,z) to an impulse control input, in the
longitudinal cyclic
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Figure 14: Simulated results of (¢,0,¢) to an impulse control input, in the

longitudinal cyclic
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Figure 19showstheroll, pitchand yaw angles. Even whentheinitial conditions
oftherollandpitchanglesare different fromzero, these angles stabilize, permitting
the control ofthe helicopter.

Figures 20 t023 show the control inputs applied to the helicopter. The control
inputs were limited to+5V for simulate practical limitations ofthe actuators. Since
the higher perturbation occurs in the longitudinal and lateral displacements than it
was the longitudinal and lateral cyclic control inputs the actuators with higher
performance.

Figure 15: Simulated results of x for an impulse control input, in the
longitudinal and lateral cyclic
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Figure 16: Simulated results of y for impulse control inputs, in the
longitudinal and lateral cyclic
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Figure 17: Simulated results of 7 for impulse control inputs, in the
longitudinal and lateral cyclic

0025,

0.02|\

oLp15}

po0s | \

Verical Displacement [ff]
k=)
2

50 il 150 200 250 300
Time [sec]

Sinceforeach flight mode itcan beused one distinct GRNN controller, then
itisnot necessary to reduce the number of clusters. Each controllerhasaclusterset
thatrepresents the dynamic behavior ofthe helicopter for the specific flight mode.

CONCLUSIONS

To control the displacement of a single main rotor helicopter of a 15,000-
pound using the longitudinal, lateral and collective control inputs, three GRINN
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Figure 18: Trajectory of the helicopter in the (x,y) plan
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Figure 19: Simulated results of (9,0,¢) to an impulse conirol input, in the
longitudinal and lateral cyclic
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controllers have been used. The direction ofthehelicopternose was controlled by
the pedals control inputusing another GRNN controller. With these controllers it
was possible to enable the helicopter to maintain its stationary position foralong
period oftime. The advantage ofthe GRNN controlleristhe fast-learning capability
andthenoniterative process. Formany gathered training instances, the computation
amountbecame large. Therefore, to overcome this problemaclustering algorithm
wasimplemented.
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Figure 20: Simulated result of the collective control input
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Figure 21: Simulated result of the longitudinal cyclic control
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FUTURE DIRECTIONS

A fuzzy algorithm canalso control the helicopter, Fuzzy rule base systems are
linguistic in nature and can be inspected by ahuman expert. However, GRNNand
fuzzy algorithms could be used together, Fuzzylogic gives acommon framework
for combining numerical training data and expert linguisticknowledge along with the
compact transparency and computational efficiency ofrule bases, whilethe GRNN
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Figure 22: Simulated result of the lateral cyclic control
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Figure 23: Simulated result of the pedals control
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gives the approach rapid adaptive capability. For this reason, one of the future
research directions may be the hybrid fuzzy logic/GRNN approach.
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Chapter 1V

A Biologically Inspired
Neural Network Approach
to Real-Time Map Building

and Path Planning

SimonX. Yang
University of Guelph, Canada

ABSTRACT

A novel biologically inspired neural network approach is proposed for real-
time simultaneous map building and path planning with limited sensor
information in a non-stationary environment. The dynamics of each neuron
is characterized by a shunting equation with both excitatory and inhibitory
connections. There are only local connections in the proposed neural network.
The map of the environment is built during the real-time robot navigation
with its sensor information that is limited to a short range. The real-time robot
path is generated through the dynamic activity landscape of the neural

network. The effectiveness and the efficiency are demonstrated by simulation
studies.

INTRODUCTION
Real-timepathplanning with collision free in a non-stationary environment is
averyimportantissue in robotics. There arealot of studies on the path planning for
robots using various approaches. Mostofthe previous models use global methods
tosearch thepossible pathsin the workspace (e.g., Lozano-Perez, 1983; Zelinsky,

Copyright © 2003, Idea Group Inc.
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1994; Al-Sultan & Aliyu, 1996; Li & Bui, 1998). Ongand Gilbert (1998) proposed
anew searching-based model forpath planning with penetration growthdistance,
which searches over collision paths instead of the free workspace. Most searching-
based models can deal with static environment only and are computationally
complicated when the environmentis complex. Some oftheearly models deal with
staticenvironmentonly, and may suffer fromundesired localminima (e.g., [lari &
Torras, 1990; Zelinsky, 1994; Glasius etal., 1994). Some previous robot motion
planningmodels require the prior information of the non-stationary environment,
including the varying target and obstacles. Forexample, Chang and Song (1997)
proposed a virtual force guidance model for dynamic motionplanning ofa mobile
robotinapredictable environment, where an artificial neural network is used to
predictthe future environment through arelative-error-back-propagation learning,

Several neural network models were proposed to generate real-time trajectory
throughlearning {e.g., Li& Ogmen, 1994; Beom & Cho, 1995; Glasius etal., 1994;
1995; Zalama, Gaudiano & Lopez Coronado, 1995; Chang & Song, 1997,
Gaudiano etal., 1996; Yang, 1999; Yang & Meng, 2000a, 2000b, 2001). The
learning based approaches suffer from extracomputational cost because of the
learning procedures. Inaddition, the planned robot motion using learning based
approachesis notoptimal, especially during the initial learning phase of the neural
network. Forexample, Zalamaetal. (1995) proposed a neural network model for
the navigation of amobile robot, which can generate dynamical trajectory with
obstacle aveidance throughunsupervised learning,

Glasiusetal. (1995)proposed aneural network model for real-time trajectory
formationwith collisionfreeinanon-stationary environment. However, thismodel
suffers from stow dynamics and cannot perform properly in a fast changing
environment, Inspired by Hodgkinand Huxley’s (1952) membrane equation and
the laterdeveloped Grossberg’s (1988) shunting model, Yang and Meng (2000a)
proposed a neural network approach to dynamical trajectory generation with
collision freeinanarbitrarily changing environment. These models are capable of
planningareal-time optimal pathinnon-stationary situations withoutany learning
process. Butthe planned pathsin Glasius etal. (1995)and Yangand Meng (2000a)
do nottakeinto account the clearance fromobstacles, whichis demanded inmany
situations. By introducing inhibitory lateral connectionsin the neuralnetwork, Yang
and Meng (2000b) proposed a new model for path planning with safety
consideration, which is capable of generating a “comfortable” path fora mobile
robot, without suffering eitherthe “too close” (narrow safety margin) or the “too far”
(waste) problems. However, the models in [lari and Torras (1990), Zelinsky
(1994), Zalamaetal. (1995), Glasius etal. (1995)and Yang and Meng (2000a,
2000b) assume that the workspace is known, which is not practically feasible in
many applications.
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In this chapter, anovelbiologically inspired neural network approach, based
onthe modelin Yang and Meng (2000b) for path planning of mobilerobots with
completely known environment, is proposed for real-time simultaneous map
building and pathplanning of mobile robots in a dynamic envirenment, where the
environmentis assumed completely unknown, The state space ofthe topologically
organized neural network is the Cartesian workspace, where the dynamics ofeach
neuronischaracterized by a shunting equation that was derived from Hodgkin and
Huxley’s (1952) membranemodel for abiological system. The robotnavigationis
based onthe target location, and robot sensor readings that are limited toa short
range. Thereal-time robot path is generated from the neural activity landscape of
the neural network that adapts changes according to the targetlocation and the
known map ofthe workspace. A mapoftheenvironmentisbuiltinreal timewhenthe
robot is moving toward the target, where the sensorreadings are obtained from the
onboardsensors of the mobilerobotthatare limited toa certain local range only.

THEMODEL
Inthis section, the originality ofthe proposed neural network approach is
briefly introduced. Then, the philosophy ofthe proposed neural network approach
andthe model algorithm are presented. Finally, thestability of the proposed model
isprovenusing both qualitative analysisandaLyapunov stability theory.

Originality

Hodgkinand Huxley (1952) proposed acomputational model forapatch of
membrane inabiological neural systemusingelectrical circuit elements. This
modeling work, together withother experimental work; led them to a Nobel Prize
in 1963 fortheir discoveries concerning the ionic mechanisms involvedinexcitation
and inhibitioninthe peripheral and central portions of the nervecellmembrane. In
Hodgkinand Huxley’s (1952) membrane mode], the dynamics of voltage across
the membrane, ¥, is described using a state equation technique such as:

dv,
Cm d;” = 7(Ep +Vm)gp + (ENa +Vm)gNa 7(EK +V"")gK (l)

where C_isthe membranecapacitance. Parameters £, £, and £ are the Nemnst
potentials (saturation potentials) for potassiumions, sodiumions and the passive
leak current inthe membrane, respectively. Parameters g, g, andgp represent the
conductance of potassium, sodiumand passivechannels, respectively. Thismodel
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provided the foundation ofthe shuntingmodel and led to a lot of model variations
and applications (Grossberg, 1988).

BysettingC =1, substitutingx =E +V , 4 =2, B= E tE, D= E-E,
S7=g, andS’ =g, inEqn. (1),atypical sﬁunting equationis obtained (Ogmen
& Gagne, 1990a, 1990b) as:

B ot r (B RIS (DRSO @

where variablex is the neural activity (membrane potential) of the i-thneuron.
Parameters A, B and D are non-negative constants representing the passive decay
rate, the upper and lower bounds of the neural activity, respectively. Variables S¢
and §are the excitatory and inhibitory inputs to the neuron (Ogmen & Gagne,
19902, 1950b; Yang, 1999). This shunting model was firstproposed by Grossberg
to understand the real-time adaptive behavior of individuals to complex and
dynamicenvironmental contingencies (Grossberg, 1973, 1982, 1983,1988), and
hasalotofapplicationsinbiological and machine vision, sensory motorcontrol,and
many other areas (e.g., Grossberg, 1982, 1988; Ogmen & Gagne, 19904, 1990b;
Ogmen, 1993; Zalamaetal., 1995; Gaudiano etal., 1996; Yang, 1999).

Model Algorithm

The fundamental concept of the proposed model is to develop a neural
network architecture, whose dynamic neural activity landscape represents the
limited knowledge of the dynamically varying environment from onboard robot
sensors. By properly defining the external inputs from the varying environmentand
internal neural connections, the target and obstacles are gnaranteed to stay at the
peakand the valley ofthe activity landscape ofthe neural network, respectively. The
target globally attracts the robot inthe whole state space through neural activity
propagation, while the obstacles have only local effectinasmallregionto avoid
collisions and toachieve the clearance fromobstacles. The real-time collision-free
robot motion is planned through the dynamic activity landscape of the neural
network.

Theneural networkarchitecture ofthe proposed modelisa discrete topologically
organized map thatisused in several neural network models (Glasius etal., 1995;
Yang & Meng, 2000a, 2000b). The proposed modelis expressed in a finite (F-
)dimensional (F-D)state space, which can be either the Cartesian workspace or
the configuration jointspace of amulti-joint manipulator. The location ofthe i-th
neuronatthe gridinthe -D state space, denoted by avector g, R”, represents
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apositionin the workspace oraconfiguration in thejointspace. The target globally
attracts the robot through neural activity propagation, while the obstacles push the
robot only locally in a small region to avoid collision. To take into account the
clearance fromobstacles, there areboth excitatory and inhibitory lateral connections.
The dynamics of the i-th neuron in the neuron network is given by a shunting
equation:

%_=_Ax+(5 x)[[j] +2 [x,]] (D+x,)[[fg]'+zvg[x;—0]] 3)

where the excitatory and inhibitory inputs are [/ + Z wylx,]" and (77 + Z""u[x;]
respectively. Theexternal input tothe i-thneuron is deﬁned as:I=F, 1fthercls
atarget; I = —E, if there is an obstacle; I =0, otherwise, whereF1s avery large
positive constantover its total lateral input. Unlike those modelsin Yangand Meng
(20002, 2000b) where the whole environment is assumed tobe completely known,
the proposed model assumes thatinitially theenvironment is completelyunknown,
exceptthattherobotknowsthe targetlocation. Thus the external input 7 depends
on the known information ofthe environment from its onboard sensors whose
capacityis limited toacertain localrange. A map oftheenvironmentis building from
the sensorinformation during the real-time robot navigation.

The function [a]" is a linear-above-threshold function defined as, [a]*=
max(a,0), and the non-linear function [a]" is defined as [a] = max(-a,0). The
weights ofthe excitatoryand inhibitory connections, wandv,, fromthei-thneuron
tothej-th neuronare defined as:

1"’:;=f(|qu"%|)andvg=:8wg 4)

respectively, where $isa positive constant, ¢ [0,1],and |g,-g f| representsthe
Euclidean distance between vectors ¢, and g, in the state space. Functionf{a)isa
monotonically decreasing function, such as a function defined as: f{a)=t/a,if0<
a<rg;fla)=0,ifa > r, where 1 and 7, are positive constants. Therefore, it is
obvious thatthe neural connection weights w and v, are symmetric. Theneuron
hasonly localconnections inasmallregion (0,7}, i.e., its receptive field isthe space
whosedistance to the i-th neuron is less than 7. The neurons located within the
receptive field of the i-th neuron are referred as its neighboring neurons. The
parameter £isthe total mumber ofneighboring neurons of the i-th neuron. Parameter
ois the threshold ofthe inhibitory lateral neural connections. The threshold ofthe
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Figure 1: Schematic diagram of the neural network for robot path planning
when the state space is 2D; the i-th neuron has only 8 lateral connections to
its neighboring neurons that are within its receptive field

.-

excitatory connectionsis chosen as a constant zero. A schematic diagram of the
neural network in2D is shownin Figure 1, wherer, is chosenas #,=2. Thereceptive
field of the i-th neuron isrepresented by a circle with aradius of7,.

Theproposed neural network characterized by Eqn. (3) guarantees that the
positive neural activity can propagate to the whole state space. However, the
negativeactivity stays locally only in a small region, due to the existence of the
threshold cofthe inhibitory lateral connections. Therefore, the target globally
influences the whole state space to attract the robot, while the obstacles have only
localeffecttoavoid collision. Inaddition, by choosing different Sand/or cvalues,
the Jocalinfluence fromthe obstaclesis adjusted, and a suitable strength of clearance
from obstacles is selected. Therefore, the proposed model is capable of planning
the shortestpath from the starting position to the target, ora saferpath, orthe safest
path, depending on the differentrequirement.

The positions of the target and obstacles may vary with time. The activity
landscape ofthe neuron network dynamically changes due to the varying external
inputs and the internal lateral connections. The optimal pathis generated fromthe
dynamicactivity landscape by a gradientascentrule. Fora givenpresent position
in the workspace or in the robot manipulator joint space, denotedby g , the next
positiong_(alsocalled “command position™) is obtained by:
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p,=x, = max{xj,j =1,2,...k} &)

where kisthe numberofthe neighboring neurons, i.e., all the possible next positions
ofthe presentposition q, Afterthe present positionreaches its next position, the
next position becomes a new present position. The present position adaptively
changes according to the varying environment. The speed of the robot can be
definedas afunction ofits distance to the nearest obstacle, €.g., a function defined
as:

v, ifd2d,
Y7 v did,, otherwise ©

where v_is the maximum robot speed, 4 is a positive constant and d is the
Euclideandistance from robot to its nearest obstacle.

The dynamic activity landscape of the topologically organized neural network
isused to determine where the nextrobot position should be. However, when the
robotmovesto thenextpositionis determined by therobotmoving speed. Inastatic
environment, the activity landscape ofthe neural network willreach asteady state,
which will later be proven using the Lyapunov stability theory. Mostly the robot
reaches the target much earlier than the activity landscape reaches the steady state
oftheneural network. When arobotis inadynamically changing environment, the
neural activity landscape will never reach a steady state. Due to the very large
external inputconstant E, thetargetand the obstacles stay atthepeak and the valley
of the activity landscape of the neural network, respectively. The robot keeps
moving toward the target with obstacleavoidance till the designated objectives are
achieved.

Stability Analysis

In the shunting modelinEqn. (2) and (3), the neural activity x increasesata
rate of (B—x )S;7, whichisnot only proportional to the excitatory input Sy, butalso
proportional toan auto gaincontrol term (8 —x ). Thus, withan equal amount of
input Sf, the closerthe values ofx , and B are, the slower X, increases. Whenthe
activityx isbelow B, theexcitatory term ispositive, causingan increase in the neural
activity. Ifx isequal to B, the excitatory term becomes zero, andx, willno longer
increase no matter how strong theexcitatory inputis. Incasetheactivity x exceeds
B, B -x becomes negative and the shunting term pulls x back to B. Therefore, x,
is forced to stay below B, the upper bound of the neural activity. Similarly, the
inhibitory term forces the neural activity to stay above the lower bound —-D.
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Therefore, once the activity goesinto the finite region [-D, B], itis guaranteed that
the neural activity will stay inthis region forany value ofthe total excitatory and
inhibitory inputs (Yang, 1999).

The stability and convergence ofthe proposed model can also be rigorously
provenusingaLyapunov stability theory. From the definition of [}, [e] andv,,
Eqgn. (3)isrewritten into Grossberg’s general form (Grossberg, 1988):

dx. N
E:a(xi) a(x;‘)_;cyd('xi) (7
bythe following substitutions:
B B-x, ifx;20
= Dex ifx, <0
1 + - + -
b(x) =——(BULY - CLLT — (4+ LT +[7.])x,)
a,(x;)
€y =~ W,
and
X;, ifo.ZO
d (x;)=<p(x;-0), ifx, <o
0, otherwise

Since theneural connection weightissymmetric, W, =W, thenc 2 =S (symmetry).
Since Band Darenon-negative constants and x € [-D, B}, thenai(xi) then a(x )
2 0 (positivity). Since d’j(xj) =1 at X;> 0; d’j(xj) = atx,>o; and d’j(xj) =0,
otherwise,then dj(xj) 2 0 (monotonicity). Therefore, Eqn. (5) satisfiesall the three
stability conditions required by Grossberg’s general form (Grossberg, 1988). The
Lyapunov function candidate forEgn. (7) canbe chosen as:

v= 2 [0, 0,y Ve () ) )

JH=l
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Thederivative of v alongall the trajectories is given as:

N N
v —> ad(b,-> c,d,Y
df i=l j=1

Sincea,20andd;’ =0, thendv/dr<0along all the trajectories. The rigorous proof
of the stability and convergence of Eqn. (7) can be found in Grossberg (1983).
Therefore, the proposed neural network system is stable. The dynamics ofthe
network is guaranteed to converge to an equilibrium state of the system.

SIMULATIONS

To demonstrate the effectiveness ofthe proposed neural network model, the
proposed neural network model for real-time map building and path planning is
applied to aroom-like environment in Figure 2A, where the static obstacles are
shownby solid squares. The target is located at position (30,30), while the starting
position of the robot is at (4,4). The neural network has 50x50 topologically
organized neurons, with zero initial neural activities. The model parameters are
chosen as: 4= 10 and B= D=1 for the shunting equation; i =1, =08, 6=—
0.8andr, =2 for thelateral connections; and =100 for theexternal inputs. Three
cases are cartied out. In the first case, same as the models in Yang and Meng
(20004, 2000b), 1t is assumed that the environment is completely knownby some
additional sensors in the workspace. The generated robot path is shown in Figure
2A, where the robotisrepresented by circles. It shows that the robot canreach the
target without obstacle avoidance. The neural activity landscape when the robot
arrives atthetargetlocationis shownin Figure 2A, where the peak is at the target
location, while the valleys are at the obstacle locations.

Inthe second case, the environment is assumed to be completely unknown,
exceptthe targetlocation. The onboardrobotsensors can “see” inalimited range
withinaradiusof R=>5 (seethecirclein lowerrightcorner of Figure 3A). Asshown
inFigure 3A, initially the robotsees some obstacles onits back, but thereare no
obstacles in its front direction toward the target. Thus the robot moves straight
forward to the target. Howevet, when the robotarrives at location (16,16), it starts
to sense the obstacle in its front. When the robot arrives at(18,18), the builtmap
is shown in Figure 3A, where a few obstacles are detected by its onboard sensors,
and the activity landscapeis shown in Figure 3B. The robot is moving toward the
target along a collision-free path; moreand more obstacles were detected. When
the robotarrives at(18,41), the built map and the activity landscape are shownin
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Figure 2: Path planning with safety consideration when the environment is
completely inown--A: the dynamic robot path, B: the activity landscape when
the robot reaches the target
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Figure 3: Map building and path planning with sensor information limited to
a radius or R=3--A and B: the dynamic robot path and the environment map
(A) and the neural activity landscape (B) when the robot arrives ai (18,18);
Cand D the dynamic robot path and the environment map (C) and the neural
activity landscape (D) when the robot arrives at (18,41)
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Figure 3: (continued) (C) the neural activity landscape (D) when the robot
arrives at (18,41)
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Figure 4: Map building and path planning with limited sensor information—
A: therobot path and the built map in same case in Figure 3; B: the robot path
and the built map when there are obstacles suddenly placed in its front to close
to the pate to the target when the robot arrives at (42,41) (marked by an
arrow) in the case in left panel
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Figure 3C and Figure 3D, respectively. The robotcontinues to move toward the
target. The robot traveling path toreach the target and the built map are shown in
Figure3A.

Inthethird case, the condition initially isthe same as in Case 2. However, when
the robot arrives at (42, 41), there are obstacles suddenly placed in front of the
robot, which close the gate forthe robotto reach the target. The robot hastomove
around there, and finally the robot has to move back, passaround the obstacles and
finally reachthe target fromthe otherside. The robot path after the sudden obstacles
wereplaced is shown in Figure 4B. It shows thatthe robotis capable of reaching
the target with obstacle clearance.

DISCUSSIONS

Inthis section, the parameter sensitivity of the proposed neural network model
will be discussed. Then asimple model characterized by an additive equation is
obtained fromthe proposed shuntingmodel by removing theauto gain control terms
and lumping together the excitatory and inhibitory inputs.

Parameter Sensitivity

Parameter sensitivity isavery important factor tobe considered when a model
is proposed or evaluated. An acceptable model should be robust, 1.e., not very
sensitivetochanges inits parameter values. There are only few parameters inthe
proposed model in Eqn. (3). The upper and lower activity bounds B and D, the
receptive field parameter 7, and the external input constant £ are not important
factors. The passive decayrate 4 determines the transient response of the neurons,
which is veryimportant for themodel dynamics, particularly whenthetargetand the
obstacle are varying fast. The lateral connection weight parameter jis alse an
important factor, which determines the propagation of the neural activity inthe
neural network. Therelative inhibitory lateral connection parameter Sand the
threshold of the inhibitory connections odetermine the strength ofthe clearance
from obstacles. They are very important factors as well. A detailed discussion
through description and simulation ofthe model parameters canbe foundin Yang
and Meng (2000b, 2001).

The proposed model isnotvery sensitive to the variations ofmodel parameters
and the connection weight function. Theparameters canbe chosenina very wide
range. The weight function canbe any monotonically decreasing function(Yang &
Meng, 2001).
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Model Variation

Iftheexcitatory and inhibitory connections in the shunting equationin Eqn. (3)
are lumped together and the auto gain control terms areremoved, then a simpler
formcanbe obtained fromEqn. (3):

dax, & . < -
— = —Ax, +1 +ng[xf] —zvy[xj—c] 9)
dt =l =1 ’

E k

Thisisanadditive equation (Grossberg, 1988). The term /, + Z}W.;[I; - Z:;"f;[xj -6l
represents the total inputs to the i-th neuron from the external and internal
connections. Thenon-linear functions[a]",[a] and the threshold ¢ are defined as
the same asearlier in this chapter, which together guarantee that the positive neural
activity can propagate to the whole workspace while the negative activity can
propagate locally inasmallregiononly. Thusthe target globally attracts the robot
in the whole workspace, while the obstacles have only local effects to achieve
clearance from obstacles. Therefore this additive model satisfies the fundamental
concepts of the proposed approach described earlier in this chapter. Itis capable
of simultaneously planning robot path and building environment map in most
sttuations. Fromthe definition of[a]*, [a] and v, Eqn. (9)canbe furtherrewritten
into acompact form as:

ds,
dt

13
=—Ax.+1 + > wdix

whered(x ) is defined in Eqn. (7). The stability ofthis additive model can alsobe
provenusinga Lyapunov stability theory, although itsneural activity does nothave
any bounds. Eqn. (9) canbe rewritten into Grossberg’s general formin Eqn. (7) by
variablesubstitutions. Itiseasy toprove that Eqn. (9) safisfies all the three stability
conditions of Eqn. (7) (Grossberg, 1988; Yang, 1999, Yang & Meng, 2001).
Therefore this additive neural network system s stable.

There are many importantdifferences between the shunting model and the
additivemodel, although the additive model is computationally simpler. By rewriting
theminto the general formin Eqn. (7), unlike the additive model in Egn. (9), the
amplification function a (x ) of the shuntingmodelin Eqn. (3) isnotaconstant,and
the self-signal function b (x ) isnon-linear. The shunting model in Egn. (3)hastwo
auto gain controlterms, (B—x ) and (D+x ), whichresult in that the dynamics of
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Eqgn. (3)remainsensitive to input fluctuations (Grossberg, 1988). Such a property
isimportant forthereal-time robot path planning when the target and obstacles are
varying. [n contrast, the dynamics oftheadditive equation may saturate inmany
situations (Grossberg, 1988). Furthermore, the activity ofthe shunting model is
bounded inthe finiteinterval [-D, B], while the activity in the additive model does
nothave any bounds (Grossberg, 1988; Ogmen & Gagne, 1990a,1990b; Yang&
Meng, 2000a, 2000b, 2001).

CONCLUSION

Inthischapter, anovel biologically inspired neural network modelis proposed

for the real-time map building and path planning with safety consideration, Several
points areworth noticing about the proposed model:

»  The strength of the clearance from obstacles is adjustable. By changing
suitable model parameters, thismodel is capable of planning the shortest path,
or acomfortable path, or the safest path (Y ang & Meng, 20000b).

»  Thealgorithmiscomputationally efficient. The map isbuilt during the robot
navigation, andtherobot pathisplanned through the dynamic neural activity
landscape withoutarny prior knowledge of the dynamic environment, without
explicitly searching over the free space ot the collision paths, withoutexplicitly
optimizing any cost functions and withoutany learning procedures.

»  Themodel can perform properly inan arbitrarily varying environment, even
withasudden environmental change, such as suddenly adding or removing
obstacles.

*  Themodelisbiologically plansible, The neural activity is acontinnousanalog
signal and has both upper and lower bounds. In addition, the continuous
activity prevents the possible oscillations related to parallel dynamics of
discrete neurons (Glasius etal,, 1995; Marcus, Waugh & Westervelt, 1990),

»  Thismodelis notvery sensitiveto the model parameters and the connection
weight function, The parameters can be chosen ina very wide range. The
weight functioncan be any monotonically decreasing function.
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ChapterV

Evolutionary Learning
of Fuzzy Control
in Robot-Soccer

P.J.ThomasandR.J.Stonier
Central Queensland University, Australia

ABSTRACT

In this chapter an evolutionary algorithm is developed to learn a fuzzy
kmowledge base for the control of a soccer micro-robot from any configuration
belonging to a grid of initial configurations, to hit the ball along the ball to
goal line of sight. A relative coordinate system is used. Forward and reverse
mode of the robot and its physical dimensions are incorporated, as well as
special considerations to cases when in its initial configuration, the robot is
touching the ball.

INTRODUCTION
An important aspectof fuzzy logic application is the determination of afuzzy
logicknowledgebase to satisfactorily control the specified system, whether this is
derivable from an appropriate mathematical model or just from system input-output
data. Inherent in this are two main problems. The firstisto obtain an adequate
knowledgebase (KB)forthecontroller, usually obtained from expertknowledge,
and second is that of selection ofkey parameters defined in the method.

Copyright © 2003, Idea Group Inc.
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The KB is typically generated by expert knowledge but a fundamental
weakness with this staticacquisitionis thatitis frequently incomplete, and its control
strategies are conservative. To overcome this one approach is fo construct self-
organising fuzzy logic controllers (Yan, 1994). Theseself-organising fuzzy logic
controllers are used mainly for the creation and modification ofthe rule base. Of
interest is the question ofhow this self-organisation and adaptation canbe carried
outinanautomated fashion. Onewayistoincerporate genefic/evolutionary algorithms
toform genetic fuzzy systems, (Karr, 1991; Thrift, 1991; Cordon, 1995).

Evolutionary learning of fuzzy controllers in a three-level hierarchical, fuzzy
logic system to solve a collision-avoidance problem in a simulated two-robot
system is discussed in Mohammadian (1998a). A key issueis thatof learning
knowledgein agivenlayersufficient foruse imhigherlayers. WeneedtofindaKB
thatiseffective, to some acceptablemeasure, in controlling the robot to itstarget
from ‘any’ initial configuration. One way is to first learn a set of tocal fuzzy
controllers, each KB learned by an evolutionary algorithm from a given initial
configuration within a set of initial configurations spread uniformly over the
configuration space. These KBs can thenbe fused through afuzzy amalgamation
process (Mohammadian, 1994, 1998b; Stonier, 1995a, 1995b), into the global
(final), fuzzy control knowledgebase. Analternative approach (Mohammadian,
1996; Stonier, 1998), is todevelop anevolutionary algorithm to learn directly the
‘final’ KB by itself over theregion of initial configurations.

In this chapter we use this latter approach and incorporate special attributes
tocoverthe difficultcases for control when the robotiscloseand touching the ball.
A relative coordinate system is used and terms are introduced into the fitness
evaluations thatallow both forward and reverse motion ofthe soccerrobot. We
definetherobotsoccer systemn, the design ofthe fuzzy controller, the design ofthe
evolutionary algorithm and finish witha short presentation ofresults for control of
the robot from a far distance from the ball and from configurations close and
touchingtheball.

ROBOTSOCCERSYSTEM

The basicrobot soccer system considered is that defined for the Federation
of Robot-Soccer Association, Robot World Cup (www. fira.ner). All calculations
for vision data processing, strategies and position control of the robots are
performed on a centralised host computer. Full specifications of hardware,
softwareandbasic robotstrategies thatare employed in this type of micro-robot
soccer system can be found in Kim (1998).
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Kinematics
Thekinematics ofa wheelchair-style robotis given by Equation 1 from Jung
(1999).

[vcl [ 1/2 1/2}[%}
—|_ 1)
@ VL L],
where v, is the instantaneous speed at the left wheel of the robot, v, is the
instantaneous speed at the right wheel of the robot, L is the wheel base length, v,
istheinstantaneous speed of therobotcentre, wistheinstantaneousangular speed
about the instantaneous point of rotation (x, ¥,). The radius of the arc 7 is
determined from v =7 (o, which is the distance between (x,, y) and v,

Let the next robot position be approximated by a small time interval At,
Assumev, and v, are constant over thisinterval, If w =0, therobotismovingin

astraight line. Equation 2 gives the nextrobot positionusing linear displacement
As = v AL

X, Xx As cos(¢y)
Yy ;&' = | yp |+ | As sin(g,) )
N Y o

Figure 1: Curvilinear formulae symbols
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When w0, the robot scribes an arc. Curvilinearrebotpaths arecalculated

using translation, rotation and translation Equation 3. Refer to Figure 1 for the
followingderivation:

First, determine the pointofrotation (x, y,):
[xo :| [xk] [COS(Q?R —n /2)} [x}e ] [_Sm(¢3)]
= -r| . = +7
Yo Yr sin(¢, —7/2) Yr cos((,)
Translate pointofrotationto origin:
[x}e} _ |:an _|:x0:| _ ?‘[ Sin(‘pﬁ)]
yf? Yel LYo —c0s(¢r)
Rotateaboutthe z-axis (counter-clockwise positive).
xi | | cos(aB) sin(Af) | x; | . sin(g, + AQ)
vi| | -sin(A8) cos(AB) || yi | | -cos(g, +A8)
Translate origin to peint of rotation:
-G
Vi Vol Ly Yr] | —cos(¢r +A0)+cos(d;)

Fimishoffby adding in robot angle correction:

X, Xp sin(p, + AQ) —sin{g,) O] ~

Ve | = | vp | + |—cos(@, +A8) cos(p,) 0|l r @
QDJ.! Pr 0 0 1| AE
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where ¢, € [0,2n)1s necessarily constrained for input into the fuzzy system. The
following parameter values were used: L=68.5(mm), At=1/60(s) At = 1/60(s).

Theplayableregion wasdefined as arectangle from coordinate (0,0)to(1500,1300)
(measurements inmm, ), ignoring the goal box at each end of the field.

FUZZY CONTROLSYSTEMDESIGN

Thediscussiononkinematicsabove shows, excludingmomentumand friction,
thatonly two variables, the velocity ofthe leftand right wheels,y =v, andy. =
v, control the motion of the robot. Thesetwo variables aretaken as outputof the
fuzzy confrol system now described below. Inputvariables for the fuzzy control
system aretaken to be the position of the robotrelative to theball, described by n
= 3 variables x, = d”, x, = 0 and x, = ¢ as shown in Figure 2.

These relative coordinates were used in preference to Cartesian coordinate
variables foranumberofreasons, onebeing thatitreduced the numberofrulesin
the fuzzy KB. Distancesquared was used toreducethe calculation costbynotusing
asquareroot function, effectively applyinga“moreorless”hedge. Theangle ofthe
robotrelative to the ball goal line was used instead of the ball robotline because of
positional errorarising from image capture pixel size in determining the position of
eachobject. The vision system hasan inherent+4.5 mm error caused by pixel size.
Thepixelsize error causes the angle of the line error to be inversely proportional
to the distance between the points used tocalculate the line. However, one ofthe
pointsused tocalculatethe BG lineisatthe centre of the goal line. Theallowable
angle range when close to the goal offsets the error caused in determining the line.
The visionsystemerror has negligible effecton placing theball into the goal when
using BG asareference.

Figure 2: Relative coordinate parameters

Gx.v)
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Figure 3. Fuzzy input sets
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Figure3 showsthe fuzzy inputsetsused todefine the “attack ball strategy.” For
allrules seven setsare defined forbothangles6 and ¢ : VS is Very Small, S is Smalll,
SM is Small Medium, M is Medium, ML is Medium Large, L. is Large and VL.
is Very Large. Five sets aredefined for distance squared: VCis Very Close, Cis
Close, N is Near, F is Far and VF is Very Far.

Thevaluesof y andy, aretakentobe integerslyingintheinterval [-128, 127].
Wetake 256 B, output fuzzy sets each corresponding tocentre y, = —128 + (4 —1)
fork=1,...,256. Inthis case the name of the sets are the same as the output centres
¥, ofthe sets.

The purpose of taking 256 B, output fuzzy sets instead 0f255, B, < [-127,
127], is a technical issue to allow the use of a binary mutation operator in the
evolutionary algorithm. The velocitiesarein factcappedtov,, v, [-127,127]
before transmission to the robots.

Taking alarge number of output sets serves three purposes:

@ Itdoesnotaffectthe computational costofthefuzzy controller; the solutioncan
be as fine as it needs to be.
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() The ¥, are the control values used for the left and right wheel motors -
elimmating conversion.

(i) Ttreduceserratic behaviour ofthe evolutionary algorithm (finercontrol)during
mutation.

Therewere 7x7x5 = 245 rulesinacomplete fuzzy knowledgebase forthis
system. Ingeneral, the /* fuzzy rule has the form:

If(x is 4/ and x, is 4/ and x, is 4])
Then( y,is B/ and y, is B/)

where 4 Jt:’, k=1,2,3 are normalised fuzzy sets for input variablesx, k=1,2,3,
and whereBmf, m=1,2 arenormalised fuzzy sets foroutput variablesy , m=1,2.

Given afuzzyrulebase with Mrules, afuzzy controlleras givenin Equation4
uses asingleton fuzzifier, Mamdani product inference engine and centre average
defuzzifierto determine output variables:

M n
Z .]7,%; H#Ai.r(xi)
= i=1

i=1

ST ey )
=1

F=1 i

Y =

where y/ are centres of the output sets B/,

These values, 490 of them, are typically unknownand require determination
in establishing valid output for controls to each wheel of the robot. Sincethereis
lack of a priori knowledge about the system control, we used evolutionary
algorithms (EAs)(Michalewicz, 1994)to search foranacceptable solution.

EVOLUTIONARY LEARNING

Our objective hereis tolearn arulebase for the control of this system. The
firstproblemis how to formulate the knowledge base asa string in the population.

Each output fuzzy setisrepresented by an integerin the interval [-128, 127].
Wecan form anindividual string P asastringof 2M = 490 consequents (infegers
underthe identificationabove):
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wheres, j=1,2isaninteger in the interval [-128,127].

The population at generation ¢, P(f) =5 :n = 1, ..., N, where ¥ isthe
numberofindividuals in the population. The population atthe next generation P(¢
= 1) wasbuiltusinga full replacementpolicy. Tournamentselection, withzn, being
the tournament size, determined two parent strings for mating in the current
generation. Geometric crossover with probabilityp_was used for generating two
childstrings fromthe parent strings, forinsertioninthenextgeneration’s population.
Ineach string, the integer components werestored astwo’s complement byte-sized
quantities, and binary mutation wasundertaken oneach string in the newpopulation
with probability p_. (Elitism was notused, for it was found to cause premature
convergence ofthealgorithm.)

Fitness evaluation of eachindividual was calculated by scribingapath using the
fuzzy controllerand stopping when either:

(@) iteration(timesteps)reached a prescribed limit(100), or
() thepathexceeded the maximumallowable distance from theball, or
(i) therobotcollides withtheball.

In (iti) careneeds to be takenrecognising the finite size oftherobot. Therobot
isasquare with size of 80 mm and the ball has a diameter 0f42.7 mm. Detecting
acollision oftherobotandballismadeby calculating the distance of the ball centre
(x5 ¥5) = (750, 650) perpendicular to the line in the direction of the robot 4,
passing through the centre of the updated position of the robot (x,, y,), and the
distance oftheballd , projected onto that line. These values are determined as:

d. = I(xﬂ_-xj'e)"'m(J’B_ylﬁ)l
AL =

m*+1

g o 05 —yR) —mlxy — )|
" m? +1

where m isthe gradientoftheline passing throughthe robotcentre, inthe direction
ofthe robot. The followingquantity isused todefineanexclusionregiondetermined
bythe physical size of the robot:

Aflag “HitBall” israised when the following condition is true:
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IF(((d,; <40)AND(d, < 61.35))OR ((dy; < 61.35)

AND(d,, < 40))OR(r. < 61.35*))THEN (HitBall=TRUE)
where, 7 =(d , — 40)* +(d,, - 40).

The final position ofthe path was used toevaluatethe fitness of each individual
asgivenby Equation 5;

;(T.+Tz+Ts+ﬂ) )

The fitness iscalculated as asum ofanumber of different quantities, overaset
Cofinitial starting configurations, each configuration specifying robotcoordinates
X, Yq.andangle ¢ describing the orientation of therobotrelativetothe BG line.

There were273 initial configurations. The first 28 are defined with the robot
touching the ball on each ofits four sides in seven different orientations & around
theball. Theremaininginitial configurations were definedwithsevenOangles on five
distance rings from the ball with seven ¢ angles.

The first 28 configurations c e [0, 28), are givenby:

X, = X5 +61.35 cos(8), y, =y, +61.35 sin(B), and ¢ with:

e {0,7/3,2n/3,7,4r /3,57 /3, 71z /36} ,and p € {0,7 /2,7, 37 /2}.
Theremaining initial configurations ¢ [28,273),are givenby:

X, =Xp +d cos(B), ¥y, =y, +d sin(@),and ¢ with:

d e §77.92,122.75,310.4,784.94,1900} ,
e {0,n/3,2n/3,n,47 /3,57 /3, 71z / 36},
¢e {0,m/3,2n /3,7, 47 /3,57 /3,717 /36}.

The firstquantity inthe fitness sumis T, =d*(R, DP). Itis the final squared
distance between the robot centre R and the destination point DP=(688.5, 650)
when the path is terminated as described above. The term is used to determine
accuracy of the fuzzy controller to control the system to the desired destination

configuration,



Fuzzy Contral in Robol-Soccer 97

Thesecondterm 7, is the iteration count for each path. This quantity is used
to minimise the timetaken toreach the desired destination configuration.

Thethirdquantityis 7,=1000sin*(¢ ) where ¢ is the finalangle ofthe robot

relativetoline BG . Thistermisincludedtoenable forward facingandreverse facing
solutions tobeaccepted atthe final destination,

The fourth quantity 7, is a penalty function that is only applied for those
configurations ¢ € [0, 28). Itis described in Equation 6:

10000 if 6e[11x/12,137/12) and sin’(g)>0.25
T, =410000 if 6e[11%/12,132/12)
0 otherwise

(6)

Itis aconstant penalty used todrive the solution away from paths that hit the
ball when consideringthe first 28 initial configurations. Withoutthis penalty, the best
solutions obtained via evolutionary learning are invariably ones that try torun
throughtheball.

The evolutionary algorithm was terminated after a prescribed number of
generations. Thebestindividual, thatis, the one with the minimum fitness, is taken
as the “best” fuzzy logic controller determined by the algorithm for this problem.

RESULTS

Theevolutionary algorithmwas found toeasily leama fuzzy controller for when
fitness was evaluated forasingle initial configuration.

Establishing learning over a set ofinitial configurations from c=0to c=28
where the robot was placed in contact with the ball was difficult; appropriate sets
ofevolutionary parameters needed tobe defined with a mutation schedule toensure
diversity inthe population atdifferentstagesinthe leaming, forexample afterevery
1,000 generations. The reason for the difficulty was that the algorithm tended to
lock fuzzy control into always forward or always reverse motion of the robot, with
the consequence that not the shortest distance path was achieved, and invariable
penalty constraints were broken.

Learning the fuzzy control overthe setofall configurations incorporated the
difficulties thathad to be overcome forthose configurations close tothe ball. The
algorithmtendedto lockinto local mmima whenconsideringmultipleconfigurations.
Thelocal minima existed due to the atgorithm finding a good single path amongst the
many thatinfluenced nearby paths.
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Typical values in simulations were: the size of the population N =200,
prebability of cressoverp_ =0.6 and the number of tournament contestants 7, =
8. Mutation probability was defined asaschedule: p. =0.05 —0.00048(gen mod
(1000)), which decreased mutation with increasing generation number and
recommenced with high mutation every 1,000 generations. The evolutionary
algorithm was usually run for batches of 10,000 generations.

Due to limited space we present here a few results obtained from the
evolutionary learning ofthe knowledge base, two examplesshowing the control of
the robot from a large distance from the ball, and two showing control of the robot
touchingtheball.

Learning of the Fuzzy Control at a Distance

Figure4(a)shows thepath from initial configurationc=175. For thisinitial
configuration the robot is placed to the far right of the ball and on the ball to goal
line. Ittook 53 time steps to reach the destination point D# with a final angle of
¢(rad).

InFigure4(b)thepath from initial configurationc=199, with the robot to the
far left, facing away from the ball onthe ball to goal line, took just 31 time steps to
reach the destination point DF with afinal angle of ¢ ( rad ). Notethatin both
cases the robot approached the destination in reverse mode.

These graphs aretypical ofthe fuzzy control of therobot starting from initial
positions ata“large” distance fromthe ball. Destinationand final angleaccuracy
wasexcellent. Evolutionary learning was quite rapid, with acceptable solutions
resulting in smooth paths to the destination started appearing withina few hundred
generations. Further learning resulted in faster control to the destination.

Figure 4. Long distance paths

B(750,650), G(1500,650), ¢175(1534.94,650,0), DP(688.65,650). ileration=53
(a)

k

B(750.650), G{1500,650), ¢199(-34.94,650,7), DP{688.65,650), iteralion=31
(b
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Learning of Fuzzy Contrel Close to the Ball

Learning of the fuzzy control of'the robot close to the ball was more difficult.
Figure 5(a) showsthe path from inifial configuration c= 1 whichtook 19time steps
toreach the destination point P with final angle of 0 (rad). In Figure 5(b) the
pathfrom theinitial configuration c=13 took 24 time steps toreach the destination
point DP with afinal angle of 0 (#ad). In both cases therobot approached the
final destination in forwardmode.

Thestartinginitial configurationsin which therobotwastouching the ball were
the most difficultto learn, for they were responsible for the majority of thepenalty
functionevaluations mthefitness calculations foreachindividual oftheevolutionary
algorithm. The hardest initial configurationtolearnwase=13.

COMMENTS

This chapterdetailed the learning of a fuzzy logic controller to control asoccer
robotto a pointbehind the ball in the direction ofthe goal by using anevolutionary
algorithm. Learning of asingle robot path was very easy. However, learning of
several paths formdifferent initial configurations caused many difficulties.

Several starting configuration evaluations caused the final approach of all paths
tobe either forward or reverse facing. Toachieve the final approachheading, the
evolutionaryalgorithmlearnt to usechatterand highmomentumn turns. arestriction
onturning wasapplied, thealgorithm learntto execute low momentum turns.

The cause ofthese difficulties wasidentified as:

(@) Insufficientnumber ofinputs tothe fuzzy system, therule base could not cater
foralloftheinformationneed tocontrol the robot to forward andreverse facing
solutions.

() Multi-criteriaoptimisationproblems caused by summingall terms fromall path
evaluations forming the fitness value.

Figure 5: Short distance paths

c¢001(R11.35,650.7/2), c013(688.65,630,n/2),
iteration=19 iteration=24

(@) ()
B(750.6501. G(1500.650). DP(688.65.650)
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NEWRESEARCH

The research presented here has since been extended and a brief description
is given, The full analysisandresults willbe published elsewhere.

The number of input variables for the given problem was extended to include
leftwheel and right wheel velocities, with the number of membership sets for each
variable extendedto 7, yielding 7° = 16807 rules inthe complete fuzzy knowledge
base.

The output variables were changed from left and right wheel velocities fo
changes inthese velocities, namely: Av, and Ay, with final wheel velocities v/, =
v, + Ay, and v, = v, + Av,. The number of output member sets was reduced to
eight B, € [-28,28],£k=0,..., 7.

The number of initial configuration was increased toa grid: x=-750+ 100(k
-lfork=1,..,31andy=-650+ 100k — 1) for k=1, ..., 27 excluding the
ball position. Eachgrid pointhas fiveangles: 8 = 2(k —1)x /5 fork=1,...,5. The
total number of initial configurations is therefore C=5(31 x27 -1)=4180. All
initial configurations start with zero, leftand right, wheel velocity.

Each output fuzzy set is represented by an integer in the interval [0, 7]. An
individual string P is now of length 2M =33614 consequents:

s={slsh .. st s .. shsh} where s, j=12 is an integer in the
interval [0, 7].

Evolutionary learning was againused with apopulation of size ¥=2000, full
replacementpolicy, tournament selection with size n,= 3 and one pointcrossover
withprobabilityp =0.6. Elitismwas now used, withthe 10bestindividuals carried
from the old population to the new population. Anincremental mutation operator
with probability p =0.01 replaced the binary mutation used previously. This
mutation operator increments/decrements s, by one with equal probability and has
boundary checking, thatis, if s, =0, it was incrementedto s, =1, and if's, =7, it
was decremented to s, = 6.

The final position of the path was again used to evaluate the fitness of each
individual as given by Lquation 7:

Z(Oflrl + o1, + oL + o,T)) (7)
c

where ¢, = 1.0, &, = 1.0, &, =100.0, &, = 0.0. The weight coefficients for the
firsttwo terms were equal, the terminal angle coefficients washeavily weightedand
constantpenalty was turned off.
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A newlearning forthe algorithm wasimplemented as follows. Theevolutionary
algorithmwasnmsequentiallythroughthe fullnumberofinitial configurations, being
allowed to run for 10 generations at each configuration before moving to the next.
It was stopped after atotal of 500,000 generations in all were completed.

The results obtained in the final “best” fuzzy knowledge were excellent,
obtaining very smooth continuous paths to the target with both forward and reverse
facinginthe final positiondepending onthe initial configuration. Only a very small
number ofaberrations existed, butthe paths to the target were still acceptable. Due

Figure 6: Long distant path
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Figure 7: Short distant path

-
S

—,

B(750, 650), G(1500, 650), ¢2342(950, 350, 47/5),
DP(688.65, 650), iteration = 47




102 Thomas and Stonier

tolimitedreporting space, we show only two ofthe manyimages obtained in Figures
6 and 7. Note one has final approach to the ball forward facing, the other reverse
facing; oneis from a far distance and oneis close to the ball.

Thisresearch is being further extended for initial input left and right wheel
velocities lying inthe full range of admissible values.
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Chapter VI

Evolutionary Learning of a
Box-Pushing Controller

Pieter Spronck, Ida Sprinkhuizen-Kuyper, Eric Postma and Rens Kortmann
Universiteit Maastricht, The Netherlands

Abstract

Inourresearch weuse evolutionary algorithms to evolverobot controllers for
executing elementary behaviours. This chapter focuses on the behaviour of
pushing a box between two walls. The main research question addressed in
this chapter is: how can a neural network learn to control the box-pushing
task using evolutionary-computation techniques? In answering this question
we study the following three characteristics by means of simulation
experiments: (1) the fitness function, (2) the neural network topology and (3)
the parameters of the evolutionary algorithm. We find that appropriate
choicesfor these characteristics are: (1) aglobal external fitness function, (2)
a recurrent neural network, and (3) a regular evolutionary algorithm
augmented with the doping technique in which the initial population is
supplied with a solution to a hard task instance. We conclude by stating that
our findings on the relatively simple box-pushing behaviour form a good
starting point for the evolutionary learning of more complex behaviours.

Copyright © 2003, Idca Group Inc.
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Introduction

Imagine acatonarooftop. Ithasjustspotted ajuicy pigeonsittingonawindow
silland is wondering how to catch this prey. The situation is tricky: there aretwo
routes the cat can take, both of them involving walking on narrow ledges and
requiring daring tricks of balance. The catdecides to take the shortestrouteand tries
to lower itselfonto a ledgebeneath. Whiletryingtodo so, itnotices that the chance
of toppling over and falling three stories down onto a busy shopping street is
becoming increasingly morerealistic. The catnow decides to abandon itsplan and
sets its senses to something morepractical.

Fromatraditional Artificial Intelligencepointof view, this navigation problem
isnotthatdifficult. The start and goal positions are known, the possibleroutes are
clear,andapparently, the cathas developed a plan to catch the bird. However, the
successful executionoftheplan critically depends onthe cat’s low-level interactions
with its environment, rather than its high-level planning capabilities. Hitherto, the
Artificial Intelligence community has given little attention to low-level control
mechanisms (e.g., equilibrium controllers) as compared to high-level controllers
(e.g.,symbolicproblem-solving systems).

Low-level controllers are typically needed forautonomous systems dealing
withelementary tasksin dynamicpartially observable environments. They form the
foundationofhigh-level controllers executingmorecomplex tasksin theenvironment
(Brooks, 1986). Inthis chapter we focus on the elementary task of pushingabox
between two walls. Thebox-pushing task was originally introduced (albeitina
slightly different form) by Lee, Hallam and Lund (1997). Pushing an object is an
important aspect of robot soccer, a modem platform for autonomous systems
research (Asada& Kitano, 1999), and underlies many more complex behaviours
suchastarget following, navigationand objectmanipulation. Whilethedeceptively
simple task of pushing an object is usually disregarded in favour of the seemingly
more challenging task of determining a strategic position, pushingis far from trivial
and deserves at leastas much attention as the strategic task.

The main research question addressed in this chapter is: how can a neural
network learn to control the box-pushing task using evolutionary-computation
techniques? [nanswering this question we study the following three characteristics
bymeans of simulation experiments: (1) the fitness function, (2) theneural network
topology and (3) the parameters of the evolutionary algorithm.

The outline ofthe remainder ofthis chapteris as follows. First, we discuss some
background on the use of neural networks and evolutionary algorithmsin learning
to control arobot. Then we describe the goal ofthe research in terms of the three
characteristics discussed above (i.¢., the fitness function, the neural-network
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topology and the parameters oftheevolutionary algorithm). We givean overview
of the standard procedure used in our simulation experiments, followed by a
presentation and discussion of the results. Finally, we draw conclusions.

Background

This section provides some background on the approach pursued in our
experimentsby discussingtheuse ofneuraland evolutionary computation techniques
incontrollingan autonomousrobot.

Neural networks offer useful models for learning to control antonomous
robots. Although there existmany effective learning algorithms forautomatically
setting the weights ofthe network, mostalgorithmsrequireacarefully prepared set
oftraining examples consisting of pairs of input and desired-output patterns. For
freelymovingrobotsinasemi-realisticenvironment, thepreparation of atraining set
is rather tedious. [t is not uncommon that a set of training examples cannot be
generatedatall. Forinstance, ifthe environment in which the controller has to work
is (partially)unknown, a training setcannottake into accountall the situations that
the controller may encounter.

Analternative way to determine the neural network weights is by employing
evolutionaryalgorithms (Béck, 1996, Yao, 1995). Evolutionary algorithms have
many advantages over regular training methods especially for controlling robots
(Arkin, 1998). Besidesthe fact thatevolutionary algorithms offer theability tolearn
boththe weight valuesand the topology (whereas regular trainingmethods often are
limited to determining only the weight values), the only requirement for evolutionary
algorithmsto workistheavailability ofaso-called fitnessfunction. A fitness function
isanevaluation function indicating therelative success ofone solution compared
to all the others, Such a fitness function can be defined on a set of examples,
comparableto thetraining setused inmostregular training methods. Alternatively,
the fitness functioncanbe defined asthe quality ofthe actual behaviour ofaneural-
network-controlledrobot during atest run, This last form of evolutionarylearning
is called Genetic Reinforcement Learning and was relatively unknown until
Darrell Whitley (1993) introduced it in his experiments with the GENITOR
algorithm.

Themaindisadvantageofevolutionary algorithmsistheirinherentumpredictability
withrespectto the computationtime and the quality of the final solution found. Itis
very hard to predict the time before the algorithm comes up with a satisfactory
solution tothe problem athand,anditis often difficulttojudge whethersignificantly
better solutions are possible (Goldberg, 1989). In view of these limitations, we
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decided to study the application of evolutionary algorithms to a relatively simple
box-pushing task extensivelyinorderto findan optimal configuration for the neural
controllerand the evolutionary algorithm.

Goal

The goal of our study is to find an optimal design of the evolutionary
experiments in order to optimise the quality of a box-pushing controller. In
patticular, our aimis to increase our understanding ofhow to setup the experiments
inan optimal way so that we canbe more effective in designing neural controllers
for more complex tasks.

In the box-pushing task, the robot is faced with the task of pushing a box as
far as possible betweentwo walls inalimited period of time. The inputs ofthe neural
network are the signals received by the robot’s proximity sensors. The output of
the network rotates the wheels of therobot.

Asexemplified in our research question, the following three questions of the
experimental set-up are addressed inour research.

1. What is a suitable fitness function for the evolutionary algorithm? The
fitness functionis ameasurement of the success of asolution proposed by the
evolutionary algorithm, and is the single most important aspect of any
evolutionary systern.

2. Whatis an appropriate neural network topology to solve the box-pushing
task? The main candidates for the neural network are the feedforward and
recurrent network topologies. The main advantage of a feedforward network
is that it is quick and simple to evolve. The main advantage of a recurrent
network is thatithas theability to storeand recall values from previous cycles
oftherobotrun.

3. Whatisaproperchoiceforthe parameters of the evolutionary algorithm?

In the next section, we discuss the experimental procedure followed in
answering these questions,

Experimental Procedure
The Robot
The robot we used in our studies is of the Khepera type (Mondada et al.,
1993). For thistobot a good simulation s publicly available. Controllers developed
with this simulation have showntowork well inpractice. Weused the simulator on
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Figure 1: Screenshot from the Unix Khepera simulator. To the left the robot
world, with the walls (rectangular blocks), the robot (grey circle) and the box
(black circle). Thesmall black spots indicate the starting positions used for the
robot (the lower three spots) and the box (the upper three spots).
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Figure 2: Overview of the Khepera robot

Naural contreller inputs:

Oto7:. Sensor (to 7 distance values.
8: Sensor 0 -1

9: Sensor 1 -2

10: Sensor 2 -3

11: Sensor 3 -4

12: Sensor 4 - 5

13; Sensor 6 - 7

Inputs 8 to 13 are the edge detectors,

its original Unix-platform (Figure 1) and also ported it to a Windows-based
environment called “Elegance” (Spronck & Kerckhofts, 1997), thatisparticularly
suited toexperiment with different configurations for the evolutionary algorithm.
The Khepera robot possesses eight infra-red light and proximity sensors
(Figure2). Inour experiments, we disregarded the light sensorsand only used the
proximity values (except for the experiments for determining a suitable fitness
function). The sensors are numbered clockwise from O to 7 starting from the leftof
the robot. Sensors 2 and 3 point forward, while sensors 6 and 7 pointbackwards.
To control the robot, the two wheels of the robot are supplied with input values
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ranging from—10 to +10 in integer numbers, where the sign of the input value
determines thedirection of rotation ofthe wheels. The robotmoves indiscrete steps
and requires new inputs ateach step.

As canbe seen from Figure 1, the robotis placed within ashort distance from
the box, ¢close to the back wall. In order to move the box as far as possible from
its initial position, the only viablepushing direction istowards the top of the area.
Thetwo walls are rough. The robot mayusea wall as support while pushing the box,
but then has to deal with the roughness that may cause the box to get stuck.

The Controller

Theneural controller we use has 14 inputs. Eight inputsare delivered by the
proximity sensors. The othersix are defined as the differences between the values
ofneighbouring proximity sensors (leaving outthe differences between sensors 5
and 6 and between sensors 0 and 7, because these pairs are too widely separated).
We call these (virtual) sensors “edge detectors,” because they deliver large inputs
when an edge (i.e., a spatial discontinuity in proximity values) isdetected. Ina
mathematical sense, the virtual sensors are redundant. However, in ourearlier

Figure 3: Exploiting the mirror symmetry of the robot to derive a neural
controller for one wheel from the neural controller for the other wheel. The
left network drives the left motor, the right network the right motor. The
network inputs are proximity values derived from the Khepera robot shown
in Figure 2. The neural networks are equal, but the inputs have been moved
around and the signs of the edge-detecting inputs have been switched.
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studies we found them to be beneficial to the evolution process (Sprinkhuizen-
Kuyper, 2001). The use ofedge-detecting inputs is inspired by biological visual
systems which are more sensitive to differences than to the absolute level oflight
intensity. Forinstance, in the human visual system, edge-detecting neurons are
omni-present (Cornsweet, 1970). Detectingedges isan important prerequisite for
visual-guidedbehaviour, and allows the controllertodistinguish the box from the
walls.

Since the robot has twoe wheels, either a neural network with two outputs is
needed, or two separate neural networks are needed. Because of the symmetric
placement of the sensors around the robot (see Figure 2), amirrored copy ofa
neural network that drives one ofthe wheels can be used to drive the other wheel.
The mirrored copy ofthe network requires exchanged inputs for the proximity and
virtual sensors. In addition, the signals delivered by the virtual edge-detecting
sensors have to be negated (see Figure 3). The use of two (almest) identical
networks reduces the number of free parameters considerably which makes the
search forasolutioneasier. The outputofthe neural networksis mapped onto alegal
interval for the motor values by using asigmoid transfer function.

Theneural activation functions employed inourneural controller are defined
as linear functions. Although the use of linear transfer functions inamulti-layer
network does not make much sense from a mathematical viewpoint (amulti-layer
network of linear layers can always be reduced toa single linear-layer network),
preliminaryresultsrevealedonly small differencesin performance withthe (traditional)
non-linear transfer functions (Sprinkhuizen-Kuyper, 2001). It turns out that the
extra layer may help the evolution process by keeping the connection weights
relativelysmall.

The Evolutionary Algorithm

Theevolutionary algorithm used in our experiments works onapopulation of
about 1 00individuals. Tournament selection with size 3 is used to get parents for
the genetic operators. Newly generated individuals are inserted back in the original
population, using acrowding scheme with a factor of 3. Weusedelitismto prevent
loss of the bestsolutions, and theevolution process continues until nosignificant
increase in fitness is visibleany more. Usually this takes 2510 35 generations.

The chromosome representing a neural network consists of an array of
“connection genes.” Fach connection gene representsasingle possible connection
of the network and is defined as a pair of one bit and one real number. The bit
represents the presence orabsence of aconnection and thereal valuespecifies the
weight ofthe connection. During absence, the weight value ismaintained inthe
chromosome which facilitates the evolution process by functioning asa“memory™
forremovedweightvalues.
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Preface

This book covers the recent applications of computational intelligence tech-
niques for modelling, control and antomation. The application of these techniques
has been found useful in problems when the process is either difficult to model or
difficult to solve by conventional methods. There are numerous practical applica-
tions of computational intelligence techniques in modelling, control, automation,
prediction, image processing and data mining.

Research and development work in the area of computational intelligence is
growing rapidly due to the many successful applications of these new techniques
in very diverse problems. “Computational Intelligence” covers many fields such as
neural networks, (adaptive) fizzy logic, evolutionary computing, and their hybrids
and derivatives. Many industries have benefited from adopting this technology.
The increased number of patents and diverse range of products developed using
computational intelligence methods is evidence of this fact.

These techniques have attracted increasing attention in recent years for solv-
ing many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed.
These modem techniques are taking firm steps as robust problem-solving mecha-
DiSmS.

This volume aims to be a repository for the current and cutting-edge applica-
tions of computational intelligent techniques in modelling control and automation,
an area with great demand in the market nowadays.

With roots in modelling, automation, identification and control, computa-
tional intelligence techniques provide an interdisciplinary area that is concerned
with learmning and adaptation of solutions for complex problems. This instantiated
an enormous amount of research, searching for learning methods that are capable
of controlling novel and non-trivial systems in different industries.

This book consists of open-solicited and invited papers written by leading
researchers in the field of computational intelligence. All full papers have been
peer review by at least two recognised reviewers. Qur goal is to provide a book



vifi

that covers the foundation as well as the practical side of the computational intel-
ligence.

The book consists of 17 chapters in the fields of self-learning and adaptive
control, robotics and manufacturing, machine leaming, evolutionary optimisation,
information retrieval, fuzzy logic, Bayesian systems, neural networks and hybrid
gvolutionary computing,

This book will be highly useful to postgraduate students, researchers, doc-
toral students, instructors, and partitioners of computational intelligence techniques,
industrial engineers, computer scientists and mathematicians with interest in mod-
elling and control.

We would like to thank the senior and assistant editors of Idea Group Pub-
lishing for their professional and technical assistance during the preparation ofthis
book. We are grateful to the unknown reviewers for the book proposal for their
review and approval of the book proposal. Our special thanks goes to Michele
Rossi and Mehdi Khosrowpour for their assistance and their valuable advise in
finalizing this book.

We would like to acknowledge the assistance of all involved in the collation
and review process of the book, without whose support and encouragement this
book could not have been successfully completed.

‘We wish to thank all the authors for their insights and excellent contributions
to this book. We would like also to thank our families for their understanding and
support throughout this book project.

M. Mohammadian, R, Sarker and X. Yao
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Chapter 1

Designing Neural Network
Ensembles by Minimising
Mutual Information

YongLiu
The University of Aizu, Japan

XinYao
The University of Birmingham, UK.

TetsuyaHiguchi
National Institute of Advanced Industrial Science and Technology, Japan

ABSTRACT

This chapter describes negative correlation learning for designing neural
network ensembles. Negative correlation learning has been firstly analysed
in terms of minimising mutual information on avegression task. By minimising
the mutual information between variables extracted by two neural networks,
they are forced to convey different information about some features of their
input. Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification
problems. The purpose of examining the decision boundaries and the correct
response sets is not only to illustrate the learning behavior of negative
correlation learning, but also to cast light on how to design more effective
neural network ensembles. The experimental results showed the decision
boundary of the trained neural network ensemble by negative correlation
learning is almost as good as the optimum decision boundary.

Copyright © 2003, Tdea Group Tnc,
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INTRODUCTION

In singleneural network methods, the neural network leaming problemisoften
formulated as an optimisation problem, i.e., minimising certain criteria, e.g.,
minimum error, fastest learning, lowest complexity, ete., about architectures,
Learningalgorithms, suchasbackpropagation (BP) (Rumelhart, Hinton & Williams,
1986), areused as optimisation algorithms to minimise an error function. Despite
the different error functions used, these learning algorithms reduce a learning
problemto the same kind of optimisation problem.

Leamingisdifferent from optimisation because we want the learned systemto
havebest generalisation, whichis different fromminimising anerror function. The
neural network withthe minimumerror onthetraining setdoes notnecessarily have
thebestgeneralisation unlessthereis anequivalence between generalisationand the
error function, Unfortunately, measuring generalisation exactly and accurately is
almostimpossible in practice (Wolpert, 1990), althoughthere are many theories
and criteria on generalisation, such as the minimum description length (Rissanen,
1978), Akaike’s information criteria (Akaike, 1974)and minimummessage length
(Wallace & Patrick, 1991). Inpractice, these criteriaareoften usedtodefine better
error fimctionsinthehopethatminimisingthe functions willmaximise generalisation.
While better error functions often lead tobetter generalisation oflearned systems,
there is no guarantee, Regardless of the error functions used, single network
methods arestill used as optimisation algorithms, They justoptimise differenterror
functions. Thenature of the problem is unchanged.

While there is little we can do in single neural network methods, there are
opportunities inneural network ensemble methods, Neural network ensembles
adoptthe divide-and-conquer strategy. Instead ofusing a single network to solve
atask, aneural network ensemble combines a set ofneural networks which learn
to subdivide the task and thereby solve it more efficiently and elegantly. A neural
network ensemble offers several advantages over amonolithic neural network.
First, itcanperformmore complex tasks thanany of its components (i.e., individual
neural networks in the ensemble). Secondly, it can make an overall system easier
tounderstand and modify. Finally, itis more robustthan a monolithic neural network
and can show graceful performance degradationin situations where only a subset
of neural networks inthe ensemble areperforming correctly. Giventhe advantages
ofneural networkensembles and the complexity ofthe problems thatare beginning
tobeinvestigated, itis clear thatthe neural network ensemble method willbe an
importantand pervasive problem-solving technique.

The idea of designing an ensemble leaming system consisting of many
subsystems can be traced back to as early as 1958 (Selfridge, 1958; Nilsson,
1965). Since the early 1990s, algorithms based on similar ideas have been
developed inmany differentbut related forms, such as neural network ensembles
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(Hansen & Salamon, 1990; Sharkey, 1996), mixtures ofexperts (Jacobs, Jordan,
Nowlan & Hinton, 1991; Jacobs & Jordan, 1991; Jacobs, Jordan & Barto, 1991;
Jacobs, 1997), various boosting and bagging methods (Drucker, Cortes, Jackel,
LeCun & Vapnik, 1994; Schapire, 1990; Drucker, Schapire & Simard, 1993) and
many others. There are a number of methods of designing neural network
ensembles. To summarise, there are three ways of designing neural network
ensemblesin thesemethods: independenttraining, sequential trainingand simultaneous
training,

A number of methods have been proposed to train aset of neural networks
independently by varying initial random weights, the architectures, the learning
algorithm used and the data (Hansen et al., 1990; Sarkar, 1996). Experimental
results have shown that networks obtained from a given network architecture for
differentinitial random weightsofiencorrectly recognize different subsets ofa given
test set (Hansen et al., 1990; Sarkar, 1996). As argued in Hansen et al. (1990),
because each network makes generalisation errors ondifferent subsets ofthe input
space, thecollective decision produced by the ensemble is less likely tobe inerror
than the decision made by any ofthe individual networks.

Mostindependent training methodsemphasised independenceamongindividual
neural networks in an ensemble. One of the disadvantages of suchamethod is the
loss of interaction among the individual networks during leamming. There isno
consideration of whether whatone individual learnshas already beenlearned by
otherindividuals. Theerrorsofindependently trained neural networks may still be
positively correlated. Ithasbeen found thatthecombining results are weakened if
the errors of individual networks are positively correlated (Clemen & Winkler,
1985). In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in aparticular order (Druckeret al., 1993; Opitz
& Shavlik, 1996; Rosen, 1996). Drucker etal. (1993) suggested training the neural
networks using the boosting algorithm. The boosting algorithm was originally
proposed by Schapire (1990). Schapire proved that it is theoretically possible to
convertaweak learning algorithm that performs only slightly better thanrandom
guessing into one that achieves arbitrary accuracy. The proof presented by
Schapire (1990) is constructive. The construction uses filtering to modify the
distribution of examples in such a way as to force the weak learning algorithm to
focus onthe harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow atwo-stage design process: first generating individual networks, and then
combiningthem. Thepossible interactions among the individual networkscamnotbe
exploited until the integration stage. Thereisno feedback fromthe integration stage
totheindividual network designstage. Itispossiblethatsome ofthe independently
designed networks do not make much contribution to the integrated system. In
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ordertouse the feedback fromthe integration, simultaneous training methods train
a set of networks together. Negative correlation learning (Liu & Yao, 1998a,
1998b, 1999) and the mixtures-of-experts (ME) architectures (Jacobsetal., 1991;
Jordan & Jacobs, 1994) are two examples of simultaneous training methods. The
ideaofnegative correlation learningis toencourage differentindividualnetworksin
the ensemble to learn different parts or aspects of the training data, so that the
ensemblecan better learn the entire training data. In negative correlationleamning,
the individual networks are trained simultaneously rather than independently or
sequentially. This provides an opportunity forthe individual networks to interact
with each other and to specialise.
Inthis chapter, negative correlation learmning hasbeen firstly analysed interms
ofminimisingmutual information on aregressiontask. The similarity measurement
between two neural networks in anensemble can be defined by the explicit mutual
information of output variables extracted by two neural networks. The mutual
informationbetweentwo variables, output F ofnetwork i and outputFJ',of network
j.isgivenby

IF,; F) = h(F) + h(F) — h(F,, F) (1)

where A(F ) isthe entropy of ¥, h(Ff) 1stheentropy ofP;j and /(F, Ff) isthe joint
differential entropy of I, andﬁ}. Theequation shows thatjointdifferential entropy
canonly have high entropy ifthe mutual information betweentwo variables is low,
whileeach variable hashighindividual entropy. Thatis, the lower mutual information
twovariables have, the moredifferenttheyare. Byminimisingthe mutual information
between variables extracted by twoneural networks, they are forced to convey
different information about some features of theirinput. Theidea of minimising
mutual information isto encourage different individual networksto learn different
partsoraspects ofthe training datasothatthe ensemblecan learn the whole training
databetter.

Based on the decision boundaries and correct response sets, negative
correlationlearning has been further studied ontwopattern classification problems.
The purpose of examining the decision boundaries and the correct response sets is
notonlytoillustratesthe leaming behaviorofnegative correlation learning, butalso
to cast light on how to design more effective neural network ensembles. The
experimental results showed the decision boundary ofthe trained neural network
ensemble by negative correlation learningis almostas good asthe optimumdecision
boundary.

Therestofthischapterisorganised as follows: Next, the chapter explores the
connections between the mutual information and the correlation coefficient, and
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explains hownegative correlation learningcan be used tominimisemutual informa-
tion; thenthe chapteranalyses negative correlation learning via the metrics ofmutual
information onaregressiontask; the chapterthen discusses the decision boundaries
constructed by negative correlation learning on a pattern classification problem;
finally thechapter examines the correctresponse setsofindividual networkstrained
by negativecorrelation leaming and theirintersections, and the chapter concludes
with a summary ofthe chapter and a few remarks.

MINIMISINGMUTUAL INFORMATIONBY
NEGATIVE CORRELATION LEARNING

Minimisation of Mutual Information

Suppose the output F, of network i and the output F of network ; are
Gaussianrandom variables. Their variances are o *and 6.2, respectively. Themutual
information between £, and . canbe defined by Eq. (1) (van der Lubbe, 1997,
1999), The differential entnopy h(F )and h(F ) are givenby

hT)=[1+ log(2nc)]/ 2 2
and

h(F)=[1+ log(2rnc )]/ 2 3
Thejoint differential entropy A(F", Fj) isgivenby

hF,F) =1+ log(2) + logldet(Z)| C)]
where I is the 2-by-2 covariance matrix of 7, and F,. The determinantof Zis

def(Z)=c}6’(1-p) (%)

where p, isthe correlation coefficientof F and F
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p, =E[(F,~E[F])F,~B[E))]/(c252) ©
Using the formula of Eq.(5), we get

W(F, F) =1+ log(2m)+ log{?s?(1—p,)] /2 7

By substituting Eqs.(2), (3), and (7)in(1), we get

I(F,; F)=—log(1-p})/2 ®)

FromEq.(8), we may make the following statements:
[. IfF,andF areuncorrelated, the correlation coefficient p, isreduced tozero,
and the mutual information /(7 ; Ff) becomes very small.
2. IfF, andFj are highly positively correlated, the correlation coefficient Py 18
closeto 1, and mutual information /(F,; I } becomes very large.
Boththeoretical and experimentalresults (Clemenetal., 1985) haveindicated
thatwhenindividual networks in an ensemble areunbiased, average procedures are
most effective in combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors are uncorrelated.
There islittle tobe gained from average procedures when the errors are positively
correlated. In order to create a population of neural networks that are as
uncorrelated as possible, the mutual information between each individual neural
network andthe restofthepopulation should beminimised. Minimising the mutual
information between each individual neural network and the rest of the population
isequivalenttominimisingthecorrelation coefficient between them.

Negative Correlation Learning

GiventhetrainingdatasetD={(x(1),¥(1)), ..., (x(N),y(N))}, we consider
estimating y by forming a neural network ensemble whose output is a simple
averaging ofoutputs /*,ofa set of neural networks. All theindividual networks in
the ensemble aretrained on the same training data set

Fln) =+ X, Fi(n) ©9)
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where F(n) s the outputofindividual networki ontheath training pattem x (), F(n)
is the output of the neural network ensemble on the nth training pattern, and AMis
the number of individual networks in the neural network ensemble.

The idea ofnegative correlationlearning is to introduce a correlation penalty
termintotheerror function of eachindividual network so that theindividual network
canbe trained simultaneously and interactively. The errorfunction £ forindividual
ionthetraining data set Din negative correlation learning isdefined by

Ei= %X BF®) - ym))* + apin)] (10)

where Nisthe number of training pattens, E (#) is the value of the error function
ofnetwork / at presentation of the nth training pattern and y(n ) is the desired output
ofthe nth training pattern, The firstterm in the right side of Eq.(10) is the mean-
squared error ofindividual network £, The second termpp, isacorrelation penalty
function, The purpose of minimisingp, istonegatively correlateeachindividual’s
error witherrors forthe rest ofthe ensemble, Theparameter A isused to adjust the
strengthofthe penalty.
The penalty function p, has the form

pn) = —(Fm)-Fn)?/2 1

The partial derivative of . with respect to the output of individual i on the nth
training patternis

= Fi(n) - y(n) — MFi(n) - F(n)) (12)

where we have made use of the assumption that the output ofensemble F¢#) has
constant value withrespectto F'(»). The value of parameter ). lies inside therange
0<A<1sothatboth(1—4)and A have nonnegative values. BP (Rumelhartetal.,
1996) algorithm hasbeen used for weight adjustments inthe mode of pattern-by-
patternupdating. Thatis, weightupdating ofall the individual networksis performed
simultaneously using Eq.(12) after the presentation of each training pattern. One
complete presentation of the entiretraining setduring the leaming processis called
anepoch. Negative correlation learning from Eq.(12)is asimple extension to the
standard BPalgorithm. In fact, the only modificationthatisneededisto calculate
an extraterm ofthe form A(F () — F(n)) for the ith neural network.
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FromEqs.(10), (11)and (12), we may make the following observations:

1. Duringthetrainingprocess, all theindividual networks interact witheachother
through theirpenalty terms in the error functions. Eachnetwork F, minimises
not only the difference between F(n) and y(n), but also the difference
between Fn)and y(n). Thatis, negative correlation leaming considerserrors
whatall otherneural networks have learned while training a neural network.

2. ForA=0.0,thereare nocorrelationpenalty terms inthe error functions ofthe
individual networks, and the individual networks are just trained indepen-
dently using BP. Thatis, independent training using BP for the individual
networks is a special case of negative correlation learning,

3. ForA =1, from Eq.(12) we get

JE {n
SE= F(n) - y(n) (13)
Notethat the error of the ensemble for the nth training patternis defined by

E asembie = 37 2 o1 Fi(n) — y (n))? (14)

ThepartialderivativeofE__  withrespectto F¥ onthe nthtraining pattern is

IE
SR = wlF(n) - y(n)) (15)
Inthis case, we get
BEAN)  OF rembte (16)

aF (n) aFn)

Theminimisationofthe error function oftheensemble isachievedby minimising
the error functions ofthe individual networks. IFrom this point of view, negative
correlation learning providesanovel way to decompose the learning task ofthe
ensemble into anumber of subtasks for different individual networks.
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ANALYSIS BASED ONMEASURING
MUTUALINFORMATION

Inordertounderstand why and how negative correlation learning works, this
section analyses it through measuring mutual information on aregression task in
threecases: noise-free condition, small noise condition and large noise condition.

Simulation Setup
Theregression functioninvestigated hereis

f(x) = H10sin(mxx5) + 2003 —3)> + 10x4 + 5x5)] -1 (17)

where x=[x,, ..., x ] is aninput vector whose components liebetween zero and
one. The value of f(x)liesintheinterval [-1, 1]. Thisregression task hasbeenused
byJacobs (1997) toestimate the bias of mixture-of-experts architectures and the
variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x®? (1), »*(1),1=1,...,L,L=500,k=1,..,K,
K =25, were created at random. Each setconsisted of 500 input-output patterns
inwhich the components ofthe input vectors were independently sampled froma
uniformdistribution over theinterval (0, 1). In the noise-free condition, the target
outputs were notcorrupted by noise; in thesmall noise condition, the target outputs
werecreated by adding noise sampled from a Gaussian distribution with a mean of
zero anda variance of 62=0.1 to the function f{x); inthelarge noisecondition, the
target outputs were created by adding noise sampled from a Gaussian distribution
with a mean of zero and a variance of 6= 0.2 to the function f{x). A testing set of
1,024 input-output pattems, (t(n), d(n)), n=1, ..., N, N = 1024, was also
generated. For this set, the components of the input vectors were independently
sampled fromauniform distribution overtheinterval (0, 1), and the targetoutputs
werenot corrupted by noisein all three conditions. Each individual network in the
ensemble is amulti-layer perceptron with one hidden layer. All the individual
networks have 5 hidden nodes in an ensemble architecture. The hidden node
functionis defined by thelogistic function

20) = o (18)

The netwark outputis alinear combination of the outputs ofthe hidden nodes.
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Foreachestimation ofmutual information among an ensemble, 25 simulations
wereconducted. Ineach simulation, the ensemble was trained onadifferent training
set from the same initial weights distributed inside a smallrange so thatdifferent
simulations of an ensemble yielded different performancessolely duetothe use of
different training sets. Such simulation setup follows the suggestions from Jacobs
(1997).

Measurement of Mutual Information

Theaverage outputs ofthe ensemble and the individual networkion the nth
pattern in the testing set, (t(n), d(n)), n=1, ..., N, are denoted and given
respectively by

F(t(n) = £ 2 1=, FO1(n) (19)

and
Fit(n) = ¥ Z 1 FO(e(n) (20)

where F% (t(n)) andF}(") (t(n)} are the outputs of'the ensemble and the individual
network i on the nth pattern in the testing set from the kth simulation, respectively,
and X=25isthe number of simulations. From Eq.(6), the correlation coefficient
between network i and network jis givenby

B, EE, (FPteta)) — Futeta))) (Fein)) - Fiitla))) (21)

fag = 2 2
f ‘/:3{:1:;’:1 (FPtan - Fae) o=, (FPwan - Fren)

From Eq.(8), the integrated mutual information among the ensembles can be
definedby

Epi=— 5%, j:il,f log(1~ py) (22)
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Wemay also define the integrated mean-squared error (MSE) on the testing set as

Emse = 3 Z 021 2 g (FO( () — d(n))? (23)
Theintegrated mean-squarederror £ onthetraining setis givenby
Erainmis =T 2 11 ¥ 2 3 FOOW) -y H0)’ @4

Results in the Noise-Free Condition

Theresults of negative correlation leaming in the noise-free condition for the
different values of L atepoch 2000 are givenin Table 1. The results suggestthatboth
E__.andE_ appeared to decrease with the increasing value of A. The
mutualinformation E among theensemble decreased as the value of A increased
when 0 <2 <0.5. However, when A increased further 10 0.75 and 1, the mutual
informationZ hadlarger values. The reason ofhaving larger mutual information
at1=0.75 and =1 isthatsome correlation coefficients had negative values and
the mutual information depends on the absolute values of correlation coefficients.

Inordertofindoutwhy £ decreased with increasing value of A, the
concept ofcapability ofatrained ensemble is introduced. The capability ofatrained
ensemble is measured by its ability ofproducing correct input-output mapping on
the training setused, specifically, by its integrated mean-squarederror £, on
thetraining set. Thesmaller £ is,thelargercapability the trained ensemble
has.

Results in the Noise Conditions

Table2 and Table 3 compare the performance of negative correlation learning
fordifferentstrength parameters in both smallnoise (variance 6*=0.1) and large

Table 1: The results of negative correlation learning in the noise-free
condition for different | values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 0.3706 | 0.1478 [0.1038 [ 0.1704 | 0.6308
Erest mse 0.0016 | 0.0013 [0.0011 | 0.0007 | 0.0002
Eimin mee | 0.0013 | 0.0010 |0.0008 | 0.0005 | 0.0001
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noise (variance 0>= 0.2)conditions. Theresults show that there were same trends
forE ,E_  _andE, _ inbothnoise-free andnoise conditions whenA<0.5.

Thatis, Em_;E ot mse andew e APPeEared to decrease with the increasing value
appeared to decrease first and then increase with the

of .. However, E
increasing value of A.

Inordertofindoutwhy £, showed differenttrendsinnoise-free andnoise
conditions whenA,=0.75 and A=1, the integrated mean-squared errorE,
on the training set was also shown in Tables 1, 2 and 3. When A =0, the neural
network ensemble trained had relatively large £__ . It indicated that the
capability oftheneural network ensemble trained was not bigenoughto produce
correct input-output mapping (i.e., it was underfitting) for thisregressiontask.
WhenA=1, theneural network ensemble trained learned too many specific input-
outputrelations(i.e., it wasoverfitting), and itmight memorise the tfraining dataand
thereforebe less ableto generalise between similar input-output patterns. Although
the overfitting was notobserved for the neural network ensemble used in the noise-
free condition, too large capability of the neural network ensemble will lead to
overfitting for both noise-free and noise conditions because of the ill-posedness of
any fnite training set (Friedman, 1994).

Choosing apropervalue ofA is important, and also problem dependent. For
the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for 4, =0.5 among the tested

values of A in the sense of minimising the MSE on the testing set.

Table 2: The results of negative correlation learning in the small noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.5495 | 3.8761 | 1.4547 |0.3877 [0.243]
Etest mse 0.0137 | 0.0128 |0.0124 [0.0126 |0.0290
Binin mse | 0.0962 | 0.0940 | 0.0915 | 0.0873 |[0.0778

Table 3: The results of negative correlation learning in the large noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.7503 | 39652 | 1.6957 [0.4341 |0.2030
Etest mse 0.0249 | 0.0235 | 0.0228 |0.0248 | 0.0633
Eiain mse [ 0.1895 | 0.1863 | 0.1813 [0.1721 |0.1512
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ANALYSIS BASED ONDECISION BOUNDARIES

This section analyses the decision boundaries constructed by both negative
correlation leaming and the independent training, Theindependent training isa
special case of negative correlation learning for A=0,0in Eq.{12).

Simulation Setup

Theobjective of the pattern classification problem s to distinguish betweentwo
classes ofoverlapping, two-dimensional, Gaussian-distributed patterns labeled 1
and?2. LetClass 1 and Class 2 denote the set of events for whicharandom vector
xbelongs topatters 1 and 2, respectively. We may then express the conditional
probability density functions for thetwo classes:

= 1 1 2
/() = gzexp (= allx= wl ) 25)
where mean vector [, =[0,0]" and variance o *= L.
fxx) = goaexp (- gallx— wl ) (26)

where mean vectorp,=[0,0}" and variance 6,’=4. The two classes areassurmed
tobeequiprobable; thatisp, =p,=%2. Thecosts for misclassificationsare assumed
tobe equal, and the costs for correctclassifications areassumed to be zero. On this
basis, the (optimum) Bayes classifier achieves aprobability of correctclassification
p_=81.51 percent. The boundary ofthe Bayes classifier consists of'a circle of
center[-2/3,0]" and radius r=2.34; 1000 points from each of two processes were
generated for the training set. The testing set consists 0f 16,000 points from each
oftwo classes.

Figure 1 shows individual scatter diagrams for classes and the joint scatter
diagram representing the superposition of scatter plots of 500 points from each of
two processes. This latter diagram clearly shows that the two distributions overlap
eachother significantly, indicating thatthere is inevitably a significant probability of
misclassification.

Theensemble architectureused in the experiments has three networks. Each
individualnetwork inthe ensemble isamulti-layer perceptron withonehidden layer.
Allthe individual networkshave three hidden nodes in an ensemble architecture.
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Figure 1: (a) Scatter plot of Class 1, (b) Scatter plot of Class 2; (¢} Combined
scatter plot of both classes, the circle represents the optimum Bayes solution

T . =
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Both hiddennode function and output node function are defined by the logistic
function in Eq.(18).

Experimental Results

Theresults presented in Table4 pertain to 1 0differentruns ofthe experiment,
with each run involving the use of 2,000 data points for training and 32,000 for
testing. Figures 2 and 3 compare the decisionboundaries constructed by negative

Figure 2: Decision boundaries formed by the different networks trained by the
negative correlation learning (A = 0.73): (a) Network 1, (b) Network 2; (¢}
Network 3, (d) Ensemble; the circle represents the optimum Bayes solution
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Figure 3: Decision boundaries formed by the different networks trained by the
independent training (i.e., A = 0.0 in negative correlation learning). (a)
Network 1, (b) Network 2; (c} Network 3; (d) Ensemble, the circle represenis
the optimum Bayes solution
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correlation leaming and the independent training. Incomparison oftheaverage
cotrect classification percentage and the decision boundaries obtained by the two
ensemble leaming methods, itisclearthat negative correlation leaming outperformed
the independent training method. Although the classification performance of
individual networks in the independent training is relatively good, the overall
performance ofthe entire ensemblewas not improvedbecause different networks,
such as Network 1 and Network 3 in Figure 3, tended to generate the similar
decisionboundaries.

The percentage of correctclassification of the ensemble trained by negative
correlationis 81.41, whichis almostequal tothatrealised by the Bayesian classifier.
Figure 2 clearly demonstrates that negative correlation learning is capable of
constructing adecisionbetween Class 1 and Class 2 thatis almostas good as the
optimum decisionboundary. Itis evident from Figure 2 that different individual
networks trained by negative correlation leaming were able tospecialise to different
parts ofthe testing set.
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Table 4: Comparison between negativecorvelation learning (NCL) (A.=10.75)
and the independent training (i.e., A = 0.0 in negative correlation learning)
on the classification performance of individual networks and the ensemble;
the results are the average correct classification percentage on the testing set
over 10 independent runs

Methods Net 1 Net 2 Net 3 Ensemble
NCL g1.11 75.26 73.09 81.03
Independent 81.13 80.49 g1.13 80.59
Training

ANALYSIS BASED ON THE CORRECT
RESPONSE SETS

Inthissection, negative correlationlearning was tested on the Australian credit
card assessmentproblem. The problem ishow to assess applications for credit
cards based on anumber of attributes. There are 690 patterns in total. The output
hastwo classes. The 14 attributesinclude 6 numeric values and 8 discrete ones, the
latter having from 2 to 14 possible values. The Australian creditcard assessment
problemisaclassification problem which is different from the regression type of
tasks, whose outputs are continuous. The data set was obtained from the UCI
machine learning benchmark repository. It is available by anonymous fip at
ics.uci.edu (128.195.1.1)indirectory /pub/machine-learning-databases.

Experimental Setup

The data set waspartitioned intotwo sets: atraining set and atesting set. The
first 518 examples wereused for the training set, and the remaining 172 examples
for the testing set. Theinput attributes wererescaled tobetween 0.0 and 1.0 by
alinear function. The outputattributes ofall the problems were encoded usinga i-
of-moutputrepresentation for mclasses. The output with the highestactivation
designated the class. The aim ofthis section is to study the difference between
negativecorrelation learning and independent training, rather than to compare
negative correlation learning with previous work. The experimentsused sucha
singletrain-and-test partition.

The ensemble architecture used in the experiments has 4 networks. Each
individual network is a feedforward network with one hidden layer. Both hidden
node function and output node function are defined by the logistic function in
Eq.(18). All theindividual networks have 10hidden nodes. The number oftraining
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gpochs was setto250. Thestrength parameter A was setto 1.0, These parameters
were chosen after limited preliminary experiments. They are not meant to be
optimal,

Experimental Results

Table 5 showstheaverageresults of negative correlation leaming over 25 runs.
Eachrun ofnegative correlation learning was from different initial weights, The
ensemble with the same initial weight setup was also trained using BP withoutthe
correlationpenalty terms (i.e., A=0.0 innegativecorrelation learning), Results are
alsoshowninTable$. Forthisproblem, thesimple averaging definedin Eq.(9) was
firstapplied to decide the output of the ensemble, For the simple averaging, itwas
surprising that the results of negative correlation learning with A= 1.0 were similar
tothoseofindependent training. This phenomenon seems contradictorytothe claim
thatthe effectofthe correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts oraspects ofthe training data. In
order toverify and quantify this claim, we compared the outputs of the individual
networks trained with the correlation penalty terms to those of the individual
networks trained without the cotrelation penalty terms,

Table 5: Comparison of error rates between negative correlation learning (/.
= 1.0) and independent training (i.e., A= 0.0innegative correlation learning)
on the Australian credit card assessment problem; the results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning, Mean,
SD, Min and Max indicate the mean value, standard deviation, minimum and
maximum value, respectively

Error Rate | Simple Averageing | Winner-Takes-All

A=1.0 Mean 0.1337 0.1195
SD 0.0068 0.0052

Min 0.1163 0.1105

Max 0.1454 0.1279

A=0.0 Mean 0.1368 0.1384
SD 0.0048 0.0045

Min 0.1279 0.1279

Max 0.1454 0.1512
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Table 6: The sizes of the correct response sets of individual networks created
respectively by negative correlation learning (A = 1.0) and independent
training (i.e., A = 0.0 in negative correlation learning) on the testing set and
the sizes of their intersections for the Australian credit card assessment
problem; the resuits were obtained from the first run among the 25 runs

A=10 1=00
Q=147 ;=143 =138 |Q,=149 ,=147 ©,=148
Q=143 =138 Q3=124 | Q=148 Q=147 Q3 =147
Quu=141 =116 =133 | Q=147 Oy =147 Oy =146
Q=123 Q=115 Q=133 | Q=146 Qs =147 Q)3 =146
Qi3 =121 Q3 =113 Quz3=113 | Quza = 146 Q34 =146 Q235= 146

Two notions were introduced to analyse negative correlationlearning. They
are the correct response sets of individual networks and their intersections. The
correctresponse setS, of individual network i on the testing setconsists ofall the
patterns in the testing set which are classified correctly by the individual network i.
Let (2 denotethesizeofsetS, and €2, . denotethesizeofsetS, ~S, N5, .
Table 6 shows the sizes ofthe correctresponse sets ofindividual networks and their
intersections on the testing set, where the individual networks were respectively
created by negative correlationlearning and independent training, Itis evident from
Table 6 that different individual networks created by negative correlation learning
were able to specialise to different parts of the testing set. Forinstance, in Table 6
the sizes of both correct response sets S,and S, at A= 1.0 were 143, but the size
of theirintersection 8, S, was 133. Thesize of S, NS,NS,NS, wasonly 113.
[ncontrast, the individual networksintheensemble created by independent training
were quite similar. The sizes of correctresponsesets S , 5, 8,and S, at A=0.0
were from 147 to 149, while the size of their intersection set §, ~S,N§,NS,
reached 146. There were only three different patterns correctly classified by the
fourindividval networksinthe ensemble.

Insimple averaging, all the individual networkshave the same combination
weights and are treated equally. However, not all the networks are equally
important. Becausedifferent individual networks created by negative correlation
learning wereable to specialise todifferent parts ofthe testing set, only the outputs
of these specialists should be considered to make the final decision about the
ensemble for this part of the testing set. n this experiment, a winner-takes-all
method was applied to select such networks. Foreachpattern ofthe testing set,
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the output of the ensemble was only decided by the network whose output had the
highestactivation. Table 5 showsthe averageresultsofnegative correlation learning
over 25 runs using the winner-takes-all combination method. The winner-takes-
allcombinationmethod improvednegative correlationlearmingsignificantlybecause
there were good and poor networks foreach patternin the testing set, and winner-
takes-all selected the best one. However, it did not improve the independent
trainingmuch because the individual networks created by the independenttraining
wereall similartoeach other.

CONCLUSIONS

This chapter describes negative correlation learning for designing neural
network ensembles. If can be regarded as one way of decomposing a large
problem into smaller and specialised ones, sothat each sub-problem canbe dealt
withbyanindividualneural networkrelatively easily. A correlationpenalty termin
the error function wasproposedtominimisemutual information andencourage the
formation of specialists in theensemble,

Negativecorrelation learning hasbeenanalysedin termsofmutual information
onaregression taskin the different noise conditions. Unlike independent training
which creates larger mutual information amongthe ensemble, negative correlation
leaming can produce smaller mutual information among the ensemble. Through
minimisationofmutual information, verycompetitiveresults have been produced by
negative correlation learmning in comparison with independent training,

This chapter compares the decision boundaries and the correct response sets
constructed by negative correlation learning and the independent training for two
pattern classification problems. The experimental results show that negative
correlation learning has avery good classification performance, In fact, the decision
boundary formed by negative correlation learning isnearly close to the optimum
decision boundary generated by the Bayes classifier.

Thereare, however, someissuesthat needresolving. Nospecial considerations
were made in optimisation of the size of the ensemble and strength parameter A in
thischapter. Evolutionaryensembles withnegative correlation leaming foroptimisation
ofthesize ofthe ensemble hadbeen studied on the classification problems (Liu, Yao
& Higuchi, 2000).
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Chapter I1

A Perturbation Size-
Independent Analysis
of Robustness in Neural
Networks by Randomized
Algorithms

C. Alippi
Politecnico diMilano, Italy

ABSTRACT

This chapter presents ageneralmethodologyfor evaluating the loss inperformance
of a generic neural network once its weights are affected by perturbations. Since
weights represent the “knowledge space”™ of the neural model, the robustness
analysis can beusedtostudy theweights/performancerelationship. Theperturbation
analysis, whichis closelyrelatedtosensitivity issues, relaxes all assumptions made
in the related literature, such as the small perturbation hypothesis, specific
requirements on the distribution of perturbations and neural variables, the
number of hidden units and a given neural structure. The methodology, based on
Randomized Algorithms, allows reformulating the computationally intractable
problem of robustness/sensitivity analysis in a probabilistic framework
characterised by a polynomial time solution in the accuracy and confidence
degrees.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

The evaluation of the effects induced by perturbations affecting a neural
computation is relevant from the theoretical point of view and in developing an
embedded device dedicated toaspecific application.

Inthe first case, the interestisin obtaining areliable and easy tobe generated
measure of the performance loss induced by perturbations affecting the weights of
aneuralnetwork. The relevance oftheanalysis is obvioussince weights characterise
the “knowledge space” of the neural model and, hence, its inner nature. In this
direction, astudy ofthe evolution ofthe network’s weights over training time allows
forunderstanding the mechanism behind the generation of the knowledge space.
Conversely, the analysis ofa specific knowledge space (fixed configuration for
weights) provides hints about the relationship between the weights space and the
performance function, The latter aspectis of primary interestin recurrent neural
networks where even small modifications of the weight values are critical to
performance (e.g., think ofthe stability of anintelligent controller comprisinga
neural network and issues leading torobustcontrol).

The second case is somehow strictly related to the first one and covers the
situation where the neural network mustbe implemented ina physical device. The
optimally trained neural network becomes the “golden unit” to be implemented
withina finite precisionrepresentation environmentas ithappensinmission-critical
applicationsand embedded systerns. Inthese applications, behavioural perturbations
affecting the weights of aneural network abstractuncertainties associated with the
implementation process, suchas finite precision representations (e.g., truncation or
roundinginadigital hardware, fixed or lowresolution floating pointrepresentations),
fluctuations of the parameters representing the weights in analog solutions (e.g.,
associated with the production process of a physical component), ageing effects,
ormore complex and subtleuncertainties inmixed implementations.

The sensitivity/robustness issue has been widely addressed in the neural
network community with a particular focus on specific neural topologies.

More in detail, when the neural network is composed of linear units, the
analysis is straightforward and the relationship between perturbations and the
induced performance loss can be obtained in a closed form (Alippi & Briozzo,
1998). Conversely, whenthe neural topology isnon-linear, which ismostly the
case, several authors assume the small perturbation hypothesis or particular
hypothesis aboutthe stochasticnature of the neural computation, Inboth cases, the
assurnptions make the mathematics moreamenable with the positive consequence
that arelationship between perturbations and performance loss can be derived
(e.g., see Alippi & Briozzo, 1998; Piche, 1995), Unfortunately, theseanalyses
introduce hypotheses which arenotalwayssatisfied inall real applications.
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Anotherclassicapproachrequires expanding with Taylorthe neuralcomputation
around the nominal valueofthetrained weights. A subsequent linearearised analysis
follows whichallows for solving the sensitivity issue{e.g., Pichg, 1995). Anyway,
the validity of such approaches depend, in turn, on the validity of the small
perturbation hypothesis: how tounderstand apriori ifa perturbationis small fora
givenapplication?

In otherapplications the small perturbation hypothesis cannot be accepted
beingtheinvolved perturbations everything butsmall. As an example we have the
developmentofadigital embedded system. There, the designerhas toreduce as
possiblethedimension ofthe weightsby savingbits; this producesa positive impact
oncost, memory size and powerconsumption of the final device.

Differently, otherauthors avoid thesmall perturbation assumption by focusing
the attention on very specific neural network topologies and/or introducing
particular assumptions regarding the distribution of perturbations, internal neural
variables and inputs (Stevensen, Winter & Widrow, 1990; Alippi, Piuri & Sami,
1995).

Otherauthors have consideredthesensitivityanalysisunder thesmall perturbation
hypothesis to deal with implementation aspects. Inthis case, perturbations are
specifically related to finite precision representations of the interim variables
characterising the neural computation (Holt & Hwang, 1993; Dundar & Rose,
1995).

Differently fromthe limiting approaches providedin theliterature, this chapter
suggests a robustness/sensitivity analysis in the large, i.e., without assuming
constraints on the size or nature of the perturbation; as such, small perturbation
situations become only a subcase of the theory. The analysis is general and canbe
applied toall neural topologies, both static and recurrent in order to quantify the
performance loss of the neural model when perturbations affect the model’s
weights.

The suggested sensitivity/robustness analysis canbe applied to 47 neural
networkmodels involved in systemidentification, control signal/imageprocessing
and automation-based applications without any restriction. In particular, the
analysisallows for solving the following problems:

*  Quantify therobustness of agenerically trained neural network by means ofa
suitable, easily to becomputed and reliable robustness index;

*  Comparedifferentneural networks, solving a given application by ranking
themaccording to theirrobustness;

+  Investigate the criticality ofa recurrentmodel (“stability” issue) by means of its
robustnessindex;
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«  Study the efficacy and effectiveness oftechniques developed toimprove the
robustness degree of'a neural network by inspecting the improvement in
robustness.

Thekey elements of theperturbationanalysis are Randomised Algorithms—
RAs-(Vidyasagar, 1996, 1998; Tempo & Dabbene, 1999; Alippi, 2002), which
transform the computationally intractable problem ofevaluating the robustness of
a generic neural network with respect to generic, continuous perturbations, ina
tractable problem solvable with a polynomial time algorithm by reserting to
probability.

Theincreasing interest and the extensive use of Randomised Algorithms in
control theory, and in particular in the robust control area (Djavan, Tulleken,
Voetter, Verbruggen & Olsder, 1989; Battarcharyya, Chapellat & Keel, 1995; Bai
& Tempo, 1997; Chen & Zhou, 1997, Vidyasagar, 1998; Tempo & Dabbene,
1999, Calafiore, Dabbene & Tempo, 1999), make this versatile technique
extremely interesting also for the neural network researcher.

We suggest the interested reader torefer to Vidyasagar (1998) and Tempo
and Dabbene (1999) for a deep analysis ofthe useof RAs in control applications;
the author forecastsanincreasing useofRandomised Algorithms inthe analysisand
synthesis of intelligent controllersin the neural network commumity.

The structure of the chapter is as follows. We first formalise the concept of
robustness by identifyinganatural and general index forrobustness. Randomised
Algorithms are then briefly introduced to provide a comprehensive analysis and
adaptedto estimate the robustness index. Experiments then follow toshed lighton
the use of thetheory inidentifying therobustnessindex forstatic andrecurrent neural
models.

A GENERALROBUSTNESS/SENSITIVITY
ANALYSISFORNEURALNETWORKS

In the following we consider a generic neural network implementing the
$= f(g" , x) function where § is the weight (and biases) vector containing all the
trained free parameters of the neural model.

Inseveralneuralmodels, andinparticularinthose related to systemidentification
and control, the relationship between the inputs and the cutput of the system are
captured by considering a regressor vector ¢, which contains a limited time-
window of actual and past inputs, outputs and possibly predicted outputs.
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Of particular interest, in the zoo of neural models, are those which can be
represented by means ofthe model structures j(s) = () where function f() is
aregression-type neural network, characterised by N, inputs, N, non-linear
hiddenunits and asingle effective linear/non-linear output (Ljung, 1987; Hertz,
Krog & Palmer, 1991; Hassoun, 1995; Ljung, Sjoberg & Hjalmarsson, 1996).

The absence/presence of a dynamic in the system can be modelled by a
suitable number of delay elements (or time lags), which may affect inputs (time
history on external inputs ) system outputs (time history on y(#) ) onpredicted
outputs (time history on $(r)) or residuals (time history on e(#) = 3(t) — y(9) ).
Whereitisneeded y(¢), H(z) and e(r) arevectorial entities, acomponent foreach
independentdistinctvariable.

Several neural model structures have beensuggested in the literature, which
basically differ in the regressor vector. Examples are, NARMAX and NOE
topologies. NARMA X structure can be obtained by considering both past inputs
and outputs ofthe systemto infer y(¢). We have:

Pp= lu(t)9u(t - 1)! ’ 'su(t —n,,),y(t— ]),' ' ‘,)’(‘ —ny),...,e(t _I)!' ”’e(l_ nc)l

Differently, the NOE structure processes only past inputs and predicted
outputs,i.e.:
¢= [H(f),u(f.— 1)5 “u(t -nu)s J?’(I _1):' T j'}(t —AR, )I .

Static neural networks, such as classifiers, can be obtained by simply
considering externalinputs:
@ = [u(®),u(t 1), u(t —n)).

Of course, differentneural models canbe considered, e.g., fully recurrent
and well fitwiththe suggested robustness analysis.

A general, perturbation size independent, model-independent robustness
analysistequires the evaluation of the loss in performance induced by a generic
perturbation, in ouranalysis affecting the weights ofa generic neural network. We
denote by y, (x)= £, (8,A,x) the mathematical description of the perturbed
computation and by A e p - %7 a generic p-dimensional perturbation vector, a
componentforeach independent perturbation affecting the neural computation
#(r). The perturbation space Discharacterised in stochastic terms by providing the
probability density function pdf, .

Tomeasure the discrepancy between y, (x) and y(r) or $(7), weconsidera
generic losstunction U{A). Inthe following we only assume thatsuch performance
loss function is measurable according to Lebesgue withrespectto D. Lebesgue
measurability for U(A)allows us fortaking into account an extremely large class
ofloss functions.
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Commonexamplesfor {7 arethe Mean Square Erro—MSE—loss functions

1 N

U(a)- OG- FA) . (1)

T2 A and U)=3-2
Morespecifically, (1)-leftcompares the perturbed network with $ , whichis
supposed tobe the“golden” error-frecunitwhile (1)-rightestimates theperformance
of the error-affected (perturbed) neural network (generalisation ability of the
perturbed neural model).
The formalisation of the impact of perturbation on the performance function
canbe simply derived:

Definition: Robustness Index
Wesay that aneural network isrobustatlevel 7 in D, when the robustness
index ¥ is theminimum positive value forwhich

Immediately, from the definition of robustness index we have thata generic
neural network NN is more robust than NN, if ¥, < ¥, and the property holds
independently from the topology of the two neural networks.

Themainproblemrelatedto the determination of the robustnessindex ¥ isthat
wehavetocompute U (A), WA e D ifwewishatightbound. The 7 -identification
problem is therefore intractable from a computational point of view if we relax all
assumptions made in the literature as we do.

To deal with the computational aspect we associate a dual probabilistic
problemto (2):

Robustness Index: Dual Problem We say thata neural network is robust
atlevel ¥ in Dwithconfidence 77, when ¥ istheminimum positive value forwhich

PU(AY<y)zn  holds vAe D, Vy2¥ 3)

Theprobabilistic problemis weaker than the deterministic one since ittolerates
the existence ofa set of perturbations (whose measure according to Lebesgueis 1-
1) forwhich u{A) > ¥ . In other words, notmore than 1001 % of perturbations
Ae Dwill generatealoss inperformance larger than 7 .
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Probabilistic and deterministic problems are “close” to each otherwhen we
choose, aswedo, 7=1. Notethat ¥ depends only onthesize of D and the neural
network structure.

The non-linearity with respect to A and the lack of a priori assumptions
regarding the neural network donotallow computing (2) ina closed form for the
general perturbation case. The analysis, which would imply testing UA in
correspondence witha continuous perturbation space, canbe solved by resorting
to probability according to the dual problem and by applying Randomised
Algorithmsto solve therobustness/sensifivity problem.

RANDOMIZED AL.GORITHMS AND

PERTURBATION ANALYSIS

Inthisparagraph we briefly review the theorybehind Randomised Algorithms
and adapt themtothe robustness analysis problem,

Inthe following we deno‘oebypTz Pr{U(A)<y}  theprobabilitythatthe loss
inperformance associated withperturbationsin Disbelowagiven—butarbitrary—
value.

Probability p, isunknown, cannotbe computedina close form fora generic
[/ functionand neural network topology, and its evaluation requiresexploration of
the whole perturbation space D.

Theunknown probabilityp, canbeestimated by sampling Dwith N independent
andidentically distributed samples A ; extraction mustbe carried out according to
the pdf ofthe perturbation.

Foreach sample A we then generate the triplet

1#U@) <y
8, U(8),1(A)}i=1,N where I(A,)= 0ifUL) >y ©)
Thetrue probability p, cannow simply be estimated as
. 1 &
Py =§ZI (a,) (5)
i=l

Ofcourse, when Ntendstoinfinity, p,. convergesto p, Conversely, onafinite
data set of cardinality N, the discrepancy between p, andp, exists and canbe
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simply measured as | Py f)N| . ‘ P, - ﬁN| isarandom variable whichdependsonthe
particularextraction ofthe Nsamplessince differentextractions of Nsamples from
Dwillprovide different estimates for p,,. By introducing anaccuracy degree ¢ on
\ P, - ﬁNI and a confidence level 1—§ (which requests that the | P, — f:N| <g
inequality is satisfied atleast with probability | — § ), ourproblemcan be formalised
byrequiring thatthe inequality

Prlp, — b <ef21-8 ©

is satisfied for Vy = 0. Of course, we wish to control the accuracy and the
confidence degrees of (6) by allowing the user to choose the most appropriate
values for the particular need. Finally, by extractinganumber of samples from D
according to the Chernoffinequality (Chemoff, 1952)

Q)

we have that Pr{p}, —ﬁN‘ < 8}2 1-38 holds for Vy > 0,¥5,¢ < [0,1].

As anexample, by considering 5% in accuracy and 99% in confidence, we
haveto extract 1060samples from D; with such choice we canapproximate p. with
Py introducing themaximumerror0.05( g, —0.05< p, < p, +0.05)andthe
inequality holds atleast with the probability 0.99.

Other bounds canbe considered instead of the Chermoff s one as suggested
byBernoulliand Bienayme, (e.g., see Tempo & Dabbene, 1999). Nevertheless,
the Chernoff’sbound improves upon the others and, therefore, should be preferred
if we wish tokeepminimal the number of samples to beextracted. The Chernoff
bound grants that:

* Nisindependent fromthe dimension of D (andhence itdoesnot depend on the

number of perturbations we are considering inthe neural network);
]

3 and giz (henceitispolynomialintheaccuracy and confidence

* NislinearinIn
degrees).
Asaconsequence, thedual probabilistic problemrelated to the identification
oftherobustnessindex ¥ canbesolved withrandomisedalgorithms andtherefore
with a polynomial complexity in the accuracy and the confidence degrees
independently from the number of weights ofthe neural model network. Infact, by

expanding the (6) we have that
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<efp1-6 :Pr{

Pru(a)< y)—%ZI(Ai% 56}2 1-§  (8)

Pr{p? — Py

Ifaccuracy € andconfidence § aresmall enough, we can confuse p, and
P bycommittingasmallerror. As aconsequence, the dual probabilistic problem
requiring P, 27 becomes p, =7 . Wesurelyassume £ and § tobesmall
enoughinsubsequent derivations.
The final algorithm, which allows fortesting the robustness degree ¥ ofa
neural network, 1s:
1. Select & and § sufficiently smallto have enough accuracy and confidence.
2. Extract from D, according to its pdf a number of perturbations N as
suggested by (7).
3. Generate the indicator function I(A) and generate the estimate
Py = Px(¥) according to (5).
4. Select the minimum value 7y, from the p, = p,(y) function so that
ﬁN()’q) =1 is satisfled Vy 2 y,. ¥, is the estimate of the robustness
index 7 .

Notethatwith asimple algorithm we are able to estimate in polynomial time
the robustnessdegree ¥ ofageneric neural network. The accuracy in estimating
¥ canbemade arbitrarily good atthe expense of a larger number of samples as
suggested by Chernoff’sbound.

APPLYINGTHEMETHODOLOGYTOSTUDY
THE ROBUSTNESS OFNEURALNETWORKS

In the experimental section we show how the robustness index for neural
networks can be computed and how it can beused to characteriseaneural model.
Afterhavingpresentedandexperimentallyjustifiedthetheory supporting Randomised
Algorithms, we will focus onthe following problems:

» testtherobustness ofagiven static neural network (robustness analysis);

» study therelationships between the robusiness of a staticneural network and
the number ofhiddenunits (structure redundancy),

* analyse the robustness of recurrent neural networks (robustness/stability
analysis).

Inthe following experiments weconsider perturbations affecting weightsand
biases ofaneural network defined in D and subject to uniform distributions. Here,
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a perturbation A, affecting a generic weight w, must be intended as a relative
perturbation withrespectto the weight magnitude according to the multiplicative
perturbationmodelw, =w(1+A), Vi=1,n. A %perturbation implies that A
; bp dv Tt 3T i
isdrawn from asymmetrical uniform distribution of extremes

ot
100°100 |

a 5% perturbationaffecting weights and biases composing vector ¢ implies
thateach weight/bias is affected by an independent perturbation extracted from the
[-0.05,0.05] intervalandapplied tothe norinal valueaccording tothe multiplicative
perturbationmodel.

Experiment 1: The impact of € 6 and N on the evaluation of the
robustness index
Thereference applicationtobe learned isthe simple error-free function

e-().?.S-x
y= -x-sin(x2)+1+7, xe[-33]

A set of 41 training data have been extracted from the function domain
according to a uniform distribution. We considered static feedforward neural
networks withhidden unitscharacterised by ahyperbolic tangentactivationfunction
andasinglelinearoutput. Training wasaccomplished by consideringa Levenberg-
Marquardtalgorithm applied toan MSE training function; a testset was considered
during the training phase to determine the optimal stopping pointso astomonitor
theupsurgence of overfittingeffects.

We discovered thatall neural networks withatleast6 hiddenunitsareableto
solvethe function approximation task with excellent performance,

Inthis experiment we focus the attention on the neural network characterised
by 10 hidden units. After training we run the robustnessalgorithm by considering
7.5% of perturbations (weights are affected by perturbations upto 7.5% of their
magnitude) and we chose £=0.02 and §=0.01 from which we have to extract
N=6624 samples from D, Wecarried out three extractions of Nsamples and, for
eachset, we computed therelated p,, = p,, (¥) curve.

The p,, = p,(y) curvesare giveninFigure 1. Aswe can seethe curves are
very close to each other. In fact, we know from the theory, that the estimated
probability belongs to a neighbourhood of the true one according to the
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Figure 1: Dy = Dx(¥) for three different runs
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Py —0.02< p, < By +0.02 relationship. A singlecurve is thereforeenough to
characterise the robustness of the envisaged neural network and there is noneed
to consider multiple runs. By inspecting Figure 1 we obtain that the estimate ofthe
robustness index 7 is ¥,=11which implies that {{A)<11, VA< Dwithhigh
probability.

Wewishnowtostudy theimpactofNon p,, = p, (¥) byconsideringthree
runs with different £ and § accordingtoTable1.

The p, = p, (¥) curvesaregiveninFigure 2. Itis interesting tonote, at least
for the specific application, that even with low values of A, the estimates for
Py = DPy(y) and ¥, are reasonable and not far from each other. We should
anyway extractthe number ofsamples according to Chernoff’s inequality.

Experiment 2: Testing the vobusiness of a given neural network

Inthe second experiment wetest the robustness ofthe 10 hidden unitsnetwork
by consideringits behaviouronce affected by stronger perturbations (larger 1) and,
in particular, for perturbations 1%, 3%, 5%, 10%, 30%. Weselected £=0.02 and
0=0.01.

The p, = P, (y) function corresponding to the different perturbations s given
inFigure 3.

Tablel: €, § and N

E o N
0.02 0.01 6624
0.05 0.05 738

0.1 0.1 150
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Figure 2: p,, = py(y) for different runs with parameters given in Table I
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Again, fromits definition, ¥ isthesmallestvalueforwhich p, =1, 7 > ¥ ;as
anexample, if we considerthe 5% perturbation case, ¥ assumesa value around
7. It is obvious, but interesting to point out that, by increasing the strength of
perturbation (i.€., by enlarging the extremes ofthe uniformdistributioncharacterising
the pdfofD), ¥ increases. Infact, stronger perturbations have aworse impact on

the performance loss function since the error-affected neural network diverges from
the error-free one. Conversely, we see thatsmall perturbations, e.g., the 1% one,
inducea very smallloss inperformance since the robustnessindex ¥,, is very small.

Figure 3: P, as a function of ¥ for the 10 hidden units neural network
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Experiment 3: Testing the robustness of a hierarchy of performance-
equivalent neural networks

Once we haveidentified the robustness degree of a neural network solving an
application, we can investigate whetheritispossible to improve the robustness
degree of the application by considering asortof structural redundancy ornot. This
issue can betackled by considering the neural hierarchy M:M, c M_...c M....
where M, represents a neural network with £hidden units.

Tothis end, we consider a set of performance-equivalent neural networks,
each of whichis able to solve the application with a performancetolerable by the
user. All neural networks are characterised by a different topological complexity
(number ofhidden units).

The p, = p, (v ) curves parameterised in thenumber ofhiddenunitsare given
inFigure4inthe case of 1 % perturbation. We cansee thatby increasing the number
ofhidden units, ¥ decreases. We immediately realise that neural networks witha
reducednumber othidden units are, for this application, less robust than the ones
possessing more degrees of freedom. Large networks provide, inaway, asortof
spatial redundancy: information characterising the knowledge space of the neural
networksis distributed overmore degrees of freedom.

We discovered cases where a larger neural network was lessrobust thana
smaller one: in suchacaseprobably the complex model degenerates intoasimpler
one.

Theevolutionof ¥ overthenumberofhiddenunits parameterised with respect
tothe different perturbations 5%, 10% and 30%is given in Figure 5. We note that
the minimal network, namely the smallestnetwork able to solve the application, is
not the morerobust one for this application (infactitpossesses large values forthe

¥ s).

Figure4: p, over ¥ and parameterised in the number of hidden units
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Thistrend—verified alsowith other applications—suggests thatthe robustness
degree of the neural network improves on the average by increasing the number of
hiddenunits (spatial redundancy). Anyway, witha smallincreaseinthe topological
complexity (e.g., by considering the 13 hiddenunits model instead of the 6 one), we
obtainasignificantimprovementaccordingtothe robustness level. There isnoneed
to consider more complex neural networks sincethe improvement in robustnessis
small.

Experiment 4: Testing the robusiness of recurrent neural networks

The goal ofthe lastexperimentis to study the robustness/stability of recurrent
neural networks with the suggested theory. The chosen application refers to the
identification of the open-loop stable, nonlinear, continuous system suggested in
Norgaard (2000). The input and the corresponding output sequence of the system
tobeidentifiedis giveninFigure 6.

We first considered an NOE recurrent neural network with 5 hidden units
characterised by the regressor vector ¢ = [u(z — 1), u(t — 2), $(2 1), p(t— 2))- The
non-linearcore of the neural network is a static regression type neural network as
the one considered inthe function approximationexperiments. Thetopology ofthe
NOE networkisgivenin figure 7.

Once trained, the network we applied the methodolegy to estimates the
robustness of the recurrent model. The p, = p, (v) curve, evaluated with
£ =& =0.05,forthe 0.1% perturbation case is given in Figure 8. As we could
haveexpected, differently from the static function approximation application, the
recurrent NOE neural network is sensitive evento small perturbations affecting the
knowledge space of the network.

Figure 5: ¥ as function of the hidden units, £ =0.04, § =0.01
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We identified the dynamic system with a NARMAX neural network
characterised by 5 hidden units and the structure given in Figure 9. For such
topology we selected the regressor vector

@ = [tt — 1)t —2), y(¢— Dyt — 2),6(t — 1), e(t - 2)]

Figure 10 shows the p, = p, (y) curve. It is interesting to note that the
NARMAX neural network is less robust than the correspondingNOE model. The
basicreason for such behaviouris dueto the factthat the recurrentmodel doesnot
receive directly as input the fed-back network output but only the residual e.

Duringtraining the NOE model must somehow learn more deeply the concept
of stability since even small variations of weights associated with the training phase
weights update would produce a trajectory diverging fromthe system output tobe
mimicked. Thiseffect is due tothe pure fed-back structure of the NOE model which

Figure 6: The input and the corresponding output of the dynamic system

Input and output sequence
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Figure 7: The considered NOE neural network
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Figure 8: The P, function for the NOE neural network
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Figure 9: The considered NARMAX neural network
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receives as inputs past predicted output and not direct information fromthe process.
Interestingly, this requires the neural model to implicitly leamn, during the training
phase, the conceptofrobustness asprovenby the p, = b, (7) curve.Conversely,
the NARMAX model has a smoother and less complex training phase since it
receives fresh information directly from the process (y values) which help the neural
model to be stable. As such, the training procedure will not search for weights
configuration particularly robust since small deviations, which could make the
systemunstable, will be directly stabilised by the true information coming fromthe

process.



38 Alippi

Figure 10: The D, function for the NARMAX neural network
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CONCLUSION

The mainresults of the chaptercan be summarised as follows. Once givena trained

neural network:

+ theeffects of perturbations affecting the network weights canbe evaluated
regardless ofthe topology and structure ofthe neural network, the strength of
the perturbation by considering aprobabilistic approach;

» therobustness/sensitivity analysiscanbe carried out witha Poly-timealgorithm
byresorting to Randomised Algorithms;

»  theanalysisis independent fromthe figure of meritconsidered to evaluate the
loss in performance induced by the perturbations.
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ABSTRACT

This chapter describes the application of a general regression neural network
(GRNN) to control the flight of a helicopter. This GRNN is an adaptive
network that provides estimates of continuous variables and is a one-pass
learning algorithm with a highly parallel structure. Even with sparse data in
a multidimensional measurement space, the algorithm provides smooth
transitions from one observed value to another. An important reason for
using the GRNN as a controller is the fast learning capability and its non-
iterative process. The disadvantage of this neural network is the amount of
computation required to produce an estimate, which can become large if
many training instances are gathered. To overcome this problem, it is
described as a clustering algorithm to produce representative exemplars
from a group of training instances that are close to one another reducing the
computation amount to obtain an estimate. The reduction of training data
used by the GRNN canmake it possible to separate the obtained representative

Copyright © 2003, Idea Group Inc,
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exemplars, for example, in two data sets for the coarse and fine control.
Experiments are performed to determine the degradation of the performance
of the clustering algorithm with less training data. In the control flight system,
data training is also reduced to obtain faster controllers, maintaining the
desired performance.

INTRODUCTION

Theapplicationof ageneral regression neural network tocontrol anon-linear
systemsuchasthe flightofa helicopteratornearhoverisdescribed. This general
regression neural network in an adaptive network that provides estimates of
continuous variables and is a one-pass learning algorithm with a highly parallel
structure. Even with sparse data in amultidimensional measurementspace, the
algorithm provides smooth transitions from one observed valueto another. The
automatic flight control system, through the longitudinal and lateral cyclic, the
collective and pedals are used to enable a helicopter tomaintain its position fixed
inspace foralong period of time. In order toreduce the computationamount ofthe
gathered data for training, and to obtain an estimate, a clustering algorithm was
implemented. Simulation resultsare presented and the performance ofthe controller
isanalysed.

HELICOPTERMOTION CONTROL

Recently, unmanned helicopters, particularly large-scale ones, have been
expected notonly for the industrial fields such as agricultural spraying and aerial
photography, butalso forsuch fields as observation, rescuing and fire fighting. For
monotonous and dangeroustasks, an autonomous flightcontrol of the helicopteris
advantageous.

Ingeneral, theunmannedhelicopteris anexample of anintelligentautonomous
agent. Autonomous flight control involves some difficulties due to the following:

+ itisnon-linear;

*  flightmodes arecross-coupled;

*  itsdynamics areunstable;

« itisamultivariate (i.e., there are many input-output variables) system;

+ itissensitivetoexternal disturbances and environmental conditions such as
wind, temperature, etc;

*  itcanbeused inmany differentflight modes(e.g., hoveror forward flight), each
of whichrequires different control laws;

+ it is often used in dangerous environments (e.g., at low altitudes near
obstacles).
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These characteristics make the conventional control difficult and create a
challengeto thedesign ofintelligentcontrol systems.

Forexample, although helicopters are non-linear systems, NN controllers are
capable of controlling them because they are also inherently non-linear. The
instabilities that result from time delays betweenchanges in the system input and
outputcan be addressed with the previous leamning of the network with asetof data
thatrepresents the pilots knowledge to stabilize the helicopter. Linear NN canbe
implemented to compensate the cross-couplings between control inputs, mainly
whenthe helicoptermakes asignificant changein its flight.

Therefore, a supervised general regression neural network can be used to
control the flight modes of anunmanned helicopter. The regressionis the least-
mean-squares estimation ofthe valueofa variable based on datasamples. The term
generalregressionimplies that the regression surface is notrestricted by being
linear. Ifthe values of the variables to be estimated are future values, the general
regression network (GRNN)isapredictor. [fthey are dependent variables related
to input variables in aprocess, system or plant, the GRNN canbe used to model
the process, system orplant. Once the system is modelled, a control surface can
bedefined interms of samples of contrel variables that, given a state vector of the
system, improvethe outputofthe system. [fa GRNN is trained using these samples,
it can estimate the entire control surface, becoming acontroller. A GRNN canbe
used to map from one set of sample points to another. Ifthe target space has the
same dimension as the input space, and ifthe mapping is one-to-one, aninverse
mapping caneasily be formedusing the same examples. Whenthe variables tobe
estimated are forintermediate values between givenpoints, then the GRNN canbe
used as an interpolator.

Inall cases, the GRNN instantly adapts to new data points. This couldbea
particular advantage for training roebots to emulate a teacher or for any system
whosemodel changes frequently.

SYSTEMMODELLING

Thehelicopter control is one of the popular non-linear educational control
problems. Due toitshighlynon-linear dynamics, it givesthepossibility to demonstrate
basic features and limits of non-linear control concepts. Sugeno (1997, 1998)
developed a fuzzy-logicbased control system toreplace theaircraft’s normal set
of control inputs. Other researchers, such has Phillips etal. (1994), Wade et al
(1994), and Wade and Walker {1994), have developed fuzzy logic flight controls
describing systemsthatinclude mechanisms for discovering and tuning fuzzy rules
inadaptive controllers. (Larkin, 1984) describeda model of an autopilotcontroller
based on fuzzy algorithms. An alternative approach to real-time control of an
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autonomous flying vehiclebased onbehavioral, orreactive, approachis proposed
byFaggetal. (1993). A recurrent neural network used to forward modeling of
helicopter flight dynamics was described by Walker and Mo (1994). The NN-
based controliers can indirectly model human cognitive performance by emulating
the biological processes underlying humanskill acquisition.

The main difference between NN-based controlters and conventional control
systemsisthat, inthe NN case, systems arebuilt from indirectly representations of
contro] knowledge similar to those employed by skilled humans, while in the
conventional designcase, adeep analytical understanding ofthe system dynamics
isneeded. Theability ofhumansto pilotmanned helicopters with only the qualitative
knowledgeindicatethat NN-based controllers with similar capabilities canalsobe
developed.

Thehelicopter can be modelled as a linear system around trim points, i.e.,a
flight with noaccelerations and nomoments. The state space equations areanatural
form, which canrepresent the belicoptermotion. The general mathematical model

isgivenby:
.;c =Ax+Bu,
y=Cx+Du,

where x, u_and y are the state vector, control vector and output vector,
respectively.

Thehelicopter used to simulate the flight in hover position was asingle main
rotor helicopter of 15,000 pounds. The control and state vectors are defined as:

u.' =[6, 8 5. 841 ¢
xT=[uvaqr¢9(pxyz] (2)
where

¢ isthecollective control [inches];
o, and ¢ _arethelongitudinal and lateral cyclic controls, respectively
[inches];
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Figure I : Helicopter coordinates
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¢,isthepedal contro] [inches];
u, v.and w are the perturbation linear velocities [fi/sec];
P,qandrare the perturbation angular velocities [rad/sec];

¢, 6 and @ are the perturbation euler angles for roll, pitch and yaw [rad];
x, ¥ and z aretheperturbation lineardisplacements over the ground [£].

Figure 1 shows thecoordinate systern to describe the motion ofthe helicopter.
The origin of the helicopter axes isplaced on thecenter of gravity.

The thrust of the mainrotor, thus mainly the vertical acceleration, is controlled
by the collectivecantrol ( ¢ ). The pitching moment, thatis, nose pointingup or
down, iscontrolledbythe longitudinaleyelic control ( 6, ). The rolling moment, that
is, right wing tip down, left wing tip up, and vice versa, is controlled by the lateral
cyclic control (4 ). The yawing moment, thatis, nose left and right, is controlled
by the pedal control ( 5,).

The corresponding differential equations that represent thebehavior of the
helicopter in hover position are:

du_ —0.0692 - 0.032v +116.8p +1168.5¢ - 6.15r-32.1960 + 0.1185,,

dt
—27798, — 0255, + 0.00435,,
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% =0.017u - 0.085v - 0.0021w—430.5p + 381.3¢ + 30.75» + 32.14¢
+0.0230 —0.148, — &, + 0.6655, —1.394,
dw
E =-0.0021v - 0.257w+ 7.99p + 46.744 + 1353+ +1.85¢ - 0.4048
-9.238, -0.1075, - 0.016,

% = 0.45 —0.687y — 0.002 1w — 6027 2 p + 5043.16¢ + 66427 — 1.825,
~13.75, +8.585, —5.155,

% = 0.665u +0.429v —0.043w — 1537.5p —~15744.5¢ ~ 12.3r - 0.9665,
+37.138, +3.435,_ + 0.755,

% = —0.0214u + 0.515v +0.0064w — 369.0p — 44.28q — 1266.97 + 25975,
-0.158, +0.0755, +40.783,,

dg _
a !
d8 _
a7
o _
dt

&
—=y
dt

Y _,
dl

dz

—_— =
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Sinceeach motionis notindependentof §, 6, & and 6, thereexistsacross-
coupling.

Figure 2 shows the root locus for the model described above. Figure 2(a)
shows theroot locus, considering the collective control as the input and the vertical
displacement as theoutput. In Figure 2(c), the longitudinal cyclic and the forward
displacement are the inputand the output, respectively. Figure 2(e) shows the root
locus consideringthe lateral cyclic as the input and the 1ateral displacement as the
output. Figures 2(b), (d) and (f) show the zoom ofthe regionnearthe imaginary axis
as well as the roots that dominate the transient response. In general, the contribution

Figure 2: Root locus of the helicopter model
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Figure 2: Root locus of the helicapter model (continued)
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inthetimeresponseof roots that lierelatively far to the leftin the s-plane will be small.
These three Figure sclearly showthat some ofthe eigenvalues corresponding to the
helicopter model are inthe rightside ofthe s-plane, with positivereal-part values,
making the systemunstable.
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Figure 2: Root locus of the helicapter model (continued)
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GENERALREGRESSIONNEURALNETWORK
The generalized regression neural networks arememory-based feed-forward
networks otiginally developed in the statistics literature by Nadataya (1964) and
known as Nadaraya-Watson kemel regression, Then the GRNN was ‘re-
discovered’ by Specht (1991) and Chen, C. (1996), with the desired capability of
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Preface

This book covers the recent applications of computational intelligence tech-
niques for modelling, control and antomation. The application of these techniques
has been found useful in problems when the process is either difficult to model or
difficult to solve by conventional methods. There are numerous practical applica-
tions of computational intelligence techniques in modelling, control, automation,
prediction, image processing and data mining.

Research and development work in the area of computational intelligence is
growing rapidly due to the many successful applications of these new techniques
in very diverse problems. “Computational Intelligence” covers many fields such as
neural networks, (adaptive) fizzy logic, evolutionary computing, and their hybrids
and derivatives. Many industries have benefited from adopting this technology.
The increased number of patents and diverse range of products developed using
computational intelligence methods is evidence of this fact.

These techniques have attracted increasing attention in recent years for solv-
ing many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed.
These modem techniques are taking firm steps as robust problem-solving mecha-
DiSmS.

This volume aims to be a repository for the current and cutting-edge applica-
tions of computational intelligent techniques in modelling control and automation,
an area with great demand in the market nowadays.

With roots in modelling, automation, identification and control, computa-
tional intelligence techniques provide an interdisciplinary area that is concerned
with learmning and adaptation of solutions for complex problems. This instantiated
an enormous amount of research, searching for learning methods that are capable
of controlling novel and non-trivial systems in different industries.

This book consists of open-solicited and invited papers written by leading
researchers in the field of computational intelligence. All full papers have been
peer review by at least two recognised reviewers. Qur goal is to provide a book



vifi

that covers the foundation as well as the practical side of the computational intel-
ligence.

The book consists of 17 chapters in the fields of self-learning and adaptive
control, robotics and manufacturing, machine leaming, evolutionary optimisation,
information retrieval, fuzzy logic, Bayesian systems, neural networks and hybrid
gvolutionary computing,

This book will be highly useful to postgraduate students, researchers, doc-
toral students, instructors, and partitioners of computational intelligence techniques,
industrial engineers, computer scientists and mathematicians with interest in mod-
elling and control.

We would like to thank the senior and assistant editors of Idea Group Pub-
lishing for their professional and technical assistance during the preparation ofthis
book. We are grateful to the unknown reviewers for the book proposal for their
review and approval of the book proposal. Our special thanks goes to Michele
Rossi and Mehdi Khosrowpour for their assistance and their valuable advise in
finalizing this book.

We would like to acknowledge the assistance of all involved in the collation
and review process of the book, without whose support and encouragement this
book could not have been successfully completed.

‘We wish to thank all the authors for their insights and excellent contributions
to this book. We would like also to thank our families for their understanding and
support throughout this book project.

M. Mohammadian, R, Sarker and X. Yao
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Chapter 1

Designing Neural Network
Ensembles by Minimising
Mutual Information

YongLiu
The University of Aizu, Japan

XinYao
The University of Birmingham, UK.

TetsuyaHiguchi
National Institute of Advanced Industrial Science and Technology, Japan

ABSTRACT

This chapter describes negative correlation learning for designing neural
network ensembles. Negative correlation learning has been firstly analysed
in terms of minimising mutual information on avegression task. By minimising
the mutual information between variables extracted by two neural networks,
they are forced to convey different information about some features of their
input. Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification
problems. The purpose of examining the decision boundaries and the correct
response sets is not only to illustrate the learning behavior of negative
correlation learning, but also to cast light on how to design more effective
neural network ensembles. The experimental results showed the decision
boundary of the trained neural network ensemble by negative correlation
learning is almost as good as the optimum decision boundary.

Copyright © 2003, Tdea Group Tnc,
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INTRODUCTION

In singleneural network methods, the neural network leaming problemisoften
formulated as an optimisation problem, i.e., minimising certain criteria, e.g.,
minimum error, fastest learning, lowest complexity, ete., about architectures,
Learningalgorithms, suchasbackpropagation (BP) (Rumelhart, Hinton & Williams,
1986), areused as optimisation algorithms to minimise an error function. Despite
the different error functions used, these learning algorithms reduce a learning
problemto the same kind of optimisation problem.

Leamingisdifferent from optimisation because we want the learned systemto
havebest generalisation, whichis different fromminimising anerror function. The
neural network withthe minimumerror onthetraining setdoes notnecessarily have
thebestgeneralisation unlessthereis anequivalence between generalisationand the
error function, Unfortunately, measuring generalisation exactly and accurately is
almostimpossible in practice (Wolpert, 1990), althoughthere are many theories
and criteria on generalisation, such as the minimum description length (Rissanen,
1978), Akaike’s information criteria (Akaike, 1974)and minimummessage length
(Wallace & Patrick, 1991). Inpractice, these criteriaareoften usedtodefine better
error fimctionsinthehopethatminimisingthe functions willmaximise generalisation.
While better error functions often lead tobetter generalisation oflearned systems,
there is no guarantee, Regardless of the error functions used, single network
methods arestill used as optimisation algorithms, They justoptimise differenterror
functions. Thenature of the problem is unchanged.

While there is little we can do in single neural network methods, there are
opportunities inneural network ensemble methods, Neural network ensembles
adoptthe divide-and-conquer strategy. Instead ofusing a single network to solve
atask, aneural network ensemble combines a set ofneural networks which learn
to subdivide the task and thereby solve it more efficiently and elegantly. A neural
network ensemble offers several advantages over amonolithic neural network.
First, itcanperformmore complex tasks thanany of its components (i.e., individual
neural networks in the ensemble). Secondly, it can make an overall system easier
tounderstand and modify. Finally, itis more robustthan a monolithic neural network
and can show graceful performance degradationin situations where only a subset
of neural networks inthe ensemble areperforming correctly. Giventhe advantages
ofneural networkensembles and the complexity ofthe problems thatare beginning
tobeinvestigated, itis clear thatthe neural network ensemble method willbe an
importantand pervasive problem-solving technique.

The idea of designing an ensemble leaming system consisting of many
subsystems can be traced back to as early as 1958 (Selfridge, 1958; Nilsson,
1965). Since the early 1990s, algorithms based on similar ideas have been
developed inmany differentbut related forms, such as neural network ensembles
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(Hansen & Salamon, 1990; Sharkey, 1996), mixtures ofexperts (Jacobs, Jordan,
Nowlan & Hinton, 1991; Jacobs & Jordan, 1991; Jacobs, Jordan & Barto, 1991;
Jacobs, 1997), various boosting and bagging methods (Drucker, Cortes, Jackel,
LeCun & Vapnik, 1994; Schapire, 1990; Drucker, Schapire & Simard, 1993) and
many others. There are a number of methods of designing neural network
ensembles. To summarise, there are three ways of designing neural network
ensemblesin thesemethods: independenttraining, sequential trainingand simultaneous
training,

A number of methods have been proposed to train aset of neural networks
independently by varying initial random weights, the architectures, the learning
algorithm used and the data (Hansen et al., 1990; Sarkar, 1996). Experimental
results have shown that networks obtained from a given network architecture for
differentinitial random weightsofiencorrectly recognize different subsets ofa given
test set (Hansen et al., 1990; Sarkar, 1996). As argued in Hansen et al. (1990),
because each network makes generalisation errors ondifferent subsets ofthe input
space, thecollective decision produced by the ensemble is less likely tobe inerror
than the decision made by any ofthe individual networks.

Mostindependent training methodsemphasised independenceamongindividual
neural networks in an ensemble. One of the disadvantages of suchamethod is the
loss of interaction among the individual networks during leamming. There isno
consideration of whether whatone individual learnshas already beenlearned by
otherindividuals. Theerrorsofindependently trained neural networks may still be
positively correlated. Ithasbeen found thatthecombining results are weakened if
the errors of individual networks are positively correlated (Clemen & Winkler,
1985). In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in aparticular order (Druckeret al., 1993; Opitz
& Shavlik, 1996; Rosen, 1996). Drucker etal. (1993) suggested training the neural
networks using the boosting algorithm. The boosting algorithm was originally
proposed by Schapire (1990). Schapire proved that it is theoretically possible to
convertaweak learning algorithm that performs only slightly better thanrandom
guessing into one that achieves arbitrary accuracy. The proof presented by
Schapire (1990) is constructive. The construction uses filtering to modify the
distribution of examples in such a way as to force the weak learning algorithm to
focus onthe harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow atwo-stage design process: first generating individual networks, and then
combiningthem. Thepossible interactions among the individual networkscamnotbe
exploited until the integration stage. Thereisno feedback fromthe integration stage
totheindividual network designstage. Itispossiblethatsome ofthe independently
designed networks do not make much contribution to the integrated system. In
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ordertouse the feedback fromthe integration, simultaneous training methods train
a set of networks together. Negative correlation learning (Liu & Yao, 1998a,
1998b, 1999) and the mixtures-of-experts (ME) architectures (Jacobsetal., 1991;
Jordan & Jacobs, 1994) are two examples of simultaneous training methods. The
ideaofnegative correlation learningis toencourage differentindividualnetworksin
the ensemble to learn different parts or aspects of the training data, so that the
ensemblecan better learn the entire training data. In negative correlationleamning,
the individual networks are trained simultaneously rather than independently or
sequentially. This provides an opportunity forthe individual networks to interact
with each other and to specialise.
Inthis chapter, negative correlation learmning hasbeen firstly analysed interms
ofminimisingmutual information on aregressiontask. The similarity measurement
between two neural networks in anensemble can be defined by the explicit mutual
information of output variables extracted by two neural networks. The mutual
informationbetweentwo variables, output F ofnetwork i and outputFJ',of network
j.isgivenby

IF,; F) = h(F) + h(F) — h(F,, F) (1)

where A(F ) isthe entropy of ¥, h(Ff) 1stheentropy ofP;j and /(F, Ff) isthe joint
differential entropy of I, andﬁ}. Theequation shows thatjointdifferential entropy
canonly have high entropy ifthe mutual information betweentwo variables is low,
whileeach variable hashighindividual entropy. Thatis, the lower mutual information
twovariables have, the moredifferenttheyare. Byminimisingthe mutual information
between variables extracted by twoneural networks, they are forced to convey
different information about some features of theirinput. Theidea of minimising
mutual information isto encourage different individual networksto learn different
partsoraspects ofthe training datasothatthe ensemblecan learn the whole training
databetter.

Based on the decision boundaries and correct response sets, negative
correlationlearning has been further studied ontwopattern classification problems.
The purpose of examining the decision boundaries and the correct response sets is
notonlytoillustratesthe leaming behaviorofnegative correlation learning, butalso
to cast light on how to design more effective neural network ensembles. The
experimental results showed the decision boundary ofthe trained neural network
ensemble by negative correlation learningis almostas good asthe optimumdecision
boundary.

Therestofthischapterisorganised as follows: Next, the chapter explores the
connections between the mutual information and the correlation coefficient, and
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explains hownegative correlation learningcan be used tominimisemutual informa-
tion; thenthe chapteranalyses negative correlation learning via the metrics ofmutual
information onaregressiontask; the chapterthen discusses the decision boundaries
constructed by negative correlation learning on a pattern classification problem;
finally thechapter examines the correctresponse setsofindividual networkstrained
by negativecorrelation leaming and theirintersections, and the chapter concludes
with a summary ofthe chapter and a few remarks.

MINIMISINGMUTUAL INFORMATIONBY
NEGATIVE CORRELATION LEARNING

Minimisation of Mutual Information

Suppose the output F, of network i and the output F of network ; are
Gaussianrandom variables. Their variances are o *and 6.2, respectively. Themutual
information between £, and . canbe defined by Eq. (1) (van der Lubbe, 1997,
1999), The differential entnopy h(F )and h(F ) are givenby

hT)=[1+ log(2nc)]/ 2 2
and

h(F)=[1+ log(2rnc )]/ 2 3
Thejoint differential entropy A(F", Fj) isgivenby

hF,F) =1+ log(2) + logldet(Z)| C)]
where I is the 2-by-2 covariance matrix of 7, and F,. The determinantof Zis

def(Z)=c}6’(1-p) (%)

where p, isthe correlation coefficientof F and F
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p, =E[(F,~E[F])F,~B[E))]/(c252) ©
Using the formula of Eq.(5), we get

W(F, F) =1+ log(2m)+ log{?s?(1—p,)] /2 7

By substituting Eqs.(2), (3), and (7)in(1), we get

I(F,; F)=—log(1-p})/2 ®)

FromEq.(8), we may make the following statements:
[. IfF,andF areuncorrelated, the correlation coefficient p, isreduced tozero,
and the mutual information /(7 ; Ff) becomes very small.
2. IfF, andFj are highly positively correlated, the correlation coefficient Py 18
closeto 1, and mutual information /(F,; I } becomes very large.
Boththeoretical and experimentalresults (Clemenetal., 1985) haveindicated
thatwhenindividual networks in an ensemble areunbiased, average procedures are
most effective in combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors are uncorrelated.
There islittle tobe gained from average procedures when the errors are positively
correlated. In order to create a population of neural networks that are as
uncorrelated as possible, the mutual information between each individual neural
network andthe restofthepopulation should beminimised. Minimising the mutual
information between each individual neural network and the rest of the population
isequivalenttominimisingthecorrelation coefficient between them.

Negative Correlation Learning

GiventhetrainingdatasetD={(x(1),¥(1)), ..., (x(N),y(N))}, we consider
estimating y by forming a neural network ensemble whose output is a simple
averaging ofoutputs /*,ofa set of neural networks. All theindividual networks in
the ensemble aretrained on the same training data set

Fln) =+ X, Fi(n) ©9)
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where F(n) s the outputofindividual networki ontheath training pattem x (), F(n)
is the output of the neural network ensemble on the nth training pattern, and AMis
the number of individual networks in the neural network ensemble.

The idea ofnegative correlationlearning is to introduce a correlation penalty
termintotheerror function of eachindividual network so that theindividual network
canbe trained simultaneously and interactively. The errorfunction £ forindividual
ionthetraining data set Din negative correlation learning isdefined by

Ei= %X BF®) - ym))* + apin)] (10)

where Nisthe number of training pattens, E (#) is the value of the error function
ofnetwork / at presentation of the nth training pattern and y(n ) is the desired output
ofthe nth training pattern, The firstterm in the right side of Eq.(10) is the mean-
squared error ofindividual network £, The second termpp, isacorrelation penalty
function, The purpose of minimisingp, istonegatively correlateeachindividual’s
error witherrors forthe rest ofthe ensemble, Theparameter A isused to adjust the
strengthofthe penalty.
The penalty function p, has the form

pn) = —(Fm)-Fn)?/2 1

The partial derivative of . with respect to the output of individual i on the nth
training patternis

= Fi(n) - y(n) — MFi(n) - F(n)) (12)

where we have made use of the assumption that the output ofensemble F¢#) has
constant value withrespectto F'(»). The value of parameter ). lies inside therange
0<A<1sothatboth(1—4)and A have nonnegative values. BP (Rumelhartetal.,
1996) algorithm hasbeen used for weight adjustments inthe mode of pattern-by-
patternupdating. Thatis, weightupdating ofall the individual networksis performed
simultaneously using Eq.(12) after the presentation of each training pattern. One
complete presentation of the entiretraining setduring the leaming processis called
anepoch. Negative correlation learning from Eq.(12)is asimple extension to the
standard BPalgorithm. In fact, the only modificationthatisneededisto calculate
an extraterm ofthe form A(F () — F(n)) for the ith neural network.
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FromEqs.(10), (11)and (12), we may make the following observations:

1. Duringthetrainingprocess, all theindividual networks interact witheachother
through theirpenalty terms in the error functions. Eachnetwork F, minimises
not only the difference between F(n) and y(n), but also the difference
between Fn)and y(n). Thatis, negative correlation leaming considerserrors
whatall otherneural networks have learned while training a neural network.

2. ForA=0.0,thereare nocorrelationpenalty terms inthe error functions ofthe
individual networks, and the individual networks are just trained indepen-
dently using BP. Thatis, independent training using BP for the individual
networks is a special case of negative correlation learning,

3. ForA =1, from Eq.(12) we get

JE {n
SE= F(n) - y(n) (13)
Notethat the error of the ensemble for the nth training patternis defined by

E asembie = 37 2 o1 Fi(n) — y (n))? (14)

ThepartialderivativeofE__  withrespectto F¥ onthe nthtraining pattern is

IE
SR = wlF(n) - y(n)) (15)
Inthis case, we get
BEAN)  OF rembte (16)

aF (n) aFn)

Theminimisationofthe error function oftheensemble isachievedby minimising
the error functions ofthe individual networks. IFrom this point of view, negative
correlation learning providesanovel way to decompose the learning task ofthe
ensemble into anumber of subtasks for different individual networks.
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ANALYSIS BASED ONMEASURING
MUTUALINFORMATION

Inordertounderstand why and how negative correlation learning works, this
section analyses it through measuring mutual information on aregression task in
threecases: noise-free condition, small noise condition and large noise condition.

Simulation Setup
Theregression functioninvestigated hereis

f(x) = H10sin(mxx5) + 2003 —3)> + 10x4 + 5x5)] -1 (17)

where x=[x,, ..., x ] is aninput vector whose components liebetween zero and
one. The value of f(x)liesintheinterval [-1, 1]. Thisregression task hasbeenused
byJacobs (1997) toestimate the bias of mixture-of-experts architectures and the
variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x®? (1), »*(1),1=1,...,L,L=500,k=1,..,K,
K =25, were created at random. Each setconsisted of 500 input-output patterns
inwhich the components ofthe input vectors were independently sampled froma
uniformdistribution over theinterval (0, 1). In the noise-free condition, the target
outputs were notcorrupted by noise; in thesmall noise condition, the target outputs
werecreated by adding noise sampled from a Gaussian distribution with a mean of
zero anda variance of 62=0.1 to the function f{x); inthelarge noisecondition, the
target outputs were created by adding noise sampled from a Gaussian distribution
with a mean of zero and a variance of 6= 0.2 to the function f{x). A testing set of
1,024 input-output pattems, (t(n), d(n)), n=1, ..., N, N = 1024, was also
generated. For this set, the components of the input vectors were independently
sampled fromauniform distribution overtheinterval (0, 1), and the targetoutputs
werenot corrupted by noisein all three conditions. Each individual network in the
ensemble is amulti-layer perceptron with one hidden layer. All the individual
networks have 5 hidden nodes in an ensemble architecture. The hidden node
functionis defined by thelogistic function

20) = o (18)

The netwark outputis alinear combination of the outputs ofthe hidden nodes.
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Foreachestimation ofmutual information among an ensemble, 25 simulations
wereconducted. Ineach simulation, the ensemble was trained onadifferent training
set from the same initial weights distributed inside a smallrange so thatdifferent
simulations of an ensemble yielded different performancessolely duetothe use of
different training sets. Such simulation setup follows the suggestions from Jacobs
(1997).

Measurement of Mutual Information

Theaverage outputs ofthe ensemble and the individual networkion the nth
pattern in the testing set, (t(n), d(n)), n=1, ..., N, are denoted and given
respectively by

F(t(n) = £ 2 1=, FO1(n) (19)

and
Fit(n) = ¥ Z 1 FO(e(n) (20)

where F% (t(n)) andF}(") (t(n)} are the outputs of'the ensemble and the individual
network i on the nth pattern in the testing set from the kth simulation, respectively,
and X=25isthe number of simulations. From Eq.(6), the correlation coefficient
between network i and network jis givenby

B, EE, (FPteta)) — Futeta))) (Fein)) - Fiitla))) (21)

fag = 2 2
f ‘/:3{:1:;’:1 (FPtan - Fae) o=, (FPwan - Fren)

From Eq.(8), the integrated mutual information among the ensembles can be
definedby

Epi=— 5%, j:il,f log(1~ py) (22)
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Wemay also define the integrated mean-squared error (MSE) on the testing set as

Emse = 3 Z 021 2 g (FO( () — d(n))? (23)
Theintegrated mean-squarederror £ onthetraining setis givenby
Erainmis =T 2 11 ¥ 2 3 FOOW) -y H0)’ @4

Results in the Noise-Free Condition

Theresults of negative correlation leaming in the noise-free condition for the
different values of L atepoch 2000 are givenin Table 1. The results suggestthatboth
E__.andE_ appeared to decrease with the increasing value of A. The
mutualinformation E among theensemble decreased as the value of A increased
when 0 <2 <0.5. However, when A increased further 10 0.75 and 1, the mutual
informationZ hadlarger values. The reason ofhaving larger mutual information
at1=0.75 and =1 isthatsome correlation coefficients had negative values and
the mutual information depends on the absolute values of correlation coefficients.

Inordertofindoutwhy £ decreased with increasing value of A, the
concept ofcapability ofatrained ensemble is introduced. The capability ofatrained
ensemble is measured by its ability ofproducing correct input-output mapping on
the training setused, specifically, by its integrated mean-squarederror £, on
thetraining set. Thesmaller £ is,thelargercapability the trained ensemble
has.

Results in the Noise Conditions

Table2 and Table 3 compare the performance of negative correlation learning
fordifferentstrength parameters in both smallnoise (variance 6*=0.1) and large

Table 1: The results of negative correlation learning in the noise-free
condition for different | values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 0.3706 | 0.1478 [0.1038 [ 0.1704 | 0.6308
Erest mse 0.0016 | 0.0013 [0.0011 | 0.0007 | 0.0002
Eimin mee | 0.0013 | 0.0010 |0.0008 | 0.0005 | 0.0001
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noise (variance 0>= 0.2)conditions. Theresults show that there were same trends
forE ,E_  _andE, _ inbothnoise-free andnoise conditions whenA<0.5.

Thatis, Em_;E ot mse andew e APPeEared to decrease with the increasing value
appeared to decrease first and then increase with the

of .. However, E
increasing value of A.

Inordertofindoutwhy £, showed differenttrendsinnoise-free andnoise
conditions whenA,=0.75 and A=1, the integrated mean-squared errorE,
on the training set was also shown in Tables 1, 2 and 3. When A =0, the neural
network ensemble trained had relatively large £__ . It indicated that the
capability oftheneural network ensemble trained was not bigenoughto produce
correct input-output mapping (i.e., it was underfitting) for thisregressiontask.
WhenA=1, theneural network ensemble trained learned too many specific input-
outputrelations(i.e., it wasoverfitting), and itmight memorise the tfraining dataand
thereforebe less ableto generalise between similar input-output patterns. Although
the overfitting was notobserved for the neural network ensemble used in the noise-
free condition, too large capability of the neural network ensemble will lead to
overfitting for both noise-free and noise conditions because of the ill-posedness of
any fnite training set (Friedman, 1994).

Choosing apropervalue ofA is important, and also problem dependent. For
the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for 4, =0.5 among the tested

values of A in the sense of minimising the MSE on the testing set.

Table 2: The results of negative correlation learning in the small noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.5495 | 3.8761 | 1.4547 |0.3877 [0.243]
Etest mse 0.0137 | 0.0128 |0.0124 [0.0126 |0.0290
Binin mse | 0.0962 | 0.0940 | 0.0915 | 0.0873 |[0.0778

Table 3: The results of negative correlation learning in the large noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.7503 | 39652 | 1.6957 [0.4341 |0.2030
Etest mse 0.0249 | 0.0235 | 0.0228 |0.0248 | 0.0633
Eiain mse [ 0.1895 | 0.1863 | 0.1813 [0.1721 |0.1512
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ANALYSIS BASED ONDECISION BOUNDARIES

This section analyses the decision boundaries constructed by both negative
correlation leaming and the independent training, Theindependent training isa
special case of negative correlation learning for A=0,0in Eq.{12).

Simulation Setup

Theobjective of the pattern classification problem s to distinguish betweentwo
classes ofoverlapping, two-dimensional, Gaussian-distributed patterns labeled 1
and?2. LetClass 1 and Class 2 denote the set of events for whicharandom vector
xbelongs topatters 1 and 2, respectively. We may then express the conditional
probability density functions for thetwo classes:

= 1 1 2
/() = gzexp (= allx= wl ) 25)
where mean vector [, =[0,0]" and variance o *= L.
fxx) = goaexp (- gallx— wl ) (26)

where mean vectorp,=[0,0}" and variance 6,’=4. The two classes areassurmed
tobeequiprobable; thatisp, =p,=%2. Thecosts for misclassificationsare assumed
tobe equal, and the costs for correctclassifications areassumed to be zero. On this
basis, the (optimum) Bayes classifier achieves aprobability of correctclassification
p_=81.51 percent. The boundary ofthe Bayes classifier consists of'a circle of
center[-2/3,0]" and radius r=2.34; 1000 points from each of two processes were
generated for the training set. The testing set consists 0f 16,000 points from each
oftwo classes.

Figure 1 shows individual scatter diagrams for classes and the joint scatter
diagram representing the superposition of scatter plots of 500 points from each of
two processes. This latter diagram clearly shows that the two distributions overlap
eachother significantly, indicating thatthere is inevitably a significant probability of
misclassification.

Theensemble architectureused in the experiments has three networks. Each
individualnetwork inthe ensemble isamulti-layer perceptron withonehidden layer.
Allthe individual networkshave three hidden nodes in an ensemble architecture.
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Figure 1: (a) Scatter plot of Class 1, (b) Scatter plot of Class 2; (¢} Combined
scatter plot of both classes, the circle represents the optimum Bayes solution
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Both hiddennode function and output node function are defined by the logistic
function in Eq.(18).

Experimental Results

Theresults presented in Table4 pertain to 1 0differentruns ofthe experiment,
with each run involving the use of 2,000 data points for training and 32,000 for
testing. Figures 2 and 3 compare the decisionboundaries constructed by negative

Figure 2: Decision boundaries formed by the different networks trained by the
negative correlation learning (A = 0.73): (a) Network 1, (b) Network 2; (¢}
Network 3, (d) Ensemble; the circle represents the optimum Bayes solution
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Figure 3: Decision boundaries formed by the different networks trained by the
independent training (i.e., A = 0.0 in negative correlation learning). (a)
Network 1, (b) Network 2; (c} Network 3; (d) Ensemble, the circle represenis
the optimum Bayes solution
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correlation leaming and the independent training. Incomparison oftheaverage
cotrect classification percentage and the decision boundaries obtained by the two
ensemble leaming methods, itisclearthat negative correlation leaming outperformed
the independent training method. Although the classification performance of
individual networks in the independent training is relatively good, the overall
performance ofthe entire ensemblewas not improvedbecause different networks,
such as Network 1 and Network 3 in Figure 3, tended to generate the similar
decisionboundaries.

The percentage of correctclassification of the ensemble trained by negative
correlationis 81.41, whichis almostequal tothatrealised by the Bayesian classifier.
Figure 2 clearly demonstrates that negative correlation learning is capable of
constructing adecisionbetween Class 1 and Class 2 thatis almostas good as the
optimum decisionboundary. Itis evident from Figure 2 that different individual
networks trained by negative correlation leaming were able tospecialise to different
parts ofthe testing set.
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Table 4: Comparison between negativecorvelation learning (NCL) (A.=10.75)
and the independent training (i.e., A = 0.0 in negative correlation learning)
on the classification performance of individual networks and the ensemble;
the results are the average correct classification percentage on the testing set
over 10 independent runs

Methods Net 1 Net 2 Net 3 Ensemble
NCL g1.11 75.26 73.09 81.03
Independent 81.13 80.49 g1.13 80.59
Training

ANALYSIS BASED ON THE CORRECT
RESPONSE SETS

Inthissection, negative correlationlearning was tested on the Australian credit
card assessmentproblem. The problem ishow to assess applications for credit
cards based on anumber of attributes. There are 690 patterns in total. The output
hastwo classes. The 14 attributesinclude 6 numeric values and 8 discrete ones, the
latter having from 2 to 14 possible values. The Australian creditcard assessment
problemisaclassification problem which is different from the regression type of
tasks, whose outputs are continuous. The data set was obtained from the UCI
machine learning benchmark repository. It is available by anonymous fip at
ics.uci.edu (128.195.1.1)indirectory /pub/machine-learning-databases.

Experimental Setup

The data set waspartitioned intotwo sets: atraining set and atesting set. The
first 518 examples wereused for the training set, and the remaining 172 examples
for the testing set. Theinput attributes wererescaled tobetween 0.0 and 1.0 by
alinear function. The outputattributes ofall the problems were encoded usinga i-
of-moutputrepresentation for mclasses. The output with the highestactivation
designated the class. The aim ofthis section is to study the difference between
negativecorrelation learning and independent training, rather than to compare
negative correlation learning with previous work. The experimentsused sucha
singletrain-and-test partition.

The ensemble architecture used in the experiments has 4 networks. Each
individual network is a feedforward network with one hidden layer. Both hidden
node function and output node function are defined by the logistic function in
Eq.(18). All theindividual networks have 10hidden nodes. The number oftraining
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gpochs was setto250. Thestrength parameter A was setto 1.0, These parameters
were chosen after limited preliminary experiments. They are not meant to be
optimal,

Experimental Results

Table 5 showstheaverageresults of negative correlation leaming over 25 runs.
Eachrun ofnegative correlation learning was from different initial weights, The
ensemble with the same initial weight setup was also trained using BP withoutthe
correlationpenalty terms (i.e., A=0.0 innegativecorrelation learning), Results are
alsoshowninTable$. Forthisproblem, thesimple averaging definedin Eq.(9) was
firstapplied to decide the output of the ensemble, For the simple averaging, itwas
surprising that the results of negative correlation learning with A= 1.0 were similar
tothoseofindependent training. This phenomenon seems contradictorytothe claim
thatthe effectofthe correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts oraspects ofthe training data. In
order toverify and quantify this claim, we compared the outputs of the individual
networks trained with the correlation penalty terms to those of the individual
networks trained without the cotrelation penalty terms,

Table 5: Comparison of error rates between negative correlation learning (/.
= 1.0) and independent training (i.e., A= 0.0innegative correlation learning)
on the Australian credit card assessment problem; the results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning, Mean,
SD, Min and Max indicate the mean value, standard deviation, minimum and
maximum value, respectively

Error Rate | Simple Averageing | Winner-Takes-All

A=1.0 Mean 0.1337 0.1195
SD 0.0068 0.0052

Min 0.1163 0.1105

Max 0.1454 0.1279

A=0.0 Mean 0.1368 0.1384
SD 0.0048 0.0045

Min 0.1279 0.1279

Max 0.1454 0.1512
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Table 6: The sizes of the correct response sets of individual networks created
respectively by negative correlation learning (A = 1.0) and independent
training (i.e., A = 0.0 in negative correlation learning) on the testing set and
the sizes of their intersections for the Australian credit card assessment
problem; the resuits were obtained from the first run among the 25 runs

A=10 1=00
Q=147 ;=143 =138 |Q,=149 ,=147 ©,=148
Q=143 =138 Q3=124 | Q=148 Q=147 Q3 =147
Quu=141 =116 =133 | Q=147 Oy =147 Oy =146
Q=123 Q=115 Q=133 | Q=146 Qs =147 Q)3 =146
Qi3 =121 Q3 =113 Quz3=113 | Quza = 146 Q34 =146 Q235= 146

Two notions were introduced to analyse negative correlationlearning. They
are the correct response sets of individual networks and their intersections. The
correctresponse setS, of individual network i on the testing setconsists ofall the
patterns in the testing set which are classified correctly by the individual network i.
Let (2 denotethesizeofsetS, and €2, . denotethesizeofsetS, ~S, N5, .
Table 6 shows the sizes ofthe correctresponse sets ofindividual networks and their
intersections on the testing set, where the individual networks were respectively
created by negative correlationlearning and independent training, Itis evident from
Table 6 that different individual networks created by negative correlation learning
were able to specialise to different parts of the testing set. Forinstance, in Table 6
the sizes of both correct response sets S,and S, at A= 1.0 were 143, but the size
of theirintersection 8, S, was 133. Thesize of S, NS,NS,NS, wasonly 113.
[ncontrast, the individual networksintheensemble created by independent training
were quite similar. The sizes of correctresponsesets S , 5, 8,and S, at A=0.0
were from 147 to 149, while the size of their intersection set §, ~S,N§,NS,
reached 146. There were only three different patterns correctly classified by the
fourindividval networksinthe ensemble.

Insimple averaging, all the individual networkshave the same combination
weights and are treated equally. However, not all the networks are equally
important. Becausedifferent individual networks created by negative correlation
learning wereable to specialise todifferent parts ofthe testing set, only the outputs
of these specialists should be considered to make the final decision about the
ensemble for this part of the testing set. n this experiment, a winner-takes-all
method was applied to select such networks. Foreachpattern ofthe testing set,
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the output of the ensemble was only decided by the network whose output had the
highestactivation. Table 5 showsthe averageresultsofnegative correlation learning
over 25 runs using the winner-takes-all combination method. The winner-takes-
allcombinationmethod improvednegative correlationlearmingsignificantlybecause
there were good and poor networks foreach patternin the testing set, and winner-
takes-all selected the best one. However, it did not improve the independent
trainingmuch because the individual networks created by the independenttraining
wereall similartoeach other.

CONCLUSIONS

This chapter describes negative correlation learning for designing neural
network ensembles. If can be regarded as one way of decomposing a large
problem into smaller and specialised ones, sothat each sub-problem canbe dealt
withbyanindividualneural networkrelatively easily. A correlationpenalty termin
the error function wasproposedtominimisemutual information andencourage the
formation of specialists in theensemble,

Negativecorrelation learning hasbeenanalysedin termsofmutual information
onaregression taskin the different noise conditions. Unlike independent training
which creates larger mutual information amongthe ensemble, negative correlation
leaming can produce smaller mutual information among the ensemble. Through
minimisationofmutual information, verycompetitiveresults have been produced by
negative correlation learmning in comparison with independent training,

This chapter compares the decision boundaries and the correct response sets
constructed by negative correlation learning and the independent training for two
pattern classification problems. The experimental results show that negative
correlation learning has avery good classification performance, In fact, the decision
boundary formed by negative correlation learning isnearly close to the optimum
decision boundary generated by the Bayes classifier.

Thereare, however, someissuesthat needresolving. Nospecial considerations
were made in optimisation of the size of the ensemble and strength parameter A in
thischapter. Evolutionaryensembles withnegative correlation leaming foroptimisation
ofthesize ofthe ensemble hadbeen studied on the classification problems (Liu, Yao
& Higuchi, 2000).
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Chapter I1

A Perturbation Size-
Independent Analysis
of Robustness in Neural
Networks by Randomized
Algorithms

C. Alippi
Politecnico diMilano, Italy

ABSTRACT

This chapter presents ageneralmethodologyfor evaluating the loss inperformance
of a generic neural network once its weights are affected by perturbations. Since
weights represent the “knowledge space”™ of the neural model, the robustness
analysis can beusedtostudy theweights/performancerelationship. Theperturbation
analysis, whichis closelyrelatedtosensitivity issues, relaxes all assumptions made
in the related literature, such as the small perturbation hypothesis, specific
requirements on the distribution of perturbations and neural variables, the
number of hidden units and a given neural structure. The methodology, based on
Randomized Algorithms, allows reformulating the computationally intractable
problem of robustness/sensitivity analysis in a probabilistic framework
characterised by a polynomial time solution in the accuracy and confidence
degrees.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

The evaluation of the effects induced by perturbations affecting a neural
computation is relevant from the theoretical point of view and in developing an
embedded device dedicated toaspecific application.

Inthe first case, the interestisin obtaining areliable and easy tobe generated
measure of the performance loss induced by perturbations affecting the weights of
aneuralnetwork. The relevance oftheanalysis is obvioussince weights characterise
the “knowledge space” of the neural model and, hence, its inner nature. In this
direction, astudy ofthe evolution ofthe network’s weights over training time allows
forunderstanding the mechanism behind the generation of the knowledge space.
Conversely, the analysis ofa specific knowledge space (fixed configuration for
weights) provides hints about the relationship between the weights space and the
performance function, The latter aspectis of primary interestin recurrent neural
networks where even small modifications of the weight values are critical to
performance (e.g., think ofthe stability of anintelligent controller comprisinga
neural network and issues leading torobustcontrol).

The second case is somehow strictly related to the first one and covers the
situation where the neural network mustbe implemented ina physical device. The
optimally trained neural network becomes the “golden unit” to be implemented
withina finite precisionrepresentation environmentas ithappensinmission-critical
applicationsand embedded systerns. Inthese applications, behavioural perturbations
affecting the weights of aneural network abstractuncertainties associated with the
implementation process, suchas finite precision representations (e.g., truncation or
roundinginadigital hardware, fixed or lowresolution floating pointrepresentations),
fluctuations of the parameters representing the weights in analog solutions (e.g.,
associated with the production process of a physical component), ageing effects,
ormore complex and subtleuncertainties inmixed implementations.

The sensitivity/robustness issue has been widely addressed in the neural
network community with a particular focus on specific neural topologies.

More in detail, when the neural network is composed of linear units, the
analysis is straightforward and the relationship between perturbations and the
induced performance loss can be obtained in a closed form (Alippi & Briozzo,
1998). Conversely, whenthe neural topology isnon-linear, which ismostly the
case, several authors assume the small perturbation hypothesis or particular
hypothesis aboutthe stochasticnature of the neural computation, Inboth cases, the
assurnptions make the mathematics moreamenable with the positive consequence
that arelationship between perturbations and performance loss can be derived
(e.g., see Alippi & Briozzo, 1998; Piche, 1995), Unfortunately, theseanalyses
introduce hypotheses which arenotalwayssatisfied inall real applications.
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Anotherclassicapproachrequires expanding with Taylorthe neuralcomputation
around the nominal valueofthetrained weights. A subsequent linearearised analysis
follows whichallows for solving the sensitivity issue{e.g., Pichg, 1995). Anyway,
the validity of such approaches depend, in turn, on the validity of the small
perturbation hypothesis: how tounderstand apriori ifa perturbationis small fora
givenapplication?

In otherapplications the small perturbation hypothesis cannot be accepted
beingtheinvolved perturbations everything butsmall. As an example we have the
developmentofadigital embedded system. There, the designerhas toreduce as
possiblethedimension ofthe weightsby savingbits; this producesa positive impact
oncost, memory size and powerconsumption of the final device.

Differently, otherauthors avoid thesmall perturbation assumption by focusing
the attention on very specific neural network topologies and/or introducing
particular assumptions regarding the distribution of perturbations, internal neural
variables and inputs (Stevensen, Winter & Widrow, 1990; Alippi, Piuri & Sami,
1995).

Otherauthors have consideredthesensitivityanalysisunder thesmall perturbation
hypothesis to deal with implementation aspects. Inthis case, perturbations are
specifically related to finite precision representations of the interim variables
characterising the neural computation (Holt & Hwang, 1993; Dundar & Rose,
1995).

Differently fromthe limiting approaches providedin theliterature, this chapter
suggests a robustness/sensitivity analysis in the large, i.e., without assuming
constraints on the size or nature of the perturbation; as such, small perturbation
situations become only a subcase of the theory. The analysis is general and canbe
applied toall neural topologies, both static and recurrent in order to quantify the
performance loss of the neural model when perturbations affect the model’s
weights.

The suggested sensitivity/robustness analysis canbe applied to 47 neural
networkmodels involved in systemidentification, control signal/imageprocessing
and automation-based applications without any restriction. In particular, the
analysisallows for solving the following problems:

*  Quantify therobustness of agenerically trained neural network by means ofa
suitable, easily to becomputed and reliable robustness index;

*  Comparedifferentneural networks, solving a given application by ranking
themaccording to theirrobustness;

+  Investigate the criticality ofa recurrentmodel (“stability” issue) by means of its
robustnessindex;
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«  Study the efficacy and effectiveness oftechniques developed toimprove the
robustness degree of'a neural network by inspecting the improvement in
robustness.

Thekey elements of theperturbationanalysis are Randomised Algorithms—
RAs-(Vidyasagar, 1996, 1998; Tempo & Dabbene, 1999; Alippi, 2002), which
transform the computationally intractable problem ofevaluating the robustness of
a generic neural network with respect to generic, continuous perturbations, ina
tractable problem solvable with a polynomial time algorithm by reserting to
probability.

Theincreasing interest and the extensive use of Randomised Algorithms in
control theory, and in particular in the robust control area (Djavan, Tulleken,
Voetter, Verbruggen & Olsder, 1989; Battarcharyya, Chapellat & Keel, 1995; Bai
& Tempo, 1997; Chen & Zhou, 1997, Vidyasagar, 1998; Tempo & Dabbene,
1999, Calafiore, Dabbene & Tempo, 1999), make this versatile technique
extremely interesting also for the neural network researcher.

We suggest the interested reader torefer to Vidyasagar (1998) and Tempo
and Dabbene (1999) for a deep analysis ofthe useof RAs in control applications;
the author forecastsanincreasing useofRandomised Algorithms inthe analysisand
synthesis of intelligent controllersin the neural network commumity.

The structure of the chapter is as follows. We first formalise the concept of
robustness by identifyinganatural and general index forrobustness. Randomised
Algorithms are then briefly introduced to provide a comprehensive analysis and
adaptedto estimate the robustness index. Experiments then follow toshed lighton
the use of thetheory inidentifying therobustnessindex forstatic andrecurrent neural
models.

A GENERALROBUSTNESS/SENSITIVITY
ANALYSISFORNEURALNETWORKS

In the following we consider a generic neural network implementing the
$= f(g" , x) function where § is the weight (and biases) vector containing all the
trained free parameters of the neural model.

Inseveralneuralmodels, andinparticularinthose related to systemidentification
and control, the relationship between the inputs and the cutput of the system are
captured by considering a regressor vector ¢, which contains a limited time-
window of actual and past inputs, outputs and possibly predicted outputs.
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Of particular interest, in the zoo of neural models, are those which can be
represented by means ofthe model structures j(s) = () where function f() is
aregression-type neural network, characterised by N, inputs, N, non-linear
hiddenunits and asingle effective linear/non-linear output (Ljung, 1987; Hertz,
Krog & Palmer, 1991; Hassoun, 1995; Ljung, Sjoberg & Hjalmarsson, 1996).

The absence/presence of a dynamic in the system can be modelled by a
suitable number of delay elements (or time lags), which may affect inputs (time
history on external inputs ) system outputs (time history on y(#) ) onpredicted
outputs (time history on $(r)) or residuals (time history on e(#) = 3(t) — y(9) ).
Whereitisneeded y(¢), H(z) and e(r) arevectorial entities, acomponent foreach
independentdistinctvariable.

Several neural model structures have beensuggested in the literature, which
basically differ in the regressor vector. Examples are, NARMAX and NOE
topologies. NARMA X structure can be obtained by considering both past inputs
and outputs ofthe systemto infer y(¢). We have:

Pp= lu(t)9u(t - 1)! ’ 'su(t —n,,),y(t— ]),' ' ‘,)’(‘ —ny),...,e(t _I)!' ”’e(l_ nc)l

Differently, the NOE structure processes only past inputs and predicted
outputs,i.e.:
¢= [H(f),u(f.— 1)5 “u(t -nu)s J?’(I _1):' T j'}(t —AR, )I .

Static neural networks, such as classifiers, can be obtained by simply
considering externalinputs:
@ = [u(®),u(t 1), u(t —n)).

Of course, differentneural models canbe considered, e.g., fully recurrent
and well fitwiththe suggested robustness analysis.

A general, perturbation size independent, model-independent robustness
analysistequires the evaluation of the loss in performance induced by a generic
perturbation, in ouranalysis affecting the weights ofa generic neural network. We
denote by y, (x)= £, (8,A,x) the mathematical description of the perturbed
computation and by A e p - %7 a generic p-dimensional perturbation vector, a
componentforeach independent perturbation affecting the neural computation
#(r). The perturbation space Discharacterised in stochastic terms by providing the
probability density function pdf, .

Tomeasure the discrepancy between y, (x) and y(r) or $(7), weconsidera
generic losstunction U{A). Inthe following we only assume thatsuch performance
loss function is measurable according to Lebesgue withrespectto D. Lebesgue
measurability for U(A)allows us fortaking into account an extremely large class
ofloss functions.
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Commonexamplesfor {7 arethe Mean Square Erro—MSE—loss functions

1 N

U(a)- OG- FA) . (1)

T2 A and U)=3-2
Morespecifically, (1)-leftcompares the perturbed network with $ , whichis
supposed tobe the“golden” error-frecunitwhile (1)-rightestimates theperformance
of the error-affected (perturbed) neural network (generalisation ability of the
perturbed neural model).
The formalisation of the impact of perturbation on the performance function
canbe simply derived:

Definition: Robustness Index
Wesay that aneural network isrobustatlevel 7 in D, when the robustness
index ¥ is theminimum positive value forwhich

Immediately, from the definition of robustness index we have thata generic
neural network NN is more robust than NN, if ¥, < ¥, and the property holds
independently from the topology of the two neural networks.

Themainproblemrelatedto the determination of the robustnessindex ¥ isthat
wehavetocompute U (A), WA e D ifwewishatightbound. The 7 -identification
problem is therefore intractable from a computational point of view if we relax all
assumptions made in the literature as we do.

To deal with the computational aspect we associate a dual probabilistic
problemto (2):

Robustness Index: Dual Problem We say thata neural network is robust
atlevel ¥ in Dwithconfidence 77, when ¥ istheminimum positive value forwhich

PU(AY<y)zn  holds vAe D, Vy2¥ 3)

Theprobabilistic problemis weaker than the deterministic one since ittolerates
the existence ofa set of perturbations (whose measure according to Lebesgueis 1-
1) forwhich u{A) > ¥ . In other words, notmore than 1001 % of perturbations
Ae Dwill generatealoss inperformance larger than 7 .
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Probabilistic and deterministic problems are “close” to each otherwhen we
choose, aswedo, 7=1. Notethat ¥ depends only onthesize of D and the neural
network structure.

The non-linearity with respect to A and the lack of a priori assumptions
regarding the neural network donotallow computing (2) ina closed form for the
general perturbation case. The analysis, which would imply testing UA in
correspondence witha continuous perturbation space, canbe solved by resorting
to probability according to the dual problem and by applying Randomised
Algorithmsto solve therobustness/sensifivity problem.

RANDOMIZED AL.GORITHMS AND

PERTURBATION ANALYSIS

Inthisparagraph we briefly review the theorybehind Randomised Algorithms
and adapt themtothe robustness analysis problem,

Inthe following we deno‘oebypTz Pr{U(A)<y}  theprobabilitythatthe loss
inperformance associated withperturbationsin Disbelowagiven—butarbitrary—
value.

Probability p, isunknown, cannotbe computedina close form fora generic
[/ functionand neural network topology, and its evaluation requiresexploration of
the whole perturbation space D.

Theunknown probabilityp, canbeestimated by sampling Dwith N independent
andidentically distributed samples A ; extraction mustbe carried out according to
the pdf ofthe perturbation.

Foreach sample A we then generate the triplet

1#U@) <y
8, U(8),1(A)}i=1,N where I(A,)= 0ifUL) >y ©)
Thetrue probability p, cannow simply be estimated as
. 1 &
Py =§ZI (a,) (5)
i=l

Ofcourse, when Ntendstoinfinity, p,. convergesto p, Conversely, onafinite
data set of cardinality N, the discrepancy between p, andp, exists and canbe
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simply measured as | Py f)N| . ‘ P, - ﬁN| isarandom variable whichdependsonthe
particularextraction ofthe Nsamplessince differentextractions of Nsamples from
Dwillprovide different estimates for p,,. By introducing anaccuracy degree ¢ on
\ P, - ﬁNI and a confidence level 1—§ (which requests that the | P, — f:N| <g
inequality is satisfied atleast with probability | — § ), ourproblemcan be formalised
byrequiring thatthe inequality

Prlp, — b <ef21-8 ©

is satisfied for Vy = 0. Of course, we wish to control the accuracy and the
confidence degrees of (6) by allowing the user to choose the most appropriate
values for the particular need. Finally, by extractinganumber of samples from D
according to the Chernoffinequality (Chemoff, 1952)

Q)

we have that Pr{p}, —ﬁN‘ < 8}2 1-38 holds for Vy > 0,¥5,¢ < [0,1].

As anexample, by considering 5% in accuracy and 99% in confidence, we
haveto extract 1060samples from D; with such choice we canapproximate p. with
Py introducing themaximumerror0.05( g, —0.05< p, < p, +0.05)andthe
inequality holds atleast with the probability 0.99.

Other bounds canbe considered instead of the Chermoff s one as suggested
byBernoulliand Bienayme, (e.g., see Tempo & Dabbene, 1999). Nevertheless,
the Chernoff’sbound improves upon the others and, therefore, should be preferred
if we wish tokeepminimal the number of samples to beextracted. The Chernoff
bound grants that:

* Nisindependent fromthe dimension of D (andhence itdoesnot depend on the

number of perturbations we are considering inthe neural network);
]

3 and giz (henceitispolynomialintheaccuracy and confidence

* NislinearinIn
degrees).
Asaconsequence, thedual probabilistic problemrelated to the identification
oftherobustnessindex ¥ canbesolved withrandomisedalgorithms andtherefore
with a polynomial complexity in the accuracy and the confidence degrees
independently from the number of weights ofthe neural model network. Infact, by

expanding the (6) we have that
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<efp1-6 :Pr{

Pru(a)< y)—%ZI(Ai% 56}2 1-§  (8)

Pr{p? — Py

Ifaccuracy € andconfidence § aresmall enough, we can confuse p, and
P bycommittingasmallerror. As aconsequence, the dual probabilistic problem
requiring P, 27 becomes p, =7 . Wesurelyassume £ and § tobesmall
enoughinsubsequent derivations.
The final algorithm, which allows fortesting the robustness degree ¥ ofa
neural network, 1s:
1. Select & and § sufficiently smallto have enough accuracy and confidence.
2. Extract from D, according to its pdf a number of perturbations N as
suggested by (7).
3. Generate the indicator function I(A) and generate the estimate
Py = Px(¥) according to (5).
4. Select the minimum value 7y, from the p, = p,(y) function so that
ﬁN()’q) =1 is satisfled Vy 2 y,. ¥, is the estimate of the robustness
index 7 .

Notethatwith asimple algorithm we are able to estimate in polynomial time
the robustnessdegree ¥ ofageneric neural network. The accuracy in estimating
¥ canbemade arbitrarily good atthe expense of a larger number of samples as
suggested by Chernoff’sbound.

APPLYINGTHEMETHODOLOGYTOSTUDY
THE ROBUSTNESS OFNEURALNETWORKS

In the experimental section we show how the robustness index for neural
networks can be computed and how it can beused to characteriseaneural model.
Afterhavingpresentedandexperimentallyjustifiedthetheory supporting Randomised
Algorithms, we will focus onthe following problems:

» testtherobustness ofagiven static neural network (robustness analysis);

» study therelationships between the robusiness of a staticneural network and
the number ofhiddenunits (structure redundancy),

* analyse the robustness of recurrent neural networks (robustness/stability
analysis).

Inthe following experiments weconsider perturbations affecting weightsand
biases ofaneural network defined in D and subject to uniform distributions. Here,
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a perturbation A, affecting a generic weight w, must be intended as a relative
perturbation withrespectto the weight magnitude according to the multiplicative
perturbationmodelw, =w(1+A), Vi=1,n. A %perturbation implies that A
; bp dv Tt 3T i
isdrawn from asymmetrical uniform distribution of extremes

ot
100°100 |

a 5% perturbationaffecting weights and biases composing vector ¢ implies
thateach weight/bias is affected by an independent perturbation extracted from the
[-0.05,0.05] intervalandapplied tothe norinal valueaccording tothe multiplicative
perturbationmodel.

Experiment 1: The impact of € 6 and N on the evaluation of the
robustness index
Thereference applicationtobe learned isthe simple error-free function

e-().?.S-x
y= -x-sin(x2)+1+7, xe[-33]

A set of 41 training data have been extracted from the function domain
according to a uniform distribution. We considered static feedforward neural
networks withhidden unitscharacterised by ahyperbolic tangentactivationfunction
andasinglelinearoutput. Training wasaccomplished by consideringa Levenberg-
Marquardtalgorithm applied toan MSE training function; a testset was considered
during the training phase to determine the optimal stopping pointso astomonitor
theupsurgence of overfittingeffects.

We discovered thatall neural networks withatleast6 hiddenunitsareableto
solvethe function approximation task with excellent performance,

Inthis experiment we focus the attention on the neural network characterised
by 10 hidden units. After training we run the robustnessalgorithm by considering
7.5% of perturbations (weights are affected by perturbations upto 7.5% of their
magnitude) and we chose £=0.02 and §=0.01 from which we have to extract
N=6624 samples from D, Wecarried out three extractions of Nsamples and, for
eachset, we computed therelated p,, = p,, (¥) curve.

The p,, = p,(y) curvesare giveninFigure 1. Aswe can seethe curves are
very close to each other. In fact, we know from the theory, that the estimated
probability belongs to a neighbourhood of the true one according to the
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Figure 1: Dy = Dx(¥) for three different runs
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Py —0.02< p, < By +0.02 relationship. A singlecurve is thereforeenough to
characterise the robustness of the envisaged neural network and there is noneed
to consider multiple runs. By inspecting Figure 1 we obtain that the estimate ofthe
robustness index 7 is ¥,=11which implies that {{A)<11, VA< Dwithhigh
probability.

Wewishnowtostudy theimpactofNon p,, = p, (¥) byconsideringthree
runs with different £ and § accordingtoTable1.

The p, = p, (¥) curvesaregiveninFigure 2. Itis interesting tonote, at least
for the specific application, that even with low values of A, the estimates for
Py = DPy(y) and ¥, are reasonable and not far from each other. We should
anyway extractthe number ofsamples according to Chernoff’s inequality.

Experiment 2: Testing the vobusiness of a given neural network

Inthe second experiment wetest the robustness ofthe 10 hidden unitsnetwork
by consideringits behaviouronce affected by stronger perturbations (larger 1) and,
in particular, for perturbations 1%, 3%, 5%, 10%, 30%. Weselected £=0.02 and
0=0.01.

The p, = P, (y) function corresponding to the different perturbations s given
inFigure 3.

Tablel: €, § and N

E o N
0.02 0.01 6624
0.05 0.05 738

0.1 0.1 150
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Figure 2: p,, = py(y) for different runs with parameters given in Table I
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Again, fromits definition, ¥ isthesmallestvalueforwhich p, =1, 7 > ¥ ;as
anexample, if we considerthe 5% perturbation case, ¥ assumesa value around
7. It is obvious, but interesting to point out that, by increasing the strength of
perturbation (i.€., by enlarging the extremes ofthe uniformdistributioncharacterising
the pdfofD), ¥ increases. Infact, stronger perturbations have aworse impact on

the performance loss function since the error-affected neural network diverges from
the error-free one. Conversely, we see thatsmall perturbations, e.g., the 1% one,
inducea very smallloss inperformance since the robustnessindex ¥,, is very small.

Figure 3: P, as a function of ¥ for the 10 hidden units neural network
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Experiment 3: Testing the robustness of a hierarchy of performance-
equivalent neural networks

Once we haveidentified the robustness degree of a neural network solving an
application, we can investigate whetheritispossible to improve the robustness
degree of the application by considering asortof structural redundancy ornot. This
issue can betackled by considering the neural hierarchy M:M, c M_...c M....
where M, represents a neural network with £hidden units.

Tothis end, we consider a set of performance-equivalent neural networks,
each of whichis able to solve the application with a performancetolerable by the
user. All neural networks are characterised by a different topological complexity
(number ofhidden units).

The p, = p, (v ) curves parameterised in thenumber ofhiddenunitsare given
inFigure4inthe case of 1 % perturbation. We cansee thatby increasing the number
ofhidden units, ¥ decreases. We immediately realise that neural networks witha
reducednumber othidden units are, for this application, less robust than the ones
possessing more degrees of freedom. Large networks provide, inaway, asortof
spatial redundancy: information characterising the knowledge space of the neural
networksis distributed overmore degrees of freedom.

We discovered cases where a larger neural network was lessrobust thana
smaller one: in suchacaseprobably the complex model degenerates intoasimpler
one.

Theevolutionof ¥ overthenumberofhiddenunits parameterised with respect
tothe different perturbations 5%, 10% and 30%is given in Figure 5. We note that
the minimal network, namely the smallestnetwork able to solve the application, is
not the morerobust one for this application (infactitpossesses large values forthe

¥ s).

Figure4: p, over ¥ and parameterised in the number of hidden units
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Thistrend—verified alsowith other applications—suggests thatthe robustness
degree of the neural network improves on the average by increasing the number of
hiddenunits (spatial redundancy). Anyway, witha smallincreaseinthe topological
complexity (e.g., by considering the 13 hiddenunits model instead of the 6 one), we
obtainasignificantimprovementaccordingtothe robustness level. There isnoneed
to consider more complex neural networks sincethe improvement in robustnessis
small.

Experiment 4: Testing the robusiness of recurrent neural networks

The goal ofthe lastexperimentis to study the robustness/stability of recurrent
neural networks with the suggested theory. The chosen application refers to the
identification of the open-loop stable, nonlinear, continuous system suggested in
Norgaard (2000). The input and the corresponding output sequence of the system
tobeidentifiedis giveninFigure 6.

We first considered an NOE recurrent neural network with 5 hidden units
characterised by the regressor vector ¢ = [u(z — 1), u(t — 2), $(2 1), p(t— 2))- The
non-linearcore of the neural network is a static regression type neural network as
the one considered inthe function approximationexperiments. Thetopology ofthe
NOE networkisgivenin figure 7.

Once trained, the network we applied the methodolegy to estimates the
robustness of the recurrent model. The p, = p, (v) curve, evaluated with
£ =& =0.05,forthe 0.1% perturbation case is given in Figure 8. As we could
haveexpected, differently from the static function approximation application, the
recurrent NOE neural network is sensitive evento small perturbations affecting the
knowledge space of the network.

Figure 5: ¥ as function of the hidden units, £ =0.04, § =0.01
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We identified the dynamic system with a NARMAX neural network
characterised by 5 hidden units and the structure given in Figure 9. For such
topology we selected the regressor vector

@ = [tt — 1)t —2), y(¢— Dyt — 2),6(t — 1), e(t - 2)]

Figure 10 shows the p, = p, (y) curve. It is interesting to note that the
NARMAX neural network is less robust than the correspondingNOE model. The
basicreason for such behaviouris dueto the factthat the recurrentmodel doesnot
receive directly as input the fed-back network output but only the residual e.

Duringtraining the NOE model must somehow learn more deeply the concept
of stability since even small variations of weights associated with the training phase
weights update would produce a trajectory diverging fromthe system output tobe
mimicked. Thiseffect is due tothe pure fed-back structure of the NOE model which

Figure 6: The input and the corresponding output of the dynamic system
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Figure 7: The considered NOE neural network
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Figure 8: The P, function for the NOE neural network

1

08 -

(R

07+

06+

[

04

03t

0.2

o1t

¥

e

0

gaTmma

Figure 9: The considered NARMAX neural network
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receives as inputs past predicted output and not direct information fromthe process.
Interestingly, this requires the neural model to implicitly leamn, during the training
phase, the conceptofrobustness asprovenby the p, = b, (7) curve.Conversely,
the NARMAX model has a smoother and less complex training phase since it
receives fresh information directly from the process (y values) which help the neural
model to be stable. As such, the training procedure will not search for weights
configuration particularly robust since small deviations, which could make the
systemunstable, will be directly stabilised by the true information coming fromthe

process.
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Figure 10: The D, function for the NARMAX neural network
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CONCLUSION

The mainresults of the chaptercan be summarised as follows. Once givena trained

neural network:

+ theeffects of perturbations affecting the network weights canbe evaluated
regardless ofthe topology and structure ofthe neural network, the strength of
the perturbation by considering aprobabilistic approach;

» therobustness/sensitivity analysiscanbe carried out witha Poly-timealgorithm
byresorting to Randomised Algorithms;

»  theanalysisis independent fromthe figure of meritconsidered to evaluate the
loss in performance induced by the perturbations.
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ABSTRACT

This chapter describes the application of a general regression neural network
(GRNN) to control the flight of a helicopter. This GRNN is an adaptive
network that provides estimates of continuous variables and is a one-pass
learning algorithm with a highly parallel structure. Even with sparse data in
a multidimensional measurement space, the algorithm provides smooth
transitions from one observed value to another. An important reason for
using the GRNN as a controller is the fast learning capability and its non-
iterative process. The disadvantage of this neural network is the amount of
computation required to produce an estimate, which can become large if
many training instances are gathered. To overcome this problem, it is
described as a clustering algorithm to produce representative exemplars
from a group of training instances that are close to one another reducing the
computation amount to obtain an estimate. The reduction of training data
used by the GRNN canmake it possible to separate the obtained representative

Copyright © 2003, Idea Group Inc,
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exemplars, for example, in two data sets for the coarse and fine control.
Experiments are performed to determine the degradation of the performance
of the clustering algorithm with less training data. In the control flight system,
data training is also reduced to obtain faster controllers, maintaining the
desired performance.

INTRODUCTION

Theapplicationof ageneral regression neural network tocontrol anon-linear
systemsuchasthe flightofa helicopteratornearhoverisdescribed. This general
regression neural network in an adaptive network that provides estimates of
continuous variables and is a one-pass learning algorithm with a highly parallel
structure. Even with sparse data in amultidimensional measurementspace, the
algorithm provides smooth transitions from one observed valueto another. The
automatic flight control system, through the longitudinal and lateral cyclic, the
collective and pedals are used to enable a helicopter tomaintain its position fixed
inspace foralong period of time. In order toreduce the computationamount ofthe
gathered data for training, and to obtain an estimate, a clustering algorithm was
implemented. Simulation resultsare presented and the performance ofthe controller
isanalysed.

HELICOPTERMOTION CONTROL

Recently, unmanned helicopters, particularly large-scale ones, have been
expected notonly for the industrial fields such as agricultural spraying and aerial
photography, butalso forsuch fields as observation, rescuing and fire fighting. For
monotonous and dangeroustasks, an autonomous flightcontrol of the helicopteris
advantageous.

Ingeneral, theunmannedhelicopteris anexample of anintelligentautonomous
agent. Autonomous flight control involves some difficulties due to the following:

+ itisnon-linear;

*  flightmodes arecross-coupled;

*  itsdynamics areunstable;

« itisamultivariate (i.e., there are many input-output variables) system;

+ itissensitivetoexternal disturbances and environmental conditions such as
wind, temperature, etc;

*  itcanbeused inmany differentflight modes(e.g., hoveror forward flight), each
of whichrequires different control laws;

+ it is often used in dangerous environments (e.g., at low altitudes near
obstacles).
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These characteristics make the conventional control difficult and create a
challengeto thedesign ofintelligentcontrol systems.

Forexample, although helicopters are non-linear systems, NN controllers are
capable of controlling them because they are also inherently non-linear. The
instabilities that result from time delays betweenchanges in the system input and
outputcan be addressed with the previous leamning of the network with asetof data
thatrepresents the pilots knowledge to stabilize the helicopter. Linear NN canbe
implemented to compensate the cross-couplings between control inputs, mainly
whenthe helicoptermakes asignificant changein its flight.

Therefore, a supervised general regression neural network can be used to
control the flight modes of anunmanned helicopter. The regressionis the least-
mean-squares estimation ofthe valueofa variable based on datasamples. The term
generalregressionimplies that the regression surface is notrestricted by being
linear. Ifthe values of the variables to be estimated are future values, the general
regression network (GRNN)isapredictor. [fthey are dependent variables related
to input variables in aprocess, system or plant, the GRNN canbe used to model
the process, system orplant. Once the system is modelled, a control surface can
bedefined interms of samples of contrel variables that, given a state vector of the
system, improvethe outputofthe system. [fa GRNN is trained using these samples,
it can estimate the entire control surface, becoming acontroller. A GRNN canbe
used to map from one set of sample points to another. Ifthe target space has the
same dimension as the input space, and ifthe mapping is one-to-one, aninverse
mapping caneasily be formedusing the same examples. Whenthe variables tobe
estimated are forintermediate values between givenpoints, then the GRNN canbe
used as an interpolator.

Inall cases, the GRNN instantly adapts to new data points. This couldbea
particular advantage for training roebots to emulate a teacher or for any system
whosemodel changes frequently.

SYSTEMMODELLING

Thehelicopter control is one of the popular non-linear educational control
problems. Due toitshighlynon-linear dynamics, it givesthepossibility to demonstrate
basic features and limits of non-linear control concepts. Sugeno (1997, 1998)
developed a fuzzy-logicbased control system toreplace theaircraft’s normal set
of control inputs. Other researchers, such has Phillips etal. (1994), Wade et al
(1994), and Wade and Walker {1994), have developed fuzzy logic flight controls
describing systemsthatinclude mechanisms for discovering and tuning fuzzy rules
inadaptive controllers. (Larkin, 1984) describeda model of an autopilotcontroller
based on fuzzy algorithms. An alternative approach to real-time control of an
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autonomous flying vehiclebased onbehavioral, orreactive, approachis proposed
byFaggetal. (1993). A recurrent neural network used to forward modeling of
helicopter flight dynamics was described by Walker and Mo (1994). The NN-
based controliers can indirectly model human cognitive performance by emulating
the biological processes underlying humanskill acquisition.

The main difference between NN-based controlters and conventional control
systemsisthat, inthe NN case, systems arebuilt from indirectly representations of
contro] knowledge similar to those employed by skilled humans, while in the
conventional designcase, adeep analytical understanding ofthe system dynamics
isneeded. Theability ofhumansto pilotmanned helicopters with only the qualitative
knowledgeindicatethat NN-based controllers with similar capabilities canalsobe
developed.

Thehelicopter can be modelled as a linear system around trim points, i.e.,a
flight with noaccelerations and nomoments. The state space equations areanatural
form, which canrepresent the belicoptermotion. The general mathematical model

isgivenby:
.;c =Ax+Bu,
y=Cx+Du,

where x, u_and y are the state vector, control vector and output vector,
respectively.

Thehelicopter used to simulate the flight in hover position was asingle main
rotor helicopter of 15,000 pounds. The control and state vectors are defined as:

u.' =[6, 8 5. 841 ¢
xT=[uvaqr¢9(pxyz] (2)
where

¢ isthecollective control [inches];
o, and ¢ _arethelongitudinal and lateral cyclic controls, respectively
[inches];
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Figure I : Helicopter coordinates
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¢,isthepedal contro] [inches];
u, v.and w are the perturbation linear velocities [fi/sec];
P,qandrare the perturbation angular velocities [rad/sec];

¢, 6 and @ are the perturbation euler angles for roll, pitch and yaw [rad];
x, ¥ and z aretheperturbation lineardisplacements over the ground [£].

Figure 1 shows thecoordinate systern to describe the motion ofthe helicopter.
The origin of the helicopter axes isplaced on thecenter of gravity.

The thrust of the mainrotor, thus mainly the vertical acceleration, is controlled
by the collectivecantrol ( ¢ ). The pitching moment, thatis, nose pointingup or
down, iscontrolledbythe longitudinaleyelic control ( 6, ). The rolling moment, that
is, right wing tip down, left wing tip up, and vice versa, is controlled by the lateral
cyclic control (4 ). The yawing moment, thatis, nose left and right, is controlled
by the pedal control ( 5,).

The corresponding differential equations that represent thebehavior of the
helicopter in hover position are:

du_ —0.0692 - 0.032v +116.8p +1168.5¢ - 6.15r-32.1960 + 0.1185,,

dt
—27798, — 0255, + 0.00435,,
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% =0.017u - 0.085v - 0.0021w—430.5p + 381.3¢ + 30.75» + 32.14¢
+0.0230 —0.148, — &, + 0.6655, —1.394,
dw
E =-0.0021v - 0.257w+ 7.99p + 46.744 + 1353+ +1.85¢ - 0.4048
-9.238, -0.1075, - 0.016,

% = 0.45 —0.687y — 0.002 1w — 6027 2 p + 5043.16¢ + 66427 — 1.825,
~13.75, +8.585, —5.155,

% = 0.665u +0.429v —0.043w — 1537.5p —~15744.5¢ ~ 12.3r - 0.9665,
+37.138, +3.435,_ + 0.755,

% = —0.0214u + 0.515v +0.0064w — 369.0p — 44.28q — 1266.97 + 25975,
-0.158, +0.0755, +40.783,,

dg _
a !
d8 _
a7
o _
dt

&
—=y
dt

Y _,
dl

dz

—_— =
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Sinceeach motionis notindependentof §, 6, & and 6, thereexistsacross-
coupling.

Figure 2 shows the root locus for the model described above. Figure 2(a)
shows theroot locus, considering the collective control as the input and the vertical
displacement as theoutput. In Figure 2(c), the longitudinal cyclic and the forward
displacement are the inputand the output, respectively. Figure 2(e) shows the root
locus consideringthe lateral cyclic as the input and the 1ateral displacement as the
output. Figures 2(b), (d) and (f) show the zoom ofthe regionnearthe imaginary axis
as well as the roots that dominate the transient response. In general, the contribution

Figure 2: Root locus of the helicopter model
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Figure 2: Root locus of the helicapter model (continued)
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inthetimeresponseof roots that lierelatively far to the leftin the s-plane will be small.
These three Figure sclearly showthat some ofthe eigenvalues corresponding to the
helicopter model are inthe rightside ofthe s-plane, with positivereal-part values,
making the systemunstable.
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Figure 2: Root locus of the helicapter model (continued)
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GENERALREGRESSIONNEURALNETWORK
The generalized regression neural networks arememory-based feed-forward
networks otiginally developed in the statistics literature by Nadataya (1964) and
known as Nadaraya-Watson kemel regression, Then the GRNN was ‘re-
discovered’ by Specht (1991) and Chen, C. (1996), with the desired capability of



