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Preface

In recent years considerable progress has been made in the understanding of problems
of learning and generalization. Intelligence in this context basically means the ability
to perform well on new data after learning a2 model on the basis of given data. Such
problems arise in many different areas and are becoming increasingly important and
crucial towards many applications such as in bioinformatics, multimedia, computer vi-
sion and signal processing, internet search and information retrieval, datamining and
textmining, finance, fraud detection, measurement systems and process control, and
several others. Currently, the development of new technologies enables to generate
massive amounts of data containing a wealth of information that remains to become
explored. Often the dimensionality of the input spaces in these novel applications is
huge such as in the analysis of microarray data where expression levels of thousands of
genes need to be analysed given only a limited number of experiments. Without per-
forming dimensionabity reduction, the classical statistical paradigms show fundamental
shortcomings at this point. Facing these new challenges, there is a need for new math-
ematical foundations and models such that the data can become processed in a reliable
way. These subjects are very interdisciplinary and relate to problems studied in neural
networks, machine learning, mathematics and statistics.

New methods, models and applications in Learning Theory were the central themes
for a NATO Advanced Study Institute on Learning Theory and Practice which was
taking place in Leuven Belgium July 8-19, 2002. This NATO Advanced Study Institute
aims at creating a fascinating interplay between advanced theoretical results in learning
theory and recent progress in several application areas. Lectures by 20 invited speakers
were given who are leading authorities in the communities of neural networks, machine
learning, mathematics, statistics, signal processing, and systems and control.

We highlight here a number of aspects from the invited speakers’ lectures presented
i the two-week period July 8-19, 2002. Tomaso Poggio explains the role of regular-
ization in relation to statistical learning theory and illustrates the methods by several
real-life applications including bioinformatics and vision. Viedimir Vapnik discusses
the foundations of statistical learning theory and methods of support vector machines.
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Especially the new elements of statistical learning theory versus classical statistics are
emphasized. Benefits of these methods towards new applications in microarray data
analysis and fextmining are explained. Fields medal winner Stewve Smale discusses
the problem of learning and generalization and its mathematical foundations. The
biag-variance problem is analysed and the difference between approximation and gen-
eralization theory is clarified. An application of the theory to modelling the evolution
of language is presented. Chris Bishop presents probabilistic graphical models and
their role in machine learning, including graphs, Markov Chain Monte Carlo methods,
variational methods, the expectation-maximization algorithm and the relevance vector
machine. Bernhord Schélkopf further discusses learning with kernels and shows the
wide applicability of the so-called kernel trick in relation to positive definite kernels,
including a kernel version of principal component analysis. An additional presentation
in relation the Bernhard Scholkopt’s talk is given by Stéphane Ceny who shows how to
avoid the requirement of positive definiteness for kernels in the context of kernel based
learning. Nello Cristianint presents kernels which are tailored towards textmining
applications and a kernel version of canonical correlation analysis. He further dis-
cusses methods of semidefinite programming for learning the kernel matrix and its use
for transductive inference. Massimiliane Pontil presents ensembles of kernel machines
with leave-one-out and stability analysis of the algorithms. Ldszlid Gyorfi discusses non-
parametric prediction of stationary time series for various loss functions. Mathukumaell:
Vidyasagar focuses on statistical learning theory with applications to bicinformatics
such as fitting of hidden Markov models to data. Yeram Singer explains methods in
machine learning for information retrieval and collaborative filtering, with emphasis on
methods for multi-class categorization, boosting and ranking. Rudolf Kulhavy presents
methods of Bayesian smoothing and information geometry with applications to local
modelling in system identification. Charles Micchelli discusses properties of kernels and
their use in approximation theory. Director Johan Suykens presents an overview of least
squares support vector machines for classification, function estimation, unsupervised
learning and recurrent networks including algorithms for large scale applications and
links with several other kernel based methods. Joerg Lemm discusses Bayesian field
theories with applications to density estimation, classification, regression and inverse
quantum theory. Vere Kurkove gives an overview on approximation theoretical re-
sults for feedforward neural networks with new results towards large dimensional input
spaces. Luc Devroye discusses methods of nonparametric learning from the viewpoint
of statistics in relation to statistical learning theory. Kriséin Bennett presents applica-
tions of support vector machines and kerne] partial least squares to the virtual design of
pharmaceuticals. Pefer Bartlett gives an overview of policy gradient methods for reim-
forcemeny learning. Finally, co-director Gabor Horvath presents applications of neural
networks and kernel based methods to instrumentation and measurement systems.

The total number of participants for this NATO-ASI was limited to 100 according
to the NATO-ASI rules {a list of participants of this NATO-ASI can be found at the
end of this book). Less than 50% of the submitted applications could be accepted
taking into account the NATOQO restrictions. The following criteria were taken in the
selection procedure as veflected by the NATO guidelines: good balancing between
countries, balancing between topics, high quality of the work, selection of promising
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post-docs and young researchers and good faculty people. The selected participants
presented their work during one of the four poster sessions within the two-week period.
More information about the final program, additional material of the invited speakers’
lectures and a series of pictures showing the wonderful atmosphere during the meeting
are available af

http://www.esat. kuleuven.ac.be/sista/natoasi /1tp2002. html

As outcome of the NATO Advanced Study luwstitute, the present book entitled
Advances in Learning Theory; Methods, Models and Applications has been prepared.
In Chapter 1 Vledémir Vapnek presents an overview of statistical learning theory and
its application to neural networks and support vector machines. In Chapter 2 Felipe
Cucker and Steve Smale discuss the choice for regularization parameters in learning
theory. This is doue in view of the bias-variance trade-off in relation to analysis of
the generalization error. In Chapter 3 Charles Micchelli, Yuesheng Xu and Peixin Ye
present Cucker Smale Learning Theory in Besov Spaces. In Chapter 4 Vera Kurkova
focuses on the analysis of the approximation error for neural networks and shows how
to avoid the curse of dimensionality in high dimensional input spaces. In Chapter
5 Stéphane Canu, Xavier Mary and Alain Rakotomamonjy present functional learn-
ing through kernels and how to avoid the requirement that chosen kernels should be
positive definite. In Chapter 6 André Elisseeff and Massimiliano Pontil present leave-
one-out error and stability of learning algorithms with applications to kernel-based
learning. In Chapter 7 Ryan Rifkin, Gene Yeo, and Tomuso Poggio discuss regularized
least-squares Classification and comparisons with support vector machine classifiers
and application to image classification. In Chapter 8 Johan Suykens, Tony Van Ces-
tel, Jos De Brabonter, Bart De Moor and Joos Vondewalle give an overview on least
squares support vector machine approaches to classification, regression, kernel PCA
and kernel CCA with methods for imposing sparseness, robustness and handling large
data sets. In Chapter 9 Fernando Pérez-Cruz, Jason Weston, Daniel Herrmann and
Bernhard Scholkopf present an extension of the v-SVM range for classification. In
Chapter 10 Nello Cristiening, Joz Kendola, Alexei Vinokourov and John Shawe- Taylor
give an overview on kernels methods for text processing, including kernels which can be
designed especially for textmining. In Chapter 11 Kristin Bennetl and Mark Embrechis
present kernel partial least squares methods and their application to pharmaceutical
data. In Chapter 12 Yoram Singer discusses multiclass categorization in the context
of information retrieval using support vector machines, boosting and decision trees. [n
Chapter 13 Chris Bishop and Mike Tipping study classification and regression from a
Bayesian learning perspective and discuss Bayesian inference of parameterized kernel
models using the relevance vector machine as an alternative to support vector ma-
chines. In Chapter 14 Joery Lemm presents a framework of Bayesian field theory with
application to density estimation, regression, and inverse quantumn theory. In Chapter
156 Rudolf Kulhavy studies Bayesian smoothing and information geometry with empha-
sis on Jocal, cased-based modeling. In Chapter 17 Ldszlo Gyorfi and Dominik Schéfer
consider non-parametric prediction of stationary time series for various loss functions.
In Chapter 17 Mathukwmalli Vidyasagar presents recent advances in the area of sta-
tistical learning theory including learning with inputs generated by a Markov chain
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and prior information. In Chapter 18 Gabor Horvath confronts theoretical results from
neyral networks and learning theory with a practitioners point of view for applications
In measurements systems.

Finally, we acknowledge support from NATO grant PST.ASI.Q78547, the IEEE
Neural Networks Society, the fund for scientific research FWO Flanders (WOG-SRN
Advanced Numerical Methods for Mathematical Modelling, FWO G.0407.02, JS post-
doc), K.U. Leuven Research council GOA-Mefisto 666 and the Belgian interuniversity
attraction poles TUAP IV-02, IUAP V-22. For help with local arrangements during
the NATO-ASI we want to thank Lieveke Ameye, Peter Antal, Steven Bex, Tiji De
Bie, Bart Hamers, Luc Hoegaerts, Chuan Lu, Lukas, Rristiaan Pelckmans, Qizheng
Sheng Cynthia, Tony Van Gestel and Rita Vandewalle, and secretaries Ida Tassens,
llse Pardon and Veerle Duchateau.

We are very grateful to all people who helped making this NATO Advanced Study
Institute on Learning Theory and Practice a great success. We hope that this event
may further lead to setting new milestones in this [ascinating area!

Johan Suykens
Gabor Horvath
Sankar Basu
Charles Miccheili
Joos Vandewalle
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Chapter 1

An Overview of Statistical Learning
Theory

Vladimir Vapnik!

Abstract. Statistical learning theory was introduced in the late 1960’s. Until
the 1990's it was a purely theoretical analysis of the problem of function esti-
mation from a given collection of data. In the middle of the 1990’s new types
of learning algorithrag (called support vector machines) based on the developed
theory were proposed. This made statistical learning theory not only a tool for
the theoretical analysis but also a tool for creating practical algorithms for esti-
mating raultidirmensional functions. This article presents a very general overview
of statistical learning theory including both theoretical and algorithmic aspects
of the theory. The goal of this overview is to demonstrate how the abstract
lesrning theory established conditions for generalization which are more general
than those discussed in classical statistical paradigrms and how the understanding
of these conditions inspired new algorithmic approaches to function estimation
problems. A more detailed overview of the theory (without proofs) can be found
in Vapnik (1995). In Vapnik {1998) one can find a detailed description of the
theory {including proofs).

"This chapter is reprinted with permission from Vladimir Vapnik, "An overview of statistical learning
theory.” IEEE Transactions on Neural Metworks, Vol.10. No.5, pp.988-1000, 1999 (Copyright © 1999
IEEE). The author wants to thank Filip Mulier for discussions and help making the published article
more clear and readable.



2 V. Vapnik

1.1 Setting of the Learning Problem

In this section we consider a model of learning and show that analysis of this model
can be conducted in the general statistical framework of minimizing expected loss using
observed data. We show that practical problems such as pattern recognition, regression
estimation, and density estimation are particular case of this general model.

1.1.1 Function estimation model
The model of learning from examples can be described using three components:

1. A generator of random vectors r, drawn independently from a fixed but unknown
distribution P{z).

2. A supervisor that returns an output vector y for every input vector z, according
to a conditional distribution function® P(y|z), also fixed but unknown.

3. A tearning machine capable of implementing a set of functions f(x, a), a € A.

The problem of learning is that of choosing from the given set of functions f(z, ),

a € A, the one which predicts the supervisor’'s response in the best possible way. The

selection is based on a training set of £ random independently ideutically distributed
(i.i.d.) observations

(zn31), - (Te, Ye) (1.1)

drawn according to P(z,y) = P(x)P(y|z).

1.1.2 Problem of risk minimization

In order to choose the best available approximation to the supervisor’s response, one
measures the loss or discrepancy L(y, f(z. o)) between the response y of the supervisor
to a given input z and the response f(z, &) provided by the learning machine. Consider
the expected value of the loss, given by the risk functional

R(a) = ] L(y, f(z,0))dP(z, ). (1.2)

The goal is to find the function f(x, o) which minimizes the risk functional R{c)
over the class of functions f(x, @), @ € A in the situation where the joint probability
distribution P(z,y) is unknown and the only available information is contained in the
training set (1.1).

1.1.3 Three main learning problems

This formulation of the iearning problem is rather general. It encompasses many spe-
ctfic problems. Below we consider the main ones: the probiems of pattern recognition,
regression estimation, and density estimation.

2This is the general case which includes a case where the supervisor uses a function y = f(x).
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The Problem of Pattern Recognition. Let the supervisor’s output y take only
values y € {0,1} and let f{x,a), a € A, be a set of indicator functions {functions
which take on either value zero or one). Consider the following loss-function

L S@al) = § h 20 (13)

For this loss function, the functional (1.2) provides the probability of classification
error (i.e. when the answers y given by the supervisor and the answers given by the
indicator function f(x, ) differ). Therefore, the problem is to find the function which
minimizes the probability of classification errors when the probability measure P(z, y)
is unknown, but the data (1.1) are given.

The Problem of Regression Estimation. Let the supervisor's answer y be a real
value, and let f(z,«) ,a € A be a set of real functions which contains the regression
function

flz, o) = /'de(y|I).

It is known that if f(z,a) € Ly then the regression function is the one which minimizes
the functional (1.2) with the the following loss-function

Ly, f(z,0)) = (y - f(z,a))* (1.4)

Thus the problem of regression estimation is the problem of minimizing the risk func-
tional (1.2) with the loss function (1.4) in the situation where the probability measure
P(x,y) is unknown but the data (1.1) are given.

The Problem of Density Estimation. Finally, consider the problem of density
estimation from the set of densities p(x, o), @ € A. For this problem we consider the
following loss-function

L(p(z, &) = — log p(z, o). (1.5)

It is known that the desired density minimizes the risk functional (1.2) with the loss-
function (1.5). Thus, again, in order to estimate the density from the data one has
to minimize the risk-functional under the condition that the corresponding probability
measure P(x) is unknown but i.i.d. data

b R
are given.
The General Setting of the Learning Problem.  The general setting of the
learning problem can be described as follows. Let the probability measure P(z) be

defined on the space Z. Consider the set of functions Q(z,a),a € A . The goal is:
minimize the risk functional

Bla) = /Q(z,cr)d.P(z), a €A (1.6)
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for the probability measure P(z) unknown but given an i.i.d. sample
E1y oy 22 (1.7)

The learning problems considered above are particular cases of this general problem
of minimizing the risk functional (1.6) on the basis of empirical data (1.7), where 2
denotes a pair (z,y) and Q(z, o) is the specific Joss function (for example, either (1.3),
(1.4) or {1.5)). In the sequel we will describe results obtained for the general statement
of the problemn. When applying this to specific problems, one has to substitute the
corresponding loss-functions in the obtained formulas.

1.1.4 Empirical risk minimization induction principle

In order to minimize the risk functional (1.6) for an unknown probability measure P(z)
the following induction principle is usually employed.
The expected risk functional R(a) is replaced by the empirical risk functional

{
1
Rermp(c - E Qz, (1.8)
i=1

ey

constructed on the basis of the training set (1.7). The principle is to approximate the
function Q(z, ap) which minimizes the risk (1.6) by the function Q(z, o) which mini-
mizes the empirical risk (1.8). This principle is called the Empirical Risk Minimization
induction principle (ERM principle).

1.1.5 Empirical risk minimization principle and the classical
methods

The ERM principle is quite general. The classical methods for solving a specific learning
problem, such as the least squares method in the problem of regression estimation or
the maximum likelihood method in the problem of density estimation are realizations
of the ERM principle for the specific loss functions considered above.

Indeed, in order to specify the regression problem one introduces an n + 1 dimen-
sional variable z = (%) = (2}, ..., 2", y) and uses loss function (1.4). Using this loss
function in the functional (1.8) yields the functional

£
Z f(f'fu

which one needs to minimize for finding the regression estimate (least square method).

In order to estimate a density function from a given set of functions p(x, o) one uses
the loss function (1.5). Putting this loss function into (1.8) one obtains the maximum
likelihood method with functional

e'mp

r"-,gll—l-
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which one needs to minimize in order to find the approximation to the density.

Since the ERM principle is a general formulation of these classical estimation prob-
Jems, any theory concerning the ERM principle applies to the classical methods as
well.

1.1.6 Four parts of learning theory

Learning theory has to address the following four questions:

1. What are the conditions for consistency of the ERM principle?

To answer this question one has to specify the necessary and sufficient conditions
for convergence in probability®of the following sequences of the random values:

o The values of risks R(og) converging to the minimal possible value of the
risk Ray) {where R(ag), £ = 1,2,... are the expected risks for functions

H

Q(z, o) each minimizing the empirical risk Remp(c))
R(ag) — . Rlan), (1.9)

o The values of obtained empirical risks Remp(a), ¢ = 1,2, ... converging to
the minimal possible value of the risk R{ag)

Remp(arf) _’EP—-oo R(a{))' (110)

Equation (1.9) shows that solutions found using ERM converge to the best pos-
sible one. Equation (1.10) shows that empirical risk values converge to the value
of the smallest risk.

2. How fast does the sequence of smallest empirical risk values converge to the small-
est actual risk? In other words, what is the rate of generalization of a learning
machine that implements the empirical risk minimization principle?

3. How can one control the rate of convergence (the rate of generalization) of the
learning machine?

4. How can one construct algorithms that can control the rate of generalization?
The answers to these questions form the four parts of learning theory:

1. The theory of consistency of learning processes.

2. The non-asymptotic theory of the rate of convergence of learning processes,

3. The theory of controlling the generalization of learning processes.

4. The theory of constructing learning algorithms.

3*Convergence in probability of values R{a;) means that for any £ > 0 and for any n > 0 there
exists a number £y = folec, ) such that for any £ » £5 with probability at feast 1 — 7 the inequality
R{ag) — Riop) < ¢ bolds true.
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1.2 The Theory of Consistency of Learning Pro-
cesses

The theory of consistency is an asymptotic theory. It describes the necessery and suffi-
cient conditions for convergence of the solutions, obtained using the proposed method,
to the best possible as the number of observations is increased. The following question
arises:

Why do we need a theory of consistency if our goal is to construct algorithms
for a small {finite} sample size?

The answer is:

We need a theory of consistency because it provides not only sufficient but
also necessary conditions for convergence of the empirical risk minimization
inductive principle. Therefore, any theory of the empirical risk minimize-
tion principle must sabisfy these necessary and sufficient conditions.

In this section we introduce the main capacity concept (the so-called VC entropy)
which defines the generalization ability of the ERM principle. In the next sections we
show that the non-asymptotic theory of learning is based on different types of bounds
that evaluate this concept for a fixed amount of observations.

1.2.1 The key theorem of the learning theory

The key theorem of the theory concerning the ERM based learming processes is the
following [27]:

Theorem 1 (The Key Theorem) Let Q(z, ), o € A be a set of functions that has
a bounded loss for probability measure P(z)

A< /Q(z,a)P(z) <B VacA

Then for the ERM principle Lo be consestent i is necessary and sufficient that the emper-
icol risk Remp(er) converges uniformly to the actual risk R(a) over the set Q{z, &), o €
A as
lim Prob{sup (R(a) — Rempla)) >} =0, Ve (1.11)
f—rvo ach

This type of convergence is called uniform one-sided convergence. In other words,
according to the Key Theorem, the conditions for consistency of the ERM principle are
equivalent to the conditions for existence of uniform one-sided convergence (1.11). This
theorem is called the Key Theorem because it asserts that any analysis of the conver-
gence properties of the ERM principle must be the worst case analysis. The necessary
condition for consistency (not only the sufficient condition) depends on whether or not
the deviation for the worst function over the given set of of functions

-’—\‘(ﬂ'wors() = SEE(R(Q) - Remp(a))
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converges to zero in probability. From this theorem it follows that the analvsis of the
ERM principle requires an analysis of the properties of uniform convergence of the
expectations to their probabilities over the given set of functions.

1.2.2 The necessary and sufficient conditions for uniform con-
vergence

To describe the necessary and sufficient condition for uniform convergence (1.11}, we
introduce a concept called the entropy of the set of functions Q(z,a), o € A, on the
sample of size £. We introduce this concept in two steps: first for sets of indicator
functions and then for sets of real valued functions.

Entropy of the Set of Indicator Functions. Let Q(z,a), a € A be a set of
indicator functions (i.e. functions which take only the values zero or one). Consider a
sample

ZJ}...;E{?. (112)

Let us characterize the diversity of this set of functions @Q(z,a),a € A on the given
sarmple by a quantity N%(z,. .., z) that represents the number of different separations
of this sample that can be obtained using functions from the given set of indicator
functions. Let us write this in another form. Consider the set of £-dimensional binary
vectors

gla) = (Q(z,a),...,Qz, @), a€A

that one obtains when « takes varicus values from A. Then geometrically speaking
Nz, ..., z¢) is the number of different vertices of the é-dimensional cube that can be
obtained on the basis of the sample z), .. ., z¢ and the set of functions @Q(z, @), o € A.Let
us call the value

HA(zla"'szf) = IDNA(L’I,.__,Z@)

the random entropy. The random entropy describes the diversity of the set of functions
on the given data. H*(z,..., ) is a random variable since it was constructed using
random i.i.d. data. Now we consider the expectation of the random entropy over the
joint distribution function F(z,..., 2¢):

HME) = FlnNMz, ..., 2).

We call this quantity the entropy of the set of indicator functions Q(z, ), @ € A on
samples of size £. It depends on the set of functions Q(z,a), & € A, the probability
measure £(z), and the number of observations £. The entropy describes the expected
diversity of the given set of indicator functions on the sample of size £.

The main result of the theory of consistency for the pattern recognition problem
(the consistency for indicator loss function) is the following theorem [24]:

Theorem 2 For uniform two-sided convergence of the frequencies to thewr probabili-
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ties it is necessary and sufficient that the equality
H.I’\ (g)

lim =0, Ye>0 (1.14)

f—no

holds.

By slightly modifying the condition (1.14) one can obtain the necessary and suffi-
cient condition for one-sided uniform convergence (1.11).

Entropy of the Set of Real Functions. Now we generalize the concept of entropy
to sets of real valued functions. Let A < @(z,a) £ B, a € A, be a set of bounded loss
functions. Using this set of functions and the training set (1.12) one can construct the
following set of /-dimensional real-valued vectors

a(0) = (Q(z,a), ., Qlz, ), @€ A (1.15)

This set of vectors belongs to the f-dimensional cube with the edge 8 — A and has a
finite e-net® in the metric C. Let N = N*{(g;z,...,z¢) be the number of elements of
the minimal e-net of the set of vectors ¢(«), & € A. The logarithm of the (random)
value N*(e; 21, ...y 2¢)

HMNeg; 21, ., 26) = InN?g; 21, .., 20)

is called the random VC-entroptf of the set of functions A € Q(z,a) £ B on the
sample 2y, ..., 2. The expectation of the random VC-entropy

HMe; 6) = EH e, 2y, ..., 2¢)

is calied the V(-entropy of the set of functions 4 < @z, @) < B, o € A on the sample
of the size £. Here expectation is taken with respect to product-measure Pz, ..., 2¢) =
P(z)) .- Plze).

The main results of the theory of uniform convergence of the empirical risk to the
actual risk for bounded loss functions include the following theorem [24]:

Theorem 3 For uniform two-sided convergence of the empirical risks to the actual
Tisks
flim Prob{sup (| B(a) — Rempl(e)| > ¢} =0, Ve (1.16)
—

[T=5

For sets of indicator functions R{a) defines probability and Remp(a) defines frequency.

lim Prob{sup |R{a) — Rempla)| >} =0, Ve (1.13)
—oa aEh

5The set of vectors g(a), o € A has winimal g-net g{a,), ..., g(an) if:

1. Thereexist N = N(e; z1,..., z¢) vectors glay), ..., g n), such that for any vector g{a*), &® € A
one can Gind among these NV vectors one glo, ) which is e-close to this vector (in a given metric).
For a C metric that means p{g{a*), glar)) = max; <,<e [Q(z0") — Rz, o) < e

2. N is minimal number of vectors which possess this property.

®Note that VC-entropy is different from classical metrical e-entropy HA (<) = InN () where N*{¢)
is cardinality of the minimal s-net of the set of functions Q(z, o), o € A.
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it is necessary and sufficient that the equality

HAMe, 0)

lim =0, Ye>0 (1.17)
f—o0

be valid.

By slightly modifying the condition {1.16) cne can obtain the necessary and suf-
ficient condition for one-sided uniform convergence (1.11). According to the key as-
sertion this implies the necessary and sufficient conditions for consistency of the ERM
principle.

1.2.3 Three milestones in learning theory

In this section, we consider for simplicity reasons a set of indicator functions Q(z, a), o €
A (i.e. we consider the problem of pattern recognition). The results obtained for sets of
imdicator functions can be generalized to sets of real-valued {unctions. In the previous
section we introduced the entropy for sets of indicator functions

HME) = EmNMz ... 2).

Now, we consider two new functions that are constructed on the basis of the values
NM2z), ..., z¢): the Annealed VC-entropy
HY (&) =InEN(z, ..., z¢)

Laxyas)

and the Growth function

GME) =1In sup NNz, ..., 2).

I REPRre

These functions are determined in such a way that for any £ the inequalities
HME) < Hyul) < GHD)

are valid. On the basis of these functions the three main milestones in Statistical
Learning Theory are constructed. In the previous section we introduced the equation

M
lim 220

[ieate] £ =0

describing the necessary end sufficient condition for consistency of the ERM principle.
This equation is the first milestone in fearning theory: any machine that is minimizing
empirical risk should satisfy it.

On the other hand, this equation says nothing about the rate of convergence of
obtained risks R(a) to the minimal one R{ag). 1t is possible that the ERM principle
is consistent but has an arbitrary slow asymptotic rate of convergence. The question
is then: Under which conditions does one have a fast asymptotic rate of convergence?
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We say that the asymptotic rate of convergence is fast if for any ¢ > ¢; the exponential
hound

P{R(as) — Rlag) > e} < e ¢

holds true, where ¢ > 0 is some constant. The equation

H i (6)

e 0

describes the sufficient condition for fast convergence’. This constitutes the second
milestone in Statistical Learning Theory: guaranteeing a fast asymptotic rate of con-
vergence. Note that both the equation describing the necessary and sufficient condition
for consistency and the one that describes the sufficient condition for fast convergence
of the ERM method are valid for a given probability measure P(z) (both VC-entropy
HA(#) and VC-annealed entropy H2  (¢) are constructed using this measure).

However, our goal is to construct a learning machine for solving many different
problems (i.e. for many different probability measures). The next question is then:
Under what conditions is the ERM principle consistent and rapidly converging inde-
pendently of the probability measure? The following equation describes the necessary
and sufficient conditions for consistency of ERM for any probability measure:

A
lim ¢ (8) ={.
£—oo £

This condition is also sufficient for fast convergence. This equation is the third mile-
stone in Statistical Learning Theory. It describes the conditions under which the
learning machine implementing the ERM principle has an asymptotic high rate of
convergence, independent of the problem to be solved.

These milestones form a foundation for constéructing both distribution independent
bounds and rigorous distribution dependent bounds for the rate of convergence of
learning machines.

1.3 Bounds on the Rate of Convergence of the Learn-
ing Processes

In order to estimate the quality of the ERM method for a given sample size it is
necessary to cbtain non-asymptotic bounds on the rate of uniform convergence.

A non-asymptotic bound of the rate of convergence can be obtained using a new
capacity concept, called the VC dimension (abbreviation for Vapnik-Chervonenkis di-
mension }, which aliows us to obtain a constructive bound for the growth function. The
concept of VC-dimension is based on a remarkable property of the Growth-function

GA(6).

"The necessity of this condition for fast convergence is an open guestion.
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1.3.1 The structure of the growth function
Theorem 4 ([23-24] Any growth funclion either satisfies the equality

G*(0) = In2

or is bounded by the inequality
A g
G'{{) < h,(lnf—é + 1),

where h ts an wnleger for which
G*(h) = hln2

GMh+1) # (h+ 1in2

In other words the Growth function will be either a linear function or willi be
bounded by a logarithmic function. (e.g. it cannot be of the form G*{¢) = cv/¥). We
say that the VC dimension of the set of indicator functions Q(z,¢), @ € A is infinite if
the Growth function for this set of functions is linear. We say that the VC dimension
of the set of indicator functions @z, o), € A is finite and equals b if the Growth
function is bounded by a logarithmic function with coefhicient h.

The finiteness of the VC-dimension of the set of indicator functions implemented by
the learning machine forms the necessary and sufficient condition for consistency of the
ERM method independent of the probability measure. Finiteness of the VC-dimension
also implies fast convergence.

1.3.2 Equivalent definition of the VC dimension

In this section we give an equivalent definition of the VC dimension of sets of indicator
functions and we generalize this definition to sets of real functions.

The VC dimension of a set of indicator functions. The V(-dunension of a set
of indicator functions Q(z,a), o € A, is the maximum number A of vectors z, ..., 2
which can be separated in all 2* possible ways using functions of this set® (shattered by
this set of functions). If for any n there exists a set of n vectors which can be shattered
by the set Q(z,a), a € A, then the VC-dimensjon is equal to infinity.

The VC dimension of a set of real valued functions. Let ¢ < Q(z,0) < A, a €
A, be a set of real valued functions bounded by constants ¢ and A (@ can approach —oo
and A can be equal to oc). Let us consider along with the set of real valued functions
Q(z,a), a € A, the set of indicator functions

Iz,0,8) =8{Q(z,0) — 3}, a €A (1.18)

8 Any indicator function separates a set of vectors into two subsets: the subset of vectars for which
this function takes value G and the subset of vectors for which it takes value 1.
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where < 3 < A is some constant, 6(xu) is a step function:

0 ifu<O
8(“)_{ 1 ifu>0.

The VC dimension of the set of real valued functions Q(z, «), a € A, is defined to be
the VC-dimension of the set of indicator functions {1.18).

1.3.3 Two important examples

Example 1

1. The VC-dimension of the set of finear indicator functions

Q(z,a)=10 {Zapzp + Ct’g}

p=1
in n-dimensional coordinate space Z = (z),..., z,) is equal to h = n + 1, since
using functions of this set one can shatter at most n + 1 vectors. Here 6{-} is the
step function, which takes value 1 if the expression between brackets is positive
and takes value 0 otherwise.

2. The V(-dimension of the set of linear funciions
Qz,a) = Zo:pzp + g, o, ..., 0 € (—00,00)
=1

in n-dimensional coordinate space Z = (zj,...,5,) is also equal to h = n + 1

because the VC-dimension of the corresponding linear indicator functions is equal

to n+1 (using oy — J instead of o does not change the set of indicator functions).
Example 2

We call a hyperplane
(w'-2)—=b=0, |wi=1

the A-margin separating hyperplane if it classifies vectors x as follows

1 if(wz)-b> A
YTl -1 i m) - b < A

Classifications of vectors z that fall within the margin (=4, A) are undefined.

Theorem 5 [25, 20—-22] Let vectors z € X belong to a sphere of radius R, then the
set of M-margin separating hyperplanes has VO dimension h bounded by the inequality

R?
h < min (lFl ,n) + 1.

These examples show that in general the VO dimension of the set of hyperplanes
equals n + 1, where n is the dimensionality of the input space. However, the VC
dimension of the set of A-margin separating hyperplanes (with a large value of margin
A) can be less than n + 1. This fact will play an important role towards constructing
new function estimation methods.
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1.3.4 Distribution independent bounds for the rate of conver-
gence of learning processes

Consider sets of functions which possess a finite VC-dimension £. We distinguish then
between the following two cases:

1. The case where the set of loss functions Q{z, @), o € A is a set of totally bounded
functions

2. The case where the set of loss functions Q(z, o}, « € A is not necessarily a set
of totally bounded functions.

Case 1 [The set of totally bounded functions] Without loss of generality, we
assuimne that

0L Q(z,0) B, a€ A, (1.19)

The main result in the theory of bounds for sets of totally bounded functions is the
following [20-22]:

Theorem 6 With probability at least 1 — n, the inequolity

R(@) € Rempla) + % (l + \/J + ‘U“jceg—z(@f)j , (1.20)

holds true simultaneously for oll functions of the set (1.19), where

4}1(11’1% + 1) —Ingy
7 :

(1.21)

For the set of indicator funciions: B =1

This Theorem provides bounds for the risks of all functions of the set {1.18) (includ-
ing the function Q{z, a,) which minimizes the empirical risk (1.8)). The bounds foliow
from the hound on uniform convergence (1.13) for sets of totally bounded functions
that have finite VC dimension.

Case 2 [The set of unbounded functions] Consider the set of (nonnegative)
unbounded functions 0 < Q(z,a), & € A. It is easy to show (by constructing an
example) that, without additional information about the set of unbounded functions
and/or probability measures, it is impossible to obtain an inequality of type (1.20).
Below, we use the following information

-l bl

(f QP(z, o:)dP(;:)) _
zlg‘:: 700, 2)dP0) <7 <o (1.22)
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where p > 1 is some fixed constant®,
The main result for the case of unhounded sets of loss functions is the following
20-22]:

Theorem 7 With probability at least 1 — np the inequalily
Remp(a) {/1 (p_l)p—l
Ra) < 2 , alp)={=-| — 1.23

holds true simultaneously for all functions of the set, where ¢ is determined by (1.21),
(¢)+ = maz(a,0).

The Theorem bounds the risks for all functions of the set (1.15) (including the
function Q(z, a)).

1.3.5 Problem of constructing rigorous (distribution depen-
dent) bounds

To construct rigorous bounds for the rate of convergence one has to take into account
information about the probahility measure. Let Py be a set of all probability measures
and let P C Py be a subset of the set Py. We say that one has prior information about
an unknown probability measure P(z} if one knows the set of measures P that contains
P(z). Consider the following generalization of the Growth function

g;;(a, ) = lg sup EpNMe; 25,0, 20).
PeP

For indicator {unctions Q(z,a), e € A and for the extreme case where P = Py the
Generalized Growth function G (¢, £) coincides with the Growth function G*({). For
another extreme case where P contains only one function P(z) the Generalized growth
function coincides with the annealed VC-entropy.

The following assertion is true |20, 26]:

Theorem 8 Suppose that a set of loss-functions is bounded

—inff < A<Q(2,0) < B<o, acA
Then for suffictently large € the following inequality

P ¢ sup >eo &
agh

¥ This inequality describes some general properties of distribution functions of the random variables
£o = @z, ), generated by the P(z). It describes the “tails of distributions” (the probability of large
values for the random variables £,). If the inequality (1.22) with p > 2 holds, then the distributions
have so-called “light tails” (large values do oot occurs very often). In this case rapid convergence is
passible. If, however, the inequality {1.22) holds only for p < 2 {(large values of the random variables
&, occur rather often) then the rate of convergence will be small (it will be arbitrarily small if p is
sufficiently close to one).

£
| / Qz, a)dF(2) — % S0z, 0)
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G Aannle/6(B — A), 20 2 Iné
l?exp{( (fg( ) )_BiA+£€-)€}'

holds irue.

From this bound it follows that for sufficiently large ¢ with probability 1 — 7 si-
multaneously for all & € A {including the one that minimizes the empirical risk) the
following inequality is valid:

¢
/Q z,a)dF(z) < Z 5, Q \/gP(E/G (Ba), Inn/i?

However, this bound is non-constructive because the theory does not specify a method
for evaluating the Generalized Growth function. In order to make this bound con-
structive and rigorous one has to estimate the Generalized Growth function for a given
set of loss-functions and a given set of probahility measures. This is one of the main
subjects of the current learning theory research.

1.4 Theory for Controlling the Generalization of
Learning Machines

The theory for controlling the generalization of a learning machine is devoted to con-
structing an induction principle for minimizing the risk functional which takes into
account. the size of the training set (an induction principle for a “small” sample size'?).
The goal is to specify methods which are appropriate for a given sample size.

1.4.1 Structural risk minimization induction principle

The ERM principle is intended for dealing with a large sample size. Indeed, the ERM
principle can be justified by considering the inequalities (1.20). When £/h is large,
the second summand on the right hand side of inequality (1.20) becomes small. The
actual risk 1s then close to the value of the empirical risk. In this case, a small value
of the empirical risk provides a small value of (expected) risk. However, if {/h is
small, then even a small Ren,(or) does not gnarantee a small value of risk. In this
case the minimization for R{«) requires a new principle, based on the simultaneous
minimization of the two terms in inequality (1.20), one of which depends on the value
of the empirical risk while the second depends on the V(C-dimension of the set of
functions. To minimize the risk in this case it is necessary to find a method which,
along with minimizing the value of empirical risk, controls the VC-dimension of the
learning machine.

The following principle, which is called the principle of Structural Risk Minimization
{SRM}, is intended for minimizing the risk functional with respect to both empirical risk
and VC-dimension of the set of functions. Let, the set S of functions Q(z,a), a € A,

19The sample size £ is considered to be small if ¢/k is small, say #/h < 20.
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be provided with a structure: so that § is composed of the nested subsets of functions
Sk ={Q(z,a}, o € A}, such that

S[CSQC... C 5,... (]24)

and 5% = |J, Si. An admissible structure is one that satisfies the following three
properties:

1. The set 5* is everywhere dense in 5.
2. The V(C-dimension h; of each set 5. of functions is finite.

3. Any element S;, of the structure contains totally bounded functions 0 < Q(z, o) <
B, a € A

The SRM principle suggests to do the following: for a given set of obhservations
Z1, -, 2¢ choose the element of structure S, with n = n(£) and the particular function
from S, such that the guaranteed risk (1.20) is minimal. The SRM principle actually
suggests a trade-off between the qualily of the approximation and the complexity of
the approximating function. As n increases, empirical risk minima decrease, but on
the other hand the term responsible for the confidence interval (surmmand in (1.20))
increases. The SRM principle takes both factors into account.

The main results of the theory of SRM are the following [9, 22i:

Theorem 9 For any distribution function the SRM method provides convergence to
the best possible solution with probability one.

In other words SRM method is universally strongly consistent.

Theorem 10 [22] For admissible structures the method of structural nisk minimization
provides approximations Q(z, «, (f))
to the best one R(cp) with asympiotic rate of convergence

for whick the sequence of risks R(ay e)) converge
1

FapnIng
V(&) = ray + By “E (1.25)
if the law n = n(?) is such that
B?  h.nlof
Jim % ~ 0. (1.26)

In equation (1.25) B, is the bound for functions from S, and r,(€) is the rate of
approvimation

= inf /Q (z,)dP(z) — mfo(m a)dP{z).

'We say that the random variables &;, # = 1,2,... converge to the value & with asymptotic rate
V(¢) if there exists constant C such that V=3(&) & — &l —f . C.

— o
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1.5 Theory of Constructing Learning Algorithms

In order to implement the SRM induction principle in learning algorithms one has to
control two factors in the to be minimized bound (1.20):

1. The value of empirical risk
2. The capacity factor (to choose the element S, with the appropriate value of VC
dimension).
We confine ourselves now to the pattern recognition case and consider two type of
learning machines:

1. Neural Networks (NN) that were inspired on the biological analogy with the brain

2. The support vector machines that were inspired on statistical learning theory.

We discuss how each corresponding machine can control these factors.

1.5.1 Methods of separating hyperplanes and their general-
ization

Consider first the problem of minimizing empirical risk on the set of linear indicator
Ffunctions

fla,w)=20 {Z w?a:‘} , weE W (1.27)
i=0

Let
(xl:yl):---,(fhyﬂ)
be a training set where z; = (:1,}, . Ty7) I8 a vector, y; € {0,1}, F=1,...,¢
For minimizing the empirical risk one has to find the parameters w = (wy, ..., w,)
(weights) which minimize the empirical risk functional

3
By {10} = %Z(yj — flegw)? (1.28)
=1

Theve are several methods for minimizing this functional. In the case when the min-
imum of the empirical risk is zero one can find the exact solution while when the
minimuim of this functional is nonzero one can find an approximate solution. There-
fore, by constructing a separating hyperplane one can control the value of empirical
risk. Unfortunately, the set of separating hyperplanes is not flexible enough to provide
low empirical risk for many real life problems [13].

Two opportunities were considered to increase the Aexibility of the sets of functions:

1. to use a richer set of indicator functions which are superpositions of linear indi-
cator functions

2. to map the input vectors into a high dimensional feature space and constrict in
this space a A-margin separating hyperplane.

The first idea corresponds to the neural network. The second idea leads to support
vector machines,
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1.5.2 Sigmoid approximation of indicator functions and neu-
ral nets

For describing the idea behind the NN Jet us consider the method of minimizing the
functional (1.28). It is impossible to use regular gradient-based methods of optimization
for minimizing this functional. The gradient of the indicator function Remy(w) is either
equal to zero or is undefined. The solution is to approximate the set of indicator
functions (1.27) by so-called sigmoid functions

f(z,w) {Zwt } (1.29)

where S(u) is a smooth monotonic function such that S(—o0) = 0, S{+oc) = 1. For
example, the functions

1 2arctan(u) + 7
51 (u) = Trep™ Salu) = o :

are sigmoid functions.
For the set of sigmoid function, the empirical risk functional

Remplt0 Z Flay,w))? (1.30)

r‘“q,lb—'

is smooth in w. It has a gradient gradRem,p(w) and therefore can be minimized using
gradient-based methods. For example, the gradient descent method uses the following
update rule

Ulnew = Woid — ')’(' gl'&d Remp(wo!d)

where the data ¥(-) = (n} > 0 depend on the iteration number n. For convergence
of the gradient descent method to a local minimum, it is enough that (n) satisfy the

conditions -
D) =00, A
n=1

Thus, the idea is to use the sigmoid approximation at the stage of estimating the coeffi-
cients, and use the indicator functions with these coefficients at the stage of recognition.

The generalization of this idea leads to feedforward nevral nets. In order to increase
the flexibility of the set of decision rules of the learning machine one considers a set
of functions which are the superposition of several linear indicator functions (networks
of neurons) [13] instead of the set of linear indicator functions (single neuron). All
indicator functions in this superposition are replaced by sigmoid functions.

A method for calculating the gradient of the empirical risk for the sigmoid approx-
imation of neural nets, called the back-propagaetion method, was found [15],[12). Using
this gradient descent method, one can determine the corresponding coefficient values
{weights) of all elements of the neural net. In the 1990s it was proven that the VC
dimension of neural networks depends on the type of sigmoid functions and the number
of weights in the neural net. Under some general conditions the VC dimension of the



Overview of Statistical Learning Theory 19

neural net is bounded {although it is sufficiently large). Suppose that the VC dimension
does not change during the neural network training procedure, then the generalization
ability of neural net depends on how well the neural net minimizes the empirical risk
using a sufficiently large number of training data.

The three main problems encountered when minimizing the empirical risk using the
back-propagation method are:

1. The empirical risk functional has many local minima. Optimization procedures
guarantee convergence to some local minimum. In general the function which
is found using the gradient-based procedure can be far from the best one. The
quality of the obtained approximation depends on many factors, in particular on
the initial parameter values of the algorithm.

2. Convergence to a local minimum can be rather slow (due to the high dimension-
ality of the weight-space).

3. The sigmoid function has a scaling factor which affects the quality of the approx-
imation. To choose the scaling factor one has to make a trade-off between quality
of appreoximation and the rate of convergence.

Therefore, a good minimization of the empirical risk depends in many respects on
the art of the researcher in this case.

1.5.3 The optimal separating hyperplanes

For introducing the method that serves as an alternative to the neural network, let us
consider optimal separating hyperplanes [25]. Suppose the training data

(a;]zyl)a“':(xfsyf)a x e Rﬂ} y€{+1! _]‘}
can be separated by a hyperplane:
(w-z)-b=0. (1.31)

We say that this set of vectors js separated by the Optimal hyperplane (or the Maximal
Margin hyperplane) if it is separated without error and the distance between the closest
vector and the hyperplane is maximal. To describe the separating hyperplane let us
use the following form:

(w-z)—b21 ify=1,

(w-z)—0< -1 ify,=-1
In the following we use a compact notation for these inequalities:

yillw-z) -8 >1, ¢=1,...,L (1.32)

It is easy to check that the Optimal hyperplane is the one that satisfies the conditions
(1.32) and minimizes functional

B{w) = =||w||* = =(w,w). (1.33)
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The minimization is taken with respect to both vector w and scalar &.
The solution to this optimization problem is given by the saddle point of the La-
grange functional (Lagrangian):

4
Liw,b,0) = %(w cw) — Z ai{[(zi-w) = by — 1}, (1.34)
=]

where the ¢; are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w, b and maximized with respect to a; = 0.
In the saddle point, the solutions ,, by, and o® should satisfy the conditions

O L{ws, by, 0¥) 0 OL(wo. by, o)

b N Ow =0

Rewriting these equations in explicit form one obtains the following properties of the
Optimal hyperplane:

(i) The coefficients a for the Optimal hyperplane should satisfy the constraints

£
daly=0, )20, i=1,..¢f (1.35)
i=1

(ii) The parareters of the Optimal hyperplane (vector wy) are a linear combination
of the vectors of the training set with

[4
iy = Z%@?xia O’,? Z [}, 7= 1:- ‘e 3{“ (1'36)

i=]
(iii) The solution must satisfy the following Kuhn—Tucker conditions,
o {{(x; - wo) —boly, — 1} =0, i=1,... ¢ (1.37)

From these conditions it follows that only some training vectors in expansion
(1.36) (called the support vectors) can have nonzero coefficients af in the expan-
sion of wy. The support vectors are the vectors for which, in inequality (1.36),
the equality is achieved. Therefore we obtain

wy = Z gl ol > 0. (1.38)
support vectors

Substituting the expression for wy back into the Lagrangian and taking into account
the Kuhn-Tucker conditions, one obtains the functional

£ 4
1
I’V(D[) = Z = E Z@g&jygyj (233 '..’-'Jj). (139)
i=1 iJ
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It remains to maximize this functional in the non-negative quadrant
(IfZO, @Zl,...,g

under the constraing .
Sy, =0, (1.40)
i=1

Putting the expression for wy in (1.31), we obtain the hyperplane as an expansion on
support vectors

¢
Z o(z, 1) + by = 0. (1.41)

i=1

To construct the Optimal hyperplane in the case when the data are linearly non-
separable, we introduce non-negative variables ¢; > 0 and the functional

¢
(€)= (w,w) + C‘Zé,;

which we minimize subject to the constraints
yi((w-z) =) 21-&, i=12...,¢

Using the same formalism with Lagrange multipliers one can show that the optimal
hyperplane also has an expansion (1.41) on support vectors. The coefficients a; can
be found by maximizing the same quadratic form as in the separable case (1.39) under
slightly different constraints

£
0<0; <C, i=1,...,¢ and Y ag; =0 (1.42)

=]

1.5.4 The support vector network

The support vector network implements the following idea {21): Map the input vectors
into a very high dimensional feature space Z through some non-linear mapping chosen
e prior:. Then construct an optimal separating hyperplane in this space. The goal
is to create the situation as described previously in example 2, where for A-margin
separating hyperplanes the VC dimension is defined by the ratio R?/A*. In order to
generalize well, we control (decrease) the VC dimension by constructing an optimal
separating hyperplane (that maximizes the margin). To increase the margin we use
very high dimensional spaces.

Example. Consider a mapping that allows us to construct decision polynomials in the
input space. To construct a polynomial of degree two, one can create a feature space,
Z, which has N =28 coordinates of the form:

21=F1,. .., Zn=Fn , n coordinates |



22 V. Vapnik

241 =1y eor Zan =15 n coordinates ,
n{n—| .
29t L =T By oy EN =T T) coordinates |
where z = (x),...,2,). The separating hyperplane constructed in this space is a sep-

arating second degree polynomial in the input space. To construct a polynomial of
degree k£ in an n dimensional input space one has to construct a Q(n*) dimensional
feature space, where one then constructs the optimal hyperplane. The problem then
arises of how to computationally deal with such high-dimensional spaces: for construct-
ing a polynomial of degree 4 or 5 in a 200 dimensicnal space it is necessary to construct
hyperplanes in a billion dimensional feature space.

In 1992 it was noted [5] that both for describing the optimal separating hyperplane
in the feature space (1.41) and estimating the corresponding coefficients of expansion
of the separating hyperplane (1.39) one uses the inner product between two vectors
z(%1) and z(z2), which are images in the feature space of the input vectors x; and z».
Therefore, if one can estimate the inner product of the two vectors in the feature space
z(z1) and z(x2) as a function of two variables in the input space

zi-z) = Kz, z,),

then it will be possible to construct the solutions which are equivalent to the optimal
hyperplane in the feature space. To get this solution one only needs to replace the
inner product (z;,z,) in equations (1.39) and (1.41) by the function K(z,,z;). In
other words, one constructs nonlinear decision functions in the input space

I{x) = sign Z oK (xix) + bo | s (1.43)
support vectors

that are equivalent to the linear decision functions (1.33) in the feature space. The
coefficients «; in (1.43) are defined by solving the equation

¢ ¢
— 1« .

Wia) =) a;- 3 > ooy K (2, 2,) (1.44)
=1 .4

under constraints (1.42). In 1909 Mercer proved a theorem which defines the general
form of inner products in Hilbert spaces.

Theorem 11 The general form of the inner product in Hilberl space is defined by the
syminetric positive definite function K (x,y) that satisfies the condition

[ K@ pe@zdady > 0

Jor all functions 2(z), 2(y) satisfying the inequality

/z?(:r:]da: < 00.
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Therefore any function K'(z,y) satisfying Mercer's condition can be used for con-
structing rule (1.42) which is equivalent to constructing an optimal separating hyper-
plane in some feature space. The learning machines which counstruct decision functions
of the type (1.43) are called Support Vectors Networks or Support Vector Machines'?.

Using different expressions for inner products K(z, z;) one can construct different
learning machines with arbitrary types of (nonlinear in the input space) decision sur-
faces. For example to specify polynomials of any fixed order d one can use the following
functions for the ianer product in the corresponding feature space

J’((:B,;C«;) = ((33 - fl?,') + l)d.
Radial Basis Function machines with decision functions of the form
i _ ® bz — a;)°
f(z) = sign Zai eXp§ ———a—
i=)
can be implemented by using a function of the type
|z — @
K(.?;,xf) = eXp {—7 .

In this case the SVM machine will find both the centers z; and the corresponding
weights ;.
The SVM possesses some useful properties:

» The optimization problem for constructing an SVM has a unique solution.
» The learning process for constructing an SVM is rather fast.

e Simuitaneously with constructing the decision rule, one obtains the set of support
vectors.

¢ Implementation of a new set of decision functions can be done hy changing only
one function (kernel K'(x;, %)), which defines the dot product in Z-space.

1.5.5 Why can neural networks and support vectors networks
generalize?

The generalization ability of both Neural Networks and Support Vectors Networks is

based on the factors described in the theory for controlling the generalization of the

learning processes. According to this theory, to guarantee a high rate of generalization
of the learning machine one has to construct a structure

S5\CSC..CS

I2This name stresses that for constructing this type of maching, the idea of expanding the solution
on support vectors is crucial. In the SVM the complexity of construction depends on the number of
support vectors rather than on the dimensionality of the feature space,
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on the set of decision functions § = {Q(z,a), @ € A} and then choose both an appro-
priate element S, of the structure and a function Q(z,af) € S, within this element
that minimizes bound (1.20). The bound (1.16) can be rewritten in the simple form

R(0}) < Remplof) + Q(h%i) (1.45)

where the first term is an estimate of the risk and the second term is the confidence
interval for this estimate.

In designing a newral network, one determines a set of admissible functions with
some VC-dimension h*. For a given amount ¢ of training data the value /* determines
the confidence interval Q(hi) for the network. Choosing the appropriate element of
a structure is therefore a problem of designing the network for a given training set.
During the learning process this network minimizes the first term in the bound (1.45)
{the number of errors on the training set). If it happens that at the stage of designing
the network one constructs a network that is too complex (for the given amount of
training dafa), the confidence interval Q(f—) will be large. In this case, even if one
could minimize the empiricai risk as small as zero, the amount of errors on the test set
can become big. This case is called overfitting. To avoid overfitting (and get a small
confidence interval) one has to construct networks with small VC-dimension. Therefore,
for generalizing well by using a neural network, one must first suggest an appropriate
architecture of the neural network, and second, find in this network the function that
minimizes the number of errors on the training data. For neural networks these two
problems are solved by using some heuristics (see reruarks on the back-propagation
method).

In support vector methods one can control both parameters: in the separable case
one obtains the unique solution that minimizes the empirical risk {down to zero) using
a A-margin separating hyperplane with the maximal margin (i.e., subset with the
smallest VG dimension). In the general case one obtains the unique solution when one
chooses the value of the trade-off parameter (.

1.6 Conclusion

This chapter presented a very general overview of statistical learning theory. It demon-
strates how an abstract analysis allows us to discover a general model of generalization.

According to this model, the generalization ability of learning machines depends
on capacity concepts which are more sophisticated than merely the dimensionality of
the space or the number of free parameters of the loss function (these concepts are the
basis for the classical paradigm of generalization).

The new understanding of the mechanisms behind generalization not only changes
the theoretical foundation of generalization (for example from this new viewpoint,
the Occam razor principle is not always correct), but also changes the algorithmic
approaches to function estimation problems. The approach described is rather general.
It can be applied for various function estimation problems including regression, density
estimation, selving inverse equations and so on.

Statistical Learning Theory started more than 30 years ago. The development of
this theory did not involve many researchers. After the success of the SVM in selving
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real tife problems, the interest in statistical learning theory significantly increased. For
the first time, abstract mathematical results in statistical learning theory have a direct.
impact on algorithmic tools of data analysis. In the last three years a lot of articles
have appeared that analyze the theory of inference and the SVM method from different
perspectives. These include:

1. Obtaining improved constructive bounds instead of the classical ones described
in this chapter (which are more in the spirit of the non-constructive bound based
on the Growth function than on bounds based on the VC dimension concept).
Success in this direction could lead, in particular, to creating machines that
generalize better than the SVM based on the concept of optimal hyperplane.

2. Extending the SVM ideology to many different problems of function and data-
analysis.

3. Developing a theory that allows us to create kernels that possess desirable prop-
erties (for example that can enforce desirable invariants).

4. Developing a new type of induction inference that is based on direct generaliza-
tion front the training set to the test set, avojding the intermediate problem of
estimating a function (the transductive type inference).

The hope is that this very fast growing area of research will significantly boost all
branches of data analysis.
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2.1 Introduction

The goal of learning theory (and a goal in some other contexts as well) is to find
an approximation of a function f, : X — Y known only through a set of pairs z =
{x,, 1), drawn from an unknown probability measure pon X xY (f, is the “regression
function” of p).

An approach championed by Poggio (see e.g. [5]) with ideas going back to [vanov [7]
and Tikhonov [13] is to minimize

1 Lt ) - _ - 5 5
py ;(f(a?,) i)+ YA Nz

where A is an differential operator and Eﬁ(X) is the Hilbert space of square integrable
functions on X with measure py on X defined via p. See [9] (in the sequel denoted by
[CS]) for background on this and, even more importantly, for results used here.

This minimization is well-conditioned and solved by straightforward finite dimen-
sional least squares linear algebra (see Theorem 1 below) to yield f,, : X — Y. The
problem is posed: How good an approximation is f., to f, or measure the error
S (frz = f5)?7 and What is the best choice of 4 to minimize this error?

Our goal in this report is to give some answers to these questions.

Main result.  We exhibit, for each m € IN and § € [0,1), a function
Ens=E:R*=R

such that, for all vy > 0, .
J a1 < B
N
with confidence 1 — §. There is a unique minimizer of E(y) which is found by an easy

*

algorithm to yield the “best” regularization parameter v = v*.

The bound E(v) found is a natural one, a bound which flows from the hypotheses
and thus yields a 4* which could be useful in the algorithmics for f, . Of course, 7~
depends on the number of examples m, confidence 1 — 4§, as well as the operator A and
a simple invariant of p.

2.2 RKHS and Regularization Parameters

Let X be a compact domain or a manifold in Euclidean space and ¥ = R (one can
extend all what follows to ¥ = IR* with & € IN). Let p be a Borel probability measure
onZ=XxY.

For every & € X, let p(y|z) be the conditional (w.r.t. 2} probability measure on Y
and py be the marginal probability measure on X, 1.e. the measure on X defined by
px(S) = p(an={(S)) where 7 : X X ¥ — X is the projection. Notice that p, p(ylx) and
px are related as follows. For every integrable function ¢ : X x ¥ — R a version of
Fubini’s Theorem states that

/_\—xyw("""‘l") dp = /\ (/Y ¢(z,y) dp(y|s':)) dox.
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This “breaking” of p into the measures p(yla) and py corresponds to looking at Z as
a product of an input domain X and an output set Y.
Define f,: X — Y by

) = | ydotale)

The function f, is called the regression function of p. For each x € X, f,(x) is the
average of the y coordinate of {z} x Y.
In what follows we assume f, € L2(X) is bounded. We also assume that

M,=mf{M 20|{(z,y) € Z ||y — f,(x)| = M} has measure zero}
is finite. Note that this implies that
lyl £ M = max{[|fllcc + M, 1}

almost surely.

Recall, || fI| denoctes, unless otherwise specified, the norm of f in £2(X). Let K be
a Mercer kernel. That is, K : X x X — IR is continuous, symmetric and K is positive
semidefinite, i.e. for all finite sets {&1,..., 2} C X the k X & matrix K [x] whose (¢, )
entry is K (x;, z;) is positive semidefinite. Then (cf. Chapter 111 of [CS]) K determines
a linear operator Lg : L2(X) — €(X) given by

(Lenia) = [ KG0r@

which is well-defined, positive, and compact. In addition, there exists a Hilbert space
Hy of continnous functions on X (called reproducing kernel Hilbert space, RKHS for
short) associated to K and X and independent of p such that the linear map L}f is
a Hilbert isomorphism between L3(X) and Hy. Here L}f denotes the square root
of Ly, i.e. the only linear operator satisfying L}f o L},(’Q = Lg. Thus, we have the
following diagram

LJ,"_!
LX) —EE L #(X)
Llﬁ’fz & Ik
Hx

where we write Lg ¢ to emphasize that the target is ¥(X) and [y denotes the
inclusion. If K is ¥ then Ik is compact. In the sequel, K denotes a ¥ Mercer
kernel, and || | x the norm in Hy.

Let 2 = (21,...,2m) With z; = (z,1) € X xY fori = 1,...,m. We also write
X = (Z1,.- ,Zm), ¥ = (th,-..,Ym). Note that since K is a Mercer kernel K|[x] is
positive semidefinite.

For v > 0 let ®(7) and ®,{~) be the problems respectively

min / (F(x) =) + 1%
AY
st. feHx
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and
o1&
min EZU(%)—%)Q‘F’HU"%(
i=1
s.t. f & H,r{.

Forx € X, let K, : X — IR be given by K,(t) = K(a,1).

Theorem 1 For all v > 0, the minimizers f, and f, . of $(y) and () respectively
exrst and are unique. In addition

fr=Qd+9Li )7,
and f, is given by

i

Fra(®) =D a:K(z, %)

i=1

where @ = (a1, ..., Gy) 15 the unigue solution of the well-posed linear system in R™
(ymld + K[x))a=y.
Finally, for f =37, 0, K,, we have ||f||% = a"K([x]a.

PRCOF.  See Propositions 7 and 8 and Theorern 2 in Chapter III of [CS] and its references,
and (5] and its references. O

2.3 Estimating the Confidence

Define, for f € L2(X), its error

£(f) = f (F(@) - )°

and, given a sample z € Z™, its emparice! error
1 bi14 5
Elf)= =2 (flz) = w)’,
i=1

Note that from the equality £(f,.) = E(fy2) — E(fy) + E(F,) we deduce

g(f'm) < |£(f‘r.2) - E(f‘r)| + E(f"r)

We will call the first term in the right-hand side the sample error (this use of the
expression shightly differs from the one in [CS]) and the second, the approzimation
error. Note that the sample error is a random variable on the space Z2™. In this
section we will bound the confidence for the sample error to be small enough. The
main result is Theorem 2 below.
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Forr >0let B, ={f € Hx | ||fllx <r} and H(r) = I,(B,). Notice that this is a
compact subset of (X ) so that, for every », the covering number

N(H(r),n) = min{s € IN | 3 s closed balls of radius n in €(X) covering H(r)}

is finite. Also, let
Ck = max {1, sup |K($}t)|}

BLEX
and _
g YOl L, YCEM
i Y
Theorem 2 For all v,¢ > 0,
vmednd
Prob {[£(f,) = £(fya)] < e} > 14 [m N ('H(m), yIeke Cm)] ¢ TR,

The idea towards the proof of Theorem 2 is to write

E(f*r) - g(f*f‘z) = ‘S(f'r) - gz(f’r) + Ez(f?) - EZ(f*f‘z) + ‘SZ(f'r,zj - E(f’.nzj

from which it follows that

1ECSy) = ESqu)l S NEUY) — Elfo)l + [Elfy) — Ealfy )] + [l fr2) — E(fy2)]-

We first, see Proposition 1 below, bound (with high confidence) the first and last terms
in the sum above. Towards this end we give bounds on || fyllx, || f4.2ll5: | f5 oo, and

”f‘r"Z“DO'

Lemma 1 For all~ >0

”f*r“!( < R’r
ProoF.  Let f, =3 ¢¢;. Then

f =i(1+%)_quba=i(7f%)wa

and therefore

s _ e A,
|4k = ]_;(,Y_,_)H)QC@

A=
T

=1

A

il 3 2
3 ME A £l

Cxk
?“fp”g-

[
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Lemma 2 For ally >0
“f'r,ZIIK < Ty

PROOF.  Since fy. = . e;: Ky, we have ||f,2]% = «TK[x|a.
Also, since o = (ymlId + K[x])~'y it follows that

lall < Iy liGymld + & [x) || < \/aMWLm -

where ||a]| and |y| refer to the Euclidean norm in IR™. Therefore
2

2 M2 M
| frallie < af?IK(x][| € 5=Crm = —Cx
Y ~

where || K{x]| denotes the operator norm of K[x] : R™ — IR™ with respect to the Euclidean
norm in both doruain and target space and we have used that, since each entry of K|x| is
bounded in absolute value by Cg, || K[x]| < Cxm. O

Corollary 1 For ally > 0, || fy]lee < %I%””—““’ and || frzlle < Qﬁﬂ

PrOOF. By Theorem 2 in Chapter III of [CS], Ik < vCx. O

Remark 1 Note that for all v >0, ry > R,.

Proposition 1 For ell e,y > 0,
(i)

1

) : : & —WHW
I:GI(Z),E’H‘SU?) &) et 2 1-N (H(&)am) 2e SMTOHOKIT

(i)

f’}) _ mqﬁ,,r-l
A B < _ . ]2 BTG
PR UE(Fa) = ulfoe)l £} 2 1= (M0 gy ) 270

PROOF. We use Theorern B of [CS] but proved with Hoeffding’s inequality instead of
Bernstein’s. This yields, for a compact subset H of €{X) such that | f{z) — y] < M a.e. for
all f € H, the uniform estimate

Prob {?gglf{f) - &) £ e} >1 —N'(H,—

For (i) use this estimate applied to H = H{R,), and

Cicllallss , g« M+ Ci)

M= ”f‘r ”oo +ﬂ"’p + ||fp||co < ~ 'Y

and note that

o FEH(RY)

Prob{IE(S;) - &(f)] S ¢} = Prob { sup |E(F) - &) < } .
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A similar proof, now with H = H(r,), and

M= |If*r“c>o+Mp+||fp||oo <

CrM +M= M(y + CK)‘
i v
yields (ii). tl

We now proceed with the middle term [E,(f,) — £.(f,2)]-
In what follows, for f : X — IR and x € X™, we denote by f[x] the point
(f(z1),..., flzm)) € R™. Also, if v € R™, we denote ||v]lmax = max{|oil,. .., |oml}.

Proposition 2 For all v,¢ > 0,

e 3o

P1ob {I£,0¢) = £1 X llas < 26} 2 1 = drne MO,

PROOF OF THEOREM 2.  Recall,

Ig(f'y) - g(f'f,z)l 5 Ig(f‘r) - Ez(f'y” + |Ez(f*,r) - Ez(f’r,z” + |£z(f‘r‘z) - 5(f'rz)| :

The first and last terms are each bounded by ¢ with probabilities at least

e ‘\'4

- il Tt Gt
1-N (H[’r?), M C;{)) 2e

by Proposition 1 and the fact that », > /.. For the middle term note that

ni

(55 = 9) = D (Foul) = 30)

i=l

—Zlﬁy — fral@)]

< “f‘r[xl FraXll,,

| (f’r fr;)l =

(A

Now apply Proposition 2 to bound this term by 2e with probability at least.

“,24.'1

1 —dme *EMGEET
and the conclusion follows by noting that 2C7.M?*(y + Cg)? < 8M*(y + Ck)* and by
replacing ¢ hy ¢/4. O

[t only remains to prove Proposition 2. Towards this end, recall, Hoeflding’s in-
equality states that if £ is a random variable on a probability space Z bounded almost
everywhere by Af with mean p then

Prob { 1
Pyl

L m€3
Y — oyl > 1 — Qe T
mE §(z) — 1 +6}_1 e

=1
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Lemma 3 For all v,¢ > 0 and all t € X,

Prob {‘mi’]f ; Kz, t){folz) —yi)| <

Zig 2™

PROOF.  Counsider the random variable
1
F = K (@ 0fple) = )

It is almost everywhere bounded by %C;;Mp. Its mean is 0 since, by Fubini’s Theorem

"1 "1

| 2@ v = [ 256 ( [ 10 -y dotoia) ) dox

zY X7 v

and the inner integral is 0 by definition of f,. Now apply Hoeffding’s inequality. ]

Lemma 4 For all v,¢ > 0 and all t € X,

Prob {
e 7
Proor, By Theorem 1,

Fy =+l NS = AL S =,
= L!(f'r‘i"]/f'r:LKfp

1
= fi= ;L:f(f,o— f+)

J(t) - m% S Ko Ot = fy(w))| <

— ?"I(Q'f'2
e} > ] — 2 Ck{laltoot JTERAIE

= 0= [ (3K 0U0) = 1)) dox.

The {unction inside the last mtegral can be thus considered a random variable on X with
mean f,(t). It is bounded by S« ([ fplloo + VCrR,). Again, apply Hoeflding’s inequality.
O

Lemma 5 For all v,¢ > 0,

Prob {H (Id+ K["]) £ — KBy

m()"!]
<2 > 1—4dme FERMOTCO?
22 Z™ W max -

PROOF. From Lemmas 3 and 4 it follows that, with a probability at least

me®4? ety
1=2|e HCxMal? 1. g 2C5 Wl tVCx Ra)?

for every t € X,

< 2¢.

1 bred
F4{8) + = ; K (e, 0 fo(zi) — 33)
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Note that, since

max{M,, || folloo + VCx Ry} <M+ /Cpry =

the confidence ahove is at least

r.ruz-frl
SR e S
2 M+ C )

1 —4de

v+ Ck)

37

Applying this to ¢ = #,...,2, and writing the m resulting inequalities in matrix form

we obtain that, with confidence at least the one in the statement,

< Ze.

F 1 1
1050+ = K] - = KBl

max

Lemma 6 For all v,¢ > 0,

K] ] Kxly
Id + () = ——
(10+ 220 fnlo) - =
ProOoOF.  In Proposition 8, Chapter III of [CS] it is shown that

oozl f]_zw (i, t)

=1

- 'me*rz Z(yf f*r 2{%; ))}'{(3“

=1

™m b
= ymf(t) + D fralz)K (e 6) =Y Kz, ).
i=1 i=1

Applying this equality for £ = 7y, ..., 7, and writing the resulting m equalities in matrix

form we obtain
¥ [y 2fX]) + [y WX K x| = K([x]y
from which the statement follows.

FrROOF OF PROPOSITION 2. From Lemmas 5 and 6 it follows that

(580 - e 2 ]

| (1a+ Z20) (1,0 = £l

le.
< 2

1T

with the stated confidence. The result now follows since %El is positive definite and

-1
therefore || (Id + %El) || > 1.

O
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2.4 Estimating the Sample Error
The expression [£(f,) — £(f,.)] is called the sample error (of f,,). In the previous
section we estimated the confidence of obtaining a small sample error when the sample

size m and an error bound € are given. In this section we will fix a confidence 1 — &
and a sample size m and obtain bounds for the sample error.

Lemma 7 letcy,c2 >0 and s > g > 0. Then the equation
IES—C];IJQ—C;}:U
has a unique positive zero x*. In addition

z* < max {(‘201)?}3, (263)!?} :

PRCOF. Let ¢{z) = «° — ayz? — ¢a. Then, taking the derivative with respect to z,
o' {5) = 50571 — geya? ) = 297 1 (52579 — gey ). Thus

¢
G()=0 & 279 = “

and this derivative has a unique positive zero. The first statement follows since @(0) < 0,
@ (0%) <0 and ¢{z) — +co when ¥ — +00.

\

N

The second statement is a well-known bound (see [10, Theorem 4.2 {iv)]). O

Remark 2 Note that, given ¢y, ¢y, 8 and t one can efficiently compute (o good approa-
imation of } &7 using algorithms such as Newton's method.

By Theorem 2, the sample error ¢ satisfies, with confidence 1 — §,

AN ('H(m), MO+ CK)) e GGt > §

i.e.

me2y dm €y
—Inf Z= ) = InV : < (. 2.1
2ENE (7 + Cr)P ( F ) v (H(”)’ 3M(y + CK)) - 21)
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Now we recall (cf. Section § in Chapter I of [CS]) that, for every ¢ < 2 there exists a
constant C; independent of € and «, such that

ey rCi32M(y + Cr)\' (320, M2 (y + Cr)?\*
. < <
N/ (H(T’)’ 32M(y + CK)) = ( €y B ey

(a different bound appears in [15]). Note, in the last inequality we replaced r., by its
definition and used that /Cg < (Cg +7). Using this bound for the covering number,
inequality (2.1) becomes

'm62’T4 —In 4—m _ 32C3M2(']’ + CJ’{)g f <0
128MA(y + Cpe ) § > -
Write
2
T = 6’}{ .
32M2(’)f —+ C,—;)z
Then the inequality above takes the form
2 ~t
v — ) — et <0 (2.2)

where ¢g = 3, ¢ = In ("‘T’"), cq = Cf, the tth power of ;. Note that one could fix, for
example, ¢t = 1.
Now take the equality in (2.2) to obtain the equation
C C
QG(U) — ,Ut+'2 _ —]'U‘f _ _2 =0
co Co
and note that this equation has only one positive zero by Lemma 7. Let v*(m,d) be
this solution. Then, alse by Lemma 7,

v, 8) < {(8m(4m);_ ln(a)) 1;2‘ (8_q¢>;+z} 23

Tt T

and
(o M+ Ce)”

,-},2

and we can conclude stating the following result.

(m, &)

Theorem 3 Given m > 1 and 0 < é <1, for all v > 0, the expression

M2 2
Sy = OO )

o2
!

bounds the sample error with confidence at least 1 — 6. ]
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2.5 Choosing the optimal «

We now focus on the approximation error £(f,). To do so we first apply part (1) of
Theorem 3, Chapter II in [CS] with H = L2(X),s=1, A= Li\fg, and ¢ = f,, and use
that ||L;(”2f|| = ||fllx to obtain that, for 0 < & < 1 {e.g. for § = 1/2),

: 2 2 gy /2 2
min - + -y < L ]
in (1 = Ll + 715 < " K2R Lol

Since the minimum above is attained at f., we deduce

—g/2
If2 = B2+ EN% <UL R

A basic result in [CS] (Proposition 1, Chapter I) states that, for all f € £2(X),

£(f) = /\ (f - [ +0° (2.4)

where crf, is a non-negative quantity depending only on p. Therefore the approximation
error £(f,) is bounded by &7(v) + a2 where

(1) =PI 1I1P

PRrRCOF OF THE MAIN RESULT. Let
E(y) =& (v} + (7).

Recall
E(fva) < 1ECR) = Ef5e)| + E(S).
Then the error £(f, ) satisfies the bound
E(fre) L E(y) + 0'3

and therefore, subtracting o2 from both sides and using (2.4) for f = f, ,

[ = 1)< )

This proves the first part of the Main Result. Note that this is actually a family of
bounds parameterized by £ < 2 and 0 < § < 1 and depends on m, é, K and f,.

For a point v > 0 to be a minimum of E(y) = () + &/ () it is necessary that
() + ##'(y) = 0. Taking derivatives, we get

7+ Cx
73

F'(7) = —64aMP*{m, §)Cx

and oo
o' (y) = 0 NEE PP
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Thus the solutions of «7'(v) + #*(7y) = 0 are those of
L LIIP - 64MP0* (m, 6)Cie(y + Cic) = 0

i.e. those of
ora  G4MP0* (m, 5)0;{?. _ B64MPu*(m, 6)C
_ o —8/2
oL Sl oL fol1?
Using again Lemma 7, we obtain a unique solution §* which is a minimizer of E since
E(y) — oo asy — 0 or v — 0o. This finishes the proof of the Main Result. O

= 0. (2.5)

Corollary 2 For every 0 < 4 < 1,

lim E{(v*)=0.

Fre— 20

PRrROOF.  The bound {2.3) shows that v*(m,8) — 0 when m — co. Now, equation {2.5)
shows that +* is the only positive root of

2 _ Qut(m, 8y — Qui{m,8§)Cx =0 {2.6)

where Q = —64-,12—’1——-;2533—. Then, by Lemma 7,
OILE" " fall?

v < max {(2Qv*(m, 6) 7, (2Qv* (m, 6)C ) 77 |
from which it follows that +* — 0 when m — oo. Note that £his unplies that

i &/(v') = lin (v VI fl* = 0.

ITL— 0

Finally, it follows from equation {2.6) that

v (m, o
(7% = (@7 + QCx) [ { - )} 0
()
and therefore, that [%] — 0 when m — oc. This, together with Theorem 3, shows that
iy se (7} = 0. 0

2.6 Final Remarks

(1) This report can be seen as a solution of one instance of the Bias- Variance problem.
Roughly speaking, the “bias” of a solution f coincides with our approximation
error, and its “variance” with the sample error. Quoting [3],

A modet which is too simple, or too inflexible, will have a targe bias,
while one which has too much flexibility in relation to the particular
data set will have a large variance. Bias and variance are complemen-
tary quantities, and the best generalization [i.e. the smallest errot] is
obtained when we have the best compromise between the conflicting
requirements of small bias and small variance.
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As described in Section 3, Chapter II in [CS), the bias-variance problem amounts
to the choice of a compact subspace H of € (X ) over which £, is minimized. A too
small space H will yield a large bias while one too large will yield a large variance.
Several parameters (radius of balls, dimension, ete.) determine the “size” of H
and different instances of the bias-variance problem are obtained by fixing all of
them except one and minirmizing the error over this non-fixed parameter. Our
solution considers the ball of radivs v = ||f,.|lx in Hrx and H = [x(5,) (a
space over which f, , minimizes £,). The number 7 is our replacement of the VC-
dimension. Since -y is inversely proportional to r, large v corresponds to large
bias or approximation error and smail v to large variance or sample error,

Failing to find a good compromise between bias and variance leads to what is
called underfitting (large bias) or overfitting (large variance). As an example,
consider the curve % in the figure below with the set of sample points and assume
we want to approximate that curve with a polynomial of degree d (the parameter
d determines in our case the dimension of H). If d is too small, say d = 2,
we obtain a curve as in (a) in the figure, which necessarily “underfits” the data
points. If 4 is too large, we can tightly fit the data points but this “overfitting”
vields a curve as in (b).

{a) )

For more on the bias-variance problem see [3], the above mentioned section in
[CS], (6], and the references in these papers. Note, however, that the Jiterature
on this problem is vast and we have only touched on it.

{2) One could interpret the main estimates in this paper in terms of algorithms for

approximating solutions of integral equations by Monte Carlo methods. But for
most algorithms in the theory of integral equations the points «,, 2 = 1,...,m,
are not randomly chosen but taken for example as a set of lattice points of a
domain X C R™ (this would correspond to aective legrning in the learning theory
literature). Now one might take py as Lebesgue measure and the z, from a
uniform grid of points. The theory in our previous paper [CS] should permit
modifications to deal with this situation and our main result here as well.

{3) Our work can be interpreted in the area of statistics known as regularized nonpara-

metric Jeast squares regression. A general reference for this area is the book by
Sara van de Geer [14]. Besides the references in this book, the papers [2, L, §, 9]
are also related to our work. A result somewhat similar in spirit to our main re-
sult appears in [11, 12]. Here a function E(m,n) is exhibited bounding the error
in terms of the number n of examples and the number n of hasis functions in a
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space of Gaussian radial basis functions and it is shown that, for each m € IN,
E(rm,n) has a unique minimizer n*.

Addenda. Corrections to [CS].

(1} A regularity hypothesis on measure px on X requiring every open set on X to have
positive measure is needed for our extension of Mercer Theorem and its applications.
This is & mild hypothesis since open sets with zero measure can be deleted from X
with no harm.

(2) In connection with the ratrices associated to & Mercer kernel, the “positive definite”
condition should be relaxed to “positive semidefinite.”
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Chapter 3

Cucker Smale Learning Theory in
Besov Spaces

Charles A. Micchelli', Yuesheng Xu'? and Peixin Ye

Dedicated to Steve Smale with friendship and esteem

Abstract. Let B := (B, || - |s) be a Banach space and H := (H,|| - ||») a dense
subspace of B. We are interested in the rate at which the distance of agivenz € B
from the ball of radius ¢ in H tends to zero as t — oo. This problem has numerous
applications and its recent importance in the Cucker Smale theory of learning
renewed our interest in this subject. We study two aspects of this problem.
First, we obtain general results on the relation between the CS-functional and
the Peetre K-functional. Secondly, we estimate it in the concrete case of Besov
spaces by using functions of exponential type.

13upported in part by the National Science Foundation under grant DMS-9973427
2Supported in part by the Chinese Academy of Sciences under program “Hundred Distinguished
Young Scientists™.
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3.1 Introduction

Let B := (B, || - ||s) be a Banach space and H := (H, || - ||»} be a dense subspace of B
with ||z]ls < |lz||s for @ € H. Given & € B and ¢ > (0, Cucker and Smale demonstrated
in {5] the importance in learning theory of the rate at which the function

Iz, t) == inf {[lz — ylls : (ly)l» < £}

tends to zero as £ — oo. They referred to I as the approxtmation error with regression
Junction x and hypothesis space

He = {y € H:{lylla < t}.

So far, in learning theory this problem was studied, almost exclusively, when H is a
Hilbert space, although, as pointed out in [11] it arises in a wide variety of problems
in applied mathematics including optimai filter designs, control theory, approximation
of operators and regularization, see [1], [17] for material exclusive to Tikhonov regu-
larization and for Korneichuk and Kudryavtsev's study of best approximation between
two Sobolev classes {8], [9]. In this chapter, we use results in [11] to give sharp error
estimates for the CS-functional in terms of the Peetre K-functional. This is done in
Section 3.2. In Section 3.3 we estimate the CS-functional for anisotropic Besov spaces
containing hypothesis spaces which are the range of a convolution kernel by using re-
sults from Section 3.2 on entire functions of exponential type, thereby improving results
in [15].

3.2 Cucker Smale Functional and the Peetre K-
Functional

Let X be a linear space equipped with two norms || - ||;, ¢ = 1, 2. In this section we give
exact bounds for the CS5-functional

Iz, t) = inf{lz =yl : lyll: <ty € X}
in terms of the Peetre K-functional
K(z,t) = inf{|lz — gl + tllyliz - y € X}

which plays a pivotal role in the theory of interpolation spaces, [2]. To this end, we
find the following quantities useful. For every 8 € /% := (0,1} and z € X we define

|zl = sup { K (=, )¢ : ¢ € Ry} (3.1)

and
|%lo :=sup {7 {z,1)""° : t € Ry} (3.2)

where R, == {t e R:t > 0}.
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Theorem 1 For everyx € X and 6 € I°

E2f3
7 = khid
T

where

h(8) =601 -9)°% ol

PROOF. Using the first part of Proposition 2.3, page 49-50 of [11] we have that

K{z;t) = inf{i{z;0)+ot:0e Ry}
<« inf{|:t|:g,1"m'_lcr_‘?(]_'g)_1 +ot:oe Ry}
= |zlot? inf{r + 700070 . ¢ Ry}
B
he)
This observation proves that
Izlle < |2lgh="(6). {3.3)

Next, we use the second part of Proposition 2.3, page 49-50 of [11], which gives

=1y ¢
oK(r,07") t:oeR_;_}

T{z:£) = sup {

a

and so we conclude that

I{z:8)

A

sup{c’||elle —to 0 e Ry )

(1-8)~'  —p1—0—?
! §—6(1-8)

= il sup{r’ — 7: T € Ry}

.’3(6)“ - ||3‘||£,1_6)_lt_9( 1-¢)~! _
In other words, we have established that

lzlo < (0|l

and with {3.3) the theorem. O
Since /(1°) = (4,1), it follows from Theorem 1 for every & € X and 8 € I° that

zls

izl = 1. (3.4)
This inequality is prominent in [15]. Note that Theorem 1 establishes that the ratio of
the two quantities (3.1) and (3.2) appearing in (3.4) is independent of z € X.

The basis of the proof of Proposition 2.3 of [11] (and hence also Theorem 1 above)
to pass from K to I and back uses the Gogliardo diagram, see, Chapters 3 and 7 of
[2]. The use of Proposition 2.3 of [11] should also allow for comparisons of other decay
rates for K and I, other than those considered in Theorem 1.

With this result, standard facts from approximation theory of interpolation spaces
can be translated into estimates for the CS-functional. For example, identification of
Besov spaces as an intermediate space leads to the following theorem. We use the
notation @ = [1,00].

<

[N
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Theorem 2 If r,s € Ry, p,.g € Q with v < 5 and Q is an open subset of RY with
mintmally smooth boundary then there exists a constant ¢ € R, such that for oll f €
B} (&)

Py

inf{[lf = gllz.e : lgllm < ¢} < cllfllpy o (r/s)7= (1 =r/s)t™7=
where H = B2 ().
PROOF.  The result follows by recalling from [2] that
(£p(0), By o{2))r/5,00 = By oa(E2)-
Specifically, for f € B} (£} we obtain from Theorem 1 that
inf{[lf = gllr, @ llglln <€} < £ 1lp/s(r/ )77 (L = v/s)t ™5
< efllsy /) (1 = /)T,

which proves the result. ]

Let us now turn to ancther special case of the above resuit. We restrict ourselves
to a Hilbert space (H, || - ||) and a bounded symmetric nonnegative operator A on H.
For any positive numbers o, s € R, with 0 < s we consider for 2 € H the quantity

Lo () = inf {|| A%z — A%y| - (lyl| < ¢}
which was considered in (5], [15) where the estimate
sup { Lo (2:1)' 7 it € Ry ) <l (3.5)

for ¢ := £ and x € H was derived by means of Ttkhonov regulerization. We now show
another duality principle extracted from [11] whose roots lie in optimal estimation can
be used to improve upon the estimate (3.5).

Theorem 3 If 8 = £ where 0 <5, 0,5 € Ry and x € H, a Hilbert space, then
sup { Lo (2,8} 777 1t € RL} < A(O)|)|)-
PRCOOF,  We consider the quantity
Koo, ) == inf {]L 4% = A%y +tllyll - y € H)

and estimate it from above by using Theorem 3.1 of [11]. To this end, we let 7 :=[0,1], (")
be the inner product on H and observe that

Kso(z,t) = sup{(A”z,9): |y <1, A% < ¢}
= iof {sup{(A7z,y) : pllyl* + £ (1 - p)liA°W|* <1} :pe T}
- inf{sup{w:c, (pf + (L= P 2A Y22yl <1} i p e f}

= inf{HA“(pI F (=AY 2| p e r}
< o {47 (o + (1= A2 p e 1 af
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Consequently, we have proved that

Kealx; 1) . { { u? } }
—= L <« inf tu€ER : I
1] < o sup o 1= p)t*zuzs]lﬁ U € Iy pE

f2—1
= inf {”G—tﬂ pE I}sup {v'm(l +v) 1 ive R+}

(1= p)or2

= h(8/2)¢% inf {p-i-p% L p ER+} =

In other words, we have established that
Kool2,1) < 1], (3.6)

Combining this estimate with Theorem 1 yields the desired result. B

We remark that in {5} and [15] the operator 4 is assumed to be strictly positive, a
condition which not required here. From Theorem 3 and the fact that h(1°) = (3,1),
inequality {3.5) follows directly. Note that the upper bound in (3.6) depends only on
6 and = but not on 4. We have, of course, used in its derivation the hypothesis that
the spectrum of A satisfies o{.A) C R,.. Additional information about the spectrum of
A would lead to shaper bounds.

We can bound K, in another way which still leads to an improvement on inequality
(3.5). Indeed, discussions in [11] suggest that we choose A € Ry and set

— (;\I+A23)H]AS+U‘I. (37)
Therefore, we have that

Kyg(x, )
[zl

Each norm can be bounded frorn above, since o(A4) € R4, to obtain the estimate for
the Peetre K-functional

Kio(x, t) < inf A2 L )8/2-1/2p 1+8 NER,
. oz
+

toh( 3 ) () 1nf{,o+,0 5 pG[lh}
f
)

< inf {AJAT (A% + A7 AT AR AN A e Ry

1i

h (ﬁ)
h{o

and our estimate for the CS-functional is

AN AN
Sllp{lrso(l:,t)]_ate:teR_]_} Sh( -|2_ ) h (5) “117”

The choice of the vector (3.7) was done with care. Indeed, the following is a standard
fact which is worthwhile to inctude here.
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Theorem 4 Let (H, ||-]|) be o Hilbert space and A : Hl — H a bounded normal operator
on H with dense range. Suppose x ¢ R(A) := range of A and

I{z,t) .= inf{lz — Ay| - lg]l < ¢}
There exists a unique vector w € H which achieves this infimum and 1s given by
w=(M+AA) A
where X € Ry is chosen uniquely to satisfy the equation ||w| = t.

PrROOF. By Theorem 2.2 of [11], for each z € H, /{x,-) is a convex, strictly decreasing
function on Ry with range (0, [|z]]). By weak compactness of the unit ball in H the infimum
is attained for any ¢ € Ry. Call the element in H which achieves the minimum w. If [Jw] < ¢
then by a variational argument x — Aw 1l R(A) and so x € R{A), & contradiction to our
hypothesis about x. Thus we conclude that Jjw| = ¢. Therefore, by the method of Lagrange
multipliers there is a2 A € K such that

AMx — Aw) = dw.

Since = ¢ R(A) it must be the case that A # 0. By a direct variational argument we also
have that (z — Aw, Aw) > 0. Combining this inequality with the above equation gives

M2 = Aw,w) = (z — Aw, Aw) > 0,
that is, we obtain that A € R, and
w= (M +.A"4)"" Az.
Consequently, we have that

2 £
Il —_/Smdﬂ(.o)

where § := g(A4*A) and dy is the spectral measure of 4*4 at z. The functicn of A on the
right hand side of the above equation is sirictly increasing on Ky and so there is indeed
a unigue value of A € B such that ||w| = t. This observation completes the proof of the
result. O

3.3 Estimates for the CS-Functional in Anisotropic
Besov Spaces

In this section we develop general error estimates for the CS-functional relative to
anisotropic Besov spaces. Let us begin by recalling their definitions. We have a set
Zq:=1{1,2,...,d}, a vector p := (p; : j € Zg) € Q¢ and a subinterval J of R. With
these at hand, we denote by L,(J¢) the Banach space of measurable functions f on J¢
with the norm

pa/p1 Pd/Pa-1
I fllopsey == / (] (/ If(t)lp‘dtl) ---dtd_lj dty
JA\JJ J

g
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When p = pe where e := (1,1,...,1) € Z% and p is a scalar in @, the space Lp(J9)
coincides with the usual L, space on J<.

For the choice J := R, we denote this norm by simply writing ||-[|,. For f € Ly(R9),
we define the £-th partial difference of f in the £-th coordinate direction e, at the point
x € R? with step ¢, € R by the formula

ALFxy = >0 (=1 () flx + (F — Ditgey). (3.8)

€Ly

We choose k = (k; 1 j € Zq) € 2%, r 1= (r; 1 j € Za) € RY satisfying 0 < r < k,
g€V :=Q\{oo} and define the semi-norms

N 0
/] . f 145 flls \ - dt,
% T\ \ B0 ) T

k.?
M SUD{M 27 750}

1/6

|45]7

where we set Z,. = R NZ. By [7] and (8], this function space is a Banach space with
the norm given by

11155 ey = 1Flo + D Wlgo, -
§EZ4

(Equivalent spaces result from any choice of k > r.) Alternatively, these anisotropic

Besov spaces can be realized as interpolation spaces between Ly(R?) and anisotropic

Sobolev spaces. When r = re, r € R, we obtain the standard isotropic Besov spaces.

We now return to estimating the CS-functional. A kernel K € L,(R%) determines

a linear operator K defined for x € R% and [ € L,(R?) by the equation

(KF) (%) = (K * f)(x) = [ K(x- 05,

where [ := [0,1]. The CS-functional which interests us is defined for ¢ € R, and
f € Lp(RY) by the equation

L08) = inf{]|f = Kgllooue : glle, o0 < ¢}

We shall study this quantity only under the hypothesis that the kernel K is positive
definite. Recall that this mean that for any finite set of points {x' x* ..., x"} C R4
the symmetric matrix

(K(X" = x7))i jazn

is positive semi-definite. The celebrated theorem of Bochuer [4] provides a complete
characterization of such functions in the form

K(x):= jl;d e*Vduly), xecR* (3.9)
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where d is a Borel measure on R¢ such that

j!;d du{x) < oo

Let us recall a result from [10] which ensures that CS-functional above tends to
zero as t — oo for nearly all such kernels. We need a condition on the measure which
appears in the Bochner representation (3.9) of K. Indeed, if di were a discrete measure
with only finite number of atoms then in general the CS-functional would not tend to
zero. Qur sufficient condition on the support of dg uses the notion of the uniqueness
set for entire functions. We say that D C R? is a uniqueness set if any entire function
F which vanishes on D is identically zero on C¢ The following theorem from [L0]
is sufficient to establish that the CS-functional goes to zero when the support of the
measure dg in the representation (3.8) is a uniqueness set. We include the proof for
the convenience of the reader.

Theorem 5 If K is positive definite where the support of dip ts a uniqueness set and
X 45 a compact set in R then the two linear spaces

My :=span {K(—y):ye X} (3.10)

and
My ={Kg: g€ C(X}} (3.11)

are dense in C(X).

PROOF.  We first prove that space M) defined by {3.10) is dense in C(X). By the Hahn-
Banach duality, it suffices to prove that whenever di is a sign measure on X such that for
all x e X

[ K(x - y)duly) =0, (3.12)
FAY

it follows that dv = 0. To this end, we note that
/ K{x — y)dv{y)dr(x) = 0. {3.13)
xJX

Substituting representation (3.9) for I into equation {3.13) yields the equation

j ] /Rd T () v (y)dv(x) = 0,

which is equivalent to the condition that

Ll e

Now, we define an entire function

2
du(y) = 0. (3.14)

Fy) ‘-=f e Yiu(x), yeC,
X

and conglude from {3.14) that F vanishes on the support of dg. Since the support of dy is a
uniqueness set, we have that F is identically zero on R, This implies that dv = 0.
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It remains to prove that the space M, defined by (3.11) is dense in C{X). If for aull
9 € C(X) we have that

[ Eartaavi =o,
Rd
then for all ¢ € C(X) it follows that

/XQ(X) (/}\ K{x - y)dy(y)) dx = 0.

This ensures for all x € R? that
/ K{x — y)dv{y) = D.
X

Appealing to the already verified density of space My in C{X), we conclude that the space
My is also dense in C(X). O

Our goal is to develop useful estimates for I,(f,?) when f € B;,g([l{d). To this end,
we rely upon the inequality

I(f, ) < IIf = hllz o + 1 = Kgllz, ) (3.15)

where, depending on f, we shall choose & carefully in the space of entire functions of
exponential type and then a g with |lg[l;, 4y < ¢ for which Kg approximates h well.
We begin with a description of how to choose A .

For any vector v := (v; : j € Zy) with positive coordinates we say an entire function
h is of exponentiel fype v provided that for every € > 0 there exists a positive number
¢ such that for all complex vectors z := (z; : j € Z) € €% we have the hound

|h{z)] < cexp (Z(Uj + e)lzj|> :

JeZy

We denote by My (R?) the subset of all entire functions of exponential type which are
bounded on K and for any p € Q% we let

M, p(R?) := M, (R N Ly (RY),
Every vector v = (v; : § € Zy4) € RY determines the rectangle
1= ] v ]
jeZa

and when v = ve, v € R, we denote it by I%. According to the Schwartz theorem, we
have that

Mop(B) = { £ € Ly(RY) s supp f € 1.},

which in the special case p = 2e reduces to the Paley-Wiener theorem, cf., [16]. For a
fixed v € R, , we define

M, o(RY) = U {M(\,,p([@d) cv=(v;:7 € Zy), H v; < v} :

jEZy
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To estimate the CS-functional in anisotropic Besov spaces, we recall the definition
of an operator which appears in [13] which we shall use here. To this end, for v € R,
we choose a function w, which is positive a.e. on R, such that

/ wa(t)dt = 1. (3.16)

For u:= (u; 11 € Zg) € R, x € RY and f € Bf ,(R?), i € Zy, we define

(T, f)(x) = (=1)>! /ﬁ wa (B (AR ) (x)dts + £(x). (3.17)

By equation (3.8), there exists constants d,;, € Z,, # € Z4 such that for all functions
s
S dil(x + ite) = (x) = (=R A f (). (3.18)
J€Z,

For any 1 € Z4, we remark that

> dy=1

Je 2,

> Ny =25 -

FEZk,

When ¢t € R and i € Z4, we let

Gult) = > ﬁwu (5) (3.19)

J J

and

and observe from formulas (3.17)-(3.19) that 7, has the alternative representation
(T, f)(x / ot f(x + jtie)dt;, x € RY (3.20)

We define the value of a kernel G, at t := (; : i € Z4) € R? by the formula

Go(t) == H G, (t5)

FE€Zd
and introduce the operator
Consequently, 7, is given by
/ Golt) f(x +t)dt, x e R (3.21)

In the next two theorems, we gather together required facts about the operator 7.

Theorem 6 If p € Q4 8 € V, u,r € RL then operator T, is bounded both from
Lp(R4) to Ly(R) and from BL 4(R?) to B 4(RY).
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PROOF.  For i€ Zg, by the definition of G, and {3.16) we have that

[1cuies 3 g1 = 2% -1

JEZ,

from which it follows that
/ |Gu{t)|dt < 27
pd

o= Zk_?.

JELy

where

Therefore, by the Young inequality, we have for f € L,(R%) that

17ufle < 271 1o (3.22)

Since 7y, is a convolution operator it commutes with difference operators and therefore
employing estimate (3.22), we obtain for any ¢, € R and j € Zg the estimate

k L R
1A Tufllp = 1Tule] Fllp < 27148, £l

which implies that

Tuflys <2°f j € Za.
[N

These estimates, together with {3.22) and the definition of Besov norms, yield the inequality

r.
J :
Bp.!?.j

ITafllns, < 270 fss,

and coraplete the proof. O

In the next theorem, we provide an estimate for approximation by the operator 7.
The estimate we present below uses the function

B (l) = U o (1), LER, (3.23)
where § € V.
Theorem 7 Ifr,uce R, j€Zy, peQ® 8V and 1/8 +1/8 =1 then

If = Ty Fllp < N0, lley e |f

Bilos (R
Proor.  We know from (3.17) that
- k
169 = (T 1169 = (1) [ w0, ()AL NGty x € B
Therefore, the Minkowskii inequality gives the estimate

1f =T llp < /E; Wy (GO £ [t (3.24)

N

Hence, by the Holder inequality and the definition of w,; we obtain the desired result.
O
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We specialize this theorem to the special weight function

=

, teR, (3.25)

sin

we,(8) =~ —

where s &€ W =V \ {1}, v € R, and g is chosen so that equation (3.16) is satisfied.
When s —r; € W, 5 € Z;, we obtain the estimate

”??}-suj ||L,9;(F.] S mifj_rj: (3.26]

o 119’
p= ((s - 1)9’) '

We wish to combine this bound for the special weight function (3.25) and Theorem
7 o0 estimate the efficiency of approximation by the operator 7,,. We shall do this only
for a restricted set of vectors u € R%. Specifically, for every v € R, we define the
coordinates of the vector u € RY by the equations

for all u, € R, where

wy =v"0, je 2z (3.27)
where 1
-1 L =
AN =y o (3.28)
JEZy

Note that these definitions imply that

1EZ4

With this choice of the vector u and the weight function (3.25) we denote the
corresponding operator 7, by S, and use the quantity 7 := max{r, : § € Zs} below.

Theorem 8 Ifrc RE. v e R, pe RV, 6V, s—TeWand f € Ly(RY) then
Suf € My p(R).

PROOF. The first step of the proof is te observe that 7, is an entire function in Mu,p(Rd]
for el p € Q% when s € W. Since S, is a convolution operator, its Fourier transform is
supported on the cube f4. Also, from Theorem 6 we conclude that S, € Lp(Rd). Therefore,
it rerains to show that 8,/ € Lo (R?) which follows from the Holder inequality and the fact
that Gy € Lo(RY) for all p € Q7. Ol

The next theorem describes the approximation property of the operator S,. For
this purpose, we let 3 := dp2% and = (1/8)/70),

Theorem 9 Ifr e R, v € Ry, pe V4, 8 €V and f € By (RY) then operator S,
has the property that
1/ = Sofllp < Bo 7 [ Nl imey-

Moreover, for all v > n we have that

1501 llo < 1 llar e
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PROOF.  Let ty:= 0 and for 7 € Z4, we define the vectors

tj = Z ﬂkek.

rez;
For x € RY and f ¢ B;.Q(R‘i) we also make use of the quantity
Ey(x,t5-1) == f(x +t5-1) — (T FHx+t5-1).

From Theorem 7, the estimate {3.26) and the translation invariance of the Lp(RY) norm. we
have that

BES (- ti=llp < o0 1 (3.29)
Since
I-8, = Z(Tﬂﬂo"'oﬂj—l ~Tup o -0 7a))

JEZy

where we set Ty, := [, we obtain for x € R? that

%) = (S = 3 ]R ]R [ GtttV

JEZ4 1€Z;

Using the Minkowskii inequality, (3.29) and the above equation we conclude for all f €
r o(RY) and all v € Ry that

If = Soflle < BV S Aflny,

JEZa

which proves the first part of the theorem. Finally, we have that

15uf o < 1fllp + B0 > |flsr , vy

J€Zy

and the second part of this theorem follows immediately. g

When p = pe, p € R, this theorem essentially appears in [7]. The operator S, was
designed to give a good approximation to a function f € B;]Q(Rd). This will take care
of our choice for the function A in inequality (3.15). With this in hand, we now turn
our attention to obtaining a good choice of the function ¢ in inequality (3.15).

As in [15) we use a collocation scheme on a unaform grid to obtain a function g from
i and provide estimates for a larger class of kernels than those considered there. For a
given function ¢ which is positive definite and of corapact support on R we consider
a function g of the form

9= dp(N--j). (3.30)

Let » be any function defined everywhere on /¢ and bounded there. We choose the
coefficient vector d = (dj: j € Z%) so that

(Kg)(i/N) = h(/N), j€ Z5. (3.31)



60 C.A. Micchelll, Y. Xu, P. Ye

Thus, we have that

Kg= Y d®( —j/N) (3.32)
ezd
where
&= K xp(N-). (3.33)

We define the matrix
A= (P(/N = K/N))j ezt
and the vector
b= (h(j/N):jc 2%)
s0 that the coefficient vector d is determined by the linear system

Ad = h, (3.34)

We display the (linear) dependency of ¢ on 2 by writing ¢ := Gyh and turn our
attention to estimating the norm of Gyh. To this end, for eny function ¢ we introduce
the one-periodic function

¢ = > (- +k),
ks Z4

the N-periodic function

bn =Y ¢+ 2N7k)

keZd

and the min-function defined for v € R¢ by the formula
¢ (v):=inf {én(t) : t € IT}.

The theorem below not only estimates the norm of Gyh but also establishes that
the matrix A is nonsingular when @, (Nwe) > 0. In the statement of the result, we
use the set

y¢:=(peR':e<p<2lui{peR’: 2 <p}

which is, for d € W, not the same as V<.

Theorem 10 For p € Y and Gyh defined by eguations (3.31) and (3.32) where the
vector d is given by the equation (3.34), we have that

Niz=1 @Dy
IGnAllgorey < Wllip [l eo czay 172l e 2y -

PROOF. We obtain an estimate for the norm of d by observing that

2

1 .
dTAd = (%)d/ O (t) Z diei/N Y g,
= IJ\’rre jezgr
and "
1 . .
mﬁf S e at = N,
Nae

€z%
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from which we conclude that
d"Ad > &, (Nre)||d|2. (3.35)

Multiplying equation (3.34) by d from the left yields the formula
dTAd =d"h. (3.36)
Consequently, by the Canchy-Schwarz inequality we have that
d"Ad < N2 dll2 )bl p.oray- (3.37)

Combining inequalities {3.35) and {3.37) gives the estimate

N2
E— ] .
Il < gl o (339)
To continue the proof, we use the inequality
lgllp < N7 PO rayildllp, (3.39)

valid for any function g given in the form {3.30), which was proved in [6] for the case p = pe,
p € V. However, since the proof given there is based on the Young inequality for convolution
sequences, which is valid for arbitrary vectors, inequality {3.39) also holds in this generality.

We also need the fact that for any vectors d,r,s € R with r > s and a function f there
holds the inequalities

ldl, < lId]ls
and
NFkpacray < WAL cray-
Therefore, for e < p < 2e, we have that

||<PU ”Lm{.{d) ||h'||Lm{.“‘}

—df2 0
1G5kl ey < N~ 1yl < $ o (N7e)

While for 2e < p, we have that

df2—1/+(p)

A} . PP
IGnh Tu(ne) Il

Lpray < N7V, ald]y <

Loo(1%) |ih,|| Lono( [4)

proving the theorem. 0

In the next theorem we relate various the norms of any entire function /2 of a given
exponential type. For this purpose, we use the vector
—= P
B -

.:2_p

and denote by P? the set of all vectors p € R? such that e < p < 2e whose coordinates
of p form a nonincreasing sequence. Moreover, whenever we have a v = (v; : j € Zqg)
we set | V]| = max{v; : § € Z4}.
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Theorem 11 Ifh € M, ,(RY), pe P! and g — 1€ Q then

6l < (2m)= #4700 T (2uy) (=200 /2342155 | ||,

JELg
Moreover, when ||V]ie < N7 then

4, < (2,1-)(2/9-)7“1(p)—dfql,\r(lﬂlqh“'(p}—2d,’q||h||p_

PRCOF. By the Fourier inversion formula and Hélder inequality, we have for an x € R?
that
hel < 2m [ [htsiay < @m ikl TT 2ot
Jrd .
v ieZy

However, the Hausdorff-Young inequality, as it appears in [3], ensures under the hypothesis
of the theorem that R

fller < (2m)7 " ®)

[llp.

which proves the inequality for 4 = cc. The proof of the case ¢ = 2 is similar. Indeed, we
have that

1/2
If]2 = (2m) "9 ( Llh{y)lzdy) < (2m) " TT @e)VBRl, g

JEZ4
- —in
(2m) =420 TT (207) /P o
1872y

1A

The general case is proved by combining the first two in a straight forward manner. Moreover,

using the condition on the vector v the remaining inequality follows by a direct computation.
O

We now turn to the task of bounding the error i — g by using facts concerning
interpolation in a reproducing kernel Hilbert space which we describe next. The idea
is to interpret the interpolation problem which determines K¢ from & as an optimal
interpolant in an appropriate Hilbert space. To this end, we let H be a Hilbert space
of real-valued functions on some domain D with reproducing kernel K(-,-). This kernel
should not be confused with the kernel that determines the convolution operator K.
For every finite set Dy = {7 : j € Zn} C D we Jet

K(Y)=det (K(y', ') 4,7 € Zn)

and assume that K(Dy) > 0. (It is nonnegative since X i5 a reproducing kernel for
H.) We wish to estimate a function f € H from its values on Dy, that is, from the
information vector I{f) := (f(y) : y € Dy) known to lie in the hypothesis space,
{7 : Iflle < 1}. From the point of view of the theory of optimal estimation [12], we
consider the eflect of any algorithm A : I(H) — R which produces the error

sup{[/(2) = AU fllm < 1}

An optimal algorithm is ene which minimizes this expression over all algorithms
and the value of the infimum, which we denote by £(H, Dy), is call the intrinsic error
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of estimating a function f in the hypothesis space {f : (|f|lg < 1} at z € D from it
values on the set Dy. It is known from [12] that

E(H, Dy} = max{f() : 1(f) =0, Ifllsll <1}

and the Hahn-Banach duality gives the alternative expression for the intrinsic error

‘:dyER}.

Moreover, we can describe in concrele terms an optimal algorithm which is, in fact,
ltnear in the information operator. To this end, the optimal interpolant to a function
[ with domain D relative to the set Dy is the function p of the form

p= > dK(y)

= DN

‘K(R’?) - Z dyf((% )

e Dy

E(H, Dy) = min {

chosen so that f(y) = ply) for all y € Dx. It then follows that
Kz, )- 3 Ky, ‘ 4 € R} 1/ s

ye Dy

£ () = p(2)] < min {

Moreover, the choice of the constants d,(x),z € Dy which minimize the above ex-
pression are characterized by the requirement that d,(y') = d,y for 4,4’ € Dy and
dy € span{K(y,-) : y € Dy}. Thatis, {d, : y € Dy} are Lagrange functions for this
interpolation problem.

Although we shall not require it here we point out that the minimum above can
he evaluated as a ratio of two Fredholm determinants of the kernel K. Specifically, we
obtain for any » € D the inequality

1) =) <\ el

We shall now apply this principle in the current context. This requires the assump-
tion that @ is posifive a.e. on RY so that ®(x - y), x,y € R? is a reproducing kernel
for functions on R* with inner product

1 ROHAC
(27)% Jge  B(t) it

(fa g)tf) =

Since, the collocation scheme described above to generate the function Kg is, by equa-
tions (3.31) and (3.32), the optimal interpolant to the function & relative to the inner
product (-, -}, we obtain the following estimate

I = Kgllpocrey < E(®; N2, (3.40)

where
E(®; N) := sup {i]ﬁ { VoW, x) i w € RN“} x € Id} .
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and Qs(-,-) is the function defined for w := {1y : k € Z%) € R¥ and x € R? by the

formula .

Qalw,x) = {2m)7¢ /Rd B(y) |y - Z un MY dy (3.41)

keZg,

By our remarks sbove, for any vector x € R, the quadratic form Qa(-, x) takes its
minimum over R™ at the vector u = (ui(x) : k € Z%) where according to equations
(3.31) and (3.32), its coordinates have the form

u(x) = Z (A'])jk d(x - ;J?) (3.42)

Therefore, we conclude that

Kg= Y uh(k/N).

kezZg
When h € M, (R?) it is important to realize that the estimate (3.40) can be improved.
Theorem 12 If i € My (RY) with ||v|l < N7 and p € P¢ then

1l = Kgll iy < (27) ™77 @0 [T (205) 7325 (Nre) E(®; M) Allo-

JSZy
Consequently, we have thal

= Kogll ey < (27)7 ®ENTI®IGIN(Nre) B(®; N |Allp.

PRrooF. For any x € R we have that
bx) - (Ko)(9) = 2o~ [ T(y) ( -y uk(x)e=<w>-v) dy.
Jd
v ks Z%

Therefore, the equation

T

2 2
/ o (y) (eix'y = 3 u(x)el kY ) dy = / ®(y) (ei’”’ = 3w (x)ei RNy ) dy
Tyre R4

ke 24, keZy

and the Cauchy-Schwarz inequality gives the desired estimate

/2
o = Kalle 0y < ((‘>fr)‘df iy )|* d ) E(®; N).

Hence, we conclude that

I = Kglle,. ra) < 25 (Ne) E(2; M)Al
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and we obtain the desired result by applying Theorem 11 to estimate the quantity ||k|2 in
terms of [|Aflp. O

We now combine all our estimates to obtain the following bound for the CS-
functional. For the statements we use the notation r := min{r; : j € Zy4} whenever
r = (r; : j € R%). One possible consequence of the previous estimates is the following
fact.

Theorem 13 Let f € Bf 4(R%), p € P* r € R% and

K

" i) ot
P> el YT P)
~ 2y(Nme) 171l

then there holds the inequality

Ip(f, 1) < f)’(i\rw)—:“f”B;_e(Rd) + (Qﬂ‘)*r‘l(EJﬂNT“l(ﬁ)Qer(Nﬁe)E((I); M.

PROOF. We return to inequality (3.13) and now make our choices for b := S, f and
g = GnS,f where we require 0 < v < (N#7)7. From Theorem 9 we have that

If = hllp < 5(N?T]_5”f||9;ﬁ(1}zd)-
Since by hypothesis p € P® we can appeal to Theorem 10 to conclude that

1l Lootrey 1Se fll Lo )
< )
“g”L-p(Id) = (I’\r(JiVTi-e)

Using the bound .
IS0 £l oogray < N @Y £

obtained from Theorem 11 we see that our hypothesis implies that [glly sy < ¢ The
remnainder of the proof also follows from Theorems 11 and 12.

A more compiex and potentially better bound follows by taking advantage of the
freedom in the choice of the parameter v. The formulation of such an improvement,
should be clear to the reader. Although the bound above improves upon those given
in [15] the method of proof closely follows the one given there. In the same spirit there
follow the next two theorems.

Theorem 14 If the hypothesis of Theorem 13 holds and K is the gaussion kernel
K(x)=e P x e R? then

L{f,)=0{(Int)™*), t— oo

Theorem 15 If the hypothesis of Theorem 13 holds, o > d and K(x) = (1+|x|*)~*/?,
x € R, then
I(f, ) =0 ((lnt) ™), t— .
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Chapter 4

High-dimensional Approximation
by NNeural Networks

Véra Kurkova!

Abstract. Approximation of high-dimensional mappings by neural networks
is investigated in the context of nonlinear approximation theory. It is shown
that the “curse of dimensionality” can be avoided when functions to be approxi-
mated have small special norms, which are tailored to the type of computational
units. Properties of such norms and method of derivation of their estimates are
described. Estimates of rates of nonlinear approximation are applied to neural
network learning formalized as approximate minirmization of regularized empiri-
cal error functionals.

"This work was partially supported by GA CR grant 201,/02/0428.
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4.1 Introduction

In contrast to classical artificial intelligence, which has modeled cognitive tagks us-
ing rule-based manipulation of symbols, connectionistic computational models employ
learning in systems of distributed representations. While symbolic representations are
typically low-dimensional, distributed ones tend to be high-dimensional as they describe
objects in terms of many parameters. Many connectionistic systems can be formally
described as mappings between such representations. For example NETtalk [47], which
performs “reading aloud”, maps binary vectors of length over 200 (coding segments of
written text) to vectors with 26 real entries (coding phonemes). A vowel-recognizer
performing “lip-reading” (48] transforms vectors of length 500 (corresponding to pixels
from video) to a phonetic code of length 32.

The primary computational technique used in such systems is approximation of
multivariable functions implemented in neural networks of various types, which are
often simulated on classical computers. Approximation is sufficient as neural networks
performance is usually followed by an error-correcting after-processing. One of the goals
of research in computational intelligence is to understand which properties make neural
networks efficient and flexible tools for learning reasonable approximations of high-
dimensional mappings. Theoretical understanding can provide guidelines for design of
compuiationally feasible procedures that can perform a large variety of tasks by merety
changing network parameters during a learning mode.

Such a competence of a computational model is often called universality with respect
to computations to be performed. A classical example of a universal computational
model is the Turing machine, which is a procedure capable of realizing any algorithm.
Within the last decade, it has been shown that many types of feedforward networks
(including all standard types that are popular in applications as well as many others
that may not have been considered by experimentalists) form universal computational
models with respect to approximation of mappings between subsets of Euclidean spaces
(see, e.g., [43], [31], [32] and the references there).

However for some high-dimensional tasks, implementation of theoretically optimal
approximation procedures becomes unfeasible hecause of an unmanageably large num-
ber of parameters. Such tasks are limited by the “curse of dimensionality” (5], i.e., an
exponentially fast scaling of the number of parameters with the number of variables.
Nevertheless, experience has shown that some feedforward networks of moderate com-
plexity performed quite well some tasks depending on hundreds of variables (e.g., [47],
|48]).

Approximation theory offers some explanation of feasibility of such implementa-
tions. It has derived various upper bounds on complexity of approximating systems
depending on the number of variables of functions to be approximated together with
their other characteristics such as smoothness. Inspection of such bounds shows that
we can compensate for increase in the number of variables by increase in smoothness.
More precisely, for linear approximation there are tight estimates on the speed of de-
crease of worst-case errors of functions from balls in Sobolev spaces of the order of
O(n~5/9), where d is the number of variables and s is the smoothness parameter for
the Sobolev space, while n is the number of parameters of the linear approximating
family [42]. Thus in linear approximation, the curse of dimensionality can be only
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avoided when smoothness is increased together with the number of variables.

In this chapter, we describe ways to cope with the curse of dimensionality in nonlin-
ear approximation schemes corresponding to connectionistic systems. We study such
systems in the framework of variable-basis approzimation, which includes feedforward
networks as well as other nonlinear systems with free parameters. We show that for
variahble-basis approximation, the role of the characteristics to be kept low to cope with
the curse of dimensionality is played by a norm tailored Lo the particular basis. In the
case of feedforward networks, such a basis corresponds to the type of computational
units (e.g., perceptrons or radial units). We show that in contrast to linear approxima-
tion, where with increasing number of variables the sets of functions that do not exhibit
the curse of dimensionality are more and more constrained (as the requirements on the
clegree of their smoothness are increasing), in the case of feedforward networks, such
sets of d-variable functions can be embedded into corresponding sets of d + 1-variable
functions. We describe properties of such sets and methods of estimation of norms
that define them. Finally, we apply the resulis derived for nonlinear approximation
to network learning formally described as minimization of regularized empirical error
functionals over admissible sets of functions computable by neural networks. We devive
estimates of rates of decrease of approximate infima of such functionals with increasing
number of computational units.

The chapter is organized as follows. In section 4.2, concepts and notations are intro-
duced concerning fixed and variable-basis approximation, feedforward neural networks
and minimization of functionals. Section 4.3 is devoted to Maurey-Jones-Barron’s the-
orem which is used as a main tool for derivation of estimates of rates of approximation.
In section 4.4, a concept of “variational” norm tailored to a basis is defined and used to
describe sets of multivariable functions that do not exhibit the curse of dimensionality.
In section 4.5, estimates of rates of approximation are applied to learning from data
modelled as approximate minimization of regularized empirical error functionals. In
section 4.6, properties of such sets are compared with properties of sets playing a simi-
lar role in linear approximation. In sections 4.7 and 4.8, upper and lower bounds, resp.,
on variational norm are derived. The concept of variation is illustrated in section 4.9
by examples of real-valued Boolean functions with small variational norm with respect
to perceptron networks.

4.2 Variable-basis Approximation and Optimization

By a normed linear space (X, ||.|]) we mean a real normed linear space. R denotes the
set of real numbers, R, the set of positive reals and A7, the set of positive integers.
Sequences (of real numbers, sets or elements of normed linear spaces) are denoted by
{zn} instead of {z, : n € A }.

A ball of radius 7 centered at B € X is denoted by B.(h, |||l = {f € X |f =] <
r}. We write shortly B.(|l.||) = B:(0,|.[) and B.(h) = B.(k |||}, B = By(0) when it
is clear which norm is used. A sphere is denoted S, (2, ||.|) = {f € X : ||k = f|| =7}
and analogous shortenings as for balls are used.

For a subset M of a normed linear space (X, ||.||), ¢! M denotes the closure of M in
the norm-induced topology, for f € X the distance of f from M is denoted by || f — M|
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A functional @ : (X, ||.]]} — (—o0, +00) is continuous at f € X if for all € > 0O there
exists 7 < Osuch that ||f—g|| <  implies |®(f)—P(g)] < . Modulus of continuity of ©
at f is the function w : R, — R, defined as w(a) = sup{|®(f) —P(9)| : ||f -9l < a}.

® is converon M C X if for all k,g € M and all A € [0,1], ${Ah + (1 = A)g) <
AD(h) + (1 — M)(g). P is strictly uniformly convex o M C (X, ||.||) if there exists a
function 6 : R, — R, such that 6(0) =0, for all ¢ > 0, () > 0 and for all h,g € M
and all A € [0,1], @A+ (1= N)g) < A®(h) + (1 — N)@{(g) — M1 — NIl — g||}. Any
such function § is called a modulus of convexity of ®.

Using standard notation (see, e.g., [14]), we denote by (34, ®) the problem of in-
fimizing a functional € over a subset M of X. M is called a set of admuissible solutions or
an admissible set. We denote by argmin (M, ®) = {g € M : ®(g} = infyeps $(g)} the
set of argminima of the problem (M, ®) and for n > 0, we denote by argmin, (M, ®) =
{g € M : &(g) < infgepr Blg) + 7} the set of its 7-near argminima.

A sequence {gn} of elements of M is called ®-minimizing over M if lim,— oo $(gn)
= infyep ®(g). The term “minimizing” is used here since it is widespread in the
literature, although in generai the sequence is only “infimizing”, as the minimum might
not be achieved. By the definition of infimum, for any problem (M, ®) with M non-
empty, there always exists a minimizing sequence.

Tasks representable as mappings can be performed by devices computing functions
depending on two vecter variables: an input vector (corresponding to a coded pattern
to be recognized or transformed) and a parameter vector (to be adjusted during learning
mode). Due to error-correcting afterprocessing (such as “best guess” [47]) it is sufficient
when such devices compute mappings that perform tasks only approximately.

Classical linear approximation theory has explored properties of parametrized sets
formed by linear combinations of the first n elements of a set of basis functions with
a fixed ordering {e.g., polynomials ordered by degree or sines ordered by frequencies).
Thus it can be called fired-basis approrimation.

Connectionistic systems exploit parametrized families with a flexible choice of basis
functions, which form variable-basis epprozimation schemes. Formally, such a scheme
is defined for any subset G of a real linear space X and any positive integer n as the
set of all linear comhinations of at most n elements of G, which is denoted span,G =
{3h wigi + wi € R, € G}. With proper choices of G it includes feedforward
networks with a gingle linear output unit and any number of hidden layers as well as
other nonlinear families with free inner parameters such as free-nodes splines, rational
functions with free poles, and trigonometric sums with free-frequencies.

Since in applications all parameters are bounded, we shall also consider variable-
basis approximation schemes with constraints on coefficients of linear combinations
of basis functions. If such a constraint is defined in terms of a norm on the space
R™ of coefficient vectors, then the set of functions computable by such a scheme is,
for a proper scalar ¢, contained in the set conv,G(c) of all convex combinations of at
most n elernents of the scaled set G(c) = {wyg : ¢ € G, |w| < ¢}. This can be easily
checked for a constraint defined in terms of {;-norm. As all norms on R”* are equivalent,
inclusion into conu,( holds for any norm on R™. We denote conv G = U,ep, conv, G
and span G = Upep, span,G.

An important class of variable-basis functions are functions computable by feedfor-
ward networks. They are composed from computational units, which can be formally
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described as functions ¢ : A x {2 — R, where A C R9 is the set of “inner” parameters
of the unit, while @ € R is the set of its inputs (we shall restrict our considerations
to inputs in either the Euclidean cube [0,1)¢ or the Boolean one {0, 1}¢).

We denote by Gy(Q, A) = {#(e,.) : @ — R :a € A} the set of functions on
computable by a computational unit ¢ with all possible choices of parameters @ € A.
For A = R4, we write only G4(Q), while for A = R¢ and 0 = [0, 1]%, we write only G.
The set of functions computable by a neural network with »n hidden units computing
¢ is span,Gy if all coefficients in linear combinations are allowed (i.e., output weights
are unconstrained) or it is a subset of conv,G4 if a constraint in the form of a norm
on output weights is imposed.

Standard types of computational units used in neurocomputing are perceptrons and
RBF units, but this formalism also includes other types of parametrized mappings like
trigonometric functions with frequencies playing the role of parameters. A perceptron
with an activation function v : R — R computes ¢((v, 8),z) = P(v-z+b) : A xQ —= R
and RBF wunit with radial function R, — R computes ¢{(v,b),x) = ¢{b(||z — v|) :
A x 1 — R. Standard types of activation functions are sigmoidal functions, i.e.,
nondecreasing functions ¢ : ® — R with limy__,,o{t) = 0 and limy_,o(t) = 1.
Heaviside activation function ¢ is defined as () =0 for £ < 0 and ?(t) =1 for ¢ > 0.
A standard radial function is the Gaussian function e+,

We denote by Py(4) the set of functions computable by perceptrons with activation
W, i.e., Pylt) = Gy for ¢((v,8),%) = ¥{v-2+8) - A x10,1]* = R. Similarly, by
Fa(wd, |||]) is denoted the set of functions computable by RBF-units with radial function
Y, e, Fu(h) = Gy for ¢((v,b),2) = P(b(||z — »][) : R x [0, 1] = R.

Since the set of functions computable by perceptrons with Heaviside activation Py(d)
is equal to the set of characteristic functions of closed half-spaces of R restricted to
[0,1]¢, we use a shorter notation Hy instead of Py(a).

Many classes of feedforward networks are "universal approximators”, i.e., for many
types of computational units ¢, the sets U,en, span,, Gy are dense in the space of
all continuous functions C([0,1]?) with the supremum norm or £,([0,1]%) with £,-
norms, p € [1,00) (see [31], [32], [43]). Although density guarantees arbitrarily close
approximation of all functions from C([0,1]%) or £,([0,1]%), for practical purposes, its
implications are limited to functions for which a sufficient accuracy can be achieved by
span, Gy with » small enough to allow implementation.

4.3 Maurey-Jones-Barron’s Theorem

In many practical applications of neural networks, tasks depending on hundreds of
variables have been performed quite well by networks with only a moderate number
of hidden units (see, e.g., [47], [48]). However, estimates on rates of approximation
by neural networks derived from constructive proofs of the universal approximation
property have not been able to explain such successes - the constructions used in such
arguments lead to networks with a number of hidden units growing exponentially with
the number of inputs. Such growth of complexity is called the “curse of dimensionality”
[5].

It has been shown that in linear approximation of all continuous or £,-functions on
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[0, 1}, the curse of dimensionality is unavoidabie and that one can only cope with it by
restricting approximation to certain subsets that are shrinking with increasing number
of variables [42]. Description of such sets has been derived from tight estimates of rates
of approximation. Insgpection of such estimates shows which constraints on functions
to be approximated have to be imposed to compensate for increase of the number of
variables.

For variable-basis approximation, such constraints can be derived from an upper
bound on rates of variable-basis obtained by Jones [22] (in fact, his estimate is for-
mulated for approximation by conv,G, but as conv,G C span,G, it can be applied
to variabie-basis approximation}. The same result has been earlier proven by Maurey
by a probabilistic argument (it has been quoted in [44], see also [4]). Barron [4] has
improved Jones’ [22] upper bound and applied it to neural networks. Here, we state
their result (we shall vefer to it as MJB theorem or MJB bound) in a slightly refor-
mulated way with a proof which is a simplification of Barron’s argument. In the next
section, we derive a corollary of MJB theorem in terms of a norm tailored to a basis and
use it to describe conditions on multivariable functions that guarantee variable-basis
approximation without the curse of dimensionality.

Theorem 1 Let & be @ bounded subset of o Hilbert space (X, ||.||) and s¢ = supgee 9l

- . L1 FII?
then for every f € ¢l conv G and for every positive integer n, || f—conv, G| < —G%

PROOF. Since the distance from conv, G is continuous on (X, |||} (see, e.g., [46]), it is
sufficient to verify the statement for f € conv G. Let f = Z;“:] ujh; be a representation of
f as a convex combination of elerents of G. Set ¢ = % — || f|[>. We show by induction that
there exist a sequence {g:} of elements of G such that the barycenters fn = y v | £ satisfy
2 - _ '2 < £
€n \f = fa | =5
First check that there exists gi € G such that f1 = ¢y satisfies e] = ||f — H]I? € ¢ As
rer 8illf = AP = 1P = 20 - 300 ek + 3070 a1 < sg = 1f11* = ¢, there must exist

at least one § € {1,...,m} for which || f — k|| < c and we set g, = h;.
Assuming that we already have ¢1,...,g,, we express eﬁ_H in terms of €2 as eiﬂ =

1f = Fatl? = 1250 = S + 5 = gns) P = s + S = fo) - (f = gat) +

wrElf = gnarll®.
Similarly as in the first step, we consider convex corabination of the last two terms from the

formula expressing €2, , in terms of e2: et € (Engﬁf(f —f)-{F—hi)+ (rlnzuf — hy ||2)

= G2 =) =Sy ashy)+ e (191 = 2 - (S esh) + Sy a5l ?) = ke
(X7 095 = 1) € g% = 11P) = gy
Thus there must exist some 7 € {1,...,m} such that W (f=Ta)-{f - gnt1) -i-(nT],};lIf -
gn+]” T])E Settll’lg‘ 9; = hj'r we get en—q—l = (n+]}2"121 (,,.:])2'

[t can be easily verified by induction that this recursive formula together with €? < ¢
gives €2 < £, ]

The same upper bound as in Theorem 1 has been derived by Maurey using a
probabilistic argument (see |44], |4]) in which a representation of a function f as an
element of the set conv G, f = )77, a;hs, defines a finite probability distribution P
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on the set G by setting P(g = h;) = a;. Then for f, = > 2, a random variable
corresponding to the barycenter of an n-tuple of elements of & chosen randomly with
respect to the probability P, the mean value of || f — f.||* is bounded from above by

w. Hence there must exist at least one n-tuple (g, ..., gn) of elements of G for

which [|f = S, &) < /450

Note that both these arguments prove that rates bounded from above by w
can be even achieved when merely barycenters of n-tuples of elements of G are used
as approximators. More precisely, they show that ||f — bar,, G| < \/ w, where
bar G ={fe X f=3" % (g1,...,9a) € GC"}.

Moreover, as a byproduct, the above constructive proof of Theorem 1 gives hounds
on rates of convergence of incremental learning algorithms (i.e., algorithms that in each
step add a new hidden unit) [30].

MJB theorem was extended to Ly-spaces, p € (1,00}, in [10] and [12] with a similar
recursive argument as above with peak functionals replacing inner products. The
following theorem is a slight reformulation of an estimate fromn [10].

Theorem 2 Let G be a bounded subset of L£,([0,1)%), p € (1,00), f € cleonv G and
r > 0 be such thal G C B.(f,||Il)- Then for every positive integer n, | f — spen,.G||, <

21/Pp

o, where ¢ = p/(p — 1), = min(p.q), § = max(p, q).

The probabilistic argument by Maurey was modified by various authors to obtain
extensions of MJB theorem to spaces of continuous functions with the supremum norm
3], {17], [20], [40], [38]. A more sophisticated probabilistic argument in [40] even allows
to derive a tight improvement of MJB theorem for G formed by functions computable
by sigmoidal perceptrons. This tightness result was extended to sets G with “proper”
behaviour of covering numbers in [36).

For orthonormal bases, a similar estimate as MJB bound was derived using a sim-
pler proof technique based on a rearrangement of a basis [41) and its tightness was
investigated in [38] and [34].

4.4 Variation with respect to a Set of Functions

Since conv, & C span, G, MJIB bound also applies to rates of approximation by span,G.
Moreover for any ¢ > 0, span,G contains cone,G(¢), where G(¢) = {wg: g € G, |w| <
¢}. Thus we obtain an estimate for any element of Uxr, cl conv G(c). This approach
can be mathematically formulated in terms of a norm tailored to a set G.

Let (X, ||.||) be a normed linear space and G be its subset, then G-variation (varia-
tion with respect to G} is defined as the Minkowski functional of the set of conv(GU-G),
ie.,

|fllc =inf{c>0: f/c€ cleonuv(GU-G)}.

(GG-variation is 2 norm on the subspace {f € X : || f|lc < oo} € X. Next proposition
states its basic properties [35].
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Proposition 3 Let (X, ||.|]) be ¢ normed linear spoce, G and F be its subsets, and
5¢ = SUPyeg |igll- Then

(i) for all f € X, | fIl € scllflle:
(1) if G is finite with card G = m and | € spanG, then ||f|c = min{z;; lw;| + f =

E?;; wigi, 9 € G, w; € R},
(i) |lc < clllle if end only if for il h € F, ||hic < c.

Variation with respect to a set of functions was introduced in [29] as an extension
of the concept of variation with respect to half-spaces (Hz-variation) defined in [3]. For
functions of one variable, H,-variation coincides, up to a constant, with the notion of
total variation studied in the integration theory, which inspired the term “variation.”

Moreover in Ly-spaces, Hy-variation is equal to Py(o)-variation for any sigmoidal
activation function o [33] and thus for application of MJB bound to perceptron net-
works, it is sufficient to study Hgs-variation.

Besides being a generalization of the concept of total variation, G-variation also
generalizes the notion of ¢;-norm. Let G be an orthonoimal basis of a separable Hilbert
space (X, [|.|]), then the li-norm with respect to G of f € X is defined as || f|lic =
Yoocc | - gl Tt was shown in [34] that for G an orthonormal basis of a separable
Hilbert space, {,-norm with respect to G is equal to G-variation.

The following corollary from |29] and [35] is a reformulation of MJB theorem in
terms of worst-case errors formalized by the concept of deviation 6(B,Y) = sup,p || f—
Y|

Corollary 1 Let G be a bounded subset of a Hilbert space (X, ||.]]), s¢ = sup,ec |9l
b>0,0<r <sghand n be a positive integer. Then

(i) for every f € X, ||f — span,G|| < / Cclfllc =71

(i) 8({F € By(llllc) - [Ifl} 2 v}, spanaG) < |/ Letl=—2
(iii) 8(Bs(|llle), spansG) < 2.

This corollary shows how to cope with the curse of dimensionality in variable-basis
approximation. If {G4 C L£3([0,1)%) : d € AN} is a sequence of sets of functions
of d variables, we can keep rate of approximation by spen,G¢ within r//n for all d
by restricting approxdimation to functions from balls B.(|.[|¢,) of a fixed radius r in
(' ¢-variation.

In L,-spaces, G-variation plays a similar role as it does in Hilbert spaces. The
following estimate is a corollary of Theorem 2. By ||.[|c, is denoted G-variation in £,-
space (its unit ball is cl,{conv(G U —()), where cl, denotes the closure in £,-space).

Corollary 2 Let G be a bounded subset of L,([0,1]%), p € (1,), ¢ = p/(p—1),
7 = min(p,q), 7= max(p,q), s¢ = supgec ||g||p and n be g positive integer. Then

(i) for every f € X, |If = spany Gll, < 2 valflon

(i) 6(Br(ll-llc), spanﬂG)<%£
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PrROOF. (i) Set A = G(||fllcp) ={wg:9 € G, |wl < |ifllcy} and r = 2s¢|/fllgp. By
Proposition 3 {i), for every h € A and every f € X, [l — filp £ |®llp + Ifllp £ scllfllcp +

sg | fllgp=r.
Hence A C B.{f, ||} and so by Theorem 2 for every f € X and every positive integer 7,

1
. - '§+1
there exists f, € conv, A C span, G such that [[f — f,|| € 27 selfley

Rtid

(i} follows directly from (i). g

4.5 Rates of Approximate Optimization over Vari-
able Basis Functions

Estimates of rates of approximation in terms of G-variation can be applied to learning
from data modelled as approximate minimization of regularized empirical error func-
tionals. Learning from empirical data, which are given by a finite set of input/output
paits {(xi, %) € R®x R, ¢ = 1,...,m} can be formalized as a minimization of the
empiricel error (empirical risk) functional defined as £(f) = & 377, | f(z:) — w]® A
minimization is usually performed over a parametrized set of functions implemented
in a suitable device such as a neural network. Typically, such an optimization problem
15 ill-posed and thus it requires regularization. Tychonov regularization replaces the
functional & with £, ¢ = £ + 7 ¥, where ¥ is a functional called stabilizer and + is a
reqularization perameter (see, e.g., [49], [7], [51]).

A common class of stabilizers is formed by functionals of the form ||.||%, where
Il-[|x is the norm on a reproducing kernel Hilbert space (RKHS). A RKHS Hy(Q)
is a Hilbert space of functions on a set §2 such that for every x € (2, the evaluation
functional F,, deficed for any f € Hx(Q) as F(f) = f(x), is bounded.

Recall that a mapping K : 2 x 2 — R is posttive semidefinife on ( if for all
positive integers 7, all (w),...,wy) € R™ and all (z),...,2,) € @™, we have
Zf’;:l wiw; K (2, ;) 2 0. To every RKHS one can associate a unique symmetric,
positive semidefinite mapping K : 2 x @ — R, called kernel, such that for every
f € HK: f(ﬁ) = (f'.l I((xr'))K (See! €8 {1], [G]J

A kernel K : O xQ — R is called Mercer kernelif {2 is compact and K is symmetric,
continuous and positive semidefinite. For {2 compact and K a Mercer kernel, the space
Hi(§Y) is contained in the space C(2) of continuous functions on §2 and for every
e He(®@), Wl £ VCxllflle, where |.||c denotes the supremum norm on C(£2)
and cx = $Up, yeq |[K (2. y)| [9, p.33]. A kernel K is called convolution or translation
invariant if there exists a function k : 2 — R such that K{xz,y) = k(z — y).

With ||.||% as a stabilizer the regularized functional obtained from & has the form

1 L
Enn(f) = =D 1flz) = ul* + 41l %.

i=1

£, x is continuous and strictly uniformly convex [37] and thus it has unique argmin-
imum over any convex closed set [50]. Next theorem, which is a version of the Rep-
resenter Theorem from [9, p.42|, describes the unique argminimum of the problem

(Hr (), & x).
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Theorem 3 Let  C RE be compact, I : Q@ x Q@ — R be a Mercer kernel, Hi(Q)
be the RKHS defined by K, = = {(z;,. .. ,Tm) € O™, ¥ = (§m,---,¥m) € R™, E(]) =
L3 (=) — wl*, end v > 0. Then there exists a unique argminimum g° of the
problem (Hp(Q), Ey1c) such that ¢°(x) = 3.7, a.K(x,x;), where a = (ay,...,am) 88
the unique solution of the well-posed linear system (K(z)+ym e =1y, I is themxm
identity matriz, and K(z) is the m x m metriz defined as K(x),; = K(z,,25)-

Notice that the unique argminimum described in this theorem is of the form of a
variable-basis function from span,, Gk, where Gg = {K(z,-) : z € Q}. In particular,
for the convelution kernel defined by the Gaussian function, the argminimum can be
computed by a Gaussian radial-basis function network with m hidden units.

It has been argued in [18] that “the regularization principles lead to approximation
schemes that are equivalent to networks with one layer of hidden units”. Indeed, vari-
ous versions of the Representer Theorem (Thecorem 3 and an analogous theorem from
[18]) show that for suitable stabilizers the unique function minimizing the regularized
enpirical error is of the form of a one-hidden layer network with a linear output and
hidden units computing functions corresponding to the type of the stabilizer.

However, for large m such network might not be implementable. Next theorem
allows us to estimate quality of an approximate sclution of the regularized learning
problem achievable using networks with a fixed number n of hidden units. [t was
derived in [37] from a more general theorein on approximate minimization of continuous
functionals over sets of the form M N span, & with M convex. Estimates derived in
[37] take advantage of MJB theorem combined with Lipschitz continnity of certain
Minkowski functionals. Application of these estimates to kernel stabilizers utilizes the
fact that for every norm ||.|| on a Hilbert space, the functional ||.||* is strictly uniformly
convex with the modulus of convexity ¢* and that the functional &, j is continuous
with quadratic modulus of continuity [37).

Theorem 4 Let @ ¢ R be compact, K : O x Q@ — R be o Mercer kernel, sy =
SUP,en VK (@, ), (HelQ), ||llx) be the RKHS defined by K, £(f) = 377, [f{w) —
yl®, where (zy,...,20) € Q7 (1h,...,¥m) € R™, v > 0, ¢°(x) = 3T 0K (z, )
be the unique argminimum of (M (Q), &, k) given by the Representer Theorem, {c,}
be a sequence of positive reals such that lim, .2, = 0 and {g,} be a sequence of
en-argminimae of problems (span, Gi, &, k). Then for every positive integer n the fol-
lowing hold:

('3) infge_‘.mn,‘ Gy E—r,}-{(g) — &;,K(go) <o (\/(SKHQUHGﬁ}?_”gu”;‘E()

(i) if lg°llc < oo, ther {gn} s an &, x -minimizing sequence over Hi(Q) and &y r{gn)—
e e —Tgel?
€, x(g°) <o (\/(SKIW log ) nganK) te

S o (s F | 2o lgoll2
(iii) g — a°I% < o ( ol )l ||K> fon

T Naof 2
(0} llgn — o°12 < /o (a, (\/(sxlwnc,;) s ﬂ.«:) +s,g) ,.

where cx = Sup, yen |[K(2,9)|, alf) = aof? + at, ay = 2(m||g°||;( Cr + b +
YNgNx), @ = mex + 7 and b =max{|w):4=1,...,m}.
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Recall that a method of solving an optimization problem (M, ®) is called direct
if it comstructs a ®-minimizing sequence {g;} C M such that {g¢;} converges to some
g in M and lim,... $(g;) = ®(g) [19]. So for any Mercer kernel K, any algorithm
constructing a sequence {g,} of e,-argminima of &, x over span, Gk is a direct method
of approximate solution of the problem of minimization of £, s over Hx (£2). Moreover,
Theorem 4 estimates speed of convergence of this sequence to the global argminimum
¢° and of &, x(gn) to &, k(¢”) in terms of G-variation and ||| x-norm of the global
argminimuin g°.

4.6 Comparison with Linear Approximation

Variation with respect to a set of functions plays an analogous role in variable-basis
approxirnation as Sobolev norms do in linear approximation, where one can achieve
rates of the order of @(n™1) by restricting approximation of d-variables functions only
to functions from balls in Sobolev norms of degree s = d.

More precisely, for  an open subset of RY, p € [1,00), the Sobolev space W ,({2)
is the subspace of £,(f}) formed by all functions f : {} — R such that for every multi-
index & = (ay,...,aq) satisfying 0 < |a| < 5, D*f € £,(£2), where D* = D{* ... D}
is a partial derivative in weak (distributional) sense (see [2, p.44]). The norm of f €
W, p(§2) is defined as || )1, = (Zocpai<s Def[zyie,

The worst-case error in approximation of the unit ball in W, ,(22) with [0,1}¢ ¢ ©
by an n-dimensional linear subspace X, of £,(2) is of the order of O(n=%/%) {42].
More precisely, the Kolmogorov's n-width dn(Bl(||.||§‘p) = infx, J(Bl(||,||‘j'p),Xn) ~
O(n~%/?), where the infimum is taken over all n-dimensional subspaces of £,(Q). So
if we are free to choose for each n an “optimal” n-dimensional subspace, then we can
approximate all functions from Sobolev balls of the order s > d within the accuracy
O(n).

With d increasing, balls in Sobolev norms of the order d are “shrinking” as some
functions in the unit ball in the Sobolev norm ||.||§‘;0 with “large” d 4 1-th derivatives
cannot be extended to functions of € + 1 variables from the unit ball in the Sobolev
norm ||.||§j;}}p. In contrast to balls in Sobolev norms of degree d, balls in G4 variation
need not to be shrinking with ¢ increasing.

Proposition 4 Let d be a positive integer, p € (1,00), G4 and Gqv) be bounded subsets
of £,([0,1)%) and L£,([0,1)™!), resp., such that for every g € Gq, § : {0,1**! —
R defined as Gla, ... 2aa1) = g(&1,...,24) belongs to Ggpi. Then there exists an
embedding vy @ Bi(|llc,) — Billl-llere,, )-

PROOF.  Define vy on Bi(||.||lc,) = d conv(GqU—Gq) as va(y) = G, whereg{zy,.. ., za41) =
g(zy....,zq4). As vy is an embedding on Gy, it is an embedding on d conv({Gy U —Gy), too.
0

It is easy to check that for any activation or radial function 0, balls in variation
with respect to perceptrons, Py(¢7)-variation, and RBF, Fy()-variation, satisly the
assumptions of Proposition 4. S0 in neural network approximation, there exist families
of sets of functions of d-variables approximable with rates n~'/2, which are not shrinking
with d increasing.
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Sets of functions computable by networks with n sigmoidal perceptrons are much
larger than a single n-dimensional subspace (they are formed by the union of all n-
dimensional subspaces spanned by n-tuples of elements of ). However upper hounds
on linear approximation cannot be automatically extended to such unions of n-dimen-
sional subspaces as they may not contain “opiimal”’ n-dimensional subspaces for linear
approximation of balls in Sobolev norms.

Nevertheless, for a suthciently large radius (depending on both ¢ and s), a ball in
variation with respect to half-spaces ( Hy-variation) contains the unit ball in the Sobolev
norm of the order s. For a bounded open set §2 such that [0,1]* ¢ £ and 5 > d/2 + 1,
B.(|I-I2) is contained in Bar, (||-[lru0y), where by = (fra(1 + ||3,r||§(3—”)‘1dy)”2 is
finite for 2(s — 1) > 4, [4, pp. 935, 941]. So for s > d/2 + 1, the unit balls in Sobolev
norms ||.||¢, are contained in balls in Hg-variation of the radius 2b,.

By an improvement of MJB theorem for G = Hy from {40}, worst-case errors in ap-
proximation of such halls by neural networks with » sigmoidal perceptrons are bounded
from above by b,n~(/2+1/4)  On the other hand, the worst-case errors in approxima-
tion by optimal n-dimensional linear subspaces of such Sobolev balls (Koimogorov's
n-widths) are of the order of O(n™*/?), which for s > d/2+ 1 is bounded from above hy
O(r~/2+1/4)) These two results give upper bounds of the same order for linear and
neural network approximation. However, only the bound for the linear case is tight,
while the one for neural networks was obtained using a rather rough estimate based on
embeddings of Sobolev balls into balls in Hg-variation.

Better estimates for neural networks than those for the linear case were obtained
in [4) and [35] for balls in variation with respect to sigmoidal or periodic activations.
For such balis, Kolmogorov’s n-width is larger than upper bounds on worst-case exrors
following from MJB theorem.

In addition to comparing estimates on rates of linear and variable-basis approxi-
mation, we can also compare properties of projection operators in these two types of
approximation. In the linear case, best approximation exists and is unique and thus
the metric projection operator is always defined, single-valued, continuous, and ho-
mogeneous. However, the geometrical properties of variable basis approximating sets
(nonconvexity) imply that the metric projection operators are set-valued mappings
with no continuous “selection”. Thus it is not possible to choose in a continuous way
a best approximation or even a nearly best approximation in span,G for various sets
¢ corresponding to neural networks [24}, [25], [27). So lower bounds exhibiting the
curse of dimensionality derived using topological methods [11] (which can be applied
to linear approximation due to continuity of projections) cannot be used in the case of
nenral networks, which opens a possibility of better rates of approximation than those
achievable using linear methods.

4.7 Upper Bounds on Variation

Besides being a generalization of the concept of total variation, G-variation also extends
the notion of {;-norm: for G a countable orthonormal basis of X, (|fllc = |[fllc: =
dec |f - g] [35]. Thus for G countable orthonormal, the unit ball in G-variation is
equal to the unit hall in {;-norm. Even for some nonorthonormal G, properties of balls
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in G-variation can be investigated using images of balls in /, or £;-norms under certain
linear operators.

The following proposition shows that when G is finite, balls in G-variation are
images of balls in {,(R™), where m = card G. By ||.||; is denoted {;-norm.

Proposition 5 Let G = {¢1,...,0m} be o subset of a normed linear space (X, |.||)
end T :R™ — X be a linear operator defined for every w = (wy,...,wy) € R™ as
T(w) = 37 wige. Then for every > 0, Bo(|ll6) = T(B, (I 1)).

PROOF. By Proposition 3 (ii}), ||fll¢ = min{||w], : w € R™,f = T{w)}. Thus
T(B(||-]1)) € B{]l-lic). To show the opposite inclusion, consider f € B(||.|lc). By the def-
inition of G-variation, f = lim;_q f;, where f, = 377 wyig and |lw;ll) = D200, |wy] < r.
Hence there exist w = {wy,...,wy) € R™ such that for all ¢ = 1,...,m, the sequences
{w;i} converge to w; subsequentially. So the sequence {f;} converges subsequentially to
J =50 wigi- Since every norm-induced topology is Hausdorff, f = f' and so f = T{w).

O

Even when G is infinite, G-variation can be estimated in terms of £,-norm. For ¢ €
L£3(A x Q), where A C RY, Q€ R® and w € £3(A) define Ty(w) = [, wla)d{a, z)da.
Then T, : L£2(A) — £.() is 2 bounded {centinuous) linear operator [15, p.138].
When A, £ are compact, T, is a compact operator and when ¢ € C(A x ), then
Ty : C(A) = C(R) [15, p.188].

Intuitively, any function in T,{L2(A}) can be represented as a “newral network with
a continuum of hidden units computing ¢”, [, w(a)¢(a, z)da. Next theorem shows
that G4-variation of such functions can be estimated from above by the £,-norm of
the “output weight function” w (its proof is a modification of an argument used in |33]
to derive a similar result for C(£2)).

Theorem 5 Let d,m be positive integers, A C R™ and ! C RY be compact, ¢ €
Lo(A x Q) and [ € Ly(0) be such that f = Ty(w) for some w € Lo(A). Then

1flle, < llwleay = [, lwla)lda.

Integral representations of the form of a “neural network with a continunm of
hidden units” were originally studied as a tool for proving the universal approximation
property for various types of neural networks (8], [21]. In [4], Fourier representation was
combined with MJB bound to obtain an upper bound on approximation by sigmoidal
perceptrons via estimates for the cosine activation. For functions with compactly
supported Fourier transforins and continuous partial derivatives of the order s > d/2,
an integral representation of the form of a neural network with Gaussian RBE units
was derived in [16)].

Next theorem from (26] (see also [33]) gives an integral representation of the form
of a Heaviside perceptron network. For ¢ € S%! and b € R, we denote H,) =
{z € R*: e -z +b =0} The half-spaces bounded by this hyperplane are denoted
HY,={zeR¥: e -z+b>0}and H, = {z € R*:e-z+b < 0}. By A is denoted

the Laplacian operator A(h) = Zle %’_}_
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Theorem 6 Let d be a positive integer and let f: RY — R be compactly supported
and d + 2-times conlinuously differentiable. Then

flz) = /I;d_l Rw_f(e, b)d(e - z + b)dedb,

where for d odd, wy(e,b) = a4 fH,_ Ak fyydy, ke = 2 , and ag 15 a constant in-
dependent of f, while for d even, wyle,b) = a4 jH_o Nk f(yin(e - y + b)dy, where

a(¢) = —tlog|t| + ¢ fort £ 0 and 7(0) = 0, ky = &2, and a4 is & constent inde-
pendent of f.

4.8 Lower Bounds on Variation

The following theorem from |38] gives a geometric characterization of G-variation in a
Hilbert space. By G is denoted the orthogonal complement of G, i.e., Gt = {f € X :

(Vg € G){(f-g=0)}.

Theorem 7 Let (X, |.||) be o Hélbert space, G be its boumﬁed non-empty subset and

f € X be such that || fllg < 00. Then ||fllc = suPpex_ce P Ig ok

This theorem implies a lower bound on G-variation of the form || fllc > S50

S |
sup,e g
functions that have small inner products with all elements of G (are “almost orthogo-
nal” to ) have large G-variation.

This bound was used in [38) to show that certain Boolean functions have variations
with respect to Heaviside perceptrons at least of the order of (3(2%/6). The proof was
based on properties of rather special Boolean functions called bent functions. They
can be extended to smooth functions defined on [0, 1] with Hy-variation of the same
order.

Another methed of demonstrating existence of functions with large variations is
based on comparison of cardinality of & with certain covering numbers. Define a binary
relation p on the unit ball 5y(||.||) of a Hiibert space (X, ||.||) by p(f,g) = arccos|f - gl.
It is easy to see that p is a psendometrics measuring distance as the minimum of the two
angles between f and ¢ and between f and —g (it is a pseudometrics as the distance
of antipodal vectors is zero). For a subset G of 5(|.||) define extent of G as

ag =inf{a € [0,7/2]): (¥f € Si([ 1N} 3g € G)(p(f,9) < &)}

Note that o is the infimum of all « for which G is an a-net in S(||.|)), i.e., balls
of radius ¢ centered at elements of G cover 5,(]|.]|). For G compact, we can replace
infimum in the definition of a¢ by minimum. This is the case of H,, which is compact
in £,([0,1]¢) for any p € [L,00) and any positive integer & {20].

When ag is small, & is “almost dense” in S)(||.]]), while when og is large, G is
“sparse” in §(][.])- ]f ag is close to ¥, then there exists an element in Sy (|].||) which
has a large “angular distance” from a]] elements of G (3s almost orthegonal to G) and
hence it has a large G-variation.
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Metric entropy [28) measures “size” of sets in Banach spaces by the number of balls
of a given radius needed to cover them. The size of the smallest a-net in S;(||.||) with
the angular pseudometrics p is the covering number cov,(S(||.|), 2). When for some
« close to /2, the cardinality of & is smaller than a-covering number of S((||.|), then
there exists a function in Si{]).||) with “large” G-variation.

Proposition 6 Let G be a subset of the unit sphere Si(||.||) in a Hilbert space (X, ||.||)
and o € [0, w/2] be such that card G < cov,(S1(||.|]), p). Then there exists f € Sy(||.|[).
Jor which || fllg = 1/ cosa.

FroOF. If card G < cosa, then ag < o. So there exists f € Si{|l.||) such that for all
g€ G, p{f,g) > a and hence |f - g| < cosa. So by Theorem 7, || f|lc > 1/ cosa. O

Proposition 6 can be applied to the space of real-valued Boolean functions B({0, 1}¢),
which is studied in the next section. B({0,1}¢) is isomorphic to R** and for fixed ¢,
a-covering numbers of S™! with the angular psendometrics p grow asymptotically
exponentially with the dimension m [23]. Thus Proposition 6 can be applied to show
that in any subset G of B({0,1}%) of cardinality depending on 2% only polynomjally
there exists a function with “large” (-variation.

4.9 Rates of Approximation of Real-valued Boolean
Functions

One of the simplest cases where application of MJB theorem gives description of in-
teresting sets of functions that can be approximated by neural networks without the
curse of dimensionality is the space of real-valued Boolean function. This space, de-
noted by B({0,1}¢) and endowed with the inner product defined for f, g € B({0,1}9),
as f-g = Z::ce{()ql}‘?‘ Fflx)g(z), is a finite-dimensional Hilbert space isomorphic to the

24_dimensional Fuclidean space R with the /;-norm.

Let H, denotes the set of functions on {0,1}% computable by signum perceptrons,
e, Hy={f:{0,1}¥ = R : f(x) =sgn(v-x+b),v e R¥ b e R} From technical
reasons we consider perceptrons with the signum (bipolar) activation function, defined
as sgn(t) = —1 for ¢ < 0 and sgn(t) = 1 for ¢ > 0, instead of the more common
Heaviside function that assigns zero to negative numbers,

For an orthonormal basis (¢, G-variation can he more easily estimated because it
is equivalent to {y-norm with respect to G [35]. Expressing elemenis of such a basis
as a linear combination of signum perceptrons, we can obtain description of subsets
of B({0, 1}¢) which can be approximated by perceptron networks without the curse of
cimensionality.

We use two orthonormal bases. The first one is the Fuclidean orthonormal basis
defined as E; = {e, : v € {0,1}"}, where €,(z) =1 and for every r € {0,1}* with
z # u, e,(z) =0. The second one is the Fourier orthonormal basis (see, e.g., [52])
defined as Fy = {#(—1)““ cu € {0,1}%}. Every J € B({0,1}%) can be represented

as f(x) = ﬁzﬂe{o,l}d Flu)(=1)*=, where f(u) = ﬁer{o,l}d f(x)(—=1)*=. For a
subset 1 C {0,1}¢, I-parity is defined by pr(z) = 1if 3 ,.; v, is odd, and pr(u) = 0
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otherwise. If we interpret the output 1 as —1 and 0 as 1, then the elements of the
Fourier basis Fy correspond to the generalized parity functions. As Fy and Ej; are
orthonormal, for all f € B({0,1}%), Ifll:,e, = /||, and |7l = fll,r, = 1 ]l7 [34),
[38].
. - —1

It is easy to see that span,Fy C spangr1Hq (as f“(i) = 1" = H'(T“ +
Zj=l(—1)jsgn(u -z —j+3%) ) and that span, 1 Eq C span,Hg (as e,(z) = w
for appropriate v and b). Thus by MJB theorem, || f — spanans Hall < y/ [”'52;'””2 and

— FGEEHE e L
If — spannp i Hal| < \/ —25—— So “fast” rates of approximation are guaranteed

for functions with either “sm;l]” variation with respect to signum perceptrons, “small”
spectral norm, or “small” norm with respect to the Euclidean basis.

More interesting classes of functions that can be approximated quite well by net-
works with a moderate number of Boolean signum perceptrons, are functions with a
small number of nonzero Fourier coefficients. The following estimate can be obtained
frem the embedding of span, Fy into spen,4.; Hy combined with the Cauchy-Schwartz

inequality {38].

Proposition 7 Let d, n, and m be positive integers, m < 24, ¢ > 0 and f € B({0,1}%)
be @ function with at most m Fourier coefficients nonzero and with || f|| < ¢. Then
I/ — spangn Hall < 54/%

Another example of functions that can be efficiently approximated by perceptron
networks are functions representable by “small” decision trees [39]. A decision treeis a
binary tree with labeled nodes and edges. The size of a decision tree is the number of
its leaves. A function f : {0,1}¢ — R is representable by a decision tree if there exists
a tree with juternal nodes labeled by variables x;,..., x4, all pairs of edges outgoing
from a node Jabeled by Os and 1s, and all leaves labeled by real numbers, such that
S can be computed by this tree as follows. The computation starts at the root and
after reaching an internal node labeled by z;, it continues along the edge whose label
coincides with the actual value of the variable x; and finally when a leaf is reached, the
value f(z,..., 4q) is equal to the label of this leaf. Next proposition follows from an
estimate derived in [38].

Proposition 8 Let d, s be positive infegers, b > 0, f € B({0,1}%) be representable by a

Lo . . . , d n]a'-'{;,:;{lj._;'}sf [.H:r”
decision tree of size s such that for ell x € {0,1}¢, f(z) # 0 aend e 0.0y ] 1f]] <

b. Then ||f — spangns Hall < %
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Chapter 5

Functional Learning through
Kernels

Stéphane Canu', Xavier Mary and Alain Rakotomamonjy

Abstract. This chapter reviews the functional aspects of statistical learning
theory. The main point under consideration is the nature of the hypothesis
set when no prior information is available but data. Within this framework
we first discuss about the hypothesis set: it is a vectorial space, it is a set
of pointwise defined functions, and the evaluation functional on this set is a
continuous mapping. Based on these principles an criginal theory is developed
generalizing the notion of reproduction kernel Hilbert space to non hilbertian
sets. Then it is shown that the hypothesis set of any learning machine has to
be & generalized reproducing set. Therefore, thanks to & general “representer
theoremn™, the soluticn of the learning problem is still a linear combinsation of a
kernel. Furthermore, a way to design these kernels is given. To illustrate this
frarnework some examples of such reproducing sets and kernels are given.

"Part of this work has been realized while the authors were visiting B. Schélkopf in Tuebingen.
T'he section dedicated to the representer theorem benefits from (. Bousquet ideas. This work also
benefits from comments and discussion with NATO-ASI on Learning Theory and Practice students
in Leuven.
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5.1 Some Questions Regarding Machine Learning

Kernels and in particular Mercer or reproducing kernels play a crucial role in statistical
learning theory and functional estimation. But very little is known about the associ-
ated hypothesis set, the underlying functional space where learning machines Jook for
the solution. How to choose it? How to build it?7 What is its relationship with regular-
ization? The machine learning community has been interested in tackling the problem
the other way round. For a given learning task, therefore for a given hypothesis set, is
there a learning machine capable of learning it? The answer to such a question allows
to distinguish between learnable and non-learnable problem. The remaining question
is: is there a learning machine capable of learning any learnable set.

We know since [13] that learning is closely related to the approximation theory, to the
generalized spline theory, to regularization and, beyond, to the notion of reproducing
kernel Hilbert space (r.k.h.s}. This framework is based on the minimization of the
empirical cost plus a stabilizer (i.e. a norm is some Hilbert space). Then, under
these conditions, the solution to the learning task is a linear combination of some
positive kernel whose shape depends on the nature of the stabilizer. This solution is
characterized by strong and nice properties such as universal consistency.

But within this framework there remains a gap between theory and practical solutions
implemented by practitioners. For instance, in r.k.A.s, kernels are positive. Some
practitioners use hyperbolic tangent kernel tank({w™x + wy) while it is not a positive
kernel: but it works. Another example is given by practitioners using non-hilbertian
framework. The sparsity upholder uses absolute values such as [ |f|du or ¥ ; lejl: these
are L' norms. They are not hilbertian. Others escape the hilbertian approximation
orthodoxy by introducing prior knowledge (i.e. a stabilizer) through information type
criteria that are not norms.

This chapter aims at revealing some underlying hypothesis of the learning task extend-
ing the reproducing kernel Hilbert space framework. To do so we begin with reviewing
some learning principle. We will stress that the hilbertian nature of the hypothesis
set. is not necessary while the reproducing property is. This leads us to define a non
hilbertian framework for reproducing kernel allowing non positive kernel, non-hilbertian
norms and other kinds of stabilizers.

The chapter is organized as follows. The first point is to establish the three basic
principles of learning. Based on these principles and before entering the non-hilbertian
framework, it appears necessary to recall some basic elements of the theory of repro-
ducing kernel Hilbert space and how to build them from non reproducing Hilbert space.
Then the construction of non-hilbertian reproducing space is presented by replacing
the dot (or jnner) product by a more general duality map. This implies distinguishing
bhetween two different sets put in duality, one for hypothesis and the other one for
measuring. In the hilbertian framework these two sets are merged in a single Hilbert
space.

But before going into technical details we think it advisable to review the use of r.k.h.s
in the learning machine community.
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5.2 r.k.h.s Perspective

5.2.1 Positive kernels

The interest of r.k.h.s arises from its associated kernel. As it were, a r.k.h.s is a
set of functions entirely defined by a kernel function. A Kernel may be characterized
as a function from X x X to R (usually X C R?). Mercer [11] first establishes
some remarkable properties of a particular class of kernels: positive kernels defining
an integral operator. These kernels have to belong to some functional space (typically
L*(X x X), the set of square integrable functions on X' x X} so that the associated
integral operator is compact. The positivity of kermel K is defined as follows:

K(z,y) positive & Vfe L® (K, f)r2, i 20

where {.,.};2 denotes the dot product in L%. Then, because it is compact, the kernel
operator admits a countable spectrum and thus the kernel can be decomposed. Based
on that, the work by Aronszajn [2] can be presented as follows. Instead of defining the
kernel operator from L? to L? Aronszajn focuses on the r.k.h.s H embedded with its
dot product {., .}y. In this framework the kernel has to he a pointwise defined function.
The positivity of kernel X is then defined as follows:

K{z,y) positive & VYge H, ({(K,g)w,00n >0 (5.1)

Aronszaju first establishes a bijection between kernel and r.k.h.5s. Then L. Schwartz
[16] shows that this was a particular case of a more general situation. The kernel
doesn’t have to be a genuine function. He generalizes the notion of positive kernels to
weakly continuous linear application from the dual set £* of a vector space £ to itself.
To share interesting properties the kernel has to be positive in the following sense:

K positive & Yhe £° (K(h),hgp >0

where (.,.)g g+ denotes the duality product between £ and its dual set £*. The pos-
itivity is no longer defined in terms of scalar product. But there is still a bijection
between positive Schwartz kernels and Hilbert spaces.

Of course this is only a short part of the story. For a detailed review on r.k.h.s and
a complete literature survey see [3, 14]. Moreover some authors consider non-positive
kernels. A generalization to Banach sets has been introduced [d] within the framework
of the approximation theory. Non-positive kernels have been also introduced in kre”in
spaces as the difference between two positive ones ([1] and [16] section 12).

5.2.2 7r.k.h.s and learning in the literature

The first contribution of r.k.A.s to the statistical learning theory is the regression spline
algorithm. For an overview of this method see Wahba’s book {20]. In this book two
important hypothesis regarding the application of the r.k.A.s theory to statistics are
stressed. These are the nature of pointwise defined functions and the continuity of
the evaluation functional. An important and general result in this framework is the
so-called representer theorem [9]. This theorem states that the solution of some class
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of approximation problems is a linear combination of a kernel evaluated at the training
points. But only applications in one or two dimensions are given. This is due to the fact
that, in that work, the way to build r.£.h.5 was based on some derivative properties.
For practical reason only low dimension regressors were considered by this means.
Poggio and Girosi extended the framework to large input dimension by introducing
radial functions through regularization operator [13]. They show how to build such a
kernel as the green functions of a differential operator defined by its Fourier transforru.
Support vector machines (SVM) perform another important link between kernel, spar-
sity and bounds on the generalization error [19]. This algorithm is based on Mercer's
theorem and on the relationship between kernel and dot product. It is based on the
ability for positive kernel to be separated and decomposed according to some generating
functions. But to use Mercer’s theorem the kernel has to define a compact operator.
This is the case for instance when it belongs to L? functions defined on a compact
domain.

Links between green functions, SVM and reproducing kernei Hilbert space were in-
troduced in [8) and [17]. The link between r.k.k.s and bounds on a compact learning
domain has been presented in a mathematical way by Cucker and Smale [5].

Another important application of r .k .5 to learning machines comes from the bayesian
learning comrmunity. This is due to the fact that, in a probabilistic framework, a
positive kernel is seen as a covariance function associated to a gaussian process,

5.3 Three Principles on the Nature of the Hypoth-
esis Set

5.3.1 The learning problem

A supervised learning problem is defined by a learning domain X C IR? where d denotes
the number of explicative variables, the learning codomain Y C IR and a n dimensional
sample {(xi,1),7 = 1,n}: the training set.

Main stream formulation of the learning problem considers the loading of a learning
machine based on empirical data as the minimization of a given criterion with respect
to some hypothesis lying in a hypothesis set H. In this framework hypotheses are
functions f from A to Y and the hypothesis space H is a functional space.

Hypothesis H, : ‘H is a functional vector space

Technically a couvergence criterion is needed in H, i.e. H has to be embedded with
a topology. In the remaining, we will always assumed H to be a convex topological
vector space.

Learning is also the minimization of some criterion. Very often the criterion to be
minimized contains two terms. The fArst one, O, represents the fidelity of the hypothesis
with respect to data while {2, the second one, represents the compression required to
make a difference between memorizing and learning. Thus the learning machine solves
the following minimization problem:

min C(f(21), -, £ ), 1) + OAS) (5.2)
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The fact is, while writing this cost function, we implicitly assume that the value of
function f at any point #; is known. We will now discuss the important consequences
this assumption has on the nature of the hypothesis space 7.

5.3.2 The evaluation functional

By writing f(x;) we are assuming that function f can be evaluated at this point.
Furthermore if we want to be able to use our learning machine to make a prediction for
a given input z, f(z) has to exist for all z € A: we want pointwise defined functions.
This property is far from being shared by all functions. For instance function sin(1/¢)
is not defined in 0. Hilbert space L? of square integrable functions is a quotient space
of functions defined only almost everywhere (i.e. not on the singletons {z},z € &).
L* functions are not pointwise defined because the L? elements are equivalence classes.
To formalize our point of view we need to define R" as the set of all pointwise
defined functions from X to R. For instance when A = IR all finite polynomials
(including constant function) belong to IRY. We can lay down our second principle:

Hypothesis Hy : H is a set of pointwise defined function (s.e. a subset of RY)

Of course this is not enough to define a hypothesis set properly and at least another
fundamental property is required.

5.3.3 Continuity of the evaluation functional

The pointwise evaluation of the hypothesis function is not enough. We want also the
pointwise convergence of the hypothesis. If two functions are closed in some sense we
don’t want them to disagree on any point. Assume ¢ is our unknown target function
to be learned. For a given sample of size n a learning algorithm provides a hypothesis
fa- Assume this hypothesis converges in some sense to the target hypothesis. Actually
the reason for hypothesis f, is that it will be used to predict the value of ¢ at a given
z. For any 2 we want [.(z) to converge to ¢(z) as follows:

fn A== Yr e X, folz) SN £(x)

We are not interested in global convergence properties but in local convergence prop-
erties. Note that it may be rather dangerous to define a learning machine without
this property. Usually the topology on H is defined by a norm. Then the pointwise
convergence can be restated as follows:

Vo € X, M, € R* such that |f(x) — t(z)| € M. ||f — t||x (5.3)

At any point 2, the error can be controlled.
It is interesting to restate this hypothesis with the evaluation functional

Definition 1 the ewvaluation functional

b, H — R
j o— 6::f:f($)
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Applied to the evaluation functional our prerequisite of pointwise convergence is equiv-
alent to its continuity.

Hypothesis Ha : the evaluation functional is continuous on H

Since the evaluation functional is Jinear and continuous, it helongs to the topological
dual of H. We will see that this is the key point to get the reproducing property.

Note that the continuity of the evaluation functional does not necessarily imply uniform
convergence. But in many practical cases it does. To do so one additional hypothesis
is needed, the constants M, have to be bounded: sup,.» M, < oc. For instance this
is the case when the learning domain A is bounded. Differences between uniform
convergence and evaluation functional continuity is a deep and important topic for
learning machine but ont of the scope of this chapter.

3.3.4 Important consequence

To build 2 learning machine we do need to choose our hypothesis set as a reproducing
space to get the pointwise evaluation property and the continuity of this evaluation
functional. But the hilbertian structure is not necessary. Embedding a set of functions
with the property of continuity of the evaluation functional has many interesting con-
sequences. The most useful one in the field of learning machine is the existence of a
kernel K| a two-variable function with generation property?:

¢
YfieH, 3 e N, (0y);=1,¢ such that f(z} = Z o K (2, ;)

=1

Note that for practical reasons f may have a different representation.

If the evaluation set is also a Hilbert space (a vector space embedded with a dot
product) it is a reproducing kernel Hilbert space (r.A.h.s). Although not necessary,
r.k.h.s are widely used for learning because they have a lot of nice practical proper-
ties. Before moving on more general reproducing sets, let’s review the most important
properties of r.k.k.s for learning,.

5.3.5 IR" the set of the pointwise defined functions on X

In the following, the function space of the pointwise defined functions RY = {f: X —
IR} will be seen as a topological vector space embedded with the topology of simple
convergence.

RY will be put in duality with R the set of all functions on X equal to zero every-
where except on & finite subset {z;,4 € /} of X. Thus all functions belonging to R
can be written in the following way:

g€ RY = 3{a;},i= 1,7 such that g(z) = 5 _ o, T, ()

2this property means that the set of all finite linear combinations of the kernel is dense in H.
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were the indicator function I, (2) is null everywhere except on x; where it is equal to
one.

VeeX T, (z)=0ifzx#zand L, (z)=1fz=uy,

Note that the indicator function is closely related to the evaluation functional since
they are in bijection through:

VieRY¥ Vz e X, 6.(f)=> Wiy)fly)={(z)

yeX

But formally, (IR.X)’ = span{d,} is a set of linear forms while R is a set of pointwise
defined functions.

5.4 Reproducing Kernel Hilbert Space (r.k.h.s)

Definition 2 (Hilbert space) A wvector space H embedded with the positive definite
dot product (., Yy is o Hilbert space if it is complete for the induced norm ||f||% =
{f, g fie. all Cauchy sequences converge in H ).

For instance R", P, the set of polynomials of order lower or equals to k, L?, €% the set
of square summable sequences seen as functions on IN are Hilbert spaces. L! and the
set of bounded functions L are not.

Definition 3 (reproducing kernel Hilbert space (r.k.h.5)) A Hilbert space
(H,{.,. )n) is o rk.hs if it is defined on R* {pointwise defined functions) and if
the evaluation functional is continuous on H (see the definition of continuity equation

(5.3)).

For instance IR™, P as any finite dimensional set of genuine functions are r.&.k.s. £*
is also a r.k.h.s. The Cameron-Martin space defined in the examples is a 7.4.h.5 while
L? is not, because it is not a set of pointwise functions.

Definition 4 (positive kernel} A function from X x X to R is a posilive kernel if it
is symmetric and if for any finite subset {z;},1 = 1,n of X and any sequence of scalar
{a.},i=1,n

n

Zz e K (2,,y;) > 0

i=1 j=1

This definition is equivalent to Aronszajn definition of positive kernel given equation
(5.1).

Proposition 1 (bijection between r.k.h.s and Kernel} Corollary of proposition 23
in [16] and theorem 1.1.1 in [20). There is o bijection between the set of oll possible
r.k.h.s and the set of all positive kernels.
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PRGOF.

=> from r.k.h.s to Kernel. Let (H,{,.}n) be a rk.h.s. By hypothesis the evaluation
functional &, is & continuous linear form so that it belongs to the topological dual of
H. Thanks to the Riesz theorem we know that for each z € A there exists a function
K,(.) belonging to N such that for any function f(.) € H:

6(f()) = {Kz(), F( D

F.{.) is a function from & x & to IR and thus can be written as a two variable function
K{z,y). This function is symroetric and positive since, for any real finite sequence
{a.},i=1,¢, Zle o, K{z,z;) € H, we have:

1320 K2} = (i oK), Yoy o K (2

A
= Z Z oo K (x5, 5)

i=1 3=1

< from kernel to r.k.h.s. Tor any couple (f(.),g(.)) of RI¥| (there exist two finite se-
quences {a;}i = 1,€ and {6;},7 = 1,m and two sequence of X points {x;},7 = 1,4,

{¥i}, 3 = 1,m such that f{z) = f=1 af_ I,,{x) and g(z) = S Bl () we define
the following bilinear form:

{ m

el =D i K{zi,y;)
i=1 3=1
Let Hg={f € R {F(). F()jxy =0} (., )} defines a dot product on the quotient
set IRI¥1/Hy. Now let’s define M as the IRI*! completion for the corresponding norm.
M is a rk.hos with kernel X' by construction.

O

Proposition 2 (from basis to Kernel) Let H be a r.k.h.s. Iis kernel K can be

written:
K(z,y) =), edz) eily)
ied
Jor all orthonormal basis {e;}.e; of H, I being a set of indices possibly infinste and
non-countable.

PROOF. K € H implies there exits a real sequence {a; }ier such that K(z,.}) = },c; aie().
Then for sll ¢,{x) element of the orthonormal basis:

(K. y),ealn = &y reproducing property of K
and  (K(,y) &l = (E,era6(),a{)n
= Y eroitei(). e )i

o; {ei},cr is orthopormal basis
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by identification we have o, = ef{y). ]

Remark 1 Thanks to this results it is also possible to associate to any positive kernel
a basis, possibly uncountable. Conseguently to proposilion I we now how to associale
ar.k.h.s Lo any positive kernel and we get the result because every Hilbert space admit
an orthonormal basis.

The fact that the basis is countable or uncountable {that the corresponding r.k.%.s
is separable or not) has no consequences on the nature of the hypothesis set (see
examples). Thus Mercer kernels are a particular case of a more general situation since
every Mercer kernel is positive in the Aronszajn sense {definition 4) while the converse
is false. Consequently, when possible functional formulation is preferable to kernel
formulation of learning algorithm.

5.5 Kernel and Kernel Operator

5.5.1 How to build r.&k.A.87

It is possible to build r.&.h.s from a L3(G, 1) Hilbert space where (7 is a set (usually
G = X) and p a measure. To do so, an operator S is defined to map L? functions
onto the set of the pointwise valued functions IR*. A general way to define such an
operator congists in remarking that the scalar product performs such 2 linear mapping.
Based on that remark this operator is built from a family [, of L*(G, ) functions
when = € & in the following way:

Definition 5 (Carleman operator) Let I = {I',,2 € X} be a family of L*(G,u)
functions. The essociated Carleman operator S is

S 1?7 — RY
Fo— g0 = (SN0 = (Coy fas = /G T, f dy

That is to say Ve € X, g{x) = (T, f}12. To make apparent the bijective restriction of
S it is convenient to factorize it as follows:

S LP — L*/Ker(S) I Im(S) == RY (5.4)

where L?/Ker{S) is the quotient set, T the bijective restriction of S and i the canonical
injection.

This class of integral operators is known as Carleman operators [18]. Note that this
operator unlike Hilbert-Schmidt operators need not be compact neither bounded. But
when G is a compact set or when I, € L*(G x G) (it is a square integrable function
with respect to both of its variables) S is a Hilbert-Schmidt operator. As an illustration
of this property, see the gaussian example on & = & = R in Table 5.1. In that case
T.(r) & L3X x &)

3To clarify the not so obvious notion of pointwise defined function, whenever possible, we use the
notation f when the function is not a pointwise defined function and f(.) denotes R™ functions. Here
I';(7) is a pointwise defined function with respect to variable  but not with respect to variable 7.
Thus, whenever possible, the confusing notation (7) is omitted.
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Proposition 3 (bijection between Carleman operators and the set of r.k.k.5)
- Proposition 21 in [16] or theorems ! and 4 in {1{]. Let S be a Carleman operator. Its
image set H = Im(S) is a r.k.h.s. If H 4s a r.k.h.s there exists o measure p on some
set G and a Carleman operator S on L*(G, ) such that H = Im(S).

PROOF.

= Consider T the bijective restriction of S defined in equation (5.4). H = Im{S) can be
embedded with the induced dot product defined as follows:

Yo {) () € HE A1) m(n = (701, T g2) e
- (fhfz)p

where g1{.) = T f; and g2(.) = T fo. With respect to the induced norm, T is an isometry.
To prove H is a r.k.h.5, we have to check the continuity of the evaluation functional.
This works as follows:

{Tf)(x)
oy free < Tellgz £ 22
< My Jg( )k

with My = |[Tgl|p2. In this framework H reproducing kernel K verifies ST'y = Kz, .).
It can be built based on I':

g{z)

I

Kiz,y) = (K{z,), Ky, ))n
{Fﬁ'—! F!J)L:’

< Let {&},% € T be a L2(G, n) orthonormal basis and {#;{.)},7 € J an orthonormal
basis of H. We admit there exists a couple (G,u) such that card{f) > card(J) (take
for instance the counting measure on the suitable set). Define 'y, = ZJGJ hy(x)e; as

a L? family. Let T be the associated Carleman operator. The image of this Carleman
operator is the r.k.h.s span by h,(.) since:

vieL? (TH) = Tzl
= (> hilz)e;, Y aiedge  because f =Y ae

jed il if

= Z hj(z) Z oi{e;, €} 2

jeJ ied

= Z oy (@)

jed
and fawnily {R;(.)} is orthonormal since h;{.) = Te;.
O

To put this framework at work the relevant function ', has to be found. Some examples
with popular kemels illustrating this definition are shown in Table 5.1.

5.5.2 Carleman operator and the regularization operator

The same kind of operator has been introduced by Poggio and Girosi in the regulariza-
tion framework [13]. They proposed to define the regularization term Q(f) (defined in
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Nane [p(u) K{z,y)
Cameron Martin Ty min (z,¥y)
d
Polynomial eo(u) + Z zie;(u) xTy +1
=1
4 =upt =i
Gaussian Fexp” ® 7 exp~ 3

Table 5.1: Examples of Carleman operator and their associated reproducing kernel. Note
that functions {e;};=; 4 are a finite subfamily of a L? orthonormal basis. Z and Z‘ are two
constants.

(5.2)) by introducing a regularization operator P from hypothesis set H to L? such that
Qf) = ||Pf|72. This framework is very attractive since operator P models the prior
knowledge ahout the solution defining its regularity in terms of derivative or Fourier
decomposition properties. Furthermore the authors show that, in their framework,
the solution of the learning problem is a linear combination of a kernel (a representer
theorem). They also give a methodology to build this kernel as the green function of a
differential operator. Following [2] in its introduction the link between green function
and r.k.h.s is straightforward when green function is a positive kernel. But a problemn
arises when operator P is chosen as a derivative operator and the resulting kernel i
not derivable (for instance when £ is the simple derivation, the associated kernel is
the non-derivable function min(x, y)). A way to overcome this technical difficulty is to
consider things the other way round by defining the regularization term as the norm of
the function in the r.%.k.s built based on Carleman operator 7. In this case we have
Q(f) = Ifllx = §T'gll%.. Thus since T is bijective we can define operator P as: P
= T~!. This is no longer a derivative operator but a generalized derivative operator
where the derivation is defined as the inverse of the integration (P is defined as 7).

5.5.3 Generalization

It is important to notice that the ahove framework can be generalized to non L? Hilbert
spaces. A way to see this is to use Kolmogorov's dilation theorem (7]. Furthermore, the
notion of reproducing kernel itself can be generalized to noo-pointwise defined function
by emphasizing the role played by continuity through positive generalized kernels called
Schwartz or hilbertian kernels [16]. But this is out of the scope of our work.

5.6 Reproducing Kernel Spaces (r.k.Ak.s)

By focusing on the relevant hypothesis for learning we are going to generalize the above
framework to non-hilbertian spaces.

5.6.1 Ewvaluation spaces

Definition 6 (ES)
Let H be a real topological vector space (t.v.s.) on an arbitrary set X, H ¢ RY, H is
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an evaluation space if and ondy if:

15 continuous

(f) = flz)

ES are then topological vector spaces in which 6, (the evaluation functional at ¢) is
continuous, {.e. belongs to the topological dual H*of H.

Remark 2 Topological vector space IRY with the topology of simple convergence is by
construction an ETS (evaluation topological space).

In the case of normed vector space, another characterization can be given:

Proposition 4 (normed ES or BES)
Let (K, ||.|l%) be @ real normed vector space on an arbitrary set X, H € RY. H is an
evaluvation kernel spuce if and only if the evaluetion functional:

Ve e X, 3M, € R, Vf € H, |f(2)] < M| fl}x

if it is complete for the corresponding nomm it is a Benach evaluation space {BES).

Remark 3 In the case of a Hilbert spuce, we can identify H™ and H and, thanks to
the Hiesy theorem, the evaluation functionel can be seen as a function belonging to M:
it 15 called the reproducing kernel.

This is an important point: thanks to the hilbertian structure the evaluation functional
can be seen as a hypothesis function and therefore the solution of the learning problem
can be built as a linear combinatjon of this reproducing kernel taken different points.
Representer theorem [9] demonstrates this property when the learning machine minj-
mizes a regularized gquadratic error criterion. We shall now generalize these properties
to the case when no hilbertian structure is available.

5.6.2 Reproducing kernels

The key point when using Hilbert space is the dot product. When no such bilinear
positive functional is available its role can be played by a duality map. Without dot
product, the hypothesis set H is no longer in self duality. We need another set M to
put in duality with H. This second set M is a set of functions measuring how the
information I have at point z; helps me to measure the quality of the hypothesis at
point z5. These two sets have to be in relation through a specific bilinear form. This
relation is called a duality.

Definition 7 (Duality between two sets) Two sets (H, M) are in duality if there
exists ¢ bilinear form L on H x M that separates H and M (see [10] for details on
the topological aspect of this definition).
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Let £ be such a bilinear form on H x M that separate them. Then we can define a
linear application vy and its reciprocal 8 as follows:

T M — H 97-(1 ]m('yﬁ) — M
foo— mf=L(f) g=L(,f) — Oug=f

where H* (resp. M*) denotes the dual set of H (resp. M).

Let’s take an important example of such a duality.

Proposition 5 (duality of pointwise defined functions) Lef X' be any set {not
necessarily compact ). RY and R are in dudlity

PROOF. Let’s define the hilinear application £ as follows:

L RY x RIY] — R
(FOL 9O =D il () — D ouflz) = flalgle)
pi=3) 2 f rEX

Another example is shown in the two following functional spaces:

L’={f| /1 1f|cm<oo} and L°°={f\ es:;gplflmo}

where for instance p denotes the Lebesgue measure. Theses two spaces are put in
duality through the following duality map:

L: D'xIL*® — R
fig — :’3(1*,9')=ffgahbL
&

Definition 8 (Evaluation subduality} Two sets H and M form an evaluation sub-
duality iff:

- they are in duality through their duality map vy,
- they both are subsets of R

- the continuity of the evaluation functional is preserved through:
Span(s) = mx ((RY)) Cam(M)  and e (IRY)') € 6(H)

The key point is the way of preserving the continuity. Here the strategy to do so js
first to consider two sets in duality and then to build the (weak) topology such that
the dual elements are (weakly) continuous.
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hilbertian case General case
(R¥) .. (RY) L= at’
! Ri__c:sz H H" H
\* h I";-{li
]R.X M 3 IR,{Y
K(s,1) = (K(s,.), K(., 1)) K(s,t) = Ly (5°(3,), 2(4,))

Figure 5.1: Ilustration of the subduality map.

Proposition 6 (Subduality kernel} A unique weakly continuous lincar application
» 1s associated to each subduality. This linear application, called the subduality kernel,
18 defined as follows:

PP (IR"[’)f — RY
Zwlef‘szi s "IOE}MOJ‘*(ZEI‘L{)

where i and j* are the canonical injections from H to R¥ and respectively from (IR¥)
to M’ (figure 5.1).

PROOF.  for details see [10]. 0

We can illustrate this mapping detailing all performed applications as in Figure 5.1:
(R¥) — R L a2 ., R*
6, +— Iy — LK) — Ku() — K(z,)

Definition 9 (Reproducing kernel of an evaluation subduality) Let (H, M) be
an eveluation subduality with respect to map Ly associated with subduality kernel ».
The reproducing kernel associated with this eveluation subduality is the function of two
variadles defined as follows:

K: XxA — R
(37: y) — I((J’!y) = Ln (’f*(ay)a ’5(53))

This structure is illustrated in Figure 5.1. Note that this kernel no longer needs $o
be definite positive. If the kernel is definite positive it is associated with a unique
r.k.h.s. However, as shown in the examples it can also be associated with evaluation
subdualities. A way of looking at things is to define sr as the generalization of the
Schwartz kernel while K is the generalization of the Aronszajn kernel to non hilbertian
structures. Based on these definitions the important expression property is preserved.

Proposition 7 (generation property) Vf € H, 3(a)ier such that fle) = ) .. o
K(z,z,) and ¥g € M, Fou)er such that g(z) = 3, ., (2, «)
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Duality Evaluation subduality
B A (RY) At
Q{j A) A --r—[-—"-—-—-m; . W‘,ﬁ )
et T i T
" | SRR
Al A ! O
B(Ak 5 Qt'm “ i

Figure 5.2: Illustration of the building operators for reproducing kernel subduality from a
duslity (A4, B).

PROOF. This property is due to the density of Span{K(.,x),z € A} in H. [For more
details see [10] Lemma 4.3. B

Just like r.k.h.s, another important point is the possibility to build an evaluation
subduality, and of course its kernel, starting fromn aay duality.

Proposition 8 (building evaluation subdualities) Lei (A, B) be a duality with re-
spect to map Ls. Let {Tz,0 € X} be ¢ totet family in A and {A,,x € X'} be a total
Jamily in B. Let S (reps. T') be the linear mapping from A (reps. B} to RY associated
with Iy, (reps. A.) as follows:
$5: A — R*¥ T: B — R*¥
g — Sglz)=Lalg, As) J — Tf(z)=LaTs,[)
Then S and T are injective and (S(A),T(B)) is an evaluation subduality with the
reproducing kernel K defined by:
K(.?:, y) = £A(Fa:: A'y)
Proor.  see |10| Lemma 4.5 and proposition 4.6 O
An example of such subduality is obtained by mapping the (Z', L) duality to IRY
using injective operators defined by the families ['.(7) = Q<) and Ay(7r) = Ly ory:
T: L' — RY
for— Tf(®) =0 e = [ Ngery f(r) dr

and
S L® — RY

g — Sgy)=(9A) e = [ 9T gyery dr
In this case H = In(T), M = I'm(S) and K(y,s) = /A(y, )Tz, 7) dr = min(z, y).
We define the duality map between H and M through:
Lxlgn, g2) = Lx(SH1, T f2) = LN, f2)

See examples for details.

All useful properties of .k h.s — pointwise evaluation, continuity of the evaluation func-
tional, representation and building technique — are preserved. A missing dot product
has no consequence on this functional aspect of the learning problem.
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5.7 Representer Theorem

Another issue is of paramount practical importance: determining the shape of the
solution. To this end the representer theorem states that, when H is a r.k.h.s, the
solution of the minimization of the regularized cost defined equation (5.2) is a linear
combination of the reproducing kernel evaluated at the training examples |9, 15]. When
hypothesis set H is a reproducing space associated with a subduality we have the same
kind of result. The solution lies in a finite n-dimensional subspace of H. But we don’t
know yet how to systematically build a convenient generating family in this subspace.

Theorem 1 (representer) Assume (H, M) is a subduality of R with kernel K (z,v).
Assume the stabilizer §2 is convex and differentiable {8 denotes its subdifferential set).
If0a(3 oK (e, w)) C {3 Bid., } € H* then the solution of cost minimization Hes in g
n-dimenstonal subspace of H.

PrROOF.  Define a M subset M, = {37, o;K(z;,.)}. Let Hy C H be the M, orthogonal
in the sense of the duality map (i.e. Yf € Hy, Vg € M), L(f,g) = 0}). Then for all f €
Hy, f(x;) =0,¢=1,n Now let H; be the complement vector space defined such that

H=H®H, «©¥YfeHIfiec H and f» € Hy suchthat f=/f + f5
The solution of the minimizing problem lies in H; since:
- Vfy € Hs,C{f2) = constant
- QS+ f2) 2 QU0 + Oalfi), f2) 1 {thanks to the convexity of )
- and Vfy € Hy, 5 {8a{f1): fo)pqpe =0 by hypothesis
By construction H; a n-dimensional subspace of K. ]

The nature of vector space H, depends on kernel X and on regularizer 2. In some cases
it is possible to be more precise and retrieve the nature of H,. Let’s assume regularizer
Q(f) is given. H may be chosen as the set of functions such that £2(f) < oc. Then, if
it is possible to build a subduality (H, M) with kernel K such that

E = Vect{K(z;, )} & Vect{K'(.,z:)})"

H MT

and if the vector space spanned by the kernel belongs to the regularizer subdifferential
oQ([):
¥f € H, 3g¢€ M, suchthat g € 0Q(f)
then solution f* of the minimization of the regularized empirical cost is a linear com-
bination of the kernel: .
)= oK(z, x).
i=1

An example of such result is given with the following regularizer based on the p-norm
on G =[0,1):

1
a(f) = [U Y dv
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The hypothesis set is Sobolev space H? (the set of functions defined on |3, 1] whose
generalized derivative is p-integrable) put in duality with HY (with 1/p + 1/¢ = 1)
through the following duality map:

1
L(f.9) = /0 I’y du

The associated kernel is just like in Cameron Martin case X (x,y) = min(z, y). Some
tedious derivations tead to:

vheH L(hS)) = /; WopfP dp

Thus the kernel verifies p(K(., 1))~ « Kiz,.)

This question of the representer theorem is far from being closed. We are still looking
for a way to derive a generating family from the kernel and the regularizer. To go
more deeply into general and constructive results, a possible way to investigate is to
go through © Fenchel dual.

5.8 Examples

5.8.1 Examples in Hilbert space

The examples in this section all deal with r1.k.h.s included in a L* space.

1. Schridt ellipsoid:
Let (X, 1) be a measure space, {e;,1 € I} a basis of L2(X', 1) I being a countable
set of indices. Any sequence {w;,¢ € I, 3 ;0! < +oo} defines a Hilbert-
Schmidt operator on L*(X, s) with kernel function T'(x,y) = 3., ame(z)e(y),
thus a reproducing kernel Hilbert space with kernel function:

V(x,y) € X%, K(zy) =Y ofew)e,
1er

The closed unit ball By of the 7.k k.5 verifies

By =T(B:) = {f el f= foeh Z (%)" < 1}

ieq ief ¢

and is then a Schmidt ellipsoid in L?. An interesting discussion about Schmidt
ellipsoids and their applications to sample continuity of Gaussian measures may
be found in [6].

2. Cameron-Martin space:
Let T be the Carleman integral operator on L2([0, 1], ) (i is the Lebesgue mea-
sure) with kernel function

Ilz,y) =Y(z—y) = Tyy<ay
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it defines a r.k.h.s with reproducing kernel K (z,y) = min(z,y). The space
(H;{,.)g) is the Soholev space of degree 1, also called the Cameron-Martin
space.

{ H = {f absolutely continuous,3f' € L%([0,1]), f(z) = [, f'du}
(F,90w ={f 9

. A Carleman but non Hilbert-Schmidt operator:

Let T be the integral operator on L*(IR,u) (u is the Lebesgue measure) with
kernel function |
Dz ) = exp 3y’

It is a Carleman integral operator, thus we can define a rkhs (H;{,.}y) =
Im(T), but T is not a Hilbert-Schmidt operator. H reproducing kernel is:

1
K(wy) = o™t

where Z 18 a suitable constant.

Continuous kernel:

This example is based on Theorem 3.11 jn [12]. Let X be a compact sub-
space of R, K{.,.) a continuous symmetric positive definite kernel. It defines
ark.h.s (H;{, )y)and any Radon measure p of full support is kernel-injective.
Then, for any such s, there exists a Carleman operator T on L*(X, ;1) such that
(H; (., )n) = Im(T).

Hilbert space of constants:

Let (H;{,.}u) be the Hilbert space of constant functions on IR with scalar
product {(f,gyw = f(0)g(0). It is obviously a r.k.h.s with reproducing kernel
K(.,.) = 1. For any probability measure j on R, let:

Vi€ L*(R.p), Tf= /[;f(S)n(dS)

Then H = T(L*(R,p)) and ¥f,9 € H, {f,0}w = (, 9)12.

A non-separable r.k.h.s - the L? space of almost surely null functions:

Define the positive definite kernel function on & C IR by Vs, t € &, K(5,t) =
Miewsy. It defines a 7.k.h.s (H;{., . )y) and its functions are null except on a
countahle set. Define a measure g on (X, B) where B is the Borel g-algebra on
X by p(t) =1Vt e X g verifiess u({t1, - ,tn}) = n and p(A) = +o0 for
any non-finite A € B. The kernel function is then square integrable and H is
injectively included in L*(X, B, 1t). Moreover, K(s,t) = [, K(t,u)K (u, s)dpu(u)
with I Carleman integrable and T = Id;» (note that the identity is a non-
compact Carleman integral operator). Finally, (H;{., }g) = L*(X, B, ).

Separable r.k.h.s :
Let H be a separable .k k.5 . It is well known that any separable Hilbert space
is isomorphic to . Then there exists T" kernel operator Im{(T} = H. It is easy
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to construct effectively such a T let {h,(.), n € N} be an orthonormal basis of
H and define T kernel operator on % with kernel T';, — {h,(z), n € N}(€ I?).
Then Im(T) = H.

5.8.2 Other examples

Applications to non-hilbertian spaces are also feasible:

1. (L', L*°) - “Cameron-Martin” evaluation subduality:
Let T be the kernel operator on L'([0, 1], ) (g is the Lebesgue measure) with
kernel function

T{t,s) =Y —s5)=Meqy, I'(t,.)€ L™
it defines an evaluation duality (H; H.) with reproducing kernel
Vs, t) € X%, K(s,t) = min(s,t)

{ H; = {f absolutely continuous, 3" € L!(|0,1]), F(t) = f; f'(s)ds}

1A lle = 11£ e
and
{ Ho, = {f absolutely continuous, 3f" € L**([0,1]), f(¢) = fé f(s)ds}
[l = 1"l eo
2 (RY,R™);

We have seen that IRY endowed with the topology of simple convergence is an
ETS. However, IRY endowed with the topology of almost sure convergence is
never an ETS unless every singleton of A has strictly positive measure.

5.9 Conclusion

It is always possible to learn without kernel. But even if it is not visible, one is
hidden somewhere! We have shown, from some basic principles (we want to be able to
compute the value of a hypothesis at any point and we want the evaluation functional
to be continuous}, how to derive a framework generalizing r.£.h.s to non-hilbertian
spaces. In our reproducing kernel dualities, all 7.k .5 nice properties are preserved
except the dot product replaced by a duality map. Based on the generalization of the
hilbertian case, it is possibie to build associated kernels thanks to simple operators.
The construction of evaluation subdualities without Hilbert structure is easy within
this framework (and rather new). The derivation of evaluation subdualities from any
kernel operator has many practical outcome. First, such operators on separable Hilbert
spaces can be represented by matrices, and we can build any separable r.k.Ah.s from
well-known £ structures (like wavelets in a L* space for instance). Furthermore, the
set of kernel operators is a vector space whereas the set of evaluation subdualities is
not {the set of r.k.k.s is for instance a convex cone), hence practical combination of
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such operators are feasible. On the other hand, from the bayesian point of view, this
result may have many theoretical and practical implications in the theory of Gaussian
or Laplacian measures and abstract Wiener spaces.

Unfortunately, even if some work has been done, a general representer theorem is not
available yet. We are looking for an automatic mechanism designing the shape of the
solution of the learning problem in the following way:

Fx) =" oK (xi,x) + > Biegy (%)
=) j=1

where Kernel K, number of component m and functions ¢;(x},7 = 1,% are derivated
from regularizer £2. The remaining questions being: how to learn the coefficients and
how to determine cost function?
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Chapter 6

Leave-one-out Error and Stability
of Learning Algorithms with
Applications

André Elisseeff and Massimiliano Pontil?

Abstract. The leave-one-out error is an iportant statistical estimator of the
performance of a learning algorithm. Unlike the empirical error, it is almost
unbiased and is frequently used for model selection. We review attermapts aiming
at justifying the use of the leave-one-out error in Machine Learning. We especially
focus on the concept of stability of a learning algorithm and show how this can be
used to formally link the leave-one-out error to the generalization error. Stability
has also motivated recent work on averaging technigues similar to bagging which
we briefly summarize in the chapter. The ideas we develop are illustrated in
some detail in the context of kernel-based learning algorithms.

! Alessio Ceroni read the chapter and made vseful remarks.
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6.1 Introduction

Assessing the perforroance of different learning algorithms on a dataset is at the core
of Machine Learning. If this task is done properly, the best algorithm can be selected
and the problem of generalization is partially solved. For that reason, many studies
have focused on the design of different model selection strategies. As examples, we
could cite techniques based on minimum description length [37], margin beunds [7],
Bayesian evidence [31}, metric structures [40], etc. A complete list would include many
more techniques.

When it comes to practice, many practitioners use cross validation methods. This
is remarkable from two related standpoints. First, cross validation has been seldom
studied in the literature compared to some of the above mentioned techniques. Sec-
ond, as described in [27], “In spite of the practical importance of this estimate [cross
validation], relatively little is known about its theoretical properties”.

In this chapter, we try to gather information about one particular instance of cross
validation, namely the leave-one-out error, in the context of Machine Learning and
mostly from stability considerations. By limiting the scope of this presentation, we
hope to provide a consistent view albeit not complete as we are aware that we might
miss relevant contributions.

QOutline of the chapter

After a general discussion about the leave-cne-out error (Section 6.2), we present differ-
ent analyses trying to explain why and how this technique works well (Section 6.3). In
particular we focus on concepts of stability which allow to derive probabilistic bounds
on the generalization error of learning algorithms. The bounds say that the difference
between the generalization error and the leave-one-out error is small when the algo-
rithm is stable. This is discussed in Section 6.3 where we also present other attempts
to justify the leave-one-out error. In Section 6.4 we illustrate the use of the leave-one-
out error in the context of kernel machines, a family of learning algorithms which has
gained great popularity over the past few years. In this case it is possible to derive
estimates of the leave-one-out error which only require the knowledge of the machine
trained once on the full dataset. In Section 6.5 we overview the use of leave-one-out
error in learning problems other than classification and regression.

Notation

In the following, calligraphic font is used for sets and capital letters refer to numbers
unless explicitly defined. Let A and ) be two Hilbert spaces and define Z2 = A’ x Y. A
is identified as the input space and Y as the output space. Given a learning algorithm
A, we define fp to be the solution of the algorithrm when the training set D = {z; =
(@i,9i), 2 =1,...,m} € Z™ drawn i.id. from a distribution P is used. A is thus
interpreted as a function from Z™ to V¥ - the set of all functions from X to Y -
and we use the notation: A(D) = fp. We denote by D' the training set obtained by
removing the point (z;,7;) from D. fp is sometimes denoted by f and fpi by f% The
expectation with respect to (w.r.t.) the sample D is denoted by Enl-.
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For any point (w,y) and function f we denote by ¢(f(z),y) the error made when
f(z) is predicted instead of y (€ is the loss function). We also sometimes write £{f, z)
instead, where z = (#,y). The generalization error of f w.r.t. loss £ is

Reen (/) = E:£(f, 2)

where E,- denotes the expectation w.r.t. 2. We define as well the empirical error w.r.t.
the same loss function by
l L)
By (1) = — Z oS 2).
We focus on regression, )} = IR and on binary classification, Y = {—1,1}. In the latter

case we denote by 6(-) the Heavyside function and let the misclassification ervor of
function f be the generalization error of f w.r.t. loss 8(—yf(x)).

6.2 (General Observations about the Leave-one-out
Error

It seems that the leave-one-out error {also called deleted estimate or U-method) has been
defined in the late sixties/mid-seventies. It appears in different papers by Lachenbruch
[29], Luntz and Brailovsky [30], Cover [10], and Stone [42}. For a learning algorithm A
producing an cutcome fp, it is defined as

Definition 1 {Leave-one-out error)
1 o~ .
R]oo (fD) = E Z g(fa? zi)
i=1

and is supposed to be an “almost” unbiased estimate of the generalization error of fp.
Because it seems to share many properties with a technique called Jackknife introduced
by Tukey [43, 35], it is worth pointing out that the leave-one-out error is different. The
latter concerns indeed a learning algerithm whose output is computed on a point that
has not been used during training. The former consists in using repeatedly the whole
training set but cne point, computing many estimators and combining them at the
end. This combination should lead to a new estimator whose bias is supposed to be
low. The Jackknife can be used to derive an estimate of the generalization error based
on the empirical exror but things are then more complicated than for the leave-one-out
estimate?® (see, e.g., {36]).

The first result that is generally presented to motivate the leave-one-out error is
the following:

Theorem 1 (Luntz and Brailovsky (30]} The leave-one-out estimate is alinost un-
biased in the following sense:

Ep [Rioe (fD)] = Ep [Rgen (f1r)] (6.1)

where D' 15 set of m— 1 points m 2.

ZNote that we use ieave-cne-out error or leave-one-out estimate interchangeably. The term leave-
one-aut error estimate refers to an approximation of the leave-one-out error.
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On average, the leave-one-out error should be relatively informative about the gener-
alization error of the same algorithm when trained on m — 1 points. In practice, it is
generally admitted that removing one point of the training set does not change much
the outcome of the algorithm. In theory, such an assumption cannot he made so easily.
Consider ' C D a training set of m — 1 points. If we assume that fp & fp for all
training sets D, then Rynp, (fp) = R (fp) and using the leave-one-out estimate is
roughly the same as using the erapirical error. The Jatter however is well known to be
highly biased and does not give a good indication on the generalization performance of
the algorithm. The apparent contradiction in this reasoning could have been removed
if we had defined a more precise definition of what we mean by stable. For simplicity,
let us consider until the end of the section that the learning problem is a classification
problem. We define:

Definition 2 (Hypothesis stability [14]) The hypothesis stability 3(fp) of a sym-
metric® learning algorithm A whose outcome is [p is defined as?

Bfo) =Ep; ([((fo,z) — l{fp:, 2)|]. (6.2)

This definition captures a notion of stability that suits our purpose: if one point is
removed, the difference in the cutcome of the learning algorithm will be measured
by the averaged absolute difference of the losses. We can now naturally relate the
generalization error of fp with the one of fp.. We have indeed:

|E [Rgen (/D) = Rygen (fo)]| = |Bo: [((fp, 2) — £(fpr, 2))| < B(fp)

so that the bias of the leave-one-out error is bounded by the hypothesis stability of
the fearning algorithm. Note that the hypothesis stability does not imply that the
empirical error is close to the leave-one-out error.

The following example shows how to compute hypothesis stability for the £—nearest
neighbor (k—NN) algorithm.

Example 1 (Hypothesis Stability of k—NN)} With respect to the classification loss,
k—NN is —‘ stable. This can be seen via symmetrization arguments. For sake of sim-
plicity, we give here the proof for the 1- NN only. Let v; be the neighborhood of z; such
that the closest point of the trawning set o any point in v, 15 2,. The nearest neigh-
bor algorithm compules its oufput via the following equalion (we assume here that the
probalnlity that z; appears twice in the training set is negligible):

T
= Z'.gilzeiw (‘E)
i=1
where 1, is the indicator function of the set A. The difference between the losses
{(fp,z) and £(fp., 2) 15 then defined by the set v;. Here we assume that { is the classi-
fleation loss. We have then:

E.[|t(for, z) — (fp, 2)|) < P(ws).

}An algorithm is said to be symmetric if its outcome, fp, does not change when the elements of
the training set are permuted.

"Note that, since the algorithm is symmetric, when averaging over D, specifying which point is left
out is irrelevant: the r.h.s of Eq. (6.2} is the same foralli =1,..,m
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Note that v; depends on D. Now averaging over D we need to compute Ep [P(v;)] which
s the same for oll 1 because the z; are drawn 1.i.d. from the same distribulion. DBul,
we hawve,

= ED,z

L= Eo:[|/p(2)]] = Ep, l

Z Ui lrzEv‘ (3’) Z ]-IEL’.' (‘B)‘ :

The last inequality comes from the fact that for fized D and z, only one 1,e, () is
non-zero. We have then.

1 = ED,z i lzeu. (CL)] = 'mE'D [P('L"i)] .

So that: Ep [P(v;)] =. And finally, the 1= NN has o hypothesis stability bounded above
by 1/m.

Thus for nearest neighbor methods, the leave-one-out error is truly almost nnbiased:
for the 1-NN, the average difference between fp and fp is bounded by 1/m. This
statement does not hold for all algorithms: when the algorithm is unstable, the use
of the leave-one-out error is not recommended. Consider for instance a (quite stupid)
algorithm whose outcome is the constant function 0 when w is odd and the constant
function 1 when m is even. The Jeave-one-out estimate would then be totally wrong.
One might object that this example is quite artificial but actually such instabilities
might occur when the value of m is small. A hard margin support vector machine
{SVM) separating 3 points in a two dimensional input space is unstable: if one poiat
is removed, the outcome of the SVM usually changes a lot.

Another case where the leave-one-out estimate might not be recommended has been
pointed out by Shao [41] who studied model selection with a linear regression method.
Shao proved that, asymptotically when v tends to infinity, the probability to select
the optimal model based on the leave-one-out error is not equal to one: model selection
based on the leave-one-cut estimate tends to choose unnecessarily large models. This
failure js not the privilege of the leave-one-out error. The latter is indeed equivalent
to other criterion that inherit as well from this inconsistency. These criterion are the
Akaike information criterion [1] and Mallows’s C'p [32], which are proved to be equiv-
alent to the leave-one-out error in the particular setting of quadratic Jinear regression
when m tends to infinity.

A common helief that should decrease the interest in the leave-one-out error is
that it has a large variance: when different training sets are sampled from the same
distribution, the variance of the leave-one-out error computed over these samplings
is generally larger than 10-fold cross validation. This statement has been observed
practically by Kohavi [26]. The latter also showed examples where the leave-one-out
error fails completely due to the instability of the learning algorithm. Theoretically,
the variance of the leave-one-out error has been computed in [44] (p.236) in the special
case of a Gaussian noise and for linear models. It is shown that the variance of the
leave-one-out error in this setting is equivalent to the variance of a hold-out estimate.®

5A hold-out estimate is an average of the errors computed on a set of data points that have not
been used during learning. For these variance calculations to be valid, the number of points held out
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At last, except for few special cases, the leave-one-out estimate is very time-
consuming. For that reason, many works have tried to to derive easy-to-compute
bounds. These bounds seem however to be specific to linear models. This rules out
many algorithms for which the leave-one-out error will still be long to compute.

Despite all these handicaps, the leave-one-out estimate is used by many practition-
ers. It is generally believed to be a fairly good estimator albeit not the best and it has
been used successfully for model selection (see for instance the work of Chapelle et al.
[8]). All these facts might then seem contradictory. Following the no free lunch theo-
rem (48], we are tempted to conclude like Goutte [20] that the leave-one-out error is as
bad as any other estimator but that we have not found practical probiems for which
it completely fails. This observation might indicate that the leave-one-out estimate
has a small bias in most practical cases. Coming back to stability considerations, this
can be translated into the hypothesis that most methods that are currently used by
practitioners are actually stable with respect to the removal of one point in the training
set. Next section shows more precisely how stability and the leave-one-out error are
related to generalization.

6.3 Theoretical Attempts to Justify the Use of the
Leave-one-out Error

In the previous section we have mainly focused on basic facts that are observed from
practice or that have been deduced from the classical statistical framework. In this
section, we will present theoretical approaches that have been inspired by machine
learning and which seem to have been directed by the need to understand why this
estimate was better than empirical error.

6.3.1 Early work in non-parametric statistics

In the late seventies, Rogers, Devroye and Wagner wrote a series of papers about
k-nearest neighbor (k—NN), local, histograms and potential rules. For k—NN and
k—local rules (i.e. rules which compute their output from the £ closest points in the
training set), they derived exponential bounds on the probability that the leave-one-out
error® deviates from the generalization error [14].

Theorem 2 {Devroye and Wagner [14])
P (Rioo (k— NN) = Rgen (k—NN) > €) < 2¢7/18 4 o=/ (108k(2410)) (6.3)

where g 15 the muzimum number of distinct points in RY which can share the same
nearest neighbor.

must be greater than m minus the dimension of the input space. Under generzl conditions, it can be

assumed that the training set is the same set used to compute the leave-one-out error. Note that in

his book, Vapnik uses the term "moving control estimator” rather than leave-one-out estimate.
SNote that the leave-one-out error for k—NN is very easy to compute.
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The capacity term also called VC-dimension (see [45] for an account about Vapnik
Chervonenkis dimension and the theory that is derived) that generally occurs in sta-
tistical learning theory bounds is replaced here by a metric concept 4 whose value
seems quite difficult to compute (see [14]). This value does not depend on m but goes
to infinity when d tends to infinity (it is lower bounded by the d). This means that
such bound does not motivate the use of k—NN in infinite dimensional reproducing
kernel Hilbert spaces, that js, £~NN used with kernels (see Section 6.4). Although
a similar bound has been derived for potential function rules that include classifiers
based on Parzen window density estimators {see [15] for more details), these results do
not extend to all classifiers. It is therefore interesting to consider the following theorem
valid for any classifier fp:

Theorem 3 (Devroye et al. [13, 38])

Ep [(Ruo (fp) — Rgen (f‘D))ﬂ < % +P(fo # fp:)- (6.4)

In order to get a small variance, this bound suggests that the stability should be small.
Since with Tchebytchev's inequality a bound on the variance induces a bound on the
difference between the leave-one-out and the generalization error, it is straightforward
to relate stability to generalization and to support the common intuition that if an
algorithm is stable then its leave-one-out error is close to its generalization error. Such
stability considerations have been reconsidered in the late nineties with the work of
Kearns and Ren [25).

6.3.2 Relation to VC-theory

The work of Kearns and Ron aims at proving sanity check bounds for the leave-one-out
error. They prove that the bounds derived for the leave-one-cut error are at least as
good as those derived for the empirical error. This may seem quite reassuring in the
sense that theory does not say that the leave-one-out error is worse than the empirical
error. Their result is based on the following definition of stability:

Definition 3 (Error Stability [25]) We say that @ deterministic {and symmetric)
algorithm A has ervor stability (5), 8a2) if:

]P(|Rgan (fD) - Rgen (fD')| 2}62] < )31-

They showed that this notion combined with another notion of “overestimating the
empirical error” which controls how much the leave-one-out error overestimates the
empirical error, leads to the following bound: ¥4 > 0, with probability 1 — é over the
sampling of the training set, assuming that fp is an aigorithin minimizing the empirical
error over a set of functions with VC dimension d, we have:

| Rico (f5) = Rgen ()] < (8\/ (d + 1)(In(n/d) + 2)) /6. (6.5)

m

This bound is very similar to those that are derived for the empirical ervor [44]. Actually
it is not so surprising since the analysis of kKearns and Ron is based on VC-theory. They
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also showed that there exists an algorithm minimizing the empirical error over a set of
VC dimension d for which the left-hand side of Eq. (6.5) is lower bounded in }{d/m).
This statement shows that if a bound on the difference between the leave-one-out and
the generalization error is found then it must be very specific on the algorithm or it
will be like for the empirical error, in Q(d/m).

Another related contribution to the theory of cross validation is by Holden [23).
Unfortunately, the results do not apply to the leave-one-out error and holds only for
cross validation when the fold left out is sufficiently large.

[t seems that so far the best success that theory has been able to achieve for the
leave-one-out error has been met by the work of Devroye, Rogers and Wagner and by
the notion of stability.

6.3.3 Stability

Recently, stability considerations have been revisited by Bousquet and Eligseeff [5] who
proved exponential bounds for stable algorithms.

Definition 4 (Uniform stability [5]) Let fp be the outcome of a symmetric and
determanistic learning algorithm. We define the uniforim stalnlity B(fp) with respect to
a loss function € by

B(fo) = sup €(fp,.) = €fpt: Moo (6.6)

From this definition, it is possible to prove the following theorem:

Theorem 4 (Bousquet and Elisseeff [5)) Let fp be the outcome of an elgorithm
with uniform stability B(fp) with respect to a loss function € such that 0 < {(fp,y) <
M, forally € ¥V and all set D. Then, for any m > 1, and any n € (0, 1), the following
bound holds with probability ot least 1 — np over the random draw of the sample D,

P (| Rgen (f5) = Floo (/)] > [, + €) < e 2me/mBlim)ray® (6.7)

The bound presented in this theorem js interesting only if the stability 3{ fp) decreases
as 1/m® with a > 1/2.

The uniform stability of regularization algorithms such as regularization networks
[33] or support vector machines [4, 45] are computed in [5]. This extends the results
of Devroye, Rogers and Wagner to other learning techniques but at the cost of a
more restrictive definition of stability. Hypothesis stability is indeed upper bounded
by uniform stability and classic algorithms such as 4—NN do not have an interesting
uniform stability with respect to the classification loss: it is equal to 1 for the 1-NN.
It seems however that uniform stability is the cost to pay to get exponential bounds
rather than bounds derived with Tchebytchev’s inequality as it is the case for the
hypothesis stability.

A less restrictive notion of stability that has been introduced lately by Kutin and
Niyogi [28] might provide a better notion than uniform stability.

Definition 5 (Partial stability [28)) Let fp be the outcome of a symmetric and de-
terministic learning elgorithm A. We say that A s (6, 3) partially stable with respect
to a loss function € if:

P(vi € {L,...,m} [Ep,.) = fp Mlow < ) > 1 5. (6.9)
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Kutin and Niyogi have derived bounds for the empirical error but it is possible to
easily extend their results to bound the leave-one-out error as in (6.7), except that the
uniform stability is replaced by the partial stability. We refer the reader to [28] for
more details.

We see that there exist many notions of stability that lead to bounds on the general-
ization error in terms of the leave-one-out estimate. The choice of the stability measure
is influenced by the desired type of bound (Tchebytchev’s type with Hypothesis sta-
bility and exponential bounds with Uniform and partial stability) and the knowledge
of the learning algorithm which will guide the computation of its stability. In next
section, we show as an aside a way of improving the stability of a learning algorithm
by averaging techniques.

6.3.4 Stability of averaging techniques

Suppose that a learning algorithm A has uniform stability 3, = O(1/m®%),a > 0.
When ¢ = 1 we say that A is stable. In this case Theorem 4 implies that

‘Rgen (f‘D) — Rigo (fD)| = O(l/ﬁ)

If A is not stable, a way to stabilize it is by averaging its solution trained on small
bootstrap subsets of the training set [L7]. In particular, consider the function

Fi(z) = Es|fs(z)] (6.9)

where Eg denotes the expectation with respect to & points sampled in D with the
uniform distribution, i.e. S contains k points of D obtained by uniform sampling
without replacement. When & = m and sampling is done with replacement, this
method is Breiman’s bagging [6]. The next theorem provides a link between the uniform
stability of the average combination and that of algorithm A.

Theorem 5 (Evgeniou et al. [17]} Assume that fp has stability 5,,. Then, the
stability, B of the average combination F* in Eq. (6.9) is bounded as

-~ k
B £ — .

¥ry

This theorem implies that the average combination is always stable in the sense that
Bm = O(1/m). In practice the average combination is replaced by a finite combination.
In this case the stability theory does not hold because of the randomization of the
solution. Recent work in (18] extends the stability concepts to randomized algorithms
and presents a closer look at averaging techniques.

6.4 Kernel Machines

In this section we focus on kernel machines [45, 18, 11, 39], a family of learning algo-
rithms based on reproducing kernel Hilbert spaces. We begin by recalling the main
features of kernel machines. Then, we present two sides that make them appealing
when used with leave-one-out technigues: first, their leave-one-out ervor can he easily
computed, second their stability can be (roughly) bounded.



120 A. FElisseeft, M. Pontil

6.4.1 Background on kernel machines

Kernel machines are the minimizers of regularization functionals of the form:

ki

LS a0 + AT 6.10)

1=1

where f is a function A — IR belonging to a reproducing kernel Hilbert space (RKHS)
Hy defined by a symmetric and positive definite kernel i : X' x X — R, and || f||% is
the norm of f in this space. More precisely, the RKHS is the completion of the span
of the set {K(z,-),z € X'} with the inner product induced by

(K(z,-), K(t,)) = K(5,1). (6.11)

Thus, if ¢,...,1, € X, the function "7 | ;K (#;,z) belongs to the RKHS and its
squared norm is 37 _; cic;K(¢,,1;). In particular [|K(z,-)|I* = K{z,z). The next
fundamental property of Hx follows from Eq. (6.11):

flz)={[,K(z,")), forevery feH, z€X.

Using Cauchy-Schwartz inequality we obtain another important property of the RKHS:

|7 (@) = [{f, Kz, DI < S e vV E (i, 7). (6.12)

The RKHS norm is a measure of smoothness of the function, e.g. a Sobolev norm
and, so, the regularization parameter A > 0 trades-off between small empirical error
and smoothness of the solution. A correct choice of A prevents from overfitting. In
practice A is selected by means of cross validation. RKHS are discussed in [3]. A nice
introduction relevant to kernel machines can be found in [12]. For more information
on positive definite kernels see [19].

The loss function £ is assumed to be convex. Its choice determines different learning
techniques, each leading to a different learning algorithm. Important cases are regular-
ization networks [33] and support vector machines (SVMs) [45]. They are summarized
in Table 6.1 (left column). When X = IR" and &(z,t) is the Euclidean inner product
and ¢ is the square loss, we have the older ridge regression technique [22].

Learning method e f,y) S(e) Constraints
Regularization network (y— 1)* Ui — 500 NO
SVM classification (L —yf)s & D<oy <
SVM regression (lv—fl—e+ | o, —€lai] | |al < C

Table §.1: Some kernel machines used in practice. Function (z),; equals z when z > 0 and
zero otherwise. The coefficients cy; and the function § are introduced in Equations {6.13),
respectively.

It can be showns that the minimizer of (6.10) is unique and has the form

flz) = iaiK(x”:s). (6.13)
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The coefficients oy in Eq. (6.13) are learned by solving the optimization problem:

max, {zz’;, S(es) - 43", aiajm-j} (6.14)
where S(-) is a concave function whose form depends on ¢, and we used the shorthand

I for K{z,,z,). For SVM classification, S(a) = « if @ € [0, C] and infinite otherwise.
Here C' = 1/(2mA). Thus, SVMs sclve the following quadratic programming problem

max, {Z:l, e DI cv?ajK?j} (6.15)
subject to: 0 <, <C, it =1,...,m.
The points for which a, > 0 are called support vectors. They are those points for which
’yi.f(l‘i) =< 17,
In the case of the square loss, it can be easily verified that the coefficients ¢; solve
the linear system of equations
(K +xmlNa=y (6.16)

where y = (4,...,¥=) and, abusing notation, we denoted by K the m X m matrix
with elements K,; = K(z;,2;).

6.4.2 Leave-one-out error for the square loss

For regularization networks the o parameters are the solution of the linear system (6.16).
It is then possible to use standard linear algebra results to obtain the following lemma.

Lemma 1 Let f be the mingmizer of the functional in Eq.  (6.10), where we choose
€ to be the square loss and [7 the minimizer of the same functional when point i is

removed from the training set. Let B = K(K + A}, Then
i - yﬂ - f(xl)
f (:I:l) - l_ B@‘i '

The interesting feature of this result is that it allows an exact computation of the
leave-one-out error on the base of the solution obtained by training on the full dataset
only. The following theorem is an immediate consequence of the lemma.

Theorem 6 Under the same notation of Lemma I, the leave-one-out error of a requ-
larization network is

1 iowe LSS = fla)\?
EZ:: - fHz:)) =E;( 1 - B ) . (6-17)

When the training set is large, computing B;; may be time consuming. In this case
it is convenient to use the generalized cross-validation approximation [46)

2
- a2 Z(‘?_—QJ

1 m

For more information on generalized cross-validation see [46).

"In some special cases, which rarely occur in practice, it may happen that y; f(z;) = 1 and a; == 0.
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6.4.3 Bounds on the leave-one-out error and stability

When the loss function in Eq. (6.10) is different from the square loss, the leave-one-out
error cannot be computed on the base of the solution trained on the full training set
only. However, it is possible to derive an upper bound on the error which achieves this.
The derivation is based on the following lemma:

Lemma 2 (Zhang [49]) Suppose function S in (6.14) is concave. Let | be the solu-
tion of (6.14) and f* the solution of the same problem when point i is removed from

the training set. Then
ILf = il < laaf/ K (s, 2:)-

Now, property (6.12) implies that
| () = 1] < Joul K (s, 2:) (6.18)
This immediately gives:

Theorem 7 Under the same hypothesis of Lemma 2, the leave-one-outl error of a
kernel machine which solves problem ( 6.14)} is upper bounded as

%Zf(ﬁ(mi), Zmau\ E(f(2:) + poaK (i, 24), yi)-

)<

In porticuler, for bz’nary cia,sszﬁcatwn

1 i
—Za — i () Eaz (ol £ (2, ) — i f (%2)).

Similar results were derived in [24, 8] for classification. In this case, Jast inequality
says that a data point is counted as a leave-one-out error if it is either misclassified by f
or if by removing its contribution to f changes the sign of classification. For SVMs, the
number of leave-one-out errors is no more than the number of support vectors. However
if |0y | K (z:,2:) < 1, support vectors which are correctly classified are likely not to be
counted as leave-one-out errors. Thus, the leave-one-out error is cloge to the empirical
error if Ok <« 1, with 5 = sup_ K (x,#). In this case the SVM is stable. Since &' o 1/A,
increasing A increases stability. This is something we could expect, because the larger
A the smoother the solution. The following result makes this intuition precise.

Theorem 8 (Bousquet and Elisseeff [5]) The uniform stebility of a kernel ma-
chine w.r.t the loss function £ is bounded as

Ko

<
TN 2mA
where £ = sup,cy K(,2), and o is a constant such that |{f,y) — (g, y)| < olf —g|,
foreveryy € R and f,g € Hi.

Notice that the uniform stability of a kernel machines depends on how the regularization
parameter scales with m. If A is a constant, we have 3,, = O(1/m). Usually, however,
A decreases with m and the kernel machine is not stable. In this case averaging helps
to improve stability as we discussed. Some experiments which verify this effect are
presented in [2].
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6.5 The Use of the Leave-one-out Error in Other
Learning Problems

Leave-one-oui error is useful to study other learning problems than the standard clas-
sification and regression ones. This section analyzes two important cases in the context
of kernel-based learning algorithms.

6.5.1 Transduction

The transduction problem is discussed in [45]. Like in the supervised learning problem,
we collect a training set D, but our goal is now to compute only the cutputs of a finite
set X = {z},...,7p} C A (the unlabelled set). When the size of X is small this
problem can be significantly different form the standard learning problem. An extreme
case is X = {z’'}. In this case we only need to compute the optimal output of «’ as
opposed to the problem of computing a function with optimal average performance on
future data.

Let y' = (¥},...,7;) be the output variables of the unlabelled set. [9] proposes to
compute y' by minimizing the leave-one-out error of the set 7 = DU {{z}, ). .., (&},
;) }, which we denote by L(y'). [9] uses ridge regression with m + ¢ basis functions,
each being a Gaussian centered on a data in 7. An advantage of this approach is
that the leave-one-out error can be computed as in Eq. (6.17). Let y° be the outputs
assigned to the unlabeled set by means of standard ridge regression on the training set
D. We compute ¥y’ as to be the minimizer of

Ly + 4y - ¥'II?

where v is a positive parameter. The second term serves as a regularization term which
tends to favor solutions close to the standard ridge regression one. {9] validates this
method on two datasets showing an improvement w.r.t. standard ridge regression.

We remark that a related but different problem is that of learning from partially
labelled data. In this case the training set is formed of both labelled and unlabelled
data and the goal is to compute a function which minimizes the generalization error.
Such a system would be very useful in real applications where labelled data are an
expensive commaodity. A possibility would be to compute the outputs of the unlabelled
points as before and then to retrain on the extended training set.

6.5.2 Feature selection and rescaling

In feature selection and rescaling, an additional set of parameters ¢ is introduced which
multiplies the coordinate of & (we assume here &' = R") and the goal is to compute
the optimal value of these parameters. In feature selection ¢ € {0, 1}*, while in feature
rescaling o € IR"*. We focus on the second problemn. This alse serves as an intermediate
step to solve the first problem, since we can select the features whose computed scaling
parameters are larger than a threshold.

8] discusses feature rescaling with SVMs for binary classification. First the SVM is
trained on the initial data. Second, the scaling parameters are updated by performing
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a gradient step so that the leave-one-out error decreases. These two steps are then
repeated till a minimum of the leave-one-out error is reached (usually a stopping cri-
terion is used). An interesting finding of [8] was that rather simplified leave-one-out
error bounds are sufficient for computing a good solution. In particular the bounds
in Theorem 7 can be further upper bounded by R?|f|)%, where R? is the maximum
value of K(z,x) among the set of support vectors. This has also the advantage that
B?|[fll% can be differentiated exactly — see (8] for more details. [47) contains more
experiments on the feature selection problem. [21] discusses a similar feature selection
method which is applied to image classification problems.

Note that the leave-one-out bounds may be also useful to adapt,/build a kernel func-
tion in a way similar to the feature selection problem. For example the kernel function
could be a convex combination of some known kernel functions. The coefficients in
the convex combination could be computed by means of the algorithm above, with an
additional positivity constraint.

6.6 Discussion

We have reviewed existing results on the leave-one-out error in Machine Learning.
In particular we discussed attempts aimed at relating the leave-one-out error to the
generalization error. These attempts may or may not explain the success of the leave-
one-out error in practical problems, but we hope at least they will motivate further
studies on this interesting topic.

6.6.1 Sensitivity analysis, stability, and learning

Leave-one-out error and stability are a “specific” instance of the more general prob-
lem of studying how the solution of learning algorithm changes in response to some
perturbations of its parameters.

The leave-one-out perturbation consjsts in retmoving one point from the training set.
The results in Section 6.3 indicate that there is a general relation between the stability
of a learning algorithm and its generalization error. Qther kind of perturbations may be
important to better understand the properties of the learning algorithm, both statistical
and numerical. [34] studies how the SVM solution changes when the regularization
parameter is modified but it would be also interesting to know the sensitivity of the
solution w.r.t. modification of the outputs of the training points, kernel parameters,
ete..,

6.6.2 Open problems

We conclude with few open questions.

Question 1 {consistency of the leave-one-out error) We have seen that stabil-
ity considerations provide, for a fixed algorithm, sufficient conditions for the
Jeave-one-out error to tend to the generalization error. What are the general
necessary conditions? The answer would give interesting insights into which
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properties of an algorithm are required for its leave-one-out estimate to be close
to its generalization error.

Question 2 {empirical stability) Can we use the leave-one-out error to say some-
thing practical about stability? In particular, is the difference between the leave-
one-out error and the training error a good estimator of the “stability” of a
learning algorithm? An answer to this question would also help to apply the sta-
bility bounds to other learning algorithms such as neural networks and decision
trees where it seerns difficult to compute hypothesis stability.

Question 3 (stability and invariances) [s there a way to incorporate prior knowl-
edge via stability? For instance, would it help to add virtual inputs and to con-
strain the algorithm to be very stable on these new inputs, e.g. when one point
is removed from the training set, the algorithm should give the same output on
the virtual samples.
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Chapter 7

Regularized Least-Squares
Classification

Ryan Rifkin, Gene Yeo and Tomaso Poggio

Abstract. We consider the solution of binary classification problems via Tikhonov
regularization in a Reproducing Kernel Hilbert Space using the square loss, and
denote the resulting algorithm Regularized Least-Squares Classification (RLSC).
We sketch the historical developments that led to this algorithm, and demon-
strate empirically that its performance is equivalent to that of the well-known
Support Vector Machine on several datasets. Whereas training an SVM requires
solving a convex quadratic program, training RLSC requires only the solution
of a single system of linear equations. We discuss the computational tradeoffs
between RLSC and SVM, and explore the use of approximations to RLSC in sit-
ugtions where the full RLSC is too expensive. We also develop an elegant leave-
one-out bound for RLSC that exploits the geometry of the algorithm, making a
connection to recent work in algorithmic stability.
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7.1 Introduction

We assume that X and YV are two sets of random variables. We are given a train-
ing set S = (x,%),...,(Xs ye), consisting of ¢ independent identically distributed
samples drawn from the probability distribution on X’ x Y. The joint and conditional
probabilities over X and ¥ obey the following relation:

ple,y) = plyl) - plx)

I is crucial to note that we view the joint distribution p(z, ) as fixed but unknown,
since we are only given the ¢ examples.

In this chapter, we consider the n-dimensional binary classification problem, where
the £ training examples satisfy x; € R* and 3; € {—1, 1} for all i. Denoting the training
set by S, our goal is to learn a function fg that will generalize well on new exainples.
In particular, we would like

Pr(sgn(fs(x))) #y

to be as small as possible, where the probability is taken over the distribution X x Y,
and sgn(f(x)) denotes the sign of f(x). Put differently, we want to minimize the
expected risk, defined as

Leaplf] = /\__ yisgnu(z)mdps

where i, denotes an indicator function that evaluates to 1 when p is true and 0 oth-
erwise. Since we do not have access to p(x,y), we cannot minimize I.z,!f] directly.
We instead consider the empirical risk minimizalion problem, which involves the min-
imization of:

t
. 1 :
Iemp[f} = 7 Z Fsga(f(x )5y
=]

This problem is ill-defined, because we have not specified the set of functions that we
consider when minimizing fe.p[f]. If we require that the solution fs lie in a bounded
convex subset of a Reproducing Kernel Hilbert Space H defined by a positive definite
kernel function K [5, 6] {the norm of a function in this space is denoted by || f||x), the
regularized empirical risk minimization problem (also known as [vanov Regularization)
is well-defined:

g
. 1 _
min _ i 5
fseH |Ifslln=r € ; F(x)#y

For Ivanov regularization, we can derive (probabilistic) generalization error bounds
7] that bound the difference between I..,[fs] and Iemp|fs]; these bounds will depend
on H and R (in particular, on the VC-dimension of {f : f € H A ||fi|3 < R}) and
€. Since lenp[f) can be measured, this in turn allows us to (probabilistically) upper-
bound I..,[f]. The minimization of the (non-smooth, non-convex) 0-1 loss ¢s0x).4,
induces an NP-cornplete optimization problem, which motivates replacing tsgn(s(x))sy
with a smooth, convex Joss function V(y, f(x)), thereby making the problem well-posed
(1, 2, 3, 4]. If V upper bounds the 0-1 loss function, then the upper bound we derive
on any ., |fs] with respect to V' will also be an upper bound on {,,,[fs] with respect
to the 0-1 loss.
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In practice, although Ivanov regularization with a smooth loss function V is not
necessarily intractable, it is much simpler to solve instead the closely related (via
Lagrange multipliers) Tikhonov minimization problem

min ZV(ya, Fx)) + Al (7.1)

Whereas the Ivanov form minimizes the empirical risk subject to a bound on || fi[%,
the Tikhonov form smoothly trades off ||f]|3 and the empirical risk; this tradeoff
15 controlled by the regularization parameter A. Although the algorithm does not
explicitly include a bound on {| f]]%, using the fact that the all-0 function f(x) =0 € H,
we can easily show that the function f* that solves the Tikhonov regularization problem
satisfies || f||% < Z, where B is an upper hound on V(y,0), which will always exist
given that y € {— 1 ,1}. This allows us to immediately derive bounds for Tikhonov
regularization that have the same form as the original Ivanov bounds (with weaker
constants). Using the notion of uniform stability developed by Bousquet and Elisseef
(8], we can also more directly derive bounds that apply to Tikhonov regularization in
an RKHS.

For our purposes, there are two key facts about RIKHS's that allow us to greatly
simplify (7.1). The first is the Representer Theorem [9, 10], stating that, under very
general conditions on the loss function V', the solution f* to the Tikhonov regularization
problem can be written in the following form:

¢
fr(x) = Z e K (x, ),

i=1

The second is that, for functions in the above form,
If|[& = " Ke,

where K now denotes the ¢-by-¢ matrix whose (i, 7)’th entry is K(x,,x;).! The
Tikhonov regularization problem becomes the problem of finding the ¢;:

min Z Vi, Z K (%0, %)) + AeTKe. (7.2)

1=1

A specific learning scheme (algorithm) is now determined by the choice of the loss
function V. The most natural choice of loss function, from a pure learning theory
perspective, is the Lg or misclassification loss, but as mentioned previously, this results
in an intractable NP-complete optitnization problem. The Support Vector Machine [7)
arises by choosing V' to be the hinge loss

0 it yf(x) 2 1
1 —yf(x}) otherwise

Vi 600 = {

"This averloading of the term K to refer to both the kernel function and the kernel matrix is some-
what unfortunate, but the usage is clear from context, and the practice is standard in the literature.
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The Support Vector Machine leads to a convex quadratic programming problem in £
variables, and has been shown to provide very good performance in a wide range of
contexts.

In this chapter, we focus on the simple square-loss function

Vg, f(x) = (y = f(x))*. (7.3)

This choice seems very natural for regression problems, in which the y; are real-valued,
but at first glance seems a bit odd for classification — for examples in the positive class,
large positive predictions are almost as costly as large negative predictions. However,
we will see that empirically, this algorithm performs as well as the Support Vector
Machine, and in certain situations offers compelling practical advantages.

7.2 'The RLSC Algorithm

Substituting (7.3) into (7.2), and dividing by two for convenience, the RLSC problem
can be writien as:

¢
1 A
in £(c) = min — - Koy -K ZcTKe.
min £(c) min = §=l (v c) {y c)+ 5¢ Kce
This is a convex differentiable function, so we can find the minimizer simply by taking
the derivative with respect to ¢

VF, = %(y — Ke)' (—K) + AKc
= —%Ky + %K% + MKc.

The kernel matrix K is positive semidefinite, so VF, = 0 is a necessary and sufficient
condition for optimality of a candidate solution ¢. By multiplying through by K~ if
K is invertible, or reasoning that we only need a single sclution if X is not invertible,
the optimal K can be found by solving

(K + MI)c=y, (7.4)

where [ denotes an appropriately-sized identity matrix. We see that a Regularized
Least-Squares Classification problem can be solved by solving a single system of linear
equations.

Unlike the case of SVMs, there is no algorithmic reason to define the dual of this
problem. However, by deriving a dual, we can make some interesting connections. We
rewrite our problems as:

min =ET¢+ 2T Ke
subject to: Ke—y=¢
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We introduce a vector of dual variables u associated with the equality constraints,
and form the Lagrangian:

1 A
Lic,&,u) = 2_€€T£ + ECTKC —u'(Ke—y - ¢).
We want to minimize the Lagrangian with respect to ¢ and £, and maximize it with

respect to u. We can derive a “dual” by eliminating ¢ and £ from the problem. We
take the derivative with respect to each in turn, and set it equal to zero:

oL u

%=/\I(C—Ku=[} =— C=X (7.5)
oL 1
a—é—?fﬁ-u—(} == {=—fu (76)

Unsurprisingly, we see that both ¢ and ¢ are simply expressible in terms of the dual
variables u. Substituting these expressions into the Lagrangian, we arrive at the re-
duced Lagrangian

4 1
Lf () = ~2-uTu+—2—£uTKu-—uT(K§—y+€u)
_ _tr 1 7 T
= 2uu ‘ZAU Ku+u'y.

We are now faced with a differentiable concave maximization problem in u, and we
can find the maximum by setting the derivative with respect to u equal to zero:

VLE = —Eu—%Ku-a-y:(}:(K—i-/\fff)u:/\y.

After we solve for u, we can recover ¢ via Equation (7.5). It is trivial to check
that the resulting ¢ satisfies (7.4). While the exercise of deriving the dual may seem
somewhat pointless, its value will become clear in )ater sections, where it will allow us
to make several interesting connections.

7.3 Previous Work

The square loss function is an obvious choice for regression. Tikhonov and Arsenin
[3] and Schénberg [11] used least-squares regularization to restore well-posedness to
ill-posed regression problems. In 1988, Bertero, Poggio and Torre introduced regular-
ization in computer vision, making use of Reproducing Kernel Hilbert Space ideas [12].
In 1989, Girosi and Poggio {13, 14] introduced classification and regression techniques
with the gsquare loss in the field of supervised learning. They used pseudodifferential
operators as their stabilizers; these are essentially equivalent to using the norm in an
RKHS. In 1990, Waliba [4] considered square-loss regularization for regression problems
using the norm in a Reproducing Kerne] Hilbert Space as a stabilizer.

More recently, Fung and Mangasarian considered Proxmmal Support Vector Ma-
chines {15]. This algorithm is essentially identical to RLSC in the case of the linear
kernel, although the derivation is very different: Fung and Mangasarian begin with
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the SVM formulation (with an unregularized bias term b, as is standard for SVMs),
then modify the problem by penalizing the bias term and changing the inequalities to
equalities. They arrive at a system of linear equations that is identical to RLSC up to
sign changes, but they define the right-hand-side to be a vector of all 1's, which some-
what complicates the intuition. In the nonlinear case, instead of penalizing ¢” K¢, they
penalize ¢’ ¢ directly, which leads to a substantially more complicated algorithm. For
linear RLSC where n << £, they show how to use the Sherman-Morrison-Woodbury
to solve the problem rapidly (see Section 7.4).

Suykens also uses the square loss in his Least-Squares Support Vector Machines [16],
but allows the unregularized free bias term & to remain, leading to a slightly different
optimization problem.

We chose a new name for this old algorithm, Regularized Least-Squares Classifica-
tion, to emphasize both the key connection with regularization, and the fact RLSC is
not a standard Support Vector Machine in the sense that there is no sparsity in the ¢
vector. The connection between RLSC and SVM is that both are instances of Tikhonov
regularization, with different choices of the loss function V.

7.4 RLSC vs. SVM

Whereas training an SVM requires solving a convex quadratic program, training RLSC
requires only the solution of a single system of linear equations, which is conceptually
much simpler. However, this does not necessarily mean that training RLSC is faster. To
solve a general, nonlinear RLSC problem, we must first compute the K matrix, which
requires time O(¢%r) and space O(¢2).2 We must then solve the linear system, which
requires O({*) operations. The constants associated with the O notation in RLSC are
small and easily measured. The resource requirements of the SVM are not nearly so
amenable to simple analysis. [n general, convex quadratic programming problems are
solvable in polynomial time {17], but the bounds are not tight enough to be practically
useful. Empirically, Joachims [18] has observed a scaling of approximately O(f*!),
although this ignores the dependence on the dimensiconality n. Modern SVM algorithms
are not amenable to direct formal analysis, and depend on a complex tradeoff between
the number of data points, the number of Support Vectors, and the amount of memory
available. However, as a rule of thumb, for large nonlinear problems, we expect the
SVM to be much more tractable than the direct approach to the RLSC problem. In
particular, for large problems, we can often solve the SVM problem in less time than
it takes to compute every entry in K. Furthermore, if we do not have O(¢%) memory
available to store K, we cannot solve the RLSC problem at all via direct methods (we
can still solve it using conjugate gradient methods, recomputing the kernel matrix X
at every iteration, but this will be intractably slow for large problems). Even if we do
manage to train the RLSC system, using the resulting function at test time will be
much slower — for RLSC, we will have to compute all £ kernel products of training
points with a new test point, whereas for SVM, we will only have to compute the kernel
products with the support vectors, which are usually a small fraction of the training set.

2We make the assumption (satished by all frequently used kernel functions) that computing a single
kernel product takes O(n) operaticns.
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In Section 7.6, we consider various approximations to the RLSC problem [19, 20, 21],
but whether these approximations allow us to recover a high quality solution using an
amount of time and memory equivalent to the SVM is an intriguing open question.

In the case of linear RLSC, the situation is very different. If we place our data in
the £-by-n matrix A, (7.4) becomes

(AAT + MDD =y.

If n << €, we can solve the problem in O(n*) operations using either the Sherman-
Morrison-Woodbury formula [15] or a product-form Cholesky factorization (suggested
by Fine and Scheinberg in the context of interior point methods for SVMs [22]); the
essential observation is that we can transform the rank ¢ problem into a rank n problem.
If n is small compared to £, this leads to a huge savings in computational cost. If » is
large compared to £, this technique is not helpful in general. However, in the important
subcase where the data points are sparse (have very few nonzero elements per vector),
for example in the case of a text categorization task, we can still solve the problem
very rapidly using the Conjugate Gradient algorithm [23]. In particular, an explicit
representation of (AAT + MeI), which would require O(£%) storage, is not required —
instead, we can formn a matrix-vector product (AA” 4+ A¢I)x in O({7) operations, where
71 is the average number of nonzero entries per data point by first cormnputing i = (A)x
and t = ATx, then using
(AAT + MI)x = At +1.

As an example of the speed advantages offered by this technique, we compared SVMs
and RLSCs trained using the Conjugate Gradient approach on the 20newsgroups data
set (described in Section 7.5 below) containing 15,935 data points. It tocok 10,045
seconds (on a Pentium [V running at 1.5 GhZ) to train 20 one-vs-all SVMs, and only
1,309 seconds to train the equivalent RLSC classifiers.®. At test time, both SVM and
RLSC yield a linear hyperplane, so testing times are equivalent.

1t is also worth noting that the same technicques that can be used to train linear
RLSC systems very quickly can be used to train linear SVMs quickly as well. Using
an interior point approach to the quadratic optimization problem [22], we can solve
the SVM training problem as a sequence of linear systems of the form (K + dl)x = b,
where d changes with each iteration. Each system can be solved using the techniques
discussed above. In this case, the RLSC system will be faster than the SVM system by
a factor of the number of systems the SVM has to solve (as the RLSC approach only
needs to solve a single system); whether this approach to linear SVM will be faster
than the current approaches is an open question.

7.5 Empirical Performance of RLSC

Fung and Mangasarian |15] perform numerous experiments on benchmark datasets
from the UCI Machine Learning Repository [24], and conclude that RLSC performs as
well as SVMs. We consider two additional, large-scale examples. The first example is

3The SVMs were trained using the highly-optimized SymFu system (http://fpn.mit.edun/SvmFu),
and kernel products were stared between different 3VMs. The RLSC code was written in Matlab.
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Figure 7.1: ROC curves for SVM and RLSC on the usps dataset.

800 250 109 30
SVM | RLSC || SVM | RLSC || SVM | RLSC || SVM | RLSC
OVA 0,131 | 0,129 | 0.167 | 0.165 || 0.214 | 0.211 | 0.311 | 0.309
BCH 63 | 0.125 | 0.129 | &.164 | 0.165 || 0.213 | 0.213 || 0.312 | 0.316

Table 7.1: A comparison of SVM and RLSC accuracy on the 20newsgroups multiclass
classification task. The top row indicates the number of documents/class used for training.
The left column indicates the multiclass classification scheme. Entries in the table are the
fraction of misclassified documents.

the US Postal Service handwritten database (referred to here as usps), consisting of
7,291 training and 2,007 testing points; the task we consider is to discriminate images
of the digit “4" from images of other digits. We first optimized the parameters (C and
o) for the SVM, then optimized the A parameter of RLSC using the same o (¢ = 5).
In Figure 7.1, we see that the full RLSC performed as well or better than the full SVM
across the entire range of the ROC curve.

The second example is a pair of multiclass text categorization tasks, referred to
as 20Newsgroups and Sector105. Rennie and Rifkin {25] used Linear SVMs on these
datasets, using hoth a one-vs-all and a BCH coding scheme for combining the binary
classifiers into a multiclass classification system, obtaining the hest published results
on both datasets. The datasets were split into nested training and testing sets 10 tirnes;
details of the preprocessing scheme are available in [25]. Rifkin [21] used linear RLSC
with A = 1 (sclved using Conjugate Gradient) instead of SVMs; the experimental
setup is otherwise identical. Tables 7.1 and 7.2 give the average accuracy of the SVM
and RLSC schemes, for differing numbers of training documents per class. [n all cases,
the accuracy of the RLSC scheme is essentially identical to that of the SVM scheme;
we note again that these results are better than all previously published results on
these datasets. Given that linear RLSC can be trained very fast, it seems that linear
RLSC shows great promise as a method of choice for very large-scale text categorization
problems.
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52 20 10 3
SVM | RLSC | SVM | RLSC || SVM | RL5C || SVM | RLSC
OVA 0.072 | 0.066 || 0.176 | 0.169 || 0.341 | 0.335 || 0.650 | 0.648
BCH 63 | 0.067 | 0.069 | 0.176 | 0.178 || (343 | 0.344 |[ 0.653 | 0.654

Table 7.2: A comparison of SVM and RLSC accuracy on the sector105 multiclass classifi-
cation task. The top row indicates the number of documents/class used for training. The left
column indicates the multiclass classification scheme. Entries in the table are the fraction of
misclassified documents.

7.6 Approximations to the RLSC Algorithm

Although the RLSC algorithm is conceptually simple and yields high accuracy, for
general nonlinear classification, it is often many orders of magnitude slower than an
SVM. For this reascen, we explore here the idea of solving approximations to RLSC.
Hopefully, these approximations will yield a vast increase in speed with very little loss
in accuracy.

Several authors have suggested the use of low-rank approximations to the kernel
matrix in order to avoid explicit storage of the entire kernel matrix [19, 26, 20, 27, 22].
These techniques can be used in a variety of methods, including Regularized Least
Squares Classification, Gaussian Process regression and classification, and interior point
approaches to Support Vector Machines.

The approaches all rely on choosing a subset of m of the trainiug points (or a subset
of size m, abusing notation slightly) representing those points exactly in the Hilbert
space, and representing the remaining points approximately as a linear combination of
the points in m. The methods differ in the approach to choosing the subset, and in
the matrix math used to represent the hypothesis. Both Smola and Schélkopf {19} and
Williams and Seeger [20] suggest the use of the approximate kernel matrix

K = Kon K7L Koe.

The assumption is that m is small encugh so that Koy, is invertible. [f we uge amethod
that does not need the entries of X, but only needs fo multiply vectors by K we can
form the matrix-vector produce by taking advantage of the K's representation as three
separate matrices:

Kx = (K@l Kmo)x
= (KoK (I mex))).

This approximation is known as the Nystrom epprozimetion and is justified the-
oretically in [20]. If we approximate the kernel matrix using a subset of size m, we
can show that we are actually approximating the first m eigenfunctions of the integral
operator induced by the kernel {evaluated at all the data points). The quality of this
approximation will of course depend on the rate of decay of the eigenvalues of the
kernel matrix.

The two sets of authors differ in their suggestions as to how to choose the subset.
Williams and Seeger simply pick their subset randomly. Smola and Scholkopf suggest
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a number of greedy approximation methods that iteratively reduce some measure of
the difference between K and K, such as the trace of X — K. They also suggest
approximations to the full greedy approach in order to speed up their method. However,
all their methods are likely to involve computing nearly all of the entries of K over the
course of their operation (for reasonable subset sizes), implying that forming a matrix
approximation in this manner will already be slower than training an SVM.

It is easy to show that (however m is selected) X has the property that Konm = Ko,
f(m_g = Ky, andb(trivially by symmetry) I?gm = ¢ In other words, the approximated
kernel product K (xy,x2) for a pair of examples x7 and x; will be exact if either of x;
or xp are in m. It is also easy to show that K, = K, K} Ko

Inverting the matrix K explicitly takes O(m?) steps formally, and in practice,
performing the inversion may be ill-conditioned, so this approach dces not not seem {o
be a good choice for real-world applications.

Fine and Scheinberg [22] instead suggest the use of an incomplete Cholesky factor-
ization. Noting that a positive semidefinite kernel matrix can always be represented
as K = RTR where R is an upper-triangular matrix, the incomplete Cholesky factor-
ization is formed by using only the first m rows of R. Fine and Scheinberg cleverly
choose the subset on the fly — at each iteration, they pivot a pair of rows of the matrix
so that the largest diagonal element becomes the next element in the subset. The total
running time of their approach is only Q(rnk?®).* In terms of the feature space, this
pivoting technique is equivalent to, at each step, adding to the subset the data point
which is most poorly represented by the current subset. Although the final matrix
contains only 1 nonzero rows, it is still upper-triangular, and we write

-

K =RLR,.

However, there is a serious problem with this approach. Although Fine and Schein-
berg claim that their method “takes the full advantage of the greedy approach for for
the best reduction in the approximation bound tr{AQ)”, this is not the case, To reduce
the approximation bound, we need to consider which element not in the bhasis will best
represent (the currently unrepresented portion of) all remaining non-basis elements.
This is what Smola and Schélkopf attempt in [19], at too large a computational cost.
The Fine and Scheinberg approach, in contrast, adds to the basis the element which
is most poorly represented by the current basis elements. If we believe that the trace
of K — K is a useful measure of the quality of the approximation, this turns out to
be a very poor choice, at Jeast for Gaussian kernels. In particular, on two different
datasets (see Section 7.6.2), we find that the portion of the trace accounted for by
the Fine and Scheinberg approximation is consistently smaller than the portion of the
trace accounted for by selecting the subset at random. This is not too hard to explain.
Because the Fine and Scheinberg approach adds the most poorly represented element
to the basis, under the Gaussian kernel, it will tend to add outliers — data points that
are far from any other data point. The trace would be reduced much more by adding
elements which are not as far away, but which are themselves close to a large number

*We have not formally defined “operations” (is a multiplication more expensive than an addition
or a memory access?), but it is clear that the constant involved in this approach is small compared to
the methods suggested in [19].
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of additional points. Speaking informally, we want to add the points which are centers
of clusters to the basis, not point which are outliers.

We now consider the use of a low-rank approximation, obtained by any of the above
means, in RLSC,

7.6.1 Low-rank approximations for RLSC

The most obvious approach (and indeed, the one suggested in [20] in the context
of Gaussian process classification and [22] in the context of Support Vector Machine
classification) is to sitnply use the matrix K in place of the original K, resulting in the
system of linear equations:

(K +MI)=y.

These equations can be solved using the conjugate gradient method, taking ad-
vantage of the factorization of K to avoid having to store an &by-f matrix. From a
machine learning standpoint, this approach consists of taking a subset of the points,
estimating the kernel values at the remaining points, then treating the estimate as
correct and solving the original problem over all the data points. In practice, we found
that this worked quite poorly, because the matrix eigenvalues do not decay sufficiently
quickly {see Section 7.6.2).

Instead, we consider the following modified algorithm, alluded to (among other
places) in {19). We minimize the empirical risk over all points, but allow the ¢, to
be nonzero only at a specific subset of the points (identical to the points used in the
low-rank kernel approximation). This leads to the following modified problem:

min F(Cm)
. 1 .
1 ) A
= Mine,erm 55 ( Y = 2y KinCon + €' Kint Kn€) + 50" K.

We take the derivative with respect to ¢, and set it equal to zero:

1
Vch = E (I{mﬁy + K'mfjgfmcm) + )‘I(mmcm =0

= (KuneKem + KpmAl)Cm = Koy,

We see that when we only allow a subset of size m points to have nonzero coeflicients
in the expansion, we can solve a m hy m system of equations rather than an (-by-¢
system. As with the standard full RLSC, we were able to find the system of equations
that defines the optimal solution by setting the derivative equal to zero. Again, suppose
for the sake of argument we decide to derive a “dual” problem. We introduce a vector
of dusl variables u — it is important to note that this vector is of length £, not m. We
form the Lagrangian:

1 A
L(cmaéf ll) = 9_8 Tg + gcm(r[(mmcm — uT([(EmCm —¥Y - g)
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We take the derivative with respect to &:

ar 1

== (= —{u

We take the derivative with respect to c,:

L
BBT = M mCm — Kppu =10
1
= Cm = XK;:RKme-

Substituting these equations into L, we reduce the Lagrangian to:

L{u)
{ 7 1w . .. I ¢ R T T
= zuu+ T Ko Ky K omel — e KK pplimeu+u'y —fu'u
{ 1 ~ 1 o
= §uTu + ﬁuTKu - XuTKu +u’y —fu'u
£ i ~
= —§uTu - ﬁuTKu +ua’y.

Setting the derivative to zero yields

oL -
%——CU—X}'\U-}-Y—U

= (K+XMIHu=)\y

It we solve this system for 3, we are solving exactly the same system of equations as
if we had used the Nystrom approzimation ot the subset m directly. However, in order
to find the optimal solution, we need to recover the vector ¢, using the equation

1

K Ko, (7.7)

Cm =

To summarize, we suggest that instead of using the matrix K directly in place of
K, we consider a modified problem in which we require our function to be expressed in
terms of the points in the subset m. This leads to an algorithm that doesn’t directly
involve Iﬂx;, but uses only the component matrices K, ., K¢ and K. Although it is
not strictly necessary, we can take the Lagrangian dual of this problem, at which point
we solve a system that js identical to the original, full RLSC problem with K replaced
with K. However, we do not use the resulting u vector directly, instead recovering the
¢m by means of (7.7).

7.6.2 Nonlinear RLSC application: image classification

To test the ideas discussed above, we compare various approaches to nonlinear RLSC
on two different datasets. The first dataset is the US Postal Service handwritten



Regularized Least-Squares Classification 143

database, used in |20] and communicated to us by the authors, and referred to here
as usps. This dataset consists of 7,291 training and 2,007 testing points; the task we
consider is to discriminate images of the digit “4” from images of other digits. The
training set contains 6,639 negative examples and 652 positive examples. The testing
set contains 1,807 negative examples and 200 positive example. The second data set
is a face recognition data set that has been used numerous times at the Center for
Biological and Computational Learning at MIT [28, 29}, referred to here as faces.
The training set containg 2,429 faces and 4,548 non-faces. The testing set contains 472
faces and 23,573 non-faces.

Although RLSC on the entire dataset will produce results essentially equivalent to
those of the SVM [21], they will be substantially slower. We therefore turn to the
question of whether an approzimation to RLSC results can produce results as good as
the full RLSC algorithm. We consider three different approximation methods. The
first methed, which we call subset, involves merely selecting (at random) a subset of
the points, and solving a reduced RLSC problem on only these points. The second
method, which we call rectangle, is the primary algorithm discussed in Section 7.6.1:
we choose a subset of the points, allow only those points to have nonzero coefficients in
the function expansion, but minimize the loss over all points simultaneously. The third
method is the Nystrém method, also discussed briefly in Section 7.6.1 and presented
more extensively in [20] (and in a slightly different context in {22}): in this method
we choose a subset of the points, use those points to approximate the entire kernel
matrix, and then solve the full problem using this approximate kernel matrix. In all
experiments, we try four different subset sizes (1,024, 512, 256, and 128 for the usps
dataset, and 1,000, 500, 250 and 125 for the faces dataset), and the results presented
are the average of ten independent runs.

The results for the usps data set are given in Figure 7.2. We see that rectangle
performs best, followed by subset, followed by nystrom. We suggest in passing that the
extremely good results reported for nystrom in [20] may be a consequence of looking
only at the error rate (no ROC curves are provided) for a problem with a highly
skewed distribution (1,807 negative examples, 200 positive examples). For rectangle
performance is very good at both the 1,024 and 512 sizes, but degrades noticeably for
256 samples. The results for the faces dataset, shown in Figure 7.3, paint a very
similar picture. Note that the overall accuracy rates are much lower for this dataset,
which contains many difficult test examples.

In all the experiments described so far, the subset of points was selected at ran-
dom. Fine and Scheinberg |22] suggests selecting the points iteratively using an optimal
greedy heuristic: at each point, the example is selected which will minimize the trace
of the difference between the approximate matrix and the true matrix. Because the
method simply amounts to running an incomplete Cholesky factorization for some
number of steps (with pivoting at each step), we ca\lﬂli this method ic. As mentioned
earlier, if we believe that smaller values of tr{ X" — K) are indicative of a better ap-
proximation, this method appears to produce a worse approximation than choosing
the subset at random (see Figure 7.4 and Figure 7.5). As peinted out by Scheinberg in
personal communication, a smaller value of tr(K — !?) is not necessarily indicative of
a better matrix for learning, so we conducted experiments comparing ic to choosing
a subset of the data at random randomly. Figure 7.6 shows the results for the usps
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data, and Figure 7.7 shows the results for the faces data. In all these experiments,
we compare the average performance of the ten classifiers trained on a random subset
to the performance of a single classifier trained on the subset of the same size obtained
using the ic method. In these experiments, it does not seem that selecting the “opti-
mal” subset using the ic method improves performance on learning problems. In the
interests of computational efficiency, we may be better oft simply choosing a random
subset of the data.

The experiments contained in this section are somewhat preliminary. In particular,
although using subsets of size 128 is faster than running the SVM, using subsets of size
1024 are already slower. Further experiments in which both techniques are optimized
more thoroughly are necessary to fully answer the question of whether these approxi-
mations represent a viable approach to solving large-scale optimization problems.

7.7 Leave-one-out Bounds for RLSC

Leave-one-out bounds allow us to estimate the generalization error of a learning system
when we do not have access to an independent test set. In this section, we define fg to
be the function obtained when the entire data set is used, and fg. to be the function
ebtained when the ith data point is removed and the remaining £ — 1 points are used.
We use G to denote (K + Al)~'. Classical results (for example see [30]) yield the
following exact computation of the leave-one-out value:

Y — fS(xi) .

i — fsx) = 1 —
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Unfortunately, using this equation requires access to the inverse matrix ¢, which is
often computationalty intractable and numerically unstable.

An alternative approach, introduced by Craven and Wahba [31], is known as the
generalized approsimete cross-volidation, or GACV for short. Instead of actually using
the entries of the inverse matrix G directly, an approximation to the leave-one-out
value is made using the troce of G-

, = fs(xs)

Wi fS'(xl)’” l—%tr(G)

This approach, while being only an approximation rather than an exact calenlation,
has an important advantage. The trace of a matrix is the sum of its eigenvalues. If
the eigenvalues of /' are known, the eigenvalues of G can be computed easily for any
value of A, and we can then easily select the value of A which minimizes the leave-one-
out bound. Unfortunately, cornputing all the eigenvalues of K is in general much too
expensive, so again, this technique is not practical for large problems.

Jaakkola and Haussler introduced an interesting class of simple leave-one-bounds
[32] for kerne! classifiers. In words, their bound says that if a given training point x can
be classified correctly by fs withoul using the contribution of x to fg, then X cannot
be a leave-one-out error — fg.(x;) > 0. Although the Jaskkola and Haussler bound
does not apply directly to RLSC (because the ¢; are not sign-constrained), Rifkin [21]
showed that their bound is valid for RLSC via a slightly more involved proof, and that
the number of leave-one-out errors is bounded by

|x; : y;chK(x,-,xj) <0
i
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This bound can be computed directly given the ¢;; no retraining is required. The
same bound holds for SVMs (without an unregularized & term), via the Jaakkola and
Haussler proof. However, there is a simple geometric condition in RLSC that allows
us to provide a more elegant hound.

Using (7.5) and (7.6), we see that

61 = —i’)\c?-.

Cormbining this with the definition of the &;,

&= f(x«i) '/
we find that

o ¥ - f{xi)

i £A '

Using this, we can eliminate ¢; from the bound, arriving at

i g (f(xs-) - (y}—ﬁ("“)) K(x, m)) <0

— b (04 T 1) - Lok ) < 0

Suppesing y; = 1, for some ¢, the condition reduces to

K(xi,%,) 1

el et ek 7 « Ly
N\ )f(xi) Y I{(x‘” X1,)

_ }((X.g,){g)
= &) s R )

(1+

Reasoning similarly for the case where 4, = —1, we find that we can bound the number
of leave-one-out errors for RL3C via

K(xi,xi)

L IX S-—-—-———-—-—-——
Iyl ) S e ST i

In this form, there is a nice connection to the recent algorithmic stability work of
Bousquet and Elisseef [8], where it is shown that Tikhonov regularization algorithms
have “stability” of O(CI—A) — very loosely, that when a single data point is removed from
the training set, the change in the function obtained is O(5;). For RLSC, we are able
to exploit the geometry of the problem to obtain a leave-one-out bound that directly
mirrors the stability theory results.
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Chapter 8

Support Vector Machines: Least
Squares Approaches and Extensions

Johan A.K. Suykens, Tony Van Gestel, Jos De Brabanter,

Bart De Moor and Joos Vandewalle!

Abstract. Support Vector Machines (SVMs) is a powerful methodology for non-
linear classification, function estimation and density estimation. However, due
to its non-parametric natwre, the original SYM methodology is more difficult to
extend to other problem settings than e.g. classical multjlayer perceptrons. In
this Chapter we give a short overview on Least Squares SVMs {L3-SVMs) and
demonstrate how several extensions are possible. LS-5VMs for classification and
function estimation are closely related to kernel Fisher discriminant analysis, reg-
ularization networks and Gaussian processes, and aim at exploiting primal-dual
formulations from the viewpoint of optimization theory. A Bayesian framework
with three levels of inference is developed together with ways for achieving sparse-
ness and robustness. The framework with primal-dual support vector machine
formulations is extended to kernel-PCA, -CCA, -PLS, recurrent networks and
optimal control. For very large scale probleras, on-line learning and transductive
inference, a method of fixed-size L5-SVM is proposed which allows modelling
in the primal and the dual space in relation to a Nystrom approximation with
active selection of support vectors and leads to sparse representations.

'Research supported by Research Council KUL: GOA-Mefisto 666, IDO (IOTA encology, genetic
networks), several PhD/postdoc & fellow grants; Flemish Government: FWO: PhbD/postdoc grants,
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ear algebra), (G.0080.01 (collective intelligence), G.0413,03 (inference in bioi), G.0388,03 (microarrays
for clinical yse), G.0229.03 (ontologies in bioi), G.0187.02 (power islands), G.0141.03 (identification
and cryptography), G.0491.03 (control for intensive care glycemia), G.0120.03 (QIT), research com-
munities (ICCoS, ANMMM); AWIl: Bil. Int. Collaboration Hungary, Peland, South Africa; IWT:
PhD Grants, STWW-Genprom (gene promotor prediction), GBOU-McKnow (knowledge manage-
rment algerithms), GBOU-SQUAD {quorum sensing), GBOU-ANA (biosensors); Softds (softsensors)
Belgian Federal Government: DWT'C (IUAP TV-02 (1996-2001) and TUAP V-22 (2002-2006); PODO-
I1 (CP/40: TMS and sustzinibility); EU: CAGE; ERNSI; Eurelm 2063-IMPACT; Eurela 2419-FIiTE;
Coniract Research/agreements: Datads, Electrabel, Ela, LMS, IPCOS, VIB; JS is a professor at
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8.1 Introduction

In recent years considerable progress has been made in kernel based learning methods,
after the introduction of Support Vector Machines {SVMSs) [5, 30, 42, 43]. Up till now
standard SVMs as proposed by Vapuik have been mainly developed for classification,
nonlinear function estimation and density estimation. Interesting features of SVMs are
sparse approximation by solving convex optimization problems and the primal-dual op-
timization problem formulations with use of Mercer’s theorem. Furthermore, the use
of the kernel trick (i.e. application of the Mercer theorem), has also been demonstrated
for other problems such as principal component analysis and clustering [28, 29, 30]. In
this way, the investigated models and methods have become important for the areas of
neural networks, machine learning, pattern recognition, signal processing, datamining,
systems and control with aspects relevant to mathematics, linear algebra, optimization
and statistics. An interesting new aspect of SVM methods in relation to many classical
methods is for example that the models are able to learn and generalize in huge di-
mensional input spaces which is important e.g. for novel applications in bioinformatics
and textmining.

On the other hand, classical neural network methodologies such as multilayer per-
ceptrons (MLP) [3] are currently still more flexible as a general plug-in solution thanks
to the parametric nature of the model. For MLPs it is straightforward to parameterize
classifiers, static nonlinear models, recurrent networks, unsupervised learning methods,
controllers etc. SVM methods have often outperformed many other techniques but on
the other hand it is mainly restricted to classification and static function estimation
problems. For this purpose, least squares approaches are explored with the following
motivations:

s Formulating SVM methods in terms of least squares cost functions and with
equality constraints instead of inequality constraints usually leads to solving lin-
ear systems. Such problems are better understood from a theoretical, algorithmi-
cal and numerical peint of view than sclving quadratic programming problems.
in view of interior point algorithms the obtained KKT systems can be consid-
ered as a core problem. Towards adaptive signal processing applications recursive
least squares algorithms are well understeod, e.g. in relation to Kalman filtering
techniques.

e In terms of the simpler formulations it may become easier to understand the
links between the new generation of 3VM techniques and the related methods in
different areas within the wide interdisciplinary context.

» It is shown that several extensions to the standard SVM formulations are possible
in terms of least squares such as for PCA, PCR, PLS, CCA analysis problems
and recurrent networks and control. In these formulations the primal-dual SVM
optimization problem interpretations remain preserved. In general this leads to
a new avenue of primal-dual modelling thinking where, for a given problem at
hand, one may either solve the primal or the dual preblem. The dual space is
interesting for large dimensional inputs (e.g. classification of microarray data in
bioinformatics), while the primal space can be interesting for a Jarge number of
training data {e.g. large scale datamining problems).
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Figure B.1: LS-SVMs are closely related to regularization networks, Gaussian processes,
kriging and kernel ridge regression. The emphasis in the LS-SVM ‘languege’ is on pritnal-
dual optimization problem formulations as in standard SVMs.

In this chapter, we give an overview of developments in least squares support vector
machines (LS-SVMs). In the function estimation case the solutions are mathematically
equivalent to regularization networks and Gaussian processes (but it is more straight-
forward to handle bias terms in the model). The emphasis in LS-SVM models is on
the primal-dual interpretations as for standard SVMs (Fig. 8.1). The classifier for-
mulation is closely related to a kernel version of Fisher discriminant analysis. The
use of least squares may have potential drawbacks such as the lack of sparseness and
the robustness with respect to outliers or non-Gaussian noise distributions. Several
ways are mentioned to overcome these drawbacks, such as the application of pruning
techniques and the incorporation of methods from robust statistics. Probabilistic in-
terpretations of the models are made within a Bayesian framework with three levels
of inference. In the primal space, SVM models can be viewed as parametric (size of
unknown vector is fixed) while in the dual space it becomes non-parametric (size of
solution vector grows with the number of data). At the different levels of inference,
one considers the unknown weights in the primal probtem, next the hyperparameters
and finally the tuning pararneters of the kernel. Furthermore, support vector machine
formulations are shown for PCA and CCA analysis and their kernel versions. Besides
these extensions also recurrent versions of L5-SVMs have heen formulated and use in
optitmal control. For very large scale problems and adaptive learning a method of fixed
size LS-SVM has been proposed which makes use of the Nystrém method with active
selection of support vectors. Further details can be found in [33].
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8.2 Least Squares SVMs for Classification and Func-
tion Estimation

8.2.1 LS-SVM classifiers and link with kernel FDA

Consider a given training set {zy, )i, with input data z;, € R" and output data
with class labels 3, € {—1,+1}. The standard nonlinear SVM classifier [42] which
takes the form

y(x) = sign [w” () + b] (8.1)

in the primal space with (-): R® — K" where n, is the dimension of the (potentially
infinite dimensional) feature space, and is determined by the optimization problem

: JIl]Il Je(w, &) = —w w~|-cZ§;C
Such that Ui [w L,?(ﬂ?;_) -i- b} >1=&, k=1,.,.N
& >0, k=1,.,N

(8.2)

where £ are slack variables needed for tolerating misclassifications. In the objective
function one penalizes the maximization of the soft-margin (by minimization of the
regularization term) with respect to the sum of these slack variables, subject to the
set of inequalities for correct classification of the training data, except for an amount
of misclassified points determined by tuning parameter ¢. One solves then the dual
problem in the unknown Lagrange multipliers associated to this problem.

For least squares support vector machine classifiers [34] this is reformulated into

N
1 1
‘:I mm Jp w, e} = awT’w 75 Zei
N “ k=1 (8.3)

such that Ui [wrt,o(xk) + b] =l—-e, k=1,...,N

where the set of inequalities are replaced by equalities. Instead of considering the value
1 as a threshold value, it is taken as a target value upon which an error variable is
considered which is penalized in a least squares sense within the cost function with
regularization constant 7.

The Lagrangian for the problem is

N
L{w,b,e;a) = Jplw,e) — Zak{yk [nga(:r:;;) + b} —1+ex} (8.4)

e |

where the ay values are the Lagrange multipliers, which can be positive or negative
due to the equality constraints.
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The conditions for optimality yield

s

N
£-0 - w:Zcxkyktp(:ck)
k=)
N
% %%20 — Zakyk':[} (8.5)
Jo=
gTi:O - ap = ey, k=1 .,N
L %:0 - y;-[ngo(a:k)+b]—1+ek:0, k=1, ,N.

Defining y = fy; ..; yn), 1o = [1;..11], e = [e; ...;en], @ = [ay;...;an] and eliminating
w, €, one obtains the following linear Karush-Kuhn-Tucker (KKT) system

@: solve in a, b:
o] _ [
al |1,

0| 47
y | Q+1/y

where Qu = yi K (24, 2¢) for ki =1, ..., N and K(zx, 71) = p(z1)  p(2) is a positive

definite kernel, according to the Mercer theorem. In the dual space the classifier takes

the form

(3.6)

N

y(z) = sign [Z apy K (2, z8) + b

k=1

(8.7)

where «, b follows from solving the linear system. Any positive definite kernel can
be taken such as e.g. the linear kernel K{zy,x;) = :a:g:r.; and RBF kernel K(xx,x;) =
exp(— |z — @3/,

For a larger number of data points, iterative methods such as Conjugate Gradient.
(CG) algorithms [11] can be applied for solving the linear system. Due to the fact
that a bias term is considered in the model, the linear system matrix i1s indefinite.
However, it is straightforward to transform it into a positive definite system such that
CG algorithms can be applied to it [33. 39]. Also SMO optimization has been developed
for LS-SVM classifiers [47]. LS-SVM classifiers have been successfully tested on 20 UCI
(binary and multiclass) benchmark data sets. The method consistently performs very
well in comparison with many other methods on all these data sets and its performance
is comparable to the standard SVM performance.

SVM models have neural network interpretations both in the primal and the dual
space. In the primal space the problem is essentially parametric, while in the dual
space it becomes non-parametric because the size of the solution vector o grows with
the number of data points (Fig. 8.2). In this LS-SVM formulation, every data point
is a support vector but some points contribute more than others as follows from the
conditions for optimality with ay = ~vep. For standard SVMs the support vectors are
typically located close to the decision boundary, while in the LS-SVM case the points
with large [oy,| values are located close and far from the decision boundary.

The L3-SVM classifier formulation can be related to a kernel version of Fisher
Discriminant Analysis (FDA) [2, 23, 40]. In linear FDA the data are projected as
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Figure 8.2: Primal-dual neural network interpretations of support vector machines.

follows
z=w'2w+b (8.8)

where w is determined by optimizing the Rayleigh quotient

w Spw

max Jep(w) = ————o
w ( wT Sy

(8.9)

with 2p, 2y the between class and within c¢lass covariance matrix, respectively. In
the dual space, the kernel FDA version with Fisher target *1 is closely related to the
LS5-SVM classifier solution.
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Figure 8.3: Pruning techniques as a simple method for imposing sparseness in LS-SVM
models.

8.2.2 Function estimation case and equivalence to a regular-
ization network solution

The L5-SVM function estimation formulation is given by

h]'

1 1
© minJp(w,e) = ~ww+y= > e
w.b.e 2 2 ; (810)

such that ye =w o) +b+ey, k=1, N

which corresponds to a form of ridge vegression [27]. Taking conditions for optimality
with Lagrangian L{w, b e;e) = JTp(w,e) — Yo, ax {w p(zi) + b + ex — y} gives
the dual problem after taking the conditions for optimality 9£/8w = 0, dL/db = 0,
L) de, = 0, (f‘-? =1,..,N), (’?E/aak =0,(k=1,..,N),

@: solve in a, b:

llo ‘| QF;M] [%] - [%] (8.11)

with Q= K(p, o) for k,4 = 1,...,N. The solution is mathematically equivalent
to regularization networks [8, 7, 24| although in the LS-SVM formulation it is more
straightforward to take into account a bias term. Regularization networks are for-
mulated in the context of functional analysis, while (LS)-SVMs are derived in view
of primal-dual optimization problem formulations and invoke the Mercer theorem for
linking the mode] between the primal and the dual space. LS-SVM and regularization
network solutions also correspond to kernel ridge regression, Gaussian processes for
function estimation and kriging [4, 19, 20, 44, 45}.

8.2.3 Issues of sparseness and robustness

Potential drawbacks of the use of least squares cost functions are the lack of sparseness
and the lack of robustness with respect to outliers and non-Gaussian noise distributions.

On the other hand there are several possible ways to overcome these drawbacks.
A simple way to sparsify the obtained LS-SVM models is to apply neural network
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Figure 8.4: In standard SVMs one takes a top-down approach by choosing a convex cost
function and finds the SVM solution by convex optimization. On the other hand one can also
follow & bottom-up approach by starting from LS-SVM and define 2 weighting in terms of
the error distribution bhased on robust statistics which implicitly corresponds to a modified
cost function. In this way one aims at implicitly finding a most suitable cost function in view
of robust statistics, with a good robustness-elficiency trade-off.

techniques of pruning (such as optimal brain damage and optimal brain surgeon) [13, 3].
Less relevant weights are gradually removed and the model is retrained (Fig. 8.3). A
simple version with pruning of the smallest Joy| values has been successfully applied
to many classification and function estimation problem (although the obtained degree
of sparsity is not extremely high due to the simplicity of this procedure). In this way
one reduces the size of the model |35]. Another approach with a fixed size method will
be explained in the sequel of this chapter. Furthermore, it is also known that there is
a close counection between SVMs and sparse approximation in general [10].

[n the standard SVM function estimation case the Vapnik epsilon insensitive loss
function is usually employed. Essentially, this is an L, estimator (which ensures robust-
ness) but with an epsilon insensitive zone around the origin for achieving sparseness.
The SVM methodology has been extended to any convex cost function (Fig. 8.4). In
orcer to robustify LS-SVM models it is straightforward to apply an additional weighted
version. The weightings are determined as a function of the empirical distribution of
the error variables e, with a robust scale estimation based on robust statistics [16).
In standard SVMs a conves cost function is chosen which gives the solution in a top-
down fashion by applying a convex optimization algorithm, e.g. by using inierior point
algorithms. The reduced KKT system to be solved within interior point algorithms
takes the same form as one single L3-SVM KKT system. Hence, conceptually one may
view it as solving a sequence of LS-SVM KKT systems. In the weighted LS-SVM case
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one rather works in a bottom-up way, by first solving the unweighted LS-SVM and
then solve a weighted version, where one additional weighting step is often sufficient.
[35). Implicitly this weighted version corresponds to solving a modified cost function.
At this point one should note that several popular loss functions in robust statistics
(Andrews, Hampel, Tukey) are non-convex and cannot be plugged-in into standard
SVM formulations, except for the Huber loss function [12).

8.2.4 Bayesian inference of LS-SVMs and Gaussian processes

A Bayesian framework with three levels of inference has been developed for L3-SVM
classifiers and regression (Fig. 8.5) [40]. At this point there are a few differences with
related work in the area of Gaussian Processes {(GP) [45]. In the LS-SVM medels it is
straightforward to handle a bias term, while in GP this should be done by taking an
additional constant within the kernel. The LS-SVM classifier case can be treated as a
regression problem with targets +1 while the classifier case in GP needs the application
of sampling techniques. Furthermore, tuning paraweters of the kernel are treated at
a different level of inference. The Bayesian framework for L5-SVM models is done in
the same way as the framework developed by MacKay for MLPs [22].

At the first level, inference is considered in the primal weight parameters w,b. It
leads to a probabilistic interpretation of the output and an additional correction for the
choice of the bias term. At the second level, inference of the hyperparameters is done.
In addition te the regularization constant -y, which is associated to the least squares cost.
function, an additional hyperparameter is needed which is associated which is related
to the regularization term (hyperparameters ¢, (). This leads to expressions for the
effective number of parameters in terms the eigenvalues of the centerad kernel matrix.
At the thicd level of inference different models H, (assume e.g. models parameterized
by a kernel tuning parameter ) can be compared, where the kernel width & ig selected
by maximizing the level 3 posterior. By taking as many o; values as components of
the input vector (equivalent to taking a weighted norm [24]), these a; values can be
inferred at level 3. In this way one can assess the relevance of the input variables of
the model. This procedure is called Automatic Relevance Determination (ARD).

8.3 Primal-dual Formulations to Kernel PCA and
CCA

8.3.1 Kernel PCA as a one-class modelling problem and a
primal-dual derivation

In view of the least squares formulations for classification and nonlinear function esti-
mation, extensions of the framework can be made towards kernel Principal Component
Analysis (PCA) [28], kernel cancnical correlation analysis (CCA) [1] and kernel partial
Jeast squares (PLS) [26].

[n order to obtain a suppert vecior machine formulation of kernel PCA with primal-
dual interpretation [38], the PCA analysis problem is viewed as a one-class modelling
problem with target zero (instead of targets +1 as for the classification case) upon which
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Figure 8.5: Tlustration of Bayesian inference for L8-8VM models with several levels of
inference.

an error variable is considered and the sum squared error is rmaximized (in comparison
with minimization for the classification case). These error variables correspond to the
score variables (Fig. 8.6).

The objective is then the following
X 2
max Z (0 — w” (plwg) — i) (8.12)
k=1

with fi, = (1/V) Zf:;l wlwr) and ¢(-): BR" — B™ the mapping to a high dimensional
teature space which might be infinite dimensional. Instead of this centering approach,
also a bias term can be taken. The following optimization problem is formulated in
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the primal weight space

N
max Jp(w e) — — —w w
i

2 (8.13)
such that ex =w' (o) = Bo), k=1,.., N
This gives the Lagrangian
1 N 1 N
Llw, e;a) = 13 ; ey — §wTw - ; oy (ex — w7 (p(zs) = fip)) (8.14)
with conditions for optimality
s An'
=0 = w=3 oulelw) - fy)
k=1
3.15
| %:0 — o = ey, k=1,.,N (8.15)
X 5%% =0 — e —wl (pley) —f,) =0, k=1,..,N.
By elimination of the variables €, one obtains
1 N
e S Z ar{ip(m) — By) (plzn) = Bp) =0, k=1, V. (8.16)
' =1
Defining A = 1/ one gets the following dual problem
@ . solve in o
(8.17)
Q.0 = Aa
with
(lz1) - up) (l@)) = fp) ... (plar) = Fp)” (‘P(IEN) Be)
Q, = : : (8.18)
(lan) = ﬁw{w(m “Be) - o) = ) (olen) -

with as elements for the centered kernel matrix

Qepa = (play) - ﬁ‘p)T(p(x,) —fy), ki=1,..N (8.19)

For the centered kernel matrix one can apply the kernel trick for given peints xz, z;:

(plzs) = )" (o (fﬁe) — Hy)

N N
_K J:Jl}ml' ZK("TM:E?‘) NZK:BI':B’_ %ZZI((&%::“%)'

r=] s=|

(8.20)

For the linear PCA case this new formulation shows the link with principal co-ordinate
analysis {17] as the dual problem. In this sense, kernel PCA as proposed by Scholkopf
et al. corresponds to the kernel version of principal co-ordinate analysis [17).
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Figure 8.6: Interpretation of kernel PCA towards a primal-dual support vector machine
formulation.

8.3.2 A support vector machine formulation to Kernel CCA

The problem of canonical correlation analysis (CCA}) is closely related to the PCA
analysis problem [L7]. In CCA analysis (originally studied by Hotelling [15]) one is
interested in finding rnaximal correlation between projected variables z, = w”x and
zy = v7y where 2 € Ry € R™ denote given random vectors with zero mean. Linear
CCA analysis has been applied e.g. in subspace algorithms for system identification,
with links to system theory, information theory and signal processing.

The objective function is to maximize the correlation coefhcient

& [zrgy]
maxp =
s VE 207 V/E [y (8.21)
N wT Coyv |
7 Conin /7 O

with Oy, = € [227], Cpy = € [y ], Ciy = € [597 ]
Towards a kernel CCA version (1] and its primal-dual support vector machine for-
mulation, one considers the score variables {33)

mo= w (p(x) = fip)

8.22
s = o7 (paly) — By,) (522
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where ¢ (-): R — R™= and @y(-): R™ — R™v are mappings (which can be chosen to
be different) to high dimensional feature spaces and fi,, = (1/NV) Z:Q;I ei(ze), By =
(1/N) Ef:| @a(yx). 1t is important to take centering into account for the nonlinear
CCA problem.

One starts from the primal problem

1
: max *‘yE L A Zeh Vy—= Z’r,‘-f’w W= v

wLe.r
(8.23)
such that e = w” (p1{zr) — fip, ), k=1, N
| T:‘c:vT((pil(yk) _ﬁwz)i k= ]-a"'aN ]
with Lagrangian
N 1 N N
Llw,v,e,ra ) —*yZem—v-)—Ze Zrﬁ—ﬂu w—
k=1 k=1 Z k=1 (8.24)
1 , N . N N , R
FU U Y o fer —w” (or (@) = Fe )] — Y Be [rn — ¥ (2) — )]

k=1

k=1

where ay, 3; are Lagrange multipbiers. Note that w and v mught be infinite dimensional.
The conditions for optimality are

. N
%:0 w = Za’k (1 (21) = Ty, )
k=1
N
% =0 U= Zﬁk (2lyr) — Fho.)
L=1
th,; =0 vy (:10,) Yr) — ﬂ’ﬁﬁ'z) =W (Wl(xk) E‘E'{?I) +
{ k=1,..,N (8.25)
=0 — ' (i) = Tip) = vev” (02(ye) = Fige) + B
k=1,...N
% =0 ep = w' (o1(zn) — g, )
k=1,. N
% = re=uv (walyr) = Hes) . N
=1,..,
which results in the following dual problem after defining A = 1/
[ @: solve in a, 3 ]
0 . 44
Q. 0 3 (8.26)

_\ ey + 1 0 a
N 0 valden + 1 g ]
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where . R
Q’C;lkl = (@l(mk)_#vl) (ipl(xf)_f-""lm)

Qe = (02ltn) = Fipn) (02(t) — Fi)
are the elements of the centered Gram atrices for k,{ = 1,..., N. In practice these
matrices can be computed by 2., = M M., Q.2 = M M. with centering matrix
M, = 1-1,17 /N . The eigenvalues and eigenvectors that give an optimal correlation co-
efficient value are selected. The resulting score variables can be computed by applying
the kernel trick with kernels K (zy, 2;) = o1 (@) o), Koluwsw) = waly) wa(m).
This kernel CCA formulation can also be further related to kernel partial least squares
(PLS), which has been studied in [14, 26].

(8.27)

8.4 Large Scale Methods and On-line Learning

8.4.1 Nystrom method

For linear (LS)-SVMs one may in fact solve the primal problem instead of the dual.
The primal is advantageous for solving problems with a large number of given training
data IV, while the dual is suitable for large dimensional input spaces. For the nonlinear
case on the other hand the situation is more complicated. For many choices of the
kernel, ¢(-) may become infinite dimensional and hence also the w vector. However,
one may still try to find meaningful estimates for (zy).

A technique to find such estimates is the Nystrém method, which is well known
in the area of integral equations and has been successfully applied in the context of
Gaussian processes by Williams & Seeger in [46]. The method is related to finding a low
rank appreximation to the given kernel matrix by randomly choosing M rows/columns
of the kernel matrix. Let us denote the big kernel matrix by Qv € RV and the
small kernel matrix based on the random subsample Quan € RM*M with M < N
(in practice often A/ < N). Consider the eigenvalue decomposition of the small kernel
matrix Q(M,M)

Q(M,M) U=UA (828)

where A = diag([xl; ...;XM]) contains the eigenvalues and U = [u;.. @) € RM*M the
corresponding eigenvectors. This is related to eigenfunctions ¢;(x) and eigenvalues A,
of the integral equation

[ K)o @pads = () (5.20)
as follows - —
/\a == ﬁlf/\f
dlar) = VM

M

c;ﬁ-i(x’) = %,:4 Z Ekif((xkr .’{LJ)
k=1

(8.30)

where J}:, and (3; are estimates to \; and ¢;, respectively, for the integral equation, and
i denotes the ki-th entry of the matrix I/, This can be understood from sampling the
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integral by M points xy,%;,...,25. For the big kernel matrix one has the eigenvalue
decomposition
Q{N.N) U=UA. (8.31)

Furthermore, as explained in [46] one has

T - MY
T M 1
_ . (8.32)
Ui = i,—JiQ(N,M)ﬁf-
One can then show that
Qv vy = Q(N,M)Q(_!‘,ILM}SE(M,N) (8.33)

where {3y ary is the N x M block matrix taken from Qy yy. These insights are used
then for approximately solving the linear system in combination with applying the
matrix inversion lemma.

8.4.2 Basis construction in the feature space using fixed size
LS-SVM

In the Nystréom method an approximate solution to the linear system is computed
based upon a random subsample of the given training data set. In the method of fixed
size LS-SVM [33] the number of support vectors is decided beforehand and the support
vectors are actively selected instead of taken at random. The method makes use of the
Nystrom method but additionally links it to entropy criteria and density estimation.
The support vectors are selected according to an entropy criterion and the estimation is
done in the primal space by exploiting the primal-dual LS-SVM formulations (Fig. 8.7).
In this way one selects a basis in the feature space. Qther methods related to basis
construction in the feature space are e.g. [6, 29, 32].
The estimation in the primal weight space is done in the unknowns w, b

N

el 3 0+ 75 2 = (Wplan) +1) (8.34)

with estimations for ¢(z;) provided by the Nystrom method. One chooses a fixed size
M (M < N and typically M <« N) for a working set of support vectors where the value
of M is related to the Nystrom subsample. Using the expression (8.30) one obtains

AF
pilr’) = ﬁ pilz') = %gﬁhf((zk, ). (8.35)

Hence one constructs the Af x Af kernel matrix, takes its eigenvalue decomposition, and
computes the eigenfunctions based upon the eigenvalue decomposition of the kernel
matrix which gives the expression for ¢(2') evaluated at any point z’. This can be
applied both to function estimation and classification problems.
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The model takes the form

y(z) = who(z)+b

M 3 A
= Z?.Ug—\/j_z E;\.;f((l‘"k,.’ﬁ). (836)
=) N k=]

The support values corresponding to the number of M support vectors are then

M

v M

ce.:g W ——
L = VA

Ui (8.37)
if one represents the model as

M
(o) = ok (24, 7). (8.38)

k=]

This approach gives explicit links between the primal and the dual representation.

In order to make a more suitable selection of the support vectors instead of a random
selection, one can relate the Nystrém method to kernel principal component analysis,
density estimation and entropy criteria, as discussed in (9] (Fig. 8.8). An analysis is
done of the quadratic Renyi entropy {25]

Hp= —log/p(:c)zd:c (8.39)
in relation to kernel PCA and density estiration with
) 1
/ Pleydr = 251701, (8.40)

where a normalized kernel is assumed with respect to density estimation. One chooses a
fixed size M then and actively selects points from the pool of training data as candidate
support vectors (Fig.8.7). In the working set of support vectors a point is randomly
selected and replaced by a randomly selected point from the training data set if the
new point improves the entropy criterion. Ilustrative examples for a regression and
classification problem are shown in Fig. 8.9-8.10.

The fixed size LS-SVM method is suitable for adaptive signal processing applications
where on-Jline updating of w, b and recursive methods for the eigenvalue decomposition
can be applied. Both for recursive least squares and singular value decomposition
updating, various efficient algorithms have been developed in the literature, which can
be used at this point. Also for transductive inference the use of fixed size LS-SVM is
natural due to the fact that the search of support vectors is done in an unsupervised
way. In transductive inference [41, 43] one is interested in finding a model which is
performing well on a specific future data point (or set of data points) rather than a
general model (as obtained by inductive inference). If for fixed size LS-SVM one knows
future data (in addition to the given training data) on which the modei should perform
well, then one may take these points into account (without class labels or target values)
for possible selection of support vectors.
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Figure 8.7: Fixed size LS-SVM: the number of support vectors is fxed beforehand and
the support vectors are actively selected from the pool of training data. After estinating
gigenfunctions the model is computed in the primal space with calculation of w, §. In the
working set of support vectors a point is randomly selected and replaced by a randomly
selected point from the training data if this new point improves an entropy criterion which
is related to density estimation and kernel PCA.
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Figure 8.9: Fixed size LS-5VM for a noisy sine function with A/ = 10 and ¥ = 20000.
(Left) given training set; (Right) true sinc function {solid line), estimnate of Fixed Size LS

SVM {dashed line), and support vectors (grey dots).

.
an

Figure 8.10: Tustration of fixed size LS-SVM on a double spiral classification problem with
M = 20 support vectors and N = 400 given training data. The figures show different stages

in the learning process.

8.5 Recurrent Networks and Control

For LS-5VM models alse extensions have been made towards recurrent networks and
use for optimal control. From a traditional systems identification point of view, one
usually firat considers a certain model structure (such as NARX, NARMAX, NOE,
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nonlinear state space etc.) and then one parameterizes the model structure and solves
an optimization problem in the unknown parameter vector [31]. While for classical
parametric models such as MLPs and RBF networks one can parameterize both NARX
(Nonlinear ARX) and NOE (Nonlinear Output Error) models in a straightforward way
(which leads to feedforward and recurrent networks, respectively), the situation is more
difficult in the SVM context, due to the non-parametric nature of the method.

In [36] it has been a recurrent LS-SVM model has been formulated, which pre-
serves certain primal-dual interpretations and uses of the kerne! trick. However, due
to the fact that the equality constraints of the problem formulation are nonlinear in
the unknowns instead of linear, the recurrent LS-SVM problem becomes non-convex.
The approach has been successfully illustrated on trajectory learning and prediction of
chaotic systems.

The fact that SVM theory makes use of elements of optimization theory and optimal
control theory is closely related to optimization theory (in the area of model predictive
control these links are even more explicit), the study and use of SVM methodology
within control theory becomes a natural open question. In [37] first attempts and
results are made in this direction, where LS-SVM formulations for nonlinear state
feedback controllers are merged with finite time horizon optimal control problems.
After formulating the primal problems and taking conditions for optimality from the
Lagrangian, the solution is characterized by a set of nonlinear equations for which the
kernel trick can be applied.

8.6 Conclusions

In this chapter a brief overview is given of least squares approaches to SVMs. Several
extensions to present SVM formulations in classifications and static nonlinear function
estimation can be made in terms of least squares and equality constraints based for-
mulations. In this way it becomes straightforward to extend the metheds to nonlinear
kernel versions of existing linear techniques in pattern recognition and statistics (such
as FDA, PCA, CCA, PLS) and make extensions to areas as recurrent networks and
control. In addition the links between various related kernel based methods as SV Ms,
regularization networks, Gaussian processes, kriging and kernel ridge regression become
often more explicit. For LS-SVMs the primal-dual optimization problem formulations
are emphasized and exploited. It leads for example to a fixed-size version which is
capable of handling very large data sets, being related to the Nystrom method, and is
at the same time very natural towards adaptive signal processing and transductive in-
ference. This fixed-size LS-SVM technigue enables to consider modelling in the primal
space (parametric) as well as the dual space (non-pararetric). The former representa-
tion is suitable for handling large data sets while the latter is convenient for problems
with large dimensional inputs. It also offers a framework for studying such problems

and jits many related applications in an highly interdisciplinary manner?.

“For a more extensive discussion of this chapter we refer to the book [33]. A related Matlab/C
toolbox LS-SVMlab is available at http://www.esat.kuleuven.ac.be/sista/lssvmlab/.
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Chapter 9

Extension of the »-SVM Range for
Classification

Fernando Pérez-Cruz, Jason Weston, Daniel J. L. Herrmann and
Bernhard Scholkopf?

Abstract. The v-Support Vector Machine for classification {(#-SVC) has been
presented as a different formulation for solving SVMs in which the C' parameter
is transformed by a more meaningful parameter v, that roughly represents the
fraction of support vectors. The value of # cannot always take all possible values
between () and 1, which limits the range of pogsible solutions. Either, because
the training set is non-separable in the feature space, or because the classes are
unbalanced. In this chapter, we will deal with both restrictions, presenting a
new Extended »-5VC, in which the value of v can move from 0 to 1 in any cir-
cumstance. The modification to extend the range up to 1 is trivial, we only need
to modify the cost associated to the margin errors to balance the classes. The
modification to extend the range down to zero js far more complex. We will first
need to revisit how maximum margin classifiers can be obtained for a separable
training set, to enable us to construct “hard” margin classifiers for non-separable
datasets. This can be achieved by finding the separation in which incorrectly clas-
sified samples have the smallest negative margin. This re-interpretation of the
maximum margin classifier, when viewed as a soft margin formulation, will allow
us to extend the range of v-SVC ta any number of support vectors. Experiments
with real and synthetic data confirm the validity of the proposed approach.

1'We would like to express aur gratitude to Chih-Jen Lin for its helpful comments for making the
chapter more readable and avoiding the introduction of major mistakes.
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9.1 Introduction

Support Vector Machines (SVMs) are state-of-the-art tools for linear and nonlinear
knowledge discovery [14]. They were initially developed for linearly separable problems,
known as the optimal hyperplane decision rule {OHDR) [14). In a nutshell, the QOHDR
finds the classification boundary that linearly separates the given data and is furthest
from the data. The OHDR, is computed as the maximization of the minimum distance
of the samples to the separating hyperpiane. This minimum distance is known as
the margin, and the OHDR is also known as the maximum margin classifier. The
maximum margin classifiers were generalized to cover nonlinear problems, through the
“kernel trick” [14, 2J; and non-separable problems, via slack variables that relax the
conditjons in the original formulation 29, 6].

The SVM, when solved for nonlinear problems, has to set the value of a weight
parameter { which measures the trade off between the training errors and the max-
imization of the margin. This weight is hard to choose a priori and it is difficult to
infer which result can be expected for a C' value over any given probleni. There is an
alternative formulation, known as v-SVM, in which the weight parameter is replaced by
another more intuitive parameter ». This parameter roughly represents the fraction of
expected support vectors, therefore for any given v € (0, 1], we will know a priori how
the classifier will be formed. Also, it aliows to easily scan the whole range of possible
solutions, because choosing v between 0 and 1 will give all the possible cutcomes.

The »-SVM for classification (»-SVC) has a limitation in terms of its usable range.
The value of v can be upper bounded by a value less than 1, if the classes are not
balanced [7], and it can be lower bounded by a value greater than 0 for some data sets,
if the VC dimension of the used classifier is not infinite [4). These two limitations also
exist in the formulation using the C parameter, although they are not explicit with
this parameter, explaining why they had not been previously addressed as limitations.
The first limitation can be easily avoided if one requires so, as we will show herein.
The second is not readily overcome and the main body of this article is devoted to it.

We will propose a reinterpretation on how maximum margin hyper-planes are con-
structed. This reinterpretation will lead to a unified formulation for both separable
and inseparable sets: a maximum positive margio solution, if the training data set is
separable, and a minimum negative margin solution (to be described in the following
sections), if the training samples are not. This unified formulation will be constructed
using a »-SVM type parameterization and, consequently, we will be able to control the
number of SVs for the full range of possible values of . We will refer to it as Extended
v-SVM (Ev-SVM). Therefore, we will be able to select the SVM optimal solution from
the whole range of possible solutions, i.e., all the solutions with any number of SVs.

We will start with a full description of the £-SVIM and its relationship with SVMs
(using the C' parameter, also known as C-SVM) in Section 9.2. Then in Section 9.3,
we will focus on its two limitations, the upper and lower bounds over the value of v.
The first can be easily overcome by re-weighting the errors in the v-SVM. The second
will need a further study, we will define a negative margin classifier and how they have
to be solved in Section 9.4. We will show that the negative margin classifiers can be
expressed in a unified formulation similar to #»-SVM in Section 9.5, which we will refer
to as Extenced -SVM. In Section 9.6, We show by means of computer experiments
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the validity of the proposed approach using real and svnthetic data. We will end with
some concluding remarks in Section 9.7.
9.2 v Support Vector Classifiers

The Support. Vector Machine for binary classification (C-SVC) [20] finds the optimum
of a quadratic constrained problem:

! s O
31w+ 3 o
subject to
yi(@ (xyw +b) > 1 - § Vi=1,...,n (9.2)
&E=>0 Vi=1,...,n (9.3)

where the data set (x,,1), (X2, 42), ... (%, ) (3 € R? and , € {+1}) has been
sampled independently and identically distributed (i.i.d.) from a joint probability
dengity function p(x,y) that relates each vector x; with its corresponding class labe)

1. The nonlinear mapping ¢(-) {R? 2 R") transforms the input data to a higher
dimensional space, the feature space H. The linear classifier (w,b) in the feature space
is usually nonlinear in the input space, unless ¢(x) = x.

In the above formulation, C is a parameter determining the trade-off hetween two
conflicting goals: minimizing the training error, and maximizing the margin. Unfor-
tunately, ¢ is a rather unintuitive parameter, and we have no a priori way to select
it. Therefore, a modification was proposed in |16}, which replaces C' by a parameter v;
the latter will turn out to control the number of margin errors and, consequently, the
Support Vectors (SVs).

As a primal problem for this approach, termed the v-SVM for classification (v-
SVC), we consider

o1 1
Jin, 01T —vot 23 & (0.0
subject to (9.3) and
y(@ (xiw +b) > p— § Vi=1,...,n (9.5)
p>0 (9.6)

A new non-negative variable p has been included in the objective functional and
has to be minimized. However, it has been shown (7] that the constraint enforcing p to
be positive, {9.6), is unnecessary and that the above optimization problem will always
end with a p greater or equal than 0. Intuitively, if a solution with p < 0 is feasible,
we can set w =0, b = 0 and & = 0, which will fulfill the constraint in (9.5), and will
give the lowest possible values of the first and third terms of (9.4), p = 0 being the one
that minimizes it most. Therefore, a negative value of p cannot reduce the value of
(9.4). Also, it can be shown that the functional (9.4) cannot become negative (it can
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Table 9.1: Fractions of errors and SVs, along with the margins of class separation, for the
toy example. Note that v upper bounds the fraction of errors and lower hounds the fraction
of SV, and that increasing v, i.e., allowing more margin errors, increases the margin.

v 0.1 0.2 0.3 0.4 0.5 0.G 0.7 0.8
fraction of errors | 0.00 | 0.07 | 0.25 | 032 |03% |050 | 061 [0.71
fraction of SVs 029 036 (043 046 | 057 | 068 [0.79 |0.86
margin p/||wi| 0.005 | 0.018 | 0.115 | 0.156 | 0.364 | 0.419 | 0.461 | 0.546

be readily seen from the dual of this problem), therefore the solution in which (9.4} is
zero cannot be improved.

To explain the significance of v, let us first define the term margin error: by this,
we denote points with & > 0. These are points which are either training errors (& > p),
or lie within the margin (£, € (O,p]). Formally, the fraction of margin errors is

emp[“’ b |{3|Ja(¢’ (x:)w +b) “(PH (9.7)

The following proposition was stated and proven in [16] and it allows to understand
the role of # and what to expect once the solution has been reached.

Proposition 1 Suppose we run v-SV{ with a given kernel on some data with the
result that p > 0. Then

(i) v is an vpper bound on the fraction of margin errors.
{ii) v is o lower bound on the fraction of SVs.

(tii} Suppose the data (X1, 4),. .., (Xn, Yn) were generated ii.d. from o distribution
p(x,y) = p(X)p(ylx), such that neither p(x,y = 1) nor p(x,y = —1) contains
any discrete component. Suppose, moreover, that the kernel used is analytic and
non-constant. With probebility 1, asymptotically, v equals both the fraction of
SVs and the fraction of errors.

We would like to show with a toy example the solutions that one can expect when
solving the »-SVM, before explaining how it is actually solved. We show in Figure
9.1 the solution for various different v for a two dimensional problem solved with a
Gaussian kernel. The fraction of margin errors and support vectors, discussed in the
previous proposition, can be seen in Table 9.1.

The v-SVM for classification can include the linear restrictions in the objective
functional using Lagrange multipliers, requiring one to minimize

L(W {g,b £y Qqy Mg ) - _"W" - UJO+ Z£1

—Z (@7 ()W +b) — p+ &) + i), (98)
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Figure 9.1: Toy problem {task: sepayate circles from disks) solved using v-SV classification,
with parameter values ranging from v = 0.1 (top left) to v = 0.3 (bottom right). The larger
we make v, the more points are allowed to lie inside the wargin {depicted by dotted lines).
Results are shown for a Gaussian kernel, k{x,x') = exp(—{x — x'||*) [14]-

with respect to w, &;, p and b and maximize it with respect to the Lagrange multipliers,
¢vi, % = (. We have not imposed the condition in (9.6), following [7]. The solution
to this problem is given by the Karush-IKuhn-Tucker Theorem (9}, that imposes the
following conditions: (9.5), (9.3) and

oL, -
Tw W= ;0?’9’:05(3(«‘) =0 (9.9)
oL, . _
—_— = T C
= gazgi 0 (9.10)
L, <
—=r _ a; —v =0 9.11
B ; (9.11)
%—?:%—a,—m:(} Vi=1,...,n (9.12}
Oy s > 0 Vi=1,....,n (9.13)
ai{gp(@T (xyw +b) —p+ &} =0 Vi=1,....,n (9.14)
jaks = 0 Vi=1,...,n (9.15)

which are known as the KKT conditions.

The v-5VC, like the C-SVC, gives the solution as a linear combination of the
saraples in the feature space (9.9}, called the SV expansion. The ¢y that are non-
zeto correspond to a constraint (9.5) which iz precisely met.

The regular way of solving Support Vector Machines is by substituting ($.9) to
{9.12) inte L in (9.8}, leaving us with the following quadratic optimization problem for
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»-SV classification:

max — > Z Z Yk (X4, X;5) (9.16)

i=1 =1

subject to
0 S C; S l! (917J
n
Z o, = 0, (9.18)
i=1

> a=w (9.19)

=i

The k(-,-) represents a dot product (kernel) of two variables in the feature space,
k(-,-)= q&T(-)qﬁ(-). The conditions for any function to be a kernel in a Hilbert space is
given by the Mercer theorem [3).

The resulting decision function can be expressed as a linear combination of kernels:

f(z) = sgn (w7 (x) +b) =

= sgn (Z Xithp X1)¢ (x) + "5) = sgn (Z anyik(x, x;) + b) . (9.20)

i=1

Therefore, we do not need to gpecify the whole nonlinear mapping, only its kernel.

To compute the threshold & and the margin parameter p, we consider two sets
S, containing SVs x; with 0 < oy < 1/nn and y = =1, respectively. We choose
s = min(}S,|, |S-]), and limit the larger Si set to contain s elements. Then, due to
the WK'T conditions, (9.5) becomnes an equality with & = 0 for all the samples in 5.
Hence, in terms of kernels,

Z ZGJ@’J (x, %3), (9.21)

. X@S+US— Jj=1

( > Z%%k(x -> Zaj?}jk(xvxj))- (9.22)
xe8; g=1 xeS5_ 4=1
Note that for the decision functjon, only & is actually required.
In the case that either S, or 5_ are the empty set, they will be, respectively, formed
by a one element set:
S, = arg max {WT¢)(X1')}
Xo]or, #0,9, =1
and
S_= argmin  {wid(x;)}
¥, fo, #F0,=—1
as detailed in [8] for the C-SVM.
A connection to standard SV classification, and a somewhat surprising interpreta-
tion of the regularization parameter C, is described by the following result:
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Proposition 2 (Connection v-SVC — C-SVC [16]} If v-SV dassification leads
to p > 0, then C-SV classificetion, with C set e priori to 1/p, leads to the same
decision function.

The proof of this proposition can be found in [16]. This proposition ensures that
any v providing a non-trivial solution® with p # 0, a C value can be obtained for the
C-5VU fermulation that will lead to the same solution obtained with such v, up to 2
scaling {actor, which is the value of C. For further details on the connection between
v-SVMs and C-SVMs see |7, 1).

9.3 Limitation in the Range of v

A complete account of the relation between the C-SVM and »-3VM has been given in
(4], where they have shown that the value of v can not always take the full range from
0 to 1. They have stated and proven the following theorem in which the maximum and

minimum value of v are bounded:

Theorem 1 We can define

N H 1 <
v, = lim %;ai (9.23)
and
1 1 c
* = lim — ) 2
v = lim 2. (9.24)

where o are the Lagrange multipliers associated with the consiraints in (9.2) in the

C-SVM and v, > 0 and v* < 1. For eny v > v* (9.16) is infeasible and for any
0 < v < vy, (9.16) is feasible with 2ero optimal objective value (the trivial solution).
For v, < v < vy (9.16) is feasible and its solution is equal) to the solution of the dual
of (9.1), up to a sceling factor (oF = Cnat).

We will not enter in the demonstration of the theorem, which is detailed in {4, but
we will give some intuitions of the results provided by the theorem. The minimal value
of v for which (9.4) is nonzero (greater than 0) was discussed earlier in this section,
once p becomes zero (with w = 0 and b = 0) there is no incentive in the objective
functional (9.4) to make g go negative. Therefore, it can be seen that this will only
happen if the kernel mairix H ((H);; = 4(x;, x;)) is singular (not full-rank), because
otherwise (9.16) will only be zero iff @, = 0 Vi. The solutions of the »~-SVM in which v
lies between v, and v* are feasible and meaningful, and its relationship with C-SVM
is the one stated by Proposition 2.

Finally, the infeasibility of (9.16) for v greater than »* is easily understood when
examining restrictions (9.18) and (9.19). These two restrictions enforce that the sum
of the ¢; of class +1 has to be equal to /2 and equal to the sum of the o, of class —1.
Therefore, as the maximum contribution of each sample to this sum is 1/n (see KKT

We understand by a trivial solution a value of v that forces p = 0 and, consequently, w = Q and
6=10.
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condition (9.12)), then the maximum value v can take is 2min{n™, n™}/n, where n*
and n~ are, respectively, the number of sample in class +1 and —1. If the classes are
not balanced v has to be less than 1, because 2min(n™, n™) < =.

In this contribution, we are interested in extending the range of v-SVM for classi-
fication. We will first show that extending the range up to 1 is readily obtained and
we will dedicate the rest of the chapter to detail how the range can be extended for a
value of v less than v, without ending in the trivial solution (p = 0, w =0 and b= 0).

To extended the value of v up to 1 (v = 1), we will need that > _ a; =

1=l
Y imipyi=—1 @ = 1/2, which can be obtained if we set, respectively, oy = 1/(%?1*) and
o; = 1/(2n7), if the samples belongs to class +1 or class —1. As the maximum value
a, can take is the multiplicative factor for & in (9.4), we can then extend the range
by considering a different penalty factor for the & of positive and negative samples,

leading to the modification of (9.4) by:

. 1 % ]_ 5 1 r
min =|wll* —vp+ — . E: . 9.95
witpd 2” I P nt ; 12Ea ¥ 2 iy 1Et (5:25)
== =]|yi=—

This modification is similar to the one proposed in [13, 11] for solving the C-8VM with
a different cost for positive and negative classes in unbalanced problems, to obtain a
good balanced error performance.

Proposition 1 still holds and it will also hold for each class independently. Using
(9.25} the value of v will be an upper bound for the fraction margin errors of class +1
(class —1) and will be a lower bound for the fraction of support vectors of class +1
(class —1), which did not hold for the previous formulation.

9.4 Negative Margin Minimization

‘We will now address the problem of reducing the value of v below v, without being led
to the trivial sclution. To do so, we will need to revisit the regular SVM solution for
linearly separable data sets and try to find a different solution for non-separable sets.

The SVM enforces a solution in which for positive class sanples, xJ w + b > p,
and for negative class samples, x7w + b < —p, where w and b define a linear classifier
with p > 0. Among the solutions that fulfill these requirements the SVM picks the
one in which the samples are the furthest apart from the classification boundary {the
maximum margin solution) [20|, as shown in Figure 9.2a. To construct the maximum
margin solution, the SVM fixes p to 1 and minimizes ||w]|*. For non-separable problems
the SVM inctudes slack variables in the previous constraints and minimizes the one-
norm of the slack variables (te approximately minimize the number of training errors),
leading to the optimization of {9.1) subject to (9.2) and (9.3).

A typical solution of a non-separable problem is shown in Figure 9.2b, in which there
are 17 §Vs. This solufion presents the least number of SVs, and no other value of C will
reduce it, therefore the minimum value of v will be between 14/60 < v < 17/60. But,
analyzing the obtained solution for the separable problem in Figure 9.2a, one could
expect the solution for a non-separable problem to be the one shown in Figure 9.2¢, in
which the solution is obtained with the extreme vectors as in Figure 9.2a, instead of
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the one shown in Figure 9.2b. In Figure 9.2a we have an exclusion zone (ne training
sample is allowed to have a machine output, x/w + b, between —p and +p) and in
Figure 9.2¢ we have an intersection zone, into which samples from both classes can be
placed without becoming SVs. This intersection zone can be implemented through the
use of the following constraint:

x?w-}-bz—l if ;= +1
XTw+b<+1 if ¢=-1

To obtain the maxdmum margin solution in Figure 9.2a, we maximize the exclusion
zone (min ||w||?) forcing the samples to be as far apart from the classification boundary
as possible. To obtain the solution in Figure 9.2¢, we would like the intersection zone
to be as small as possible to reduce the number of samples that lie inside it (i.e to
minimize the number of potential errors). To reduce the intersection zone, we will
have to minimize 1/||w| (min —|lw||?).

....@.n.fiﬁxﬁ-.@.-.---.-.
1
"X
xxx

Figure 9.2: The solid lines represent the classification boundary, the dashed lines the +p/||w||
margins. Class +1 is shown by crosses, Class —1 by squares, and the 5Vs are ringed. In
(a) we show the maximum margin solution for a linearly separable data set. In {b) we show
the SVM solution for a non-linearly separable data set. In (c) we show the solution with the
negative margin classifier in which the solution is constructed by the extreme vectors as in

(a).
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The maximum of the positive margin and the minimum of the negative margin
can be unified in a single optimization problem by looking back at how the maximum
margin is constructed. In Figure 9.2a the solution can be obtained by solving:

2
max —-
PN
subject to
yilx{w+b) > p

As there is a multiplicative factor between p/||w/||, there are infinitely many different
solutions that only differ by a scaling factor. To resolve this, one can fix p and maximize
/||| (or minimize ||w]||* as the SVM does). Note that this only works for positive
p, since for negative p, we would have to minimize 1/||w]||. Alternatively one can fix
[[w]l, which accounts for a non-convex constrain, and maximize p. If this is the case
and the problem is separable we will end up with the maximum margin solution and a
positive p, for non-separable problems we will end up with a negative p and with the
least possible intersection zone.

9.5 Extended v-SVM

In the previous section, we have motivated how the hard maximwn margin can be
modified to deal with separable and non-separable training data sets. In this section,
we will formulate the new learning problem with & »-SVM like formulation (soft margin)
that will allow us to control g in an intuitive way. We solve the problem:

n
Prlavl‘ibl':'%“ —nrp + ; & (9.26)

subject to:
gl w ) 2 p—§ Yi=1,...,n (9.27)
£ 20 Yi=1,...,n (9.28)
SIwl? =1 (9.29)

The objective function is linear but there is a non-convex constraint (9.29); therefore
we can expect local minima in its solution®, which have to be dealt with either using
several initializations or starting at a controlled point. Note that in this case v can not
run up to 1 unless the classes are balanced. The modification needed is the same one
proposed at the end of Section 9.3, but we have not included it to make the development
of the Ev-SVM clearer.

We can solve this problem directly for linear classifiers by linearizing the quadratic
constraint in (9.29). We select a starting point labeled as % and we then replace (9.29)

31f the two data sets are not linearly separable, the preblem of Anding two half-spaces with parallel
boundary and minimal overlap, containing the respective classes, is not convex. So this is not a
weakness of the chosen appreach, but an important aspect of the considered problem.



Extension of the v-SVM Range for Classification 189

Table 9.2: Ev-SVC algoritmic implementation.
0. Initialize w.
1. Solve the linear problem:

n
min —nvp+ Z &
=1

p.W,b.f.
subject to:

y(xiw+6) > p—¢&,
&> 0and wiw = 2.

2. Compute w =~vw + (1 — ¥)w.
3. If w = w end, otherwise go to Step 1.

by: wiw = 2. We thus pet a linear problem that can be solved using any linear

programming tool such as linprog from MATLAB®. Once we have computed the
solution, we obtain a new W and continue iterating until there is no further modification
in either w, b or p. To construct the new w we do not directly use the value of w
due to the linearizing step. We will construct it using a convex combination between
% and w: % = YW + (1 — y)w. We bave found experimentally that v = 5 is a
good compromise value. We have written down an algorithrmic implementation of the
proposed approach in Table 9.2. The injtial value of w can be a random guess (not
very convenient) or a solution to the »-SVC with a v above v,. The benefits of nsing
this starting point is that we will be looking for a solution close to the best solution
provided by the +-SVC, which should do as a good starting point for avoiding local

minima (or at least a bad local minima).

9.5.1 Kernelization in the dual

The above learning machine can be used to solve nonlinear problems using kernels. In
order to construct a nonlinear classifier, we need to map non-tinearly the vectors x;
to the feature space, through a nonlinear transformation ¢(-). To selve (9.26) with a
possibly unknown ¢(-), we will introduce it in the constraints in (9.27)-(9.29) using
Lagrange multipliers. This requires us to minimize

L,=—-nvp+ Zf; - Z&i (y,(qﬁT(X«-)W +b)—p+ ff)
i=] =1
- Zpr»,-& + A (%Hw?" - 1) (9.30)

with respect to p, w, b, & and maximize it with respect to the Lagrange multipliers, ¢,
p; and A. The solution to this problem is given by the Karush-Kuhn-Tucker (KKT)
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theorem [9), which imposes the following conditions over (9.30):

8LP n
_— =l — 0.'1' = [} 931
5 ; (9.31)
OL =
= AW - g aigid(x:) = 0 (9.32)

L, "

W = — ; ity = 0 (933]
aLP _ _ = '
0_&_1 a; — i =0 Yi=1,...,n (9.34)

ey, pi 2 0 Vi=1,...,n (9.35)

ci{y(@  (xyw +b) —p+ &} =0 Vi=1,...,n (9.36)
,Lé;{{ =0 Vi = 1?. Lo, T (937)

A (%Hw”? _ 1) —0 (9.38)

The dual formulation, which is the usyal way of solving SVMs, cannot be used for
solving the Ev-S5VC, because it is not a convex problem and the dual formulation only
holds for convex problems. Bat in our problem if A > 0, the constraint in (9.29) can be

1
transformed to §||w||2 < 1, which makes the problem convex. Therefore for positive

A, we can obtain the dual formulation by substituting (9.31), (9.32), (9.33), (9.34) into
(9.30}, in which one needs to maximize with respect to e; and A:

1 S T
LD = _ﬁ ; ;ytyjarajﬁb {Xa)qb(x.?) —A (9'39]

subject to (9.31), (9.33) and 0 € a, < 1. This problem cannot be easily solved because
A depends on «. This dependence can he obtain using (9.29) and (9.32):

1 n n
A= +.J 5 Z Z‘ygyja%ajk(x,, x,) (9.40)

i=1 j=I

To solve (9.39), we fix A for example equal to 1. If in the solution the optimal
objective value is nonzero one can compute A as shown by (9.40). If it is zero, it will
mean that the solution of the Ex-SVC will be obtained with a negative A and the dual
cannot be used. If we replace this new value in the functional the solution will be the
same. Therefore, it A is positive we only need to solve:

1 n r
Lp= 2 ; FZ; Y00, 07 () (xy)

which is the same tunctional used for the »-SVM. Therefore if X is pesitive the solution
for the »-SVC and the Ev-SVC is the same one up to a scaling factor.
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For negative values of A, however, if one fixes A and tries to optimize (9.39), will
obtain 3, > w.y040,k(%;, x,) = 0 and one therefore one will not get a feasible solu-
tion. This is something already known, because for negative A the constraint in (9.29)
is non-convex and the dual problem can not be stated. Therefore, if the dual ends with
a nonzero A the solution of the Ev-SVC and »-SVC are equal, up to a scaling factor,
and if A = 0 the solution of the Ev-S5VC will have to he obtained by other means.

9.5.2 Kernelization in the primal

We need a different approach to solve the Ex-SVC using kernels and without explicitly
computing A. We will use a kernel PCA (KPCA) decomposition of the input data
using the selected kernel. KPCA [15, i4] computes the principal components of the
mapped data and it will give at most n (the number of training samples) principal
components. Once we have performed KPCA, we will map the data onto these compo-
nents, so we will have a finite dimensional representation of each training vector in the
feature space. Consequently, we can use the KPCA representation of the input data
to train a linear classifier using (9.26), which will become a nonlinear machine in the
original representation of the data (input space). A similar procedure has been used
for incorporating invariances in SVMs [5].

When we have solved the linear problem with the KPCA representation, we can
obtain the values of o; and A using the KKT conditions and the obtained solution (w,
b, p and &), which we use to distinguish between solutions that can be obtained with
the classic »-SVM or SVM (A > 0) and those solutious which are not feasible with
them (A < 0).

We believe that this learning algorithm can be used together with the new trend
in the machine learning community in which the kernel matrix is learnt instead [10].
Once the learning matrix has been optimized for a given problem, if it is not full-rank,
all the values of v might not be feasible and the Ev-SVC will provide a wider range of
possible solutions to be evaluated.

The theorem in [16] in which it is stated that » is an upper bound in the fraction
of bounded 5Vs and a lower bound in the fraction of SVs also holds for this learning
algorithm.

We conclude this section by noting that a this approach is related to one vsed
for boosting [12] (related to i-norm SVMs), but in which p was constrained positive,
although it is not a necessary constraint for solving the problem.

9.6 Experiments

We have shown in the previous section that the »-SVM can be modified to be able
to extend the range of + value down to zero, by allowing p to take negative values.
We first show a simple 2D example, in which we can picture the solution given by the
Extended »-SVM. Class +1 samples are drawn equally from two normal distributions
of means [2 0] and [0 2] and Class —1 from a normal distribution of zero mean. Both
classes are equally Jikely and their variance matrices are the identity. In Figure 9.3,
we show the obtained solution using a linear classifier for different values of v. Of the
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ones shown, the solution in Figure 9.3a (v = 0.69) is the only one that can be achieved
by the classic »-SVM and SVM described in [14]. The solution depicted in Figure 9.3b
(v = 0.51} actually presents a p which is still positive, but the associated value of A is
negative, so this solution cannot be obtained with the classic »-SVM. In Figure 9.3¢
(v = 0.33), we show a solution for p ~ 0 in which the solution is constructed by all
and only incorrectly classified samples. Finally, in Figure 9.3d (v = 0.01), we show the
hard negative margin solution in which all the slack variables are equal to zero.

Figure 9.3: The solid lines represent the classification boundary and the dashed lines the %p
margins. Class +1 is shown by crosses, Class —1 by squares, and the SVs are ringed. In (a)
we show the solution for v = 0.69 {(p = 1.59 and A = 1.78). In (b) we show the solution for
v =0.51 (p = 0.69 and A = —4.60). In {c) we show the solution for » = 0.33 {y = —0.04 and
A= —7.01). And, in (d) we show the solution for v = 0.01 {(p = —1.79 and A = —0.54).

We have also solved this problem with two types of nonlinear kernels for v = 0.51,
which is a value unreachable for the classic »-SVM. In Figure 9.4a we show the obtained
solution with an inhomogeneous polynomial kernel of second degree and in Figure 9.4b,
an RBF kernel with standard deviation ¢ = 8. The probability of error of the Bayesian
classifier is 0.200 and the achieved solution for the polynomial and RBF kernels are,
respectively, 0.205 and 0.217, which are the best possible results for the whole range
of v.

We performed experiments on a real application using a dataset from the UCI



Extension of the v-SVM Range for Classification 193

Figure 9.4: We show the results for polynomial and RBF kernels for v = 0.31, respectively
in (a) and (b). The solid lines represent the classification boundary and the dashed lines the
+p margins. Class +1 is shown by crosses, Class —1 by squares, and the SVs are ringed. The
dotted lines represent the Bayes classifier.

v 001 016 026 031 036 041 056 071 07 03]
po|-1.12 -0.27 -0.07 002 009 015 034 054 069 1.09
A | -078 -133 -157 -158 -15.5 -146 -9.59 -0.63 3.59 0.46
fSvs | 025 167 260 312 361 420 569 716 767 811

Table 9.3: The values of p, A, and the fraction of support vectors (£SVs) mean values for the
5 split of the data.

Machine Learning Repository (hitp://www.ics.uci.edu/~mlearn). We have chosen the
Liver-disorder database, because it is a noisy dataset with a large classification error,
which significantly limits the minimum value of v for the classic v-SVM. We prepro-
cessed the dataset so every feature has zero mean and unit standard deviation. Then,
we solved the problem using a linear kernel and measured success using 5-fold cross-
validation over different possible values from the whole range of v.

In Figure 9.5, we have plotted the mean training and test error for the 5 splits of
the data. In this problem as the classification error is so high the allowed values of
v in the classic »-SVM formulation are restricted to the two highest (v = 0.76 and
v = 0.81). Therefore the best solution for the classic »-SVM is obtained for v = 0.76,
achieving a probability of error of 0.325. The Extended »-SVM is able to obtain the
solution for any  value so we can find that the best solution is found for v = (.41 with
a probability of error of 0.293, a reduction of more than three percentage points.

We have reported in Table 9.3 the values of p, A and the fraction of SVs for the
tested values of v. In it, we can see that for v < (.71 the values of A are negative
and therefore this solution cannot be achieved by the classic #-SVM nor by the regular
SVM (recall that the two types of SVMs can be shown to provide identical solutions for
suitable parameter values [14]). It can be also pointed out that the value of p remains
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Figure 9.5: The training and test ecror are represented, respectively, by the dashed and solid
lines for the liver disorder database. The dash-dotted line separates the results of the classic
»-SVM (to the right) and those that can be obtained only with the Extended »-SVM.

positive for v ranging from 0.71 to 0.31. In this case we will have a positive margin
but we will want to minimize it, because the number of SVs correctly classified de not
outnumber the incorrectly classified ones, but there are still training samples that are
correctly classified and are SVs. For values of ¥ € 0.26 the solution will be constructed
exclusively using incorrectly classified samples and, censequently, the margin p will be
negative.

9.7 Conclusions and Further Work

In this chapter, we have reinterpreted how the maximum margin can be constructed
for separable training data sets, and so we were able to obtain an alternative SVM
solution for non-separable data sets. Moreover, we have developed a formulation like
the »~-SVM, Extended ©-SVM, in which the former is contained as a special case (for
A > 0). This extended »-SVM allows us to construct the machine with any number of
oVs and if the best possible solution lies in the zone in which A < 0 we can obtain a
solution that can be better than the best solution achieved by the classic SVM. And
it is possible that the best solution can be obtained for a A < 0 because it has been
recently proven that the optimal v is equal to twice the Bayes error [17).

There are various possible extensions of the work presented. The training procedure
has to be improved so it is easier to solve when using kernels. And, there are also
possible theoretical extensions, to prove bounds and convergence rates as well as to
determine the role of the Lagrange multiplier A.
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Chapter 10

Kernels Methods for Text
Processing

Nello Cristianini, Jaz Kandola, Alexei Vinokouwrov and
John Shawe-Taylor!

Abstract. IKernel Methods are nsed to perform pattern analysis on datasets
by embedding thern into a vector space where relations can be more easily dis-
covered. The choice of the kernel function determines the properties of such
embedding, and ultimately decides the guality of the relations detected in the
dataset. In the case of text processing, documents need to be embedded in a way
that reflects their semantic content, so that documents on a similar topic will be
mapped to nearby Jocations in the vector space. Designing a kernel that incorpo-
rates semantic information is therefore a crucial objective, that can be - at least
partially - accomplished by learning it from data. Variations of the traditional
"vector space” representation of text are presented here to address this problem,
all aimed at learning the optimal erabedding directly from the corpus, exploiting
co-occurrence information, or cross-linguistic correlations. We salso present ker-
nels based on string matching, and kernels obtained by combining text and links
information for hypertext documents.

1This work was supporied in part by the EU under the KerMIT project, IST-2001-25431.
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10.1 Introduction

Following the explosion of availability of digital text in the last decade, automatically
processing natural language text documents has become one of the main focuses of Al
and computer science in general. In a way, after the vectorial form, the most important
data format in applications is perhaps natural language text, and its particular features
mean that it deserves specific attention.

Although we are far from a full understanding of the semantic content of a text
document, it is however possible to tackle simpler tasks like extracting some coarse-
grained information about the topic of a document, and vse it for tasks such as retrieval:
after all deciding if two given documents are on a similar topic is a much easier task
than actually understanding it {immagine you are looking at documents in a foreign
language). Such notions of similarity, suitably refined, can be turned into kernels and
hence can be used for a number of applications other than just retrieval: classification,
clustering, ranking, correlation analysis.

Classic techniques from Information Retrieval, like the rich class of Vector Space
Models, can be naturally reinterpreted as kernel methods, and in this new perspective
they can be better understood and implemented, as well as greatly extended and im-
proved. Based just on detecting and exploiting statistical patterns in the documents,
kernel based methods are increasingly used in this domain, and furthermore they pro-
vide a natural common framework for some new as well as classical approaches. Fur-
thermore, in the Vector Space representation, the primal-dual dialectics common in
kernel methods has an interesting counterpart in terms of term-based vs. document-
based representations. In this chapter we analyze mainly kernels based on the Vector
Space family and its generalizations, but we also look at a kernel based on string match-
ing. Throughout this chapter the aim is just to discuss how to embed a text document
into a space in such a way as to capture as much as possible of its semantic content.
The use that we want to make of such a kernel js not discussed in this chapter in de-
tail, although some applications are mentioned. The reader can refer to the algorithms
discussed in other parts of this collection, such as Support Vector Machines, or those
referred to in the conclusions.

10.2 Overview of Kernel Methods

Kernels methods for pattern analysis work by embedding data into a vector space
where patterns can be more easily detected. This is achieved in a computationally
efficient way by implicitly computing the inner products between the images of the
data items in this space, rather than their coordinates. Several pattern recognition
algorithms exist that only require the knowledge of inner products between data, and
it is often the case that the inner product between feature vectors 15 much easier to
compute than their explicit representation in coordinates. The function that returns
the inner product between images of two data items in some embedding space is called
the Kernel function.

Of course the quality of the pattern analysis will depend on the quality of the em-
bedding provided by the chosen kernel. Ideally, we would like the embedding to be such
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that documents that are semantically related end up in nearby locations of the feature
space. The issue is how to build a map from documents to vectors that incorporates
some knowledge of semantics, or equivalently a kernel between two documents. Once
such a kerpel is available, it can be used in combination with classification, clustering,
ranking, retrieval and other algorithms.

Formally, we will call any function that calculates the inner product bhetween
mapped examples in a feature space “a kernel function”. For any mapping ¢ : D — F,
from the input space D to the feature space F’, we will denote the kernel by K(d;, d;) =
(¢(d,), 9(d,)}). The mapping ¢ transforms an example d € D (e.g., a document) into
an N dimensional feature vector,

$(d) = (1(d),. .., dn(d)).

The explicit extraction of features in a feature space generally has very high compu-
tational cost but a kernel function provides a way to handle this problem. A kernel
function is a syrmametric positive definite function, that is the n X n matrix with en-
tries of the form K; = K(d;, d;) (known as the kernel matrix) is always a symmetric,
positive definite matrix. It is interesting to note that this matrix is the main source of
information for KMs and these methods use oaly this information to learn a classifier.

There are ways of combining simple kernels to obtain more complex ones, possibly
at each step refining the quality of the embedding [8]. For example given a. kernel XK
and a set of n vectors the polynomial construction is given by

Kpofy(dés d..i) = (I{(di! dj‘) + c)p

where p is a positive integer and ¢ is a non-negative constant. Clearly, we incur & small
computational cost, to define a new featuve space. The feature space corresponding to
a degree p polvnomial kernel includes all products of at most p input features. Hence
polynomial kernels create images of the examples in feature spaces having a very large
numbers of dimensions. Furthermore, Gaussian kernels define feature space with an
infinite number of dimensions though the function

Kgauss (th, ;) = exp (Lﬂ‘;;ﬁﬁ)

In this sense, a Gaussian kernel can allow an algorithm to learn a linear classifier in
an infinite dimensional feature space. In this chapter we will examine different ways
to construct kernels that capture something of the semantic content of a document.
some of them will be obtained by successive embeddings, while others will be learned
from data and others yet will be obtained by comparing common substrings in the
docnments.

10.3 From Bag of Words to Semantic Space

Although the topic of analyzing a document from the point of view of its meaning
belongs to the field of Natural Langnage Processing, it has been the distinct Information
Retrieval community that developed the simple representation that is today mostly
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used to compare the topics between documents, and that forms the basis of this chapter.
This is called the Vector Space model, or the Bag of Words approach [26, 25].

By regarding those similarity measures as kernels [16], it is possible to extend their
applicability from mere retrieval tasks to the full range of possibilities of the kernel ap-
proach: correlation analysis, novelty detection, classification (known as categorization
in the text community}, ranking, etc.

The simplest possible approximated representation of a document is as « bag of
words (a bag is a set where vepeated elements are allowed, so that not only the presence
of an element but also its frequency is considered). In this way all the positional
information (given by grammar and syntax) is discarded, and simple statistics about
the frequency of words are considered. This approach is very popular in information
retrieval and leads to a very natural representation of documents as vectors in a ‘terms
space’ (a space in which each dimension is associated to a term of the dictionary). In
order to improve such a method, it is sometimes more natural to replace words by
‘concepts’, mapping documents into a lower-dimensional ‘concept space’, as discussed
in the later sections. Of course proximity information between words in the text should
count, as well as grammatical relations, but at the moment it is not clear how to exploit
them, and this approach chcoses to discard them altogether.

Another important issue besides the relative positions of words in the document,
is the one of the semantic relations between words: synonymy, homonymy, etc should
be considered when comparing two documents. Such information can introduce some
degree of semantics into the embedding, and will be discussed later in this chapter. It
can bhe either based on some existing knowledge-hase like a thesaurus or a semantic net,
or it can be inferred directly from a corpus of documents, e.g. by means of statistical
considerations.

Other operations can improve the quality of the embedding, for example assigning
a weight to each term based on its importance (for example removing uninformative
terms known as ‘stop words’ in IR literature, such as: “and”, “of”, “with”); or declaring
two words to be equivalent. These operations can be performed in sequence, creating
a series of successive embeddings, each of which adds some level of semantic to the
system, and that can at the end be regarded all together as a single map. Successive
embeddings are a powerful technique in applications where domain knowledge should
be introduced into the kernel design.

An interesting feature of the Vector Space approach will be to provide an nter-
pretation of the dvality between representations of kernel algorithms. Here the dual
description corresponds to a document-by-document view of the problem; while the
primal description to a term by term view of it. In the same way a document can be
seen as the count of the terms that appear in it, a term can be regarded as the count
of the documents in which it appears. A term-by-document matrix (and its transpose
document-by-term) can represent this.

Since it is often the case that the number of documents in a corpus is less than the
number of different terms used in them, for computational reasons it is often useful to
work in a document-based (or dual) perspective, whereas for intuition and interpreta-
tion it is usually better to derive algorithms in the term-based (primal) representation.
We can sometimes exploit the full power of duality in kernel methods, by stating the
problem in the intuitive term representation, and then dualizing it to the document-
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hased perspective. Many operations for extracting semantic information about terms
from a corpus will follow this line.

10.4 Vector Space Representations

Given a document, we map it to a bag of terms (or bag of words) by simply considering
all the terms contained in it and counting the number of occurrences of each term. A
bag of words has its natural representation as a vector in the following way: the number
of dimensions is the same as the number of different terms in the corpus (the set of
all different terms is sometimes referred to as the lexicon, or dictionary), each entry
of the vector is assigned to a specific term, and we simply count occurrences in a
document. Further normalization and term weighting operations can be viewed as
further embeddings. In this way a document is represented by a {column) vector d in
which each entry records how many times a particular term is used in the document,
Typically d can have tens of thousands of entries, often comparable with or even
larger than the number of training examples. Furthermore, for a particular document
the representation is typically extremely sparse, having only a few non-zero entries.
This preliminary embedding can then be refined by successive operations that we will
examine later in this chapter. Before we continue, some definitions and notation are
necessary:

Definition 1 A document is represented, in the vector-space imodel, by a vertical vector
d indexed by all the elements of the dictionary, and a corpus by ¢ metriz D, whose
columns are indexed by the documents and whose rows are indexed by the terms, D =
[d1, ..., dn). We also call the data matriz D the “term by document” matriz.

Definition 2 We define the “document by document” metric as G = D'D and the
“erm by term” matriz T = DD'. K is a kermel matriy, which can in general be
different from G: further transformotions of the document vectors can lead to different
representations.

In general, we will consider transformations of the document vectors ¢(d). The simplest
case involves linear transformations of the type ¢(d) = Pd, where P is any matrix, so
that the kernels have the form

K(dy,do) = d,P'Pd,

It should be noted that, for two vectors @, and x;, and for any linear mapping denoted
by the matrix P, the function Kp(x,,2;) = 2| P'Px; is always a kernel, the Gram
matrix (the matrix of inner preducts) being given by X'P'PX for X = (xy,...,%m)
which is by definition symmetric and positive definite. Different choices of the matrix
P lead to different variants of the vector space models. We will examine some variants
in the next subsections. For this particu)ar framework, the work of [15] is appropriate.

A simple kernel between documents can be obtained by the dot product between
their respective (possibly normalized) vectors, that is their cosine, a quantity that is
easy to regard as a kernel:

K(dy,da) = (dy, dg) = d)ds
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It is clear that there are several problems with this first representation of documents.
For example, document length will affect the vector’s norm, and this should be unre-
lated to the topic hence one could then define a kernel that discards this information
as follows:

d d
K{dy,do) = <||d1||’ ||d2||>

Also this representation has some clear problems: for example not all words should
have the same importance in establishing the topic of a document. The entropy or
the frequency of a word across the documents can be used to quantify the amount of
information carvied by a word (e.g. the word ‘the’ will be equally distributed in all
documents). This is an ‘absolute’ measure of the information content of a word, but
one could also define a relative measure of the importance of a word, with respect to
the given task. A measure would be the mutual information, but more commonly one
uses a class of term weighting measures known as tf-idf. One can consider a weight
vector w associated with the dictionary, and this can be used to define a different kernel
as follows:

f((dl,dg) = d;Mﬂde

where W = diag(w) is a diagonal matrix with w on its diagonal. This representation is
advantageous since it takes care of dounweighting irrelevant terms, but nonetheless it
is still not capable of recognizing when two terms are semantically related; and hence
of establishing a connection between two documents that share no terms but that are
about the same topic, because they use synonyms. The problem is to introduce a notion
of ‘semantic similarity’ between terms. One way is to define a ‘proximity’ matrix P
such that entry £; > 0 iff term 4 is related (eg a synonym} to term 7. If such a matrix
is avallable, then one can define the following kernel:

K(dy, dy) = dyP'Pdy

and it is easy to see that the document represented by the (sparse) vector d is mapped to
a (less sparse) vector ¢(d) that has non-zero entries corresponding to terms semantically
similar to the ones present in d. In information retrieval techniques of this type are
sometimes known as 'query expansion’ [2].

Remark 1 Although conceptually falling within the semantic similurity issue, in prac-
tice the relation between different inflections of the same word is obtained by stemming.
Word stemming reduces words {o some root form. For example, the words "retricve”,
"retrieval” and "retrieving” would be reduced to the word stem “retriev”. This can be
considered {o be a form of dunensionality reduction.

Remark 2 The use of a matriz P can in theory give rise to stemmaeng, whilst a W
matric encodes stop words removal. Tt is elso necessary to add semantic relations

perhaps in the same way. An important research issue is how to obtain these matrices
W and P.
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In this chapter we will discuss methods for obtaining & semantic proximity matrix
P directly from a corpus. We will try to perform all these operations as efficiently as
possible, ideally in dual form, without writing down a matrix P explicitly but through
the use of a kernel matrix.

A general way to define term weights is as follows: a component reflects the impor-
tance of the term in the document (term presence), while the other the discriminative
power of the term within the corpus (term importance). The first part is usually a
functjon of the term frequency tf within the given docwment, while the other is a
function of the inverse document frequency idf: d(tz;n), that is the total number of
documents in the corpus divided by the number of documents that contain the given
term. So if for example a word appears exactly 20 times in each document, this would
not be regarded as a very informative one. Its distance from the uniform distribution
is a good estimation of its importance, but better methods can be obtained by study-
ing the typical term distributions within documents and corpora. The simplest case is
just given by: df xlog(idf). Other measures can be obtained from information theoretic
quantities, or from empirical models of term frequency [2]. Since these measures de not
use label information, they could also be estimated from an external, larger unlabeled
corpus, that provides the background knowledge to the systern.

The issue of learning P is more complicated, and the rest of the chapter is devoted
to it. The different choices of matrix P characterize the different vector space models
proposed so far.

Remark 3 The mapping discussed above, obtained by multiplication with the matriz
P, is a particularly simple and useful case. However il is also possible to consider
nonlinear mappings by means of kernels. For polynomial kernels, it will be sufficient
to use Kpowldh, da) = (K (dv,d2) + 1)7 and similerly for a Gaussian kernel.

10.4.1 Basic vector space model

The conventional VSM introduced by Salton (see [26]), and first used as a kernel
by |16], makes direct use of the vector representation, with no further mapping. In
other words the matrix P = [ (where [ denotes the identity matrix), hence only
the term weighting matrix W is applied. The performance of retrieval systems based
on such a simple representation is surprisingly good. Since the representation of each
document as a vector is very sparse, special techniques can be deployed to facilitate the
storage and the computation of dot products between such vectors. Joachims [16] and
Dumais et al. [11], also used polynomial and Gaussian kernels on this representation,
so further mapping the data into a richer space, for classification tasks with Support
Vector Machines. In particular, the use of polynomial kernels can be seen as checking
for n-tuples of terms. One of the problems with this representation is that it treats
terms as uncorrelated, assigning them to orthogonal directions of the feature space.
This means that it clusters together in the feature space documents that share many
terms. But in reality words are correlated, sometimes synonymous. This then raises
the issue of how to incorporate semantic infermation, se as to map to nearby locations
documents that share related terms. This can be achieved efficiently through the use
of a semantic proximity matrix. One idea would be to perform a kind of document
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expansion, adding to the expanded version all synonymous (or just related) words to
the existing terms. In effect this can be viewed either as mapping documents to sets
of document or to larger documents. An equivalent approach would be to replace
terms by concepts. There are many ways to address this problem. One can either
exploit external knowledge about correlations, for example from a semantic network,
or use statistical information about term-term correlations derived from the corpus
itself, or fromm an external reference corpus. The approaches discussed in the following
subsections can all be regarded as kernel methods, and aim at performing this operation
in a somewhat automatic way.

10.4.2 Generalised vector space model

An early attempt to overcome the limitations of VSMs was proposed by [33] under
the name of Generalised VSM (GVSM). This method aims at capturing some term-
term correlations by looking at co-occurrence information: two terms are consicered
semantically related if they co-occur often in the same documents. This has the effect
that two documentis can be seen as similar even if they do not share any terms. A simple
technique can provide one such metric, and it is easy to see that it also constitutes a
kernel function.
If the data matrix is D, (termi-document) then

K(d]‘dz) = (Drdl)(Drdz) = d’]DD!dz

the matrix D) has a nonzero entry in the cell i if and only if there is a document
in the corpus where the ¢ and the j th terms co-occur. So two terms co-occurring in
a document are cousidered related. The new metric accounts for this co-occurrence
information. This method is faster but not as effective as Latent Semantic Indexing
(LSI) described below. In the common case when there are less documents than terms,
this has the effect of dimensionality reduction: the terms are all mapped to a Jower
dimensional space, via a kind of bottle-neck mapping, and compared in the resulting
space or alternatively they can be mapped back to the original space in an augmented
form. A further dimensionality reduction in GVSM can be achieved with the simple
technique of sparsification: before computing the inner product, all but the & largest
entries are set to zero.

10.4.3 Semantic smoothing for vector space models

Another way to incorporate semantic information is by directly using an external
source, like a semantic network. In this sectior we briefly describe one such approach.
In the next section we will see how a more refined co-occurrence analysis than the
simple GVSM, also bears many relations with semantic networks (28].

In order to incorporate some semantic information into VSMs, Solias and D’Alche-
Buc used a semantic network {Word-net) [28] as a way to obtain term-similarity in-
formation. Such a network encodes for each word of a dictionary its relation with the
other words in a hierarchical fashion (e.g.: synonym; hypernym; etc). For example
both the word ‘husband’ and 'wife' are special cases of their hypernym ‘spouse’. In
this way, the distance between two terms in the hierarchical tree provided by Wordnet
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gives an estimation of their semantic proximity, and can be used to modify the metric
of the vector space where the documents are mapped by the bag-of-words approach.

In order to insert such knowledge into the kernel, they have handcrafted the matrix
P in such a way that the ij-th entry expresses the semantic proximity between the
terms ¢ and §. Such & quantity is fixed to be equal to the inverse of their topological
distance in the graph, that is of the number of edges of the shortest path connecting
thern. The vector space metric is then dictated by the following kernel:

K(di,dy) = d\P'Pd,
or by the following distance

IPdy = Pdall* = [IP{dy - do)|I*
= (d — o) P'P(dy — dby)
(di — @2).3{d) — da)

Ohbviously on top of this first linear mapping one can then perform another mapping,
for example with polynomial kernels or - as is done by [28] with Gaussian kernels.
Notice that GVSMs can be regarded as a special case of this, when the proximity is
given by the data matrix itself: two terms are ‘declared’ semantically similar if they
co-occur in the same documents.

10.4.4 Latent semantic kernels

As mentioned in the previous section we now consider how co-occurrence analysis can
be used to generate a semantic proximity matrix. This very effective vector space
representation of documents, also proposed in order to capture semantic information,
is known as Latent Semantic Indexing (LSI) [10]. So, conceptually, LSI follows similar
ideas as GVSMs. But the technique used to extract such information is very different
and makes use of Singular Value Decomposition (SVD). We will see that this amounts
to a very special choice of the matrix P, and that such matrix has some useful properties
(7]

We can obtain a suitable matrix P from the data as follows: given a term-document
matrix 1, by using SVD we factor it into 3 parts:

D=UxV’

where ¥ is a diagonal matrix, and I/ and V are unitary (i.e. U'U = I). The new kernel
becomes:

f{(dl,dg) = (ka!dl)r(ka}dg) = d:Uf,;U!dz = d;UkUEdg = l'f.f] P’Pdg

where I is the identity with only the first k& diagonal elements nonzero and Uy is
the matvix &/ with all but the fist & columns set to zero. In this way we achieve
dimension reduction, by projecting the data onto a subspace spanned by the principal
axes (another bottleneck mapping, like GVSM, into a & dimensional space). The
motivation for this particular mapping is that highly correlated dimensions, i.e. terms
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that co-occur very often in the same documents of the corpus, are merged into a single
dimension of the new space. This creates a new similarity metric based on context
information. In terms of proximity matrix, as defined in the case of the semantic
network, described in the previous section, we could instead define P as U'ly.

What is more interesting for kerne! methods is that the same mapping, instead
of acting on term-term matrices, can be obtained implicitly by working with smaller
document-document matrices. The original terin by decument matrix 7 gives rise to
the dot product matrix

K=DD

since the feature vector for document j is the j-th column of 2. The SVD decompo-
sition is related to the eigenvalue decomposition of K,

K=D"D=vsUTusy” =vev? = yAVT

so that the i-th column of V is the eigenvector of K, with corresponding eigenvalue
A, = N\ = 07, The feature space created by choosing the first & singular values in the
LSI approach corresponds to mapping a feature vector z to the vector UpU[ z, where
Uy 18 obtained by taking the first & columns of U7, This corresponds to an orthogonal
projection onto the subspace spanned by the first k columns of /. Hence, the feature
vectors for the training set are the columns of the matrix UkU{D and so the new kernel
matrix is given by

K = Do uluuln
veUTu U usvT
VSIsvT = VAVT

where T and A are respectively the identity matrix I and the matrix A with diagonal
entries beyond the k-th set to zero.

This new kernel matrix is obtained directly from K by applying an eigenvalue
decomposition of K and re-multiplying the component matrices having set all but the
first & eigenvalues to zero. Hence, we can obtain the kernel corresponding to the LSI
feature space without actually ever computing the features.

If we consider the possible outputs of a linear classifier with bounded weight vectors
w on the training set, before the projection we had the set

(W'D wll <1} = {W'UZVT:wi <1}
= {uTEVT: lu|l <1}
This set is an ellipsoid with principle axes given by the columns of V' and dimension
given by the corresponding singular values. After the LSI projection the corresponding
set 1s
{WTUUD : lwll <1} = {w UUIUSVT : [lw| < 1} (10.1)
= (WTUSVT el < 1)
{aTSVT Ll < 1}
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where & and ¥, are the matrix X with diagonal entries bevond the k-th set to zero
and the matrix composed of its first & rows. Hence, the effect of the LSI projection is
to flatten the ellipse into the space spanned by its first & principal axes.

The method therefore produces a new kernel, which can be used in any kernel based
method provided we are able to evaluate the solution on a new input z. Hence, we
must evaluate functions of the form

f(@) = > aw (" OUTUUT DY,

p=]

= Z Y, (xTUkUEUEVT]f

i=1

= Z oY (mTUkaVT)i

=1

Note that we would like to avoid working with the feature vector = and only make use
of the original dot products which we are able to compute

tT=2"D=2TUnVT
We must therefore express 27 Ui Ly in terms of {. But we have

TV = JTusT (10.2)

= :I:Tngk

and hence we can evaluate f(x) as follows
flz) = Z sy (27 UpSp V),

= Z eitly (tTVfVT)

d=1

10.4.5 Semantic diffusion kernels

As we have already highlighted, the standard representation of text documents as bags
of words suffers from well known limitations, mostly due to its inability to exploit
semantic similarity between termns: documents sharing terms that are different but
serantically related will be considered as unrelated. In this section we show how se-
mantic similarity from a corpus can be inferred in two different ways. The first one
defines word-similarity based on document-similarity and vice versa, giving rise to a
system of equations whose equilibrium point we use to obtain a semantic similarity
measure. The second method models semantic relations by means of a diffusion pro-
cess on a graph defined by lexicon and co-occurrence information. Both approaches
produce valid kernel functions parametrised by a real number. The alignment measure
introduced to the kernel community in [8] can be used to successfully perform model
selection over this parameter [20] [19).
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Kernel based metheds can be considered to be attractive choices for inferring re-
lations from textual data since they enable us to work in a document-by-document
setting rather than in a term-by-term one |16]. In the vector space model, a document
is represented by a vector indexed by the terms of the corpus. Hence, the vector will
typically be sparse with non-zero entries for those terms occurring in the document.
Two documents that vse semantically related but distinct words will therefore show
no similarity. As in Latent Semantic Kernels (see section 10.4.4) the aim of a semantic
proximity matrix is to correct for this by indicating the strength of the relationship
between terms that even though distinct are semantically related.

The semantic proximity matrix P is indexed by pairs of terms @ and b, with the entry
Py = Py, giving the strength of their semantic similarity. If the vectors corresponding
to two docwments are d;, d;, their inner product is now evaluated through the kernel

where x’ denotes the transpose of the vector or matrix x. Note that there has been
a slight change of notation in that P here is what had previously heen denoted P'P.
The symmetry of P ensures that the kernel is symmetric. We must also require that
P is positive semi-definite in order to satisfy Mercer's conditions. In this case we can
decompose P = R'R for some matrix R, so that we can view the semantic similarity
as a projection into a semantic space

Qf) cd — Rd, since k(di, dj) = d_':de = <Rd1', Rd;.}

Two methods for inferring (or refining) the similarity measure between examples that
are based on two different observations can be analyzed. The first method exploits the
fact that the standard representation of text documents as bags of words gives rise {o
an interesting duality: while documents can be seen as bags of words, simultaneously
terms can be viewed as bags of documents — the documents that contain them. In
such a model, two documents that have highly correlated term-vectors are considered
a8 having similar content. Similarly, two terms that have a correlated document-vector
will have a semantic relation. This is of course only a first order approximation since
the knock-on effect of the two similarities on each other needs to be considered. It
is possible to define term-similarity based on document-similarity, and vice versa, to
obtain a system of equations that can be solved in order to obtain a semantic proximity
matrix P.

The second method exploits the representation of a lexicon (the set of all words
in a given corpus) as a graph, where the nodes are indexed by words and where co-
occurrence is used to establish links between nodes. Such a representation has been
studied recently giving rise to a number of topological properties [12). We consider the
idea that higher order correlations between terms can affect their semantic relations as
a diffusion process on such a graph. Although there can be exponentially many paths
connecting two given nodes in the graph, the use of diffusion kernels [22] enables us to
obtain the level of semantic relation between any two nodes efficiently, so inferving the
semantic proximity matrix from data.
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Equilibrium equations for semantic similarity

We consider the first approach outlined above. The aim is to create recursive equations
for the relations between documents and between terms. Let X be the feature example
{term/document in the case of text data) matrix in a possibly kernel-defined feature
space, so that X’X gives the kernel matrix K and X X’ gives the correlations between
different features over the training set. We will denote this latter matrix with &.
Consider the similarity matrices defined recursively by

K = MX'GX+K and G=MX'KX+G (10.3)

We can interpret this as augmenting the similarity given by K through indirect simi-
larities measured by G and vice versa. The factor A < ||K||~' ensures that the longer
range effects decay exponentially. The following resuit characterizes the solution of the
above recurrences.

Proposition 1 Provided ) < | K| = ||G|~", the kernels K and G that solve the
recurrences {10.3) are given by

E = K(I-XK)" and G =G(J - XG)7
In view of the form of the solution the following definition can be introduced:

Definition 3 [von Neumann Kernel] Given a kernel K the derived kernel K (A) =
K(I — AK)™" will be referred to as the von Neumann kernel.

Note that we can view I?(/\) as a kernel based on the semantic proxdmity matrix
P = \G + I since

o

X'PX=X'OG+ DX =2X'GX + K =R(\).

Hence, the solution G defines a refined similarity between terms/features. In the next
section, we will consider the second method of intreducing semantic similarity derived
from viewing the terms and documents as vertices of a weighted graph.

Semantic similarity as a diffusion process

Graph like structures within data occur frequently in many diverse settings. In the case
of language, the topological structure of a Jexicon graph has recently been analyzed
[12]. Such a graph has nodes indexed by all the terms in the corpus, and the edges are
given by the co-occurrence between terms in documents of the corpus. Although terms
that are connected are likely to have related meaning, terms with a higher degree of
separation would not be considered as being related.

A diffusion process on the graph can also be considered as a model of semantic
relations existing between indirectly connected terms. Although the number of possible
paths between any two given nodes can grow exponentially, results from spectral graph
theory have been recently used by [22] to show that it is possible to compute the
similarity between any two given nodes efficiently without examining all possible paths.
It is also possible to show that the similarity measure obtained in this way is a valid
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kernel function. The exponentiation operation used in the definition, naturally vields
the Mercer conditions required for valid kernel functions.

An alternative insight into semantic similarity is afforded if we multiply out the
expression for K(A), K(\) = K(I — AK)~' = 37;° M~ K* The entries in the matrix
K are then given by

t-1
I(Ej = Z H ‘Kﬂzﬂe-f-l'
ve{l...m} =t
U =1,y =J

The entries can be viewed as the sum of the products of the weights over all paths of
length ¢ that start at vertex ¢ and finish at vertex j in the weighted graph defined on
the examples. [f we view these "connpection strengths” as channel capacities, the entry
K}, in the matrix can be seen to measure the sum over all routes of the products of
the capacities. [f the entries satisfy that they are all positive and for each vertex the
sum of the connections is 1, we can view the entry as the probability that a random
walk beginning at vertex ¢ is at vertex j after ¢ steps. It is for these reasons that
the kernels defined using these combinations of powers of the kernel matrix have been
termed diffusion kernels [22]. A similar equation holds for G*. Hence, examples that
both lie in a cluster of similar examples become more strongly related, and similar
features that occur in a cluster of related features are drawn together in the semantic
proximity matrix F.

The kernel K combines these indirect link kernels with an exponentially decaying
weight. This suggests an alternative weighting scheme that shows faster decay for
increasing path length,

(] -

-~ MK

K()\) =K = =K exp(,\K)
t=1 ’

The next proposition gives the semantic proximity matrix corresponding to i (A).

Proposition 2 Let I?(,\) = K exp(AK). Then E(A) corresponds to a semantic proz-
imity matriz exp(A\G).

PROOF. Let X = ULV’ be the singular value decomposition of X, 50 that K = VAV is
the eigenvalue decomposition of K| where A = X'E. We can write K as

K = VAexpQAA)V = X'UE T Aexp{AA)E-1' X
= X'UexpQA)I'X = X'exp(AG)X,
as required. O

The above leads to the definition of the second kernel that we consider.

Definition 4 Given a kernel K the derived kernels f?(/\) = K exp(AK) will be referred
to as the exponential kernels.
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The two new kernel adaptations described above, in both cases are parameterized by
a positive real parameter A. In order to apply these kernels on real text data, a method
needs to be developed for choosing the parameter A. Of course one possibility would
be just to use cross-validation as considered by [22]. Rather than adopt this rather
expensive methodology an alternative quantitative measure of agreement between the
diffusion kernels and the learning task known as alignment, which measures the degree
of agreement between a kernel and target [8} can be used.

Definition 5 [Alignment]| The (empirical) alignment of a kernel k| with a kernel ko
with respect to the sample S is the quantity

(K\, K2)r
VU KO plIs, IG) e

where K; is the kernel matriz for the sample S using kernel k;.

A(S k1 k) =

where we use the following definition of inner products between Gram matrices

(K1, Ky p =Y Ko(a, 55) K, 5,) (10.4)
ij=1
corresponding to the Frobenius inner product. From a text categorization perspective
this can also be viewed as the cosine of the angle between two bi-dimensional vectors
K| and K3, representing the Gram matrices. If we consider Ky = yy', where ¥ is the
vector of outputs (+1/-1) for the sample, then

(K, yy)r _ ¥ Ky
VI K rlyy yyhe ™Il

However it should be observed that the parameterization is non-linear in A so that we
cannot solve for the optimal value. Instead an optimal value is sought using a line
search over the range of possible values of A for the value at which the derivative of
the alignment with respect to A is zero. For a full description of this and experimental
results, see [20].

A(S, K yy') =

(10.5)

10.5 Learning Semantics from Cross Language Cor-
relations

In this section we describe how we can learn a semantic space by identifying directions
in the feature spaces for two different languages for which there is maximal correlation.
This in turn implies a semantic similarity measure. In cross-language information
refrieval, vector space models are used with partialiy aligned corpora, that is corpora
formed by pairs of docurnents that are the translations of each other. This enables the
system to learn term-term associations, that can then be used for retrieving relevant
documents in a language as a response to a query in another language. Using a paired
corpus {a set of pairs of documents, each pair being formed by two versions of the same
text in two different languages), after merging each pair into a single ‘document’, we can
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interpret frequent co-occurrence of two terms in the same document as an indication of
cross-linguistic correlation [23]. In this framework, a common vector-space, including
words from both languages, is created and then the training set is analysed in this space
using SVD. This method, termed CL-LSI, has been discussed in [23]. More generally,
many other statistical and linear algebra methods have been used to obtain an improved
semantic representation of text data over LSI [29]. The problem of learning a semantic
representation of text from a paired bilingual corpus is considered both for mono-tingual
and cross-lingual applications. This problem can be regarded either as an unsupervised
problem with paired documents, or as a supervised monolingual problem with very
complex labels (i.e. the label of an English document could be its French counterpart).
In either way, the data can be readily obtained without an explicit labeling effort, and
furthermore there is not. the loss of information due to compressing the meaning of a
document into a discrete label. Kernel Canonical Correlation Analysis (KCCA) {1] can
be used to learn a representation of text that captures aspects of its meaning. Given a
paired bilingual corpus, this method defines two embedding spaces for the documents of
the corpus, one for each language, and an obvious one-to-one correspondence between
points in the two spaces. KCCA then finds projections in the two embedding spaces for
which the resulting projected values are highly correlated. In other words, it looks for
particular combinations of words that appear to have the same co-occurrence patterns
in the two languages. Qur hypothesis is that finding such correlations across a paired
crosslingual corpus will locate the underlying semantics, since we assume that the two
languages are 'conditionally independent’, or that the only thing they have in common
is their meaning. The directions would carry information about the concepts that
stood behind the process of generation of the text and, although expressed differently
in different languages, are, nevertheless, semantically equivalent. To illustrate such
representation we have printed a few of the most probable (most typical) words in
each language for two kernel canonical correlation components found for bilingual 36¢
Canadian Parliament corpus (Hansards) (left column is English space and right column
is French space) (Notice that not all the components display strong semantic similarity
within the language, but all of them achieve strong semantic relations across the two
languages. See paper [29] for details about this table):
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pension regime park parc

plan pensions land autochtones
cpp epe aboriginal serres
canadians prestations yukon ches

benefits canadiens marine vall
retirermnent retraite government  ressources
fund cotisations valley vukon

tax fonds water nord
investment discours boards gouvernement
income impot territories offices

finance revenu board narin

young jeunes north eaux

Years ans parks territoires
rate pension resource parcs
superannuation argent agreements  nations
disability regimes northwest territoriales
taxes investissenent  resources revendications
mounted milliards development rministre
future prestation treaty cheurs

This representation is then used for retrieval tasks, providing better performance
than existing techniques. Such directions are then used to calculate the coordinates of
the documents in a ‘language independent’ way. Of course, particular statistical care is
needed for excluding ‘spurious’ correlations. We show that the correlations we find are
not the effect of chance, and that the resulting representation significantly improves
performance of retrieval systems (31]. It can be observed that the correlation existing
between certain sets of words in English and French documents cannot be explained
as a random correlation. Hence we need to explain it by means of relations between
the generative processes of the two versions of the documents, that we assume to be
conditionally independent given the topic or content. Under such assumptions, hence,
such correlations detect similarities in content between the two documents, and can be
exploited to derive a semantic representation of the text. This representation is then
used for retrieval tasks, providing better performance than existing techniques. In [31]
the method has been appiied to c¢ross-lingual information retrieval and the comparison
of the performance with a related approach based on latent semantic indexing (LSI) [23]
has alsc been made. The projection obtained by CL-KCCA as a semantic smoothing
for use in a multilingual classification task obtained very encouraging results [31], [30].

We first give a definition:

Definition 6 For zero-mean multivariate random variables » € B” and 2 € R™ we
define the covariance matria: us fellows:

Cp: = Elxz’]

We will use also the empirical form of Cp. = %Ex@z’i where X,,2; are vectors. In
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general, given two sets of vectors x;,2; we con define the matriz

o= (& &) ==(()0))

where (. and O, are the within class covariances, and C,, and O, are the belween
class covariances.

For us, those multivariate random variables will correspond to document-vectors (in
the bags of words representation) in English and French, and there will be a une-to-one
relation between them corresponding to documents that are translations of each other.
We will now consider sets of words that are correlated between the two languages
(sets of words in the two languages that have a correlated pattern of appearance in
the corpus). We will assume that such sets approximate the notion of ‘concepts’ in
each language, and that such concepts are the translation of each other. Rather than
considering plain sets, we will consider terms to have a degree of membership to a
given set. In other words, the term £, will be assigned a weight w, for each concept
we consider, and every concept will correspond to a vector w, € R™ in English, and a
vector w, € R™ in French. We will use that weight o; to form linear combinations of
terms, so that they can define a direction in the term space.

Thus, in this study our aim is to find an appropriate tangnage-independent rep-
resentation. Suppose as for CL-LSI we are given aligned texis in, for simplicity, two
languages, i.e., every text in one language x, € R" is a translation of text z; € R™
in another language or vice versa. Qur hypothesis is that having aligned texts 5, =
{(x1; ..., 7¢) CR*and S, = (2,...,5) € R™ we can learn (semantic) directions @, and
W, where we use the notation @ = T SO that the projections % and w2 of input
data images from the different languages would be maximally correlated. These new
random variables are univariate, and linear combinations of the previcus cnes. We
consider optimizing this quantity with respect to the choice of @i, € R and @, &€ R"™.
This leads to the following objective functions and optimization problems:

p = Iax corr(i,x, 0.2}
&1 Z

This optimization problems can be transformed into a generalized eigenvalue problems
as follows. One is looking for the maximurm correlation directions:

s _ EwiCh, w:]
e = e Crowal Ew,Corw ]
subject to ||w|| = ||w,|| =1

where we are using the covariance matrix:
Coa C x\ /x\
C — L T — E
(& & )-=(O0)

The solutions of this problem can be obtained by solving a related generalized
eigenproblem
Aw = ABw (10.6)
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and the solution w directly provides the directions w, and w, of maximum correlation:

;
C _ wg;c.rzwz C
W = = saWa
ch’zocwx
/
w O, w,
CaaWe = ———C..w,
w, (. w,

Imposing w/,Cp, W, = W,C,,w, = 1 removes a degree of freedom, and we finally obtain
the following solution:

Note that if A is an eigenvalue, so is —A thus the spectrum is { A, =\, ..., An, = AN}

Dualization of the problem. One can easily consider the dual representa-
tion of these problems by substituting: w, = K,a, and w. = K,a. where K, and
K. being respectively the kernels of the two feature spaces, i.e. matrices of the in-
ner products between images of all the data points [9]. After substitution we have:
varg = #O“;I(IKZGW varz = #C}:;KZK;O:Z and cov(z,z) = )l\,a;I(szaf. The general-
ized eigenvalue problem transforms then into Aa = ABa where

0 KK,
A = (K;KI : ) (10.7)
KK +AD) 0
Beom = ( 0 K (K, + 1) (10.8)

The regularization parameter v, which can be chosen experimentally [31], not only
makes the generalized eigenvalue preblem well-posed nuinerically but also provides a
way to control the capacity of the correlation mapping.

10.6 Hypertext

Consider the co-citation matrix of a set of documents. This concept was first intro-
duced in the context of bibliometrics to analyse impact factors or to detect clusters
of related documents. Two documents have a positive score if they are cited by the
same documnent. It is natural to extend this idea to a co-link matrix for hypertext
documents, possibly also considering out-links as well as in-links. Chang et al. [6] used
the co-citation matrix for a problem of retrieval in citation analysis and Chakrabarti
at al. [5] exploited similar information in their classification model. Furthermore, one
could define link-weighting schemes in a similar way to the term-weighting schemes
used in text categorisation, where some links are more informative than others.
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Given a linked set of documents, a link matrix M specifies their connectivity: el-
ement Af;; is non-zero if and only if there is a link from document ¢ to document j.
M;; can be set to 1, or maybe to 1 over the total number of references in document
i. For a given document %, the algorithm HITS [21] defines a, (resp. h;) to be its
authority (resp. hub) score. The vector a (resp. h) is defined as a = M'h = M'Me
(resp. h= Ma = MM'h).

This defimition of course means that A and ¢ are in a relation of duality with each
other. A large hub score means that the documents points to many good authorities,
and a large authority score means that the document is pointed to by many good hubs.
The definition also suggests an iterative procedure for the calculation of a (resp. &),
guaranteed to converge to the principal eigenvector of M'M (resp. MM'): starting
from an initial value gy (resp. hy), at each step the value of a; (resp. h;) is calculated
Grpr — M May and gy — ﬁ_ﬁﬁ (similarly for ). This information is also exploited
in the PageRank estimator at the basis of Google’s search engine [3].

It is possible to define the similarity between two documents based on their con-
nectivity structure: a document can be considered as an indicator vector on the set of
documents, d, and its image in the feature space can be obtained simply by ¢(d) = Md,
$0 that a kernel is given by K(d;,d3) = d)MM'd, (and similarly using the transpose
of M). Other ways are possible, for example considering an undirected graph.

On this representation of hypertext documents it is possible to perform all the
standard operations discussed in this chapter, like semantic focussing, and the others
discussed in other sections [18).

The non-principal eigenvectors of this kernel matrix provide information about the
different contexts in which a document appears. Overall, this analysis is similar to
the co-citation analysis in bibliometrics, or the co-occurrence analysis that motivated
semantic indexing. Each principal component of M'M represents a different ‘context’.
Similarity between documents can also depend on how many contexts they share.

Remark 4 Of course the weighting of the links can also be assigned with technigues
simalar o the term weighting methods used in the vector space models. So a site that
is linked by everybody would be less informative than others. and a site that is linked
many times within a given document is relevant for that document (link-to-site-t =
using-term-i). Measures like idf, df. or entropy, should be very helpful, and in the case
of text categorizatron are well known to be much more relevant than - for example - the
kernel parameters, the normalization, the kernel family or other quantities.

10.7 String Matching Kernels

In this section we describe a kernel between two text documents. The idea is to compare
them by means of the substrings they contain: the more substrings in common, the
more similar they are. An important part is that such substrings do not need to be
contiguous, and the degree of contiguity of one such substring in a document determines
how much weight it will have in the comparison [24].

For example: the substring ‘c-a-r’ is present both in the word ‘card’ and in the word
‘custard’, but with different weighting. For each such substring there is a dimension of
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the feature space, and the value of such coordinate depends on how frequently and how
compactly such string is embedded in the text. In order to deal with non-contiguous
substrings, it is necessary to introduce a decay factor A € (0,1) that can be used to
weight the presence of a certain feature in a text (see Definition 7 for more details).
Example. Consider - as simple documents - the words cat, car, bal, bar. If we consider
ouly & = 2, we obtain an 8-dimensional feature space, where the words are mapped as
follows:

c-a ¢t at b-a bt cr ar br
cat) A2 A A 0 0o 0 0 O
car) A* 0 0O © 0 XN X 0
bat) 0 0 A2 A A 0 0 0
bat) 0 0 0 A 0 0 A A

Hence, the unnormalised kernel between car and caf is K{car,cat) = A?, whereas
the normalised version is obtained as follows: K (car,car) = K(cat,cat) = 2X* + ¥ and
hence K(car,cat) = X'/(2M* + X°) = 1/(2 + A%). Note that in general the document
will contain more than one word, but the mapping for the whole document is into one
feature space: the catenation of all the words and the spaces (ignoring the punctuation)
is considered as a unique sequence.

Example. We can compute the similarity between the two parts of a famous line by
Kant.

LE I 1)

K ("science is organized knowledge”,“wisdom is organized life”)

The values for this kernel, and values of k = 1,2,3,4,5,6 are: K, = 0.580, K, = 0.530,
K5 =0478, Ky = 0.439, Ky = .406, K¢ = 0.370

However, for interesting substring sizes (eg k£ > 4) and normal sized documents, di-
rect computation of all the relevant features would be impractical (even for moderately
sized texts) and hence explicit use of such representation would be impossible. But it
turns cut that a kernel using such features can be defined and calculated in a very effi-
cient way by using dynamic programming techniques. We derive the kernel by starting
from the features and working out their inner product. In this case there is no need
to prove that it satisfies Mercer’s conditions (symmetry and positive semi-definiteness)
since they will follow automatically from its definition as an inner product. This kernel
named as string subsequence kernel (SSK) is based on work [32, 13] mostly motivated
by bioinformatics applications. It maps strings to a feature vector indexed by all &
tuples of characters. A k-tuple will have a non-zero entry i it occurs as a subsequence
anywhere (not necessarily contiguously) in the string. The weighting of the feature
will be the sum over the occurrences of the k-tupte of a decaying factor of the length
of the occurrence.

Definition 7 (String subsequence kernel- SSK) Lel T be a finite alphabef. A string s
o finite sequence of characters from L, including the emply sequence. For strings s,t,
we denote by |s| the length of the string s = s1... 5y, and by st the string obtained
by concatenating the strings s and t. The string sli @ j| is the substring s,...s; of
s. We say that v is o subsequence of s, if there exist indices i = (41, ... %), with
1< < <ty S8, such that w; = 5, for j =1,...,|ul, or u = sli] for short.
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The length (1) of the subsequence in 5 is 4y — % + 1. We denote by I the set of all
finite strings of length n, and by 5 the sel of all strings

"= G o, (10.9)
n=\

We now define feature spaces Fn, = R™". The feature mapping ¢ for a string s is given
by defining the u coordinate ¢, (s) for each u € ¥". We define

fuls)= D NO, (10.10)

Liu=s{i|

for some A < 1. These features meagsure the number of occurrences of subseguences
in the string s weighting them according to thewr lengths. Hence, the inner product of
the feature vectors for two strings s and t give a sum over all common subseguences
weighted according to their frequency of occurrence and lengths

Kpfs,t) = Z( ) Gult)) Z Z N Z A

wgL” wE L jru=si| Jre=tlj)

_ Z Z Z AHDHG)

wEL fiu=afi] jru=t[j]

A direct computation of these features would invelve O(| > |*) time and space,
since this is the number of features involved. It is also clear that most of the features
will have non zero components for large documents. In order to derive an effective
procedure for computing such kernel, we introduce an additional function which will
aid in defining a recursive computation for this kernel. Let

Hs,t) = D0 57 D btz

ue B iu=sli] ju=t]j)
1= 1,...,n—1,

that is counting the length from the beginning of the particular sequence through to
the end of the strings s and ¢ instead of just {(i) and {{j). We can now define a recursive
computation for K| and hence compute K,

Definition 8 Recursive computotion of the subsequence kernel.

Ki(s,t) = 1, for ais,t,
K{(s,t) = 0, min(|s|,|¢]) <+,
Ki(s,t) = 0, i min(|s|,[¢]) <1,
Ki(sz,t) = MKs, )+ > K (s,t[1: 5 — 2))AF=+2,
ity =
i=l,.j.‘,n—1,
Kn(se,t) = Ka(s,00+ > Ki_(s,1[1: 5 — 1A%

i mx
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Notice that we need the auxiliary function K’ since it is only the interior gaps in
the subsequences that are penalised. The correctness of this recursion follows from
observing how the length of the strings has increased, incurring a factor of A for each
extra length unit. Hence, in the formula for &((sz,t), the first term has one fewer
character, so requiring a single X factor, while the second has |{| — 7 +2 fewer characters.
For the last formula the second term requires the addition of just two characters, one to
s and one to ¢[1 : 7 1], since z is the last character of the n-sequence. If we wished to
compute I{,,(s,t) for a range of values of n, we would simply perform the computation
of K!(3,t) up to one less than the largest n required, and then apply the last recursion
for each K ,(s,t) that is needed using the stored values of K/(s,t). We can of course
create a kernel K(s,¢) that combines the different K,(s,¢) giving different (positive)
weightings for each n.

Once we have created such a kernel it is natural to normalise to remove any bias
introduced by document length. We can produce this effect by normalising the feature
vectors in the feature space. Hence, we create a new embedding ¢(s} = I_i%ﬂ’ which
gives rise to the kernel

. - o) o)
Klst) = <¢(8)'¢“)>:<n¢(s)||‘nq&(t)n)
_ i _ K(s,1)
BENTeET 40 = =i

10.7.1 Efficient computation of SSK

SSK measures the similarity between documents s and ¢ in a time proportional to
nis||t)?, where n is the Jength of the sequence. It is evident from the description of
the recursion in Definition 8, as the outermost recursion is over the sequence length
and for each length and each additional character in s and ¢ a sum over the sequence
t must be evalnated. However it is possible to speed up the computation of SSK. We
now present an efficient recursive computation of SSK that reduce the complexity of
the computation to O(n|s!|¢[), by first evaluating

K!(sz,t) = ZI (s[5 — )2

Sty =x
and observing that we can then evaluate K[(s,¢) with the O(|s||¢|) recursion,
K{(sx,t) = AK[(s,1) + K (sz,1).
Now observe that K!(sz,tu) = MK (sz,t), provided z does not occur in u, while
Kl'(sz,tx) = A (K!(sz,t) + AK!_(s,8)) .

These observations together give an (O(|s]|¢|) recursion for computing K7 (s,t). Hence,
we can evaluate the overall kernel in O(n|s||¢]) time.
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10.7.2 n-grams- a language independent approach

n-grams is a language independent text representation technique. It transforms docu-
ments into high dimensional feature vectors where each feature corresponds to a con-
tiguous substring. n-grams are n adjacent characters (substring) from the alphabet A.
Hence, the number of distinct n-grams in a text is less than or equal to |A|*. This
shows that the dimensionality of the n-grams feature vector can be very high even for
moderate values of n. However all these n-grams are not present in a document, thus
reducing the dimensionality substantially. For example there are 8727 unique tri-grams
(excluding stop words) in the Reuters dataset. Generally during n-grams feature vector
formation all the upper-case characters are converted into lower-case characters and
space is assumed for punctuation. The feature vectors are then normalised. This is
illustrated in the following example.

Example Consider an example that compute a tri-gram, and quad-gram feature vec-
tor,

d = “support vector”

The 3-grams are sup upp ppo por ort rt{ tdv {ve vec ect cto tor, while the 4-grams
are supp uppo ppot port ort{ rtv tdve fvec ecta ctor.

where {§ represents a space. Systems based on this technique have been applied in
situations where the text suffers from errors such as misspelling [4]. The choice of an
optimal n varies with text corpora.

10.8 Conclusions

In this chapter we have presented a number of different methods for censtructing kernels
that capfure some of the semantic content in a document, exploiting statistical informa-
tion about the occurrence and co-occurrence of words. Such kernels have been used with
success in categorization, retrieval, cross-language and hypertext analysis. A number of
other kernels for text have also recently been proposed for example: Hofmann [14] and
Saunders et al. [27] that we did not have space to discuss here. However, the interested
reader is referred to the webpage www.support-vector.net /text-kernels.html for
constantly updated list of papers and links to state of the art work in this direction.

Throughout this chapter we deliberately adopted the approach not to emphasize
how to use such kernels, since the inherent modularity of KMs makes it possible to com-
bine this mapping with a number of methodologies, some of them discussed elsewhere
in this book, and others in related books {see for exarple [9, 17]). We dealt explicitly
with the Generalized Vector Space family of approaches, although other representations
of text involving strings or probabilistic models are important.

Many known Information Retrieval systems, and many new generative models,
or pattern matching systems, can be regarded as special cases of kernel methods.
Once this is achieved, a whole set of techniques can be used: not just retrieval, but
also classification, clustering, novelty detection, regression, density estimation and a
large set of operations designed to enhance the performance in kernel methods can be
applied as well. A number of key ideas have been presented in this chapter, ranging
from the pioneering work of Salton [26] and its recent adaptation by Joachims [16]
to kernel methods. Recent advances by Kandola et al. [20] and Vinokourov et al.
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[31] have shown that semantic similarity and cross-lingual approaches can be viewed
in a kernel framework. In summary, Kernel methods can be considered to provide
a natural framework for Text and Hypertext pattern recognition. Deciding if two
documents, sentences or words have a similar meaning is much easier than guessing
their meaning. This similarity measure can be easily obtained using methods from
different disciplines, and can be exploited by kernel-based learning systerns. There is
still much to be learned about the possibility but also the limitations of such systems.
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Chapter 11

An Optimization Perspective on
Kernel Partial Least Squares
Regression

Kristin P. Bennett and Mark J. Embrechts?

Abstract. This work provides a novel derivation based on optirnization for the
partial least squares {PLS) algorithm for linear regression and the kernel par-
tial least squares (K-PLS) algorithm for nonlinear regression. This derivation
makes the PLS algorithm, popularly and successfully used for chemometrics ap-
plications, more accessible to machine learning researchers. The work introduces
Direct I{-PLS, a novel way to kernelize PLS based on direct factorization of the
kernel matrix. Computational results and discussion illustrate the relative mer-
its of K-PLS and Direct K-PLS versus closely related kernel methods such as
support vector machines and kernel ridge regression.

"T"his work was supported by NSF grant number 113-9979860. Many thanks to Roman Rosipal,
Nello Cristiznini, and Johan Suykens for many helpful discussions on PLS and kernel methods, Sean
Ekans from Concurrent Pharmaceutical for providing melecule descriptions for the Albumin data set,
Curt Breneman and N. Sukumar for generating descriptors for the Albumin data, and Tony Van
Gestel for an eificient Gaussian kernel implementation algorithm.
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11.1 Introduction

Partial Least Squares (PLS) has proven to be a popular and effective approach to
problems i chemometrics such as predicting the bioactivity of molecules in order to
facilitate discovery of novel pharmaceuticals. PLS-type algorithms work very well.
The algorithms are very resistant to overfitting, fast, easy to implement and simple to
tune. Chemometric problems frequently have training data with few points and very
high dimensionality. On this type of problem, simple linear least squares regression
fails, but linear PLS excels. This ability fo do inference in high-dimensicnal space
effectively makes PLS an ideal candidate for a kernel approach. Rosipal and Trejo
extended PLS to nonlinear regression using kernels functions [22]. As demonstrated in
this chapter, kernel partial least squares (IX-PLS) is a very effective general purpose
regression approach.

The goal of this work is to make PLS and K-PLS more accessible to machine learning
researchers in order to promote the use and extension of this powerful approach. The
first step is to understand where PLS comes from and how it works. Thus, we develop
a relatively simple yet rigorous derivation of PLS and two K-PLS variants from an
optimization perspective. Many published papers contain PLS algorithms and analysis
of these algorithms. But, typically no derivation of the algorithm is provided. The
second step is to understand the strengths and weaknesses of PLS and K-PLS. So we
provide a computational comparison with other kerel regression methods and discuss
the relative merits of the approaches and directions for future work. The third step is
to get researchers to try K-PLS. The K-PLS code is publicly available as part of the
Analyze/StripMiner software at www.drugmining.com.

For simplicity, we focus on the simple regression problem of predicting a single
response variable and derive the version of PLS that has heen previously kernelized.
But the analysis performed here can be easily altered to produce other PLS and K-PLS
variations both existing and new. To demonstrate this, we derive the novel DK-PLS
algorithm. The mathematical models underlying PLS are closely related to those of
principal component analysis (PCA) regression. Thus in Section 11.2.1, we begin
with a brief review of PCA. PCA computes components based on input data but
does not take into account the response. In Section 11.2.2, we show how PLS can be
derived from a logical extension of PCA to include information about the response.
In Section 11.3, we investigate two possible methods for constructing a nonlinear PLS
algorithm via kernels. In Section 11.4 we discuss practical aspects of a successful K-
PLS implementation. In Sections 11.5-11.7, we provide a computational comparison
between K-I’LS and other kernel regression algorithms such as support vector machines
(SVM) and kernel ridge regression (KRR). We conclude with a discussion of the relative
merits of the PLS and K-PLS approaches, and future directions for research.

We limit our discussion to regression problems with a single dependent variable.
More specifically, given a training set of data ((x1,¥:),. .., (Xe.¥e)) x, € R, y; € R,
the problem is to construct some function f such that f(x;) approximately equals
y; and the function generalizes well on future data. Note PLS and K-PLS are also
applicable to multiple regression problems with y; € R°, ¢ > 1. The following notation
is used. Each data peint, x;, is represented as the i*" row in the data matrix X. The

it" response is denoted by y, where y is a column vector. Let ¢ denote the number of
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points, and n denote the dimensionality of the data, so X € B®*® and y € R*>!. In
general, matrices are denoted by bold capital letters such as A. Vectors are denoted
by bold lower case letters like u. With the exception of the data points x;, vectors are
presumed to be column vectors uniess otherwise noted. The 2-norm or Euclidean norm
is denoted by ||y|| if y is a vector, thus ||y||> = ¥'y. For a matrix A, ||A||? denotes
the square of the Frobenius norm which equals )7 > j(A,-j)g. Greek Jetters are used to
denote scalars. The transpose of a matrix is denoted by X'. The dot product of two
column vectors u and v is denoted by u’v. The outer product of u and v is denoted
by uv’. The reader should be careful to distinguish the use of dot products from that
of outer products. Note that we assume a data vector x is a row vector. Thus xw
denotes the inner product of x and w. Subscripts are used to indicate components of a
matrix or a vector. Superscripts indicate values of a matrix or vector at each iteration.

11.2 PLS Derivation

As the name implies, PLS is based on least-squares regression. Consider the problem of
constructing a linear function consisting of the inner product of x with w, f(x) = xw,
such that f(x) is approximately y. Note that here x is a row vector and w is a column
vector, We assume that y and the data matrix X have been scaled to have zero
column means so that no bias term 13 necessary. A least squares optimization method
constructs w by minimizing the sum of the squared residuals between the predicted
and actual response. The simplest least squares problem is:

i
. ]
min Y (uw - yi)? (11.1)
i=1

where x; is a row vector representing the i'” data point. For high-dimensional data,
the problem must be regularized to prevent overfitting. In ridge regression [12] this is
accomplished by penalizing large values of [jw]|[? to yield:

£
: i A
ain 3 2w -y + Sl (119
=1

PLS’s method of regularization or capacity control distinguishes it from other least
squares algorithms, [n Principal Component Analysis (PCA) regression, the capacity
control is performed by mapping the data to a lower-dimensional space and constructing
the least squares estimate in that space. PCA ignores all information about y while
constructing this mapping. PLS utilizes information from the response y to help select
a mapping better suited for regression problems. Since PLS is very similar to PCA,
we begin with a review of PCA in the next section and then show how this type of
analysis can be extended to PLS in the subsequent section.

11.2.1 PCA regression review

PCA vegression consists of two steps. First a linear projection or mapping of the data
is constructed, using standard PCA. Then the final regression function is constructed
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by minimizing the least squares error between the projected data and the response y.
Selecting a lower dimensional subspace for the mapping restricts the set of possible
regression functions, thus limiting the capacity of the resulting function to overfit the
data. This is a form of regularization.

PCA constructs a linear projection of the data that preserves the characteristics
of the data as much as possible. The first component of PCA computes the linear
projection of the data with maximum variance. But there are alternative derivations
of PCA. The first principal component can be derived by minimizing the distance
between a data point and its projection on a vector. These are equivalent prebiems.

If we take a data point x; € R'™ and project it on the vector w' € R!*" the
projected point is (x;w)w’. To compute the linear projection that minimizes the
distortion between x and its projection, one can minimize

¢
minz ljx; — xoww!'[|? s.t. w'w = 1. (11.3)

i=1

Note that x; is a row vector, w is a column vector, and ww’ is an outer product. By
simple linear algebra, Problem (11.3) is equivalent to maximizing the variance of the
projected data, i.e.

mgx*ua-r()(w) st w'w =1 (11.4)

Using the constraint to simplify the objective, problem (11.3) can be rewritten as

i 5, 6 — e (o ww)] = 5,06 — ')
ot w1 T (11.9)

After dropping the constant terms and converting the problem to a maximization
probler, the problem becomes:

mi.n—th-ww’x’;- st ww =1 (11.6)

or equivalently
ma.xZ [paw||* st w'w=1. (11.7)

Assuming that x; has mean 0, this problem is equivalent to Problem (11.4).

The optimal solution for w can he easily constructed using the first order optimality
conditions [18]. To derive the optimality conditions for Problem (11.7), convert the
problem to a minimization problem, construct the Lagrangian function, and set the
derivative of the Lagrangian with respect to w to zero. With A as the Lagrangian
multiplier of the constraint, the Lagrangian function is

£ ) = = 2 b+ Aw'w 1)

The optimality conditions are

X'Xw = Aw w'w = 1. (11.8)
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So we know the optimal w 1s just the maximal eigenvalue of the covariance matrix
X'X.

But this yields only a one-dimensional representation of the data. A series of
orthogonal projections can be computed by the NIPALS (Nonlinear Iterative Partial
Least Squares) algorithm [34). The data matrix is reduced in order to account for
the part of the data explained by w. The data matrix is “deflated” by subtracting
away the part explained by w. So at the next iteration the method computes the best
linear projection w? of [X! — X'w'w'"] which exactly corresponds to the eigenvector
with second largest eigenvalue of XX IfM<n orthovona] projects are desired, this
procedure is repeated M times. )f the projection vectors w* are represented as columns
in the matrix W, the reduced dimensionality data or latent variables are now XW. We
call each column of X'W a latent variable. The matrix X has now been approximated
by the low-rank matrix XWW'. By construction W'W = I,

In PCA regression, the least-squares loss function is used to compute the final
regression function. The least-squares problem in the projected space:

mm —||XWV -yl (11.9)
ve iM
has optimality conditions
WX'XWv - WXy =0 (11.10)

The optimal value of the regression coeflicients in the projected space is ¥. In the
original space, the coefficients of the final linear function, f(x} = xb, are

b=Wv=WWXXW) 'WXy. (11.11)
The final regression function is
f(x) = xb = xW(W'X'XW)"'"W'Xy (11.12)

assuming x is a row vector. The final regression funciion looks complicated as an
equation,; but conceptually it is fairly simple.

In PCA regression, the degree of capacity control or regularization is controlled by
ﬁ/f the sole parameter in PCA. M controls the number of principal components w, or
equivalently the number of latent variables xw. If M= n, then the method reduces
to simple least squares.

11.2.2 PLS analysis

Like PCA, PLS also constructs a mapping of the data to a f/fﬁg n dimensional
space and then solves a least squares regression problem in the A dimensional space
to calculate the final regression function. Like PCA, this mapping is achieved by
constructing a low-rank approximation of the data matrix X. If M = n, PLS also
becomes simple least-squares regression. PLS methods differ from PCA in only two
respects: the mathematical model for computing the mapping and the mathematical
mode] used to compute the fina) vegression coeflicients. Unlike PCA, PLS utilizes both
the input and the response data, X and y respectively, to construct the mapping to a
lower dimensional space. In this process it constructs low-rank approximations for hoth
X and y. The final optimization model optimization utilizes these approximations plus
the linear projections to compute the final regression coefficients.
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11.2.3 Linear PLS

Figure 11.1: Line is direction of maximum variance {w) constructed by PCA.

The entire PLS procedure can he derived by making two simple but profound
changes to the optimization problems underlying PCA Regression. The primary prob-
lem with PCA Regression, is that PCA does not take into account the response variable
when constructing the principal components oy latent variables. Thus even for easy
classification problems such as in Figure 11.1, the method may select poor latent vari-
ables. Thus, the firgt change is to incorporate information about the response in the
model used to construct the latent variables. To simplify notation, we switch to matrix
notation and write the PCA Problem (11.4) as

min || X — Xww'|[*s.t.w'w = 1 (11.13)

where || X —Xww/||? = 3. 5. (3 —xyww; )% If Xw is approximately y, the regression
problem is solvable using only one latent variable. So we simply substitute y for Xw
into the PCA Problem (11.7) to yield

min [| X — yw'[|® 5.8 w'w = 1. (11.14)

Does this probleru make sense? Figure 11.2 illustrates the resulting PLS direction
on the above sample problem. Now the regression function (here for a classification
problem} can be constructed using a single latent variable. We know Problem (11.14)
constructs the rank-one function of ¥ that mostly nearly maps to the input data x.
How does this relates to the regression problem of finding a function of the inputs x
that maps to the response y? Using |{w|| = | and the Cauchy-Schwartz Theorem,
we can show that || X — yw’||? bounds the usual least-squares regression loss function.
More precisely for each point training peint (x;, y;):

[ = wll* = (166 =y wOw(? < Jx, — yaw/ [Pl wl® =[x — yiw'] [
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Figure 11.2: Line is direction w constructed by PLS using response (1 or -1) information.

Thus Problem (11.14) minimizes a bound on the least squares loss function but the
choice of w is now greatly restricted.

To our knowledge, Problem (11.14) has not been used before to derive PLS in
the literature. It is well known that in PLS the first latent variable Xw maximizes
the sample covariance of Xw and y. Just as in PCA, the covariance and low rank
approximation problems can be shown to be equivalent. Note that this derivation
depends on the assumptions that y'y = w'w = 1, mean(X) = 0, and mean(y) = 0.
For any data point X,

llx —yw|I? = (x — wy'}(x — yw') = x'x — 2wx'y + yw'wy’
= x'x = 2wx'y + yy' = —2cov(xw,y) + constant.

Thus after converting the problem to a maximization problem and removing constant
terms, Problem (11.14) is equivalent to

max cov(Xw,y) s.t. ww =1 (11.15)

A wonderful quality of these problems is that they have a closed form solution. The
optimality conditions are X'y = Aw and w'w = 1, so the optimal solution is w =
w—;g{,—ﬂ. The latent variable can be computed in linear time. 1t is easy to show that
w i3 the eigenvector of X'yy X.

Note that these problems are well defined even if the constraint ||w|| = 1 is dropped.
We would like to derive a version of PLS that is convenient for kernel functions when
w is in feature space. S0 we will not use the normalized form of w. For the rest of
the chapter we will use the unnormalized w = X'y. We can now derive the rest of the
PLS algorithm using the analogous approaches to PCA regression, but we must alter
any step that assumes W'W = [.

As in PCA we want to compute a series of directions that provide good low-rank
approximations of our data. We can now deflate our data matrix to take into account
the explained data. Qur current approximation of the original matrix (X') is X'w'w!’
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But we can make this approximation a bit better, Define t! = ﬁ The best

approximation is the matrix t'p'" where p' solves

min || X' = t'p’[|%. (11.16)
p

By Lemma 1 in the appendix, p' = X"t". Thus deflating X' can be accomplished as
follows:
X2 = X! —¢lp' = X! — 't

This process will generate a series of vectors t* that are orthogonal. The matrix T,
created using t* as the columns of T is orthogonal.

Recall that X*w® is also an approximation of y. So it seems reasonable to calculate
the residual for the current estimate of y since that part of y is in some sense explained.
Since t' is proportional to X'w', we calculate the best least-squares fit of t' to y! = y.
So our best estimate of y' is t'c" such that ¢’ € R solves

mc'm[|yl — e[|

By Lemma 1, ¢! = t"y!. So the residual is just

yz — y] _ tlc]" — y] _ tlt]’yl‘

For the next latent variable, this process can be repeated using X? and y? to compute
w2, t2 etc. until the desired number of latent variables, M is reached.

11.2.4 Final regression components

Once the tatent variables have been constructed, the next step is to compute the final
regression functions. PLS and PCA use different mathematical models to compute
the final regression coefficients. IPCA Regression maps the original data into a lower-
dimensional space using the projection matrix W and then computes the least squares
solution in this space. Recall that PLS computes an orthogenal factorization of both
the input X and response y data in the process of computing W. This factorization
constructs low rank approximations of X and y. The least squares model for PLS s
based on these approxvimations of the input and response data, not the original deto.
This is the other key difference between K-PLS and PCA regression. The use of the
approximate data instead of the actual training data contributes both to the robustness
and computational efficiency of the approach.

Use of the data factorization makes computing the final regression coeflicients more
efficient. Let T € ¥ denote the matrix formed by using each t* as a column and
similarly for W. We know T was constructed to be a good factorization of both X and
y. By Lemma 1 in the Appendix and the fact that T'T = 7, one can show P = X'T
solves ming || X — TP'||? and therefore TP’ is the best approximation of X based on T.
Similarly the best approximation of y is TC’ where C = y’'T solves ming ||y — TC'||.
The final regression problem is: construct v such that

min |[[(TPYWv = TC/|? = min||T(P'Wv -C)|? (11.17)
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Note this is iclentical to the problem solved in PCA Regression except the approxima-
tion of X and y are used instead of the actual data. If (P'Wv = C’) has a solution ¥,
then v is the optimal solution of Problem (11.17) since the objective will then be zero,
the lowest possible value. It turns out that PW is always a lower triangular matrix
(see {22, 13]) and thus nonsingular. Thus we know that ¥ exists satisfying PWv = C'.
The solution v can be coroputed efficiently using forward substitution. For notational
convenience we will say Vv = (P"W)7'C’. But in fact the inverse matrix need not be
calculated explicitly.

Having found ¥, the final regression function can be computed using the same
approach in PCA Regression (see (11.11),(11.12}). The final regression functions is
f(x) = xb where

b=W({PW)'C'=W(TXW)HTy. (11.18)

By exploiting the facts that C' = T'y and P’ = T'X, b can be calculated solely in
terms of {X,y, T, W).
To summarize, the final PLS algorithm for computing a single response variable is:

Algorithm 1 Basic PLS Algorithm Assume data X! = X and response y! = y
have been normalized by column to hove mean 0 and standard deviation 1. The only
algorithm parameter is the number of latent variables, M.

! Form = 1to M
2, wh=Xmym
3. = X"mw"
4. T =T/t
5. tmHl = Xm — g X
6.yt =yT — Tty
7oyt =y fy™
8. Compute final regression coefficients b
b = W{T'XW) "Ty.

t columns of W and T are w™ and t™ respectively.

where the m

The final regression function is f(x) = xb where the data vector x is a row vector.

PLS requires far Jess computational titpe than PCA because PLS computes the latent

vector by simply multiplying the data matrix by the residual, e.g. w™ = X™'y™, while

PCA must compute the eigenvectors of X™ X™ at each iteration. Because the solution

can be represented in terms of the data matrix and works very well on high-dimensional
collinear data, PLS is a natural candidate for a kernel method.
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11.3 Nonlinear PLS via Kernels

While other nonlinear extensions to PLS have previously been proposed |1, 35, 36, 2],
PLS has only just recently been extended to nonlinear regression through the use of
kernels. K-PLS exhibits the elegance that only linear algebra is required, once the
kernel matrix has been determined. There are two general approaches for kernelizing
PLS. The first approach by Rosipal and Trejo is based on the now classic methodology
used in SVM {30, 22]. Each point is mapped nonlinearly to a higher dimensional feature
space. A linear regression function is constructed in the mapped space corresponding
to a nonbinear function in the original input space. In the dual space, the mapped data
only appears as dot products and these dot products can be replaced by kernel functions
in the final K-PLS algorithm. The second approach is to use PLS to factorize the kernel
matrix directly. K-PLS as first introduced by Rosipal and Trejo [22] is derived using
approaches analogous to those used for kernel PCA [23]. Direct Kernel PLS (DK-
PLS), introduced here, is based on a direct factorization of the kernel matrix. DX-PLS
explicitly produces a low rank approximation of the kernel matrix. Thus it is more
closely related to other kernel matrix approximation approaches based on sampling or
factorization [16, 10, 17, 9, 27, 24]. DK-PLS has the advantage that the kernel does
not need to be square. When combined with sampling of the columns of the kernel
matrix such as in [17, 16, 10}, it is more scalable than the original KPLS.

11.3.1 Feature space K-PLS

A full discussion of the derivation of K-PLS from PLS using the approach of mapping
the data to feature space and constructing a linear function in feature space is given in
[22). To generate this approach one defines a mapping ® and replaces X with ®(X) and
propagates the changes required in the algorithm. Thus the basic problem becomes:

min”@(X) —yw'||? st ||w||* = 1. (11.19)

PLS Algorithm 1 can be easily kernelized. Using approaches such as for LS-SVM [26],
the optimality conditions of this problem can be constructed in the dual space. This
produces a formulation equivalens to [22] and the reader should consuit that paper for
more details. We just summarize here and provide the simplified algorithm for one
response variable. In Algorithm 1, there is no need to explicitly calculate W. Steps 2
and 3 can be combined. The final regression coefficient can be rewritten to exploit the
fact that w™ = X™y™ = Xy™. In feature space, step 6 cannot be explicitly performed.
RBut since X only appears in the expression X™X™', the kernel matrix can be deflated
directly. The K-PLS simplified for one response becomes:

Algorithm 2 Kernel Partial Least Squares [22]

Let K" = ®(X)®(XY), i.e. I; = K(x;,x;), be the Gram matriz in feature space.
Let K' be the centered form of K°. Let response Y' = y be normalized to have mean
+ and standard deviation 1. Let M be the desired number of latent variables.

1. Form = 1to M

2. tm=Kmyn
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R Cal

K™ = (I — ™)K (- t76™)

AT A

y.m-|-] — Ym _ tmtlw‘Ym
6. ym+1 — ym+]/||ym+1||

7. Compute final regression coefficients o
o = Y(TrKl’Y)—-IJTIY

where the m*™ columns of Y and T are y™ and t™ respectively.

£
Hz) = K(x,x)o

=1

Note that the training ond testing kernels must be centered. See equation {11.21).

11.3.2 Direct kernel partial least squares

Direct Kernel Partial Least Squares factorizes the kernel matrix directly and then
computes the final regression function based on this factorization. Let K = &(X)®(X),
Le. Ky = K(x,%;)}, be the Gram matrix in feature space. Assume K and y have been
centered so that no bias term is required. The nnderlying problem for DI{-PLS is:

min ||[K — yo|]? (11.20)

DR-PLS constructs a low rank approximation of the kernel matrix, and then uses this
approximation to construct the final function. Strategies for improving kerne} methods
through factorization have been receiving increasing attention [29, 9. DK-PLS not
only computes a factorization very efficiently relative to eigenvector methods, but it
produces a Jow-rank appreximation biased for good performance on the regression task.
Algorithm 1 is converted to DK-PLS by simply substituting K for X. Any variant of
PLS can be adapted using the direct kernel approach. The resulting algorithms may be
more efficient especially if the kernel matrix is not square. DK-PLS does not assume
that the kernel matrix is square so the data maybe sampled to construct the kernel
matrix such as in RSVM [10]. When coupled with such a sampling strategy, DIX-PLS
is more scalable than K-PLS.

Algorithm 3 Direct Kernel Partial Least Squares

Let K° = #(X)B(XY, t.e. Kij = K(xi,X;), be the Gram matriz in feature space.
Let K' be the centered form of Ki. Let response Y' = y be normalized to have mean
0 and standard deviation 1. Let M be the deswred number of latent vartables.

{. Fork = ltoﬁff

2 i Kmefym
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o = /|||

Km+l = K™ — t’mt’m»‘Km.

ym-H —_ ym+l/||ym+l ||

3.

4

5 yrmil =y gy

)

7. Compute final regression coefficients o

o = KN'Y(TK'K'Y)Y ! Ty

where the m* columns of Y and T are y™ and t™ respectively.

¢
flz) = Z Kz, z)on

Note that the testing kernel must be centered.

11.4 Computational Issues in K-PLS

K-PLS requires that the user specifies the number of latent variables. Selecting a
modest number of latent variables effectively constitutes regularization for K-PLS.
The number of latent variables can be determined by either i) tuning on a validation
set or ii) adhering to a policy. It has been our experience that for particular types
of datasets the optimal number of latent variables does not change by much and the
prediction performance is generally not extremely sensitive to the optimal choice for
the number of latent variables. On chemometric data, we generally adopt the policy
of using five latent variables, regardless of the dataset (but Mahalanobis scale the data
first). For large datasets or data that are known to be highly nonlinear (e.g., twisted
spiral), the optimal number of latent variables is estimated using a validation set.

As in Kernel PCA, centering the kernel is important to make K-PLS (and especially
DK-PLS) work property. The idea of kernel centering is to force the bias term to be
zero. The important thing to remember when centering kernels is that the training set
and the test set kernels should be centered in a consistent ruanner. Kernel centering
can be implemented using the following formulas for centering the training kernel and
test kernel as suggested by Wu et al. [39, 23, 22]. It is important to note that the
equation for the test kernel is based on the un-centered training kernel:

1(5;?'5’::' = (I- 1113 J(trodn I- lll’]
I{’tesltz- — Ek'tesg _ %)1 111{tr'(ain)(f _ lellr) (1]21)

where 1 is a vector of ones and 7 is ap identity matrix of appropriate dimension.
Above expressions for kernel centering are mathematically elegant and can be rapidly
programmed in MATLAB, but are numerically inefficient. In our implementation we
essentially adhere to the formulation above, but micro-encode for optimal performance.

A numerically equivalent but more efficient kernel centering proceeds as follows.
For the centered training kernel subtract the average for each column of the training
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kernel from the column entries, and then subtract the average row value of the modified
training kernel row value from each row entity. The training average column values can
be kept in memory and used to center the test kernel in a similar way. For cenfering
the test kernel, the average value of the columns of the training kernel is subtracted
from each column entry in the test kernel, succeeded by subtracting the average row
value from each row entry of the recently modified test kernel. Note that the kernel
need not be square.

11.5 Comparison of Kernel Regression Methods

In this section, we compare several different types of kernel regression methods with
kerne] PLS.

11.5.1 Methods

Different methods considered in this benchmark study include: i) Linear Partial Least
Squares [32, 33, 34, 37 (PLS); ii} Linear Proximal Support Vector Machines [10] (P-
SVM Lin); iii) K-PLS algorithm as proposed by Rosipal and Trejo [22] with kernel
centering (K-PLS ); iv) direct kernel PLS (DK-PLS), which factorizes the centered
kernel matrix divectly as described above; v) LS-SVM also known as Kernel Ridge
Regression [26, 7, 8] (LS-SVM) applied to the centered kernel; vi) the reduced form
of Least-Squares Support Vector Machines [10] (LS-RSVM) applied to the centered
kernel; and viii) classic SVM as implemented in SVM-Torch [30, 5]. The kernel was
not centered for SVM-TORCH. More precisely, the LS-SVM solution is produced by
solving the following set of equations (using notation in [3]):

(K+\N)a=y (11.22)
to produce the following function
fx) = ¢/ (K + AI) 'k (11.23)

where k; = K(x,2,),4 = 1,...,m. The LS-RSVM method is constructed by solving
the following equations:

(K'Ka — \)a =K'y (11.24)
to produces the final regression functions:
f(x) = yKX'K + I’k (11.25)

where k; = K(z,x;),7 = 1,...,m. For all kernel methods except SVM-Torch, the
kernel was centered. Note that LS-RSVM does not require the kernel matrix to be
square to be well defined. All the computer coding was efficiently implemented in C
in the Analyze/StripMiner code available from the DDASSL website [6]. The Least
Squares SVM variants (LS-SVM, LS-RSVM and LS-RSVM lin) apply an extension of
scaled conjugate gradient method introduced by Méller (in a very different context)
[19] for fast equation solving. The scaled conjugate gradient method is effectively a
Krylov method [14] and the computation time for solving a linear set of £ equations
scales roughly as 5062, rather than ¢ for traditional equation solvers.
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11.5.2 Benchmark cases

The benchmark studies comprise four binary classification problems and three true
regression cases. The classification cases were treated as if they were regression prob-
lems. The classification benchmark data sets were obtained from the UCI Machine
Learning Repository [20] and are BUPA Liver, lonosphere, Tic-Tac-Toe, and Mush-
roomw. The regression cases include Boston Housing, Abalone, and Albumin. The
Boston Housing data were obtained from the UCI data repository. The Abalone data,
which relate to the prediction of the age for horseshoe crabs [21], were obtained from
http://sst.umh.ac.be/abalone.html. The Albumin dataset [4] is a public QSAR drug-
design-related dataset and can be obtained from the DDASSL homepage [6]. The aim
of the Albumin dataset is predicting the binding affinities of small molecules to the
human serum albumin.

With an exception for the mushroom data, all the computations were performed on
a. 300 MHz Pentium II with 128 MB of memory. The calculations for the mushroom and
abalone data were performed on a 1.8 GH Pentium IV. Because the compiler was not
optimized for a Pentium IV Processor, the reported execution times for the mushroom
and abalone data were recalibrated to the estimated run time on a 300 MHz Pentium
I1.

11.5.3 Data preparation and parameter tuning

Al) data were first Mahalanobis scaled before generating the kernel. The kerne) function
used in this study is a Gaussian kernel (K (u, v) = exp(—[|u—v||*/207). The value of ¢
for each dataset was tuned on a validation set before proceeding with the calculations.
The A parameter for penalizing the two-norm of the weights in all the least squares
methods (LS-SVM, LS-RSVM, and LS-RSVM lin} were heuristically determined by
the following relationship: .
{j I

A=0.05 (200> (11.26)
where ¢ is the number of training data. We found that this particular policy choice
for A gives near optimal performance for 40 different benchmark datasets that we have
tested so far. SVM-Torch is executed in a regression mode and the ¢ parameter is
heuristically determined by the above formula, but now C = 1/A. The ¢ parameter
for SVM-Torch was tuned on a validation set. All cases were executed in a 100-times
leave-10-percent-out mode (100xLO010). The number of latent variables for PLS and
the K-PLS methods was held fixed by policy to five for most cases, but tuned on
a validation set if the optimal value was considered to be relevantly different. The
results for the binary classification benchmark cases are summarized in Table 11.1,
and the results for the regression cases are shown in Table 11.2. The best performance
for prediction accuracy are indicated in hold. The results for both regression and
classification are summarized in Table 11.3.

For the binary classification cases, the results are presented as the number of cases
that were misclassified without providing any details on the false positive/false negative
ratio. For the regression cases the results are presented by the least-mean square error
and Q2 defined below. Q2 is the square of the correlation between the actual and
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Method Data Set | BUPA Liver | Ionosphere | Tic-Tac-Toe | Mushroom
mxn 345x6 391x34 958x9 8124x22
PLS Test (%) 30.0 12.7 311 12.3
(linear) Time (s) 0.52 1.89 2.69 56.18
P-SVM Test 30.0 13.7 31.5 12.4
(linear) Times 0.05 4.26 1.37 37.6
K-PLS Test, 27.9 4.2 0.1 0.0
Time 47.47 63.48 1044.24 2.01%10%
DK-PLS Test. 28.1 5.5 6.8 3.78
Time 40.51 54.62 799.31 1.05%10%
LS-SVM Test. 29.0 5.5 3.9 0.04
Time 77.00 54.40 590.4 6.76 *10%
LS-RSVM || Test 27.5 4.3 9.5 0.11
Time 211.55 300.08 4313 1.12 *10°
SVM-Torch || Test 28.9 5.0 1.5 (.08
Time 258.03 242.00 1161.81 1.44*% 108

Table 11.1: Binary Classification Benchmark Cases Average Misclassification Rate (100 x,
leave 10% out mode)

predicted response. Since Q2 is independent on the scaling of the data [11], it is
generally useful to compare the relative prediction performance for different datasets
for regression. Let y; be the 1** response, ¥; be the predicted respornse, sy, oy, uy, and
oy be the sample means and standard deviations of the actual and predicted responses,

then
> (F = )y — 1y))
dgCy

Q-

(11.27)

11.5.4 Results and discussion

The best performance method and particular choice of tuning parameters for each
benchmark problera is sumunarized in Table 11.4. The reported execution times in
this table are for K-PLS only, to allow for a consistent comparison between differ-
ent datasets. 1t can be observed that K-PLS generally compares well in prediction
performance and computing time with other kernel methods.

The K-PLS method has the general advantage that the tuning is robust and simpler
than other methods. Other than the choice of kernel, the only parameter is the number
of latent variables. One need only consider a few discrete values as opposed to the
continuous parameters in SVM and Ridge Regression. Only for datasets that exhibit
pronounced non-linearity was it necessary to choose more than 5 latent variables. As
currently implemented, K-PLS and DIK-PLS have the restriction that they require a
machine with sufficient memory to store the full kernel matrix in memory. To allow
processing of large sets in DK-PLS, a smaller rectangular kernel can be constructed
using sampling. This was not required in these experiments. Results for DR-PLS are
generally comparable to those obtained from K-PLS.
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Method Data Set | Boston Housing | Atbumin | Abalone
Inxn 206x13 84x5H51 4177x8
PLS Test Q2 0.28 0.36 0.49
(linear) LMSE 4.92 0.35 2.22
Time(s) 1.35 10.73 | 17.75
P-5VM Test Q2 (.28 0.42 0.49
(linear) LMSE 4,88 0.4 2.22
Times(s) 1.18 69.7 5.85
K-PLS Test Q2 0.13 0.35 0.44
LMSE 3.40 0.35 2.12
Time(s) 181.05 34.24 26224
DR-PLS Test Q2 0.18 0.33 0.45
LMSE 3.9 0.34 2.12
Tire(s) 147.99 3237 | 14202
TSSVM || Test Q2 0.14 0.35 0.47
LMSE 3.49 0.35 2.18
Time(s) 167.60 36.71 8286
LS-RSVM | Test Q2 .18 0.33 0.45
LMSE 3.88 0.34 2.14
Time(s) 661.49 39.17 170925
SVM-Torch | Test Q2 0.16 0.38 0.44
LMSE 3.70 0.37 2.15
Time(s) 212.43 368.0 6675

Table 11.2: Regression Benchmark Cases Q2 Error (100 x leave 10% out mode)

Data Set nxm o A K | type | error | method | Time (s)
BUPA. Liver 345x6 3.5 | 0.09695 | 5 | class | 27.5% | LS-SVM 4747
Ionosphere 351x34 [ 3.5 | 0.09930 | 5 | class | 4.2% | K-PLS 63.48
Tic-Tac-Toe 958x9 2.0 | 0.44817 | 20 | class | 0.1% | K-PLS 1044.00
Mushroom 8124x22 | 2.0 | 11.05268 [ 12 | class | 0.0% | K-PLS | 2.01*%10°
Boston Housing | 506x13 | 5.0 | 0.17214 | 12| reg | 0.13 | K-PLS 181.00
Albumin 94%551 | 40.0 | 0.01385 | 5 | reg | 033 | DK-PLS| 34.00
Abalene 4177x8 | 4.0 | 4.07574 [ 12| reg 0.44 K-PLS | 26224.00

Table 11.3: Classification and Regression Results Summary

Table 11.4: Benchmark Summary Results
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Classified as negative class | Classified as positive class
Belonging to negative class 998 (TN) 165 (FP)
Belonging to positive class 17 (FN) 122 (TP)

Table 11.5: Confusion matrix for the checkerboard exainple of Fig. 11.3 with a zero threshold
for discriminating between the negative class and the positive outlier class

11.6 Case Study for Classification with Uneven Class-
es

CHECKER BOARD - TRAINING CHECKER BOARD - TESTING

Figure 11.3: Training set and test set performance for an 8x8 c¢heckerboard toy problem.
where the red clags {the 1 class) is the majority c¢lass. There are 1000 training samples
(including 121 minority patterns) and 1302 test samples (including 139 minority patterns).

Results from applying K-PLS to a 8x8 checkerboard problem for uneven classes are
shown in Figure 11.3. In this case we used 12 latent variables and a Gaussian kernel
with a kernel width of 0.08. There are 1000 training samples (including 121 minority
patierns) and 1302 test samples (including 139 minority patterns). The results obtained
from LS-SVM and LS-RSVM were comparable to those obtained with K-PLS and are
not shown. The confusion matrix for the test set for a zere threshold for classification
hetween the +1 and the 1 patterns is shown in Table 11.5.

11.7 Feature Selection with K-PLS

Feature selection, the process of determining which features to include in the nput
space, can further enhance the performance of K-PLS. Analyze/StripMiner has a fea-
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ture selection method incorporated based on sensitivity analysis as described by Kew-
ley and Embrechts [15}. Sensitivity analysis monitors the respouse as the features are
tweaked one-at-a-time within their allowable range, while holding the other input fea-
tures constant at their average value. Features that cause a larger variation in the
response are deemed mere important. Sensitivity analysis for feature selection gener-
ally requires multiple passes where just a small fraction of the features (10-30%) are
dropped at a time. The features selection methed implemented in Analyze/StripMiner
operates in a leave-several-out mode where the sensitivities are averaged over multiple
bootstraps.

To evaluate the relative importance of a featwre, the dataset can he augmented
with a random gauge variable: features that are less sensitive than the random gauge
variables are not likely to be important and dropped from the dataset. After these
features have been dropped a new model is built, the sensitivities are determined
again, and more features are dropped. This process is then repeated until all features
show higher sensitivities than the random gauge variable.

Q2 vs. Wleatures

gZ and Q2

Figure 11.4: Increased prediction performance on the test set for the albumin dataset for
5 latent variables as indicated by the (2 measure as o function of the reduced numnber of
selected features by successively applying sensitivity analysis to X-PLS. The optimal number
of features is 35 with a Q2 of (.084.

In this section we will report on feature reduction studies on the albumin dataset.
The Albumin dataset is a pharmaceutical dataset for predicting binding affinities to
the human serum Albumin {4]. The basic descriptive features consist of 511 MOE and
wavelet descriptors generated and made available as a public benchmark dabaset in the
Drug Design and Semi-Supervised Learning (DDASSL) project [6].

Figure 11.4 shows the change of Q2 as a function of the number of features. The
optimal performance is tor 35 features with a Q2 of 0.084 for 3 latent variables. This
performance changes relatively tittle until the number of features is further reduced to
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20. Figure 11.4 shows the scatterplot for the test set for the albumin data when the
number of features is successively reduced from the original 511 fo 35 features. Figure
11.5 shows the change in Q2 when the number of latent variables changes from 1 to
12,

Q2 vs, alatent variables

v Q2

‘:} [}

: W 2t i (% X wit (7]

# latent Viartables

Figure 11.5: Prediction performance on the test set for the albumin dataset as indicated
by the Q2 measure az a function of the selected number of latent variables for the optimal
selection of 35 features.

11.8 Thoughts and Conclusions

This chapter presents a novel derivation of PLS {rom an optimization perspective. This
derivation provides a basis for the machine learning researcher to better understand
how and why PLS works and how it can be improved. PLS has two basic tricks.
PLS produces low-rank approximations of the data that are aligned with the response
and then uses lew-rank approximations of both the input data and response daga to
produce the final regression model. We showed that from this perspective there are
two general options for introducing kernels into PLS. The K-PLS algorithm of Rosipal
and Trejo results from applying PLS to the data mapped into feature space. An
alternative approach is to use PLS to make low-rank approximations of the kernel or
Gram matrix. This produces the Direct K-PLS algorithm. DK-PLS approach can
be used with any of the many PLS variants. Rectangular kernels can be factorized
with DR-PLS. Combined with sampling of the kernel columups, this is a significant
advantage on large datasets where full evaluation of the kernel is not possible. Several
benchmark studies show that K-PLS and DK-PLS are comparable with other kernel-
based support vector machine approaches in prediction performance and execution
time, and tend to show a slightly better performance in general. PLS and variants are
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much easier to tune than SVM methods, because the only parameter (beyond choice of
kernel) is the number of latent variables. Various options for K-PLS are implemented
in the Analyze/StripMiner code, which operates on Windows and Linux platforms.
The executable code and complimentary JAVA scripts for graphics are available for
academic evaluation and scholarly use from www.drugmining.cora. K-PLS and DK-
PLS are outstanding methods when the kernel matrix can fit in memory.

Future research is need to fully exploit the potential of K-FPLS type algorithms.
Statistical learning theory may be able to shed light on why K-PLS generalizes well.
Variants of K-PLS may help address its limitations. Current implementations require
the full kernel matrix in memory because of the lack of sparsity in the solution and to
support kernel centering and deflation. New variants of K-PLS with sparse solutions
are needed that do not require full evaluation of the kernel matrix for both training
and prediction of new points. Kernel centering could be eliminated by introducing bias
when constructing the latent variables. Efficient slgorithms for deflating the kernel
matrix are needed.

Appendix

In this chapter we are frequently required to compute the best rank-one approximation of
the matrix X € R*" given the matrix t € RX!. Specifically we want to find p € R™*F that
solves

[d
min X, — tp'[|* = X;, — tips)* 11.28)
i ; ] [l ; ?( 3 i) (

Thus we prove the following Lemma.
Lemma 1 The solution of problem (11.28) is p = uxThtf
Proor.  Taking the partial derivatives and setting them equal to 0 yields the optimality

conditions:
D Xy —tip) =0 forj=1,...,n.
i

Thus
Z(t?x’u) = ”t’H?pj fO[' .? = 1: e :n'

2
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Chapter 12

Multiclass Learning with Output
Codes

Yoram Singer!

Abstract. In this chapter we review a technique for solving multiclass catego-
rization problems based on output codes. The first part describes an algorithmic
framework with accompanying analysis for using output codes with margin classi-
fiers. The second part gives an overview of methods for designing and improving
output codes.

IThis overview is solely based on numerous papers written in collaboration with Koby Crammer,
Rob Schapire, and Ofer Dekel. I am in debt to Koby and Rob for the wondertui time we have spent
working on learning with output codes. 1 would also like to deeply thank Ofer Delel with whom 1
bave been working recently on on multiclass learning by embeddings.
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12.1 Introduction

Many supervised machine learning tasks can be cast as the problem of assigning ele-
ments to a finite set of classes or categories. For example, the goal of optical character
recognition (OCR) systems is to determine the digit value (0,...,9) from its image.
The number of applications that include a multiclass categorization ingredient is im-
mense. A few examples for such applications are text and speech categorization, nat-
ural language processing tasks such as part-of-speech tagging, and gesture and object
recognition in machine vision.

In designing machine learning algorithms, it is often easier first to devise algorithms
for distinguishing between only two classes. Some machine learning algorithms, such
as 04,5 {24] and CART (2], can then be naturally extended to handle the multiclass
case. For other algorithms, such as AdaBoost (15, 27] and the support vector machines
(SVM) algorithm (29, 6], a direct extension to the multiclass case may be problematic.
Typically, in such cases, the multiclass problem is reduced to multiple binary classifica-
tion problems that can be solved separately. Connectionist models [26], in which each
class is represented by an output neuron, are a notable example; each output neuron
serves as a discriminator between the class it represents and all of the other classes.
Thus, this training algorithm is based on a reduction of the multiclass problem to &
binary problems, where & is the number of classes.

There are many ways to reduce a multiclass problem to multiple binary classification
problems. In the simple approach mentioned above, each class is compared to all others.
Hastie and Tibshirani [18] suggest a different approach in which all pairs of classes are
compared to each another. Dietterich and Bakiri [13] presented a general framework
in which the classes are partitioned into opposing subsets using error-correcting codes.
For all of these methods, after the binary classification problems have been solved, the
resulting set of binary classifiers must then be combined in some way. In this chapter,
we overview a general framework, that is a simple extension of Dietterich and Bakiri’s
framework, that unifies all of these methods of reducing a multiclass problem to a
binary problem.

In this chapter we review methods for reducing a single multiclass problem to mul-
tiple binary problems using a binary learning algorithm. We pay particular attention
to the case in which the binary Jearning algorithm is one that is based on the margin of
a training example. Roughly speaking, the margin of a training example is a number
that is positive if and only if the example is correctly classified by a given classifier
and whose magnitude is a measure of confidence in the prediction. Several well known
algorithms work directly with margins. For instance, the SVM algorithm [29, 6] at-
tempts to maximize the minimum margio of any training example. There are many
more algorithms that attempt to minimize some loss function of the margin. Ada-
Boaost [15, 27] is one example: it can be shown that AdaBoost is a greedy procedure
for minimizing an exponential loss function of the margins. In Section 12.2, we catalog
many other algorithms that also can be viewed as margin-based learning algorithms,
including regression, logistic regression and decision-tree algorithms.

The simplest method of combining the binary classifiers (which is called Hamming
decoding) ignores the loss function that was used during training as well as the confi-
dences attached to predictions made by the classifier. In Section 12.3, we overview a
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general technique for combining classifiers that was suggested in [1) and does not suffer
from defects. This method is called loss-based decoding.

We next overview some of the theoretical properties of these methods in Sec-
tion 12.4. In particular, for both of the decoding metheds, we overview general bounds
on the training error on the multiclass problem in terms of the empirical performance
on the individual binary problems. These bounds indicate that loss-based decoding is
superior to Hamming decocling. Also, these bounds depend on the manner in which
the multiclass problem has been reduced to binary problems. For the one-against-all
approach, the bounds are linear in the number of classes, but for a reduction based on
random partitions of the classes, the bounds are independent of the number of classes.
We conclude the section with 2o overview of a bound on the generalization error of the
method when the binary learner is AdaBoost.

The results discussed through Section 12.4 assume the existence of a predefined code.
To contrast the positive results, we concliude in Section 12.5 in which we overview the
results on constructing good output codes. Finally, we conclude in Section 12.G6 in
which we discuss current research directions and open questions.

The chapter is an overview of known results and thus no proofs are given. Readers
who are interested in the proof techniques are welcome to read the original publica-
tions [1, 8, 7, 9, 111

12.2 Margin-based Learning Algorithms

We study methods for handling multiclass problems using a general class of binary
algorithms that attempt to minimize a margin-based loss function. In this section, we
describe that class of learning algorithms with several examples.

A binary margin-based learning algorithm takes as input binary labelled training
examples (€1,11),.. ., (¥m, Ym) Where the instances x; belong to some domain A" and
the labels y; € {—1,+1}. Such a learning algorithm uses the data to generate a real-
valued function or hypothesis f : X — R where f belongs to some hypothesis space F.
The margin of an example (z,y) with respect to f is yf(z). Note that the margin is
positive if and only if the sign of f(x) agrees with y. Thus, if we interpret the sign of
f(x) as its prediction on x, then

= 3l (@) < 0]
=1

is exactly the training ervor of f, where, in this case, we count a zero output ( f(x;) = 0)
as a mistake. (Here and throughout this chapter, [#] is 1 if predicate = holds and 0
otherwise.)

Although minimization of the training error may he a worthwhile goal, in its most
general form the problem is intractable (see for instance [19]). It is therefore often
advantageous to instead minimize some other noonegative loss funcfion of the margin,

that is, to minimize
m

=3 Lwfw) (12.)

i=1
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Figure 12.1: Some of the margin-based loss functions described in the chapter: the expo-
nential loss used by AdaBoost, the square loss nsed in least-squrares regression, the “hinge”
loss used by support vector machines, the Jogistic loss used n Jogistic regression.

for some loss function L : R — [0,00). Different choices of the loss function L and
different algorithuns for (approximately) minimizing (12.1) over some hypothesis space
lead to various well-studied learning algorithms. Beiow we list several exarmples. The
work of Allwein et al. [1] was general and applicable to any learning algorithm that
can be used for minimizing a margin-based Joss function. Thus the focus of that work
was on the loss function itself whose properties yields a theorem on the effectiveness of
output coding methods for multiclass problems.

Support Vector Machines. For training data that may not be linearly separable,
the support vector machines (SVM) algorithm [29, 6) seeks a linear classifier f : R* — R
of the form f(x) = w-x + b that minimizes the objective function

Ly e e
siwlle+ ) 6,
i=1
for some parameter €, subject to the linear constraints

y,((:l:,f-W)-I-b) >1-4&, &2>0.
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Put another way, the SVM solution for w is the minimizer of the regularized empirical
loss function

LWl + O3 (1= gal(w ) ),
i=1
where (z), = max{z,0}. (For a more formal treatment see for instance [2§].) Although
the role of the Ly norm of w in the objective function is fundamental in order for SVM
to work, the analysis presented in the next section (and the corresponding multiclass
algorithm) depends only on the loss function (which is a function of the margins).
Thus, SVM can be viewed here as a binary margin-based learning algorithm which
seeks to achieve small empirical risk for the loss function L(2) = (1 —2),.

AdaBoost. The algorithm AdaBoost [15, 27] builds a hypothesis f that is a linear
combination of weak or base hypotheses h,:

flz)=>" auhila).

The hypothesis f is built up in a series of rounds on each of which an h, is selected
by a weak or base learning algorithm and «a; € R is then chosen. It has been observed
by Breiman [3, 4] and other authors [16, 22, 25, 27] that the method in which the h,'s
and ay’s are chosen has the effect of greedily minimizing

1 T
el e—y.f(m)_
~>.

=]

Thus, AdaBoost is a binary margin-based learning algorithm in which the loss function
is L(z) = &2,

AdaBoost with randomized predictions. In a little studied variant of Ada-
Boost [15], AdaBoost was allowed to output randornized predictions in which the
predicted label of a new example % is chosen randomly to be +1 with probability
1/(1 + €7*/%*)}, The loss suffered then is the probability that the randomly chosen
predicted label disagrees with the correct label 4. Let p(x) o 1/(1+e7%/(=)). Then the
loss is p(z) if y = =1 and 1 — p{z) if y = +1. Using a simple algebraic manipulation,
the loss can be shown to be 1/(1 + e*/®)). So for this variant of AdaBoost, the loss
L(z) is set to 1/(1 + €*). However, in this case, note that the learning algorithm js
not directly attempting to minimize this loss (it is instead minimizing the exponential
loss described above).

Regression. There are various algorithms, such as neural networks and least squares
regression, that attempt to minimize the squared error loss function (y — f(z))?. When
the y's are in {—1,+1}, this function can be rewritten as

(y—f()* = ¥*(y— f(2))?
= (yy —yf(z))"
= (1-yf(=)*
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Thus, for binary problems, minimizing squared error fits the framework where L(2) =
(1 —2)2

Logistic regression. In logistic regression and related methods such as Iterative
Scaling [10. 23, 21], and LogitBoost [16], one posits a logistic model for estimating the
conditional probability of a positive label:

1

Prly=+1luj= Toe @
One then attempts to maximize the likelihood of the labels in the sample, or equiva-
lently, to minimize the log loss

—log(Pr [y|z]) = log(1 + e~ 2/},

Thus, for logistic regression and related methods, the loss L(z) is set to log(l + e™%).

Decision trees. The most popular decision tree algorithms can also be naturally
linked to loss functions. For instance, Quinlan’s C4.5 (24, in its simplest form, for
binary classification problems, splits decision nodes in a manner to greedily minimize

o +pT pT + pt
5 (p;m (u) +pin (u)) (12
g P P;
leafy 1 1

where pj' and p; are the fraction of positive and negative examples reaching leaf j,
respectively. The prediction at leaf 7 is then sig;n(;nﬁ_}L —p; ). Viewed differently, imagine
a decision tree that instead outputs a real number f; at each leaf with the intention of
performing logistic regression as above. Then the empirical loss associated with logistic
regression is

S (1 In(1 + e7*5) 4 p;In(l + ¥1)} .

leafyj

This is minimized, over choices of f;, when f, = (1/2)In(p;] /p;). Plugging in this
choice gives exactly (12.2), and thresholding f; gives the hard prediction rule used
earlier. Thus, C4.5, in this simple form, can be viewed as 4 margin-based learning
algorithm that is naturally linked to the loss function used in logistic regression.

By similar reasoning, CART [2], which splits using the Gini index, can be linked to
the square loss function, while Kearns and Mansour’s [20] splitting rule can be linked
to the exponential loss used by AdaBoost.

The analysis reviewed in the next section might also hold for other algorithms
that tacitly employ a function of the margin. For instance, Freund's BrownBoost
algorithm [14] implicitly uses an instance potential function that satisfies the condition
we impose on L. Therefore, it can also be combined with cutput coding and used to
solve multiclass problems. To conclude this section, Figure 12.1 shows some of the loss
functions discussed ahove.
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12.3 Output Coding for Multiclass Problems

In the last section, we discussed margin-based algorithms for learning binary problems.
Suppose now that we are faced with a multiclass learning problem in which each label
 is chosen from a set ) of cardinality & > 2. How can a binary margin-based learning
algorithm be modified to handle a k-class problem?

Several solutions have bheen proposed for this question. Many involve reducing the
multiclass problem, in one way or another, to a set of binary problems. For instance,
perhaps the simplest approach is to create one binary problem for each of the & classes.
That is, for each r € V, we apply the given margin-based learning algorithm to a binary
problem in which all examples labelled y = # are considered positive examples and all
other examples are considered negative examples. We then end up with k& hypotheses
that somehow must be combined. We call this the one-against-all approach.

Another approach, suggested by Hastie and Tibshirani [18], is to use the given
binary learning algorithm to distinguish each pair of classes. Thus, for each distinct
pair v, o € Y, we run the learning algorithm on a binary problem in which examples
labelled 3 = r, are considered positive, and those labelled 4 = 5 are negative. All
other examples are simply ignored. Again, the (;) hypotheses that are generated by
this process must then be combined. We call this the all-pairs approach.

A more general suggestion on handling multiclass problems was given by Dietterich
and Bakiri [13]. Their idea is to associate each class r € ) with a row of a “coding
matrix” M € {—1, +1}**¢ for some {. The binary learning algorithm is then run once
for each column of the matrix on the induced binary problem in which the label of
each example labelled v is mapped to M(y, s). This vields ¢ hypotheses f;. Given an
example x, we then predict the label y for which row y of matrix M is “closest™ to
(filz),..., fe(x)). This is the method of error correcting output codes (ECQC).

In this section, we review a unifying generalization of ali three of these methods
applicable to any margin-based learning algorithm. This generalization is closest to
the ECOC approach of Dietterich and Bakiri [13] but differs in that the coding matrix
is taken from the larger set {—1,0, +1}**%. That is, some of the entries M(r, s) may be
zero, indicating that we don’t care how hypothesis f, categorizes examples with label
T

Thus, the scheme for learning multiclass problems using a binary margin-based
learning algorithm A works as follows. We begin with a given coding matriz

M € {-1,0,+1}5*¢ .

For s = 1,...,¢, the learning algorithin A is provided with labelled data of the form
(z;, M(y;, 5)) for all examples ¢ in the training set but omitting all examples for which
M{y:, s) = 0. The algorithm A uses this data to generate a hypothesis f,: ¥ — R.

For example, for the one-against-all approach, M is a & x & matrix in which all
diagonal elements are +1 and all other elements are —1. For the all-pairs approach,
Misakx (g) matrix in which each column corresponds to a distinct pair (ry,74). For
this column, M has +1 ju row ), —1 in row 73 and zeros in all other rows.

As an alternative to calling A repeatedly, in some cases, we may instead wish to
add the column index s as a distinguished attribute of the instances received by A, and
then learn a single hypothesis on this larger learning problem rather than € hypotheses



258 Y. Singer

on smaller problems. That is, we provide A with instances of the form ((z:, 8), M (i, $))
for all training examples 7 and all columns s for which M(y,;, s) # 0. Algorithm A then
produces a single hypothesis f : X x {1,...,{} — R. However, for consistency with
the preceding approach, we define f,(2) to be f(z,s). We call these two approaches
in which 4 is called repeatedly or only once the multi-call and single-call variants,
respectively.

We note in passing that there are no fundamental diflerences between the single
and multi-call variants. Most previous work on output coding employed the multi-
call variant due to its simplicity. The single-call variant becomes handy when an
implementation of a classification learning algorithm that outputs a single hypothesis
of the form f: X x {1,...,¢} — R is available.

For either variant, the algorithm A attempts to minimize the loss L on the induced
binary problem(s). Recall that L is a function of the margin of an example so the loss
of fs on an example z, with induced label M(y,,s) € {-1,+1} is L{(M (. s) fo(z)).
When M(y;, s) = 0, we want to entirely ignore the hypothesis f; in computing the loss.
We can define the loss to be any constant in this case, 80, for convenience, we choose
the loss to be L(0} so that the loss associated with f; on example 4 is L(M (y;, s) fs(z;))
in all cases.

Thus, the average loss over all choices of 5 and all examples 7 is

m 4

Q;Z}:1,(;1;4(;;,-,5,») folz:)). (12.3)
i=] g=
We call this the querage binary loss of the hypotheses f; on the given training set with
respect to coding matrix M and loss L. It is the quantity that the calls to A have
the implicit intention of minimizing. We will see in the next section how this quantity
relates to the misclassification error of the final classifier that we build on the original
multiclass training set.

Let M(r) denote row 7 of M and let f(x) be the vector of predictions on an instance
x

f(z) = (fi(z),..., fi(2)).

Given the predictions of the f,’s on a test point z, which of the & labels in ) shouid
be predicted? While several methods of combining the f,’s can be devised, the work
of Allwein et al. [1) focuses on two that are very simple to implement and for which
it possible to analyze the empirical risk of the original multiclass problem. The basic
idea of both methods is to predict with the label » whose row M(r) is “closest” to
the predictions f(z). In other words, predict the label » that minimizes d(M(r), f(z))
for some distance d. This formulation begs the question, however, of how we measure
distance hetween the two vectors.

One way of doing this is to count up the number of positions s in which the sign of
the prediction f,(x) differs from the matrix entry M{r,s). Formally, this means that
the distance measure is

dy(M(r), f(z)) =) (12.4)

1

(1 - sign(M;(r, s)fs(ﬂ:)])

&
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0O - - + - -| D=35

Sign of Binary Classifiers + - 0 + + + - | D=45

Class 3

+ - - - - -+

+ 0 - - - + +| D=15 (Prediciion)
-+ 0 - - +]| D=25
- 0 - - + - -| D=130,133
OQutput of Binary Classifiers + - 0 + + + - | D=192893
Class 4
05 -7 -1 -2 -10 -12 9
+ 0 - - - + +| D=162757 (Prediction)
- - + 0 - - 4| D= 54

Figure 12.2: An iilustration of the multiclass prediction procedure for Hamming decoding
(top) and loss-based decoding (bottom} for a 4-class problem using a code of length 7. The
exponential function was used for the loss-based decoding.

where sign(z) is +1if 2 > 0, =1 if 2 < 0, and 0 if z = 0. This is essentially like
computing Hamming distance between row M(r) and the signs of the f;(z)’s. However,
note that if either M(r,s) or fi(x) is zero then that component contributes 1/2 to the
sum. For an instance z and a matrix M, the predicted label § € {1,...,k} is therefore

Y= arg mrin dy (M(r), E{x)) .

We call this method of combining the f.'s Hamming decoding.

A disadvantage of this method is that it ignores entirely the magnitude of the
predictions which can often be an indication of a level of “confidence.” Our second
method for combining predictions takes this potentially useful information into account,
as well as the relevant loss function L which is ignored with Hamming decoding. The
idea is to choose the label » that is most consistent with the predictions f,(x) in the
sense that, if example & were labelled r, the total loss on example (z,+) would be
minimized over choices of r € }. Formally, this means that the distance measure is
the total loss on a proposed example (x,7):

di(M(r),f(z)) = > L(M(r,5)fs(z)) - (12.5)

Analogous to Hamming decoding, the predicted label 7€ {1,...,k} is

§ = arg mind, (M(r), f(x)}
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We call this approach loss-based decoding. An illustration of the two decoding methods
is given in Figure 12.2. The figure shows the decoding process for a problem with 4
classes using an output code of length ¢ = 7. For clarity we denote in the figure the
entries of the output code matrix by +, — and 0 (instead of +1, —1 and 0). Note that
in the example, the predicted class of the loss-based decoding (which, in this case, uses
exponential loss) is different than that of the Hamming decoding.

12.4 Training Error Bounds

In this section, we review training error bounds for the output coding methods de-
scribed in the last section. Specifically, we give the bound the training error of the two
decoding methods in terms of the average binary loss as defined in (12.3), as well as
a measure of the minimum distance between any pair of rows of the coding matrix.
Here, we use a simple generalization of the Hamming distance for vectors over the set
{=1,0,+1}. Specifically, the distance between two rows u,v € {—1,0,+1}¢ is defined
to be

¢ 1] ifus=v,Au; #0A v £ 0
Ala,v) = 3 ¢ 1 ifu,#vgAu, #0Av, #0
=1 | 1/2 ifu, =0V, =0

- Zc:]—ugvs

. 2
s=1
E—u-v

2

QOur analysis then depends on the minimum distance p between pairs of distinct
rows:

p = min{AM(r(), M(r2)) : 11 # r2}. (12.6)

For example, for the one-against-all code, p = 2. For the all-pairs code, p = ((é) -
1}/2 + 1, since every two rows r;,7, have exactly one component with opposite signs
(M(ry,8) = —=M(rg, 8) and M(ry, s) 7 0) and for the rest at least one component of the
two is 0 (M(ry,s) = 0 or M(rs,s) = 0). For a random matrix with components chosen
uniformly over either {—1,+1} or {—1,0, +1}, the expected value of A(M(r)), M(r3))
for any distinct pair of rows is exactly £/2.

Intujtively, the larger p, the more likely it is that decoding will “correct” for er-
rors made by individual hypotheses. This was Dietterich and Bakiri's [13] insight in
suggesting the use of output codes with error-correcting properties. This intuition is
reflected in the analysis in which a larger value of p gives a better upper bound on
the training error. In particular, Theorem 1 states that the training error is at most
{/p times worse than the average binary loss of the combined hypotheses (after scaling
the loss by L(0)). For the one-against-all matrix, £/p = £/2 = k/2 which can be large
if the number of classes is large. On the other hand, for the all-pairs matrix or for a
random matrix, £/p is close to the constant 2, independent of k.

We overview first the analysis of loss-based decoding. An analysis of Hamming
decoding will follow as & corollary. Concerning the loss L, the analysis assumes only
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that
L{z)+ L(-2)
‘)

=

> L{0) > 0 (12.7)

for all z € R. Note that this property holds if L is convex, although convexity is by
no means a necegsary condition. Note also that all of the logs functions in Section 12.2
satisfy this property. The property is illustrated in Figure 12.1 for four of the loss
functions discussed in that section.

Theorem 1 Let € be the averuge binary loss {as defined in (12.3)) of hypotheses
fi,.. ., fe on a given training set (zy,11), .. ., (Tm, Um) Wwith respect (o the coding matrix
M € {~1,0,+1}*** and loss L, where k is the cardinality of the label set ). Let p be
as tn (12.6). Assume that L satisfies (12.7) for all = € R. Then the training ervor
using loss-bused decoding is al most

pL(0)

As a corollary, we a similar but weaker theorem for Hamming decoding holds. Note
that we use a different assumption about the loss function L, but one that also holds
for all of the loss functions described in Section 12.2.

Corollaxy 1 Let fy,..., fe be a set of hypotheses on a training set (21, y1),- -, (T, Ym),
and let M € {—1,0,+1}**¢ be a coding mairiz where k is the cordinality of the label
set V. Let p be as in (12.6). Then the training ervor using Hamming decoding is at
mast

1 ™ {
p—mZZ(l _Sign(ﬂi(yhs)fs(wa)))' (12'8)

i=1 s=1
Moreover, if L is « loss function satisfying L{z) > L(0) > 0 for 2 < 0 and € is the
average binary loss with respect to this loss function, then the tratning ervor using

Hamming decoding is at most
2Lz

pL(0)

(12.9)

Theorem 1 and Corellary 1 are broad generalizations of similar results proved by
Schapire and Singer [27] in a much more specialized setting involving only AdaBoost.
Also, Corollary 1 generalizes some of the results of Guruswami and Sahai [17] that
bound the multiclass training error in terms of the training (misclassification) error
rates of the binary classifiers.

The bounds of Theorem 1 and Corollary 1 depend implicitly on the fraction of zero
entries in the matrix. Intuitively, the more zeros there are, the more examples that are
ignored and the harder it should be to drive down the training error. At an extreme, if
M is all zeros, then p is fairly large (£/2) but learning certainly should not be possible.
To make this dependence explicit, let

T ={(4,5) : M(y,s) =0}
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be the set of pairs 4,5 inducing examples that are ignored during learning. Let ¢ =
|T’|/(m€) be the fraction of ignored pairs. Let ¢ be the average binary loss restricted
to the pairs not ignored during training:

1
||

e =

S LMy, 8) fulz:)

(i,9)ETe

where T¢ = {(4,8) : M(%:,s) # 0}. Then the bound in Theorem 1 can be rewritten

£ 1

I0) e STOLO)+ > LMy, 8)fi(x)

{¢,s)eT {1.8)eT

= g(qﬂl—q)ﬁ)-

Similarly, let € be the fraction of misclassification errors made on T

c= 3 (M) # sign(fulz)]

(]
‘ | (£.5)ET=

The first part of Corollary 1 implies that the training error using Hamming decoding
is upper bounded by

E(q + 2(1 — g)e).

We see from these bounds that there are many trade-offs in the design of the coding
matrix M. On the one hand, we want the rows to be far apart so that g will be large,
and we also want there to be few non-zero entrieg so that ¢ will be small. On the other
hand, attempting to make g large and ¢ small may produce binary problems that are
difficult to learn, yielding large (restricted) average binary loss.

12.5 Finding Good Output Codes

The initial work of Allwein et al. was concerned with the formal question of how %o
use output codes and what are the formal properties of codes in terms of empirical loss
and generalization of classification with output codes. A natural question that arise
is what code to use for a given classification problem or, alternatijvely, how to build
good general or even task-specific output codes. Crammer and Singer [8] were first
to address this issue. They discussed the computational complexity of output code
design. Specifically, they showed that prove that given a set of { binary classifiers h(z),
finding a code matrix which mininiizes the empirical loss eg(M, k) is NP-complete. We
now review this result.

given asample § = {(@1, 1), (Zm,Yn)} and a set of classifiers f1, let us denote
by S the evaluation of h(-) on the sample §, that is S = {(R1, %), ..., (A, Ym) }, where
R % R(x;). We now show that even when k = 2 and K(%,7) = - T the problem is
NP-complete. (Clearly, the problem remains NPC for & > 2). Following the notation
of previous sections, the output code matrix is composed of two rows M, and M, and
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the predicted class for instance %; is H(z;) = arg maxrzl,g{ﬁ?r’r_- h;}. For the simplicity,
we assume that both the code M and the hypotheses’ values h; are over the set {0, 1}
(instead of {—1,+1}). This assumption does not change the problem as it possible to

show that the same proof technique can be used with hypotheses whose outputs are in

{+1}.

Theorem 2 The jollowing decision problem is NP-complete.

Input: A noturel number g, @ labelled sample S = {(hi, 1), (B, Un) }, where
y, € {1,2}, and ; € {0,1}".

Question: Does there exist a matriz M € {0,1}77" such that the classifier H(x) based
on an output code M makes at most q mistakes on S.

2x1

The intractability result above raised triggered research on alternatives to discrete
output codes. In (8], Cramumer and Singer also described the notion of output codes.
This construction was also used in [11] to devise a scheme that learns a good code
in tandem to the construction of the binary classifiers. The paper’s starting point is
the inherent decoupling of the learning process from the class representation problem
employed by ECOC. This decoupling is both a blessing and a curse. On one hand it
offers great flexibility and modularity, on the other hand, the resulting binary learning
problems might be unnatural and therefore potentially difficult. In [11] an alternative
approach was described and analyze. This work ties the learning problem with the class
representation problem. To sidestep the intractability barrier, the scheme of Dekel and
Singer perceives the set of binary classifiers as an embedding of the instance space
and the code matrix as an embedding of the label set into a common space. In this
common space each instance is assigned the label from which its divergence is smallest.
To construct these embeddings, the notion of probabilistic output codes is introduced.
Then, an algorithm that constructs the label and instance embeddings such that the
resulting classifier achieves a small empirical error is provided. The result is a paradigm
that includes ECOC as a special case.

The algorithm, termed Bunching, alternates between two steps. One step improves
the embedding of the instance space into the common space while keeping the embed-
ding of the label set fixed. This step is analogous to the learning stage of the ECOC
technique, where a set of binary classifiers are learned with respect to a predefined code.
The second step complements the first by updating the label embedding while keeping
the instance embedding fixed. The two alternating steps resemble the steps performed
by the EM algorithm [12] and by Alternating Minimization [10]. The techniques we
use in the design and analysis of the Bunching algorithm also build on recent results
in classification learning using Bregman divergences [21, 5).

12.6 Conclusions

Error correcting output codes (ECOC) provide a simple and powerful framework for
solving multiclass prediction problems using binary classification learning algorithms.
The formal and experimental resuits in the past five years spurred quite a few open
problems and directions for future research. First, we still lack a more complete theory
of generalization error for ECQOC. A second important issue is whether the decoding
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method and the error bounds can be improved for the case of highly correlated binary
classifiers. QOutput codes may also be used in other complex decision problems. In
particular, it might be possible to cast the problem of hierarchical classification as a
special instance of output codes with tree metrics. Last, but not least, ECOC uses
elementary constructions from coding theory. Problems in source and channel coding
has been the focus of many researchers for over 50 years. We believe that both learning
theory and applications in machine learning can greatly benefit by further exploitation
of analysis tools and algorithms in coding theory.
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Chapter 13

Bayesian Regression and
Classification

Christopher M. Bishop and Michael E. Tipping

Abstract. In recent years Bayesian methods have become widespread in many
domains including computer vision, signal processing, information retrieval and
genome data analysis. The availability of fast computers allows the required
computations to be performed in reasonable time, and thereby makes the benefits
of a Bayesian treatment accessible to an ever broadening range of applications. In
this tutorial we give an overview of the Bayesian approach to pattern recognition
in the context of simple regression and classification problems. We then describe
in detail a specific Bayesian model for regression and classification called the
Relevance Vector Machine. This overcomes many of the limitations of the widely
used Support Vector Machine, while retaining the highly desirable property of
Sparseness.
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13.1 Introduction

Although Bayesian methods have been studied for many years, it is only recently that
their practical application has become truly widespread. This is due in large part to the
relatively high computational overhead of performing the marginalizations (integrations
and summations) which lie a$ the heart of the Bayesian paradigm. For this reason more
traditional approaches, based on point estimation of parameters, have typically been
the method of choice. However, the widespread availability of fast computers allows
Bayesian computations to be perforined in reasonable time for an increasingly wide
spectrum of real world applications. Furthermore, the development of Markov chain
Monte Carlo techniques, and more recently of deterministic approximation schemes
such as variaticnal inference, have greatly extended the range of models amenable to
a Bayesian treatment.

13.1.1 Least squares regression

In this tutorial we consider the relatively simple, but wadely studied, problems of
regression and classification for independent, identically distributed (i.i.d.) data. Con-
sider a data set of examples of input vectors {xﬂ,}f:] along with corresponding targets
t = {£:)7 . Note that, for notational simplicity, we shall consider a single target vari-
able, but that the extension of the methods discussed in this paper to multiple target
variables 15 straightforward. For regression, we generally assume that the targets are
some noisy realization of an underlying functional relationship y(x) that we wish to
estimate so that

tn = y(xn; W) + €n (13.1)

where € is an additive noise process in which the values e, are i.i.d., and w is a vector
of adjustable parameters or ‘weights’.
One interesting class of candidate functions for y(x; w) is given by

y(xw) = 3 widi(x) = W), (132

which represents a linearly-weighted sum of A{ nonlinear fixed basis functions de-
noted by ¢(x) = (1 (x),Palx),...,on(x))". Models the type (13.2) are known as
linear models since the function y(>; w) is a linear function of the parameters w =
(e, wa, ..., war)T. However, in general the function itself is non-linear, and indeed can
be very flexible if M is relatively large.

Classical (non-Bayesian) techniques use some form of ‘estimator’ to determine a
specific value for the parameter vector w. One of the simplest examples is the sum-of-
squares ervor function defined by

N
E(w) = %Z [y (Xn; W) — tnf? (13.3)

where the factor of 1/2 is included for later convenience. Minimizing this error function
with respect to w leads to an estimate w* which can be used to make predictions for
new values of x by evaluating y(x; w*).
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In the case of classification problems, the function ¢(x: w) is transformed using an
appropriate non-linearity, such as a logistic sigmoid for 2-class problems or a softmax
(normalized exponential) for multi-class problems. The corresponding error function
is given by the cross-entropy {3].

A well-known problem with error function minimization is that complex and flexible
models can ‘over-fit’ the training data, leading to poor generalization. Indeed, when
the number of parameters equals the number of data points, the least squares solution
for a model of the form (13.2) can achieve a perfect fit to the training data while
having very poor generalization to new data points. This behaviour is characterized by
value of the parameters w; which have large positive and negative values finely tuned
to the individual noisy data points. The corresponding function y(x; w) typically
exhibits strong oscillations as a function of x. Whilst over-fitting can be avoided by
limiting the complexity of the model, this too can lead to poor generalization if the
model is insufficiently flexible to capture the underlying behaviour of the data set.
However, we often have to work with data sets of limited size and vet we wish to
be able to use flexible models many adjustable parameters. We ghall see that the
phenomenon of over-fitting is a pathological property of point estimation, and that
by adopting a Bayesian viewpoint we can apply complex models to small data sets
without encountering problems of over-fitting.

13.1.2 Regularization

One classical (non-Bayesian) technique for reducing over-fitting is that of regularization
in which a penalty term Q{w) is added to the error function to give

o

E(w) = E(w) + AQ(w) (13.4)

where (0(w) discourages over-fitting, for example by penalizing large values for the
weight parameters wy;. The parameter A controls the trade-off between fitting the data
by reducing E(w) and smoothing the function y(x; w) as a function of x by reducing
Q(w). A common choice of regularizer is given by the sum of the squares of the weight
parameters, so that
2

Q(w) = @ (13.5)
The value of the regularization coefficient is typically set by holding back some data
from the training set and optimizing A by minimizing the value of the un-regularized
error function E'(w) evaluated with respect to the held out data. For small data sets
this procedure may he refined to give the cross-validation technique which makes more
efficient use of limited data [3].

13.1.3 Probabilistic models

We can motivate the regularized least-squares framework from a probabilistic viewpoint
as follows. The observed target values ¢,, are assumed to have been generated from the
underlying function y(x; w) by the addition of independent Gaussian noise, so that in
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(13.1} the noise values ¢, are normally distributed with zero mean and variance ¢? so
that

plelo®) = N(€0,0%) (13.6)

1\ 12 1,
= (‘2?1'02) exp{—@e} (13.7)

where the notation A/(¢|p,0?) specifies a Gaussian distribution over ¢ with mean g
and variance ¢Z. Variables such as ;1 and ¢? are sometimes called hyperparameters
since they control the distribution over parameters. From {13.1) and (13.7) it follows
that the conditional distribution of the target variable given the input variable and the
weight parameters is again a Gaussian distribution

. 1\ 1
(e, v, %) = (gwg) exp {~_2—Jg|v(x; ) - zF} . (13.8)

Note that the distribution for ¢ is conditioned on the value of x. We are not inter-
ested in modelling the distributior of x and so from now on we shall omit x from
the conditioning list in order to keep the notation compact. Since the data points are
independent, the joint probability of the wheole data set, given w and J3, is given by
the product over all data points of the conditional distribution (13.8) evaluated at the
observed data values

1 N2 1 N
L(w)=p(tlw,o2)=(gmz) exp{—mDy(xm )—tl"‘} (13.9)

When viewed as a function of w this is called the likelihood function.

One techaoique from classical statistics for estimating w is called mazimum lkelihood
and involves setting w to the value which maximizes the likelihood function. For
convenience we can instead minimize the negative logarithm of the likelihood fanetion
(since ‘—In’ is a monotonically decreasing function) given by

—InL{w) = ﬁr-lno + ﬁr-ln (27) + 53 Z |y (Xn; W) — £]?. (13.10)

n=1

Note that minimizing InZ(w) in (13.10) with respect to w is equivalent to minimizing
the sum of squares error function (13.3). We denote the resulting value of w by wu..
Similarly we can minimize (13.10) with respect to 8 with the result

N

1 1 2

G- N Y ly(xn; waL) = L. (13.11)
n=1

This provides us with an estimate of the noise Jevel associated with the data under the
assumed model.
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13.1.4 Bayesian regression

We have seen that a classical treatment of our regression problem seeks a point estimate
of the unknown parameter vector w. By contrast, in a Bayesian approach we charac-
terize the uncertainty in w through a probability distribution p(w). Observations of
data points modify this distribution by virtue of Bayes’ theorem, with the effect of the
data being roediated through the hikelihood function.

Specifically we define a prior distribution p(w) which expresses our uncertainty in
w taking account of all information aside from the data itself, and which, without loss
of generality, can be written in the form

plwla) x exp {—afd(w)} (13.12)

where o can again be regarded as a hyperparameter. As a specific example we might
choose a Gaussjan distribution for p{w|a) of the form

p(wla) = (%)JW2 exp {—%Hw"z} . (13.13)

We can now use Bayes’ theorem to express the posterior distribution for w as the
product of the prior distribution and the likelihood function

p{wlt, a, 0?) o« p(wla)L(w) (13.14)

where, as before, L{w) = p{tjw,a?).

In a Bayesian treatmeni we make predictions by integrating with respect to the
posterior distribution of w, and we discuss this in detail shortly. For the moment,
let us suppose that we wish to use the posterior distribution to find a point estimate
for w, and that we choose to do this by finding the value of w which maximizes the
posterior distribution, or equivalently which minimizes the negative logarithm of the
distribution, Taking the negative log of the right hand side of (13.14) and using (13.12)
and (13.9) we see that maximizing the log of the posterior distribution is equivalent to
minimizing

| N
o D Wl w) = taf? + SOw) (13.15)
n=l
which represents a specific example of the regularized error function given by (13.4) in
which E(w) is proportional to the sum-of-squares error function (13.3).

Thus we see that there are very close similarities between this Bayesian viewpoint
and the conventional one based on error function minimization and regularization,
since the latter can be obtained as a specific approximation to the Bayesian approach.
However, there is also a key distinction which is that in a Bayesian treatment we make
predictions by integrating over the distribution of model parameters w, rather than
by using a specific estimated value of w. On the one hand such integrations may
often be analytically intractable and require either sophisticated Markov chain Monte
Carlo methods, or more recent deterministic schemes such as variational techniques,
to approximate them. On the other hand the integration implied by the Bayesian
framework overcomes the issue of over-fitting (by averaging over many difterent possible
solutions) and typically results in improved predictive capability.
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Specifically, if we are given a new value of x then the predictive distribution for £
is obtained from the sum and product rules of probability by marginalizing over w

pllt,B) = [ piovlt, o ptlw, o) dw. (13.16)

So far we have said little about the treatment of the hyperparameters v and ¢2. In
most applications, suitable values for these will not be known in advance (although in
some cases the noise level 0? may be known) and so a Bayesian treatment will introduce
prior distributions over these quantities, and then eliminate them from the problem
by marginalization. We shall see in Section 13.3 that an appropriate choice of prior
distribution can lead to some powerful properties for the resulting model, including
sparsity of the basis function representation. First, however, we review briefly a popular
mode] for regression and classification based on point estimates of parameters, which
also exhibits sparsity.

13.2 Support Vector Machines

One specific instantiation of the model given by (13.2) is the support vector machine
(SVM) [5, 17, 12] which, although not usually defined explicitly in this form, ultimately
makes predictions based on the function

y{x; w) = Z wi K (%, x;) + wy. (13.17)

=1

Here ¢;(x) = K(x,x;) is a kernel function, effectively defining one basis function for
each example in the training set. Note that we consider here a directly parameterized
kernel-based model while for SVM models this form emerges from the ‘dual’ formula-
tion. Throughout this chapter no primal-dual interpretations are made. All reasoning
is done in terms of parameterized models.

One key feature of the SVM is that, in the classification case, its target function
attempts to minimize a measure of error on the training set while simultaneously
maximizing the ‘margin’ between the two classes (in the feature space implicitly defined
by the kernel). This is an eftective mechanism for avoiding over-fitting, which leads
to good generalization, and which furthermore results in a sparse model dependent
only on a subset of kernel functions, namely those associated with specific training
examples x, (the support vectors) that lie either on the margin or on the ‘wrong’ side
of it. State-of-the-art results have been reported on many tasks where the SVM has
been applied.

However, despite its success, we can identify a number of significant and practical
disadvantages of the support vector learning methodology:

o Standard SVMs make unnecessarily liberal use of basis functions since the number
of support vectors required typically grows linearly with the size of the training
set.
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¢ In general, predictions are not prebabilistic (although approximate Bayesian in-
ference schemes for the SVM have been discussed in [7, 13]). In regression the
SVM outputs a point estimate, and in classification, a ‘hard’ binary decision.
For many real world applications, as distinct from algorithm bench-marking, we
require the conditional distribution p(¢]x) of targets given inputs rather than just
a point prediction. Such a distribution expresses our uncertainty in the predic-
tion and offers numerous advantages [3] such as optimal rejection, flexible and
optimal decision making, fusion of outputs with other sources of probabilistic
information, and so on.

s [t is necessary to estimate the error/margin trade-off parameter ‘C” (and in regres-
sion, the insensitivity parameter ‘¢’ too). This generally entails a cross-validation
procedure, which is wasteful both of data and computation.

e The kernel function K (x,x;) must satisfy Mercer’s condition.

Nevertheless, the twin properties of accuracy and sparsity make the SVM a very
attractive model. We have already discussed how a Bayesian approach to modelling
can naturally deal with complexity control and avoid over-fitting. Here we show that
in addition, through a judicious choice of prior over w, we can obtain models that are
also highly sparse (typically much more so than the SVM) and at the same time also
overcome all the above limitations.

13.3 The Relevance Vector Machine

While we stress that the framework we are about to describe can be applied to general
models of the type (13.2) (ie. to arbitrary sets of basis functions), we now focus on
a model we term the relevance vector machine, or RVM (14, 15], which is a Bayesian
framework for regression and classification with analogous sparsity properties to the
support vector machine. We adopt a fully probabilistic framework and introduce a prior
over the model weights governed by a set of hyperparameters, one associated with each
weight, whose most probable values are iteratively estimated from the data. Sparsity
is achieved because the posterior distributions of many of the weights are sharply
{(indeed infinitely) peaked around zero. We term those training vectors associated with
the remaining non-zero weights ‘relevance’ vectors, in deference to the principle of
automatic relevance determinaetion which motivates this approach [9, 10]. The most
compelling feature of the RVM is that, while capable of generalization performance
comparable to an equivalent SVM, the number of relevance vectors is, in most cases,
dramatically smaller than the number of support vectors used by an SVM to solve
the same problem. For the purposes of this presentation, we focus initially on the
Bayesian regression model and associated inference procedures, and then summarize
the modifications required in the case of classification.

13.3.1 Model specification

Given a data set of input-target pairs {x,,i,};_; we assume that the targets are
samples from a model with additive noise, as described by (13.1), with a noise process
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given by a zero-mean Gaussian with variance o2, so that
p(tulx) = N(tniy(xfn: WJ, 02)' (1318)

The function y(x; w) is as defined in (13.17) for the SVM where we identify our general
basis functions with the kernel as parameterized by the training vectors: ¢,(x) =
K{x,x;). Due to the assumption of independence of the t,, the likelihvod of the
complete data set can be written as

p(t|w,0%) = (276%)~ 2 exp {—%Ht - <1>w||2} , (13.19)
where the N x (N + 1) matrix & = [¢(x}), P{x2), ..., P(xn)|T is called the design
matrix, ¢(xa) = [1, KX X3), K (Xn, X2)s- - KX, x0)]"y t = ({1 . tx)", and w =

(TUD . w[\.‘)T.

With as many parameters in the model as training examples, we would expect
maximum-likelihood estimation of w and o2 from (13.19) to lead to severe over-fitting.
In the SVM, this difficulty is effectively avoided by the inclusion of the ‘margin’ term.
Here, instead, we adopt a Bayesian perspective, and introduce an explicit prior prob-
ability distribution over the parameters.

We encode a preference for smoother functions by using a Gaussian prior distri-
bution over w, as discussed earlier, but now modified through the introduction of a
separate hyperparameter for each parameter in the model

plw|a) = HN wil0, a; 1), (13.20)

with o a vector of N 4 1 hyperparameters.

To complete the specification of this fiterarchical prior, we must define hyperpriors
over o, as well as over the final remaining parameter in the model, the noise variance
o?. These quantities are examples of scale parameters, and suitable priors for these
are given by Gamma distributions (see, e.g. |2]):

pla) = H Gamma(ala, b),

i=0

p(8) = Gamma(fle, d),
with 3 = 0% and where
Camma(ala, b) = T(a) e eb, (13.21)

in which [(a) = f;7 t*"'e™dl, is the gamma function [i}. The Gamma prior becomes
non-lnformatwe in the llmit a — 0, b — 0. Since, in this limit, the hyperpriors become
improper, we might fix their parameters to small values: e.g. a =b=c=d = 1074
However, by setting these parameters to zero, we obtain uniform hyperpriors (over a
logarithmic scale). Since all scales are equally likely, a pleasing consequence of the use
of these improper hyperpriors is that of scale-invariance: predictions are independent
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of linear scaling of both t and the basis function outputs so, for example, results do
not depend on the unit of measurement of the targets. The case of general Gamma
priors for & and 3 is covered in more detail in [15] and [4], but from now on here we
assume uniform scale priors withe=b=c=d=0.

This choice of prior distributions is related to those used in cubomatic relevance
determination, or ARD [9, 10]. Using such priors in a neural network, individual hy-
perparameters would typically control groups of weights, in particular those associated
with each input dimension z. For inputs which have little value in predicting the
outputs, the posterior distribution over the hyperparameters becomes concentrated at
large values, thus effectively switching off such ‘low relevance’ inputs. This jdea has
also been applied to the input variables in ‘Gaussian process’ models [19).

Here, the assignment of an individual hyperparameter to each weight, or basis func-
tion, is the key feature of the sparse Bayesian framework, and is responsible ultimately
for its sparsity properties. To introduce an additional NV 4+ 1 parameters to the model
may seem counter-intuitive, since there is already one parameter per basis function
(and therefore one parameter per data point for kernel functions centered on the data),
but from a Bayesian perspective, provided we correctly integrate out all of these pa-
rameters, or can approximate such an integration sufficiently accurately, then having
the number of parameters exceed the number of data points presents no particular
difficulty either from & theoretical or from a practical point of view (see pp. 16-17, of
110]).

13.3.2 The effective prior

We may question why the choice of a Gaussian prior should express any preference
for sparse models. In order to gain insight into the this eflect we can integrate out
the hyperparameters to discover the true identity of the prior over the weights. For a
Gamma prior over the hyperparameters, it is possible to integrate out o, independently
for each weight, to obtain the marginal, or what might be considered the ‘true’, weight
prior:

pws) = f p(wilaa)p(cs) do,
_ e+ 3)

=m0t wy/2)”(+8), (13.22)

where ['(-) is the gamma function as defined earlier. Equation (13.22) corresponds to
the density of a Student-¢ distribution, and so the overall marginal weight prior is a
product of independent Student-¢ distributions over the w;. A visualization of this
Student-t prior, alongside a Gaussian, is given in Figure 13.1. For the case of the
uniforrma hyperprior, with @ = & = 0, we obtain the improper prior plwy) & 1/]w,].
Intuitively, this looks very much like a sparse prior since it is sharply peaked at zero
like the popular Laplace prior p{w;) o exp {—|ux|), which has been previously utilized
to obtain sparsity in Bayesian contexts [20]. The elegance of this approach therefore
lies in the use of hierarchical modeiling to obtain a prior over weights which encour-
ages sparsity while still making use of fully conjugate exponential-family distributions
throughout.
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Student-t

a d,i‘t (5 .t

Figure 13.1: LEFT: an example Gaussian prior p{w|a) in two dimensions. RIGHT: the prior
p{w), where the hyperparameters have been integrated out to give a product of Student-¢
distributions. Note that the probability mass is concentrated close to the origin, where both
weights go to zero, and also along ‘spines’ where one or other of the two weights goes to zero.

Unfortunately, we cannot continue the Bayesian analysis down this route to compute
p{wit), since the marginal p(w) is no longer Gaussian, and so the marginalization over
w is no longer analytically tractable. Because of this, it is not convenient to work with
the margiual prior directly and in the next section we take a different tack.

13.3.3 Iunference

Having defined the prior, Bayesian inference proceeds hy computing, from Bayes’ rule,

the posterior over all unknowns given the data:

p(tjw, &, o?)p(w, v, 0?)
2(t)

Then, given a new test point. x,, predictions are made for the corresponding target t.,

in terms of the predictive distribution:

plw,a, a*t) = (13.23)

pltift) = fp(tAlw,a,og) p(w, &, a?|t) dw de do?, (13.24)

As is the case with many non-trivial Bayesian models; it is not possible to perform
these computations in full analytically, and we must seek an effective approximation.

We cannot compute the posterior p{w,a,o”[t) in (13.23) directly since we can-
not perform the normalizing integral on the right-hand-side, p(t) = [ p(t/w,a, o)
plw, o, ¢?) dw do do®. Instead, we decompose the posterior as:

p(w, &, 0°|t) = p(wit, e, 6?)p(ex, ° |t} (13.25)

and note that we can compute analytically the posterier distribution over the weights
since its normalizing integral, p(t|ey, %) = [ p(t|w, 0?) p(wlex) dw, is a convolution of
Gaussians. The posterior distribution over the weights is thus given by:
pltlw,o%)p(wla)
pltla, 0?)

= (2m)TINFNZ 12 ey {—%(w — Y 5= (w - p)} . (13.27)

p(wlt, @, 0%) = , (13.26)
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where the posterior covariance and mean are respectively:

L=(c®"®+A), (13.28)
=0 8e7t, (13.29)

with A = diag(ag, ay,...,an).

It is now necessary to make some form of approximation, and we do so by replacing
the integration over the hyperparameters by point estimates involving their most prob-
able posterior values. We do this on the basis that this point-estimate is representative
of the posterior in the sense that functions generated utilizing the posterior mode val-
ues are close to those obtained by sampling from the full posterior distribution. It is
important to realize that this does not necessitate that the entire mass of the posterior
be accurately approximated by the delta-function. For predictive purposes, rather than
requiring p{e, o?|t) = 6(apmp, 04p ), we only desire

f}o(txla,dg)p(a,dzlt) da do® o2 p(t.|ase, orp) (13.30)

to be a good approximation. This notion may be visualized by a thought experiment
where we consider that we are utilizing two identical basis functions ¢;(x) and ¢;(x).
It follows from (13.31) shortly that the mode of p(c,s?[t) will not be unique, but will
comprise an infinite ‘ridge’ where o7 + ccj“l is some constant value. No delta-function
can be considered to be a good approximation to the probability mass associated with
this ridge, vet any point along it implies an identical predictive distribution and so
(13.30) holds. Evidence from the experiments presented in this article and elsewhere
suggests that this predictive approximation is very effective in general.

Relevance vector ‘learning’ thus becomes the search for the hyperparameter poste-
rior mode, i.e. the maximization of p(ex,d?|t) o p(t|a, o®)p(a)p(o?) with respect to
a and 3. For the case of uniform hyperpriors, we need only maximize the merginal
likelihood, or equivalently its logarithm, Inp(t|c, o?), which is computable and given
by:

L{or) = Inp(tlex, %) = ln/ p(tlw, d?) p(wia) dw,
1
=3 [NIn27 + 10|C| + tTC't] (13.31)
with
C=s1+DA7'D". (13.32)

13.3.4 Making predictions

In practice, having maximized {13.31} (we consider this task shortly), we make pre-
dictions based on the posterior distribution over the weights, conditioned on the max-
imizing values cemp and aip. We can then compute the predictive distribution, from
(13.24), for a new datum x., using (13.27):

p(t.]t, onip, ohp) = /iﬂ(f*|WaUﬁerP(Wlt,CxM.Pﬂim) dw. (13.33)
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Since both terms in the integrand are Gaussian, this is readily computed, giving:
p(t.lt, emp, oygp) = N(tuly., 07),
with

¥ = T P(x.), (13.34)
O'f = G']%ip + ¢(X*)TE¢(X4) (1335)

So the predictive mean is intuitively y{x.; ), or the basis functions weighted by the
posterior mean weights. We will find that the maximizing values of many of the
hyperparameters will be infinite, implying from (13.27) that the corresponding weights
in wyp will be exactly zero and the predictor y, is thus spasse.

13.3.5 Properties of the marginal likelihood

Values of o (assume o2 is fixed for now) which maximize (13.31) cannot be jointly
obtained in closed form. However, in [6] it was shown that we can maximize L(cx)
with respect to a single hyperparameter n,. To show this, we first straightforwardly
decompose C in (13.32) as

C=01+ ) a, bndn + o '],
e
=Cit a7 '¢0], (13.36)

where C_, is C with the contribution of basis vector ¢ removed and ¢, is the i-th column
of @. Established matrix determinant and inverse identities can then be employed to
re-write £{cax) as:

1
Lie) = -3 [Nln(??r) +1njC_| +t°C 7Nt

(¢iCoit)” 7

@, + qs:C:lqng
1 q?

= L{a_;) + 3 llnai —In(oy + 8,) + P I

= Llo_;) + 8ax), (13.37)

— Ina; + In{e; + ¢7CT P;) —

1

where for simplification of forthcoming expressions, we have defined:
si = ¢ CLidy, and ¢ = ¢7Ct. (13.38)

The objective function has now been decomposed into L{ex_;), the marginal likeli-
hood with ¢, excluded, and #(a;), where terms in ¢; are now conveniently isolated.
Analysis of ¢(,) [6] shows that £({ax) has a unigue maximum with respect to o,

2
34

if g2 > s, (13.39)

al'= i
Q?_Si

o = 00, if ¢ < 5. (13.40)
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Figure 13.2: Example plots of £{cr;) against o, (on a log scale) for g% > s (left), showing the
single maximum at fnite a;, and ¢ < s (right), showing the maximum as a; — o0.

An example illustrating these two cases is given in Figure 13.2.

Thus sparsity arises from equation (13.40): if this condition holds, then the marginal
likelihood is maximized when the individual basis (kernel) function K(x, x;) is removed
from the model. Note, from (13.38), that ¢ and s, depend on all other (m # %)
hyperparameters so the sparsity conditions for all o mutually interact.

13.3.6 Hyperparameter optimization

For optimizing hyperparameters, a simple set of re-estimation formulae can be derived
[14, 15], but a more recent, and much more efficient, approach is given in [16] which
we briefly summarize here.

We start by computing the quantities s; and ¢;. In fact, it is easier to maintain and
update values of

Si=¢C ', Q.=¢{C't, (13.41)
and from these it follows simply:
a;5; a;Q;
g = — = . .42
8!— a? — 51! q‘i al _ St (]3 )

Note that when @; = o0, 3; = S5, and ¢; = ;. In practice, then, it is convenient to
utilise the Woodbury identity to obtain the quantities of interest:

S; = ¢TB¢, — gTBETO"Be;, (13.43)
Q; = ¢TBt — ¢T B[, (13.44)

1
where B = ¢4, T = T, u = poand t =t in the regression case, and for the
classification case as explicitly defined in the next section.
Given these, consider individual basis functions (hyperparameters) in turn and note
that the results (13.39) and (13.40) imply that for a given a;:

e If ¢, is ‘in the model’ (i.e. a; < o) vet g7 < s;, then ¢; may be deleted (i.e. o;
set to 00),
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o If ¢; is excluded from the model (a; = o0) and ¢ > s,, ¢; may be ‘added”: i.e.
o Is set to the optimal finite value given by (13.39).

o If ¢. is ‘in the model' and ¢Z > 5; then @, may be re-estimated.

All these actions guarantee to increase the marginal likelihood function, and we thus
have a framework for making discrete changes to the model, by adding and deleting
basis functions, in a principled probabilistic manner.

For the noise variance o2, we can derive a re-estimation equation which may be
utilized concurrently with those of « in order to infer the noise variance:

2\ new It — Dpul?
(o)™ = N A S o (13.45)
Here, the ‘N’ in the denominator refers to the number of data examples and not the
number of basis functions.

In terms of the efficiency of this procedure, note that SVM optimization does ben-
efit from a convexity property whereas the marginal likelthood may be expected to be
multi-modal (slthough it is generally observed that these modes lead to similar pre-
dictive functions). Furthermore, there exist some established SVM learning strategies
that have been efficiently tuned for large-scale problems. The algorithm outlined here
appears to necessitate some costly matrix inversions, but these matrices are in fact of
the order of the number of basis functions actually in the model at any point. Since
we may choose to initialise with an ‘empty’ model, and typically the converged model
is very sparse, in practice the computational cost is very managable. Further details
on the optimization procedure, including details of computing and updating s; and ¢,
as well as illustrative timing comparisons with the SVM, are given in [16].

13.3.7 Relevance vector machines for classification

Sparse Bayesian classification follows an essentially identical framework as described
for regression above, but using a Bernoulli likelihood and a sigmoidal link function to
account for the change in the target quantities. As a consequence, there is an additional
approximation step in the algorithm.

Applying the logistic sigmoid link function o(y) = 1/(1 + e7¥) to y(x;w) and,
adopting the Bernoulli distribution for P(t|x), we write the likelihood as:

P(ttw) = [ ] o {y(xa: W)} [1 = o{y(xai W)}, (13.46)

where, following from the probabilistic specification, the targets ¢,, € {0,1}.

Unlike the regression case, the weights cannot be integrated out analytically, pre-
cluding closed-form expressions for either the weight posterior p{wit, o) or the marginal
likelihood P(t|ex). We thus utilize the Laplace approximation procedure, as used in
8):
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1. For the current values of «, the the mode of the posterior distribution is found it-
eratively to give the ‘most probable’ weights 1. Since p(wlt, &) &< P(t{w)p(w|c),
this is equivalent to finding the maximum, over w, of

In {P(t|wlp(w|a)} =

N
1

Z [Etnnyy + (1 — t,)In(1l — 3,)] — §WTAW, (13.47)

n=1
with y, = o{y(x,;w)}. This is a standard procedure, since (13.47) is a penalized
logistic log-likelihood function, and necessitates iterative maximization. We have
used a second-order Newton method related to the ‘iteratively-reweighted least-
squares’ algorithm to find 4.

2. Laplace’s method is simply a quadratic approximation to the log-posterior around
its mnode. The quantity (13.47) is differentiated twice to give:

Vo Vuinp(wlt,a)| .= —(®"B® + A), (13.48)

i

where B = diag8), 5, ...,8y is a diagonal matrix with 3, = o{y(x,)} [1-

a{y(x)}]. This is then negated and inverted to give the covariance X for a
Gaussian approximation to the posterior over weights centered at 1.

At the mode of p{wit, &), using (13.48) and the fact that VInp(wit, o:)]ﬁz 0, we
can see we have effectively locally ‘linearized’ the classification problem around g with

S =(®"B® +A), (13.49)
i =S&"Bt, (13.50)

and R
t=3n+B 7 (t - o {Bn}). (13.51)

These equations are equivalent to the solution to a generalized least squares problem.
Compared with (13.29), it can be seen that the Laplace approximation effectively
maps the classification problem to a regression one with targets t and data-dependent
(heteroscedastic) noise, in which the inverse noise variance for ¢, is given by 8, =
U{y(xn)} [] - g{y(fn)}]' n

The quantities X, i and t can be substituted into equations (13.43) and (13.44) in
order to compute the quantities s; and ¢; which may then be exploited in the algorithm
of Section 13.3.6 exactly as in the regression case.

13.4 The Relevance Vector Machine in Action

13.4.1 Illustrative synthetic data: regression

The function sinc{z) = sin{z)/z has been a popular choice to illustrate support vector
regression |18, 17}, where in place of the classification margin, the e-insensitive region
is introduced, a ‘tube’ of +¢ around the function within which errors are not penalized.
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In this case, the support vectors lie on the edge of, or outside, this region. For example,
using a univariate ‘linear spline’ kernel:

. 3
0 (&, £ ) + w,
(13.52)
and with ¢ = 0.01, the approximation of sinc(x) based on 100 uniformly-spaced noise-
free samples in [—10, 10] utilizes 36 support vectors as shown in Figure 13.3 {left).

In the RVM, we model the sare data with the same kernel (13.52), which is utilized
to define a set of basis functions ¢n(2) = K(z,2n), n = 1... N. Typically, we will be
tackling problems where the target function has some additive noise component, whose
variance is represented by o®. However, for the purposes of comparison with this
“function approximation” SVM example, we model the sinc function with a relevance
vector machine but fiz the noise variance in this case at 0.01% and then re-estimate ¢
alone. This setting of the noise standard deviation to 0.01 is intended to he analogous,
in an approximate sense, to the setting the e-insensitivity to the same value in the
SVM. Using this fixed g, the RVM approxdmator is plotted in Figure 13.3 (right), and
requires only 9 relevance vectors. The largest error is (.0070, compared to 0.010 in the
support vector case, and we have obtained the dual benefit of both increased accuracy
and sparsity.

Figure 13.4 illustrates a case which is more representative of real data in which
uniform noise (i.e. not corresponding to the RVM noise medel) in [-0.2,0.2] is added
to the targets. Again, a linear spline kernel was used. The trained RVM uses 6 relevance
vectors, compared to 29 for the SVM. The root-mean-square (RMS) deviation from the
true function for the RVM is (.0245, while for the SVM it is 0.0291. Note that for the
latter model, it was necessary to tune the parameters € and ¢, in this case using 5-fold
cross-validation. For the RVM, the analogues of these parameters (the a's and ¢*) are
automatically estimated by the learning procedure.

. Tm + &
K(Zm, Zn) = 1 + ZmTn + TmZy Min(Em, Tp) — ———

1.2 ' . o 12 1
1r 1 ‘
0.8 0.2
0.6 0.6
0.4 0.4
0.2r 0.2
og 0
-0.2 -0.2
-10 —é- 0 5 10 =10 _‘-5 0 5 10

Figure 13.3: Support (left) and relevance (right) vector approximations to sinc(z) from 100
noise-free exarnples using ‘linear spline’ basis functions. The estimated functions are drawn
as solid lines with support/relevance vectors shown circled.
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Figure 13.4: Support {left) and relevance (right) vector approximations to sinc(x), based
on 100 noisy samples. The estimated functions are drawn as solid lines, the true Function o
grey, and support/relevance vectors are again shown circled.

13.4.2 Illustrative synthetic data: classification

We utilize artificially-generated data in two dimensions in order to ilustrate graphically
the selection of relevance vectors for classification. Both class 1 (denoted by *x') and
class 2 (denoted by ‘') were generated from mixtures of two Gaussians by [11], with
the classes overlapping to the extent that the Bayes error is around 8%.

A relevance vector classifier is compared to its support vector counterpart, using a
‘Gaussian’ kernel which we define as

K (m, %) = xp{=12 % = ,]|%), (13.53)

with + the 'width’ parameter, chosen here to be 0.5. A value of C for the SVM was
selected using 5-fold cress-validation on the training set. The results for a 100-example
training set (randomly chosen from Ripley’s original 250) are given in Figure 13.5. The
test exrror (from the associated 1000-example test set) for the RVM (9.3%) is slightly
superior to the SVM (10.6%), but the remarkable feature of contrast is the complexity
of the classifiers. The support vector machine vtilizes 38 kernel functions compared to
just 4 for the relevance vector method. This considerable difference in sparsity between
the two methods is typical, as the later results on benchmark data sets support.

Of interest also is the fact that, unlike with the SVM, the relevance vectors are
some distance from the decision boundary (in x-space), appearing more ‘prototypical’
or even ‘anti-boundary' in character. A qualitative explanation for this phenomenon,
discussed in more detail in [15], is that the output of a basis function centered on or near
the decision boundary is an unreliable indicator of class membership (i.e. its output
is poorly-aligned with the data set in t-space), and such basis functions are naturally
penalized (deemed ‘irrelevant’) uuder the Bayesian framework. Of course, there is no
implication that the utilization of eitber boundary-located or prototypically-located
functions is ‘correct’ in any sense.
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Figure 13.5: SVM (left) and RVM (right) classifiers on 100 examples from Ripley’s Gaussian-
mixture data set. The decision boundary is shown dashed, and relevance /support vectors are
shown circled to emphasize the dramatic reduction in complexity of the RVM model.

13.4.3 Benchmark results

The following tables, taken from [15], summarize regression and classification perfor-
mance of the relevance vector machine on some example benchmark data sets, com-
paring results for illustrative purposes with equivalent support. vector machines. For
each data set the number of training examples (V) and the number of input variables
(d) are given in the tables. The prediction error ohtained and the number of vectors
{(support or relevance) required, generally averaged over a number of repetitions, are
then given for both models. By way of sumnmary, the RVM statistics were also normal-
ized by those of the SVM and the overall average is displayed. A Gaussian keroel was
utilized and its input scale parameter chosen by 5-fold cross-validation.

— errors . __ vectors _
Regression Dataset N d SVM RVM SVM RVM
Sin¢ (Gaussian noise) 100 1 0.0378 0.0326 45.2 6.7
Sinc (Uniform noise) 100 1 0.0215 0.0187 44.3 7.0
Friedman #2 240 4 4140 3505  110.3 6.9
Friedman #3 240 4 0.0202 0.0164 1065 115
Boston Housing 481 13 8.04 746 1428  39.0
Normalized Mean 1.00 0.86 1.00  0.15
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__errors __ __ veclors __
Classification Data set IV d SVM RVM SVM RVM
Pima Diabetes 200 8 201% 19.6% 109 4
U.S.PS. 7291 256 4.4% 51% 2540 316
Banana 400 2 109% 108% 1352 114
Breast Cancer 200 9 26.9% 209% 1167 6.3
Titanic 150 3 221% 23.0% 93.7 65.3
Waveform 400 21 10.3% 109% 1464 146
(German 700 20 22.6% 22.2% 4112 125
Image 1300 18 3.0% 39% 166.6 34.6
Normalized Mean 1.00 1.08 1.00  0.17

In summary, in this small number of experiments, the RVM exhibited 14% lower
error than the SVM and utilized only 15% of the basis functions on average for regres-
sion. In classification, error was 8% greater on average, yet still only 17% of the basis
functions were utilized.

13.5 Discussion

In this brief tutorial we have outlined some of the basic concepts of regression and
classification from the Bayesian perspective. We have discussed in detail a specific
Bayesian model called the Relevance Vector Machine, which leads to highly sparse
solutions and having excellent generalization properties.

The treatment of the Relevance Vector Machine given here is not completely Bayesian
since point estimates are made for the hyperparameters, whereas in a fully Bayesian
treatment we should define hyperpriors over these hyperparameters, and then integrate
out the hyperparameters in order to make predictions.

However, as we have already noted, it is not possible to integrate cut all of the
parameters and hyperparameters analytically. This problem can be addressed by using
deterministic approximation schemes based varigfional inference, in which a factorized
approximation to the full posterior distribution is used [4]. One consequence of this
more complete treatment of the RVM is confirmation that the approach based on point
estimates, as discussed in this tutorial, does indeed give a good approximation {o a
more complete Bayesian approach.
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Chapter 14

Bayesian Field Theory: from
Likelihood Fields to Hyperfields

Jorg C. Lemm*

Abstract. Bayesian models are based on the combination of a likelihood model
and a prior model. The nonparametric Bayesian models discussed in this chap-
ter combine the likelihood models of density estimation, regression, and inverse
gquantum theory, expressed in terms of ‘likelihood fields’, with nonparametric
prior models for such fields. Starting from Gaussian process priors, which, for
example, are able to implement approximate symmeteies for the likelihood fAelds,
those are made more flexible by introducing hyperparameters and, generalized to
a hyperparameter valued function, by hyperfields. In a joint Maximum A Pos-
teriori approximation this results in coupled equations for likelihood fields and
hyperfields. An example of a useful application of hyperfields is the adaption of
the mean function of a Gaussian process prior.

1The author wants to thank J. Ublig and A. Weiguny for fruitful discussions.
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14.1 Introduction

It is well known that empirical learning can not be based on observational data alone
but does always also depend on a priori information, explicitly or implicitly. For models
with a small number of parameters, the essential part of ¢ preors information being in
that case the restriction of the model space, additional priors for the parameters are
typically easily overwhelmed by the data if the number of observations becomes large
enough. The situation is completely different for nonparametric approaches, where
the number of data is too small to determine all the degrees of freedom of the model.
Thus, in nonpararmetric modeling it is essential that all available & priort information
is included in the model. To this end prior models are useful which are formulated
explicitly in terms of the likelihood of interest. Most priors used for nonparametric
models jn practice are some kind of smoothness priors. In the following we will discuss
some possibilities to construct priors more general than smoothness priors and present
techniques to adapt general prior models to the available a prior knowledge. Before
we discuss specific nonparametric likelihood and prior models we first have to define
the basic quantities in empirical learning and their probabilistic relations.

14.2 The Bayesian framework

14.2.1 The basic probabilistic model
For empirical learning it is convenient to distinguish three groups of variables:

1. observable (visibie) independent variables .z representing ‘inputs’ or ‘controlled
causes’,

2. observable (visible) dependent variables y representing ‘outputs’ or ‘measured
effects’,

3. not directly observable (hidden, latent) variables ¢ describing the possible (pure)
‘states of Nature’ considered in the model under study.

The joint probability can be factorized according to

ple,y,¢) = pylz, §) p(dlz)p(z). (14.1)

The first factor p(y|x, ) describes the prohability (or probability density for continuous
y) of finding y given the visible variables are in state x under a specific model state
(‘state of Nature’) ¢. For given data, D = (z, y), the factor p(y|x, ¢) is also known as
the likelihood of ¢ under D.

The hidden variables ¢ parameterize the space of possible states we are using to
model the probabilistic input—output relation between the x and the y. In ‘parametric’
models the hidden variables ¢ represent a (in many practical cases relatively small)
number of parameters, while in ‘nonparameteric’ models the hidden variables ¢ form
a function or ‘field’, so that expressions like p(¢|x) represent a stochastic process [8,
11, 41, 37]. For example, in nonparametric density estimation the function values of
the likelihood itself, i.e., all the numbers ¢(z,y) = plylc, @) for all & and y, can be
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considered as the primary degrees of freedom. A function #{x,y) which determines
the likelihood p(yjz, ) will be called a &kelihood field. Likelihood fields which are
different from ¢(z,y) = plylz, ¢) will be discussed below. Similar to nonparametric
density estimation problems, we will speak of nonparametric regression if each value
of the regression function (;f)[:z;) = f dy y p{ylx, ¢) is considered as a primary degree
of freedom. Another example is nonparametric inverse quantumn theory where the
function of interest can be a function ¢(z) = v(z) describing a local quantum potentijal
as function of a coordinate z. The primary degrees of freedom ¢(z,y) or ¢(z) can
then be related by explicit prior information like a smoothness constraint. As the
number of parameters in a parametric model can become large, for instance, in a
neural network, and also nonparametric models must be discretized in some basis to
perform numerical calculations, there is no sharp distinction between parametric and
nonparametric medels in practice. Nonparametric models as we will understand them,
however, try to formulate the available a priori information not in terms of parameters,
which are often difficult to interpret, but explicitly in terms of the function ¢ of interest,
e.g., in terms of the likelihood values p(ylz, @) in density estimation problems, or in
terms of the regression function in regression problems [23].

In the following we will assume scenarios with » independent (tuples of) training
data

D={(z:,y)1 <i<n}={({zp yn)} (14.2)

which are sampled according to the likelihood p(y,{z,,¢) and where the x, and 3, can
be vectors. The independent variables in the data, zp = {z;{1 < ¢ < n}, may have
been either fixed in advance or sampled under some given p(x). We also assume, that
p(¢|x) can be written as p($|Dq} with Dy being that part of the independent visible
variables which determines the prior p{¢|Dy) of the hidden variables ¢. We will call Dy
the ¢ priori information on ¢ and p(p|Do) the prior for ¢. Under those assumptions,
we end up with models of the form

2@,y 61Do) = p(#|Do)p(yn|zn, 8) plzp) = p($1D0) | | plysles, ) w(x),  (14.3)

i=]

or, conditional on the independent variable z,

ply, o1z, Do) = plyplzp, 4) p($|Dy) = HP (yilzi, #) p($ Do) (14.4)

14.2.2 Bayesian decision theory and predictive density

Empirical learning is used to make decisions. Hence, let us consider a set of possible
actions @ from which we want to choose an optimal one. In selecting an optimal action
we want to use all the informatjion we have at hand, i.e., training data D and a priori
information Dy. In particular, we will be interested in approximation problems, like
density estimation where the possible actions represent predictive densities p(y|z, a)
and our aim is to approximate the true state p(y|z,die), by an optimal posterior
predictive density p(y|s, D, Dy). To define optimality we select a loss function {(x, ¥, @)



292 J. Lemm

Figure 14.1: Graphical representation of the probabilistic model (14.4) with independent
data, conditioned on the independent variables ; and the unknown state ¢.

which describes the loss suffered in situation « if y appears and action a has been
selected. Then an optimal action (e.g., an optimal prediction) minimizes, for given
data D and prior Dy, the expected risk [1, 35]

rla, D, Dy) = /d&: dyp(z) ply|lz, B, Dy} l(z,y,a). (14.5)

If we denote the expectation under the joint posterior predictive density p(x, ¢, Dy)
= p(x)ply| D, Dy) by < - >x3|p,py. We can write Eq. (14.5) as

T((I, D}Do) =< Z(:.-:,y,a.) >-\':V|D:Do . (146)

We may remark that p(x) is the density of « for the (test) data for which prediction
is intended and not the possibly different p(2) which has been used for sampling the
training data 3. The typical loss function for approximation problems is the log-loss

lz,y,a) = —Inp(ylz, a), (14.7)

for which the expected risk becomes the (z—averaged) Kull-Back-Leibler distance be-
tween p(yjz,a} and ply|z, D, Dy). As it is not difficult to show hy using Jensen’s in-
equality the Kullback-Leibler-distance is minimal for p(y|z,a) = p(ylz, D, Dy). Thus,
under log-loss the optimal maodel is the posterior predictive density

plylz, D, Dy) = ] 4 ply, 3) p(41D, D). (14.8)

In nonparametric models where ¢ is a function the integral over ¢ stands for a func-
tional integral. Such integrals are mathematically well defined for Gaussian processes
(‘generalized free Euclidean fields' or ‘generalized Brownian motion’ in the language
of physics), but for more general processes (‘(self-)interacting fields’) a general math-
ematical definition of functional integrals is still an unsolved problem, One possible
approach is to define a non—-Gaussian functional integral by renormalization procedures
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in perturbation theory [5) or on a lattice [30], another simpler possibility is to discretize
the function ¢ in some appropriate basis so the functional integral becomes a standard
(but typically still extremely highdimensional) integral. The remaining highdimen-
sional integrals can either be approximated by Monte Carlo methods [16, 14, 12, 33, 19]
or by the method of steepest descents (Laplace approximation), in this context known
as Maximum A Posteriori (MAP) approximation [7, 4, 35, 12]. The latter assumes that

p(yla, D, Do) ~ p(ylz. ¢") (14.9)
for the ‘MAP solution’ ¢ which maximizes the posterior
¢" = argmax,p(¢p| D, Dy). (14.10)

Hence, in a MAP approximation the integration over ¢ is replaced by maximization
over ¢. Eq. (14.9) is a good approximation if the posterior p(#|D, Dy) can be well
approximated by a single Gaussian and the factor p(ylx, @) in Eq. (14.8) is slowly
varying at the stationary point ¢* compared to the posterior. This is often expected
to be the case if the number of data is sufficiently large. In principle one can also go
beyond the MATP approximation by using the MAP solution as starting point for a
perturbation series, for example, graphically expressed by Feynman diagrams [34, 17].

In Gaussian regression p(ylr, a) is assumed to be of Gaussian form with fixed vari-
ance and only the mean or regression function a(x) = < ¥ >y|x. = [ dyyplylz,e) is
adapted. In linear (parametric) Gaussian regression the regression function is chosen
as a linear function in x, i.e.,, <y >y = ao + a1, while in nonparametric Gaussian
regression for each « the value < y >y, , is treated as a single degree of freedom so that
the form of the regression function is not restricted. For Gaussian regression log—loss is
equivalent to a squaved errvor loss and it is straightforward to check that the regression
function which minimizes the expected risk is the posterior regression function, i.e.,
the expectation of 4 under the posterior predictive density

a*(x] =Y Pylzer =< Y PV D= /dyyp(y|£a D}DO)' (]411)

A typical loss function for classification problems (where a discrete dependent vari-
able y represents the class variable) js the 0-1-]oss

E(y, I,G) = '63,-,@(9:) (1412)

where 8, 4(;) stands for the Kronecker-d which is equal to one if y = a(z) and zero other-
wise. In that case it turns out that the optimal a(x) is 2 mode function max, p(y|<, D,
Dy) of the predictive density. Table 14.1 lists the basic functions which appear in
Bayesian models.

14.2.3 Bayes’ theorem: from prior and likelihood to the pos-
terior

The short discussion of Bayesian decision theory in 14.2.2 showed that for density
estimation, regression, as well as for classification learning can be based on the posterior
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p(¢| Do) prior
p(¢lD: DO

)
) posterior
p(y|z, @) likelihood, predictive density for a pure state
)
)

plylz, Dp)  prior predictive density

p{ylz, D, Dy) posterior predictive density

Table 14.1: The basic probabilities {or densities, stochastic processes, respectively).

predictive density p(y|z, D, D). Using p(A) = [dBp(A, B) for A = ¢ and B = y,
plylz, ¢, D, Dy) = p(y|z,¢), and p(élx, D, Dy} = p(¢|D, Dy) the posterior predictive
density can be expressed as

plylz, D, Do) = / dply|z, (41D, Dy). (14.13)

where the density (or the stochastic process in nonparametric models) p{¢|D, Dy) is
known as the posterior.

The posterior, which we are interested in, is linked to the prior and likelihood,
which are assumed to be given, by Bayes’ theorem:

p(D|H)p(H)
p(D)

Because p(D) can not be zero for observed data, Eq. (14.14) is a direct consequence of
the definition of conditional probabilities,

p(H|D) = (14.14)

p(H,D) = p(H|D)p(D) = p(D|H)p(H). (14.15)

In a Bayesian context I represenis the available data and H stands for the hidden
variables (hypotheses, theories, models) which in the nonparametric approaches we will
study are described by functions or likelihood fields, like ¢(x) in regression or ¢(x,¥) in
general density estimation problems. The terms in Eq. {(14.14) are comumonly referred

to as
likelihood x prior

osterior = 14.16
P o evidence ' ( )
where the evidence p(D) is independent of . Conditional on the independent training
data 2p = {z,|]1 < i < n}, denoting the a priori information explicitly by Dy, and

writing ¢ for H Bayes' theorem (14.14) reads

_ p(yolep, )p(@| Do) -
p(dlyp, 2p, Do) = ool Do) (14.17)

According to Eq. (14.17) two ingredients are needed to calculate the posterior: a
likelihood model describing the measurement process from which the data are obtained
and a prior model implementing the available a priori information.
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14.3 Likelihood models

Likelihood or data models define the different problem classes. In the following we will
introduce the nonparametric likelihood models of density estimation, regression and
inverse quantum theory.

14.3.1 Log—probabilities, energies, and density estimation

In practice it is often more convenient to work with log-probabilities (or log-densities,
log-processes, respectively)
L=1Inp (14.18)

instead of probabilities p. Indeed, for log—probabilities no non—negativity constraint is
necessary because p = exp L is non—negative for arbitrary real L. Another advantage
of log-probabilities is that products of probabilities become sums for log-probabilities,

p(A, B) = p(A)p(B) = L{A, B) = L(A) + L(B). (14.19)
In limits where the number of probability factors approaches infinity the corresponding
sums of Jog-probability terms become integrals, e.g., in the log-prior, which are more
common ohjects than the infinite products which appear for probabilities. For example,
according to Bayes’ theorem (14.17) the log—posterior

L(¢|D, Do) = In p(¢]D, Dy) (14.20)
becomes up to a ¢-independent constant the sum of the log-prior

L($| Do) = In p(¢| Do), (14.21)

which in nonparametric approaches typically consists of an integral over x and/or y,
and the log-likelihood

L{yplzo, ) = ZLy,I%cﬁ) IHHPJ,I% , (14.22)

which, in contrast to the log—prior, is a finite sum over data points. We remark that
the log-likelihood can be related to the averaged conditional Kerridge tnaccuracy K.,

Llyplzp, &) = > Llyilai, @) = =nKc[pemp(e, ¥'), p(/ |2/, )], (14.23)
in short L = 7. L; = —nkK,, where the averaged conditional Kerridge inaccuracy

Kc[pemp(:.';’,y'),p(yﬂx’,qzﬁ)] = - /dﬂ?rPemp(x’)K[Pemp(me;);P(yr|’1‘!-‘f’)] (14.24)

is the empirical expectation of the corresponding Kerridge inaccuracy of the conditional
densities, obtained by integrating over x with pemp(z’),

K [pamp (¢ |2), p(¢/ |5, 9)) = — / ¢y Perp(y'|2 ) p(y/ |2, 6), (14.25)



296 J. Lemm

where the empirical densities for data D = {(z, 1)1 < ¢ < n} are given by

s Pemplmn )
Pemp(yl2:) = —pe:p(m, (14.26)
1 n
Pomp(2,Y) = E;cﬁ(w—wﬁ)ﬁ(y—yﬁ-), (14.27)
pemp(z) = %Zé‘(n@—i&), (1428)

i=}

with z; € zp so that pemp(y|2,) is defined. Denoting the liketihood vector by P(¢} with
cornponents P(x,y; @) = p(ylz, ¢) and defining the data vector N{z,¥) = nPemplic, ¥)
we can also write for the likelihood, alternatively to Eq. (14.23),

Liyolzn, 6) = — / de dyln p(yls, $)N(x,9) = — (n P(6)] N) (14.29)

using the bra-ket notation with respect to z and y, i.e., {flg) = [ dazdyf(z, y)g(z,y).

Besides being non-negative, probabilities (or densities) have to be normalized to
one. Like non-—negativity, the normalization condition can be implemented in the
parameterization of a probability. [ndeed, if we parameterize a probability as follows

exp (—FE(z))

) = 14.3
p(z) G ) (14.30)
where the normalization factor or partition sum Z is given by
Z = /dm exp (-8E(x)), (14.31)

then p(z) is normalized and non—negative for arbitrary real functions E(z). In analogy
to statistical physics, we will call the function E energy. Clearly, the random variable
z in Eq. (14.30) can be replaced by any other random variable. Hence energies, for
example, appear as likelihood energy E(y|x, @), prior energy E(|De), or posterior
enerqy E($|D, Dy). The factor 3, which in statistical physics plays the role of an
wwerse temperature, can be useful for several technical purposes, for example, when
calculating the moments of the random variable F{z). We will set 5 = 1 in the
following.

If searching for a maximum of p(2) the x-independent normalization factor Z is
irrelevant. That means, when maximizing a probability, e.g., a posterior p(¢|D, Dg),
then when working with energies like E(¢|D, Dy) we do not have to implement non-
negativity and normalization constraints explicitly and we do not have to calculate
the normalization factor Z. This is especially useful if Z is an integral over a high
dimensional g-space.

Suminarizing, the terms in Eq. (14.30) can be referred to as

1 energy
probability = ———  exp e : (14.32)
partition sum temperature

Table 14.2 lists some possible choices for the likelihood field ¢(z, ¥} in density estimation
and the corresponding constraints the field has to ohey.
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field ¢z, y) likelihood p(y|z, ¢) = constraints
Jikelihood Az, y) norm non—negativity
unnormalized likelihood T%—(;(';% — non-negativity
log-likelihood exp (¢(z, y)) norm —

likelihood energy Tao ) - N
dé{z)
dy

distribution function boundary nmonotony

Table 14.2: Some choices of likelihood fields and the corresponding constraints.

14.3.2 Regression

In regression problems the only unknown parameter of the likelihood | i.e., the coudi-
tional density p(y|z, @) is assumed to be the mean or regression function

Plz) = ] dy y pylz, ¢). (14.33)

A common case is Gaussian regression where the likelihood is chosen as a Gaussian
with fixed variance

S (N ek 1Ol ,
byl ) = —— e (-0 ) (14.31)

An example of such a Gaussian likelihood is shown in Fig. 14.2.

Regression models, however, can not only be foermulated with a Gaussian likelihood
as in Eq. (14.34) but also with different Jikelihood models. For example, in classical
inverse problems one assumes a Hkelihood of the form

In that case data D = {(a;,1:)|1 € ¢ < n} are sampled for (F¢)(z) and not for ¢(x).
The operator F often represents an ‘instrument or apparatus function’. 1If it is linear,
then

(14.35)

(Fo)(z) = /dm"F(:c,w’)eﬁ(x’). (14.36)

A regression model with a Poisson likelihood

plylw, @) = @—(5)*]3 e, yeN >0 (14.37)

can be useful for counting events (3 counts with mean ¢(x) at z). Sirnilarly , a binomjal
likelihood

pM%mwz(ﬂﬁyﬁﬂmﬁﬁﬁwm*uyENaneNﬁ£¢SL(M%)
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0.78 0

Figure 14.2: Example of a Gaussian likelihood p(y{x, 9) asin Eq. {14.34) where the regression
function ¢{(w) = [ dyyp{ylz. ¢} (thick line) is sampled from a prior process p{¢| D) which
favors smooth and approximately periodic functions. {The corresponding prior covariance is
shown io Fig. 14.4.} The black dots represent data points D = {{x;,#)|1 < ¢ < n} sampled
from the given likelihood, the dashed line shows the +o-range around rean function ¢(x}.

is appropriate if at z from n(z) hinary events a number of ¢ ‘ones’ and n{x) — y ‘zeros’
have been observed, ¢(x) being the probability of ‘one’ at x. Finally we may remark
that support vector machines for regression are formally equivalent to an regression
model with e-insensitive likelihood energy E,(y, ¢(z)) = O(ly—¢(x)| —¢)(ly— ¢(z)| —¢€),
Q(x) denoting the step function and ¢ a constant [38, 42, 36].

14.3.3 Inverse quantum theory

As an example of a specific application of nonparametric Bayesion methods we will
give a short introduction to the Bayesian approach to inverse quantuin theory. In
inverse quantum theory a quantum system is determined by measurements. A typical
example, is the reconstruction of a quantum potential (which determines the force
acting on a partlicle) from a finite number of position measurements. Such problems
are based on the specific likelihood model of quantum theory: Measuring observable
X for a quantum system in a state described by density operator p, €.g., depending on
an unknown potential 9, the probability to obtain value y is given by [40, 29

Py X, 0) = Tr(Tig p(9)), (14.39)

where Tr stands {or the trace and nf‘--y is the projector on the space of eigenfunctions

of operator X with eigenvalie 3. For a system in a state described by wave function
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b the density operator is given by

p= 19) (W] (14.40)

(Wly)’

for a system at (physical) temperature 1/3 the density operator of the corresponding
(cancnical) ensemble is of the form (setting Boltzmann’s constant equal to 1) [24|

_ _exp(=BH{4))
Trexp (—SH(¢))’

(14.41)

where H stands for the Hamiltonian of the system which depends on the field ¢ (and
which may represent, for example, a potential). Sirnilarly, the likelihood for quantum
time series data y(¢;) for an observable X measured at times {;, 1 <4 < n, reads [22]

p(y(E)IX, y(tion), @) = | (s [ Uil i) 1P (14.42)

where |y,) stands for the eigenfunction of X with eigenvalue y(t,) and (setting £ = 1)
Ui = ExXp (—i(?ﬁg - t,_l)H) (1443)

is the time evolution operator of a quantum system with time-independent Hamiltonian
H. An example of the likelihood of a particle moving in a quantum potential is shown
in Fig. 14.3.

In nonparametric Bayesian inverse quantum theory the likelihood model of quan-
tum mechanics is combined with a prior model for the field ¢. Being interested in the
reconstruction of a quantum potential, the field ¢(z) may represent the diagonal ele-
ments v(x) of a local potential (where this time x stands not for an independent variable
but for the coordinates of a quantum particle). The prior model for ¢ then implements
available a priori information on v(r), like smoothness or an approximate periodicity,
the possibility of certain distortions or a specific fractal structure. Such nonparametric
prior models, useful for density estimation, regression, and inverse quantum theory,
will be discussed in the next section.

14.4 Prior models

For nonparametric models, where the number of degrees of freedom (represented by
the field values ¢(xx) or ¢(x,v)) is large compared to the number n of data, learning
requires the combination of the likelihood model with an appropriate prior model.

14.4.1 (Gaussian prior factors and approximate symmetries
The simplest but already very fexible nonparametric prior models are Gaussian process
priors [41, 43, 33, 18]

|

(Do) = (det ,)E_) T e Hetlo-t) o e~ E(91D0) (14.44)

O
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Figure 14.3; Quantum time series data: Time evolution of & particle observed at times t;
= 5 and t; = 10 at positions z, ib a given potential vyye(x) unknown to the learner. (The
potential vpme(®) is shown on the right hand side of FFig. 14.7.) The figure shows the likelihood
p{:ﬁ(tt)p?, T{t;—1), Prie) Of EqQ. (11.42). where the dependent variable y is represented by the
measured coordinates x{t;), the potential function is chosen as field ¢{x), and the Hamiltonian
in {14.43) is the sum of a kinetic energy term and the local potential. In time—dependent
inverse quanture theory the aim is to reconstruct the potential by ¢combining the likelihood
of such times series data with a {nonparametric) prior on v{z).

where

(¢ —tIK[¢—1) = fdﬂs dr' dydy’ ($(z,y) — t(z, y)) Kz, 52", y) ($(z'. ) — t(=,7/))

(14.45)
with K being the real symmetric positive semi-definite inverse covariance operator
of the Gaussian process and ¢(x,y) (or t(x) for regression) the mean function of the
process. As the ¢(x,4) with maximal prior is given by the mean function. t(x,y) will
also be called a reference function or ‘prior template’ for the field ¢.

A prior of the form (14.44) implements the a préori knowledge that the feld ¢ is
expected to be similar to the mean function ¢ measwred in a distance defined by the
inverse covariance K. Similarly, the a priori knowledge that the field ¢ is expected to
he similar to a reference field ¢; OR. to a veference field ¢;, {measured in a distance heing
defined the by two inverse covariances Ky and K;) can be implemented by using a sum
of two Gaussian prior components of the form (14.44). Generalized to more than two
components this yields a Goussian muture prior p(¢|Do) = 3, axpr(9), with 37, ax
= 1, mean functions ¢, and inverse covariances K. In particular if the K, are all
equal, then such mixture models are not much more difficult to solve than models with
a single Gaussian prior [20, 21]. An application of a mixture of Gaussian priors is
presented in Fig. 14.6.

We remark that a product of Gaussian likelihood factors (14.34) for regression
problems can be expressed in a form similar to that of the prior (14.44): The sum of
mean squared error terms appearing in the exponent of the likelihood product can be
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written [20]

~ lys = Bz _ 1 "D
; s =5 (0~ tp [Kol¢—tp) + 5V (14.46)

with ¢—independent data variance Vp, data mean vector ¢p = KF/ Zle K.t,, inverse
data covariance Kp = >_7 | K,, where ¢,(x) = 3 and Ki(a,2') = 6(x — 2)8(x — 2.} /o,

The inverse prior covariance K can be chosen to implement approximate invariance
of the field ¢ under an operation S. Indeed, if we choose in (14.44)

K=(I-8)7(I-8), (14.47)

I denoting the identity and ST the transpose of S, then fields which fulfill ¢ = S¢,
i.e., which are invariant under S, maximize the prior (14.44). Hence, a Gaussjan prior
{14.44) with an inverse covariance of the form (14.47) generates functions which are
approximatety invariant under 8. For example, if § is chosen as the translation of ¢ by
8 units in z—direction, i.e., Sj@d(x,y) = ¢(x —8,y), then the invariant fields are periodic
in z and K = (I—5%)" (I - §%) implements approximate periodicity in z—direction. A
regression function sampled from a prior which favors smooth and approximate periodic
functions is shown in Fig. 14.2.

Similarly, approximate invariance under infinitesimal transformations s, generat-
ng a Lie group S(6) = exp(fs) with parameter &, can be implemented by inverse
covariances

K=sTs (14.48)

A typical example is approximate invariance uader infinitesimal transiations (‘smooth-
ness'), say with respect to a K—dimensional vector  with components zy, for which
s; = /3 so that K = Zf:i s]'s; becomes (under appropriate boundary conditions)
the negative Laplacian K = —A = — %", 8*/82% (being of the form of kinetic energy
terms in BEuclidean field theory). In statistics one typically uses inverse covariances
which also include higher order derivatives and which result in ‘smoother’, i.e., more
times difterentiable fields ¢* as MAP solutions. One such example is the Radial Basis
Function (RBF) inverse prior covariance [15]

oo

1 [ a3nN* oiA

with parameters A and op.

For density estimation with likelihood fields where the non—negativity and normal-
ization constraints are not fulfilled automatically, those hard constraints bave to be
added to the Gaussian prior of Bq. (14.44), resulting in

p(¢|Do, norm, non-neg.) ox []&( [ duptyla, ) = 1) TT € (ptule, 9))(6105) (1450)
z Ty

where the é—functions ensure normalization for all z and the step functions ©® non-
negativity of the likelihood for all & and y. The é—function can be transformed into &
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Figure t4.4: Left hand side: Prior covariance K™!(x, xp) (shown for fixed wo = 40 on ruesh
with 30 points) used to generate the sample data in Fig. 14.2. Right hand side: Regression
function {thick line) reconstructed from the data points shown in Fig. 14.2 and using the
prior covariance shown on the left. Also shown are: the data points (dots), the true regression
function (thin line), and a piecewize linear interpolation {dashed line).

Lagrange multiplier term for the log-prior, yielding
Elo) = —(nP@) N} + % (¢ —t[K[¢ - 1) + (P(¢)] Ax) (14.51)
= — WP N)+ 5 BIK| )~ (J]6) + (P Ax) +c,

with a Lagrunge multiplier function Ax(z,y) = Ax(z) which 15 determined by the
normalization condition. A similar Lagrange multiplier term can be introduced for
the non-negativity condition, but caelculating the posterior predictive density in MAP
approximation (see Eq. (14.10)) non—negativity terms are in many practical cases not
necessary. Indeed, because the likelihood is by definition larger than zero at all data
points, the feld ¢* with maximal posterior can typicaily also not become smaller than
zero between data poinls i we assume some common smoothness prior. Technically
speaking, the non—negativity constraint is for smoothness priors typically not active at
the stationary point ¢*. In the language of physics the term J = Kt in Eq. (14.51)
represents an external field coupling to ¢(x,y), similar, for example, to a magnetic
field. A non-zero field J leads to a nou-zero expectation of ¢ in the no-data case.
The ¢-independent ¢ stands for the term 4 {¢ K| ¢), which is {or invertible K equal to
3 (J|K=!|.J), and can be skipped when minimizing E(¢) with respect to ¢.

A MAP solution ¢, which maximizes the posterior p{¢|D, Dg) or, equivalently,
minimizes the energy F(p) can he found by setting the functional (Fréchet) derivative
of the functional E(¢) in (14.51) with respect to the function ¢{x, y) to zero, i.e., by
solving the stationarity equations E(#)/8¢(x, %) = 0 for all x and y. The stationarity
equations for ¢ resulting from (14.51) can easily be expressed in vector notation

0 =P (P (H)N - P(p)Ay — K (8- 1), (14.52)

where the Lagrange mulitiplier function fellows from the normalization constraints over
y for all  yielding, if PP’ is invertible and Ay # 0,

Ay =Ty (N ~PP'K (¢ - t)) , (14.53)
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with identity on X, Ix(z,:2',%') = 8(x — ) and diagonal likelihood operator

Pla,y;2', v’ ¢) = 8(x — 2')o(y — v/} P (2,9, 6), (14.54)
with Jacobian 5P(s )
7 ! ! P iy;; (Z)

Pz, g2,y ¢) = ——— . 14.55

(@ 2,y 8) 56(5,9) ( )

Choosing the regression function as field the stationarity equation (14.52) is linear for
(nonparametric, nonlinear) regression problems provided the likelihood model and the
prior model are Gaussian. In general, however, the stationarity equation (14.52) is
nonltinear and has to be solved by iteration.

14.4.2 Hyperparameters and hyperfields
Hyperparameters and the boosting of parametric models

Hyperparameters are parameters of the prior (1, 2, 12, 6, 28], like the ‘regularization
factor’ A and the width oo in Eq. (14.49)}. Introducing hyperparameters into a model
means decomposing the prior according to

p($lDn) = / 46 p($16, Do)p(6] Do) (14.56)

denoting hyperparameters collectively by €. In many practical cases the integral over 8
in BEq. (14.56) can not be calculated analytically; like the integral over ¢ in Eq. (14.8) it
then has to be calculated numerically, e.g., by Monte Cario methods, or in Maximum
A Posteriori Approxamation. In a joint MAP approximation the integral over ¢ in
Eq. (14.8) and the integral over & in BEq. (14.56) are calculated shbmultaneously in
Maximum A Posteriori Approximation, resulting in coupled stationarity equations for
¢ and 6.

Hyperparameters can be used to adapt the mean function or the covariance of a
Gaussian process prior. An example of the latter is the Automatic Relevance Detection
by MacKay and Neal [32, 27, 26, 20]. Hyperparameters for the mean functions of a
Gaussian process have been used, for example, in image completion tasks (see Fig. 14.5
and Fig. 14.6). The adaption of the mean function is technically simpler then chang-
ing the covariance because changing the mean of a Gaussian process does not change
the normalization constant but changing the covariance normally does. Solving the
coupled stationarity eguations for § and ¢ in a joint MAP approximation for adapting
the mean function of a Gaussian prior can be interpreted as a nonparametric boosting
of o parametric model [20] where during iteration first a parametric model ¢(z,y : 8)
is optimized with respect to the (hyper)parameters 8 and then the optimal parametric
solution (2, 7; &} is used as a mean function for the Gaussian prior for ¢. Fig. 14.7
shows as an example the reconstruction of a quantum potential v(x) using as refer-
ence potential a parametric solution ¢(x; %) with a #* which is obtained in maximum
likelihood approximation (i.e., in a MAP approximation with uniform (hyper)prior for

0).
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translation(fy,09)
scaling(03.04)
rotation{f)

t(90) £(8)

Figure 14.5: Example of a mean function t(z,#) with a five-dimensional hyperparameter
vector {and a two-dimensional x) used for a Ganssian prior as in Eq. {14.44) with prior
energy é(q‘) — t1K|@ —t). Such {graylevel) mean functions t{x,#) have been used in image
completion tasks (see Fig. 14.6} where the (graylevel) function @¢(x) represents an image
which has to be reconstructed from pixels sampled with Gaussian noise from the original
image [20, 21). The five dimensional hy perparameter vector 8 which includes two transiation,
one rotation, and two scaling parameters makes the mean Function ¢ an adaptable teroplate
for the image ¢. In 2 joint MAP approximatien the function ¢(z) and the hyperparameters
# are optimized sirnultanecusly.

Local hyperfields and filtered differences

Under local hyperfields 8(x) we understand a collection of hyperparameters indexed
by the visible variables x (20, 25]. It is straightforward to consider local hyperfields
8(x,y) depending on both, x and ». but for the sake of simplicity we restrict to ields
8(z), having in mind, for example, regression problems or the reconstruction of a
quantum potential v(x). Similarly, nonlocal hyperfields can be introduced depending,
for example, on more than one z-value. Local byperfields are useful to adapt the
mean function or the inverse covariance of a Gaussian process locally. To show this,
we decompose a real-symmetric, positive (semi-}definite inverse covariance K(z,z')
(defining for example a regression problem} into square roots,

K=WTw, (14.57)
ie.,
K(z,2") = /d;c” W7z, " YW(z", ). (14.58)

We wil] call the real square roots W filter operators and define the corresponding
fittered differenices
o) = / da’ W (i, 2)[6(e) — 1), (14.50)

Using Eq. (14.59) the negative logarithm of a Gaussian prior like in Eq. (14.44) with
mean function ¢(z) and inverse covariance K(x.x') becomes, up to a ¢—independent,



Bayesian Field Theory: from Likelihood Fields fo Hyperfields 305

data mean tp(x) first prior mean ¢,(x) second prior mean ty(x)

original @yye(ir) local maximum ¢,(z)  local maximum ¢»(x)

Figure 14.6: Image completion with a Gaussian mixture prior as an example of a regression
problem [20, 21}. The data (first row on the left, for the definition of ¢p see 14.46) have been
seampled from the original image dye{r) (second row on the left) with Gaussian noise. The
prior consists of a sum of two Gaussian priors p{4| Dg) = 0.5p1{@)+0.5p2(9) both components
with a negative Laplacian covariance but with two different meau functions {itnsge templates)
t1(z) and #5(z) as shown in the first row. Both mean functions f; have been made Hexible
using the five dimensional hyperparameter vector introduced in Fig. 14.5. Shown is a situation
where the mixture prior and also the posterior possesses two lecal maxima (’low temperature
case’). The two regression functions ¢s{x) and ¢a(x) representing the local maxima of the
posterior are shown in the second row, optimally scaled, shifted and rotated. The global
maximum, which is ¢1{x), is the MAP reconstruction of the true regression function @ynye-
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=10 -5 0 5 10

Figure 14.7: Left hand side: Shown is a sample path of a quantum particle, obtained from 50
coordinate measurerments at fixed tune intervals analogous to Fig. 14.3. Right hand side: An
example of the numerical reconstruction of a quantum potential from the 50 coordinate mea-
surements with likelihood as in {14.42) and & Gaussian prior en v{z) similar to Eq. (14.19).
(For more details see [22].) Shown are the true potential vyne() {thin line), the best para-
metric approximation used as reference potential #{x) (dashed line), and the reconstructed
potentjal ¢{x) = v(x) (thick line).

normalization term,

%(¢—5|K|¢'—£) = %/dzsd&:’d:z:" [D(2) — t{2)| W7 (5, 2)
% W(:I:-" $f!)[¢(.rf!) _ t(.r”]]
1 2
= E/u';p lw(x)|*. (14.60)

At this point we can introduce a local hyperfield by replacing the filtered difference
w(x) by a local mixture of two alternative filtered differences

w(z; 8) = [1 = 6(2)] wi(z) + 8(2) wn(x), (14.61)

with the real iocal hyperfield 8(x) € [0, 1] controlling the mixture of the two w;. Such
a hyperfield 6(x) can adapt the prior by selecting locally the best mixture of the two
filtered differences w,. Similarly, additional hyperfields can be introduced to mix more
then two filtered differences. -

One possibility to transform an unrestricted real hyperfield —oo < 8(z) < 0o into
a bounded real hyperfield #(z) € [0,1] is given by

0(z) = a(6(z) — ), (14.62)
with a threshold parameter ¢ and the sigmoidal transformation

1
1+ exp (—2w2)

o(z) - %(ta.uh(vx) +1). (14.63)

In the limit ¥ — oo where the sigmoid in Eq. (14.63) appreaches a step function we
obtain a binary local hyperfield 6(2) € {0,1}. In contrast to a ‘soft mixing' with real
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functions with 0 < #(z) < 1, a binary local hyperfield impiements a ‘hard switching’
between alternative filtered differences w;.
For a prior depending on hyperfields

p(918) o exp (- E(4]0)) (14.64)
the prior energy F(4|0) can be written
E(¢l0) = é/dx|w(z;9)|2 +1n Z,(0) (14.65)

1 2
- /dx‘ 1= 0(@)wr(2) + B(x)en(a)| +1nZ,(6).
The normalization factor
Z4(6) = /}w exp (_% / d:rpw(m;e)ﬁ) (14.66)

can depend on &, if the filters W, of the w; differ. If depending on @ the normalization
factor Z4(8) has to be included when integrating over 4 or solving for the optimal 8
in Maximum A Posteriori Approximation. For binary  mixed terms proportional to
wiwy vanish in Eq. (14.65), because for binary 8 we have #(1 — 8) = 0. In that case we
can write

E($)8) = % / o (1= 0(@)] (@) + 9(3:)|w2(:1:)|2) + 10 Z,(8). (14.67)

Mixing reference functions

A filtered difference w(x;8) as in Eq. (14.61) can be obtained, for instance, by local
mixing or switching between two alternative reference functions ¢, (x') and ¢,(2')

(' 8) = [L — 8(z)] £, (&) + 0(z) ta(a'), (14.68)

where the local reference functions t,(2';#) are functions of 2’ and 2: To obtain a
filtered difference w(z; 8) at position z, one needs the reference function ¢, for all z’ for
which the corresponding W (z, &) is nonzero,

w(a; 8) = /a‘m’W(:r,;r;')[q{)(x’) — t.(2'; 8)]. (14.69)

Thus, for every local filtered difference the whole template function {,(z";#), rather
than individual function values £(x, #), have to be adapted.

In contrast to the local reference functions {;(2') used in Eq. (14.68) one global
reference function #(z') can be adapted locally using

(' 0) = |1 — (2] ta(z") + 0(z") talc). (14.70)

On the other hand, working with different reference functions &, ,(2'), t2.(z") for dif-
ferent = generalizes Eq. (14.68) to

to(3'58) = [1 — 8(x)] t1.(z") + 8() t2.(Z). (14.71)
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It is possible to use a nonlocal prior (i.e., a prior with K # I, for example, when
choosing as K a differential operator because smooth functions are expected) and still
avoid local template functions t.(z',#). This can be achieved by taking the product of
a Gaussian prior with K = I and a second Gaussian prior with a nondiagonal inverse
covariance Kz and a zero (or fixed) reference function, yielding for the combined prior
eneTgy

E(9l0) = %<¢“3(9)\¢-?(9)>+%(¢|Keicf>> (14.72)
= %((¢—t(9)|K|¢>—3(9))+(f(€)|I—K"1|?(9J)), (14.73)

The second term in Eq. (14.73) is independent of ¢, the effective template ¢(#) is given
by
t(8) = K~'t(9), (14.74)

and the effective inverse covariance K by
K=1+K, (14.75)

Choosing as inverse prior covariance K a differential operator, the effective ¢(€) becomes

~—

a smoothed version of £(8).

Mixing filter operators

Sirpilar to Eq. (14.68) a mixed filtered difference w(z;#) can be obtained by mixing
locally two alternative filter operators W, (x, ') and Wy(x, z')

Wiz, z";0) = [1—- 6(x)|W (z, 2+ 9(z)W,(z, ). (14.76)
Introducing
K. {0) = W.(O)WT(#9) (14.77)

with vector W,(8) = W(xz,-;8), we obtain from Eq. (14.76) for binary 8(z) as inverse
covariance

K(§) = / dr K, (6) = /deI(E))Wf(H)

= /di: ([1 = 8()| W1 WY, + 8(2)Wa W3, ) . (14.78)

14.4.3 Hyperpriors for hyperfields

Working with hyperfields typically requires non—uniform hyperpriors p(6). Indeed,
allowing completely unrestricted functions ¢ and operators W just eliminates the cor-
responding prior term. In nonparametric hyperfield models, where functions like €(z)
are not restricted to some parametric tamily, hyperpriors for hyperfields are stochastic
processes, like priors for the functions ¢(z) or ¢(z,y). Such hyperpriors can, for in-
stance, favor smooth hyperfields 8(x) analogous to a smoothness prior for a function ¢.
In analogy to {Euclidean) field theory in physics the part F(¢)#) may be interpreted
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as the ‘interaction’ between the fields ¢ and ¢ while the hyperprior describes a ‘free’
hyperfield including possible ‘self-interactions’ of the hyperfield.

As a smoothness prior for a real 8(z), for example, one can use a Laplacian prior
with Ayperprior enerqy

E®) = —Z (8|A]6). (14.79)

T
2
where 7 is the analogue of a regularization constant. Parameters of the hyperprior like
7 in Eq. (14.80) can be treated as higher level hyperparameters.

Another kind of ‘smoothness’ is implemented by the non—Gaussian hyperprior

0(€) o exp (—; /d&c Cg(a:)) , (14.80)

it

Colz) =0 ((%)2 - -3.9) (14.81)

with a sigmoid function o () like in (14.63) and some constant 7. For v — c0, where
the sigmoid approaches a step function, Cplx) becomes 0 at locations where the square
of the first derivative is smaller than a certain threshold 0 < 9y < oo, and 1 otherwise.
Similarly, one can penalize the number N, (@) of discontinuities, where (80/97)* = o,
choosing

where

p(8) o exp (—%Nd(éﬁ)) : (14.82)

In the case of a binary field this means counting the number of times the field changes
its value.
Eq. (14.81) can be generalized to

Co(z) = o (Jwalz) — ), (14.83)

with filtered difference
we(x) = /d:c" Wo(z, )[8(2") — te(2}], (14.84)

like in Eq. (14.59). The reference function ¢g{z') in Eq. (14.84) gives the expected form
for the hypertfield 8(x), while the filter operator W, defines the measure which is used
to measure the distance of hyperfields #(s) from the reference t5(z').

14.4.4 Auxiliary fields

When working with hyperfields one introduces additional degrees of freedom which
influence the prior for ¢. Integrating over the hyperfields 8(x) to obtain the predictive
density in a full Bayesian approach would leave us with a prior p(¢) which is non—
Gaussian in ¢, eveu if all conditional priors p(¢|@) are Gaussian in ¢. Similarly, when
solving the problem in Maximum A Posteriori Approximation, the stationarity equation
for ¢ {linear for Gaussian p(¢|0) for given @) and the nonlinear stationarity equation
for @ are coupled. Eliminating ¢ from the set of coupled equations leaves us with a



310 J. Lemm
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Figure 14.8: Two ’cup’ functions of the form #{z) = a{(1.0 — 1/(1 + (Jx — 2| /b)) [45] as
example of a non—quadratic function {z} in Eq. (14.85). Left hand side: Winkler’s cup
function [44] (a = 35, b = 10, ¥ = 0.7, ¢ = 0). Right hand side: Function with cusp {(a = 1,
b=3,7v=2 z5=0).

nonlinear equation in ¢. Hence, instead of introducing hyperfields as additional degrees
of freedom one may try as well to directly formulate a non-Gaussian prior for ¢.

One possibility to obtain a non—Gaussian prior from a Gaussian prior is to use as
prior energy instead of the square w? a non—quadratic function ¥(w) of the filtered
difference, corresponding to a prior

p($|Dy) o exp (- [ wtw(a:))) (14585)

where for density estimation problems x can be replaced by the pair (z,y). Typical
choices are 'cup’ functions with flat tails for which one large step is cheaper than many
small ones (see Fig. 14.8). Such non-Gaussian priors are, for example, used to deal
with discontinuities in images [14, 3, 31, 13, 46, 45] or in the identification of ‘outliers’
like the separation of background and signal in experimentat spectra {39, 9, 10.

Another possibility to construct non—Gaussian priors is the intreduction of euxiliary
fields B(z; ¢), or more general Bz, y:¢), whose function values are not independent
variables but are defined as functionals of ©. (To simplify notation we will denote
Blx;¢) by B(x) or B(¢), depending on the context.) Similar to hyperfields 6(x)
auxiliary fields can be used to select locally the best adapted filtered difference from
a set of alternative wy, each of the form of Eq. (14.59). As an example in analogy to
Eq. (14.83) consider an auxiliary field

B(x) = o (u(z) — ), (14.86)

with

w(z) = | (2)]? = |walz)]?, (14.87)
¥ representing a threshold, and ¢(z) a sigmoidal function like in (14.63). The w; are
filtered differences defined in terms of ¢ analogous to Eq. (14.59). In contrast to a
hyperfield the auxiliary field B{z) in Eq. {(14.86) does not introduce new degrees of
freedom because the w; in Eq. (14.87) are defined in terms of ¢. Note that if wi(z) is
nonlocal with respect to ¢(x) then also B(z) is nonlocal, meaning that a value B(z)
depends on more than one ¢(x)-value. For a negative Laplacian prior in one-dimension,

le.,
o

K(.’L‘, J"’) = "_6(:51 3"’)89;2

(14.88)
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{the d-function is usually skipped from the notation) Eq. (14.86) becomes (for appro-
priate boundary conditions)

Bx)y=0¢ (‘%;h)

2 15(d — 2
“—(éax ’52)‘ -19). (14.89)

While auxiliary fields B(z) are directly determined by ¢, hyperfields () are indirectly
related to ¢, for instance through the stationarity equations of a Maximum A Posteriori
Approximation or through integration over #{z) in a full Bayesian approach.

Auxiliary fields can be used similarly to hyperfields. They can help to adapt ref-
erence functions ¢ or filter operators W. For instance, to switch between two filtered
clifferences one can use a binary B(z)

wiz; BIF = [1 = B(@)lfwn (@) + B(@)|wa ()}, (14.90)
vielding a prior energy of a form similar to Eq. (14.67)
E(¢) = %/dﬁ: (11 = B@)]jwr @) + B)wa()]2). (14.01)

Resembling the role of hyperpriors p(€), additional prior factors

p(B(9)) o< exp(=E5(¢)), (14.92)

depending on ¢ only over 5(¢), can be introduced. For example, if N;(B) counts the
number of discontinuities of B(xz), the number of switchings is restricted by choosing

Ep(6) = %Nd(B). (14.93)

For real B(x) one can use terms of the form

Fp(¢) = %/dﬂwg(a:)]g (14.94)

where

walz) = [ i W g(z,2)[B() — t5(z)] (14.95)

is a filtered difference of B with some filter operator Wy and template £g. Non-
quadratic energies as in (14.83) become, now written for B,

En(d) = 3 [drCato), (14.96)

with
Co(x) = o (lwa(z)]* — 95} . (14.97)

The normalization factor

Z— / d$ exp (~E(3) — En(9)) (14.98)
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for a prior
p(e) x exp (-E(¢) — Ep(9)), (14.99)

is by definition independent of ¢ and can thus be skipped for calculations in Maximum
A Posteriori Approximation.

We have now encountered two methods for constructing prior models which may
result in quite similar looking expressions. For instance, combining prior energy (14.91)
with (14.93) for a binary auxiliary field (14.86) resulis in a prior

p(#)  exp (—% f dx ([1 - B(z)]lwn (2] + Blz)wal(z)?) - gm(m) . (14.100)

A similar looking pricr model with a binary hyperfield can be obtained by combining
a conditional Gaussian prior (14.67) with the hyperprior (14.82)

p(9,8) = p(#l8)p(#) (14.101)

exp (—% /da: (1 = 0(z))|an(z)]* + 0(z)|walz)|*] — %Nd(ﬁ') —1In Z@&(Q)) )

We can now compare the two models: Working with hyperfields means working
with conditional priors p(¢]€), so that normalization factors which are in general §-
dependent. Therefore the normalization factors have to be included for calculations in
Maximum A Posteriori Approximations. This is not the case if we are working with
auxiliary fields. Hence, in general MAP solutions for B, Ny(B), and Cg, are different
from the MAP solutions for 8, Ny(f), and Cs. If, however, the filtered differences w;
in Eq. (14.101) differ only in their reference functions t;(z), then the normalization
term can be skipped. The two MAP equations are then indeed equivalent for 8(z) =
O (jwi (z)|? — Jwa(z)|?), if the threshold vanishes ¥ = (0 and a hyperprior or additional
pg is absent, i.e., if p(¢) < 1 and p{B) o« 1. Furthermere it is also easily seen that in
that case 8(z) = © (Jun (2)]* — |w2{x)[*) is a selfconsistent solution for @ for every given
¢. Fig. 14.9 shows two reconstructions of a quantum potential, one using a hyperfieid
and another one using an auxiliary field.

14.5 Summary

In nonparametric Bayesian models, where the number of the degrees of freedom of
the likelihood is much larger than the number of available data points, the quality of
learning does depend essentially on the implemented ¢ priori information. Starting
from Gaussian process priors we have discussed several methods to implement avail-
able a priori information explicitly in terms of the likelihood, for example, by choosing
a specific prior covariance which corresponds to some approximate symmetry of the
likelihood or by adapting the mean function of a prior process using hyperfields. Those
techniques for constructing nonparametric priors can be used for many different likeli-
hood models, including density estimation, regression and inverse quantum theory.



Bayesian Field Theory: from Likelihood Fields to Hyperfields 313

Figure 14.9: Example of the reconstruction of a potential v{z) from coordinate measurements
in a quanturn system at finite temperature with likelihood {14.41) and with & binary awxiliary
field (left figure) or u binary hyperfield {right figure), respectively, switching locally between
two alternative mean functions (or reference potentials) {){z) = vi{z) and t,(x) = ve{xz)
of a nonparametric Gaussian smoothness prior [25]. In both figures the switching between
the two reference potentials vy, v2 (induced by the binary hyperfield or the binary auxiliary
field, respectively) is indicated by a thick black line above the potentials. Left hand side:
Reconstruction with a binary auxiliary field defined in terms of ¢{z) = v(x) as step function
B(x) =0 (jwi{)|* = lw2{2){?), (which corresponds to Eqg. (14.86) with ¥ = 0 in the limit
where the sigmoid approaches a step function), using a prior like in (14.91) switching between
two alternative filtered differences and a penalty on the number of jumps of the auxiliary field.
Right hand side: Reconstruction with & binary hyperfield which switches locally between the
two nonzero reference potentials vy, vy and a penalty on the number of jumps of the hyperfield
as hyperprior.
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Chapter 15

Bayesian Smoothing and
Information Geometry

Rudolf Kulhavy!

Abstract. Local, cased-based modeling offers a natural way of capturing the
complex behavior of data. As such, it has been a subject of intensive research
in computational statistics, tachine learning and system identification. Also, it
has been applied successfully to nurnerous problems in different fields. Yet, the
very concept of smoothing continues to be perceived as somewhat heuristic. The
purpose of this chapter is to help understand better the connection of smooth-
ing algorithms to Bayesian statistics and to present a natural geometry of local
modeling.

"The author’s research has been supported in part by the Grant Agency of the Czech Republic
through Grant 102/01/0021. The support is gratefully acknowledged.
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15.1 Introduction

Local modeling is an intuitively appealing paradigm of learning from data. At its root
1s the observation (supported by the everyday life experience) that one does not need to
build a global model in order to predict response in a particular case. In fact, one can
even improve prediction when minimizing the local error only, using a simpler model,
even though estimated from less data.

Local models capture easily a nonlinear behavior, cope with bias problems at bound-
aries and in regions of high curvature, handle naturally multiple-mode data, adapt to
changes in the data behavior, need only a fraction of historical data to work, scale up
well to huge datasets, can be estimated using closed-form algorithms, and, last but not
least, are easy to understand and interpret.

Such attractive properties do not come for free. Rather than arriving at a single
globally valid model, the user ends up with multiple ad hoc models of varying quality,
depending largely on the amount of data available for particular cases. Local modeling
requires all historical data available on demand, involves a database-intensive step of
retrieving relevant data, needs data organized properly for quick retrieval, requires
careful tuning of bandwidth parameters for optimum data fit, and may suffer of the
curse of dimensionality. The steady increase in the computer and database performance
is removing some of the earlier technical hurdles, yet large-scale applications of local
modeling are still far from routine.

As many good ideas in science and engineering, local modeling has heen long a
recutrent concept, discovered or rediscovered more or less independently by different
research communities. In computational siatistics, local modeling has been studied
within the frameworks of data smoothing, local fitting, locally weighted regression
and classification, kernel-based methods, and non-parametric estimation [6, 7, 11). In
maciine learning, it has been known as local learning, case-based reasoning, example-
based reasoning, memory-based learning, instance-based learning, or lazy learning [1, 4,
3]. In system identification, tocal modeling has been explicitly present in the concepts
of just-in-time learning and on-demand modeling [10, 20].

In spite of much research attention and practical usage and solid understanding
of the structure of smoothing algorithms 21}, many conceptual questions remain. Is
data smoothing a technique or method? Can the smoothing formulae be derived from
a more general principle? What Bayesian interpretation can be given to the local
modeling? Can one build a local modeling theory without referring to an underlying
global model? What sort of geometry does the local modeling give rise to?

In the following, we try to shed some tight on some of these questions. In particular,
we demonstrate that the sinoothing algorithms can be derived by approximation of the
Bayesian estimation, with a specific choice of prior distribution over a set of local,
cased-based models. In addition, we show a natural geometry of local modeling, based
on measuring information carried by the empirical density relative to the model-based
conditional clensities.
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15.2 Problem Statement

Our focus will be on fitting a model to the historical data. This is a problem narrower
in scope than data modeling in large, which includes the data preprocessing and model
selection tasks.

Data Transforms. The data definition and model selection proceeds typically in
three steps.
First, we recognize directly manipulated inputs ug to the underlying system at

time £ = 1,..., NV and distinguish them from the outputs y;. of the system at the same
time. The outputs represent the response of the system to the past history of data
¥ 1 = (yxo1,-. o) and ©* = (wg,...,u;). At this stage, we consider a dynamic

system that can be described through the (stochastic) functional relationship

=Lk =1,...,N.

ye = Fu®,4*7"),

Second, we introduce a vector of auxiliary variables zx, which capture the system
dynamics. A popular time-series model defines xp-entries through the time-lagged
values ug, Us_), . . - and Yx_1, Yr_2. - . .. Other functions of the data history u*, y*~!, such
as time aggregates or dynamically filtered values, can be used as well. The objective of
the second phase is to turn the original dynamic system into a static (still stochastic)

ane
ye = flwe), k=1,...,N.

Third, the data vector z can be mapped onto a feature vector ¢ = ¢(xx )}, possibly
of much higher dimension. The purpose of this step is to come up with a simpler,
parametric representation of the map f(-). A particular example of such a parametric
model is the linear regression, for scalar response .,

Ye = 87 b + £ -
Here # stands for the vector of regression coefficients and ex accounts for the unpre-

dictable component of the model.

Data Set. We assume that the data is available in a table composed of z;. and .
vaJues for k=1,.. .| N

Zig - Erm | ¥1a - Yin

Ny v Tm | YNl - YUNne

The a-entries represent predictors or explanatory variables whereas y-entries stand for
responses or target variables. In general, the predictors and responses can be continuous
or discrete or mixed (e.g., when forecasting the energy load and price tariff as a function
of time of day and day of week).

We use the term cese when speaking of a specific value of the vector z.
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Conventions. In order to cover the cases of continuous and discrete random vari-
ables with a single notation, we consider each random variable Z with values in Z
and probability distribution P on a measurable space (Z,Z) described by the density
(Radon-Nikodym derivative) of P with respect to a dominating (Lebesgue or counting
or product) measure y
p(z) = D).
pldz)

In the sequel, we do not mention the measurable space and the probability distribution.
When using the same symbol for the densities p and dominating measures u, we always
include the argument to identify them umniquely. The reader not familiar with the
measure theory can simply replace [ p(z) p(dz) for continuous and discrete variables z
with ordinary integration and summation, respectively.

Objective. The chapter adopts a statistical perspective of learning. The data com-
posed of responses observed under particular cases

le'T’lJ c YN IQJN

is supposed to be a sample from the conditional density

plylz,8)

where # stands for the unknown parameters.
The objective is to estimate the conditional density from the sample

h I:E]:' o 1y-f\f|'1’.N - ﬁ’\(yla‘)

15.3 Probability-Based Inference

The essence of the Bayesian approach to parameter estimation and response predic-
tion is the symmetrical treatment of stochastic data and uncertain parameters. Both
stochastic and uncertain quantities are dealt with as random variables.

Joint Density. The starting point for derivation of the conditional density of the
unknown parameters is to express the joint density p(y", =", 8) of data and parameters
in terms of model assumptions. A recursive application of the chain rule makes it
possible to decompose the joint density as follows

N
p(y", 2™, 0) = [] pluslen, v" a7, 0) planly® ™, 271, 6) p(6)
k=1

By the model assumption, the response y; at any time k depends on the past data
only through the current predictor =y i.e.

P(yﬂﬂik,yk_ ,$k_],9) = plyr|zr, 0) .
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The joint density thus simplifies to

ply®,z,0) = [T wluelz, ©) plaily*, 2, 0) p(0).
k=]

Furthermore, we assume that the predictor xz; at any time £ is independent of @

given the past data

k=1 h—1 k—.l) )

plag|y* 12", 6) = plon |yt 2

Under this assumption, introduced as natural conditions of control in [18], the joint
density takes the form

N

p(y", 2™, 0) = [ plyx|zs, 0) plwx|* ' 2") p(6) . (15.1)

k=1
Posterior Density. Now, let us apply the chain rule in the other direction

ply™,2™,0) = p(0ly" =" p(y", ). (15.2)
Combining the expressions (15.1) and (15.2), we obtain

N

p(0ly™, =V ply™,2™) = [ | pelan, 6) plaxly* ™, 2" ) p(8).

he==]

;From this, the posterior density of the random variable @ conditioned on yV o«
follows easily

M
P81y, x™) o p(8) T plyslze, 6) -
k=1

Here x stands for proportionality, i.e., equality up to a normalizing constant.
After introducing a short-cut notation

o A ' A
m(8) = p(8), pn(8) = p(Bly",5"), sslylz) = plyla,6),
we obtain the posterior density formula

N
px(8) x po(8) T soluelzs). (15.3)

k=}

Likelihood Function. The conditional density of the observed data taken as a func-
tion of the unknown parameter for given data is known as a likelthood function

N
in(®) = [T so(pelze)- (15.4)

Using the likelihood function, the posterior density can be rewritten in a compact form

pr(8) o< po(8) In(0)-
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Predictive Density. The unknown parameter can be eliminated (integrated out)
using probability calculus rules

plyl o,y =) = j p(y],8) p(8ly" =) u(d8)

Using a simpler notation
A
sw(ylz) = plyle,y", ="),

we can rewrite the predictive density as follows
snlylz) = /Se(ylsc)pN(t?) pi(d8). (15.5)

Example. Consider a linear normal regression model
Y. = QT(Eﬁ(X;h) + Ky, Ep~ .N(O, 0’2) .

The vector of regression coefficients # is the unknown parameter of the model. The
variance o2 is considered known for simplicity.
The conditional density of ¥ given X =z is

satylo) = (21074 e { =Ly = 9750}

The likelihood function (15.4) for a sample ¢V, ©™ takes the form

==

exp{ —%‘Q(yk - 9T¢(~’!ﬁk))2}
N

= (2n0%)"2 exp{—zjig > (w —9T¢(:rk)J2},

k=1

N
in@) = [](2ra®)"
k=1

which can be rewritten as

vz

n(0) = (270%)F exp {~i N VN} exp { — 5o N (0 =) O (6 - @v)}

202

with the statistics

—~

By = C5'Ex(dY), (15.6)
Vi = EN(YQ)—EN(Y@T)C;;] En(®Y), (15.7)
Cn = Ex(067). (15.8)

where & = ¢(X) and Ex(-) denotes the empirical mean.

15.4 Information-Based Inference

We will show that the Bayesian inference implicitly measures the amount of information
carried by the data relative to particular models parametrized by 4.
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Empirical Density. For a given sample 4™, 2", let us define the joint empirical
densily of {Y, X)) as

N
1
ra(y,z) = N E 5(@’ — Y, & — Ix)
k=)

where §(y — y, & — 21 ) stands for the density of a point-mass distribution at (v, ),
with the properties

8y — yp, 2 — ) =0 i y £y or x# zy

[ [ F (02 2) 6 = 0 — ) olly) pld) = f (s )

for all integrable f.
Let Xy < & be the set of all distinct cases observed in the sample zy,...,xy. We
denote the empirical and model-based densities of Y for a particular case x € Ay as

FaX Fa¥
rna(y) = ea(yle), sexy) = solylz).

Note that if the vector X includes continuous random variables, the probability of
observing a perfectly identical case once again is theoretically zero and practically very
low. The empirical density ry,(y) is thus typically compeosed of a single §-function.
This does not affect the validity of the results presented in this and next sections,
although it makes them perhaps less intuitive compared with discrete or discretized
variables. The crastical lack of data just exhibits that when facing infinitely many
{or just too many) cases, we cannot learn the response to one particular case without
considering responses to other, related cases. More on this in Section 15.7.

Kerridge Inaccuracy. With the above notation, we can define the Kerridge inac-
curaey [12] of conditional densitjes as

1
Ir,z:srz=/n‘m log ——— p(dy) .
(rnz Soz) | (y) - (dy)

The empirical expectation of the inaccuracy of conditional densities yields the cond:-
fional Kerridge inaccuracy

I(T‘N : 89) = Ey I(T’N,:z : 30,::)

- ] r () (e 0.0 ()

1
= ﬁ Z Ny [(TN.:E : 39,m)

BEApr

1\?
1
= = S I(rN S0) - (15.9)
k=1
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Bayesian Inference Revisited. Using Kerridge inaccuracy and assuming s(y|z) >
0 for all (y, ), we can rewrite the likelihood function as

N
solye|y) = exp( Zlog yk“d\))

= exp(—N /w(y,x) log

—NI(rn:sg)}
—NExI{ryx: 59,,\’]) .

|i:2

Sa(;iﬁ‘i) (dy) pﬂ(diﬂ))

exp (
= exp(
With this expression, the posterior density becomes

o (8) o po(8) exp(=N I(ry: s¢)) (15.10)
or, alternatively,

Py (9) X pO(BJ eXp(—N EN I(TN,,\' : ng\f)) . (1511)

Example. Let us assume the general regression model with a normally distributed
additive noise
Y=fX)+E, FE~N_007d%.

The sampling density for the model js
24 1 1 a
s1(yle) = (2m0™) exp( =52 (y = [(#))° [

The conditional inaccuracy relative the model is
I{ry:sg) = L log(2re?) t5a N Z(*y —~ f{z))
N - I8 2 k k

Note it is a linear transform of the empirical risk functional in [22] and the empirical
error of f in [9].

Prior Knowledge. We have seen that the likelihood function can be written as
In(0) = exp(—N I(rx: sp)) .

Let us choose the prior density of @ in the same form

po(8) = exp(—ro I{pg: 59)) (15.12)

where po(y,z) denotes the prior density of (¥, X) and v stands for the “number of
data” py is built on, i.e., the degree of belief in gg. The form (15.12) can be seen as
a generelized conjugate prior. Indeed, the posterior density derived from such prior
preserves its form

pu(8) = exp(—vw I(on: 50))
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while the statistics vy and pn are updated as follows

vy = i+ ‘?\f:
Va N

sy, x) = — Y, )+ "
pn(y. @) e poly, ) N
The prior can be built using virtual data provided by experts, generated by sim-
ulation models, created by controlled replication of existing data, etc. The virtual
data can be combined from various sources, weighted according to the relevance and

reliability of source, and turned into the prior density py and the degree of belief 4.

(Y, ) .

Big Picture, The concepts introduced so far can be given the following interpreta-
tion. The model is a collection of densities of ¥ parametrized by the parameters ¢ end
the case x. For each x observed in the data, one can define the empirical distribution
of ¥. The essence of modeling is in fitting of the empirical densities with model-based
dengities for each observed case (see Fig. 15.1). In Bayesian inference, the goodness of
fit is expressed through the conditional (i.e., average) Kerridge inacuracy (15.9). The
itupact of data depends on the local density of z-points (¢f. Fig. 15.2).

T
o N

.rqu I .T’N',c

Figure 15.1: A statistical manifold of model- and case-hased densities that approximate the
empirical densities for the observed cases.

Note that the empirical distribution is discrete, concentrated on o finite number of
points, but Kervidge inaccuracy is well defined even for continnous mode! distributions.
Compare 1t with Kuilback-Leibler divergence, which is infinite in this case.

To make the picture more intuitive for continuous cases ., one can consider a
smoothened version of the conditional empirical density, e.g., by taking crosgs-section
of a multivariate histogram of (¥, X).

The reader is referred to [13] for more discussion on various interpretations of Ker-
ridge inaccuracy and its relationship to Kullback-Leibler divergence {17] and Shannon
entropy [19].

15.5 Single-Case Geometry

We start exploring the geometry of Bayesian inference by analyzing the single case
X = z first. We assume to have observed responses (i1, ..., ¥yn~, ) under this particular
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1
. b o A

Xy

Figure 15.2: The overall goodness of fit is given by the empirical mean of Kerridge inaccuracy
of case-based empirical densities relative to the corresponding model densities.

case. Note again (cf. discussion in the previous section) that the number of available
samples generally decreases with the increasing number of distinct cases r, but this
fact does not affect the following analysis. Our objective is to fit the empirical density
Tne With a case-based sampling density sg.5.

We will omit the subscript « for a while to simplify the notation.

Exponential Family. Consider an exponential family &, composed of densities
sx(y) = soly) exp (ATh(y) — ¢ (X))

where 3¢ is a fixed density (the family origin), @ is a vector parameter, h is a vector
canonical statistic and ¥(X) is logarithm of the normalizing divisor

v = log [ suly) exp (\Th(0)) w(dy).

The parameter A of the family depends on the model and a particular case, A = A(8, x).
h-Projection. We define a h-projection s3(y) of rn(y) onto Sy by the equality

f s3(y) Ay} uldy) = / () hly) ().
Note this is a necessary condition for 2 to minimize I(rn:s,)

0 = Wilry:sy) = /m(y) R(y) pe(dy) —fsa(;y) fu(y) pe(dy) .

The expectation of A(Y") with respect to ry amounts to its sample average

[ty atn) = + zhm vy
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We introduce the set of all densities with the same h-projection as the empirical density
has

Ry = { deusity g): [ r(4) o) 1y =E~} |

Pythagorean Relation. Let & be exponential and s; be a k-projection of ry onto
Sp. Then, for every sy € Sy, and every r € Ry, it holds

1(r:sxz) = I(r: s5) + D(ssllsn) (15.13)

where

Dlslls) = [ s(6) 10 22 i)

is Kullback-Leibler divergence of s{y) relative to ¢'(y).
The identity (15.13) follows directly by definitivns of Kerridge inaccuracy and
Kullback-Leibler divergence

| / [r(y) = s3(y)] [log s5(y) — log sa(y)] u{dy)
- / () — s3] (% = NTh(y) u(dy)
= RN [ [t = s3] o) i) = 0. (15.14)

The relation (15.13) can be viewed as a version of Pythagorean-like theorem. It
allows us to decompose the Kerridge inaccuracy of the empirical density ry relative
to an exponential density sy with the canonical statistic h(y) into sum of two terms -
the Kerridge inaccuracy of »y relative to the k-projection s5 plus the Kullback-Leibler
divergence of s; relative to s, (cf. Fig. 15.3).

Figure 15.3: The Pythagorean relation for the h-projection s5 of the empirical density ry
onto an exponential family Sp.
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Differential-Geometric View. The condition (15.14) suggests that the Pythago-
rean relationship can be rewritten as

/ [7() - s3] [log s5(y) — log 5(1)] p(dy) = 0.

This can he taken as a definition of orthogonal projection of ry onto Sy or, from a dual
viewpoint, orthogonal projection of sy onto Ry.

In contrast to the orthogonality of vectors in the Fuclidean space, the appearance
of logarithm makes the above condition asymmetric in r{y) and s(y). Consequently,
in the space of probability distributions there is no straightforward analogy of the
“natural” inner product as we know it from the Euclidean space.

We can, however, rewrite the condition as follows

f s3(y) B_i log [mwv(y) +(0 - S:\‘(’yﬂ

M=

- J1og[solw) exp(MAw) — w(N)] | dy=0.

This definition gives rise to a specific kind of Riemannian geometry on a differentiable
manifold of probability distributions. The underlying metric tensor is closely related
to the Fisher information matree. In contrast to the classical Riemannian-geometric
picture, two dual affine connections need to be considered at the same time in order to
explain the asymmetry of the geometry. In these connections, exponential and mixture
Jomilies of probability distributions act as analogy of hyperplanes in the Euclidean
case.

Elaboration of this view is beyond the scope of the chapter. The interested reader
is referred for details to [5, 8, 2, 13, 23].

Dual Optimization Tasks. It follows directly from the Pythagorean relation (15.13)
that the projection sy is a solution to two dual optimization tasks (cf. Fig. 15.4).

Maximum Likelihood Estimate: For every r € Ry
I{r:s5) = m)l;n I(r:ss).
Note that replacing of rn with gy yields the mazimum a posteriors probability estimate.
Maximum Entropy Estimate: For every s, € Sy,
D(szlisx) = min D(r|ss).

Note that minimizing Kullback-Leibler divergence is — up to a term relative to s, —
equivalent to maximizing Shannon entropy. This explains the maximum eniropy label
given to this task.
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e 'y
TRN
$
__:l__‘__._.———-.——__ .__,_.__.-m——-lp 53
S; .5)‘

Figure 15.4: The h-projection s; of the empirical density rx onto an exponential family Sy
is & solution to the maximum likelikood and maximuin (relative) entropy tasks.

Inverse Problem. At the hegiuning of this section, we have said that the parameter
A of the exponential family &, depends on the mudel ¢ and a particular case z, le.,
A = A(#,%). Given the projection Ay, we can define the estimate 8y, of 8 as a solution
to the eguation

/\(H, J.r) = X;\,’

for a given x. Typically, gN_x i5 not unigue. For any solution @N'z, the Pythagorean
relation for conditional densities sp(y) reads

‘r(TN.:':: SG.R;) = I(TN@: SEN;:;-T) + D(Sa;\!.:#: ”S.g_w) . (]515)

15.6 Average-Case Geometry

We will consider now all observed cases x jointly. Our objective is to fit a single model
sp to the data so that the average inaccuracy is minimized.

Exponential Family. Consider an exponential family S, composed of densities
so(ylz) = solylz) exp (Th(y.z) — ¥(8,2))

where s s a fixed density, # is a vector parameter, b is a vector canonical statistic and
1 is logarithm of the normalizing divisor

#(6,9) = og [ solyle) exp (7hly,5) ).
h-Projection. We define a h-projection of ry(y, z) onto S, by the equality
[rat) [ ssw12) by, 9) ) o) = [ [ vty 2) ) ) ).

This is a necessary condition for & to minimize f(ry: sq)

0= VQI('I'N: S&)
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Pythagorean Relation. Let S, be exponential and s; be a h-projection of rxy onto
Sy. Then, for every sy € Sy, the following Pythagorean relation holds

Iry:se) = Hrn:s5) + En D(sgs0) -
The relation can be alternatively written as
EnI{ryx:sox) = ExH{ryx:s5y) + Ex Disgyllsex).
Compare this global estimation formula with the local estimation formula (15.15)
Hrnztsez) = L(rvat s5,) + Dz, [50,2)

Clearly, the former is just the expected version of the lutter.

The global model found through the sample average of Kerridge inaccuracy is clearly
a tradeoff. The use of all available data sets N to its maximum, thus reducing the total
uncertainty of estimation. On the other hand, unless a single model with constant ¢
explains well the data behavior for all cases z, the global error expressed through the
case-averaged inaccuracy typically increases.

Example. The conditional inaccuracy for the linear normal regression model takes
the form

1 1 ~ T -~
W\r—i-ﬁ(g—t?,\r) CN(Q-‘HN)

log (270%) 4+ —
Og(ﬂ-o)+202

=N

IHry:se) =

with the statistics §N, Vy and Cn introduced earlier through (15.6)-(15.8).
The posterior expectation Ex{-) of the conditional inaccuracy follows after some
algebraic manipulations

V;\r 1 dlml‘?
o2 2 N

1 . 1
Enl(ry:sg) = 3 log (2wa®) + 3

assuming that the prior is flat and the posterior covariance is positive definite.

The formula combines all ingredients of the meodeling task - the sum of residuals
squared Vy, the model variance o*, the model complexity dim #, and the sample size V.
It suggests that the model performance can be tuned up by balancing the coherence
of data (“use only relevant data”), sample size (“use afl relevant data”) and model
complexity (“strive for the simplest model”).

15.7 Similar-Case Modeling

In Sections 15.5 and 15.6, we have considered two extreme approaches to modeling -
building of a strictly local model for the case-gpecific data and fitting of a global model
to all the data. In this section, we show how one can smoothly move between the
extremes.
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Local Models. Assume a set of local models M = {&,:z € X} with z coming from
a finite set. X such that Xy C X C X,
The posterior density over the model set M follows by the standard probability

calculus rules
N

pr({023) o po({8:3) [ 50, (|22 -

k=1

Using the Kronecker delta

P 1 ifae=b
=20 ifa#tbh

the local likelihood Iy .(6,) at X = x and the corresponding number of data N, can
be defined as

N N
"EN‘:J;(Hac) = H Sﬂz(yklmk)az'xk ' Nx = Z 5&:,::;@ -
k=1 k=1

The joint posterior density of all models can be rewritten in terms of the local
Jikelihoods as

pr({8:3) o< po({8:1) ] twatBe).

The marginal posterior density for the local model at X = £ is obtained from the joint
posterior density by integrating out all 8, for z # ¢

p(fe) ox f : ./pg({ﬁz}) [T tvel@e) T 1(d6s). (15.16)
z L

Multiple-Model Prior. It is the choice of the prior density po({8;}) in (15.16) that
determines to which level information accumulated about €., z ¢ & is used to reduce
the uncertainty of 8. Let us consider three basic options:

1. All the data is fitted with a single model.
2. The data is fitted separately for each condition x.

3. The selected data, for z close to a given £ is fitted with a local model.
Single Global Model. If we choose the prior density concentrated on a constant

pa({6:}) o po(6) [ 6(6: - 6),

the posterior density cornbines all the data

pn(8) o< pa(8) T twel®)™ o po(8) in(6) .
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Multiple Strictly Local Models. If we choose the prior density in the product
form

po({8:}) < [T po(62).
the posterior demsity uses only the local data
pn(Bs) o< polfy) Ing ()
If there is no data for X = &, the posterior coincides with the prior
Ne=0 = pwn(f) = pold),

i.e., we do not learn any way from the other data available.

Statistically Dependent Models. Let us choose the prior density as a mixture

po({8:}) o > w(&ypo({8:}1€)

<
<

where for each £ the parameters {0, : x # £} are conditionally independent given 0,

po({0:31€) = po(6e) [ po(f:16¢) .

xtg

The posterior density of &¢ is then
PN(&{) = ,?30(95) ‘!Nrf(é}i) H /pﬂ(’ngf) *!N:c(ex) #(d'gx) . (15-]7)
7

Let us analyze the Jast option in more detail.

Cross-Mode] Likelihood. In the formula (15.17), information available about ¢,
for x # £ affects estimation of & through the cross-model likelihood factor

n(Be) = / Po(6218) b (6,) 1(d6,) (15.18)

Consider two extreme instances of cross-model dependence:

A. 8, is identical (coincides) with &,
o (6218) = 60, — 0) = 15,(8c) = In(0e).

B. 8, is independent of &,

Py (0:18:) = po(6z) = (R ,(8:) = const.
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Now, rather than calculating (15.18) directly, we can approximate it by smoothing
between the extremes A and B

e 2(Be) = ' [1R2(0]" 0 [15,(09) )T

with respective weights
w(z, &) and 1—w(z,§)
satisfying
0 <wx,é) <w(&)=1.
Since {5 ,(8) is a constant independent of &, the cross-model likelihood is approxi-
mated through
i w l"ﬁ
1 (8e) = ¢ [ina(66)]“5F . (15.19)

Example. Consider the linear normal regression model with the local likelihood in
the form

1 ~ -
) = ey expd =3 6 - BP0~ )}
Let us define the dependence of 8, on 8; explicitly via the stochastic equation
O, =0 +v, v~NUOGQ).

The cross-model Likelihood (15.18) results after some algebraic manipulations

/ P0 (02 18¢) Ino(62) 15(d6) = 3 exp{—% (8 = 6.)7(P. + Q)7 (6 - é;)} .

Compare the result with the approximate expression (15.19)

w 1 a - "
(00 = o a0 = 1 exp{ =5 (0 - )T w P 0 - B}

Both ¢ and w depend here on (z,£).

‘The resulting formulae for the update of the covariance matrix of 8; are related
similarly as the Kalman flter-like linear forgetting P, + Q, (@ > 0 and exponential
forgetting T P,, 0 <w < 1. (cf. [16, 15}).

Continuous and Discrete Predictors. When dealing with continuous predictor
variables, a popular approach is to define the weights w(z, £) via a suitable kernel
function

Kn(x,8)

the shape of which can be fine-tuned by bandwidth parameters . The weight on the
model at & relative to £ thus depends on the Euclidean distance of = from £. To put it
other way, one makes us of the topology of the predictor space to infer on the similarity
of respective models.

This approach does not work for discrete (categorical) predictors. Cousider, e.g.,
days of week. Lacking any natural embedding of the respective values into a Eu-
clidean space, the weight such as w(Tuesday, Friday) can be derived only from the
“strength” of statistical dependence of the respective models expressed through the

densi Ly po(a’]"uesday |9F‘fid&}' ) :
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Posterior Density. After substituting the approximate expression (15.19) of the
cross-model likelihoods (15.18) in the posterior density (15.17), we obtain a locally
weighted formula

pn{8e) o polBe) Ine(B) [ [inal(8e)) "

aF
o pol8s) [ liwe (8]
IEA’N
X o 9,5 H SQE ’ijlJ,',) (zk'@. (1520)

15.8 Locally Weighted Geometry

The locally weighted Bayesian estimation developed in the previous section can be
given an intuitive geometnc mierpretation again.

Empirical Density. For a given sample 4", z™ and a fixed “query” point &, we

define the effective number of data and the merginal empirical density of X as

N

NE = > wl ),

k=1

hi
1
TNSW(:I;) = W ZIU($k,§)5($ — 24) .
£ k=]

I

The joint empirical density of (Y, X) combines the original conditional density ry(y|x)
and the weighted marginal density ryg(2)

re(y,2) = rar(yl @) T ().

Kerridge Inaccuracy. The empirical expectation of the inaccuracy of conditional
densities vields the conditional Kerridge inaccuracy

I(T‘N{w : 39) = ENEO I(T'N,::: 39,::)
= / e (2) H{rn e So.) #(d2)

1

= W Z IU(QJ,(S) Nw I(TN@: 36‘@)
§ rEX N
1 &

= W ?U(:Bkrg) I(T‘Nzk SGI&)
£ k=1
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Likelihood Function. The resulting likelihood function can be rewritten as
N 1
)@l = ex (— w(zg, £) 1o ——)
5o (u ) b Z (2 €) log se(yx|2x)

= exp( N /ffrm {(y,x) lo.g,r | 3 (d’y),.u,(d.z,))
= exp(-
( T

u:l?

N T"Nu : SO))

= exp !V N“ I(FNX S8, \))
Posterior Density. The posterior density (15.20) can thus be expressed in the fol-
lowing compact form

o (8) x po(@) exp (—wa (rige: 59)) :

Where appropriate, the prior density pg(é) can be chosen in the generalized conjugate
form (15.12).

Big Picture. In locally weighted estimation, we deliberately modify the empirical
density of the observed cases so as to use information learnt about ¢ only at cases
z “relevant” or “similar” to a given case £ The weighting in the empirical density
results in the same weighting of conditional Kerridge inaccuracy. The practical effect
of relevance weighting is in making the model S fit better the local data at cases z
“cloge to” & (cf. Fig. 15.5).

The weight put on the case x reflect the level of statistical dependence of 8, on f¢.
“If I knew ¢, how much would that affect my knowledge of &, at x % £?" The perfect
dependence (identity) implies weight 1 while independence means weight 0.

15.9 Concluding Remarks

The chapter has analyzed local modeling using the information geometry of Bayesian
inference for conditional probabilities,

Bayesian Smoothing

¢ We have shown that nonparametric regression can be derived as a special case of
Bayesian inference over a set of local, case-based models with a properly chosen
prior density linking the models.

e The result can be approximated as a weighted Bayesian inference with weights
on the local likelihoods being proportional to the “strength” of statistical cross-
model dependence.

o The practical advantage of the chosen approximation is that one needs to retrieve
from the history only data that are assigned positive weights.
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Figure 15.5: The goodness of fit in locally weighted Bayesian inference is given by the
weighted empirical mwean of Kerridge inaccuracy of case-hased empirical densities relative (o
the corresponding model densities.

Why Information Geometry?

We can view statistical inference as approximation of the empirical density rather
than estimation of a hypothetical “true” density.

Kerndge inaccuracy provides us with a generalized empirical error, which changes
consistently with the underlying model family.

We can elicit prior knowledge via the virtual data and capture the knowledge in
the prior density of data using rigorous statistical methods.

We can fine-tune the model by analyzing the orthogonal projection “trace” of
conditional empirical (possibly smoothened) distributions onto the model mani-
fold.

The resulting “big picture” provides a natural departure point for design of ap-
proximations to the optimal but intractable sclutions.
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Chapter 16

Nonparametric Prediction

Laszld Gyorfi and Dorminik Schafer

Abstract. In this chapter we consider the prediction of stationary time series for
various loss functions: squared loss {(as it arises in the regression problem), 0—1
loss {pattern recognition) and log utility {portfolio selection). The focus is on
the construction of universal prediction rules, which are consistent for all possible
stationary processes. Such rules can be obtained by combining elementary rules
(expertg) in a data dependent way.

341
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16.1 Introduction

The problem of prediction of stationary time series arises in numerous helds. [t is
particularly desirable to construct universal prediction rules for the next output of
a stationary time series given past observations. These are prediction rules which are
asymptotically optimal, but do not require a priori knowledge about the underlying
distribution of the time series (Haussler, Kivinen, Warmuth [18], Merhav, Feder [21]).

Depending upon the context of the prediction problemn different loss functions are
appropriate. The three most important loss functions are the squared loss (for real
valued time series, i.e., the regression problem), the 0 —1 loss (for time series taking on
values in a finite set, i.e., pattern recognition) and logarithmic utility (for time series
of asset returns in portfolio selection).

Prediction rules that are asymptotically optimal can be constructed by combining
elementary rules (experts) in a data dependent way. The key idea is simple: Roughly
speaking, the worse an expert predicted in the past, the less credible he i3, i.e., the
less weight he is assigned in current decision taking (Cesa-Bianchi et al. [7], Little-
stone, Warmuth [20], Vovk [26], [27], [28], Weinberger, Merhav and Feder [29]). The
main purpose of this chapter is to present universal prediction rules with data depen-
dent combination of experts in the three prototypical fields of regression, of pattern
recognition and of portfolio selection.

16.2 Prediction for Squared Error

This section is devoted to the problem of sequential prediction of a real valued sequence.
Let y1,%2,... be a sequence of real numbers, and let z,,x»,... be a sequence of d-
dimensional vectors. At each time instant ¢ = 1,2, ..., the predictor is asked to guess
the value of the next outcome 7; with knowledge of the past (x(,...,2, %, . %)) =
(z3,77"). Thus, the predictor’s estimate, at time ¢, is based on the value of (z},3{™").
Formally, the strategy of the predictor is a sequence g = {g;}32, of decision functions,
and the prediction formed at time i is g;(}, 4" ). After n time instants, the normalized
cumulative prediction error on the string ¥, 47 is

1 n S .
Lu(9) = = > (oil23.617") — )",
i=1

The main aim 35 to make L,(g) small (Haussler, Kivinen, Warmuth |18], Merhav, Feder
21)).

One possible means of prediction is to combine several predictors which will be
called experts. Assume there are X experts: £,. .., A% and the prediction error
L. (R} of expert k is available from observation. At time instant n + 1 we combine
the experts according to their past performances. For this, a probability distribution
on the set of experts is generated, where a good expert has relatively large weight,
then the average of the experts’ predictions is taken with respect to this distribution
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(Cesa-Bianchi et al. [7], Littlestone, Warmuth [20], Vovk [26], Weinberger, Merhav
and Feder [29]).

A “gtatic” variant of this problem is regression estimation. Let Y be a real valued
random variable and let X be a d dimensional random vector (observation). The aim
of regression analysis is to approximate Y for given X, i.e., to find a function g such
that g(X) is "close” to Y. In particular, regression analysis aims to minimize the mean
squared error

min B{(g(X) - ¥)?).

It is well known that the solution of this minimization problem is given by the regression
function
m(z) = B{Y|X =z},

since for any function g
E{(g(X) = Y)*} = B{(m(X) = Y)*} + E{(m(X) - ¢(X))*}.

The second term on the right hand side is the L, error of ¢ and will be denoted by
J(g): .
J(g) = B{(m(X) — g(X))*}.

Obviously, the mean square error is close to its minimum if the Lq error J(g) is close
to 0.

For the regression estimation problem we are given data
Dn == {(Xl:}rl)j T (‘Yn] Y—n)}

which are i..d. copies of {X,Y). On the basis of this data, we want to construct
estimates of m(z) of the form

Ma(2) = male, Dy)

such that J(m,) is small, i.e., m, tends te m for all distributions of (X,Y) with
E{Y?} < oo (cf. Gyorfi, Kohler, Krzyzak, Walk [14)).

Stone [24] showed that there are universally consistent regression estimates. He
considered local averaging estimates:

malz) = Z Wei(z; X1, ..., Xn)Y;,
i=)

where the weights W,; are usually nonnegative and sum up to 1, moreover W,; is
“large”, if z and X, are “close” to each other, otherwise W,,; is “small”. Common local
averaging estimators comprise nearest neighbor, partitioning and kernel estimators.

For the & nearest neighbor estimate, W,,,(z; Xy,..., X},)) = 1/&, if X; is one the
k nearest neighbors of x from X, ... X, otherwise W,; = 0. If

k:n_Pm‘.l kn/n_}o!
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then there are various consistency results.
For the partitioning estimate we are given a pactition P, = {An(, Az ... | of
R*, and set
Z::l }?Kn(ma X!)
>y K, X))
where I (#,4) = 377, Iizea, ,uea,,] ({4 15 the indicator of the set A).
The kernel estimate is given by

M (%) =

Z?:l YK, (Z - X3)
oy Kz — X))

where it = h,, > 0 is the bandwidth and X is an integrable function, called kernel, and
Kh(ﬁt) = I((:L/h)

My (z) =

The other important concept for estimating regression functions is the least squares
principle. It is based on the simple idea to estimate the L; risk of f

E{(f(X)-Y)*)
by the empirical Ly risk

S - Vi (16.1
j=1

and to choose as a regression function estimate a function which minimizes the empirical
Lo risk. More precisely, for least squares estimates one first chooses a “suitable”
class of functions F, (maybe depending on the data, but at least depending on the
sample size i) and then sejects a function from this class which minimizes the empirical
Ly risk, i.e. one defines the estimate m,, by

, - - - 12
My, € Fn  with Zlmn X;) = }EJ;JEZU(A - Y% (16.2)

The class of candidate functions grows as the sample-size n grows. Examples of possible
choices of the set F,, are sets of piecewise polynomials with respect to a partition P,
of R4, or sets of smooth piecewise polynomials (splines).

The other framework in which the need for universal prediction arises is the case
of time series where the data D, = {{(X\,Y1)...., (X, Yr)} are dependent. Here we
assume long-range dependence, i.e., we assume that the data form a stationary and
ergodic process with unknown autocovariance structure.

For given r, the problem is the following minimization:

mgin E{(Q(Xn-!-] H Dn) - Yn+])2}-
From this one easily verifies that the best predictor is the conditional expectation

E{Y;i+] an+l ) Dn}-
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This, however, cannof{ be learned from data, i.e., there is no prediction sequence with

Jim (ga(Xp, Dn) = E{Yos1| Xy, Da}) =0

a.s. for all stationary and ergodic sequence (cf., e.g., Gyorfi et al. [17]).
In general, our aim is to achieve the optimum

- : 2
L' = lim min E{(Q(Xla+1: Dn) - Yn-i-l) 3
n—oo g
which again is impossible. However, there are universal Cesaro consistent prediction
EQUeNnce ¢, L.e.,

"

] ) e .
1300 -

a.s. for all stationary and ergodic sequence. Such prediction sequences are called
universally consistent. We show how to construct universally consistent predictors
by combination of predictor experts.

One of the main ingredients of the construction is the following lemma, whose proof
is a straightforward extension of standard arguments in prediction theory of individual
sequences, see, for example, Kivinen and Warmuth [19], Singer and Feder [23].

Lemma 1 LetE,,Eg,. .. be a sequence of prediction strategies (e:t;ue'{:ts), and let {g} be
a probabitity distribution on the set of positive integers. Assume that h,(y7 ') € [—-B, B)
and ¢y € [-B, B]". Define

W = qre— DR/

with ¢ > 882, and the experts’ weights by
Wtk
Upp = =
Lk ZOO w,,

i=]

Then the prediction strategy g defined by

o=
Gl =) wen(i) =12,
h=1

has the property that for every n > 1,

La(§) < inf (L,,,(Rk) - df"') .

Here —~In() is treeted as oo.

We return to the problem of stationary and ergodic data (X, ¥1),...,(X,, Ya).
Assume that |Yg| € B. The elementary predictors (experts) will be denoted by At%%
k,£=1,2, ... Each of the 259 works as follows: Let Gy be a quantizer of R¢ and H,
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be a quantizer of R. For given &, ¢, let I, be the set of time instants k < ¢ < n, for
which a match of the k-length quantized sequences

Gf(f’fé—k) = Ge(o)_y)

and )
He(y' =)y = Ho(y"~,

occurs. Then the prediction of expert A% js the average of the y,’s for which i € I;:

Z%G W

h'(L e)("cl y? 1) = |I |
n

These elementary predictors are not universally consistent since for small £ the bias
tends to be large and for large & the variance grows considerably because of the few
matchings. The same is true for the quantizers. The problem js how to choose k, € in a
data dependent way such as to obtain a universally consistent predictor. The solution
is the combination of experts.

The combination of predictors can be derived according to the previous lemma. Let
{gr¢} be a probability distribution on the set of all pairs (k, £) of positive integers, and
for ¢ = 882 put

Wkt = Q‘x,ﬂe_("”LH(h{m]’ac
and
Wt k¢

Ut,r‘u‘,f = oo . -
id=1 Wiy

Then for the combined prediction rule
g:(25, 77" Zwuh( Nl 5"
ke=1
the following universal consistency result holds:

Theorem 1 (Gyérfi. Lugosi {15}). If the quantizers G, and H, ”are asymptotically
fine”, and P{Y; € [-B, B]} = 1, then the combined predictor g is universally consis-
tent.

16.3 Prediction for 0 — 1 Loss: Pattern Recognition

In pattern recognition y; takes on values in the finite set {1,2,... A/}, At time instant
i the classifier (predictor) decides on 7; based on the past observation (z},yi™').
After n rounds the empirical ervor for =¥, 4} is

1 ”n
g) = n Zf{g(xwi“#m}'
i=—=1

The natural loss is given by the 0 — 1 loss, and L,(g) is the relative frequency of errors.
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In the “static” version of pattern recognition the random variable Y takes on values
in {1,2,... M}, and based on the random observation vector X one has to decide on
Y. The decision rule (classifier) is defined by a decision function

g:RY—={1,2,... M}.
The classifier has an error probability
Lig) = P{g(X) # Y}.
As is well known, the error probability is minimized by the Bayes decision,

gi(z) =1, HP{Y=4¢dX =2}=maxP{Y =7jX =2z}
2

In pattern recognition we want to approach the Bayes decision if data D, = {(X,, 1)),
covy (Xy, Yo} are given, which are 1.1.d. copies of (X,Y). It is of considerable interest
to find a pattern recognition rule

gn(2) = gnl2, D)
such that
L{gn) = P{gn(X) # Y [Dn}
is close to L{g*) for all possible distributions of (X,Y’). Similarly to the regression
estimation problem, this may be achieved (cf. Devroye, Gydrfi and Lugosi [12]).

Clearly, this should be generalized to the case of dependent data D, = {(X,, 1)),
.o Xy, ¥5)}, where the data form a stationary and ergodic process. For given n, the
problem is the following minimization:

mgﬂP{g(Xn—i-J D) # Yat1},

which —as in the general regression estimation case— cannot be learned from data. Nor
can there be a strategy achieving the optimumn

R = lim min P{g(Xuy1, Dn) # Y}

n—oo g

However, there are universal Cesdro consistent classifier sequences ¢ = {g,}, i.e., for
the notation

1 1)
Ln(g) = E Z [{g;(,\'.+1,Di)#Yi+1}
=1
there exists ¢ such that
im L.(g)=R"

a.s. for all stationary and ergodic sequence. Such classifier sequences are called uni-
versally consistent. Gyorfi, Lugosi and Morvai [16] have constructed universally
consistent classifiers by randomized combination of classifiers (experts).

The main ingredient of the proof is a beautiful result of Cesa-Bianchi et al. [7]. It
states that, given a set of /V experts, and a sequence of fixed length =, there exists a
randomized predictor whose number of mistakes is not greater than that of the best
classifier plus /(n/2)InN for all possible sequences y7. The simpler algorithm and
statement cited below is due to Cesa-Bianchi [6]:
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Lemma 2 Let ). B be g finite collection of classifier strategies (experts). The
classifier strateqy g is defined by

N =~ f1.
~ o1t 0 o u> L=t I{’T”w(""'i-l'*”i):l}wt(m
Gy 2\, 0) = S Wil(k)

1 otherunse,

(t=1,2,...,n), where forallk=1,... N and t > 1
wi(k)=1 and w(k)=¢V SInN/nLe—y (R15)),

Let Uy, Uy, ... be ii.d. uniformly distributed random variebles on [0,1]. Then at time
moment ¢ the randomized classification 1s

gf(yi_l!x’i&Uf)
and for any y} € {0,1}" and £} € R™

7
EL,(§) < min L, (A% + h;—;

16.4 Prediction for Log Utility: Portfolio Selection

Consider investment in the stock market. We follow Breuman (5], Algoet and Cover
3}, Cover (9] and Cover and Thomas [11]. The market consists of d stocks, and during
one investment period (e.g., one day), it will be described by a return vector x =
(1, &), where the j-th component ¢ is the factor by which capital invested in
stock 7 grows during the market period. The investor is allowed to diversify his capital
at the beginning of each day of trading according to a portfolio vector b = (b1, .. 3@,
the j-th component 5%} of which gives the proportion of the investor’s capital invested in
stock 7. Assume that the portfolio vector b = (5, ... b(d)) is a probability distribution,
i.e. consumption of capital and short selling of stocks are excluded. If Sy denotes the
initial capital, then at the end of the day the investor will be left with a wealth of

=5, Z p ) — = So(b, ),

where (-, -} stands for the inner product.

For leng termn investment, assurne the investor starts with an initial capital Sy and
let z; be the return vector on day 2. If b = b, is the portfolio vector the investor chooses
for the first day of trading, he will accumulate a wealth of

51 =5 (blsil?l)

by the end of this day. For the second day, 5; becomes his new initial capital and the
portfolio vector for day two, b, may depend on x,: 0> = b(z)). Then

Sy = Sy (by, @) - (ba,x2) = So - (b,1) - (b(z1], 2).
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In general, after the nth day of trading using a nonanticipating portfolio strategy
b = b{z{™") (i = 1,...,n) the investor achieves

n

S = 5o [J(b(w}), 21) = SpeTimt stiai i — 5 enivats)

=1

The portiolio strategy B = {b(2}")} is a sequence of functions, the quality of which
is characterized by the average growth rate

JR. -
Wa(B) =~ > log(b(ai™), o).
i=1

Obviously, the maximization of S, = S, (B) and the maximization of W,(B) are equiv-
alent.

Throughout, we assume that x,,Zs,... are realizations of the random vectors X,
Xg, ... drawn from the vector valued stationary and ergedic process {XN,}%, (note
that by Kolmogorov’s Theorem any stationary and ergodic process {X,}$® can be
extended to a bi-infinite stationary process on some probability space (Q, 7, P), such
that ergodicity holds for both, = — oo and n — —00).

The fundamental limits for investment are delineated by results of Algoet and Cover
(3], Algoet [1, 2], who showed that the so called log-optimum portfolio B* = {¥*(-)} is
the best possible choice. More precisely, on day » let b7(-) be such that

E {log (b (X} ™), X)X ™'} = B{maxloa(b(X} ™), X,)|X{ '}

If S; = Sp(B*) denotes the capital after day n achieved by a Jog-optimum portfolio
strategy B, then for any portfolio strategy B with capital S,, = S5,(B) and for any
stationary ergodic process {X,}%,,

1
lim sup — log Sn < 0 almost surely

[=]
n—oa T S;;

and .
lim —log 5, = W" almost surely,

r—od T}
XZL }
is the maximal growth rate of any portfolio.
These Limit relations give rise to the following definition:

where

W*=E {rg%x E{log((X_L), Xo)

Definition 1 A portfolio strateqy B is called universal with respect to a class C
of stationary and ergodic processes {X,}%_, if for each process in the class,

—oot

1 .
limm —log 5,(B) = W™ almost surely.

n—o0 13
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Universal strategies asymptotically achieve the best possible growth rate for all
ergodic processes in the class. Algoet [1] introduced two portfolio strategies, and proved
that the more complicated one is universal. The purpose of this section is to prove the
universality of a strategy B similar to his second portfolio.

B is constructed as follows. We first define an infinite array of elementary portfolios
HOS = [R&EY k€ =1,2,... To this end, let Pe = {A4e;,7 = 1,2,...,m} be a
sequence of finite partitions of the feature space R¢, and let G, be the corresponding
quantizer:

Gelz) =3, if z € Ay

With some abuse of notation, for any n and z7 € R, we write Go{z7) for the sequence
Gi(z)),...,Ge(x,). Now, fix positive integers %, £, and for each k-long string s of
positive integers, define the partitioning portfolio

b(k."fj(fi*—l‘ s) = arg max H (b, z3), n>k+1,

{R<ianGy(=im =2}

if the product is nonvoid, and uniform & otherwise. If the product is nonvoid then

Z h<iemGelz' ~h= IDg(b‘$’i)
b(k.f)(:r‘l'll—l, 3) = arg max k< fﬂ i) 3}!__] ; n>k+1
bk <i<n:GelalD)) = s}

From this we define the elementary portfolio A%} by
AFOE Y = 8RO (217 Go(227))),  n=1,2,...

' according to the partition P, and browses

That is, RO quantizes the sequence 27~
through all past appearances of the last seen quantized string G,(@)~)) of length £.
Then it designs a fixed portfolio vector according to the returns on the days following
the occurrence of the string.

Finally, let {q1. .} be a probability distribution on the set of all pairs (k, £) of positive
integers such that for all £, €, g;¢ > 0. The strategy B then arises from weighing the
elementary portfolio strategies H*9 according to their past performances and {qy ¢}:

___ Zk,f Qkfsu_,] (}I(’w.f)] h_(k,e] (m?_])

a—1y

where S, (H®*) is the capital accumulated after 7z days when using the portfolio
strategy H®0 with initial capital Sg. Thus, after day i, the investor’s capital becomes

Su(B) = D queSa(HED).

k¢
The strategy B asymptotically achieves the best possible growth rate of wealth:
Theorem 2 Assume that

{a) the sequence of partitions is nested, that is, any cell of Py is a subset of a cell
of Pe. 0=1,2,...;
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(b) if diam(A) = sup, e |2 — yll denotes the diameter of a set, then for any sphere
S centered af the origin

lim max diam(A,;)=0.
{—o0 j:A(.}'ﬁS?é@

Then the portfolio scheme B defined above is universal with respect to the class of all
ergodic processes such that E{|log X} < oo, forj =1,2,...d.

The first tool in the proof of Theorem 2 is known as Breiman’s generalized ergodic
theorem [4, 5], see also Algoet [2).

Lemma 3 (BREIMAN, [4]). Let Z = {Z;}°, be a stationary and ergodic process. Let
T denote the left shift operator, shifting any seguence {...,7_y, %, %1, ...} one digit to
the left. Let f; be a sequence of real-valued functions such that for some funclion f,
f(Z) = f(Z) almost surely. Assume that Esup; |fi(Z)] < 00. Then

—o0 7l

lira — Z fTZ)=Ef(Z) as
=1

The second tool is a theorem due to Algoet and Cover ({3], Theorems 3 and 4).

Theorem 3 (ALGOET anD COVER, [3]).

{a) Let Quenufeot be & family of regular probability distributions on (0,00)? such that
E{]log ,(;'”]} < oo for any coordinate of a return vector U, = (U?(IU, s ,({i}) distributed
according to Qn. In eddition, let BY(Q,) be the set of all log-optimal portfolios w.r.t.
Q.., i.e. of all portfolios b that attain max, E{log{b,U,)}. Consider an arbitrary se-
quence b, € B*(Q,). If

Q. — Qo weekly as n — o0
then, for Qu..-almest all u,
(b, u) — (b",u) (n— o0)
where the right hand side is constent as 0° ranges over B*(Qu )-

(b} Let X be a return vector on o probability space (2, F, P) satisfying B{|log XU)|} <
oo. If Fi is an increasing sequence of sub-o-fields of F,

Fi /" Foo ©F,

then

E{ max E[iog(b,X)L?—'k]} / E{b;: max E[log(b,Xﬂfoo]}

b f;c — treas irabie o0 S i uradile

as k — 00,
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PrRCOF OF THEOQOREM 2.  We have to prove that

lininf W,{B) = l:mlmc log Sp(B) = W' as.

T

W.lo.g. we way assume Sy = 1, so that

1
Wa(B) = —logS.(B)

1 .

= ;log > g eSnfH*N

I

1

z —log (SUD Qk,eSn(H ““"”))
noo\ ke

1 .
= —sup (log Gie,p + log Sp{(H “"“))
2 5

= sup (WR(H“"ﬂ) + _log q;"‘(’) )
EE T

Thus
liminf W,,(H) > liminfsup (W’ (%0 4 long e)
I n—oo g
> supliminf (W’n(H{kse)) 4+ logﬂ)
ke " n
> supliminf W, (H(‘L 1. {16.3)

ke o

[n order to evaluate the lim inf on the right hand side we investigate the performance of the
b8 (. ) on the stationary and ergodic sequence Xo, X_y, X2, ... First let k, £ and s be fixed.
Pgﬁ;f) denotes the (random) measure concentrated on {Xi:1-j+k < < 0,Gp(X/7)) = s}
with :

zi: L j ok <i€0,GA{ X{ " =s T4(X3)
{i:1-j+k<i<0,GAXT)) =8}

(k. —
P, {A) =

If the above set of X,’s is void, then let Pg‘;ﬂ = d3,...1y be the probability measure concen-
trated on (1, ..., 1).
Observe that for all s with probabhility one
d 81,1 if P(Ge( X)) =5) =

weakly as j — co. Indeed, let f be a bounded continuous function. By the ergodic theorem:

(16.4)

m Zt =S, G XD ) y=s X
m I{B 1—J+k‘<3<0 G(_‘(Y L)_SH
E{f(Xo g, (x-1y-s}

P{G{X_)) = s}
E{f{X0)|Go(XZ}) = s)

/ FE@IP soiuxsy=lde) asy

j FEPEVdn) =

—
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if P(Ce(XT)) = &) > 0. If P(Ge(XT)) = s) = 0, then with probability one P9 is
concentrated on {1,...,1) for all §, and

/f(:s] “”(d) = f(1,..,1).

By definition, b O(X, 8) is a log-optimal portfolio w.r.t. P{k O Let by, ¢(¢) be a log-

optimal portfolio w.r.t. the limjt distribution of ng 0 Then, using Theorem 3(a), we infer
from {16.4) that as j tends to infinity the almost surely the following convergence holds:

(b(krf)(){]—_'j., s).xg) = (b {8}, 7o)

for P\-OFG‘(\-—I)_S' and hence P x,-almost all values of zj. Here and in the following we
NolGe( X2 )=

exploit the fact that there are only finitely many values of s to be considered. In particular,

we obtain

(BFX T Gl X TH), Xo) — (b AGe(X 1)), Xo)  as. (16.5)

IS
as j — o0
We are now in a position to apply Lemma 3. Tor z = (..., ®_1, x0, 2], ...), set

fa) = log(ht™ 07 ), Xo) = log(B* a7, Ge(XT1), Xo).
Note that

d
F(X) = |log(h®O(XT2), Xo) £ > [log X&),

=1
the right hand side of which has finite expectation, and
Fi(X) = (Br G XTI, X0) as. asi— oo
from {16.5). As n — oo, Lemma 3 yields
W,(#*0) = - Zlog (R*E (X1, X))
a—-]
—  E{log(h; (Go(X7})), Xo)}
= E{maxE{log{b Ge(X=I), X0)|Gel X}

= €¢ a .
Therefore, by virtue of {16.3)

T—+ O

lim inf Wy, (B) > supeg ¢ a.s.
k.
Since the partitions Py are nested, we have o(Ge(X2))) € o{Ge(XZ.)) forall # > ¢,k >
&, and the sequence
e E{log(b(Ge(X =), Xo) Gl Y1)}

- max E{log(b, Xo)|Ge{ X))}

bis 0’(0{{,\'___": ))—me:\sur.\ble
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becomes a sub-martingale indexed by the pair {k, €). This sequence is bounded by
rax B{log(b(X~L), XoD|X "L},
which has finite expectation. The sub-raartingale convergence theorem (see, e.g., Stout (1974)

implies that this sub-martingale is convergent a.s., and supy o€ ¢ is finite. In particular, by
the submartingale property. € ¢ is a bounded double sequence increasing in & and £, so that

supege = lim lim e .
fi, € k—oo {—oc

Assumption {b) for the sequence of partitions implies that for fixed &
o(Ge(XZ)) /" 6(X D)

as ¢ — oo. Hence, by Theorem 3{b)

Ilil'ﬂ Ep e = Hm E{ max E{log(b,XnﬂG'g(X:l)}}
—e

oo bis afcg(_\f:i])—measurable

= E max E{log(b, Xo)| X7} -
bis G(/\':‘:)—me.\s\lrable

Applying Theorem 3{b) again with
o(X7)) /o(XZ)) ask— oo

finally yields

supege = lim E{ max E{log(b,X.;.)LY:ﬁ}}

k£ k—ro0 bis O’{_\-:;“)—measurz\hl&

- E { max E{log{b, XU)|X:J>O}}

biser .\’:l' —measurabie
=)

= E {rg(a)x E{log{b(X 1), XUJIX—_;O}}
= W*

and the proof of the theorem is finished. O]
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Chapter 17

Recent Advances in Statistical
Learning Theory

M. Vidyasagar

Abstract. In this chapter, we discuss several advances in the area of statistical
learning theory (SLT). The basic problem formulations are given, the “classical”
known results are summarized, recently derived results are stated, and some
applications are indicated to learning with inputs generated by a Markov chain.
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17.1 Introduction

In this chapter, we discuss several advances in the area of statistical learning theory
(SLT). The basic problem formulations are given, the “classical” known results are
summarized, recently derived results are stated, and some applications are indicated
to learning with inputs generated by a Markov chain.

Throughout the chapter, the principal reference is [18] and the references cited
therein.

17.2 Problem Formulations

In this section, we state the two main problem classes that are studied in this chapter.
These two problems are also the foundations of SLT.

17.2.1 Uniform convergence of empirical means

The problem of uniform convergence of empirical means has its origins in attempts
to extend the classical Glivenko-Cantelli Lemma (see |5]} to more general situations.
See the Notes and References in |17, 18], Chapter 3 for a description of the historical
evolution of this problem.

Suppose X is a set, & is a g-algebra of subsets of X', and that P is a probability
measure on (X, 8). Thus (X,S8) is a measurable space and (X8, P) is a probabil-
ity space. For notational convenience, let X denote the infinite Cartesian product

2, X, and let $*° and P* denote the corresponding product o-algebra and product
measure, respectively. Suppose that F is a family of functions mapping X inte [0, 1]
such that every function f € F is measurable with respect to (X,8).) Finally, sup-
pose {A.},>) is an i.i.d. stochastic process assuming values in X, with the Jaw P. Let
X = (x;) € X denote a sample path of this stochastic process. For each function
f € F, define the quantity

T

Balfix) 1= — 3 (@),

=1

and call it the empirical mean of the function f after m samples, based on the sample
sequence X. In some sense, the quantity E,,(f;x) is an approximation to the “true
mean”

E(f,P) = [ f@) Pl

of the function f with respect to the probability measure /. The classical “law of large
numbers” states that as the number of samples m — oo, the empirical mean £,,(f; x)
converges almost surely to the true mean E(f, P). However, in SLT the interest is on
so-called “finite time estimates,” which tell us just how far the empirical mean is from

! Actually there is nothing special about the interval [0,1], and it can be replaced by any compact
interval. However, some technical ditliculties arise if the range of the functions in F is unbounded.
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the true mean for finite values of m. One such result is the well-known Hoeffding's
inequality, which states that.

Pe{x: |§m(f;x) —E(f,P)] > ¢} < 2 exp(—2me®), ¥m, e.

Thus, after m samples have been drawn, it can be said with confidence 1 — 2e~2m<
that | En.(f;x) — E(f, P)| < e.
Given the family F, let us define the quantity

glm, e, P) := P{x € X : sup|En(f;x) — E{f, P)| > €}.
ferF

Thus, after m samples have been drawn, it can be said with confidence 1 — ¢(m, ¢, P)
that every empirical mean F,,(f;x) is within ¢ of the corresponding true mean E(f, P).

Definition 1 The pair (F, P) is said to have the property of uniform convergence
of empirical means (UCEM) if g(m, ¢, P) — 0 as m — o<

The above definition can be extended readily to the case where the underlying
probability measure P is not fixed ahead of time, but is known only to belong to a
specified family P of probability measures on (X, S). In this case we define

glm, e, P) = supg(m,¢, P)
PcP
= sup P¥{x € X :sup|E.(f;x)— E(f,P)| > ¢}
pep feF

Definition 2 The pair (F,P) is said Lo have the property of uniform convergence
of empirical means, uniformly in probability (UCEMUP) if g(m,¢, P) — 0 as
m — oo.

If the family F is finite, it follows readily from Hoeffding's inequality that
glm, ¢, P) < 2|F|exp(—2me?), ¥m,e.

Hence every finite family automatically has the UCEM property. Moreover, if P is
an arbitrary family of probability measures on (X, S), it again follows from the above
that

g(m, e, P) < 2|F|exp(—2me®), ¥m,e.

Hence every pair (F,P) has the UCEMUP property if F is a Anite family, for every
P. However, in case F is infinite, there is no « priori reason to assume that (F,P)
has the UCEMUP property. One of the principal aims of SLT is to derive necessary
and sufficient conditions for a given pair (F, P) to have the UCEMUP property, and
in case this property holds, to derive explicit upper bounds for the quantity g(m, ¢, P).
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17.2.2 Probably approximately correct learning

Over the vears, researchers in machine learning have tried and rejected several mathe-
matical models of how an abstract machine “learns” and “generalizes.” Until the late
1970’s, inductive learning theory was in vogue. In inductive learning, a machine is
shown examples of a concept, say recognizing handwritten numerals. After a finite
number of training inputs, the machine is then expected to generalize perfectly, that
is, produce the correct output on all future queries. By the late 1970's there were far
too many negative results about inductive learning; in eflect, these results showed that
inductive learning was possible only in very simple situations, where the concept that
the machine is attempting to learn had a finite description.

A major breakthrough came in 1984 with the enunciation of the more relaxed notion
of “probably approximately correct” (PAC) learning. In PAC learning, a machine is
shown labelled training inputs generated at random. After a finite number of training
samples, the machine is then presented with another randomly chosen test input. The
efficacy of the learning process is judged by the probability that the machine produces
the correct output on the randomly chosen test input. In contrast to inductive learning,
in PAC learning the machine is rot expected to produce a correct output on all test
inputs, just most test inputs. As the training process proceeds, the probability that
the machine produces the correct output on a random test input approaches, but never
equaels, one. As shown below, this seemingly simple relaxtion of what the machine is
expected to do results in a spate of positive results, in contrast to the negative results
of inductive learning theory.

The problem of PAC learning can be mathematically stated as follows: As above,
suppose X Is a set, S is a g-algebra of subsets of X, P is a family of probability
measures on (X, S), and F is a family of measurable functions mapping X into [0, 1].
Of particular interest is the situation where every function in F maps X into {0, 1},
not just [0,1]. If every function in F is binary-valued, we say that F is a concept
class, whereas in general we refer to F as a function class or a function family.

Learning proceeds as follows: The learner knows both P and F. A probability
measire P € 7 is chosen; it may or may not be made known to the learner. An i.i.d.
stochastic process {&;}i>p is set up with the law P; this is the training sequence. A
fixed but unknown function f € F, called the target function, is also chosen. Let
X := {1, &3,...} denote a realization (or sample path) of the training sequence. For
each input ;, an “oracle” produces the value f(x;) of the unknown target function at
the current training input. Thus, after m samples have been presented to the oracle,
data available to the learner is the set of m “labelled samples”

[(l’],f(l'])], R (j;m: f(lm))]

The objective of the learning process is to use this information to construct an ap-
proximation to the unknown function f; this approximation is called the “hypothesis”.
The procedure for constructing the hypothesis from the data is called the “algorithm.”
For the purposes of the present discussion, the “algorithm” is just an indexed family
of maps {A,, }m»1 where

Am i (X x 0,17 = F.
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The entity
Anllzy, flx1)), - (@, f(@m))] = i (fi %) € F

is called the hypothesis produced by the algorithm when the target function is f and
the sample sequence is x.

The hope is that, as the number of training samples 7 — o0, the hypothesis
hy(f;x) “approaches” the true but unknown target function f. To formalize the
notion of convergence, we need to have a metric on F. In fact we use the metric

induced by the norm on L;(X,S, P).?2 Thus, if f,g € F we define

de(f,g) = / F) - o(y)| Pldy).

With this definition, the quantity dp(f, hn,(f;x)] is called the generalization error.
The generalization error has a very natural interpretation. Let h,,(f;x) denote the
hypothesis constructed by the algorithm after m training inputs, when the target func-
tion is f and the training sequence is x. Now suppose a new input y, called the testing
input, is generated at random according to the probahility law P. The objective of
machine learning is to predict the value of the unknown function f{y) at this testing
mput. If the learner predicts that f(y) equals h.(y), then the absolute prediction
error is | f(y) — fim(y)]. This quantity itself is random, since the testing input y is ran-
dom. Thus the quantity dp[f,.{f;x)] is precisely the expected value of the absolute
prediction errot.
Next, the quantity

r(m, €) == supsup Po{x € X% dp[f, hn([; X)) > ¢}
PeEP feF

is called the learning rate. In defining the learning rate, we first look at the probability
that the generalization error exceeds a prespecified accuracy level €. Since f is unknown,
we then take the supremum with respect to f € F, so that we get the worst-case
estimate of this probability. Finally, in case the underlying probability measure P {that
generates the training sample sequence) is itself unknown, we also take the supremum
with respect to P € P. As a direct consequence of the definition of the learning
rate, it follows that after m labelled training samples have been input to the learning
algorithm, it can be said with confidence 1 — #(m,¢) that the generalization error is
less than ¢, irrespective of what f is or P is.

Definition 3 A4 learning algorithm {A,.} is said to be probably approximately
correct (PAC) to accuracy e ifrim,¢) — 0 asm — o0, and to be PAC ifr(m,e) — 0
as m — 00 for each € > 0. The pair (F,P) is said to be PAC learnable if there eaists
a PAC algorithm.

Suppose an algorithm is PAC, so that r(m, ¢) — 0 as m — oo. Given a confidence
level 4, the smallest number (e, §) with the property that

r(m,e) <46 ¥m > my(e, )

2Note that, since every Function in F is bounded, it is also absolutely integrable.
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is called the sample complexity. In general, it is virtually impossible to compute
the sample complexity exactly. Instead, one can obtain upper bounds for mqie, §). In
other words, we can often compute a number mg(¢, §) such that the above inequality
holds, and through abuse of language, refer to it as the sample complexity. With this
slightly incorrect usage, we can say with confidence 1 — ¢ that the generalization error
is no larger than ¢ provided we have at least my(e, §) samples.

17.3 Summary of “Classical” Results

In this section we review some of the “classical” results in UCEM theory and PAC
learning theory. The next section discusses more recent results.

The discussion in the present section is divided into two parts. In the first subsec-
tion, we study the so-called “fixed-distribution” case, in which the probability measure
P that generates the sample sequence is known ahead of time. In the second subsec-
tion, we study the so-called “distribution-free” case, in which the probability measure
P could be arbitrary, or equivalently, the family P of probability measures to which P
is known to belong equals P*, the set of all probability measures on (X, 8). These are
thus the two “extreme” cases. In both cases, the UCEM and PAC learning problems
are fairly well-understood, which is one reason for focusing on them.

17.3.1 Fixed distribution case

Suppose P is a known fixed probability measure on (X, ). In this case, a necessary and
sufficient condition for the UCEM property to hold is known. A sufficient condition
for PAC learnability is known, which is also necessary (and therefore necessary and
sufficient) in case F is a concept. class.

Let us begin with the UCEM problem. Given an m-tuple x,, = (), ..., Zm), define

f(xm) = [f(z1) ... fzn)] € 0,17, Vf € F,

Fulx) = {f(zm): fEF}C0, 1™

Let || - ||oo denote the € -norm on R™, and let L{e, Frn(x), || - ||oc)} denote the external
covering number of the set Fy,(x) to accuracy e, with respect to the £-norm. Thus
Lie, Fin(x),]| - |loc) denotes the smallest number of closed balls of radius € needed to
cover the set F,,(x), where the centers of the balls need not belong to F,,(x) and
the radius is measured with respect to the {.,-norm. Finally, let lg denote the binary
logarithim. With this notation, we can state the following theorem [15, 16, 14):

Theorem 1 The pair (F, P) has the UCEM property if and only if
oo ElglLle Fux). I o)), P)

D m

= 0.

In the case of PAC learning, we change notation slightly. Let N{e, 7, dp) denote
the covering number (not external covering number) of F with respect to the metric
dp to accuracy ¢. The distinction between NV and L is that in the case of NV, the centers
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of the closed balls of radius ¢ that cover F are themselves required to belong to F,
whereas there is no such requirement in the case of L. Also, note that we are now
covering the entire function class F instead of a subset of [0, 1]™ as earlier.

We now introduce the so-called “minimal empirical risk (MER) algorithm.” Sup-
pose that, for some ¢, the covering number N(e/2, F,dp) is finite. Given an accuracy
¢, choose a minimal €/2-cover (not an e-cover) of F, and denote it by {¢),..., g~}
Thus the finite collection {g1,...,gn} has the following properties:

1. g; € F for each 4.
2. For each f € F, there exists an index j such that dp(f, g;) < €/2.

3. There is no collection of cardinality less than N that satisfies the above two
properties.
Given a sample sequence x and an integer e, the MER algorithm is as follows: Choose a
minimal ¢/2-cover {g),...,gn} as above. For each index ¢, compute the corresponding
empirical ervor as follows:
PO
Jo= =3 1) = i)l

e =1

Note that the > quantity f(z;) is known for each j as the output of the oracle. Thus
the quantity ] can be computed on the basis of the available data. Observe that J, is
just an empirical approximation to the quantity d»(f, g;) based on the first m samples.
Now choose the hypothesis A, as the (or a) g, such that J, is minimal.

With this notation we can state the following theorem {14, 1]:

Theorem 2 Suppose N(e/2,F,dp) is finite for some ¢. Then the MER algorithm is
PAC to accuracy e. Moreover,

r{m, €) < N exp(—me®/8)
if F 15 a funclion class, and
r(m.e) < N exp(—mef32)

if F is a concept class. Thus, if F is a function class, it is enough to use at least

2 i\
mole,8) = = In+

€ 8
samples, while if F s a concept class, it 1s enough to use af least
32N
€0)=— Iln—
male, 6) = — ln—

samples.

The above result shows only that the MER algorithm is PAC to a specified accuracy
e. However, it is possible to modify the above algorithm so that it is PAC {to all
accuracies).

The previous theorem gives only sufficient conditions for PAC learnability. The
next result, giving a necessary condition in case of concept classes, is due to [1].

Theorem 3 Suppose F is a concept class; then the finiteness of N(e, F,dp) for every
€ is both necessary and sufficient for (F, P) to be PAC learnable.
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17.3.2 Distribution-free case

In the distribution-free case, it is assumed that P, the set of probability measures to
which P is known to belong, in fact equals 7*, the set of @l probability measures on
(X,S). Inshort, the underlying probability measure P could be anything. In this case,
a central role is played by a concept called the Vapnik-Chervonenkis (VC}-dimension,
which is an integer that measures the “richness” of a concept class. With due care, the
notion can alse be extended to function classes.

Definition 4 Suppose F is a concept class defined over ¢ set X. A set § = {x),
.oy I} © X is said to be shattered by the family F if, for each vector e € {0,1}7,
there exists a corresponding function fo € F such that fo(z;) = e;. The Vapunik-
Chervonenkis (VC)-dimension of the family F is the largest integer n such that
there exists a set S of cardinality n that is shattered by F, and is denoted by VC-dim{F).

Thus the set S is shattered by F if each of the 2" classifications of the elements
in 5 is realized by some function in F. Obviously, if 5 is shattered by F, so is every
subset of S. Hence, as the integer n becomes larger, it becomes more and more difficult
to find sets of cardinality n that are shattered by F. If a stage comes where no set of
cardinality greater than n is shattered by ¥, then F has finite VC-dimension.

To extend the notion to function classes, we introduce the so-called “Heaviside”
function %(-) : R — R, defined by

n(s) = 1 if s> 0,
ns) = 0 ifs<0.

Definition 5 Suppose F is o function family mapping X into [0,1]. For each function
f € F, define an associated function Fr X x[0,1) = {0,1} by f(z,c) := n[f(x) — d.
Define F = {f : f € F}. The P-dimension of F is defined as the VC-dimension of
F, and is denoted by P-dim{F).

We begin with a discussion of the UCEMUP property. The vesult below is found
in [14).

Theorem 4 Suppose F is a concept class, and let P = P*. Then the pair (F,P*) hes
the UCEMUP property if and only of VC-dum(F) is finite. Moreover, we have

9 d
d(m,e,P7) < 4 (%) exp(—me*/8), Yim,¢.

The result below is found in [17], Chapter 5, and is a refinement of a corresponding
result in [7).

Theorem 5 Suppose F is o function class, and let P = P*. Then the pair (F,P")
has the UCEMUP property if P-dim(F) is finite. Moreover, we have

16e, 16e\”
glm,e,P") <8 (_emTe) exp(—me®/32), ¥m, e < e/(d1ge) = 0.47.

€
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However, the finiteness of P-dim(JF) is not necessary in general for the pair (F,P")
to have the UCEMUP property.

Next we discuss the problem of PAC learning a family F when P = P*. In this
case, a central role is played by the notion of a ‘consistent’ algorithm. An algorithm is
said to be consistent if

heo (fix) (i) = flz), i =1,...,m, ¥x,f .

In plain English, a consistent algorithm is cne that always produces a hypothesis that
matches the data.

Theorem 6 below, taken from [2], established a close connection between PAC
Jearning and the VC dimension. It was extended to function families in 7], and the
slight refinement given here is found in [17].

Theorem 6 Suppose F is a concept class and that VC-dim(F) < oo. Let { Ay} be a
consistent algorithm. Then

2em \ Cmef?
r(m,e) < 2 — el

To ensure that r(m,e) <4, it is enough to leke

samples.

Theorem 7 Suppose F is a function family and thel P-dim(F) < co. Let {A,,} be a
consistent algorithm. Then

2e 32e\?
%]ﬂ%) exp(—me/32).

r(m,e) < 8 (
To ensure that r(m,e) < 4, it is enough to lake

2
m(e, 8) = 3?2 [d (m3—femm3;e) + 1n§]

samples.

17.4 Recent Advances

17.4.1 Intermediate families of probability measures

In the previous section, we have seen results that address that two ‘extreme’ situations,
namely: the fixed distribution case, and the distribution-free case. In this section, we
discuss the case where the underlying family of probability measures P is neither of
the two extreme cases.

We begin with the UCEM problem. The main result below is proved in [17].
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Theorem 8 Suppose all symbols are as in Theorem 1. Let P be an arbitrary fanuly
of probability measures on (X, 8). Then the pawr (F,P) has the UCEMUP property if

and only if
sup lim E{ig[L(e, f.m(x)r " ) ”OG)]!'P} = Q.

pep m—oo m

Next let us study the PAC learning problem. For this purpose, we use the total
variation metric on the set of probability measures on (X,S). Suppose P, (J are two
probability measures on (X, S8). Then the total variation metric p( P, @) is defined
by

o(P,Q) = sup|P(4) - Q(4)].
Aces

Since g is a metric on P, it also induces a correspending topology on P*. We address
two situations, namely: when P is a compact set in this topology, and when P hag an
interior point in this metric.

The results presented below are from [10].

Theorem 9 Suppose P is a compact family of probability measures with respect to the
total variation metric. Suppose F is ¢ function family. Then the pair (F,P) is PAC
learnable if

sup N (e, F,dp) < oo, Ve
PcP

If F s a concept class, the condition is also necessary.

Theorem 10 Suppose P hes an interior point with respect to the total varation met-
ric. Suppose F is a concept cluss. Then the pair (F,P) is PAC learnable if and only
if VO-dim(F) < oo.

17.4.2 Learning with prior information

Let us recall the definition of the learning rate function in the fixed distribution case.
We have

r(m, €) = qu_P“{x € X dp[f, h(f;x)] > €}.

IS

This definition is ‘asymmetric’ in the samples x € X* and the target function f € F.
Specifically, an algorithm is still allowed to fail ‘occasionally’ for somne samples x, but
is expected to work at a uniform rate for every unknown function f. It is reasonable
therefore to consider an alternate formulation of learning in which there is a prior
probability distribution ¢ on the set F, and it is known that the unknown target
function f is distributed according to (). Let us define the quantity

a(m,e) == (Q x PY){f,x) : dplf, him (3 X)] > €].

Thus, after m tabelled samples have been drawn, it can be stated with confidence
1 — s(m, ) that the generalization error is no larger than e. However, in contrast
with the conventional definition of PAC learning as exemplified by the definition of
r(m, €), in the present case the poor performance of the algorithm (in the sense that
the generalization error exceeds €) can be caused either by an unrepresentative set of
samples x or by a difficult target function f. This formulation might be called a ‘fully
stochastic’ formulation.
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Definition 6 The triplet (F, P, Q) is said to be learnable with prior information
(WPI) if there exists an algorithm such that s(im,e) — 0 as m — o0.

It is clear that PAC learnability implies learnability WPIL It would be interesting to
see how much weaker learnability WPI is compared to PAC learnability. In this study,
a central role is played by a notion called dispersability. Recall that a ‘partition’ = of
the set F is a collection of sets # = {G;}/_, such that G, G; = @ and U_,G; = F
Here r is called the cardinality of the partition.

Definition 7 Given the family F with the probability measure @}, suppose m = {G,}i_,
8 @ partition of F of cardinality r. Then the dispersion of the partition © is defined
as

disp(P JnI/ dp(g, f) Q(dg).
i=1

The triplet (F, P, Q) is said to be dispersable if
lim inf disp(w) = 0.

=00 |q1-|_1~

Note that the guantity fgi dp(g, f) Q(dg) measures the ‘spread’ of the set G; with
respect. to the probability measures P and ). Thus the quantity disp(#) measures how
small the total spread of F is under the partition . The set F is ‘dispersable’ if the
dispersion of F can be made arbitrarily small by choosing partitions of arbitrarily large
cardinality.

Now we can state the main result on learning WPI. This result is due to [3].

Theorem 11 The triplet (F, P,Q) is learnable WPI if it is dispersable. In case F is
o concept class, the dispersability of (F, P,Q) is also necessary for learnobility WPI

There is a corresponding version of dispersability for the distribution-free case that
provides a sufficient condition for distribution-free learnability WPI, and is also neces-
sary in case F is a concept class; see [3] for details.

The discussion is concluded with the following result, which shows that tearnability
WPI is automatically guaranteed whenever the set X is separable.

Theorem 12 Suppose X is a separable metric space and that & is the associated Borel
o-algebra. Lei P be an arbitrary probability measure on (X,8). Suppose F C [0,1)*
be a collection of measurable functions end let () be an arbitrary probabilily measure
on F. Then (F, P,Q) is dispersoble.

17.5 Learning with Dependent Inputs

17.5.1 Problem formulations

Until now we have studied the learning problem under the assumpticn that the training
sample sequence x is the sample path of an i.i.d. sequence. This assumption allows us
to use standard inequalities such as Hoeffding's inequality in estimating the learning
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rate in various situations. However, the assumption tha¢ the training samples are i.i.d.
eflectively restricts the PAC learning formulation to the case where the function f to
be learnt is a ‘static’ function, in the sense that the current oracle output f; depends
only on the current input z;. However, there are many situations in control and system
theory in which the current output f; depends on the entire past input &, 2,_y,.... It
is desirable to have a version of PAC learning that caters to this more general situation.

Hereafter, let X denote the doubly infinite cartesian product ]_[fi_ o %y and let

&% denote the corresponding product o-algebra associated with §. Suppose P is a
stationary probability measure on the product space (X'*°, §%%), and suppose { X, }52_ ..
is a stochastic process with the law P. Note that, in contrast to the previous notation,
we are now assuming that the sample sequence is a two-sided stochastic process. This
is done to avoid some technicalities associated with one-sided stochastic processes.
Moreover, it is well-known that any one-sided stochastic process can be embedded
within a two-sided process. However, it is assumed that the learning process has a
definite starting time, which is denoted as ¢ = 0. Let P, denote the one-dimensional
marginal law of P. Thus each of the coordinate random variables A7 has the law Fy.
In case the stochastic process i3 i.1.d., we have P = (FPy)™. But this need not be so in
the general case.

It is a straight-forward matter to extend the definitions of the UCEMUT property
and PAC learning to the case where the input samples are not necessarily i.i.d. Specifi-
cally, all one has to do is to replace the probability measure P* by P in the definitions
of ¢(m.¢, P) and r(m,¢). Thus we have

mising (N, & P) 1= P{x € X : sup |En(f; x) — E(f, By)| > €},
feF

Prixing{77, €) = 8Up P{x € X 1 dp [, hun(f; %)) > €}
ferF
We shall also use the symbols gig(m, €, ﬁg) and ria(m, €) defined in the obvious manner,
namely:

Giia(m, €, ﬁo) o (ﬁo)‘”{x e X® :§u£|gm(f;x) - E(f, ﬁg)l > ¢},
€

Tia(m, €) 1= ?EE(PO)W{X € X% dg [f, hn(f1%)] > €},
In other words, gsa (i, €, 150) is What Gmixing (72, €, ;‘5) would be if the samples were i.i.d.,
and similarly for ryiing (712, €).

The above notation addresses the situation when there is just one known fixed
probability measure P. If P itself is unknown and is known only to belong to some
family P, then all one has to do is to take the supremum of both these quantities with
respect to P € P,

17.5.2 Definition of S-mixing

The main approach to studying the problems of UCEM and PAC learning in the case
of dependent inputs is to assume that the stochastic process generating the sample
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sequence is ‘nearly’ i.1.d., specifically, that the dependence of X, on A, approaches
zero as the temporal separation & — o0o. In the literature, there are several ways of
defining the dependence coefficient between two random variables. Among these, the a-
mixing coefficient, the S-mixing coefficient, and the ¢-mixing coefficient are among the
most widely used. For the present purposes, it turns out that the S-mixing coefficient
15 most appropriate.

Given the stochastic process {A;}, let £2_ denote the o-algebra generated by the
random variables X} ¢ < 0, and let ¢° denote the g-algebra generated by the random
variables X,, ¢ > k. Finally, let f’:nl denote the o-algebra generated by X° . and Z§°.
Note that f’:_l is precisely the g-algebra generated by all X except &), ..., Xx_y. This
35 the meaning of the notation. Given the probability measure ﬁ, there exists a unique
probability measure, which is denoted here by 75( P), such that the following properties
hold:

1. The joint law of X;,t < 0 is the same under both P and Tg(j;).
2. The joint law of X;,¢ > k is the same under both P and TU(JE').
3. Under TO()S), the variables A}, ¢t > 1 are jndependent of the variables A}, { < 0.

Now we can define the S-mixing coefficient.
Definition 8 The S-mixing coefficient of the stochastic process { X} is defined us

sup 7o(P)(A) ~ P(A)].
AcTi !

The stochastic process {X,} is seid to be J-mixing if G(k) — 0 as k — 0, and ¥s said
to be geometrically S-mixing if there exists a constant » < 1 such that B(k) = O(A*).

A very useful inequality for F-mixing stochastic processes is given next.

Lemma 1 Suppose f: X® — [0,1] and that f depends only on Xy, Xy, ..., Xy.. Then

|E(f, P) = E(f,(Po)™)| < I(k).

The point of the lemma is as follows: Suppose we compute the expected value of
f 1+ X° — [0,1] assuming that the random variables X; are all independent. Then the
maximum error we make in doing 50 is no larger than {8(k).

17.5.3 UCEM and PAC learning with S-mixing inputs

In this subsection we present some results on the UCEM and PAC learning problems
when the i.1.d. input sequence is replaced by a S-mixing input sequence.

The first result concerns the UCEM property. It is taken from |8} and generalizes
an earlier result from [13).
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Theorem 13 Suppose {X,} 4s ¢ 3-mizing stationary stochastic process with the law P,
and let Py denote the one-dimensional marginal of P. Suppose that the pair (F, (ﬁo)m)
has the UCEM property. Then the pair (F, Iﬂ;) also has the UCEM property. Moreover,
choose a sequence of infegers {ky} such that kyn < m ¥Ym, and define iy, == |m/kn].
Then

Grining(72, € PY < e {max{gigllm + 1, Po), giia{lm, €, Po)} + mB(ky).

To discuss PAC learning with a B-mixing input sequence, we first introduce an
auxiliary notion, called a quasi sub-additive algorithm. Suppose {A,,} is an algorithm.
Suppose we are given a training input sequence {xj, &s,...}; equivalently, snppose we
are given a sample path of a doubly infinite stochastic process, and that learning starts
at time { = 0. After i time instants, we can form the hypothesis

hm(f;x) = Am[{xla f(xl))i ] (xm,f(_r:m))]

Now suppose k& < is arbitrary. Define [ = |m/k], and let + = m — lk. Define the &
sets

Hi={Lk+1,2k+1,...tk+1},..., L i={rk+r2k+r. .. lk+7}
L= {r 4L kr+1, (= Dk+r+1}... L= {k 2k, ... Ik}

Note that the sets /; are pairwise disjoint, and that their union is precisely {1,...,m}.
Now let us run the algorithm on each of these subsample sequences, as follows:

G (5 %) = Al f(210)), - @, @)

and so on. In general, we have

Gma(fi %) = A|;,;[(:§?_, HEDIRA-DAL

Thus g,.:(f;%) is the hypothesis generated by using only a subset of the labelled
samples. Now the algorithm is said to be quasi sub-additive if it is the case that

delf, h(f; )] £ Z %dp[f, gm i (f1%)].

This complicated-looking inequality has a simple interpretation. If we run the learning
algorithm on all m labelled samples, the resulting generalization error is dp|f, i ( f; X))
On the other hand, suppose we divide the m labelled samples into &k blocks of nearly
equal length. If & divides m (so that r = Q), then all & blocks have equal length.
Otherwise r blocks will have one more element than the rest. Let us run the same
learning algorithm on each of these & blocks. Then the resulting generalization error
is dp[f, gmi(f;x)] for block . Now the quasi sub-additivity inequality states simply
that the generalization error that we get by using all the labelled samples is no larger
than the average of the & generalization errors we get by using only roughly m/k sub-
samples. Since one would naturally expect that the generalization error decreases as
more and more samples are used, this assumption appears to be very natural. In fact,
it is shown below that in some natural situations such as consistent learnability, the
agsumption does hold.

The main result for quasi sub-additive learning algorithms is given next. It is taken
from [9].
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Theorem 14 Suppose {A,} is ¢ quast sub-additive learning algorithm, and is PAC
for a pair (F,P). Let r3(m,€) denote the learning rate of the algorithm when the
training samples are i.5.d. Suppose now the same algorithm is run on a B-miving input
sequence. Then the algorithm conlinues to be PAC. Moreover. if we choose a sequence
{km} such that kn < m for all m and define 1, 1= |m/kn], we have that

Tnuxmg(m E) < k max{r,.d( m + 1 6) Tlld my € )} + mﬁ )

To illustrate a concrete application of this theorem, let us consider the problem of
consistent learnability. A pair (F, P) is said to be consistently learnable if every
consistent algorithm is PAC. Define the quantity

bl f, 9 %) : Zlf(xz — glz.)|,

and note that an(f,g; x) denotes the empirical estimate of the distance dp(f, g) based
on the first 7n samples in x. Now define the quantity

B (x) 1= sup{dp(f,g) : g € F and dn(f, g;x) = 0},

It can be shown (|6] and also [18], Theorem 6.4) that the pair (F, P) is consistently
learnable if and onty if

P(m,e) i=sup PP{X € X ! ¢ s(x) > €} = 0 asm — oo,
feF

Let us now examine the hehaviour of the stochastic process {¢m, s(x)} for a fixed
feF I f(z) = g(z;) for all ¢ between 1 and m, it is also so for every subset of the
z;’s. Hence if we denote x; := {x;,7 € 1.}, it follows from the definition of ¢ that

Priats (06) 2 b, g (%), Vi

In particular, it is certainly the case that ¢n, f(x) < Zi‘z lml dr.1.¢(x;). Hence, by
mimicking the proof of Theorem 14 it can be shown that if {¢, s(x)} approaches zero

with an i.i.d. input sequence, it also does so when {2;} is the sample path of a S-mixing
stochastic process. Finally, the fact that the algorithm is consistent implies that

dplf, h(f;%)] < @y (x), Y, x, f.

In turn this implies that the algorithm is PAC. (For a more careful argument, which
is the same as the above in essence, see [9].)

17.6 Applications to Learning with Inputs Gener-
ated by a Markov Chain

To apply the results of the preceding section to a concrete situation, it is desirable to
have some specific results that tell us when a stochastic process is S-mixing., One such
very useful result is given here, based on some fundamental work in [11}.
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The problem of PAC learning with a training sequence generated by a Markov chain
is studied in [4, 12]. Thus the present results are an improvement over the contents of
these papers.

Throughout, we consider Markov chains described by the recursion relation

Tear = [, &), (17.1)

where 1; € R* ¢, € R™ for some integers &, m, and {e,} is a stationary noise sequence.
It is assumed that the following assumnptions are satisfied:

Al. The function f : R¥ x R™ — R* is ‘smooth,’ j.e., is C*, and in addition, [ is
globally Lipschitz continuous. Thus there exist constants L and X such that

|fl,u) = fy,0)| < Lz =y + Ku = o], (17.2)

A2. The noise sequence {¢;} is i.i.d., has finite variance, and has a continuous mul-
tivariate density function ¢f-) that is positive in some neighbourhood £ of the
origin in R™.

A3. When ¢, = 0 ¥t, the ‘unforced’ system z,.; = f(z:,0) is globally exponen-
tially stable with the origin as the unique globally attractive equilibrium. This
nieans that there exist constants M’ and A < 1 such that |z < M’|xo|A¢, ¥Vt >
1, Vryg. By taking M := max{M’, 1}, one can write the above inequality as
|z:| < Mlao| A, ¥t > 0, V.

Ad. The associated deterministic control system z,,., = f(x, ) is ‘globally forward
accessible’ from the origin with the control set 2. In other words, for every
y € B", there exist a time N and a control sequence {ug,...,uy-1} € £ such
that, with 29 = 0 we have a2y = 7.

A5. The associated deterministic control system is ‘locally controllable’ to the origin
with the control set 2. This means that there exists a neighbourhood B of the
origin in R* such that, for every y € B there exist a time N and a control sequence
{ao, ..., un_1} C £ such that, with zp = y we have zy = 0.

Now we can state the main resuit.

Theorem 15 Suppose assumptions Al through A5 hold. Then the state sequence {z,}
s geomebrically 3-miving.

17.7 Conclusions

In this chapter we have studied the problems of the uniform convergence of empiri-
cal means (UCEM) and of probably approximately correct (PAC) learning. We have
derived the classical results, and indicated some extensions to the case of dependent
inputs.
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Chapter 18

Neural Networks in Measurement
Systems (an engineering view)

Gabor Horvath

Abstract. The goal of this chapter is to show that neural networks can play
an important role in measurement. systems. The chapter formulates relevant
engineering questions, some of them are in clese relation to the basic theoretical
questions of neural computation, others are related only to practical applications.
The chapter contrasts the theoretical results with the engineering questions,
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18.1 Introduction

From an engineering point of view neural networks are efficient tools to solve different
practical problems. Since the last years of the eighties many successful neural network-
based applications have been developed in various application areas. It is enough to
mention only a few well know examples as the NETtalk system [1] that converts English
speech to phonemes, or ALVINN, a neural network that learns to steer a vehicle along
a single lane of a highway [2], but one can mention the many recognition, modeling
and control tasks e.g. [3]-[7] have been solved using different neural networks. Most of
these and similar applications were developed using a practitioner’s approach, which
is somewhat different even from the classical way of engineering problem solving. The
neural networks applied for these tasks were not designed in the classical sense. Instead,
in the construction of the neural sclutions the trial and error approach played a great
role.

This way of the development of neural solutions was justified by the good perfor-
mance of these applications. With neural networks rather complex problems could be
solved much more easily than using classical engineering solutions. In spite of these
successful applications more and more questions were arising which could not be an-
swered using the practitioner’'s approach. What is the reason of this success? Why
neural networks are so capable computing devices? Is there a well-defined way to de-
sign a neural network with given capability? Some general answers carue soon, and
more and more specific answers are coming {rom mathematics, where the results are
formulated in theorems. The statements of theorems are important not only from a
theoretical view, but alse from the viewpoint of practice.

However, from an engineering point of view, some further questions need answers.
How can we apply these results for practical applications? Can they be applied at
all in practice? What conditions must be fulfilled for the validity of the results and
what will happen if these conditions are not fulfilled or only partly fulfilled? A further
problem from the engineering viewpoint is that, in solving a practical task, it is not
enough if we can prove that a solution exists. We must realize this solution, we must
impleruent the peural network and during implementation several further constraints
must be satisfed; moreover these constraints are often in contradiction with those of
the theoretical resuits.

The goal of this chapter is to formulate such questions in relation to measurement
problems. First a short introduction is given about the measurement problems. It will
be shown that measurement is closely related to modeling, so neural networks can play
an important role in solving measurement problems as general modeling tools.

Next we review the most important practical questions about neural networks.
What capabilities of neural networks can be utilised in measurement systems? How
can we construct a neural network for a given task? How can we validate the neural
solution? This section also gives an overview of the relevant theoretical results and
contrasts these results and the engineering questions. Besides the classical neuyral
architectures the chapter deals with some basic resnits of kernel methods and support
vector machines as they give answers to many questions that cannot be answered using
classical neural approaches.

At the end we deal with the nature of the knowledge in measurement problems, and
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Figure 18.1: The basic steps of system modeling

with some special questions of implementation. This part overviews the most important
constraints coming from implementation, and gives some possible ways, how to satisfy
them at the expense of some compromise.

18.2 Measurement and Modeling

Measurement ig the primary way of information collection. It is an empirical process
to obtain experimental data (observations), and to extract knowledge from the ob-
servations, Measurement can be defined only in relation to modeling. It is always
emmbedded in modeling, an autonomous phase of the whole modeling process. The
relation of modeling and measurement is shown in Figure 18.1.

[n every modeling task the following main steps can be distinguished:

collection of prior information,

selection of model set, model structure,

e experiment design and data collection,

model parameter estimation,

model validation.

In system modeling many different approaches can be applied depending on the avail-
able prior information, the goal of modeling, what part of the world has to be modeled
and what aspects are to be considered, efc.
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Model set selection means that the relation between inputs and outputs of a system
is formulated in & general mathematical form. This mathematical form defines the
structure of the mode! and defines a set of parameters, the values of which have to be
determined using the observations. Model classes can be categorized in different ways
depending on the aspects taken into consideration. Based on the system characteristics
we can distinguish hetween

e static or dynamic,

deterministic or stochastic,

continuous-time or discrete-time,

lumnped parameter or distributed parameter,
e linear or non-linear,
e time invariant or time variant models.

All these differentiations are important for the further steps of the whole modeling
process.

Independently from the previous aspect we can build perametric or nonparametric
models. In parametric models a definite model structure is selected and only a limited
numbher of parameters must be determined using observations. In many cases there is
some physical insight about the system, we know what important parts of the system
can be distinguished, how these parts are connected, so we know the structure of
the model. In these cases physical models can be built. Physical models are typical
parametric models. In nonparametric models there is no definite model structure and
the system’s behavior is described by the response of the system for special excitation
signal. Nonparametric models can be built if we have less knowledge about the system.
Typical nonparametric description of a (linear) system is the impulse response or the
frequency characteristics.

Based on prior information we can speak about white box, grey box or black box
models. When both the structure and the parameters of the model are completely
known — complete physical knowledge is available — we have a white box model. White
box models can be constructed from the prior information without the need of any
observations. When the model construction is based only on cbserved data, we speak
about input-output or behavioral model. An input-output model is often called em-
pirical or black bor model as the system to be modeled is considered as a black box,
which is characterized with its input-output behavior without any detailed informa-
tion about its structure. In black box modeling the model structure does not reflect
the structure of the physical system, thug the elements of the model structure have
no physical meaning. Instead, such model structure has to be chosen that is flexible
enough to represent a large class of systems. The white box and the black bex models
represent extrerne situations. In most of the modeling tasks we have certain physical
information, however this is not complete (grey box modeling). We can construct a
model, the structure of which — at least partly — reflects the available physical insight.
The parameters of the model, however, are not known or only partly known, and they



Neural Networks in Measurement Systems 379

must be estimated from observed data. The model will be fitted empirically using
observations. In black box modeling — contrary to physical — a general model class
has to be selected, where the model structure is not determined entirely by selecting
the model class. We have to determine the size of the structure, the number of model
parameters (e.g. in a polynomial model clags the maximum order of the polynomial,
etc.). In black box modeling both the model size (model complexity) and the numerical
values of the parameters should be determined using the observations. In all cases we
assume that the system to be modeled implements an f : R® — R mapping, however
the scalar output is used only for simplicity. The mapping that determines the rela-
tion between inputs and outputs of the system y*(¢) = f (x*(f)), js represented by a
set of input-output measurement data {x(:),y(:)}il The observation data usually
differ from the inputs and outputs of the system, as neither x*(z), nor y*(¢) can be
observed directly, the observations are burdened with measurement noise as shown in
Figure 18.2. Here D, .(¢) and n,,(4) denotes the measurement noise at the input
and output respectively. In many cases the input measurement noise can be neglected
and the relation between the input and the output observations can be written as
y(i) = f(x* (%)) + nmy(é). This means that only an additive noise component can
be found at the output observations. However, in most of the practical measurement
problems both the input and the cutput observations are noisy, so x = x* + n,, , and
Y=Y + Nmye

In modeling the mapping of the model f;; will approximate in some sense the
mapping of the system. The model also implements an R* — R mapping ya(3) =
fr (x(2), ©), where yyy is the output of the model and © is its parameter vector. In
this respect both physical and black box models can be considered as parametric ones,
where first the model structure, then the model parameters must be determined. In
this chapter we assume that the input-output mapping of the system to be modeled
can be described by a continuous function y* = f(x*) where f € C. From this point
of view modeling is a function approximation probiem: the input-output mapping of
the model, fi(.) approximates the mapping of the system f(.). This relationship can
be expressed in several different forms, however, a general form can be described as a

weighted sum of given basis functions {G,(.}} - :

ym(i) = ) a;G; (x(2)) (18.1)

J=l

where the parameter vector is defined as © = [aja» . .. cz.m]T‘ There are many possible
basis function sets, which can be applied successfully in black-box system modeling
(nonlinear function approximation}. For example we can form polynomial functions,
when the mapping of the system is approximated by a polynomial, or we can use
complex exponentials, which means, that the mapping of the system is approximated
by a Fourier series. But a Taylor expansion, wavelets or Volterra series can also be
applied (8], [9]. Among the black box structures neural networks play an important
role too.

The selection between the possibilities is usually based on prior information about
the system, or on some general (theoretical or practical) advantages or drawbacks of
the different biack box architectures. Having selected a basis function set two problems



380 (. Horvath

Input  x° System v Ou'rput>
, ;l
Measurement noise
X Y

Figure 18.2: A general roeasurernent setup

must be solved: (i) how many basis functions are required in this representation, and
(ii) how the parameters of the model can be estimated. The first question belongs to
the model selection problem, the selection of the size of the model, the second question
is a parameter estimation problem. The answers to these questions can be divided into
two groups. There are general solutions, which are valid for ail black-box modeling
approaches, and there are special results which apply only for a given black-box archi-
tecture. The general answers are related mainly to the model size problem, while for
the parameter estimation task different methods have been developed for the different
black-box architectures.

Experiment design. For collecting observations we have to design experiments,
to design input signals, and measure the output signals as responses for the input ones.
In the step of experiment design the circumstances of input-output data collection is
determined, the excitation signals are designed. The construction of excitation signals
depends on the prior knowledge about the system. E.g. different excitation signals have
to be used for modeling a linear and a non-linear system; the excitation depends on
whether the system is static or dynamic, deterministic or stochastic, etc. In non-linear
system modeling the selection of excitation signals depends on the required validity
range of the model. Different excitations can be used if model validity is required only
for the neighborhood of an operating point or if such model is needed that reflects some
important aspects of the system in many different operating points, etc.

In general we have to select input signals that will excite the system in such a
way that the input-output data can be observed during the experiment cairy enough
knowledge about the system. In system modeling it is often required to design new and
significantly modified experiments during the identification process, where the knowl-
edge collected from the previous experiments are utilized. In many cases experiment
design means to determine what signals can be measured at all, so this step depends
largely on the practical modeling task. For getting observations from o physical system
sensors are used, so in experiment design sensors have a great role. In many measure-
ment (modeling) tasks the observation of physical quantities cannot be reached directly,
only indirect ways or using the combination of several sensors signals can result in rel-
evant observation data. There are modeling problems where there is no possibility to
design excitation, we can only measure the input and cutput data in normal operating
conditions. This situation may happen when experiment. design would be too expensive
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Figure 18.3: The paraineter estimation process

(see e.g.[7]), or when the system to be modeled is an autonomous one, which operates
without explicit input signals, etc. The general and special questions of experiment
design are beyond the scope of this chapter, interested readers can consult relevant
books, e.g. [10], [11].

Model parameter estimation. In parametric models the relation between inputs
and outputs of a system is formulated in a mathematical forn, where this mathematical
form defines the structure of the model and defines a set of parameters. The values of
the parameters have to be determined using the observations. There are well-developed
methods, which give estimnates for the numerical values of the parameters. These pa-
rameter estimation methods utilize different types of knowledge available about the
system to be modeled. We may have prior information about the nature of the param-
eters to be determined (e.g. we may have physical knowledge about the possible range
of certain parameters, we may have information if some parameters are deterministic
ones or can be considered as random variables with known probahility distribution,
etc.), but the essential part of the knowledge used for parameter estimation is a set of
measurement data, a set of observations about the system.

Parameter estimation is a way of adjusting the model parameters for fitting the
observations according to some criterion or cost function. The parameter estimation
process is shown in Figure 18.3. Depending on the cost function (which also may
depend on the prior information about our system) we can speak e.g. about least
square (LS) estimation, weighted least square {(WLS) estimation, maximum likelihood
(ML) estimation or Bayes estimation [12].

A cost function is a measure of the quality of the model, it is a function of the error
between the model output ya and the system output

C@) =C(y—yu(® 2Z")) (18.2)
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where Z¥ denotes the set of measured data pairs

ZP = {(x(), 9}, - (18.3)

If both model structure and model size are fixed, model parameters have to be
estimated. For parameter estimation a cost function must be selected. The most
common measure of discrepancy is the sum of squared errors,

o
Ce(®) = 5> (y() —yu(©,9), (18.4)
=

S]]

1.e. usually quadratic cost functions are used. Besides quadratic cost functions other
ones can also be applied. The selection of cost function depends on the characteristics
of measurement noise. For Gaussian additive output noise — which is a good model of
the noise in most of the measurement problems — quadratic cost function is optimal,
however for other noise characteristics ebsolute cost function, e-tnsensitive function,
etc. should be preferred. [f the input measurement noise cannot be neglected the
estimation can be based on the errors-in-variables (EIV) cost function [13], [14]:

P . Y] . ot vy 2
CEIV(G)) — %Z (y("ﬁ) _g;f(@!?’)) + (SI?('E) ;;I: [%)) (185)
= =1 W x,1

where (i) is an estimate of the true, but unknown input = (4), and o7 ; and o} ; ave
the input and output noise variances, respectively.

The parameter estimate based on the quadratic criterion function is the least square
estimate:

O, =arg min C(O). (18.6)

The observations are noisy measurements, so if something is known about the sta-
tistical properties of the measurement noise some statistical estimation can be applied.
One of the most common statistical estimation is maximum likelihood (ML) estimation,
when we select the estimate, which makes the given observations most probable:

.

Oy = arg max f (yp | xp, © }, (18.7)

where f (yp | xp, ©) denotes the conditional probability density function of the obser-
vations. If the parameter to he estimated is a random variable and if its probability
density function is known, we can apply Bayes estimation. Although Bayes estimation
has certain optimality property, it is rarely applied in practice because it requires more
prior information than ML or LS estimations. Detailed discussion of parameter esti-
mation methods, especially for linear dynamic systems, see e.g. [10], {11}, [12], etc.

Model validation. The final step of system modeling is the velidafion of the
mode). For validation a proper criterion as a fitness of the model must be used. The
choice of thig criterion is extremely important as it determines a measure of the quality
of the model. From the result of the validation we can decide whether or not the
model is good enough for our purpose. If not, an iterative cvcle of structure selection
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(model class and model size selection), experiment design, parameter estimation and
model evaluation must be repeated until a suitable representation is found; so system
modeling is an iterative process.

For statistical estimations the estimate of & parameter is never a numerical value
only, the estimate is a random variable and its statistical features should also be given.
The most important features are the expected value and the variance or covariance
matrix. An important quality feature if the estimate is biased or unbiased. If the
expected value of the estimate equals to the true value of the parameter the estimate
is unbiased, otherwise it is biased. The variance gives information about the dispersion
of the estimate. The smaller is the variance, the better is the estimate. Por certain
statistical estimates there exists a lower bound of the variance. This bound given by
the Cramer Rao inequality. The Cramer Rao bound is the key quantity to determine
if the estimate is efficient (in this case the lower bound is reached) or not. [t is proved
that i efficient estimate exists, the ML estimate is efficient. Variance has a role in
determining the confidence interval of the measurement result, which tells us how close
the estimate is to the true value of the parameter. All these quality parareters depend
on the number and quality (e.g. measurement noise characteristics) of observation data
used for the estimation. In black-box modeling the characterization of the quality of
the model can be given using observations. This problem is closely related to the
validation of the neural models, so this problem will be discussed in the next section.

18.3 Neural Networks

Neural networks are distributed information processing systems made up of a great
number of highly interconnected identical or similar simple processing units [15]. The
processing units implement nonlinear mappings between their inputs and output ¢ :
R" — IR, where the mapping depends on the type of the processing unit. For per-
ceptrons a ¢ activation function is used: ¢(z) = $(w7'x), where ¢(.) is usually a
sigmoidal function, like logistic ¢(s) = 1+L—8 or the hyperbolic tangent function, both
of which are continucus, bounded, strictly monotonically increasing and ¢ : R — [0, 1]
(lim,— e (s) = 0 and Hmy_o P(s) =1 ) or ¢ R — [=1,1] { lim,—_o ¢(s) = —1 and
lim, .o ¢(s) = 1 ) respectively. A multi-layer perceptron with sigmoidal processing
units in its hidden layer and with linear output unit computes functions in the form of

Frape(x,w® wi?) ZW(ZJqf? (x Wm) Zw @ (Z x,,w ) (18.8)

=0

Here w!!) = [WE]],WQ), o wg,)] is the weight vector of the first computing layer

(what is usually called hidden layver), where w;l) e R™! 7 =1,2...,mis the weight
vector of the 5 hidden neuron, zg = 1, so wé;-) is a bias, and w(® = [ e W ,w,(ﬁ’]
15 the weight vector of the linear output layer.

For RBF networks radial basis functions ¢ : R — R, are used in the processing
units, where R, denotes the set of positive real numbers. The hasis functions compute

w(x) = (M), where ¢ € R™ is a center vector, ¢ is a width parameter of the
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basis function and ||.|| is a norm in R". The most common radial basis function is the
. . 1.2
Gaussian function ¢(s) = e¢72*".

The mapping of an RBF network can be given as a weighted sum of basis functions:

. lIx — ¢l
x,c,w)= D | ——— 18.9
Sfrer(x,c, w) ;:1 ’w;é( - (18.9)
where w = {w,, ws, ..., wm) and w; € R. Both MLPs and RBF network are feedforward

neural networks.

In designing a neural model several questions must be answered. Perhaps the
most important practical question concerning feedforward neural networks is about
their modeling capability. Modeling capability decides if they can be used for system
modeling as general black box architectures. The answer for this practical question
came from mathematics, although it is an answer for a much more general theoretical
question: what functions can be approximated by feedforward networks? The main
result is that a one-hidden-layer feedforward MLP with sufficient number of hidden
processing elements of sigmoidal type, and a single linear output neuron is capable of
approximating any continuous function f: R" — R to any desired accuracy.

There are several slightly different mathematical results formulating this universal
gpproximation capability, the most important of which were developed by Hornik et
al. [16], Cybenko [17), Funahashi [18], Leshno et al. [19], Blum and Li [20], etc. These
results use different ways of proof. There are certain differences between the function
classes into the functions to be approximated by a neural network belong, and there
are different conditions for the activation functions. Here only the result of Cybenko
is cited:

Let ¢ be any continuous sigmotd-type function, then given any continuous real-
valved function f on [0,1)" or ary other compact subset of R" and € > 0, there exist
vectors wl and w® | and o parameterized function frpp(x, w, w@) [0} = R
such that

|f($) - fMLF(Xa W(”,WQ})‘ <€ fO?‘ all x S [U, 1]ﬂ (1810)

where fare(x, WD, w®) is given by (18.8).

This and other similar theorems are existence theorems; they do not specify the
number of hidden processing units and these results cannot be used for constructing
a neural network for a given task. These theorems “only” prove that for a given task
of system modeling, where the mapping of the system is continuous, one can find an
MLP network. For RBF networks there are similar results. 3ee e.g. Park and Sandberg
[21], where the properties of the basis functions are exactly defined. The theoretical
results of approximation capability are of fundamental importance to any applications.
Althongh they cannot be applied directly in practice, the lack of these results would
mean that neural networks cannot be used for approximating a large class of functions,
they cannot be applied for modeling.

The next practical question is about the size of ¢ feedforward network: how many
hidden layers and how many neurons in the hidden layers are required for a given
modeling task? The answer — at least partly — came again from mathematics. The
mathematical results — also in a more general form - are related to the complexity of
the network. Concerning the number of layers, the results of appreximation capability
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prove, that a single hidden layer is enough. However, some of the results concerning
the network complexity apply networks with two hidden layers. Moreover — in practice
too - there may be cases when simpler solution can be obtained if two-hidden-layer
networks are used; an acceptable solution may be reached more easily or the overall
complexity of the network may be smaller in spite of the two hidden layers.

For the number of hidden neurons the results are not so definite. The theoretical
results derive certain relations between the complexity of a feedforward neural network
and a bound for the error of approximation. For defining the approximation error some
measure of discrepancy or cost function (also called loss function) must be defined.
Using a cost function a risk functional can be defined as a measure of the model’s
fitness. If quadratic cost function is applied the risk funciional wiil be:

R(©) = / (5= far (%, @))% plx, )iy, (18.11)

where p(x, y) is the probability density function and @ is the parameter (weight) vector
of the network.

The complexity problem can be formulated in two ways: fixing the complexity (the
number of hidden units), the question is the approximation error for a given class of
functions; while if the allowed approximation error is fixed, the question is the number
of hidden units required (or at least a bound on the number of hidden units). Barron
[22] has an answer for the first question: he proves that for an MLP with one hidden
layer of m sigmoidal neurons, the integrated squared error of approximation, integrating
on a bounded subset of the n-dimensional input space is bounded by 2C*/m. More
precisely: for every function f belonging to the class defined below, and for every
sigmoidal function ¢, every probability measure g and every m > 1 there exists a
linear combination of sigmoidal functions fum(x) of the form (18.8) such that

[ 069 =m0 iy < £ (18.12)

where B, is a compact subset of R*, B, = {x: [|x|| < r} with r > 0.

The theorem applies only for functions for which the Fourier transform exists, and
where the fAirst moment of the magnitude distribution of the Fourier transform 7 is
bounded by (. Although the bound of the approximation error is O(1/m). According
to this result the order of magnitude of the number of neurons is independent of the
number of input variables ». However, the input dimension can appear indirectly
through the constant C;. €y which is a complexity measure of the function being
approximated can be large and can grow exponentially with respect to 7 for some class
of functions. Unfortunately in practical applications we have not enough information
to determine (s, so this result can be used directly neither for constructing neural
networks, nor for estimating the order of magnitude of the number of hidden neurons.

Similar dimension-independent bounds for networks with more general activation
functions were derived by Mhaskar and Micchellj (23]. The complexity of networks with
two hidden layers were discussed for example by Kurkova {24] and Maiorov and Pinkus
[25], but the complexity question is discussed by many other papers too {e.g. [26] and
[27]). It should be mentioned that — from the point of view of practical applications —
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these results are overly pessimistic. For example, according to the results of Kurkova
[24] the required number of hidden neurcns in the first hidden layer is ) = ni(l + 1),
where { > 2n + 1 if n > 2; and in the second one is my = [*({ + 1)", where the curse
of dimensionality can be seen easily (for example it would be impossible to realise
a network with 10-dimension inputs, because of the required encrmous number of
processing units). Thus, although this result is constructive, it has only theoretical
significance. On the other side an interesting aspect of the result of INurkova, is that
only the weights from the second hidden layer to the output layer depend on f, the
others are fixed, which means that such a network can be trained more easily. The
complexity bounds of Maiorov and Pinkus [25] are much more moderate, it needs only
3n and 6n + 3 hidden neurons in the first and the second hidden layer respectively.
However, this is not a constructive result. The reason of the pessimistic theoretical
results — at least partly — is, that they are too general, as they derive such bounds that
are valid for all functions (including certain pathological ones) of a function class. So
these theoretical results do not give satisfactory answers for the practical question, the
bounds cannot be used directly in the construction of neural networks.

A further preblem related to the complexity question is, that although the com-
plexity results give bounds on the number of hidden neurons, the bounds refer to
“hypothetical and ideal” networks. In the derivation of these results it is not taken
into consideration that the ideal networks will only be estimated when they are trained
using the observations. In practice we are interested not only in the theoretical pos-
sibilities of approximating a function with neural networks, but we have to consider,
that this approximation is based on training examples, so even if a network can ap-
proximate a given function, the question is remaining; can we construct a network
with prescribed accuracy using only the available limited number of observation data
(which can be used for training the network)? This question is more coruplex, than
the question of network complexity. From a practical point of view, perhaps this is the
most important question as it connects modeling capability (which depends on certain
complexity measure of the function to be approximated), the number of the training
points P, model complexity m, the input dimeusion 7 and modeling {mean squared)
error. The answer is related to the generalization capability of a network. The problem
of generalization can be formulated in the following way: we use a neural network
for appreximating a function using a finite training set, however we want the trained
network to give approximately good responses for such inputs, which were not used
during training. The generalization capability, the model’s fitness can be measured
by the risk functional (18.11). However, the probability density function p(x,y) is
unknown, we can use only the observations (training data) and instead of minimizing
the risk functional the empirical risk functional can be minimized which is defined as
the discrepancy (averaged squared error) between the system and the model outputs
at the training points:

Remp (© | P) = %Z (3 — far(xi, ©))° (18.13)

i=1

The empirical risk, the average error at the training points, however, can be mis-
leading. In neural network training a well-known phenomenon is overfitting, when the
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network’s response is getting better and better at the training points (the empirical
risk is less and less), while the network loses its generalization ability, the response
of the network in the points different from the training data became more erroneous.
A network with too many free parameters, a too complex network is very prone to
overfitting.

To obtain a proper complexity model several analytical modei selection criteria have
heen proposed. They are based on the fact, that as the correct model complexity is
not known a priori, it makes sense to postulate several models of different complexity.
One intuitive approach would be to construct models of increasing complexity until
the computed squared error reaches a minimum. However, as the expected error at the
training points is not a good measure of the guality, it alone might not be sufficient to
indicate when to terminate the search for the proper model complexity. Model com-
plexity must be penalized to aveid using too complex model structures. Based on this
approach several general analytical criteria were proposed. The most important ones
are the Akaike Information Criteria (AIC) [28] and the Minimum Description Length
(MDL) [29], which were developed for linear dynainic system modeling. Recently for
MLPs a network information criterion (NIC) was proposed by Amari et al. [30], which
was derived from AIC. The common feature of these criteria is that they have two
terms: the first one depends on the approximation error for the training data (i.e. the
empirical error), while the second is a penalty term. This penalty grows with the num-
her of free parameters. Thus, if the model is too simple it will give a large value for the
criterion because the residual training error is large, while a too complex model will
have a large value for the criterion because the complexity term is large. The drawback
of these criteria is that they need the construction of many different complexity models.
Moreover, NIC is computationally rather expensive because inverses of matrices have
to be computed [31].

To determine the proper model complexity, to get a network with good generaliza-
tion capability, often crossvalidation is used. For crossvalidation we need a set of test
data from the same problem that is not used in training, so crossvalidation computes
an empirical risk too. However, the average empirical risk in this case is determined not
in the training poiuts, but in such testing points which were not used during training.
The average error at the test data is a measure of the quality of the network. Although
crossvalidation is a practical way of qualifying a nefwork, it can be shown [32] that it
is asymptotically equivalent to certain analytical model selection (complexity) criteria.
Crossgvalidation is especially useful if the number of the available data points is rather
limited. In this case the leave-one-out version of crossvalidation can be used which
utilizes efficiently the available data points. An important property of the leave-one-
out crossvalidation is that it gives an asymptotically unbiased estimate of the expected
risk. Unfortunately the computational complexity of crossvalidation can be extremely
large for larger sets of data.

For obtaining a quality measure of a learning machine using the empirical risk a
different answer is given by statistical learning theory (SLT). SLT has been developed
by Vapnik and Chervonenkis and gives a strict theoretical basis of using empirical risk
minimization (ERM) inductive principle [33]. Statistical learning theory gives neces-
sary and sufficient conditions for consistency of the ERM inductive principle. The
ERM principle is consistent if both the (unknown) true risk (expected risk) R(@" | P)



388 G. Horvath

and the empirical risk Ren, (@7 | P) converge to the same limit £ (©°) = ning R (©)
as the number of observations tends to infinity. Here @° denotes the true but un-
known parameter vector. According to ERM principle the expected risk functional can
be replaced by the empirical risk functional, and for reaching a solution with small
expected risk a good strategy if we search for a solution with minimal empirical risk.
Statistical learning theory deals not only with the conditions of the convergence, but
also with the rate of convergence. [t also deals with the question of generalization,
moreover it suggest a new type of learning machine called support vector machine. In
statistical learning theory the VC-dimension plays a key role. VC-dimension is basi-
callv defined for indicator functions, where the output of the function for any valid
input can take only two values y € {0,1}, however this concept can be extended to
real valued functions too. If the learning machine implements an indicator function
it solves a two-class classification problem, while for general system modeling tasks
the mapping of the learning machine estimates a real-valued function (a regression
problem)}. VC-dimension of a set of indicator functions is defined as follows: a set of
functions has VC dimension A if do exist /i samples, but do not exist i + | samples
that can be shattered by this set of functions. Shattering means, that the h samples
can be separated in all 2* possible ways using the elements of the function set. In other
words VC-dimension is the maximum number of samples for which all possible binary
labelings c¢an be induced without error by a set of functions.

An important result of statistical learning theory is that the finiteness of the VC-
dimension is the necessary and sufficient condition for consistency of the ERM principle.
Moreover, finiteness of h implies fast convergence too. A further important result is
that by the help of VC-dimension upper bounds of the true expected risk can be
derived. These bounds depend on two expressions: the erupirical risk functional and
an expression of the VC-dimension. For binary classification case it is proved that with
probability at least 1 — # the inequality for the expected risk holds true [33]:

1

R(©) < Remp (©) + = (1+\/1+M), (18.14)

where op
h (028 + 1) — Ingy
3 .
The second term in the right hand side of (18.14) can be considered as confidence
interval, which shows the “closeness” of the expected risk and the empirical risk. For
real valued functions
Remp(©)

R(®) < 1-cyr(R)

where v(h) is given in (18.15), and we can assume that — for practical regression
problems — ¢ = 1.

From these bounds it can be seen, that for small expected risk it is not enough if
the empirical risk is small. We have to minimize simultaneously both the empirical risk
and the VC-dimension. The solution — which can be obtained as a tradeofl hetween
the quality of the approximation and the complexity of the approximating function —
can be obtained following the structural risk minimization (SRM) principle. The SRM

vih) =4

(18.15)

(18.16)
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principle provides a formal mechanism for choosing an optimal model complexity for
a finite number of sample points [34]. Structural risk minimization has been originally
suggested for classification problems, however it can be applied to any learning prob-
lems where the expected risk functional has to be minimized. In the implementation
of SRM principle support vector machines have an important role.

18.4 Support Vector Machines

Support Vector Machines have been developed recently [34]. Originally it was worked
out for linear two-class classification with margin, where margin means the minimal
distance from the separating hyperplane to the closest data points. SVM learning
machine seeks for an optimal separating hyperplane, where the margin is maximal. An
important and unique feature of this approach is that the solution is based only on
those data points, which are at the margin. These points are called support vectors.
The linear SVM can be extended to nonlinear one when first the problem is transformed
into a feature space using a set of nonlinear basis functions. In the feature space - which
can be very high dimensional - the data points can be separated linearly. An important
advantage of the SVM is that it is not necessary to implement this transformation and
to determine the separating hyperplane in the possibly very-high dimensional feature
space, instead a kernel representation can be used, where the solution is written as a
weighted sum of the values of certain kernel function evaluated at the support vectors.
SVM was extended to handle regression tasks, so support vector machines can be
used for function estirnation. As in modeling this is the most common task, we will give
a very short overview of support vector regression. Support vector regression is based
again on a training data set {x,, 1 },_,, where x; € R™ represents an n-dimensional
input vector and y; € R is the corresponding scalar target output. In the classical
Vapnik’s support vector regression machine e-insensitive toss function (L.) is used.

0 for [fix)—y] <e
Lely) = { |f(x) —y|—¢ otherwise (18.17)
In this case approximation errors smaller than e are ignored, while the larger ones are
punished in a linear way.

Qur goal again is to approximate a y¥* = f(x*) function, which represents the
dependence of the output " on the input x* of a system. The input vectors are pro-
jected into a higher dimensional feature space, using a set of nonlinear basis functions
w{x) : R" — R™. The dimensionality (m) of the new feature space is not defined, it fol-
lows from the method (it can even be infinite dimensional). The function is estimated
by projecting the input data to a higher dimensional feature space as follows:

It

=2 wips(x) =W p(x), w=fwpw,. ., wnl" s @ = [0a(x), 0102, pm(x)]"
=D
(18.18)
The o(x) basis function is assumed to be 1, therefore wy represents a bias term
b. The solution is obtained by minimizing the empirical risk functional, using the



390 G. Horvath

e-insensitive loss function:

"‘U|J—‘

P
Remp |f] = Z F (%, 9:)) (18.19)

with the constraint of |w||® < co to keep ||w|| as small as possible (¢ is & positive
constant). To deal with training points outside the € boundary, the {&}7, and {&'}/_,
slack variables are introduced:

y—wlp(x) <e+ &,

Wi (x:) = < €+, (18.20)
‘51: 2 03
& >0,
with i = ., P. The slack variables are to describe the penalty for the training

points lymg outmde the ¢ boundary. The measure of this cost is determined by the loss
function. The solution can be obtained by minimizing the cost function:

P
Fiw, £, £) = -W w+C (Z (& +€§)) : (18.21)
i—1
subject to the constraints
Y — ngp (x)<e+ &, 5{ >0 (18.22)
W (%) —y < e+ &, E >0,

with 2 = 1,..., P. The first term in (18.21) stands for the minimization of ||w||, while
the € constant is the trade-off parameter hefween this and the minimization of training
data errors. This constrained optimization can be defined as a Lagrangian function:

P
J(w,o,0',a,a' v, = Zm-l—o)-i-%ww Za,wgo( )—yitet+&] -
21 i1
P P
Z (wTola) —mi+ e+ &) = (n€+i&) (18.23)

i=1]

which can be solved more easily in its dual formn. The primal problem deals with a
convex cost function and linear constraints, therefore from this constrained optimisa-
tion problem a dual problem can be constructed. To do this the Karush—-Kuhn-Tucker
(KKT) conditions [35] are used. In the dual problem only the Lagrange multipliers the
values of & and o' are unknown:

P F
=2 D (ew—al) oy — ) K (xi,x,) (18.24)

=1 g1

(e, o) qu O+ o) —EZ (0 +cxf)

l\.‘.\ll—l

with constraints:
P
D lai+a)=00<wmsC 050 <C,i=1,2,...,P (18.25)

=1
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The dual problem can be solved using quadratic programming (QP), which results in
the ¢; and o Lagrange multipliers. The bias term b follows from the KKT conditions
[33]. Finally the response of the network for any input can be calculated as:

p
y= (o= a))K(x,x,)+b (18.26)
i=l

where K (x,x:) = @7 (x)(x:). It can he seen that for obtaining the response of the
network only those training data are to be used, where (o;—a’) # 0. The corresponding
indexes mark the input data points as support vectors, so the response of the learning
machine depends only on the support vectors instead of depending on all training
samples.

Besides its theoretical significance — from a practical point of view — support vector
machines have some useful properties. Having selected the kernel function, the support
vector approach solves “automatically” the model set selection (model size) problem;
the solution is unique, as it is a solution of a convex optimisation problem. SVM is
based on SRM, so the bounds of the expected risk give some information about its gen-
eralization capability. The construction of an SVM does not need an jterative training
process, etc. The selection of kernel function is an important step of the construction of
a support vector machine. The kernel function must fulfill certain conditions; for SVMs
kernels satisfying the conditions of Mercer’s theorem can be applied [34]. Most often
Gaussian kernels are used, when the resulted SVM corresponds to an RBF network
with Gaussian radial basis functions. As the SVM approach “automatically” solves
the network complexity problem, the size of the hidden layer is obtained as the result
of the QP procedure. Hidden neurons and support vectors correspond to each other,
50 the center problems of the RBF network is also solved, as the support vectors serve
as the basis function centers.

Besides Gaussian kernels other kernels functions satisfying the Mercer conditions are
applied in practice [35], however the selection or construction of kernels for given tasks
- a new field within the theory of support vector machines - opens new possibilities
[36].

Besides the advantages of SVMs — from a practical point of view — they have some
drawhacks. An important practical question that is not entirely solved, is the selection
of the kernel function parameters - for Gaussian kernels the width parameter ¢ - and
the value of € in the e-insensitive loss function. As the kernel parameters have effect on
the VC-dimension of the SVM, the generalization capability of the learning machine
depends on the selection of these free parameters. Unfortunately the VC-dimension-
based upper bounds are usually too pessimistic. An investigation about the practical
application of VC-dimension based bounds shows, that the hound derived this way
may be too conservative; up to an order of magnitude in SV classification [37]. Similar
results are presented in [38] with the conclusion that these bounds provide an approx-
imate, probably pessimistic guide to expected generalization error, and appear to be
applicable only in certain circumstances as an initial aid to design. On the other hand,
it was shown that VC-dimension helps to find the optimal value of the free kernel
parameters [39]. A further problem with the VC-dimension based learning regression
machine construction is that the VC-dimension may be infinite |[40]. Recently sev-
eral variants of VC-dimension (like fat-shattering dimension, covering number, entropy
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numher) were proposed for real valued functions, which may help to obtain significantly
improved, tighter bounds [40}, {41].

For an SVM the valve of ¢ in the ¢-insensitive loss function should alse be selected.
¢ has an effect on the smoothness of the SVM’s response and it affects the number of
support vectors, so both the complexity and the generalization capability of the network
depend on its value. There is also some connection between observation noise in the
training data and the value of e. Fixing the parameter € can be useful if the desired
accuracy of the approximation can be specified in advance. In some cases, however,
we want the solution to be as accurate as possible. For this case an automatic way
was proposed [42] to minimize ¢, where the value of ¢ is built inte the optimisation
task. However, from a practical point of view perhaps the most serious problem with
SVMs is the high algorithmic complexity and extensive memory requirements of the
required quadratic programming in large-scale tasks. Te overcome these problems,
several modifications of the method have been proposed.

These algorithms are mostly iterative methods that decompose the large problem
into smaller optimisation tasks [43]-[49]. These methods are commonly known as
“chunking” algorithms, where the methods mainly differ in the way they determine the
decomposed sub—problems. The traditional “chunking” may not reduce the problem
enough, therefore different modifications have been proposed. The two main techniques
are Osuna’s algorithm and SMO [50]. Osuna et al. suggest maximizing the reduced
QT sub-problems of a fixed size. The Sequential Miniral Optimisation (SMO) brakes
up the large quadratic problem into a series of smallest possible QP problems, which
are solved analytically [45]. These consist of only two Lagrange multipliers, which are
jointly optimised at every iteration. Successive overrelaxation (SOR) has alsoc been
applied to large SVM problems [51].

A different solution for reducing the computational complexity is the use of the
LS-SVM. The LS-SVM solves this problem by replacing the quadratic programming
with a simple matrix inversion. The basic idea is similar to that of the Vapnik’s SVMs.
The main differences are that the ineguality constraints of (21) are replaced by an
equality one, and instead of using the e-insensitive loss function quadratic loss function
is applied which corresponds to a form of ridge regression [52], {53]. The optimisation
problem and the constraint of LS-SVM are as follows:

w,bhe 1
i=

1
min F(w,e) = Ew w4+ C'= (Ze ) sty =wle{x)+b+e, (18.27)
for + = 1,..., P where e; are error variables and b is a bias. From this equation, along
with the conditions for optimality, one can construct the Lagrangian, which leads to

the following solution:

[ :| ‘ ] yU;y],. )yp] ]‘T []‘ ...,1],QT:[O.'O}CH,...T&P]T

(18.28)
where 2, , = I{(x;,x;). The response of LS-SVM can be obtained again as a weighted
sum of values of the kernel function:

0o 17
1Q+C-II

P
= K (x,%) + b (18.29)
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One of the main drawbacks of the least-squares solution is that it is not sparse,
meaning that it incorporates all training vectors in the resulting network. This loss of
sparseness is very important, especially in the light of the equivalence between SVMs
and sparse approximation [54}, {55]. Practically this means that the corresponding net
consists of — in s hidden layer — as many neurons, as the numbers of training vectors
are used. In most real life sitnations the resulting networks are unnecessarily large.

Recently for eliminating this drawback different complexity reducing roethods have
been developed. One of them is a pruning method, which eliminates some training
samples based on the sorted support vector spectrum (53], [56]. An other technique is
to reduce the € + C7'I matrix finding a “basis” (the quote indicates, that this basis
is only true under certain conditions) of this matrix [57}. This method is used for
bringing the matrix to the reduced row echelon form [58).

18.5 The Nature of Knowledge, Prior Information

In black box modeling the primary knowledge that can be used for model building is
a set. of input-output data. So the first task of modeling is to build a proper database.
One serious problem in real-world $asks is that in many cases the number of available
data is timited and rather smatl. There are further difficulties: the data are noisy, we
have to deal with the problem of missing data, and it is not a rare situation, that we
have to work with distorted or false data [59)].

The deficiency of the database can be compensated if prior information or additional
knowledge about the system is available. In general, in model building it is iinportant
to use all information available at all. This means that the learning machine must be
able to utiiise different representations of knowledge: measurement data, non-numerical
observations, symbolic knowledge (e.g. inference rules), etc.

Prior or additional information can bhe utilised in different ways. One way is to use
prior knowledge to create virtual data. With virtual examples the database can be
extended, and the larger database can be used in the construction of learning machine.
There are some good examples of the application of this approach. One well-known
example is ALVINN, the autonomous vehicle navigation system, which was trained
using camera pictures acquired when a human driver was steering the car [2]. These
acquired pictures, however, represent only the right way of navigation, as a2 human
driver is good at keeping the vehicle in the lane. To get further training examples that
represent non-standard situations, new “camera images” were generated using image
transformations. The extended database contained many images of unusual situations,
making it possible to achieve much better performance of the trained system. Similarly,
some legal transformations of images are used to generate virtual exampies in a face
recognition problem [60].

There are cases, however, where it is better if the prior information can be built
directly into the learning machine. This is the case when symbolic knowledge is avail-
able in the form of if-then-else rules. One efficient way of vtilising symbolic knowledge
is, if it is used to build the initial structure {(and to determine the initial values of
the parameters) of the learning machine, and this initial network is trained further
using the observed training data. The explanation-based learning approach [61] or the
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Knowledge-Based-Artificial Neural Network (KBANN) [62) and its variants are good
examples of using this approach. For the application of this approach such learning
machine can be used where its performance can be improved step-by-step. Incremental
learning capability is also a feature that helps the application of this approach.
Incremental learning means that new knowledge (new examples) can be trained
without forgetting the previous knowledge or when the new knowledge only modifies
the behaviour of the machine. This capability is also important when the adaptation of
the learning machine to the changing environment is required. In this respect learning
machines that can be trained iteratively are much more appropriate than machines
that use batch training. So MLP and especially the networks with local learning
and generalization like RBF and CMAC (networks with Jocal basis functions) are more
suitable for incremental learning so {ar than SVM, even if recently a recursive version of
the SVM learning was proposed making incremental and decremental learning possible

[63).

18.6 Questions Concerning Implementation

Until now we have discussed many questions, which have both theoretical and practical
importance. Although the main emphasis throughout this chapter is on the questions
of practical importance, most of these questions can only be answered using theoretical
results; these questions can be regarded as theoretical ones, which have direct connec-
tion to practice. However, in addition to these questions there are further ones, which
are entively related to the practical applications. These are the special questions of
implementation.

In measurement systems these questions may be essentially important, as the an-
swers tell us whether or not a learning machine can be applied for a given application.
In some applications the constraints on the technological parameters can be so strict,
that all other aspects are of secondary rank.

In a measurement system there is often a need for real-time operation, when the
solution must fulfill certain time constraints both in the operation (recall) and in the
training phase. The latter is especially important if the learning machine is applied
in a changing environment, where the solution must foliow these changes in real-time.
For applications, where real-time adaptation is required, batch learning cannot be
used, the requirement can be satisfied only if on-line recursive learning is possible.
The algorithmic complexity of the learning process and the lack or the possibility of
incremental learning are also important features from this respect. The time constraints
are important in applications like real time control [64], detection of phenomena of very
short duration [65], or real-time recognition of patterns [66), etc.

In measurement systems, especially in such applications where complex sensors
systems are used [67], [68], besides high-speed operation low cost, small size solutions
are required, where further constraints like limited power consumption must also be
satisfied. In such cases only dedicated embedded hardware solutions can be applied,
where the inherently parallel architecture of the classical neural networks must also be
utilised,

For constructing a hardware neural network certain technological possibilities and
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limitations must be considered. A hardware neural solution may be obtained using
analog or digital circuits (there are also a few optical inplementations [69], however,
they cannot be regarded as common solutions). Both approaches have strengths and
weaknesses. Analog circuits are orders of magnitudes smaller than digital ones, their
operating speed may be much higher, however, their low noise immunity, low stability
in time, and the fact that both multipliers and nonlinear activation functions can be
implemented only approximately, may be an obstacle of their application. Using analog
electronic technology on-line training, modification of the weight values cannot be easily
implemented. On the contrary, digital circuits have the advantage of implementing
precise, highly stable computational elements with easily adjustable parameters (e.g.
weilghts), but they are not so good in operating speed, they require larger chip area (in
a VLSI implementation). There are also mixed analog-digital solutions, which attempt
to utilise the advantages of both technologies [70].

The technological problems of a digital implementation depend largely on the op-
erating mode of a neural network. There are applications where there is no need for
on-line training, pretrained networks can be used (e.g. some important recognition
task). In these cases the main task is to implement a networks with high speed opera-
tion (recall), the training of the network is done off-line, usually using an other system
and only the network with fixed architecture and weights is to be realised. For net-
works where high-speed real-time adaptive training is required, such learning machines
and technologies can be used, where the training algorithm can also be implemented
satisfying the complexity and time constraints.

In this respect depending on the network architecture and the learning algorithm
great differences can be found. The classical MLP with its simple backpropagation
learning algorithm uses rather simple training steps, however the number of training
iterations can be very large. More complex training algorithms, like quickprop {71]
or Levenberg-Marquardt [15] algorithms are not so easy to implement in hardware
form. The training of support vector machines — the quadratic programming - is also
a computational intensive task, so SVMs are not such good candidates for hardware
realisation. It Is true even if we take into consideration the more efficient versions of
quadratic programming mentioned previously.

[n digital implementations the most demanding elements of a classical neural archi-
tecture, like MLP or RBF are the multipliers and the nonlinear functions {activation
functions or basis functions). In this respect the kernel-based support vector machines
are rather similar (if we do not deal with the problem of QP). For getting efficient
hardware solutions these architectural elements must be realised efficiently. An ef-
ficient multiplier architecture was proposed in [72], which can be used not only for
implementing the matrix-vector multiplications required in great number in a parallel
hardware architecture, but it can be used to jmplement efficiently the sigmoidal activa-
tion functions using B-spline approximation {73]. This solution applies a serial /parallel
approach and bit-level optimization.

From the point of view of digital hardware realization the best is if the architecture
does not need multipliers and nonlinear activation functions at all. In this respect
one of the most promising neural network architecture is cerebellar model articuiation
controller (CMAC), CMAC is an associative memory type network, without multipliers
and nenlinear activation functiens [74], [75]. A further advantage of CMAC against
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MLP, RBF and others is its extremely fast learning [76], which is a consequence of
its architecture, its linear output layer and the fact that an optimal arrangement of
training points can be found where only one iteration of training is enough. The price
of its simple architecture is its moderate modeling and generalization capability [77],
[78). However, using a regularized version of its training algorithin the generalization
error can be reduced significantly {79]. It can also be shown that binary CMAC and
SVM with linear B-spline kernels are equivalent [80].

In hardware implementation — using either analog or digital techniques - a further
problem must be considered, the problem of finite precision. The effects of limited
precision of the weight values, the limited accuracy of multipliers and the nonlinear
functions (activation functions or basis functions) and the finite precision of arithmetics
have to be analysed in hardware implementations. Using analog circuits the equivalent
word-length and the precision of arithmetics cannot be increased arbitrarily because
of technological reasons. In digital implementations the precision is limited only by
the computation time and/or the hardware complexity. In this respect the solution
proposed in [72] has an advantage as the precision can be increased arbitrarily of
course at the expense of operating speed. So according to the trade-oft between speed
and computational precision the designer can decide about the hardware construction.
It should be mentioned, that CMAC has also advantage in this respect, as it needs
only to store the weight values, where increasing the word length needs only a larger
memory, moreover the computation required by CMAC is the addition of some weight
values where the precision can be increased rather easily without serious hardware
consequence.

18.7 Conclusions

The purpose of this chapter was to give an overview about some important practical
questions we encounter when neural networks are used in measurement {modeling)
tasks. Although these questions are related to practice, answers can be obtained only
from theory. The theoretical results are of primary iimportance: as it is cited in Vapnik’s
book [34] “nothing is more practical than a good theory”. However — at least in their
present state — several of these results are far from being applicable in practice. The
theoretical questions — and even more the answers — are too general, so usually they
give too pessimistic results, which form obstacles to their direct applications in the
construction of different neural solutions. However, the questions - and in some cases
the answers - of new theovetical approaches are getting more and more useful for
practice. In this respect statistical learning theory and structural risk minimization
principle give entirely new possibilities. The latest achievements reached in the SLT-
hased kernel methods help to narrow the gap between theory and practice. However,
the most critical problems with constraints of implementation still pose important
challenges for the future.



Bibliography

[1]

2]

3]

[4]

[5]

6]

[7]

8]

9]

[10]

(1]

[12]

13

T.J. Sejnowski, and C. Rosenberg, Parallel Networks that Learn to Pronounce English
Text, Journal of Artificial Intelligence Research 1 {1987) 145-168.

D.A. Pomerleau, Neural Network Perception for Mobile Robot Guidance, Kluwer, Dor-
drecht, The Netherlands (1993).

Y. LeCun, B. Boser and J.5. Denker, Backpropagation Applied to Handwritten Zip
Code Recognition, Neural Computation 1 (1989) 541-551.

S. Cho, Y. Cho and S. Yoon, Reliable roll force prediction in cold mill using multiple
neural networks, IEEE Trans. on Neural Networks 8(4) (1997) 874-882.

G. Bloch, F. Sirou, V. Eustache, P. Fatrez, Neural Intelligent Control for a Steel Plant,
IEEE Trans. on Nevral Networks 8(4) {1997) 910-918.

P.J. Edwards, A.F. Murray, G. Papadopoulos, A.R. Wallace, J. Barnard, G. Smith, The
Application of Neural Networks to the Papermaking Industry, JTEEE Trans. on Neural
Nelworks 10{6) (1999) 1456-1464.

P. Berényi, G. Horvath, B. Pataki, G. Strausz, Hybrid-Neural Modeling of a Complex
Industrial Process, Proc. [EEE Instrumentalion and Measurement Technology Confer-
ence, Budapest, Hungary, May 21-23, Vol. 3 {2001) 14241429,

L. Ljung, Black-hox Models from Input-Output Measurements, Proc. [EEE Instrumen-
tation and Measurement Technrology Conference, Budapest, Hungary, May 21-23, Vol. 1
(2001) 138-146.

J. Sjdberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, H. Hjalmars-
son, A. Juditsky, Non-linear Black-box Medeling in System Identification: A Unified
Overview, Automatica 31 {1995) 1691-1724.

L. Ljung, System Identification - Theory for the User, Prentice-Hall, N.J. 2nd edition
(1999).

J. Schoukens, R. Pintelon, System Identification: a Frequency Domain Approach, IEEE
Press, New York {(2001).

P. Eykhoff, System Identification, Parameter and State Estimation, Wiley, New York
(1974).

M. Deistler. Linear Dynamic Errors-in-Variables Models, Journal of Apphed Probabuity
23 (1986) 23-39.

397



398

[14]

[16]

7

18]

[19]

[20]

[21]

[22)

[23]

[24)

25)

[26]

[27]

28]

[29]

G. Horvath

J. Van Gorp, J. Schoukens, R. Pintelon, Learning Neural Networks with Noisy Inputs
Using the Errors-in-Variables Approach, IEEE Trans. on Neural Nefworks 11(2) (2000)
402-414.

S. Haykin, Neural Networks. A Comprehensive Foundation, Second Edition, Prentice
Hall, N. J. {1999).

K. Hornik, M. Stinchcorabe, H. White, Multilayer Feedforward Networks are Universal
Approximators, Neuwral Networks 2 {1989) 359-366.

G. Cybenko, Approximation by Superpositions of a Sigmoidal Function, Mathematics
of Control, Signals and Systems 3 (1989) 303-314.

K.I. Funshashi, On the Approximate Realization of Continucus Mappings by Neural
Networks, Neural Nefworks 2(3) (1989) 183-192.

M. Leshno, V.Y. Lin, A. Pinkus, 5. Schocken, Multilayer Feed-forward Networks with
a Nonpolynomial Activation Function can Approximate any [function, Neural Networks
6 (1993) 861-67.

E.K. Blum, L.K. Li, Approximation Theory and Feedforward Networks, Neural Networks
4 (1991) 511-515.

J. Park, LW. Sandberg, Approximation and Radial-Basis-Function Networks, Neurel
Computation 5(2) (1993) 305-316.

A.R. Barron, Universal Approximation Bounds for Superposition of Sigmoidal Func-
tions, TEEE Trans. on Information Theory 39(3) (1993) 930-945.

N.H. Mhaskar, C.A. Micchelli, Dimension Independent Bounds on the Degree of Ap-
proximation by Neural Networks, IBM Journal of Research end Development 38 (1994)
277-284.

V. Kurkovd, Kolmogorov's Theorems and Multilayer Neural Networks, Neure! Networks
5 {1992) 501-506.

V. Maiorov, A. Pinkus, Lower Bounds for Approximation by MLP Neural Networks,
Neurocomputing 25 (1999) 81-91.

V. Kurkovd, P.C. Kainen, V. Kreinovich, Estimates of the number of hidden units and
variation with respect to half-spaces, Neural Networks 10 {1997) 1061-1068.

F. Carselli, A.C. Tsoi, Universal approximation vusing Feedtorward Neural Networks: a
Survey of some Existing Methods and Some New Results, Neural Networks 11(1) (1998)
15-37.

H. Alkaike, Information Theory and an Extension of the Maximum Likelihood Principle,
Second International Symposium on Information Theory, Akadémiai Kiadd, Budapest,

{1972} 267-281.

J. Rissanen, Modeling by Shortest Data Description, Automatica 14 (1978) 465-471.



Neural Networks in Measurement Systems 399

[30]

[31]

[32]

33

[34]

[35]

[36]

[37]

38

[39]

[40]

[41]

[42]

[43]

[44]

N. Murata, S. Yoshizawa, S.-1. Amari, Network Information Criterion — Determining the
Number of Hidden Units for an Artificial Neural Network Model, JTEEE Trans. Neural
Networks 5{6) (1094) 865-871.

G. te Brake, J.N. Kok, P.M.B. Vitanyi, Model Selection for Neural Networks: Comparing
MDL and NIC, NeuroCOLT, Neural Networks and Computational Learning Theory.
Technical Report Series, NC-TR-95-021 Royal Holloway University of London (1995).

B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge (1996),

V.N. Vapnik, Statistical Learning Theory, Wiley, New York {1998).
V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York (1993).

V. Vapnik, S. Golowich, A. Smola, Support Vector Method for Function Approximation,
Regression Estimation and Signal Processing, In Mozer, M., Jordan, M. and Petsche, T.
(Eds.) Advances in Neural Information Processing Systems 9. Cambridge, Mass: MIT
Press (1997) 281-287.

B. Schélkopf, A. Smola, Learning with IKernels. Support Vector Machines, Regulariza-
tion, Optimization and Beyond MIT Press, Cambridge, MA {2002).

C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Knowi-
edge Discovery and Date Mining 2(2) (1998) 121-167.

S.B. Holden, M. Niranjan, On the Practical Applicability of VC Dimension Bounds,
Newral Computation T (1995) 1265-1288.

Q. Chapelle, V. Vapnik, Model Selection for Suppart Vector Machines, 5. Solla, T. Leen,
I[{. R. Muller (Eds.), Advances in Neural Information Processing Systems Vol. 12, MIT
Press, Cambridge, MA (2000) 230-237.

A.J. Smola, B. Scholkopf, A Tutorial on Support Vector Regression, NeuroCOLT, Neural
Networks and Computational Learning Theory, Technical Report Series, NC2-TR-1998-
030 {1998).

EB.L. Bartlett, P. Long., R. Williamson, Fat-shattering and Learnability of Real-valued
Functions, Journal of Computer and Systern Sciences 52(3) {1996) 434-452.

B. Schélkopf, P. Bartlett, A. Smola, R. Williamson, Support Vector Regression with
Automatic Accuracy Control, in Kearns, M. S., Solla, S. A., and Cohn, D. A. (Eds.),
Advances in Neural Information Processing Systems, Vol. 11, MIT Press, Carmbridge,
MA (1999) 330-336.

C.J.C. Burges, B. Schélkopf, Improving the Accuracy and Speed of Support Vector
Learning Machines, In M. Mozer, M. Jordan, and T. Petsche, {Eds.) Advances in Neural
Information Processing Systems 9, Cambridge, MA, 1997, MIT Press (1997) 375-381.

E. Osuna, R. Freund, F. Girosi, An Improved Training Algorithm for Support Vector
Machines, In J. Principe, L. Giles; N. Morgan, and E. Wilson, {Eds.) Neural Networks
for Signal Processing VII Proceedings of the 1997 TEEE Workshop, New York (1997)
276-285.



400

[45]

[461

47

[48]

[49)

50

[51)

[54]

[53]

56)

57

58]

[59]

G. Horvath

J. Platt, Sequential Minimal Optimization: Fast Algorithm for Training Support Vector
Machines, Microsoft Research Technical Report MSR-TR-98-14, April 21 (1998).

P. Laskov, An lmproved Decomposition Algorithm for Regression Support Vector Me-
chines, In S.A. Solla, T.I. Leen, and I{.R. Miiller, {Eds.) Advences in Neyral Informatijon
Processing Systems 12, MIT Press {2000) 484—490.

S5.S. Keerthi, S.I{. Shevade, C. Bhattacharyya, {.R.J{. Murthy, Improverents to Platt’s
SMQ Algorithm for SVM Classifier Design, Technical report, Dept of CSA, IS¢, Ban-
galore, India {1999).

T. Joachims. Making Large-Scale SVM Learning Practical, Advances in Kernel Methods
— Support Vector Learning’, MIT Press, Cambridge, USA (1998).

M. Moser, M. Jordan, T. Petsche (Eds.), Improving the Accuracy and Speed of Support
Vector Machines, Advances in Neural Information Processing Systems Vol. 9., MIT
Press, Cambridge, MA (1997).

E. Osuna, R. Freund, F. Girosi, Support Vector Machines: Training and Applications,
Technical Report AIM-1602, MIT A1 Lab. {1996).

0.L. Mangasarian, D. Musicant, Successive Overrelaxation for Support Vector Machines,
IEEE Trans. on Neural Networks 10 {1999) 1032-1037.

J.AK. Buykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Newu-
ral Processing Letters 9(3) {1999) 293-300.

J.AI. Suykens, L. Lukas, J. Vandewalle, Sparse Approximation Using Least Squares
Support Vector Machines, Proc. JEEE International Symposium on Circuits and Sys-
tems ISCAS 2000, Vol. 2 (2000) 757-760.

J.ALK. Suykens, Nonlinear modeling and Support Vector Machines, Proc. [EEE Instiru-
mentetion and Measurement Technology Conference. Budapest, Hungary, May 21-23,
Vol. 1 (2001) 287-294.

I'. Girosi, An Equivalence Between Sparse Approximation and Support Vector Machines,
Neural Computation 10(6) (1998) 1455-1480.

J.AIX. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted least squares sup-
port vector machines: robustness and sparse approximation, Neurocomputing 48 (2002)
85-105.

J. Valyon, G. Horvath, Reducing the Complexity and Network Size of LS-SVM Solutions,
submitted to IEEE Trans. Neural Networks (2002).

“Numerical Recipes”, Cambridge University Press. Books On-Line,
web: http://www.nr.com

B. Pataki, G. Horvdth, G. Strausz, Z. Talata, Inverse Neural Modeling of a Linz-
Donawitz Steel Converter, e & ¢ Elektrotechnik und Mnformationsiechnik 117{1) (2000)
13-17.



Neural Networks in Measurement Systems 401

[60]

[61]

[62]

63

[64]

[65]

[66]

[67]

(68|

[69)]

[70]

[71]

[72]

(73]

P. Niyogi, F. Girosi, T. Poggio, Incorporating Prior information in Machine Learning
by Creating Virtual Examples, Technical report, MA 02139. MIT Center for Biological
and Computational Learning, Cambridge, MA (1998).

J.W. Shavlik, G.G. Towell, An Approach to Combining Explanation Based and Neural
Learning Algorithms, Cornection Science 1 {1989) 233-255.

G.G. Towell, J.W. Shavlik, Knowledge-Based Artificial Neural Networks, Artificicl In-
telligence 70 (1994) 119-165.

G. Cauwenberghs, T. Poggio, Incremiental and Decremental Support Vector Machine
Learning, In T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in Neural Information
Processing Systemns 13, MIT Press (2001).

J. Liu, M. Brooke, Fuilly Parallel On-chip Learning Hardware Neural Network for Real-
Time Control, Proc. IEEE International Symposium on Circuits and Sytems, [SCAS 99,
Orlando, FL (1999).

P. Masa, K. Hoen, H. Wallinga, A High-Speed Analog Neural Processor, /JEEE Micro
(1994) 40-50.

S. Knerr, L. Personnaz, G. Dreyfus, Handwritten Digit Recognition by Neural Networks
with Single-Layer Training, JEEE Trans. Neural Networks 3 (1992) 962-969.

J.W.M. Van Dam, B.J.A. I{rose, '.C.A. Groen, Adaptive Sensor Models, Proc. of In-
ternationa! Conference on Multisensor Fusion and Integretion for Intelligent Systems,
Washington D.C. (1996) 705-712,

JW .M. Van Dam, Environment modeling of Mobile Robots: Neural Learning for Sensor
Fusion, Ph.D. thesis, Universiteit van Amsterdam (1998).

P.E. Keller, A.F. Gmitro, An Optical Neural Network Implemented with Fixed, Planar
Holographic Interconnects, Proceedings of the Neural Network Workshop for the Hanford
Community, Pacific Northwest National Laboratory, Richland, WA, USA (1994) 93-99.

A. Schmid, Y. Leblebici, D. Mlynek, A Mixed Analog-Digital Artificial Neural Network
Architecture with On-Chip Learning, IEE Proceedings — Circuits, Devices and Systems
146(6) (1999) 345-349.

S.E. Fahlman, Fast Learning Variations on Back-Propagation: an Empirical Study, Proc.
of the 1988 Connectionist Models Summer Scheol, Pittsburg, Morgan I{aufmann, San
Mateo, Calif (1988) 38-51.

T. Szabo, L. Antoni, G. Horvith, B. Fehér, Full-Parallel Digital Implementation for
Pre-Trained Neural Networks, Proc. TEEE International Joint Conference on Neural
Networks, IJCNN 2000, Como, Italy, Vol. 3 (2000) 85-90.

T. Szabé, G. Horvath, An Efficient Hardware Implementation of Feed-forward Neural
Networks, Proc. International Conference on Industrinl and Fngineering Applications
of Artificial Intelligence and Expert Systems, IEA/AIE 2001, Budapest, Lecture Notes
in Artificial Intelligence, 2070 Springer {2061) 300-313.



402

[74]

73]

G. Horvath

J.5. Albus, A New Approach to Manipulator Control: the Cerebellar Model Articulation
Controller (CMAC), Truns. ASME (1973) 220-227.

M. Brown, C.J. Harris, Neurofuzzy Adaptive modeling and Control, Prentice Hall, New
York (1994).

D.E. Thompson, $. Kwon, Neighborhood Sequential and Random Training Techniques
for CMAC, JIEEE Trans. Neurel Networks 6 (1995) 196 —202.

M. Brown, C.J. Harris, P. Parks, The Interpolation Capability of the Binary CMAC,
Neural Networks 6(3) (1993) 429-440.

T. Szabd, G. Horvdath, CMAC Neural Network with Improved Generalization Capability
for Syvstem modeling, Proc. IEEE Conference on Instrumentation and Measurement,
Anchorage, AIK. Vol. 2 {2002) 1603-1608.

T. Szabd, G. Horvéth, Improving the Generalization Capability of the Binary CMAC,
FProc. International Joint Conference on Newral Networks, [JCNN 2000. Como, [taly,
Vol. 3 (2000) 85-90.

G. Horvath, CMAC Neural Network as an SVM with B-Spline Kernel Functions, sub-
mitted to IEEE Instrumeniation end Meuswremerdt Conference, Vail, Colorado (2003).



List of participants

403



404

Peter Antal

Budapest Univ. Technology & Econornics
Dept. Measurement and Information Systers
Magyar tuddsok kdritja 2

H-1117 Budapest, Hungary

peter.antai@esat. kuleuven.ac.be

Valentin Arkov

Ufa State Aviation Technical University
12, K. Marx St.

UGATU, ASU Dept.

450000, Ufa, Russia
arkov@asu,ugatu.ac.ru

Marta Avalos

Heudiasyc Lab. Univ. Techn. Compiégne
Research Center Royallieu

BP 60649 / 60206 Compiegne

France

avalos@hds.ute.fr

Goékhan Bakir

Instit. of Robotics & Mechatr.
German Aerospace Center DLR
Qberpfaffenhofen P.O. Box 1116
D-82230 Wessling, Germany
goekhan.bakir@dlr.de

Annalisa Barla
Univ. Di Genova, DISI
Via Dadecaneso 35
16146 Genova

Italy

barfa@disi.unige.it

Peter Bartlett

Univ. of California, Dept. of Statistics
367 Evans Hill # 3860

Berkeley, CA 94720-3860

USA

peter.bartlett@anu.edu.au

Mitra Basu

City College of New York
Electrical Engineering Dept.,
140th St. and Convent Av.
New York, NY 10031, USA
basu®@ceny.cuny.edu

List of participants

Sankar Basu

National Science Foundation
CISE/CCR Division

4201 Wilson Blvd., Room 1145
Arlington, VA 22230, USA
sabasu@nsf.gov

Ildar Batyrshin

I{azan State Techn. Univ.

Inst. [nformatics ans Applied Math.
K. Marx St. 68, IKazan 420015
Russia

batyr@emntu.ken.ru

Mikhail Belkin

Univ. of Chicago, Dept. of Mathematics
5734 S. University Ave.

Chicago, IL 60637

USA

misha@math.uchicago.edu

Anton Belousov

ICB Inst, of Chem. and Biochem.
Sensor Research, Mendelstrasse 7
48149 Miinster

Germany

a.belousov@icb-online.de

Kristin Bennett

Rensselaer Polytechnic Institute
Dept. Mathematical Sciences
Troy, New York, 12180-3590
USA

bennek@rpi.edu

Christopher Bishop
Microsoft Research Lid.
7 J.J. Thormson Avenue
Cambridge CB3 OFB
UK.
cmbishop@microsoft.com

Peter Bosman

Utrecht University

Inst. Information and Computing Science
P.O. Box 80.089 3568 TB Utrecht
Nederlaad

peter.bosman®@cs.uu.nl



List of participants

Sergey Butakov

Altai Academy of Economy and Law
I[Komsomolsky av 86

Barnanl 656032

Russia

swh@agtu.secna.ru

Marco Campi

University of Brescia

Dept. Electrical Engineering
Via Branze 38, 25123 Brescia
Italy

campi@ing.unibs.it

Stéphane Canu

INSA Rouen

BP 8 Place E. Blondel

76131 Mont. St. Agnon, Cedex
France

scanu®insa-rouen fr

Yu-Han Chang
MIT

143 Albany St. # 3
Cambridge, MA 02139
USA

ychang®@mit.edu

Gal Chechik

Interdiscipl. Center for Neural Comp.
Shprintzak Bldg.

Givat Ram, Jerusalem

Israel

ggal@cs.huji.ac.il

[kay Colakoglu

Electrical and Electrenics Eng. Dept.
Middle East Technical University
06531 Ankara

Turkey

ilkay@metu.edu.tr

Nello Cristianini

Royal Holloway, University of London
Dept. Computer Science

Egham, Surrey

TW 20 OEX, UK
nello®@support-vector.net

Lehel Csato

Neursl Computing Res. Group
MB306, Aston Street

B4 7TET Birminghain

UK

csatol@aston.ac.uk

Bojana Dalbelo Basic

University of Zagreb

Fac. Electr. Engineering and Computing
Unska 3, HR 10000 Zagreb

Croatia

bojana.dalbelo®@fer hr

Jos De Brabanter
IC.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-S5ISTA
Iasteelpark Arenberg 10

3001 Heverlee, Belgium
jos.debrabanter®@esat. kuleuven.ac.be

Luc Devroye

McGill University

School of Computer Science
Montreal, H3A 2K6
Canada

luc®@cs.megill.ca

Hatice Dogan

Dokuz Evlul Univ.

Eng. Fac. Electrical & Electronics Dept.
35160 Buca, Izmir

Turkey

hatice.dogan®@deu.edu.tr

Alexander Dolia

Dept. 504, Radicengineering Faculty
National Aerospace University
Chkalova 17, 5t., Kharkov, 61070
Ukraine

lukin®@xai.kharkowv.ua

Pinar Duygulu

Middie East Technical University
Dept. Computer Engineering
Ankara, TR 06531

Turkey

duygulu@ceng.metu.edu.tr



406

Mark Embrechts

Rensselaer Polytechnic Institute
Dept. Decision Sc. and Eng. Syst.
Troy, NY 12180

USA

embrem@rpi.edu

Farida Enikeeva

Moscow State University

Fac. Mechanics & Mathematics
Dept. Probability Theory
Moscow 119992, Russia
farida®@shade.msu.ru

Zeki Erdem

TUBITAIK, Marmara Research Center
Information Technologies Lnstitute
Electronic Systems Group

POB 21, Gebze/I{ocaeli, Turkey
zeki@btae.mam.gov.tr

Eleazar Eskin

Columbia University

450 CS building, 500 W 120th str.
New York City, NY 10027

USA

eeskin@cs.columbia.edu

Mario Figueiredo

Instituto Superior Tecnico
Instituto de Telecomunicacioes
1049-001 Lisboa

Portugal

mtf@lx.it.pt

Emanuele Franceschi
Univ. Genovs, DISI
Via Dodecaneso 35
16146 Genova

Ttaly
emafranc@disi.unige.it

Laurentiu Frangu

Univ. "Dunarea de Jos” of Galati
St. Domneasca 47

6200 Galati

Rornania

Laurentiu. FranguQugal.ro

List of participants

Martin Giese

Univ. Clinic Tibingen

ARL, Dept. Cognitive Neurology
Spemannstr. 34, 72076 Tiibingen
Germany
martin.giese@tuebingen.mpg.de

Arnulf Graf

Max Planck Institute Biol. Cybernetics
Spemannstrasse 38

72076 Tubingen

Germany

arnulf. graf@tuebingen. mpg.de

Laszlo Gyorft

Budapest Univ. Techn. and Econorics
Dept. Comp. sc. & inform. theory
Stoczek u.2.

Hungary

gyorfi@szit.bme.hu

Sandor Gyori

Budapest Univ. Techn. and Economics
Goldmann Gy ter. 3 V2.104

1111 Budapest

Hungary

gyori@szit.bine.hu

Ugur Halici

Middle East Technical University
Electrical & Electronics Eng. Dept.
06531 Ankara

Turkey

halici®@metu.edu.tr

Bart Hamers

I{.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-SISTA
Kasteelpark Arenberg 10

3001 Heverlee, Belgium

bart.hamers@esat. kuleuven.ac.be

Gabor Horvath

Budapest Univ. of Technology & Economics
Dept. Measurement and Information Svstems
Magyar tuddsok korutju 2

H-1117 Budapest, Hungary
horvath@mit.bme.hu



List of participants

Dimitris Iakovidis

Dept. Informatics & Telecommunication
7 Mykonou, Zokrafou

15772 Athens

Greece

diakov@di.uoca.gr

Paul Kainen

Dept. of Math.
Georgetown University
Washington, DC 20057
USA
kainen@georgetown. edu

Andras Kocsor

Research group on Artificial Intelligence
Aradi Vertanuk tere |

6720 Szeged

Hungary

kocsor@inf.u-szeged.hu

Jacob Kogan

Univ. Maryland, Baltimore Country
1000 Hilltop Circle

Baltimare, MD 212350

USA

kogan®@math.umbc.edu

Adam Krzyzak

Department of Computer Science
Concordia University

1455 De Maisonneuve Blvd. West
Montreal, Canada H3G 1M8
krzyzak@cs.concordia.ca

Rudolf Kulhavy

Honeywell Prague Laboratory
Pod vodarenskou vezi 4

182 08 Prague 8

Czech Republic

rudolf kulhavy®@honeywell.com

Vera Kurkova

Academy of Sciences of the Czech Republic
Ingtitute of Computer Science

Pod Vodarenskowu vezi 2

182 07 Prague, Czech Republic
vera@cs.cas.cz

407

Gert Lanckriet

University of California, Berkeley
262M Cory Hall

Berkeley, CA, 94720

USA

gert@eecs.berkeley.edu

Jorg Lemm

Universitat Miinster

Institut fiir Theoretische Physik
Wilhelin-Klemm-Str. 9

48149 Miinster, Germany
joerg.lemm@wgz-bank.de

Chuan Lu

I<.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-SISTA
Iasteelpark Arenberg 10

3001 Heverlee, Belgium

chuan lu®@esat.kuleuven.ac.be

Andriy Lutsyk

Institute of Physics and Mechanics
NAS of Ukraine

3 Naukova 5t., 79601 Lviv
Urkraine

lutsyk®@ah.ipm.lviv.ua

Ana Madevska Bogdanova
Institute of Informatics

Fac. Natural Sciences and Mathematics
PO Box 162. 1000 Skopje

Macedonia

ana@i.edu.mk

Michel Maignan

University of Lausanne, Geostatistics
Banque Cantonsle de Geneve

BFSH 2, 1015 Lansanne

Switzerland
michel.maignan@img.unil.ch

Alexander Malyscheff
University of Oklahoma

School Industr. Eng. 202 W. Boyd
Room # 124, Norman, OK 73019
USA

alexm®@ou.edu



408

Florian Markowetz

Max Planck Institute Molecular Genetics
Dept. Computational Molecular Biology
Thnestrasse 63-73, 14195 Berlin
Germany

florian. markowetz@molgen.mpg.de

Santiago Marco
Universitat de Barcelona
Departament d’Electronica
Marti Franques 1

08028 Barcelona, Spain
santi@el.ub.es

Charles Micchelli

State University of New York
Dept. Mathercatics & Statistics
University at Albany, SUNY
Albany, NY 12222, USA
cam@math.albany.edu

Yves Moreau

K.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-SISTA
Kasteelpark Arenberg 10

3001 Heverlee, Belgium

yves. moreau®@esat. kuleyven.ac.be

Antoine Naud

Nicholas Copernicus Univ.
Dept. Ioformatics

ul. Grudziadzka 5, 87-100 Torun
Poland

naud@phys.uni.torun.pl

Zidrina Pabargkaite
SCISM

South Bank University
London SE1 DAA

UK

zipa®@softhome.net

Matteo Pardo

INT'M & University of Brescia
V. Valotti 9

25133 Brescia

Ttaly

pardo®ing.unibs.it

List of participants

Kristiaan Pelckmans

K.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-SISTA
Kasteelpark Arenberg 10

3001 Heverlee, Belgium
kristiaan.pelckmans@esat. kuleuven.ac.be

Marta Pinter

Budapest Univ. Techn. and Economics
Dept. Comp. Sc. & Inform. Theory
Magyar tuddsok kariitja 2, H-1117 Budapest
Hungary

marti@szit.bme.hu

Tomaso Poggio

Massachusetts Inst. of Technology

Dept. Brain & Cognitive Sciences, Al Lab
45 Carleton Street, Cambridge MA 02142
USA

tp@ai.mit.edu

Massimiliano Pontil

Dipartimento di Ingegneria Informatica
Universita i Siena

Via Roma 56, 53100 Siena,

Italy

pontil@dii.unisi.it

Maria Prandim

University of Brescia

Dept. Electronics for Automation
Via Branze 33. 25123 Brescia
Italy

prandini@ing.unibs.it

Liva Ralaivola

Lab. D’Informatique de Paris 6

LIP6, Pole IA, Univ. Paris 6

&, rue du Capitaine Scott, 75015 Paris
France

liva.ralaivola@lip6.fr

Carlos Rodriguez

Suny at Albany Dept. Math.
1400 Washington Ave,
Albany, MY 12222

USA

carlos@math.albany.edu



List of participants

Roman Rosipal

NASA Ames Research Center
Mail Stop 269-3

CA 94035

USA
rrosipal@mail.arc.nasa.gov

Cynthia Rudin
Princeton University, NEC
133 Qld Farm Circle
Williamsville NY 14221
USA

crudin@princeton.edu

Rauf Sadykhov

Belarussian State University
Informatics & Radioelectronics
P; Brovkastreet 6, 220600 Minsk
Belarus
rsadykhov@gw.bsuir.unibel by

Bernhard Scholkopf

Max Planck Institute for

Biological Cybernetics, Dept. Schélkopf
Spemanastrasse 3, 72076 Tibingen
Germany
bernhard.schoelkopf@tuebingen.mpg.de

Armin Shmilovici Leib
Ben-Gurion University

Dept. Information Systerns
PO Box 633, 84105 Beer-Sheva
Israel

armin@bgumail.bgu.ac.il

Dmitriy Shutin

Graz University of Technology
Inst. f. Nachrichtentechnik
Inffeldgasse 12, 8010 Graz
Austria

dshutin@inw.tugraz.at

Yoram Singer

The Hebrew Univ., Givat-Ram campus
School of Computer Sc. & Eng.
Jerusalem 91904

Israel

singer@cs.huji.ac.il

409

Steve Smale
University of California
Dept. Mathematics
Berkeley, CA 94720-384
USA
smale®math.berkeley.edu

Masashi Sugiyama

Tokyo Inst. Technology

Dept. Computer Science 2-12-1
O-ckayama Meguro-ku, Tokyo 152-8552
Japan

sugi@og.cs.titech.ac.)p

Johan Suykens

IC.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-S5ISTA
Iasteelpark Arenberg 10

3001 Heverlee, Belgium
johan.suykens@esat. kuleuven.ac.be

Peter Tino

The University of Birmingham
School of Computer Science
Edgbaston

Birmingham B15 2TT, UK
pxt@cs.bham.ac.uk

Theodore Trafalis

University of Qklahoma

Schaol of Industrial Engineering
202 W. Boyd, Suite 124
Norman OK 73019, USA
ttrafalis@ou.edu

Karl Tuyls

VUB

Computational Modeling Lab
Building F, Campus Etierbeek
Belgium

ktuyls@vub.ac.be

Jozsef Valyon

Budapest Univ. Techn. and Economics
Dept. Measurement and Inf. Systems
Magyar tuddsek komtjs 2

H-1117 Budapest, Hungary
valyon@mit.bme.hu



410

Joos Vandewalle

IC.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-SISTA
Kasteelpark Arenberg 10

3001 Heverlee, Belgium
joos.vandewalie@esat. kuleuven.ac.be

Tony Van Gestel

1<.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-5ISTA
Kasteelpark Arenberg 10

3001 Heverlee, Belgium

tony vangestel®@esat. kuleuven.ac.be

Sabine Van Huffel

K.U. Leuven

Dept. Elektrotechniek, ESAT-SCD-5ISTA
Iasteelpark Arenberg 10

3001 Heverlee, Belgium
sabine.vanhuffel@esat kuleuven.ac.be

Vladimir Vapnik
NEC Research

4 Independence Way
Princeton, NJ 08540
USA

vlad@research.nj.nec.com

Andrey Vasnev

New Economic School, Moscow

NES, Nakhimovsky Prospekt 47, Suite 1721
117418 Moscow

Russian Federation

avasnev@nes.ru

Jakob Verbeek
University of Amsterdam
Kruislaan 403

1098 SJ Amsterdam
Nederland
jverbeek®@science.uva.nl

M. Vidyasagar

Tata Consultancy Services

6th floor, IChan Lateefkahn Estate
Fateh Maidan Road, Hyderabad 500 001
India.

sagar@atc.tcs.co.in

List of participants

Michael Werman

The Hebrew University
Computer Science, Givat Ram
Jerusalem

Israel

werman@cs. huji.ac.il

Slawo Wesolkowski
University of Waterloo
Systerns Design Engineering
Waterloo, Ontario N2H 1IK6
Canada

s wesolkowski@ieee.org

Marco Wiering

University Utrecht

Inst. Information & Cormputer Science
Padualaan 14, 3508 TB Utrecht
Nederland

marco®@cs.uu.nl

Atila Yilmaz

Hacettepe University
Electrical and Electronics Eng.
06532 Beytepe, Ankara
Turkey
ayilmaz@hacettepe.edu.tr

Gaetano Zanghirati

Univ. Di Ferrara, Dip. Matematica
Via Machiavelli, 35

44100 Ferrara

Tealy

g.zanghirati@unife.it

Luca Zanni

Univ. Modena and Reggio Emilia
Dept. Mathematics

Via Campi 213/13, 41100 Modena,
Italy

zanniluca@unimo.it

Onno Zoeter

SNN, University of Nijmegen
Geert Grooteplein 21

6525 EZ Nijmegen
Nederland
orzoeter@snn.kun.nl



Index

-mixing, 368

e-insensitive loss function, 389
v-support vector classifiers, 181
h-projection, 328

k-nearest neighbor algorithm, 114
k-nearest neighbor estimate, 343
n-grams, 220

absolute cost function, 382
active learning, 42
AdaBoost, 255
admissible set, 72
algorithmic stability, 149
annealed VC-entropy, 9
approximation, 69
approximation error, 32
automatic relevance determination, 163,
275
auxiliary field, 309
average binary loss, 258
average case geometry, 331

backpropagation method, 18
bagging, 119

base learning algorithm, 255
Bayesian classification, 280
Bayesian decision theory, 291
Bayesian field theory, 290
Bayesian inference, 163, 276, 322
Bayesian regression, 271
Besov spaces, 49
bias-variance problem, 41
black box models, 378
Bochper’s theorem, 53
Brownian motion, 292

case-based reasoning, 320
centered kernel matrix, 165

closure, 71
CMAC, 394
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coding matrix, 257
collocation scheme, 59
concept class, 360

conditional distribution functjon, 2

conditional expectation, 344

conjugate gradient method, 136, 239

conjugate prior, 326
consistency, 6

consistent algorithm, 365
convergence in probability, 5
convex, 72

correlation coefficient, 166, 214
covariance operator, 300
covering number, 33, 83, 362
cross-linguistic correlation, 212
cross-model likelihood, 334
cross-validation, 112, 387
CS-functional, 48

cumulative prediction error, 342
curge of dimensionality, 73

data smoothing, 320
decision frees, 256
deflation, 231

density estimation, 3, 170, 295
density operator, 298
dependent inputs, 367
diffusion kernel, 207
diffusion process, 209
direct method, 136
dispersion, 367

dual variables, 135

eigenfunctions, 169
embedded hardware, 394
empirical density, 325
empirical ervor, 32, 113
empirical mean, 358
empirical risk functional, 4
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empirical risk minimization, 132, 387 hyperparaneter optimization, 279
energy, 296 hyperparameters, 163

entropy of a set of functions, 7 hyperprior, 308

error correcting output codes, 257 hypertext documents, 215

error stability, 117 hypothesis, 360
errors-in-variables, 382 hypothesis space, 253

Euclidean orthonormal basis, 83 hypothesis stability, 114

evaluation functional, 100
evaluation space, 100
evaluation subduality, 101
expected risk, 132
exponential family, 328

image classification, 138, 142

image completion, 303

incomplete Cholesky factorization, 140
information geometry, 327
information retrieval, 198

feature selection, 123, 243 information-hased inference, 324
filter operator, 304 invariances, 125

ﬁltered diﬂ'erences} 304 ln\-"erse dOCument fl‘equerl()}', 2[}3
Fisher discriminant analysis, 160 inverse quantum theory, 298
Fisher information matrix, 330 inverse temperature, 296
fixed-size LS-SVM, 170 Ivanov regularization, 132
Fourier orthonormal basis, 83 joint density, 322

Fourier representation, &1

o joint probability distribution, 2
Frobenius inner product, 211

Fubini’s theorem, 30 Karush-Kuho-Tucker conditions, 20, 189
functional learning, 89 Karush-Kuhn-Tucker systern, 159
kernel CCA, 166, 212
Gagliardo diagram, 49 kernel estimate, 344
(Gaussian mixture prior, 300 kernel FDA, 159
Gaussian prior factors, 299 kernel machines, 119
(zaussian process prior, 299 kernel PCA, 163
Gaussian processes, 163 kernel PLS, 168, 236
generalization capability, 386 kernel ridge regression, 239
generalization error, 113, 361 kernelization, 189
generalized cross-validation, 121, 148 kernels, 89
generalized eigenvalue problem, 168, 214 Kerridge inaccuracy, 205, 325
Glivenko-Cantelli lemrma, 358 Kolmogorov’s n-width, 79
globally exponentially stable, 372 Kullback-Leibler distance, 292
Gram matrix, 201 Kullback-Leibler divergence, 327, 329
grey box models, 378
growth fU_IlCtiOIl} 9 Lagra.ngian, 20, 15§, 182
Laplacian operator, 81
Hamming decoding, 259 latent semantic indexing, 204
hardware complexity, 396 law of large numbers, 358
Hilbert isomorphism, 31 learning machine, 2
Hilbert space, 30 learning rate, 361
Hoeffding’s inequality, 34, 359 least, squares estimate, 344, 381
hyperfield, 303 least squares support vector machines,

hyperparameter, 303 136, 157, 236, 239, 392
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leave-one-out bound, 146G
leave-one-out error, 113

Lie group, 301

likelihood energy, 296

likelihood field, 291

likelihood function, 323

linear system, 32, 121, 137, 159, 239
local averaging estimates, 343
local learning, 320

local modeling, 320

local models, 333

locally weighted geometry, 336
logistic regression, 256

loss, 2

loss-based decoding, 259
low-rank approximation, 139, 168

margin, 184, 253

Markov chain, 372

maximal margin hyperplane, 19
maximum a posteriori appreximation, 293
maximum entropy estimate, 330
maximum likelihood, 382
maximum likelithood estimate, 330
measurement, 377

Mercer kernel, 31, 77

Mercer's condition, 23, 159, 184
minjmal empirical risk algorithm, 363
misclassification error, 113

model complexity, 379

model selection, 112, 380

model validation, 382

modeling capability, 384

modulus of continuity, 72
monoctonicity, 297

Monte Carlo methods, 42
multilayer perceptron, 383
nultiple-model prior, 333

natural language processing, 199
Newton’s method, 38

NIPALS, 231

norm-induced topology, 71
Nystrom approximation, 139, 168

optimal control, 173
optimal interpolant, 63
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outliers, 161
output coding, 257
overfitting, 24, 42

P-dimension, 364

Paley-Wiener theorem, 55

parameter estimation, 383

partial stability, 118

partition sum, 296

partitioning estimate, 344

pattern recognition, 3, 346

Peetre K-functional, 48

pointwise defined functions, 101

portfolio selection, 348

posterior, 291

posterior density, 323

posterior energy, 296

predictive density, 291, 324

primal-dual neyral network interpreta-
tion, 160

prior, 291

prior information, 366, 393

probability measure, 30

probability-based inference, 322

probably approximately correct, 360

proximal support vector machine, 135,
239

pruning, 161, 393

Pythagorean relation, 329

quadratic programuming, 395
quadratic Renyi entropy, 170

radial basis function network, 383
random entropy, 7

random V(C-entropy, 8

rate of convergence, 9

Rayleigh quotient, 160

real normed linear space, 71
real-valued Boolean function, 83
recurrent networks, 172
recursive least squares, 170
reduced form, 239

regression function, 3, 30, 293
regularization functionals, 120
repularization networks, 121, 161
regularization parameter, 30, 77
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regularized least-squares classification, 134

relevance vector machine, 273

representer theorem, 77, 91, 133

reproducing kernel, 102

reproducing kernel Hilbert space { RKHS),
31, 105, 120, 132

ridge regression, 120, 161

risk functional, 2

robust statistics, 162

robustness-efficiency trade-off, 162

sample complexity, 362

sample error, 32

semantic proximity matrix, 210

semantic retations, 202

semantic similarity, 207

sensitivity analysis, 124

Sherman-Morrison- Woodbury formula, 137

similar-case modeting, 332

similarity measures, 200

singular value decomposition, 210

small sample size, 15

Sobolev space, 79

soft margin, 158

Sparse models, 275

sparseness, 161

stationary and ergodic process, 349

statistical learning theory, 2, 358, 387

statistically dependent models, 334

stochastic process, 358

string subsequence kernel, 217

structural risk minimization, 15, 389

subduality kernel, 102

suppert vector machines, 21, 121, 133,
156, 180, 254, 383

support vectors, 20

target function, 360

text categorization, 138
Tikhonov reguiarization, 133
total variation metric, 366
transductive inference, 123, 170

UCI machine learning repository, 137,
159, 240
underfitting, 42
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uniform convergence of empirical means,
358

uniform stability, 118

universal approximators, 73

universally consistent, 345

universalty consistent regression estimates,
343

variable-basis approximation, 74
variation w.r.t. set of functions, 75
VC dimension, 11, 364, 388

VC entropy, 6

VC theory, 117

vector space model, 201

virtual samples, 125

von Neumann kernel, 209
vowel-recognizer, 70

weighted least squares, 381
weighted LS-SVM, 162
well-posed, 32

word stemming, 202



